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Abstract 

According to the National Safety Council, about a half of manual workplaces in US industries 

cause musculoskeletal disorders. The management of firms recognizes that poor workplace ergo-

nomics results not only in high prevalence rates of diseases for workers, but also in higher costs for 

the firms, including costs of absenteeism and action costs. Contrary to the widespread set opinion, 

it is possible to improve workplace ergonomics at low costs, especially at the earlier steps of plan-

ning. Early in the planning, circumvention of ergonomic risk factors is also accompanied by raises 

in productivity and a higher quality. Currently, firms have difficulties to incorporate ergonomic 

aspects into the planning process. 

In this study, we show examples of how to integrate ergonomic aspects into the planning decisions. 

We discuss important planning steps for the workplace ergonomics, formulate problem settings and 

point out the relevant models of Operations Research. For each of the planning steps, we also illus-

trate potential benefits from consideration of ergonomic aspects.  

In order to make our illustrations more specified, we take the example of manual workplaces at 

assembly lines in the automobile industry. The discussed problem settings and models can also be 

applied to other industries and production systems. 

 

Keywords: Operations engineering; Ergonomics; Planning; Human factors; Process Engineering; 
Ergonomic risks 
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1 Introduction 

According to the definition of International Ergonomics Association (IEA Council, 2000), workplace 

ergonomics means the creation of a working environment that optimizes the worker’s wellbeing and 

the overall performance of the organization. Workplace ergonomics gains in importance in enterprises. 

Ergonomics is the result of the interplay of physical (e.g. repetitivity of work, the weight of loads to be 

lifted), cognitive (e.g. work stress, training) and organizational factors (e.g. richness of the job, com-

munication patterns, teamwork). Among them, the physical ergonomic risk factors are more easily 

measured and their consequences are better investigated than those of the other factors. It has been 

realized that poor physical ergonomics in the workplace results in quality losses, inefficiencies and 

health problems of the workers (e.g. Eklund, 1995; Moreau, 2003; Falck et al., 2010). For example, 

for the Volvo car company, one ergonomically poor workstation is estimated to cost €90,000 yearly to 

cover absenteeism, personal turnover, losses of new employees etc. (Sundin et al., 2004). Our study 

focuses on physical ergonomics. Therefore, the word “physical” is further omitted for the sake of brev-

ity. 

Product design, production and personnel planning processes are important for circumventing and 

mitigating the ergonomic risk factors. At this stage, there exists a high flexibility in forming the work-

place design and work assignment as well as in possibilities to create or modify further organizational 

issues (e.g. the Framework Directive, EU, 1989; Helander, 1999; Hilla, 2006). Currently, the firms 

experience difficulties integrating ergonomic aspects into the planning processes (Perrow, 1983; 

Launis et al., 1996; Broberg, 1997; Wulff et al., 1999). 

Recently, a regular measurement of ergonomic risks, or risk for health of workers, was integrated into 

organizational routines of firms in different industries, especially those, employing assembly line pro-

duction system. However, this valuable piece of information is currently used almost solely to react on 

the already existing ergonomic problems. Thus, ergonomic risk factors are evaluated at the production 

stage, where the costs of their mitigation are already high. In this study we show that such estimations 

of ergonomic risks represent a valuable piece of information for preventive measures and make ergo-

nomics easy to consider in the planning processes.  
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The application of the methods of Operations Research (OR) to plan and mitigate ergonomic risks was 

made prominent in the work of Brian Carnahan and his team (see, e.g., Carnahan et al., 2000; Carna-

han et al., 2001). A comprehensive overview of ergonomics and possible ways of its incorporation 

into scheduling is provided by Lodree et al. (2009). Several studies address directly the question of the 

integration of ergonomic aspects into the planning processes at firms. However, their focus lies in 

suggesting general organizational changes that would accelerate such integration, e.g. empowering 

workers, providing basic training in ergonomics for production planners and designers (see Perrow, 

1983; Noro and Imada, 1991; Sandberg, 1992; Hendrick, 1997; Dul and Neumann, 2009). However, 

an elaborate investigation of which planning decisions influence ergonomic risk factors and how to 

model these decision problems is still missing.  

In our study, we show examples of how to integrate ergonomic aspects into the planning decisions at 

firms. We formulate problem settings and point out the relevant OR models. Most of such problems 

have been little investigated in the OR literature, so that we provide directions for further research. For 

each of the planning steps, we also illustrate potential benefits from consideration of ergonomic as-

pects. The insights that we present in this study originate from the literature, our own research and 

communication with car manufacturers we cooperate with.  

In order to make our illustrations more precise, we refer to the manual labor workplaces at assembly 

lines in the automobile industry throughout our study. However, the described problem settings and 

models are directly applicable, possibly with a few modifications, to other industries and production 

systems as well. We select the automobile industry, because it is a precursor in the integration of the 

ergonomic risks estimation into organizational routines. Correspondingly, a lot of the existing OR 

models that consider ergonomic factors refer to manual workplaces at assembly lines. Manual work-

places at assembly lines, including those in the automobile industry, are heavily exposed to ergonomic 

risks. Along with construction workers and health care assistants, workers at assembly lines have the 

highest prevalence of work-related musculoskeletal disorders (see Schneider and Irastorza, 2010). 

We proceed as follows. In Section 2, we provide an overview discussion on physical ergonomic risk 

factors, their estimation and specificity of their integration in OR models and planning decisions. In 
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Section 3, we report on how ergonomic aspects can be incorporated into production and personnel 

planning decision problems for manual workplaces at assembly lines in the automotive industry. We 

conclude with a discussion in Section 4. 

2 OR models and quantitative estimation of ergonomic risks 

Mitigating ergonomic risks is connected for many OR researchers, first and foremost, with the yes/no 

problem of equipment purchase and installation, such as of manipulators for lifting, ergonomic chairs 

or working tables of an adjustable height. The decision problem in this case is to find the right trade-

off between the costs of such equipment and its benefits in terms of lower ergonomic risks for work-

ers. However, further decisions, such as task assignment to workers, may influence the workplace 

ergonomics a lot. As we will see in Section 3, there exist many ways to improve workplace ergonom-

ics at little or no cost and nevertheless receive significant benefits from the mitigation of ergonomic 

risks. In Section 2.1, we go through the important “drivers” of ergonomic risks and possible traditional 

problem settings of OR that influence them. Afterwards we provide comments on possible objective 

functions for OR models in Section 2.2. 

2.1 Overview of ergonomic risk factors 

Table 1 provides several links to widespread quantitative methods for the estimation of ergonomic 

risks. Ergonomic risks are usually measured in points or as an index. Higher values of points/index 

mean higher risks for health being present. A good overview of ergonomic risk estimation tools, in-

cluding a list of industries where they have been applied, is provided in the mandatory Appendix D.1 

to §1910.900 of “Final Ergonomics Program Standard” by the Occupational Safety and Health Admin-

istration (OSHA, 2000).  

The ergonomic risk factors most widespread in the industries include the presence of awkward pos-

tures, application of force and high frequency of repetition (OSHA, 2000). A higher exposure to the 

same risk factor, such as more time spent in a certain awkward posture or accomplishment of more 

lifts, often leads to an exponential increase in the estimation of ergonomic risks. Task assignments that 

balance the ergonomic load among workers have to be preferred. Quantitative methods for ergonomic 

risk estimation play an important role to compare different task assignments.  
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Examples of hazardous awkward postures include overhead work, bending, twisting the back or bend-

ing the wrist. The risks are calculated based on the total time spent in each posture. In the language of 

OR, each task has an attribute – the amount of time spent in each awkward posture. By a favorable 

distribution of tasks with different attributes among workplaces (e.g., with help of the assembly line 

balancing, Otto and Scholl, 2011a), ergonomic risks of each workplace can be mitigated. 

The application of force and manual material handling may place higher loads on muscles, tendons, 

ligaments, and joints. It may also lead to fatigue. Examples of the application of force and manual 

material handling include lifting objects, drilling and attaching clips. The amount of force is, as a rule, 

aggregated by the kind of activity (e.g., lifting vs. pushing) or the posture involved (e.g., overhead or 

bent). As in case of awkward postures, level and duration of the application of force and manual mate-

Risk factors 
Example of methods 

Examples for usage of the methods 

Input information: Average task assignment in a shift 

Postures 
“Ovako Working Posture Analysis System” (Karhu et al., 1977) 

Health care (Lee and Chiou, 1995),  
construction workers (Kivi and Mattila, 1991) 

Manual material handling 
(lifting) 

“Revised NIOSH equation” (Waters et al., 1994) 

Order pickers (Dempsey, 2003) 

Manual material handling 
“Leitmerkmalmethode” (BAuA, 2001) 

Order pickers (Walch et al., 2009) 

Repetitiveness 
“Occupational Repetitive Action method” (OCRA) (Occhipinti, 1998) 

Assembly line, warehouse workers (Colombini et al., 2002) 

Postures, forces,  
manual material handling, 

repetitiveness 

“European Assembly Worksheet” (EAWS) (Schaub et al., 2010) 

Assembly line workers (Schaub et al., 2010) 

Input information: Sequence of tasks, work-rest regime over a shift 

Noise 
“Rapid sound-quality assessment of background noise” (Torres, 2004) 

Wood processing workers (Tharmmaphornphilas et al., 2003) 

Fatigue 
“Fatigue model” (Wood et al., 1997; Ma et al., 2010) 

Assembly line workers (Carnahan et al., 2001), 
construction workers (Hsie et al., 2009) 

Input information: Shift schedule and average task assignment over several shifts 

Deviation from circadian 
rhythms 

“HSE risk and fatigue indices” (Spencer et al., 2006) 

Rail sector workers, chemical industry (Spencer et al., 2006) 

Table 1. Examples of quantitative methods for ergonomic risks estimation 
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rial handling represent the task attributes that have to be considered during the distribution of tasks 

among workplaces. 

High repetitiveness of work means that similar movements are repeated with little variation and at a 

high frequency. High repetitiveness may lead to extreme fatigue. Work at assembly lines, operation of 

machines, picking small items are often connected to high frequency of repetition. Increases in the 

production rate or in the rate of incoming picking orders may increase ergonomic risks significantly. 

The amount of risks depends not only on the level of each single factor, but also on their interaction. 

Thus, ergonomic risks from high repetitiveness of tasks further increase if awkward postures are pre-

sent and/or force has to be applied. For OR it means, for example, that ergonomic risks coming from 

the decrease of the cycle time, that leads to a higher frequency of repetition, can be offset by a more 

favorable distribution of tasks among workplaces. Similarly, the application of force in an awkward 

posture increases the hazard significantly. Therefore, positioning of heavy items on the shelves of the 

medium-height, that require a neutral posture when picking, and the lighter items on the upper and 

lower shelves, that force overhead lifts or bending, may reduce ergonomic risks for order pickers in 

warehouses. 

Of course, individual characteristics of the worker influence her health risks from performing certain 

tasks significantly. Among them are fitness, height and state of health of the worker. Nevertheless, it is 

a common practice and a legal requirement in order to avoid discrimination of workers (see, e.g., EN 

614-1) to estimate the ergonomic risks at a workplace for an “average” worker at the planning stage. 

Still, in the certain environments, individual specificities of workers have to be taken into account, 

while assigning them to workplaces or tasks (see, e.g., studies of centers for disabled by Costa and 

Miralles, 2009).  

Most of the quantitative methods, like EAWS or revised NIOSH equation, calculate ergonomic risks 

on the basis of one shift, taking just the average task assignment into account. If, for example, a work-

er has to perform 50 lifts of heavy boxes and 50 lifts of light boxes, then the sequence of lifts does not 

matter for these methods. Both a workplace where the lifts are performed in alternation and a work-

place where the heavy lifts are performed first will receive the same estimation of ergonomic risks. 
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However, the sequence of tasks as well as the distribution of rest pauses may exert a significant influ-

ence on the level of ergonomic risks, especially in logistics and at multi-product assembly lines.  

Only first attempts for the exact modeling of such effects are known up to now (see the fatigue models 

of Wood et al., 1997, and of Ma et al., 2010), but the research is going on. For OR it means that the 

sequence of tasks, the size and sequence of batches as well as the size and timing of work rest may 

influence the amount of workplace ergonomic risks.  

Planning of the size and timing of rest pauses for each worker is also required in case of exposure to 

such factors, as noise, heat, cold or vibration. An alternative problem setting would be to determine 

the required number of workers, if the level of exposure never exceeds the acceptable level. 

There are methods that calculate ergonomic risks over several workshifts, as, for example, the Health 

and Safety Executive (HSE) risk and fatigue indices (Spencer et al., 2006; Folkard et al., 2007). HSE 

indices are important whenever employees have to work at different shifts (e.g., night, early or late) in 

any given month. Such indices can be utilized in estimation of alternative shift schedules. 

2.2 On objective functions of OR models 

OR models have to reduce and to balance the distribution of ergonomic risks among workplaces. The 

balancing is important, because the costs incurred by the employers and employees due to poor work-

place ergonomics are growing exponentially with the increase in ergonomic points (Snook, 1978; Her-

rin et al., 1986). Such a dynamic is due to an exponential increase in both the probability of incurring 

and the intensity of the incurred discomfort and/or health problems. Furthermore, there is strong evi-

dence that at high levels of physical ergonomic risks a number of organizational and psychosocial 

factors, such as low job control, high demands or low satisfaction with the work, may further signifi-

cantly increase the risks for health (e.g., Johansson, 1995; Vandergrift et al., 2011).  

Significant results in reduction and balancing the ergonomic risks among workplaces can be achieved 

without incurring costs. Recall that most instances of the relevant OR problems, such as task assign-

ment, worker assignment or assembly line balancing, formulated with traditional non-ergonomic ob-

jectives and constraints have several optimal solutions (Otto et al., 2012). Therefore, we can select a 

solution with the lowest level of ergonomic risks among the optimal solutions. 
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Product design starts with the specification of basic functions, structures and messages to be delivered 

by the car to the customer (concept generation) and finishes with the product engineering stage, where 

a detailed specification of the product is developed.  

On the process engineering stage, the specified product design is converted into manufacturing plans 

as well as the infrastructure necessary for production is prepared. Process engineering involves, among 

others, selection and acquisition of equipment and process control software, specification of standard 

operating procedures, set-up of the workplace design and staffing. The most important for creating a 

supporting working environment for assembly workers are production planning (in the narrow sense) 

and staffing, scheduling and certain aspects of job design. Overall, these planning fields as well as 

communication between process engineering and product engineering influence the most the work-

place ergonomics at assembly lines. In Section 3.2, we discuss each planning step important from the 

view of ergonomics in a separate subsection. These steps are numbered in Figure 1.  

In Section 3.2, we examine the first installation, the reconfiguration and the sequencing steps of pro-

duction planning (cf. Fleischmann et al., 2010; Boysen et al., 2009a). First installation starts at the 

very beginning of the process engineering stage. The product specification is not finished yet, so that, 

for example, the selection between alternative operation tasks, necessary to assemble the product, still 

have to be done. Overall, first installation is characterized by a high degree of freedom in determining 

the future design of the assembly line. As a rule, first installation is “greenfield”, i.e., it starts with an 

empty factory work floor or even with a work floor being under planning and construction. Reconfigu-

ration refers to the situation, when a new product or a modified existing product has to be assembled 

along other product models on the existing assembly line. Reconfiguration is also performed, when the 

product-mix of the existing assembly line changes or when the production rate has to be modified. 

Both first installation and reconfiguration involve the balancing of the assembly line. Assembly line 

balancing allocates tasks that have to be performed on the product to sequentially ordered stations. In 

the beginning of the process engineering, assembly line balancing is included, for example, into the 

analysis of the selection and location of equipment. As more information becomes available, assembly 

line balancing provides more accurate insights into the layout of workstations (space, equipment, 
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tools) and the required workforce. Sequencing plans assign the car models and model variants, that 

have to be produced during the shift, to the production cycles.  

Staffing and scheduling planning steps can be traditionally subdivided into mid-term and short-term 

activities. In the mid-term, staffing determines how many employees are required. The staffing plans 

are based on the capacity planning, which provides a rough estimation of the necessary working time 

(Fleischmann et al., 2010). Among others, the training plans to maintain the skills and to develop new 

skills are set-up. If the available permanent workforce is not sufficient, temporary workforce is hired. 

Also, in the mid-term, personal shift schedules for each worker are specified. In the short-term, avail-

able staffing plans are further specified and corrected according to the new information on demand and 

to the employment agreements (Grabot and Letouzey, 2000). The short-term scheduling includes job 

rotation scheduling and work sharing arrangements. Certain aspects of the job design are not neces-

sarily integrated into PDP. They include, for example, a decision on the work-rest regime and a deci-

sion on the work in teams and on their size. 

3.2 Incorporating ergonomic aspects into planning decision problems 

In the following, we examine each of the planning steps, shown in Figure 1 and described in the previ-

ous Section 3.1. We sketch the possibilities to incorporate ergonomics into planning decision problems 

and point out model formulations of Operations Research. The proposed model formulations refer to 

the mitigation of ergonomic risks and do not depend on any specific quantitative ergonomic risk esti-

mation method. For each of the planning steps, we also provide illustrations on the benefits that can be 

achieved by taking into account ergonomics information. For further illustrations of the benefits of 

ergonomic interventions, see the review of Neumann and Dull (2010). 

In our illustrations, we sometimes refer to the traffic lights scheme. It is the “ergonomic language” of 

practitioners, who often classify workplaces into “green” with no significant ergonomic risks present, 

“yellow” with ergonomic risks present and “red” with significant ergonomic risks present. For each 

“red” workplace, the firm is required by legislation to document the planned and the undertaken ac-

tions for the reduction of ergonomic risks (EN 614). 
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3.2.1 Interface between product and process engineering 

Illustration. A lot of factors that influence workplace ergonomics are already decided upon and are 

fixed during the product engineering. The plans and specifications of product engineering are negoti-

ated and have to be approved by the process engineers. Almost without exceptions, product engineer-

ing and process engineering teams belong to different departments (design vs. production) and are 

often also geographically separated from each other (Clark and Fujimoto, 1991; Broberg, 1997; 

Sundin et al., 2004). Therefore such negotiations provide a lot of potential to reveal, discuss and cor-

rect possible ergonomic issues. Effective negotiations and an effective information exchange between 

product and process engineering are the most important prerequisites also for the improvement of 

workplace ergonomics.  

Here is an example from one of the car manufacturers we cooperate with on the importance of deci-

sions on the product design. In the past, most rivets were replaced by clips in order to reduce the as-

sembly time. As a consequence, the assembly workers started to complain on wrist pains, because they 

had to clap clips by a hit. The rate of quality errors increased as well, so that the gains in the assembly 

time were eliminated by the increase in action costs. However, presence of significant ergonomic risks 

at the workplace and the growth in costs were detected only during the serial production. 

Models of Operations Research. Common problem settings for Operations Research during this step 

of PDP include a comparative analysis of the equipment alternatives and process alternatives connect-

ed to the changes in the product design. Process alternatives result in varying flexibility of balancing 

and differences in the total assembly time in achievable optimal solutions. Further decision criteria in 

such problems include material and investment costs. See, for example, models of Pinto et al. (1983), 

Capacho and Pastor (2008) and Scholl et al. (2009). However, it is important to add the following 

items: consequences for the level of ergonomic risks, the increase in action costs due to a higher error 

rate and in costs from absenteeism to the decision criteria. No such studies are known to the author. 

Potential benefits. Empirical studies indicate, that information on workplace ergonomics along with 

the improvement in communication between product and process engineering teams, may lead to sig-

nificant savings in the assembly time and costs. In the case study of chassis assembly at a bus producer 
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conducted by Sundin et al. (2004), an inter-team work group was introduced, which, among other 

things, took ergonomic information into account. This enabled to reduce the assembly time of cable 

assembly on chassis by about 75%, from 56 minutes to 14 minutes. The implemented changes in the 

product design included, for example, a new positioning of certain details, which increased their ac-

cessibility for workers, reduced ergonomic risks and shortened assembly time.  

3.2.2 First installation 

Illustration. During the first installation, many decisions that influence workplace ergonomics are 

made. For example, whether workers will have to run along the car being moved by the conveyor belt 

or whether they will work on the conveyor belt? Whether the racks for lifting the car body can angle 

so that the workers can work on the undercarriage above shoulder level instead of overhead? Many 

decisions involve, besides the issues of costs, space and ergonomics, also the issue of flexibility. For 

example, mounting the cockpit onto the bodywork of the car can be performed fully automatically or 

semi-automatically. In the latter case, the cockpit is held with a manipulator which is manually operat-

ed by the worker. The roboter, which is the equipment of the first alternative, is costly to be moved to 

another workstation and thus restricts the degrees of freedom in the assembly line balancing. For the 

second alternative, the manipulator can be moved relatively easily, but it often results in a “yellow” 

workplace (the manipulator must be pushed). 

Models of Operations Research. Problem specifications for OR are very similar to those in Section 

3.2.1. The process and equipment alternatives have to be selected and located according to their costs, 

consequences for assembly time, restrictions on the flexibility of assembly line balancing, according to 

workplace ergonomic risks and action costs. The currently available models (e.g., Bukchin and Tzur, 

2000; Bukchin and Rubinovitz, 2003) tend to neglect ergonomic risks and action costs.  

Potential benefits. Taking into account ergonomic aspects during the first installation, may not only 

significantly reduce ergonomic risks, but also improve productivity. For example, the company pro-

ducing emergency lighting devices considered ergonomic factors while performing transition from the 

multi-product assembly line production system, i.e. assembly in batches, to the mixed-model assembly 

line (van Rijhn et al., 2005). As the result, the workers reported significantly lower levels of fatigue. 
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We illustrate the point on the following example (see Table 2 and the precedence graph in Figure 2). 

Let the cycle time equal to 60. Let tasks 1 and 2 require overhead work during the whole duration of 

the task, whereas task 3 is performed in a neutral posture. Let the primary objective be to minimize the 

number of workstations. For risk estimation, we utilize the method EAWS (European Assembly 

Worksheet) that is applied with slight modifications and under other names by the majority of Europe-

an car manufacturers (see Schaub et al., 2010, for details). According to EAWS, 25% of overhead 

activities during the cycle is evaluated with 33 points, 50% of overhead activities – with 60 points, 

75% of work in neutral posture brings only 2 points. The EAWS defines the “green” zone at 0-25 

points, the “yellow zone” at 26-50 points and the “red” zone at more than 50 points. Two different 

optimal line balances are possible, each requiring two workstations. The first one, 1,2 , 3 , consists 

of one “red” station and one “green” station. The second balance, 1,3 , 2  with two “yellow” sta-

tions, has to be preferred, since “red” stations with significant risks are likely to lead to significant 

health problems and have to be avoided if possible. See Otto and Scholl (2011a) for more examples, 

also on how the sum of ergonomic points can be reduced.  

The incorporation of ergonomic aspects into assembly line balancing decisions is important not only 

due to its potentially high effectiveness in reducing ergonomic risks, but also due to the low costs of 

its implementation. With available tools, as, e.g., MTMErgonomics (Schaub et al., 2004), ergonomic 

assembly line balancing can be performed by production engineers themselves, just with basic school-

ing in ergonomics. The increased computational complexity can be handled with the (partial) automa-

tion of the balancing task that is currently performed manually. This starts to become possible with 

new methods for collection of the precedence graph information (Klindworth et al., 2012). 

Tasks, assigned 
to station  

Ergonomic points 
(according EAWS) 

Comments 
Time worked overhead | 

in neutral posture 

1st Balance  

1,2  60 red: significant risks present 50% | 50% 

3  2 green: acceptable risks   0% | 75% 

2nd Balance  

1,3  35 yellow: possibly risks present 25% | 75% 

2  33 yellow: possibly risks present 25% | 0%0 

Table 2. Possible assembly line balances for example from Figure 2 at cycle time of 60 seconds 
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Models of Operations Research. Most important problem variants of the assembly line balancing prob-

lem (ALBP) include the feasibility problem, which asks whether a line balance with the given number 

of stations and the specified cycle time is possible, and the problem of minimizing the number of 

workstations given the desired cycle time (see reviews of Becker and Scholl, 2006; Boysen et al., 

2007; Boysen et al., 2008). Important constraints have to be considered (cf. Boysen et al., 2009a). Just 

a few models (Carnahan et al., 2001; Miralles et al., 2008; Costa and Miralles, 2009; Otto and Scholl, 

2011a) take into account ergonomic aspects, although assembly line balancing is an effective instru-

ment for reducing the ergonomic risks.  

Potential benefits. Colombini and Occhipinti (2006) report results of a real-world manual assembly 

line re-balancing, where the planner managed to reduce the number of “yellow” workplaces by 25% 

without increasing the number of stations and the cycle time. In their study on the conventional 

benchmark data set, Otto and Scholl (2011a) were able to receive a balance with only “green” work-

stations in 50% of cases by a simple re-assignment of tasks, keeping the number of workstations and 

the cycle time constant. 

3.2.4 Sequencing 

Illustration. Nowadays, several model variants and sometimes even several car models are produced 

on assembly lines. Therefore, assembly line balancing is performed for the “average” product (see 

Boysen et al., 2009b). For example, let, according to the current task assignment to a station, the 

mounting of the sunroof require that work above shoulder level and overhead be performed for 50% of 

the cycle time and the rest 50% of the cycle time be idle. In reality, the sunroof is optional and there-

fore the mounting of the sunroof has to be performed only for the selected product variants (for exam-

ple, variant A requires mounting of a sunroof, and variant B not). Thus, if in the current sequence ten 

variants A are followed by ten variants B, then the worker has to perform ten cycles with the above 

shoulder and overhead activities without a rest pause. Such sequence could significantly increase the 

risks for health for this worker.  

The problem of a favorable sequence of tasks as well as of a favorable work-rest schedule arises for 

certain workstations in the final assembly, as shown above. But it is especially important at multi-
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product assembly lines, for example, at production of components for the car, where different compo-

nents are processed in batches.  

Overall, Wood et al. (1997) found out, that the fatigue and, hence, incidences of cumulated trauma 

disorders are minimized and the productivity is maximized at a medium length of rest and a medium 

intensity of work, given the same amount of work to be performed. Useful insights on the length and 

frequency of breaks are summarized in the literature review of Konz (1998). 

Models of Operations Research. Lot sizing models for multi-product assembly lines (e.g., Dobson and 

Yano, 1994 ) and sequencing models with different objectives are proposed in the literature (see Boy-

sen et al., 2009a, 2009c, 2012). One class of such models, mixed-model sequencing models, tries to 

smooth the workload, measured in working time, incurred during the shift for each station. In many 

cases, mixed-model sequencing models already deliver ergonomically favorable sequences. The rea-

son is that more risky activities often require more time. For example, according to methods-time 

measurement, mentioned in Section 2.1, lifting of a heavier object requires more time than lifting of a 

lighter one. Nevertheless, it is not always true and a direct calculation of ergonomic risks may be nec-

essary for creating a favorable sequence.  

Up to now, insights from fatigue and recovery studies were implemented only to the assembly line 

balancing problem setting (Carnahan et al., 2001). Also, there exist models that define optimal work-

rest schedules with respect to homogeneous tasks (e.g., Bechtold et al., 1984). However, studies of 

optimal sequencing and scheduling of batches at multi-product assembly lines incorporating ergonom-

ic issues are still to be performed.  

Potential benefits. The existing ergonomic interventions refer to the work-rest regime and not-paced 

work. Thus, in the study of Dababneh et al. (2001) at a meat-processing plant, 36 minutes of breaks 

additional to the regular break schedule did not lower the production rate, but reduced the feeling of 

discomfort of workers.  

3.2.5 Mid-term staffing and scheduling 

Illustration 1. Shift schedules may influence the worker’s wellbeing a lot. For example, working one 

week on the late shift and the next week switching to the early shift may be perceived as strenuous and 
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hard to adapt to by many workers. The reason is that certain shift schedules may heavily disrupt the 

natural physiological regime, or circadian rhythms, and cause health problems, stress and fatigue. 

Among important factors influencing the risks are start time of the shift, its duration, number of con-

secutive shifts without the day-off as well as periodicity with which the worker switches between the 

shifts (Czeisler et al., 1982; Spencer et al., 2006; Folkard et al., 2007).  

Illustration 2. Overall, hiring additional staff is one of the easiest, but often one of the most expensive 

ways to decrease exposure to ergonomic risks. For example, introducing an additional workstation at 

the assembly line while keeping the cycle time constant results in more idle time, that can be seen as 

additional rest pauses, and less ergonomic load on average per worker. At assembly lines in the auto-

mobile industry, additional hires are less preferred than other options to reduce ergonomic risks, exam-

ined in this section. However, in certain industries, especially if employees have to work at cold or hot 

temperature, e.g., in refrigerated warehouses, additional staffing is a reasonable and established proce-

dure (cf. Berufsgenossenschaft Handel und Warendistribution, BGHW, 2008, for Germany). 

Models of Operations Research. A shift scheduling model for the automobile industry was proposed, 

for example, by Laporte and Pesant (2004). However, few models explicitly consider effects on health 

in the shift scheduling. For example, Kostreva et al. (1991) evaluated different shift schedules by their 

effect on the circadian rhythms.  

The question of the number of additional hires that would lower ergonomic loads to the “green” level 

may be formulated almost in each model examined in this section. For example, in the tests of alterna-

tive assembly line balances by Otto and Scholl (2011a), a 4% increase in capacity, or in the number of 

workstations, was required to lower the present ergonomic risks to the acceptable levels.  

Potential benefits. Unfavorable shift schedules may lead to nodding off during the work as well as to a 

higher rate of failures. Gold et al. (1992) compared nurses that either permanently worked the same 

shift (day or evening) or rotated the shifts. The odds, which is an established measure of probability in 

statistics, of the reported errors or accidents related to sleepiness were found to be twice as high for the 

rotators. 
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3.2.6 Short-term staffing and scheduling 

Illustration 1. Job rotation influences directly the working assignment and thus the amount of ergo-

nomic risks for each worker. A good job rotation schedule will balance available ergonomic risks 

among workers, thus avoiding high ergonomic risks for any employee. Further aspects that have to be 

taken into account in the job rotation schedules include learning and forgetting (by imposing the min-

imum required repetitions of each job within the period), boredom (by imposing the maximum re-

quired repetitions of each job), skills and assignment constraints due to health problems.  

Illustration 2. If necessary, the production engineers use the flexibility of the workforce to introduce 

different kinds of work sharing. Work sharing smoothes an unevenly distributed workload. For exam-

ple, several workstations at the assembly line may be combined into a “several-cycles-workplace”. 

Thus, in case of a workplace that stretches over two cycles, a worker would start working on a certain 

product piece A in cycle 1, will proceed processing product A in cycle 2 by moving to the next station, 

afterwards she will return to the previous station and start working on the next product piece B in cy-

cle 3. In other words, in this situation, the cycle time for the worker is doubled. Many firms use such 

organizational schemes with caution, because it complicates the supervision. Still this action is rather 

widespread as an effective tool for reducing and smoothing distribution of ergonomic risks.  

Models of Operations Research. Job rotation scheduling as a tool to smooth and reduce the ergonomic 

risks was examined by Carnahan et al. (2000), Tharmmaphornphilas and Norman (2007), Diego-Mas 

et al. (2009), Costa and Miralles (2009) and Otto and Scholl (2011b). 

Up to now, OR models treated the work sharing practices solely as a tool to reduce the cycle time (see, 

e.g., Anuar and Bukchin, 2006). The impact of the work sharing routines on productivity and ergo-

nomics of workplaces has still to be examined. 

Potential benefits. Job rotation leads to redistribution of ergonomic risks experienced by workers. For 

example, in case of one “red” and one “green” workstation, rotation will lower the level of exposure 

that the worker would receive otherwise on the “red” station, but will increase the level of exposure 

that otherwise would be received on the “green” station. Nevertheless, field studies report a positive 
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effect of job rotation on the perceived load and on the need of recovery (e.g., the case of refuse collec-

tion department, Kuijer et al., 1999 and 2005).  

3.2.7 Aspects of the job design 

Illustrations. Certain aspects of the job design either influence directly the level of ergonomic risks or 

restrict/improve the potential of application of other actions, described in this section. For example, 

low job control increases risks for health especially for “yellow” and “red” workplaces (e.g., Vander-

grift et al., 2011). 

One of the most important aspects of the job design of manual workplaces is the opportunity to pro-

vide feedback to process and product engineers, including on the perceived discomfort coming from 

the tasks. An organizational scheme that enables such feedback is called participatory ergonomics 

(Noro and Imada, 1991). 

Setting a higher size of the team increases the potential effects of job rotation. The reason is that job 

rotation, as a rule, is performed within a team because each team member has and has to preserve nec-

essary skills to work at any workstation assigned to this team (Freiboth et al., 1997).  

The overall shift and work-rest policies of the factory are often a part of the agreement between the 

factory management and the trade union. The shift policy specifies the length of the working week for 

the worker as well as necessary and desired requirements for the shift schedule. The work-rest policy 

sets the start and the duration of rest pauses during each shift. A part of the pauses, relaxation allow-

ances, can be used as an additional instrument to reduce ergonomic risks (Caragnano and Lavatelli, 

2012). Instead of being a part of rest pauses, that are the same for all the workers, relaxation allowanc-

es may be allocated to workers proportionally to the amount of ergonomic risks experienced by them. 

For example, the required amount of the idle time within each workstation may increase proportional-

ly to the risks associated with this workstation. The effect of this arrangement on the degree of free-

dom in balancing has still to be analyzed. Let in the example in Figure 2 and Table 2, a station with 60 

ergonomic points have to contain at least 20% of idle time, or rest, a station with 30-35 points – 5% of 

idle time. Such a policy would prohibit the better second balance, because the first station with 35 

ergonomic points does not contain any idle time although at least 5% of idle time is required for this 
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station. As the result, the first balance with the presence of a 60-point “red” station but with 50% of 

idle time at this station will be chosen. The trade-off between a positive direct effect of more idle time 

per cycle and a possibly negative effect from restrictions on the set of feasible solutions is currently 

unknown. 

Models of Operations Research. The consequences of certain aspects of the job design may be exam-

ined in the models, described in the previous sections. For example, the effect of the team size on the 

job rotation can be found with the help of the job rotation scheduling model (Section 3.2.6), the effect 

of certain work-rest policies can be studied by adjusting the assembly line balancing model (Section 

3.2.3). 

Potential benefits. Potential benefits differ a lot between the different elements of the job design. High 

benefits, for example, are brought by the participatory ergonomics. The ergonomic interventions cited 

in Sections 3.2.1 and 3.2.2 achieved the reported results employing participatory ergonomics. 

4 Discussion 

The quantitative estimation of ergonomic risks can assist planning decisions. Taking into account er-

gonomic risks at certain planning steps may lead to significant cost savings, e.g., of action costs or 

costs from absenteeism, and gains in productivity, e.g., from the decrease in the assembly time. Most 

importantly, it causes substantial decreases in ergonomic risks and thus in the prevalence rates of dis-

eases and in the perceived levels of discomfort by workers.  

With time, the flexibility of taking decisions decreases as product design and production processes get 

defined in more detail. Therefore, in general, incorporation of ergonomic aspects into the earlier steps 

of planning is more important and brings more gains at lower costs (Miles and Swift, 1998; Hilla, 

2006). This was also shown in the cited examples in the previous section. In Figure 3, we arranged the 

planning decision problems, discussed in Section 3.2, according to their importance for practice, plot-

ted on the vertical axis. 

Overall, only a few OR models proposed in the literature incorporate ergonomic risks and may assist 

the planning of assembly lines in automobile industries. Among the least studied problem settings are 

such important ones as the selection of process and equipment alternatives based on the ergonomic 
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