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Preface

The future capabilities of modern armed forces are often characterized by terms
like “Network Centric Warefare” (NCW), “Network-Enabled Capabilities” (NEC)
or “Network-Based Defence” (NBD). All of these approaches share the common
idea that the application of modern communication and information processing
technologies will result in a very efficient and effective utilization of resources
available to commanders. By utilizing state of the art techniques from Electronics
and Computer Science defence theorists hope to be able to create force structures
that are more responsive, cost effective and agile than their opponents; if knowledge
is power NCW seeks to translate battle field information into fighting power.

The first step toward realizing these visions is to be able to gather, distribute,
correlate, process and inference over the information generated by field assets
such as sensors and personnel as well as information held in databases, practice
manuals and logistics information systems. Herein, the most important resource
is information and hence information gathering, distribution and processing is the
key factor for mission effectiveness. The resulting scenarios of networked armed
forces require

• a flexible and very reliable interaction infrastructure which collect and process
information to assist decision making

• the integration of unmanned systems in the battlefield
• the organization of agile logistics
• the modeling and prediction of adversary intent
• intelligent training

Most of these applications run in highly decentralized and heterogeneous envi-
ronments and/or require embodiment of autonomous, intelligent decision making.
These characteristics make the defense application domain appropriate for the de-
ployment of the technologies, techniques and algorithms provided by researchers
working in the fields of Intelligent Agents, Autonomous Agents and Multi-Agent
Systems (jointly referred to as AAMAS technologies).

These days AAMAS researchers provide high quality of fundamental research
results in various sub-fields of agent technology such as formal models of coopera-
tion and coordination, game theory and mechanism design, models of argumenta-
tion and negotiation and formal (logical) reasoning about multi-actor scenarios. As
well as working on these theoretical topics the AAMAS community also addresses
application oriented subfields such as distributed planning, collective robotics, in-
formation retrieval and distributed learning, modeling trust and reputation among
actors, intentional modeling, task and resource allocation or multi-agent model-
ing or simulation. Readers are referred to e.g., international conference on Au-
tonomous Agents and Multi-agent Systems (http://www.aamas-conference.org/)
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[1,2] and IEEE/WIC/ACM International Conference on Intelligent Agents Tech-
nology (http://www.cs.sjsu.edu/wi07/iat/) [3], Cooperative Information Agents
workshop series (http://www-ags.dfki.uni-sb.de/˜klusch/IWS-CIA-home.html) [4]
or International Conference on Industrial Applications of Holonic and Multi-Agent
Systems (http://gerstner.felk.cvut.cz/HoloMAS/2007/) [5].

AAMAS technologies are not investigated in isolation. AAMAS research is
supported not only by universities, research institutes and national/international
grant agencies but also by important industrial stakeholders, the defense industry
in particular. Military organizations are traditionally a supporter and an early
adopter of innovative technologies and AAMAS technologies are no exception.
While involvement of conventional industries in AAMAS research emphasizes on
fast return on investment, defense support and interest in AAMAS technologies
facilitates slightly longer adoption lifecycle. This approach gives a balance be-
tween time and resources for fundamental research, prototyping and demonstra-
tion as well as experimental deployment of a particular research idea or concept.
At the same time as providing an appropriate domain of application of AAMAS
techniques defence applications provide AAMAS researchers with stimulating new
challenges in the shape of the constraints of bandwidth, energy and processing
power available to their applications.

As the knowledge of successful applications of agent technology in military
domains is dispersed in specialized workshops and symposia, we have brought these
reports together here to provide a clear picture of the state of the art in this field
at this time, and to promote further investigation and interest in this increasingly
important topic.

This book is a selected collection of recent published and refereed papers
drawn from workshops and other colloquia held in various venues around the world
in the last two years. The book logically follows the effort of the editors towards
communicating the research results to the industrial community and trying to
bridge the gap between researchers and industrial engineers. When editing the
book, the editors leverage their experiences in establishing the AAMAS Industry
track back in 2005 [6], organizing the DAAMAS workshop informally in New York
in 2004 and formally in Utrecht in 2005 [7] and working in the Defence Technology
Centre programs in the UK.

Papers in this book describe work in the development of command and con-
trol systems, military communications systems, information systems, surveillance
systems, autonomous vehicles, simulators and HCI. The broad nature of the ap-
plication domain is matched by the diversity of techniques used in the papers
that are included in the collection. The collection provides, for the first time, an
overview of the most significant work being performed by the leading workers in
this area. It provides a single reference point for the state of the art in the field
at the moment and will be of interest to Computer Science professionals working
in the defense sector, and academics and students investigating the technology of
Intelligent Agents that are curious to see how the technology is applied in practice.
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As mentioned earlier the book is a collection of independent, unlinked chap-
ters. The readers are welcome to read the chapters in the order of their choosing.
In order to give some guidance, the book is organized in three loosely structured
sections. The first four chapters describe multi-agent approaches to organization
of the information infrastructure, data collection and resource matchmaking. This
section is complemented with the application chapter on agent deployment in mil-
itary logistics. The following three chapters provide technical information about
agent deployment in the manned and unmanned air traffic control. The last three
chapters of the collection are about the use of agents for simulation and train-
ing. The second and third sections are naturally overlapped by the chapter on
simulation of fighter pilots.

The editors hope that the book will provide a valuable reference, will con-
tribute to the discussion about exploitation potentials of agent technology in the
defense industry and initiate implementation of further innovative applications
and deployment exercises.

Michal Pěchouček, Simon Thompson and Holger Voos
Praha - Ipswich - Weingarten

October 2007
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Nexus: Self-organising Agent-based Peer-to-Peer
Middleware for Battlespace Support

Alex Healing, Robert Ghanea-Hercock, Hakan Duman and
Michal Jakob

Abstract. The problem facing the security and defence communities is the
volume, complexity and timeliness of information. In particular the ability to
locate and access the right ICT service at the right time is crucial to achiev-
ing real-time responsiveness and situational awareness. The Nexus system is
a Peer-to-Peer (P2P) agent-based middleware that creates a fully distributed
and highly resilient Service Oriented Architecture (SOA). The combination
of a structured P2P overlay network and autonomous service discovery, de-
livers a powerful capability to support real-time operations in either security
or defence applications. This paper outlines the overall architecture of the
Nexus system and its application in a defence scenario with a detailed review
of the service selection algorithm utilised, termed Mercury. Mercury provides
an autonomous, efficient and distributed service selection framework and col-
laborative algorithms for SOA construction and real-time adaptation.

1. Introduction

Future military force requirements will demand a migration towards ever increasing
levels of ICT automation and self-organising capability. This is a simple function
of reduced administrative support, increasingly complex networked systems and
the ever shrinking time available for response. In addition the need for shared sit-
uational awareness across tactical and coalition spheres makes manual service con-
figuration a logistic nightmare. This chapter reviews a solution based on combing
the best features of P2P and SOA approaches to create a self-* service platform.
An overview of the Nexus autonomic middleware is first given, followed by an
in-depth technical discussion of one of its components - adaptive service selection.



2 A. Healing, R. Ghanea-Hercock, H. Duman and M. Jakob

2. Approach

The first phase of the Nexus project [7, 9] demonstrated the value of an agent-
based P2P middleware for the discovery and fusion of NEC services. The Nexus
middleware is based on three key paradigms: P2P computing, autonomous agents
and SOA [5]; all of which have been identified as key components of future NEC
network architectures [1]. Existing implementations of SOA, as applied in the civil
domain, suffer from several issues that make them unsuitable for volatile envi-
ronments. These include centralized service discovery and process orchestration,
and fixed manually specified workflows. These factors lead to fragile, non-adaptive
and difficult-to-maintain network applications. The aim is to develop a hardened,
agent-based SOA implementation that meets the strict reliability requirements of
the NEC domain and accommodates the needs of network-centric information fu-
sion applications. More specifically, the following capabilities are being developed
either as a direct part of Nexus II middleware or by integrating technologies from
other projects within the Hyperion cluster [2]:

• Seamless and reliable service delivery in volatile environments
• Request prioritisation and load-balancing
• Resilience to volatility of the underlying network infrastructure: by adopting

a peer-to-peer architecture Nexus maintains its operability even if a large
subset of services or the network itself becomes unavailable.

• Decentralised service discovery whereby networked resources are discovered
based on their advertised properties and real-time information regarding their
dynamic attributes without reliance on a centralised repository.

• Semantic and adaptive service selection based on dynamically maintained
quality-of-service profiles.

• Proactive monitoring and automated service substitution: The state of ser-
vices is actively monitored and should a failure occur the failed resource is
rapidly substituted with the closest alternative, preserving the overall capa-
bility.

• Filtering of information services based on their semantic relevance to the user
as well as imposing some structure at the messaging layer of the middleware
allowing bandwidth to be conserved.

In order to offer the necessary resilience Nexus adopts an entirely decentralised
approach. At the lowest level, a P2P overlay network is constructed, either directly
or indirectly, connecting each of the nodes in the network running Nexus with each
other. Similar to [12, 18], the overlay network is then coupled with component-
model technologies which in our case offer a Publish/Subscribe (Pub/Sub) struc-
tured messaging layer from which higher level management of the network can be
constructed.

Each Nexus node can host a number of services and these are made available
through the middleware by means of advertising their associated metadata on the
messaging layer. Users of Nexus are required to connect to only a single node from
where the middleware allows them to discover resources throughout the network
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and manage their view and usage of the information services according to their
requirements.

We adopt the Autonomic Computing [10, 13] paradigm which introduces
self-* capabilities to allow Nexus to intelligently and autonomously handle the
dynamic environment for which it is intended; including changing requirements of
users, unreliable service availability, or failure of the underlying physical network.

Nexus is entirely implemented in the Java programming language and relies
on several open-source third party libraries. In particular, the current embodiment
of Nexus builds on an open-source P2P implementation of Java Message Service
(JMS) [8] to provide the majority of the functionality of the bottom two layers in
Fig. 1.

Figure 1. Nexus Autonomic Middleware Architecture.

IP multicast is used to discover other Nexus peers and construct the overlay
whereby each peer advertises itself on a common channel thus allowing each peer
to know the presence of others. JMS topics provide Pub/Sub functionality for the
message-oriented component of Nexus and allow for information service advertise-
ments to be structured in their transmission across the network. Each peer acts as
a message broker and routes messages to peers that are subscribed to the topic on
which the message was published. The topics can be structured into a hierarchy,
allowing one to subscribe to only messages concerning a specific subset of services.
To some degree, the semantics relating to the service descriptions in the resource
layer can be exposed to the messaging structure in the layer below. The routing of
messages throughout the overlay can therefore be linked to the semantic relevance
of the resources that the messages describe to each peer. This capability is of value
in reducing the overall bandwidth requirements of the supported applications and
services.

There are numerous aspects of the architecture to which autonomic com-
puting principles may be applied. For example, the driving of the aforementioned
messaging structure by the service metadata may be an autonomous process. At
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the lowest level, the overlay network is self-organising in that changes to the topol-
ogy are dealt with seamlessly allowing for new peers joining the network to be
discovered by others as well as the overlay to adapt their routing when peers are
removed from the network.

The focus of the autonomic capability, however, is at the upper levels of
the system model. Agent-based approaches to service orchestration are being in-
vestigated as well as methods to enable self-healing to fulfil a given user service
requirement in the case of a service failure. These two aspects are related and
both rely on the system understanding, to some degree, (a) what the user require-
ments are, (b) what services are available and how they relate, (c) the expected
Quality-of-Service (QoS) services can deliver in a certain context.

Service selection is a key element of a resilient service-oriented middleware
providing means to route service requests to the providers which best fit for the
task. The problem becomes increasingly difficult in volatile environments where
the availability and performance of service providers can change rapidly. In such
situations, it is essential that the middleware has the ability to keep track of
constant changes and updates its selection procedures accordingly. Decentralised
adaptive mechanisms are a promising way in which this can be achieved. In the
following section, we describe Mercury adaptive service selection which has been
developed as part of the Nexus middleware. The description serves as an exam-
ple of a concrete implementation of some of the autonomic principles mentioned
previously.

3. Autonomic Computing Case Study - Mercury Adaptive Service
Selection

3.1. Overview

The Mercury framework [6] is designed for application within an SOA and as such
assumes a network of interconnected devices, each capable of hosting a number of
processes. The processes may adopt at least one of two roles: service provider or
consumer. Service providers offer capabilities that other devices (consumers) can
access and use. Mercury-based service-selection takes place on the consumer side
and assumes that for every device where there is a service consumer, a selector
agent is hosted. Thus in Nexus, we envisage embedding a selector agent at each
Nexus node.

Mercury relies on there being some service discovery mechanism in the SOA
in order to gain a list of functionally capable service providers for a particular task.
This functional discovery is based on those attributes that the service providers
advertise in their description and can be provided by other components of Nexus.
The Mercury selector agents then use the list of capable services as a basis for
further finer-grained, non-functional selection. This is achieved by aggregating QoS
data for each of the providers through the consumer’s experience of them and
ranking them accordingly. The result is a model of selection learnt over time which
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distinguishes those services which are best at performing the task in terms of the
QoS they are expected to deliver.

The QoS data of providers is stored in an instance-based model local to each
selector agent and is parameterised by the task, as well as the context. Context
is defined as the set of attributes which are external to the task requirements but
nevertheless may influence the performance of providers (e.g., performing differ-
ently at different times of day). A particular service selector therefore builds up
a model of how suited each provider is at fulfilling each particular task in each
context.

The main contribution is the design of an efficient distributed service selec-
tion framework and (collaborative) algorithms for its construction and real-time
adaptation. The learning techniques used are similar to those in reinforcement
learning [16], however are novel in the degree to which they are adaptive. Specif-
ically, a decision function is employed (Fig. 2) to ensure that the probability of
exploration (selection of services for which there is little or no prior data in the
model) is linked to the relative improvement expected when exploration is pursued
over exploitation (selection of those for which there is a large amount of data).
An adaptive momentum mechanism for updating the model has been developed
so that the incorporation of new data into the model is dependent on the amount
and recency of the information already stored. The methods used allow a system of
multiple agents to be adaptive to changes in the service environment improving the
overall QoS of the system, and may be made more effective through introducing
collaborative strategies.

Figure 2. Exploration/Exploitation, Decision.
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Two collaborative gossiping strategies have been investigated which vary
in the degree to which the selector agents share information. The first strategy,
anonymous gossiping, involves only partial sharing of information and allows se-
lector agents to gain a better estimation of the distribution of QoS attainable in
the network on which the exploration-exploitation control is based. The second
collaborative strategy, full gossiping, involves sharing detailed information about
providers between selectors to speed up learning through exploration. The agents,
although cooperative may, however, choose to be selective with the information
about providers which they share with others so as not to create unfavourable
competition on a subset of service providers, and hence undermine their own per-
formance - secretive full gossiping.

The task processing cycle is illustrated in Fig. 3 whereby a task is dispatched
to the selector agent and based on both the results of functional service discovery
and the selection model built up so far, a service is selected to process the task.
The QoS with relation to the task is calculated and used to either augment the
model if the chosen service was not experienced in the past, or adapt the model in
the case that there was past experience.

Figure 3. Task process cycle.

The selection model consists of registers which represent clusters of experience
for services used for particular tasks and contexts and are used to simplify the
problem space. An important autonomous decision that the selector agents must
make is whether to exploit their existing (usually incomplete) model and choose
the service which they expect will act best or explore the service landscape further
and either select a service for which there is a sub-optimal expectation of QoS or
for which there is no prior experience. In Mercury, the calculation of the expected
gain from exploration is distributed by making the agents collaboratively share
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their expected outcomes. This ensures that agents have a reliable understanding
of the distribution of QoS achievable throughout the network of services, improving
their decision-making ability of whether to explore or not. Further details of the
Mercury framework and similar approaches in literature are discussed in depth in
[6]. This includes the defined structure of the model and the precise algorithms
involved with its construction and adaptation.

3.2. Related Work

The majority of related work addresses the problem of service selection based on
QoS by formalising the QoS requirement space. This is often achieved by defining
a QoS ontology [11, 20-22] which is used to specify the qualities that constitute
QoS. This is then used for a consumer of a service to specify strict requirements
as well as advertising certain quality capabilities from the provider side. Mercury
addresses the need for more work dealing with ranking services based on their QoS
without explicit QoS requirements as suggested in [19].

The notion of providers advertising their own quality capability, however,
brings about the question of trust, which is dealt with by the related works through
trust and reputation modelling, in particular [11, 17]. Trust can be used to build re-
lationships between consumers and providers explicitly based on reputation; how-
ever the alternative approach taken by Mercury is to build up relationships im-
plicitly based on agent learning dynamics and their interactions with other agents,
the details of which make up the main contribution of this work.

A small number of works acknowledge that defining quality requirements and
capabilities using precise terms is not always suitable and that instead fuzzy terms
of quality may be adopted [4, 20]. It is envisaged that the Mercury framework will
be extended to adopt this approach; however, this is left for future work.

In [22], a multidimensional QoS model similar to that of Mercury is presented,
although Mercury goes further to propose a mechanism for which this model can
be populated in a collaborative fashion using a multi-agent system.

Much of the work surveyed adopts a decentralised (P2P) architecture com-
bining agents to perform collective modelling. Of particular relevance are [3] and
[11]: in the former, a reputation model is built based on peer votes for quality;
whilst in the latter, quality ratings are shared via rendezvous nodes in the net-
work. Sonnek et al. [15] have developed and evaluated a task allocation mechanism
based on statistical modelling of provider reliability. In contrast to our approach,
they use a central reputation server, and they do not consider competition between
the clients of the allocation mechanism.

We have previously conducted work using a more theoretical approach whereby
relationships with service providers are established based on past experience and
simple rules which cause emergent self-organisation of peers [14]. Mercury builds
on this work by adding task and context-aware capabilities in the internal model
of service selection and by introducing the notion of designated selector agents
which may collaborate in order to further improve their selection behaviours.
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3.3. Experimental Analysis

In order to quantitatively compare the main features of the Mercury framework
a simulation environment has been developed which can be populated with n
providers of a single service and m service selector agents. We abstract away from
the notion of consumers in this case and assume that both the task and context
parameters of the problem stay constant.

We were particularly interested in investigating the effectiveness of the system
in the case where QoS of a particular service degrades depending on how many
simultaneous connections there are to it at any one time. In this sense there is
competition for resources and in order to reach an optimal configuration of service
selection, it is necessary for the selector agents to both be able to form relationships
with certain providers whilst remaining adaptive to changes. In the simulation, the
environment is dynamic in the sense that resultant QoS is non-deterministic from
an individual selector’s point of view due to competition and the distribution of
QoS capability can be parameterised.

For all of our experiments the simulation was set up with 30 service providers
and 5 selector agents and consumers. The QoS capability distribution was set to
uniformly increase such that the 1st provider had the minimum capability and the
30th provider had the maximum (zero and one, respectively). At each time step in
the simulation, each selector agent chooses a provider to be invoked and receives
the measure of QoS from the provider as a result. The internal selection model
is built up through subsequent time steps and at the end of each time step, each
selector agent may gossip with other selector agents, depending on their gossiping
strategy. The results are averaged over 10 runs.

The first set of experiments was used to compare the different selector agent
collaboration strategies on the resultant system (global) QoS attained (Figure 4).
It is clear that gossiping enables the QoS to be increased faster and rather un-
surprisingly full gossiping produces the fastest rate of QoS increase through the
initial stages. The full gossiping approach would be highly effective if at some
point the service landscape were to change dramatically. With little or no provider
churn, though, full gossiping actually results in a lower QoS than if there was no
communication. This demonstrates how, by sharing information about the “best”
provider with other agents results in unfavourable competition whereby relation-
ships between a selector S1 and a particular provider P becomes infected by an-
other selector S2 which has gained information about P from S1 and so believes
that such a relationship is best for it too. In this case, the global QoS actually de-
creases. Secretive full gossiping aims to counteract this effect by not sharing “best”
providers between selector agents. Indeed, Fig. 4 indicates that the resultant QoS
is highest when using the secretive full gossiping strategy. A slight lag compared
to the full gossiping curve can be seen and this represents the trade-off of not shar-
ing with other agents the top provider. The secretive full gossiping strategy also
clearly performs best in the aggregate performance comparison (Table 1), which
takes into account both the resulting level of QoS and the speed with which it is
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achieved. The anonymous gossiping strategy clearly also proved to be very good
but elicits slower convergence which demonstrates that there is a case for sharing
direct references to providers such as in the full and secretive strategies. Never-
theless, its effectiveness highlights the importance of collaborating to improve the
data on which the exploration/exploitation decision is based.

Collaborative strategy Aggregate performance
No communication 0.65
Anonymous gossiping 0.69
Full gossiping 0.65
Secretive full gossiping 0.71

Table 1. Average aggregate effect of different selector agent col-
laboration strategies on resultant system QoS derived by averag-
ing each of the 25-cycle sequences.

Figure 4. Effect of different selector agent collaboration strate-
gies on resultant QoS.

The second set of experiments set out how the adaptive exploration prob-
ability mechanism employed by Mercury compared to a fixed strategy. For all
the experiments the secretive full gossiping strategy was used although the other
strategies produced similar results when tested.

Fig. 5 shows the results from this second experiment set and shows that the
adaptive exploration mechanism is particularly useful in the initial stages where
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little is known about the services available. It also results in a level of QoS almost
as good, as the best fixed level of exploration found a value of ε = 0.2 in an ε-
greedy strategy [16] resulting in the highest average QoS. The main use of the
adaptive exploration, though, is the adaptivity which it gives the system, allowing
the selector agents to choose the appropriate amount of exploration given the
conditions in the network and the accuracy of their selection models, rather than
performing “blindly” following a fixed probability of exploration, or perhaps a
pre-defined exploration-exploitation scheduling function.

Figure 5. Mercury adaptive vs fixed probabilistic (ε-greedy) strategies.

Fig. 6 is an illustration of how the probability of exploration changes over time
on average in the experiments. In casing like the experimental set-up, where the
QoS data remains relatively static over time, we see an exponential decrease of the
likelihood of exploration as the selector agents become increasingly confident with
their model that they’re building up and the relative advantage of exploring new
services over exploiting those deemed best decreases. In a more dynamic scenario
we’d see this graph peak at times of change of the service landscape where better
services are introduced or perhaps some existing services are able to offer a higher
level of QoS. The peaks would signify the selector agents reacting to this change in
the service landscape accordingly and the potential for increased exploration would
quickly spread throughout the population by means of (anonymous) gossiping.

The Mercury framework is a concrete illustration of how emergent prop-
erties can be leveraged to improve global system behaviour in Service-Oriented
Architectures, such as Nexus. The combination of local decision-making (explo-
ration/exploitation strategy) with diffusion of QoS information (gossiping) allows
a population of selectors with variable needs to collectively identify and converge
toward a configuration that meets the requirements of a majority of participants.
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Figure 6. Exponential decrease of exploration probability over
time as a result of the adaptive mechanism.

Moreover, this distributed problem-solving is largely implicit: the establishment
of preferential relationships between selectors and providers incorporates any bias
associated with initial conditions and/or the influence of the early history of the
system. For instance, in the case that there is competition between two or more
selectors for a contended resource, the progressive gain of momentum will ensure
that random fluctuations are amplified to the point where only an adequate sub-
set of all competing selectors keep their affiliation with the service. By forcing the
’losers’ to identify an alternative provider, this process usually leads to improved
global QoS, without any need for central planning or explicit negotiations between
selectors.

4. Conclusion

Within the defence domain the problem of data overload continues and will be
greatly magnified by the arrival of new high bandwidth sensor arrays and persistent
surveillance systems. In addition the lack of skilled IT support manpower makes
the problem particularly acute in the defence sector. The Nexus platform is an
attempt to merge the best of autonomic computing and agent-based techniques
to create a self-organising and self-healing service delivery capability. The result
combines the resilience of P2P networks with the service management and legacy
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integration power of SOA approaches. The resulting architecture is intrinsically
scalable, robust and can be applied at the tactical, operational and back-end layers
of deployment. Current development is now focused on integrating new capabilities
for ontology management, 3D scenario visualisation, and embedded security for the
network itself. These activities are part of the wider cluster of projects within the
DIF DTC [2] termed Hyperion.

The race to achieve Network Enabled Capability (or NCW) is a grand chal-
lenge endeavour which can only be realised through the application of autonomous
agents and self-* system approaches, such as Mercury adaptive service selection.
The Nexus platform demonstrates some of the promises such systems can provide.
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Information-Based Control of
Decentralised Sensor Networks

David Nicholson, Sarvapali D. Ramchurn and Alex Rogers

Abstract. This chapter describes how formal information measures can be
used as the basis for enabling decentralised, intelligent and autonomous
control of large-scale sensor network resources, with widespread application
throughout the military and security domain. These information measures
are the result of filtering and fusing local sensor observations, assimilating
the products over a communication network, and interpreting them in the
wider context to infer underlying states of interest to the military or security
operation. Information provides a currency against which a constrained set of
sensing and communication actions can be valued, resulting in a single action
or sequence of actions being executed. This is known as Information-Based
Control (IBC). The main focus of this chapter is the problem of decentralised
IBC in a large-scale sensor network, and its solution in terms of multi-agent
system methodologies. Examples and applications, relevant to the military
world, are used to highlight a number of important practical considerations.

1. Introduction

Over the last decade military doctrine has been shifting to reflect the widespread
view that decentralised data and information systems are key to achieving (and
sustaining) the required level of operational tempo to defeat agile adversaries.
Decentralised systems are characterised by horizontal information exchanges and
coordination processes between peers. They are expected to be more flexible, scal-
able, and robust than single monolithic systems [1].

In addition to increased decentralisation of military systems and processes,
there is also an impetus to increase their level of intelligent autonomy. This could
range from smart sensors that automatically adapt their update rate, to com-
munication networks that self-organise and adaptively route messages, through
to platforms that plan their own trajectories. The DARPA Grand Challenge has
promoted rapid development in this last area [2].
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The imperative in most military operations is to rapidly seek, extract, store,
and recover, relevant information in support of operational objectives. In a decen-
tralised sensor network (DSN), multiple processes will be running asynchronously
and interacting over a network. It is vital that these interactions are managed and
controlled, otherwise they may conflict with one another, leading to poor perfor-
mance. This motivates the need for some form of decentralised intelligent control
mechanism that can automate the system, whilst also maintaining scalability and
flexibility.

The multi-agent system paradigm is a natural one for modelling and control-
ling such decentralised systems. In this context, individual decision nodes within
the sensor network can be conceived as autonomous intelligent agents, each with
their own capabilities, constraints and goals. Such agents have to make decisions
such as, how, what and when to sense, or what, when and with whom to commu-
nicate, given constraints such as limited bandwidth or computational resources. A
principled measure of information provides a common metric that the agents seek
to maximise through their individual sensing and communication decisions. This
leads to an approach that we term information-based control (IBC).

This chapter provides a general formulation of the IBC problem (Section
2) before relating it specifically to DSN systems and identifying some solutions
(Section 3). Then a number of examples and applications are provided to highlight
various implementation details and practical issues (Section 4). The chapter closes
with some discussion of the key points and conclusions (Section 5).

1.1. Background

The main content of this chapter is drawn from recent projects in which one
of the authors (employed by BAE Systems Advanced Technology Centre) has
been involved. These projects were undertaken in collaboration with several BAE
Systems university partners and fall in the general subject area of decentralised
data and information systems. The specific projects represented here are as follows:

• ANSER [3]: This project formulated the mathematical basis for distributed
data fusion (DDF) in large-scale sensor networks, developed practical algo-
rithms for DDF, and demonstrated DDF in the real world by implementing
it on board multiple airborne platforms. The project was funded by BAE
Systems and performed by the University of Sydney (Australian Centre for
Field Robotics).

• ARGUS [4]: This project is developing a foundation for decentralised integra-
tion of multiple autonomous fusion agents by exploiting synergies between
machine learning and multi-agent systems. The fundamental research is be-
ing carried out at two universities (Oxford and Southampton) and matured
into three distinct industrial demonstrators (by BAE Systems, Rolls Royce
and QinetiQ). The project is funded by the MOD, EPSRC and DTI, as well
as by the industrial partners themselves.

• RCSC(18B) [5]: This project developed decentralised IBC algorithms for tar-
get identification and localisation and carried out a number of field trials with
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multiple UAV platforms to demonstrate some of these algorithms. The work
was performed in collaboration with the University of Sydney (Australian
Centre for Field Robotics). The project was funded by the UK’s MOD.

• SEAS AA011 [12]: This project is developing methods for decentralised adap-
tive control and exploring various practical issues associated with coordina-
tion and cooperation. The work is funded by the Systems Engineering and
Autonomous Systems (SEAS) Defence Technology Centre established by the
UK MOD.

• SEAS AA009 [6]: This project is developing architectures and algorithms
for adaptive (reactive and proactive) data gathering and dissemination in
autonomous sensor networks. The work is funded by the Systems Engineering
and Autonomous Systems (SEAS) Defence Technology Centre established by
the UK MOD.

• ALADDIN [8]: This project is developing mechanisms, architectures, and
techniques to deal with the dynamic and uncertain nature of decentralised
intelligent systems in the application context of disaster management. This
application has military and security parallels with urban operations, such
as curfew keeping and patrol and search/rescue of hostages. The project is
funded by BAE Systems and EPSRC.

1.2. Related Work

Intelligent control of decentralised sensor networks has been the subject of vigorous
research over recent years, much of it stimulated by the challenging problems raised
by military and security applications. The research is being pursued by a range
of communities (e.g., statistics, signal processing, computer science, data fusion,
artificial intelligence) and many of its novel results are the direct outcome of a
cross-disciplinary approach.

The information-theoretic bridge between sensor fusion and sensor manage-
ment has now been developed in detail [14, 15] and has been applied in the context
of military target detection, identification and tracking [17]. More recently, prin-
cipled information-theoretic approaches have also been applied to the design of
wireless sensor networks in order to facilitate intelligent sensing and sampling de-
cisions when communication and sensor battery life are severely constrained [16].

However, classical estimation and information theory is not ideally suited
to deal with the organisational complexities of large-scale sensor networks. Con-
sequently, this issue has attracted new perspectives and contributions from the
fields of artificial intelligence and multi-agent systems. Work in this area seeks
to combine principled information metrics with agent-based negotiation and coor-
dination algorithms, and progress to date includes the application of distributed
multi-agent negotiation algorithms to the problem of combinatorial task alloca-
tion within sensor networks [18], the use of concepts such as coalition formation
to describe and solve sensor tasking problems [19], and the application of novel
market-based approaches for decentralised control [20].
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2. Information-Based Control

This section formulates the IBC problem for a single smart sensor node, or agent.
The agent can intelligently control how, where and/or when it observes the world,
by automatically selecting for itself an action, a, i.e., in general a vector of instan-
taneous or time-extended, discrete, continuous or mixed-type control variables.

This process requires the agent to rate all its possible actions with respect
to some measure of utility U(a, x), where x is the true state of the world. Due to
uncertainty, the agent will only have access to probabilistic knowledge of x, denoted
by P (x|Zn), where Zn refers to a set of N observations of the state, {z1, . . . , zN}.
In practice, the agent can calculate P (x|Zn) in recursive fashion, following each
observation, by means of a suitable Bayes filtering and fusion algorithm [9].

Clearly, because x is not exactly known, neither is U(a, x). It is therefore
more meaningful to define an expected utility, following an action a, as follows
(replacing the integral with a summation for discrete states):

Ū(a) =
∫

x

U(x, a)P (x|Zn)dx (2.1)

Bayesian Decision Theory (BDT) offers a powerful framework for making de-
cisions under uncertainty [10]. According to BDT, the Bayes action is the strategy
that maximises the expected utility,

a∗ = argmax
a

Ū(a) (2.2)

All that is now needed to construct a theoretical framework for IBC is a
definition of U(x, a). For a sensor agent a good definition is the log likelihood
given by,

U(x, a) = log P (x|a) (2.3)

This is the logarithm of the posterior probability density (or mass) function
for each of the agent’s possible actions. Formally, this choice for U(x, a) satisfies
what is known as the ‘rationality axioms’ and induces a preference structure on
the action space in the form of an ordered set [10]. Moreover, the expected value
of this quantity turns out to be (negative) entropy or Shannon Information.

It is now clear how information-based control arises from BDT. The sensor
agent is filtering its observations and controlling how, where and/or when, it ac-
quires subsequent observations, on the basis of the information these observations
are expected to generate. The Bayes action, defined by (2.2), is the action that
maximises this information. If the action is to acquire further observations, then
IBC is effectively a closed loop process of sensing, filtering/fusing, deciding and
acting.

As an example, suppose a sensing agent is engaged in tracking a target with a
standard state estimator, the Kalman filter. Based on observations made up to and
including time k, a type of information associated with its estimate is quantified by
the inverse error covariance, Ya(k|k) ≡ P−1

a (k|k). This is known as Fisher informa-
tion. It depends on the control action taken by the sensor prior to its observation
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(e.g., an adjustment to its zoom, frequency range, or detection threshold param-
eter, depending on the type of the sensor). The entropic information associated
with the estimate is given by,

H(k) =
1
2

log [(2πe)n|Ya(k|k)|] (2.4)

There are a variety of practical methods for calculating a. If a is discrete and
low-dimensional, the IBC problem could be solved simply by direct search. If a
is smooth, continuous and differentiable, it could be solved by a gradient descent
method (e.g., Sequential Quadratic Programming). Alternatively, Simulated An-
nealing or Genetic Algorithms may be more suitable for non-smooth, discontinuous
functions.

For some problems it may be advantageous to optimise a time sequence of
future actions rather than simply the next action. Such non-myopic sensing policies
can be implemented by dynamic programming methods, but the computational
cost of these methods is typically very high.

3. Decentralised Sensor Networks

This section considers the extension of IBC to decentralised sensor networks, in
which there are now multiple sensor agents communicating over a network. The
individual sensing actions are as before, what, where, and when to sense, but
now there are additional communication actions, such as request X from node
A and send Y to node B. Furthermore, since there are multiple agents (which
may be sensors, vehicles, or human assets in the military context) there may also
be multiple conflicting objectives that need to be managed in addition to a single
overarching goal for the entire system. Problems of this nature are often formulated
and solved in terms of game theory [20].

The cooperative (or team) game problem is considered below. In this prob-
lem the local sensing and communication actions are all selflessly directed toward
optimising the global system-wide goal which is known to each agent. To further
simplify matters, the agents all agree up front on a formal information measure
(Fisher, Shannon, or Mutual Information) of the quality of their decisions.

A simple extension of IBC for a single sensor, to a multi-sensor system,
is for each sensor node to calculate an optimal action with respect to a local
utility U(x, a). In general this would result in actions that could ‘clash’ or conflict,
leading to poor performance or even dangerous behaviours (e.g., two UAVs trying
to occupy the same region of airspace). Consequently, some sort of iterative gaming
process is required, whereby the agents repeatedly interact and negotiate over
potential solutions until the process (hopefully) equilibrates on the optimal joint
action for the system.

In single sensor IBC, the x component of U(x, a) was calculated by an esti-
mation algorithm such as the Kalman filter. In decentralised sensor networks, x
(and the estimation error covariance P) is calculated by a decentralised estimation
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process. By transforming the estimation variables, Y ≡ P−1 and y ≡ P−1x, a
remarkably simple equation for fusing estimates from node i and node j at time
k arises:

yi∪j(k|k) = yi(k|k) + yj(k|k) − yi∩j(k|k) (3.1)
Yi∪j(k|k) = Yi(k|k) + Yj(k|k) − Yi∩j(k|k) (3.2)

The key to implementing these equations is calculating the common informa-
tion terms yi∩j(k|k) and Yi∩j(k|k). This can be done exactly for fully-connected
and singly-connected (tree) networks [21], and covariance intersection provides a
provably conservative estimate in large-scale sensor networks [22].

The information fusion products generated by decentralised estimation offer
a principled currency for the iterative negotiation process that underpins decen-
tralised IBC. There are several ways to implement this process in practice, but the
overarching requirement is to avoid mass exchange of every sensor node’s expected
utilities. For IBC problems that are smooth and continuous, this can be achieved
by decentralised gradient descent algorithms [23]. For IBC problems with discrete
control variables, the nodes could form a utility-ranked list of their actions and
only communicate the top few actions. An important practical consideration is
the structure of the global utility function. If this is separable, or even partially
separable, it can lead to efficient decentralised IBC algorithms, such as the sum-
product algorithm for discrete actions [25] and related information aggregation
methods for continuous actions [24].

4. Examples and Applications

This section describes some specific examples of decentralised IBC.

4.1. Platform Control

In this example, which formed part of the RCSC(18B) project (see Section 1.1 for
details), a colour vision camera was installed on two UAV platforms and they were
flown against a number of artificial (stationary) ground targets. The mission was
to localise all of the targets to a pre-specified level of accuracy. This was formulated
as a decentralised task assignment problem. Each UAV calculated the following
utility function associated with observing each target,

J =
MI ([y, Y] , a)

T
(4.1)

which is the mutual information gain divided by the time taken for it to be reached.
This information-based utility function enables each UAV to preference or-

der its targets and decide which is the best target to visit and observe next. A
global utility function is defined as the sum of individual local utilities for each
combination of target assignments.

By sharing their local utility values, each UAV is able to implement a simple
assignment algorithm to determine the optimal assignment that maximises the
global utility function. The planning of the UAVs was synchronised using GPS. At
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uniform intervals the UAVs calculate and communicate their local utility values
and re-evaluate their target assignment. If the target assignment has changed they
replan a path to the new target. If not, they remain on path to observe their
current target. The UAVs are also communicating their observations throughout
the mission, so they have up-to-date information on which to make decisions.

The mission comprised 14 minutes of flight time during which the UAVs
planned paths to 13 separate targets in their surveillance volume. They were able
to cooperate for most of this time, communicating and sharing information until
the mission was completed. The typical paths of the two UAVs are shown in Fig. 1,
which is split into six time segments. The UAVs initially start from a loiter pattern
(top left). The general behaviour of the team is (as expected) to maintain high
average target information. Once a target has been observed for a while it becomes
more beneficial to switch to another which has much less information. Thus the
targets to the left which are initially observed are revisited later on when the
information about the other targets has been raised. Also it can be seen that the
UAVs generally choose targets that are nearby due to the weighted utility function.

Fig. 2 plots the Shannon information for each target, held by one of the
UAVs, as a function of the mission time. It can be seen how those targets with low
initial information (high uncertainty) are observed first until their information is
increased to a level comparable with the rest of the targets.

4.2. Sensor Control

The next example, based on work carried out under the SEAS DTC project AA011
(see Section 1.1 for details), highlights a powerful new framework for decentralised
adaptive control known as Probability Collectives (PC) [11]. In terms of multi-
agent systems, PC can be viewed as a system of bounded rational agents playing
an iterative game. The example considers a surveillance and tracking problem in
which multiple (stationary) sensors are observing multiple (mobile) targets. Each
sensor can only observe a single target at each time step, although multiple sensors
may view the same target. Consequently, the discrete joint action space in this case
is the set of all possible sensor-to-target assignments.

The specific test scenario is illustrated in Fig. 3. There are three networked
sensor nodes and three targets. The targets move at constant speed in the direc-
tions shown and the sensor nodes track them with decentralised Kalman filters
(DKFs). In order to develop the target track estimates from time k to k + 1, each
node does the following:

1. Projects its DKFs by one time step
2. Chooses a target to observe next
3. Observes its chosen target
4. Updates its DKFs with local observations
5. Updates its DKFs with communicated observations
6. Returns to step 1 and repeats
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Figure 1. The resulting paths of each UAV during the decen-
tralised IBC mission (UAV 1 - bold line; UAV 2 - dashed line).
The plot is divided into time segments from left to right, top
to bottom. Also shown are the 13 targets which the UAVs are
tasked with localising. The shaded circles show how much infor-
mation the UAVs have about each target (black is zero and white
indicates the information threshold has been met).
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Figure 2. The Shannon information for each of the 13 targets,
calculated by one of the flight vehicles, as a function of the mis-
sion time. The solid black line represents the average Shannon
information for all the targets.

Figure 3. Multi-sensor, multi-target tracking scenario. Each sen-
sor can only observe one target at a time and it has to decide
which one.

Applying the PC framework to sensor control, step 2 above can be decen-
tralised, avoiding mass exchange of utility functions between each sensor node.
Instead, each node maintains a probability distribution over its discrete control
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actions and the nodes engage in an iterative game that tries to ‘sharpen’ these dis-
tributions around each node’s contribution to the optimal joint action. The game
is mediated by an ‘oracle’ who receives samples from each node’s probability distri-
bution and rates the joint sample set according to their global utility. In practice,
the oracle may be an external supervisor or a designated sensor node. The function
of the oracle could also be decentralised at the expense of extra communications
to implement a token ring message passing scheme [12]. The global utility is again
information based: it is the total amount of (negative) Shannon entropy associated
with the sensors proposed target assignments.

Central to the PC algorithm is the following maxent Lagrangian equation for
each sensor node (agent):

Li(qi) = Eq

[
G(xi, x{i})|xi

] − TS(qi) (4.2)

where xi is the sensor’s discrete set of actions, x{i} denotes the set of all sensors
other than sensor i, qi is the probability distribution on the sensor’s action space,
S(qi) is the entropy associated with that distribution, G(x) is the global utility
function and T can be viewed as a temperature variable.

The algorithm involves each agent Monte-Carlo sampling from qi, communi-
cating those samples to the oracle, and descending its maxent Lagrangian function
in response to feedback from the oracle. T is lowered during this process, according
to some fixed schedule, until the updated probability distributions converge. At
this point the actions corresponding to the mean (or median) of their probability
distributions are executed by the sensors.

Now returning to the example, the performance of PC was compared against
a baseline and a benchmark algorithm. The baseline algorithm was simply to have
each sensor choose its target at random. This algorithm was not expected to per-
form well since there is no notion of coordination or cooperation whatsoever. The
benchmark algorithm has each sensor selfishly choosing the target which max-
imises its own predicted (negative) Shannon entropy, while completely ignoring
the preference of the other sensors. This algorithm is expected to perform reason-
ably because of implicit coordination in the sensors actions due to the underlying
DKF processes which tend to synchronise their world view.

The actual results of a simulation based on the scenario shown in Fig. 3 are
displayed in Fig. 4. As expected, the Random sensor-to-target assignment strategy
is always outperformed by PC and the Selfish assignment strategies. PC also
outperforms Selfish during the middle phase of the scenario. This is because the
targets are then roughly equidistant from the sensors and their observations carry
comparable value. Consequently, the Selfish strategy results in somewhat chaotic,
near-random assignments, whereas the fully cooperative PC algorithm produces
a smooth and emergent switch in sensor-to-target assignments. This switching
behaviour was also observed in the optimal centralised solution, which the PC
solution effectively traced throughout the entire scenario.
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Figure 4. The sensor nodes average information plotted as a
function of time for the Random (full line), Selfish (dashed line)
and PC (dotted line) sensor-to-target assignment algorithms.

4.3. Communication Control

This example considers active information flow in decentralised sensor networks.
This refers to smart dissemination of information over a network, with due regard
to the local utilities of receiver/sender nodes or the global utility of the system, as
well as communication resource constraints. It may be possible to organise such
flows on the basis of simple rules or heuristics, but these often require careful
‘hand-tuning’ and are unlikely to offer much flexibility.

A more general approach, developed under the SEAS DTC project AA009
(see Section 1.1 for details), is highlighted in this section. A typical motivating
problem is shown in Fig. 5. This is a surveillance mission scenario, involving mul-
tiple decentralised and heterogenous agents and users, operating in an uncertain
and hostile environment, where communications are limited. The problem is what
information should the agents and users exchange to ensure timely execution of
their mission goal(s)?

There are two variants of IBC that can be applied to this problem. Both are
underpinned by Bayesian Decision Theory but differ in their implementation de-
tails depending on whether the sensor nodes have a common objective or unequal
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Figure 5. Surveillance scenario involving multiple sensing agents
and multiple users. Of interest is how the agents and users should
interact to gather relevant data in a rapid and effective manner.

objectives. Each variant was evaluated in simulation against a target identification
problem (represented by a Bayesian Network). In each case there was an empha-
sis on providing scalable decentralised solutions. This ruled out the conceptually
simple approach of replicating the centralised solution at each node, because that
requires each sensor node to acquire all the other sensor nodes expected utilities.

The first method, developed for common local utility functions, is charac-
terised by information push in reaction to what is known by a transmitting node
about a receiving node’s information requirements [6]. Two smart steps are re-
quired to implement this method:

1. The probabilistic world model is represented in a compact factored form
known as a junction tree. This enables an algorithm for inference within
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Bayesian Networks to also perform inference between Bayesian Networks at
separate locations.

2. An efficient communication protocol is used to minimise inconsistencies be-
tween the probabilistic estimates of state maintained by each node. Specifi-
cally, Kullback-Leibler divergence is used to monitor and prioritise informa-
tion flow in the system.

The main strength of this method is its efficiency: it uses fewer resources than
competing methods when resources are unconstrained, and provides faster conver-
gence and increased accuracy when communication is constrained. However, the
intrinsic weakness of this method is its assumption of a common objective. In mil-
itary operations, it is quite likely that sensor nodes will have different objectives
which are related to their local context. Moreover, each node’s local objective is
unlikely to be known to the other nodes.

The second method, developed for different objective functions, is charac-
terised by information pull, which is a proactive advertisement by the sensor nodes
for information that supports their local objectives [7]. As in the information push
scheme, two smart steps are required to implement this method:

1. A means of generating advertisements that can be interpreted by receiving
agents and used as a basis for information gathering and communication
decisions. A suitable advertisement is a vector containing the average utility
change for every possible request, normalised to form a set of priorities over
actions.

2. An efficient “in-network” scheme for aggregating advertisements and informa-
tion. By using a tree communication topology and storing the advertisements
received on each link, it is possible to formulate and propagate an aggregated
advertisement. In this way agents can use “link demands” to steer informa-
tion toward the desired destinations.

In common with the information push method this method is also scalable because
it communicates and fuses estimates rather than sensor data, it exploits structure
in the world model, and it prevents stale data from being re-transmitted. In ex-
change for its scalability and flexibility with respect to multiple objectives, the
information pull method trades optimality in performance.

These concepts for communication control were exposed to a simple experi-
ment in which five (simulated) airborne sensor nodes were tasked with maintaining
surveillance of targets in their own areas of interest and reflecting this self-interest
in their private utility functions. The sensor nodes are ignorant about each other’s
utilities. Within the scenario there are three sensor types. Each sensor can distin-
guish different target attributes, but evidence from all three sensors is required
to positively identify a specific target type. The performance of each sensor is
captured using a naive Bayes classifier.

The experiment compares performance for the information push/pull ap-
proaches in terms of the Shannon information utility averaged over nodes. The
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Figure 6. The mean Shannon information utility for a
bandwidth-limited sensor network implementing information
push and pull algorithms as shown. Information pull performs
better (i.e., has lower Shannon information) due to the differing
objectives of the sensor agents

results are shown in Fig. 6. The information push approach assumes common ob-
jectives and in this scenario, where the sensors have their own private interests that
are unknown to other sensors, it is outperformed by the more flexible information
pull approach.

4.4. Complex System Control

To conclude this section it is useful to consider complex systems composed of
multiple agents, each with their own aims, objectives, and constraints that either
cooperate or must be incentivised to interact so as to achieve the systems design-
ers’ goals. In such systems, it is important to balance sensing actions against other
decisions (e.g., to communicate or act on the variables in the environment) since
every action taken may have an impact on the achievement of system-wide ob-
jectives. Such issues typically arise in the real world in the form of major events,
such as large scale disasters. Disaster management forms the application focus for
a recently initiated project known as ALADDIN (see Section 1.1 for details).

The main aim of ALADDIN is to develop methods and architectures for mod-
elling, designing, and building decentralised systems that will cope with uncertain
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and biased information (e.g., due to defective sensors, inaccuracies in measure-
ments), unreliable communication (e.g., network nodes breakdown, noisy chan-
nels), and multiple agents that may belong to different stakeholders (e.g., fire
brigades, local government, ambulances). In so doing, the ALADDIN project aims
to provide strong, both theoretical and practical, foundations for Disaster Manage-
ment (DM) systems that are characterised by a diverse set of resources which need
to support multiple users with different priorities and time horizons. This requires
a flexible framework (architecture and algorithms) for addressing dynamic decen-
tralised resource allocation problems. In the ALADDIN project this requirement
is being met by cross-fertilising ideas from machine learning, information fusion,
and multi-agent systems.

This powerful combination provides methods for managing uncertain data
and executing single actor IBC as well as methods for decentralised coordination
and control of multiple actors. Thus, machine learning and information fusion
algorithms will generally aim to transform multiple streams of corrupted data into
information which can then be used to action sensors, vehicles or rescuers, within
the DM system. Building upon this, multi-agent systems techniques will aim to
facilitate decentralised resource allocation in various ways ranging from market-
based control, through coalition formation, to distributed constraints optimisation
techniques.

To ensure that theoretical results from research in these areas connects to the
real-world problem of disaster management, the ALADDIN project is building its
own experimental testbeds and using existing ones, such as the RoboCup Rescue
simulation testbed [13]. In particular, Robocup Rescue has been identified as a
compelling environment for demonstrating the ALADDIN technologies, since it
hosts many of the issues that the project is trying to tackle: uncertainty, bias,
and multi-agency. Moreover, sensors with any specific property or capability can
be modelled in the environment in such a way that they impact on the decision
making process of individual or multiple agents. Such a testbed will therefore be
useful for demonstrating and evaluating IBC solutions. An example of a 3-D map
used by the RoboCup Rescue simulator is shown in Fig. 7 [26].

5. Discussion and Conclusions

Decentralised sensor networks are expected to be a cornerstone of future defence
and security systems. They will need to operate over large areas, for long periods
of time, with minimal human supervision. Some of the sensors will be stationary
and placed at fixed locations in the area of interest; other sensors will be mobile
and can visit multiple locations. The sensors may communicate, but the network
topology is unlikely to be fixed or known, and the communication bandwidth will
be limited. The operational modes of the sensors, their trajectories through the
environment, and the information they exchange, are all control variables that may
self-adapt to the local goals of individual sensors or to the global goal of the system
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Figure 7. 3-D map used by the RoboCup Rescue simulator

at large. This is a control problem and it was described how formal measures of
information provide a meaningful control basis in decentralised sensor networks.

The multi-agent systems methodology provides a framework and associated
tools and techniques for enabling decentralised IBC in sensor networks. While
statistics and sensor fusion are equipped with methods to manage uncertainty in
these systems, and simple IBC methods can be used to control separate sensors,
neither is able to promote the large-scale coordination that is required to maximise
the performance of the full decentralised sensor network. However, multi-agent
systems methods can usefully fill this gap and help design systems that must
consider complex trade-offs in their decision-making. These methods are typically
decentralised and deal with dynamism as well as a multiplicity of objectives, further
increasing their appeal in the military and security domain.

This exciting field of research needs to develop in several ways. Theoreti-
cally, it would be useful to develop a system-level understanding and analysis of
cooperative feedback between networked sensor nodes. This would identify the
key characteristics of networked sensing problems that benefit from cooperative
solutions as well as quantifying the degree of cooperation that is required. Al-
gorithmically, the focus should be on developing practical algorithms that are
flexible and scalable in domains where there is dynamism, uncertainty of various
forms, and stringent physical resource constraints. Finally, in terms of applica-
tions, agent-based optimisation methods may offer novel perspectives on many
other long-standing problems in networked sensor fusion systems, including sensor
registration, data association, routing topologies for information products, rumour
propagation, and decentralised situation assessment.
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Managing Intelligence Resources Using
Semantic Matchmaking and Argumentation

Alun Preece, Tomothy J. Norman, Mario Gomez and Nir Oren

Abstract. Effective deployment and utilisation of limited and constrained intelligence,
surveillance and reconnaissance (ISR) resources is seen as a key issue in modern
network-centric joint-forces operations. In this chapter, we examine the application
of semantic matchmaking and argumentation technologies to the management of ISR
resources in the context of coalition operations. We show how ontologies and reasoning
can be used to assign sensors and sources to meet the needs of missions, and we show
how argumentation can support the process of gathering and reasoning about uncertain
evidence obtained from various sources.

1. Introduction

Effective deployment and utilisation of limited and constrained intelligence, surveillance
and reconnaissance (ISR) resources is seen as a key issue in modern network-centric joint-
forces operations. For example, the 2004 report JP 2-01 Joint and National Intelligence
Support to Military Operations states the problem in the following terms: “ISR resources
are typically in high demand and requirements usually exceed platform capabilities and
inventory [. . . ]. The foremost challenge of collection management is to maximise the
effectiveness of limited collection resources within the time constraints imposed by oper-
ational requirements.”1

Our work focuses upon the application of Virtual Organisation technologies to man-
age coalition resources. In the past we have shown that an agent-based VOs can manage
the deployment and utilisation of network resources in a variety of domains, including e-
business, e-science, and e-response [1, 2]. Two distinguishing features of our work are (1)

This research was sponsored by the US Army Research Laboratory and the UK Ministry of Defence and was
accomplished under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this
document are those of the author(s) and should not be interpreted as representing the official policies, either
expressed or implied, of the US Army Research Laboratory, the US Government, the UK Ministry of Defence
or the UK Government. The US and UK Governments are authorised to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.
1http://www.dtic.mil/doctrine/jel/new pubs/jp2 01print.pdf, pages III–10–11, accessed April 27, 2007.
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the use of semantically-rich representations of user requirements and resource capabili-
ties, to support matchmaking using ontologies and reasoning, and (2) the use of argumen-
tation to support negotiation over scarce resources, decisions about which resources to
use, and the combining of evidence from information-providing resources (e.g., sensors).

In this chapter, we examine the application of (1) and (2) to the management of ISR
resources in the context of coalition operations. The first part of the chapter describes
an ontology-based approach to the problem of assigning sensors and sources to meet the
needs of missions. The second part then looks at how argumentation and subjective logic
can facilitate the process of gathering uncertain evidence through actions collectively re-
ferred to as sensor probes, and combining that evidence into a set of arguments in support
of, and in opposition to, a particular decision.

Our applications involve agents that must cooperate, but still try to maximise their
individual utilities, possibly to the detriment of other agents in the system. This type of
scenario often appears in military settings, including within coalition operations. Each
member of the coalition requires certain assets — including physical assets such as ma-
teriel (personnel, vehicles, equipment, etc.), and information assets including various
forms of intelligence — to achieve their mission, but these assets are oversubscribed.
By advancing arguments as to why they should have the assets, the coalition members
may make their own missions more easy to achieve. However, they might have to gather
additional information so as to be able to justify their arguments, thus introducing some
form of utility cost.

2. Semantic Matchmaking of Sensors and Missions

The assignment of ISR assets to multiple competing missions can be seen as a process
comprising two main steps: (1) assessing the fitness for purpose of alternative ISR means
to accomplish a mission, and (2) allocating available assets to the missions. Our work
draws upon current military doctrine, specifically the Missions and Means Framework
(MMF) [3] which provides a model for explicitly specifying a mission and quantitatively
evaluating the utility of alternative warfighting solutions: the means.

Fig. 1 shows how missions map to ISR means. Starting from the top left the di-
agram sketches the analysis of a mission as a top-down process that breaks a mission
into a collection of operations (e.g., search-and-rescue), each of which is broken down
further into a collection of distinct tasks having specific capability requirements (e.g.,
wide-area surveillance). On the right hand side, the diagram depicts the analysis of capa-
bilities as a bottom-up process that builds up from elementary components (e.g., electro-
optical/infrared (EO/IR) camera) into systems (e.g., camera turret), and from systems up
into platforms equipped with or carrying those systems (e.g., an unmanned aerial vehicle
(UAV)).

The way MMF describes the linking between missions and means naturally fits the
notion of matchmaking. Matchmaking is basically the process of discovering, based on
a given request (e.g., ISR requirements), promising partners/resources (e.g., sensors) for
some kind of purpose (e.g., accomplishing a mission). Important issues arise when the
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FIGURE 1. Overview of the Mission and Means Framework (MMF)

search is not limited to identity matches but, as in real life, when the objective is find-
ing partners/resources suitable at least to some extent, or (when a single partner cannot
fulfil the request) to find a pool of cooperating partners (a sensor network, or a plat-
form equipped with several sensors) able to accomplish it. As this process may lead to
various possible matches, the notion of ranking becomes central: to provide a list of po-
tential partners ordered according to some criteria. Due to the diversity of frameworks
of application, several communities have studied matchmaking through perspectives and
techniques. Recently, semantic matchmaking, which is based on the use of ontologies [4]
to specify components, has become a central topic of research in many communities,
including multi-agent Systems, Web services and Grid computing.

In particular, we propose the use of ontologies to support the following activities:

• specifying the requirements of a mission;
• specifying the capabilities provided by ISR assets (sensors, platforms and other

sources of intelligence, such as human beings);
• comparing — be a process of automated reasoning —the specification of a mission

against the specification of available assets to either decide whether there is a so-
lution (a single asset or combination of assets) that satisfies the requirements of a
mission, or alternatively providing a ranking of solutions according to their relative
degree of utility to the mission.

2.1. Ontologies for matchmaking

People, organisations and software systems need to communicate and share information,
but due to different needs and background contexts, there can be widely varying view-
points and assumptions regarding what essentially the subject matter is. The lack of shared
understanding leads to poor communication between people and their organisations, se-
verely limits systems interoperability and reduces the potential for reuse and sharing.
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Ontologies2 aim at solving these problems. On the one hand, ontologies facilitate com-
munication and knowledge sharing by providing a unifying framework for parties with
different viewpoints. On the other hand, ontologies can improve interoperation and co-
operation by providing unambiguous semantics in a formal, machine-interpretable way.
Matchmaking can benefit from these general properties as far as the elements of the pro-
cess are distributed or there are several viewpoints; additionally, the use of semantically
rich specifications enable the use of specific forms of reasoning that are not available
when using a syntactic approach, such as for example subsumption and disjunction. Be-
low we provide a simple motivating example to illustrate on such forms of reasoning for
matchmaking.

FIGURE 2. Partial classification of unmanned aerial vehicles (UAVs)

Fig. 2 depicts a partial classification of unmanned aerial vehicles (UAVs). The figure
shows six classes of UAV, and the various specialisation (subclass) relationships among
them. At the top of the classification, the UAV class encompasses all kinds of UAV, which
may range in cost from a few thousand dollars to tens of millions of dollars, and range
in capability from Micro Air Vehicles (MAV) weighing less than one pound to aircrafts
weighing over 40,000 pounds. In this example we include just three categories that are
specialisations of the UAV class; these are, from left to right: the Small UAV (SUAV),
designed to perform “over-the-hill” and “around-the-corner” reconnaissance; the Tactical
UAV (TUAV), which focuses on the close battle in direct response to a brigade comman-
der; and the Endurance UAV (EUAV), which supports a division in deep battle. Further, we
have included two categories that specialise the Endurance UAV class: the Medium Al-
titude Long Endurance (MALE) UAV, designed to operate at altitudes between 5000 and
25000 feet, and the High Altitude Long Endurance (HALE) UAV, designed to function
as Low Earth Orbit satellites. The arcs between subclass relationships indicate a disjoint
relationship among subclasses; a disjoint relation among a set of classes entails that an

2For a modern definition of the term, we refer the reader to [5]: “an ontology is a set of logical axioms designed
to account for the intended meaning of a vocabulary”.
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individual cannot belong to more than one of those classes; for example, a UAV that is
classified as a Small UAV, cannot be classified as being a Tactical UAV. Next, we intro-
duce some basic examples illustrating specific forms of reasoning enabled by the use of
ontologies. Let us suppose that we have the following UAVs available for a mission:

• A Pioneer, which is a TUAV
• A Predator, which is a MALE-UAV
• A Global Hawk, which is a HALE-UAV

Now suppose that as part of a given mission a persistent-surveillance task over a
wide area is required to detect any suspicious movement. This kind of task is best served
by an Endurance UAV, since it is able to fly for long periods of time. From just the con-
cept definitions we know that: (1) the Pioneer is not an endurance UAV (because of the
disjoint relationship among Endurance-UAV and TUAV), and (2) both the Predator and
the Global Hawk are Endurance-UAVs (because of the subclass relationships) 3. Therefore,
the matchmaking process will select both the Predator and the Global Hawk as the assets
satisfying the specified mission requirements.

Now, suppose that according to the weather forecast, storms are very likely to occur
in the area of operations during the surveillance period. Then, the best option would be to
use a HALE-UAV, which has the capability of flying “above the weather”. Consequently,
the matchmaking process would select the Global Hawk as the only asset satisfying the
mission requirements.

The UAV examples introduced above refer to a simple form of matching relation-
ships known as subsumption, but it is possible to devise more complex information con-
tainment relationships and even an ordinal ranking scale comprising several degrees of
matching just by using the subclass relationship. Fig. 3 represents graphically the main
kinds of matching relations that are found in the literature in terms of information con-
tainment, using concepts from the ISR domain. Q denotes a query which specifies some
requirements to be met, which in our context are ISR requirements, and S1 − S5 de-
note the specification of components to be matched against Q, which in our domain are
associated with ISR assets such as UAVs.

Commencing at the left, our query Q specifies two basic requirements to be met:
(1) provide infrared (IR) vision and (2) be able to carry out night reconnaissance. Going
from left to right and top to bottom, the figure shows the specification for several assets
that verify different types of relation in terms of information containment. Below follows
a description of these matching relations listed in decreasing strength order:

1. ExactMatch(S1, Q) holds when the specification of a component provides exactly
the same type of information described by the query. In the example, S1 describes
an asset that provides IR vision and is designed to perform night reconnaissance
tasks, just as stated in Q. This is represented as S1 = Q.

2. Plugin(S2, Q) holds when the class of information described by the query subsumes
(i.e., is more general than) the class of information specified by the component. In

3Note that we only state minimum explicit information about the UAVs (e.g., Pioneer is-a Tactical-UAV);
everything else is inferred from the concept definitions (e.g., the Pioneer is not a HALE-UAV).
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FIGURE 3. Basic matching relationships

the example, the asset described by S2 refers to a Cooled FLIR (forward looking
IR), which is a specific type of IR camera. This is represented as Q ⊆ S2.

3. Subsumes (S3, Q) holds when the class of information described by the query is
subsumed by the specification of the component, i.e., when the specification of the
component is more general than the query. In the example, S3 refers to an asset pro-
viding night vision capability, which is a more general concept than infrared vision,
and also provides night reconnaissance. This is represented as S3 ⊇ Q.

4. Overlaps(S4, Q): holds when the query and the specification share some informa-
tion, but neither one subsumes the other entirely. In our example, S4 describes an
asset that provides night reconnaissance as required by Q, but the first requirement
is not satisfied, since it carries a radar (SAR, Synthetic Aperture Radar) instead of
an IR camera, and these two concepts are disjoint. This is represented as S4 ∩ Q.

5. Disjoint(S4, Q): holds when there is no degree of information containment between
the specification of the component and the query. In the example, S5 describes an
asset that provides TV video and is suited to perform day reconnaissance tasks;
radar imagery is disjoint with IR vision, day reconnaissance is disjoint with night
reconnaissance, so there is no intersection or information containment between the
concepts. This is represented as S4⊥Q.

The kind of matching relationships introduced above are typically used to discover
software components or services satisfying some specific requirements. Herein we are
proposing to use these kinds of matching relations to discover ISR assets that satisfy
intelligence requirements. Although different matchmaking problems could seem very
similar in terms of basic matching relationships used, they could differ when considering
the matching relationship at the component level, rather than at the attribute level.
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2.2. Matchmaking abstract architecture

A matchmaking application is not entirely characterised by the semantic relationships that
might be established among concepts. An important issue of a matchmaking application
is the distinction between the attribute-level and the component-level: a component may
be described by different attributes, and so different matching schemas could be applied to
each attribute depending on the particular meaning or role it plays within the component.

In our application, we have identified two main kinds of components to be matched
against the ISR requirements of a mission, each one characterised by different attributes
that deserve a separate treatment. Note that the kind of capability requirements that are
relevant to select a specific kind of sensor are quite different from the requirements that
are relevant to select a platform. For example, in order to assess the utility of different sen-
sors it is very important to consider the kind of intelligence to be produced (e.g., Imagery
Intelligence (IMINT), Measurement and Signature Intelligence (MASINT), Signals Intel-
ligence (SIGINT), since each type of sensor provides information that supports a different
kind of intelligence (e.g., infrared cameras support IMINT, while acoustic sensors support
MASINT). Besides, to select a specific UAV for a reconnaissance mission there are other
factors to consider, such as the range to the targets of interest, the presence or absence of
enemy anti-air assets, and so on. In addition, UAVs are limited in the weight and type of
sensors they can carry, and the performance of some sensors may be influenced by con-
ditions that depend on the platform they are attached to, such as the altitude. Therefore,
one cannot select UAVs and sensors independently; instead, the interaction between these
components must also be taken into account.

To address the issues above, we define an abstract architecture based on three types
of components and three kinds of matching relations, as showed in Fig. 4. In each case
we build on existing work in defining ontologies for the specific components:

FIGURE 4. Abstract matching architecture
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• Tasks are the actions to be performed in order to accomplish a mission. A task may
have attached environmental conditions (weather, terrain, enemy, etc.) that are ex-
pected to impact the performance of a task. We seek to use standardised catalogues
of Tasks and Conditions such as those found in the Universal Joint Task List 4.

• Sensors are the assets that collect the information required to satisfy the intelligence
requirements of a mission. However, sensors do not operate as independent entities,
they have to be attached to (or carried by) devices that provide them with energy,
protection, mobility, etc. Several ontologies of sensors already exist, e.g., [6, 7].

• Platforms are the systems to which sensors are attached so as to get energy, protec-
tion, mobility, communication, etc. Platforms include both static and mobile systems
operating on land, in sea and air. Again, some work has already been done to create
ontologies of these, e.g., [8].

The three components involved and the dependencies between them result in three differ-
ent matching relations, as follows:

• Task-Sensor matching: a sensor S matches a task T , match(T, S), if S provides the
information collecting capabilities required to satisfy the intelligence requirements
of T .

• Task-Platform matching: a platform P matches a task T, match(T, P ), if P provides
the kind of ISR-supporting capabilities (mobility, survivability, communication) re-
quired to perform T .

• Platform-Sensor matching: a sensor S matches a platform P , match(P, S), if S can
be carried by and is compatible with the characteristics of P .

In order to satisfy the ISR requirements of a mission one needs to select both a platform
and a combination of sensors such that the three matching relations of the architecture are
satisfied simultaneously.

2.3. Towards a multidimensional solution

Although one can envisage a single ontology supporting the entire sensor-mission match-
making process, actually we adhere to the Semantic Web vision of multiple interlinking
ontologies covering different aspects of the domain. First, we provide an ontology based
on the Missions and Means Framework (MMF), which is basically a collection of con-
cepts and properties that are essential to reason about the process of analysing a mission
and attaching the means required to accomplish it (mission, task, capability, or asset).
Then we provide a second ontology that refines some of the generic concepts in the MMF
ontology so as to represent the ISR-specific concepts that constitute our particular ap-
plication domain. This second ontology comprises several areas frequently organised as
taxonomies, such as a classification of sensors (acoustic, optical, chemical, radar) and
information sources, a classification of platforms (air, sea, ground and underwater plat-
forms), a classification of mission types, or a classification of capabilities. As noted in
the previous section, there are existing ontologies covering at least part of each of these
domains.

4See http://www.dtic.mil/doctrine/jel/cjcsd/cjcsm/m350004c.pdf and http://www.daml.org/2002/08/untl/
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FIGURE 5. Main ontological concepts and their relationships

Fig. 5 shows a high level view of the main concepts and relationships that support
our semantic matchmaking approach. On the left hand side, we find the concepts related
to the mission: a mission comprises several tasks that need to be accomplished. On the
right hand side we find the concepts related to the means: a sensor is a system that can be
carried by or constitutes part of a platform; inversely, a platform can accommodate or have
one or more systems, and both platforms and systems are assets; an asset provides one or
more capabilities; a capability can entail a number of more elementary capabilities, and
is required to perform certain types of tasks and inversely, a task is enabled by a number
of capabilities.

In the next section, we focus on the use of argumentation to manage the gathering
of evidence from a set of sensors and sources assigned to a task.

3. Arguing About Evidence in Partially Observable Domains

In this section, we examine how argument may be used to reason about sensor assignment
based on evidential and diagnostic reasoning. Informally, we are trying to address situ-
ations where different agents, each with their own goals and viewpoints, are attempting
to reach a shared agreement about the state of a subset of their environment. By reach-
ing agreement, they may take decisions about how their actions should be coordinated.
We further assume that the environment is partially observable, and that any information
about it is obtained through the use of (possibly incorrect) evidence. Finally, we assume
that the agents are self interested. The argumentation approach has a number of advan-
tages over competing methods, including understandability, improved running time and
ease of knowledge representation.



42 A. Preece, T.J. Norman, M. Gomez and N. Oren

Without a trusted third party, a centralised solution to this problem is difficult. Our
proposed approach involves the agents engaging in dialogue with each other, exchanging
arguments, and obtaining evidence (possibly via existing sensors) for additional infor-
mation about the environment. By basing arguments on evidence, a shared world view
can be constructed. To tackle the problem, a representation mechanism for the environ-
ment, agents’ knowledge and arguments is required, as well as a method for determining
which conclusions are justified when opposing arguments interact. A specification is also
needed, detailing how dialogue may take place. Finally, agents must be able to decide
which arguments to advance, and what sensors to probe for evidence.

Prakken [10] identified these as the logical, dialectic, procedural and heuristic lay-
ers of an argument framework. Our logical layer is built around Subjective Logic [11],
allowing us to represent concepts such as likelihood and uncertainty in a concise and el-
egant manner. The way in which arguments are constructed in our framework and used
at the dialectic level is intended to support a rich representation of arguments; we are
able to represent concepts such as accrual of arguments, argument schemes and argument
reinforcement in a natural manner. While the logical and dialectic layers are domain in-
dependent, acting as a general argument framework, the explicit introduction of evidence
at the procedural level allows us to attack our problem.

Evidence is gathered via sensors, where a sensor refers to anything that can deter-
mine the state of a portion of the environment. Multiple sensors may exist for certain parts
of the environment, and some of these sensors may be more accurate than others. Finally,
sensors may not perform their services for free. Thus, sensors capture an abstract notion
of a source of evidence within our framework.

At the procedural level, agents engaging in dialogue, taking turns to advance argu-
ments and probe sensors in an attempt to achieve their goals. In this context, an agent’s
goal involves showing that a certain environment state holds. We assume that an agent
associates a utility with various goal states. Our heuristic layer guides an agent and tells
it what arguments to advance, and which sensors to probe during its turn in the dialogue
game.

The logic of our framework is built on Subjective Logic [11], which, in turn, is based
on Dempster-Schafer theory. We may assign an opinion to predicates representing por-
tions of the environment. These opinions are 〈belief, disbelief, uncertainty〉 triples5.

Jøsang defined a large number of operators that are used to combine opinions, some
of which are familiar such as conjunction and disjunction, and some less so such as ab-
duction. We look at three operators, namely negation, discounting, and consensus.

The propositional negation operator calculates the opinion that a proposition does
not hold. A negated opinion’s belief is equal to the original opinion’s disbelief, while the
original disbelief becomes the opinion’s belief. Uncertainty remains constant.

Discounting is used to model hearsay. That is, given that an agent has an opinion
a about agent β’s reliability, and that β has an opinion x about something, without any
additional information, α will have an opinion a⊗x, where ⊗ is the discounting operator.

5This is in fact a simplification, Subjective Logic ordinarily uses 4-tuples, with the forth element representing
atomicity.
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The independent consensus operator gives the opinion an imaginary agent would
have about x if it had to assign equal weighting to different opinions x 1, x2 about a state
of the world x. It is represented as x1 ⊕ x2.

3.1. The Framework

Following Prakken’s model [10], we build our framework in layers, starting at the logical
layer, where we describe how an argument is constructed. In the dialectic layer, we look
at how arguments interact, and then show how agents may engage in dialogue in the
procedural layer. Finally, in the heuristic layer, we show how agents can decide which
lines of argument should be advanced in a dialogue.

Facts in our model are represented as grounded predicates, and have an associated
opinion. An argument is an instantiated argument scheme [12] linking facts to other facts.
Argument schemes are common, stereotypical patterns of reasoning, often taking on a
non-deductive or non-monotonic form. A simple argument scheme (Modus Ponens) could
be represented as follows:

(ModusPonens , {holds(A), implies(A, B)}, {holds(B))}, F, true)

Here, F is:

ω(holds(B)) =

⎧⎪⎪⎨
⎪⎪⎩

〈0, 0, 1〉 b(holds(A)) < 0.5 or
b(implies(A, B)) < 0.5

ω(holds(A)) b(holds(A) < b(implies(A, B))
ω(implies(A, B) otherwise

where holds(A) and implies(A, B) are the premises of the argument scheme (i.e., these
facts must hold for the argument scheme to be instantiated into an argument). holds(B)
is the conclusion of the argument scheme (i.e., this fact may be instantiated if the argu-
ment scheme is applicable), F is a function allowing us to compute the opinion for the
conclusion based on the opinions associated with the premises, and finally true is an ap-
plicability function, stating any restrictions on the application of the argument scheme.
We make use of first order unification to transform an argument scheme into a concrete
argument. any symbols in capital letters are unified with facts, as done in prolog, so as to
instantiate the scheme.

Until now, we have described what individual arguments look like. However, ar-
guments do not exist in isolation. Instead, they interact with each other, reinforcing or
weakening opinions about predicates in the process. Unlike most other argumentation
frameworks, we do not explicitly model rebutting and undercutting attacks to show how
arguments interact. Instead, we use the concept of accrual of arguments to allow for both
argument strengthening and weakening. To represent interactions between arguments, we
must be able to answer the following question: what happens when two different argu-
ments have opinions about a (partially shared) set of predicates in their conclusions?

The independent consensus operator gives us a default technique for applying ac-
crual. Thus, given a set of arguments for and against a certain conclusion, and given no
extra information, we apply the consensus operator based on the opinions garnered from
the arguments to arrive at a final opinion for the conclusion.
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While some researchers have suggested that accrual of arguments is an argument
scheme and can be treated as such (arguably, for example [13]), Prakken’s view, in our
understanding, is that the best way to handle accrual of arguments is by following a two
stage process. First, determine what arguments may enter into an accrual, and second
compute the effects of the accrual. We agree that accrual of arguments cannot be treated
as “just another” argument scheme due to its role and nature. We believe, however, that in
certain situations (usually obeying principle 1), accrual of evidence can be treated as an
argument scheme. The way in which our framework aligns these two views is one of its
most unique aspects.

Informally, given multiple arguments for a conclusion, we apply the standard con-
sensus rule. However, if an argument is advanced which subsumes (some of the) argu-
ments which take part in the consensus, the subsumed argument’s conclusions are ig-
nored, and the subsuming rule is used instead. If any of those arguments are attacked and
defeated, then our accrual rule is itself defeated, allowing all its undefeated (and previ-
ously subsumed) members to act again. If some of the newly activated sub-members were,
in turn, part of accruals, those accruals would enter into force again.

Given these underpinnings, it is possible to provide an algorithm for evaluating how
sets of instantiated arguments interact. Such an algorithm operates in a way similar to
the way reasoning occurs in probabilistic networks, and is best explained by thinking of
our sets of arguments and predicates as a graph. Both predicates and arguments can be
thought of as nodes, with a directed edge between the two if the predicate appears in the
premises or conclusions of an argument. The edge enters the argument in the case of the
predicate being a premise, and exits the argument otherwise.

To operate, our algorithm requires an argument graph, as well as a starting set of
opinions. We assume that these opinions are not under dispute, and the associated nodes
must, therefore, have no edges leading into them. Our algorithm then propagates these
opinions forward through the graph, until all applicable arguments in the graph have been
taken into account. The specific details of the algorithm appear in [14].

At this point, we have a way of determining which conclusions hold given a set
of arguments. It is now possible to define a procedure for how the set of arguments is
generated. This can be done in two phases. In the first, a dialogue between agents may be
defined. This states when an agent may make an utterance, and what form these utterances
should take. We assume that agents take turns to speak, and that the game ends when both
agents pass (i.e., say nothing) during their turn.

Since we are interested in arguing about evidence in partially observable domains,
we assume that the environment holds a number of sensors. These sensors may be probed
to obtain opinions about the value of various relations. In practise, sensors may be agents,
static parts of the environment, or some other entity capable of providing an opinion
about the environment. We assume that multiple sensors can give opinions about the same
relations, and that some sensors are more reliable than others.

During their turn, an agent may advance a connected set of arguments, and probe a
number of sensors. These sensor probings are one way to associate an opinion with a fact.
The other way is to have the fact be the conclusion of an argument.
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At each step in the dialogue, an opinion is calculated for every fact. When partici-
pating in the game, an agent must decide which utterance to make. We associate a cost to
probing actions, and a utility gain to the showing that certain facts hold in the world. Then
the agent selects the utterance that maximises their utility. In effect, the agents perform
one step lookahead during their turn. Increasing the level of lookahead requires some form
of opponent modelling.

3.2. An example scenario

In this section, we describe a dialogue in a hypothetical sensor assignment scenario. A
commander, fronted by an agent α, has a mission (labelled mission(m)) to accomplish.
To successfully execute the mission, he requires the use of a sensor package that can be
deployed on either a Predator UAV, or a Sentry UGV (with deployment on the UAV pre-
ferred by the commander). Another agent β, is also present in the system. Both agents
share some knowledge, but both also have private beliefs. β could represent another com-
mander, a member of a coalition, or, though not explicitly examined in this scenario,
someone with their own goals, some of which may not be compatible with α’s mission.
We assume that certain sensors have already been deployed in the field, and that the agents
have access to these and other sources of information such as GIS systems. α must argue
with β in an attempt to allocate resources for its mission. In the interests of clarity, the
description of the dialogue that follows is semi-formal.

Assume the agents have the following argument schemes available to them:
Name Premises Conclusions
ModPon A, B, implies(A, B, C) C
HumInt atLocation(E, L), claims(E, A), A

inArea(A, L)
MisAss capable(T, R), available(R), assigned(M, R)

hasTask(M, T )
M1 higherPriority(M ,N ), uses(N ,R) reassignReq(N ,M ,R)
M2 reassignReq(N, M, R), assigned(M, R)

reassign(M, R)
D1 ugv(U ), taskLocated(T ,L), capable(U )

hasRoad(L)
D2 ugv(U ), taskLocated(T ,L),mud(L) capable(U )
D3 ugv(U ), taskLocated(T ,L),mud(L), capable(U )

hasRoad(L)
We do not show the admissibility and mapping functions in this table, but assume

that they are unique to their associated argument scheme.
Some arguments here are very general, for example, ModPon represents standard

two premise Modus Ponens. Others, such as HumInt and MisAss, are specific to the
military domain. The former, similar to Walton’s argument from expert opinion [12], rep-
resents an argument based on information from “expert” human intelligence. The latter
argument scheme allows agents to reason about when a resource may be assigned to a
task. M1 and M2 are very specific to the military domain, and represent how agents may
reason about task assignments, while the remaining argument schemes are used to reason
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about the applicability of a UGV to different types of domains. Note that D 3 is able to
handle more specific cases than D1 and D2.

α would like to assign either a UGV or a UAV to his mission (preferring a UAV),
and thus has the goals

assigned(mission(m), uav(predator)), assigned(mission(m), ugv(sentry))

With a higher utility being given to the former goal.
Both agents are aware of the following facts:
hasTask(mission(m), task(t)) higherPriority(mission(m), mission(n))
capable(t, uav(predator)) implies(recentRain(l), sand(l), mud(l))
ugv(sentry) taskLocated(t, l)
atLocation(h, l)

Agent α also believes that available(uav(predator)), hasRoad(l) and, believes
there is a good chance that, if necessary reassign(mission(m), uav(predator)) would
work. It also believes that no rain has fallen at l, and that the human intelligence assets
would agree with it, i.e., claim(h,¬recentRain(l)) and inArea(l,¬recentRain(l)).

Agents can probe a GIS system to determine the status of hasRoad(l) at very little
utility cost, while recentRain(l) and sand(l) would cost α more utility. Probing whether
the UAV is available can be done at very little cost by looking at different inventory
databases. We also define two expensive sensors for the reassignment request and the
reassignment itself. These represent the cost of going up the chain of command to ask for
the UAV/UGV to be reassigned. Finally, it is possible to probe the opinion of the human
intelligence for details such as the claim() predicate, but this is very expensive as the
location of the assets might be compromised.

Agent α begins the conversation by making the utterance

((MisAss, {hasTask(mission(m), task(t)), capable(t, uav(predator)),
available(uav(predator))}, {assigned(mission(m), uav(predator))}),
{available(uav(predator))})

In other words, it attempts to check that the predator UAV is available for the mis-
sion, and assign it (if possible). We assume that the probe succeeds.

β responds with its own sensor probe (, {available(uav(predator))}), as it be-
lieves the UAV is not available.

When this returns an opinion of 〈0.1, 0.9, 0〉, α’s argument is nullified. α now has
two options. It may either ask to get the UAV reassigned to it (which would involve a large
cost in utility), or may attempt to use the UGV. Since low cost sensor probes are available
to it, it will get a greater utility gain by attempting to use the UGV than by following the
former route. It thus makes the utterance:

({(D1 , {hasRoad(l), taskLocated(t , l), ugv(sentry)}, {capable(t , ugv(sentry)}),
(MisAss, {hasTask(mission(m), task(t)), capable(t, ugv(sentry)),
available(ugv(sentry)))}, {assigned(mission(m), ugv(sentry))})},
{available(ugv(sentry)), hasRoad(l)})
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In other words, it claims that since there are roads at the location, and since the UGV
is available, it can use it for its mission.

β believes that (due to rain and sand), mud exists at the location. This leads to the
utterance:

(({ModPon, {recentRain(l), sand(l), implies(recentRain(l), sand(l),mud(l))},

{mud(l)}), (D3, {ugv(sentry), taskLocated(t, l), mud(l), hasRoad(l)},
{capable(t, ugv(sentry))}), {recentRain(l), sand(l)})
Argument D3 subsumes D1, meaning that capable(t, ugv(sentry)) is no longer

believed.
α can now either probe human intelligence to check for the presence of mud, or

attempt to get the mission’s resources reassigned (we assume that the UAV was assigned
to mission(n)). The latter option yields it more utility, and it makes an utterance using
argument schemes M1 and M2, while probing reassign and reassignReq.

β has no more responses, and thus passes, as does α, meaning that the UAV will be
assigned to the mission.

Obviously, the dialogue described here is simplified. In a realistic scenario, the
agents would have access to more information and many more argument schemes. Fig. 6
illustrates the argument graph that resulted from this dialogue, though for clarity, part of
the graph is omitted.

While α has managed to get the UAV assigned, it paid a steep utility cost. α would
have preferred to get the UGV assigned to it without having to have asked for the reas-
signment of resources, but would then not have been able to complete its mission (due to
β’s criticism).

Once the dialogue terminates, predicates are associated with opinions. Depending
on the form of the admissibility function, they, or their negation may be judged to be ad-
missible. Thus, for example, if assigned(mission(m), uav(predator)) exceeds a cer-
tain threshold, it is assumed to be assigned to mission m.

3.3. Discussion

Our framework was designed to allow for complex argument to take place, particularly in
the domain of evidential reasoning. Uncertainty is a key feature of such domains, hence
our decision to base our framework on Subjective Logic. Catering for uncertainty in ar-
gumentation frameworks is by no means new. Pollock [13] made probability a central
feature of his OSCAR architecture. We disagree with his extensive use of the “weakest
link” principle, however, believing that, while it may hold in general, it is not always ap-
plicable (as mentioned in [15]). His use of probability, rather than uncertainty is another
point at which our approaches diverge.

Our use of Subjective Logic as the basis of the framework provides us with a large
amount of representational richness. Not only are we able to represent probability (via
belief), but we are also able to speak about ignorance (via uncertainty). Differentiating
between these two concepts lets us represent defaults in a natural, and elegant way. A
default can be represented by specifying, within the A function, that a conclusion may
hold as long as the disbelief for a premise remains below a certain threshold. By requiring
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hasTask(mission(m),task(t))

capable(t,uav(predator))

assigned(mission(m),uav(predator)))

available(uav(predator))

capable(T,R),available(R),
hasTask(M,task(T)) -> assigned(M,R)

ugv(sentry)

hasRoad(l)

taskLocated(t,l)

capable(t,ugv(sentry))

ugv(U),taskLocated(T,L),
hasRoad(L) -> capable(T,ugv(U))

ugv(U),taskLocated(T,L),mud(L)
hasRoad(L) -> capable(T,ugv(U))

recentRain(l)

sand(l)

implies(recentRain(l),sand(l),mud(l))

mud(l) A,B,implies(A,B,C)->C

higherPriority(mission(m),mission(n))

reassignReq(mission(n),mission(m),
                      uav(predator))

higherPriority(M,N)->reassignReq(N,M,R)

reassignRequest(N,M,R),
reassign(M,R) -> assigned(M,R)

reassign(mission(m),uav(predator))

FIGURE 6. The argument graph for the dialogue. The second use of
the MisAss argument scheme is omitted. Solid arrows indicate support
for an argument or predicate, while dashed lines represent an attack or
weakening. Arrows with no source indicate sensor probes.

that belief remain above some threshold, normal premises can also be represented. A
simple example of this was provided in the previous section, where everyone, by default,
is assumed to be an expert. Burden of proof [16] is very closely related to defaults, and
we model it in the same way.

Argument schemes have been extensively discussed in the literature (see for exam-
ple [17, 12]). A small, but growing number of argumentation frameworks provide explicit
support for argument schemes (e.g., [18]). We believe that supporting argument schemes
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in our framework not only enhances argument understanding, but that such support also
provides clear practical advantages, including the separation of domain and argument
knowledge, re-usability, and a possible reduction in computational complexity when de-
ciding what arguments to advance. The separation between arguments and agent knowl-
edge created by argument schemes raises the intriguing possibility of the modification
and dynamic creation of argument schemes during a dialogue.

The interplay between sensors and arguments is an area in which little formal work
has been done [19]. While our model is very simple, it elegantly captures the fact that
sensor data is inherently unreliable in many situations. Enriching our model of sensors is
one area in which we plan to do future work.

4. Conclusions

In this chapter, we have described how two aspects of our work on managing resources in
Virtual Organisations can be applied to the problem of deploying and utilising intelligence
assets in coalition operations. We have shown how modern military doctrine, in the form
of the Missions and Means Framework, can be captured in a semantically formal repre-
sentation, allowing sensors and other ISR resources to be assigned to a mission through
matchmaking reasoning. This approach has the advantages that the MMF concepts are
familiar and transparent to users (e.g., commanders) and the assignments are logically
sound.

We have also shown how argumentation can be used to manage the process of gath-
ering and reasoning about evidence from sensors and sources. Because such sources are
fallible, and the military domain typically involves environments that are only partially
observable, we needed to devise a novel framework for argumentation in domains con-
taining uncertainty. The concept of argument schemes is built into the framework, al-
lowing for a rich set of primitives to be utilised in the argumentation process. We have
also attempted to cater for other important concepts in argument such as accrual of argu-
ments, defaults, and burden of proof. While the lowest levels of the framework are general
enough to be applied to almost any area in which argument is used, the higher levels are
aimed at evidential reasoning, incorporating abstract models of sensors and the notion of
obtaining information from the environment.

References
[1] T. J. Norman, A. D. Preece, S. Chalmers, N. R. Jennings, M. M. Luck, V. Dang, T. Nguyen,

V. Deora, J. Shao, W. A. Gray, N. J. Fiddian, “CONOISE: Agent-based formation of virtual
organisations,” Knowledge-Based Systems 17(2–4), 2004, pp. 103–111.

[2] A. Preece, S. Chalmers, C. McKenzie, “A reusable commitment management service using
semantic web technology,” Knowledge-Based Systems 20(2), 2007, pp. 143–151.

[3] J. H. Sheehan, P. H. Deitz, B. E. Bray, B. A. Harris, A. B. H. Wong, “The military missions
and means framework,” in Proc. of the Interservice/Industry Training and Simulation and
Education Conference, 2003, pp. 655–663.



50 A. Preece, T.J. Norman, M. Gomez and N. Oren

[4] T. R. Gruber, “Toward principles for the design of ontologies used for knowledge sharing,”
Journal of Human Computer Studies 43(5/6), 1994, pp. 907–928.

[5] N. Guarino, “Formal ontologies and information systems,” in Proc. of the 1st International
Conference on Formal Ontologies in Information Systems (FOIS-98), IOS Press, 1998, pp.
3–15.

[6] D. McMullen, T. Reichherzer, “The common instrument middleware architecture (CIMA):
Instrument ontology & applications,” in Proc. of the 2nd Workshop on Formal Ontologies
Meets Industry, Trento, Italy, 2006, pp. 655–663.

[7] D. Russomanno, C. Kothari, O. Thomas, “Building a sensor ontology: A practical approach
leveraging ISO and OGC models,” in Proc. of the 2005 International Conference on Artificial
Intelligence, CSREA Press, 2005, pp. 637–643.

[8] L. Bermudez, J. Graybeal, R. Arko, “A marine platforms ontology: Experiences and lessons,”
in Proc. of the 2006 Workshop on Semantic Sensor Networks, Athens GA, USA, 2006.

[9] C. A. Reed, T. J. Norman, eds., Argumentation Machines: New frontiers in argumentation and
computation. Kluwer, 2003.

[10] H. Prakken, G. Sartor, “Computational Logic: Logic Programming and Beyond,” in Essays
In Honour of Robert A. Kowalski, Part II. Volume 2048 of LNCS, Springer-Verlag, 2002, pp.
342–380.

[11] A. Jøsang, “A logic for uncertain probabilities,” Int. Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 9, 2001, pp. 279–311.

[12] N. D. Walton, Argumentation Schemes for Presumptive Reasoning. Erlbaum, 1996.

[13] J. L. Pollock, Cognitive Carpentry. Bradford/MIT Press, 1995.

[14] N. Oren, T. J. Norman, A. Preece, “Subjective logic and arguing with evidence,” Artificial
Intelligence Journal, 2007, to appear.

[15] H. Prakken, “A study of accrual of arguments, with applications to evidential reasoning,” in
Proc. of the 10th Int. Conf. on Artificial Intelligence and Law, 2005, pp. 85–94.

[16] D. N. Walton, “Burden of proof,” Argumentation 2, 1988, pp. 233–254.

[17] F. Bex, H. Prakken, C. Reed, D. Walton, “Towards a formal account of reasoning about evi-
dence: Argumentation schemes and generalisations,” Artificial Intelligence and Law 11(2-3),
2003, pp. 125–165.

[18] B. Verheij, “Dialectical argumentation with argumentation schemes: An approach to legal
logic,” Artificial intelligence and Law 11, 2003, pp. 167–195.

[19] N. Oren, T. J. Norman, A. Preece, “Argumentation based contract monitoring in uncertain
domains,” in Proc. of the 20th Int. Joint Conf. on Artificial Intelligence, Hyderabad, India,
2007, pp. 1434–1439.

Alun Preece, Tomothy J. Norman, Mario Gomez and Nir Oren
Department of Computing Science, University of Aberdeen, Aberdeen, AB24 3UE, UK
e-mail: apreece@csd.abdn.ac.uk

tnorman@csd.abdn.ac.uk
mgomez@csd.abdn.ac.uk
noren@csd.abdn.ac.uk



Whitestein Series in Software Agent Technologies, 51–72
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Agent Applications in Defense Logistics

Todd Carrico and Mark Greaves

Abstract. During World War II, US Military logistics was the envy of the
world. By Desert Storm / Desert Shield, overwhelming mass had become the
supply strategy of the day. In the years following Desert Storm, the military
set out to reinvent its logistics strategy through Focused Logistics and the
Defense Advanced Research Projects Agency (DARPA) was charged with de-
veloping the next generation information technology to make it a reality. This
chapter reviews the vision, concepts and technologies of DARPAs Advanced
Logistics Project (ALP) and UltraLog Project as well as the development,
experimentation, demonstration, transition and eventual commercialization
of the Cognitive Agent Architecture (Cougaar).

1. The Vision of Future Military Logistics

The end of the Cold War era has resulted in significant changes to our national
military strategy. We have significantly decreased the size of our armed forces, our
forward-deployed capability, and our supply inventories. As a result, our capability
to rapidly deploy and sustain a fighting force anywhere in the world has become
more critical than ever before.

Joint Vision 2020 sets the stage for the US military’s organization and mis-
sions of the future. Joint Vision 2020 identifies “Focused Logistics” as one of the
key components for achieving full spectrum dominance in future conflicts. Focused
Logistics, as defined by Joint Vision 2020, is “ ... the ability to provide the joint
force the right personnel, equipment, and supplies in the right place, at the right
time, and in the right quantity, across the full range of military operations. This
will be made possible through a real-time, web-based information system providing
total asset visibility as part of a common relevant operational picture, effectively
linking the operator and logistician across Services and support agencies” [1].

The Advanced Logistics Project (ALP) was a joint DARPA/Defense Lo-
gistics Agency (DLA) research project, which was investigating, developing, and
demonstrating technologies that will make a fundamental improvement in logistics
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planning and execution efficiencies, ultimately affording total control of the logis-
tics pipeline. It was defining, developing, and demonstrating advanced technologies
that enable forces and sustainment material to be deployed, tracked, sustained, re-
furbished, and redeployed more efficiently and effectively than ever before, during
peacetime and contingency operations.

The ALP program has directly addressed the shortcomings of the existing
logistics support systems and has developed automated, multi-echelon, real-time
collaborative technologies for the joint logistics communities. These technologies
providing logisticians and warfighters with unprecedented capability to plan, ex-
ecute, monitor, rapidly replan and re-execute logistics support, even while assets
are enroute to the theater of operations. Thus the goal of ALP is to meet the
objectives of Focused Logistics through advanced information technology.

The revolutionary core technology developed under the ALP effort is an ad-
vanced cognitive-based agent architecture, called Cougaar (Cognitive Agent Ar-
chitecture). The objective of the DARPA follow-on program UltraLog is to build
upon the progress and successes of the Cougaar agent architecture developed un-
der ALP, while extending that architecture in the areas of security, robustness and
scalability.

The intent of UltraLog is to develop a highly survivable agent infrastructure
that is able, at a minimum, to support all aspects of Focused Logistics. The scope of
operations for UltraLog is therefore the scope of operations for Focused Logistics.
Since the completion of UltraLog, the Cougaar / ALP / UltraLog technologies have
found several applications in the DoD, one of which, the Adaptive Logistics project,
is outlined briefly. All of these efforts demonstrate the power and effectiveness of
agent technology to address the many diverse challenges of the Defense Logistics
problem domain.

2. The DARPA Advanced Logistics Project (ALP)

Focused Logistics, as described in Joint Vision 2020 [1], describes well the chal-
lenges of Military Logistics in the 20th Century.

“Focused logistics will effectively link all logistics functions and units through
advanced information systems that integrate real-time total asset visibility with a
common relevant operational picture” [1].

“[...] logisticians will achieve real-time, total asset visibility from the depot or
warehouse to the user. That will eliminate the need to move and stockpile huge
quantities of supplies “just in case” they’re needed” [2].

“Developments in Automatic Identification Technology (AIT) integrated into
automated information systems (AIS) [...] will enhance automated tracking of as-
sets throughout the world” [3].
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Joint Vision 2020 reached one critical conclusion regarding logistics - the
military MUST get control of the logistics pipeline. It must have tighter ties be-
tween operations and logistics, acquire material faster, and make smarter use of
transportation resources. The only way this can be done is through aggressive
development of advanced information technology that will cause a fundamental
change in the way logistics planning and operations are conducted today.

The solution in the past has been to substitute mass where we lack agility
and velocity, thereby overwhelming the problem with brute force. However, in
doing so we incur an enormous expense. During desert shield sealift moved nearly
3.5 million short tons of equipment at a cost of nearly $2B. In analyzing this
action, it was realized that a great deal of inefficiency was afforded to the lack of
visibility into the logistics process, coordination between operations and logistics,
and optimization of the scheduling process. It is estimated that we could have
produced the same results in 100 fewer days and with 1M tons less cargo if we
could have solved these problems. To meet this stressing requirement, logistics
and transportation assets must be used more effectively and efficiently than ever
before.

To meet this challenge, the Defense Advanced Research Projects Agency, in
conjunction with the Defense Logistics Agency (DLA), the United States Trans-
portation Command (USTRANSCOM), and in coordination with the Joint Staff
Directorate of Logistics (JS/J-4), undertook an initiative called “The Advanced
Logistics Project” or ALP. This project was seeking a quantum improvements

Figure 1. The ALP Approach to Control of the Log Pipeline.
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in military logistics and realize the Joint Vision 2020 goal of Focused Logistics.
Achieving Focused Logistics requires a dynamic multi-functional logistics infor-
mation environment capable of sharing real-time information with users at every
level of command, in every service, dispersed across the entire globe. ALP’s vision
was transform the current stove-piped, disparate, and compartmentalized logistics
environment into one that is highly automated and fully integrated to ensure con-
current operational and logistics planning. ALP developed and demonstrated new
enabling technologies to achieve unprecedented control over the logistics pipeline.

Control of the logistics pipeline, as shown in Fig. 1, demands a radical shift
in the way planning and execution is done today. Operations and logistics must be
viewed as a tightly coupled closed loop system. Operators and logisticians, at all
levels, must be brought together in a distributed interactive planning environment
to plan, execute, monitor, and rapidly replan. The future concept of operations
is envisioned as an interoperable environment for the operators in J3 and logisti-
cians in J4 to coordinate their activities. To achieve this vision, DARPA set out
to develop technology that speeds logistics planning, execution monitoring and
replanning; ensures accurate, reliable, and timely information; and creates plan
”monitors” that allow the accuracy of the information system and provide early
warnings of events that deviate from the plan.

2.1. ALP Grand Challenges

ALP identified four Grand Challenges, shown in Fig. 2, that provided direction
and set the capability objectives for the program.

Automated Logistics Plan Generation. This effort will develop technologies and
methods for automatically receiving operational requirements; translating

Figure 2. The ALP 4 Grand Challenges.
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them into logistics support requirements; generating below the line force lists
and sustainment needs; identifying critical items; automating the requisition
process; identifying and scheduling organic and commercial lift assets; esti-
mating risks and other cost trade-offs; developing logistics courses of action;
and/or automated generation of TPFDD-like logistics support plans.

End-to-End Movement Control. This effort will develop technologies and meth-
ods to maintain end-to-end control of the transportation/logistics pipeline
through the automated development of responsive transportation plans and
continuous monitoring techniques.

Execution Monitoring. This effort will develop technologies and methods for
providing users at all echelons with the ability to assess the logistics situation
by converting logistics data into information rich visualizations that can be
used to understand the current situation and project future states.

Rapid Supply. This effort will develop technologies and methods necessary to
establish interoperable connectivity and access to DOD and commercial ven-
dors, suppliers and manufacturers to increase material readiness, decrease
cycle times for satisfying materiel requirements while reducing DOD inven-
tory and overhead costs.

2.2. Building Operations-Logistics Plans

The over-arching vision of the Advanced Logistics Project is an end-to-end pro-
totype logistics system that enables operations, planning, and logistics personnel
to work together to develop multiple courses of action with their corresponding
detailed logistics plans using real world data. With this extremely detailed plan,
we can enter into execution, quickly and with confidence that our plans are logisti-
cally supportable. We can use technologies such as plan sentinels to watch critical
components of the plan during execution, and when deviations are detected, lo-
calized replanning will be automatically triggered. This forms a continuous cycle,
as shown in Fig. 3, between execution monitoring and continuous replanning -
where the system is always executing and replanning those components affected
by detected deviations. The global living logistics plan is a key concept of the
ALP vision. It is a plan that contains all the information in great detail. It is a
globally distributed plan, fed continuously by real world data. From this detail, we
can form a common picture of logistics, which when tied to operations, provides a
total operational picture.

2.3. Demonstrating Command and Control in the Logistics Domain

In the functional demonstration provided in May ’01, ALP presented a Cougaar-
based end-to-end global logistics prototype for planning and performing execution
monitoring of a small-scale contingency in East Africa. This plan represented the
deployment of over 33,000 people, 20,000 MEI’s, all 4 services and included key
elements of DLA, TRANSCOM, supply classes 1,3,4,5,8, & 9, detailed transporta-
tion planning, ISB, 3-levels of medical care and much more, as summarized in Fig.
4.
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Figure 3. The Planning, Execution, Dynamic Replanning Cycle.

In that demonstration, we showed different slices of a very complex dis-
tributed logistics plan that was developed in under an hour by the collabora-
tive effort of hundreds of Cougaar agents. The demonstrated slices (views of the
logistics plan in execution) included the collaborative processes of demand gen-
eration, sourcing, inventory management, and distribution. We showed details of
this distributed logistics plan in terms of temporal, geographic and organizational
structures. Also, during the demo one got a sense of the ability to monitor dur-
ing execution and dynamically re-plan in the face of external changes or modified

Figure 4. Demonstrated ALP Functions and Technology.
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operational requirements. Observers saw the support for multiple concurrent op-
erations with the detailed planning for both of those operations under the natural
contention that occurs when limited resources must be shared between multiple op-
erations. In addition, we demonstrated how you could identify and in some cases
actually make real-time changes to the business rules that drive the underlying
behavior of the agents and their role in the larger global logistics plan. This was
an example of a 300 organization society, represented by over 300 agents. They
were executed on 30 standard mid-range machines in a LAN configuration, but
could just as easily have been distributed geographically all over the world with
some additional network latency. The functional demo also gave a sense of how
the operational and logistics interactions would occur, starting with the opera-
tional requirements, moving through the demand generation, sourcing, inventory
management and transportation planning, then into the execution monitoring and
dynamic re-planning. All of the processes collaborative support the creation of this
very large distributed logistics plan. Users can then interact with those plans and
processes to understand the results of that planning process and through execution
monitoring how well operations are achieving those plans.

Over the five years of the program, the Advanced Logistics Project demon-
strated the technology to achieve the vision of an end-to-end logistics system.
ALP, in partnership with DLA and TRANSCOM, developed and matured the
world’s largest distributed cognitive agent architecture that is now available as
open source. ALP has demonstrated an end-to-end prototype logistics system that
is capable of developing a level 5 logistics plan in under an hour. It is capable of
monitoring the execution of that plan against multiple simultaneous operations and
can demonstrate the collaboration of hundreds of organizations working together to
manage the details of global logistics. ALP has developed a powerful cost-effective
technology approach to realizing focused logistics and ultimately revolutionizing
our global logistics business process.

By the end of the ALP project, as shown on the scorecard in Fig. 5, it had
demonstrated accomplishment of the 4 grand challenges, the underlying technology
objectives that are required to achieve our larger vision for which the program
was created. These include the technology challenge of creating this large scale
distributed agent system, fine grain distribute information management, virtual
global operations and logistics plan and representing the human cognitive model
in our software for the capture of human planning and business processes. In
addition the defined objectives, during the course of this program a number of
other significant accomplishments were achieved. The first and foremost is that
the program created the worlds most advanced agent architecture, the Cognitive
Agent Architecture (Cougaar), which is detailed in Section 6. The program applied
the Cougaar technology to logistics to create a prototype system that has built the
fastest ever construction of a level 5 logistics plan. Where it takes humans weeks
to build that level fidelity in a logistics plan our prototype can do it in about
an hour. As a result, we ALP delivered a mature distributed information system
infrastructure that can support the next generation of global logistics enterprise.
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Figure 5. Report Card on the ALP 4 Grand Challenges.

Ultimately we have unleashed this power of agent technology for global operations
and defense logistics.

3. The DARPA UltraLog Project

The UltraLog project built on the success of the Advanced Logistics Project and
the sophistication of the Cougaar Agent Architecture to tackle one of the most
difficult problems in computer science: the creation of a robust, reliable distributed
system, with assured performance bounds, operating over an unreliable network
and in extreme conditions of fault and failure. ALP created the basic technologies
needed to achieve the challenging computational goals of Focused Logistics in
JV2010 and JV2020. In order to be deployable, however, the Cougaar technologies
developed by ALP had to be further refined and made survivable for the most
hostile and chaotic battlefield environments. The central hypothesis of UltraLog
was that survivability in distributed systems can be assured by leveraging the
inherent agility and semantic interaction models of software agent systems, and
developing agent-specific algorithms to guarantee the robustness, scalability, and
security of the core data and information processing. As shown in Fig. 6, UltraLog
aimed to create a resilient distributed system that can protect and adapt itself
under harsh, dynamic conditions.

Following in the steps of the ALP project, the UltraLog project defined its
own Grand Challenge. The Grand Challenge of the UltraLog project started with
a logistically more complex version of ALP’s Challenge: to create a society of over
1000 medium complexity agents, whose job was to jointly create and maintain a
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Figure 6. Enhancing Cougaar with Advanced Survivability.

TPFDD over a period representing 180 days of sustained military operations in
a major regional contingency. UltraLog employed a highly realistic military oper-
ations scenario of ALP scale, involving an initial 180 day plan with deployment,
RSOI, PREPO, and operations, and included 6 major (and multiple minor) OPlan
changes, 28,000 MEIs, 33,000 personnel, and featuring supply class I, III, V, and IX
planned to level 5 detail. However, UltraLog specified that this Challenge would be
achieved in one of the most challenging computational contexts imaginable: with
the global agent system operating under continuous directed adversary informa-
tion warfare attack, and suffering both targeted and random infrastructure losses
ranging up to 45% of the total CPU, memory, and network bandwidth capability.
In this context, the UltraLog system had to exhibit not more than 20% capabilities
degradation and not more than 30% performance degradation in its performance
on the logistics planning tasks. By the final year of the project, UltraLog was to
demonstrate successful completion of this Grand Challenge.

3.1. UltraLog Approach

UltraLog takes a different technical approach to system survivability than tra-
ditional information assurance techniques. Most survivability technologies in ex-
istence today view the individual computer and network as the critical compo-
nents requiring maximum protection. Typical security products are designed to
thwart attacks by detecting and combating them before they can cause damage.
In contrast, while UltraLog does assume that our logistics information systems
will incorporate current best practices in information assurance, UltraLog also as-
sumes that these best practices will occasionally fail under determined attack. In
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a heterogeneous, dynamic, distributed system of systems, no defense is invulner-
able. Therefore, a logistics infrastructure will never be secure and robust against
all possible attacks. Because of this, UltraLog presupposes that the aggressors
can and will be able to occasionally penetrate the network, damage or destroy
computing resources, acquire passwords, introduce malicious code, and stress the
logistics system in various malicious ways. Instead of protecting individual pieces of
hardware or networks, UltraLog technologies are designed to protect vital logistics
information wherever it resides and ensure that critical logistics business processes
continue to be successfully executed even under extreme conditions. When con-
ditions preclude normal operation of the logistics system, UltraLog will manage
system degradation such that the most critical functions continue unabated while
less important information processing is deferred until operating conditions im-
prove.

3.2. Technical Focus

The technical focus of UltraLog is to seek out and develop a suite of software tech-
nologies that can make distributed software agent applications sufficiently secure,
robust, and scalable to meet the demands of the most difficult wartime environ-
ments. Operationally, the most important military impacts of distributed agent
systems derive from their ability to integrate data not just globally, but also across
the three major levels of military engagement: strategic, operational, and tactical.
The UltraLog vision is to produce the first example of a system that success-
fully and survivably bridges the gap between the predictable, non-chaotic world of
high-level strategic logistics planning and the much more chaotic, time-critical and
failure-prone world of operational and tactical logistics. The distributed agent ar-
chitecture of UltraLog makes this bridging feasible through a seamless and robust
distributed system framework. This framework is augmented by the on-the-spot
ability of agents both to collect and fuse data locally, and to rapidly re-assign
resources on a task-priority basis from whatever pool of networked resources is
currently available, even if that pool has been damaged or reduced in size. The
intelligent employment of these and other capabilities makes it possible to fuse, de-
liver and safeguard the exact, real-time data that high-level planners need to make
effective, time-critical decisions, while providing field-level operational personnel
with the precise information needed to move forward with confidence.

3.3. UltraLog Extensions to Cougaar

As noted previously, the UltraLog Project developed technologies that exploit the
unique characteristics of software agents to create survivable distributed plan-
ning systems. In the areas of scalability technologies the program developed and
integrated technologies for variable fidelity processing, load balancing, dynamic
reconfiguration and problem splitting, and distributed control. In addition, Ultra-
Log pursued technologies to scale to high-fidelity force structures, more complex
logistics demands, and agent counts greater than 1000 agents while not sacrificing
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Figure 7. Technologies, Stresses and Status for UltraLog Survivability.

performance or overloading network resources. In the areas of robustness technolo-
gies, the basic Cougaar architecture was extended to leverage loose coupling and
semantic agent communication to build agent systems with global fault tolerance
and recovery, complex workflow dynamism, predictors, and service diversity. On
the security side, UL incorporated security technologies that enabled construc-
tion of a distributed trust agent security model by developing techniques for agent
based data protection, role based access control, policy distribution and enforce-
ment, and security monitoring and response. The extensive suite of technologies
and techniques integrated into the core Cougaar framework are shown in Fig. 7.
The results were an extremely survivable and adaptive infrastructure that could
continue to operate even under extreme kinetic and information warefare stresses.

3.4. Key Experimental Findings

The UltraLog program had a stronger element of experimentation and analytic
evaluation than the ALP project before it. As a result, significant experimental
system, functional and survivability analysis was performed against the increasing
complex experimental baseline developed for the program. This section briefly
presents some of those results.
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3.4.1. System Findings. The capabilities and performance to build a complex lo-
gistics plan continued to grow throughout the ALP and UltraLog programs. By the
end of the UltraLog program, the ability to reliably create a high quality logistics
plan, even under significant infrastructure losses, was proven. We had improved
performance and configuration adaptation to the point that significant infrastruc-
ture loss, in excess of 40%, resulted in a negligible impact on completion time
and a controllable degradation in product quality. These results are shown in Fig.
8 - each dot in the graph represents a distinct experimental run over the entire
simulated 180 day campaign, with different combinations of infrastructure loss.

3.4.2. Functional Findings. UltraLog’s functional analysis focused on the effective-
ness of the agents to operate as a system, performing the functions of logistics,
under the various forms of stress. The effectiveness of the system dealt with many
aspects of the functional processes to include quality, timeliness, and accuracy.
Under independent assessment by groups of active and retired military logisti-
cians, UltraLog system demonstrated the ability to build and maintain realistic
high fidelity logistics plans under stress, and dynamically replan as required to
cope with changes in the requirements, environment or availability of resources.
As the system got larger and more complex, additional management components
were required to monitor the system and resources and take the measures neces-
sary to ensure proper, secure, sustained operations. Fig. 9 shows the growth in the
number of functional and management agents over the course of the program.

Figure 8. UltraLog System Planning Performance under Stress.
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Figure 9. Functional and Management Agents in the Experi-
mental Baseline.

3.4.3. Survivability Findings. Because evaluation was a key aspect of the UltraLog
program, the program employed several independent Red Teams. In the annual
evaluation, the development team would stand up the experimental testbed and
the Red Team would employ various techniques to attempt to compromise the
operation of the system. Prior to the evaluation, the read team was given full
access to the source code, configuration, topology, and other aspects of the system
operation. The attacks and stresses were applied in categories, with the results
of the system performance being assigned a value from 1 to 10, where 1 was
poorest and 10 was best performance against the attack. A value of 0 was assigned
where no survivability measures existed and no evaluations were performed. Fig.
10 shows the survivability findings of the evaluations for the UltraLog testbed
over the course of the program. By the end of the program, few of the stresses
had more than a mild impact on the operation of the system and no attacks were
regularly and completely successful in bringing the operation of the testbed below
the defined minimal operational level.

4. The Adaptive Logistics Project

In 2006, the Logistics Innovation Agency (LIA) developed a recommended Army
Sense and Respond Logistics (S&RL) Vision and demonstrated the capability of
S&RL by incorporating intelligent agent technology and integrating disparate data
sources to more efficiently and effectively manage logistics information.

Intelligent agent technology represents a core component of the Adaptive Lo-
gistics Capability Tool (ALCT) and builds on ALP and UltraLog core technologies
as transitioned to LIA. The technical advancements of the ALCT are in the de-
velopment and maintenance of a real time shared situational picture based on the
Situational Reasoning Framework extensions to Cougaar developed as part of the
ActiveEdge commercialization.
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Figure 10. UltraLog Survivability Findings.

Adaptive Logistics requires: (1) a network-centric environment that connects
logisticians with operations and intelligence to interpret the commander’s intent in
terms of missions, environment, desired outcomes, and priorities; (2) the capability
to create adaptive Communities of Interest (COIs) that are responsible for plan-
ning for, executing, and monitoring logistics responses; (3) analytics that generate
alternative courses of action, their feasibility in terms of resource requirements
and availability, and the consequent risks for each alternative; and (4) cognitive
decision support tools that weigh the factors driving decisions within the cycles
of decision makers from the point-of-effect through the strategic base. These re-
quirements were largely satisfied by the Cougaar architecture, but lacked support
of the shared situation representation and reasoning.

4.1. Situational Understanding as the Basis of Optimized Planning

The objective of the ALCT project was to provide key aspects of the Sense and
Respond Logistics (S&RL) vision in a manner that, for a set of meaningful ques-
tions, creates situational understanding and actionable information where none
previously existed. The ALCT dynamically constructs a sourcing and distribu-
tion plan for in theater resourcing of material requests. It builds and maintains a
theater wide situational picture of supply, transportation and routing, as shown
in Fig. 11, and uses that understanding to find feasible solution sets. From that
set, the system chooses the best solution given the current policies and establishes
that as sourcing and distribution plan for that requisition, coordinating the solu-
tion with all the units involved. As shown in Fig. 11, Unit demand requisitions
(1) flow up to the (2) Theater Support Command (TSC). Requisitions are then
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Figure 11. The ALCT Theater Agent Planning Network.

analyzed through an optimization algorithm for the “best value” supplier (SSA)
(3) and the transportation unit (4) within theater. Once the transportation and
SSA is known we find (5) the optimal route based on time and cost and other user
defined business rules and weightings. Any requisitions not serviced in-theater will
be put back into the normal process and sourced from CONUS. By tying every
component of the plan into the situation, events that impact a required resource of
that plan - road segment, delivery truck, etc - can immediately be linked back to
the affected plans for notification and dynamic replanning. The situational picture
is a virtual construct composed of a series of community networks: units, supply,
transportation, routing, etc. Each network is composed of the units performing
those functions, using the power of distributed intelligent agent technology to re-
alize local decision support and local situational representations for each unit in
theater. At organizations like the TSC, elements of the individual situational pic-
tures and networks are combined to form the aggregate state of the theater and
performance of ongoing operations.
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4.2. ALCT Demonstrated Capabilities

The ALCT project demonstrated a core set of theater level capabilities that would
significantly improve theater planning and operations. These capabilities included:

• Develop a Theater Level Distribution Plan: Agents develop real time distribu-
tions plans across Consumer, Supply Support, & Transportation components,
using agents to negotiate performance, resource allocation and schedule pa-
rameters. The plan is then used to track execution and monitor for impacting
events, which under certain circumstances trigger dynamic replanning.

• Maintain Asset Visibility of Equipment and Supplies: Agents manage assets
and maintain asset visibility at the item level, identifying shortages, excesses,
trends, allocations and current location.

• Transportation, Maintenance and Supply: Agents monitoring the situation
maintain current unit location, monitor transportation movement and sched-
ules and track overall execution performance.

• Ability to Monitor Performance by Theater Level Metrics: Agents perform
analytics on the historical, current and projected situation information deriv-
ing performance metrics which are used to flag problem areas and recommend
adjustments to the operational policies to improve performance.

4.3. ALCT Situation Reasoning Agents

The ALCT project was developed on a commercial version of the Cougaar archi-
tecture developed by Cougaar Software, Inc. called ActiveEdge�. ActiveEdge [8]
is a commercial development platform that provides all the capabilities of Cougaar
described in Section 6, as well as a variety of additional capabilities like a workflow
engine, rule engine, device interface layer, advanced visualization environment, in-
tegrated Semantics support [7], SOA and JMS support as well as a Situational
Reasoning Framework (SRF) subsystem for deep situational reasoning and Dis-
tributed Data Environment (DDE) subsystem for advanced dynamic mediation.
The key technical advancement demonstrated by the ALCT effort was the abil-
ity to build and maintain a large scale, complex situational picture composed of
individual local situational pictures maintained at the unit level. The higher eche-
lons composed the elements of the lower echelon situational pictures to create the
composites. The actual composition and analysis was done by a special class of
agents known as situational reasoning agents which used a variety of correlation,
reasoning and pattern filtering to update the situational picture as new informa-
tion flowed in. ALCT demonstrated that this approach, tuned to the data sets
and functional reasoning appropriate for in-theater logistics, was effective against
theater scale data sets with reasonable performance.

5. The Cognitive Agent Architecture (Cougaar)

To understand the power of applying the Cougaar technology to solve complex
problems, it is helpful to first have a basic understanding of the technology itself.
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Cougaar stands for the Cognitive Agent Architecture because its design is based
on a model of human cognition. Cougaar marries the complex, yet agile human
cognitive process for reasoning, decomposing and solving problems with the speed,
accuracy and tireless capacity of modern computers. This model is the heart of the
technology, and represents a powerful way of representing distributed collaborative
tasking and execution for complex problems. This representation also allows the
expression of problems and their solutions in terms familiar to people from their
everyday activities, easing the human-system shared-understanding problem. De-
velopment of solutions utilizing the cognitive model enable greater efficiency of
development, enhanced operational flexibility and reliability, and lower life-cycle
costs.

5.1. The Cognitive Model

Humans approach problems using a set of high-level strategies that they apply it-
eratively and recursively to classify, decompose, reason, plan and then accomplish
each task or sub-task. These strategies, often done in collaboration or coordina-
tion with other humans, are assembled patterns of cognitive processes which may
include:

• Gathering: Get information from the outside world
• Supporting: Receive/recognize tasking or relevant changes
• Decomposing: Break a problem into smaller sub-problems
• Acting: Perform some action that impacts with real entities in real-time
• Delegating: Assign some problem(s) to supporting resources for solution
• Consolidating: Take a number of independent pieces and handle them as a

single problem
• Assessing: Continually monitor progress to make sure things are proceeding

as planned, and correct/react accordingly
• Reporting: Report back to outside world

The Cougaar infrastructure has a logical representation for each of those
cognitive elements and utilizes a dynamic workflow engine to build the patterns,
interconnect the representations of the cognitive components and accomplish the
task. The workflow may exist across multiple agents, where pieces may be shared
representing coordinated activities or referenced representing the delegation of one
cognitive element to another party.

In the Cougaar architecture, these cognitive elements are called PlugIns, be-
cause they are modular components that are assembled within an agent to give
that agent its functional behavior. The core set of Cougaar PlugIn types includes
the following:

• Expander (Decomposing): Break down task into a workflow of sub-tasks
• Allocator (Delegating): Allocate tasks to appropriate resources for final han-

dling or further disposition
• Aggregator (Consolidating): Join a set of tasks into a single super-task
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• Assessor (Monitoring): Assess the current state against known plans and
objectives, and force replanning when necessary

• Data Plugin (Gathering): Read/write new/changed information from/to ex-
ternal data sources

• UI Plugin (Out-of-band reporting): Provide external user interface. (Inter
and intra agent reporting supported by agent infrastructure)

• Execution (Acting): Interact with external entities, objects, systems
The Cougaar approach is to decompose a problem and problem solving pro-

cess, into reasonable, testable building blocks, each oriented to a class of PlugIn.
An agent’s behavior will be realized from the emergent behavior of the assemblage
of PlugIns in its configuration. This concept is shown in Fig. 12.

Figure 12. The Cougaar Cognitive Model.

5.2. Communication, Tasking and Collaboration

Cougaar represents and communicates with the human functional domain, which
is mapped into the base cognitive model through a rich task grammar that forms
the lingua franca of a Cougaar system. Tasks and their workflows form a functional
process map for the problem domain being addressed by a Cougaar system in a
form that is both intuitively understandable to humans and sufficiently precise to
support automated reasoning by the intelligent agents. This rich language repre-
sentation makes the integration of disparate legacy systems simple and straightfor-
ward by mapping each system’s schema or interface into the domain task grammar
through Data PlugIns.
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The task grammar base types are made up elements like tasks, assets, expan-
sions, aggregations, and allocations. These elements make up the building blocks
of workflows, which are built and maintained on a distributed blackboard. The
blackboard of each individual Cougaar agent represents a part of the larger dis-
tributed community blackboard, managed in a distributed fashion across the whole
Cougaar community. Each agent owns its blackboard and its contents are visible
only to that agent. All sharing of blackboard state is done by explicit push-and-
pull of data through inter-agent tasking, query, or publish & subscribe services. In
this way, a Cougaar agent is able to maintain fine-grained state information locally
and only share pieces of the plan with other agents where coordination, service
dependencies, or reporting is required. This approach makes the fine-grained man-
agement of information scalable and efficient. Cougaar also supports a rich notion
of past, present and future time, allowing it to plan over the same assets in differ-
ent time periods, reason about potential outcomes, and establish specific monitors
to look for evidence indicating the result of some task action.

Another fundamental concept of distributed management of the blackboard is
that of “managed inconsistency”. There is no overarching central control within the
Cougaar architecture that synchronizes operations or imposes inter-agent transac-
tion boundaries. Each agent works independently and asynchronously on messages
passed from one another, and responds independently and asynchronously on re-
sponses received from other agents. No inter-agent prioritization or ordering is
imposed. As a result, these features allow the agents to work efficiently and in-
dependently with no need to deliberately ensure data or process synchronization
or have a precise shared operational clock. However, what this independence does
impose is that the distributed blackboard, taken in the aggregate across the com-
munity, is never guaranteed to be in a consistent state. The blackboard of any
given agent will be consistent as interactions with the blackboard from PlugIns
are transaction-bound, but by design there may be brief periods of inconsistency
between different agents blackboards. This appears at first glance to be a flaw
in the system, but in reality it is one of the many elements that give it so much
power. By not demanding continuous consistency, we dramatically reduce the com-
munications, computation and infrastructure requirements on the system. We also
enable a clean and natural support for dynamic reconfiguration and operations
under intermittent communications.

5.3. Planning and Execution

A Cougaar multi-agent system is continuously operating, monitoring its state and
the state of its environment for changes that require a reevaluation of its past,
present and future actions and their expected outcomes. When an unexpected
change occurs, the plugins within each agent are notified based on their subscrip-
tions and can examine the change to see if some action or replanning is required.
If it does take action by adding, removing, or changing tasks or their disposi-
tions, these changes are propagated by the Cougaar infrastructure to the impacted
agents. Because these changes are only propagated to affected agents, the impact
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of a small change will be isolated to a small part of the system and the impact of a
large change will propagate as needed, but will not cause unnecessary recomputa-
tion. Special mechanisms are built into the system to ensure stability and prevent
the system from oscillating or going chaotic.

Cougaar supports the implementation of execution monitoring and dynamic
replanning through its assessor and data plugins. Data plugins are responsible for
monitoring external state and updating the agent’s view of external data as it
changes by modifying objects on the agent’s blackboard. Assessor plugins are re-
sponsible for continually monitoring the state of the blackboard for self-consistency
and triggering a re-evaluation of the agent’s solutions as appropriate. This sepa-
ration of responsibilities results in a loose, flexible coupling with external data
systems while still allowing full internalization of the external data.

The use of standard Internet technologies like XML, Java, and HTTP make
integrating and interfacing Cougaar with other systems much easier than with
proprietary technologies. Cougaar is implemented completely in the Java Pro-
gramming Language, which has become the programming language of choice for
Internet applications. It also uses XML and related technologies, which are now
embraced by all major organizations as the best way to build systems for maxi-
mum interoperability. As these Internet technologies mature and improve, Cougaar
systems will be able to take advantage of these improvements immediately.

5.4. Summary of Key Benefits of the Cougaar Approach

The primary benefits of using the Cougaar architecture are the following:
Intelligent Behavior through the Human Cognitive Process. By utilizing a fun-

damental framework based on the human cognitive process, Cougaar agents
can reason, plan, execute, monitor and assess in much the same manner as
humans do. Further, the cognitive model serves as a natural way of decom-
posing a problem or problem domain resulting in better solutions that are
more understandable and less prone to developer error. With each element
of the cognitive model mapping cleanly to a cognitive process, business pro-
cesses can quickly and dynamically be assembled and implemented to solve
emerging problems, allowing the system to adapt to new situations and con-
ditions.

Scalable Distributed Computing. Agents in general, but Cougaar especially, em-
body all the best features of distributed computing. Further, Cougaar was
specifically designed to be efficiently scalable to extremely large societies.
Through hierarchical name service, dynamic discovery, adaptive role-relations
and other qualities, Cougaar operates well in unstable, dynamic environments
with special safeguards to ensure data integrity and preserve system stability.
Using message-based coordination with information sharing through a parti-
tioned blackboard, complex multi-organization problems can be solved using
the agent approach that truly realize the collaborative computing concept.
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Integrated Planning and Execution. Most systems segregate planning and ex-
ecution, making dynamic execution induced replanning difficult and ineffi-
cient. Cougaar, through the cognitive model, enables these activities to be
seamlessly interwoven empowering the continuous planning, execution and
dynamic replanning which is Cougaar’s trademark. Further, for planning sys-
tems which include a simulation and projection capability, Cougaar blurs the
line between simulation and execution by utilizing the same business pro-
cesses in either a real or virtual context. This largely avoids the behavior
skew and behavior abstraction problems which cause many simulations to
inaccurately reflect the behaviors of the real systems they are modeling.

Evolvability of the Solution. The Cougaar technology and developmental ap-
proach allows applications to evolve. By this, we mean applications can be
deployed a component at a time, in a heterogeneous environment, thus avoid-
ing the tradition risk and cost involved with complete software overhauls.
Changes impacting any discreet unit of functionality can occur without im-
pact to any other part of the system or network. The distributed agent ap-
proach provides a way to introduce rapid, low cost, low risk changes, additions
and improvements to a suite of applications when changes are available or
required. This capability dramatically reduces the overall lifecycle costs and
development/maintenance time for the project(s).

Pure Java, hosted on Desktop and Embedded systems. Since Cougaar solu-
tions are developed purely in Java, the agents can run on virtually any
computer platform. With the extension to embedded devices through Mi-
cro Cougaar, even embedded components can support Cougaar agents. The
write-once, run-anywhere capability of Java means solutions are never locked
into a hardware platform and can immediately take advantage of new hard-
ware advances.

6. Conclusions

This paper presents the origin, concepts and application of Cognitive Agent Ar-
chitecture in the domain of military logistics. As Cougaar has been 10 years in
the making, it also reflects the evolution of the most significant investment in the
application of agent technology to military logistics ever undertaken. The success-
ful development and demonstration of the Cougaar technology, in both the ALP
and UltraLog programs, demonstrates the power of agents to deal with massive
scale problems in complex environments. It also provides solid evidence to the
general value and capabilities of the agent-oriented approach to solving complex
distributed planning and execution problems. The adoption of the Cougaar tech-
nology, by both military and industry, suggests that the Cougaar technology has
a future in a variety of operational systems, such as the Army’s FCS program and
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commercial products, such as Cougaar Software’s ActiveEdge�. As of this print-
ing, ActiveEdge (www.cougaarsoftware.com) was the first commercial distributed
intelligent agent development platform based on the DARPA-sponsored Cougaar
technology.
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Abstract. Ever rising deployment of Unmanned Aerial Assets (UAAs) in com-
plex military and rescue operations require novel and innovative methods for
intelligent planning and collision avoidance among a high number of hetero-
geneous, semi-trusted flying assets in well specified and constrained areas [1].
We have studied the free flight concept as an alternative to the classical, cen-
tralized traffic control. In free flight the unmanned aerial assets are provided
with flight trajectory that has been elaborated without consideration of other
flying objects that may occupy the same air space. The collision threads are
detected by each of the aircraft individually and the collisions are avoided
by an asset-to-asset negotiation. Multi-agent technology is very well suited
as a technological platform for supporting the free-flight concept among the
heterogeneous UAAs. In this chapter we present AGENTFLY, multi-agent
system for free-flight simulation and flexible collision avoidance.

1. Introduction

AGENTFLY is a software prototype of a multi-agent simulator of unmanned aerial
vehicles air traffic control supporting the free flight concept. All aerial assets in
AGENTFLY are modeled as asset containers hosting multiple intelligent software
agents. Each container is responsible for its own flight operation. The operation of
each vehicle is specified by an unlimited number of time-specific, geographical way-
points. The operation is tentatively planned before take-off without consideration
of possible collisions with other flying objects. During the flight performance, the
software agents hosted by the asset containers detect possible collisions and engage
in peer-to-peer negotiation aimed at sophisticated re-planning in order to avoid
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the collisions. The implemented simulator demonstrate readiness of the multi-
agent technology for distributed, flexible, and collision-free coordination among
heterogeneous, autonomous aerial assets (manned as well as unmanned) with a
potential to (i) fly a higher number of aircrafts, (ii) decrease requirements for
human operators and (iii) allow a flexible combination of cooperative and non-
cooperative collision avoidance.

AGENTFLY is build on top of the A-globe multi-agent platform [12]. A-globe
provides flexible middleware supporting seamless interaction among heterogeneous
software, hardware and human actors. A-globe outperforms available multi-agent
integration toolkits by its ability to model rich environments in which agents in-
teract, by its support of full code migration and by its support for scalable ex-
periments. For more information see Appendix A. Current AGENTFLY imple-
mentation provides a distributed model of flight simulation and control, time-
constrained way-point flight planning algorithm avoiding specified no-flight zones
and terrain obstacles, flexible collision avoidance architecture – cooperative and
non-cooperative, connectors to external data sources (Landsat images, airports
monitors, no-flight zones, cities), 2D/3D visualization including a web-client ac-
cess component, and a multi access operator - a component facilitating real-time
control of selected assets.

The present work mainly addresses the problem of distributed collision avoid-
ance among autonomous aerial assets using multi-agent technology [11] – each
UAA is represented by an agent container hosting different functional agents [15].
Each UAA is controlled by a single, dedicated agent. The presented collision avoid-
ance architecture provides capability to integrate several different collision avoid-
ance algorithms that plan the runtime trajectory of each individual UAA. Such
architecture supports operation of the group of cooperative UAA within the en-
vironment hosting other non-cooperative flying objects (e.g., civilian air traffic or
manned aircrafts in the same area).

Cooperative collision avoidance, the deconfliction process between two or
more interacting and cooperating aerial assets, is based on using different collision
metrics [6] and negotiation protocols. Recently, the centralized solution has been
replaced by various distributed approaches facilitating deployment of e.g., princi-
pled negotiation [16], Monotonic Concession Protocol (MCP) [19, 9] for collision
avoidance in between of two assets [17] or extensions towards groups of multiple
UAAs [13]. Such approach can be slightly altered to optimize social welfare instead
of individual goals in the group of UAAs. There are also various approaches based
on the game theory (e.g., [5]) available in the research community.

Optimization of non-cooperative collision avoidance algorithms (deconfliction
process of an individual aircraft facing a non-cooperative, possibly hostile object)
[14, 3] allows optimal solving of the collision with a non-cooperative flying object
(obstacle). These algorithms perform well when coping with a single alien flying ob-
ject, but they cannot be extended to a situation with several flying objects, located
nearby. Moreover they cannot be used simultaneously with other cooperative algo-
rithms applied for the cooperative collisions at the same place. The research work
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reported in this contribution was motivated by designing such a non-cooperative
collision avoidance method that does not suffer from these weaknesses.

In this chapter we briefly present the architecture of the AGENTFLY sys-
tem. The chief technical contribution of the presented work is, however, in the
collection of agent-based collision avoidance methods and the flexible multi-layer
deconfliction architecture allowing integration and run-time reconfiguration of the
various collision avoidance approaches. We also discuss the properties of the pre-
sented algorithms on empirical data provided by large scale experiments and we
present the testing scenarios.

2. AGENTFLY System Architecture

AGENTFLY is fully written in JAVA, AGENTFLY can be easily hosted on assets
with different operating systems. The multi-agent system for flight modelling con-
sists of several components, see Fig. 1. AGENTFLY system can be started on a
single dedicated computer or distributed in computer clusters without any specific
reconfiguration.

Figure 1. AGENTFLY System Structure Overview

Environment Simulation Components
The components for environment simulation, Fig. 2, of the AGENTFLY system is
a sole central element of the system. It simulates positions of UAAs and other ob-
jects in the simulated world, aircraft hardware, weather condition, communication
ranges given by the ranges of board data transmitters, etc. During the deployment
of real UAA hardware these components will be removed and replaced by data
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acquisition systems from real on board sensors hosted by UAA and the control
link will be redirected to the UAA’s actuators.

One of the environment simulation components is responsible for acquisition
and fusion of information about all airplanes with freely available geographical
and tactical data sources. These are provided to both the remote WEB client and
the operator agents. There is also a simulation scenario player that controls the
simulation flow by e.g., creating new UAAs and providing them initial mission
specification (sequence of time specific way-points). Detailed information about
environment simulation components can be found in [8]. For the very extensive
simulations with hundreds of UAAs these components simulating the environment
can be split among several servers integrated by means of the A-globe topic mes-
saging concept.

Figure 2. Components for environment simulation

UAA Containers
Each airplane in the system is represented by one UAA container, Fig. 3. The
container hosts two agents. The plane agent provides high-level airplane functions
such as flight plan execution in cooperation with the simulator component, radar
and detector readings, airplane configuration, time synchronization and operator
bridge interface. The pilot agent is the main control unit of the UAA. It has a
flight planning module a no-flight zones manager, a multi-layer collision avoidance
module and a human-agent interface.

Within one A-globe instance (one JVM process running A-globe) there can be
one or more such UAA containers. Such configuration allows to perform very large
simulations (scalability experiments) using more host computers. The AGENT-
FLY simulation component responsible for the UAA startup performs also load
balancing when deciding where the new UAA container will be created. One of
the future versions of A-globe will provide also dynamic load balancing using the
concept of container migration.

Remote WEB Client
The remote WEB client is an optional component of the AGENTFLY, Fig. 4.
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Figure 3. A-globe with UAA containers

It allows a remote user to display requested information which she needs. There
is a secured authentication of the user. So each user can have different levels
of information enabled. AGENTFLY has been integrated with real world data.
External data are taken from public databases with various GIS data for the area
of the United States – landsat images, state boundaries, airports, cities, highways
and real civil traffic. The client connection is optimized to provide only needed
data so it can be operated using slow network connection.

Figure 4. Web interface providing 2D view of the simulated area
with integrated external data sources

Operator Agent
Real-time visualization of the internal system state in a 3D/2D environment is pro-
vided by the operator agent, Fig. 5. AGENTFLY allows running a number of such
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agents who simultaneously provide different information with proper access level
rights to different users. The operator agent is also able send the user commands
back to the system or can be directly connected to the specific UAA container.
The user can then manage the aircraft’s way-point plan or change defined no-flight
zones.

Figure 5. AGENTFLY system state provided in 2D (left) and
3D (right) view using operator agent.

3. Flight Planning in AGENTFLY

The inputs to the planner are (i) the list of waypoints (WP) (the coordinates
that the airplane must visit in specific times), (ii) the velocity, which the airplane
should have at the beginning of its route and (iii) repository with no-flight zones
(NFZ), which the plane must not enter during its flight and plan the path to avoid
them.

The planning of a flight path proceeds in two phases. In the first phase – path
planning, the planner generates the shortest flight plan, which passes through all
WPs avoiding the NFZs. In the next phase – time planning, some parameters of
the segments (mostly speed, but sometimes also the trajectory) are adjusted in
such a way that the modified flight plan satisfies the time constraints of the WPs.

NFZs represent an important concept for non-cooperative collision avoidance.
The presented algorithms work with three types of no-flight zones used in the ATC
system: (i) world zones – represent ground terrain and other static obstacles in the
simulated world, (ii) static zones – encapsulate world areas where UAV cannot
operate, e.g., enemy zones, and (iii) dynamic zones – hold zones which change
frequently, they are mainly defined by NFZ-based non-cooperative deconfliction
as described later. AGENTFLY supports various data structures for the no-flight
zones: octant tree [2], height maps and primitive objects – sphere, cylinder and
cube. All types can be combined together using grouping, scaling, translation and
addition/subtraction operations on them.

The path planning problem has been solved by the original manoeuvre-based
path-finding algorithm that is defined by two points (start, destination) and by two
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vectors (initial direction, target direction). The manoeuvre-based algorithm incor-
porates a single A* progressive path planning [7] using basic flight plan elements
with dynamic size of discrete steps.

Similarly to the algorithm of path planning, the time planning algorithm is
based on particular elements’ chaining. In case of path planning these elements
were manoeuvres, in case of time planning these are time elements. In contrast to
path planning, time elements are not expanded using algorithms for state space
exploration (such as A*). Instead, they are only suitably chained one by one, with
pre-calculated parameters. The time planning phases produce a plan for which the
time of flight through each segment corresponds to the time constraints defined in
the original planning problem specification.

4. Agent-Based Collision Avoidance Methods

The AGENTFLY system features a selection of different cooperative collision
avoidance methods. Cooperative collision avoidance is a process of finding a mu-
tually acceptable collision avoidance manoeuver among two or more cooperating
flying assets. The assets are capable of mutual interaction and provide each other
fully trusted information. They are optimizing their own interests (e.g., fuel costs
increase, delays) with consideration of the interests of the colliding assets. Even
though the concept of cooperation in the field of multi-agent systems implies opti-
mization of the social welfare (sum of costs and utilities of all the involved parties),
we understand the concept of cooperation in broader sense. We have developed
and studied three different cooperative collision avoidance algorithms: Rule based
collision avoidance (RBCA), Iterative peer-to-peer collision avoidance (IPPCA)
and Multi-party collision avoidance (MPCA).

Besides cooperative algorithms, the AGENTFLY system also features non-
cooperative collision avoidance methods. The noncooperative collision avoidance
algorithm operates an individual flying asset when facing a collision thread with
a flying object that does not interact with the to-be-avoided asset or the asset is
not trusted.

4.1. Rule-Based Collision Avoidance (RBCA)

RBCA is a domain dependent collision avoidance algorithm, which is based on
the Visual Flight Rules defined by the Federal Aviation Authority (FAA)1. Each
flying asset performs one of the predefined collision avoidance maneuver by means
of the following procedure. First, the type of the collision between the airplanes is
identified. The collision type is determined on the basis of the angle between direc-
tion vectors of the concerned aircrafts projected to the ground plane. Depending
on the collision classification each UAA applies the collision avoidance manoeuvre
from the set of defined rules. The manoeuvres are parameterized that they uses

1http://www.faa.gov
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the information about collision and angle so the solution is fitted to the identified
future conflict.

The above rule-based changes to the flight plan are done by both the assets
independently because the second aircraft detects the possible collision with the
first plane from its point of view. Substantial inefficiency of the RBCA algorithms is
caused by the fact that the predefined visual flight rules perform collision avoidance
without any altitude changes.

4.2. Iterative Peer-to-peer Collision Avoidance (IPPCA)

The iterative peer-to-peer collision avoidance algorithm is an extension of the pair
optimization for multiple collisions among several UAVs based on utilities provided
by themselves. The basic version provides a solution for a pair of colliding airplanes,
see Fig. 6. The algorithm optimizes social welfare in that pair, thus the aircraft
would like their flight plans to maximize the sum of their utilities, but still find
collision-free paths.

Figure 6. The negotiation during IPPCA

First, the participating airplanes in the colliding pair select the master and
the slave part for the detected collision (usually the first entity which identifies
a collision is regarded as a master entity). Each planning agent generates a set
of new plans using the pre-defined parameterized collision avoidance manoeuvres.
The flight plan modified by applying the manoeuvre includes its utility value which
is composed as a weighted sum of several parts using the following equation:
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u =
∑

i αiui∑
i αi

, (4.1)

where αi denotes the weight for the i component of the utility function. The utility
function is used for including the aircraft’s intention in the proposed solution of the
conflict and depending on the configuration it can contain different components
to be taken into consideration, such as the total length of the flight plan, flight
priority, fuel status and other factors. Seven parameterized changing manoeuvres
can be used in the current version: straight, turn left/right, turn up/down, speed
up and slow down changing manoeuvres. The parametrization is used during the
generation process to obtain a wider range of solutions in a situation when the
solution is not found using smaller changes.

The best possible solution is identified by the following algorithm. The master
generates a combination of all the proposed plans (including the original one) and
as a solution it selects a pair of plans for which the first collision occurs later
than the collision currently being solved, and which has the best sum of the utility
values of the plans used in the pair. When there are more pairs with the same sum
value, the solution is selected randomly from these. Both sides (master and slave)
then apply the selected solution. If there is no pair of plans fulfilling the condition
that the first collision must occur later than the one being solved, it is necessary
to generate more different flight plans using higher values of parameters describing
the changing manoeuvres. The extension of the method for multi-collisions among
several UAVs is in the iterative use of the described algorithm. To prevent infinite
loops of iterations, the algorithm is restricted so that the UAV cannot generate
such a change of the flight plan that would lead to a collision with an already de-
conflicted aircraft occurring earlier than the currently solved collision. The second
restriction is that an aircraft can apply only such changing manoeuvres that are
not opposite2 to those already applied within the same solving batch3.

The same algorithm has be used for finding the collision-free paths for self-
interested UAAs. Such assets do not optimize the social welfare but they try to
reduce the loss from collision avoidance. The best possible collision avoidance pair
is identified by a variation of the monotonic concession protocol (MCP) [17]. The
MCP is a simple protocol developed by Zlotkin and Resenschein for automated
agent-to-agent negotiations [19, 9]. Instead of iterative concession on top of the
negotiation set the algorithm uses the extended Zeuthen strategy [18, 4] provid-
ing negotiation equilibrium in one step and no agent has an incentive to deviate
from the strategy. The implementation selects randomly one of the pareto-optimal
solutions which maximize the product of the utilities.

2The opposite changing manoeuvres are defined in the three groups: turn left/right, turn up/down

and speed up/slow down.
3Solving batch is a chain of consecutive algorithm runs.
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4.3. Multi-Party Collision Avoidance (MPCA)

The multi-party collision avoidance approach removes the iteration known from
the IPPCA algorithm during multi-collision situation – a situation when more
than two UAAs have mutual future collision on their flight plans. MPCA intro-
duces multiparty coordinator who is responsible for the state space expansion and
searching for optimal solution of multi-collision. The multi-party coordinator is an
agent whose role is to find a collision free set of flight plans for a possibly colliding
group of UAAs - the multi-party group. The coordinator keeps information about
the group, state space tree, chooses which airplane will be invited to the group,
requests UAAs in the group for generating deconfliction proposals or sends the
information about found non-colliding flight plans, see Fig. 7. Note that MPCA
algorithm is running while planes are flying. Thus time for finding the solution is
limited.

Figure 7. The negotiation during MPCA.

A coordinator agent is created by the master plane of the pair which detects
future collision on their current flight plans. A master in the pair is determined
according to alphabetical order of UAA’s ids. When the coordinator is created it
starts to search for a non-colliding set of flight plans. The collision which causes
creation of a new coordinator is then treated as an initial collision. The searching
algorithm proceeds in the three following steps which are repeated until a solution
is found.

1. Step 1 – The coordinator requests two planes from the group for possible
flight plan changes to avoid their collision. Each of these planes individually
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generates a set of changes and sends the partial plans back to the coordinator.
Additionally, UAA checks for each avoiding manoeuvre, if it is colliding with
other airplanes not included in the coordination group and adds a notification
about it to the response.

2. Step 2 – When the coordinator receives possible changes, it expands state
space making their cartesian combination. Depending on the notification
about external collisions the coordinator decides whether to invite (to en-
ter the group) new UAA not already in its group which is colliding with the
received changed flight plan. In the current version, the size of the coordina-
tion group is not restricted.

3. Step 3 – The coordinator searches through combinations of generated flight
plans. If the coordinator decides that more variants are needed, it continues
with step 1. If it finds the final solution (a set of non-colliding flight plans),
it sends message to planes from the group with their new flight plans.

The main part of communication during a session between the coordinator
and a UAA is shown in the Fig. 7. The session starts with the invite message sent
from the coordinator to an airplane. The UAA can respond with an accept or a
refuse message. If the invitation is accepted, the UAA is added to the coordina-
tor’s multi-party group and the coordinator can request for plan generation when
needed. If the parts of the flight plan that are used for detecting a collision are too
short (the first collision point is identified but the last collision point cannot be
found due to the short flight plan), the coordinator sends a request to the UAA
for a longer part of its plan. Additionally a failure message can be sent in both
ways. Failure can occur when the flight plan is changed for reason unrelated to
the group, e.g., an asset can be forced to switch to a different type of a conflict
avoidance method which can make the change of its actual flight plan causing a
removal of the plane from the group. Another situation when a failure can happen
is when an asset contained in one multiparty-group changes its flight plan due to
its involvement in another multiparty-group .

The coordinator assumes that the initial plans in the group are not changed
during the search. If flight plans change for some of the planes, such a plane
is removed from the group. This plane can be added to the group upon new
collision detection. This relates to the problem of concurrent existence of several
coordination multi-party groups.

By default, the state space generated in the MPCA is searched by the A*
algorithm with zero heuristics which is only admissible one [10] in our case – due to
the allowed changing manoeuvres which do not change the utility value but can find
a non-colliding solution. For example in the scenario where two UAAs have collision
on their perpendicular flight plans and the utility value depends only on the flight
plan length, the best solution is when one plane speeds up and another slows down
having the same utility values as the initial state. There is a defined condition
(too large state space and not enough time for searching optimal solution) when
the used heuristics need to be switched to the non-admissible heuristic preferring
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expansion of states with less collisions. Such searching is then very fast, but its
result is the less optimal solution.

4.4. Non-Cooperative Collision Avoidance Architecture

The path planning algorithms are used for planning individual flight plans (based
on WP and NFZ) but also for non-cooperative collision avoidance replanning that
is initiated once an aircraft detects a flying object. AGENTFLY uses the algo-
rithm based on modeling the future possible trajectory of the opponent (the non-
cooperative flying object) and dynamic encapsulation of its possible location by
NFZ. NFZ is regularly updated after each radar update. Such implementation can
be combined with another cooperative collision avoidance algorithm which uses
the same identified dynamic NFZ.

The event that triggers the collision avoidance loop is information obtained
from the radar describing the position of an unknown object in the area. This
object is recorded in the base of non-cooperative objects, unless it’s already present
there. If the object is already known, its position is updated.

The next step is prediction of the collision point, an intersection of the flight
plan and the non-cooperative object. If no such virtual collision point is found, the
loop ends. In the opposite case, the collision point is wrapped by a dynamic no-
flight zone. Such zone is then used for the test if the current flight plan intersects
the zone and if the intersection is found, the path is re-planned.

The shape of dynamic no-flight zones of non-cooperative objects (Fig. 8)
is derived from the possible future flight trajectory. The trajectory takes into
account the minimal turning radius, maximal climbing and descending angle and
the prediction time. We do experiments with dynamic NFZ with an ellipsoid shape
which is not placed at the position of the observed flying object but at the place of
the predicted collision and its size reflects the speed of the objects and the distance
to the collision point.

Figure 8. Shape of the dynamic no-flight zone

The described non-cooperative collision avoidance loop is executed for all
objects found in the radar scan. This is done periodically for each radar scan.
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5. Multi-layer Collision Avoidance Architecture

The listed collision avoidance methods are linked by the multi-layer collision avoid-
ance module [13] that is a part of a special planning agent, hosted by each of the
UAA platforms. This module is capable of solving the future collisions by means of
combination of different avoidance methods. There is no central planner providing
a collision free flight plan, hence the individual plans are provided by the planning
agents. The proposed modular architecture is domain independent. Therefore it
is ready for deployment on autonomous vehicles like airplanes (UAA) or ground
vehicles (UGV).

Multi-layer collision avoidance module hosts CSM (Collision Solver Man-
ager), the main controller responsible for the selection of the CS (Collision Solver)
that will be used for specific collision. CSM is able to combine all the available coop-
erative and noncooperative algorithms. The previously presented collision avoid-
ance algorithms are implemented as plug-in solver modules and can be domain
dependent or independent. Each collision solver is responsible for the collision de-
tection (e.g., Collision Point Prediction in the non-cooperative CA or Collision
Detection in cooperative CA) and collision registration with CSM. One collision
can be detected by several collision solvers.

Based on priority, CSM assigns each registered collision solver a time slot
that can be used for solving by the specific CS. The priority of the solvers is
preset, but can be altered during the runtime. Concatenation of these slots creates
time axis providing a specific, time-oriented switching among the CS operation.
Sophisticated switching of the collisions solvers is inevitable in our application as
the solvers have different properties. Different solvers provide different quality of
the collision-free solution, while they require different amount of time for finding
such solution. Specifically, the negotiation oriented solvers may provide better
solution than non-cooperative solvers, while they may be more time consuming
(given by the multi-party interaction). As the time is a very critical factor in our
collision avoidance domain, some solvers are not guaranteed to terminate prior a
possible collision.

6. Deployment Scenarios and Selected Experimental Results

In this section, the selected deployment scenarios, where presented algorithms were
tested, are listed. The main criteria that the algorithm is stable and converges in
many testing setups to the final solution is fulfilled by all the tested collision
avoidance methods.

In the first scenario, the UAAs are located in a circular formation at the
same flight level (altitude, referred to as FL). All of them want to fly to the
opposite side of the circle through its center. Therefore there is a multi-collision of
all the planes at the same time located in the center of the circle. The results after
using distributed rule-based (RBCA) and iterative peer-to-peer collision (IPPCA)
avoidance methods are shown in the Fig. 9. The RBCA has defined rules which
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Figure 9. Scenario with 10 UAAs in the circle: The result for
RBCA 2D view (left) and IPPCA 3D view (right).

change the flight plan only in the same flight level. The result for RBCA is still
at the same FL. The IPPCA provides a solution that is substantially closer to the
optimum (almost 100 times shorter additional flight trajectory for the scenario
with 80 aerial assets - see Fig. 10. It uses six available avoiding manoeuvres (as
defined in the section 4.2). The graphics in Fig. 9 demonstrate higher compactness
of the IPPCA solution in comparison to the solution provided by RBCA.

Figure 10. Scalability experiment: The comparison of the dif-
ference in the final flight plan length for the RBCA and IPPCA

We have defined an automatized experimental scenario setup which is used
for scalability testing. During the experiment run several characteristic properties
can be recorded and compared. The experimental environment uses the worst-case
setup. The UAAs are randomly generated on one of the four sides of the limited
experiment area. All of them need to fly to the opposite side. The entry point of
each new UAA is generated on adjacent borders in clock-wise direction. Both the
initial way-points entry and the exit are at the same FL. The setup provides the
high number of the future collisions in the central part of the testing square. The
plot in the Fig. 10 presents comparison of average (each setup was measured 50
times) sum of differences between the final deconflicted and the initial flight plan
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for all the UAAs in the specific experiment run. For this experiment, IPPCA can
use only four avoiding manoeuvres which do not change the flight altitude. The
IPPCA provides solution much better than RBCA especially for the cases with
more UAAs.

Figure 11. Wall scenario: Left: the setup of the experiment.
Right: the result after IPPCA (top) and MPCA (bottom).

In the next scenario, there are 13 UAAs flying in a vertical plane in 3D.
Their positions in the space are shown in the Fig. 11 left. All of them initially fly
in the same direction at the same flight speed. There is another UAA which is
flying in the opposite direction and has a potential to head collision with the UAA
located in the middle of the first group. The final results comparing the IPPCA
and MPCA algorithms are depicted on the right side of the same Figure. In the
IPPCA version, only one plane performs a large detour of the group of UAAs and
therefore no other planes participate in the solution. On the other hand, in the
MPCA version, the middle UAA in the group performs a combination of several
changing manoeuvres and creates a small hole in the middle of the group to let
the opposite UAA fly through. Then the UAA goes back to its original relative
(central) position within the group. The MPCA solution gives only 0.213 units
longer solution than the initial plan while the IPPCA solution is 2.843 longer. The
values were calculated as an average from 20 consecutive experiment runs.

The Fig. 12 displays the scalability experiment results comparing the IPPCA
and MPCA algorithms. In this case both algorithms uses the same scenario setup
and the same set of avoidance manoeuvres. Each run was measured 50 times to
provide average result values for both the methods. The top plot in the Fig. 12 is
the comparison of the final solution lengths. The MPCA algorithm gives a more
optimal solution – depending on the number of UAAs, the results are improved
by 10 to 50 percent compared to the IPPCA. The bottom chart is the comparison
of total communication flow during the experiment run among all the UAAs.
Both algorithms have almost the same amount of transmitted bytes, but we have
identified that the flow distribution in time is different. The MPCA algorithm
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Figure 12. Scalability experiment IPPCA vs. MPCA: The sum
of differences between final collision-free paths and the shortest
regardless collisions (top). The total communication flow (bot-
tom).

in the current version requires communication link bandwidth up to 600 kB per
second and the IPPCA needs only 50 kB/s.

Figure 13. Tunnel scenario: Initial configuration (left) and the
collision avoidance result for IPPCA (right).

Another high density scenario is shown in the Fig. 13. There are eight UAAs
willing to fly from their starting positions through the small tunnel (the size of
safety zone around UAA is the same as the size of the hole) to their destination on
the right side. All UAAs fly at the same FL and they cannot manoeuvre and avoid
collisions by changing this altitude. Both algorithms IPPCA and MPCA solve
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this situation. UAAs change their flight speed to accelerate before the hole and
than they adjust the flight speed that all of them have the same flight speed. The
result is shown in Fig. 13 right screen. Although UAAs can use the right and left
manoeuvres they do not apply them because there is not enough space there. This
case can be compared to a very intensive landing scenario, where several airplanes
want to land at the same runway in a very short time interval, e.g., landing at an
aircraft carrier.

average trajectory length l[u]
type proportional dynamic no control

navigation NFZ
perpendicular collision 33,21 33,85 30,0
slant collision 31,17 31,52 30,0
head-up collision 30,81 30,62 30,0

Table 1. Non-cooperative experiments with one controlled and
one uncontrolled UAA comparing proportional navigation with
the dynamic no-flight zones algorithm.

The non-cooperative algorithm (Section 4.4) has been compared with the
optimization proportional navigation (PN), see [13] for more details. The PN al-
gorithm provides a very good result when coping with a single alien flying object,
but it cannot be extended to the situation with several non-cooperative objects
located nearby. Moreover such optimization algorithm cannot be used in a com-
bination with other cooperative methods at the same place. In the Table 1, there
are the results of non-cooperative experiments with one controlled and one uncon-
trolled UAA. The uncontrolled UAA always flies directly from the starting point
to the destination and the controlled one is always heading north and it must
avoid collision in the middle of the operation area. Again no altitude changes are
allowed to provide relevant comparison (PN doesn’t support such changes). The
results for both algorithms are almost the same. The PN provides better results in
two setups and in the third one the dynamic NFZ gives a more optimal solution.

The Fig. 14 displays the minimal separation among UAAs with safety zone
size highlighted in the scenario with two uncontrolled UAAs (obstacles). The PN
was configured to take into consideration the nearest obstacle first. The PN algo-
rithm fails to avoid the collision while the dynamic NFZ works properly in this
situation. We have performed several other experiments with more UAAs, all using
the described non-cooperative algorithm within a worst-case scenario. The method
handles all situations without any collision.

The multi-layer collision avoidance architecture allowing combination of co-
operative and non-cooperative methods at the same time has been validated in
the deployment where real civil traffic operates over Los Angeles International
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Figure 14. The distance from obstacle in the scenario with three
UAAs, where only one uses active control non-cooperative avoid-
ance method.

Figure 15. Operation of agent-controlled UAAs over LA with
imported real air-traffic

Airport. There are two types of aircrafts in the setup. There are randomly operat-
ing agent-controlled UAAs which are configured to use the IPPCA algorithm with
other UAAs controlled by agents. If there is another flying object identified they
will use non-cooperative avoidance methods to solve the identified collision with
it.

The simulated air-traffic is extended by real civil airplanes of which the dy-
namic positions are imported from publicly available internet sources. These air-
planes are detected by on-board radars of the agent-controlled UAAs. The Fig. 15
provides both the 3D and the 2D view of the simulated area.

7. Conclusion

This chapter describes a possible use of agent technologies in the free-flight collision
avoidance domain. We present a complex multi-agent system that provides a real-
istic air traffic simulation and a practical collection of different collision avoidance
methods. A sophisticated switching architecture allows autonomous, decentralized,
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run-time selection of an appropriate deconfliction method based on current dis-
tances and velocities, traffic density and level of trust between the to-be-avoided
closing objects. Extensive experiments demonstrated viability, efficiency and scal-
ability of this approach.

The experimental verification of the efficiency of the negotiations among
highly distributed autonomous assets did show clear convergence of all the pro-
posed algorithms. Given the results shown in the previous section, it is clear that
the rule based approaches are obsolete given the demonstrated performance of
the iterative peer-to-peer negotiation protocols . However, the difference in per-
formance between these and the multi-party collision avoidance is less evident.

All the scenarios presented as test cases here represent just the starting point
of investigation of more complex cases where more UAAs and civil aircraft will be
engaged, with a wider variety of permitted maneuvers, with sub-optimal commu-
nications and with more dramatic changes in the environment. This approach is
inherently less constrained, and may allow for unanticipated emergent behaviors
to arise, hence our emphasis on empirical testing. However, we feel we have clearly
documented that our approach is robust and efficient, and definitely worthy of
continued development.

The main potentials for further extensions of the AGENTFLY technology
include e.g., collision avoidance among the collaborating assets with limited com-
munication capabilities (so that the location of the asset is kept undisclosed), in-
troduction of the mobile stand-in agents in the collision avoidance process (in order
to minimized the required communication traffic), use of the collision avoidance
architecture for implementation of various collective flight models or theoretical
analysis of the convergence of the listed communication protocols.
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Appendix A. A-globe Multi-Agent Platform

AGLOBE4 is a flexible and open multi-agent environment, which supports inte-
gration of heterogeneous distributed computational processes (agents). It is dis-
tributed under CPL licence5. A-globe is different from existing multi-agent plat-
forms’ by:

• SCALABILITY - its emphasis on high efficiency of the computational process
allowing scalability of multi-agent simulations,

• SIMULATION - support for modeling and simulation in of the environment
in which the agents have been designed to operate,

• MIGRATION - full support of migration of the agents and computational
processes in distributed environment, and

• VIZUALIZATION - A-globe also provides sophisticated visualization sup-
port for design and testing of complex multi-agent systems.

A-globe is a fast and lightweight platform with agent mobility and inaccessi-
bility support. Besides the functions common to most of agent platforms it provides
Geographical Information System-like service to the user. Therefore, the platform
is ideally suited for testing experimental scenarios featuring agents’ position, po-
sition dependent environment simulation and communication inaccessibility. The
platform provides support for permanent and mobile agents, such as communica-
tion infrastructure, storage, directory services, agent migration (including library
migration with version handling), service deployment, etc. A-globe is optimized
to consume just a limited amount of resources.

A-globe platform is not fully compliant with the FIPA specifications; still
it implements most protocols and respects the spirit of the specification. It does
not support communication between different agent platforms (e.g., with JADE,
JACK, etc.). For large scale scenarios the problems with system performance that
interoperability brings (memory requirements, communication speed) outweigh
any advantages, as heterogeneous environment is of limited interest for simula-
tions. The A-globe’s operation is based on several core components, see Fig. 16:

• Agent Platform that provides the basic components necessary to run one or
more agent containers, the container manager and the library manager.

• Agent Container that is a skeleton entity that provides basic functions such
as communication, storage and management for agents.

• Services that provide shared functions for all agents in one container
• Environment Simulator Agents that simulates the real-world environment

and controls visibility among other agent containers
• Agents who integrate various computational processes, user interface or hard-

ware components and represent basic functional entities in a specific simula-
tion or control scenario.

4http://agents.felk.cvut.cz/aglobe/
5Common Public License Version 1.0 – http://www.opensource.org/licenses/cpl1.0.php
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The agents have various means of communication. They can interact either via (i)
standard ACL (Agent Communication Language) message passing, (ii) by topic
messaging - specific simulation oriented messaging among containers, (iii) service
sharing - where the agents can use or provide each other with various specific
services.

Figure 16. A-globe platform architecture (left). Agent lifecycle (right).

The A-globe platform is primarily aimed at large scale, real world simula-
tions with fully fledged agents. To support this goal, it includes a special infrastruc-
ture for environmental simulation. Actor agents play roles in the simulated world,
while Environment Simulation (ES) agents implement the simulated world itself.
ES agents only rarely use messages to communicate with actor agents. Instead,
they communicate via topic messaging. Topic messaging implements container to
container messaging reserved for easy environmental simulation. Topic messaging
is built on top of standard messages and is managed by the Geographic Informa-
tion System (GIS) Services - server and clients. GIS services provide distribution
and subscription mechanism for the agents. ES agents can be responsible for nearly
any simulation layer, depending on the wishes of the developers. The accessibility
agent, which controls the availability of communication links between containers
holding the actor agents, is one of the most important of ES agents. A-globe mes-
saging layers use the information provided by the accessibility agent to prevent
sending messages between inaccessible nodes. The accessibility simulated by the
system can depend on many factors, typically including the distance and simulated
link reliability.

A-globe has been developed in the Gerstner Laboratory, Czech Technical
University. Since its initial development in 2001 A-globe has been successfully
deployed in various industrial domains. Besides its chief deployment in Air Traf-
fic control of unmanned aerial vehicles, described in this chapter, A-globe has
been also used for the simulation of underwater minesweeping operations, funded
by the Office of Naval Research. Agents perform collaborative decision making
aimed at intelligent surface search and sharing communication bandwidth when
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streaming high resolution images to the control base. The simulation has been suc-
cessfully transformed to the robotic environment in order to prove its versatility.
The robocup soccer robots were used for the hardware simulation of A-globe based
underwater minesweeping operation. Based on A-globe the Gerstner Laboratory
developed in cooperation with DENSO Automotive, GmBH an agent based system
for distributed diagnostics of on-board car electronics. The model has been used
for an operation failure root-cause-detection while also for the process of graceful
degradation of the systems operation (for which safe regions of car electronics need
to be dynamically identified). US ARMY CERDEC are currently supporting agent-
based modeling of large scale computer networks, based on A-globe multi-agent
environment. Besides modeling, A-globe is here used as an integration platform
for collaborative intrusion detection and prevention application. The company
CADENCE Design Systems are using A-globe CE (CADENCE EDITION) for
simulation and modeling of the chip design process. They use multi-agent sim-
ulation for analysis and measurement of the performance and efficiency of their
production processes.

Besides the listed industrial companies, A-globe is used also by several aca-
demic institutions: University of Edinburgh, Florida Institute for Human and Ma-
chine Cognition and Masaryk University.
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Controlling Teams of Uninhabited Air Vehicles

Jeremy W. Baxter and Graham S. Horn

Abstract. We describe a Multi-Agent System (MAS) for controlling teams
of uninhabited air vehicles (UAVs) in the context of a larger system that
has been used to evaluate potential concepts of use and technologies. The
approach is one of a decision-making partnership between a human operator
and an intelligent uninhabited capability. The MAS controls the UAVs and
self-organises to achieve the tasks set by the operator with interaction via a
variable autonomy interface. We describe how the agents are integrated with
the rest of the system and present a number of system integration issues that
have arisen. The overall system has been evaluated in a number of human-in-
the-loop trials within a detailed synthetic environment.

1. Introduction

Uninhabited vehicles can be used in many applications and domains, particularly
in environments that humans cannot enter (e.g., deep sea) or prefer not to enter
(e.g., war zones). Uninhabited air vehicles (UAVs) are of particular interest to the
defence sector because they have the potential to significantly reduce the risk to
aircrew in military operations. The promise of relatively low cost, highly reliable
and effective assets that are not subject to the physical, psychological or train-
ing constraints of human pilots has led to much research effort across the world.
Current systems, such as Predator or Global Hawk, require multiple operators to
control a single platform. This chapter describes an approach to allow a single
operator to control multiple platforms which has been evaluated in a number of
human-in-the-loop trials within a synthetic environment (SE).

1.1. Concept

The concept is one of a decision-making partnership between a human operator and
an intelligent uninhabited capability. The human provides mission-level guidance
(with support from planning tools, etc.) to the “pool” of co-operating UAVs and
takes on a largely supervisory role. The UAVs self-organise to achieve the goals
set by the operator. Due to regulatory or liability issues, some critical decisions
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will have to be made by a human. Therefore, the uninhabited capability must
refer such decisions to the operator. This concept has been implemented using a
variable autonomy interface onto a multi-agent system, as part of a larger trials
system.

The trials system is used to evaluate potential concepts of use and technolo-
gies. It is therefore not a static system but one in which different subsystems (such
as different human machine interfaces) can be inserted and evaluated. SE based
trials enable the key requirements for the decision-making partnership to be cap-
tured. The elements of the system have evolved in response to feedback from trials
(subjective comments and objective performance measures) and changes to the
concepts of use.

A multi-agent system (MAS) provides a natural and powerful way of rep-
resenting multi-platform tasks and sets of coordinated and cooperating agents.
Agents carrying out tasks which are clearly linked to a single platform can be
hosted on that platform while more general purpose agents can spread out amongst
the platforms. Planning systems can be integrated into the system by producing
agents to wrap them.

1.2. Scenario

The scenario used for the trials was a time-critical targeting mission against a high
value, mobile target. A package of four UAVs was deployed to locate and destroy
the target. The operator was the pilot of a single-seat fighter, operating outside of
the threat range of ground-based anti-aircraft defences. The UAVs are equipped
with (long- and short-range) sensors and weapons. The mission consists of two
main phases: search and attack. An example run is described in section 5.

1.3. Overview

The remainder of the chapter is structured as follows. First we describe how vari-
able autonomy is achieved within the system. An overview of the trials system is
given in section 3 before describing the multi-agent system (section 4) and how
it is used to control and coordinate the UAVs. Section 5 describes an example
run. Some of the issues we faced when integrating the MAS with the other com-
ponents are highlighted in section 6, particularly the integration of deliberative
planning systems with the reactive planning approach used by the agents. Finally
we describe some results from the trials, some related work and conclusions.

2. Variable Autonomy

Variable autonomy is achieved by using the PACT framework [4]. PACT stands for
Pilot Authority and Control of Tasks and incorporates a hierarchy of interaction
between automated systems and an operator (such as a pilot), as shown in Fig. 1.
At one extreme the operator decides (level 0), at the other the system decides (level
5), and in between are a number of “assisted” levels such as the system providing
advice on request (level 1) or asking for permission to carry out a suggested decision
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Figure 1. The PACT level designations.

(level 3). In the trials we have only used the highest three PACT levels, since the
MAS is geared towards task execution rather than the provision of advice.

Key decision points, such as mission phase transitions, that may require op-
erator approval trigger the agents to make PACT requests to the operator, via
the Task Interface Manager (TIM). The operator can set the PACT level for each
possible PACT request and these values are stored in the TIM. This provides a
level of abstraction that means the agents will always send a PACT request and
the TIM will determine whether or not to forward it to the operator. At PACT
level 5, the TIM will immediately give approval and then inform the operator that
the decision has been made. At PACT level 4 the TIM sends a message to the
operator to inform him of the action that the agents intend to take and gives him
a short time window to reject the request before the TIM will give approval on
his behalf. At PACT level 3 the TIM (and hence the agents) must wait for the
operator to approve or reject the request. The agents may also cancel a request
if it is no longer appropriate, for example if a target they intended to attack is
reclassified as destroyed.

In one of the trials the system was configured so that the pilot could define
two different sets of PACT levels. These were defined as “minimum autonomy”
(AMIN) and “maximum autonomy” (AMAX). The minimum autonomy level was
typically set so that all PACT decisions were at level 3 (wait for authorization).
This required the system to halt at each decision point until positive confirmation
was made by the user. The maximum autonomy setting typically set most decisions
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to level 5 (automatic) while leaving one critical point (weapon release or attack
authorization) at level 3. This gave the pilot the option of switching the system
into the highest allowable autonomy if he was under high workload to allow the
agents to carry out the mission with the minimum of further input.

3. System Overview

Fig. 2 shows the main components of the system that has been used in human-in-
the-loop trials. The operator interacts with the system through a human-machine
interface (HMI) that allows him/her to task the UAVs and provides situational
awareness information about the UAVs and any ground vehicles that have been
detected. The Task Interface Manager acts as an interface between the HMI and
the agents. It translates button-presses on the HMI into fully populated orders for
the agents. It uses information from the agents to drive the situational awareness
aspects of the HMI. It also manages the PACT interactions. The agents provide

Figure 2. The main components of the system used in human-
in-the-loop trials.
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the self-organising system for controlling the UAVs which is central to the im-
plementation of the concept. The agents send commands to controllers on each
UAV platform and receive status and sightings information. The platforms exist
inside a synthetic environment, which contains platform, sensor and weapon mod-
els, and different types of ground vehicles. Integrating all of these components has
taken significant effort. Many components have been changed between the trials
to investigate different aspects, such as the HMI design or type of weapon.

4. Multi-Agent System

The agents are structured as in Fig. 3. There are 4 types of agent. The User Agent
acts as the conduit for tasking from, and information to, the operator. It allocates
individual UAVs to tasks. The Group Agents are responsible for planning and
coordinating the execution of tasks. Specialist planning agents are used to wrap a
number of planning systems to allow them to be used by the agents. UAV agents
interact directly with individual platforms, commanding the autopilot to undertake
specific manoeuvres.

Figure 3. An example command and control hierarchy showing
the different agent types.

The MAS was originally designed for controlling teams of entities in ground-
based battlefield simulations. In its original form it only contained group agents
and vehicle agents and did not allow an operator to issue new tasks during ex-
ecution (a single order was provided to each team at start-up and this could be
decomposed into orders for subgroups). The focus of the original work was on
robust execution of these orders in the face of losses and failures [1]. The addition
of the user agent allows for operator interaction and parallel tasking.
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4.1. User Agent

The User Agent has control of all of the UAVs in the package. It accepts tasks from
the operator (via the Task Interface Manager) and attempts to use the available
UAVs to complete the tasks. The User Agent has a notion of a “Main mission”
task to which all assets are assigned by default. The User Agent has full control
over the task and may change the assignment of any of the UAVs involved in it.
In addition to this default task, the operator may specify a number of “subtasks”
which the User Agent is also responsible for trying to achieve. A subtask represents
some specific action which the operator may require to be undertaken in addition
to the default task, such as observing a specified location. The User Agent must
select the assets to carry out each subtask. (In some trials the operator was able
to specify which assets to use, if he so desired.) Once the User Agent has identified
the UAV assets required for a task these assets are assigned to a Group Agent.
Group Agents can be created by the User Agent or existing Group Agents can be
re-used. The User Agent therefore controls a number of concurrent tasks on behalf
of the user and uses the Group Agents to plan and supervise these tasks.

4.2. Group Agents

Group Agents exist to control a team of UAVs for a single task. Group Agents
may either control UAV Agents directly or may control other Group Agents. For
example, if a task requires the UAVs to operate in two pairs a Group Agent
will control the group of four by tasking two Group Agents (each of these will
control a pair of UAVs). Group Agents embody the knowledge of how to plan
and execute coordinated team tasks using a framework (described in [1]) based
on Joint Intentions theory [5]. This provides a solid grounding for the required
communication necessary to keep a team task coordinated. Given an assigned
task and assets a Group Agent makes a plan to achieve the task. It may call on
additional specialist planning agents to do this. The plan is structured so that
the roles which need to be fulfilled are clearly identified and UAVs are assigned
to these roles. The plans include the coordination necessary to execute the plan.
These plans then form the tasks for subordinate Group or UAV Agents and are
sent to them for further planning and execution.

The primary group behaviours are:

• Search for a target, using short-range imaging sensors.
• Attack a target, combining weapon delivery and battle damage intelligence

gathering.
• Search & Destroy, which combines the above two behaviours
• Fly a route in formation.
• Standoff search using long-range sensors.

4.3. Specialist Planning Agents

Two such agents have been used in our system.
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4.3.1. Search Agent. The Search Agent provides access to a planner [9] that pro-
duces search routes. The planner is provided with a set of possible target positions
and expands them into regions that could be reached by a moving target in the
next few minutes. The search routes are designed to allow the UAVs to search
these regions with short-range sensors and take images of potential targets that
will be classified by the operator.

4.3.2. Attack Agent. The Attack Agent provides access to a dynamic scheduler
[10] that allocates UAVs to the tasks that must be carried out during the attack
phase: release the weapon and gather images of the target after the weapon has
detonated to see if it has been destroyed. Typically two UAVs are available for
these tasks, which may be split between them or one UAV may be chosen to
undertake all tasks. The aim of the scheduler is to minimize the time taken to hit
the target and get visual confirmation of its destruction.

The dynamic scheduler implements a deliberative planning process, derived
from sequential decision theory, but specialised to weakly coupled systems (in
which execution of tasks is decoupled after resource assignment) and with appro-
priate task models which could be used to plan a wide range of behaviours. The
scheduler implements joint planning up to some time horizon, beyond which un-
certainty in the scenario is expected to invalidate attempts to form longer-term
plans. In scoring proposed plans, it makes use of task models to evaluate the ef-
fect (in terms of state, time and cost) of assigning particular resources (UAVs)
to particular tasks. These task models can be stochastic (allowing for uncertain
outcomes), but in this application only deterministic task models were used. The
dynamic scheduling technology provides an upgrade path in which longer-term
(tactical and strategic) considerations can be taken into account through the use
of a value function that is evaluated at the planning horizon and added to the
score of each plan. The value function can be hand-designed or acquired by trial-
and-error learning in simulation (reinforcement learning).

4.4. UAV Agents

A UAV Agent exists for each UAV platform. It sends commands to the sensors,
weapons and autopilot via a lower level platform controller. The UAV Agent mon-
itors the status of the vehicle and sends sensor and state information to the other
agents. The UAV Agents can plan and execute single vehicle tasks, such as taking
images of a specified ground entity, and can try different actions until they achieve
the tasks set by the Group Agent.

The primary vehicle behaviours are:

• Fly a specified route (possibly taking images of potential targets).
• Take an image(s) of a ground vehicle (fly into position to do so, if necessary).
• Loiter observing a ground vehicle using an imaging sensor.
• Search an area using long-range sensors.
• Release a weapon.
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5. Example Run

This section describes a typical run of the system, highlighting the actions taken
by the agents and the interactions they have with the operator. At the start of
the run four UAVs are on a pre-planned ingress route heading for the last known
location of the target. As they close the operator orders that a stand off search
of the area should be conducted, using long-range sensors, to build up a picture
of activity within the search area. The agents interpret this as a subtask from the
main mission. The User Agent selects the two UAVs on the outer edges of the
formation to perform this stand off search. Fig. 4 shows how the agents have re-
organised to accommodate this new structure. The User Agent is controlling two
Group Agents, one representing the pair carrying out the stand off search and the
other representing the pair continuing the ingress. The operator then specifies the
main mission to be “Search & Destroy” and the User Agent automatically selects
the two remaining UAVs carrying out the ingress to perform this task. The Group
Agent assigned to the “Search & Destroy” task identifies that since no target has
been classified it should enter the “Search” phase and try to find one. This Group
Agent initiates a Search Agent, which calculates appropriate search routes which
are then sent to the UAV Agents to execute. These agents fly their assigned routes
and gather images of potential targets that have been identified and tracked by
the stand off assets. The agent organization for this phase is shown in Fig. 5.

Figure 4. Agent organization for ingress and stand off sensing tasks.

When the operator has classified a ground entity as the high value target the
agents infer that the search phase must be over and issue a PACT request, asking
for permission to end the search and enter the attack phase. In this example
we will assume the PACT level for this decision was set to be five, so the user
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Figure 5. Agent organization during the search phase.

is presented with a message informing him that the search is over and that the
package is entering the attack phase. The Group Agent now uses an Attack Agent
to produce a plan, as shown in Fig. 6. In this example, one UAV is tasked to
release the weapon and the other is tasked to gather battle damage intelligence
(BDI) images after the weapon has impacted. When the first UAV is in position
to release the weapon it issues a PACT request seeking final launch authorisation.
This critical decision point has been set to level 3 and so the UAV cannot release
the weapon until the user accepts the request. A timer is displayed on the HMI to
indicate the launch window - if the operator does not respond before the launch
window closes then the request will be withdrawn and the UAV will reposition
itself before asking again. Assuming that the operator accepts the initial request
promptly, the weapon is released. The BDI images are sent to the operator who
confirms the destruction of the target.

6. System Integration Issues

Assembling the components for each trial has required significant effort. Compro-
mises have had to be made to make things work given tight time constraints. This
section highlights some of the issues faced when integrating the agents with other
subsystems.
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Figure 6. Agent organization for the attack phase of the search
& destroy mission.

6.1. Reactive and Deliberative Planning

The agents are implemented using a Beliefs-Desires-Intentions agent language. We
have built our own coordination framework on top of this to provide robust exe-
cution of group tasks. Group agents and UAV agents have sets of reactive plans
to carry out group and individual tasks. Deliberative planning is done by the spe-
cialist planning agents. The search planner and the attack scheduler both contain
models that are used to produce plans based on predicted future world states.
Mixing deliberative and reactive planning can lead to problems. In particular, the
task sequences produced by the scheduler are executed by UAV agents using reac-
tive behaviours which differ from the models used for planning. This means that
tasks may be completed in more (or less) time than expected and this may have a
negative impact on the rest of the plan. Making use of the stochastic task models
in the scheduler would provide better robustness to uncertainty in the outcome
of actions. Closer integration of the deliberate and reactive elements would be
helpful, such as sharing data structures (e.g., tasks, constraints, and plans).

Another issue is re-planning authority. The scheduler generates new plans
on a regular basis, and when it finds one that is better than the current plan by
some threshold the new plan is sent to the group agent in charge of the attack task.
Currently, the scheduler does not take sufficient account of the cost of interruption
and this can lead to delays rather than reducing the time to prosecute the attack.

The task sequences produced by the attack scheduler do not contain any
coordination information (the tasks may contain preconditions based on time). Due
to the number of different assignments that the scheduler might make (potentially
all four UAVs might be available), we did not make full use of our coordination
framework and fell into the trap of using an ad hoc coordination mechanism which
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was not sufficiently robust. Re-implementation to make use of our coordination
framework was not possible in the time available before the trial which used the
attack scheduler.

6.2. Communication

The trials system consists of a number of components (Fig. 2). These components
have been developed by different groups in different programming languages. In-
teraction between the agents and other components, namely the TIM and platform
controllers, is via XML messages over sockets. In the majority of cases we have
used point to point client-server messages using TCP/IP. Whilst this is a verbose
method of communication it has several important advantages over other message
formats. XML messages are human readable, and this greatly assists debugging.
It allows components to be easily replaced. The HMI and TIM used for the trials
have been replaced with a ground control station without impacting the other
parts of the system. In more recent work we have inserted an airborne radio link
with its own compression and error handling protocols between the Agents and
the HMI without having to change the existing interface. It is also easy to add new
message types or to modify the message specifications. An earlier version used Java
interfaces to separate the agents from the platform controllers, with the platform
controller team providing implementations that would work with their component.

6.3. Logging and Debugging

In large distributed systems it is important to be able to understand what is hap-
pening (both during development and for post trials analysis) and to trace faults.
Since the trials system is highly distributed each subsystem produces separate log
files. The main log file generated by the MAS is an XML document which records
all messages sent between the agents and “debug output” which provides infor-
mation on which behaviours are being executed and values that they are using.
This log shows how beliefs get propagated around the MAS. It is very difficult
to maintain mutual belief and an important issue for future work is to look more
closely at reasoning about when to send information to other agents.

We have written a tool to allow browsing of these files, and filtering of the
information displayed according to the timestamp, message sender / receiver, mes-
sage type, or “debug output” key / agent. The use of this tool has reduced the
amount of time required to produce a summary of a run (including investigating
potential faults) compared to using a text editor. An obvious issue is the accuracy
of the timestamps. Every agent in the system has its own clock, which is set to a
common time (based on the simulation time from a randomly selected UAV plat-
form, accessed via the platform controller) at start-up. The initialisation of the
agents does not take zero time, so these clocks will have some variation (less than
a second, typically). This is an issue for any distributed system.

An example of the use of the logs for tracing faults is a problem that we had
where the pilot was not receiving images that we thought should have been taken
by the UAVs. Analysis of the MAS log showed that the UAV agents were not
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receiving notifications that images had been taken and in fact requests to take the
images had not been sent to the platform controller, so the appropriate behaviour
was modified to put the UAV into a better position in order to take an image of a
ground vehicle. This fixed that part of the problem. Further analysis showed that
the requests were now being sent to the platform controller but it was not sending
them to the simulation because it had different values for the sensor field of view
from those used by the agents and the simulation. When this was corrected we
found that the images were taken, but sometimes the pilot did not receive them -
due to an unreliable transport mechanism within the SE (an unexpected problem
that thankfully did not occur often). Without our logging and support tools it
would have taken much longer to identify and rectify these problems and they
quickly justified the time and effort spent developing them.

6.4. Test Harness

Running the entire trials system requires a large number of resources (computers,
people and time). In order to develop the agents separately we have produced a
test harness which consists of a (lower fidelity) simulation and a number of displays
(to replace the HMI and TIM). The test harness and the agents can be run on
a single PC. The platform controllers and dynamics models are embedded within
our simulation. The test harness has minimal start-up time, allowing a greater
proportion of time to be spent testing behaviours and integrating the specialist
planning systems. However, it is important to recognise the risk that behaviours
may be prematurely optimised with respect to the test harness rather than the
detailed synthetic environment.

7. Trials Results

7.1. System Performance

The multi-agent system has now been used in three successful human-in-the-loop
trials. Results have shown that the approach is a good match to the concept of a
human - intelligent system partnership. The pilots were able to successfully control
a team of four assets to complete the missions. One of the problems in the first
two trials was that the time taken to carry out the attack phase was too long,
and this is why a separate attack scheduler was developed before the third trial.
Fielding the system within a test and evaluation environment has revealed some
implicit assumptions that the developers of different subsystems have made.

The PACT framework worked well when the pilots and agents were in agree-
ment on the situation and the appropriate response. When the pilot refused a
PACT request it was often unclear what the appropriate response of the system
should be. For example, in some situations it might be appropriate to suggest an
alternative, in others it might be appropriate to wait a short period of time and
re-issue the same request. Usually the refusal of a PACT request indicates that
there is a mismatch between the agents’ assessment of the situation and the pilot’s.
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In the current system it is usually the case that a re-tasking by the operator has to
follow a refused PACT request but future work plans to look at alternative ways
of dealing with this problem.

7.2. Trust

One of the aims of this work is to reduce operator workload, so that a single
operator can comfortably control a pool consisting of multiple UAVs, and one of
the purposes of the trials is to investigate how much information is needed by the
operator. A key requirement is a shared awareness between the operator and the
intelligent capability about the current situation and what to do about it. The
HMI must therefore enable the operator to understand what the agents believe
the current situation to be and to provide the agents with the operator’s view
of the situation. The former is achieved through status reports that indicate the
high level mode and objectives of the agents (which allow the operator to gain an
understanding of the progress - at a suitable level of abstraction - of the tasks he
has issued) and messages from the agents. Messages may be informative or alerts.
Determining how many messages (and their priority) and the level of detail to
show to the operator is difficult, because a terse system may be harder to trust,
whereas a verbose system will overload the operator. Alerts can signal execution
failures that the agents are unable to resolve without user assistance. The most
recent trial has shown that these failures need to be communicated more clearly.

8. Summary

8.1. Related Work

The variable autonomy provided by PACT can be considered to be user-based
adjustable autonomy as described by Maheswaran et al. [6]. The key decision
points at which PACT requests are issued by the agents cover the two classes
of policies in their framework, where a weapon launch request is an example of
permission requirements for action execution and a request to advance the mission
phase is an example of consultation requirements for decision making. Agent-based
adjustable autonomy, where the agent decides when to transfer decision-making
control to another entity, is not supported in our system.

Hierarchical architectures are an obvious choice for controlling uninhabited
vehicles. Three examples follow. Howard et al. [3] present a three-layer model
where the lowest layer (the action layer) is equivalent to the platform controllers
in our architecture. Their single-agent layer is equivalent to our UAV agents. UAV
agents, group agents and the user agent have aspects of their teamwork layer. Their
hierarchical processing is instantiated by additional teamwork layer processes on
some of the UAVs. These additional processes fill the role of the Group Agents and
User Agent in our system. A bidding protocol is used to allocate tasks to UAVs
or subgroups.
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Chandler et al. [2] present a hierarchical agent architecture for controlling
multiple vehicles. At the top is an inter-team cooperative planning agent which is
equivalent to our User Agent. It uses an auction procedure to allocate observation
targets to teams of UAVs. Below this are intra-team cooperative control planning
agents (equivalent to group agents) which send tasks to vehicle planning agents
(UAV Agents). At the bottom are UAV regulating agents which provide command
sequences for the vehicle, control sensors, etc. (functionality provided in our system
by UAV agents and platform controllers).

Vachtsevanos et al. [13] present a generic hierarchical multi-agent system ar-
chitecture with three levels. Agents in the upper level mainly provide decision
support tools for the mission commander, with a focus on global knowledge for
producing team plans. Our group agents and specialist planning agents provide
many of these functions. The middle level is responsible for planning and monitor-
ing the tasks of a single UAV and is equivalent to our UAV agents. The lower level
consists of a set of agents that control the vehicle, sensors, weapons, etc. and is
designed to support heterogeneous UAV models. This functionality is provided in
our system by the platform controllers (with some overlap with the UAV agents).

Our coordination framework (described in [1]) bears a close resemblance to
the STEAM rules [11] (and the subsequent TEAMCORE work [12]) produced by
Tambe et al., which is also based on Joint Intentions theory. The main difference
is the presence of an agent representing the group as a whole that is responsible
for instructing and coordinating the group members, as opposed to team members
simultaneously selecting joint operators.

Miller et al. [7] describe a similar “pool” based approach where an operator
(in this case an infantry commander on the ground) requests a service and the
system attempts to provide it using available assets. They use a hierarchical task
network planner, which is similar to the reactive plan decomposition used inside
our group and UAV agents by default.

The Boeing Multi-Vehicle UAV Test bed [8] has controlled a team of small
UAVs by using a combination of market based mechanisms for group co-ordination
and evolutionary algorithms for path planning. We have experimented with a
contract net protocol but have found that having an explicit group planner/co-
ordinator gives better performance when the tasks are tightly coupled (for example
requiring simultaneous observation by multiple vehicles prior to an attack by one
of them). In general market based mechanisms work well when tasks are loosely
coupled and the requirement is to spread the load over a set of available assets. In
these cases we would expect a market based mechanism to scale better than the
explicit team planning approach we have adopted.

8.2. Conclusions

The approach described in this chapter has been evaluated in a number of human-
in-the-loop trials within a synthetic environment and it seems to be a good match
for the concept of a decision-making partnership between a human operator and an



Controlling Teams of Uninhabited Air Vehicles 111

intelligent uninhabited capability. The overall trials system provides a framework
for evaluating concepts of use of potential technologies.

The multi-agent system is able to self-organise to achieve the tasks set by
the operator. The PACT framework for variable autonomy worked well when the
operator and agents were in agreement, but further work is needed to cope with
cases where the operator rejects PACT requests.
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Simulating Fighter Pilots

Clint Heinze, Michael Papasimeon, Simon Goss, Martin Cross and
Russell Connell

Abstract. Since 1990 a focused intelligent agent research and development
programme within the Defence Science and Technology Organisation (DSTO)
has underpinned a strong history of deployed operational simulations. Orig-
inally aimed at improving simulations of fighter pilots the research has ex-
panded to include: fundamentals of agent languages and architectures; the
cognition of teams; intention recognition and cognitive modelling; simulating
civilian behaviour in conflict; intelligent environments; software engineering;
and autonomy and uninhabited aerial vehicles. Capitalising on this research
are a series of deployed simulations that have provided strong examples of
the benefits of the technology. This paper presents a brief account of four
successful agent-based simulation systems and a broad but shallow overview
of some of the more interesting aspects of our relevant agent research and
development activities.

1. Thinking Quickly and Clearly

The use of intelligent agent technologies1 and methodologies2 has reduced simula-
tion development time and improved confidence and trust in results by facilitating
subject matter expert validation—at least in the domain of air combat simulations
built for operations analysis. Air combat is complex, adversarial and high-tempo.
Fighter pilots, as military decision-makers, tend to follow procedures, are highly
trained, exhibit high levels of expertise and are rational and predictable—at least
within the context of the highly uncertain and unpredictable environments in
which they function. Simulations that the Defence Science and Technology Organ-
isation develops for analysing air operations require models of fighter pilots and
other aircrew to pilot simulated aircraft through virtual battlespaces. Consider-
ation of issues such as: pilot-to-pilot variability; sub-cognitive and physiological

1PRS, dMARS, JACK and other agent languages
2Agent UML, Agent Oriented Software Engineering and other agent based analysis and design
approaches
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effects; and other human factors like fatigue and currency of training are typically
excluded simplifying the issue somewhat. The simulated fighter pilot must make
sense of the simulated world, reasoning about appropriate courses of action and
implement that course of action through the adoption of standard operating pro-
cedures and tactics. Two decades of related research and development have led to
a suite of agent-based simulations built to meet this challenge [2, 31, 32].

Two primary advantages of the particular agent technologies that have been
adopted for simulating fighter pilots are claimed:

1. that the AI or agent component of simulation can be developed more quickly;
and

2. that the AI component of the simulation can be explained, understood and
validated more clearly.
DSTO provides timely operational advice to the Australian Defence Force

(ADF) about questions that might arise within the ADF specific to air operations
and systems. This means that there must be a capability to answer a variety of
questions and to analyse a wide range of scenarios. Analysts may be called upon
to model, to a high degree of sophistication the physical systems (aircraft, radars,
missiles, etc.) but must also be able to use these models within a scenario that
is capable of simulating their tactical use and the interactions between them. A
simulation will typically involve many aircraft, ground-based radars (GBR), mis-
siles, electronic counter measures (ECM), and a variety of other systems. A critical
requirement is that the simulations also model the pilots who fly the aircraft, air
defence controllers who assist those pilots, and other human operators within the
scenario. The models of the human operator should be capable of being modified
rapidly whilst the behavior that they exhibit must be explainable in terms that
can be understood and accepted as valid by those interested in the output of the
work.

Within this context analysts provide advice with respect to:
• Capability analyses in support of the Defence acquisition process.
• Assistance with tactics and doctrine development for the effective employ-

ment of Defence assets.
• Advice for the development of training procedures for pilots and controllers

at the operational level of command.
Military analysts use simulation to evaluate the effectiveness, performance,

and tactical employment of military systems prior to acquisition or upgrade. The
information that results from these studies guides acquisition and can be used to
evaluate successive designs, thereby mitigating some of the risks associated with
the physical development of modern defence systems. This type of simulation can
also provide data for the evaluation of tactical options for situations that cannot
easily be explored by conventional exercises or experimentation.

The modeling and simulation undertaken for the operations analysis activities
of DSTO are largely constructive—without human interaction. This distinguishes
it from the view of military simulation as the basis for human-in-the-loop training
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simulators where the emphasis is on providing an immersive environment. Con-
structive simulation places requirements on the intelligent agent development that
are quite different from the computer generated forces found in training simu-
lators [4]. An obvious difference is the requirement for real-time performance in
human-in-the-loop systems whereas constructive simulations are usually required
to run “as fast as possible”. In practice this often means many times faster than
real-time.

In training simulators the quality of the outcomes is frequently judged by the
fidelity of the images presented to the human participant. As long as the entities
appear to behave correctly the detail of the internal modelling is not questioned.
This is not true of operations research simulations where the result is the accu-
mulation of knowledge about the functioning of the hardware or the efficacy of
particular tactics. In these cases it is necessary to develop a detailed understand-
ing of the reasons for observed behaviours and a more explicit representation of the
human component, and the tactics in particular [7]. It is for this reason that ap-
proaches that make clear the detailed functioning of the agent model are preferred.
These simulators provide the human participant with an immersive visual and au-
ditory experience that allows them to practice procedures and tactics. Agents have
been used to provide both friend and foe in both training and operations research
simulators [5, 6].

Despite flourishing research interest agents are relatively immature in in-
dustrial applications. The innovations that agents bring to software development
require engineering methodologies that deal with concepts and techniques that
differ from existing approaches. The immaturity of agents is reflected both in the
small number of commercially available agent languages and the lack of supporting
software engineering methodologies. Agents, as the term is used in this chapter,
refers to a particular class of heavyweight agents that implement the BDI model
operationalised in languages like PRS, dMARS or JACK [33, 34, 13].

2. Agents in Deployed Simulations

Our first intelligent agent project was a technology demonstrator that utilized the
Procedural Reasoning System (PRS) from Stanford Research Institute (SRI). This
technology demonstrator exhibited two qualities that proved decisive in transition-
ing to an operational system. The PRS programming language allowed coding of
tactical plans in a fashion that supported rapid responses to suggested modifi-
cations. It was comparatively easy to develop and modify sophisticated tactics.
Perhaps even more significant was the graphical nature of the plan language. PRS
plans are flow-chart like representations of decisions. With careful design these can
be made to resemble the types of decision trees that pilots draw when explaining
their tactical decision-making. Clearly there were benefits to be had beyond simple
software engineering maintainability that went to the very core of the promise of



116 C. Heinze, M. Papasimeon, S. Goss, M. Cross and R. Connell

agent technology. These agents appeared to offer an appropriate level of abstrac-
tion and a set of modeling constructs that were ideally suited to the requirements.
The following sections provide some details of some indicative projects that have
made use of intelligent agents.

2.1. F/A-18 Hornet

SWARMM was a large and very sophisticated simulation of fighter combat. Agents
were used to model combat pilots of different types and with different tactical
repertoires. In defining a scenario, the analyst assigns high level mission plans to
the appropriate agent team on the basis of their tactical role and mission assign-
ment. Without any stimulating trigger the agent flies the mission as briefed, just
as in real life.

In addition to the high level mission plans, the agents are assigned a suite of
tactical plans commensurate with their role and mission in the scenario. Deviation
from the pre-briefed mission behaviour is part of the central interpretive reasoning
that considers the current state of the environment within the tactical context of
the current mission phase. The plans are divided into a number of groups, of which
the most significant is that dealing with manoeuvres. Other categories of tactics
are those handling the operation of sensors, communicating, and weapons and
countermeasures employment. Agents respond to events in the environment with
tactics selected from one or more of these groups. SWARMM’s tactical repertoire
has been steadily developed within operational study requirements, in line with
the original scope to provide a comprehensive suite of tactics commensurate with
existing Air Force procedures.

The initial SWARMM project was successfully completed in June 1996 and
further developments have matured its use as a tool for operational analysis.
Planned as a progressive development project, SWARMM was heavily reliant on
the content of previously developed models of aircraft and their systems. These
models of aircraft and engine performance, weapons, countermeasures and envi-
ronment comprise validated code that was developed by many staff over a period
spanning more than a decade. The design concept of SWARMM foresaw the next
stage of development being a move to an object-oriented (OO) environment for
the physical systems modelling.

SWARMM was designed to alleviate, or avoid altogether, many of the prob-
lems associated with developing pilot tactics using traditional scientific code de-
veloped using languages like FORTRAN and C. To this end, the language used
for simulation of tactical reasoning was dMARS (distributed Multi-Agent Reason-
ing System) and, in part, the SWARMM requirements specification influenced the
development of dMARS as a C++ refinement of its LISP based precursor, PRS.
SWARMM’s dMARS employment of Beliefs, Desires and Intentions (BDI) agent
formalism was an apt method of encapsulating the descriptions of human reason-
ing required in the domain of military air operations. The BDI approach enables
the operational analyst to consider agent behaviour at the tactical level and to
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Figure 1. Visualisation of an F/A-18 Hornet flown by a simu-
lated fighter pilot implemented by a dMARS intelligent agent in
one of DSTO’s air combat simulations.

map analyst operational experience into an appropriate set of tactical dMARS
plans [34, 32].

The tactics are written with respect to individual agents, or teams of agents.
Teams are broken into lead and wing elements and corresponding team plans re-
curse down to the individual lead and wing aircraft [35]. A typical agent would
have several thousands of these plans.

2.2. Airborne Early Warning and Control

During the down-select for the provision of an Airborne Early Warning and Con-
trol (AEW&C) aircraft to the Royal Australian Air Force simulation was used by
analysts as a tool to evaluate the characteristics of the tendered options. Within
this simulation agents were used to model the crew of the AEW&C aircraft and
other simulated entities that populated the scenarios of interest. The emphasis of
operational analysis studies in support the AEW&C projects was initially on the
evaluation of comparative hardware solutions sufficient to achieve proper operation
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of the equipment under evaluation, in the way test pilots are used in trials of hard-
ware systems. Relationships between agents were very formalised and simplified
and required only simple agents with shallow command and control structures. The
behavior required of these first agents was merely the operation of the aircraft in
a tactically reasonable manner consistent with the aims of the tender evaluation.
The crew of an AEW&C aircraft is required to perform a large number of dis-
parate but complementary tasks. An AEW&C team is an information gathering,
interpretation and dissemination centre as well as fulfilling a battle management
role. Simulations are now moving to multi-agent systems that have depth in both
command and control structure and in time. The depth of command and control
structure requires that agents be capable of packaging and delegating tasks to
those agents that have the capability to understand the requirements, read the
situation, and carry out the intention of the delegating agent. These delegating
agents must in turn be capable of understanding the intention of the agent above
them in the command control structure in the tasks delegated to them. Another
requirement is multi-agent systems that have depth in time. By depth in time
we mean the ability of an agent to progressively gather an understanding of the
situation over a period of time, infer the probable intention of those forces that
are under its direct control and project the situation forward in time. With the
AEW&C aircraft about to enter service the focus has moved away from analysis
and evaluation of aircraft that are to be acquired and is now centered on support to
the air crews that will operate the aircraft when it enters service. This has yielded
a version of the simulation with the agents removed and in the place an interface
that allows the real air crews to experiment with the tactical employment of the
aircraft. The most positive aspect of this project was the capacity of Air Force
operational personnel to participate in the coding of the agent representations us-
ing the dMARS language. This was facilitated by the graphical plan language of
dMARS and a carefully designed agent reasoning architecture based on Col. John
Boyd’s observe-orient-decide-act (OODA) loop [37].

2.3. Strike Tactics

An agent oriented approach to modelling tactical decision making does not neces-
sarily imply the use of agent oriented programming languages such as those based
on the BDI model. Often agent languages such as dMARS and JACK are too
heavyweight a solution when the tactical behaviour that needs to be modelled
is simple. This was the case in the requirement to develop tactical procedures
and concepts of operations for stand-off weapon strike missions undertaken by
the Royal Australian Air Force’s F-111 long range strategic strike aircraft. This
involved modelling and simulating an F-111 aircraft (with associated sensors and
long range weapons) flying through complex terrain in order to strike a high value
target that was protected by ground based air defence systems. In this particular
study, the tactical behaviour that needed to be modelled for the F-111 pilot and
weapon systems officer as well as the enemy air defence officers was sufficiently
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straight forward so that sophisticated agent programming languages were not re-
quired. However, an agent-oriented approach was taken to capture and specify
the requirements and for the design of the architecture for the agents. The actual
implementation of the agent made use of standard object oriented tools and tech-
niques using a finite state machine model to encode the tactical behaviour, similar
to the approach taken to developing the artificial intelligence for video game char-
acters. This approach allowed for the benefits of the agent-oriented paradigm to
be used in the requirements and design phases of the project, while at the same
time providing the simplicity, ease of development, lower risk and computational
performance required for the implementation phase of the project.

2.4. Maritime Surveillance

This project supports the RAAF Maritime Patrol Group in developing new tac-
tics and concepts of operation for the upgraded AP-3C Orion Maritime Patrol
Aircraft. These are used in peacetime for maritime search, surveillance and in-
telligence gathering operations in and around Australian territorial waters. Bat-
tleModel is used to baseline the expected mission performance of the aircraft in
typical mission profiles and scenarios, and also to develop new, integrated flying
and sensor employment policies that allow the aircraft to function at its full po-
tential. Here a model of the tactical decision making process on board the aircraft
that was capable of representing the actual human operator and crew workload,
the sensor data-fusion process and chain of command was needed. The tactical
decision making model also had to be flexible and robust enough to allow timely
modification to investigate different operational procedures and tactics. Individ-
ual dMARS intelligent agents were used to model the tactical decision making for
each crew member being simulated on board the AP-3C. Intelligent agents were
chosen because of the requirement to model decision making based on a degree
of awareness of the environment or tactical situation the aircraft finds itself in.
Maritime surveillance tactics, as with almost all tactical decision making, rely on
making an assessment of the current situation based on fusing data from different
sensors and also on making some assessment about the intent of other entities in
the environment. The Beliefs, Desires, Intention formulation of the dMARS agents
lends itself to this type of modelling. Crew members were modelled to the extent
that the type of information, the amount of information and the work responsibil-
ities of the operators were accurately represented. The simulation can operate in
one of two modes; constructive or crew-in-the-loop. In the constructive mode, mis-
sions are run faster than real time, hundreds of times using monte-carlo techniques
analysing the effectiveness of different tactics using statistical techniques. In this
case, the tactical decision-making is made by the agents. In the crew-in-the-loop
mode, the agents are removed from the simulation and are replaced with user inter-
faces which are controlled by actual crew members who make the tactical decisions.
The interactive or crew-in-the-loop mode is used to test and evaluate new tactics
in a realistic environment. In this mode, the tactical picture is projected onto a
large screen showing the current sensor information which is superimposed on to
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a geographical map of the region. This allows the crew to focus on developing and
evaluating higher-level tactical procedures rather than on low-level interactions
with individual controls. A tactics development cycle involving the use of the con-
structive simulation with the intelligent agents, and the crew-in-the-loop exercises,
is used to iteratively develop tactics and CONOPS over a period of time.

This process has proved very effective in combining the inputs of operational
RAAF personnel and DSTO operations analysts to develop AP-3C tactics and
CONOPS.

3. Agent Research and Development

From the early 1990s DSTO pioneered the employment of intelligent agent tech-
nologies in military operations research simulators. Through a series of successful
collaborations with local academic institutions and technology vendors DSTO has
been able to influence the direction of technology growth through involvement at
all levels of agent technology research and development. A strong research and
development program is continuing.

3.1. Agent Languages

DSTO’s demanding requirements have driven the development of agent technology.
DSTO played a major role in the development of dMARS both as an alpha and
beta tester of the language and as a co-developer of methodologies, tools and
language extensions. As users we played a larger role: developing some of the
largest and most complex agent applications yet deployed. dMARS is a multi
agent architecture that implements a BDI model of agency based on the concepts
of intentions, plans and practical reasoning developed by Bratman [9]. Further
information about the underlying formalism of dMARS is available [10, 11]. Every
dMARS agent comprises a set of beliefs, desires (goals), plans and intentions.

The beliefs of an agent are stored in a relational database and contains in-
formation about the nature of the world. These beliefs may refer to hard physical
data or to more abstract concepts. The goals of an agent are descriptions of re-
quired behaviors or desired outcomes, whilst the plans are declarative procedures
specifying actions to take to accomplish these goals. The intentions are instances
of plans that have been selected for processing to achieve some goal. They rep-
resent commitments by the agent to the achieving of a goal through the course
of action specified by the plans. The plans represent the most visible part of a
dMARS agent. They constitute the procedures that an agent will use to deal with
situations as they arise. The plans are graphical in nature (see Fig. 2) and are
capable of being displayed during the simulation through the dMARS Control In-
terface (DCI). This feature is an attribute of dMARS and not of agents per se; it
allows the plans adopted by the agent to be displayed and the current state of the
agent reasoning evaluated during the simulation. With careful design these plans
can be read and understood by lay-people with little or no additional explanation.
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Figure 2. An example of a dMARS plan represented in the
graphical plan language.

A detailed description of the dMARS system as it pertains to air-combat mod-
eling can be found in [12]. A more recently developed alternative to dMARS is
JACK [13]. JACK is based on Java and like dMARS implements a BDI model and
provides many of the same programming constructs. DSTO actively cooperated
in the development of extensions and supporting infrastructure for JACK and has
collaborated in the development of several important extensions and additions to
JACK [38].

3.2. Teams and Command and Control

Modelling teams and command and control has been identified as an important
prerequisite for many of the future simulation based studies that are likely to be
required. Increasingly, in military circles there is an emphasis on joint activities
where all services cooperate to achieve more effective and efficient operations. With
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modern systems there is increasingly a need for the commander to understand
the possible arrangements of assets that are available in order to assemble the
best possible fighting force for a particular mission. Simulations in support of the
innovative employment of teams and the flexible use of command and control must
provide facilities for the explicit modelling of these concepts [16, 17].

3.3. Intention Recognition

In some of the earliest recorded descriptions of combative human behaviour it was
noted that recognising the intent of an opponent was vital for success. Two and a
half thousand years later intention recognition is still one of the most important
aspects of military decision making and is significant in many other competitive
and cooperative human endeavours. The simplest explanation for the need for
recognition of intention lies in an inability or unwillingness to communicate. If
someone is both willing and able to communicate fully and honestly about their
intent then there is little need for recognition. If communication is unavailable,
unreliable, or in the case of combative or competitive environment, undesirable
then a mechanism for deducing the intent of others is required. In virtual environ-
ments recognition of intention is potentially as important as it is in the real world.
This is due to both the proliferation of heterogeneous computer systems, networks,
and agents that speak different languages, or because of security or resource con-
straints are unable or unwilling to communicate and there are applications that
might benefit from computer systems capable of inferring human intent. Research
is being undertaken into the provision of intention recognition capability for agents
in simulation [18, 30].

3.4. Software Engineering

The employment of agent technology in SWARMM was one of the earliest steps
in improved software engineering practices in model construction as it decoupled
the reasoning models from the models representing physical systems. The Battle-
Model architecture took this a step further enabling all models to be completely
decoupled from each other, each model being highly cohesive, in an object oriented
framework. Basically this meant that each model whether it be a radar, platform,
missile, or reasoning model was independent and communicated with each other
via the BattleModel architecture, enabling a plug-and-play type of simulation.
Furthermore, it allowed for agent reasoning models of different fidelities and types
to interact in the same simulation. For example, heavyweight BDI agents writ-
ten in dMARS could interact with lighter weight reasoning models implementing
a variety of techniques written in languages such as C++ and Java. The move
to an agent friendly architecture led to research into how agent oriented systems
should be engineered. To date this has involved looking at a number of differ-
ent approaches including research into how existing object oriented methodologies
such as the Unified Modeling Language (UML) [19] could be adapted or modified
for agent oriented systems. Whereas agent researchers such as Odell and others
looked at issues representing agent communication in UML through the use of
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AUML (Agent-UML) [20], the research conducted looked at requirements speci-
fication, analysis and detailed design of agent systems. This included looking at
how to extend the UML’s concept of use cases for requirements specification of a
system from a user’s perspective, to one of behavioural specification of an agent
system from an agent’s perspective [21]. Furthermore, with the adoption of newer
BDI agent languages such as JACK, design methodologies to support these new
languages are required. Again an approach taken was to look at what existing
techniques such as the UML could offer. Since JACK is a superset of the Java
programming language with agent oriented extensions, and UML can be used to
design Java programs, a logical approach would be to extend the UML to enable
the modeling of JACK agents [22].

3.5. Computer Generated Forces

Our work reported here is largely concerned with constructive simulation but for
certain applications above there are good reasons for involving flight crews directly
in the simulation (the AP3-C development described above). There is the potential
for intelligent agents to become an integral part of the human-in-the-loop facilities
and they already are a promising part of studies into distributed mission training
and distributed simulation in general. Throughout the world intelligent agents have
been used as computer generated forces in HIL facilities (see Fig. 3) and insights
into the problems that beset them have been gained from the experiences with
agents in constructive simulation. Many of the issues associated with situating
agents in simulations can be addressed in applications outside of the military
domain. By examining the requirements on the environments that suitably support
agent activity insights for military simulation development are gained. Another
thread of research is exploring the addition of the principles of naturalistic decision
making (NDM) to agents [26].

3.6. Autonomous Aircraft

A small but successful project modified the agent architectures used for simulat-
ing fighter pilots so that they would provide autonomous control of a light tactical
uninhabited aerial vehicle (UAV). This project had the goal of investigating ap-
proaches for the implementation of autonomous tactical UAV control. The aircraft
shown in Fig. 4 flew several missions as individuals and in teams.

3.7. Intelligent Environments for Intelligent Agents

An important lesson learnt from the deployment of many large intelligent agent
based simulations was that complex tactical behaviour could not be developed in
isolation as stand alone agent reasoning models. The environment in which the
agents were situated in, and how the agents interacted with that environment
was critical. This interaction became increasingly important not only because the
requirements for tactical behaviour became more complex, but also because the
environment (physical, social, command and control) in which air operations were
being undertaken was becoming more sophisticated.
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Figure 3. A Human-In-The-Loop F/A-18 Hornet Flight Simulator.

This lead to the development of an additional thread to the research pro-
gram which focused on the virtual environments in which the intelligent agents
were situated. The primary aim was to investigate techniques and approaches for
designing and building meaningful virtual environments which were amenable to
intelligent agents and which facilitated complex tactical behaviour. The investiga-
tion relied on theories from situated cognition and ecological psychology to inspire
the design of the virtual environments and the agent-environment interaction [36].

Specifically the theory of affordances from ecological psychology was used as a
basis for developing a more sophisticated model of agent-environment interaction.
This interaction model was successfully implemented in a sophisticated simula-
tion of a close air support (CAS) mission known as the Human Agent Virtual
Environment (HAVE) [26]. A screenshot from this virtual environment is shown
in Fig. 5.

3.8. Civilian Modelling

Complex terrain includes complex physical terrain, complex human terrain and
complex informational terrain. Current military simulations and wargames rarely
model complex human terrain and there are even fewer examples that include com-
plex informational terrain and as combat within complex terrain becomes the norm
civilian modelling becomes more important [29]. To represent civilians embedded
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Figure 4. The Codarra Avatar was fitted with a HP IPAQ run-
ning a JACK agent connected serially between the radio modem
and the flight control system. The agent provide autonomous con-
trol of the UAV: monitoring the aircraft state via the data sampled
from the flight control system and controlling the aircraft through
waypoints fed into the flight control system.

within a complex human and informational terrain a multi agent paradigm was
selected as being the most appropriate due to the ability to incorporate different
aspects of human behaviour and interaction in a visible structured manner.

Agents as members of social networks moving through their city from home to
work is the first step this project has taken. This small step has none the less pro-
vided enough complexity to simulate disease spread through the population with
results that replicate those provided by mathematical models such as SIR [28].
Initial extensions to these agents will increase the number of activities they un-
dertake and allow reasoned responses to changes in their environments. Follow on
research will explore emotion, motivation and the effect of cultural backgrounds
on behavioural representation.
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Figure 5. A screenshot from the Human Agent Virtual Environ-
ment (HAVE), a close air support (CAS) simulation. The design
of the agent-environment interaction was motivated and inspired
by the theory of affordances from ecological psychology; the study
of how humans and animals interact with their environments.

4. Conclusions

The impact of intelligent agents within the DSTO can be measured in the suc-
cessful deployment of a number of innovative systems, the associated productivity
improvements resulting directly from the technology and indirectly from the asso-
ciated adoption of improved software engineering practices, and the quality of the
research that has been fostered in and around the development. In summarising
the advantages of agents it is worth first cautioning that the particular adopted
technology matched neatly with the requirements of defence science and though
the application development has been successful it has not been without risk, steep
learning curves, and cost. As Wooldridge and Jennings caution “There are a num-
ber of good reasons for supposing that agent technologies will enhance the ability
of software engineers to develop complex distributed applications” but agents are
not a magical problem solving paradigm [27].
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By creating an environment where tactics and standard operating procedures
are more explicitly represented it has been possible to improve the interactions
between analysts and military personnel. The abstract graphical representation of
plans provides the flight crews with visibility into the simulation increasing their
confidence in the modelling. It allows tighter faster validation of tactical plans by
inspection of crews and therefore improves the confidence that analysts have in
the models.

Transitioning to agent technology shifted the focus from a systems view of
military operations to a human centred view. This allowed problems to be viewed
in radically different ways, for new research threads to be explored and for col-
laboration with psychologists, physiologists, and human factors experts to explore
modelling options.

The acquisition of intelligent agent technology has resulted in large gains in
productivity. Problems that were previously intractable have been opened up and
explored while other problems are now addressed more effectively and efficiently.
The particular implementations and technologies described here are clearly not
suitable for all problems in all domains and care must be exercised when selecting
novel technologies.

The particular domain and challenges facing the defence science meshed ide-
ally with the adopted agent approaches and the significant risks associated with
new technologies were mitigated through iterative development, careful tool ac-
quisition and a firm research base. The success of a decade of intelligent agent
research has resulted in quality outcomes for the Australian Defence Force, both
in timeliness and quality, and an internationally recognised research program for
DSTO.
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MAS Combat Simulation

H. Van Dyke Parunak

Abstract. Multi-agent systems offer a new stage in the evolution of combat
simulation. Originally, warfighters simulated combat manually to explore al-
ternatives and plan their campaigns. The first applications of computers to
combat simulation used algorithms that aggregated the warriors on each side,
such as differential equations or game theory, effectively modeling the en-
tire battlespace with a single process. Entity-based models such as OOS and
Combat XXI assign a single agent to each entity, following the standard MAS
agenda. A new modeling construct, the polyagent, takes this trend one step
further, and uses several agents to model each construct. This approach ad-
dresses several challenges that face the traditional MAS approach, including
fitting, closure, dynamism, and singularity. This chapter surveys the history
of combat modeling, gives two examples of polyagent systems (one for plan-
ning, the other for adversarial prediction), and discusses how this construct
addresses the challenges.

1. Introduction

Combat modeling is a discipline with a long history. Documented instances date at
least to the Prussian Kriegsspiel of 1811 [34], but as long as humans have gone to
war, fighters have systematically thought through the contingencies of actions and
counter-actions in preparation for military operations (cf. Joshua 8:3-8; 2 Samuel
10:9-11). It is tempting to speculate that the model soldiers found in Egyptian
tombs from 2000 BC [7] may have been inspired by implements for military ex-
perimentation. Combat simulation seeks to anticipate how an engagement may
unfold and to assess the value of actions that the commander may take in each
contingency. In the face of incomplete knowledge about the present, lack of ac-
cess to the adversarys plans about the future, and the element of chance in every
interaction, precise planning is impossible, but modeling can help warriors antici-
pate the range of possible outcomes. Traditional simulation methods fall into two

This chapter draws on previously published articles embodying research by several members of
our group, including Steve Brophy, Sven Brueckner, Bob Matthews, and John Sauter.
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categories: mathematical models and behavioral emulation. Mathematical models
include the Lanchester differential equations, which relate force strength to attri-
tion, and game theory, which models a forces comparison of its gains relative to
those of its adversary across different options. Behavioral emulation simulates the
movements of units and observes their interactions and the resulting outcomes.
This emulation can be done with real troops in an exercise, with models on a sand
table, or most recently with software agents in a simulated world.

Agent-based models of combat pose a number of challenges, which can be
addressed by a novel modeling construct, the polyagent. The fundamental idea of
the polyagent is to represent each domain entity by a plurality of software agents. A
single avatar manages multiple ghosts, which explore alternative possible behaviors
of the entity. As the ghosts of different avatars interact with each other, the system
concurrently explores many possible interactions far more efficiently than could
be done with distinct simulations involving only one agent per domain entity.
We have used the polyagent model both to produce action plans, and to predict
enemy intent. Section 2 reviews the major types of computational combat models
that have been used over the last century, to provide a context for agent-based
models. Section 3 describes the polyagent construct and two problems to which
it has been applied (action planning and adversarial prediction). Section 4 shows
how this approach addresses the challenges of conventional combat simulation and
identifies a number of directions for future expansion.

2. Combat Modeling

The roots of combat modeling go back well before the computer era, and follow
two distinct lines, one mathematical and the other behavioral.

2.1. Mathematical Models

Mathematical models of combat are of two main types: Lanchester theory and
game theory.

Lanchester Theory. In 1916, F.W. Lanchester published a set of differential
equations that expressed how the change in strength of each side in a conflict
varies with the current strength of the other side [11]. In their simplest form,
his equations define the evolution through time of the strength of the two
sides, R(t) and B(t), as a function of the effective firing rates αR and αB of
the two sides, dR/dt = −αBB(t); dB/dt = −αRR(t). His system is a version
of the Lotka-Voltera equations for predatorprey populations [35]. An early
application of computers to military modeling was integrating the Lanch-
ester equations, and many of the militarys leading models today are still
based on refinements of this model, for example, the Bonder-Farrell Attrition
Algorithm equations [2].
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Game Theory. Game theory was originally developed in context of economic
analysis [31, 32], but after WWII, it became a central tool for military plan-
ning at the DoD-sponsored RAND Institute and elsewhere. Game theory
focuses on the rationality of the parties in conflict, and assumes that each
seeks to maximize its own utility while recognizing that the other party is
seeking to do the same.

Game theory and Lanchester theory differ in two important ways.

1. Lanchester theory models combatants as physical forces with no rationality.
Game theory assumes that players are rational and seek to maximize a utility
function.

2. Lanchester theory describes the evolution of combat through time. Game
theory in its simplest form is concerned with the final outcome.

In spite of these differences, the two mathematical theories treat the opposing sides
as aggregates, and do not consider the detailed interactions of individual soldiers
and their weapons.

2.2. Behavioral Models

Behavioral models are exemplified by wargames, either with real troops or on
sand tables on which experimenters alternatively move playing pieces to explore
tactics (Fig. 1). Inexpensive computers and multi-agent techniques permit models
of combat in which each entity is represented by an individual computer agent.
Such models are superior to traditional mathematical models because they can
capture the individual evolution of interacting entities, rather than modeling them
as averages over the population. Combat interactions are strongly nonlinear, and
population averages often miss important divergences in individual trajectories
[27, 36]. As a result, entity-based models can often yield more realistic results
than do Lanchester or game-theoretic models.

Figure 1. A physical combat simulation using a “sand table”.



134 H.V.D. Parunak

A disadvantage of agent-based models is that they can require more com-
putation than classical mathematical models. Fortunately, relatively simple entity
models, embedded in an environment based on cellular automata, are often suffi-
cient to capture much of the complexity of warfare [9]. One explanation for this
outcome is the phenomenon of universality [21], which recognizes that the struc-
ture of interactions may overwhelm differences in the processing carried out by
individual agents.

For instance, EINSTein [9] represents an agents personality as a set of six
weights, each in [-1, 1], describing the agents response to six kinds of information.
Four of these describe the number of living friendly, living enemy, injured friendly,
and injured enemy troops within the agents sensor range. The other two weights
relate to the models use of a childhood game, capture the flag, as a prototype of
combat. Each team has a flag, and seeks to protect it from the other team while
simultaneously capturing the other teams flag. The fifth and sixth weights describe
how far the agent is from its own flag and its adversarys flag. A positive weight
indicates that the agent is attracted to the entity described by the weight, while
a negative weight indicates that it is repelled.

MANA [12] extends the concepts in EINSTein. Friendly and enemy flags
are replaced by the waypoints being pursued by each side. MANA includes four
additional components: low, medium, and high threat enemies. In addition, it
defines a set of triggers (e.g., reaching a waypoint, being shot at, making contact
with the enemy, being injured) that shift the agent from one personality vector
to another. A default state defines the personality vector when no trigger state
is active. In spite of their simplicity, EINSTein and MANA yield highly realistic
aggregate battle dynamics.

2.3. Unmet Challenges

Entity-based models, of which multi-agent models are an instance, offer significant
benefits over mathematical models. But as implemented in current simulation
technology (such as Combat XXI [1] and OOS [30]), they still face significant
challenges. Four merit our attention.

Fitting. Having a separate agent for each unit or soldier allows the model to
capture the effects of nonlinear interactions, but requires the modeler to con-
struct a model for each entity. This process, analogous to the knowledge
acquisition task in the early days of expert systems, is expensive and time-
consuming. Use of simple numerical reasoning as in EINSTein and MANA
simplifies the problem, but the modeler still must define the correct person-
ality vector for each fighter.

Closure. While agent-based models are useful tools, they are not the only meth-
ods available for predicting a conflict. For example, one might want to in-
corporate estimates from a Bayesian reasoner or other statistical techniques.
Because of the cost of fitting individual units, one might want to approximate
the larger context for a conflict with a game-theoretic or Lanchester model,
and use agent-based modeling only for a specific engagement.
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Dynamism. Models have traditionally been used as a planning tool, in prepara-
tion for an engagement. They show how the world might unfold, but once it
actually begins to unfold, their detailed results quickly become out of date.
One would like to couple model execution to a stream of information from
the developing battle and use the model as a real-time monitoring tool, along
the lines of model-based control techniques in industrial applications [3].

Singularity. The strength of agent-based models (capturing individual interac-
tions) is also a weakness. A single run of a model captures only one possible
evolution of the world. If the number of entities is n and the model is run
for t time steps, the number of possible trajectories can be on the order of
nt, far too large to be sampled adequately even by many repeated runs, each
yielding a single trajectory [17].

A new modeling structure, the polyagent, offers solutions to these challenges.

3. Polyagent Combat Simulation

A polyagent represents a single domain entity with multiple agents: one persistent
avatar, which constructs and maintains a model of the entity of interest, and a
swarm of transient ghosts, which explore multiple possible futures for that entity.
This architecture represents a further step in the direction already taken by agent-
based modeling of decomposing the reasoning process. Lanchester equations and
game theory aggregated the reasoning about many entities in a single process.
Agent-based models give each entity its own process. The polyagent assigns several
processes to each entity. This technique has been applied successfully in several
military applications. After outlining the architecture in more detail, we consider
two examples: self-routing Uninhabited Air Vehicles (UAVs), and urban battle
prediction.

3.1. The Architecture

Polyagents coordinate their actions through digital pheromones, scalar variables
that agents deposit and sense at their current location in the environment [4, 16,
20, 22, 25]. Such an architecture is called “stigmergic,” a biological term that
describes how social insects coordinate their actions by leaving and sensing signs
in a shared environment [8]. Our stigmergic architecture has three components:
polyagents, digital pheromones, and place agents.

Each physical entity is represented by a software polyagent [18]. A polyagent
consists of a single persistent avatar and a swarm of transient ghosts that the
avatar generates. The avatar maintains a model of the entity (such as a UAV or
a warfighter) and manages the dynamics of the ghosts. The ghosts move through
the environment, exploring alternative behaviours for their entity. The avatars and
ghosts continuously deposit pheromones at their current locations. Polyagents were
first demonstrated in factory scheduling [4]. In addition to the military applications
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discussed in this paper, we are also applying them to problems of intelligence
analysis.

Different classes of agents deposit distinct pheromone flavours in their envi-
ronment. Agents can sense nearby pheromones. Brueckner [4] develops the under-
lying mathematics of the pheromone field, including critical stability theorems.

The environment takes the form of a distributed network of place agents.
These place agents maintain the pheromone field, executing three processes. Aggre-
gation fuses information across multiple agents and through time. Diffusion shares
information with nearby agents. Evaporation provides efficient truth maintenance,
automatically removing any information that is not reinforced. These processes,
together with the feedback when agents both deposit and sense the field, support
complex patterns of interaction and coordination among the agents [19]. Each place
agent is responsible for a region of the physical space. We tile the physical space
with squares or hexagons, each represented by a place agent with four (respec-
tively, six) neighbours, but irregular tiling schemes (such as a Voronoi tessellation
defined by the locations of unattended ground sensors) can be employed. Place
agents can be situated physically in the environment using unattended ground
sensors distributed over an area and connected to nearest neighbours through a
wireless network. They may also be located in a distributed network of command
and control nodes.

The response of agents to the multiple pheromones in their vicinity is in-
spired by the personalities of the agents in EINSTein and MANA, described in
the previous section. The personality vectors in MANA and EINSTein reflect both
rational and emotive aspects of decision-making. The notion of being attracted or
repelled by friendly or adversarial forces in various states of health is an impor-
tant component of what we informally think of as emotion (e.g., fear, compassion,
aggression), and the use of the term “personality” in both EINSTein and MANA
suggests that the system designers are thinking anthropomorphically, though they
do not use “emotion” to describe the effect they are trying to achieve.

The notion of waypoints to which an agent is attracted reflects goal-oriented
rationality. An agents personality weights its response to the pheromones it senses
through a combining equation. In the simplest form, this combining equation is
just the dot product of the personality with the pheromone vector, though more
complex forms are sometimes useful. The agent evaluates the combining equation
for each movement or action alternative, and selects among the options on the
basis of these scores (usually stochastically, with a probability that is weighted by
the score).

3.2. Polyagents for Route Planning
1 Consider an unmanned air vehicle (UAV) that must find its way around a network
of surface-to-air missiles in order to reach a target. Fig. 2 shows one possible
configuration, in which a gauntlet of threats guards access to the target.

1This work was supported by the DARPA JFACC program, and reported in [26] and elsewhere.
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Figure 2. Path planning with threats (radar icons) and target
(house icon with ‘C’.)

A common mechanism in robotics for path planning in this kind of problem
is to define a loss function at each point in space on the basis of proximity to
threats and targets, integrate it to generate a potential field, and then climb the
fields gradient [24]. Such methods require centralized computation, and so do not
meet the applicability criterion for a distributed problem. They can also have
difficulty solving configurations such as Fig. 2. The field can easily achieve a local
maximum outside of the gauntlet, trapping the hill-climbing search prematurely.
In one experiment, researchers could only solve this configuration with standard
potential methods by first manually defining a waypoint at the entrance to the
gauntlet, and then planning the path in two segments, one from the base to the
waypoint and the other from the waypoint to the target. Our approach exploits
the recognized ability of stochasticity to break out of such local optima (as, for
example, in simulated annealing [10]).

This potential-based method is similar to the path-planning mechanisms used
in current raster-based GIS systems [6]. In general, these systems develop three
successive layers:

1. a “friction” or cost of traversal for each cell, analogous to the loss function
used in robotic navigation;

2. the accumulated cost to reach each cell from a specified origin (the minimal
path integral of the friction layer from the origin to each cell);

3. the least-cost direction from each cell toward the specified origin, developed
by moving perpendicularly to iso-cost contours in the accumulated cost layer.

In this form, the algorithm does not recognize direction-dependent differences in
the cost of crossing a cell. This difficulty has been addressed in various ways,
including graph-theoretic flow algorithms [28], and iteration [5].

In our approach, an avatar representing a vehicle plans its route by using
ghosts to explore alternatives. Both avatars and their ghosts follow the gradient
of a function computed over the pheromones in their vicinity. We will shortly de-
scribe the stochastic algorithm that ghosts use to follow this gradient. The ghosts
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on average tend to climb the pheromone gradient, but each explores a slightly dif-
ferent path. A polyagents multiple stochastic ghosts thus reason about alternative
possible experiences of the vehicle as it moves through space. The world is not de-
terministic, and plans (such as pre-planned paths) are rarely followed completely.
Particularly in military operations, it is a truism that “no plan survives contact
with the enemy.” A sudden wind shear may force an aircraft off-course. A robot
traveling along the contour of a slippery hill may slide off its planned trajectory.
A previously unknown adversary may begin attacking a convoy, requiring it to
detour. Such variations can transfer a moving entity from its pre-planned path to
a location from which the best path to the destination is no longer the same as the
one originally planned. The swarming ghost agents explore many such alternative
paths, and the density of the aggregate pheromone field that they generate is a
probabilistic balance between the theoretical optimal path and the variation that
may be forced on the entity as it travels.

Battlefield intelligence from sensors and reconnaissance activities causes the
instantiation of red2 agents representing known targets and threats. These agents
deposit pheromones on the places representing their location in the battlespace.
The field they generate is dynamic, since targets and threats can move, new ones
can be identified, or old ones can disappear or be destroyed. A blue avatar repre-
senting a UAV is associated with one place agent at any given time. It follows the
pheromone path created by its ghost agents.

Ghosts initially wander through the network of place agents, attracted to
pheromones deposited by targets and repelled by threat pheromones. Once they
find a target, they return over the network of place agents to the walker, depositing
pheromones that contribute to building the shortest, safest path to the target. The
basic pheromone flavors are RTarget (deposited by a Red target agent, such as the
Red headquarters), RThreat(deposited by a Red threat avatar, such as an air
defense installation), GTarget (deposited by a ghost that has encountered a target
and is returning to its blue avatar, forming the path to the target), and GNest
(deposited by a ghost that has left the blue avatar and is seeking a target).

A ghost agent chooses its next sector stochastically by spinning a roulette
wheel with six weighted segments (one for each of its six neighbors). The size of
each segment is a function of the strength of the pheromones and is designed to
guide the ghost according to the algorithm above. We experimented with several
different forms of the combining equation that generates the segment sizes. Manual
manipulation yielded the current form (for outbound ghosts):

Fn =
θ · RTargetn + γ · GTartgetn + β

(ρ · GNestn + β) · (Distn + ϕ)δ+α(RThreatn+1) + β
(3.1)

Fn is the resultant attractive force exerted by neighbor n and Dist is the distance
to the target if it is known. Table 1 lists the tuneable parameters in the equation
and the effect that increasing the parameter has on the ghost’s behavior.

2Following US military custom, we denote the adversary as red, friendly forces as blue, and
neutral units (such as civilians) as “green.”
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Parameter Effect on Ghost
α Increases threat avoidance farther from the target
δ Increases probability of ghosts moving towards a known

target in the absence of RTarget pheromone
ϕ Increases threat avoidance near target
ρ Increases ghost exploration (by avoiding GhostNest

pheromone)
θ Increases attraction to RTarget pheromone
β Avoids division by zero

Table 1. Tuneable parameters and their effects on path planning ghosts

Though this table provides general guidance to the practitioner, in practice,
the emergent dynamics of the interaction of ghost agents with their environment
makes it impossible to predict the behavior of the ghosts. Thus tuning the parame-
ters of this or any pheromone equation becomes a daunting task. We use synthetic
evolution to adjust these parameters in real time, as the system is operating [13,
25]. As the avatar emits new ghosts, it breeds them from the fittest ghosts that
have already returned. Fitness takes into account three characteristics of those
ghosts:

1. Ghosts have a fixed lifetime. Ghosts that complete their search faster have
longer to breed, and generate more offspring. Thus we favour ghosts that
found shorter paths.

2. Ghosts encounter threats during their search. We favour ghosts that found
safer paths.

3. Targets differ in value. We favour ghosts that found more valuable targets.

This system is extremely robust and adaptable [20], and has been deployed success-
fully on physical robots [26]. It can solve the scenario of Fig.1 (among many others).
One simulation study [23] compared a swarm of UAVs guided by these techniques
with manned reconnaissance aircraft in detecting and destroying surface-to-air
missile installations. The polyagent-based UAVs delivered a 3x improvement in
the number of targets detected, a 9x improvement in the system exchange ratio,
and an 11x improvement in the percentage of targets destroyed.

Polyagent route planning has several benefits in our application domain over
the classical potential field algorithm and its GIS analogues.

• The swarming approach is local. It touches only the cells that the ghost
agents actually visit, rather than computing fields across the entire space
being modelled.

• Because it is local, the swarming approach naturally supports a distributed
network of place agents (such as a network of unattended ground sensors
with limited communications range and bandwidth). It does not require syn-
chronized computation of successive layers of information, a feature of the
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potential field algorithm that makes it much better suited for centralized
computation.

• The swarming approach is dynamic. Ghosts are continually emitted by their
avatars as the avatars move, and any changes to the landscape during the
course of the mission automatically vary the portion of the path not yet tra-
versed. The potential field method plans a complete path based on a snapshot
of the terrain being traversed. If the landscape changes, the user must decide
whether to continue to use an old path that may no longer be optimal, or
recompute a new path.

• The swarming approach is stochastic. The polyagents ghosts explore a range
of alternative trajectories for the robot, reflecting the uncertainty of move-
ment in the physical world, and the path that is computed is a weighted
combination of these trajectories. The potential field method is determinis-
tic. It reflects the likely experience of the entity that is to follow the path only
in the single loss, cost, or friction value that it assigns to its initial raster,
and does not account for possible variation in the experience of the entity as
it follows the path.

3.3. Polyagents for Battle Planning

The previous application of polyagent combat simulation focused on developing a
plan for friendly forces in response to externally-provided intelligence about the
adversary. Polyagent simulation can also help us anticipate what the enemy will
do. In the planning application, the multiple ghosts explored different ways that
the future might evolve3. In anticipating the adversary, they also evolve a model
of the adversary against past observed behavior, and extrapolate that model for
generate predictions. We call this system “behavior evolution and extrapolation”,
or BEE.

The BEEs pheromone flavors include Alive and Dead pheromone for adver-
saries, friends, and civilians; weapons fire to indicate recent activity; key sites
(such as mosques or schools); mobility (reflecting the presence of roads); cover;
and level of estimated threat to friend or foe. The agents personality is a vec-
tor of seven values in [−1, +1]: ProtectRed (the adversary), ProtectBlue (friendly
forces), ProtectGreen (civilians), ProtectKeySites, AvoidCombat, AvoidDetection,
and Survive. Negative values reverse the sense suggested by the label. For exam-
ple, a negative value of Protect- Red indicates a desire to harm Red, and an agent
with a high positive value of ProtectRed will be attracted to RED-ALIVE, RED-
CASUALTY, and MOBILITY pheromone, and will move at maximum speed.

To predict an entitys behavior, we need to learn its personality vector, but
we have access only to its external behavior. Fig. 3 shows our approach. Each
active entity in the battlespace has a persistent avatar that continuously generates
a stream of ghost agents representing itself. Ghosts live on a timeline indexed by
τ that begins in the past and runs into the future. τ is offset with respect to the

3This work was originally supported by the DARPA RAID program, and reported in [14] and
elsewhere.
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current time t. The timeline is divided into discrete “pages”, each representing a
successive value of τ . The avatar inserts the ghosts at the insertion horizon. In one
instantiation of this system, the insertion horizon is at τ − t = −30, meaning that
ghosts are inserted into a page representing the state of the world 30 minutes ago.
At the insertion horizon, each ghosts behavioral parameters (desires and dispo-
sitions) are sampled from distributions to explore alternative personalities of the
entity it represents.

Figure 3. Behavioral Evolution and Extrapolation. Each avatar
generates (a) a stream of ghosts that sample the personality space
of its entity. They evolve (b, c) against the entitys recent observed
behavior. The fittest ghosts run into the future (d), and the avatar
analyzes their behavior (e) to generate predictions.

Each page between the insertion horizon and τ = t (“now”) records the his-
torical state of the world at the point in the past to which it corresponds. As
ghosts move from page to page, they interact with this past state, based on their
behavioral parameters. These interactions mean that their fitness depends not just
on their own actions, but also on the behaviors of the rest of the population, which
is also evolving. Because τ advances faster than real time, eventually τ = t (actual
time). At this point, each ghost is evaluated based on its location compared with
the actual location of its corresponding real-world entity.

The fittest ghosts have three functions.

1. The personality of each entitys fittest ghost is reported to the rest of the
system as the likely personality of that entity. This information can be used
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to detect the emotional state of individual entities [15], or to identify different
roles in the adversarial organization.

2. The fittest ghosts breed genetically and their offspring return to the insertion
horizon to continue the fitting process.

3. The fittest ghosts for each entity form the basis for a population of ghosts
that run past the avatar’s present into the future. Each ghost that runs into
the future explores a different possible future of the battle, analogous to
how some people plan ahead by mentally simulating different ways that a
situation might unfold. Analysis of the behaviors of these different possible
futures yields predictions.

Thus BEE has three distinct notions of time, all of which may be distinct from
real-world time.

1. Domain time t is the current time in the domain being modeled. If BEE is
applied to a real-world situation, this time is the same as real-world time. In
our experiments, we apply BEE to a simulated battle, and domain time is
the time stamp published by the simulator. During actual runs, the simulator
is often paused, so domain time runs slower than real time. When we replay
logs from simulation runs, we can speed them up so that domain time runs
faster than real time.

2. BEE time τ for a page records the domain time corresponding to the state
of the world represented on that page, and is offset from the current domain
time.

3. Shift time is incremented every time the ghosts move from one page to the
next. The relation between shift time and real time depends on the processing
resources available.

The distribution of each pheromone flavor over the environment forms a field that
represents some aspect of the state of the world at an instant in time. Each page
of the timeline is a complete pheromone field for the world at the BEE time τ
represented by that page. The behavior of the pheromones on each page depends
on whether the page represents the past or the future.

In pages representing the future (τ > t), the usual pheromone mechanisms ap-
ply. Ghosts deposit pheromone each time they move to a new page, and pheromones
evaporate and propagate from one page to the next.

In pages representing the past (τ ≤ t), we have an observed state of the real
world. This has two consequences for pheromone management. First, we will have
observed some of the entities, and can generate the pheromone fields directly from
their observed locations. Second, we can adjust the pheromone intensities based on
the changed locations of entities from page to page, so we do not need to evaporate
or propagate the pheromones.

Execution of the pheromone infrastructure proceeds on two time scales, run-
ning in separate threads.
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The first thread updates the book of pages each time the domain time ad-
vances past the next page boundary, executing this algorithm at each time step:

Replace ‘‘now + 1’’ page with page showing locations and
strengths of observed units;

Add empty page at the prediction horizon;

Discard the oldest page (since it has passed the
insertion horizon).

The second thread moves the ghosts from one page to the next, as fast as the
processor allows, executing the following algorithm at each step:

For each ghost reaching the τ = t page

Evaluate fitness

Remove or breed

Insert new ghosts from avatars and evolution at insertion horizon

Insert fittest ghosts at τ = t to run into the future

Remove ghosts that have reached the prediction horizon

For each ghost

Plan next actions based on pheromone field in current page

Move to next page

Execute planned actions (including pheromone deposits)

For each future page, evaporate and propagate pheromones

Ghost movement based on pheromone gradients is a simple process, so this
system can support realistic agent populations without excessive computer load.
In our current system, each avatar generates eight ghosts per shift. Since there
are about 50 entities in the battlespace (about 20 units each of Red and Blue and
about 5 of Green), we must support about 400 ghosts per page, or about 24000
over the entire book.

How fast a processor do we need? Let p be the real-time duration of a page in
seconds. If each page represents 60 seconds of domain time, and we are replaying
a simulation at 2x domain time, p = 30. Let n be the number of pages between
the insertion horizon and τ = t. In our current system, n = 30. Then a shift rate
of n/p shifts per second will permit ghosts to run from the insertion horizon to the
current time at least once before a new page is generated. Empirically, this level is
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a lower bound for reasonable performance, and easily achievable on stock WinTel
platforms.

The flexibility of the BEEs pheromone infrastructure permits the integration
of numerous information sources as input to our characterizations of entity per-
sonalities and predictions of their future behavior. Our current system draws on
three sources of information, but others can readily be added.

Observations from the real world are encoded into the pheromone field each
increment of BEE time, as a new “current page” is generated. Statistical tech-
niques4 estimate the level of threat to each force (Red or Blue), based on the
topology of the battlefield and the known disposition of forces. For example, a
broad open area with no cover is threatening, especially if the opposite force
occupies its margins. The results of this process are posted to the pheromone
pages as “RedThreat” pheromone (representing a threat to red) and “BlueThreat”
pheromone (representing a threat to Blue).

While plan recognition is not sufficient for effective prediction, it is a valuable
input. We dynamically configure a Bayes net based on heuristics to identify the
likely goals that each entity may hold5. The destinations of these goals function as
“virtual pheromones”. Ghosts include their distance to such points in their action
decisions, achieving the result of gradient following without the computational
expense of maintaining a pheromone field.

The BEE technology performs impressively compared both with human and
alternative computational predictors [14].

In one series of wargames, one of the operators controlling a conventional
simulation used to evaluate the consequences of players decisions superimposed a
coward personality on two units. If they were in a threatening situation, they would
ignore the commands issued by the decision-makers and instead flee. Experienced
human observers tried to identify which units were the cowards. Fig. 4 shows that
our polyagent system was able to identify the cowards as accurately as experienced
human officers, but more rapidly.

Fig. 5 shows the superior accuracy of our predictions of the positions of Red
units compared with those of human observers. The Wilcoxon test shows that the
difference between the H15 scores is significant at the 99.76% level, while that
between the H0 scores is significant at more than 99.999%. Fig. 6 shows that
our predictions are also more accurate than those produced by a game-theoretic
predictor [29].

4This process, known as SAD (Statistical Anomaly Detection), was developed by our colleagues
Rafael Alonso, Hua Li, and John Asmuth at Sarnoff Corporation. Alonso and Li are now at SET
Corporation.
5This process, known as KIP (Knowledge-based Intention Projection), was developed by our
colleagues Paul Nielsen, Jacob Crossman, and Rich Frederiksen at Soar Technology.
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Figure 4. BEE vs. Human Emotion Detection.

Figure 5. Box-and-whisker plots of RAID (BEE) and Staff pre-
dictions at 0 and 15 minutes Horizons. Y-axis is CEP radius in
meters; lower values indicate greater accuracy.

4. Discussion

Polyagent technology is able to address the challenges of agent-based combat mod-
eling, and offers several promising directions for future research.

4.1. Meeting the Challenges

We identified several challenges faced by current MAS techniques in combat mod-
eling. Polyagents address all of them.
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Figure 6. Median errors for BEE vs. Linguistic Geometry on
each run.Squares are Defend missions, triangles are Move mis-
sions, diamonds are Attack missions.

Fitting. In both path planning and battle prediction, we have successfully used
synthetic evolution to breed agents rather than configure them manually. Un-
like most applications of synthetic evolution, this process is applied on-line,
while the system runs [13]. This process does not require the laborious knowl-
edge engineering needed for conventional agent design, and has the added
benefit of adapting automatically to changes in the environment. Evolution
is a population-based learning mechanism, in which different individuals sam-
ple different points in the search space to discover a good configuration. It
can be applied to conventional agent systems only through time-consuming
off-line simulations. The polyagent model provides a population of agents
(the ghosts) all representing the same entity, thus enabling the evolutionary
search to proceed while the system runs.

Closure. Our work in battle prediction uses a swarming simulation to integrate
inputs from a Bayesian plan recognition system and a statistical threat re-
gion detector, as well as to learn agent personalities and predict their future
behavior. In principle, this experience suggests that this simulation technique
can be extended to serve as a more generic mechanism for integrating multiple
modelers, a potential that we are evaluating in further ongoing work.

Dynamism. The simplicity of stigmergic coordination permits a polyagent sim-
ulation to execute extremely rapidly. We can run tens of thousands of ghosts
on a stock desktop Windows computer fast enough to evolve them and make
predictions while keeping up with the real world. In our battle prediction ex-
periments, we receive snapshots of the world every 20 seconds from a separate
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simulation, which in practical application would be replaced by battlefield
sensors.

Singularity. The multiple ghosts in each polyagent concurrently explore mul-
tiple possible futures. Each of a polyagents ghosts can interact, through
pheromones, with many of the ghosts of other polyagents, in effect sam-
pling multiple alternative interactions in a single run. As a result, a single
polyagent run explores multiple possible evolutions of the world, giving a
better sense of how representative its outcome is than a conventional MAS
with only one agent per entity.

4.2. Further Extensions

The success we have enjoyed with polyagents (in industrial and intelligence ap-
plications as well as in military simulation) encourages us to develop and extend
the technique. Three of these extensions are the use of a non-spatial environment,
sensor planning, and generalization of the architectures application to integrating
multiple reasoners.

Stigmergic mechanisms such as those used by a polyagents ghosts require
a structured environment in which agents can have a location and with which
they can interact locally. In both of the applications discussed in this chapter,
the environment is spatial, a regular lattice of place agents that tiles the two-
dimensional manifold of the earths surface. Many domains would profit from the
ability to develop plans and make predictions over non-spatial structures such
as semantic networks and social networks. Unlike lattices, these networks exhibit
small-world structure [33], in which distances are not well defined. In spite of this
limitation, we have had encouraging results in preliminary experiments in such
topologies.

The plans and predictions generated by our systems are currently used by
humans. A natural next step is to integrate our reasoning into a closed-loop system.
For example, predictions on where the adversary might be could automatically
deploy sensors in that area, and feedback from those sensors would then update
the predictor.

Perhaps the most broadly applicable extension is generalizing the notion of
using a simulation to integrate multiple reasoners. Many reasoners can express
their results either through a field over some topology, or by describing the behavior
of some process executing over the topology. The first class of results lends itself
to representation as a pheromone field, while the second can be translated directly
into ghost personalities. The BEEs evolutionary loop can automatically assess the
usefulness of such results in modeling observed behavior, integrating them into an
overall result and adjusting the relative prominence given to the various inputs as
the external situation evolves.
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Using Multi-Agent Teams to Improve the
Training of Incident Commanders

Nathan Schurr and Milind Tambe

Abstract. The DEFACTO system is a multi-agent based tool for training inci-
dent commanders for large scale disasters. While this system is currently used
for the command of a disaster response scenario, the lessons learned and the
methods used to approach this challenging domain apply directly to military
applications such as the command and control of troops. In this paper, we
highlight some of the lessons that we have learned from our interaction with
the Los Angeles Fire Department (LAFD) and how they have affected the
way that we continued the design of our training system. These lessons were
gleaned from LAFD feedback and initial training exercises and they include:
system design, visualization, improving trainee situational awareness, adjust-
ing training level of difficulty and situation scale. We have taken these lessons
and used them to improve the DEFACTO system’s training capabilities. We
have conducted initial training exercises to illustrate the utility of the system
in terms of providing useful feedback to the trainee.

1. Introduction

Recent events around the US have served to reaffirm the need for emergency re-
sponse agencies to be better prepared for large scale disasters. Both natural and
man-made (terrorism) disasters are growing in scale, however the response to these
incidents continues to be managed by a single person, namely the incident com-
mander. The incident commander must monitor and direct the entire event while
maintaining complete responsibility. Because of this, incident commanders must
start to be trained to handle these large scale events and assist in the coordination
of the responding team.

This research was supported by the United States Department of Homeland Security through
the Center for Risk and Economic Analysis of Terrorism Events (CREATE) under grant number
N00014-05-0630. However, any opinions, findings, and conclusions or recommendations in this
document are those of the authors and do not necessarily reflect views of the United States
Department of Homeland Security.
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In order to fulfill this need and leverage the advantages of multi-agents, we
have continued to develop the DEFACTO system (Demonstrating Effective Flexi-
ble Agent Coordination of Teams via Omnipresence). DEFACTO is a multi-agent
based tool for training incident commanders for large scale disasters (man-made
or natural). While this system is currently used for the command of a disaster
response scenario, the lessons learned and the methods used to approach this chal-
lenging domain apply directly to military applications such as the command and
control of troops. Similarly, military troops often have to coordinate among these
same kinds of dynamics that arise from tackling man-made or natural disasters.

Our system combines a high fidelity simulator, a redesigned human interface,
and a multi-agent team driving all of the behaviors. Training incident commanders
provides a dynamic scenario in which decisions must be made correctly and quickly
because human safety is at risk. When using DEFACTO, incident commanders
have the opportunity to see the disaster in simulation and the coordination and
resource constraints unfold so that they can be better prepared when commanding
over an actual disaster. Applying DEFACTO to disaster response aims to benefit
the training of incident commanders in the fire department.

With DEFACTO, our objective is to both enable the human to have a clear
idea of the team’s state and improve agent-human team performance. We want
DEFACTO agent-human teams to better prepare firefighters for current human-
only teams. We believe that by leveraging multi-agents, DEFACTO will result in
better disaster response methods and better incident commanders.

Previously, we have discussed building our initial prototype system, DE-
FACTO [8]. Recently, the Los Angeles Fire Department (LAFD) have begun to
evaluate the DEFACTO system. In this paper, we highlight some of the lessons
that we have learned from our interaction with the LAFD and how they have
affected the way that we continued to design of our training system. These lessons
were gleaned from LAFD feedback and initial training exercises.

The lessons learned from the feedback from the LAFD include: system design,
visualization, improving trainee situational awareness, adjusting training level of
difficulty and situation scale. We have taken these lessons and used them to im-
prove the DEFACTO system’s training capabilities.

We have also performed initial training exercise experiments to illustrate
the utility of the system in terms of providing useful feedback to the trainee.
We ended up finding that allowing more fire engines to be at the disposal of the
incident commander sometimes not only didn’t improve, but rather worsened team
performance. There were even some instances in which the agent team would have
performed better had the team never listened to human advice at all. We also
provide analysis of such behaviors, thereby illustrating the utility of DEFACTO
resulting from the feedback given to trainees.
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(a) Current Incident Commander
Training Exercise

(b) Fire Captain Roemer using the DE-
FACTO training system

Figure 1. Old vs. New training methods

2. Motivation

In this section, we will first start with an explanation of the current methods for
training that the LAFD currently use. Then we explain some of the advantages
that our multi-agent approach has over these methods.

The incident commander’s main duties during a fire shoulder all responsibility
for the safety of the firefighters. In order to do this, the incident commander must
have constant contact with the firefighters and have a complete picture of the entire
situation. The incident commander must make certain that dangerous choices are
avoided and the firefighters are informed and directed as needed.

We were allowed to observe a Command Post Exercise that simulated the
place where the incident commander is stationed during a fire (see Fig. 1(a)). The
Incident commander has an assistant by his side who keeps track on a large sheet
of paper where all of the resources (personnel and equipment) are located. A sketch
of the fire is also made on this sheet, and the fire and fire engines’ location is also
managed.

The Command Post is currently simulated by projecting a single static image
of a fire in an apartment. In the back of the room, several firefighters are taken off
duty in order to play the role of firefighters on the scene. They each communicate on
separate channels over walkie talkies in order to coordinate by sharing information
and accepting orders. The fire spreading is simulated solely by having one of the
off-duty firefighters in the back speaking over the walkie talkie and describing the
fire spreading.

The LAFD’s current approach, however, has several limitations. First, it re-
quires a number of officers to be taken off duty, which decreases the number of
resources available to the city for a disaster during training. Second, the disaster
conditions created are not accurate in the way that they appear or progress. Since
the image that the incident commander is seeing is static, there is no information
about state or conditions of the fire that can be ascertained from watching it,
which is contrary to the actual scene of a disaster response. Furthermore, the fire’s
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behavior is determined by the reports of the acting fire fighters over the walkie
talkie, which at times might not be a plausible progression of fire in reality. Third,
this method of training restricts it to a smaller scale of fire because of the limited
personnel and rigid fire representation.

Our system aims to enhance the training of the incident commanders (see
Fig. 1(b)). Our approach allows for training to not be so personnel heavy, because
fire fighter actors will be replaced by agents. By doing this we can start to train
incident commanders with a larger team. Through our simulation, we can also
start to simulate larger events in order to push the greater number of available
resources to their limit. Also, by simulating the fire progression, we can place
the incident commander in a more realistic situation and force them to react to
realistic challenges that arise.

3. System Architecture

In this section, we will describe the technologies used in three major components
of DEFACTO: the Omni-Viewer, proxy-based team coordination, and proxy-based
adjustable autonomy. The Omni-Viewer is an advanced human interface for inter-
acting with an agent-assisted response effort. The Omni-Viewer has been intro-
duced before [8], however it has since been redesigned by incorporating lessons
learned by interactions with the LAFD. The Omni-Viewer now provides both
global and local views of an unfolding situation, allowing a human decision-maker
to obtain precisely the information required for a particular decision. A team of
completely distributed proxies, where each proxy encapsulates advanced coordina-
tion reasoning based on the theory of teamwork, controls and coordinates agents in
a simulated environment. The use of the proxy-based team brings realistic coordi-
nation complexity to the training system and allows a more realistic assessment of
the interactions between humans and agent-assisted response. These same proxies
also enable us to implement the adjustable autonomy necessary to balance the
decisions of the agents and human. This architecture has been described in a more
extended fashion in [8]; we present a brief report here.

DEFACTO operates in a disaster response simulation environment. The sim-
ulation environment itself is provided by the RoboCup Rescue Simulator [3]. To
interface with DEFACTO, each fire engine is controlled by a proxy in order to
handle the coordination and execution of adjustable autonomy strategies. Conse-
quently, the proxies can try to allocate fire engines to fires in a distributed manner,
but can also transfer control to the more expert user (incident commander). The
user can then use the Omni-Viewer to allocate engines to the fires that he has
control over. In our scenario, several buildings are initially on fire, and these fires
spread to adjacent buildings if they are not quickly contained. The goal is to have
a human interact with the team of fire engines in order to save the greatest number
of buildings. Our overall system architecture applied to disaster response can be
seen in Fig. 2.



Using Multi-Agent Teams to Improve Training of Incident Commanders 155

Figure 2. System Architecture

3.1. Omni-Viewer

Our goal of allowing fluid human interaction with agents requires a visualization
system that provides the human with a global view of agent activity as well as
shows the local view of a particular agent when needed. Hence, we have developed
an omnipresent viewer, or Omni-Viewer, which will allow the human user diverse
interaction with remote agent teams. While a global view is obtainable from a
two-dimensional map, a local perspective is best obtained from a 3D viewer, since
the 3D view incorporates the perspective and occlusion effects generated by a
particular viewpoint.

To address our discrepant goals, the Omni-Viewer allows for both a conven-
tional map-like top down 2D view and a detailed 3D viewer. The viewer shows
the global overview as events are progressing and provides a list of tasks that the
agents have transferred to the human, but also provides the freedom to move to
desired locations and views. In particular, the user can drop to the virtual ground
level, thereby obtaining the perspective (local view) of a particular agent. At this
level, the user can fly freely around the scene, observing the local logistics involved
as various entities are performing their duties. This can be helpful in evaluating the
physical ground circumstances and altering the team’s behavior accordingly. It also
allows the user to feel immersed in the scene where various factors (psychological,
etc.) may come into effect.
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3.2. Proxy: Team Coordination

A key hypothesis in this work is that intelligent distributed agents will be a key ele-
ment of a disaster response. Taking advantage of emerging robust, high bandwidth
communication infrastructure, we believe that a critical role of these intelligent
agents will be to manage coordination between all members of the response team.
Specifically, we are using coordination algorithms inspired by theories of teamwork
to manage the distributed response [6]. The general coordination algorithms are
encapsulated in proxies, with each team member having its own proxy which rep-
resents it in the team. The current version of the proxies is called Machinetta [7]
and extends the earlier Teamcore proxies [5]. Machinetta is implemented in Java
and is freely available on the web. Notice that the concept of a reusable proxy
differs from many other “multi-agent toolkits” in that it provides the coordination
algorithms, e.g., algorithms for allocating tasks, as opposed to the infrastructure,
e.g., APIs for reliable communication. These proxies and their architecture have
been discussed in detail in [8].

3.3. Proxy: Adjustable Autonomy

One key aspect of the proxy-based coordination is “adjustable autonomy.” Ad-
justable autonomy refers to an agent’s ability to dynamically change its own au-
tonomy, possibly to transfer control over a decision to a human. Previous work
on adjustable autonomy could be categorized as either involving a single person
interacting with a single agent (the agent itself may interact with others) or a
single person directly interacting with a team. In the single-agent single-human
category, the concept of flexible transfer-of-control strategy has shown promise
[6]. A transfer-of-control strategy is a preplanned sequence of actions to transfer
control over a decision among multiple entities. For example, an AH1H2 strategy
implies that an agent (A) attempts a decision and if the agent fails in the decision
then the control over the decision is passed to a human H1, and then if H1 cannot
reach a decision, then the control is passed to H2. Since previous work focused on
single-agent single-human interaction, strategies were individual agent strategies
where only a single agent acted at a time.

An optimal transfer-of-control strategy optimally balances the risks of not
getting a high quality decision against the risk of costs incurred due to a delay
in getting that decision. Flexibility in such strategies implies that an agent dy-
namically chooses the one that is optimal, based on the situation, among multiple
such strategies (H1A, AH1, AH1A, etc.) rather than always rigidly choosing one
strategy. The notion of flexible strategies, however, has not been applied in the
context of humans interacting with agent-teams. Thus, a key question is whether
such flexible transfer of control strategies are relevant in agent-teams, particularly
in a large-scale application such as ours.

DEFACTO has introduced the notion of team-level adjustable autonomy
strategies. For example, rather than transferring control from a human to a single
agent, a team-level strategy could transfer control from a human to any one of
the members of the agent-team. Consequently, a distinct transfer of control may
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occur for each team task that can transfer between the human and an agent team-
mate. Concretely, each proxy is provided with all strategy options; the key is to
select the right strategy given the situation. An example of a team level strategy
would combine AT Strategy and H Strategy in order to make AT H Strategy. The
default team strategy, AT , keeps control over a decision with the agent team for
the entire duration of the decision. The H strategy always immediately transfers
control to the human. AT H strategy is the conjunction of team level AT strategy
with H strategy. This strategy aims to significantly reduce the burden on the user
by allowing the decision to first pass through all agents before finally going to the
user, if the agent team fails to reach a decision.

4. Lessons Learned from Initial Deployment Feedback

Through our communication with strategic training division of the LAFD (see
Fig. 1(b)), we have learned a lot of lessons that have influenced the continuing
development of our system.

4.1. Adjustable Autonomy in Practice

Our most important lesson learned from talking with the LAFD and seeing their
exercises is that adjustable autonomy correctly maps over to what happens in the
actual disaster response. The adjusting of autonomy is easily seen as the event
scales up and down in size and intensity. For a smaller scale response to, for
example, a residential single story house fire, the incident commander will usually
make all allocation decisions and thus practice the A strategy. For a larger scale
event, a lot of the burden of most allocations are left to the team and other entities
in the hierarchy, while the Incident Commander is left to concentrate on the bigger
picture. In this case, the Incident commander is notified if a specifically problematic
situation occurs, for example not enough resources to attack a particular fire. This
strategy is essentially what we refer to as AT H in our experiments, in which, the
team first tries to assign someone to the fire with the resources they have, and if not
able to then pass it off to the Incident Commander for help. If the situation were
to die down and the size of the team were to decrease, more autonomy would be
shifted to the Incident Commander due to an increased ability to make allocations
for the team.

It is very helpful to know that these strategies not only are capable of making
our agent teams perform well and interface with the incident commander, but that
they also reflect similar strategies that current firefighting teams are using.

4.2. Questioning the Incident Commander

Another lesson that relates to our agent design is that we learned how a team on
the ground may possibly not agree with the command (allocation to a fire) given
by the incident commander. This will usually be due to the fact that the incident
commander has a broad global view of the disaster, whereas the agents each have
a more detailed local view. This mismatch in information can, at times, lead to
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(a) Local Perspective (b) Global Perspective

Figure 3. Local vs. Global Perspectives in the Omni-Viewer

detrimental team allocations. In an actual disaster response, this is handled by the
allocated team both questioning the order and providing the incident commander
with the missing information.

This has led us to consider a team of agents that can disagree with human
inputs. This issue has not been addressed in our implementation as of yet, but it
is relevant given the results that will be presented later in the training exercise
experiments. There are experimental settings in which the team performance would
have been improved, had they rejected the incident commander’s input.

4.3. Perspective

Just as in multi-agent systems, the incident commander must overcome the chal-
lenge of managing a team that each possess only a partial local view. This is
highlighted in fighting a fire by incident commanders keeping in mind that when
a firefighter arrives at a building that is on fire, there are five views to that fire (4
sides of the building and the rooftop). Only by taking into account what is hap-
pening on all five sides of the fire, can the fire company make an effective decision
on how many people to send where. Because of this, a local view (see Fig. 3(a))
can augment the global view (see Fig. 3(b)) and becomes helpful in determining
the local perspectives of team members. For example, by taking the perspective of
a fire company in the back of the building, the incident commander can be aware
that they might not see the smoke from the second floor, which is only visible from
the front of the building. The incident commander can then make a decision to
communicate that to the fire company or make an allocation accordingly.

The 3D perspective of the Omni-Viewer was initially thought to be an ex-
ample of a futuristic vision of the actual view given to the incident commander.
But after allowing the fire fighters to look at the display, they remarked, that they
have such views available to them already, especially in large scale fires (the very
fires we are trying to simulate). At the scene of these fires often a news helicopter
is at the scene and the incident commander can patch into the feed and display
it at his command post. Consequently our training simulation can already start
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(a) Old Fire (b) New Smoke

Figure 4. Improvement in fire visualization

to prepare the incident commander to incorporate a diverse array of information
sources.

4.4. Fire Behavior

We also learned how important smoke and fire behavior is to the firefighters in
order to affect their decisions. Upon our first showing of initial prototypes to the
incident commanders, they looked at our simulation, with flames swirling up out
of the roof (see Fig. 4(a)). We artificially increased fire intensity in order to show
off the fire behavior and this hampered their ability to evaluate the situation and
allocations. They all agreed that every firefighter should be pulled out because that
building is lost and might fall at any minute! In our efforts to put a challenging
fire in front of them to fight, we had caused them to walk away from the training.
Once we start to add training abilities, such as to watch the fire spread in 3D,
we have to also start to be more aware of how to accurately show a fire that the
incident commander would face. We have consequently altered the smoke and fire
behavior (see Fig. 4(b)). The smoke appears less “dramatic” to a lay person than
a towering inferno, but it provides a more effective training environment.

4.5. Gradual Training

Initially, we were primarily concerned with changes to the system that allowed
for a more accurate simulation of what the incident commander would actually
see. Alternatively, we have also added features, not because of their accuracy, but
also to aid in training by isolating certain tasks. Very often in reality and in our
simulations, dense urban areas obscure the ability to see where all of the resources
(i.e., fire engines) are and prevent a quick view of the situation (see Fig. 5(a)).
To this aim, we have added a new mode using the 3D, but having the buildings
each have no height, which we refer to as Flat World (see Fig. 5(b)). By using
this flat view, the trainee is allowed to concentrate on the allocation of resources,
without the extra task of developing an accurate world view with obscuring high
rise buildings.
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(a) Normal (b) Flat World

Figure 5. Improvement in locating resources (fire engines and ambulances)

Figure 6. Selecting for closer look at a Fire Engine.

4.6. User Intent

A very important lesson that we learned from the LAFD, was that the incident
commander cannot be given all information for the team and thus the human does
not know all about the status of the team members and vice versa. Consequently,
this lack of complete awareness of the agent team’s intentions can lead to some
harmful allocations by the human (incident commander). In order for information
to be selectively available to the incident commander, we have allowed the incident
commander to query for the status of a particular agent. Fig. 6 shows an arrow
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(a) Subject 1 (b) Subject 2 (c) Subject 3

Figure 7. Performance.

above the Fire Engine at the center of the screen that has been selected. On
the left, the statistics are displayed. The incident commander is able to select a
particular fire engine and find out the equipment status, personnel status, and the
current tasks that are being performed by the fire fighters aboard that engine. This
detailed information can be accessed if desired by the incident commander, but
is not thrown to the screen by all agents, in order to not overwhelm the incident
commander.

4.7. Scale

In addition, we have also learned of new challenges that we are currently attempt-
ing to tackle by enhancing the system. One of the biggest challenges in order to
start simulating a large urban fire is the sheer scale of the resources that must be
managed. According to the fire captains, in order to respond to a single high rise
building with a few floors on fire, roughly 200 resources (fire engines, paramedics
etc.) would need to be managed at the scene. Coordinating such a large number
of agents on a team is a challenge. Also, as the incident scales to hundreds of
resources, the incident commander ends up giving more autonomy to the team or
else face being overwhelmed. We believe that adjustable autonomy will start to
play a bigger and more essential roll in allowing for the incident commander to
monitor the larger situations.

5. Lessons Learned from Training Exercises

In this section, we will present results and analysis from a set of training exer-
cises. Our initial experimental results have been published earlier [8], however the
analysis presented here is new.

5.1. Training Exercises

In order to study the potential of DEFACTO, we performed some training exercises
with volunteers. These initial experiments showed us that humans can both help
and hurt the team performance. The key point is that DEFACTO allows such
experiments with training exercises and more importantly allows for analysis and
feedback regarding the exercises. Thus trainees can gain useful insight as to why
their decisions led to problematic/beneficial situations.
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(a) Subject 1 (b) Subject 2 (c) Subject 3

Figure 8. Amount of agents assigned per fire.

The results of our training exercise experiments are shown in Fig. 7, which
shows the results of subjects 1, 2, and 3. Each subject was confronted with the task
of aiding fire engines in saving a city hit by a disaster. For each subject, we tested
three strategies, specifically, H , AH (individual agent, then human) and AT H
(agent team, then human); their performance was compared with the completely
autonomous AT strategy. AH is an individual agent strategy, tested for comparison
with AT H , where agents act individually, and pass those tasks to a human user
that they cannot immediately perform. Each experiment was conducted with the
same initial locations of fires and level of building damage. For each strategy that
we tested, we varied the number of fire engines between 4, 6 and 10. Each chart
in Fig. 7 shows the varying number of fire engines on the x-axis, and the team
performance in terms of numbers of buildings saved on the y-axis. For instance,
strategy AT saves 50 buildings with 4 agents. Each data point on the graph is an
average of three runs. Each run itself took 15 minutes, and each user was required
to participate in 27 experiments, which together with 2 hours of getting oriented
with the system, equates to about 9 hours of experiments per volunteer.

Fig. 7 enables us to conclude the following:

• Human involvement with agent teams does not necessarily lead to improve-
ment in team performance. Contrary to expectations and prior results, hu-
man involvement does not uniformly improve team performance, as seen by
human-involving strategies performing worse than the AT strategy in some
cases. For instance, for subject 3 AH strategy provides higher team perfor-
mance than AT for 4 agents, yet at 10 agents human influence is clearly not
beneficial. Deeper assessment of what lead to this is found in Section 5.2.

• Providing more agents at a human’s command does not necessarily improve
the agent team performance. As seen for subject 2 and subject 3, increas-
ing agents from 4 to 6 given AH and AT H strategies is seen to degrade
performance. In contrast, for the AT strategy, the performance of the fully
autonomous agent team continues to improve with additions of agents, thus
indicating that the reduction in AH and AT H performance is due to human
involvement. As the number of agents increase to 10, the agent team does
recover.

• Complex team-level strategies are helpful in practice: AT H leads to improve-
ment over H with 4 agents for all subjects, although surprising domination
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of AH over AT H in some cases indicates that AH is still a useful strategy
to have available in a team setting and should not be completely replaced by
AT H .

Note that the phenomena described range over multiple users, multiple runs,
and multiple strategies. Unfortunately, the strategies including the humans and
agents (AH and AT H) for 6 agents show a noticeable decrease in performance
for subjects 2 and 3 (see Fig. 7). It would be useful to understand which factors
contributed to this phenomenon from a trainee’s perspective.

5.2. Analysis

We decided to perform a more in depth analysis of what exactly was causing
the degrading performance when 6 agents were at the disposal of the incident
commander. Fig. 8 shows the number of agents on the x-axis and the average
amount of fire engines allocated to each fire on the y-axis. AH and AT H for 6
agents result in significantly less average fire engines per task (fire) and therefore
lower average. Another interesting thing that we found was that this lower average
was not due to the fact that the incident commander was overwhelmed and making
less decisions (allocations). Fig. 9(a), 9(b), and 9(c) all show how the number of
buildings attacked do not go down in the case of 6 agents, where poor performance
is seen.

(a) Subject 1 (b) Subject 2 (c) Subject 3

Figure 9. Number of buildings attacked.

Fig. 10 and 11 show the number of agents assigned to a building on the x-
axis and the probability that the given building would be saved on the y-axis. The
correlation between these values demonstrate the correlation between the number
of agents assigned and the quality of the decision.

We can conclude from this analysis that the degradation in performance
occurred at 6 agents because fire engine teams were split up, leading to fewer
fire-engines being allocated per building on average. Indeed, leaving fewer than 3
fire engines per fire leads to a significant reduction in fire extinguishing capability.
We can provide such feedback of overall performance, showing the performance
reduction at six fire engines, and our analysis to a trainee. The key point here is
that DEFACTO is capable of allowing for such exercises, and their analysis, and
providing feedback to potential trainees, so they improve their decision making,
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Figure 10. AH for all subjects.

Figure 11. ATH for all subjects.

Thus, in this current set of exercises, trainees can understand that with six fire
engines, they had managed to split up existing resources inappropriately.
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6. Related Work and Summary

In terms of related work, it is important to mention products like JCATS [9] and
EPICS [4]. JCATS represents a self-contained, high-resolution joint simulation
in use for entity-level training in open, urban and subterranean environments.
Developed by Lawrence Livermore National Laboratory, JCATS gives users the
capability to detail the replication of small group and individual activities during
a simulated operation. At this point however, JCATS cannot simulate agents. Fi-
nally, EPICS is a computer-based, scenario-driven, high-resolution simulation. It is
used by emergency response agencies to train for emergency situations that require
multi-echelon and/or inter-agency communication and coordination. Developed by
the U.S. Army Training and Doctrine Command Analysis Center, EPICS is also
used for exercising communications and command and control procedures at mul-
tiple levels. Similar to JCATS however, EPICS does not currently allow agents to
participate in the simulation. More recently multi-agents have been successfully
applied to training navy tactics [10] and teams of Uninhabited Air Vehicles [1, 2].
Our work is similar to these in spirit, however our focus and lessons learned are
based on the train of incident commanders in disaster rescue environments.

In summary, in order to train incident commanders for large scale disasters,
we have been working on the DEFACTO training system. This multi-agent system
tool has begun to be used by fire captains from the Los Angeles Fire Department.
We have learned some valuable lessons from their feedback and the analysis of some
initial training exercise experiments. These lessons were gleaned from LAFD feed-
back and initial training exercises. The lessons learned from the feedback from the
LAFD include: system design, visualization, improving trainee situational aware-
ness, adjusting training level of difficulty and situation scale. We have taken these
lessons and used them to improve the DEFACTO system’s training abilities. We
have conducted initial training exercises to illustrate the utility of the system in
terms of providing useful feedback to the trainee. Through DEFACTO, we hope to
improve training tools for and consequently improve the preparedness of incident
commanders.
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