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Preface

ABOUT THE SUBJECT

In the globalization era, the production environment of all countries comes to the stage of realizing the 
real prosperity. With the growth of markets towards globalization, all the firms need to deal with the chal-
lenges facing it. This has resulted in the materialization of automated industries with high performance 
of manufacturing systems. Traditional manufacturing systems are not able to satisfy these requirements. 
In the global market there is an increasing trend toward achieving a higher level of integration between 
designed and manufacturing functions in industries to make the operations more efficient and productive. 
Operations management needs to reflect on these challenges. “Cellular Manufacturing Systems” (CMS) 
is one among the emerging trends, which can be implemented without losing much of production run 
time, with low set up time, low work-in-process inventory (WIP), short manufacturing lead time, high 
machine utilization, and high quality of products.

Manufacturing systems traditionally fall into three categories of layouts: job shop production, batch 
production, and mass production. Obviously, a batch production presents the topical problem for layout 
designers and manufacturing mangers. Since, in batch production the parts move in batches from one 
process to another process, each part in a batch must wait for the remaining parts in its batch to complete 
processing before it moves to the next stage. This will lead to increased production time, high level of 
in-process inventory, high production cost, and low production rate.

Taking this into account, this book is providing further understanding the subject with more fruitful 
ideas to academic researchers and managers of organizations in the pipeline.

ORGANIZATION OF THE BOOK

This book is compilation of 20 contributions to the field of operations management, especially of ad-
vance topics related to the layout design for manufacturing environments and production planning and 
scheduling in cellular manufacturing environment. These 20 chapters are written by a group of 43 authors 
from prestigious universities and firms.

“Operations Management Research and Cellular Manufacturing: Innovative Methods and Ap-
proaches” is organized in three sections.

Section 1: “Methods and Trends in Manufacturing Cell Formation” presents selected problems in 
plant layout designing. Decision making process in selecting the plant layout design is considered to be 
one of critical steps in a development of cellular manufacturing systems. Among other chapters in this 
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sections are those devoted to the development and comparison of optimization algorithms and techniques 
for cell formation problems.

Section 2: “Production Planning and Scheduling in Cellular Manufacturing Environment” offers some 
advanced tools and approaches in this domain. It is not by chance that classical theories of Scientific 
Management give the first consideration to production scheduling. Equally, the distributed scheduling 
for cellular manufacturing systems plays important role in achieving the effectiveness and success of 
cellular manufacturing.

Section 3: “Related Issues to Cellular Manufacturing Systems” covers a wider spectrum of viewpoints 
by specialists in their respective fields. In this section some aspects of flexible manufacturing cells and 
robotic manufacturing cells, apart from other objects of interest, are discussed. These forms of cellular 
manufacturing, in addition to other advantages, observe principles of agile manufacturing and thereby 
help to satisfy the growing requirements of customization.

The first section includes 9 chapters summarized below.
Chapter 1, “Developments in Modern Operation Management and Cellular Manufacturing” by 

Vladimír Modrák and Pavol Semančo, maps the major publications/citations in these fields and their 
evolving research utility over the decades. This survey traces modern concepts and tools of operations 
management and cellular manufacturing in a successive order. Finally, the relationships between concept 
or/and tools in both areas that are empirically considered as consequences or coincidences present an 
object of interest.

Chapter 2, “Decision Support Framework for the Selection of a Layout Type” by Jannes Slomp and 
Jos A. C. Bokhorst, presents a decision support framework based on the analytic hierarchy process ap-
proach for the selection of a manufacturing layout. The value of the framework is illustrated by means 
of a case application.

Chapter 3, “Comparison of Connected vs. Disconnected Cellular Systems: A Case Study” by Gürsel 
A. Süer and Royston Lobo, discusses differences between connected vs. disconnected cellular systems 
with respect to average flowtime and work-in-process inventory under make-to-order demand strategy. 
The study was performed in a medical device manufacturing company.

Chapter 4, “Design of Manufacturing Cells Based on Graph Theory” by José Francisco Ferreira 
Ribeiro, offers a comparative study between sequential heuristics, simulated annealing, tabu search 
and threshold algorithm for graph coloring and its application for solving the problem of the design 
of manufacturing cells in a job shop system production. The results obtained with these algorithms on 
several examples found in the literature are consistently equivalent with the best solution hitherto known 
in terms of numbers of inter-cell moves and dimensions of cells.

Chapter 5, “Genetic vs. Hybrid Algorithm in Process of Cell Formation” by R. Sudhakara Pandian, 
Pavol Semančo, and Peter Knuth, focuses on presentation of hybrid algorithm and genetic algorithm 
that are helpful in production flow analysis to solve the cell formation problem. The evaluation of hy-
brid and genetic algorithms are carried out against the K-means algorithm and C-linkage algorithm that 
are well known from the literature. The comparison uses performance measure and the total number of 
exceptional elements in the block-diagonal structure of machine-part incidence matrix using operational 
time as an input.

Chapter 6, “Design of Cellular Manufacturing System Using Non-Traditional Optimization Algo-
rithms” by P. Venkumar, describes an experimental study based on the implementation and comparison 
of meta-heuristics for cell formation problems with an objective of minimizing exceptional elements. 
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The meta-heuristics were implemented on ten 16 X 30 sized benchmark problems. The final sections 
include the comparison of computational time for the compared algorithms and pertinent conclusions.

Chapter 7, “Similarity-Based Cluster Analysis for the Cell Formation Problem” by Riccardo Manzini, 
Riccardo Accorsi, and Marco Bortolini, describes an application of hierarchical clustering method for 
the cell formation based problem on the application of a threshold level of group similarity. The experi-
mental analysis represents the first basis for the identification of the best setting of the cell formation 
problem. This chapter confirms the importance of this threshold cut value for the dendrogram when it 
is explained in percentile on the number of nodes.

Chapter 8, “An Estimation of Distribution Algorithm for Part Cell Formation Problem” by Saber 
Ibrahim, Bassem Jarboui, and Abdelwaheb Rebaï, presents a new heuristic algorithm for machine-part 
cell formation problem. The objective of this chapter is to identify part families and machine groups 
and consequently to form manufacturing cells with respect to minimizing the number of exceptional 
elements and maximizing the grouping efficacy. The proposed algorithm is based on a hybrid algorithm 
that combines a variable neighborhood search heuristic with the estimation of distribution algorithm.

Chapter 9, “Cellular or Functional Layout?” by Abdessalem Jerbi and Hédi Chtourou, essentially 
focuses on the development of an objective methodology framework to compare the cellular layout (CL) 
to the classical functional layout (FL). This methodology can be easily applied to any manufacturing 
context and provides trustworthy results with a minimum experimentation effort.

Section 2, “Production Planning and Scheduling in Cellular Manufacturing Environment” is com-
posed is composed of the following six chapters.

Chapter 10, “Cell Loading and Family Scheduling for Jobs with Individual Due Dates” by Gürsel 
A. Süer and Emre M. Mese, introduces a cell loading and family scheduling in a cellular manufacturing 
environment. What separates this study from others is the presence of individual due dates for every 
job in a family. Authors in this chapter propose two different approaches to tackle this complex prob-
lem namely, mathematical modeling and genetic algorithms. An experiment is carried out using both 
approaches and later the results are compared and a sensitivity analysis is also performed with respect 
to due dates and setup times.

Chapter 11, “Production Planning Models Using Max-Plus Algebra” by Arun N. Nambiar, A. Imaev, 
R. P. Judd, and H. J. Carlo, presents a novel building block approach to developing models of manufac-
turing systems. The chapter develops a generic modelling block with three inputs and three outputs. It 
is shown that this structure can model any manufacturing system. It is also shown that the structure is 
hierarchical, that is, a set of blocks can be reduced to a single block with the same three inputs and three 
output structures. Finally, several numerical examples are given throughout the development of the theory.

Chapter 12, “Operator Assignment Decisions in a Highly Dynamic Cellular Environment” by Gürsel 
A. Süer and Omar Alhawari, discusses concepts such as learning and forgetting rates with the aim to show 
how operator skill level varies from time to time; thus, the assignment decision is affected. The objec-
tive of this chapter is to propose better mathematical models for operator assignment and also compare 
the performance of two major strategies, Max and Max-Min, in highly dynamic cellular environments.

Chapter 13, “Alternative Heuristic Algorithm for Flow Shop Scheduling Problem” by Vladimír Modrák, 
R. Sudhakra Pandian, and Pavol Semančo, describes an alternative heuristic algorithm that is assumed 
for a deterministic flow shop scheduling problem. The algorithm is addressed to an m-machine and n-job 
permutation flow shop scheduling problem for the objective of minimizing the make-span when idle time 
is allowed on machines. In order to compare the proposed algorithm against the benchmarked, for this 
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purpose, selected heuristic techniques and genetic algorithm have been used. In a realistic situation, the 
proposed algorithm can be used as it is without any modification and come out with acceptable results.

Chapter 14, “Optimization and Mathematical Programming to Design and Planning Issues in Cel-
lular Manufacturing Systems under Uncertain Situations” by Vahidreza Ghezavati, Mohammad Saidi-
Mehrabad, Mohammad Saeed Jabal-Ameli, Seyed Jafar Sadjadi, and Ahmad Makui, introduces basic 
concepts about uncertainty themes associated with cellular manufacturing systems and brief literature 
survey for this type of problem. The chapter also discusses the characteristics of different mathematical 
models in the context of cellular manufacturing.

Chapter 15, “Planning Process Families with PROGRES” by Linda L. Zhang, develops a PROGRES-
based approach to model: planning data, knowledge and planning reasoning. The PROGRES-based 
process family planning models are hierarchically organized. At the top level, a meta-model is defined to 
conceptualize process family planning in general. Based on this meta-model, generic models are defined 
for planning process families for specific product families. Finally, instance models are obtained by 
instantiating the generic models, representing production processes for given product family members. 
The proposed approach is illustrated with planning processes for a textile spindle family.

Section three, “Related Issues to Cellular Manufacturing Systems,” includes chapters 16-20.
Chapter 16, “Lean Thinking Based Investment Planning at Design Stage of Cellular/Hybrid Manu-

facturing System” by M. Bulent Durmusoglu and Goksu Kaya, focuses on providing a methodology 
for lean thinking based investment planning from the perspective of cellular or hybrid manufacturing 
systems. Its first part provides a general explanation of why lean thinking is so beneficial for managing 
manufacturing processes. The purpose of the second part is to explore axiomatic design approach it 
provides an overall view of what to do. The third part presents the actual use of the methodology with 
implementation of hybrid system at a furniture factory.

Chapter 17, “Performance Comparison of Cellular Manufacturing Configurations in Different Demand 
Profiles” by Paolo Renna and Michele Ambrico, aims to compare different configurations of cellular 
models through the main performance. These configurations are fractal CMS and cellular manufacturing 
systems with remainder cells, compared to classical CMS used as a benchmark. A simulation environ-
ment based on Rockwell ARENA® has been developed to compare different configurations assuming 
a constant mix of demand and different congestion levels.

Chapter 18, “Petri Net Model Based Design and Control of Robotic Manufacturing Cells” by Gen’ichi 
Yasuda, describes the methods of modelling and control of discrete event robotic manufacturing cells 
using Petri nets. A conceptual Petri net model is transformed into the detailed Petri net model based on 
task specification. Subsequently, detailed Petri net model is decomposed into constituent local Petri net 
based on controller tasks. Finally, simulation and implementation of the control system for a robotic 
workcell are described.

Chapter 19, “Equipment Replacement Decisions Models with the Context of Flexible Manufactur-
ing Cells” by Ioan Constantin Dima, Janusz Grabara, and Mária Nowicka-Skowron, presents selected 
econometric models that are intended to solve a multiple machine replacement problem in flexible 
manufacturing cells with several machines. Firstly, models for a simple case multiple machine replace-
ment problems are presented. Thereafter, the more complicated case is considered where technological 
improvement is taken into account.

Chapter 20, “Multi-Modal Assembly-Support System for Cellular Manufacturing” by Feng Duan, 
Jeffrey Too Chuan Tan, Ryu Kato, and Tamio Arai, proposes a multi-modal assembly-support system 
(MASS) which aims to support operators from both information and physical aspects. To protect operators 
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in MASS system, five main safety designs as both hardware and control levels are also discussed. With 
the information and physical support from the MASS system, the assembly complexity and burden to 
the assembly operators are reduced. To evaluate the effect of MASS, a group of operators were required 
to execute a cable harness task.

TARGET AUDIENCE

The book is intended to support the academicians and industrialists (teachers, doctoral scholars, deci-
sion makers in industry, and students educated in this field). It is also intended to support subjects of 
operations management.

Vladimir Modrák 
Technical University of Kosice, Slovakia

R. Sudhakara Pandian 
Kalasalingam University, India
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Chapter  1
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INTRODUCTION

Although the overviews of detailed historical de-
velopments in each cognition domain are useful, 
this survey will discuss modern eras of operations 

management and cellular manufacturing in a suc-
cessive order.

Operations management (often called produc-
tion management) may be defined in different 
ways depending upon one’s attitude or point of 
view. Since this discipline is a field of manage-
ment, it focuses on carefully managing processes 

Vladimír Modrák
Technical University of Kosice, Slovakia (Slovak Republic)

Pavol Semančo
Technical University of Kosice, Slovakia (Slovak Republic)

Developments in Modern 
Operations Management and 

Cellular Manufacturing

ABSTRACT

Operations management as a knowledge domain appears to be gaining position as a respected and 
dynamic academic discipline that is undergoing constant development. Therefore, from time to time it 
is sensible to monitor and analyze its developments by summarizing new features into comprehensive 
ideas. To support this necessity, the major publications/citations in this field and their evolving research 
utility over the decades are identified in this chapter. Because the goal of this book is to present the ad-
vancements in the area of operations management research, especially of advanced topics related to the 
layout design for cellular manufacturing, the second part of this chapter is focused on developments in 
cellular manufacturing approaches and methods by mapping literature sources during the last decade. 
Finally, the relationships between concept or/and tools in both areas that are empirically considered as 
consequences or coincidences are identified.
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to produce and distribute products faster, better 
and more cheaply than competitors. Operations 
management (OM) practically concerns all the 
operations within the organization and the objec-
tives of its activities focus on the efficiency and 
effectiveness of processes. The modern history of 
production and operations management was initi-
ated in the 1950s by the extensive development 
of operations research tools such as waiting line 
theories, decision theories, mathematical program-
ming, scheduling techniques and other theories. 
However, the material covered in higher education 
was quite fragmented without the umbrella of 
what is called production and operations manage-
ment (POM). Subsequently, the first publications 
‘Analysis of Production Management’ by Bowman 
and Fetter (1957) and ‘Modern Production Man-
agement’ by Elwood Buffa (1961) represented an 
important transition from industrial engineering 
to operations management. Operations manage-
ment finally appears to be gaining a position as a 
respected academic discipline. Thus, this may be 
a good time to update the evolution of the field. 
To achieve this goal, the major publications/
citations in this field and their evolving research 
utility over the decades will also be identified 
in this chapter. Subsequently, opportunities and 
challenges of a modern operations management 
that managers were facing during the last decade 
will be examined.

Because the goal of this book is to present the 
advancements in the area of operations manage-
ment, especially advance topics related to the 
layout design for manufacturing environments, 
the second part of this chapter focuses on develop-
ments in cellular manufacturing approaches and 
methods. A large body of literature has attracted a 
number of researchers to present different reports 
on the state of the art at different points in time. Sev-
eral researchers have reviewed the literature and 
categorized the different methods. Our intention in 
this chapter is to analyze production-oriented cell 
formation methods based on the review mapping 
literature sources from 2000 to 2010.

Finally, in this chapter, we will note the relation-
ships between concept or/and tools in both areas 
that are empirically considered as consequences 
or coincidences.

OPERATIONS MANAGEMENT IN 
THE CONTEMPORARY ERA

The process of building operations management 
theory and the definition of its scope or area has 
been treated by a number of authors. As mentioned 
above, the modern era of POM is closely connected 
with the history of industrial engineering (IE). The 
development of the IE discipline has been greatly 
influenced by the impact of operations research 
(Turner et al. 1993). Operations research (OR) was 
originally aimed at solving difficult war-related 
problems through the use of mathematics and 
other scientific branches. The diffusion of new 
mathematical models, statistics and algorithms 
to aid decision-making had a dramatic impact 
on industrial engineering development. Major 
industrial companies established operations re-
search groups to help solve their problems. In the 
1960s, expectations from OR were extremely high, 
and as was commented by Luss and Rosenwein 
(1997), “over the years it often appeared that the 
mathematics of OR became the goal rather the 
means to support solving real problems.” This 
caused OR groups in companies to be transferred 
to traditional organization units within companies. 
As a reaction to this disappointment Corbert and 
Van Wassenhove (1993) classified OR specialists 
into three classes: theoreticians, management con-
sultants, who focus on using the available methods 
to solve practical problems, and the “in-between” 
specialists called operations engineers, who adapt 
and enhance methods and approaches in order to 
solve practical problems. The term “operations 
engineers” was formulated due to the lack of a 
better term and accordingly the group could also 
be referred to as operations managers and the 
field conducting applied research to help solve 
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practical problems could be named production and 
operations management. In further developmental 
stages of OR, the term POM was consolidated and 
presented as concepts, methods and approaches 
related directly to productive systems and enhanc-
ing their management. Based on such a derivation 
of the mentioned disciplines it is obvious that IE, 
OR and OM have commonalities and similarities 
in their definitions. However, it is also important 
to specify the main differences among them. OM 
is a field of management, OR is a branch of ap-
plied mathematics (AM) and IE is an engineering 
discipline (Chase and Aquilano, 1989). In addition, 
according to Anderson (2002), OM and OR dif-
fer substantially, since “OM is managerially and 
activity oriented while OR is mainly technique 
and mathematically oriented involving modeling 
a situation or a problem and finding an optimal 
solution for it.” Figure 1 illustrates a conceptual 
map of the compared disciplines with two axes: 
Symbolic/Real and Analytic/Synthetic.

As can be seen from the figure above, OM and 
OR follow two complementary routes that create 
a win-win scenario. Fuller and Martinec (2005), 
based on their analysis of the parallels between 

OM and OR, mentioned that both disciplines can 
be considered as “innovations” of the twentieth 
century.

Development Features of 
Operations Management

To discuss the important features of operations 
management, the reasonable action is to define and 
explain how the term can be understood from the 
viewpoint of the book’s theme. For this purpose 
the following definition can be adopted: Opera-
tions management is concerned with the ways of 
achieving the most effective and efficient use of an 
organization’s resources to produce goods and ser-
vices needed by customers. It goes without saying 
that there are many other definitions that are more 
or less similar to the above definition. Although 
Chase and Aquilano (1989) precisely documented 
the historical development of OM starting with 
its real roots given by Taylor (1911), operations 
management is as old as industry itself (Bicheno 
and Elliot, 1997) and was articulated in the con-
text of industrial production only after the 1960s 
(Baber, 1996; Landes, 1998). Because Chase and 

Figure 1. Conceptual map of relations between OM, IE, AM and OR
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Aquilano in their above-mentioned book mapped 
the history of the field of OM between circa 1910 
and 1990, the following Table 1 gives an updated 
view of the historical development of operations 
management from the beginning of its modern 
era. The aim of this overview is to trace the key 
concepts and tools by decades from 1950 to 2010.

We are aware that the above specification of 
the latest developments in OM may not fully 
encompass all the decisive development direc-
tions, since operations management is a fair-sized 
and diversified field.

Opportunities and Challenges of 
Modern Operations Management

During the latest decennium operation manag-
ers had to react to unforeseen situations more 
frequently than they had needed to before. In this 
context they were facing new challenges of market 

globalization, information and communication 
technology advances as well as opportunities for 
organizational improvements and efficiencies.

One of the important challenges for the de-
velopment of modern OM was the emergence of 
so-called global growth companies (GGCs). Ac-
cording to Jones (2005), during the mid-nineteenth 
century, thousands of European companies were 
formed exclusively to operate internationally with 
no prior domestic business. Those companies 
became momentous actors of economic globaliza-
tion in international business. The emergence and 
influence of a new breed of high-growth global 
companies paying special attention to China and 
India was discussed by Kiggundu and Ji (2008). 
Concentrating on China and India as representa-
tives of emerging economies explains the fact 
that these two countries were the best represented 
at the Dalian meeting in 2007 organized by the 
Centre for Global Growth Companies. By then, 

Table 1. Historical summary of the history of modern OM (adopted from Chase and Aquilano, 1989) 

Decade Concept or Tool Originator or Developer

1950s Extensive development of OR tools of simulation, 
Queuing theory, 
Decision theory, 
Project scheduling techniques of PERT and CPM

David Georg Kendall (UK) 
Erich Leo Lehmann (USA)

1960s Mathematical programming in industrial applications, 
Extensions of linear programming

Tjalling Koopmans (Netherlands) 
George Bernard Dantzig (USA)

1970s Software packages for: 
Shop scheduling problems, 
Layout design, 
Forecast methods, 
Material requirement planning (MRP)

Joseph Orlicky (USA) 
Oliver Wight (USA) 
George W. Plossl (USA)

1980s JIT, 
TQC and TQM, 
Factory automation, 
CIM, FMS, CAD/CAM 
Manufacture resource planning (MRP II)

Taiichi Ohno (Japan) 
W. Edwards Deming (USA) 
Armand V. Faigenbau (USA) 
Joseph M. Juran (USA) 
Mikell. P. Groover (USA)

1990s The principles process innovations and business process reengineering, 
Logistics and Supply Chain Management, 
Optimized Production Technology (OPT), 
Theory of Constraints,

Thomas H. Davenport, (USA) 
Michael Martin Hammer (USA) 
James A. Champy (USA) 
Richard J. Schonberger (USA) 
Martin Christopher (UK) 
Eliyahu M. Goldratt (Israel) 
Eliyahu M. Goldratt (Israel)

2000s Management of technology change, 
Disruptive Innovations and Organizational Change 
Operations strategy,

Clayton M. Christensen (USA) 
Wick Skinner (USA) 
Slack Nigel (UK)
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“firms in emerging economies and developing 
countries tend to have weaker systems of corporate 
governance than those in developed economies.” 
In this connection, findings from differences 
between emerging economies and developed 
economies provide excellent opportunities for 
the study of corporate governance among global 
growth companies.

The aim of specifying general decisive and 
substantial challenges that managers have faced 
during the last 10 years comprises a substantial 
task, as it depends on different aspects. In an 
attempt to complete this task, in the Table 2 we 
depict some topical challenges that are related to 
the latest concepts and tools shown in Table 1.

In the continuing text, some of the main features 
of accented concepts and tools assigned to the 
last decade (shown in the table 1) will be illus-
trated with the aim of proving their topicality.

Management of Technology Change

According to Thomas and B. Grabot (2006), 
two main factors have dramatically changed the 
industrial context in the manufacturing area: spe-
cialization and technological changes that have 
recently occurred in the information technology 
area. Attention to that fact along with a large diffu-
sion of innovations in industries during the twen-
tieth century most likely evoked the emergence 
of the new managerial discipline of management 
of technology (MoT). The term itself was first 
introduced at the European Management Forum 
held in Davos in 1981. There are several defini-
tions of MoT, which differ in their understanding 
of the very object of technology management in 
the sense of what needs to be managed. Drejer 
(2002), in this context, commented that “the dis-
cipline of MoT is characterized by a vast number 
of contributions emerging in a divergent manner 
rather than a convergent one.” A succint defini-

Table 2. Selected challenges of modern operations management 

Challenge Description

Global Competition Global market is increasingly complex and constantly changing. Products are traded 
internationally and components are sourced internationally. It requires a greater 
degree of international and cross-cultural communications, collaborations, and 
cooperation than at any time before. All companies have to think in global terms as 
regional companies are rapidly becoming a thing of past. (Steers and Nardon 2006).

Developments in strategic management ap-
proaches

Hambrick and Fredericson (2001) in their paper have talk about their uncertainty 
of whether that most organizations do actually have a strategy. According to them a 
meaningful strategy might consist of five elements, providing answers to following 
questions: Where will we be active? How will we get there? How will we win in the 
market-place? What will be our speed and sequence of moves? How will we obtain 
our returns? In reality, most strategic plans emphasize one or two of the elements 
without giving any consideration to the others.

Supply Chain Standardization and Integration During the last decade has been proved the slogan that, much competition occurs 
between supply chains, not just between individual firms. This is due to the fact that 
company can’t act as isolated entity, but as a part of supply chain integrated system.

Complex external environments It is of crucial importance to understand how external environment impacts on 
organization. Therefore, companies are quite interested in knowing about macro en-
vironment situation representing the information on trends for demography, market 
geography, technologies energy demand growth, labor productivity growth, etc.. 
The environment in a global economy and its interactions with organizations is not 
only a complex phenomenon, but it is constantly changing in nature. Accordingly, 
any aspects of the environment can’t be study as deterministic entities. By Kazmi 
(2008), “the organization and the environment are, in reality, more unpredictable, 
uncertain and non-linear”. Therefore, for their study the complexity theory including 
chaos theory and their applications are applicable.
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tion of MoT has been formulated, for example, by 
Bueno et al. (1997), according to whom it is “the 
combination of competences allowing technologi-
cal capabilities aiding the achievement of busi-
ness objectives to be promoted and controlled.” 
Although definitions of MoT are specific to a 
concrete target platform, the main object of interest 
in this chapter is its relevant context to business 
activities. One of the important roles of MoT is 
to promote innovation. It is especially topical for 
organizations that face a serious problem when 
technological changes are necessary in response 
to market signals. The internal conditions for 
implementing advanced technology for routine 
production are not always adequate for achiev-
ing this aim. Draft (2010), in this context, saw a 
problem with the organization of work. He argued 
that this problem can be solved only through 
innovative-oriented organization, which is typi-
cally associated with change and is considered 
the best for adapting to a changing environment. 
Therefore, programmes for the development of 
employees’ creativity have become an important 
element of a cohesive corporate strategy.

Disruptive Innovations and 
Organizational Change

Presently, distinctions between disruptive technol-
ogies versus sustaining technologies are frequently 
discussed. According to the findings of Bowers 
and Christensen (1995), disruptive changes in 
technology had a significant impact on industries 
and many leading companies failed when they 
were confronted with them. Paradoxically, these 
failed firms were well-managed companies that in-
vested aggressively in new technologies, carefully 
studied market requirements and opportunities and 
sharpened their competitive edges. Christensen 
(2002) proposed five principles of disruptive tech-
nologies in order to find a way to understand and 
harness this phenomenon. In his fourth principle 
he focuses on an organization’s capabilities and 
disabilities, stating that “to succeed consistently, 

good managers have to be skilled not only just 
in choosing, training, and motivating the right 
people for the right job, but in choosing, building 
and preparing the right organization for the job 
as well.” So, it is axiomatic that the phenomena 
of disruptive innovations and management of 
technology change are mutually reinforcing.

Operations Strategy

Admittedly, the operations or manufacturing 
strategy is considered as an inherent part of the 
long-term corporate strategy. Chase et al. (2004) 
offered with his sketch of a short history of opera-
tions strategy a broader insight into current opera-
tions strategy research and determined its role in 
contributing operations management functions to a 
firm’s ability to achieve its competitive advantage 
in the marketplace. Since a firm’s strategies are 
often changing and developing, it implies making 
sensible decisions that affect the business perfor-
mances directly. In that context Swink and Way 
(1995) saw the position of manufacturing strategy 
as “the decisions and plans affecting resources and 
policies directly related to the sourcing, produc-
tion and delivery of tangible products.” Slack and 
Lewis’s (2002) view of operations strategy is that 
it is not only a single decision, but the total pattern 
of the decisions that include the extent and ability 
of its capacity; delivery of products and services; 
approach to developing process technology, etc. 
The importance of operations strategy follows 
on from the fact that the long-term success of 
manufacturing firms depends on their ability to 
vary their operations quickly enough to fill the 
changing requirements of customers. The key 
factor that makes the operations function faster 
is called the manufacturing vision. For this rea-
son, all principal world-class manufacturers have 
explicitly formulated a strategic manufacturing 
vision. Practically, it means that all the decisions 
related to system design, planning, control and 
supervision made by shop-floor managers are 
consistent with a corporate vision. On the other 
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hand, world-class manufacturing ambition is 
not the only issue that matters. Therefore, it is 
not always optimal to adopt the most offensive 
manufacturing concepts that are inherent in world-
class manufacturers. Accordingly, investing in 
improving marketing activities, product design 
or manufacturing operations can be as effective.

DEVELOPMENTS IN 
CELLULAR MANUFACTURING 
APPROACHES AND METHODS

Cellular manufacturing (CM), considered as an 
application of GT philosophy and its principle 
that focuses on the identification of similar parts 
to the benefit of a particular production, offers 
promising alternative solutions for manufacturing 
systems. CM can essentially be comprehended as 
a strategy that divides machines and parts into 
small groups or cells, where each cell can produce 
a family of parts completely. The manufacturing 
cells are basically composed of the heteroge-
neous machines to produce particular families’ 
parts, which are allocated to these cells. For this 
purpose, various approaches and methods have 
been developed. Moreover, the CM approach 
benefits both the job and mass production. The 
main enhancement of cellular manufacturing 
implementation incorporates reductions in set-up 
time, throughput time and material handling and 
improved quality management.

One of the basic problems that has to be solved 
before implementing CM is the cell formation 
problem (CFP). The objective of the CF is to 
establish the family of parts and the group of 
machines for subsequent processes. The process 
of cell formation differs with respect to whether 
manufacturing cells have been created by rear-
ranging existing facilities on the shop floor or 
whether new facilities are acquired for the cells. 
During the decades, a significant amount of re-
search papers have been devoted to this problem. 
In this regard, several attempts at the classifica-
tion of CF methods have been introduced. The 
classification of CF approaches was introduced 
for instance by Offodile et al. (1994) and Irani et 
al. (1999) In order to generalize previous clas-
sification frameworks, Table 3 shows a basic 
categorization of CF approaches that is in accord 
with the already-introduced contributions. The 
cell formation methods in Table 3 are accordingly 
divided into three basic groups. Each group has its 
own direction for part or machine identification.

In the last four decades, CMS research has 
mainly focused on production-oriented approach-
es. Therefore, the comprehensive reviews and 
taxonomy of studies that are devoted to CFP have 
been presented in previous research works. The 
following authors participated with their research 
studies in arranging all these CF methods into 
groups based on criteria like the minimization of 
inter-cell moves, machine utilization and others. 
Wemmerlöv and Hyer (1986) categorized more 

Table 3. General classification of cell formation methods 

Category Brief description

Visual inspection methods Visual inspection methods or eyeballing rely on the visual identification of the particular part 
families and machine groups.

Part classification and coding methods PCA-based methods are oriented to design or shape feature. They attempt to group identical or 
similar design and manufacturing attributes into families. Therefore, they are ideal for reduc-
tion of product variety.

Production-oriented methods The aim of these methods is to apply principles of line production to other types of production 
than mass production, even when the output is small and there is a large diversity of product. 
The PFA-based methods seek the optimal solution of cell formation in regard to objective and 
constraints.
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than 70 papers into 4 representation groups. Sub-
sequently, Selim et al. (1998) reviewed the lit-
erature (from 1963 to 1998) aimed at the cell 
formation problem, which is considered a funda-
mental issue in the CM environment. A compre-
hensive mathematical formulation of the CF 
problem has also been presented. The classifica-
tion of reviewed papers based on multi-criteria 
cell design was employed by Mansouri et al. 
(2000), who applied the number of criteria as a 
measure for classification. They presented a review 
regarding the multi-criteria objective decision 
models that take into consideration the manufac-
turing cell formation problem.

Another view of the proposed taxonomy 
framework was introduced by Papaioannou and 
Wilson (2009). They also provided a review and 
comparison of 52 CF methods.

Production-Oriented 
Methods for CFP

Following the literature, the main scope within 
manufacturing cell formation methods focuses on 
production-orientated methods. In this section we 

present a modified classification framework for 
production-orientated CF methods and approaches 
based on the previous ones as shown in Figure 2.

In association with the proposed classification 
a brief review of the production-oriented CF 
methods in the following particular subsections 
is presented.

Descriptive Methods

One of the earliest descriptive approaches was 
developed by Burbidge, who began with the 
wave of CM systems. The proposed method by 
Burbidge (1971) is referred to as production flow 
analysis (PFA). The aim of PFA is to analyze 
the information from route cards to form cells. 
A manual method of Burbidge’s PFA (1977) for 
CFP solutions is named nuclear synthesis.

Cluster Analysis Methods

Another group of approaches is presented as cluster 
analysis (CA). The objective of these methods is 
to group objects or entities or their attributes into 
clusters. Diverse techniques are applied in order 

Figure 2. Classification of production-oriented methods for CF problem
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to create clusters. Those techniques can be further 
classified as array-based clustering methods, hier-
archical clustering methods and non-hierarchical 
clustering methods within their own subsection. 
The first one rearranges the order of rows and 
columns to find a block-diagonal structure of a 
machine-part incidence matrix (MPIM). They are 
also known as array-based methods. McCormcik 
et al. (1972) are counted among the first research-
ers to have developed the cluster analysis method 
for the CM environment. They introduced the 
bond energy analysis (BEA) method. The other 
well-known CA-based methods are rank order 
clustering (ROC) by King (1980), direct cluster-
ing analysis (DCA) by Chan and Milner (1982) 
and modified rank order clustering (MODROC) 
by Chandrasekharan and Rajagopalan (1986). 
The block-diagonal structure (BDS) uses the 
minimization of the number of exceptional ele-
ments (EE) as its objective. EE represent inter-cell 
moves, which means in practice that they imply 
undesirable movement of parts to machines be-
tween the individual cells. An exceptional element 
basically means a bottleneck machine allocated 
to a cell while it is required in the other cells si-
multaneously, or a part in a family that requires 
the capabilities of machines allocated to other 
cells. The traditional MPIM is also represented 
as the binary (zero-one) matrix. The rows of the 

MPIM are machines and columns stand for parts. 
The entries in the matrix are ‘0’s and ‘1’s, which 
indicate whether a part needs to be a machine for 
production or not. The mathematical formulation 
to create a binary machine-part incidence matrix 
is defined as follows.

a
if part j visits machine i

otherwiseij
=







1

0

,

.
 

(1)

where ‘i’ is the machine index (i = 1, 2, 3,…, M), 
‘j’ the part index (j = 1, 2, 3,…, P), M stands for 
the number of machines, and P the number of parts.

Figure 3 a presents the initial machine-part 
incidence matrix with a size of 9 machines and 
17 parts that is formed by Equation (1). Figure 3 
b shows the block-diagonal structure that includes 
one exceptional element.

The hierarchical methods are aimed at the 
separation of the MPIM data in several stages. In 
the first stage the MPIM data are grouped into a 
few broad cells. Subsequently the broad cells are 
partitioned into smaller groups until terminal 
groups are generated. The most frequent hierarchi-
cal methods applied to cell formation have been 
the three linkage methods. Single linkage (SL) 
was used by McAuley (1972), average linkage 

Figure 3. Illustration of (a) binary MPIM with size of 9x17 and (b) block-diagonal structure with one EE
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(AL) was used by Seifoddini and Wolfe (1986) 
and complete linkage (CL) was used by Mosier 
(1989). A representation of the hierarchical meth-
ods can be made by inverted tree structures also 
known as dendograms. The last of the cluster 
analysis methods, non-hierarchical methods, are 
iterative methods that need an initial partition of 
the data set. One of the well-known methods is 
ZODIAC, developed by Chandrasekharan and 
Rajagopalan (1987).

Graph Partitioning Methods

Graph partitioning methods consider machines or 
parts as nodes that are connected by arcs that rep-
resent the production flow between the machines. 
Graph methods enhance other methods like cluster 
analysis methods. Rajagopalan and Batra (1975) 
proposed the method that combines the use of a 
similarity coefficient and graph theory to solve 
the cell formation problem.

Mathematical Programming

Since the 1980s, a large number of research papers 
have been published in the field of mathematical 
programming with the aim of solving cell forma-
tion problems. Kusiak (1987), with his integer 
mathematical programming approach, was among 
the first of the authors to apply these methods to 
CFP. The formulation of mathematical program-
ming (MP) can be employed to model CMS prob-
lems in a number of circumstances concerning a 
wide range of manufacturing data. The objective of 
MP is regularly maximization of the total number 
of part similarities in each cell, or minimization 
of inter-cell material handling costs. Most of the 
MP-oriented research papers are introduced and 
discussed by Selim et al. (1998). MP can be clas-
sified into four further groups with regard to their 
type of formulation: linear programming, linear 
and quadratic integer programming, dynamic 
programming and goal programming. Boctor 
(1991) dealt with the mathematical programming 

method. He proposed a linear formulation of the 
machine-part cell formation problem. Mathemati-
cal programming approaches belong to very time-
consuming methods, which is why researchers 
have turned their attention to heuristic methods 
with their implementation in CMS.

Heuristic Methods

The heuristic methods are very fast in contrast to 
mathematical programming methods or others. 
It is generally known that the heuristic methods 
do not guarantee to find the optimal solution. 
However, if they are properly implemented and 
tuned up, the solution found will represent the 
optimum in most cases. They reach an optimal or 
pseudo-optimal solution in a reasonable amount 
of time. Heuristic methods start from a feasible 
solution then generate other random solutions, 
evaluate them and improve the effectiveness or 
goodness of the solution as time progresses. The 
presented classification framework in Figure 1 
considers the further division of heuristics into 
classical heuristic methods and meta-heuristic 
methods, which incorporate evolutionary-based 
methods and population-based methods. There are 
numerous different heuristic approaches that are 
summarized in published review studies. Some 
of them are mentioned further.

Artificial Intelligence

Another significant group of methods aimed at 
CMS is introduced as artificial intelligence (AI) 
that is inspired by nature itself. Fuzzy logic and 
neural networks are the main approaches of this 
group. Kaparthi and Suresh (1992) proposed an 
application of neural networks to solve the cell 
formation problems. AI can be used to find patterns 
in manufacturing data in the CM environment. 
In most cases artificial intelligence approaches 
represent a robust and adaptive system. During 
the learning process they can perform a structure 
modification based on the information that flows 
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through the network. Yang and Yang (2008) 
proposed a modified ART1 AI-based method to 
group data into machine-part cells. Guerrero et 
al. (2002) introduced the self-organizing neural 
network (SONN) approach, which solves the CF 
problem using a two-phase strategy. The first 
phase is dedicated to part-families formation 
and the second one assigns the machines to each 
part-family. Other contributors who have dealt 
with the artificial intelligence methods are shown 
in Table 2.

Hybrid Methods

The last group, frequently referred to as hybrid 
methods, solves the CF problem by combinations 
of two different methods. In this case they are 
based on combinations of cluster analysis methods, 
mathematical programming methods, heuristics 
and AI approaches. The hybrids take advantage 
of both methods by applying them to the cell 
formation problems they can solve efficiently. 
Based on the literature, in the last decades the 
hybrid methods have become very popular for 
the cell formation process in CMS. Caux (2000) 
proposed an approach that combines both the 

simulated annealing (SA) and branch-and-bound 
(BB) algorithms. The proposed approach (SABB) 
can simultaneously solve CF problems consisting 
of grouping machines into manufacturing cells and 
selecting one process plan for each part. Other 
hybrid methods are incorporated in Table 3.

Review of Modern Methodologies 
for the Cell Formation Problem

Based on the literature we can introduce an over-
all view of the evolution of production-oriented 
methods in CMS. This overall view corresponds 
with the previously presented classification of CF 
methods. It is divided into decades, starting with 
the 1960s, as shown in Figure 4.

Based on the Figure 4 we can propose an-
other classification of CF methods according to 
progressivity as follows: classical optimization 
CF methods and modern CF methods. The first 
category includes descriptive methods, cluster 
analysis methods, graph partitioning methods, 
mathematical programming methods and some 
of the heuristic methods. The second category is 
formed by meta-heuristics, hybrid methods and 
AI approaches.

Figure 4. Overall view of CF methods evolution
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continues on following page

Table 4. Review of the modern cell formation approaches 

No.

Source CF 
method

Categories Performance

Author(s) Year 1 2 3 4 5 6 7 A B C D

1 Caux et al. 2000 Hy · • □ □ • □ • (20x20) · ✗

2 Mak et al. 2000 GA · · □ □ • □ · (40x100) · ✗

3 Lozano et al. 2001 Hy · • □ □ · • • (50x100) • ✓

4 Onwubolu and Mutingi 2001 GA · □ □ □ • □ · (20x45) • ✓ 4

5 Ravichandran and Rao 2001 Hy · • □ □ · • • (9x9) · ✓

6 Guerrero et al. 2002 NN · □ □ □ □ • · (40x24) · ✓ 1

7 Lozano et al. 2002 TS · · □ · • · (50x150) · ✓

8 Mukattash et al. 2002 H · · □ □ • □ · (13x13) · ✓

9 Soleymanpour et al. 2002 Hy · · · • · • • (40x100) • ✓ 3

10 Logendran and Karim 2003 Hy · · □ • • □ • (15x30) · ✗

11 Park and Suresh 2003 Hy · · □ □ · • • (25x40) · ✓

12
Spiliopoulos and Sofi-
anopoulou 2003 TS · · □ □ • □ · (30x30) • ✗

13 Cao and Chen 2004 TS · · · · • · (8x15) • ✗

14 Goncalves and Resende 2004 Hy · · · · • · • (40x100) • ✓ 6

15 Kim et al. 2004 H · · □ □ • □ · (40x40) · ✗

16 Solimanpur et al. 2004 GA · · □ □ • □ · (15x30) • ✗

17 Won and Lee 2004 Pm · · · • · · · (50x150) · ✗

18 Wu et al. 2004 TS · · □ □ • □ · (18x5) · ✗

19 Albadawi et al. 2005 Hy · • · · • · • (16x43) • ✓ 4

20 Islier 2005 ACO · · □ □ • □ · (40x100) · ✓ 3

21 Moghaddam et al. 2005 SA · · · · • · · (20x30) · ✓ 2

22 Prabhaharan et al. 2005 ACO · · □ □ • □ · (40x100) · ✓

23 Venkumar and Haq 2005 NN · · □ □ · • · (40x100) · ✓

24 Andrés and Lozano 2006 PSO · · □ □ • □ · (10x10) • ✗

25 Car and Mikac 2006 GA · · · · • · · (15x15) • ✓ 3

26 Defersha and Chen 2006 Hy · · · • • · • (30x90) • ✗

27 Nsakanda et al. 2006 H · · □ □ • □ · (10000x25) • ✗

28 Foulds et al. 2006 TS · · □ □ • □ · (5x7) • ✗

29 Lei and Wu 2006 TS · · □ □ • □ · (15x30) · ✓

30 Nsakanda et al. 2006 Hy · · · · • · • (15x150) • ✓ 3

31 Torkul et al. 2006 NN · · □ □ · • · (18x25) · ✓

32 Venkumar and Haq 2006 NN · · □ □ · • · (40x100) · ✓

33 Won and Currie 2006 Pm · · · • · · · (41x30) • ✓ 1

34 James et al. 2007 Hy · · · · • · • (40x100) • ✓ 7

35 Saidi-Mehrabad and Safaei 2007 NN · · □ □ · • · (9x10) • ✗

36
Tavakkoli-Moghaddam 

et al. 2007 Hy · · □ □ • • • (10x10) • ✗

37 Wu et al. 2007 GA · · □ □ • □ · NA · ✗
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Table 4.  Continued

No.

Source CF 
method

Categories Performance

Author(s) Year 1 2 3 4 5 6 7 A B C D

38 Boulif and Atif 2008 Hy · · · · • • • (20x24) • ✓ 2

39 Defersha and Chen 2008 GA · · □ □ • □ · 6x12) • ✗

40 Durán et al. 2008 SS · · □ □ • □ · (12x12) · ✗

41 Kao and Li 2008 ACO · · □ □ • □ · (50x150) • ✓

42 Megala and Rajendran 2008 ACO · · □ □ • □ · (40x100) · ✓

43 Papaioannou and Wilson 2008 F · · □ □ · • · (9x9) · ✗

44 Safaei et al. 2008 F · · □ □ · • · (6x8) • ✗

45 Safaei et al. 2008 Hy · · · • · • • (6x8) • ✓ 1

46
Spiliopoulos and Sofi-

anopoulou 2008 ACO · · · · • · · (37x53) · ✓

47
Tavakkoli-Moghaddam 

et al. 2008 SA · · · · • · · (17x30) • ✗

48 Wu et al. 2008 SA · · · · • · · (40x100) • ✓ 3

49 Yang and Yang 2008 NN · · · · · • · (46x105) • ✗

50 Ahi et al. 2009 Hy · • · · · • • (20x51) • ✓ 2

51 Bajestani et al. 2009 PSO · · · · • · · (9x10) · ✓

52 Bajestani et al. 2009 SS · · · · • · · (9x10) • ✓ 3

53 Mahdavi, et al. 2009 GA · · · · • · · (40x100) • ✓ 6

54 Oliveira et al. 2009 CA · • · · · · · (46x100) • ✗

55 Wu et al. 2009 Hy · · · · • · • (40x100) • ✓ 3

56 Wu et al. 2009 Hy · · · · • · • (50x120) • ✓ 8

57 Deljoo et al. 2010 GA · · · · • · · (10x10) • ✗

58 Li et al. 2010 ACO · · · · • · · (50x150) • ✓ 11

59 Naadimuthu et al. 2010 Hy · · · · · • • (6x5) • ✗

60 Neto and Filho 2010 Hy · · · · • · • (13x13) · ✗

61 Noktehdan et al. 2010 Hy · · · · • · • (37x53) • ✓ 2

62 Pailla et al. 2010 GA · · · · • · · (40x100) • ✓ 8

63 Wu et al. 2010 WFA · · · · • · · (50x100) · ✓ 2

Notes:
(I) Source list of contributors
(II) Acronym of CF approach
ACO = ant colony optimization CA = cluster analysis F = fuzzy logic GA = genetic algorithm H = classical heuristic. 
Hy = hybrid NN = neural network Pm = p-median PSO = particle swarm optimisation SA = simulated annealing. 
SS = search scatter TS = tabu search WFA = water flow-like algorithm. 
(III) Major categories of production-oriented cell formation methods
1 = Descriptive methods 2 = Cluster analysis 3 = Graph partitioning 4 = Mathematical programming. 
5 = Heuristic methods 6 = Artificial intelligence 7 = Hybrid methods. 
(IV) Performance and computational results of the CF methods used
A = max size of data set used (machines x parts) B = provides performance measure for max size of data set used. 
C = comparison to other existing methods (‘✓’ = yes and ‘✗’ = no) D = number of other existing methods used for comparison NA = 
not available.
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Because there are a number of existing studies 
mapping the time period from 1960 to 2000, our 
review presented in Table 4 focuses on the last de-
cade. For the purpose of this review a classification 
based on descriptive approaches, cluster analysis 

approaches, graph partitioning approaches, math-
ematical programming approaches, heuristics, 
artificial intelligence and hybrid methodologies 
has been applied to categorize recent works. In 
addition, the methods are reviewed by key ele-

Figure 5. Frequency of individual categories for production-oriented CF methods

Figure 6. The percentage usage of meta-heuristic and heuristic classical methods for CFP



15

Developments in Modern Operations Management and Cellular Manufacturing

ments, such as the maximum size of the problems 
solved and the performance measures used.

From the survey depicted in the graph (see 
Figure 5) it is possible to identify the frequency 
of production-oriented cell formation methods.

The graph shows that the most frequent cat-
egory of production-oriented cell formation 
methods is heuristics, including meta-heuristics 
(category # 5). Heuristics have been employed in 
CFP due to their promptness and acceptable solu-
tions. Besides the heuristics approach there is 
another category that has attracted attention over 
the last few years. This category includes hybrid-
based CF methods, which have increased sig-
nificantly among the researchers in combinato-
rial optimization. Hybrids exploit the best from 
both methods combined in one technique. This 
provides more efficient behavior and higher flex-
ibility. Based on the findings depicted in Figure 
5, hybrids along with AI-based CF methods (cat-
egories # 7 and # 6) create the second level of 
importance. The next level of importance includes 
cluster analysis and mathematical programming 
methods (categories # 2 and # 4).

Even though the mathematical programming 
and the heuristic method for the CF problem were 
firstly introduced in about the same decade, the 
use and further development of mathematical 
programming methods in CFP were affected by 
computational limitations for large-scale problems 
and they were also time consuming.

The heuristic category has been chosen to 
compare the usage of particular CF methods due to 
the fact that it is the most frequent category of all. 
Based on Figure 6, the most utilized CF methods 
of the meta-heuristic methods in decreasing order 
are GA, ACO and TS. The cumulative percentage 
of the methods used is about 67%. The rest of the 
methods do not exceed the 10% bound, including 
the classical heuristic-based CF methods along 
with the simulated annealing method, scatter 
search method, particle swarm optimization (PSO) 
method and water flow-like algorithm (WFA). 
The order of particular methods in Figure 5 is 

obviously influenced by the chronology of their 
development, which has been provided in Table 
4. From the mentioned review of the modern 
cell formation approaches in the last decades it 
is evident that the scatter search (SS) and water 
flow-like algorithms (WFA) have just recently 
received attention for CME.

CONCLUSION

The presented parallel survey on modern opera-
tions management and cell formation approaches 
independently maps the major development fea-
tures in both POM and CM areas. As shown by 
Figure 1, CM research also represents a subset of 
POM. Then, the relationships between concept 
and/or tools in both areas can be empirically 
considered as consequences or coincidences. The 
causal relationship depends on the chronological 
order and assumes that X precedes Y otherwise 
Y would not occur. Accordingly, the surveys are 
based on taxonomies (classes or categories of 
items) and the chronological timing of the devel-
opment changes.

Based on the comparison of the two areas it is 
possible to imply that mathematical programming 
is a mutual technique for POM and CM, even 
though this technique was dominantly applied in 
the given areas in different time periods. It shows 
that CM research partially applies generic methods 
or techniques of POM.

From another point of view it is viable to 
identify causal relationships between concepts 
and tools in the two areas. This relationship can 
be seen, for example, between the JIT concept 
in the 1980s and an expansion of the heuristic 
methods in the 1980s. The extensive acceptance 
of the just-in-time (JIT) philosophy by various 
industries supported the development of cell 
manufacturing in firms as it is an important ele-
ment in the successful implementation of just in 
time. With the rapidly increasing demand for such 
solutions, the need for more effective cell forma-
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tion methods was naturally growing. This demand 
is likely to have accelerated the development of 
cell formation methods based on heuristics and 
mathematical programming.

Moreover, the surveys of POM and CM show 
some topical development directions, such as the 
importance of operation strategy in POM and the 
dominance of meta-heuristic techniques in cell 
formation problems.
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INTRODUCTION

The choice for a manufacturing layout is a 
strategic issue and has a significant impact on 
the performance of the operations function of a 
company (Meijers and Stephens, 2004, Francis 
et al. 1992). A variety of manufacturing layout 
types may be applicable in a practical situation. 
Table 1 presents some alternative layout types 
for high-variety/low-volume situations. The most 
dominant layout type in practice is the process-
oriented functional layout, where machines of the 

same type are located in the same area (Slomp 
et al., 1995). An important alternative is the 
socalled Cellular Layout type, where machines 
are grouped in cells and each cell is responsible 
for the complete manufacturing of a part family. 
This product-oriented layout type has gained 
substantial attention in literature and in practice 
(Wemmerlöv and Hyer, 1989, and Wemmerlöv 
and Johnson, 1997). Both types of manufacturing 
layout have their advantages and disadvantages. 
Several authors present alternative layout types 
to cope with the disadvantages of the functional 
and/or cellular layout type. Rosenblatt (1986) 
suggested a dynamic plant layout where cellular 
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Decision Support Framework for 
the Selection of a Layout Type

ABSTRACT

One of the most important design decisions in a firm is the choice for a manufacturing layout type. This 
chapter shows which aspects have to be taken into account and suggests a systematic method for the 
decision problem. The method can be seen as a decision support framework, which links the various 
aspects. The framework is based on the AHP (Analytic Hierarchy Process) approach. A case study, 
concerning a Dutch firm, illustrates the applicability of the framework in a practical instance.
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configurations periodically change depending on 
the demand in each period. Balankrishnan and 
Cheng (1998) present a review on the dynamic 
plant layout problem. Venkatadri et al. (1997) and 
Montreuil et al. (1999) propose a socalled fractal 
layout for job shop environments in order to gain 
the flow time advantages of Cellular Manufactur-
ing and the flexibility of a functional layout. This 
type of layout is robust with respect to changes in 
demand and product mix. Another robust design, 
the socalled holographic or holonic layout, is pro-
posed by Montreuil et al. (1993). Here individual 
machines, or machines types, are strategically dis-
tributed through the facility. Production orders are 
assigned to available machines which are located 
in the same area of the plant. A special case of the 
holonic layout is the socalled distributed layout 
(Benjaafar and Sheikhzdeh, 2000 and Benjaafar 
et al., 2002) where machine replicates are strate-
gically distributed across physical space. Some 
researchers stress the need for a hybrid layout 
system which combines several layout types 
(e.g. Irani, 1993). Irani and Huang (2000) and 
Benjaafar et al. (2002) define a modular layout in 
which products have to be manufactured by one 
or more modules. Each module may have its own 
internal layout. A modular layout is an example 
of a hybrid layout. Wemmerlöv and Hyer (1989) 
show that many companies apply a hybrid layout.

This chapter presents a general decision sup-
port framework for the selection of a manufactur-
ing layout type. Our focus lies on the selection of 
objectives, aspects and contributing elements for 
the selection problem. The framework applies the 
AHP (Analytic Hierarchy Process) approach 
(Saaty, 1980). This approach is useful for multi-
criteria decisions where intuitive, qualitative and 
quantitative aspects play a role. The approach 
includes a hierarchical decomposition of the deci-
sion problem and a further decomposition of each 
decision level into pairwise comparisons of deci-
sion elements. Next, the “eigenvalue” method is 
used to estimate the relative weights of the deci-
sion elements. For a further explanation of the 

AHP method, we refer to Saaty (1980) or Zahedi 
(1986). As will be made clear in the remainder of 
this chapter, the AHP method offers several ad-
vantages in the layout type selection problem.

The next section will provide some further 
background to the selection problem. We will 
make clear that it is important to approach the 
layout type selection problem from a strategic 
viewpoint. In a subsequent section, we will discuss 
how layout types influence generic objectives 
of a company. We will then show how various 
aspects of layouts have an impact on manufactur-
ing performance. The performance objectives and 
the various aspects are presented in the form of a 
decision hierarchy, according the AHP approach. 
After specifying the AHP approach, we present 
a case study to indicate the generic value of the 
defined decision hierarchy. The last section of 
this chapter is meant to reflect on the proposed 
selection methodology and to draw conclusions.

BACKGROUND

Literature on layout design problems falls into 
two major categories, algorithmic and procedural 
approaches (Yang and Kuo, 2003). Algorithmic ap-
proaches make use of simplified design constraints 
and objectives and can be used to generate layout 
alternatives efficiently (Meller and Gau, 1996). 
Algorithmic approaches are useful as a step in 
the design of a detailed layout. They assume the 
choice of a layout type. Procedural approaches 
may incorporate the choice of layout type and take 
care of both qualitative and quantitative objectives 
in the whole design process (Muther, 1973). A 
major disadvantage of a procedural approach is 
its dependence on the subjective judgement of 
one ore more experienced designers. Furthermore, 
procedural approaches divide the design problem 
in several steps which may lead to suboptimality. 
In order to overcome this suboptimality, designers 
may develop alternative layouts, based upon differ-
ent layout types, and a well-working methodology 
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may support the selection of the best layout. This 
chapter is devoted to the presentation of such a 
methodology. The methodology recognizes major 
differences between layout types.

Several authors propose methodologies to 
simultaneously cope with qualitative and quan-
titative objectives in the selection of a layout. 
Cambron and Evans (1991) applied Saaty’s 
Analytic Hierarchy Process (AHP) to consider 
the problem’s multiple objectives. The approach 
is illustrated by means of a problem involving 
the layout of a commercial printing and binding 
facility. Partove and Burton (1992) also propose 
AHP for layout selection. Yang and Kuo (2002) 

and Ertay et. al (2006) apply AHP and combine 
this with the data envelopment analysis (DEA) 
approach to solve the layout selection problem. 
Qualitative performance measures were weighted 
by AHP. DEA was then used to solve the multiple-
objective layout problem. Yang and Kuo (2002) 
used a practical case study, an IC packaging com-
pany, to illustrate the efficiency and effectiveness 
of their methodology. Ertay et. al (2006) illustrate 
the applicability by means of a case study in 
which a choice has to be made between 17 alter-
native layouts for a company producing plastic 
profiles. Abdi and Labib (2003) apply AHP for 
the selection of a reconfigurable manufacturing 

Table 1. Layout types and some major advantages and disadvantages 

Type of Layout Explanation Major advantages Major disadvantages

Process Layout or Func-
tional Layout

Machines of the same type are 
located in the same area.

Routing Flexibility. 
Specialization in process type.

Complexity of coordination 
between departments.

Cellular Layout Machines are grouped in cells and 
each cell is responsible for the 
complete manufacturing of a part 
family.

Short setup times because of the dedi-
cation of families to cells.

Sensitive for unbalance in 
the load of identical ma-
chines in different cells. 
Inflexible for the introduc-
tion of new products.

Dynamic Cellular Layout A reconfigurable cellular layout. Enables the cell layout to respond to 
product changes.

Costs of reallocating ma-
chines in case of product 
changes

Fractal Layout Machines are grouped in various 
fractals, which are (more or less) 
identical cells able to produce all 
products.

Enables the cell layout to deal with 
changes in product mix.

Limited specialization of 
workers and machines.

Holonic Layout or Holo-
graphic Layout

Each machine (type) is an autono-
mous entity (holons) and is seem-
ingly random (=random or based 
upon transition probabilities) 
located throughout the plant.

Provides efficient process routes for 
any production order. As orders arrive, 
routings are constructed by search-
ing for compatibility between order 
requirements and machine availability, 
location, and capability.

Complexity of coordina-
tion between machine 
requirements of the various 
production orders

Distributed Layout or Scat-
tered Layout. (Distributed 
or scattered layouts can be 
seen as special cases of the 
holonic layout)

Distributed or scattered layouts 
are those where machine repli-
cates are strategically distributed 
across physical space.

Flexibility of assigning manufacturing 
orders to available machines which are 
located in the same area.

Limited specialization of 
workers and machines. 
Complexity of coordina-
tion.

Hybrid layout Several layout types exist within 
one department

Fit between the various characteristics 
of the product types of a company and 
the various layout options.

Complexity of planning 
and control

Modular layout 
(Modular layouts can be 
seen as a special case of a 
hybrid layout)

Machines are clustered in 
modules. Each module has its 
own layout and is responsible 
for a number of operations to be 
performed on a product

Recognizes the layout needs of the 
various operations needed per product.

Complexity of the linkage 
of the various modules
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system. Yang and Hung (2007) explore the use 
of multiple-attribute decision making (MADM) 
in the selection of an appropriate layout design. 
Two methods were proposed in solving the case 
study problem: the technique for order preference 
by similarity to ideal solution (TOPSIS) and fuzzy 
TOPSIS. The methodologies for layout selection, 
as presented in literature, focus on the methods to 
deal with conflicting quantitative and/or qualita-
tive objectives. Limited attention is devoted to the 
selection of appropriate objectives and criteria. 
This chapter pays substantial attention to the choice 
of objectives and the specification of criteria.

Objectives and criteria in the layout literature 
are usually just a listing of some relevant elements. 
Researchers do not link the elements to the various 
strategic objectives of a company. The evaluation 
of layout alternatives is based on objectives such as 
(i) minimizing material handling costs, (ii) improv-
ing flexibility for arrangement and operation, (iii) 
utilising the available area most effectively, and 
(iv) minimising overall production time (Francis 
et al, 1992). Raman et. al (2009) distinguish three 
layout effectiveness factors—facilities layout flex-
ibility (FLF), productive area utilisation (PAU) and 
closeness gap (CG). They claim that the measure-
ment of these factors enables the decision-maker 
of a manufacturing enterprise to analyse a layout, 
based on which they can make decisions towards 
productivity improvement. They do not link the 
three factors to generic performance objectives 
of manufacturing companies. In this chapter we 
stress the importance of clarifying the link between 
layout decision criteria and the performance objec-
tives of the company. This is needed to place the 
layout decision in its strategic context.

A major decision in many companies is the 
choice between a product-oriented and a process-
oriented design philosophy. In a product-oriented 
design philosophy, machines and workers are 
grouped according to manufacturing needs of 
product types. A group of machines and workers 
is responsible for the complete manufacturing 
of (a set of) product types. The various groups 

in a product layout are relatively independent 
from each other. In a process-oriented design 
philosophy, machines and workers are grouped 
according the various functions needed to perform 
all product types. The functionally based groups 
are highly dependent on each other. Products 
flow from group to group. Most studies on the 
selection of a manufacturing layout implicitly 
assume a functional, or process-oriented, layout 
and are concerned with the allocation of the dif-
ferent functional groups. This chapter explicitly 
recognizes that companies may select a process-
oriented or a product-oriented layout type, or a 
mix of both types. Table 1 gives an overview 
of possible layout types in a high-variety/low-
volume environment. In our viewpoint, the type 
of layout has an important impact on the various 
performance objectives of a company.

The choice between a product- and a process-
oriented layout is, many times, not an obvious 
decision. Case studies and survey articles (see e.g. 
Wemmerlöv and Hyer 1989, Burbidge et al. 1992) 
illustrate the enormous advantages of the introduc-
tion of a product-oriented, cellular manufacturing 
layout (CML). Other case studies indicate that 
several firms move from a cellular manufactur-
ing layout towards a process-oriented, functional 
layout (FL) (see e.g. Slomp 1998, Molleman et 
al. 2002). Numerous simulation studies have been 
performed in order to compare the performance 
of a CML and a FL in various situations (for an 
overview, see Johnson and Wemmerlöv 1996, Ar-
garwal and Sarkis, 1998, or Shambu et al., 1996). 
These studies indicate important factors, which 
have to play a role in the layout choice. Johnson 
and Wemmerlöv (1996), however, state that the 
simulation studies cannot assist practitioners in 
making specific choices between existing layouts 
and alternative cell systems. They indicate various 
mismatches between the model world and reality 
and suggest that decisions to change the existing 
layout should be made on a case-by-case basis for 
each potential cell application. A general frame-
work, as presented in this chapter, may support 
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managers in the selection of an appropriate layout 
type. The case study in this paper shows how the 
framework has supported the managers involved.

THE LINK BETWEEN STRATEGIC 
OBJECTIVES AND LAYOUT TYPE

An essential condition in the selection of a layout is 
the ability of decision makers to link the strengths 
and weaknesses of each layout alternative with the 
market demands, or performance objectives, with 
which the firm has to deal. Slack et al. (2001) dis-
tinguish five major performance objectives: price, 
quality, speed, flexibility, and dependability. The 
flexibility objective can be further split in product/
service flexibility, mix flexibility and volume/
demand flexibility. These objectives have to play 
an essential role in the selection of a manufactur-
ing layout. We have added the objective “quality 
of work” to the set of objectives. This criterion 
is especially important in environments where 

labor is scarce. In the next subsections, we link 
the various performance objectives with aspects 
of the manufacturing layout type. We will refer 
to the functional (process-oriented) and cellular 
(product-oriented) layout type, as described in 
Table 1, in the discussion of the various aspects. 
Important words in the next subsections are writ-
ten in italics. These words concern the aspects 
and elements which need to be dealt with in the 
layout selection problem. They are summarized 
in Table 2.

The Impact of Layout Type on the 
Price of a Product

From the perspective of a production manager, 
the price of a product has to be related to the 
manufacturing costs. A reduction of the manu-
facturing costs can be a reason to lower the price 
of products. Elements of the manufacturing costs 
are equipment costs, personnel costs, material 
costs and inventory costs. Several aspects of a 

Table 2. Objectives, aspects and elements in the selection of a manufacturing layout 

Objectives aspects elements

price costs • equipment costs 
• personnel costs 
• material costs 
• inventory costs

quality • specialization of workers 
• advanced machinery 
• control loops

speed throughput time • transport time 
• machining time 
• waiting time

flexibility 
• product/service 
• mix 
• volume/demand

• response 
• range

dependability • interchangeability of workers 
• interchangeability of equipment 
• control capacity

quality of labor • skill variety 
• task identity 
• task significance 
• autonomy 
• feedback
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manufacturing layout will have impact on these 
costs (see Figure 1). More machines and tools 
may be needed in a product-oriented cell lay-
out in order to create independent, autonomous 
groups of workers and machines. A survey of 32 
U.S. firms involved with cellular manufacturing, 
reported in Wemmerlöv and Hyer (1989), showed 
that new equipment and machine duplication was 
a major expense category for cell implementa-
tion. Specialization in a process layout may lead 
to a higher production speed, which may reduce 
equipment and personnel costs. On the other hand, 
setup times are usually lower in a product layout 
(see e.g. Flynn and Jacobs 1986, Wemmerlöv and 
Hyer 1989, Wemmerlöv and Johnson 1997) and 
reduce equipment and personnel costs in this type 
of layout. Furthermore, less transport equipment 
is usually required in a product layout because of 
the shorter transport distances. All these aspects 
have to be considered in order to estimate the 
impact on the equipment costs by the various 
types of layout. Personnel costs are, as mentioned 
above, related to the factors that have impact on 
equipment costs. Personnel costs in a product 
layout can also be lower than in a process layout 
because of a reduced need of middle managers. 
Farrington and Nazemetz (1998) indicate, by 
means of simulation studies, that a cellular system 
is easier to manage than a job shop. Empirical 
studies show the reduced need for indirect labor 
where firms convert from a functional layout to 
a cellular layout (Wemmerlöv and Hyer 1989, 
Burbidge 1992, Slomp et al. 1993). On the other 
hand, the salaries in a product-oriented layout 
may be higher, since more tasks are, probably, 
decentralized to the autonomous groups and work-
ers need higher qualifications. These aspects of 
personnel costs should be taken into account when 
assessing the various layout alternatives. Material 
costs can be influenced by the layout through the 
effect of layout choice on waste. It is conceiv-
able that workers in a product layout feel more 
responsibility for the reduction of the amount of 
waste. On the other hand, more advanced equip-

ment and more specialized workers in a process 
layout may also reduce waste. Inventory costs 
can be lower in a product layout because of the 
smaller lot sizes that can be produced efficiently 
in this type of layout. This efficiency is due to the 
smaller setup times in a product layout. Further, 
flow times in a product layout are often lower than 
in a process layout and this reduces the work-
in-process inventory. Reductions in throughput 
time and work-in-process inventory have been 
reported in surveys of plants that implemented 
cellular manufacturing (Wemmerlöv and Hyer 
1989, Wemmerlöv and Johnson 1997).

The Impact of Layout Type on the 
Quality of a Product

The type of manufacturing layout can also influ-
ence the quality of products. In a process layout, 
workers are probably more specialized and will 
provide for a better product quality. In a product 
layout, experts are divided among the various 
groups and the best worker will not always be 
assigned to the most complex task. Furthermore, 
a process layout may apply more advanced ma-
chinery, which has a positive effect on the qual-
ity of products. On the other hand, the control 
loops in a product layout are short and may, in 
comparison to a process layout, have a positive 
effect on product quality.

The Impact of Layout Type on 
the Speed to Serve Customers

Speed concerns the time needed to fulfill the needs 
of internal or external customers. The throughput 
time of an average job is a measure for speed. This 
throughput time consists of transport, machining 
and waiting times (see Figure 2).

A product layout usually involves less transport 
operations for manufacturing jobs because of the 
proximity of the required machines. It may also 
be possible to produce in an overlapping mode 
(Shafer and Charnes 1993, Shafer and Meredith 
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1993), which reduces the “lot size” waiting times. 
This is more easily realized in a product layout. 
Problematic for the waiting times in a product 
layout may be the lack of pooling synergy (Suresh 

and Meredith 1994). Identical machines are prob-
ably split over more than one group and the in-
terchangeability of equipment is less than in a 
process layout. The throughput time will also be 

Figure 1. Impact of layout factors on manufacturing costs

Figure 2. Impact of layout factors on speed
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influenced by the lot sizes. Reduced setup time, 
which can be realized in a CM environment, may 
make smaller lot sizes acceptable. This may have 
a positive impact on the throughput time (Suresh, 
1991). Production control, finally, plays an im-
portant role in the ability to realize short through-
put times. An inflexible control system, for in-
stance, may frustrate the production in an 
overlapping mode. When assessing the effect of 
different manufacturing layouts on speed, it is 
important to consider the requirements with re-
spect to the production control system.

The Impact of Layout Type on the 
Flexibility to Serve Customer

As mentioned earlier, the flexibility objective can 
be further split in product/service flexibility, mix 
flexibility and volume/demand flexibility (Slack 
et al. 2001). The importance of these types of 
flexibility for a particular instance may differ 
substantially. Therefore, these types of flexibility 
have to be seen as different performance objec-
tives. Flexibility, in general, can be defined as 
the ease (time, effort and/or money) by which 
changes can be realized. Two aspects determine 
the flexibility of a manufacturing layout: (i) range 
and (ii) response. “Range” refers to the scope of a 
layout and indicates the variety of situations that 
can be dealt with without a serious change of the 
production layout. “Response” indicates the speed 
by which the layout can be adapted to changing 
circumstances. Slack (1987) and Upton (1994) 
have observed that managers think along these 
lines with respect to the term flexibility.

Product flexibility indicates the ease by which 
new products can be introduced in a firm. This type 
of flexibility is higher in a product layout if the 
new product can be assigned to a single existing 
product group (quicker response). If a new product 
has impact on the design of the manufacturing 
cells, then a process layout is more stable and has 
more product flexibility (larger range).

Mix flexibility indicates the ease by which 
a firm can vary the mix of products. Important 
for the assessment of mix flexibility is insight in 
the effect of mix changes on the need of various 
manufacturing processes. A process layout is more 
range-flexible if the impact of mix changes on 
the need for manufacturing processes is limited. 
A product layout is range-flexible if work can 
be reallocated between the various groups. An 
important advantage of a product layout concerns 
the multi-functionality of workers: there are more 
capabilities at the work floor to deal with changes 
in the product mix.

Volume/demand flexibility concerns the ease 
by which the production volume can be increased 
or decreased. Temporary workers and the exten-
sion of working time are possibilities to increase 
the production volume. It is conceivable that au-
tonomous teams in a product layout can respond 
more quickly to the need for additional capacity 
than functional groups in a process layout (i.e. 
response flexibility). The need for additional ca-
pacity is localized and only one group is involved 
in the need for more capacity for a particular 
product family. On the other hand, extension of 
capacity can be realized more easily in a process 
layout, because more workers with the same 
capabilities are eligible to work overtime (i.e. 
range flexibility). Also, temporary workers can 
probably best be integrated in a process layout.

The Impact of Layout Type on the 
Dependability to Deliver on Time

The performance objective “dependability” points 
to the importance of being dependable with respect 
to delivery times, the quality of the products, and 
such. To be dependable, it is important that the 
manufacturing activities can be buffered from all 
kinds of disturbances. Machine breakdowns and 
unexpected absenteeism of workers may compli-
cate the dependability of a manufacturing system. 
Interchangeability of machines (or the ability to 
subcontract) and the possibility to replace workers 
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(or increase the working times of some workers) 
indicate to what extent a manufacturing system 
can be reliable in various circumstances. The 
interchangeability and the possibility to replace 
workers are probably higher in a process layout 
because of the clustering of identical capacities. 
Another aspect of dependability concerns the 
ability to control the flow of products. It is likely 
that the throughput times in a product layout can 
be controlled better; the control responsibility can 
be decentralized to autonomous groups which are 
able to respond quickly to disturbances.

The Impact of Layout Type 
on the Quality of Work

Quality of work can be investigated in several 
ways. A well-known approach concerns the job 
characteristics model of Hackman and Oldham 
(1980). This model is used by Huber and Hyer 
(1985) and Shafer et al. (1995) to investigate 
human issues in cellular manufacturing. The 
job characteristics model distinguishes five task 
characteristics that have impact on quality of 
labor: (i) skill variety, (ii) task identity, (iii) task 
significance, (iv) autonomy, and v) feedback. 
Skill variety refers to the extent to which the work 
requires a variety of activities involving different 
skills and talents of the workers. Task identity 
concerns the extent to which the work enables 
the worker to complete a whole task from start to 
finish. Task significance relates to the impact of 
the work on other people within or outside of the 
organization. Autonomy indicates to what extent 
a worker has the freedom to plan, to organize, and 
to perform the tasks in his/her own way. Finally, 
feedback refers to the extent to which the worker 
receives information on the effectiveness of his/
her performance.

A product layout likely supports a higher/
better skill variety, more autonomy, and a better 
feedback mechanism: workers can perform a va-
riety of tasks, they are responsible for the internal 
organization of the group, and they get a quick 

feedback on their activities. The task identity and 
task significance in a process layout is probably 
better: the tasks to be performed are clear for all 
workers and they will be respected because of 
their specialization.

DECISION SUPPORT FRAMEWORK

The previous section presented major performance 
objectives of a manufacturing system and indicated 
which layout-related aspects play an important 
role. Table 2 summarizes these aspects. As can 
be seen, the performance objectives price and 
speed consist of several elements. These elements 
together constitute the related performance indica-
tors. We do not distinguish aspects for these two 
performance objectives.

The ultimate goal is to select the best layout 
out of a set of alternative layouts. Based upon the 
scheme of Table 2, the selection problem can be 
split in three sets of questions:

1.  What are the relative scores of the various 
alternative layouts on the aspects men-
tioned in Table 2? This question involves a 
comparison of the alternative layouts with 
respect to the various aspects. Answering this 
question requires knowledge of operational 
issues on the work floor and the ability to 
assess the impact of an alternative layout 
on the aspects. The answer to this question 
determines value π(i,j), see Table 3.

2.  What is the relative importance of the vari-
ous aspects for the performance objectives? 
Table 2 gives an overview of all the aspects. 
The answer to this question determines value 
π(j,k). The sum of the elements, mentioned 
in column 3 of Table 2, forms an indication 
for the performance of respectively the price 
and speed objective.

3.  What is the relative importance of the various 
performance objectives for the firm? This 
is basically a strategic question, which has 
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to be answered by the management of the 
firm. It requires knowledge about customers 
and competitors. The answer to this question 
determines value π(k).

The answers to these sets of questions enable 
the calculation of the relative performance of the 
alternatives:

R i i j j k k
j k

( ) ( , ) ( , ) ( )=∑ ∑ π π π  (1)

The three sets of questions and the way in 
which the relative performance of the alternatives 
are calculated can be seen as an example of using 
the weighted-score method (see e.g. Slack et al. 
2001, p. 166). A major issue is the difficulty to 
“determine” the values of π(k), π(j,k), π(i,j), and 
R(i). It requires the ability to weight different 
types of issues.

The three sets of questions and the issue of 
weighting different types of issues fits in the 
AHP-approach of Saaty (1980). AHP forces the 
decision maker(s) to make all assessments explicit. 
The decomposition of the main problem in several 
smaller problems also enables an effective par-
ticipation of employees in the decision problem, 
using their specific expertise and responsibilities. 
In the next section, we will illustrate the use of 
the AHP-approach for layout selection on hand 
of a practical instance.

CASE STUDY

The case study presented here concerns the sheet 
metal processing department of the firm Holec 
Algemene Toelevering B.V., a supplier of parts, 
tools, and services for the electro-mechanical 
industry. Before the layout study started, the 
sheet metal processing department consisted 
of four autonomous manufacturing cells with 
some exchangeability between the cells: (i) an 
automated flexible system for sheet metal work-
ing (<3 mm), (ii) numerical sheet metal working 
(>3mm), (iii) sheet metal construction process-
ing (>5 mm), and (iv) conventional sheet metal 
processing. Basic processes to be performed in 
the cells are sawing, punching, cutting, tapping, 
squaring, welding, and bench work. The firm 
started to produce in manufacturing cells in 
1987. This has led to significant improvements in 
manufacturing throughput time and efficiency. In 
the course of years, however, there were several 
reasons to move back to a more functional layout, 
such as the complexity and productivity of new 
equipment, the possibility of workers to operate 
more than one machine simultaneously, and the 
increased variety of part types. Other parts of the 
manufacturing facility of the firm were already 
transformed to a more process-oriented layout (see 
Molleman et al. 2002). A layout study at the sheet 
metal processing department started in 2000. Four 
alternative layouts were generated on the basis 
of a production flow analysis (Burbidge 1991, 

Table 3. Notation 

π(k) = relative importance of performance objective k for the firm, π k
k

( )=∑ 1 ;

π(j,k) = relative importance of aspects j on performance objective k, π j k
j

,( )=∑ 1 ;

π(i,j) = relative scores of the layout i on aspect j, π i j
i

,( )=∑ 1 ;

R(i) = relative performance of alternative i, R i
i

( )=∑ 1 .
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Slomp 1998): (i) a group-technology-oriented 
alternative, (ii) a product-type-oriented alternative, 
(iii) a capability-oriented alternative, and (iv) a 
process-oriented alternative. These alternatives 
are schematically depicted in Figure 3.

In the group-technology-oriented alternative, 
the department is divided in two relatively au-
tonomous cells with minimal intercell movements. 
Some part types can be produced in both groups, 
which simplifies the balancing of the workload. 
The product-type-oriented alternative consists of 
three manufacturing cells, each responsible for a 
particular type of product. Two cells are respon-
sible for the production of repetitive part types, 
while one cell is mainly focused on the production 
of quick orders. An important advantage of this 
layout is that the production of repetitive part 
types is not disturbed by quick orders. This may 
simplify the production control. On the other hand, 
the cell that is responsible for the quick orders 
may face undesirable fluctuations of demand. The 
capability-oriented alternative consists of three 
manufacturing cells. Basic viewpoint of this al-

ternative is that all assembly work (welding and 
bench work) needs to be performed in one manu-
facturing cell (C). The other cells (A and B) are 
autonomous cells, which have their own product-
oriented capabilities. Therefore, intercell move-
ments are minimal. The process-oriented alterna-
tive consists of two manufacturing cells. Sawing, 
punching and cutting is performed in cell A, while 
tapping, squaring, welding, and bench work is 
done in cell B. Each cell consists of small groups 
of identical machines.

The four alternatives are compared by means 
of the decision framework of Table 2 and by using 
the AHP methodology. We used the software pack-
age Expert Choice. Figure 4 presents the results 
of the comparisons of the four alternatives. The 
bars in Figure 4 indicate the relative importance 
of the various performance objectives. The four 
lines in the figure show the relative scores of 
each alternative on the performance objectives. 
The position of the alternatives at “total” shows 
the final judgment of the alternatives. As can be 
seen, the process-oriented layout is preferred 

Figure 3. Layout type alternatives for the sheet metal processing
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because of its positive effect on price, quality, 
mix flexibility and, to less extent, dependability. 
Especially price and quality are important reasons 
to select the process-oriented layout.

It is interesting to see the almost equal end 
scores of the product-type-oriented and the pro-
cess-oriented layout, despite their completely 
different orientation. The product-type-oriented 
layout performs well with respect to the perfor-
mance objective speed. In the assessment of the 
speed factors of Table 2, the managers of the firm 
assumed that the production control in the process-
oriented layout is more complex and will perform 
worse than in the product-type-oriented layout. 
At that moment, the firm did not have a good 
registration system (bar-coding system) on the 
work floor that is connected with the production 
control system. A better shop floor control system, 
which was under study at the firm at the moment 
of deciding for a new manufacturing layout, would 
likely improve the score of the process-oriented 
layout on the performance objective speed. This 
kind of sensitivity analysis is also useful for the 
assessment of the scores on the performance 
objectives quality and price. In this particular 

case, the impact of shorter control loops on the 
quality of the products is assessed as being 
minimal. This assessment has a negative impact 
on the final score of the product-type-oriented 
layout. The software package Expert Choice sup-
ports sensitivity analysis. It appears that if short 
control loops do have a major impact on the qual-
ity of the products, the product-type-oriented 
layout performs better than the process-oriented 
alternative.

Based upon the results of the analysis, the firm 
changed the layout of the sheet-metal processing 
department into a process-oriented layout, see also 
Molleman et al. (2002). The systematic approach 
of the selection problem is seen at the firm as a 
major help to canalize the discussions about the 
required layout of manufacturing departments.

CONCLUSION AND REFLECTIONS

This chapter presents a systematic approach for the 
selection of a manufacturing layout type. The ap-
proach includes the use of the AHP-methodology. 
An important element of the approach is the con-

Figure 4. Scores of the four alternatives
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struction of a decision hierarchy and the pairwise 
comparisons of decision elements. In this section 
we will first reflect on the AHP methodology and 
next we will draw conclusions on the use of AHP 
for the layout selection type problem.

As in all Multi-Criteria-Decision-Methods, 
AHP is sensitive for issues such as the specification 
of the selection problem, its decomposition, and 
the scales used for the pairwise comparisons (see 
Pöyhönen et al. 1997). The quality of the outcome 
of an AHP analysis is largely determined by the 
quality of the problem specification. For instance, 
adding aspects or regrouping decision elements 
may lead to different outcomes. A particular 
problem concerns the issue of “rank reversal”. 
This means that the priority of alternatives may 
change if alternatives are removed from and/
or other alternatives are added to the selection 
problem (see e.g. Belton and Gear 1983). The 
problem of rank reversal plays a role if almost 
identical alternatives are taken into consideration. 
Finally, the number of pairwise comparisons 
may be problematic and may lead to unreliable 
results. Employees who have to make the pairwise 
comparisons may get tired and lose the required 
concentration. Another issue, which has to be 
taken into consideration when applying the AHP 
approach, is the translation of verbal or graphi-
cal assessments in numerical figures. Pöyhönen 
et al. (1997) show that it is not advisable to mix 
different types of assessment within the levels of 
the AHP hierarchy.

This chapter has presented a decision support 
framework based on the AHP approach for the 
selection of a manufacturing layout. The value of 
the framework is illustrated by means of a case 
application. Important advantages of using the 
AHP approach are (1) the ability to decompose the 
complex decision problem in smaller problems, 
(2) the possibility of an efficient and effective 
employee participation, and (3) the detailed as-
sessment of the selected layout alternative, which 
helps to define further improvement actions. These 

advantages of using the AHP approach are also 
illustrated by Abdi and Labid (2003).

Interesting point in the case study, as presented 
in this chapter, is that opposite alternatives do 
have the best scores. This illustrates the group 
technology debate, as it takes place in practice. 
Both alternatives appear to be acceptable and have 
their pros and cons. The proposed approach has 
the advantage that it gives insight in whether the 
two alternatives do have similar scores. A debate 
about the differences on the scores of the various 
aspects will help the decision process and the ac-
ceptability of the final decision.

The systematic approach as presented in this 
chapter is developed around 1999 (see also Slomp 
et al. 1999a, b) and is applied in several practical 
situations, mostly master projects of Industrial 
Engineering students. The evaluation criteria (see 
Table 2) and the use of AHP has proven to be a 
robust framework for the selection of a layout in 
many situations.
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ABSTRACT

In this chapter, two cellular manufacturing systems, namely connected cells and disconnected cells, 
have been studied, and their performance was compared with respect to average flowtime and work-in-
process inventory under make-to-order demand strategy. The study was performed in a medical device 
manufacturing company considering their a) existing system b) variations from the existing system by 
considering different process routings. Simulation models for each of the systems and each of the options 
were developed in ARENA 7.0 simulation software. The data used to model each of these systems were 
obtained from the company based on a period of nineteen months. Considering the existing system, no 
dominance was established between connected cells vs. disconnected cells as mixed results were obtained 
for different families. On the other hand, when different process routings were used, connected system 
outperformed the disconnected system. It is suspected that one additional operation required in the 
disconnected system as well batching requirement at the end of packaging led to poor performance for 
the disconnected cells. Finally, increased routing flexibility improved the performance of the connected 
cells, whereas it had adverse effects in the disconnected cells configuration.
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INTRODUCTION

Cellular Manufacturing is a well known applica-
tion of Group Technology (GT). Cellular Design 
typically involves determining appropriate part 
families and corresponding manufacturing cells. 
This can be done either by grouping parts into 
families and then forming machine cells based 
on the part families or machine cells are deter-
mined first and based on these machine cells the 
part families may be formed or lastly both these 
formations can take place simultaneously. In a 
cellular manufacturing system, there may be a 
manufacturing cell for each part family or some 
of the manufacturing cells can process more than 
one part family based on the flexibility of the 
cells. The factors affecting the formation of cells 
can differ under various circumstances, some of 
them are volume of work to be performed by the 
machine cell, variations in routing sequences of 
the part families, processing times, etc.

A manufacturing system in which the goods 
or products are manufactured only after customer 
orders are received is called a make-to-order 
system. This type of system helps reduce inven-
tory levels since no finished goods inventory is 
kept on hand.

In this chapter, two types of cellular layouts 
are analyzed, namely connected cells (single-stage 
cellular system) and disconnected cells (multi-
stage cellular system) and their performance 
is compared under various circumstances for a 
make-to-order company. This problem has been 
observed in a medical device manufacturing com-
pany. The management was interested in such a 
comparison to finalize the cellular design. It was 
also important to research the impact of flexibility 
within each system for different combinations of 
family routings. A similar situation of connected 
vs. disconnected cellular design was also observed 
in a shoe manufacturing company, and in a jewelry 
manufacturing company. Authors believe that this 
problem has not been addressed in the literature 

before even though it has been observed in more 
than one company and therefore worthy to study.

BACKGROUND

The connected cells represent a continuous flow 
where the products enter the cells in the manufac-
turing area, complete the machining operations 
and exit through the corresponding assembly and 
packaging area after completion of the assembly 
and packaging operations. In other words, the 
output of a cell in the manufacturing area becomes 
the input to the corresponding cell in the assembly 
and packaging area. The biggest advantage of 
connected cells is that material flow is smoother 
and hence flowtime is expected to be shorter. This 
is also expected to result in lower WIP inventory. 
This paper focuses on a cellular manufacturing 
system similar to the system shown in Figure 1. 
There are three cells in the manufacturing area 
and three cells in the assembly and packaging 
area. In these cells, M1 through M3 represent 
the machines in the manufacturing area, A1, A2 
and P1 through P3 represent the machines in the 
assembly and packaging area. The products es-
sentially follow a unidirectional flow. The three 
cells in manufacturing area are similar since they 
have similar machines and all the products can be 
manufactured in any of the cells. However, the 
situation gets complicated in the assembly and 
packaging area. The three cells have restrictions 
in terms of the products that they can process. 
Therefore, deciding which manufacturing cell 
a product should be assigned is dictated by the 
packaging cell(s) it can be processed later on. 
This constraint makes the manufacturing system 
less flexible.

In the disconnected cell layout, the products 
enter the manufacturing area, complete the ma-
chining operations and exit this area. On exiting 
the manufacturing area, the products can go to 
more than one of the assembly and packaging 
cells. In other words, the output from the cells in 
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the manufacturing area can become an input for 
some of the cells in the assembly and packaging 
area (partially flexible disconnected cells) or all 
of them (completely flexible disconnected cells). 
Figure 2 shows a partially flexible disconnected 
cells case where the parts from cell 1 in the 
manufacturing area can go to any of the cells in 
the assembly and packaging area. Parts from cell 
2 can only go to cell 2, and cell 3 of the assembly 
and packaging area. Parts from cell 3 of the 
manufacturing area can only go to cell 3 of the 
assembly and packaging area. The disconnected 
system design allows more flexibility. On the 
other hand, due to interruptions in the flow, some 

delays may occur which may eventually lead to 
higher flowtimes and WIP inventory levels.

LITERATURE REVIEW

A group of researchers compared the performance 
of cellular layout with process layout. Flynn and 
Jacobs (1987) developed a simulation model 
using SLAM for an actual shop to compare the 
performance of group technology layout against 
process layout. Morris and Tersine (1990) devel-
oped simulation models for a process layout and 
a cellular layout using SIMAN. The two perfor-
mance measures used were throughput time and 

Figure 1. Connected cells

Figure 2. Disconnected cells with partial flexibility
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work-in-process inventory (WIP). Yazici (2005) 
developed a simulation model using Promodel 
based on data collected from a screen-printing 
company to ascertain the influence of volume, 
product mix, routing and labor flexibilities in the 
presence of fluctuating demand. A comparison 
between one-cell, two-cell configurations versus 
a job shop is made to determine the shortest de-
livery and highest utilization. Agarwal and Sarkis 
(1998) reviewed the conflicting results from the 
literature in regard to superiority of cellular layout 
vs. functional layout. They attempted to identify 
and compile the existing studies and understand 
conflicting findings. Johnson and Wemmerlov 
(1996) analyzed twenty-four model-based studies 
and concluded that the results of these work cannot 
assist practitioners in making choices between ex-
isting layouts and alternative cell systems. Shafer 
and Charnes (1993) studied cellular manufacturing 
under a variety of operating conditions. Queueing 
theoretic and simulation models of cellular and 
functional layouts are developed for various shop 
operating environments to investigate several fac-
tors believed to influence the benefits associated 
with a cellular manufacturing layout.

Another group of researchers focused on 
analyzing cellular systems. Selen and Ashayeri 
(2001) used a simulation approach to identify 
improvements in the average daily output through 
management of buffer sizes, reduced repair time, 
and cycle time in an automotive company. Albino 
and Garavelli (1998) simulated a cellular manu-
facturing system using Matlab to study the effects 
of resource dependability and routing flexibilities 
on the performance of the system. Based on the 
simulation results, the authors concluded that as 
resource dependability decreases, flexible routings 
for part families can increase productivity. On 
the contrary, from an economic standpoint they 
concluded that benefits will greatly reduce from 
an increase routing flexibility cost and resource 
dependability. Caprihan and Wadhwa (1997) 
studied the impact of fluctuating levels of rout-
ing flexibility on the performance of a Flexible 

Manufacturing System (FMS). Based on results 
obtained, the authors concluded that there is an 
optimal flexibility level beyond which the system 
performance tends to decline. Also, increase in 
routing flexibility when made available with an 
associated cost seldom tends to be beneficial. Suer, 
Huang, and Maddisetty (2009) discussed layered 
cellular design to deal with demand variability. 
They proposed a methodology to design a cellular 
system that consisted of dedicated cells, shared 
cells and remainder cell.

Other researchers studied make-to-order and 
make-to-stock production strategies. Among them, 
DeCroix and Arreola-Risa (1998) studied the 
optimality of a Make-to- Order (MTO) versus a 
Make-to-Stock (MTS) policy for a manufacturing 
set up producing various heterogeneous products 
facing random demands. Federgruen and Katalan 
(1999) investigated a hybrid system comprising 
of a MTO and a MTS systems and presented a 
host of alternatives to prioritize the production of 
the MTO and MTS items. Van Donk (2000) used 
the concept of decoupling point (DP) to develop 
a frame in order to help managers in the food 
processing industries to decide which of their 
products should be MTO and which ones should 
be MTS. Gupta and Benjaafar (2004) presented 
a hybrid strategy which is a combination of MTO 
and MTS modes of production. Nandi and Rog-
ers (2003) simulated a manufacturing system to 
study its behavior in a make to order environment 
under a control policy involving an order release 
component and an order acceptance/rejection 
component.

Authors are not aware of any other study that 
focuses on comparing the performance of con-
nected cells with disconnected cells and therefore 
we believe this is an important contribution to 
the literature.
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DESCRIPTION OF THE SYSTEM 
STUDIED: THE CASE STUDY

This section describes the medical device manu-
facturing company where the experimentation 
was carried out. The products essentially follow a 
unidirectional flow. The manufacturing process is 
mainly divided into two areas, namely fabrication 
and packaging. Each area consists of three cells 
and cells are not identical. The one piece-flow 
strategy is adapted in all cells. The company has 
well defined families which are determined based 
on packaging requirements. Furthermore, the cells 
have been already formed. The average flowtime 
and the work-in-process inventory are the perfor-
mance measures used to evaluate the performance 
of connected cells and disconnected cells.

Product Families

The products are grouped under three families: 
Family 1 (F1), Family 2 (F2), and Family 3 (F3). 
The finished products are vials consisting of blood 
sugar strips and each vial essentially contains 25 
strips. The number of products in families 1, 2 
and 3 are 11, 21 and 4, respectively.

The families that are described were already 
formed by the manufacturer based on the number 
of vials (subfamilies) included in the box. Fam-
ily 1 requires only one subassembly (S), one box 
(B1), one label (L), and one Insert for instructions 
(I); family 2 (F2) requires 2 subassemblies, one 
box (B2), one label and one insert, and family 3 
(F3) requires 4 subassemblies, one box (B3), one 
label and one insert to become finished product as 

shown in Table 1. Obviously, this family classifi-
cation is strictly from manufacturing perspective 
and marketing department uses its own family 
definition based on product function related char-
acteristics. The family definition has been made 
based on limitations of packaging machines. Not 
all packaging machines can insert 4 vials into a 
box. This seemingly simple issue becomes an 
obstacle in assigning products to packaging cells 
and furthermore becomes a restriction in assigning 
products to even manufacturing cells in connected 
cellular design.

Fabrication Cells

The fabrication area is where the subassemblies 
are manufactured. This area contains three cells 
which manufacture a single common subassembly 
and hence all three families can be manufactured 
in any of the three cells. The fabrication area has 
a conveyor system which transfers the products 
from one machine to another based on one-piece 
flow principle.

Operations in Fabrication Cells

There are three operations associated with the 
fabrication area:

• Lamination
• Slicing and Bottling
• Capping

The machines used for operation 1 in all three 
cells are similar and work under the same velocities 
(120 vials/min) but the number of machines within 
each cell varies. Operation 2 has machines that 
process 17 vials/min and 40 vials/min. Similarly, 
operation 3 has machines that process 78 vials/min 
and 123 vials/min. Table 2 shows the distribution 
of machines and velocities among the three cells.

Table 1. Product structures of families 

Components

Family S L I B1 B2 B3

F1 1 1 1 1

F2 2 1 1 1

F3 4 1 1 1



42

Comparison of Connected vs. Disconnected Cellular Systems

Packaging Cells

The packaging area also has a conveyor system 
similar to the fabrication area which transfers 
products within packaging cells and also from 
the fabrication cells to the packaging cells. In 
the packaging area, the subassemblies produced 
in the fabrication area are used to produce the 
various finished products. The packaging cell 1 is 
semiautomatic while cells 2 and 3 are automatic. 
This difference in the types of machines results 
in constraints that do not allow the packaging of 
certain products in certain cells. There are a total 
of 36 finished products which differ in the quan-
tity of vials they contain, the type of raw material 
the vials are made of, and the destination of the 
country to where they are shipped. The original 
cell feasibility matrix for the families is given in 
Table 3 and the restrictions are due to constraints 
in the packaging of the vials.

Operations in Packaging Cells

There are five operations performed in packaging 
area and each operation requires one machine. The 
operations are described as follows:

• Feeding (This operation is only performed 
in the case of disconnected cells)

• Labeling
• Assembly (Automatic in cells 2 and 3, 

semi-automatic in cell 1)
• Sealing
• Bar Coding

Table 4 shows the production rates of the 
machines in all cells.

ALTERNATE DESIGNS CONSIDERED

In this section, the current product-cell feasibility 
restrictions are discussed for both connected and 
disconnected cellular systems.

Connected Cells

In this system, cells are set up such that the pack-
aging cells form an extension or continuation of 
the respective fabrication cells. In other words, 
the output of a cell in fabrication area becomes 
the input for the corresponding packaging cell. 
Hence, it is referred to as a connected system. 
The connected system for the current product-

Table 2. Number of machines and their production rates in fabrication cells 

Op. 1
Op.2 Op. 3 Output of Bottleneck 

(vials/min)Type I Type II Type I Type II

Production Rate 
(vials/min) 120 17 40 78 123

Cell 1 1 2 2 0 1 114

Cell 2 1 4 0 1 0 68

Cell 3 2 3 2 0 2 131

Table 3. Feasibility matrix of families and pack-
aging cells 

Family
Packaging 

Cell 1
Packaging 

Cell 2
Packaging 

Cell 3

F1 X X

F2 X X X

F3 X X
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cell feasibility is shown in Figure 3. The output 
of family 1, family 2, and family 3 is essentially 
based on the bottleneck or the slowest machine 
in each cell of the fabrication or the packaging 
area and they are shown in Table 5.

Disconnected Cells

In this case, the output of a cell in the fabrication 
area can become an input for more than one cell in 
the packaging area depending upon the constraints 
in the packaging area. This can be considered to 
be a partially flexible disconnected cells type of 
system. The cell routing for each family is shown 
in Figure 4. In this figure, solid lines indicate that 
all the products processed in that particular fabri-

Table 4. Production rates for assembly-packaging machines in vials/minute 

Cell Family Operation

4 5 6 7 8

Cell 1 Family 1 160 135 80 150 150

Family 2 160 135 80 150 150

Family 3 160 135 80 150 150

Cell 2 Family 1 160 135 100 150 150

Family 2 160 135 180 150 150

Family 3 NA NA NA NA NA

Cell 3 Family 1 NA NA NA NA NA

Family 2 160 135 150 150 150

Family 3 160 135 280 150 150

Figure 3. Cell routing of families for the con-
nected system

Table 5. Output rates for cells in the connected system 

Cell # Family # Output Rate of the Bottleneck 
Machine in Fabrication Area 

(vials/min)

Output Rate of the Bottleneck 
Machine/Operator in Packaging 

Area (vials/min)

Output Rate 
(vials/min)

Cell 1 Family 1 114 80 80

Family 2 80 80

Family 3 80 80

Cell 2 Family 1 68 100 68

Family 2 135

Cell 3 Family 2 131 135 131

Family 3 135
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cation cell can be processed in the assembly and 
packaging cell that they are connected to. On the 
other hand, the dashed lines show that only some 
of the products processed in the fabrication cell 
can be processed in the corresponding assembly 
and packaging cell. This provides a greater amount 
of flexibility with respect to the routing of the 
parts in the cellular system. The output rates of 
family 1, family 2, and family 3 depend on the 
fabrication-packaging cell combination and they 
are determined by the slowest machine as shown 
in Table 6.

Cases Considered

The experimentation discussed in this chapter can 
be grouped in the following sections:

• Original Family-Cell Feasibility Matrix 
Production orders are based on customer 
orders.

• Various Family-Cell Feasibility Options 
Seven different family-cell feasibility op-
tions have been considered as given in 
Table 7. In this case too, production orders 
are based on customer orders.

METHODOLOGY USED

This section describes the methodology used to 
develop the different simulation models in Arena 
7.0.

Input Data Analysis

Input data such as customer order distributions, 
their respective inter-arrival times, processing 
times, and routings were all obtained based on the 
data provided by the company. The data provided 
was basically the total sales volume in vials for 
each part belonging to one of the three families 
for a period of nineteen months. Table 8 shows 
the customer order sizes and the inter-arrival time 
distributions for each product.

Simulation Models

The models were run 24 hours a day which 
basically represented 3 shifts round the clock. 
Setup times and material handling times were 
negligible. Preemption was not allowed due to 
material control restrictions by FDA. Vials move 
based on one-piece flow between machines. The 
simulation models are discussed for different cases 
separately in the following paragraphs.

Case 1: Connected Cells: After the entities are 
created, they are routed to cells 1, 2 or 3 based 
on the type of family they belong to. The entities 

Figure 4. Cell routing of families for disconnected system
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enter the fabrication area as a batch equivalent to 
the customer order size. Once a batch of entities 
enters the cell they are split and there is a one-piece 
flow in the cell. Entities belonging to a family go 
to one of its feasible cells based on the shorter 
queue length among 2nd operation. This is done 
because the second operation in each cell has 
been identified as the bottleneck operation based 
on trial runs conducted. In cell 1 and cell 3, the 
entities undergo operation 1 and go to operation 
2 where there are two types of machines namely 
the slow (Type I) and fast (Type II) machines 
available for processing. The entities are routed 
to either type of machine based on a percentage 
which was decided after a number of simulation 
runs in order to minimize the queue lengths and 
hence the waiting time. In cell 1, 30% of the enti-

ties were routed to the Type I machine and the rest 
were routed to the Type II machine. In cell 3, 40% 
of the entities were routed to the Type I machine 
and the rest were routed to the Type II machine.

Each of the entities leaving the fabrication 
cells enters the corresponding packaging cells. For 
example, entities from cell 1 in the fabrication area 
will enter cell 1 of the packaging area. The entities 
entering the packaging area undergo processing 
through operation 4. In the fifth operation, the vi-
als are grouped based on the type of family they 
belong to. Family 1 consists of only 1 vial, family 
2 consists of 2 vials and family 3 consists of 4 vi-
als. Thus, the vials that are batched in Arena after 
operation 5 are processed in operations 6, 7 and 
8 where they are boxed, sealed and coded. In the 
final batching, the vials are batched together in a 

Table 6. Output rate of each routing combination for the disconnected system 

Family # Fabrication Area Cell (Output of 
the Bottleneck Machine in vials/

min)

Packaging Area Cell 
(Output of the Bottleneck Machine in 

vials/min)

Output Rate of Routing 
Combination 

(vials/min)

Family 1 Cell 1 (114) Cell 1 (80) 80

Cell 1 (114) Cell 2 (100) 100

Cell 2 (68) Cell 1 (80) 68

Cell 2 (68) Cell 2 (100) 68

Cell 3 (131) Cell 1 (80) 80

Cell 3 (131) Cell 2 (100) 100

Family 2 Cell 1 (114) Cell 1 (80) 80

Cell 1 (114) Cell 2 (135) 114

Cell 1 (114) Cell 3 (135) 114

Cell 2 (68) Cell 1 (80) 68

Cell 2 (68) Cell 2 (135) 68

Cell 2 (68) Cell 3 (135) 68

Cell 3 (131) Cell 1 (80) 80

Cell 3 (131) Cell 2 (135) 131

Family 3 Cell 1 (114) Cell 1 (80) 80

Cell 1 (114) Cell 3 (135) 114

Cell 2 (68) Cell 1 (80) 68

Cell 2 (68) Cell 3 (135) 68

Cell 3 (131) Cell 1 (80) 80

Cell 3 (131) Cell 3 (135) 131
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box based on the final customer order sizes. The 
final batch sizes are the same as the input batch 
sizes. There is a waiting time associated since the 
entities might have to wait till the required batch 
size is reached and only then get disposed.

The warm up time for the model was deter-
mined to be 2000 hours based on steady state 
analysis. The simulation was run for 2500 hours 
after the end of the warm-up period.

Case 1: Disconnected Cells: The entities enter 
the fabrication area in batches as explained for 
the connected system. The batches of entities 
in disconnected system are routed differently 
as compared to the connected system. Here, the 
batches of entities are routed to cell 1, cell 2, or 
cell 3 of the fabrication area based on the shortest 
queue length of the bottleneck operation which is 
operation 2 as explained earlier. The flexibility of 
routing the families to any of the cells in this type 
of system is the only major difference between 
the connected and disconnected systems in the 
fabrication area. The processing times of the 
machines and the sequence of operations for the 
entities for both systems are the same. Since the 
flow is disconnected in this system, the entities 

are batched again to the same customer order sizes 
at the end of the fabrication area.

The batches of entities entering the packaging 
area are routed to specific packaging cells based 
on shortest queue length as shown earlier in Table 
4. These batches are then split and the entities 
follow a one-piece flow. Also, there is an extra 
feeding operation at the start of the packaging cells 
in order to accommodate the transfer of entities 
from fabrication to packaging. The method in 
which the entities are transferred from fabrication 
to packaging and the extra feeding operation is 
the only major difference between the connected 
and disconnected systems in the packaging area. 
The processing times of the machines and the 
sequence of operations for the entities for both 
systems are the same.

Case 2: It is very similar to case 1 except that 
the routings for products are varied as given in 
Table 7. In this table, Option 5 (O5) is the least 
flexible arrangement where each cell can process 
only one product family for both connected and 
disconnected cells. Option 2 (O2) is the most 
flexible arrangement with three cells capable of 
running all three product families both in con-
nected cells and disconnected cells. The remain-

Table 7. Different family-cell feasibility options 

Cellular System Cell Type Cell Options

O1 O2 O3 O4 O5 O6 O7

Connected Cells Fab. 
Cells

C1 1 1,2,3 1,2 1,2,3 1 1,2 1,2

C2 2 1,2,3 2,3 1,2 2 2,3 2,3

C3 3 1,2,3 1,3 2,3 3 1,3 1,3

Pack. 
Cells

C1 1 1,2,3 1,2 1,2,3 1 1,2 1,2

C2 2 1,2,3 2,3 1,2 2 2,3 2,3

C3 3 1,2,3 1,3 2,3 3 1,3 1,3

Disconnected Cells Fab. 
Cells

C1 1 1,2,3 1,2 1,2,3 1 1,2,3 1,2

C2 2 1,2,3 2,3 1,2 2 1,2,3 2,3

C3 3 1,2,3 1,3 2,3 3 1,2,3 1,3

Pack. 
Cells

C1 1,2,3 1,2,3 1,2,3 1,2,3 1 1,2 1,2

C2 1,2,3 1,2,3 1,2,3 1,2,3 2 2,3 2,3

C3 1,2,3 1,2,3 1,2,3 1,2,3 3 1,3 1,3
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ing options vary in flexibility between O5 and 
O2. In Option 1, the system is highly inflexible 

in connected cells whereas it is very flexible in 
packaging cells of disconnected arrangement 

Table 8. Inter-arrival time and customer order size distributions for products 

Family # Product # Inter-arrival Time Distribution Customer Order Size Distribution

Family 1

1 0.999 + WEIB(0.115, 0.54) 1.09 + LOGN(1.56, 1.06)

2 0.999 + WEIB(0.0448, 0.512) TRIA(18, 23.7, 52)

3 1.11 + EXPO(1.87) 9 + WEIB(7.66, 1.27)

4 2 + LOGN(3.19, 3.68) 2 + 17 * BETA(0.387, 0.651)

5 4 + LOGN(5.05, 14) 207 + LOGN(86.5, 139)

6 UNIF(0, 26) TRIA(6, 12.5, 71)

7 -0.001 + 26 * BETA(0.564, 0.304) UNIF(9, 80)

8 TRIA(0, 6.9, 23) EXPO(25.3)

9 NORM(13.7, 7.49) NORM(108, 30.8)

10 6 + WEIB(3.78, 0.738) TRIA(98, 120, 187)

11 UNIF(0, 26) UNIF(14, 34)

Family 2

12 0.999 + WEIB(0.0126, 0.405) 5 + WEIB(7.51, 0.678)

13 1 + LOGN(0.99, 2.62) 2 + 11 * BETA(0.412, 0.527)

14 1.24 + EXPO(1.46) 30 + 26 * BETA(0.643, 1.08)

15 EXPO(7.06) 2 + 34 * BETA(0.321, 0.519)

16 0.999 + WEIB(0.0313, 0.503) NORM(149, 57.1)

17 0.999 + WEIB(0.195, 1.12) NORM(23, 14.2)

18 TRIA(0, 11.2, 25) 101 * BETA(0.822, 0.714)

19 26 * BETA(0.649, 0.42) EXPO(154)

20 EXPO(7.4) UNIF(0, 90)

21 UNIF(0, 26) TRIA(0, 231, 330)

22 28 * BETA(1.11, 0.547) TRIA(0, 224, 325)

23 27 * BETA(0.679, 0.429) EXPO(119)

24 28 * BETA(0.468, 0.255) TRIA(425, 1.05e+003, 2.5e+003)

25 1.16 + LOGN(2.48, 1.76) NORM(867, 534)

26 EXPO(7.03) NORM(68, 32.8)

27 TRIA(0, 4.44, 25) EXPO(13.8)

28 9 + 17 * BETA(0.559, 0.0833) 24 * BETA(0.67, 0.969)

29 28 * BETA(0.466, 0.301) NORM(420, 168)

30 28 * BETA(0.932, 0.479) NORM(267, 110)

31 2 + 26 * BETA(0.314, 0.458) TRIA(0, 274, 381)

32 UNIF(0, 26) TRIA(0, 297, 368)

Family 3

33 0.999 + WEIB(0.0117, 0.424) TRIA(843, 1.19e+003, 2e+003)

34 1.33 + 1.96 * BETA(0.3, 0.636) WEIB(6.83, 0.613)

35 1 + LOGN(5.23, 7.03) 37 + LOGN(147, 1.51e+003)

36 4 + 22 * BETA(0.305, 0.197) TRIA(0, 543, 591)
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(three product families for each cell). In options 
3, 4, 6 and 7, each product family can be run at 
least in two cells. In option 3, packaging cells of 
disconnected arrangement is more flexible (once 
again three product families for each cell). In op-
tion 4, a little bit more flexibility is added to both 
connected and disconnected cells (cell 1 can run 
three families). In option 6, more flexibility is now 
added to fabrication cells of disconnected system 
(three product families for each cell). In option 
7, each family can be run in two cells. However, 
models for options 1 and 5 didn’t stabilize and 
therefore they were not included in comparisons.

Production order quantities for products 33 
and 36 were both reduced by 40% and 50%, re-
spectively to fit into existing capacity for case 1. 
Validation and verification are an inherent part of 
any computer simulation analysis. Models were 

verified and validated before statistical analysis 
was performed for all scenarios.

RESULTS OBTAINED

The results obtained from simulation analysis for 
average flowtime and average work-in-process 
inventory are summarized in Tables 9 and 10, 
respectively. The results are based on 100 replica-
tions. The statistical analysis was conducted using 
the statistical functions available in Excel. A t-test 
assuming unequal variances for two samples was 
conducted for a 95% confidence interval for each 
family under each system. Table 11 displays the 
comparison for each family with respect to flow-
times and work-in-process between connected 
and disconnected systems. Table 12 displays 
comparisons for the families for the same perfor-

Table 9. Average flowtime results for all cases 

Cases and 
Options

Connected Cells 
Configuration

Disconnected Cells 
Configuration

F1 F2 F3 F1 F2 F3

C1 42.66 50.52 87.53 31.19 54.39 71.61

C2-02 31.08 45.98 66.61 32.55 51.62 73.79

C2-03 24.91 39.84 67.06 27.24 46.93 83.48

C2-04 41.26 51.15 78.25 35.14 49.66 79.49

C2-06 Same as C2-03 31.88 51.17 73.80

C2-07 Same as C2-03 70.67 45.91 78.06

Table 10. Average work-in-process results for all cases 

Cases and 
Options

Connected Cells 
Configuration

Disconnected Cells 
Configuration

F1 F2 F3 F1 F2 F3

C1 128.59 1403.77 1381.40 100.15 1622.52 1182.29

C2-02 90.00 1184.19 1052.06 99.70 1563.94 1267.13

C2-03 70.67 1046.90 1246.10 86.36 1425.42 1442.67

C2-04 126.10 1425.71 1269.42 111.27 1667.29 1409.31

C2-06 Same as C2-03 97.46 1555.34 1273.61

C2-07 Same as C2-03 80.34 1380.77 1532.79
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Table 11. Connected vs. disconnected configuration for each family 

Cases and 
Options

FLOWTIME WIP

F1 F2 F3 F1 F2 F3

C1 S (D) NS NS S (D) S (C) NS

C2 – O2 NS S (C) NS S (C) S (C) S (C)

C2 – O3 S (C) S (C) S (C) S (C) S (C) NS

C2 – O4 NS NS NS NS S (C) NS

C2 – O6 S (C) S (C) NS S (C) S (C) NS

C2 – O7 S (C) S (C) NS S (C) S (C) NS

Table 12. Comparison between connected systems 

Cases and 
Options

FLOWTIME WIP

F1 F2 F3 F1 F2 F3

O2 VS O3 S (O2) S (O2) NS S (O2) S (O2) NS

O2 VS O4 S (O2) NS NS S (O2) S (O2) NS

O3 VS O4 S (O3) S (O3) NS S (O3) S (O3) NS

C1 VS O2 S (O2) NS NS S (O2) S (O2) NS

C1 VS O3, 
O6,O7 S (O3) S (O3) NS S (O3) S (O3) NS

C1 VS O4 NS NS NS NS NS NS

Table 13. Summary table of results for disconnected system: cases 1 and 2

Cases and 
Options

FLOWTIME WIP

F1 F2 F3 F1 F2 F3

O2 VS O3 S (O3) S (O3) NS S (O3) S (O3) NS

O2 VS O4 S (O4) S (O4) NS S (O4) S (O4) NS

O2 VS O6 S (O6) S (O6) NS S (O6) S (O6) NS

O2 VS O7 S (O7) S (O7) NS S (O7) S (O7) NS

O3 VS O4 S (O3) NS NS S (O3) S (O3) NS

O3 VS O6 S (O3) S (O3) NS S (O3) S (O3) NS

O3 VS O7 NS NS NS NS NS NS

O4 VS O6 NS NS NS S (O6) NS NS

O4 VS O7 S (O7) S (O7) NS S (O7) S (O7) NS

C1 VS O2 NS NS NS NS NS NS

C1 VS O3 S (O3) S (O3) NS S (O3) S (O3) S (C1)

C1 VS O4 NS NS NS NS NS NS

C1 VS O6 NS NS NS NS NS NS

C1 VS O7 S (O7) S (O7) NS S (O7) S (O7) NS
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mance measures but the comparisons are made 
between different connected systems from cases 
1 and 2. Table 13 also displays comparisons for 
the families for the same performance measures 
but the comparisons are made between different 
disconnected systems from cases 1 and 2. Results 
are denoted as significant (S) or not significant 
(NS) based on the conclusions reached. Also 
whenever significant, better option was denoted 
in a parenthesis. The significance of the results 
was based on the p-value obtained from the T-test 
conducted for an alpha level of 0.05. As mentioned 
earlier, no results for options 1 and 5 were obtained 
as the system did not stabilize.

As observed in Table 11, for case 1, the flow-
times and work-in-process were observed to be 
different and the disconnected system had lower 
flowtimes and WIP for families F1 and F3 while 
the difference was significant for F1. On the 
other hand, WIP was significantly lower for F2 
in the connected system. For case 2 with all the 
options considered, when there was a significant 
difference, this was always in favor of connected 
systems. For option 2, the flowtime for family 2 
and the WIP for all three families for the con-
nected system were significantly lower than those 
of in the disconnected system. For options 3, 6, 
and 7 which were the same for the connected 
system, the flowtimes and WIP for families 1 and 
2 were significantly lower than the disconnected 
system. For option 4, the WIP for family 2 in the 
connected system was the only significant result. 
From Table 12, it can be observed that option 2 
(O2) provided the best results when compared to 
rest of the options within the connected system 
with lower flowtimes and WIP followed by option 
3 (O3). From Table 13, it can be observed that the 
flowtimes and WIP for options 3 and 7 (O3, O7) 
were consistently and significantly better when 
compared to the rest of the options in the discon-
nected cells configuration. Also, when these two 
options were compared against each other there 
was no significant difference observed for any of 
the families and performance measures. A com-

parison between models C1 and O2 did not yield 
any significant results either and were definitely 
less superior in performance when compared with 
the rest of the options.

CONCLUSION

In this chapter, the performance of connected and 
disconnected cellular systems was compared under 
make-to-order strategy in a real cellular setting. In 
the existing system (case 1), it was observed that 
no cellular manufacturing design dominated the 
other, i.e., mixed results were obtained as to which 
system did better for each family. The flowtime 
and work-in-process for family 1 for the discon-
nected system were lower. On the other hand, the 
WIP for family 2 in the connected system was 
lower. The other comparisons did not yield any 
significant results and hence dominance could not 
be established in terms of better cellular system.

In case 2, which is basically an extension of 
case 1, the impact of considering alternate cell 
routings for each part family was studied for both 
connected cells and disconnected cells. In most 
cases, connected cells outperformed disconnected 
cells with respect to both average flowtime and 
WIP, especially for family 1 and family 2. This 
leads to the conclusion that the connected system 
is the better system in this situation since family 
1 and family 2 make up for 32 of the 36 products 
and comprise of about 85% by volume of the 
production orders in the system. The average 
flowtime and WIP conclusions are similar but not 
identical, i.e. there were incidents where flowtime 
was significantly better but not necessarily cor-
responding WIP and vice versa. If one wanted 
to choose the best connected cell configuration, 
that would be option 2. This is possibly due to 
option 2 having the highest flexibility among all 
options as each family could be routed to any of 
the fabrication and packaging cells. Options 3, 4 
and case 1 followed in the order of performance 
leading to the conclusion that increase in routing 
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flexibility of the families resulted in significantly 
lower flowtimes and WIP.

A similar comparison among all options de-
veloped for the disconnected system showed that 
options 3 and 7 performed better than the rest of 
the options. Option 3 had complete flexibility in 
the packaging area but limited flexibility in the 
fabrication area and option 7 had limited flex-
ibilities in both the areas. Limited flexibility as 
applicable to these two options means that each 
family could go to at least two specified cells. On 
the other hand, option 2 was the worst performing 
system among the options for case 2 even though 
it had the highest flexibility. This can be attributed 
to the fact that routing decisions are made based 
on queue sizes only. Family 3 products have the 
highest processing times and it is possible that 
queues in all cells may contain products from 
family 3 thus leading to higher lead times for the 
parts that join that queue.

For case 1 and also option 2 from case 2, the 
disconnected system was modified to delete the 
extra feeding operation and the batching at the end 
of the fabrication area. This was done in order to 
determine the reason why the connected system 
performed better than the disconnected system in 
most of the comparisons made. The two modified 
simulation models were run and the results were 
statistically analyzed. In case 1, the flowtime for 
family 1 and the WIP for family 2 was signifi-
cantly better for the disconnected system. In the 
original comparison, WIP and flowtime for family 
1 in the disconnected system was better and the 
WIP for family 2 in the connected system was 
significantly better. The rest of the comparisons 
did not yield any significant results. For option 2, 
none of the comparisons yielded significant results 
as opposed to the original comparison when the 
connected system clearly performed better than 
the disconnected system. From these results it can 
be concluded that the extra operation and the extra 
batching increases the average WIP and flowtimes 
for each of the families and could be responsible 

for the disconnected system not performing as 
well as or better than the connected system.
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INTRODUCTION

Over 75% of all parts manufactured in the indus-
try are produced in batches of 50 parts or less. 
Consequently, the production in batch and the 
production on demand constitute a considerable 
proportion of all manufacturing activity (Groover, 
1987). Job shop is a production environment that 
produces parts in small batches. It’s a production 
environment common in small and medium enter-

prises. The parts require different manufacturing 
operations and must be performed through various 
production departments and in different sequences 
(Oliveira, Ribeiro and Seok, 2009). Orders differ 
in the number of parts, design, processing times, 
setup times or urgency. The high demand for 
machinery and the different production sequences 
can cause long queues in the shop floor. The con-
sequence is delivery times unreliable, whereas 
nowadays delivery times should be short and 
reliable (Ribeiro and Pradin, 1993). Clustering 
is the task of classifying a collection of objects, 
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ABSTRACT

In this chapter a comparative study is presented between (I) sequential heuristics, (II) simulated anneal-
ing, (III) tabu search, and (IV) threshold algorithm for graph coloring and its application for solving the 
problem of the design of manufacturing cells in a job shop system production. The job shop production 
system has a very large proportion of all manufacturing activity. The principal concepts of manufacturing 
cells, graph theory, and heuristics are presented. The results obtained with these algorithms on several 
examples found in the literature are consistently equivalent with the best solution hitherto known in 
terms of numbers of inter-cell moves and dimensions of cells.
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such as documents, parts, or machines, into natu-
ral categories. Clustering techniques are widely 
used in many areas such as machine learning, 
data mining, pattern recognition, image analysis 
and bioinformatics. The design of manufacturing 
cells or clustering consists in partitioning the set 
of parts to be manufactured in an industry into 
families and the available machines into groups 
or cells, so that each family is associated with 
one machine group, and vice-versa. Each family-
group pair constitutes a manufacturing cell. This 
concept lies on grouping similar parts in families, 
proposing to produce them in cells that have spe-
cially selected machines to accomplish this. This 
procedure leads to greater automation, set up time 
reduction, standardization of the tools used and a 
reduction of manufacturing cycles (Ribeiro and 
Meguelati, 2002). A greater efficiency in manage-
ment and manufacturing is expected, due to the 
decomposition of the production global system 
in sub-systems of reduced dimension. Work-
shops operating on this principle, called Group 
Technology (Burbidge, 1975), offer a reduction 
in unproductive manufacturing time, resulting in 
greater flexibility, just in time and productivity 
(Hyer and Wemmerlöw, 1989).

However, the design of manufacturing cells 
requires the solution of a complex mathematical 
problem: the block-diagonalization of an inci-
dence matrix [parts × machines] corresponding 
to the global production system. This block-
diagonalization uses as its optimization criterion 
the minimization of the number of elements in 
the matrix outside the diagonal blocks. These ele-
ments represent inter-cell moves and, in practice, 
imply undesirable movement of parts to machines 
in other cells that are not present in the cell to 
which the part is assigned.. That is the reason 
why, regarding the manufacturing cells, there is 
an attempt to minimize the number of inter cell 
moves, at the same time that a balance of workloads 
between the different cells projected is sought. This 
is treated as a combinatorial problem for which 
there is no polynomial time algorithm (Garey and 

Johnson, 1979), and the most common approach 
in the literature is to propose heuristic algorithms.

BACKGROUND

A large number of techniques have been used in 
recent years (Sing, 1993) to hit the block-diago-
nalization of the matrix, designing manufacturing 
cells and implementing Group Technology in the 
industries. For example:

a.  Mathematical programming: Won (2000), 
Albadawi, Bashir, and Chen (2005), 
Panchalavarapu and Chankong (2005), 
Slomp, Chowdary, and Suresh (2005), 
Rajagopalan and Fonseca (2005), Adil and 
Ghosh (2005), Yin, Yasuda, and Hu (2005), 
Foulds, French, and Wilson (2006)

b.  Branch and bound: Ramabhatta e Nagi 
(1998), Boulif and Atif (2006)

c.  Fuzzy logic: Xu e Wang (1989), Chu and 
Hayya (1991)

d.  Genetic algorithms: Suer, Vásquez, and Peña 
(1999), Zhao and Wu (2000), Dimopoulos 
and Mort (2001), Suer, Peña, and Vázquez 
(2003), Gonçalves and Resende (2004), 
Hicks (2004), Solimanpur, Vrat, and Shankar 
(2004), Rajagopalan and Fonseca (2005), 
Vin, De Lit, and Delchambre (2005), 
Gonçalves and Tiberti (2006), Jeon and Leep 
(2006)

e.  Neural networks: Lozano, Canca, Guerrero, 
and Garcia (2001), Guerrero, Lozano, Smith, 
Canca, and Kwok (2002), Solimanpur, 
Vrat, and Shankar (2004), Pashkevich and 
Kazheunikau (2005)

f.  Meta-heuristics — tabu search and simulated 
annealing: Caux, Bruniaux, and Pierreval 
(2000), Baykasoglu (2003), Spiliopoulos 
and Sofianopoulou (2003), Xambre and 
Vilarinho (2003), Cao and Chen (2005)

g.  Data analysis: Ribeiro and Pradin (1993), 
Diallo, Pierreval, and Quilliot (2001), Rios, 
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Campbell, and Irani (2002), Ribeiro and 
Meguelati (2002), Ribeiro (2003), Oliveira, 
Ribeiro and Seok (2009)

h.  Graph theory: Rajagopalan and Batra (1975), 
Askin and Chiu (1990), Rath, Das and Sahu 
(1995), Selim (2002), Ribeiro (2009)

The main different methods from the literature 
are approximate methods (not optimal), because 
the problem is NP-complete. The computational 
time is very high when we use exact methods to 
solve large-size examples.

GRAPH COLORING

A coloring of a graph G(V, A), with), with V a 
set of N nodes and A a set of M edges (Matula, 
Marble, and Isaacson, 1972, Christofides, 1975, 
Korman, 1979) is an assignment of any color 
belonging to set of colors C = {ci} for each node 
of V, where two nodes connected by an edge of 
A cannot have the same color.

I.e., a coloring of G is a function f: V → C | if 
(i, j) ∈ A ⇒ f(i) ≠ f(j). A k-coloring of G(V, A) is 
a coloring with k colors, i.e., a partition of V in k 
independent sets of nodes.

In this case, G is a k-coloring graph. The chro-
matic number λ(G) of G is the smaller number 
of colors for which a k-coloring of G exists. The 
graph coloring problem is NP-complete (Garey 
and Johnson, 1979).

It is a high combinatorial problem: for example, 
a complete and exhaustive enumeration of all 
colorings consists in an O(M.kN) algorithm (Aho, 
Hopcroft and Ullman, 1983). But, some immediate 
results can be obtained of the definition, such as:

a.  A graph G is bi-chromatic if and only if is 
bipartite

b.  A complete sub-graph of G with t vertices 
Kt is t-chromatic

c.  A graph G with two or more edges is at least 
2-chromatic

The concepts of graph coloring, clique (a 
complete sub-graph of G) and independent set 
of nodes are close:

a.  k colors are necessary to coloring k nodes 
of a clique with cardinality k, thus λ(G) is 
greater than or equal to the cardinality of 
the greatest clique of G

b.  Let us consider S1 … Sk disjunctive subsets 
of S generated by the k-coloring; then = ∪ Si 
= S, i = 1 … k, and each Si is an independent 
set and each Si is an independent set in which 
any couple of edges is not connected.

GRAPH COLORING AND 
MANUFACTURING CELLS DESIGN

In a graph G(V, A) associated to a production 
system, V = {set of parts to be manufactured}. The 
dissimilarity indexes between parts are calculated, 
for example, based on the existing differences 
between their production sequences.

In this case, an edge connecting two nodes i 
and j exists if the dissimilarity dij is greater than or 
equal to a critical dissimilarity established a priori.

This critical dissimilarity can be modified in 
any instant with the objective of higher or lower 
number of edges of the graph and then, the number 
designed of cells.

Two nodes connected cannot have the same 
color, resulting in a coloring where the parts 
with different colors have dissimilarity indexes 
greater than or equal the fixed value for critical 
dissimilarity.

Parts with the same color will be assigned to 
the same family and manufactured in the same 
cell of machines.

The distribution of machines is carried out 
considering the number of operations carried out 
in each family: a machine is assigned to the family 
in which it will be most used.
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Example

From the initial data a matrix MPM-LOAD[parts 
× machines] is obtained (see Table 1), which pro-
vides the total time spent by each part transiting 
in the program of each machine. This matrix is 
called work load matrix and its coefficients are 
calculated as follows:

load[i,j] = unit[i] × ∑ duration[i, k]
k | program[i, j] = j

where:

unit[i] = unit number of parts[i] to manufacture.
duration[i, k] = duration of operation k on a part[i].
program[i, k] = type of machine used to perform 

operation k on a part[i].

Let the matrix MPM [parts × machines] (see 
Table 2), that informs the use (MPMij = 1) or not 
(MPMij = 0) of part i by the machine j. The matrix 
D [parts × parts] (see Table 3) gives the dissimi-
larity index between parts (“distances between 
parts”) to be manufactured. Two manufacturing 
cells will be designed for this workshop. If the 
critical dissimilarity is equal to 1, G(V, A) is the 
graph shown in Figure 1, i.e., three-coloring, and 
not acceptable because the workshop must be par-
titioned in two cells. Then, the critical dissimilarity 
value is incremented to two and the two-coloring 
graph shown in Figure 2 is obtained. After defin-
ing the families of parts, machines are assigned to 

the most demanding families. The distribution of 
machines is carried out considering the number of 
operations carried out in each family: a machine 
is assigned to the family in which it will be most 
used. The matrix CELLS [parts × machines] in 
Table 4 presents the workshop partitioning in 2 
manufacturing cells and this solution is very good: 
there are no inter-cell moves and the dimensions 
of cells are equal to [2 × 2] for cell 1 and [3 × 2] 
for cell 2.

DISSIMILARITY INDEXES BETWEEN 
PARTS

Similarity measures for parts or machines have a 
long history of use for manufacturing cells design 
problems. The first use of similarity measure for 
the manufacturing cells design problem was by 
McAuley (1972). Let:

xij = number of parts processed by machines mi 
and mj (number of matches)

xi = number of parts processed by machine mi only

Table 1. Matrix MPM-LOAD [parts × machines] 

Machine 
1

Machine 
2

Machine 
3

Machine 
4

Part 1 0 15 0 40

Part 2 25 0 60 0

Part 3 0 35 0 50

Part 4 90 0 70 0

Part 5 30 0 0 0

Table 2. Matrix MPM [parts × machines] 

Machine 
1

Machine 
2

Machine 
3

Machine 
4

Part 1 0 1 0 1

Part 2 1 0 1 0

Part 3 0 1 0 1

Part 4 1 0 1 0

Part 5 1 0 0 0

Table 3. Matrix D [parts × parts] 

Part 1 Part 2 Part 3 Part 4 Part 5

Part 1 —

Part 2 4 —

Part 3 0 4 —

Part 4 4 0 4 —

Part 5 3 1 3 1 —
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yij = number of parts that are not processed by 
either mi or mj (number of misses).

McAuley (1972) adopted a Jaccardian similar-
ity measure in evaluating similarities of pairs of 
machines. This measure considers xij as a main 
factor for similarity and divides it by the number 
of parts which either machine mi or mj processes. 
After the use of the first similarity measure, many 
other different types of similarity measures have 
been introduced, for example: Bipartite, Ku-

siak, McAuley-Jaccard, BUB, Russel and Rao, 
Sorenson, Simple Matching, Ochiai (Oliveira, 
Ribeiro and Seok, 2008). Jaccardian similarity 
measures (Bipartite, McAuley-Jaccard, Sorenson 
and Ochiai) are adopted for many cell formation 
problems (Wei and Kern, 1989). Sorenson’s 
measure is a simple modification of McAuley’s 
measure, where xij has more weight (Romesburg, 
1984). However, it is reported that these Jaccard-
ian similarity measures are limited because they 
do not use the number of misses, yij (Moiser, 
1989, Islam and Sarker, 2000). Selim and Abdel 
(2003) distinguished those Jaccardian similarity 
measures from non-Jaccardian measures which 
use yij (Kusiak, BUB, Russel and Rao, Simple 
Matching). Among them, Kusiak’s measure is one 
of the simplest (Kusiak, 1987). As said before, 
they use not only xij but also yij in the similarities. 
Simple matching was first introduced in the field of 
medicine. This measure simply adds yij to both the 
top and bottom of McAuley’s Jaccardian measure. 
The most successful non-Jarccardian measure is 
the BUB similarity measure. This measure has 
been successfully adopted by many clustering 
algorithms because their distribution of values 
are more normal and continuous (Baroni-Urban 
and Buser, 1976). Other notable non-Jarccardian 
measures are Russel and Rao’s and Ochiai’s in 
Romesburg (1984). Note that there are two big dif-
ferences between the bipartite similarity matrices 
and other similarity coefficients usually used for 
manufacturing cells design problems. First, while 
we construct both similarity matrices for machines 
and parts, most array-based clustering algorithms 
use only a machine-machine similarity matrix to 
construct cells of closely related machines and 
then part families are constructed according to 
these machine cells. Second, diagonal entries 
of similarity coefficient matrices do not play 
any role, so all diagonal entries are considered 
0. However, it is reasonable when the similarity 
of each machine or part with itself has bigger 
similarity than with others.

Figure 1. Three-coloring graph

Figure 2. Two-coloring graph

Table 4. Matrix CELLS [parts × machines] 

Machine 
2

Machine 
4

Machine 
1

Machine 
3

Part 1 1 1

Part 3 1 1

Part 2 1 1

Part 4 1 1

Part 5 1
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More details on the similarity measures can 
be found in Sarker (1996) and Sarker and Islam 
(1999) that are dedicated to analyzing most of 
the existing similarity measures in the literature 
based on a set of important properties developed 
by Baroni-Urban and Buser (1976).

In this chapter the dissimilarity indexes be-
tween parts i and j are calculated by quantifying the 
differences between their production sequences. 
The proposed method compares the production 
sequences of parts i and j utilizing the binary 
matrix MAT [parts × machines], where:

MAT
    if machine j is utilized to manufacture part i

ij
=

1

0     if machine j is not utilized to manufacture part i








 

Then, the dissimilarity index between parts i 
and k is computed as follows:

number of machines
D[i, k] = ∑μ[MATij, MATkj]
j=1

where:

µ[ ; ]a a
    if MAT MAT

    otherwiseij kj
ij ij=
≠







1

0
 

This procedure is based on the similarity 
computation used, for example, by Kusiak (1987), 
Wei and Kern (1989), Ribeiro and Meguelati 
(2002), Oliveira, Ribeiro and Seok (2008) and 
Ribeiro (2009).

ALGORITHMS

Sequential Heuristics

Let us consider a Table that defines an order for 
the N nodes of G. A sequential method S consists 
in coloring successively V1 … VN, assigning to 

these nodes the color of the minimum index not 
utilized by their neighbors. The choice of the node 
is imposed in each iteration and the choice of the 
color is trivial, corresponding to an algorithm 
sample and compact in O(N2).

But, this heuristic can be very detrimental, 
despite the existence of an optimal order. In fact, 
if λ(G) = k, then a partition of nodes exists in k 
independent set of nodes S1 … Sk. Inserting in V 
the nodes in crescent order of the number of the 
independent set of nodes, this heuristic finds the 
optimal solution searching N! orders. An order 
by the nodes can be established, for example, by 
three manners as follows:

a.  The simpler manner to implement S consists 
in utilizing the natural order of the numbers 
of nodes, i.e., Vi = i for all node i. This heu-
ristic is called FFS (First Fit Sequential).

b.  By utilizing the crescent order of the de-
gree of the nodes, Wesh and Powell (1967) 
propose the algorithm called LFS (Largest 
First Sequential).

c.  An order is defined as follows: I) VN is the 
node with minimum degree; II) For i = N-1 
… 1, the node Vi is the node of minimum 
degree in the sub-graph generated by V – 
{VN … Vi+1}. This order is the basis of the 
algorithm proposed by Matula, Marble, and 
Isaacson (1972) and it is known by SLS 
(Smallest Last Sequential).

These three heuristics obtain good and bad 
results at random. Then, the implementation of 
meta-heuristics simulated annealing and tabu 
search utilizes them for obtaining an initial solu-
tion.

Simulated Annealing

Kirkpatrick, Gelatt and Vecchi (1983) have cre-
ated the simulated annealing meta-heuristic. This 
technique is based on the annealing of metals in 
metallurgy: a metal cooled very fast presents a 
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lot of microscopic defeats, corresponding to a 
local minimum in optimization problems. If the 
cooling is slow, the atoms arrange its structure, 
the defeats missing and the metal has, then, 
an ordered structure, equivalent to the global 
minimum in optimization. Simulated annealing 
in combinatorial optimization has some similarity 
with thermodynamics. The energy of the system 
is represented by an arbitrary real number T, i.e., 
the temperature.

Simulated annealing begins by local search or 
heuristic procedure (FFS, LFS or SLS), because 
the method always begins from a feasible initial 
solution s, and the six steps bellow are activated:

a.  Take at random a transformation s’ instead 
to find the best or the first improved solution 
in the neighborhood

b.  Build the resulting solution s’ and calculate 
the variation of cost Δf = f(s’) – f(s)

c.  If Δf ≤ 0 the cost is better. Make s = s’
d.  If Δf > 0, the cost is worse. The penalty is 

higher when the temperature is low and 
Δf is big. An exponential function has the 
appropriate properties. A probability of ac-
ceptation a = e–Δf/T is calculated and, then a 
parameter p is taken at random in [0, 1]. If 
p ≤ a, the transformation is accepted, even 
with degradation of the cost and the solution 
is modified: s = s’. Otherwise, the transfor-
mation is rejected and s is conserved for the 
next iteration

e.  The convergence is assured by lowering T 
slowly at each iteration, for example, T= kT, 
k < 1, but close

f.  The algorithm stops when T attempts a limit 
equal to a ε fixed close to 0. In the imple-
mentation, the neighborhood of the solutions 
is defined by lists, but not on the graph.

Tabu Search

Tabu search was created by Glover (1989, 1990) 
and has no stochastic character. For the same 

computational time, tabu search generally presents 
better results than simulated annealing. Three 
fundamental points constitute the technique:

a.  In each iteration, the neighborhood V(s) of 
the actual solution s is completely examined 
and the best solution s’ is chosen, even if the 
cost is higher

b.  Tabu list T forgives the return to a solu-
tion recently obtained. This list stocks in 
a compact manner, the steps traversed by 
the algorithm. Then, the method seeks s’ 
in V(s) – T

c.  The best solution found is stocked, because 
unlike the simulated annealing, it is rarely 
the last one

The method stops after a maximum number of 
iterations or after a maximum number of iterations 
without improving the best solution or when V(s) 
– T = ∅. The problematic point is the capacity C 
of the tabu list T. Glover’s research knows that C 
= 7 to 20 is sufficient to prevent cycles, for any 
dimension of the problem. T is utilized as a short 
term memory. In each iteration, the Cth transfor-
mation of T (the oldest) is substituted by the last 
transformation realized. In the implementation, 
T is simply generated as a data structure of type 
queue. Werra (1990) and Hertz (1991) propose 
tabu search to solve the sub-problem of the exis-
tence of the k-coloring, for k fixed a priori. The 
technique begins to assign k arbitrary colors to 
the N nodes. If the k-coloring is attempted, the 
coloring procedure is repeated for k-1 colors. 
Frequently, the assignment presents conflict, i.e., 
nodes connected with the same color. Then, the 
objective consists in minimizing the total number 
of conflicts, converting the problem of existence 
in an optimization problem on the number of 
conflicts. The neighborhood is formed by all as-
signments obtained by exchanging the color i of a 
node α to another color j (α must have at least one 
neighbor with color i). Tabu search forgives α to 
take its previous color during NT iterations, NT 
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= capacity of tabu list. In the iteration, the search 
seeks the best neighbor of the actual assignment, 
i.e., the neighbor that minimizes the number of 
conflicts. The search stops if the number of con-
flicts is equal to 0 (it means a k-coloring) or if the 
maximal number of searches in the neighborhood 
is over. The method is considered good for finding 
a coloring close to the optimal. It begins with a 
value of k corresponding to a superior limit, ob-
tained, for example, by a heuristic procedure. If 
the tabu search solves the problem with k colors, 
the procedure is repeated for k-1.

The results described in the literature are very 
impressive, even for big graphs (10,000 nodes = 
10,000 parts). The initial number of iterations of 
the search is lower (0 to 10 iterations), but increase 
quite a bit for the last values of k. This fact shows 
the hardiness of the existence problem when the 
procedure is close to the optimal solution.

Threshold Algorithm

Provided that the problem of partitioning an X 
collection of n objects with a dissimilarity of 
classes, in a fixed k number, so that the diameter 
d(P) among the classes is minimum. This cor-
responds to constructing a threshold Gs graph, 
a partial sub-graph of G(V<A), that should be 
k-colorable. To color the graphs of the vertices, 
a technique based on the algorithm by Guénoche 
(1993) was used. This algorithm enumerates all 
of the partitions in a fixed number of minimum 
diameter classes. It is based on a threshold graph 
in p colors, with each color defining a class. Many 
heuristics to approximate the diameter and the 
partitions of minimum diameter are enumerated 
only at the last stage. Let d(P) the diameter of the 
partition of V into p classes. A superior limit, s, 
for d(P) is heuristically determined. Then, the k-
colorations for Gs are enumerated. As long as there 
is at least one possible k-coloration, the value s is 
decreased and a new iteration is processed. When 
the algorithm stops, the highest value obtained 
is equal to the remaining partition diameters. To 

enumerate all of the possible partitions of X, in 
minimum diameter K classes, this algorithm is 
applied, which is comprised of 3 stages and has 
an O(kN-k) complexity. In the first stage a heuris-
tic method is used to determine the maximum s, 
highest approximation to d(P), such that Gs will 
be k-colorable. The maximum s is determined by 
a method of dichotomic subdivisions of the varia-
tion interval of the dissimilarities in a sequential 
coloring method, in this case the saturation algo-
rithm (called “Dsatur”). In this algorithm, at each 
iteration, the rate of saturation DSi(α) is defined 
as the number of colors already employed by the 
neighbors of α. The procedure consists of:

a.  coloring the most sizable vertex with the 
color 1

b.  in the following stages, take the vertex free 
of maximum DS and color it with the least 
possible index color

In the second stage, once the maximum s has 
been set, all of the Gs colorings are enumerated 
in k colors. With the aid of “Dsatur”, maximum 
if possible, a clique of Gs is obtained, where each 
node represents a class. Then, according the order 
of saturation, the other vertices are colored in all 
possible manners. If a vertex is near the colored 
vertices, these will not be able to be used to color 
them. Thus, all of the partitions in k classes of less 
than s diameter are obtained. In the third stage, a 
decreasing order of the edges of the dissimilarity 
values, starting from s, are considered. An edge 
can be inserted in the graph as long as there is a 
compatible partition, that is, if the edge connects 
different types of nodes.

Thus, each inserted edge eliminates some 
previously obtained partitions. The first edge 
that cannot be inserted, since there would be no 
more compatible partitions left, has equal value 
to the highest interclass dissimilarity value. The 
remaining partitions for a fixed number of classes 
are of minimum diameter.
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RESULTS

Table 5 summarizes some tests carried out with 
the programs corresponding to the sequential 
heuristics, simulated annealing, tabu search and 
threshold techniques. These programs are written 
in MatLab and run on a microcomputer. Using 
examples found in the literature, a comparison is 
presented between the best solution known (BS) 
and the solutions obtained by sequential heuristics 
(SH), simulated annealing (SA), tabu search (TS) 
and threshold method (TM).

The result presented to the sequential heuris-
tics is the best solution obtained by the three 
options described above. Parameters, such as 
temperature, ε, NT, etc., for running the programs 

corresponding to simulated annealing and tabu 
search algorithms were chosen differently for each 
example, by attempt, always with the objective 
to find the best solution. In the 1st column of 
Table 5, the example given is given; in the 2nd, 
the methods utilized for solving the example: BS 
(the method responsible by the best solution 
known), SH: sequential heuristics, SA: simulated 
annealing, TS: tabu search, TM: threshold meth-
od; in the 3rd, the number of cells; in the 4th, the 
number of parts and machines; in the 5th, the 
number of inter-cell moves; in the 6th, the dimen-
sions of the cells obtained; in the 7th, the compu-
tational time (in seconds — Pentium 2.20 GHz, 
1.99 GB RAM).

Table 5. Computational results 

E M C P × M I D T

Ribeiro and Meg-
uelati, 2002

BS 
SH 
SA 
TS 
TM

2 9 × 12 0 
2 
0 
2 
0

4×6,5×6 
4×6,5×6 
4×6,5×6 
4×6,5×6 
4×6,5×6

— 
0.008 
1.204 
1.018 
1.865

Ribeiro and Pradin, 
1993

BS 
SH 
SA 
TS 
TM

3 30  16 16 
24 
16 
24 
16

5×3,10×6,15×7 
5×4,10×6,15×6 
5×3,10×6,15×7 
5×4,10×6,15×6 
5×3,10×6,15×7

— 
1.987 
8.133 
6.098 
19.334

Harhalakis, Nagi, and 
Proth,1990

BS 
SH 
AS 
TS 
TM

5 20  20 14 
15 
14 
15 
14

5×4,4×3,4×5,3×4,4×4 
6×5,4×4,4×5,3×3,3×3 
5×4,4×3,4×5,3×4,4×4 
6×5,4×4,4×5,3×3,3×3 
5×4,4×3,4×5,3×4,4×4

— 
0.985 
6.124 
4.769 
9.897

Harhalakis, Nagi, and 
Proth,1990

BS 
SH 
SA 
TS 
TM

4 20  20 11 
11 
11 
11 
11

7×7,6×5,4×5,3×3 
7×7,6×5,4×5,3×3 
7×7,6×5,4×5,3×3 
7×7,6×5,4×5,3×3 
7×7,6×5,4×5,3×3

— 
0.824 
5.655 
4.086 
8.897

Ribeiro and Pradin, 
1993

BS 
SH 
SA 
TS 
TM

3 20  12 0 
0 
0 
0 
0

6×4,9×5,5×3 
6×4,9×5,5×3 
6×4,9×5,5×3 
6×4,9×5,5×3 
6×4,9×5,5×3

— 
1.554 
3.776 
2.899 
7.881

Kusiak, 1987 BS 
SH 
SA 
TS 
TM

2 5 ×4 0 
0 
0 
0 
0

2×2,3×2 
2×2,3×2 
2×2,3×2 
2×2,3×2 
2×2,3×2

— 
0.005 
0.402 
0.678 
0.813
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CONCLUSION AND FUTURE 
RESEARCH DIRECTIONS

In this chapter, a comparison between sequential 
heuristics (SH), meta-heuristics simulated an-
nealing (SA) and tabu search (TS) and threshold 
method (TM) developed for graph coloring with 
the objective of solving the cellular manufacturing 
design problem has been presented. The results 
obtained are either the best one known or already 
of a high standard for the simulated annealing, 
tabu search and threshold method. Threshold 
method and simulate annealing were better than 
tabu search and sequential heuristics in terms of 
the inter-cell movements or the dimensions of the 
solutions for several examples from the literature 

treated. Tables 6 and 7 present, respectively, the 
solutions obtained by sequential heuristics (SH) or 
tabu search (TM), and simulated annealing (SA) or 
threshold method (TM) for the workshop proposed 
by Ribeiro and Meguelati, 2002. The manufactur-
ing cells designed by SA or TM present 0 inter-cell 
moves and by SH or TS 2 inter-cell moves. The 
computational time to find the best solution was 
equal to 0.006, 0.523, 0.779 and 0.989 seconds 
respectively for SH, TM, SA and TM.

The four algorithms take very little computa-
tional time. Thus, it is sure of obtaining a solution, 
which is either optimal or feasible within a very 
reasonable computational time. Nevertheless, for 
large examples generated at random, the meta-
heuristic tabu search presented best results than 

Table 6. Manufacturing cells obtained by SH and TS (2 inter-cell moves) 

M 1 M 2 M 4 M 6 M 8 M 11 M 3 M 5 M 7 M 9 M 10 M 12

Part 1 1 1 1 1 1

Part 2 1 1 1 1 1

Part 3 1 1 1 1

Part 5 1 1 1 1 1

Part 6 1 1 1 1 1

Part 4 1 1 1 1

Part 7 1 1 1

Part 8 1 1 1

Part 9 1 1 1 1 1

Table 7. Manufacturing cells obtained by SA and TM (0 inter-cell moves) 

M 3 M 5 M 7 M 9 M 10 M 11 M 1 M 2 M 4 M 6 M 8 M 12

Part 4 1 1 1 1

Part 5 1 1 1 1 1

Part 7 1 1 1

Part 8 1 1 1

Part 1 1 1 1 1 1

Part 2 1 1 1 1 1

Part 3 1 1 1 1

Part 6 1 1 1 1 1

Part 9 1 1 1 1 1
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simulated annealing for the same computational 
time.

When the computational time is free, the re-
sults obtained generally are the same or threshold 
method is better.

The procedure of dissimilarity indexes com-
putation is a very important step of the method. 
This parameter has a hard role in the partition-
ing of parts, because it measures the “distances” 
between parts. With this in mind, research on the 
computation of differences between parts was 
recently conducted in DMB implement factory for 
sugar cane located in Brazil, where 3,500 parts are 
manufactured by 101 machines. The objective of 
this study is to explore the specific characteristics 
of the industrial real case instances in order to 
obtain a high standard solution.
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Chapter  5

INTRODUCTION

In recent years, the cell formation problem has 
received a significant amount of attention by 
demonstrating a great potential for productivity 
improvements of cellular manufacturing system 
(CMS), which groups machines with dissimilar 

function and workstation types, dedicated to 
family of similar components. The main problem 
in designing of cellular manufacturing system is 
the formation of part families and correspond-
ing groups of machines. One of the methods for 
classification of cell formation is production flow 
analysis (PFA). The concept of PFA, proposed by 
Burbidge (1977)is probably the most well-known 
and most widely accepted. This method requires 
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ABSTRACT

The cell formation problem has met with a significant amount of attention in recent years by demonstrat-
ing great potential for productivity improvements in production environment. Therefore, the researchers 
have been developing various methods based on similarity coefficient (SC), graph theory approaches, 
neural networks (NN), and others with aim to automate the whole cell formation process. This chapter 
focuses on presentation of hybrid algorithm (HA) and genetic algorithm that are helpful in production 
flow analysis to solve the cell formation problem. The evaluation of hybrid and genetic algorithms are 
carried out against the K-means algorithm and C-linkage algorithm that are well known from the litera-
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final performance results are presented in the form of graphs.
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reliable and well-documented route sheets and 
is also time-consuming. The researchers have 
initiated development of various methods like 
similarity coefficient method, graph theoretic 
approaches, array based methods, etc. in this field 
with aim to automate the cell formation process.

The modelling of CMS through mathematical 
programming was started to incorporate more real 
life constraints on the problem. Later researchers 
began developing heuristics and meta-heuristics 
methods to explore the best optimal solutions for 
the Cell Formation (CF) problems. Since soft 
computing techniques nowadays expand their 
applications to various fields like telecommuni-
cations, networking, design and manufacturing, 
current research in CMS is being carried out 
using soft computing techniques.

Very few studies focus on CF considering 
production factors such as operational time, 
operational sequence, batch size etc. In this 
chapter some of the real-time production factors 
are considered. For this purpose, the zero-one 
binary machine part incidence matrix (MPIM) 
of CF problem is converted into real valued op-
erational time data. The use of soft computing 
technique is found more suitable for such type 
of problems, because it is capable of producing 
reliable results.

One of the chapter objectives is introduction 
of heuristic and meta-heuristic approaches based 
on similarity coefficient for solving cell formation 
problem. Simultaneously some important pro-
duction factors that cannot be ignored during cell 
formation are presented. Another objective is to 
propose suitable methodologies for cell formation 
considering real time production factors using 
hybrid and genetic algorithms. The evaluation 
of the particular algorithms will be carried out 
by use of modified grouping efficiency (MGE) 
as a measure of performance.

LITERATURE REVIEW

The concept of cellular manufacturing system 
(CMS) as the application of GT philosophy was 
originally proposed by Burbidge (1979) who 
defines it as “an approach to the organization of 
work in which the organizational units are rela-
tively independent groups, each responsible for 
the production of a given family of products”. 
Burbidge (1963) has developed a production flow 
analysis (PFA) approach that later has been incor-
porated by him in a manual method (Burbidge, 
1977). PFA method has been evolved in many 
ways after that. The most significant contribu-
tions from the researchers are towards similarity 
coefficient methods (SCM) (McAuley, 1972), 
graph theory (Rajagopalan and Batra, 1975), math-
ematical programming (Arthanari and Dodge, 
1981), meta-heuristics algorithms (Hendizadeh, 
et al., 2008), fuzzy set theory (Leem and Chen, 
1996) and neural networks (Kulkarni and Kiang, 
1995) that are used to solve cell formation (CF) 
problems. One of the key aspects of CMS is the 
formation of machine-part cells, in which parts 
and machines are assigned to distinct cells where 
the machine utilization within a cell is maximized 
and inter-cells movement of parts is minimized. 
The machine-part cell formation (MPCF) problem 
was formally defined by Burbidge (1971) with his 
work focused on heuristic approaches to solve 
the block-diagonal problem for a machine-part 
incidence matrix (MPIM). Many methods have 
been developed for the MPCF problem so far. 
However, the methods like SC methods (De Witte, 
1980), rank order clustering (ROC) (King, 1980) 
and graph theory methods (Faber, & Carter, 1986) 
have been developed only to solve the machine 
grouping in the CF problem and grouping of parts 
into part families is done in the supplementary step 
of the procedure only. Later clustering methods 
such as the modified ROC (MODROC) (Chan-
drasekaran and Rajagopalan, 1986), ZODIAC 
(Chandrasekaran and Rajagopalan, 1987), MACE 
(Waghodekar and Sahu, 1984) and GRAFICS 
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(Srinivasan and Narendran, 1991) are reported 
for solving the cell formation problems. Subse-
quently many algorithms based on meta-heuristics 
approaches have also developed and adjusted for 
solving the CF problems. The simulated annealing 
(SA) (Kirkpatrick, et al., 1983) is one of the meta-
heuristic methods for finding the global minimum 
of objective function that may possess several 
local minima. The inspiration for developing SA 
method has come from annealing in metallurgy, 
where it represents a technique involving heating 
and controlled cooling of a material to increase the 
size of its crystals and reduce their defects. Tabu 
search (TS) (Pierre, S. and Houeto, 2002) is also 
classified as meta-heuristic method. TS method 
uses the flexible structures memory where stores 
a potential solutions. Once a potential solution 
has been determined, it is marked as “taboo” so 
that the algorithm does not visit that possibility 
repeatedly. Genetic algorithm (GA) (Yasuda, 
et al., 2005) represents a search technique used 
in soft computing to find exact or approximate 
solutions and search problems. Once the genetic 
representation and the fitness function are defined, 
GA proceeds to initialize a population of solutions 
randomly, and then improves it through repetitive 
application of mutation, crossover, inversion and 
selection operators. The popular algorithms of this 
category include SA based algorithm proposed by 
Boctor (1991) and GA based algorithm proposed 
by Venugopal and Narendran (1992). Jayakrishnan 
Nair and Narendran (1998) proposed an algorithm 
called CASE which considers sequence of opera-
tions that a part undergoes through a number of 
machines. Fernando (2002), TS based algorithm 
proposed by Wu (2004). Meanwhile many re-
searchers have proposed artificial neural network 
(ANN) based methodologies for solving the cell 
formation problems. There are many popular 
ANN models found in the literature (Kao and 
Moon, 1991), (Carpenter and Grossberg, 2002) 
and Kaparthi and Suresh, 1992) which are efficient 
in producing satisfactory solutions to these NP-
hard problems. Kao et al. (1991) introduced back 

propagation neural network model for GT whereas 
Kaparthi and Suresh (1992) made an attempt to 
introduce adaptive resonance theory (ART1). 

METHODOLOGY 

In order to enhance cell formation process in 
the PFA analysis genetic and hybrid algorithms, 
have been compared. The proposed algorithms 
for specific problems are illustrated by the flow 
chart diagram with aim to visualize improvements 
of the algorithms. 

Evaluation process of the proposed algorithms 
includes performance comparison with alternative 
modified ART1 algorithm, K-means clustering 
algorithm and C-linkage algorithm by use of 
modified grouping efficiency. Every algorithm is 
tested under the conditions of 24 data sets. The 
objective of the evaluation process is to determine 
optimal data set solution that has minimal inter-cell 
moves. Final results are visually presented in the 
graph form and discussed in the text. 

GA-BASED ALGORITHM

As it can be seen from literature review, the CF 
problem focuses on the several objectives that 
are known from the literature like inter-cell and 
intra-cell moves, measure of performance and 
exceptional element. Unfortunately, all these 
objectives do not reflect exactly smooth flow of 
material leading to work-in-process (WIP) inven-
tories reduction and productivity increase. For that 
reason a cell load variation must be considered. 

Genetic Algorithm is suggested for cell forma-
tion with the objective to minimize both the total 
cell load variation and the exceptional elements. 
The cell load variation is calculated as the differ-
ence between workload on the machine and aver-
age load on the cell (Venugopal and Narendran, 
1992), expressed as the objective function using 
equation (1).
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is the total number of machines in cell ‘k’. 

For a predefined number of cell k, the Z value 
is calculated using (1).

Z:  Objective function f(X,m,w) = Z
m:  number of machines. (i=1,2,3,…,m)
p:  number of parts. (j=1,2,3,…,p)
c:  number of cells. (k=1,2,3,…,c)
[Xik]:  machine cell (m x k) membership matrix 

where Xik=1 if ith machine is in cell k, Xik=0 
otherwise.

[wij]:  machine part (m x p) matrix in terms of 
workload on machine I induced by part ‘j’.

[mkj]:  cell part (k x p) matrix of average cell load 
as in (2).

The solution of the problem is naturally rep-
resented in GA as a genome (or chromosome). 
The GA then creates a population of solutions 
and applies genetic operators such as mutation 
and crossover to evolve the solutions in order to 
find the best one(s). The three most important 
aspects of using GA are:

• Definition of the objective function.
• Definition and implementation of the ge-

netic representation.

• Definition and implementation of the ge-
netic operators.

GA is adopted to find out the machine clusters 
to form the cells. In GA a candidate solution is 
represented by sequence of genes named chromo-
some. A chromosome potential is called its fitness 
function, which is evaluated by the objective func-
tion. A set of selected chromosomes (population) is 
subjected to generations (number of iterations). In 
each generation crossover and mutation operators 
are performed to get new population.

GA Coding Scheme Representation

Representation form plays a key role in the devel-
opment of GA based algorithm. The proposed GA 
uses coding method, where each solution is coded 
as a set of numbers. The sum of numbers will be 
equal to the sum of machines to be grouped. The 
position of a number denotes the machine number 
and the value of the machine cell number, where 
the particular machine belongs to.

Figure 1 refers to the illustrative chromosome 
of two-cell solution, where the machines 1, 3 and 
5 belong to cell number two and the machines 2 
and 4 belong to cell number one. After represen-
tation, the population of chromosomes in the range 
of 10 to 40 depending on the size of problem is 

Figure 1. Decoded GA chromosome for five ma-
chines of two cells solution
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chosen. The initial solutions are generated ran-
domly and the generated solution is subjected to 
generations (or iterations).

Reproduction

A fitness function value is computed for each 
string in the population and the objective is to find 
a string with the maximum fitness function value. 
Due to objective of minimizing both the total cell 
load variation and the exceptional elements, it is 
required to map it inversely and then maximize 
the resultant. Goldberg (1989) suggested a map-
ping function given as:

F(t)=Zmax-Z(t),  (3)

where F(t) stands for fitness function of tth string 
and Zmax is max[Z(t)] of all strings (t). The ad-
vantage of this function is that the worst strings 
get zero fitness function value so that they are not 
going to be reproduced into the next generation.

Crossover and Mutation

With the GA coding scheme used in the proposed 
algorithm, the crossover operator is carried out 
with a probability known as crossover probabil-
ity. In the crossover operation a pair of strings is 
selected randomly with a crossover probability. 
Crossover is exchange of a portion of strings 
at a point called crossover site (S). The genes 
(numbers) after the crossover site are swapped to 
produce the pair of offspring strings. Here partial 
mapped crossover given by Michalewicz (1996) 
is performed i.e., crossover site is selected and the 
genes of one string between the sites are swapped 
with genes of another string as shows Figure 2.

Also mutation is done randomly with some 
probability denoted as mutation probability. In 
this method inversion mutation is adopted where 
one gene is selected randomly, comes out from 
one cell and goes to another cell, while a machine 

from latter cell comes to the former cell as shown 
on Figure 2.

Elimination of Machine Cell with 
Single Machine

If a single machine is found in any cell, the fol-
lowing operations are carried out to merge the 
single machine cells with other cells:

1.  the average workload of each part in the cell 
and the Euclidean distance between the cells 
are calculated,

2.  the minimum Euclidean distance between 
cells is found out,

3.  cells with a single machine are merged to 
the cells with minimum Euclidean distance.

Part Assignment

The following procedure given by Zolfaghari 
and Liang (2003) is used to assign parts into the 
machine cells. A machine cell which processes 
the part for a larger number of operations than 
any other machine cell is found out and the cor-
responding part is assigned into that cell. Ties 
are broken by choosing the machine cell which 
has the largest percentage of machines visited 
by the part. In the case of tie again the machine 
cell with the smallest identification number is 

Figure 2. Genetic operators
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selected. Thus all the parts are assigned to all the 
cells which form part families using membership 
index given below.
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where: 
Pkj:  membership index of part ‘j’ belongs to cell 

‘k’.
fkj:  number of machines in cell ‘k’ required by 

part ‘j’.
fk:  total number of machines in cell ‘k’.
fj:  total number of machines required by part 

‘j’.
Tkj:  processing time of part ‘j’ in cell ‘k’.
Tj:  total processing time required by part ‘j’.

Sections and Particular Steps 
of Genetic Algorithm

The GA consists of the sections with several steps. 
The algorithm is presented by the flow chart dia-
gram shown on the Figure 3. Subsequently, each 
section with its steps is described in detail. The 
proposed GA algorithm includes 5 subsections 
that are incorporated in the steps of main section 
of the given algorithm.

Section 1. Initialization
• Set the values of Ps, gen, Pc, Pm.
• Read the workload given in terms of pro-

cessing time Wij of part j on machine i.
• Create an initial population of size Ps and 

call it old population (Pold).
• Calculate the objective function using 

Equation (1).
• Sort string in the increasing order of objec-

tive function value.
• Set gen = 0.
Section 2. Reproduction
• Compute F(t) for Pold.
• Compute Pt of each string.
• Find the cumulative of Pt.
• Generate ‘ra’ and select the string from Pold 

according to r and reproduce it in Pnew.
• Repeat step 4 for Ps time.
• End.
Section 3. Crossover
• Generate ‘r’ if (r<Pc) go to step 2 else go 

to step 4.
• Select two strings t1 and t2 and swap genes 

between them by selecting crossover site S 
randomly.

• Repeat step 2 for Ps/2 times.
• End.
Section 4. Mutation
• Generate ‘ra’.

Figure 3. Flow chart diagram of GA algorithm
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• If (ra < Pm) go to step 3 else go to step 1.
• Select two machines randomly in t and in-

terchange its positions.
• End.
Section 5. Part Assignment
• Find a machine cell that processes the part 

for a larger number of operations than any 
other machine cell and assign the part in 
that machine cell.

• If tie occurs, choose the machine cell that 
has the largest percentage of machines vis-
ited by the part and assign in that cell.

• If again tie occurs, select the machine cell 
with the smallest identification number and 
assign the part in that machine cell.

• End.
Main Section of the GA Algorithm
• Define cell formation problem, the number 

of cells c = k. (k = 2,3,…,m)
• Initialize the values and evaluate the objec-

tive function as given in section I.
• Do Reproduction as given in section II.
• Do Crossover as given in section III.
• Do Mutation as given in section IV.
• Do Part Assignment as given in section V.
• Increment counter.
• If (counter < gen) go to step 2 else step 11.
• Store the objective value in Z. Go to step 

0. k=k+1.
• Print the best value of Z.
• Stop.

HYBRID ALGORITHM

Hybrid algorithm based on ART1 approach has 
natural formation of the machine cells, meaning 
that there is no constraint or objective function 
involved in the algorithm during clustering pro-
cess. The basic purpose of ART1 approach is to 
develop a simple and efficient methodology to 
provide quick solutions for shop floor managers 
with least computational efforts.

The modified version of ART1 is adopted 
from the method proposed by Pao (1989) that 
accommodates analogue patterns (matrix with 
ratio level data) instead of binary form of input 
vectors (conventional MPIM) for machine cell 
formation problem.

The Modified ART1 Algorithm

Step 1. Initialize: Set nodes in the input layer equal 
to N (number of parts) and nodes in output 
layer equal to M (number of machines). Set 
vigilance threshold (φ).

Step 2. Initialize top-down connection weights 
as given in Equation (5)

 wtij(0)=0,  (5)

where i is defined as 1, 2,...,M and j is defined 
as 1,2,...,N.

Step 3. Let q =1. The first input vector X1 (first 
row of the workload matrix) is presented 
to the input layer and assigned to the first 
cluster. Then, first node in the output layer 
is activated.

Step 4. The top-down connection weights for 
the present active node are set equal to the 
input vector.

Step 5. Let q = q +1. Apply new input vector Xq. 
(input vectors are the rows of the workload 
matrix).

Step 6. Compute Euclidean distance between Xq 
and the exemplar stored in the top-down 
weights (wtji) for all active nodes i as given 
in the Equation (6). This distance function 
is used to calculate similarity between the 
stored pattern and the present input pattern. 
If the similarity value is less than or equal 
to ρ (vigilance threshold), the present input 
is categorized under the same cluster as that 
of stored pattern.
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Step 7. Perform vigilance test: Find out minimum 
Euclidean distance.

Step 8. If min et≥φ (threshold value), select 
output node for which Euclidean distance 
is minimum. If tie occurs, select the output 
node with lowest index number. Suppose 
output node k is selected then allocate the 
vector Xq to the node k (cell) and activate 
node k. Make increment to the number of 
machines in the active node k by one. If i 
e s for all active nodes are greater than ρ, 
then go to step 9.

Step 9. Start a new cell by activating a new out-
put node.

Step 10. Update top-down weights of active node 
k using Equation (7). When a new vector is 
presented to the algorithm, its belonging-
ness to existing nodes is judged by match-
ing with respective top-down weights. The 
matching criterion is based on minimizing 
dissimilarity between existing exemplar 
stored as top-down weights and new input 
vector. Therefore, top-down weight updat-
ing principle warrants for storing combined 
information of previously stored exemplar 
and the present input pattern. Usually, 
higher weights are emphasized on stored 
exemplar than that of the new input vector. 
When a vector is selected (to be allocated 
to an output node), its top-down weights 
are updated using more information of the 
previously stored exemplar and a relatively 
less information of the input vector (pattern) 
as shown in Equation (7).
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Step 11. Go to step 5 and repeat till all the rows 
are assigned in the output nodes (cells).

Step 12. Check for single machine cells. If a single 
machine is found in any cell, perform the 
following operations to merge the single 
machine cells into any other cells.
1.  Determine average workload of each 

cell.
2.  Calculate the Euclidean distance be-

tween the cells.
3.  Merge a cell containing single ma-

chine with another in such a way that 
Euclidean distance between them is 
minimum.

Step 13. Assign parts to cells using the membership 
index given in Equation (4) and the maximum 
belongingness that can be calculated using 
Equation (8).

 Pm=max(Pkj),  (8)

where k is defined as 1,2,3,…,C. The value of Pm 
lies between 0 to 1 where Pm = 1 indicates that the 
part ‘j’ perfectly belongs to cell ‘k’.

TESTING AND MEASUREMENT 
OF PROPOSED ALGORITHMS 
PERFORMANCE

There are several performance measures proposed 
by the researchers in last two decades. Each of them 
has its own advantages and drawbacks depending 
on the data considered for CF problem. However, 
no grouping efficiency can be considered for the 
generalized cell formation with maximum avail-
able information. Literature suggests that two 
popular measures the grouping efficiency and 
grouping efficacy are used to check the perfor-
mance of block-diagonal structure generated by 
a cell formation technique.

Grouping Efficiency

Grouping efficiency is given by the Equation (9). 
Chandrasekharan and Rajagopalan (1986) defined 
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grouping efficiency as a weighted average of two 
functions η1 and η2. It represents the very first 
performance measure in CF. The efficiency was 
proposed as a weighted average of two efficien-
cies and higher grouping efficiency will result in 
better grouping.

η=r∙η1+(1-r)η2,  (9)

where:

η
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r is a weighting factor that lies between zero to 
one (0 <= r <= 1) and its value is decided depend-
ing on the size of the matrix. Grouping efficiency 
considers two functions - packing density inside 
the cells (η1) and inter-cell moves (η2). Weight-
ing factor is used to achieve a tradeoff between 
two functions depending on desirability of the 
decision maker. A higher value of η is supposed 
to indicate better clustering.

Grouping Efficacy

Kumar and Chandrasekharan (1990) have intro-
duced grouping efficacy as a new performance 
measure, which has been proposed to overcome the 
drawbacks of grouping efficiency. High grouping 
efficacy will result as good CF.
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Unlike grouping efficiency, grouping efficacy 
is not affected by the size of the matrix. However, 
both measures - grouping efficiency and grouping 
efficacy treat all operations equally and suitable 
only for the zero-one incidence matrix.

Modified Grouping Efficiency

Both the grouping efficiency and grouping efficacy 
treat all operations equally and they are suitable 
only for the binary (zero-one) incidence matrix. 
Therefore, a new measure for grouping efficiency 
termed as modified grouping efficiency denoted 
as MGE is presented to find out the performance 
of the CF method that deal with workload matrix 
due to consideration of voids (idle machines) 
inside the cells. For the cell formation problems 
using workload (operational time) information, the 
grouping efficiency has to be found out from the 
ratio of total workload inside the cells denoted as 
Tpti, and total workload of the matrix. When total 
workload is being calculated the number of voids 
presented inside the cells is taken into account and 
the proportionate value of voids with the number of 
elements presented inside the cells are calculated 
using the weighting factor to the voids ratio. The 
elements outside the cells represent exceptional 
elements, denoted as Tpto. The MGE is calculated 
using Equation (15).
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Figure 4. Comparison of Hybrid algorithm with (a) K-means algorithm and (b) C-Linkage algorithm

Table 1. Results of the tested algorithms 

Data Set 
No.

No. of 
Cells

K-means Algorithm C-linkage Algorithm Hybrid Algorithm Genetic Algorithm

EE MGE % EE MGE % EE MGE % EE MGE %

1 2 2 77.25 2 77.25 2 77.25 2 77.25

2 2 2 78.34 2 78.34 2 78.34 2 78.34

3 2 7 81.87 7 81.87 7 81.87 7 81.87

4 2 2 79.85 2 79.85 2 79.85 2 79.85

5 2 3 61.77 3 61.77 3 61.77 3 61.77

6 2 1 65.48 1 65.48 1 65.48 1 65.48

7 2 6 57.00 6 57.00 4 69.70 6 69.70

8 2 28 60.00 28 60.00 25 61.30 28 61.30

9 3 9 83.40 9 83.40 9 83.40 9 83.40

10 3 0 77.14 0 77.14 0 77.14 0 77.14

11 3 0 93.28 0 93.28 0 93.28 0 93.28

12 2 2 59.43 2 59.43 2 60.59 0 62.42

13 4 7 68.13 9 65.23 2 76.13 3 73.19

14 3 15 64.81 15 64.81 15 64.81 20 64.81

15 2 42 49.13 42 49.13 19 60.10 19 60.10

16 3 1 71.00 1 71.00 1 71.15 1 71.15

17 4 31 61.50 31 61.50 28 61.71 32 61.70

18 3 38 51.70 38 51.70 42 50.50 42 51.92

19 4 34 46.70 30 51.39 30 51.39 29 52.02

20 6 0 90.28 0 90.28 0 90.28 0 94.58

21 5 7 71.60 7 71.60 9 73.89 9 73.89

22 3 12 56.65 17 53.98 17 53.98 15 56.14

23 6 20 61.84 20 61.84 26 55.51 22 62.23

24 3 33 50.51 33 50.51 17 53.19 25 55.32
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where:

ω
v

Number of voids in the cell k

Total number of elements in the cell k
=

,  (16)

RESULTS AND EVALUATION

In this chapter, an efficient algorithm based on 
genetic and hybrid algorithm has been proposed 
for cell formation problem considering operational 
time of the parts instead of conventional zero-one 
incidence matrix with the objective of minimizing 
total cell load variation. The algorithm is coded in 
C++ and run on Pentium IV PC, 2.4GHz processor.

The real valued matrix is produced by assign-
ing random numbers in the range of 0.5 to 1 as 
uniformly distributed values by replacing the ones 
in the incidence matrix and zeros to remain in its 
same positions. Genetic and hybrid algorithm 

have been tested with 24 benchmark problems 
of varied sizes ranging from 5 x 7 to 30 x 50 
from open literature. The results of the genetic 
and hybrid based algorithms are also compared 
with K-means clustering and C-linkage clustering 
algorithm given in Table 1.

Based on exhaustive experiments, the cross-
over (Pc) and mutation (Pm) probabilities are fixed 
to be 0.5 and 0.1 respectively. This probability 
can be varied depending upon the decision 
maker to tune the algorithm. The chromosome 
representation used in this study may result in the 
formation of an empty cell or violates some con-
straints. Particularly, crossover may result in the 
formation of a chromosome like 113331 when 
predefined number of cells is three. The above 
chromosome contains an empty cell where cell 
number 2 is missing. In such cases, the respective 
chromosomes are rejected. Crossover and muta-
tion steps are repeated with other pairs of chro-
mosomes till a useful chromosome is obtained. 

Figure 5. Comparison of GA based algorithm with (a) K-means algorithm, (b) C-Linkage algorithm 
and (c) Hybrid algorithm
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Figure 4 and Figure 5 depict percentage differ-
ences of the hybrid and genetic algorithm against 
two traditional algorithms known from the open 
literature.

From Figure 4(a) it is evident that the hybrid 
algorithm has given better solution than K-means 
algorithm in 11 of 24 data sets. There is only one 
case (data set number 22) where hybrid algorithm 
has not performed well. The HA has similar even 
better solutions in comparison to C-linkage algo-
rithm, as shown in Figure 4(b).

In the Figure 5(a), the best improvements are 
in the data set number 7, 15, 19 and 24 in com-
parison with K-means algorithm. A similar en-
hancement can be seen from Figure 5(b) where 
the genetic algorithm is compared to C-linkage 
algorithm. Figure 5(c) compares genetic algorithm 
with hybrid algorithm. The GA has outperformed 
hybrid algorithm.

DISCUSSION AND CONCLUSION

In this work the genetic and hybrid based al-
gorithms with two traditional algorithms like 
C-linkage and K-means are used to solve the 
cell formation problem using the non-binary real 
valued work load data as an input matrix. The 
genetic algorithm and hybrid algorithm are tested 
with benchmark problems found in the literature 
and the results are compared with the traditional 
algorithms mainly K-means and C-linkage clus-
tering algorithm. In addition to the commonly 
used measure of performance that is the number 
of exceptional elements, a newly developed per-
formance measure namely modified grouping 
efficiency (MGE) is also applied to evaluate the 
efficiency of the GA and HA based algorithm. 
The genetic algorithm outperforms the HA and 
traditional techniques both in terms of exceptional 
elements and modified grouping efficiency. The 
GA based algorithm may be suitably modified and 
employ to solve the cell formation problem with 

other non binary real value data like machine ca-
pacity, production volume and product sequence.
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APPENDIX

Table 2. Source and size of the data sets 

Data Set No. Source Problem Size

1 King and Nakornchai (1982) 5x7

2 Waghodekar and Sahu (1984) 5x7

3 Seiffodini (1989) 5x18

4 Kusiak (1992) 6X8

5 Kusiak (1987) 7x11

6 Boctor (1991) 7x11

7 Seiffodini and Wolfe (1986) 8x12

8 Chandrasekaran et al (1986) 8x20

9 Chandrasekaran et al (1986) 8x20

10 Mosier et al. (1985) 10x10

11 Chan et al. (1982) 10x15

12 Askin et al. (1987) 14x23

13 Stanfel (1985) 14x24

14 Srinivasan et al. (1990) 16x30

15 Mosier et al. (1985) 20x20

16 Carrie (1973) 20x35

17 Boe et al. (1991) 20x35

18 Kumar et al. (1986) 23x20

19 Mccornick et al. (1972) 24x16

20 Chandrasekaran et al (1989) 24x40

21 Chandrasekaran et al (1989) 24x40

22 Kumar et al. (987) 30x41

23 Stanfel (1985) 30x50

24 Stanfel (1985) 30x50

Table 3. Data set No. 1 

i/j P1 P2 P3 P4 P5 P6 P7

M1 0 0.53 0 0.99 0.83 0.91 0

M2 0.82 0 0.83 0 0 0 0

M3 0.91 0 0.92 0 0 0.86 0.97

M4 0 0.79 0 0.56 0 0.88 0

M5 0.53 0 0 0 0.51 0 0.98

Table 4. Data set No. 2 

i/j P1 P2 P3 P4 P5 P6 P7

M1 0.53 0 0 0 0.99 0.83 0.91

M2 0 0.82 0.83 0.91 0.92 0 0

M3 0 0 0.86 0.97 0.79 0.56 0

M4 0.88 0.53 0.51 0.98 0 0 0

M5 0 0.83 0 0.71 0.58 0.54 0
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Table 5. Data set No. 3 

i/j P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18

M1 0.53 0.99 0.83 0 0.91 0.82 0 0.83 0 0 0.91 0.92 0.86 0.97 0 0.79 0.56 0

M2 0.88 0 0.53 0.51 0 0.98 0.83 0.71 0 0.58 0.54 0.54 0.74 0 0.63 0 0 0.63

M3 0 0 0 0.53 0 0 0.69 0 0 0.63 0 0 0 0 0.68 0 0 0.51

M4 0.61 0.94 0.68 0 0.67 0.7 0 0.84 0 0 0.79 0.99 0.94 0.84 0 0.78 0.93 0

M5 0 0 0 0.73 0 0 0 0 0.98 0.92 0 0 0 0 0.92 0 0 0.7

Table 6. Data set No. 4 

i/j P1 P2 P3 P4 P5 P6 P7 P8

M1 0 0.53 0 0.99 0 0 0.83 0

M2 0.91 0.82 0.83 0 0.91 0.92 0.86 0.97

M3 0 0 0.79 0 0 0.56 0 0.88

M4 0 0 0 0.53 0 0 0.51 0

M5 0.98 0 0.83 0 0.71 0.58 0 0.54

M6 0 0 0 0.54 0 0 0.74 0

Table 7. Data set No. 5 

i/j P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

M1 0 0.53 0.99 0 0 0 0.83 0 0 0 0

M2 0.91 0 0 0 0.82 0 0 0 0 0 0.83

M3 0 0 0 0 0 0 0 0 0 0.91 0.92

M4 0.86 0 0.97 0 0 0.79 0 0 0 0 0

M5 0 0 0 0 0.56 0 0 0.88 0 0 0

M6 0.53 0 0 0.51 0 0 0 0.98 0.83 0.71 0

M7 0 0 0.58 0.54 0 0.54 0.74 0 0.63 0 0

Table 8. Data set No. 6 

i/j P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

M1 0.53 0.99 0 0 0 0.83 0 0 0 0 0

M2 0 0.91 0 0 0 0.82 0 0 0.83 0 0

M3 0.91 0 0.92 0 0 0 0.83 0 0 0 0.97

M4 0 0 0.79 0 0 0 0.56 0 0 0 0

M5 0 0 0.88 0.53 0 0 0 0 0 0 0.51

M6 0 0 0 0.98 0.83 0 0 0 0 0.71 0

M7 0 0 0 0 0.58 0 0 0.54 0 0.54 0
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Table 9. Data set No. 7 

i/j P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

M1 0.53 0.99 0.83 0.91 0 0 0 0 0 0 0 0

M2 0.82 0 0.83 0.91 0.92 0.86 0.97 0 0 0.79 0 0

M3 0 0 0.56 0.88 0.53 0.51 0.98 0.83 0.71 0 0 0

M4 0 0 0 0 0 0.58 0.54 0.54 0.74 0.63 0 0

M5 0 0 0 0 0 0 0.63 0.53 0.69 0.63 0 0

M6 0 0 0 0 0 0 0.68 0.51 0.61 0 0.94 0

M7 0 0 0 0 0 0 0 0 0 0 0.68 0.67

M8 0 0 0 0 0 0 0 0 0 0 0.7 0.84

Table 10. Data set No. 8 

i/j P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

M1 0.53 0 0.99 0.83 0 0 0 0 0.91 0.82 0 0 0 0.83 0.91 0.92 0 0.86 0.97 0

M2 0 0.79 0.56 0.88 0 0.53 0.51 0 0.98 0 0.83 0 0 0 0 0 0 0.71 0 0.58

M3 0 0 0 0 0.54 0.54 0.74 0.63 0 0 0.63 0.54 0.69 0 0 0.63 0.68 0 0.51 0.61

M4 0 0 0.94 0.68 0 0 0.67 0.7 0.84 0.79 0 0 0.99 0.94 0.84 0 0.78 0.93 0.73 0.98

M5 0.92 0.92 0.7 0 0 0.89 0 0 0 0.52 0 0.52 0.54 0 0.77 0.76 0.96 0 0.6 0.61

M6 0.54 0.67 0 0 0.7 0 0.85 0.99 0 0.87 0.67 0.63 0 0.74 0.85 0.78 0 0.55 0.81 0

M7 0 0 0 0 0.63 0.97 0.54 0.52 0 0 0.85 0.55 0.99 0 0 0.93 0.94 0 0.8 0.68

M8 0.6 0.63 0.7 0.9 0.71 0 0 0.98 0.53 0.68 0 0 0.91 0.53 0 0.76 0.88 0 0 0

Table 11. Data set No. 9 

i/j P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

M1 0 0.53 0.99 0 0 0 0 0.83 0.91 0 0.82 0 0.83 0.91 0 0.92 0.86 0 0.97 0

M2 0 0 0.79 0.56 0 0.88 0.53 0 0 0 0 0 0 0.51 0 0 0 0.98 0 0.83

M3 0 0.71 0 0 0 0 0 0.58 0.54 0 0.54 0 0.71 0.63 0 0.63 0.53 0 0.69 0

M4 0 0 0.63 0.67 0 0.51 0.61 0 0 0.94 0 0 0 0 0 0 0 0.68 0 0.67

M5 0.7 0 0 0 0.84 0.79 0 0 0 0.99 0 0.94 0 0 0.89 0 0.78 0 0 0

M6 0.93 0 0 0 0.73 0 0 0 0.98 0.92 0 0.92 0 0 0.7 0 0 0 0 0.89

M7 0 0 0.52 0.52 0 0.54 0.77 0 0 0 0.76 0.96 0 0 0 0 0 0.6 0 0.61

M8 0 0 0.54 0.67 0 0.7 0.85 0 0 0 0 0 0 0 0 0 0 0.99 0 0.87
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Table 12. Data set No. 10 

i/j P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

M1 0.53 0 0 0 0 0 0 0 0 0.99

M2 0 0 0.83 0.91 0 0 0 0.82 0 0

M3 0 0 0 0 0.83 0.91 0 0 0 0

M4 0.92 0 0 0 0 0 0 0 0 0

M5 0 0 0 0 0 0 0.86 0 0 0.97

M6 0.79 0 0 0 00 0 0.56 0 0 0.88

M7 0 0 0.53 0 0 0 0 0.51 0 0

M8 0 0 0 0 0 0.98 0 0 0.83 0

M9 0 0.71 0.58 0.54 0 0 0 0 0 0

M10 0 0.54 0.74 0.63 0 0 0 0.63 0 0

Table 13. Data set No. 11 

i/j P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

M1 0 0.53 0 0 0 0 0 0 0 0.99 0.83 0.91 0 0 0

M2 0 0 0.82 0 0.83 0 0 0.91 0 0 0 0 0.92 0 0.86

M3 0.97 0 0 0 0 0.79 0 0 0.56 0 0 0 0 0.88 0

M4 0.53 0 0 0.51 0 0 0 0 0.98 0 0 0 0 0.83 0

M5 0 0 0.71 0 0.58 0 0 0.54 0 0 0 0 0.54 0 0.74

M6 0.63 0 0 0.63 0 0.53 0 0 0.69 0 0 0 0 0.63 0

M7 0 0.68 0 0 0 0 0.51 0 0 0.61 0.94 0.67 0 0 0

M8 0 0 0.67 0 0.7 0 0 0.84 0 0 0 0 0.79 0 0.99

M9 0 0 0 0.94 0 0.84 0 0 0.78 0 0 0 0 0.93 0

M10 0 0.73 0 0 0 0 0.98 0 0 0.92 0.92 0.7 0 0 0
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ABSTRACT

For the last many years a lot of study has been done on design of Cellular Manufacturing System (CMS). 
Cellular Manufacturing is an application of Group Technology (GT) philosophy in which similar parts 
are identified and grouped together to take advantage of their similarities in design and manufactur-
ing. The design of CMS involves three stages i) grouping of parts and production equipments into cells 
(Cell Formation), ii) allocation of the machine cells to the areas within the shop floor and iii) layout of 
the machines within each cell. In recent years non-traditional optimization algorithms/techniques have 
fascinated scientists and engineers all over the world. Particularly in complex dynamic environments, 
these algorithms/techniques are needed to explore beyond the vicinity of existing knowledge. These 
algorithms have the ability to think and learn from own experience. They are called Meta heuristics 
because they perform considerable search before terminating to provide a good solution to the problem. 
Popular Meta heuristics are Genetic Algorithms (GA), Simulated Annealing (SA), Tabu Search (TS), 
Artificial Neural Networks (ANN), Artificial Immune System (AIS), and Sheep Flock Heredity Algorithm 
(SFHA). In this chapter the implementation of Meta heuristics for the design of Cell Formation problem 
in CMS is discussed.
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INTRODUCTION

Cellular manufacturing system (CMS) is syn-
onymous with terms such as group technology 
(GT), cell system and cellular production systems. 
Cellular manufacturing system is an application 
of group technology, which is a solution to the 
problems of batch manufacturing. Here, machines 
are divided into cells and components are divided 
into the same number of families in such a way 
that all the components in each family can be 
completely processed by a particular cell. The 
component families are formed based on their 
design and production characteristics. The design 
of CMS involves three stages i) grouping of parts 
and production equipments into cells, ii) alloca-
tion of the machine cells to the areas within the 
shop floor and iii) layout of the machines within 
each cell.

Group technology ideas were first system-
atically presented by Burbidge (1963) following 
the pioneering work of Mitrofanov (1959). The 
literature on cell formation can be broadly classi-
fied in two ways – one based on techniques used 
for cell formation and other one the way the cell 
formation problem is modeled. Crama and Oosten 
(1996) made a study on various models available 
for Cell Formation problems (CFP). The concept 
of production flow analysis was introduced by 
Burbidge (1963). The aim of the technique as 
stated by Burbidge (1971) is finding the families 
of components and associated groups of machines 
for group layout by a progressive analysis of the 
information in route cards. The main disadvan-
tage with implementation of PFA was the manual 
work involved in grouping parts and machines. 
Burbidge (1975) introduced a holistic approach 
to GT called Production Flow Analysis. It dis-
cussed the production situation and recommended 
a systematic solution to the problems of batch 
production. Burbidge (1977) introduced a two 
dimensional representation with a tick mark used 
to indicate the visit of a component to a machine. 

The method uses hand computations, which limits 
its applicability.

The array-based clustering methods are based 
on the Part-Machine Incidence Matrix (PMIM). In 
the PMIM, rows and columns indicate machines 
and parts, respectively. Each column of PMIM 
is an array of “0–1” numbers, which indicates 
the set of machines that produce each part. The 
well-known array-based clustering methods are: 
the Bond Energy Algorithm (BEA) by McCormick 
et al. (1972), the Rank Order Clustering method 
(ROC) by King (1980) and the direct clustering 
algorithm (DCA) by Chan and Milner (1982). 
These methods, group parts and machines are 
regardless of the production volume, operational 
sequences, production cost, inventory and other 
limitations in the production system, which is a 
main problem for them.

The hierarchical clustering based methods 
are defined by an input data set to determine 
similarity or distance function and determine a 
hierarchy of clusters or partitions. The Single 
Linkage Clustering (SLC) dendogram proposed 
by McAuley (1972) uses measure of similarity 
between machines. This model, that is based on 
the mathematical coefficient uses the distance 
matrix to determine machine groups. But the 
major cause for drawback of SLC is the “chaining 
problem”. Therefore, researchers improved it by 
adding more inputs, such as production volumes 
(proposed by Seifoddini (1989) who uses Average 
Linkage Clustering (ALC) algorithm). Yasuda and 
Yin (2001) proposed a method on dissimilarity 
measure for solving CFP.

Graph partition approach represents the 
machines as vertices and the similarity between 
machines as the weights of the arcs. Rajagopa-
lan and Batra (1975) suggested the use of graph 
theory to form machine groups. Chandrasekaran 
and Rajagopalan (1986a) proposed an ideal seed 
nonhierarchical clustering algorithm for cellular 
manufacturing. Ballakur and Steudel (1987) 
developed graph searching algorithms which 
select a key machine or component according 
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to a pre-specified criterion. Vohra et al (1990) 
presented a non-heuristic network approach to 
from manufacturing cells with minimum intercel-
lular interactions. Srinivasan (1994) presented an 
approach using minimum spanning tree for the 
machine cell formation problem. A minimum 
spanning tree for machines is constructed and the 
seeds to cluster components are generated from 
this tree. Veeramani and Mani (1996) described 
a polynomial-time algorithm based on a graph 
theoretic approach for optimal cluster formation 
called as vertex-tree graphic matrices.

Mathematical programming approaches are 
classified under integer programming (Kusiak 
1987, Co and Araar 1988), dynamic programming 
(Ballakur and Steudel 1987), goal programming 
(Shafer and Rogers, 1993a), and linear program-
ming (Boctor 1991). Kusiak (1987) developed 
clustering problem known as p-median model. 
Choobineh (1988) uses a sequential approach 
forming part families in the first stage and then 
a cost based mathematical programming method 
to allocate machines to part families to form 
cells. Rajamani et al. (1990) developed integer 
programming models to form cells sequentially as 
well as simultaneously. Solimanpur et al. (2004) 
presented the inter-cell layout problem that was 
discussed a mathematical formulation for material 
flow between the cells. The problem is modeled 
as a Quadratic Assignment Problem (QAP). Zahir 
Albadawi et al (2005) have developed a math-
ematical model using eigen value matrix for cell 
formation problems.

Above said conventional approaches for cell 
formation are focused on reducing exceptional 
elements and computational burden using zero-one 
PMIM. The major limitations of these approaches 
lie in the fact that real life production factors like 
operational time, sequence of operations, lot size 
of the parts etc. are not considered resulting in 
inefficient cells. Since cell formation problems 
are non-polynomially complete in nature (Nair 
and Narendran 1999), it is difficult to obtain 
solutions that satisfy all constraints. Therefore, 

it is expected to make use of simple but efficient 
computing techniques called heuristic algorithms.

Heuristic algorithms are used to provide quick 
approximate solutions to “hard” combinatorial 
optimization problems. They do not guarantee 
optimal solutions but can give the optimum some-
times. They are used only when the problem is to 
be solved which belongs to the NP category, which 
means that there is no algorithm that exists which 
can solve the problem optimally using polynomial 
time algorithms. Polynomial time algorithms can 
solve the given problem with polynomial times that 
are polynomial functions of problem parameters.

Heuristic algorithms are also called approxi-
mate algorithms that run in polynomial time and 
provide quick and acceptable solutions. A heuristic 
algorithm is called an approximate algorithm 
where the performance of the heuristic is assessed 
in terms of worst and average case behavior. 
Heuristics can either be generic or problem spe-
cific. Generic heuristics can be applied to any 
hard problem and guarantee a certain level of 
performance. Heuristics can also be classified by 
construction heuristics or improvement heuristics 
depending on whether they are constructed from 
the problem or whether they are improved by an 
existing heuristic solution.

These are general heuristics that have been 
developed in the last two decades. They are called 
Meta heuristics because they perform considerable 
search before terminating to provide a good solu-
tion to the problem. Popular Meta heuristics are 
Genetic Algorithms (GA), Simulated Annealing 
(SA), Tabu Search (TS), Artificial Neural Net-
works (ANN), Artificial Immune System (AIS) 
and Sheep Flock Heredity Algorithm (SFHA).

In this chapter, the following Meta heuristics, 
which have been reportedly successful in solving 
a wide variety of search and optimization prob-
lems in sciences, engineering, and commerce, 
are described:

1.  Genetic Algorithm (GA)
2.  Simulated Annealing Algorithm (SA)
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3.  Tabu Search (TS)
4.  Artificial Neural Networks (ANN)
5.  Artificial Immune System (AIS)
6.  Sheep Flock Heredity Algorithm (SFHA)

The remainder of this chapter is organized as 
follows. The next section presents the representa-
tion of CMS problem. Section three describes the 
implementation of GA to CMS problem. Section 
four presents the implementation of SA to CMS 
problem. Section five describes the implementa-
tion of TS to CMS problem. Section six describes 
the implementation of ANN to CMS problem. 
Section seven presents the implementation of 
AIS to CMS problem. Section eight describes 
the implementation of SFHA. Experimentation 
of Meta heuristic algorithms on CMS problems 
and comparison of results were discussed in sec-
tion nine. The final section includes some general 
conclusions and discussions for the future work 
prospects.

PROBLEM REPRESENTATION

The problem in cellular manufacturing consists 
of information from the route card, arranged in 
the form of one-zero matrix. The column of the 

matrix represents components and the row of the 
matrix represents machines. This one-zero matrix 
is also called as incidence matrix (See Figure 1). 
A entry of ‘1’ in (i,j)th position indicates that the ith 
machine is used for processing the jth component. 
If the entry is ‘zero’ or ‘blank’, it indicates that 
the component does not require that machine for 
processing.

Representation plays a key role in the develop-
ment of algorithms. A problem can be solved once 
it is represented in the form of solution string. In 
the problem, each gene represent whether the 
machine or part is in that cell or not.

Each cell or the string is coded as seen in Table 
1. Decoded information is shown in Table 2.

After representation, initial solution can be 
generated using a random numbers and the gener-
ated solution is subjected to iterations or genera-
tions.

GENETIC ALGORITHM

Introduction

Genetic Algorithm (GA) is computerized search 
and optimization algorithms based on the mechan-
ics of natural genetics and natural selection. GA 

Figure 1. Incidence matrix (Boctor, 1991)
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is a search technique for global optimization in a 
search space. As the name suggests they employ 
the concepts of natural selection and genetics 
using past information. They direct the search 
with much expected improved performance and 
achieve fairly consistent and reliable results. The 
traditional methods of optimization and search 
don’t fare well over a broad spectrum of problem 
domain.

GA attempts to mimic the biological evolution 
process for discovering good solutions. They are 
based on a direct analogy to Darwinian natural 
selection and mutations in biological reproduction 
and belong to a category of heuristics known as 
randomized heuristics that employ randomized 
choice operators in their search strategy and do 
not depend on complete prior knowledge of the 
features of the domain. These operators have been 
conceived through abstractions of natural genetic 
mechanisms such as crossover and mutation and 
have been cast into algorithmic forms. Holland 
envisaged the concept of these algorithms in the 
mid-sixties since then. It has been applied in 
diverse areas such as music generation, genetic 
synthesis, strategy planning and also to address 
business problems such as traveling salesman 
problem, production planning and scheduling 
problem, facility location problem and cell design 
problems. Among these problems, cell design 
problem is reported that it is equivalent to two trav-

eling salesman problems (Lenstra, 1974). GAs is 
different from traditional optimization and search 
technique in the following ways (Goldberg, 1989).

1.  It works with a coding of parameters, not 
with parameter themselves.

2.  GA searches from population of points, not 
a single point.

3.  GA uses information of fitness function not 
derivatives or other auxiliary knowledge.

4.  GA uses probabilistic rules rather than de-
terministic rules.

Underlying Principles of GA

To really appreciate the technique, the analogy 
to the biological systems must be understood. 
Moreover, the GA uses many of the same terms 
which biologists use. The nature of a living or-
ganism is described by the specific structure of 
the DNA molecules, which are present in the cell. 
The DNA is really information coded chemically 
and can be thought as of very long strings of bits. 
One such string is called chromosome and each 
bit is called a gene.

When a cell in an organism reproduces, it first 
duplicates its DNA. The cell reproduced may be 
just like the parent or it may be different. The 
variation is introduced by two factors.

Table 1.

CELL NO MACHINES LIST COMPONENT LIST

CELL 1 0010001010011100 110110001111101011111101011010

CELL 2 1101110101100011 001001110000010100000010100101

Table 2.

CELL NO MACHINES LIST COMPONENT LIST

CELL 1 3,7,9,12,13,14 1,2,4,5,9,10,11,12,13,15,17,18,19,20,21,22,24,26,27,29

CELL 2 1,2,4,5,6,8,10,11, 15,16 3,6,7,8,14,16,23,25,28,30
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GA Operators

The operation of GA begins with a population of 
random strings representing design and decision 
variables. Thereafter each string is evaluated to 
find the objective value. The population is then 
operated by 3 main operators- reproduction, 
crossover and mutation. The new population 
is further evaluated and tested for termination. 
If the termination criterion is met, GA process 
stops otherwise the above cycle is followed until 
the termination criterion met. One such cycle is 
called a generation.

Reproduction

Reproduction is usually the first operator applied 
on population. Reproduction selects good strings 
in a population and forms a mating pool. That is 
why the reproduction operator is sometimes known 
as the selection operator. There exist a number 
of reproduction operators in GA literature and 
Rank selection method is used for reproduction. 
The individuals in the population are ranked ac-
cording to fitness, and the expected value of each 
individual depends on its rank rather than on its 
absolute fitness.

Ranking avoids giving for the largest share 
of offspring to a small group of highly fit indi-
viduals, and thus reduces the selection pressure 
when the fitness variance is high. It also keeps 
up selection pressure when the fitness variance 
is low: the ratio of expected values of individuals 
is ranked i+1 where i will be the same although 
their absolute fitness difference are high or low. 
The linear ranking method proposed by Baker is 
as follows: Each individual in the population is 
ranked in increasing order of fitness from 1 to N. 
The expected value of each individual ‘i’ in the 
population at time ‘t’ is given by

Expected Value i t
rank i t
N

( , ) (min) (max min)
( , )

= + − ×
−

−
1

1
 

Where 

N = Sample Size,
Min = 0.4,
Max = 1.6

After calculating the expected value of each 
rank, reproduction is performed using Monte 
Carlo simulation by employing random numbers.

Reproduction will select against those strings 
which are in subsequent generations. n strings, n 
random numbers between zero and one are created 
at random. Then a string that represents a chosen 
random in the cumulative probability range for the 
string is copied to the mating pool. By this way, the 
string with a higher fitness value will represent a 
larger range in the cumulative probability values 
and therefore has a higher probability of being 
copied into the mating pool. On the other hand, 
a string with a smaller fitness value represents a 
smaller range in cumulative probability values and 
has a smaller probability of being copied into the 
mating pool. This is the reproduction operator.

Crossover

In the crossover, new strings are created by ex-
changing information among strings of the mating 
pool. In crossover operator two strings are picked 
from the mating pool at random and some portions 
of the strings are exchanged between the strings. 
The two strings participating in the crossover 
operation are known as parent strings and the 
resulting strings are known as child strings.

In single point crossover, one crossover 
point is selected, binary string from beginning 
of chromosome to the crossover point is copied 
from one parent, and the rest is copied from the 
second parent Single point crossover operation is 
explained in Figure 3.

In Two point crossover, two crossover points 
are selected, binary string from beginning of 
chromosome to the first crossover point is copied 
from one parent, the part from the first to the 
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second crossover point is copied from the second 
parent and the rest is copied from the first parent.. 
Two-point crossover operation is explained in 
Figure 4.

As told, GA needs an initial population as the 
input. Then the GA operates on the population 
and derives a new population in one generation. 
Here the new population may contain bad solu-
tions also and these are accepted. This result in 

Figure 2. Block diagram of GA

Figure 3. Single point crossover Figure 4. Two point crossover
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finding out the global optimum rather than getting 
bogged down at a local optimum. Thus GA is an 
effectively and efficiently search through a com-
plex search space.

Mutation

Mutation is also done randomly for each gene 
and it depends upon another parameter called 
mutation probability. Here one gene is selected at 
random and the mutation operation is performed. 
The mutation operation may consist of any of four 
operators given below.

1.  Shifting: It is nothing, but a gene or a ma-
chine going out from one cell and residing 
in another cell.

2.  Inversion: In this, a machine comes out from 
one cell and goes to another cell, while a 
machine from latter cell comes to the former 
cell (Figure 5).

3.  Creating is a process in which a machine 
goes from one cell and creates a new cell 
and resides there.

4.  Exchange: In this, two sites selected ran-
domly, swap operation carried out between 
these two sites (Figure 6).

Implementation

In GA a candidate solution represented by se-
quence of genes called chromosome. A judiciously 
selected set of chromosomes is called population 
and the population is subjected to generations.

Reproduction

In reproduction, an objective function value is 
computed for each string in the population and 
the objective is to find a string with the maxi-
mum objective function value. Since objective 
is minimization it is required to map it inversely 
and then maximize the resultant. Ranking avoids 
giving for the largest share of offspring to a small 
group of highly fit individuals, and thus reduces 
the selection pressure when the fitness variance 
is high. It also keeps up selection pressure when 
the fitness variance is low: the ratio of expected 
values of individuals ranked i+1 and i will be the 
same whether their absolute fitness difference are 
high or low. The linear ranking method proposed 
by Baker is as follows: Each individual in the 
population is ranked in increasing order of fitness 
from 1 to N. The expected value of each individual 
‘i’ in the population at time ‘t’ is given by (1).

After calculating the expected value of each 
rank, reproduction is performed using Monte 
Carlo simulation by employing random numbers. 
An example for Reproduction operation is given 
in Table 3.

Figure 6. Exchange mutation

Figure 5. Inversion mutation
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Crossover

The crossover operator is carried out with a 
probability known as crossover probability (Pc). 
Crossover is nothing but exchange of a portion 
of strings at a paint called crossover site. The two 
strings, which take part in the crossover operation, 
are also selected at random. Here partial mapped 
crossover is performed i.e., crossover site is se-
lected and the genes of one string between the 
sites are swapped with another string.

Mutation

Mutation is also done randomly for each gene and 
it depends upon another parameter called muta-
tion probability (Pm). Here one gene is selected at 

random and the mutation operation is performed. 
Thus the genes are mutually interchanged.

Problem and Rectification

Sometimes the crossover and mutation results in 
the formation of an empty cell or violates some 
constraint. Sometimes crossover or mutation 
may result in the formation of a chromosome, 
which has only one machine. But the constraint 
is each cell should have eight machines. In such 
a case, the crossover operation is carried out on 
that chromosome until it satisfies the constraint.

Acceptance of Strings

In classical genetic algorithm, the population 
obtained after reproduction. Crossover, and muta-

Table 3. Reproduction 

RANK PROBABILITY CUM PROBABILITY RANDOM NUMBER NEW RANK

1 0.02 0.02 174 7

2 0.023 0.043 177 7

3 0.027 0.07 774 17

4 0.03 0.1 662 16

5 0.033 0.133 142 6

6 0.036 0.169 684 16

7 0.039 0.208 269 9

8 0.042 0.25 851 18

9 0.046 0.3 111 5

10 0.049 0.345 165 6

11 0.052 0.397 264 9

12 0.055 0.452 952 20

13 0.058 0.51 678 16

14 0.061 0.571 973 20

15 0.064 0.635 732 16

16 0.068 0.703 752 16

17 0.071 0.774 640 16

18 0.074 0.848 258 9

19 0.077 0.925 454 13

20 0.08 1 616 15
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tion is accepted without any question. This new 
population forms the input for the next generation. 
Thus the process continues until the termination 
condition is reached.

The trouble with the classical GA is due to 
accepting inferior solutions, from one genera-
tion to another. In this process, the loss of good 
strings, are high.

One more important feature is that GA must 
accept bad solutions also, so that it can search 
for global solution rather than getting trapped in 
local solution. So care should be taken to accept 
bad solution also.

SIMULATED ANNEALING 
ALGORITHM

Introduction

Simulated Annealing is a combinatorial optimiza-
tion technique based on random evaluations of 
the objective function. It resembles the cooling 
process of molten metals through annealing. The 
name of the method is derived from the simulation 
of thermal annealing of critically heated solids. 
A slow and controlled cooling of a heated solid 
ensures proper solidification with a highly ordered, 
crystalline state that corresponds to the lowest 
internal energy. Rapid cooling causes defects 
inside the material.

The quality of the final solution is not affected 
by the initial guesses; expect that the computational 
effort may increase with worse starting designs.

Because of the discrete nature of the function 
and constraint evaluations, the convergence or 
transition characteristics are not affected by the 
continuity or differentiability of the functions.

The convergence is also not influenced by the 
convexity status of the feasible space.

The design variables need not be positive.
The method can be used to solve mixed-integer, 

discrete, or continuous problems.

For problems involving behavior constraints 
(in addition to lower and upper bounds on the 
design variables), an equivalent unconstrained 
function is to be formulated as in the case of 
genetic algorithms.

Underlying Principles of SA

The simulated annealing procedure simulates this 
process of annealing to achieve the minimum func-
tion value in a minimization problem. Controlling 
a temperature – like parameter introduced with 
the concept of the Boltzmann probability distribu-
tion simulates the slow cooling phenomenon of 
annealing process. According to the Boltzmann 
probability distribution, a system in thermal equi-
librium at a temperature T has its energy distributed 
probabilistically according to P(E) = exponent of 
(-ΔE/kT), where “ k “ is the Boltzmann constant. 
This expression suggests that a system at a high 
temperature has almost uniform probability of be-
ing at any energy state, but at a low temperature it 
has a small probability of being at a high-energy 
state. Therefore, controlling the temperature “T” 
and assuming that the search process follows the 
Boltzmann probability distribution can control 
the convergence of an algorithm. Metropolis et 
al (1953) suggested one way to implement the 
Boltzmann probability distribution in simulated 
thermodynamic systems. The same can be found 
in the function minimization context. Let us say, at 
any instant the current point is xt and the function 
value at that point is E(t) = f (xt). Using Metropolis 
algorithm, we can say that the probability of the 
next point being at xt+1 depends on the difference 
in the function values at these two points or on 
(ΔE = E (t + 1) – E (t) and is calculated using the 
Boltzmann probability distribution:

P (E(t + 1)) = min [1, exp (-ΔE/kT)]

If ΔE ≤ 0, this probability is one and the point 
xt+1 is always accepted. In the function minimi-
zation context, this makes sense because if the 
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function value at xt+1 is better than that at xt, the 
point xt+1 must be accepted. The interesting situ-
ation happens when ΔE > 0, which implies that 
the function value at xt+1 is worse than that at xt. 
According to Metropolis algorithm, there is some 
finite probability of selecting the point xt+1 even 
though it is a worse than the point xt. However, 
this probability is not same in all situations. This 
probability is depends on relative magnitude of 
ΔE and T values. If the parameter T is large, this 
probability is more for points with largely dis-
parate function values. Thus any point is almost 
acceptable for a larger value of T. On the other 
hand, if the parameter T is small, the probability 
of accepting an arbitrary point is small. Thus 
for small values of T, the points with only small 
deviation in function value are accepted.

The above procedure can be used in the func-
tion minimization of exceptional elements in cell 
formation problem. The algorithm begins with an 
initial point x1 (v1, f1) and a high temperature T. A 
second point x2 (v2,f2) is created at random in the 
vicinity of the initial point and the difference in 
the function values (ΔE) at these two points is cal-
culated. If the second point has a smaller function 
value, the point is accepted; otherwise the point 
is accepted with a probability exp (-ΔE/T). This 
completes one iteration of the simulated annealing 
procedure. In the next generation, another point 
is created at random in the neighbourhood of the 
current point and the Metropolis algorithm is used 
to accept or reject the point. In order to simulate 
the thermal equilibrium at every temperature, a 
number of points are usually tested at a particular 
temperature, before reducing the temperature. The 
algorithm is terminated when a sufficiently small 
temperature is obtained or a small enough change 
in function values is found.

SA Operators

Using one of following procedures may create 
neighbourhood:

1.  Inversion at one site: In this, a machine comes 
out from one cell and goes to another cell, 
while a machine from latter cell comes to 
the former cell.

2.  Inversion at Two sites: In this, a machine 
and a part comes out from one cell and goes 
to another cell, while a machine from latter 
cell comes to the former cell.

3.  Exchange: In this, two sites selected ran-
domly, swap operation carried out between 
these two sites.

4.  Single Point Crossover: one crossover point 
is selected, binary string from beginning of 
chromosome to the crossover point is copied 
from one parent, the rest is copied from the 
second parent

SA ALGORITHM

Notations

In this section, the various notations used are 
described.

C - counter
T - Temperature
r - repetition counter
CMAX - number of iterations to be performed a 

particular Temperature.
RMAX - Maximum repetition allowed.
α - Cooling rate
β - Reduction rate in Repetition
Z (current) - Objective function value for cur-

rent point
Z (best) - Best Objective function value

Implementation

In SA a candidate solution represented by sequence 
of genes called initial string.
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Neighbourhood Generation

The neighbourhood strings can be generated 
by inversion at one site, inversion at two sites, 
exchange and single point crossover methods.

Problem and Rectification

Sometimes the neighbourhood creation procedure 
results in the formation of an empty cell or violates 
some constraint. Sometimes neighbourhood cre-
ation may result in the formation of a point, which 
has only one machine. But the constraint is each 
cell should have eight machines. In such a case, 
the neighbourhood creation procedure is carried 
out on that string until it satisfies the constraint.

TABU SEARCH

Introduction

Tabu search is a Meta strategy for guiding known 
heuristics to overcome local optimality. Although 
still in its infancy, this Meta heuristic has been 
reported in the literature during the last few years 
as providing successful solution approaches for 
a great variety of problem areas. Tabu search 
(TS) has its antecedents in methods designed to 
cross boundaries of feasibility or local optimality 
standard treated as barriers, and to systematically 
impose and release constraints to permit explora-
tion of otherwise forbidden regions.

The philosophy of tabu search is to derive and 
exploit a collection of principles of intelligent 

A simple Simulated Annealing Algorithm

Call initial (to obtain an initial solution) 

     Store it as the current solution 

     Store it as the best solution found so far 

     C:=0 (initialize the stopping counter) 

     Repeat until c=CMAX 

               R:=RMAX 

               r:=0 (initialize the repetition counter)  

               T:=α*T (reduce the cooling temperature) 

          Repeat until r=R 

               Call neighbor (generate a neighbor solution) 

                    δ:=Z (neighbor) – Z (current) 

               if δ≤0 or random (0,1) ≤exp(-δ/T) then 

               store the neighbor solution as the current one  

                    if Z (current) < Z(best) then 

                     store the current solution as the best found 

                    c:=0 (reinitialize the stopping counter) 

                    r:=0 (reinitialize the repetition counter) 

                    R:=β*R (reduce the number of repetition) 

                    End if 

               End if 

          End repeat 

     End repeat 

End
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problem solving. A fundamental element underly-
ing tabu search is the use of flexible memory. From 
the standpoint of tabu search, flexible memory 
embodies the dual processes of creating and ex-
ploiting structures for taking advantage of history 
(hence combining the activities of acquiring and 
profiting from information). TS methods operate 
under the assumption that a neighborhood can be 
constructed to identify “adjacent solutions” that 
can be reached from any current solution.

Underlying Principles of TS

Many solution approaches are characterized by 
identifying a neighbourhood of a given solution, 
which contains other so-called transformed solu-
tions that can be reached in a single iteration. A 
transition from a feasible solution to a transformed 
feasible solution is referred to as a move. A starting 
point for tabu search is to note that such a move 
may be described by a set of one or more attri-
butes (or elements), and these attributes (properly 
chosen) can become the foundation for creating 
an attribute based memory.

For example, in a zero-one integer-program-
ming context these attributes may be the set of all 
possible value assignments (or changes in such 
assignments) for the binary variables. Then two 
attributes e and %, which denote that a certain 
binary variable is set to 1 or 0, may be called 
complementary to each other. Considering the 
number of attributes representing a move we may 
distinguish single-attribute moves (where every 
move is described by exactly one attribute) and 
multi-attribute moves (where every move may be 
described by more than one attribute).

Following a steepest descent / mildest ascent 
approach, a move may either result in a best pos-
sible improvement or a least possible deterioration 
of the objective function value. Without additional 
control, however, such a process can cause a lo-
cally optimal solution to be re-visited immediately 
after moving to a neighbour, or in a future stage 
of the search process, respectively. To prevent the 

search from endlessly cycling between the same 
solutions, the attribute-based memory of tabu 
search is structured at its first level to provide 
a short-term memory function, which may be 
visualized to operate as follows.

Imagine that the attributes of all explored 
moves are stored in a list, named a running list, 
representing the trajectory of solutions encoun-
tered. Then, related to a sub list of the running 
list a so-called tabu list may be introduced. Based 
on certain restrictions the tabu list implicitly 
keeps track of moves (or more precisely, salient 
features of these moves) by recording attributes 
complementary to those of the running list. These 
attributes will be forbidden from being embod-
ied in moves selected in at least one subsequent 
iteration because their inclusion might lead back 
to a previously visited solution. Thus, the tabu 
list restricts the search to a subset of admissible 
moves (consisting of admissible attributes or 
combinations of attributes). The goal is to permit 
“good” moves in each iteration (Figure 7) without 
re-visiting solutions already encountered.

TS Operators

1.  Move Attribute: The pair of sites of the 
string being swapped.

2.  History Record: List of sites of the string 
classified under Tabu restrictions with record 
of on which iterations each of them classified 
as Tabu.

3.  Tabu Classification/Restriction: The sites 
of string swapped in the previous iterations 
will not be considered for swapping

4.  Tabu Tenure: The tabu restriction of a site 
is lifted after a consecutive three iterations

5.  Aspiration criterion: Tabu restrictions are 
lifted for the solutions under tabu classifi-
cation, with the value of the Objective, 10 
percent or more, less than that of the current 
solution
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6.  Choice criterion: The solution with the 
minimum Objective value among the neigh-
boring solutions of the current solution

7.  Termination criteria: Reaching a pre-
defined minimum value of Objective or 50 
numbers of iterations whichever occurs first

Tabu Search Algorithm

Step 1: The initial solution is stored as the present 
best solution and the number of inter-cell 
moves obtained with this solution is stored 
as the present best value of the objective 
function.

Step 2: Now each machine in all the groups is 
exchanged with every machine in the other 
groups other than the group to which it 
belongs. Parts are assigned to the machine 
groups and inter-cell moves are calculated.

Step 3: After each iteration, the best neighborhood 
solution with minimal inter-cell moves, is se-
lected and taken as the initial solution for the 
next iteration. The machine pair exchanged is 
made tabu for the next t iterations, where t is 

the tabu tenure. If this solution is better than 
the present best solution, then it is updated.

Step 4: Steps 2 and 3 are repeated until the stop-
ping criterion is reached.

Implementation

Tabu search (TS) is a Meta heuristic which helps 
to explore the solution space beyond the local 
optimum (Glover, 1989). TS strategy consists in 
preventing configurations of tabu list from be-
ing recognized for the next k iterations. k, called 
tabu tenure.

The main feature of basic TS is short-term 
memory.

Neighbourhood Generation

Pair wise exchanges (or swaps) used to identify 
moves that lead from one solution to the next. With 
this procedure, we can get N(N-1)/2 neighbour-
hood solutions where the N is size of the string 
(Figure 8).

Figure 7. Iteration in Tabu search
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Problem and Rectification

Sometimes the neighbourhood creation procedure 
results in the formation of an empty cell or violates 
some constraint. Sometimes neighbourhood cre-
ation may result in the formation of a point, which 
has only one machine. But the constraint is each 
cell should have eight machines. In such a case, 
the neighbourhood creation procedure is carried 
out on that string until it satisfies the constraint.

Artificial Neural Networks (ANN)

In its most general form a network of artificial 
neurons, as information processing units, is in-
spired by the way in which the brain performs a 
particular task or function of interest. Aleksander 
and Morton [1990] define a neural network in 
a broader sense such that the neural nets of the 
actual brain are included in the field of study and 
provide room for a consideration of biological 
findings. Their definition is as follows:

Neural computing is the study of networks 
of adaptable nodes, which through a process of 
learning from task examples, store experiential 
knowledge and make it available for use.

Learning algorithms are procedures used for 
modifying synaptic weights in an orderly fashion. 
Linear adaptive filter theory, which is widely 
applied in various fields (Haykin, [1991], uses 
a similar approach. However, neural networks 
which are inspired by the brain (where cells die 

and regenerate all the time) can also incorporate 
plasticity (ability to modify its own topology)

The following statement from Hecht-Nielsen 
[1990, p.2] defines neural networks as follows:

A neural network is a parallel, distributed 
information processing structure consisting of 
processing elements (which can possess a local 
memory and can carry out localized information 
processing operations) interconnected via uni-
directional signal channels called connections. 
Each processing element has a single output con-
nection that branches (“fans out”) into as many 
collateral connections as desired; each carries 
the same signal – the processing element output 
signal. The processing element output signal 
can be of any mathematical type desired. The 
information processing that goes on within each 
processing element can be defined arbitrarily with 
the restriction that it must be completely local; 
that is it must depend only on the current values 
of the input signals arriving at the processing 
element via impinging connections and values 
stored in the processing element’s local memory. 
Figure 9 shows a general model of a neuron with 
synaptic connections and the simple processing 
unit, which is capable of performing nonlinear 
transformations.

In recent years artificial neural networks 
(ANNs) have fascinated scientists and engineers 
all over the world. They have the ability to learn 
and recall the main functions of the human brain. 
A major reason for this fascination is that ANNs 
are “BIOLOGICALLY” inspired. They have the 
apparent ability to imitate the brain’s activity to 
make decisions and draw conclusions when pre-
sented with complex and noisy information. It 
has been successfully applied for variety of en-
gineering problems such as signal processing, 
control, pattern recognition, speech production, 
adaptive control manufacturing etc.

An artificial neural network is an information 
processing system that has certain performance 
characteristics in common with biological neu-
ral networks. ANN’s have been developed as 

Figure 8. TS neighbor generation
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generalizations of mathematical model of hu-
man cognition or neural biology. A network is 
characterized by

1.  Its pattern of connections between the neu-
rons (called its architecture),

2.  Its method of determining the weights on the 
connections (called its training, or learning 
algorithm) and,

3.  Its activation function.

Adaptive Resonance Theory (ART1)

Introduction of ART1

The ART1 network is an unsupervised vector 
classifier that aspect input vectors that are clas-
sified according to the stored pattern they most 
resemble. It also provides for a mechanism adap-
tive expansion of the output layer of neurons 
until an adequate size is reached based on the 
number of classes, inherent in the observation. 
The ART1 network can adaptively create a new 
neuron corresponding to an input pattern if it is 
determined to be “Sufficiently” different from 
existing clusters. This determination called the 
vigilance test is incorporated into the adaptive 

backward network. Thus, the ART1 architecture 
allows the user to control the degree of similarity 
of patterns placed in the cluster.

Unsupervised learning algorithms try to iden-
tify several prototypes or exemplars that can serve 
as cluster centers. A prototype can be either one 
of the actual patterns or a synthesized pattern 
vector centrally located in the respective cluster. 
K-means algorithm, ISODATA algorithm, vec-
tor quantization (VQ) techniques are examples 
of decision –theoretical approaches for cluster 
formation. ART1 structure is a neural network 
approach for cluster formation in an unsupervised 
learning domain.

ART1 Philosophy

The ART1 network is an unsupervised vector 
classifier that accepts input vectors that are clas-
sified according to the stored pattern they most 
resemble. It also provides for a mechanism al-
lowing adaptive expansion of the output layer of 
neurons until an adequate size reached based on 
the number of classes, inherent in the observa-
tion. The ART1 network can adaptively create 
a new neuron corresponding to an input pattern 
if it is determined to be “sufficiently” different 

Figure 9. A general model of neuron
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from existing clusters. This determination, called 
the vigilance, is incorporated into the adaptive 
backward network. Thus, the ART1 architecture 
allows the user to control the degree of similarity 
of patterns placed in the same cluster (Figure 10).

The Stability-Plasticity Dilemma

The human brain has the ability to learn and 
memorize many new things in a fashion that does 
not necessarily cause the exiting ones to be forgot-
ten. In order to design a truly intelligent pattern 
recognition machine, compatible with the human 
brain, it would be highly desirable to impart this 
ability to our models. The ability of a network to 
adapt and learn a new pattern well at any stage 
of operation is called plasticity.

Grossberg [1987] describes the stability-
plasticity dilemma as follows:

How can a learning system be designed to remain 
plastic, or adaptive, in response to significant 
events and yet remain stable in response to ir-
relevant events? How does the system know how 
to switch between its stable and its plastic modes 

to achieve stability without chaos? In particular 
how can it preserve its previously learned knowl-
edge while continuing to learn new things? What 
prevents the new learning from washing away the 
memories of prior learning?

ART1 networks attempt to address the stabil-
ity-plasticity dilemma. As such ART1 provides 
a mechanism by which the network can learn 
new patterns without forgetting (or degrading) 
old knowledge. For example, in the context of 
the character recognition problem, this could be 
useful in contexts such as training writer specific 
handwriting in an on-line system or in adding new 
fonts to an existing off-line system without need-
ing to retrain the network from scratch.

The incorporation of a tolerance measure (vigi-
lance test) allows ART1 architecture to resolve 
the stability-plasticity dilemma. New patterns 
form the environment can create additional clas-
sification categories, but they cannot cause an 
existing memory to be changed unless the two 
match closely.

In a physical system, when a small vibration 
of proper frequency causes a large amplitude 

Figure 10. Simplified ART1 architecture
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vibration, it is termed as resonance. The ART1 
architecture gets its name due to the fact that the 
information in the form of a processing element 
output reverberates back and forth between layers. 
The neural network equivalent of resonance occurs 
when a proper pattern develops and a stable oscil-
lation ensues. The pattern of activity that develops 
in the resonant state is called short-term memory 
(STM). The STM traces exist only in association 
with a single application of an input vector.

Learning (i.e., modification of weights) in the 
ART1 paradigm occurs only during the resonant 
period. The time required for updates in the weights 
between the processing elements is much longer 
than the time required to achieve resonance. 
These weights associated with the processing 
elements in different layers are called long-term 
memory (LTM) traces. The LTM traces encode 
information that remains a part if the network for 
an extended period.

ART1 Paradigm

The information that is sent to a neural network is 
often represented as a pattern. Every node in the 
network contains a representation of previously 
stored patterns that fit the category associated 
with that node. When a new pattern is presented 
to the ART1 network, each node competes to 
make a match with the new pattern. The node with 
the strongest match wins the competition. If the 
match is strong enough, the input pattern is placed 
into that node’s grouping, whereas if the match 
is not very strong, then the pattern is considered 
unique and a new node (or category) is created 
for it. Different thresholds can be used to specify 
the classification between groupings. Since the 
threshold determines whether a new category is 
created, a different degree of clustering is obtained 
for each threshold. If the similarity exceeds the 
defined threshold, a heuristic is used to change 
the existing representative pattern that is used to 
define the category or classification of the node. 
The performance of the ART1 is very sensitive 

to the values given to the threshold and heuris-
tic. During the optimization of the machine-part 
matrix, the column vectors representing the part 
patterns are first classified by the ART1 to obtain a 
series of part groups. Similar columns are grouped 
into adjacent areas within an intermediate matrix.

This begins the clustering of the “1” elements 
of the matrix next to each other. The machine 
row vectors are then classified and clustered in 
a similar manner to obtain the machine groups. 
Then the machine column vectors are classified 
and clustered in a similar manner to obtain the 
parts groups.

Figure 11 illustrates the sequence of events. 
The grouping of the rows and columns can occur 
simultaneously. Once the grouping is completed 
the resulting matrix can be inspected for bottleneck 
machines and exceptional machine-part cells. An 
additional advantage of the ART1 paradigm is 
that it supports on-line learning that allows new 
parts and machines to be immediately classified 
and scheduled on the shop floor and results in an 
intelligent manufacturing system.

Working Principle of ART1

This section discusses the ART1 network archi-
tecture and operation. ART1 inputs are binary 
valued as would as would be the case if the raw 
bit map of character image were inputs, such as 
gray levels for each pixel for an image.

Figure 12 shows the overall architecture of the 
ART1 network. The ART1 architecture consists 
of two layers of neurons called the comparison 
layer and the recognition layer. The classifica-
tion decision is indicated by a single neuron in 
the recognition layer that fires. The neurons in 
the comparison layer respond to input features 
in the patterns, analogous to the cell groups in a 
sensory area of the cerebral cortex. The synaptic 
connections (weights) between these two layers 
are modifiable in both directions, according to 
two different learning rules. The recognition layer 
neurons have inhibitory connections that allow 
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for a competition. This mechanism is common 
in artificial neural net architecture, inspired by 
the visual Neurophysiology of the biological 
systems. The network architecture also consists 
of three additional modules labeled Gain 1, Gain 
2, and reset.

The attention system consists of two layers of 
neurons (comparison and recognition) with feed 
– forward and feed-backward characteristics. This 
system determines whether the input pattern 
matches one of the prototypes stored. If a match 
occurs, match between the bottom-up and top-
down pattern on the recognition layer.

The recognition layer response to an input 
vector is compare to the original input vector 

through a mechanism termed vigilance. Vigilance 
provides a measure of the distance between the 
inputs vector and the cluster center correspond-
ing to the firing recognition layer neuron. When 
vigilance falls below a preset threshold, a new 
category associated with the new input pattern.

The recognition layer follows the winner-take-
all paradigm (this behavior is sometimes referred 
to as MAXNET [Kung, 1993]). If the input vector 
passes the vigilance, the winning neuron (the one 
most like the input vector) is trained such that its 
associated cluster center in feature space is moved 
toward the input vector. The recognition layer is 
alternately termed F2 and is top-down layer.

Figure 11. Machine-part matrix formation with the ART1 Paradigm

Figure 12. ART1 architecture
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Each recognition layer neuron, j, has a real-
valued weight vector Bj associated with it. This 
vector represents a stored exemplar pattern for a 
category of input patterns. Each neuron receives as 
input, the output of the comparison layer (vector 
C) through its weight vector, Bj.

The output of the recognition layer neuron, 
j, is given as:

net b c
j ij i
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where ci is the output of ith comparison layer 
neuron; f is a step function and thus rj results in a 
binary value. M is the number of neurons in the 
comparison layer.

Each neuron, i, in the comparison layer receives 
the following three inputs:

1.  A component of the input pattern is X, i.e., 
xi

2.  The gain G1 is a scalar (binary value); thus 
the same value is input to each neuron.

3.  A feedback signal from the recognition layer 
is a weighted sum of the recognition layer 
outputs.

The feedback Pi through binary weights tij is 
given by:

P t r for i M
i ji j
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N
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∑

1

1,...,  

where rj is the output of the jth recognition layer 
neuron and N is the number of neurons in the 
recognition layer, Tj is the weight vector associ-
ated with the recognition layer neuron j. vector 

C represents the output of the comparison layer, 
with ci representing the output of the ith neuron.

Gain 1 is one when the R vector is zero and 
the logical “OR” of the components of the input 
vector, X, is one, as seen in the equation.

G1=(r1│r2│…│rN)×X1│X2│…│XM)

Gain 2 is one when the logical OR of the 
components of the input vector, X, is 1, as seen 
in equation.

G2= (X1│X2│…│XM)

The comparison layer utilizes a two-thirds rule, 
which states that if 2 of the 3 inputs are 1, then a 
1 is output. Otherwise the result is zero. Equation 
shows the two-thirds rule:

C
for G X P

for G X Pj
j j

j j

=
+ + <
+ + <








0 1 2

1 1 2
 

The ART process occurs in stages. Initially 
there is no input; thus from equation 7 we can see 
that G2 is zero. When an input vector, and as X, is 
first presented to the network, the network enter 
the recognition phase. The R vector feedback from 
the recognition layer is always set to zero at the 
beginning of the recognition phase. Based on the 
equation 6 and 7 we can see that presentation of 
X at this stage makes both G1 and G2 equal to 1.

As can be seen based on the initial conditions 
in the recognition phase, the output C of the com-
parison layer will be the unmodified input vector 
X. Thus the comparison layer passes X through 
to the recognition layer.

Next each neuron in the recognition layer com-
puters a dot product between its weight vector Bj 
(real valued) and the C vector (which is the output 
of the comparison layer). The winning vector fires, 
inhibiting all other neurons in the recognition layer. 
Thus a single component rj of the R vector will be 
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one and all other components of R will be zero. 
This initiates the comparison phase.

In other words, the recognition phase results 
in each recognition layer neuron comparing its 
prototype (stored in the bottom-up weights) with 
the input pattern (the dot product of Bj and C). The 
mutual inhibition mechanism causes the one with 
the best match to fire.

During the comparison phase a determination 
must be made as to whether an input pattern is 
sufficiently similar to the winning stored prototype 
to be assimilated by that prototype. A test for this 
termed vigilance is performed during this phase.

In the comparison phase, the vector R is no 
longer zero so Gain 1 will be zero. By the two-
thirds rule only neurons with simultaneous 1’s in 
the X and P vectors will fire. Note that the weights 
tij are binary valued. This top-down feed back path 
then forces components of C to zero whenever the 
input vector X fails to match the stored pattern.

Let D be the number of ones in the x vector 
and k be the number of ones in the C vector. Then 
the similarity ratio, S, is simply: S=K/D 

The similarity vector, S, is therefore a metric 
for likeness between the prototype and the input 
pattern. Now we must establish a criterion by 
which to accept or reject clusters according to this 
metric. The test for vigilance can be represented 
as follows:

S > ρ → Vigilance test passed

S ≤ ρ → Vigilance test failed

If the vigilance is passed, there is no substantial 
difference between the input vector and the win-
ning prototype. Thus, the required action is simply 
to store the input vector into the winning neuron 
cluster center. In this case, there is no reset signal. 
Therefore, when the search phase is entered, the 
weights for this input vector are adjusted. At this 
point, the operation of the network is complete.

If S is below a preset threshold, the vigilance 
level, then the pattern P is not sufficiently similar 

to the winning neuron cluster center and the firing 
neuron should be inhibited. The inhibition is done 
by the reset block, which resets the currently firing 
neuron throughout the duration of the current clas-
sification. This concludes the comparison phase.

The search phase is then entered and if no reset 
signal has been generated, the match is considered 
adequate and the classification is complete. Other-
wise, with the firing R layer neuron disabled the R 
vector is once again set to zero. As a result, Gain 
1 (G1) goes to one so that X once again appears 
on C and a different neuron in the recognition 
layer wins. The new winners is checked against 
vigilance just as before and the process repeats 
until either:

1.  A neuron is found that matches X with a 
similarity above the vigilance level (S > ρ). 
The weight vectors, Tj and Bj of the firing 
neuron, are adjusted, or

2.  All stored patterns have been tried. Then a 
previously unallocated neuron is associated 
with the pattern, and Tj and Bj are set to 
match the pattern.

ART1 Algorithm

Initially the weights bij are initialized to the same 
low value which should be

b
L

L mij
<

− +( )1
 

where m is the number of components in the input 
vector and L is a constant, typically L=2.

The algorithm for the ART1 architecture is 
as follows:

Step 1. When an input partten, X, is presented to 
the network, the recognition layer selects the 
winner as the maximum of all the net outputs:
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 where N is the number of neurons in the 
comparison layer.

Step 2. Perform the vigilance threshold test. A 
neuron j is declared to pass the vigilance 
test, if and only if,
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 Where ρ is the vigilance threshold.
a.  If the winner fails the test, mask the 

current winner and go to the step1 to 
select another winner.

b.  Repeat the cycle (step 1 through 2a) 
until a winner is determined that passes 
the vigilance test; then go to step 4.

Step 3. If no neuron passes the vigilance test, 
create a new neuron to accommodate the 
new pattern

Step 4. Adjust the feed-forward weights for the 
winner neuron. Update the feed-back weights 
from the winner neuron to its inputs.

Step 5. The equations governing the training of 
the bottom-up and top-down weights are

 b
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 tij = ci

 where ci is the ith component of the com-
parison layer vector and j is the index of the 
winning recognition layer neuron.

ARTIFICIAL IMMUNE SYSTEM (AIS)

The natural immune system consists of a com-
plex set of cells and molecules that protect our 
bodies against infections. Our bodies are under 
constant attack by antigens that can stimulate the 
adaptive immune system. The white blood cells 
(leukocytes) are the main operative elements of 
the immune system. The main characteristic of 
the leukocytes is the presence of surface receptor 
molecules capable of recognizing and binding to 
molecular patterns. The molecular patterns that 
can be recognized by the surface receptors on 
lymphocytes are named antigens. The portion of 
a surface receptor molecular on a leukocyte that 
binds with an antigen is generally termed as an-
tibody. Therefore, an antibody corresponds to the 
portion of any leukocytes capable of recognizing a 
molecular pattern, and an antigen is equivalent to 
ant pattern that can be recognized by the antibody. 
The strength of binding between an antigen and 
an antibody is named affinity.

The general principles of AIS are colonal selec-
tion, mutation and receptor editing. Colonal selec-
tion maintains the quality of solution by triggering 
growth of lower affinity antibodies. Mutation is 
used to diversity the search process and receptor 
editing helps in escaping from the local optimal 
(Das Gupta and Gonzalez 2002). AIS has been 
successfully applied to different optimization 
problems including in pattern recognition (Carter, 
2000; Carvalho and Freitas 1991) scheduling (M. 
Chandrasekaran et al 2006) Multiobjective opti-
mization (K.C. Jan et al 2008), Machine loading 
(Nitesh Khilwani et al 2008), Machine learning 
(Hunt and Cooke, 1996).

The Artificial Immune System (AIS) is in-
spired by theoretical immunology and observed 
immune functions, principles and models. It is 
not only related to the creation of abstraction or 
metaphorical models of the biological immune 
system, it also includes theoretical immunology 
models being applied to tasks such as optimiza-
tion, control, and autonomous robot navigation. 
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Applications of AIS include pattern recognition, 
fault and anomaly detection, data mining and 
classification, scheduling, machine learning, 
autonomous navigation, search and optimization. 
In this research, AIS is applied to solve the Manu-
facturing Cell Formation Problem. When AIS is 
applied to a cell formation problem, the problem 
can be treated as the antigen and the solution to 
the problem as the antibody.

AIS Algorithm

1.  Initialize population (randomly)
2.  Individuals (Candidate solution)
3.  Evaluation (Affinity function) for all 

antibodies.
4.  While (termination criterion not satisfied)
5.  Select (Superior antibodies from parent 

population)
6.  Cloning based on fitness value
7.  Variation operators on clones (Mutation)
8.  Evaluate new generated antibodies
9.  Selection of superior antibodies
10.  Creation of next generation population 

(Receptor editing)
11.  End

Implementation

1.  Represent the problem variable as an an-
tibody with a string representation, which 
is similar to a Chromosome in genetic 
algorithms, and generate initial antibody 
population randomly. Each antibody is an M 
x N machine-part incidence matrix MPIM 
(See fig. 1) a string with a length of M + N 
is needed to encode. The first M bits of the 
string represent the sequence of machines 
that appear in the rows of the MPIM, while 
the last N bits of the string represent the 
sequence of parts appearing in the columns 
of the MPIM.

2.  Calculate the individual solution (i.e.) cal-
culate solution of each antibody by equation 
number 1.

3. Calculate the affinity value ρ is each antibody. 
Affinity value of each string is calculated 
from the affinity function.

Affinity (ρ)
( )

=
1

Exceptional Elements Z
 

4.  From this relation a cell that is more capable 
of recognizing and subsequently removing 
a given antigen has a higher affinity than 
others.

5. Antibody receives more stimulation to pro-
literate the immune system by a mechanism 
called cloning (De Castro L.N. et al 2003). 
Cloning is a mitotic process that produces 
exact copies of the parent cells. Based on the 
affinity value of the individual string number 
of clones are calculated for the population.

Number of clones
Individual affinity

Total affinity
xPopulation s= iize  

The number of clones rounded of the integer.
6.  A two phased mutation were used for the 

generated clones (May P. Mander K and 
Timmis J 2003).
i.  Inverse Mutation: For a string s, 

let i and j be randomly selected two 
positions in the strings. A neighbor of 
s is obtained by inversing the string 
of machines and parts between i and j 
positions. If the objective value of the 
mutated string (after inverse mutation) 
is smaller than that of the original string 
(a generated clone from an antibody), 
then the mutated one is stored in the 
place the original one. Otherwise, the 
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string will be mutated again with ran-
dom pair wise mutation.

ii.  Pair-Wise Mutation: Given a string 
s, let i and j be randomly selected two 
positions in the string s. A neighbor 
of s is obtained by interchanging the 
machine and parts in positions i and j. 
If the exceptional element value of the 
mutated string (after pair wise inter-
change mutation) is smaller than that 
of the original, then stored the mutated 
one in the place of the original. In the 
case where the algorithm could not find 
a better string after the two mutation 
procedure, then it stores the original 
one (generated clone).

7.  Receptor editing after cloning and mutation 
processes, a percentage of the antibodies 
(worst %B of the whole population) in the 
antibody population are eliminated and 
randomly created antibodies are replaced 
with them. This mechanism allows to find 
new schedules that correspond to new search 
regions in the total search space. (De Castro 
LN, Von Zuben FJ 1999).

Steps 2 – 7 are repeated until either the mini-
mize the exceptional elements or the specified 
maximum number of iterations has been reached.

SHEEP FLOCKS HEREDITY 
ALGORITHM

Sheep flock algorithm was developed by Hyunchul 
and Byungchul (2001). The algorithm simulates 
heredity of sheep flocks in a prairie. The algorithm 
is developed for solving a large scale scheduling 
problem for a period of several successive years. 
It is referred to as the multi-stage genetic opera-
tion can find better solutions than simple genetic 
algorithm.

Consider the several separated flocks of sheep 
in a field (Koichi Nara et al, 1999). Normally, 

sheep in each flock are living within their own 
flock under the control of shepherds. So, the ge-
netic inheritance only occurs within the flock. In 
other words, some special characteristics in one 
flock develop only within the flock by heredity, 
and the sheep with high fitness characteristics to 
their environment breed in the flock In such a 
world, let us assume that two sheep flocks were 
occasionally mixed in a moment when shepherds 
looked aside as shown in Figure 4.Then, shepherd 
of the corresponding flocks run into the mixed 
flock, and separate the sheep as before. However, 
shepherds can not distinguish their originally 
owned sheep because the appearance of any sheep 
is the same. Therefore, several sheep of one flock 
are inevitably mixed with the other flocks, namely, 
the characteristics of the sheep in the neighboring 
flocks can be inherent to the sheep in other flocks 
in this occasion. Then, in the field, the flock of 
the sheep which has better fitness characteristics 
to the field environment breeds most. The above 
natural evolution phenomenon of sheep flocks can 
be corresponded to the genetic operations of this 
type of string. For this kind of string, we can define 
the following two kinds of genetic operations:

• Normal genetic operations between strings
• Genetic operations between sub-strings 

within one string

This type of genetic operation is referred to 
“multi-stage genetic operation”. Sheep algorithm 
is used because of the following;

• It is a multi-stage genetic operation, can 
find better solutions than those of the sim-
ple genetic algorithm.

• Algorithm shows reasonable combination 
of local and global search.

• The method is effectively applied to plan-
ning problems for multiple years, and the 
method is tested by the real scale generator 
maintenance scheduling problem.
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EXPERIMENTATION

The Meta heuristics were implemented on ten 16 
X 30 sized benchmark problems (Boctor 1991). 
The data sets are used as inputs, are given in Ap-
pendix I. Objective function is used to evaluate the 
goodness of the cell formation. Minimization of 
exceptional elements (Boctor 1991) is considered 
as the objective function.
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Where 

K= cell index
G= number of manufacturing cell
m=number of machines
n= total number of parts
xik = binary value indicating the machine i is as-

signed to cell k

Algorithm

     Begin 

Initialize the population 

Stage 1: 

     Select the parent (Initialize the Random Population Say 10 Nos) 

     Sub Chromosome level crossover 

Set sub chromosome level crossover probability 

If Population probability is less than or equal to sub chromosome level prob-
ability  

          Perform Sub chromosome level crossover  

Else Retain the old string
Sub chromosome level mutation 

Set sub chromosome probability  

If population probability is less than or equal to sub chromosome mutation 
probability  

          Perform sub chromosome level mutation 

Else retain the same string 

Stage 2: 

Select two strings from population  

Chromosome level crossover 

Set crossover probability 

If Population probability is less than or equal to crossover probability
     Perform chromosome level crossover 

Else retain the same string
Chromosome level mutation 

Set mutation probability 

If Population probability is less than or equal to mutation probability
     Perform chromosome level mutation 

Else retain the same string
End if terminal condition satisfied
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yjk= binary value indicating the part j is assigned 
to cell k

aij = element of machine part incident matrix
Xik =1 if machine type is assigned to cell k.
=0, otherwise
Yjk =1, if part/component j is assigned to cell k
=0, otherwise

Parameter Selection

Based on the sensitivity analysis carried out, the 
parameters of the Algorithms for the considered 
problem structures the following values were 
found more effective and satisfactory.

Genetic Algorithm

Population size (N) = 20
Number of generations (GN) = 1000
Crossover probability (pc) = 0.6
Mutation probability (pm) = 0.2

Simulated Annealing Algorithm

CMAX = 320
RMAX = 64
α = 0.8
T = 64
Β = 0.8

Tabu Search

Number of iterations: 100
Tabu History Length: 3
tabu tenure = 5

Artificial Neural Network

Vigilance threshold (ρ) = 0.1

Artificial Immune System

Population Size = 20
Elimination Percentage = 0.5

Figure 13. Sheep flocks heredity algorithm
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Sheep Flocks Heredity Algorithm

Population Size = 20
Number of generations =1000
Chromosome level crossover probability = 0.6
Chromosome level mutation probability = 0.2
Sub chromosome level crossover probability = 0.1

Sub chromosome level mutation probability = 
0.001

The results obtained from these algorithms 
are shown in the Table 4. Figure 14 shows the 
comparison of objective values (i.e. number of 
exceptional elements) for these algorithms. GA, 
SA, AIS and SFHA results were same for all the 

Table 4. Result comparison 

Problem 
No

GA SA TS ANN AIS SFHA

Z CPU 
Time Z CPU 

Time Z CPU 
Time Z CPU 

Time Z CPU 
Time Z CPU 

Time

1 11 1.78 11 1.34 11 1.8 11 1.81 11 0.235 11 3.61

2 3 1.8 3 1.35 6 2.91 6 1.99 3 0.2 3 3.61

3 1 1.78 1 1.36 4 2.73 4 1.28 1 1.32 1 3.72

4 13 1.77 13 1.36 13 2.56 13 1.56 13 0.188 13 3.58

5 4 1.8 4 1.34 8 2.56 8 1.8 4 1.74 4 3.63

6 2 1.84 2 1.34 5 2.35 4 1.82 2 1.688 2 3.58

7 4 1.79 4 1.36 5 2.13 5 1.53 4 1.53 4 3.61

8 5 1.81 5 1.39 10 2.9 10 1.3 5 0.25 5 3.59

9 5 1.81 5 1.36 8 2.9 8 1.34 5 0.2 5 3.66

10 5 1.92 5 1.36 8 2.23 8 1.39 5 0.266 5 3.66

Figure 14. Objective value comparison
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problems. But TS & ANN yields worst results 
when compared with others. It is observed that, 
TS & ANN yields better results for well structured 
datasets and it yields worst results for ill-structured 
datasets. Figure 15 shows the comparison of 
computational time (CPU Time in Sec) for the 
algorithms. Computational time for SFHA is 
minimum when compared with other algorithms 
and it yields better results in objective value. SA 
also takes minimum computational time when 
compared with GA, TS and AIS. It also yields 
minimum objective value for all the problems.

CONCLUSION

This chapter describes the implementation of 
non-traditional optimization techniques for CMS. 
In this chapter the Meta heuristics Genetic Algo-
rithms, Simulated Annealing Algorithm, Tabu 
Search, Artificial Neural Networks, Artificial 
Immune System and Sheep Flock Heredity Al-
gorithm were discussed in detail. Implementa-
tion of these algorithms to design CMS is also 

described. The cell formation problem in GT 
using Meta heuristics with an objective of mini-
mizing exceptional elements, up to 16 X 30 sized 
matrices are solved. It is observed that SFHA and 
SA perform better than the other Meta heuristic 
algorithms. For most of the problems SFHA and 
SA results in solutions with fewer exceptional 
elements. The computational time is also less in 
SFHA and SA when compared to the other Meta 
heuristics. TS & ANN yields better results for well 
structured datasets and it yields worst results for 
ill-structured datasets. All algorithms are coded 
with C++ language. The datasets are tested with 
the Pentium IV 900MHz systems. The Meta 
heuristic algorithms can be implemented on the 
problems which includes operating costs, machine 
duplication and providing alternate path routing, 
fractional cell, processing time of the machines 
and part demand for cell formation.

Figure 15. CPU time comparison
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ABSTRACT

This chapter illustrates the cell formation problem (CFP) supported by similarity based methods. In 
particular, problem oriented indices are based on several factors which play an important role in the 
determination of the value of similarity between two generic machines, e.g. the number of machines 
visited by each part, the sequence of manufacturing operations, the production quantity for each part, et 
cetera. A numerical example illustrates the basic steps for the implementation of an effective hierarchi-
cal procedure of clustering machines into manufacturing cells and parts/products into families of parts. 
Literature presents many indices, but a few significant case studies and instances not useful to properly 
compare them and support the best choice given an operating context, i.e. a specific production problem. 
As a consequence the authors illustrate an experimental analysis conducted on a literature problem 
oriented instance to compare the performance of different problem settings and define best practices 
and guidelines for professional and practitioners.
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INTRODUCTION

Group technology (GT) is a manufacturing phi-
losophy for the identification of similar parts 
and grouping them to take advantages from their 
similarities in design and manufacturing (Manzini 
et al. 2010). A special application of GT is cellular 
manufacturing (CM), defined as a hybrid system 
including the advantages of both flexible and mass 
production approaches. CM can be defined as an 
application of GT that involves grouping machines 
based on the parts manufactured by them. The 
design of a CM system is called the cell formation 
(CF) problem and includes also the definition of 
families of “parts”, i.e. products and components, 
assigned to the groups of manufacturing resources, 
called “machines”.

Since 1966 when the first contribution on CM 
and its topics was published (Yin and Yasuda 
2006), the large number of advantages presented 
by CM compared to batch production (generally 
implemented in the so-called functional layouts or 
job shop systems) have been widely discussed in 
the literature, e.g. inventory level reduction, pro-
duction lead time reduction, reduced set-up times, 
etc. The main difference between a traditional job 
shop environment and a CM environment is in the 
grouping and layout of machines: in a job shop 
system, machines are grouped on the basis of their 
functional similarities; in a CM environment each 
cell is dedicated to the manufacture of a specific 
part family, and the machines in each cell have 
dissimilar functions (Heragu 1997).

An effective approach to forming manufactur-
ing cells and introducing families of similar parts, 
consequently increasing production volumes and 
machine utilization, is the use of similarity coef-
ficients in conjunction with clustering procedures.

Recent studies and applications on cluster 
analysis (CA) to industrial problems and applica-
tions are illustrated by Manzini and Bindi (2009) 
in transportation issues, Bindi et al. (2009) in 
warehousing and storage systems, Manzini et al. 
(2006) and (2001) in GT and CM.

Object of this chapter is the introduction, il-
lustration and application of a cluster based sys-
tematic procedure for the design of a CM system 
by the adoption of general purpose and problem 
oriented similarity indices.

A general design of a CM system consists of 
the following three basic activities (Papaioannou 
and Wilson, 2010):

1.  part families formation usually formed ac-
cording to their processing requirements;

2.  machine groups formation. These groups 
are usually called “manufacturing cells” and 
“clusters”;

3.  part families assignment to cells.

Three different strategies to execute these 
activities can be applied:

1.  Part family identification (PFI) strategy. Part 
families are formed first and then machines 
grouped into families in accordance to the 
part families formation;

2.  Machine group identification (MGI) strategy. 
Manufacturing cells are first created and then 
parts are allocated to cells;

3.  Part family/machine grouping (PF/MG) 
strategy. Part families and manufacturing 
cells are formed simultaneously.

This chapter adopts the second strategy. As a 
consequence, this chapter illustrates a systematic 
procedure for the cell formation problem, i.e. the 
allocation of machines to cells. The number of cells 
to be formed is not known in advance. In a second 
decision step the assignment of manufacturing 
parts to the previously defined clusters is executed 
in accordance with a known processing sequence.

The simultaneous parts and machines cluster-
ing processes is usually based on the minimization 
of intercell movement of parts (Stawowy 2004) 
which specifically deals with the CF problem and 
methods. In other words, the object is to minimize 
the interactions between manufacturing cells, 
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where an interaction occurs if a part requires 
machines belonging to two or more cells. The 
degree of interaction between manufacturing cells 
is measured by the number of the “exceptional 
elements” as illustrated below in the discussion 
of the efficiency in the formation process.

The remainder of this chapter is organized as 
follows: Section 2 presents a literature review on 
CM and CF problems, Section 3 illustrates the 
proposed similarity based hierarchical clustering 
process based on the application of a threshold 
level of group similarity as introduced by Manzini 
et al. (2010). In particular, Section 3 presents 
both a set of general purpose similarity indices 
and a set of problem oriented indices. Section 4 
reports the most important clustering performance 
evaluation metrics. Section 5 illustrates a few 
significant numerical examples, and Section 6 
discusses about the results obtained by an experi-
mental analysis conducted on an instance of the 
literature adopting different settings of the decision 
problem. Finally Section 7 presents conclusions 
and further research.

LITERATURE REVIEW

A survey on CF problem methodologies is pre-
sented by Papaioannou and Wilson (2010). They 

distinguish three main categories: informal/vi-
sual methods, part coding analysis methods, and 
production based methods which can be further 
classified as follows (see Figure 1):

• cluster analysis (CA)
• graph partitioning approach
• mathematical programming method
• heuristic and metaheuristic algorithms
• artificial intelligent methodologies.

In particular, the CA, which is the adopted 
set of methods for the CF problem and CM in 
this chapter, groups either objects or entities into 
clusters such that the generic cluster is made of 
individual with high degree of homogeneity, i.e. 
“natural association”, but different clusters have 
very little association between them.

The proposed CA is supported by the ap-
plication of “agglomerative methods” where the 
process of grouping starts with singleton clusters 
and merges them into larger sets. The systematic 
approach proposed in this chapter is similarity 
based, adopts cluster analysis and heuristic ag-
glomerative and hierarchical algorithms.

Figure 1. CF solution methods classification
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SIMILARITY BASED HIERARCHICAL 
CLUSTERING PROCESS

The clustering process of parts and machines 
for CM presented and applied in this chapter is 
based on the adoption of similarity indices both 
“general purpose” and “problem oriented”. The 
main decisional steps are cited by Manzini et al. 
(2010) and are discussed in this section in detail. 
Figure 2 illustrates the proposed systematic pro-
cedure for the formation of manufacturing cells 
and homogeneous part families. This procedure 
takes inspiration from the cluster analysis (CA), 
as a set of statistics based techniques and tools 
designed for grouping items and partitioning a 
set of elements in different research areas, e.g. 
economics, medicine, biology, etc., and is made 
of the following main steps.

Step 1: Manufacturing Data 
Collection

It deals with the analysis of product mix including 
all parts and components, both product structure, 

e.g. the bill of materials (BOM), and produc-
tion process, e.g. the manufacturing work cycle, 
frequently called routing. The level of detail for 
the collection of data is significantly influenced 
by the adopted similarity index for the CA. In 
particular, in presence of a general purpose index 
the necessary data generally refer to the assign-
ment of products and components, the so called 
“parts”, to the manufacturing resources, the so 
called “machines”. The adoption of a product 
oriented similarity index justifies the collection 
of several product data, e.g. expected production 
demand, manufacturing process unit time eventu-
ally including the set-up time, sequence of visited 
machines, existence of alternative manufacturing 
routines, tools assignment and availability, pro-
duction costs, etc.

The basic and elementary data collection ac-
tivity is usually supported by the construction of 
the well known part-machine incidence matrix 
(PMIM) whose generic entry aik is defined as 
follows:

Figure 2. Systematic procedure for the similarity based hierarchical clustering
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a
ik
=







1

0

 if part i visits machine k

 otherwise
 (1)

where

i=1,..,I part index
k=1,..,K machine index.

The transpose of the part-machine matrix is 
known as the machine-part incidence matrix 
(MPIM).

An example of a MPIM is illustrated in Table 
3. Obviously, the collection of data for the evalua-
tion of problem oriented indices is more onerous, 
but the performance of the clustering process is 
expected to be higher than in presence of not 
problem oriented indices.

Step 2: Similarity Index Evaluation

The clustering activity is a process of grouping and 
set-partitiong items in homogeneous and disjunc-
tive groups, called “clusters”. The generic cluster 
of parts is called “part-family”, while the cluster of 

machines is called “manufacturing cell”. A similar-
ity index refers to a generic pair of items of the 
same typology in the beginning mix of parts and 
machines to be partitioned. The index measures 
the degree to which two items, e.g. two different 
machines, need to belong to the same cluster, i.e. 
a manufacturing cell of homogeneous machines.

The literature presents a very large number 
of similarity coefficients. A taxonomy for these 
indices is presented by Yin and Yasuda (2006). 
They distinguish the previously cited two distinct 
main groups of coefficients: problem-oriented 
(l1.1 in Figure 3) and general purpose (l1.2). 
Problem-oriented measures are specifically de-
signed for application to manufacturing problems 
in industry, while general purpose are used in 
many disciplines, e.g. medicine, sociology, biol-
ogy, economics, decision science, etc.

Table 1 lists a not exhaustive set of general 
purpose indices Sij as proposed by the literature 
and based on the following assumptions: given 
two machines i and j, a is the number of parts 
visiting both machines, b is the number of parts 
visiting machine i but not j, c is the number of 
parts visiting machine j but not i, d is the number 

Figure 3. Similarity coefficients by Yin and Yasuda (2006)
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of parts visiting neither machine i, j. These coef-
ficients are applied in the numerical example and 
experimental analysis illustrated in this chapter.

Jaccard - J is the most commonly used gener-
al-purpose similarity coefficient in the literature. 
Jaccard similarity coefficient between machine i 
and machine j is defined as follows (McAuley, 
1972):

S
a

a b c
S

ij ij
=
+ +

≤ ≤,  0 1  (2)

Problem oriented similarity coefficients can 
be classified into binary data based (l2.1 in Fig-
ure 3) and production information based (l2.2) 
similarity coefficients. The similarity coefficients 
at the level l2.1 only consider assignment infor-
mation (a part need or need not a machine). Yin 
and Yamada (2006) present a list of binary data 
problem oriented indices. The level 3 (l3), see 
Figure 3, introduces different manufacturing fac-
tors for cell formation, e.g. machine requirement, 
machine setup, utilization, workload, alternative 
routings, machine capacities, operation sequences, 
set-up cost and cell layout. Finally level 4 (l4) 
introduces different weights for the evaluation 
of weighted similarity coefficients in order to 
adjust the strength of matches or misses between 

objects pairs to reflect the resemblance value more 
realistically (Yin and Yamada, 2006).

A few examples of problem oriented measures 
are reported below and are based on the following 
basic assumptions: n is the number of parts, k=1,…
,n the generic part, m the number of machines and 
i,j = 1,…, m the generic machine (Alhourani and 
Seifoddini 2007). Then:

x
k i j

ijk
=


1
0

 if part  visits both machine  and machine  




 

y
k i j

ijk
=


1
0

 if part  visits either machine  or machine  




 

S - Seifoddini (1987). He modifies the Jac-
card’s coefficient incorporating the production 
volume as follows:

S
x m

y m x m
ij

ijk k
k

n

ijk k ijk k
k

n

k

n
=

⋅

⋅ + ⋅

=

==

∑

∑∑
1

11

 (3)

where mk planned production volume during a 
predefined period of time for part type k.

Table 1. General purpose similarity indices 

Code Coefficient Range Sij

B Baroni-Urbani and Buser 0–1 [a+(ad)1/2]/[a+b+c+(ad)1/2]

H Hamann -1 to 1 [(a+d)-(b+c)]/[(a+d)+(b+c)]

J Jaccard 0–1 a/(a+b+c)

O Ochiai 0–1 a/[(a+b)(a+c)1/2]

R Rogers and Tanimoto 0–1 (a+d)/[a+2(b+c)+d]

RM Sarker and Islam (Relative matching) -1 to 1 [a+(ad)1/2]/[a+b+c+d+(ad)1/2]

SK Sokal and Sneath 0–1 2(a+d)/[2(a+d)+b+c]

SO Sorenson 0–1 2a/(2a+b+c)

SI Sokal and Michener (Simple matching) 0-1 (a+d)/(a+b+c+d)

RR Russel and Rao 0-1 a/(a+b+c+d)
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GS - Gupta and Seifoddini (1990). They extend 
the Jaccard’s similarity coefficient to incorporate 
the effect of the operational time, operational 
sequence and production volume. The proposed 
index is:

S
x T z m

x T z y
ij

ijk ijk ko
o

n

k
k

n

ijk ijk ko ijk
o

n

k

k

=
⋅ + ⋅

⋅ + +

==

=

∑∑

∑

( )

(

11

1

)) ⋅
=
∑ m

k
k

n

1

 (4)

where nk number of times the part type k visits 
both machines in row, i.e. sequentially

z
k i j

ko
=






1

0

 if part  visits both machines  and  in row 


 

T
T T

T T
ijk

ik jk

ik jk

=
{ }
{ }

min ,

max ,
 (5)

Tik global time spent by part type k on machine i
Tjk global time spent by part type k on machine j.

SH - Seifoddini and Hsu (1994). They propose 
a weighted similarity coefficient with the aim of 
eliminating improper machine assignment by 
giving a higher weight to components having 
common operations on both the machines.

S
f x

f x f y
i j

bk ijk
k

n

bk ijk
k

n

ek ijk
k

n,
=

⋅

⋅ + ⋅

=

= =

∑

∑ ∑
1

1 1

 (6)

where

fbk weighting factor for parts visiting both ma-
chines i and j

fek weighting factor for parts visiting either machine 
i or j but not both.

In the numerical example and experimental 
analysis illustrated below, the adopted value of 
fbk and fek are respectively 0.6 and 0.4.

N - Nair and Narendran (1998).They propose 
a similarity measure as the ratio of the sum of the 
movements common to the machines i and l, and 
the sum of the total number of movements to and 
from machines i and l.

s
c c

t til
i l

i l

=
+

+
 (7)

t w t
i j jip

p

n

j

n ji

=
==
∑∑

11

 (8)

c w c
il j jilp

p

n

j

n jil

=
==
∑∑

11

 (9)

where

m  number of machines
n  number of parts
nji number of times part j visits the ith machine
njil number of times part j visits the ith and jth 

machine
bjip operation sequence number if the part j vis-

its machine i for pth time (0≤p≤nji); zero 
otherwise

bjlp operation sequence number if the part j vis-
its machine l for pth time (0≤p≤nji); zero 
otherwise

rj maximum number of operations for part j

t

if b

if b or r

c

jip

jip

jip j

ji

=
=
=










0 0

1

2

  

1    

 otherwise

llp

jip jlp

jip j

if b or b

if b or r=
= =
=






0 0 0

1

2

    

1    

 otherwise






 (10)
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Equation (8) accounts for the total number of 
movements to and from the machine i. Equation 
(9) quantifies the total number of movements to 
and from machine i made by all parts that visit 
both machine i and machine l.

Step 3: Clustering Analysis and 
Manufacturing Cells Formation

The Clustering step deals with the grouping of 
machines into different homogeneous clusters so 
that machines in each cluster have high values of 
correlation. The clustering analysis is supported 
by the application of a grouping algorithm, which 
is a hierarchical heuristic for the partitioning of 
machines into disjunctive cells. There are usu-
ally substantial differences between the machine 
groups obtained by clustering, but the individuals 
within an individual machine group are similar 
because they are similarly visited by different 
parts/components. The clustering process is 
generally supported by one of the following well 
known hierarchical algorithms (Mosier 1989): 
Complete Linkage Method (CLINK) also known 
as farthest neighbor (fn) clustering, Single Linkage 
Method (SLINK) also known as nearest neighbor 
(nn) clustering, Unweighted Pair-Group Method 
using Arithmetic Average (UPGMA), Weighted 
Pair-Group Method using Arithmetic Average 
(Average Linkage), and Unweighted Pair-Group 
Method using Centroid (UPGMC).

In particular, the authors (of this chapter) 
choose to illustrate the fn clustering and the nn 
clustering algorithm (Aldenderfer and Blashfield, 
1984). The generic algorithm is based on a scheme 
that erases rows and columns in a similarity 
matrix S that collects the values of similarity for 
each couple of items, as old clusters are merged 
into new ones by the degradation of the level of 
similarity within each under construction cluster. 
The similarity matrix S (dimension N x N) contains 
all the correlations among the machines s(i,j), 
calculated as described in the previous step. To the 
clusterings are assigned sequence numbers 0,1,…, 

(n − 1), and L(k) is the level of similarity of the 
k-th clustering. A cluster with sequence number m 
is denoted (m) and the correlation between clusters 
(r) and (s) is denoted s[(r),(s)]. In particular, the 
nn algorithm is composed of the following steps:

1.  Begin with the disjoint clustering having 
level L(0) = 1 and sequence number m = 0.

Find the least dissimilar pair of clusters in the 
current clustering, say pair (r) and (s), according to:

s r s s i j
i j

( ) ( )



 = ( ) ( )



{ }, max ,

,
    (11)

where the maximum is over all pairs of clusters 
in the current clustering.

Increment the sequence number: m = m + 1. 
Merge the groups of items (r) and (s) into a single 
cluster to form the next clustering m. Set the level 
of this clustering to:

L(m)=s[(r),(s)]  (12)

Update the similarity matrix S by deleting the 
rows and columns corresponding to clusters (r) and 
(s) and adding a row and column corresponding to 
the newly formed cluster. The level of correlation 
between the new cluster, denoted (r,s) and the old 
generic cluster (k) is defined as:

s[(k), (r,s)] = max {s[(k),(r)], s[(k),(s)]}  (13)

If all the machines are in one cluster, stop. 
Else, go to point 2.

The fn algorithm is based on the same scheme 
and equation (13) in point 4 is modified as follows:

s[(k), (r,s)] = min {s[(k),(r)], s[(k),(s)]}  (14)

The dendrogram is the graphical representation 
of the process of degradation of the similarity level 
as the result of the grouping process executed by 
the clustering algorithm (Sokal and Sneath 1968, 
McAuley 1972). Figure 4 exemplifies a dendro-
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gram generated by the execution of the clustering 
process to an instance of example.

As a consequence the generic algorithm clas-
sifies the machines on the basis of the similarity 
of the manufacturing characteristics and hierarchi-
cally executes aggregations of machines into 
clusters reducing progressively the level of simi-
larity, i.e. homogeneity, within the under construc-
tion heterogeneous clusters.

The result of the clustering process does not 
only depend on the rule adopting for grouping but 
also on the threshold level of similarity adopted 
for grouping, i.e. the minimal admissible value of 
similarity within the generic cluster as discussed 
by Manzini et al. (2010). In particular, they dem-
onstrate that a best performing percentile based 
level of threshold similarity exists to optimize 
the cell formation process in presence of general 
purpose similarity metrics. The percentile based 
threshold value is a range of group similarity 
measurements which cuts the dendrogram at the 
percentile number of aggregations identified by 
the clustering rule, as follows:

T value

simil N simil N
p

p nodes p nodes

_

% , %

%
∈

×



{ } ×



{ }




 

(15)

where

%p percentile of aggregations, expressed as a 
percentage

Nnodes number of nodes generated by the cluster-
ing algorithm

Simil{N} similarity value which corresponds to 
the node N.

The basic idea of this criterion is properly il-
lustrated by the example discussed in Section 5. 
Figure 4 presents a dendrogram generated by the 
application of clustering analysis. m1,..,m12 are 
the identifications of machine items. The number 
within the diagram (1,..,12) identify the aggrega-
tions (called nodes) ordered in agreement with the 
similarity measurements. In particular, low numbers 
identify aggregations between under construction 
clusters characterized by a high level of similarity 
(very similar clusters). Table 5 reports the list and 
configuration of nodes as generated by the applica-
tion of the clustering algorithm in agreement with 

Figure 4. Dendrogram - Simple Matching and farthest neighbour, [1-11] nodes
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Figure 4. Assuming the 80° percentile of aggrega-
tion (i.e. %p=0.80) as follows (see Equation (15)):

T value simil simil_ . , .
80

0 80 12 0 80 12° ∈ ×



{ } ×



{ }




==

= { } { }



 =




 =simil simil10 9 0 329 0 329 0 329, . , . . 

 

Similarly, for a percentile value of 20° (i.e. 
%p=0.20):

T value simil simil_ . , .
20

0 2 12 0 2 12° ∈ ×



{ } ×



{ }




=

= ssimil simil3 2 0 585 0 622{ } { }



 =




, . , . 

 

Step 4: Part Families Formation

Given a generic solution for cells, a part may have 
to visit more than one group of machines before it 
is completed. Consequently, the generic part has 
to be assigned to the manufacturing cell with the 
minimum number of inter-group journeys. Another 
way of reducing the number of inter-group jour-
neys is to duplicate machines, but it can be very 
expensive in terms of space and monetary costs.

Part families can be formed concurrently with 
the cell/group machine formation (CF steps il-
lustrated above), or otherwise executed after the 
cells have been defined. In particular, the second 
of these hypotheses is adopted in this paper, and 
in particular a hierarchical heuristic rule is ap-
plied to assign parts to manufacturing cells. The 
main steps are:

• Given a configuration of the disjunctive 
groups of machines (i.e. manufacturing 
cells) name them as c=1,..,C. Then quan-
tify the following measurements for each 
part i and each manufacturing cell c in ac-
cordance with the working cycle of part i:
 ◦ number of intra-cell movements: 

ICMic;
 ◦ number of tasks executed in the cell: 

NTaskic;

 ◦ processing time of i in c: Timeic.
 ◦ Assign part i to cell c* where:

ICM ICM
ic c C

c c

ic*

*

max
,..,

> { }
=
≠
1

 (16)

If c* does not exist than GO to STEP III.

• Assign part i to cell c’ shown in Equation 
17 (Box 1). If c’ does not exist than GO to 
STEP IV.

• Assign part i to cell c’’ shown in Equation 
18 (Box 1). If c’’ does not exist than assign 
part i randomly to a cell in the last equation 
shown in Box 1.

A result of the assignment of parts to the 
manufacturing cells is the so-called block-diag-
onal incidence matrix shown in Figure 5 as the 
result of the application of the proposed procedure 
to the instance illustrated in Section 5.

Step 5: Plant Layout Configuration

This step deals with the determination of the loca-
tion of each manufacturing resource (machines and 
human resources) in the production area. Layout 
decisions are significantly influenced by the con-
figuration of cells and part families in CM systems, 
but they are omitted in this chapter. Nevertheless 
a few significant performance measures on layout 
results are quantified as clearly explained below.

CLUSTERING PERFORMANCE 
EVALUATION

Sarker (2001) presents, discusses, and compares 
the most notable measurements of grouping ef-
ficiency in CM. The measurements adopted in 
the following illustrated experimental analysis 
are based on the following definitions:
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• lock. This is a submatrix of the machine-
part matrix composed of rows representing 
a part family and columns representing the 
related machine cell.

• Void. This is a “zero” element appearing in 
a diagonal block (see Figure 4).

• Exceptional element. This is a “one” ap-
pearing in off-diagonal blocks (see Figure 
4). The exceptional element causes inter-
cell movements.

A set of CM measurements of performance 
quantified in the proposed experimental analysis 
is now reported and discussed. (high) and (low) 
labels refer to the expected values for best per-
forming the CF and CM.

Problem Density: PD

PD =
number of "ones" in the incidence matrix

number of elemennts in the incidence matrix
 

(19)

Box 1.
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Figure 5. Block-diagonal matrix. Simple matching, farthest neighbour.& 75° percentile.
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Global Inside cells density: ICD (high)

ICD =
number of "ones" in diagonal blocks

number of elements iin diagonal blocks
 

(20)

Exceptional elements: EE (low)

EE = Number of exceptional elements in the 
off-diagonal blocks        (21)

Ratio of non-zero elements in cells: REC

REC =
total number of "ones"

number of elements in diagonal bllocks
 

(22)

Grouping Efficiency: ƞ (Sarker 2001) (high)

It is a weighted average of two functions and 
it is defined as:

η η η

η

η

= + −

=

= −
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=

=

∑

∑
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mn M N
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 (23)

where

ed number of 1s in the diagonal blocks
eo number of 1s in the off-diagonal blocks

k  number of diagonal blocks
Mr number of machines in the rth cell
Nr number of components in the rth part-family
q weighting factor (0≤q≤1) that fixes the relative 

importance between voids and inter-cell 
movements. If q=0.5 both get the same 
importance: this is the value adopted in the 
numerical example and in the experimental 
analysis illustrated in sections 5 and 6.

Quality Index: QI (Seifoddini and Djassemi 
1994, 1996) (high)

It is a measure of independence of machine-
component groups. High values of QI are expected 
in presence of high independency. QI is defined as:

QI
ICW
PW

= −1  (24)

where

ICW total intercellular workload
PW total plant workload.
ICW and PW can be defined as:

ICW Y Z X m T
ic kc ik k ik
k

n

i

m

c
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= −
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(25)

PW X m T
ik k ik

k

n

i

m

=
==
∑∑

11

 (26)

where n is the number of parts, k=1,…,n the generic 
part, m the number of machines and i,j=1,…,m 
the generic machine. This is the notation previ-
ously introduced

Y
i c

ic
=






1

0

 if machine  is assigned to cell 

 otherwiswe

=







Z
k c

kc

1

0

 if part  is assigned to cell 

 otherwiswe

XX
k i

ki
=


1
0

 if part  has operation on machine 

 otherwiswe





 

mk volume of part k
Tki processing time of part k on machine i
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QI measures the number of intracellular move-
ments which ask to be maximized minimizing 
intercellular ones.

Now the authors introduce a new grouping 
efficiency based on QI as previously defined.

Grouping Efficiency based on QI: ƞQI (high)

ηQI=qη1+(1-q)QI (27)

The adopted value of weighting factor q is:

q
M N

mn

r
r

k

= =
∑ r

1  (28)

Grouping Efficacy: τ (Kumar and Chan-
drasekharan 1990) (high)

Group efficacy can be quantified by the ap-
plication of the following equation:

τ =
−

+

e e

e e
v

0  (29)

where

e  total number of “ones” in the matrix (i.e. the 
total number of operations)
e0=EE number of exceptional elements 

(number of “ones” in the off-diagonal 
blocks)

ev number of voids (number of “zeros” in 
the diagonal blocks).

Grouping measure: ƞG (Miltenburg and Zhang 
1991) (high)

It gives higher values if both the number of 
voids and exceptional elements are fewer, and it 
is defined as:

η η η
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 (30)

where

ƞu ratio of the number of 1s to the number of total 
elements in the diagonal block (this is the 
inside cell density - ICD)

ƞm ratio of exceptional elements to the total number 
of 1s in the matrix

e1 number of 1s in the diagonal block.

Group technology efficiency: GTE (Nair and 
Narendran 1998) (high)

It is defined as the ratio of the difference be-
tween the maximum number of inter-cell travels 
possible and the number of inter-cell travels 
actually required to the maximum number of 
inter-cell possible:

GTE
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where

• maximum number of inter-cell travels
U  number of inter-cell movements required by 

the system
rj maximum number of operations for component j

xl
s s

js
=

+0 1 if operations   are performed in the same cell,

11 otherwise
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Bond efficiency: BE (high)

This is an important index because depends 
on both the within-cell compactness (by the ICD) 
and the minimization of inter-cell movements by 
the GTE. It is defined as:

BE=q·IDC+(1-q)·GTE (32)

The adopted value of weight q in the experi-
mental analysis is 0.5.

NUMERICAL EXAMPLE

This section presents a numerical example which 
relates to a problem oriented instance presented 
by De Witte (1980) and made of 19 parts and 12 

machines. Manufacturing input data are reported 
in Table 2.

Table 3 reports the 12x19 machine-part inci-
dence matrix useful for the evaluation of a gen-
eral purpose similarity index.

A General Purpose Evaluation

This section presents the results obtained by the 
application of a general purpose similarity index 
in cluster analysis for the cell formation problem.

Table 4 reports the result of the evaluation 
of the general purpose index known as Simple 
Matching (SI) and defined in Table 1. Figure 4 
shows the dendrogram generated by the applica-
tion of the fn combined with the SI similarity 
coefficient. In particular a sequence of numbers 
is explicitly reported in figure for each node of 
the diagram. The generic node corresponds to a 

Table 2. Manufacturing input data, De Witte (1980)

Part Volume Work Cycle Processing Time

p1 2 m1, m4, m8, m9 20, 15, 10, 10

p2 3 m1, m2, m6, m4, m8, m7 20, 20, 15, 15, 10, 25

p3 1 m1, m2, m4, m7, m8, m9 20, 20, 15, 25, 10, 15

p4 3 m1, m4, m7, m9 20, 15, 25, 15

p5 2 m1, m6, m10, m7, m9 20, 15, 20, 25, 15

p6 1 m6, m10, m7, m8, m9 15, 50, 25, 10, 15

p7 2 m6, m4, m8, m9 15, 15, 10, 15

p8 1 m3, m5, m2, m6, m4, m8, m9 30, 50, 20, 15, 15, 10, 15

p9 1 m3, m5, m6, m4, m8, m9 30, 50, 15, 15, 10, 15

p10 2 m3, m6, m4, m8 30, 15, 15, 10

p11 3 m6, m12 15, 20

p12 1 m11, m7, m12 40, 25, 20

p13 1 m11, m10, m7, m12 40, 50, 25, 20

p14 3 m11, m7, m10 40, 25m 50

p15 1 m11, m10 40, 50

p16 2 m11, m12 40, 20

p17 1 m11, m7, m12 40, 25m 20

p18 3 m6, m7, m10 15, 25, 50

p19 2 m10, m7 50, 25
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specific aggregation ordered in agreement with 
the similarity metric and the adopted hierarchical 
rule. The list of nodes and aggregations, the related 
values of similarity, and the number of objects per 
group are also reported in Table 5. The obtained 
number of nodes is 11.

Now it is possible to define a partitioning of 
the available set of machines by the identification 
of a cut value, the so called “cutting threshold 
similarity value”. The adopted level of homogene-
ity within the generic cluster is the percentile-based 
threshold measure discussed in Section 3.

Given the dendrogram in Figure 4 and assum-
ing a threshold percentile cut value equal to 20°, 
the corresponding range of similarity is (0.585, 
0.622) as demonstrated in Section 3. The obtained 
configuration of the manufacturing cells (nine 
different cells are obtained) is:

Cell 1 (single machine): M12
Cell 2 (single machine): M11
Cell 3 (single machine): M10
Cell 4 (single machine): M7
Cell 5 (two machines): M3, M5
Cell 6 (single machine): M9
Cell 7 (two machines): M8, M4
Cell 8 (single machine): M2

Cell 9 (single machine): M1

In case a cut value corresponds to one or more 
nodes generated by the hierarchical process of 
aggregation, it is possible to include (exclude) 
the node in the formation of cells. In particular, 
assuming a level of threshold similarity equal 
to 80°, two alternative configurations can be 
obtained as the result of inclusion/exclusion of 
one or more nodes of the dendrogram located in 
correspondence of the cutting level:

• Including node 10 and node 9
Cell 1 (four machines): M12, M11, M10 

and M7
Cell 2 (eight machines): M6, M5, M3, M9, 

M8, M4, M2, M1.
• Not including node 10 and node 9

Cell 1 (two machines): M12, M11
Cell 2 (two machines): M10, M7
Cell 3 (3 machines): M6, M5, M3
Cell 4 (5 machines): M9, M8, M4, M2, M1.

The second column in Table 8 reports the ob-
tained values of the performance evaluation for 
the case study object of this numerical example 
adopting the Simple Matching similarity index, the 

Table 3. Machine-part incidence matrix 

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19

m1 1 1 1 1 1

m2 1 1 1

m3 1 1 1

m4 1 1 1 1 1 1 1 1

m5 1 1

m6 1 1 1 1 1 1 1 1 1

m7 1 1 1 1 1 1 1 1 1 1 1

m8 1 1 1 1 1 1 1 1

m9 1 1 1 1 1 1 1 1

m10 1 1 1 1 1 1 1

m11 1 1 1 1 1 1

m12 1 1 1 1 1
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fn heuristic, and the cutting threshold percentile 
value equal to 75°.

A Problem Oriented Evaluation

Table 6 reports the result of the evaluation of the 
problem oriented similarity coefficient as proposed 
by Nair and Narendran (1998). Figure 6 shows 
the dendrogram as the result of the application 

of the fn clustering rule. The generic node of the 
dendrogram corresponds to a specific aggregation 
ordered in agreement with the adopted similarity 
metric and the adopted hierarchical rule. The list 
of nodes and aggregations, the related values of 
similarity, and the number of objects in group 
are also reported in Table 7 as the result of the 
application of the fn rule and Nair and Narendran 
(1998) problem oriented similarity coefficient. 
The obtained number of nodes is 11.

Figure 6 reports the dendrogram obtained by 
the application of the fn clustering heuristic rule 
and the “Nair and Narendran” problem oriented 
similarity coefficient to the literature instance of 
interest.

Assuming %p=80°:

T value simil simil_ . , .
80

0 80 11 0 80 11° ∈ ×



{ } ×



{ }




==

= { } { }



 =




simil simil9 8 0 095 0 222, . , . 

 

The obtained configuration of the manufac-
turing cells (four different cells are obtained) is:

Cell 1 (two machines): M11, M12
Cell 2 (two machines): M7, M10

Table 4. Simple matching similarity matrix 

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

m1 1.0000

m2 0.5479 1.0000

m3 0.4021 0.5479 1.0000

m4 0.5118 0.5118 0.5118 1.0000

m5 0.4389 0.5847 0.6576 0.4750 1.0000

m6 0.3292 0.4021 0.4750 0.4389 0.4389 1.0000

m7 0.4021 0.3292 0.1826 0.2195 0.2195 0.2556 1.0000

m8 0.4389 0.5118 0.5118 0.6215 0.4750 0.5118 0.2194 1.0000

m9 0.5118 0.4389 0.4389 0.5479 0.4750 0.4389 0.2924 0.5479 1.0000

m10 0.3292 0.3292 0.3292 0.1465 0.3653 0.3292 0.4750 0.2194 0.2924 1.0000

m11 0.2924 0.3653 0.3653 0.1826 0.4021 0.1465 0.3653 0.1826 0.1826 0.4389 1.0000

m12 0.3292 0.4021 0.4021 0.2194 0.4389 0.2556 0.3292 0.214 0.2194 0.3292 0.5847 1.0000

Table 5. List and configuration of nodes generated 
by fn rule & SI similarity coefficient 

Node Group 1 Group 2 Simil. Objects 
in Group

1 M3 M5 0.658 2

2 M4 M8 0.622 2

3 M11 M12 0.585 2

4 M1 M2 0.548 2

5 Node 2 M9 0.548 3

6 M7 M10 0.475 2

7 Node 4 Node 5 0.439 5

8 Node 1 M6 0.439 3

9 Node 7 Node8 0.329 8

10 Node 6 Node 3 0.329 4

11 Node 9 Node 10 0.146 12
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Cell 3 (two machines): M3, M5
Cell 4 (six machines): M6, M8, M4, M2, M9, M1
Assuming %p=20°:

T value simil simil_ . , .
20

0 20 11 0 20 11° ∈ ×



{ } ×



{ }




==

= { } { }



 =




simil simil3 2 0 667 0 706, . , . 

 

The obtained configuration of the manufactur-
ing cells (eleven different cells are obtained) is:

Single machine cells: Cell 1(M12), Cell 2(M11), 
Cell 4(M5), Cell 5(M3), Cell 6(M3), 
Cell7(M6), Cell 9(M2), Cell 10(M9), Cell 
11(M1)

Table 6. Nair & Narendran similarity matrix 

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

m1 1.0000

m2 0.5000 1.0000

m3 0.0000 0.2220 1.0000

m4 0.6920 0.5000 0.4210 1.0000

m5 0.0000 0.2860 0.6670 0.2350 1.0000

m6 0.3450 0.3480 0.3640 0.5450 0.2000 1.0000

m7 0.5620 0.3080 0.0000 0.3890 0.0000 0.4620 1.0000

m8 0.5000 0.5560 0.4710 0.8570 0.2670 0.6450 0.2940 1.0000

m9 0.6670 0.2220 0.2350 0.7150 0.2670 0.4520 0.4720 0.6150 1.0000

m10 0.1670 0.0000 0.0000 0.0000 0.0000 0.3870 0.7060 0.0770 0.2310 1.0000

m11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4000 0.0000 0.0000 0.4550 1.0000

m12 0.0000 0.0000 0.0000 0.0000 0.0000 0.2310 0.2070 0.0000 0.0000 0.0950 0.5880 1.0000

Figure 6. Dendrogram by the application of Nair & Narendran similarity coefficient and the farthest 
neighbour
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Double machines cells: Cell 3 (M7, M10), Cell 
8 (M8, M4).

The third column in Table 8 reports the obtained 
values of the performance evaluation for the case 
study object of this numerical example adopting 
the “Nair and Narendran” similarity index, the 
fn heuristic, and the cutting threshold percentile 
value equal to 75°.

Which is the best similarity index? It is not 
correct to try to reply to this question as is, because 
previous sections demonstrate that there are dif-

ferent factors affecting the performance of the 
system configuration: the similarity index, the 
clustering rule, the threshold cutting value of 
similarity, and the part assignment rule. As a 
consequence it is useful to measure the simultane-
ous effects generated by different combinations 
of these critical factors. Next section presents an 
experimental analysis conducted on the instance 
proposed by De Witte (1980) comparing the 
performance obtained adopting general purpose 
and problem oriented similarity metrics.

Table 7. List and configuration of nodes generated by the fn rule & Nair and Narendran (1998) similar-
ity coefficient 

Node Group 1 Group 2 Simil. Objects in Group

1 M4 M8 0.857 2

2 M7 M10 0.706 2

3 M1 M9 0.667 2

4 M3 M5 0.667 2

5 M11 M12 0.588 2

6 Node 1 M6 0.545 3

7 M2 Node 6 0.348 4

8 Node 3 Node 7 0.222 6

9 Node 2 Node 5 0.095 4

10 Node 8 Node 4 0 8

11 Node 10 Node 9 0 12

Table 8. Performance evaluation of numerical example; 75° percentile 

Similarity index ID Simple 
matching Nair & Narendran

Problem Density PD 0.329 0.329

Inside Cells Density ICD 0.705 0.828

REC REC 0.962 1.293

Exceptional Element EE 20 27

Grouping Efficiency [%] ƞ 60.2 57.9

Grouping Efficiency QI [%] ƞQI 68.8 72.8

Group Technology Efficiency [%] GTE 61.9 45.5

Bond Efficiency [%] BE 66.2 66.1

Group Efficacy [%] τ 82.9 84.5

Grouping measure ƞG 0.438 0.468
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Figure 7. Block-diagonal matrix. Nair and Narendran, farthest neighbour.& 75° percentile.

Table 9. What-if analysis, factors and levels 

general purpouse problem oriented

Similarity Coefficient J, SI, H, B, SO, R, SK, O, RM, RR S, GS, SH (fbk=0.6;fek=0.4), N

Rule CLINK, ALINK, SLINK

Percentile 10°, 25°, 40°, 50°, 75°

Figure 8. Main effects plot for grouping measure
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EXPERIMENTAL ANALYSIS

This section presents the results obtained by the 
application of the proposed systematic procedure 
to cell formation and parts assignment to cells 
(part family formation), as the result of differ-
ent settings of the similarity and hierarchical 
procedure as illustrated in previous sections. 
This what-if analysis is applied to the problem 
oriented instance introduced by De Witte (1980) 
and reported in Table 2. This analysis represents 
the first step to identify the best combination of 
values, called levels, for the parameters, called 
factors, of the decision problem.

Table 9 reports the adopted levels for each 
factor in the experimental analysis.

Figures 8 to 10 present the main effects plot 
(Minitab ® Statistical Software Inc.) for the fol-
lowing performance indices: ƞG, called ƞ(G) in 
figures, τ, BE.

Similarity indices perform in a different way 
in terms of ƞG, τ, BE. In particular problem ori-
ented (PO) perform better than general purpose 
(GP). Clink rule and percentile threshold value 

equal to 50° (or 75°) seem to be the best levels to 
set the clustering algorithm. The best performing 
indices are Seiffoddini - S (1987) and Nair and 
Narendran - N (1998).

Figure 11 shows that the number of exceptional 
elements significantly depends on the adopted 
threshold value of group similarity, but the adopted 
similarity index is not important.

ƞQI, called ƞ(QI) in Figure 12, has an anomalous 
trend if compared with previous graphs.

Figure 13 shows the trend of the EE for dif-
ferent values of couples of factors, and the im-
portance of the percentile threshold value of group 
similarity.

Similarly, Figure 14 shows the importance of 
threshold value of similarity and clink rule for 
grouping items.

CONCLUSION AND FURTHER 
RESEARCH

This chapter illustrates the CFP as supported by 
the similarity based manufacturing clustering, 

Figure 9. Main effects plot for grouping efficacy
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and a hierarchical and systematic procedure for 
supporting managers in the configuration of 
cellular manufacturing systems by the applica-
tion of cluster analysis and similarity indices. 

In particular, both general purpose and problem 
oriented indices are illustrated and applied. The 
experimental analysis conducted on a literature 
problem oriented case study represents the first 

Figure 10. Main effects plot for bond efficiency

Figure 11. Main effects plot for exceptional elements
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basis for the identification of the best setting of 
the cell formation problem and supporting deci-
sion models and tools.

For the first time, this chapter successfully 
applies the threshold group similarity index to 

problem oriented similarity environment. The 
threshold value was introduced by the authors 
in a previous study on general purpose indices 
evaluation (Manzini et al. 2010).

Figure 12. Main effects plot for grouping efficacy based on QI

Figure 13. Exceptional elements for couples of factors
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This chapter confirms the importance of this 
threshold cut value for the dendrogram when it is 
explained in percentile on the number of nodes.

Further research is expected to improve the 
experimental analysis including more case studies 
and applications. Finally it is important to improve 
the critical process of part family formation and the 
decisions regarding the duplication of machines 
and resources in different manufacturing cells in 
order to minimize intercellular flows.
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Chapter  8

INTRODUCTION

The principle objective of Group Technology is 
to reduce the intercellular flow of parts and to 
provide an efficient grouping of machines into 
cells. The main contribution in this chapter is to 
develop an efficient clustering heuristic based on 

evolutionary algorithms and to apply the proposed 
heuristic for Machine Part Cell Formation Problem 
which includes the configuration and capacity 
management of manufacturing cells. We propose 
to apply a novel population based evolutionary 
algorithm called Estimation of Distribution Algo-
rithm in order to form part families and machine 
cells simultaneously.
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University of Sfax, Tunisia

Bassem Jarboui
University of Sfax, Tunisia

Abdelwaheb Rebaï
University of Sfax, Tunisia

An Estimation of Distribution 
Algorithm for Part Cell 

Formation Problem

ABSTRACT

The aim of this chapter is to propose a new heuristic for Machine Part Cell Formation problem. The 
Machine Part Cell Formation problem is the important step in the design of a Cellular Manufacturing 
system. The objective is to identify part families and machine groups and consequently to form manufac-
turing cells with respect to minimizing the number of exceptional elements and maximizing the grouping 
efficacy. The proposed algorithm is based on a hybrid algorithm that combines a Variable Neighborhood 
Search heuristic with the Estimation of Distribution Algorithm. Computational results are presented and 
show that this approach is competitive and even outperforms existing solution procedures proposed in 
the literature.
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The objective of the proposed heuristic is to 
minimize exceptional elements and to maximize 
the goodness of clustering and thus the minimi-
zation of intercellular movements. In order to 
guarantee the diversification of solutions, we 
added an efficient technique of local search called 
Variable Neighborhood Search at the improve-
ment phase of the algorithm. Many researchers 
have combined local search with evolutionary 
algorithms to solve this problem. However, they 
did not apply yet the Estimation of Distribution 
Algorithm for the general Group Technology 
problem. Furthermore, we have used a modified 
structure of the probabilistic model within the 
proposed algorithm.

In order to quantify the goodness of the ob-
tained solutions, we present two evaluation criteria 
namely the percentage of exceptional elements 
and the grouping efficacy. A comparative study 
was elaborated with the most known evolutionary 
algorithms as well as the well known clustering 
methods.

LITERATURE REVIEW

A wide body of publications has appeared on the 
subject of Group Technology (GT) and Cellular 
Manufacturing Systems (CMS). The history of 
approaches that tried to solve this problem began 
with the classification and coding schemes. Sev-
eral authors have proposed various ways trying to 
classify the methods of Cell Formation Problem. 
It includes descriptive methods, cluster analysis 
procedures, graph partitioning approaches, math-
ematical programming approaches, artificial intel-
ligence approaches and other analytical methods.

Burbidge (1963) was the first who developed 
a descriptive method for identifying part families 
and machine groups simultaneously. In his work 
“Production Flow Analysis” (PFA). Burbidge has 
proposed an evaluative technique inspired from 
an analysis of the information given in route cards 

to find a total division into groups, without any 
need to buy additional machine tools.

Then, researchers applied array based clus-
tering techniques which used a binary matrix A 
called “Part Machine Incidence Matrix” (PMIM) 
as input data. Given i and j the indexes of parts 
and machines respectively, an entry of 1 (aij) 
means that the part i is executed by the machine 
j whereas an entry of 0 indicates that it does not. 
The objective of the array based techniques is 
to find a block diagonal structure of the initial 
PMIM by rearranging the order of both rows 
and columns. Thus, the allocation of machines to 
cells and the parts to the corresponding families 
is trivial. McCornick et al. (1972) were the first 
who applied this type of procedure to the CFP. 
They developed the Bond Energy Analysis (BEA) 
which seeks to identify and display natural variable 
groups and clusters that occur in complex data 
arrays. Besides, their algorithm seeks to uncover 
and display the associations and interrelations 
of these groups with one another. King (1980) 
developed the Rank Order Clustering (ROC). In 
ROC algorithm, binary weights are assigned to 
each row and column of the PMIM. Then, the 
process tries to gather machines and parts by 
organizing columns and rows according to a de-
creasing order of their weights. Chan and Milner 
(1981) developed the Direct Clustering Algorithm 
(DCA) in order to form component families and 
machine groups by restructuring the machine 
component matrix progressively. A systematic 
procedure is used instead of relying on intuition 
in determining what row and column rearrange-
ments are required to achieve the desired result. 
King & Nakornchai (1982) improved the ROC 
algorithm by applying a quicker sorting procedure 
which locates rows or columns having an entry of 
1 to the head of the matrix. Chandrasekharan & 
Rajagopalan (1986a) proposed a modified ROC 
called MODROC, which takes the formed cells 
by the ROC algorithm and applies a hierarchical 
clustering procedure to them. Later, other array 
based clustering techniques are proposed namely 



166

An Estimation of Distribution Algorithm for Part Cell Formation Problem

the Occupancy Value method of Khator & Irani 
(1987), the Cluster Identification Algorithm (CIA) 
of Kusiak & Chow (1987) and the Hamiltonian 
Path Heuristic of Askin et al. (1991).

McAuley (1972) was the first who suggested 
similarity coefficient to clustering problems. He 
applied the Single Linkage procedure to the CF 
problem and used the coefficient of Jaccard which 
is defined for any pair of machines as the ratio of 
the number of parts that visit both machines to 
the number of parts that visit at least one of these 
machines. Then, some other clustering techniques 
are developed namely Single Linkage Clustering 
(SLC), Complete Linkage Clustering (CLC), 
Average linkage Clustering (ALC) and Linear 
Cell Clustering (LCC). Kusiak (1987) proposed 
a linear integer programming model maximizing 
the sum of similarity coefficients defined between 
two parts

The category that is the most used in literature 
in recent years is heuristics and metaheuristics. 
Such heuristics are based essentially on Artificial 
Intelligence approaches including Genetic Algo-
rithms (GA), Simulated Annealing (SA), Tabu 
Search (TS), Evolutionnary Algorithms (EA), 
neural network and fuzzy mathematics. In what 
follows we present some research papers that used 
this type of heuristics for designing CM systems.

Boctor (1991) developed the SA approach to 
deal with large-scale problems. Sofianopoulos 
(1997) proposed a linear integer formulation for 
CF problem and employed the SA procedure to 
improve the solution quality taking as objective 
the minimization of inter-cellular flow between 
cells. Caux et al. (2000) proposed an approach 
combining the SA method for the CF problem 
and a branch-and-bound method for the routing 
selection. Lozano et al. (1999) presented a Tabu 
Search algorithm that systematically explores 
feasible machine cells configurations determin-
ing the corresponding part families using a linear 
network flow model. They used a weighted sum 
of intra-cell voids and inter-cellular moves to 
evaluate the quality of the solutions. Solimanpur 

et al. (2003) developed an Ant colony optimization 
algorithm to solve the inter cell layout problem by 
modelling it as a quadratic assignment problem. 
Kaparthi et al. (1993) proposed an algorithm based 
on neural network for the part machine grouping 
problem. Xu & Wang (1989) developed two ap-
proaches of fuzzy cluster analysis namely fuzzy 
classification and fuzzy equivalence in order to 
incorporate the uncertainty in the measurement of 
similarities between parts. They presented also a 
dynamic part-family assignment procedure using 
the methodology of fuzzy pattern recognition to 
assign new parts to existing part families.

Recently many researchers have focused 
on the approaches based on AI for solving the 
part-machine grouping problem. Venugopal & 
Narendran (1992a) proposed a bi-criteria math-
ematical model with a solution procedure based on 
a genetic algorithm. Joines et al. (1996) presented 
an integer programming solved using a Genetic 
Algorithm to solve the CF problem. Zhao & Wu 
(2000) presented a genetic algorithm to solve 
the machine-component grouping problem with 
multiple objectives: minimizing costs due to inter-
cell and intra-cell part movements; minimizing 
the total within cell load variation; and minimiz-
ing exceptional elements. Gonçalves & Resende 
(2002) developed a GA based method which 
incorporates a local search to obtain machine 
cells and part families. The GA is responsible for 
generating sets of machines cells and the mission 
of the local search heuristic is to construct sets of 
machine part families and to enhance their quality. 
Then, Gonçalves & Resende (2004) employed a 
similar algorithm to find first the initial machine 
cells and then to obtain final clusters by applying 
the local search. Mahdavi et al. (2009) presented 
a GA based procedure to deal with the CF prob-
lem with nonlinear terms and integer variables. 
Stawowy (2006) developed a non-specialized 
Evolutionary Strategy (ES) for CF problem. 
His algorithm uses a modified permutation with 
separators encoding scheme and unique concept 
of separators movements during mutation. Andrés 
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& Lozano (2006) applied for the first time the 
Particle Swarm Optimization (PSO) algorithm 
to solve the CF problem respecting the objective 
the minimization of inter-cell movements and 
imposing a maximum cell size.

ESTIMATION OF DISTRIBUTION 
ALGORITHM

It was first introduced by Mühlenbein & Paaß 
(1996). The Estimation of Distribution Algorithm 
belongs to Evolutionary Algorithms family. It 
adopts probabilistic models to reproduce individu-
als in the next generation, instead of crossover and 
mutation operations. This type of algorithms uses 
different techniques to estimate and sample the 
probability distribution.

The probabilistic model is represented by 
conditional probability distributions for each 
variable. This probabilistic model is estimated 
from the information of the selected individuals 
in the current generation and selects good indi-
viduals with respect to their fitness. This process 
is repeated until the stop criterion is met. Such a 
reproduction procedure allows the algorithm to 
search for optimal solutions efficiently. However, 
it considerably decreases the diversity of the 
genetic information in the generated population 
when the population size is not large enough. For 
this reason, the incorporation of a local search 
technique is encouraged in order to enhance the 
performance of the algorithm.

As a result, the Estimation of Distribution 
Algorithm can reach best solutions by predicting 
population movements in the search space without 
needing many parameters. The main steps in this 
procedure are shown in the following pseudo code:

Estimation of Distribution Algorithm
1.  Initialize the population according to 

some initial distribution model.
2.  Form P '  individuals from the current 

population using a selection method.

3.  Build a probability model p(x) from 
P '  individuals using both the informa-
tion extracted from the selected indi-
viduals in the current population and 
the previously built model.

4.  Sample p(x) by generating new indi-
viduals from the probability model and 
replace some or all individuals in the 
current population.

5.  End the search if stop criteria are met, 
otherwise return to Step 2.

This method can be divided into two different 
classes. The first class assumes that there are no 
dependencies between variables of the current 
solution during the search. These are known as 
non-dependency Estimation of Distribution Algo-
rithms: Population Based Incremental Learning 
(Baluja, 1994) and Univariate Marginal Distribu-
tion Algorithm (Mühlenbein & Paaß, 1996). The 
second class takes into account these variable 
dependencies: Mutual Information Maximization 
for Input Clustering (De Bonet et al., 1997), Bivari-
ate Marginal Distributional Algorithm (Pelikan & 
Mühlenbein, 1999), Factorized Distribution Algo-
rithm (Mühlenbein et al., 1999) and the Bayesian 
Optimization Algorithm (Pelikan et al., 1999a).

Generally, non-dependency algorithms are 
expected to have a worse modelling ability than 
the ones with variable dependencies (Zhang et 
al., 2004). But combining heuristic information 
or local search with non-dependency algorithms 
can compensate for this disadvantage.

Univariate EDAs

This category assume that each variable is in-
dependent; it means that the algorithm do not 
consider any interactions among variables in 
the solution. As a result, the probability model 
distribution,p(x), becomes simply the product of 
Univariate marginal probabilities of all variables 
in the solution and expressed as follows:
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Due to the simplicity of the model of distri-
bution used, the algorithms in this category are 
computationally inexpensive, and perform well 
on problems with no significant interaction among 
variables.

In what follows, we present the well-known 
works related to this category.

Population Based Incremental Learning

It was proposed by Baluja (1994). The algorithm 
starts with initialisation of a probability vector. In 
each iteration, it updates and samples the prob-
ability vector to generate new solutions. The main 
steps in this procedure are shown in the following 
pseudo code:

Population Based Incremental Learning
1.  Initialise a probability vector 

p={p1,p2,...,pn}with 0.5 at each posi-
tion. Here, each pi represents the 
probability of 1 for the ith position in 
the solution.

2.  Generate a population P of M solutions 
by sampling probabilities in p.

3.  Select set D from P consisting of N 
promising solutions.

4.  Estimate univariate marginal prob-
abilities p(xi) for each xi.

5.  For each i, update pi using pi=pi+λ(p(xi-pi)
6.  For each i, if mutation condition passed, 

mutate pi using

pi=pi(1-μ)+randon (0 or 1)μ.

7.  End the search if stop criteria are met, 
otherwise return to Step 2.

Univariate Marginal 
Distribution Algorithm

Univariate Marginal Distribution Algorithm was 
proposed by Muhlenbein & Paaß (1996). We 
note that this category can be seen as a variant of 
Population Based Incremental Learning when λ=1 
and μ=0 Different variants of Univariate Marginal 
Distribution Algorithm have been proposed, and 
the mathematical analysis of their workflows has 
been carried out (Muhlenbein, 1998; Muhlenbein 
et al., 1999; Gonzalez et al., 2002). The main 
steps in this procedure are shown in the follow-
ing pseudo code:

Univariate Marginal Distribution Algorithm
1.  Generate a population P composed of 

M solutions.
2.  Select a set P’ from P consisting of N 

promising solutions.
3.  Estimate univariate marginal prob-

abilities p(x) from P’ for each xi.
4.  Samplep(x)to generate M new indi-

vidual and replace P.
5.  End the search if stop criteria are met, 

otherwise return to Step 2.

Bivariate EDAs

In contrast with Univariate case, the probability 
model contains factors involving the conditional 
probability of pairs of interacting variables. This 
class of algorithms performs better in problems, 
where pair-wise interaction among variable exists.

In what follows, we present the well-known 
works related to this category.

Mutual Information Maximization 
for Input Clustering

The Mutual Information Maximization for input 
clustering uses a chain model of probability 
distribution (de Bonet et al., 1997) and it can be 
written as:
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where Π={π1,π2,...,πn} is a permutation of the 
numbers {1,2,...,n} used as an ordering for the 
pair wise conditional probabilities. At each itera-
tion, the algorithm first tries to learn the linkage. 
Then, the algorithm uses a greedy algorithm to 
find a permutation Π that does not always give 
accurate model. Once the permutation Π is learnt, 
the algorithm estimates the pair wise conditional 
probabilities and samples them to get next set of 
solutions.

Combining Optimizers with 
Mutual Information Trees

The Combining Optimizers with Mutual Informa-
tion Trees proposed by Baluja & Davies (1997, 
1998) also uses pair-wise interaction among 
variables. The model of distribution used by this 
algorithm can be written as follows:

p x p x x
i j
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where, xj is known as parent of xi and xi is known 
as a child of xj. This model is more general than 
the chain model used by Mutual Information 
Maximization for input clustering as two or more 
variables can have a common parent.

Bivariate Marginal Distribution Algorithm

It was proposed by (Pelikan & Muhlenbein, 1999) 
as an extension to Univariate Marginal Distribu-
tion Algorithm. The model of distribution used by 
Bivariate Marginal Distribution Algorithm can be 
seen as an extension to the Combining Optimizers 
with Mutual Information Trees model and can be 
written as follows:

p x p x p x x
k

x Y
i j

x XYk i

( ) ( ) ( )=
∈ ∈{ }
∏ ∏     

where, Y⊆X represents the set of root variables.
As a result, Bivariate Marginal Distribution 

Algorithm is a more generalised algorithm in this 
class and can cover both univariate interaction 
as well as bivariate interaction among variables.

Multivariate EDAs

The model of probability distribution becomes 
more complex than the one used by univariate 
and bivariate Estimation of Distribution Algo-
rithms. Any algorithm considering interaction 
between variables of order more than two can be 
placed in this class. As a result, the complexity of 
constructing such model increases exponentially 
to the order of interaction making it infeasible to 
search through all possible models.

In what follows, we present the well-known 
works related to this category.

Extended Compact Genetic Algorithm

The Extended Compact Genetic Algorithm has 
been proposed by Harik (1999) as an extension 
to the Compact Genetic Algorithm. The model 
of distribution used in the Extended Compact 
Genetic Algorithm, is distinct from other previ-
ously described models as they only consider the 
marginal probabilities and do not include condi-
tional probabilities. Also, it assumes that a variable 
appearing in a set of interacting variables cannot 
appear in another set. The model of distribution 
used by the Extended Compact Genetic Algorithm 
can be written as follows:

p x p x
k

k m

( ) ( )=
∈
∏  
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where, m is the set of disjoint subsets in n and 
p(xk) is the marginal probability of set of variables 
xk in the subset k.

Factorised Distribution Algorithm

The Factorised Distribution Algorithm was pro-
posed by Muhlenbein et al. (1999) as an extension 
to the Univariate Marginal Distribution Algorithm. 
The probability p(x), for such linkage, can be 
expressed in terms of conditional probabilities 
between sets of interacting variables. In general, 
the Factorised Distribution Algorithm requires the 
linkage information in advance, which may not 
be available in a real world problem.

Bayesian Optimization algorithm

The Bayesian Optimization algorithm was pro-
posed by Pelikan et al. (1999a). The probabilistic 
model p(x) is expressed in terms of a set of con-
ditional probabilities as follow:

p x p x
i i

i

n
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where, πi is a set of variables having conditional 
interaction with xi. Also no variable in πi can have 
xi or any children of xi as their parent.

An extension to the Bayesian Optimization 
algorithm called hierarchical Bayesian Optimiza-
tion algorithm has also been proposed by Pelikan 
& Goldberg (2000). The idea is to improve the 
efficiency of algorithm by using a Bayesian 
network with a local structure (Chickering et al., 
1997) to model the distribution and a restricted 
tournament replacement strategy based on work 
of Harik (1994) to form the new population.

Estimation of Bayesian 
Network Algorithm

The Estimation of Bayesian Network Algorithm 
was proposed by Etxeberria & Larranaga (1999) 
and Larranaga et al., (2000) and also uses Bayesian 
networks as its model of probability distribution.

The algorithm has been applied for various 
optimisation problems, such as graph matching 
(Bengoetxea et al., 2000, 2001b,), partial abduc-
tive inference in Bayesian networks (de Campos 
et al., 2001), job scheduling problem (Lozano 
et al., 2001b), rule induction task (Sierra et al., 
2001), travelling salesman problem (Robles et al., 
2001), partitional clustering (Roure et al., 2001), 
Knapsack problems (Sagarna & Larranaga, 2001).

Learning Factorised 
Distribution Algorithm

The Learning Factorised Distribution Algorithm 
was proposed by Muhlenbein & Mahnig (1999b) 
as an extension to the Factorised Distribution 
Algorithm. The algorithm does not require link-
age in advance. In each iteration, it computes 
a bayesian network and samples it to generate 
new solutions. The main steps in the Bayesian 
Optimization algorithm (BOA), the Estimation 
of Bayesian Network Algorithm (EBNA) and 
the Learning Factorised Distribution Algorithm 
(LFDA) procedures are shown in the following 
pseudo code:

BOA, EBNA and LFDA
1.  Generate population P of M solutions
2.  Select N promising solution from P.
3.  Estimate a Bayesian network from 

selected solutions.
4.  Sample Bayesian network to generate 

M new individual and replace P.
5.  End the search if stop criteria are met, 

otherwise return to Step 2.
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Markov Network Factorised Distribution 
Algorithm and Markov Network 
Estimation of Distribution Algorithm

The Markov Network Factorised Distribution 
Algorithm and the Markov Network Estimation of 
Distribution Algorithm were proposed by Santana 
(2003a, 2005). They used Markov network (Pearl, 
1988; Li, 1995) as the model of distribution for 
p(x). The first algorithm uses a technique called 
junction graph approach, while the second one 
uses a technique called Kikuchi approximation 
to estimate a Markov network.

PROBLEM STATEMENT

Manufacturing Cell Formation consists of group-
ing, or clustering, machines into cells and parts 
into families according to their similar processing 
requirements. The most known and efficient idea 
to achieve the objective of cell formation is to con-
vert the initial Part Machine Incidence Matrix to a 
matrix that has a diagonal block structure. Among 
this process, entries with a ‘1’ value are grouped 
to form mutually independent clusters, and those 
with a ‘0’ value are arranged outside these clusters. 
Once a block diagonal matrix is obtained, machine 
cells and part families are clearly visible. However, 
the process engenders intercellular movements 
that require extra cost or time due to the presence 
of some parts that are processed by machines not 
belonging to its corresponding cluster. These parts 
are called Exceptional Elements. As a result, the 
objective of the block diagonalization is to change 
the original matrix into a matrix form minimizing 
Exceptional Elements and maximizing the good-
ness of clustering.

For cell formation problem, this matrix can be 
regarded as a binary matrix A which shows the 
relationship between any given m machines and 
p parts. Rows and columns represent respectively 
machines and parts. Each element in the matrix is 
usually represented by the binary entries aij where 

an entry of 1 indicates that a part i is processed 
by the corresponding machine j while an entry 
of 0 means a contrary situation. In Figure 1, we 
illustrate an (5×7) incidence matrix of King & 
Nakornchai (1982).

Figure 2 provides a block diagonal form for 
the initial matrix illustrated above. The obtained 
matrix has not any intercellular movement which 
means that it represents the optimal solution for 
the given matrix with 2 cells and 3 machines per 
cell.

In this chapter, we will deal with two efficient 
evaluation criteria namely the Grouping Efficacy 
(GE) and the Percentage of Exceptional Elements 
(PE). The Grouping Efficacy, proposed by Kumar 
& Chandrasekharan (1990), is considered one of 
the best criteria which distinguish ill-structured 
matrices from well-structured ones when the 
matrix size increases and it is expressed as fol-
lows:

Figure 1. King & Nakornchai (1982) initial matrix

Figure 2. A block diagonal matrix with no excep-
tional elements
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Where:

e0(X): Number of Exceptional Elements in the 
solution X,

e: Number of 1’s in the Part Machine Incidence 
Matrix,

ev(X): Number of voids in the solution X.

The second evaluation criterion is called the 
“Percentage of Exceptional Elements (PE)” is 
developed by Chan & Milner (1982) and expressed 
as follows:

PE
e X

e
= ×0 100

( )
.  

Some other performance measurements can be 
used to evaluate manufacturing cell design results. 
In what follows, we presents some of them.

The Grouping Efficiency which is developed 
by Chandrasekaran & Rajagopalan (1989). It 
expresses the goodness of the obtained solutions 
and depends on the utilization of machines within 
cells and inter-cell movements. This indicates that 
there are no voids and no exceptional elements in 
the diagonal blocks which imply a perfect clus-
tering of parts and machines. Although grouping 
efficiency was widely used in the literature, it 
has an important limit which is the inability of 
discrimination of good quality grouping from bad 
one. Indeed, when the matrix size increases, the 
effect of 1’s in the off-diagonal blocks becomes 
smaller, and in some cases, the effect of inter-cell 
moves is not reflected in grouping efficiency.

The Machine Utilization Index (MUI) which 
is defined as the percentage of the time that the 
machines within cells are being utilized most ef-
fectively and it is expressed as follows:

MUI
e

m p
i i

i

=
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where mi indicates the number of machines in 
cell i and pi indicates the number of parts in cell i.

The Group technology efficiency which is 
defined as the ratio of difference between maxi-
mum number of inter-cell travels possible and 
number of inter-cell travels actually required by 
the system to the maximum number of inter-cell 
travels possible.

The Group efficiency which is defined as 
the ratio of difference between total number of 
maximum external cells that could be visited and 
total number of external cells actually visited by 
all parts to total number of maximum external 
cells that could be visited.

The Global efficiency is defined as the ratio of 
the total number of operations that are performed 
within the suggested cells to total number of op-
erations in the systems.

PROPOSED EDA FOR MPCF 
PROBLEM (EDA-CF)

Solution Representation 
and Initial Population

Generally, for a Cell Formation Problem, a solu-
tion is represented by an m-dimensional vector 
X=[x1,x2,...,xm] where xi represents the correspond-
ing assignment of the machine i to the specified 
cell. The problem consists in creating partitions 
of the set of the m machines assignments into a 
given number of cells. The created solutions must 
respect all the constraints defined in Section 3.3. 
We choose to generate the initial population ran-
domly following a uniform distribution.
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Selection

The goal is to allow individuals to be selected 
more often to reproduce. We adopt the truncated 
selection procedure to create new individuals: in 
each iteration, we select randomly P1 individu-
als from the 50% of the best individuals in the 
current population. These P1 individuals will 
be reproduced in the next generation using the 
probabilistic model to form new individuals.

Probabilistic Model and 
Creation of New Individuals

After the selection phase, a probabilistic model 
is applied to the P1 selected individuals in order 
to generate new individuals.

The probabilistic model provides the assign-
ment probability of the machine i to cell j and 
expressed as follows:

P
number of times where machine i appears in cell j

nij
=

+           ε
uumber of selected individuals C     + ×ε

 

where, ε>0 is a factor which guarantees that the 
model provides a probability Pij≠0.

Replacement

The replacement represents the final step in our 
search procedure. It is based on the following idea: 
when a new individual is created, we compare it 
to the worst individual in the current population 
and we retain the best one.

Fitness Function

A fitness function is used for evaluating the ap-
titude of an individual to be kept or to be used 
for reproducing new individuals in the next gen-
eration. In the proposed algorithm, we used two 
fitness functions F1 and F2 to perform the objec-
tives of minimizing the percentage of Exceptional 

Elements and maximizing the Grouping Efficacy 
respectively.

Let mi be the number of machines assigned to 
the cell i. we define F1 and F2 as follows:

F1(X)=e0(X)+Pen(X)

and

F2(X)=GE(X)-Pen(X).

where:

Pen X m k m
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expressed the distance between the solution X and 
the feasible space.

This penalty under-evaluate the fitness of 
solution X when X violate the constraint of the 
problem. i.e a penalty value is encountered either 
when the number of assigned machines exceeds 
the capacity of a cell or when machines are as-
signed to a number of cells that exceeds the fixed 
number of cells C.

Variable Neighborhood 
Search Algorithm

Variable Neighborhood Search is a recent meta-
heuristic for combinatorial optimization devel-
oped by Mladenović & Hansen (1997). The basic 
idea is to explore different neighborhood structures 
and to change them within a local search algorithm 
to identify better local optima with shaking strate-
gies. The main steps in this procedure are shown 
in the following pseudo code:

Variable Neighborhood Search
Select the set of neighborhood structures 

Nk,k={1,2,...,nmax} that will be used in the 
search, find an initial solution X, choose a 
stopping condition.
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Repeat the following steps until the stopping 
condition is met:

Set k=1
Repeat the following steps until all neighborhood 

structures are used:
1.  Shaking: generate a point X’ at random 

from kth neighborhood of X  (
X N X

k
' ( )∈ )

2.  Local Search: apply some local search 
method with X’ as initial solution; 
denote with X’’ the obtained local 
optimum.

3.  Move or not: if this local optimum X’’ 
is better than the incumbent, or if some 
acceptance criterion is met, move there
( ")X X← , and set k=1 ; otherwise, 
set k←k+1.

Local Search Procedure

Generally, obtaining a local minimum following 
a neighborhood structure does not imply that we 
obtain a local optimum following another one. 
For this reason, we choose to use two local search 
procedures which are based on two different 
neighborhood structures. The first neighborhood 
structure consists to select one machine and to 
insert it in a new cell. The second consists to 
select two machines from two different cells and 
to swap them.

Then, we apply these two local search pro-
cedures iteratively until there is no possible 
improvement to the current solution.

Shaking Phase

The main idea consists to define a set of neigh-
bourhood structures that allow to obtain a dis-
tance equal to k between the solution X and the 
new neighbour solution X’. This distance can be 
defined by the number of differences between 
the two vectors X and X’. Then, we define Nk as 
the neighbourhood structure given by applying 
randomly k insertion moves.

COMPARATIVE STUDY

In order to show the competitiveness of the 
proposed EDA-CF algorithm, we provide in this 
section a comparative study with the well known 
approaches that treated Cell Formation problem. 
During all experiments, the proposed algorithm is 
coded using C++ and run on a computer Pentium 
IV with 3.2 GHz processor and 1GB memory.

Test Data Set

In order to evaluate the goodness of clusters 
obtained from the clustering heuristic for MPCF 
problem, 30 problems taken from the literature 
were tested. These data sets include a variety of 
sizes, a range from 5 machines and 7 parts to 40 
machines and 100 parts, difficulties, and well 
structured and ill structured matrices.

For all instances, the initial matrix is solved 
by Estimation of Distribution Algorithm method 
and then improved by the Variable Neighborhood 
Search procedure. Then, the cells are formed 
and the machine layout in each cell is obtained 
optimally.

Table 1 shows the different problems and their 
characteristics. The columns illustrate respectively 
the sources of data sets, the problem size, the number 
of cells C, the maximum number per cell, kmax and 
the matrix density. All problems can be easily ac-
cessed from the references and they are transcribed 
directly from the original article they appeared. 
The appendix gives the block diagonal matrices 
for the improved solutions by the proposed algo-
rithm. The maximum number of permissible cells 
C has been set equal to the best known number of 
cells as found in literature. The following equation 
expressed the density of the initial binary matrix 
and which informs about haw the one’s elements 
are distributed inside the matrix.

a

m n

ij
j

n

i

m

∑∑
×
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Comparative Study

In this section, we evaluate the proposed algorithm 
by comparing it with the best results obtained by 
several well known algorithms respecting to the 
Grouping Efficacy and the Percentage of Excep-
tional Elements measures. In all tests, the proposed 
EDA-CF algorithm has proved its competitiveness 
against the best available solutions respecting to 
the same required number of cells.

As a stop condition to our algorithm, we fixed 
the maximal computational time to 5 seconds 
and the maximal number of iteration of Variable 
Neighborhood Search algorithm to 3.

The values of the following parameters are 
fixed as: ε=0,1; α1=50; α2=500; P=200 and P1=3.

Comparison Respecting the 
Grouping Efficacy Measure

In this subsection we perform a comparative 
study with the best algorithm presented in the 
literature. These algorithms can be classified into 
two categories. The first category corresponds to 
the based population algorithm including Genetic 
Algorithm (GA) of Onwubolu & Mutingi (2001), 
Grouping Genetic Algorithm (GGA) of Brown 
& Sumichrast (2001), Evolutionary Algorithm 
(EA) of Gonçalves & Resende (2004) and Hybrid 
Grouping Genetic Algorithm (HGGA) of James 
et al. (2007). The second category represents the 
clustering based methods including ZODIAC of 
Chandrasekharan & Rajagopalan (1987), GRAF-
ICS of Srinivasan & Narendran (1991), MST-
Clustering Algorithm of Srinivasan (1994). Table 

Table 1. Test problems from cellular manufacturing literature 

No. References Size C kmax Density

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30

King & Nakornchai, 1982 
Waghodekar & Sahu, 1984 
Seifoddini, 1989 
Kusiak & Cho, 1992 
Kusiak & Chow, 1987 
Boctor, 1991 
Seifoddini & Wolfe, 1986 
Chandrasekharan & Rajagopalan, 1986 
Chandrasekharan & Rajagopalan, 1986 
Mosier & Taube, 1985 
Chan & Milner, 1982 
Stanfel, 1985 
McCormick et al., 1972 
King, 1980 
Mosier & Taube, 1985 
Carrie, 1973 
Boe & Cheng, 1991 
Chandrasekharan & Rajagopalan, 1989 - 1 
Chandrasekharan & Rajagopalan, 1989 - 2 
Chandrasekharan & Rajagopalan, 1989 - 3 
Chandrasekharan & Rajagopalan, 1989 - 4 
Chandrasekharan & Rajagopalan, 1989 - 5 
Chandrasekharan & Rajagopalan, 1989 - 6 
McCormick et al., 1972 
Kumar & Vanelli, 1987 
Stanfel, 1985 
Stanfel, 1985 
King & Nakornchai,1982 
McCormick et al., 1972 
Chandrasekharan & Rajagopalan, 1987

5×7 
5×7 
5×18 
6×8 
7×11 
7×11 
8×12 
8×20 
8×20 
10×10 
10×15 
14×14 
16×24 
16×43 
20×20 
20×35 
20×35 
24×40 
24×40 
24×40 
24×40 
24×40 
24×40 
27×27 
30×41 
30×50 
30×50 
36×90 
37×53 
40×100

2 
2 
2 
2 
3 
3 
3 
3 
2 
3 
3 
5 
6 
5 
5 
4 
5 
7 
7 
7 
9 
9 
9 
4 
11 
12 
11 
9 
2 
10

4 
5 
12 
6 
4 
4 
5 
9 
11 
4 
5 
6 
7 
13 
5 
10 
8 
8 
8 
8 
8 
7 
7 
12 
6 
7 
7 
27 
35 
6

0.400 
0.5714 
0.5111 
0.2987 
0.2250 
0.2044 
0.6100 
0.2400 
0.3067 
0.3223 
0.3646 
0.1726 
0.2240 
0.1831 
0.2775 
0.1957 
0.2186 
0.1365 
0.1354 
0.1437 
0.1365 
0.1375 
0.1365 
0.2977 
0.1041 
0.1033 
0.1113 
0.0935 
0.4895 
0.1041
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2 reports the results obtained by the proposed 
algorithm and these algorithms such that their 
results were taken from the original citations.

As seen in Table 2, in all the benchmark prob-
lems, the grouping efficacy of the solution obtained 
by the proposed method is either better than that 
of other methods or it is equal to the best one. We 
note that the solutions obtained by the GA meth-
od for problems 1, 7, 13, 24, 28 and 29 were not 
available. In five problems, namely 20, 21, 22, 
23 and 24, the grouping efficacy of the solution 
obtained by the proposed method is better than 
that of all other methods. In other words, the 
proposed method outperforms all the other meth-
ods and the best solutions for these problems are 
reported in this paper for the first time. In eleven 
problems, namely 2, 3, 9, 15 and 17, the solution 
obtained by the proposed method is as good as 

the best solution available in the literature. In five 
problems, namely 4, 8, 10, 18 and 19, all the 
methods have obtained the same grouping effi-
cacy.

Comparing with clustering methods, it is clear 
that the results obtained by the proposed algorithm 
are either equal or better than ZODIAC, GRAF-
ICS and MST methods in all cases except for 
the problems 25 and 30. More specifically, the 
EDA-CF obtains for 6 (23%) problems values 
of the grouping efficacy that are equal to the best 
ones found in the literature by the three compared 
clustering methods and improves the values of the 
grouping efficacy for 19 (73%) problems.

Table 2. Summary of GE performance evaluation results 

No Size C GA GGA EA HGGA ZODIAC GRAFICS MST EDA-CF CPU

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30

5×7 
5×7 
5×18 
6×8 
7×11 
7×11 
8×12 
8×20 
8×20 
10×10 
10×15 
14×24 
16×24 
16×43 
20×20 
20×35 
20×35 
24×40 
24×40 
24×40 
24×40 
24×40 
24×40 
27×27 
30×41 
30×50 
30×50 
36×90 
37×53 
40×100

2 
2 
2 
2 
2 
3 
5 
3 
2 
3 
3 
4 
6 
4 
5 
4 
5 
7 
7 
7 
7 
7 
7 
6 
14 
13 
14 
17 
2 
10

- 
62.50 
77.36 
76.92 
50.00 
70.37 

- 
85.25 
55.91 
72.79 
92.00 
63.48 

- 
86.25 
34.16 
66.30 
44.44 
100.00 
85.11 
73.51 
37.62 
34.76 
34.06 

- 
40.96 
48.28 
37.55 

- 
- 

83.90

82.35 
69.57 
79.59 
76.92 
60.87 
70.83 
69.44 
85.25 
55.32 
75.00 
92.00 
72.06 
51.58 
55.48 
40.74 
77.02 
57.14 
100.00 
85.11 
73.51 
52.41 
46.67 
45.27 
52.53 
61.39 
57.95 
50.00 
43.78 
52.47 
82.25

73.68 
52.50 
79.59 
76.92 
53.13 
70.37 
68.30 
85.25 
58.72 
69.86 
92.00 
69.33 
52.58 
54.86 
42.96 
76.22 
58.07 
100.00 
85.11 
73.51 
51.97 
47.06 
44.87 
54.27 
58.48 
59.66 
50.51 
42.64 
56.42 
84.03

82.35 
69.57 
79.59 
76.92 
60.87 
70.83 
69.44 
85.25 
58.72 
75.00 
92.00 
72.06 
52.75 
57.53 
43.18 
77.91 
57.98 
100.00 
85.11 
73.51 
53.29 
48.95 
47.26 
54.02 
63.31 
59.77 
50.83 
46.35 
60.64 
84.03

73.68 
56.52 

- 
- 

39.13 
- 

68.30 
85.24 
58.33 
70.59 
92.00 
64.36 
32.09 
53.76 
21.63 
75.14 

- 
100.00 
85.10 
37.85 
20.42 
18.23 
17.61 
52.14 
33.46 
46.06 
21.11 
32.73 
52.21 
83.92

73.68 
60.87 

- 
- 

53.12 
- 

68.30 
85.24 
58.33 
70.59 
92.00 
64.36 
45.52 
54.39 
38.26 
75.14 

- 
100.00 
85.10 
73.51 
43.27 
44.51 
41.67 
47.37 
55.43 
56.32 
47.96 
39.41 
52.21 
83.92

- 
- 
- 
- 
- 
- 
- 

85.24 
58.72 
70.59 

- 
64.36 
48.70 
54.44 

- 
75.14 

- 
100.00 
85.10 
73.51 
51.81 
44.72 
44.17 
51.00 
55.29 
58.70 
46.30 
40.05 

- 
83.66

73.68 
69.57 
79.59 
76.92 
58.62 
70.37 
68.30 
85.25 
58.72 
70.59 
92.00 
70.51 
51.96 
54.86 
43.18 
76.27 
57.98 
100.00 
85.11 
76.97
72.92
53.74
48.95
54.98
45.22 
59.43 
50.78 
45.94 
55.43 
83.81

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.015 
0.015 
0.046 
0.031 
1.232 
0.078 
0.093 
0.031 
0.092 
5.171 
0.732 
0.670 
0.233 
7.260 
0.562 
0.447 
1.406 
5.094 
4.318 
7.421
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Comparison Respecting the Percentage 
of Exceptional Elements Measure

Table 3 provides a comparison of the proposed 
algorithm against the best reached results available 
in literature. The comparison was done respect-
ing to the Percentage of Exceptional Elements 
criteria. PEa represents the best-known Percentage 
of Exceptional Elements found in the literature.

We note that the compared solutions for prob-
lems 15, 16, 17, 24, 26, 27, 28 and 29 were not 
available. The results shows that in all the bench-
mark problems, the number of exceptional ele-
ments of the solution obtained by the proposed 
method is either better than the best reached val-
ues or it is equal to the best ones. In 11 problems, 
namely 3, 6, 7, 12, 13, 14, 19, 20, 21, 22 and 23 
the PE of the solution obtained by the EDA-CF 

is better than that of all other methods. In other 
words, the proposed method outperforms all the 
other methods. In nine problems, namely 1, 4, 5, 
8, 9, 10, 11, 18 and 25, all the methods have ob-
tained the same Percentage of Exceptional ele-
ments.

CONCLUSION

Cellular manufacturing is a production technique 
that leads to increase productivity and efficiency 
in the production floor. In this chapter, we have 
presented the first Estimation of Distribution Al-
gorithm (EDA) method to solve the Machine Part 
Cell Formation Problem. Detailed numerical ex-
periments have been carried out to investigate the 
EDAs’ performance. Although the EDA approach 

Table 3. Comparison between the obtained results and the best-known results respecting to the PE criterion 

No. size C Problem Source PE CPU PE a

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30

5×7 
5×7 
5×18 
6×8 
7×11 
711 

8×12 
8×20 
8×20 
10×10 
10×15 
14×24 
16×24 
16×43 
20×20 
20×35 
20×35 
24×40 
24×40 
24×40 
24×40 
24×40 
24×40 
27×27 
30×41 
30×50 
30×50 
36×90 
37×53 
40×100

2 
2 
2 
2 
2 
3 
5 
3 
3 
3 
3 
4 
8 
4 
6 
5 
5 
7 
7 
7 
7 
7 
7 
6 
14 
13 
14 
17 
3 
10

King & Nakornchai, 1982 
Waghodekar & Sahu, 1984 
Seifoddini, 1989 
Kusiak & Cho, 1992 
Kusiak & Chow, 1987 
Boctor, 1991 
Seifoddini & Wolfe, 1986 
Chandrasekharan & Rajagopalan, 1986 
Chandrasekharan & Rajagopalan, 1986 
Mosier & Taube, 1985 
Chan & Milner, 1982 
Stanfel, 1985 
McCormick et al., 1972 
King, 1980 
Mosier & Taube, 1985 
Carrie, 1973 
Boe & Cheng, 1991 
Chandrasekharan & Rajagopalan, 1989 - 1 
Chandrasekharan & Rajagopalan, 1989 - 2 
Chandrasekharan & Rajagopalan, 1989 - 3 
Chandrasekharan & Rajagopalan, 1989 - 4 
Chandrasekharan & Rajagopalan, 1989 - 5 
Chandrasekharan & Rajagopalan, 1989 - 6 
McCormick et al., 1972 
Kumar & Vanelli, 1987 
Stanfel, 1985 
Stanfel, 1985 
King & Nakornchai,1982 
McCormick et al., 1972 
Chandrasekharan & Rajagopalan, 1987

0.000 
0.150 
0.000
0.0909 
0.1304 
0.0952
0.1714
0.1475 
0.2967 
0.000 
0.000 
0.0328
0.3721
0.2063
0.3693 
0.1985 
0.1764 
0.000 
0.0308
0.1087
0.0992
0.2652
0.2824
0.2350 
0.1094 
0.2754 
0.1225 
0.1254 
0.000 
0.0907

0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.015 
0.015 
0.031 
0.031 
0.078 
0.031 
0.062 
0.031 
0.451 
5.171 
0.732 
0.670 
0.233 
0.203 
0.219 
3.109 
0.406 
0.969 
0.109 
7.421

0.000 
0.125 
0.1957 
0.0909 
0.1304 
0.1905 
0.2857 
0.1475 
0.2967 
0.000 
0.000 
0.1639 
0.4302 
0.2222 

- 
- 
- 

0.000 
0.0769 
0.1527 
0.1527 
0.3740 
0.4214 

- 
0.1094 

- 
- 
- 
- 

0.0857
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does not require any problem-specific informa-
tion, the use of sensible heuristics can improve 
the optimisation and speed up convergence. For 
this reason, we used the Variable Neighborhood 
Search (VNS) procedure in the improvement 
phase of the algorithm. The results from test cases 
presented here have shown that the proposed 
EDA-CF algorithm is very a competitive algo-
rithm comparing with the previously published 
metaheuristics applied to the same problem. It has 
been shown that the EDAs provide efficient and 
accurate solutions for the test cases. The results 
are promising and encourage further studies on 
other versions of the Group Technology problems 
where we can introduce sequence data, machine 
utilization and routings.

REFERENCES

Andrés, C., & Lozano, S. (2006). A particle 
swarm optimization algorithm for part–machine 
grouping. Robotics and Computer-integrated 
Manufacturing, 22, 468–474. doi:10.1016/j.
rcim.2005.11.013

Askin, R. G., Creswell, J. B., Goldberg, J. B., 
& Vakharia, A. J. (1991). A Hamiltonian path 
approach to reordering the part-machine matrix 
for cellular manufacturing. International Jour-
nal of Production Research, 29, 1081–1100. 
doi:10.1080/00207549108930121

Baluja, S. (1994). Population-based incremental 
learning: A method for integrating genetic search 
based function optimization and competitive 
learning. (Technical Report CMU-CS, 94-163). 
Computer Science Department, Carnegie Mellon 
University.

Baluja, S., & Davies, S. (1997). Using optimal 
dependency-trees for combinatorial optimization: 
Learning the structure of the search space. In 
Proceedings of the 1997 International Conference 
on Machine Learning.

Baluja, S., & Davies, S. (1998). Fast probabilis-
tic modeling for combinatorial optimization. In 
AAAI-98.

Bengoetxea, E., Larranaga, P., Bloch, I., & Per-
chant, A. (2001b). Solving graph matching with 
EDAs using a permutation–based representation. 
In Larranaga, P., & Lozano, J. A. (Eds.), Estima-
tion of distribution algorithms. A new tool for 
evolutionary computation. Kluwer Academic 
Publishers. doi:10.1007/978-1-4615-1539-5_12

Bengoetxea, E., Larranaga, P., Bloch, I., Perchant, 
A., & Boeres, C. (2000). Inexact graph matching 
using learning and simulation of Bayesian net-
works. An empirical comparison between differ-
ent approaches with synthetic data. In Workshop 
Notes of CaNew2000: Workshop on Bayesian and 
Causal Networks: From Inference to Data Min-
ing, fourteenth European Conference on Artificial 
Intelligence, ECAI2000. Berlin.

Boctor, F. (1991). A linear formulation of the ma-
chine-part cell formation problem. International 
Journal of Production Research, 29(2), 343–356. 
doi:10.1080/00207549108930075

Brown, E., & Sumichrast, R. (2001). CF-
GGA: A grouping genetic algorithm for the 
cell formation problem. International Jour-
nal of Production Research, 36, 3651–3669. 
doi:10.1080/00207540110068781

Burbidge, J. L. (1963). Production flow analy-
sis. Production Engineering, 42, 742–752. 
doi:10.1049/tpe.1963.0114

Caux, C., Bruniaux, R., & Pierreval, H. (2000). 
Cell formation with alternative process plans and 
machine capacity constraints: A new combined 
approach. International Journal of Production 
Economics, 64(1-3), 279–284. doi:10.1016/
S0925-5273(99)00065-1



179

An Estimation of Distribution Algorithm for Part Cell Formation Problem

Chan, H. M., & Milner, D. A. (1982). Direct clus-
tering algorithm for group formation in cellular 
manufacture. Journal of Manufacturing Systems, 
1, 65–75. doi:10.1016/S0278-6125(82)80068-X

Chandrasekharan, M. P., & Rajagopalan, R. 
(1986a). MODROC: An extension of rank order 
clustering for group technology. International 
Journal of Production Research, 24(5), 1221–
1264. doi:10.1080/00207548608919798

Chandrasekharan, M. P., & Rajagopalan, R. 
(1987). ZODIAC: An algorithm for concurrent 
formation of part-families and machine-cells. In-
ternational Journal of Production Research, 25(6), 
835–850. doi:10.1080/00207548708919880

Chandrasekharan, M. P., & Rajagopalan, R. 
(1989). Groupability: Analysis of the properties of 
binary data matrices for group technology. Inter-
national Journal of Production Research, 27(6), 
1035–1052. doi:10.1080/00207548908942606

Chickering, D., Heckerman, D., & Meek, C. 
(1997). A Bayesian approach to learning Bayes-
ian networks with local structure. In Proceed-
ings of Thirteenth Conference on Uncertainty in 
Artificial Intelligence, (pp. 80–89). (Technical 
Report MSRTR- 97-07), Microsoft Research, 
August, 1997.

De Bonet, J., Isbell, C. L., & Viola, P. (1997). 
MIMIC: Finding optima by estimating probabil-
ity densities. Advances in Neural Information 
Processing Systems, 9, 424–430.

De Campos, L. M., Gamez, J. A., Larranaga, P., 
Moral, S., & Romero, T. (2001). Partial abductive 
inference in Bayesian networks: An empirical 
comparison between GAs and EDAs. In Lar-
ranaga, P., & Lozano, J. A. (Eds.), Estimation of 
distribution algorithms. A new tool for evolution-
ary computation. Kluwer Academic Publishers. 
doi:10.1007/978-1-4615-1539-5_16

Etxeberria, R., & Larranaga, P. (1999). Optimiza-
tion with Bayesian networks. In Proceedings of 
the Second Symposium on Artificial Intelligence. 
Adaptive Systems. CIMAF 99, (pp. 332-339). 
Cuba.

Gonçalves, J., & Resende, M. (2004). An evolu-
tionary algorithm for manufacturing cell forma-
tion. Computers & Industrial Engineering, 47, 
247–273. doi:10.1016/j.cie.2004.07.003

Goncalves, J. F., & Resende, M. (2002). A hybrid 
genetic algorithm for manufacturing cell forma-
tion. Technical report. Rapport.

Gonzalez, C., Lozano, J. A., & Larranaga, P. 
(2002). Mathematical modelling of UMDAc al-
gorithm with tournament selection: Behaviour on 
linear and quadratic functions. International Jour-
nal of Approximate Reasoning, 31(3), 313–340. 
doi:10.1016/S0888-613X(02)00092-0

Harik, G. (1994). Finding multiple solutions in 
problems of bounded difficulty. Tech. Rep. Il-
liGAL Report No. 94002, University of Illinois 
at Urbana-Champaign, Urbana, IL.

Harik, G. (1999). Linkage learning via proba-
bilistic modeling in the ECGA. Tech. Rep. Illi-
GAL Report No. 99010, University of Illinois at 
Urbana-Champaign.

Harik, G., Lobo, F., & Goldberg, D. E. (1998). 
The compact genetic algorithm, (pp. 523-528). 
(IlliGAL Report No. 97006).

James, T. L., Brown, E. C., & Keeling, K. B. 
(2007). A hybrid grouping genetic algorithm for 
the cell formation problem. Computers & Opera-
tions Research, 34, 2059–2079. doi:10.1016/j.
cor.2005.08.010

Joines, J. A., Culbreth, C. T., & King, R. E. 
(1996). Manufacturing cell design: An inte-
ger programming model employing genetic 
algorithms. IIE Transactions, 28(1), 69–85. 
doi:10.1080/07408179608966253



180

An Estimation of Distribution Algorithm for Part Cell Formation Problem

Kaparthi, S., Suresh, N. C., & Cerveny, R. P. 
(1993). An improved neural network leader 
algorithm for part-machine grouping in group 
technology. European Journal of Operational 
Research, 69, 342–355. doi:10.1016/0377-
2217(93)90020-N

Khator, S. K., & Irani, S. A. (1987). Cell forma-
tion in group technology: A new approach. Com-
puters & Industrial Engineering, 12, 131–142. 
doi:10.1016/0360-8352(87)90006-4

King, J. R. (1980). Machine-component group-
ing formation in group technology. International 
Journal of Management Science, 8(2), 193–199.

King, J. R., & Nakornchai, V. (1982). Machine-
component group formation in group technol-
ogy: Review and extension. International Jour-
nal of Production Research, 20(2), 117–133. 
doi:10.1080/00207548208947754

Kumar, K. R., & Chandrasekharan, M. P. 
(1990). Grouping efficacy: A quantitative 
criterion for block diagonal forms of binary 
matrices in group technology. International 
Journal of Production Research, 28(2), 233–243. 
doi:10.1080/00207549008942706

Kusiak, A. (1987). The generalized group 
technology concept. International Jour-
nal of Production Research, 25, 561–569. 
doi:10.1080/00207548708919861

Kusiak, A., & Chow, W. S. (1987). Efficient 
solving of the group technology problem. Jour-
nal of Manufacturing Systems, 6(2), 117–124. 
doi:10.1016/0278-6125(87)90035-5

Larranaga, P., Etxeberria, R., Lozano, J. A., & 
Pena, J. M. (2000). Combinatorial optimization by 
learning and simulation of Bayesian networks. In 
Proceedings of the Sixteenth Conference on Un-
certainty in Artificial Intelligence, (pp. 343–352). 
Stanford.

Li, S. Z. (1995). Markov random field modeling 
in computer vision. Springer-Verlag.

Lozano, J. A., Sagarna, R., & Larranaga, P. 
(2001b). Solving job scheduling with estimation 
of distribution algorithms. In Larranaga, P., & 
Lozano, J. A. (Eds.), Estimation of distribution 
algorithms. A new tool for evolutionary computa-
tion (pp. 231–242). Kluwer Academis Publishers. 
doi:10.1007/978-1-4615-1539-5_11

Lozano, S., Adenso-Diaz, B., Eguia, I., & Onieva, 
L. (1999). A one step tabu search algorithm for 
manufacturing cell design. The Journal of the 
Operational Research Society, 50, 509–516.

Mahdavi, I., Paydar, M. M., Solimanpur, M., 
& Heidarzade, A. (2009). Genetic algorithm 
approach for solving a cell formation problem 
in cellular manufacturing. Expert Systems with 
Applications, 36, 6598–6604. doi:10.1016/j.
eswa.2008.07.054

McAuley, J. (1972). Machine grouping for effi-
cient production. Production Engineering, 51(2), 
53–57. doi:10.1049/tpe.1972.0006

McCormick, W. T. Jr, Schweitzer, P. J., & White, 
T. W. (1972). Problem decomposition and data 
reorganization by a cluster technique. Opera-
tions Research, 20(5), 993–1009. doi:10.1287/
opre.20.5.993

Mladenoviç, N., & Hansen, P. (1997). Variable 
neighborhood search. Computers & Operations 
Research, 24, 1097–1100. doi:10.1016/S0305-
0548(97)00031-2

Muhlenbein, H. (1998). The equation for response 
to selection and its use for prediction. Evolution-
ary Computation, 5(3), 303–346. doi:10.1162/
evco.1997.5.3.303



181

An Estimation of Distribution Algorithm for Part Cell Formation Problem

Muhlenbein, H., & Mahnig, T. (1999b). FDA - A 
scalable evolutionary algorithm for the optimiza-
tion of additively decomposed functions. Evolu-
tionary Computation, 7, 353–376. doi:10.1162/
evco.1999.7.4.353

Muhlenbein, H., Mahning, T., & Ochoa, A. (1999). 
Schemata, distributions and graphical models in 
evolutionary optimization. Journal of Heuristics, 
5, 215–247. doi:10.1023/A:1009689913453

Muhlenbein, H., & Paaß, G. (1996). From recom-
bination of genes to the estimation of distribution. 
Binary parameters. Lecture Notes in Computer 
Science, 1411. Parallel Problem Solving from 
Nature, PPSN, IV, 178–187.

Onwubolu, G. C., & Mutingi, M. (2001). A genetic 
algorithm approach to cellular manufacturing 
systems. Computers & Industrial Engineer-
ing, 39(1–2), 125–144. doi:10.1016/S0360-
8352(00)00074-7

Pearl, J. (1988). Probabilistic reasoning in intel-
ligent systems. Palo Alto, CA: Morgan Kaufman 
Publishers.

Pelikan, M., Goldberg, D. E., & Cantu-Paz, 
E. (1999a). BOA: The Bayesian optimization 
algorithm. In Banzhaf, W., Daida, J., Eiben, A. 
E., Garzon, M. H., Pelikan, V., & Goldberg, D. 
E. (Eds.), Hierarchical problem solving by the 
Bayesian optimization algorithm. IlliGAL Re-
port No. 2000002. Urbana, IL: Illinois Genetic 
Algorithms Laboratory, University of Illinois at 
Urbana-Champaign.

Pelikan, P., & Muhlenbein, H. (1999). The bivari-
ate marginal distribution algorithm. In Roy, R., 
Furuhashi, T., & Chandhory, P. K. (Eds.), Advances 
in soft computing-engineering design and manu-
facturing (pp. 521–535). London, UK: Springer.

Robles, V., de Miguel, P., & Larranaga, P. (2001). 
Solving the travelling salesman problem with esti-
mation of distribution algorithms. In Larranaga, P., 
& Lozano, J. A. (Eds.), Estimation of distribution 
algorithms. A new tool for evolutionary computa-
tion. Kluwer Academic Publishers.

Roure, J., Sanguesa, R., & Larranaga, P. (2001). 
Partitional clustering by means of estimation 
of distribution algorithms. In Larranaga, P., & 
Lozano, J. A. (Eds.), Estimation of distribution 
algorithms. A new tool for evolutionary computa-
tion. Kluwer Academic Publishers.

Sagarna, R., & Larranaga, P. (2001). Solving the 
knapsack problem with estimation of distribution 
algorithms. In Larranaga, P., & Lozano, J. A. 
(Eds.), Estimation of distribution algorithms. A 
new tool for evolutionary computation. Kluwer 
Academis Publishers.

Santana, R. (2003a). A Markov network based 
factorized distribution algorithm for optimiza-
tion. Proceedings of the 14th European Confer-
ence on Machine Learning (ECMLPKDD 2003); 
Lecture Notes in Artificial Intelligence, 2837, (pp. 
337–348). Berlin, Germany: Springer-Verlag.

Santana, R. (2005). Estimation of distribu-
tion algorithms with Kikuchi approxima-
tion. Evolutionary Computation, 13, 67–98. 
doi:10.1162/1063656053583496

Sierra, B., Jimenez, E., Inza, I., Larranaga, P., 
& Muruzabal, J. (2001). Rule induction using 
estimation of distribution algorithms. In Lar-
ranaga, P., & Lozano, J. A. (Eds.), Estimation of 
distribution algorithms. A new tool for evolution-
ary computation. Kluwer Academic Publishers. 
doi:10.1007/978-1-4615-1539-5_15

Sofianopoulou, S. (1997). Application of simu-
lated annealing to a linear model for the formation 
of machine cells in group technology. International 
Journal of Production Research, 35, 501–511. 
doi:10.1080/002075497195876



182

An Estimation of Distribution Algorithm for Part Cell Formation Problem

Solimanpur, M., Vrat, P., & Shankar, R. (2003). 
Ant colony optimization algorithm to the inter-cell 
layout problem in cellular manufacturing. Euro-
pean Journal of Operational Research, 157(3), 
592–606. doi:10.1016/S0377-2217(03)00248-0

Srinivasan, G. (1994). A clustering algorithm 
for machine cell formation in group technology 
using minimum spanning trees. International 
Journal of Production Research, 32, 2149–2158. 
doi:10.1080/00207549408957064

Srinivasan, G., & Narendran, T. T. (1991). 
GRAFICS - A non hierarchical clustering-
algorithm for group technology. International 
Journal of Production Research, 29(3), 463–478. 
doi:10.1080/00207549108930083

Stawowy, A. (2006). Evolutionary strategy for 
manufacturing cell design. OMEGA: The Inter-
national Journal of Management Science, 34(1), 
1–18. doi:10.1016/j.omega.2004.07.016

Venugopal, V., & Narendran, T. T. (1992a). A 
genetic algorithm approach to the machine com-
ponent grouping problem with multiple objectives. 
Computers & Industrial Engineering, 22(4), 
469–480. doi:10.1016/0360-8352(92)90022-C

Xu, H., & Wang, H. P. (1989). Part fam-
ily formation for GT applications based on 
fuzzy mathematics. International Journal 
of Production Research, 27(9), 1637–1651. 
doi:10.1080/00207548908942644

Zhang, Q., Sun, J., Tsang, E., & Ford, J. (2004). 
Hybrid estimation of distribution algorithm for 
global optimisation. Engineering Computations, 
2(1), 91–107. doi:10.1108/02644400410511864

Zhao, C., & Wu, Z. (2000). A genetic algorithm 
for manufacturing cell formation with multiple 
routes and multiple objectives. International 
Journal of Production Research, 38(2), 385–395. 
doi:10.1080/002075400189473



183

An Estimation of Distribution Algorithm for Part Cell Formation Problem

APPENDIX

Table 4. Problem 20 

4 16 7 14 23 24 9 10 17 2 5 11 19 6 8 12 15 18 3 20 1 13 21 22

8 1 1

19 1 1

21 1 1

28 1

37 1 1

38 1 1

39 1 1

3 1 1 1 1

25 1 1 1

32 1 1 1 1 1

6 1 1 1

7 1 1 1

20 1 1 1

29 1 1

40 1 1 1

10 1 1 1 1 1

13 1 1 1

14 1 1 1 1

22 1 1 1 1

35 1 1 1

36 1 1 1

4 1 1 1 1 1

5 1 1 1 1 1 1

18 1 1 1 1 1

26 1 1 1 1 1

27 1 1 1 1 1

30 1 1 1 1

2 1 1 1

11 1 1

12 1 1

15 1 1

23 1 1

24 1 1 1

31 1 1 1

34 1 1

1 1 1 1 1

continues on following page
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Table 5. Problem 21 

3 20 6 8 12 15 18 1 13 21 22 2 5 11 19 4 16 9 10 17 7 14 23 24

2 1 1 1

11 1 1

12 1 1 1

15 1 1 1

23 1 1

24 1 1 1

31 1 1

34 1 1

4 1 1 1 1 1

5 1 1 1 1 1 1

18 1 1 1 1

26 1 1 1 1 1

27 1 1 1 1 1

30 1 1 1 1 1

1 1 1 1 1

9 1 1 1 1

16 1 1 1 1 1

17 1 1 1

33 1 1 1 1 1 1

10 1 1 1 1 1

13 1 1 1

14 1 1 1

22 1 1 1 1

35 1 1 1

36 1 1 1 1

8 1 1

19 1 1 1 1

21 1 1

28 1

37 1 1

9 1 1 1 1

16 1 1 1 1

17 1 1 1

33 1 1 1 1 1

4 16 7 14 23 24 9 10 17 2 5 11 19 6 8 12 15 18 3 20 1 13 21 22

Table 4. Continued

continues on following page
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38 1 1 1

39 1 1

6 1 1 1

7 1 1 1

20 1 1 1

29 1 1

40 1 1 1 1 1

3 1 1 1 1

25 1 1 1

32 1 1 1 1 1

3 20 6 8 12 15 18 1 13 21 22 2 5 11 19 4 16 9 10 17 7 14 23 24

Table 5. Continued

Table 6. Problem 22 

3 20 2 5 11 19 6 8 12 15 18 1 13 21 22 10 4 16 7 24 9 17 14 23

2 1 1 1

11 1 1

12 1 1

15 1 1

23 1 1

24 1 1 1

31 1 1

34 1 1

10 1 1 1 1 1

13 1 1 1

14 1 1 1 1

22 1 1 1 1

35 1 1 1

36 1 1 1 1

4 1 1 1 1

5 1 1 1 1 1 1

18 1 1 1 1

26 1 1 1 1 1

27 1 1 1 1 1

30 1 1 1 1 1

1 1 1 1 1

9 1 1 1

16 1 1 1 1 1

continues on following page
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Table 7. Problem 23 

1 21 3 20 7 14 23 24 9 4 16 10 2 5 11 19 6 8 17 12 15 18 13 22

9 1 1

33 1 1 1 1

2 1 1 1

11 1 1 1

12 1 1 1 1

15 1 1 1

23 1 1 1

34 1 1 1

3 1 1 1 1

25 1 1 1 1

32 1 1 1 1 1

6 1 1

29 1 1

39 1 1

40 1 1 1

8 1 1

19 1 1 1 1

17 1 1 1

33 1 1 1 1 1 1

6 1 1

20 1 1 1

8 1 1

19 1 1 1 1

21 1 1

28 1

37 1 1

38 1 1 1

39 1 1

32 1 1 1 1

7 1 1 1

29 1 1

40 1 1 1 1

3 1 1 1

25 1 1 1

Table 6. Continued
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21 1 1

28 1

37 1 1

38 1 1

20 1 1 1

24 1 1 1

10 1 1 1 1

13 1 1 1 1

14 1 1 1 1 1

22 1 1 1 1

35 1 1 1 1 1

36 1 1 1 1

26 1 1 1 1 1

30 1 1 1 1

7 1

31 1 1

4 1 1 1 1

5 1 1 1 1 1

18 1 1 1

27 1 1 1 1

1 1 1 1 1

16 1 1 1 1

17 1 1 1 1

Table 7. Continued

1 21 3 20 7 14 23 24 9 4 16 10 2 5 11 19 6 8 17 12 15 18 13 22

Table 8. Problem 24 

6 8 18 2 15 19 9 4 7 14 13 22 1 21 23 24 17 3 20 10 12 16 5 11

4 1 1 1

5 1 1 1 1

18 1 1 1

26 1 1 1 1 1

30 1 1 1 1

38 1 1 1

13 1 1 1 1

14 1 1 1 1

27 1 1 1 1

36 1 1 1

6 1 1
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29 1 1

39 1 1 1

4 1 1 1

11 1 1 1 1

25 1 1 1

28 1 1

1 1 1 1 1

16 1 1 1 1

35 1 1 1

9 1 1 1 1

33 1 1 1 1

3 1 1 1

32 1 1 1 1

7 1

17 1 1 1

31 1 1 1

2 1 1 1

12 1 1 1 1 1 1

15 1 1 1

23 1 1 1

34 1 1 1 1

20 1 1 1

24 1 1 1

8 1 1

19 1 1 1

21 1 1

37 1 1

10 1 1 1 1

22 1 1 1 1
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INTRODUCTION

The increased competition within industry has 
resulted in manufacturing companies spending 
considerable effort to improve flexibility and 
responsiveness to meet customer needs. Cellular 
manufacturing, a facet of group technology, has 
emerged as one of the major techniques being used 

for the improvement of manufacturing competitive-
ness. A large number of empirical, analytical and 
simulation studies have been devoted to compare 
the cellular layout (CL) to the classical functional 
layout (FL). Simulation-based comparative studies 
constitute the mainstream of this research field. 
Varied results were reported by these comparative 
simulation studies. Indeed, different researches 
found the FL always superior to the CL with re-
gard to all used performance measures (Jensen, 
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ABSTRACT

The cellular layout has been compared to the traditional functional layout using multiple comparison 
methodologies that either lack objectivity or are highly time-consuming. The main purpose of this chapter 
is to propose a novel and objective methodology. Hence, a critical analysis of ten comparison studies is 
followed by the presentation of the layouts simulation models. Subsequently, the proposed comparison 
methodology is described. Following this methodology, simulations are conducted according to a plan 
of experiments developed from Taguchi standard orthogonal arrays. Consequently, results, expressed in 
Signal to Noise ratios, are analyzed using ANOVA. Next, a mathematical model is derived by interpola-
tion between the factors and interactions effects. This model must be validated by the confirmation test, 
otherwise the comparison methodology should be reiterated while considering new interactions. This 
cycle should be reiterated as much as necessary to obtain a valid mathematical model. The proposed 
comparison methodology has been applied with success on an academic manufacturing system.
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Malhotra, & Philipoom, 1996; Morris & Tersine, 
1990, 1994). Further researches reported that the 
CL is superior to the FL in all operating conditions 
(Pitchuka, Adil, & Ananthakumar, 2006; Shafer & 
Charnes, 1992). Finally, other simulation studies 
showed that every layout could outperform the 
other in different particular experimental conditions 
(Faizul huq, Douglas, & Zubair, 2001; Farrington 
& Nazametz, 1998; Li, 2003; Shafer & Charnes, 
1995; Suresh & Meredith, 1994). The divergence 
in the studies conclusions is referred to as the “cel-
lular manufacturing paradox” (Shambu, Suresh, & 
Pegels, 1996). In fact, Agarwal and Sarkis (1998) 
and Shambu et al. (1996) reviewed a number of 
FL-CL comparative studies. However they did 
not identify any objectivity flaws responsible for 
the conflicting conclusions. Indeed, they simply 
reported the major findings of some published 
studies without any critical objectivity assessment.

Actually, methodologies used by comparison 
studies vary widely but can be classified into three 
groups. In the first group, authors used the one-
factor-at-a-time method. So the two layouts are first 
compared for one manufacturing context consid-
ered as the “base model”. Then, other experiments 
are carried out in order to test the robustness of the 
layout choice obtained in the base model. Every 
experiment corresponds to the modification of a 
single operating factor (Morris & Tersine, 1990, 
1994). In the second group authors considered only 
some specific combinations of the studied factors 
settings without any justification (Faizul huq et al., 
2001; Li, 2003; Suresh & Meredith, 1994). In the 
third group authors used the full factorial design 
technique in order to study the effect of all factors 
(Farrington & Nazemetz, 1998; Jensen et al., 1996; 
Pitchuka et al., 2006; Shafer & Charnes 1992, 1995). 
Methodologies belonging to the two first groups 
undoubtedly lack objectivity in the choice of the 
experimentation conditions. Therefore, they do not 
permit to attach any statistical confidence level to 
their conclusions. In addition, they do not provide 
any information about factor interaction. The third 
group methodology is highly time-consuming. In 

addition, it is impractical when the number of fac-
tors to study is large.

This chapter essentially focuses on the devel-
opment of an objective FL-CL comparison. It first 
highlights the lacks of objectivity of the main pub-
lished FL-CL simulation-based comparison studies 
in order to explain the origin of their conflicting 
conclusions. Then it deals with the development of 
comprehensive FL and CL simulation models using 
the widely used commercial simulation software 
Arena 7.0. Finally, it presents the framework of a 
methodology, based on the coupling of the Taguchi 
method of experiment design (TM) and simulation. 
This methodology can be easily applied to any 
manufacturing context and provides trustworthy 
results with a minimum experimentation effort.

The remainder of this chapter is organized as 
follows. The next section presents a taxonomy of 
the key factors used in the main published FL-
CL comparison simulation studies. The foremost 
used performance measures are also presented 
in this section. Finally it presents and analyses 
the findings of a number of relevant studies. The 
third section presents some general simulation 
features, needed for modeling both layouts. Then, 
it respectively gives details of the developed FL 
and the CL simulation models. Section four gives 
a general presentation of the objective comparison 
methodology and then presents a comprehensive 
academic case study depicting its application. The 
final section includes some general conclusions 
and discusses future work prospects.

COMPARATIVE STUDIES 
FRAMEWORK

Main Experimental Factors

General Manufacturing System 
(MS) Characteristics

Every MS is characterized by a number of ma-
chines arranged either into departments in the 
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functional layout, or else, into manufacturing cells 
in the cellular layout. Following the FL structure, 
the shop is composed of d departments Di (i=1, 
…, d). Each of them includes Mn functionally 
equivalent machines. In contrast, the CL is com-
posed of c independent manufacturing cells Cj 
(j=1, …, c). Each cell is a cluster of Mf different 
machines dedicated to a number of similar part 
types. Furthermore, every MS is designed for a 
demand pattern comprising different products. 
Products are identified by two indicators, which 
are the type (t) and the family (f). Products are 
grouped into families according to the similarity 
of their manufacturing process. Each product 
type requires a number of manufacturing opera-
tions (mopt).

Degree of Decomposability of 
the Part Machine Matrix (DD)

This degree translates the feasibility of the decom-
position of the MS into independent cells. In fact, 
the more the product/machine matrix is diagonal, 
the more the decomposability is feasible. This 
degree is negatively correlated to the density of 
off-diagonal elements.

Batch Size (BS)

Products are generally manufactured and trans-
ferred in batches in order to reduce machine 
setup and transport between machines. Numerous 
authors included BS in there comparison studies 
as a variable factor and demonstrated that the 
combination of small batch sizes with an efficient 
scheduling rule results in the improvement of 
the cellular layout performances. Most authors 
used the same batch size for both cellular and 
functional layouts.

Demand Rate (DEMAND)

The demand rate is mainly expressed by the batch 
inter-arrival times (IAT) in the MS. A large part 

of authors generated this time by common proba-
bilistic distributions. Others used constant IAT. 
Besides, some authors focus only on the stability 
of this factor without changing its average value.

Transfer Time (TT)

This parameter corresponds to the interdepart-
mental travel times in the FL. They are often 
modeled using appropriate probabilistic laws. In 
the CL these times correspond to the durations of 
intra-cell moves. Generally, they are very small 
compared to those in the FL.

Transfer Mode (TM)

Because of the considerable interdepartmental 
distances in the FL products are generally trans-
ferred by batches in order to reduce transfer costs. 
Some studies also used this transfer mode between 
same-cell machines whereas others make use 
of operations overlapping. This mode exploits 
the proximity of same- cell machines to allow 
simultaneous execution of different operations 
on parts of the same batch.

Flow Direction (FLOW)

A number of authors included the flow direction 
within a cell as an experimental factor. This fac-
tor has two possible levels: “unidirectional” or 
“backtracking allowed”.

Scheduling Rules (RULE)

Part batches arriving at a department or a cell are 
put in a waiting queue until the required machine 
becomes idle. These batches are then sequenced 
in order to establish the order in which they will 
be processed. This order is specified by the use 
of standard scheduling rule such as “First Come 
First Served” (FCFS), “Shortest Process Time” 
(SPT), “Earliest Due Date” (EDD) or else, “Re-
petitive Lots” (RL). The limited versions of the 
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first three rules, FCFS-L, SPT-L and EDD-L are 
used in order to avoid the duplication of machines 
setups for the same product type. Finally, the RL 
rule selects batches of the same type that the one 
just processed in order to minimize setups.

Processing Time (PT) and 
Set up Time (ST)

As for the IAT, most studies generally modeled 
both times by independent probabilistic laws. On 
the other hand, other studies formulated ST as a 
fraction of PT.

Set up Time Reduction Factor (δ)

This factor materializes one of the most key ad-
vantages of the CL. Indeed, part types of a same 
family need generally similar setups. Hence, if a 
machine is set up for a part type and then should 
be set for a same-family part type, the nominal 
setup time for the second part is reduced by the 
δ factor.

Performance Measures

Work in Process (WIP)

WIP is one of the most popular performance 
measures used in the FL-CL comparative stud-
ies (Farrington & Nazametz, 1998; Jensen et al., 
1996; Li, 2003; Morris & Tersine, 1990, 1994; 
Shafer & Charnes, 1992, 1995; Suresh & Meredith, 
1994). It essentially characterizes the fluidity of 
the material flow in the system.

Mean Flow Time (MFT)

MFT constitutes the other most popular mea-
sure used in FL-CL comparative studies (Faizul 
huq et al., 2001; Farrington & Nazametz, 1998; 
Jensen et al., 1996; Li, 2003; Morris & Tersine, 
1990; Shafer & Charnes, 1992, 1995; Suresh & 
Meredith, 1994). It also characterizes the fluidity 

of the material flow in the system. The MFT is 
the average time that every batch remains in the 
system in order to be manufactured.

Due Date Related Measures

Researchers used essentially Mean Tardiness 
(MT) and Mean Earliness (ME) as due date related 
performance measures (Farrington & Nazametz, 
1998; Jensen et al., 1996). MT is the average over 
all tardy jobs of the difference between delivery 
date and the promised due date. ME is similarly 
obtained for all early jobs. Other researchers used 
the percentage of tardy jobs (TARDY) and the 
percentage of early jobs (EARLY).

Other Measures

FL-CL comparative studies consider several other 
performance measures. The system Throughput, 
considered as productivity measure, is the average 
number of parts exiting the system by time unit 
(Faizul huq et al., 2001; Morris & Tersine, 1994). 
It is also used for detecting the attainment of steady 
state indicator in a simulation run. Besides, some 
studies used the operator utilization rate (OPUR) 
(Morris & Tersine, 1994), the average machine 
utilization rate (MUR) (Farrington & Nazametz, 
1998; Morris & Tersine, 1994; Shafer, & Charnes, 
1995), the mean “queue” waiting time (Pitchuka 
et al., 2006) or the average ST/PT ratio (Li, 2003) 
as performance indicators. The first two measures 
must be maximized to ensure a high degree of 
resource exploitation but the third and fourth 
measures should be minimized to improve the 
efficiency of the MS.

Comparative Studies Findings

By means of four simulation experiments, Mor-
ris and Tersine (1990) examined the influence of 
the ratio ST/PT, TT, DEMAND stability and parts 
FLOW within cells on the performance of CLs 
compared to FLs. In this comparative study, the 
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performances were measured using MFT and WIP. 
Results demonstrate that in the quasi totality of 
the tested contexts, the FL always outperforms the 
CL and generates smaller MFT and WIP. Besides, 
comparison results reveal that the ideal context for 
CL must be characterized by a high ST/PT ratio, 
a stable DEMAND, a unidirectional FLOW and 
a substantial TT between process departments.

To find out the operating conditions under 
which the CL outperform the FL, Shafer and 
Charnes (1992) investigated 24 combinations of 
DD, mopt, PT and BS. As for the previous study, 
authors used the same performance measures. 
They found the CL superior to the FL in all op-
erating conditions according to both performance 
measures.

Morris and Tersine (1994) extended the results 
of their first comparison study (Morris & Tersine, 
1990) by investigating the impact of a dual resource 
constrained shop on the performances of CL and 
FL using three operator scheduling rules in the 
CL. Simulation observations were collected for 
four performance measures including the mean 
Throughput, the WIP, the MUR and the OPUR. 
Results reveal that the FL outperformed the CL on 
all of the used performance measures regardless 
of the operator scheduling rule.

Authors investigate the sensitivity of their 
results relatively to changes in shop congestion 
level and changed respectively the IAT and OPUR 
in two other experiments. It appeared that the FL 
still outperforms the CL.

Besides, Suresh and Meredith (1994) aimed to 
overcome the loss of pooling synergy in the CL. 
Hence, they used simulation in order to compare 
the CL to an efficiently operated FL (EFL) us-
ing average MUR, WIP and MFT to assess the 
two layout’s performance measures. The EFL is 
characterized by an optimal BS, a reduced TT and 
part-family-oriented scheduling rules. The main 
experimental factors involved in this study were 
PT, ST, BS, δ and IAT. First, every experimental 
factor was tested separately. Then all the experi-
mental factors were tested together. The FL was 

found to be superior to the CL for large batch 
sizes (BS>32). However, for relatively small BS, 
the CL could outperform the FL if δ is smaller 
than 0.2. Comparison results do not change when 
the variability of PT, ST or IAT were separately 
reduced. On the other hand, if all factor effects 
were combined, the CL outperformed the FL even 
for small BS.

Shafer and Charnes (1995) used simulation to 
study a manufacturing context inspired from Mor-
ris and Tersine (1990). In fact, they used the same 
levels of the following factors: t, f, c, d, Mn, Mf 
and mopt. Authors aimed to compare alternative 
loading procedures for CL and FL in a variety of 
operating environments defined by combinations 
of 4 factors: FLOW, TT, labor constraints and MS 
congestion level. The third factor was modeled 
using two levels of the operator number while 
the last factor was modeled through the variation 
of the PT. Besides, each layout was investigated 
using two loading policies. For the FL the first 
policy permitted machine dedication while the 
second did not. On the other hand, for CL the 
first policy restricted the processing to only one 
batch at a time in a cell and the second allowed 
the processing of different batches at the same 
time. Both policies authorized CL operations 
overlapping. The authors used MFT and WIP in 
a two stage comparison methodology. In the first 
stage, labor constraints were not considered. In the 
second stage, a constraint was imposed on labor 
allowing only 8 operators to the whole shop in 
both configurations. It is worth noting here that the 
presence of one operator is required during setups 
and processing operations. The first stage simula-
tion results demonstrate that the two layouts were 
equivalent regarding WIP while the CL generated 
lower MFT than the FL. In contrast, in the second 
comparison stage the FL showed lower MFT than 
the CL. The authors justified this result by the labor 
constraint effect on the CL. Indeed, according to 
the authors the labor constraints handicaps more 
seriously the CL since it reduces the operations 
overlapping possibilities while its effect on the 
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FL is not significant since the departments have 
only 3 machines in average.

Another study by Jensen et al. (1996) assessed 
the FL and CL performances through MFT, WIP 
MT, ME and TARDY. They based their study 
on a full- factorial experimental plan involving 
layout type, RULE, DEMAND variability and δ 
as experimental factors. To determine the influ-
ence of each factor on the studied performance 
measures, the authors analyzed their simulation 
results by ANOVA. Aside from the layout type, 
the most influent factor was found to be DEMAND 
variability followed by δ and RULE. Then, the au-
thors performed a pairwise comparison of RULE. 
Results demonstrate that SPT-L and EDD were 
the best performing rules regarding MFT and MT 
respectively. Finally, they compared layouts us-
ing the best found RULE. The results of this final 
step revealed that the FL was always superior to 
the CL with regard to all performance measures.

As for Farrington and Nazemetz (1998), their 
comparative study is based on a three-factor-full-
factorial experimental plan. The three experimen-
tal factors were the layout type, the PT variability 
and the IAT variability. It’s worth noting here 
that the high variability level was associated to a 
small BS and vice versa. They assessed the two 
layouts using different performance measures, 
namely MFT, WIP, TARDY, MUR and a number 
of others less common measures. Comparison 
results prove that the FL is superior to the CL in 
a context defined by a high variability of PT and 
a low variability of IAT. But, when both factors 
show high variability, the performances of the two 
layouts are close. Besides, The CL outperforms 
the FL in all remaining conditions.

Faizul huq et al. (2001) presented in their 
comparison study a straightforward two-factor-
full-factorial simulation plan using the MFT and 
the Throughput. The two studied factors were BS 
andδ. For the sake of objectivity, the authors used 
the EFL concept. ANOVA investigation showed 
that the two layout Throughput performances were 
not significantly different. In deed, the two layouts 

presented significant differences in some of the 
studied combinations only in terms of MFT. In 
fact, The CL outperformed the FL only for small 
BS and very largeδ. In all other conditions, the 
FL was clearly superior.

Regarding Li (2003), the author used MFT and 
WIP to explore the superiority domains of both 
layouts in a diversity of contexts. These contexts 
are defined by the FLOW, the TM, the variabil-
ity of PT, the variability of ST and finallyδ. The 
performance measures results analysis showed 
that the major factor in establishing the superior-
ity of one of the two layouts isδ. Hence, the CL 
outperformed the FL at high level of δ and the 
FL was the best layout in the low δ region. Both 
layouts showed equivalent performance measures 
for intermediate value ofδ.

The last reviewed study, done by Pitchuka 
et al. (2006), compared FL to CL using a four-
factor-full-factorial experimental plan featuring 
PT, ST, BS and IAT. The authors considered only 
the “queue” waiting time as performance measure. 
It was shown that the CL can outperform the FL 
in the majority of the studied contexts. Indeed, in 
the CL numerous work centers generated inferior 
“queue” times to those of the corresponding work 
centers in the FL.

Objectivity Assessment

Conditions Favoring FL

Jensen et al. (1996), Pitchuka et al. (2006) and 
Shafer and Charnes (1992) considered very low 
TT which implicitly advantage the FL, since one 
of the main advantages of the CL is time saving 
by locating machines required to manufacture a 
part close to each other. On the other hand, Jensen 
et al. (1996), Morris and Tersine, (1990, 1994) 
and Pitchuka et al. (2006) used a CL with no 
operations overlapping allowed in part process-
ing. This does not permit to take advantage of 
CL benefits. Moreover, Farrington and Nazametz 
(1998) stated that they chose not to reduce the ST 
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in the CL context. Their motivation was to avoid 
any biases in favor of the CL. But, by doing so, 
they favored the FL since they eliminated one of 
the main advantages of the CL.

Conditions Favoring CL

The study of Shafer and Charnes (1992) is ob-
viously biased in favor of the CL. In deed, the 
authors consider single-machine departments. 
So, they eliminate the main and probably the 
only benefit of this type of layout: the pooling 
synergy effect between same department ma-
chines. Consequently, the results were clearly in 
favor of the CL even with the assumption of null 
transfer times advantaging the FL. Regarding 
Li (2003), the study featured unidirectional cell 
FLOW by duplicating the necessary machines 
to avoid backtracking. This indirectly led to 
the reduction of the cell number. The machine 
duplication within cells biased the comparison 
results in favor of the CL. In fact, this attaches 
to the CL the main advantages of the FL which 
is the synergy between functionally equivalent 
machines. As for Suresh and Meredith (1994), 
they used FL TT relatively very high compared 
to the PT. This probably advantage the CL and 
make clear why its performance are superior to 
the performance of the FL in almost all the testing 
contexts even though no operations overlapping 
has been used in the CL.

Other Conditions

This category essentially includes the lack of vital 
information about the used experimental factor 
settings as well as key elements defining the 
manufacturing contexts. Indeed, even if Morris 
and Tersine, (1990, 1994) provided in their studies 
the material handling equipment speed, they did 
not mention any distances between departments 
or machines. These distances are required in 
order to evaluate the TT in the two layouts. On 
the other hand, Farrington and Nazametz (1998) 

and Shafer and Charnes (1992) did not mention 
the RULE they used. In addition, Farrington and 
Nazametz (1998) failed to report numerous key 
experimental factors such as mopt, IAT and PT. 
Despite its established importance, Jensen et al. 
(1996) did not use the BS as an experimental factor 
neither did they mention its constant value used 
throughout the investigation.

Other lacks of important data are included in 
this category, particularly technical simulation-
related information such as the replication length 
(Farrington & Nazametz, 1998; Li, 2003) and the 
warm-up period length (Farrington & Nazametz, 
1998). On the other hand, numerous incongrui-
ties appear in different comparative studies. For 
example, the difference between the two shop 
configurations of the CL studied by Li (2003) is 
not clear. Indeed, in the figures illustrated by the 
authors, the arrows indicating the products FLOW 
show that there is no backtracking flow even in 
the CL with backtracking flow allowed. These 
incongruities are more serious in Faizul huq et al. 
(2001) study. Indeed, despite stating that no inter-
cell moves were allowed, the authors defined the 
inter-cell travel time by a uniform law.

The use of inappropriate MS data appears es-
pecially in the study of Faizul huq and al. (2001). 
Indeed, the major flaw of this study is the defini-
tion of the manufacturing context. In fact, they 
used the same routings for the same product types. 
This generated three identical manufacturing cells. 
More gravely, the use of single-product families 
annuls any setup operation in the cell except for 
the initial setups. Hence, the factor δ becomes ir-
relevant and any results showing the importance 
of this factor are seriously questionable.

SIMULATION MODELS

Basic Simulation Features

FL and CL layouts simulation models are devel-
oped using the commercial simulation software 
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Arena 7.0 (Kelton, Sadowski, & Sadowski, 2002). 
This simulation tool integrates all the needed simu-
lation functions including animation, analysis of 
input and output data. Every MS model consists of 
the four main components: manufacturing orders 
launching and attribute assignation, part transfer, 
part manufacturing and statistics collection.

Manufacturing Orders Launching 
and Attribute Assignation

Manufacturing orders (MOs), being batches of 
parts of the same type, are launched by “Create” 
modules. Every “Create” module defines batches 
IAT following the used probabilistic rule in ad-
dition to their BS. A specific “Create” module is 
dedicated for each part type. As soon as parts are 
lunched, they pass through an “Assign” module 
where characteristics are attributed to them. These 
characteristics are either time-related such as PT 
and ST, or also identification indicators such as 
part’s type as well as part’s family and factors 
necessary to the MS piloting like part’s routing 
or “Sequence”.

Part Transfer

Parts are transferred, either individually or in 
batches, between physical locations modeled 
by the “Station” modules, in which they should 
undergo the required manufacturing steps. These 
locations are either machines in CL or departments 
in FL. Transfer are carried out by “Route” modules 
permitting to prescribe destinations as well as 
transfer times. These modules use “Sequence” at-
tribute of the transferred parts in order to prescribe 
the next destination. The “Sequence” corresponds 
to the part routing expressed as stations list.

Two manufacturing strategies could be fol-
lowed for the parts transfer in the shops: “with 
operations overlapping” or “without operations 
overlapping”. In the first strategy, parts of the 
same batch could be processed simultaneously 
on different machines of a department or a cell. 

In the second strategy, all parts of the same batch 
are processed on the same machine of the cell or 
department before being transferred collectively 
to the next machine or department. In all cases, 
batches must be split by “Separate” modules be-
fore accessing any machine. Batch reconstitution 
for transfer is performed using “Batch” modules.

Part Manufacturing

Every machine is modeled by a “Process” 
module, associated to a “Station” module and 
a “Resource” module. The “station” module 
determines the physical location of the machine 
and the “Resource” module represents the capac-
ity and the availability of the machine itself. In 
fact, the “Process” module seizes the associated 
resource for the required period of time and then 
releases it. So, the machine becomes idle and 
available again for manufacturing another part. 
The machine resource is seized during a period of 
time that corresponds to the PT of the part being 
processed and eventually the required ST if the 
machine was set for a different part type. The ST, 
when relevant, is weighed by the setup reduction 
factor δ whenever the part type belongs to the 
family of the last processed one.

Statistics Collection

Before leaving the MS, every batch must go 
through an “Assign” module in which the pa-
rameters defined as performance measures are 
computed and updated. The acquired data is then 
stored in an Excel file using a “Readwrite” module 
for eventual treatment and analysis.

Functional Layout Model

The functional layout model is composed of three 
sections: “MOs launching”, “Departments” and 
“System exit” (see Figure 1).

MOs are launched by “Create” modules 
dedicated each part type. Each “Create” module 
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is coupled to an “Assign” module. The generated 
parts are then grouped into batches and routed to 
their first manufacturing step’s department. A 
batch arriving at a department is made waiting in 
a queue modeled by a “Hold” module. This mod-
ule is governed by a priority rule that could be 
FCFS, SPT or any other priority rule. When at 
least one of the department machines becomes 
available, the “Hold” module releases the priori-
tized batch from the waiting queue. The released 
batch is then transferred to the “Machine selec-
tion” sub-model that selects one among the avail-
able machines. The logic of this sub-model is 
coherent with the waiting queue priority rule.

When operations overlapping are not allowed, 
every batch is split once it reaches the assigned 
machine. Hence, each batch can be treated only by 
a single machine. On the other hand, if operations 
overlapping are permitted, parts batches are split 
before accessing the department queue. So, parts 
become independent and could be dispatched to 
several machines of the same department to be 
processed simultaneously. In both cases, batches 
are gathered by a “Batch” module right after 

processing and before the transfer to next manu-
facturing step. The combination of the operations 
overlapping strategy, the machine selection pro-
cess and the waiting queue priority rule define 
the shop scheduling policy.

Cellular Layout Model

The CL model is composed of “c” sub-models 
corresponding to the “c” MS cells. Each sub-model 
is composed of three sections: “MOs launching”, 
“Machine cells” and “Cell exit”.

As for the FL, MOs are launched by “Create” 
and “Assign” modules dedicated to each part type. 
The generated parts are then grouped in batches 
before being routed to the general cell queue. Such 
a queue holds part batches until their first routing 
step machine becomes available. In addition, each 
machine has its own waiting queue. Both queues 
are governed by the same priority rule.

If operations overlapping are allowed, batches 
are split just before leaving the cell general queue. 
Hence, every part can follow its routing without 
waiting for the other batch parts. Batches are finally 

Figure 1. FL model
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regrouped just before the cell exit. In contrast, 
if operations overlapping are not implemented, 
every batch is split when it reaches the machine 
next machine on its routing. Batches are regrouped 
once their processing is accomplished. Then, they 
are transferred towards the following machine or 
to the system exit.

THE OBJECTIVE COMPARISON 
METHODOLOGY

Overview

The objective comparison methodology (OCM) 
aims essentially at the development of a math-
ematical model permitting to predict the superior-
ity of one layout or the other. It is the product of 
the application of Taguchi method of experiment 
design. Hence, the OCM is mainly composed of 
3 main phases:

• Phase 1: Choosing MS parameters and set-
ting their levels

• Phase 2: Construction of the experiments 
plan, results analysis and development of 
the mathematical model

• Phase 3: Refinement of the simulation 
plan and improvement of the mathematical 
model

Each of these phases is composed of one or 
several stages. Some stages should be reiterated 
several times.

Phase 1: Choosing Levels of the 
Manufacturing System Parameters

In the first phase of the OCM the manager must 
choose the MS parameters as well as their levels. 
Generally, every MS can be characterized by three 
types of parameters: signal factors, control factors 
and noise factors.

Figure 2. CL model
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Signal Factors (SF)

Signal factors are factors that are expected to 
affect the average response. In addition, these 
factors identify the manufacturing context and are 
kept constant in every application of the OCM. 
This category includes the department’s number 
d, the cell’s number c, the number of equivalent 

machines in every department Mn and the num-
ber of different machines in every cell Mf. The 
four other signal factors are the number of part 
families f, the number of part types by family t, 
the number of manufacturing operations mopt and 
the existence or no of inter-cell moves.

Figure 3. Overview of the OCM
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Control Factors (CF)

As for the signal factors, control factors can af-
fect the average response but, more importantly, 
can affect the extent of the variability about the 
average response. These factors are to be varied 
throughout the simulation plan. This category 
includes the ST, the PT, the TT, the IAT and theδ. 
The three other Control factors are the BS, the 
RULE and the TM. For more objectivity of com-
parison results, ST, TT and PT are put into the 
following ratio forms ST/PT and TT/PT. Indeed, 
ST and TT being nonproductive activities, these 
ratios are used to compare them to PT which is 
a productive activity. In addition to the studied 
CFs, several factor interactions (CFI) could also 
be investigated in every application of the OCM. 
CFI between CFx and CFy is here noted CFxxCFy.

Noise Factors (NF)

Noise factors are difficult or even impossible to 
control. Some of these factors could have a direct 
influence on the MS performances. Hence, instead 
of controlling them, the methodology aims at de-
termining a solution in terms of CF that is robust 
relatively to unpredictable variations of NF.

Phase 2: Construction of the 
Experiments Plan, Results 
Analysis and Development of 
the Mathematical Model

The main purpose of the second phase of the OCM 
is to develop the mathematical model. This model 
gives an interpretation of the SM parameters ef-
fect’s on the performances of the two layouts. It 
is developed through the following stages:

• Stage 1: An initial plan of experiments is 
constructed using standard OAs developed 
by Taguchi (Taguchi, Elsayed, & Hsiang, 
1989). This plan is a set of experiments 
(simulations) where several CFs levels are 

varied from an experiment to another. It 
permits to considerably minimize the ex-
perimental effort.

• Stage 2: Simulations are conducted and 
performance measures of the two layouts 
are collected. The performance measures 
are expressed using the signal to noise ra-
tio (S/N). This ratio is an essential indicator 
of the ability of the system to perform ro-
bustly in the presence of some noise effect 
(Park, 1998). There are three type of S/N 
ratios: lower-the-better (LB), nominal-the-
best (NB), and higher-the-better (HB). In 
the OCM, the HB type S/N is used.

• L is better than FL, it is proposed to maxi-
mize the HB type S/N characterizing the 
MFT ratio MFTFL/MFTCL

• Stage 3: Simulations results are then ana-
lyzed by the analysis of variance method 
(ANOVA). The ANOVA establishes the 
relative significance of CFs in terms of 
their percentage contribution to the re-
sponse (Phadke, 1989; Ross, 1996). The 
relative significance of CFs is translated 
by the Fischer factor “F” (Montgomery, 
2001). The ANOVA also estimates the 
variance of error.

• Stage 4: The mathematical model is devel-
oped by interpolating the CFs effects. The 
validity of the developed mathematical 
model is then verified through the confirma-
tion experiment. This experiment consists 
of adopting in an extra simulation experi-
ment the best levels of CFs. If the average 
of the results of the confirmation experi-
ment is within the limits of the confidence 
interval (CI) of the predicted result, then 
the mathematical model is considered con-
firmed (Kiefer, 1977). Hence the OCM can 
move to the following phase. Otherwise, 
interactions between CFs are taken in ac-
count in a new model. The second phase 
of the OCM is then reiterated from the 
third stage. This cycle should be reiterated 
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as much as necessary to get a valid math-
ematical model. In each iteration, the in-
significant interactions must be eliminated 
and replaced by other interactions.

Phase 3: Refinement of the 
Simulation Plan and Improvement 
of the Mathematical Model

The purpose of this phase is to refine the simula-
tion plan and to improve the mathematical model 
developed in the second phase. So, in this plan, 
only the most significant CFs and CFIs are con-
sidered. Besides, for each CF, additional levels are 
investigated to study the non-linearity effect of 
the process factors. This phase is very similar to 
the second phase. Indeed, it essentially includes 
the same main stages. Only the choice of factors 
and interactions to integrate in the mathematical 
model is different. Once the improved mathemati-
cal model developed, its validity is tested.

Academic Case Study

The studied MS is inspired from the compari-
son study of Morris and Tersine (1990). This 
MS is composed by 30 machines grouped in 8 
departments in the FL and 5 cells in the CL. It 
is also characterized by 30 part types grouped in 
5 families. Every part family is composed of 6 
part types. Each part type requires from 2 to 6 
production operations. In addition, no inter-cell 
moves are required.

The FL and CL simulation models were 
developed using the ARENA commercial soft-
ware. Observations were then collected for two 
performance measures: MFT and Throughput. 
The second measure is used solely for warm up 
period detection. The results show that a warm up 
period of 200000 minutes is needed. The models 
can then be run for 800000 minutes.

Choice of MS Parameters

The CFs are here studied using two levels each 
as depicted in Table I. It is worth noting that the 
original level corresponds to the level initially 
used in the MS.

Initial plan of Experiments

Each of the two level CFs has 1 degree of free-
dom (DOF). Hence, the total degree of freedom 
(TDOF) required for the studied seven CFs is 
8 [=7×1+1]. As per Taguchi’s method the total 
experiments number of the selected OA must 
be greater than or equal to the TDOF, an L8(2

7) 
OA was selected for the initial experiments plan 
(Taguchi et al., 1989). This OA has seven columns 
and eight experiment-runs (rows). The seven CFs 
are assigned to the OA columns as depicted in 
Figure 4 (stages1&2). Every suggested experiment 
by the OA is then run for 2 replications in order 
to compute the S/N ratios. Results are shown in 
Figure 4 (stages 1&2). The results of ANOVA 
indicate that only the CFs ST/PT, TT/PT, BS and 
IAT are statistically significant (Figure 4-stage 3). 
Figure 4 (stage4), that depicts the main effects of 
the CFs, confirms these remarks. In this figure, 
the importance of the CF is expressed by its slope.

Based on the computed S/N ratios, the math-
ematical model is developed by linear interpola-
tion. In this model, every CF can take one of two 
values: 1 or 2, depending on the chosen param-
eter level:

S N ST PT BS

TT PT

/ - . . ( / ) - . .

( / ) - .

= + × × +
×
1 53 0 70 0 16 0 38

0 16          ×× + × +
× ×

IAT TM

RULE

0 07 0 09

0 08

. .

- .          δ

 

(1)

Then, the confirmation experiment considers 
the maximum value of S/N ratio to choose opti-
mum levels of the CFs. Hence the chosen levels 
are ST/PT2, TT/PT2, IAT1, BS1, δ2, TM2 and RULE1 
where Xi is the ith level of the control factor X. 
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In this case, the expected result in terms of S/N 
ratio is 0.55 Db. The computed 95% confidence 
interval is equal to CI = ±0.39 Db. Therefore, the 
expected result should lie between 0.16 Db and 
0.94 Db. As depicted in Figure 4 (stage5) the best 
expected response of -0.42 Db obtained by the 
confirmation experiment is outside the limits of the 
CI. The mathematical model is hence considered 
invalid. Additional analysis and experimentation 
are needed.

Simulation Plan with Interactions

Two additional iterations were needed to obtain 
a valid mathematical model. Only the results of 
the second iteration are depicted here. Based on 
the first iteration simulation plan ANOVA results, 
the simulation plan in the second iteration con-
siders TT/PT×RULE, ST/PT×RULE, ST/PT×BS, 
BS×RULE, TT/PT×BS, IAT×RULE and IAT×BS 
as CFIs. Each of these CFIs has 1 DOF. The re-
quired TDOF is then equal to14 [=7×1+6×1+1]. 
Hence, the L16(2

15) is the OA to use. This OA has 
fifteen columns and sixteen experiment-runs. 
The factors were assigned to the L16(2

15) OA us-
ing the linear graphs displayed in the Figure 5 
(stages1&2). This figure also shows the associated 
simulation results.

ANOVA results indicate that only the CFs BS, 
ST/PT, IAT and δ are statistically significant (Fig-
ure 5- stage 3). It also demonstrates that only the 
CFIs TT/PT×RULE, TT/PT×BS and ST/PT×BS 
are statistically significant. Figure 5 (stage4) il-
lustrates the main effects of the CFs and CFIs. In 
this figure the importance of a CFI is expressed 
by the slope difference between the interaction 
two curves. The mathematical model is then de-
veloped:

S N BS TT PT RULE

ST

/ - . . - . ( / ) .

. (

= + × × + ×
+ ×

4 44 1 70 3 12 0 54

3 26         // ) - . . - .

. ( / ) -

PT TM IAT

TT PT RULE

0 14 3 45 0 51

1 26 0

× + ×
× + × ×         δ ..

. ( / ) - . - .

73

1 08 0 89 0 36

× ×
+ × × × ×

BS RULE

TT PT BS IAT BS         

          

         

× × × ×
× ×

( / ) - . ( / ) - .ST PT RULE ST PT BS

IAT RULE

1 20 0 75

 

(2)

The levels of the CFs in the confirmation ex-
periment are as follows: BS1, TT/PT2, RULE1, ST/
PT2, TM1, IAT2, δ1. Two confirmation trials were 
conducted and results show that the developed 
mathematical model is valid (Figure 5-stage5).

Refinement of the Simulation 
Plan and Improvement of 
the Mathematical Model

The refined simulation plan considers the control 
factors BS, ST/PT, IAT andδ in addition to the CFI 

Figure 4. OCM application: Initial experiments plan
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ST/PT×BS. In addition to the two studied levels, 
each of the three CFs was analyzed by way of a 
third level. This additional level corresponds to 
the original level as depicted in Table 1. Hence, 
the required TDOF is 13 [=4×2+1×4+1]. So, the 
L27(3

13) OA was selected for the refined simula-
tion plan and the CFs were assigned to this array 
using the linear graphs displayed in the Figure 6 
(stages1&2). This figure depicts also the OA and 
the simulation results. It’s worth noting that the 
original levels of the unused CFs in the refined 
plan (RULE, TM and TT/PT) are chosen (Table 1).

The analysis of simulation results shows that 
only ST/PT and BS are significant (Figure 
6-stage3). This observation is confirmed by the 
Figure 6 (stage4) that illustrates the main effects 
of the CFs and CFIs. The developed mathemati-
cal model is written as follows:

S N ST PT BS

IAT

/ - . - . ( / ) - . - .

- .

= × ×

× ×

3 83 0 59 0 15 0 12

0 01

2 2

2         δ22 2 2

2

0 11 0 47

0 43

- . ( / ) .

( / ) . ( /

× × +

× × + ×

ST PT BS

ST PT BS ST PT         )) - .

( / ) . ( / ) .

×
× × + × + ×

BS

ST PT BS ST PT BS

2 2 17

3 94 0 65         

          + × ×0 68 0 06. - .IAT δ

 

(3)

Figure 5. OCM application: Simulation plan with interaction (Second iteration)

Table 1. Control factors 

CF Original Level Level 1 Level 2

ST/PT 3 1 5

IAT Exp (525) mn Exp (420) mn Exp (630) mn

δ 0.35 0.2 0.5

BS 38 25 50

RULE RL RL FCFS

TM With operations overlapping With operations overlapping Without operations overlapping

TT/PT 0.8 for FL ; 0.3 for CL 0.4 for FL ; 0.15 for CL 1.2 for FL ; 0.45 for CL
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The confirmation experiment shows that the 
developed mathematical model is valid (Figure 
6-stage5).

The MS manager can use this mathematical 
model to determine the best layout of its MS 
machines. He can also investigate the effect 
of the change of one or several CFs levels on 
performances of the two layouts. In fact, if the 
computed S/N ratio value is negative then the 

FL is the outperforming layout. In contrary, if 
the predicted S/N ratio value is positive then the 
CL outperforms the FL. Finally, the two layouts 
performances are considered equivalents if the S/N 
ratio value predicted by the mathematical model 
is close to zero. Table 2 depicts the CL and FL 
superiority contexts expressed as combinations 
of the CFs.

Figure 6. OCM application: Refined simulation plan

Table 2. Level combinations giving layout superiority 

IAT1 IAT2 IAT3

δ1 δ2 δ3 δ1 δ2 δ3 δ1 δ2 δ3

ST/PT1

BS1 FL FL FL FL FL FL FL FL FL

BS2 FL FL FL FL FL FL FL FL FL

BS3 FL FL FL FL FL FL FL FL FL

ST/PT2

BS1 CL CL CL CL CL CL CL CL CL

BS2 FL FL FL CL FL&CL FL CL CL FL&CL

BS3 FL FL FL FL FL FL FL FL FL

ST/PT3

BS1 CL CL CL CL CL CL CL CL CL

BS2 CL CL CL CL CL CL CL CL CL

BS3 FL FL FL CL CL CL CL CL CL
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This table can be used by the manager to de-
termine the more effective layout for every one 
of the 81 possible level combinations of the four 
considered CFs. In deed, the intersection between 
the line that represents the combination of the ST/
PT and BS levels and the column corresponding 
to the IAT and δ levels gives the best performing 
layout. For example, the CL is the best layout for 
the following CFs levels combination: ST/PT2, 
BS1, IAT2 and δ2.

The mathematical model can also be used to 
predict the best layout for “intermediate levels” 
of the CFs ST/PT, BS, IAT andδ. Indeed unlike 
the TM and RULE CFs which are discrete and can 
be investigated only for specified levels, ST/PT, 
BS, IAT andδ are continuous factors. For example 
for the following setting combination: ST/PT1.5, 
BS2.2, IAT1.4 and δ2.4 the FL outperforms the CL. 
In this case, le level Xi of the CF X is obtained by 
linear interpolation between the different levels 
of this CF.

CONCLUSION

This chapter presents an objective methodology 
for comparing functional and cellular layouts. 
This methodology aims to help MS managers 
choosing the appropriate layout for their manu-
facturing system. The developed methodology 
is based on the Taguchi method for the design 
of experiments and results analysis combined to 
discrete event simulation. This method permits, 
through a minimal experimental effort, to reliably 
evaluate the effect of each MS parameters on the 
system performances. It also reveals the possible 
interactions between MS parameters. The goal of 
this methodology is the development of a math-
ematical model predicting the superiority of one 
of the two layouts. In fact, once developed and 
validated, the mathematical model can be used by 
the MS manager to predict the S/N ratios for any 
combination of the MS parameters. The sign of 
the predicted S/N ratio indicates the best layout. 

The model can also be exploited to interpolate the 
results between the studied levels of continuous 
parameters such as batch inter arrival time or 
batch size. An academic case study showed the 
capacity of this methodology for choosing the 
best layout for a MS.

The developed methodology can find direct 
applications in the industry. However, many 
aspects of the comparison methodology should 
undergo further developments. The first task is 
the enlargement of the application scope to other 
control factors such as various levels of the number 
of operators or different degrees of the operator’s 
qualification. In addition, in order to minimize the 
effort provided by the MS manager, the automation 
of coupling between the simulator and the analyze 
software is also projected. This should increase 
the chance of the proposed methodology to be 
successfully applied and validated on real cases.
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Chapter  10

INTRODUCTION

Cell Loading is a decision making activity for 
planning the production in a Cellular Manufac-
turing System (CMS) including more than one 

manufacturing cell. The products are assigned 
to the manufacturing cells where they can be 
processed. This assignment is done based on 
the demand, processing times and due dates of 
the products and the production capacity and 
capability of the manufacturing cells (Süer, 
Saiz, Dagli & Gonzalez, 1995 and Süer, Saiz, & 
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ABSTRACT

In this chapter, cell loading and family scheduling in a cellular manufacturing environment is studied. 
What separates this study from others is the presence of individual due dates for every job in a fam-
ily. The performance measure is to minimize the number of tardy jobs. Family splitting among cells is 
allowed but job splitting is not. Even though family splitting increases number of setups, it increases 
the possibility of meeting individual job due dates. Two methods are employed in order to solve this 
problem, namely Mathematical Modeling and Genetic Algorithms. The results showed that Genetic 
Algorithm found the optimal solution for all problems tested. Furthermore, GA is efficient compared to 
the Mathematical Modeling especially for larger problems in terms of execution times. The results of 
experimentation showed that family splitting was observed in all multi-cell solutions, and therefore, it 
can be concluded that family splitting is a good strategy.
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Gonzalez, 1999). Family Sequencing is a task of 
deciding the order by which product families are 
processed in a particular cell as determined by the 
Cell Loading process. In this chapter, a product 
family can be split and they can be sequenced in 
the same cell or different cells. Obviously, each 
time a new family starts in a cell, a new setup is 
required. Finally, Family Scheduling consists of 
determining start times and completion times of the 
product families and the individual products based 
on the family sequence established. Typically in 
a complex cellular system, we need to address 
Cell Loading, Family Sequencing and Family 
Scheduling tasks all in a satisfactory manner to 
obtain the desired results in terms of the selected 
performance measure.

In this study, we are considering minimizing the 
number of tardy job as the performance measure. 
Even though the problem has been observed in a 
shoe manufacturing company, it is applicable to 
many cellular systems. The products are grouped 
into families based on their processing similarity. 
On the other hand, products in a family might 
have different due dates. The overall objective of 
this chapter is to solve cell loading and product 
sequencing problem in such a multi-cell environ-
ment. To accomplish this, we propose two different 
approaches to tackle this complex problem namely, 
mathematical modeling and genetic algorithms. 
An experiment is carried out using both approaches 
and later the results are compared and a sensitiv-
ity analysis is also performed with respect to due 
dates and setup times.

BACKGROUND

Group Technology (GT) is a general philosophy 
where similar things are grouped together and 
handled all together. GT is established upon a 
common principle that most of the problems can 
be grouped based on their similarities and then a 
single solution can be found to the entire group 
of problems to save time and effort. This general 

concept has been also applied to the manufacturing 
world. This approach increases productivity by re-
ducing work-in-progress inventory and improves 
delivery performance by reducing leadtimes, thus 
helping manufacturing companies to be more 
competitive. Thus, a Cellular Manufacturing 
System can be specified as an application of GT 
to the manufacturing system design (Askin & 
Standridge, 1993). Cellular Manufacturing System 
aims to obtain the flexibility to produce a high 
or moderate variety of low or moderate demand 
products with high productivity. CMS is a type 
of manufacturing system that consists of manu-
facturing cell(s) with dissimilar machines needed 
to produce part family/families. Generally, the 
products grouped together form a product family. 
The benefits of CMS are lower setup, smaller lot 
sizes, lower work-in-process inventory and less 
space, material handling, and shorter throughput 
time, simpler work flow (Suresh & Kay, 1998).

In this chapter, the performance measure used 
is minimizing the number of tardy products (nT). 
If a product is completed after its due date, then 
it is considered as tardy product. If product is 
completed before its due date, then the tardiness 
for this product will be zero (early or on-time 
product). Therefore, tardiness for a product takes 
a value of zero or positive, Ti = max {0, ci - di}; 
where Ti is the tardiness for product (i), ci is the 
completion time of product (i), and di is the due 
date for product (i). The number of tardy jobs is 

computed as n g T
T i

i

n

=∑ ( ) where g(x) = 1 if x 

> 0, and zero otherwise.
The problem has been observed in a shoe 

manufacturing company where twelve product 
families have been already defined. There are 
multiple cells and the most critical component of 
each cell is the rotary injection molding machine. 
Even though Rotary Molding Machine is a single 
machine, scheduling shoes on that machine re-
sembles to a parallel machine scheduling problem 
as it can hold multiple pairs of molds/shoes at any 
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time. The Rotary Molding Machine is defined in 
detail in Section 3.

Several researchers focused on cell loading 
problem [Süer, Saiz, Dagli & Gonzalez, (1995) 
and Süer, Saiz, & Gonzalez (1999a)] developed 
simple cell loading rules to minimize number of 
tardy jobs. Süer, Vazquez, & Cortes (2005) de-
veloped a hybrid approach of Genetic Algorithms 
and local optimizer to minimize nT in a multi-cell 
environment. Süer, Arikan, & Babayigit (2008) 
and (2009) focused on cell loading subject to 
manpower restrictions and developed fuzzy math 
models to minimize nT and total manpower lev-
els. A few works have been also reported where 
both cell loading and product sequencing tasks 
are carried out. Süer & Dagli (2005) and Süer, 
Cosner & Patten (2009) discussed models to 
minimize makespan, machine requirements and 
manpower transfers. Yarimoglu (2009) developed 
math model and genetic algorithms to minimize 
manpower shortages in cells with synchronized 
material flow. However, these work ignored setup 
times between products and families.

Some other researchers focused on group 
scheduling problem with a single machine or a 
single manufacturing cell. Nakamura, Yoshida & 
Hitomi (1978) focused on minimizing total tardi-
ness and considered sequence-independent group 
setup. Hitomi & Ham (1978) also considered 
sequence-independent setup times for a single ma-
chine. Ham, Hitomi, Nakamura & Yoshida (1979) 
developed a branch-and-bound algorithm for the 
optimal group and job sequence to minimize total 
flow time with the minimum number of tardy jobs. 
Pan and Wu (1998) considered a single machine 
scheduling problem to minimize mean flow time 
of all jobs subject to due date satisfaction. They 
categorized the jobs into groups without family 
splitting. Gupta and Chantaravarapan (2008) 
studied the single machine scheduling problem 
to minimize total tardiness considering group 
technology. Individual due dates and independent 
family setup times have been used in their problem 
with no family splitting.

This paragraph summarizes the work done in 
the past which focused on scheduling jobs on the 
Rotary Injection Molding Machines. Süer. Santos, 
& Vazquez (1999b) have developed a three-phase 
Heuristic Procedure to minimize makespan in the 
Rotary Molding Machine scheduling problem. 
Subramanian (2004) has attempted to solve this 
problem as a part of the cell loading and scheduling 
process. The objective was to minimize makes-
pan and unlimited availability of the molds was 
assumed. Later, Urs (2005) introduced limited 
mold availability into the problem for the same 
objective. The most recent research was done by 
Süer, Subramanian, and Huang (2009) includes 
some heuristic procedures and mathematical 
models for cell loading and scheduling problem.

The most important feature of the scheduling 
problem studied in this chapter is the presence of 
individual due dates for every job even in the same 
family (no common due dates), and family split-
ting is allowed to minimize the number of tardy 
jobs. To the best knowledge of the authors, this 
real problem observed in a cellular environment 
has not been addressed in the literature before. 
As a result, we decided to tackle this complex 
problem here and propose multiple solution ap-
proaches to deal with it.

THE PROBLEM STUDIED

This section discusses the problem studied in 
detail.

Family Splitting vs. Setup Times

Typically, in cellular manufacturing similar prod-
ucts are grouped together and processed together 
as a family to reduce the number of setups and 
thus total setup time. However, literature does 
not address the possibility of having different 
due dates for the jobs in the same family. Even 
though it is important to reduce the setup times, it 
is also important to meet the customer due dates. 
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There is a natural conflict between meeting due 
dates of jobs versus reducing total setup times 
between families. This point can be illustrated 
in Figure 1 where there are two families and two 
jobs in each family.

If we do not split (preempt) the families, we get 
two jobs in the second family. On the other hand, 
if family splitting is allowed then number of tardy 
jobs is reduced to one even if the number of setups 
increases from two to four. We can observe that 
when all of the jobs for a family are scheduled all 
together, setup times are reduced. However, this 
may also force several other jobs in the following 
families to be delayed and increase the possibility 
of becoming tardy. On the other hand, when a 
family is split several times, the number of setups 
increases thus reducing the productive time and 
hence may adversely affect the number of tardy 
products. This study attempts to find a balance 
between family splitting and meeting due date such 
that the total number of tardy products is minimized. 
As mentioned before, among the published papers 
in the literature, there is no work reported about 
Cell Loading and Family Scheduling subject to 
Individual Due Dates with group splitting allowed 
considering more than one manufacturing cell.

Case Study

This section describes the problem in depth. The 
following subsections explain the important fea-
tures of the problem.

Products

This problem was observed in a shoe manufactur-
ing plant. Products have five attributes; Gender, 
Size, Sole Type, Color, and Material. For shoes 
manufactured for men (Male (M)), there are 18 
different sizes, 2 sole types (Full Shot (FS), Mid 
Sole (MS)), 4 colors (Black (B), Dark Green 
(G), Honey (H), Nicotine (N)), and 3 materials 
(Polyurethane (PU), Polyvinyl chloride (PVC), 
Thermo Plastic Rubber (TPR)). For shoes manu-
factured for women (Female (F)), there are 13 
different sizes and the remaining attributes (Sole 
Types, Colors, and Materials) are similar to those 
of males. Besides these product types, there are 
also different upper designs that will be referred 
as models from now on. Each model will have 
its own identification designation (Model ID).

Figure 1. Family splitting not allowed vs. allowed
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Cells/Minicells

There are six manufacturing cells in the plant 
and they are independent from each other (ma-
chine sharing, and thus inter-cell transfers are 
not allowed). In the plant, every manufacturing 
cell includes Lasting Minicell, Rotary Molding 
Machine Minicell (RMMM), and Finishing/
Packing Minicell as shown in Figure 2. Lasting 
Minicells prepare the shoes for injection molding 
process. Rotary Molding Machine Minicells inject 
the materials into the molds. Finishing/Packing 
Minicells remove extra materials from the injected 
shoes, finish the shoes, and also pack the shoes.

Rotary Molding Machine

This study focuses only on scheduling Rotary 
Molding Machine Minicells (the bottleneck of 

the manufacturing cell). The Rotary Molding 
Machine has a capacity of six pair molds as shown 
in Figure 3. In Figure 2, P1 is the injection station 
where the material is injected inside the mold. P2, 
P3, P4, and P5 are the cooling off stations, so that 
worker can handle the shoes. P6 is the loading 
and unloading station that the worker removes 
the pair injected and cooled off, and then loads 
the new pair that will be injected in the injection 
station. The Rotary Molding Machine is rotated 
anti-clockwise, so it is rotated exactly one position 
at the end of every cycle time.

Injection time is defined as the time required 
for injecting the material inside the mold. The 
injection time is affected by the size of the shoe, 
i.e. larger shoe sizes need longer injection times, 
because the material injected by the Rotary Mold-
ing Machine per minute is constant. Because of 
the schedule of products in the specific cell, dif-

Figure 2. Manufacturing cells in the shoe manufacturing plant
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ferent sizes can be run in the Rotary Molding 
Machine at the same time. When this happens, 
the cycle time is set to the injection time of the 
biggest size (maximum injection time).

Product Families

A representation code is formed as “MC” to form 
and identify the product families. In the MC code 

form: M denotes the Material (PU: U, PVC: P, 
TPR: T), and C denotes the Color (Black: B, Dark 
Green: G, Honey: H, Nicotine: N). There are 12 
product families (= 4 colors * 3 material types) 
as shown in Figure 4.

In this study, all of the sizes of a specific order 
(with the same Model ID, Gender, Sole Type, 
Material, Color, and Due Date) is called a job. 
Different sizes of a job can have different demand. 

Figure 3. The rotary molding machine minicell

Figure 4. Structure of families
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All of the sizes included in a job are assumed to 
have the same due date. The reason for this is that 
the entire job will have to be shipped to the cus-
tomer all together.

Example: Family Formation

An example of customer orders that consists of 32 
jobs is presented in Table 1. From the customer 
orders in Table 1, the families can be obtained as 
shown in Table 2.

Table 1. An example of customer orders 

Job 
No.

Model 
ID Gender Sole Type Material Color Size Code

Total 
Demand

Due 
Date

1 K F FS TPR Black 5, 6, 7, …, 12 TB 269 10

2 U M FS PVC Dark Green 5, 6, 7, …, 15 PG 688 12

3 C M FS TPR Black 5, 6, 7, …, 15 TB 1045 22

4 C M FS TPR Black 5, 6, 7, …, 15 TB 208 11

5 L F MS PU Black 5, 6, 7, …, 12 UB 881 20

6 T M MS PU Black 5, 6, 7, …, 15 UB 831 17

7 T M MS PU Black 5, 6, 7, …, 15 UB 277 13

8 O F FS PVC Dark Green 5, 6, 7, …, 12 PG 250 15

9 E M FS PVC Dark Green 5, 6, 7, …, 15 PG 636 11

10 W M FS PVC Black 5, 6, 7, …, 15 PB 384 14

11 W M FS PVC Black 5, 6, 7, …, 15 PB 329 16

12 F F MS TPR Dark Green 5, 6, 7, …, 12 TG 440 17

13 F F MS TPR Dark Green 5, 6, 7, …, 12 TG 321 11

14 N F MS PU Black 5, 6, 7, …, 12 UB 355 14

15 N F MS PU Black 5, 6, 7, …, 12 UB 255 10

16 X M MS PVC Black 5, 6, 7, …, 15 PB 788 20

17 E F FS PVC Nicotine 5, 6, 7, …, 12 PN 574 16

18 E F FS PVC Nicotine 5, 6, 7, …, 12 PN 245 12

19 Y F FS PVC Honey 5, 6, 7, …, 12 PH 456 14

20 G M FS PVC Honey 5, 6, 7, …, 15 PH 345 13

21 G M FS PVC Honey 5, 6, 7, …, 15 PH 657 16

22 O M FS TPR Honey 5, 6, 7, …, 15 TH 234 11

23 M M FS PU Nicotine 5, 6, 7, …, 15 UN 621 16

24 W M FS TPR Nicotine 5, 6, 7, …, 15 TN 206 12

25 P F MS TPR Nicotine 5, 6, 7, …, 12 TN 657 17

26 P F MS TPR Nicotine 5, 6, 7, …, 12 TN 234 13

27 H F MS PU Dark Green 5, 6, 7, …, 12 UG 329 13

28 Z F MS PU Dark Green 5, 6, 7, …, 12 UG 574 15

29 L F MS PU Honey 5, 6, 7, …, 12 UH 116 10

30 J F MS PU Nicotine 5, 6, 7, …, 12 UH 432 14

31 V F MS TPR Honey 5, 6, 7, …, 12 TH 354 13

32 R F MS PU Nicotine 5, 6, 7, …, 12 UN 230 11
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Example: Possible Cases

This study focuses on assigning products to Rotary 
Molding Machine Minicells considering their 
families, i.e. cell loading. Family splitting among 
Minicells is allowed but job splitting is not. As 
an illustration of this, examples of the possible 
minicell loading cases are shown in Figure 4. The 
processing times of jobs in families F1, F5, and 
F12 are given in Table 3. While loading minicells, 
the families may not be divided as shown in Fig-
ure 5a, or families may be divided in the same 
minicell (like preemption) as shown in Figure 5b, 
or a family may be assigned to multiple minicells 
as shown in Figure 5c.

Other Issues

The molds used in the Rotary Molding Machine 
for injection molding vary by size, gender, and sole 
type. It is assumed that there is not any restriction 
on the availability of molds. Therefore, the same 
size pairs of a job can be run on all locations of the 
Rotary Molding Machine simultaneously. In this 
study, setup times between jobs in the same fam-
ily are assumed negligible. However, setup times 
(for material or color or both changes) between 

families is assumed to take 20 minutes. The jobs 
can be back-scheduled in the Lasting Minicells 
and forward-scheduled in the Finishing/Packing 
Minicells based on the schedule of Rotary Mold-
ing Machine Minicells. However, scheduling in 
Lasting Minicells and Finishing/Packing Minicells 
are not within the scope of this work.

PROPOSED SOLUTION 
TECHNIQUES

The Cell Loading and Family Scheduling problems 
introduced in this chapter involve constraints on 
the number of product families, individual due 
dates, machine capacity, and sequence-indepen-
dent setup times. This version of the problem is 
more difficult than the Classical Cell Loading and 
Group Scheduling problem. Both mathematical 
model and genetic algorithms approaches are 
proposed. The Mathematical Model guarantees 
the optimal solution, but it takes too much time 
to find the optimal solution. The Genetic Algo-
rithm is a much faster procedure, but it cannot 
guarantee the optimal solution. The performance 
of these two procedures is compared with re-
spect to execution time and the frequency of the 
optimal solutions. Genetic Algorithms Software 
Application (GASA) has been coded by using 
C# object-oriented programming language. The 

Table 2. Families for orders given in Table 1 

Family No. Jobs (due dates)

1 1 (10), 3 (22), 4 (11)

2 2 (12), 8 (15), 9 (11)

3 5 (20), 6 (17), 7 (13), 14 (14), 15 (10)

4 10 (14), 11(16), 16 (20)

5 12 (17), 13 (11)

6 17 (16), 18 (12)

7 19 (14), 20 (13), 21 (16)

8 22 (11), 31 (13)

9 23 (16), 32 (11)

10 24 (12), 25 (17), 26 (13)

11 27 (13), 28 (15)

12 29 (10), 30 (14)

Table 3. The processing times for examples of 
possible minicell loading cases 

Family No. Job No.
Processing Times 

(hrs)

F1

J1 3

J3 9

J4 2

F5
J12 5

J13 3

F12
J29 2

J30 4
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Mathematical Model is solved by using ILOG OPL 
5.5. The methodology introduced in chapter is not 
restricted to the case study discussed here and can 
directly be used in similar cellular environments.

Mathematical Model

The objective function is to minimize nT and it is 
given in Equation (1). Each job can be processed 
only once as shown in Equation (2). Equation (3) 
shows that each position in each cell can be as-
signed to at most one job. Equation (4) enforces 
jobs to be assigned consecutively in each cell. 
Equation (5) controls setup requirements. If the 
consecutive jobs are from different families, then 
this constraint adds setup between those consecu-
tive jobs. In Equations (6), (7.a) and (7.b), If-Then 

constraints are used to eliminate the nonlinearity 
in the model. Equation (6) checks if a position 
is occupied by a job. If so, Equations (7.a) and 
(7.b) calculate the completion time of the job in 
that position. Equation (8) determines the tardi-
ness value of a job. Equation (9) identifies if a 
job is tardy.

Notation

Indices:
i  Family index
j  Job index
k  Position index
m  Cell index

Parameters:
n  Number of jobs

Figure 5. Examples of possible minicell loading cases
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ni  Number of jobs in family i
f  Number of families
M  Number of cells
Pij  Process time of job j from family i
Dij  Due date of job j from family i
S  Setup Time
R  Very big number (larger than maximum 

possible tardiness value)
Decision Variables:

Ymk  0 if kth position in cell m is occupied, 
1 otherwise.

Xijmk  1 if job j from family i is assigned to 
the kth position in cell m, 0 otherwise.

Cmk  Completion time of the job in kth posi-
tion in cell m

Tmk  Tardiness value of the job in kth posi-
tion in cell m

Wmk  1 if setup is needed before the job in 
kth position in cell m, 0 otherwise.

nTmk  Coefficient for determining the tardi-
ness of the job in kth position in cell m. 
1 if the job which is assigned to the kth 
position in cell m is tardy, 0 otherwise.

Objective Function:

minZ nTmk
k
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for m=1,…,M, k=1,…,n

Tmk≤R*nTnk; for m=1,…,M, k=1,…,n (9)

Definition of Variables:

xijmk∈{0,1}; for i=1,...,f, j=1,...,ni, m=1,...,M, 
k=1,...,n

Wmk∈{0,1}; for m=1,…,M, k=1,…,n

nTmk∈{0,1}; for m=1,…,M, k=1,…,n

Ymk∈{0,1}; for m=1,…,M, k=1,…,n

Cmk≥0; for m=1,…,M, k=1,…,n

Tmk≥0; for m=1,…,M, k=1,…,n

Genetic Algorithm

First, the initial population of n chromosomes 
is formed randomly. Then, mating partners are 
determined using mating strategies to perform 
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crossover. The crossover and mutation operators 
are performed to generate offspring. For selecting 
the next generation, parents are added to the selec-
tion pool along with offspring. The next generation 
is selected from this pool based on their fitness 
function value. These steps are repeated until the 
number of the generations specified by the user is 
reached. Finally, the best chromosome obtained 
during the entire generations is determined as the 
final solution.

Chromosome Representation

The chromosome representation is used as an 
individual solution including genes corresponding 
to jobs. For each gene, the following representa-
tion code is used: (X, Y) where X denotes the Job 
Number and Y denotes the cell to which Job (X) is 
assigned. The sequence of genes in a chromosome 
also determines the sequence of jobs in the cells. 
As an illustration, an example is shown in Figure 
6 where Jobs 1 & 3 are assigned to the first cell 
and Jobs 4 & 2 are assigned to the second cell in 
the order stated.

Mating

Three different mating strategies are used to 
determine mating pairs; Random (R), Best-Best 
(B-B), and Best-Worst (B-W). The reproduction 
probabilities of the chromosomes are calculated 
according to their fitness function. The next step 
depends on the selected mating strategy.

If the Random Mating Strategy is selected, 
the mating pairs are determined randomly with 
respect to their reproduction probabilities by using 
Roulette Wheel approach. In this mating strategy, 
each chromosome and its randomly determined 
partner give one offspring. If the Best-Best Mating 
Strategy is selected, all chromosomes are ranked 
with respect to their reproduction probabilities in 
descending order. Then, the best chromosome is 
paired with the second best chromosome, the third 
chromosome paired with the fourth chromosome 
and so on. In addition, the first X% of the pairs 
produce 3 offspring, the next Y% of the pairs give 
2 offspring, and the last Z% of the pairs produce 
1 offspring. If the Best-Worst Mating Strategy is 
selected, all chromosomes are ranked with respect 
to their reproduction probabilities in descending 
order. Then, the best chromosome is paired with 
the worst chromosome; the second best chromo-
some is paired with the second worst chromosome 
and so on.

Crossover

Two different strategies are used to perform the 
crossover operation. Those crossover strategies 
are Position-Based Crossover (P-B) (Syswerda, 
1999) and Order Crossover (OX) Strategies (Da-
vis, 1985). The crossover operation is applied to 
the identified pairs with a probability of PC. The 
first parent is copied as the offspring if crossover 
is not performed. The crossover operator affects 
the sequence of jobs but not their cell assignment. 

Figure 6. A Chromosome representation for a 4-job and 2-cell problem
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In other words, the crossover is applied to the 
genes’ X element and not to Y element.

Mutation

Two steps are used in the mutation operator. 
The first one is used for job sequence and only 
Reciprocal Exchange (R-E) Mutation Strategy is 
used [(see Gen and Cheng (1997)]. The mutation 
for job sequence is performed with a probability 
of PMJ. The second step involves mutating cell 
assignments. In the mutation of cell assignments, 
two different mutation strategies are used, Ran-
dom (R), and Reciprocal Exchange Mutation. The 
mutation of the cell assignment is performed with 
a probability of PMC.

Selection

In this study, selection pool consists of all offspring 
and some of the parents. The next generation is 
selected from this pool. The selection from parents 
is a two-step process. First, the parents are ranked 
with respect to their reproduction probability in 
descending order. Then, the best PE% parents are 
directly selected to advance to the selection pool. 
Then, the remaining (100-PE)% chromosomes 
are selected from the parents randomly based 
on their reproduction probability using Roulette 
Wheel Selection.

Once the selection pool is identified, the 
chromosomes are ranked with respect to their 
reproduction probability and a final selection is 
made from this pool to generate the next gen-
eration. In some experiments, we also allowed a 
certain percentage of lowest performers (Pw%) 
to advance automatically to the next generation 
to avoid immature convergence of the population.

ANALYSIS OF RESULTS

The results are grouped in four sections. 1) Ge-
netic Algorithm Application, 2) Comparison of 

Mathematical Models with Genetic Algorithm, 3) 
Due Date Sensitivity Analysis, and 4) Setup Time 
Sensitivity Analysis. The experimental conditions 
are mentioned first and then the results obtained 
are discussed.

Data Sets Used

Nine data sets are used in the experimentation. 
The details of data sets are listed in Table 4. The 
data sets 1, 2, and 3 are realistic data sets obtained 
directly from the shoe manufacturing company. 
The data sets 4, 5, and 6 are relatively smaller 
data sets and they are generated from data sets 1, 
2, and 3, respectively for only one cell. Similarly, 
for multiple cells; smaller data sets 7, 8, and 9, are 
generated from data sets 1, 2, and 3, respectively, 
by reducing batch sizes and due dates.

Genetic Algorithm Application

In this experiment, data sets 1, 2, and 3 are used. 
Initially, default parameters that are given in Table 
5 are used. Then, the values of the GA parameters 
are changed one at a time in order to obtain better 
combinations. These parameters are listed in Table 
6. Ten replications are performed.

The best solution is 3 tardy jobs for all three 
data sets. The frequencies of the best solution as 
well as the average values for better combinations 
are given in Tables 7, 8 and 9. For data set 1, four 
combinations stood out as the best combinations. 
Combination 1 has the highest frequency of the 
best solution. However, there is no significant 
difference among them according to ANOVA test 
results (P=0.292> α-value=0.05). For data set 2, 
top six combinations are determined as given in 
Table 8. The combination 3 has the best fre-
quency among all combinations. Since there is 
significant difference between six combinations 
(P=0.008<alpha=0.05), Fisher Test is applied. The 
results show that combination 5 is significantly 
different (worst) than other five combinations. 
For data set 3, top six combinations are listed in 
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Table 9. Combination 2 has the largest frequency 
for the best solution. Since there is significant 
difference (P=0.034<α-value=0.05) between six 
top combinations, Fisher Test is applied. The 
results show that Combinations 1 and 2 are sig-
nificantly different than Combinations 5 and 6. 
Combination 3 and Combination 4 are also 
eliminated as they are not significantly different 
than Combinations 5 and 6.

Comparison of Mathematical Models 
and Genetic Algorithms

In this section, the results of the Mathematical 
Models are compared with the GA results for the 
modified data sets. The experimental conditions 

Table 4. Details of data sets 

Data Set Number of Families Number of Jobs Total Processing Time (minutes) Number of 
Cells

Available 
Production 
Capacity 

(minute/cell)

Data 1 12 41 6465 3 2400

Data 2 12 33 6603 3 2400

Data 3 12 44 7995 4 2400

Data 4 5 11 2015 1 2400

Data 5 9 12 2146 1 2400

Data 6 9 13 2077 1 2400

Data 7 6 20 3222 3 1200

Data 8 5 13 2283 3 800

Data 9 6 22 4060 4 1200

Table 5. The default parameters for GA 

Setup Time: 20 minutes

Population Size: 1000

Number of Generations: 1000

Elite Ratio: 0.2

Worst Ratio: 0.1

Crossover Probability: 1

Jobs Mutation Probability: 0.1

Cells Mutation Probability: 0.7

Mating Strategy: Random

Crossover Strategy: Position-Based

Mutation Strategy: Random

Table 6. Values of the parameters for GA 

PARAMETER VALUES

Elite Ratio: 0.2 0.1 0.3

Worst Ratio: 0.1 0 0.2 0.3

Crossover Probability: 1 0.7 0.5

Jobs Mutation Probability: 0.10 0.05 0.2

Cells Mutation Probability: 0.7 0.5 0.3

Mating Strategy: Random Best-Best Best-Worst

Crossover Strategy: Position-Based Order

Mutation Strategy: Random Exchange
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that are detailed in 1 are utilized in GA applica-
tion. The Mathematical Model solutions (optimal 
solutions) and GA solutions for data sets 4, 5, and 
6 are given in Table 10; for data sets 7, 8, and 9 
are given in Table 11.

GA found the optimal solution ten times out 
of ten replications for both one cell and multiple 
cells (except data set 7). For data sets 4, 5, and 6, 

Mathematical Model has a better execution time 
compared to GA (except data set 5) due to small 
problem size. When data sets 7, 8, and 9 are con-
sidered, the GA has significantly better execution 
time compared to the Mathematical Model. This 
is expected since as the problem size increases; 
the execution time of the Mathematical Model 
increases dramatically. The details of data set 8 

Table 7. The best combinations for data set 1 

Elite 
Ratio

Worst 
Ratio

Crossover 
Prob.

Jobs 
Mut. 
Prob.

Cells 
Mut. 
Prob.

Mating 
Strategy

Crossover 
Strategy

Mutation 
Strategy

Freq of 
Best 

Known 
Sol

Average 
nT

Comb. 1 0.3 0 1 0.05 0.7 B-W P-B R 4 3.7

Comb. 2 0.3 0 1 0.05 0.7 B-B P-B R 4 3.6

Comb. 3 0.3 0 1 0.05 0.7 B-W OX R 1 4.1

Comb. 4 0.3 0 1 0.05 0.7 B-B OX R 3 3.8

Table 8. The best combinations for data set 2 

Elite 
Ratio

Worst 
Ratio

Crossover 
Prob.

Jobs 
Mut. 
Prob.

Cells 
Mut. 
Prob.

Mating 
Strategy

Crossover 
Strategy

Mutation 
Strategy

Freq of 
Best 

Known 
Sol

Average 
nT

Comb. 1 0.1 0 0.7 0.05 0.5 R P-B R 7 3.3

Comb. 2 0.1 0 0.7 0.05 0.5 B-B P-B R 7 3.3

Comb. 3 0.1 0 0.7 0.05 0.5 B-W P-B R 8 3.2

Comb. 4 0.1 0 0.7 0.05 0.5 R OX R 6 3.4

Comb. 5 0.1 0 0.7 0.05 0.5 B-B OX R 1 4

Comb. 6 0.1 0 0.7 0.05 0.5 B-W OX R 5 3.5

Table 9. The best combinations for data set 3 

Elite 
Ratio

Worst 
Ratio

Crossover 
Prob.

Jobs 
Mut. 
Prob.

Cells 
Mut. 
Prob.

Mating 
Strategy

Crossover 
Strategy

Mutation 
Strategy

Frequency 
of Best 
Known 
Solution

Average 
nT

Comb. 1 0.3 0 0.7 0.05 0.5 R P-B R 4 3.7

Comb. 2 0.3 0 0.7 0.05 0.5 B-B P-B R 5 3.7

Comb. 3 0.3 0 0.7 0.05 0.5 B-W P-B R 1 4.2

Comb. 4 0.3 0 0.7 0.05 0.5 R OX R 0 4.2

Comb. 5 0.3 0 0.7 0.05 0.5 B-B OX R 0 4.4

Comb. 6 0.3 0 0.7 0.05 0.5 B-W OX R 0 4.5
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and corresponding Gantt chart for the mathemat-
ical model results are given in Appendix for il-
lustration purposes.

Due Date Sensitivity Analysis

For due date sensitivity analysis, data set 1 is used. 
Combination 4 is selected as the parameters of GA 
to perform this experiment. In this experiment, 
due date sets of loose (Loose 1), looser (Loose 2), 
tight (Tight 1), and tighter (Tight 2) are generated 
in addition to the original due date set (Medium). 
The cumulative probabilities of those due date sets 
are given in Table 12. The results of ten replica-

tions for the due date sets are given in Table 13. 
As expected, the number of tardy jobs increased 
as due dates got reduced.

Setup Time Sensitivity Analysis

The set up times varied from 0 to 100 for data set 1. 
Similarly, Combination 4 parameters were used in 

Table 10. The optimal solutions and GA results for minimizing nT for one cell 

Data Set

Math Model 
Result (Opt. 

Sol.)
Decision 
Variable Constraints

Math Model 
Execution Time 

(hr:min:sec)

Optimal 
Frequency for 

GA (x/10)

GA Execution 
Time 

(hr:min:sec)

Data 4 2 166 106 00:00:02 10 00:00:53

Data 5 3 193 160 00:04:56 10 00:00:57

Data 6 1 222 174 00:00:16 10 00:01:04

Table 11. The optimal solutions and GA results for minimizing nT for multiple cells 

Data Set

Math Model 
Result (Opt. 

Sol.)
Decision 
Variable Constraints

Math Model 
Execution Time 

(hr:min:sec)

Optimal 
Frequency 

for GA (x/10)

GA Execution 
Time 

(hr:min:sec)

Average 
of GA 

Results 
(nT)

Data 7 2 1499 720 56:01:00 2 00:01:52 2.8

Data 8 4 701 425 16:21:17 10 00:01:03 4

Data 9 2 2374 1051 05:54:40 10 00:01:49 2

Table 12. The cumulative probabilities of different 
due date sets 

Due Date 
(min.) 480 960 1440 1920 2400

Loose 2 0 0 0.33 0.67 1

Loose 1 0 0.25 0.5 0.75 1

Medium 0.2 0.4 0.6 0.8 1

Tight 1 0.25 0.5 0.75 1 0

Tight 2 0.33 0.67 1 0 0

Table 13. The nT results of GA for different due 
date sets 

DUE DATE

Replications
Loose 

2
Loose 

1 Medium
Tight 

1
Tight 

2

1 0 0 3 6 13

2 0 0 4 7 14

3 0 0 4 8 13

4 0 0 3 6 13

5 0 0 3 6 14

6 0 0 4 7 13

7 0 1 4 7 13

8 0 0 5 7 13

9 0 0 5 7 13

10 0 0 3 6 13
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this experiment. The results of GA for the various 
setup times are given in Table 14. The number of 
tardy jobs increased as the setup time increased. 
This was expected, however, in some cases setup 
times doubled (from 5 minutes to 10 minutes; from 
10 min to 20 min; from 20 min to 40 min) but 
number of tardy jobs increased only by one. On 
the other hand, when setup time increased from 
40 minutes to 80 minutes, the number of tardy 
jobs increased by three. This shows that system 
can tolerate increase in setup times to a certain 
extent, beyond which its impact will be bigger.

CONCLUSION AND FUTURE WORK

In the problem studied in this chapter, every job 
has individual due dates even the ones in the same 
family. This property of the problem completely 
separates this study from other cellular manufac-
turing scheduling problems. The reason of this 
complexity is because of the natural conflict 
between meeting due dates of jobs and reducing 
total setup times. If the entire family is scheduled 
together, then the total setup time is at minimum. 
But, the jobs in the consecutive families may be 
forced to be postponed and probably become 

tardy. In contrast, splitting a family several times 
may increase the number of setups which reduce 
the productive time, and finally have an adverse 
effect on the number of tardy jobs.

The Mathematical Model is one of the solution 
techniques which guarantee to find the optimal 
solution. It is not practical to solve larger prob-
lems using the mathematical models because of 
the complexity. As a result, there is a need to use 
other approaches to solve such problems. We 
proposed and used Genetic Algorithm approach 
in this Chapter.

Genetic Algorithms found the optimal solu-
tion in all problems with varying frequency. The 
execution time of Mathematical Model was rea-
sonable only for small problem sizes. GA clearly 
outperformed Mathematical Model with respect 
to execution times.

The results showed that family splitting oc-
curred in all multi-cell problems. Due to limited 
space, we presented only one in this chapter. The 
occurrence of family splitting in these problems 
show us that the system used the feature of family 
splitting since it was beneficial in terms of reduc-
ing the number of tardy jobs. Another conclusion 
that can be drawn is that the impact of setup times 
and due dates on the system performance was as 
expected.

We are planning to extend this work to 
sequence-dependent setup times in the future 
and also use other metata-heuristic techniques. 
This work can also be extended to include other 
performance measures and job-splitting option.
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APPENDIX

Optimal Solution for Data Set 8

Table 15. Data Set 8 

Job Number Family No Processing Time Due Date

0 PB 151.324 800

1 PB 171.471 800

2 PB 295.684 480

3 PG 116.815 160

4 PG 133.081 160

5 PH 122.016 640

6 PH 232.978 160

7 PH 87.392 800

8 PN 221.099 160

9 PN 226.336 160

10 PN 248.412 320

11 TB 127.47 800

12 TB 148.891 160

Figure 7. Gantt chart for the optimal solution for data set 8
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INTRODUCTION

Companies around the world are continuously 
striving to reduce wastes (Womack & Jones, 1996) 
and improve their operations in an effort to reduce 

their operating costs. With advances in logistics 
and distribution, companies are no longer restricted 
to a geographic region for their market resulting 
in increased competition. Shrinking product life-
cycles, and increasing global competition make 
it imperative to be able to strike the proverbial 
iron while it is hot. Companies have to introduce 

Arun N. Nambiar
California State University, USA

Aleksey Imaev
Ohio University, USA

Robert P. Judd
Ohio University, USA

Hector J. Carlo
University of Puerto Rico - Mayaguez, Puerto Rico

Production Planning Models 
using Max-Plus Algebra

ABSTRACT

The chapter presents a novel building block approach to developing models of manufacturing systems. 
The approach is based on max-plus algebra. Within this algebra, manufacturing schedules are mod-
eled as a set of coupled linear equations. These equations are solved to find performance metrics such 
as the make span. The chapter develops a generic modeling block with three inputs and three outputs. 
It is shown that this structure can model any manufacturing system. It is also shown that the structure 
is hierarchical, that is, a set of blocks can be reduced to a single block with the same three inputs and 
three output structure. Basic building blocks, like machining operations, assembly, and buffering are 
derived. Job shop, flow shop, and cellular system applications are given. Extensions of the theory to 
buffer allocation and stochastic systems are also outlined. Finally, several numerical examples are given 
throughout the development of the theory.
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new products that cater to the changing needs 
of consumers as quickly as possible (Anderson, 
1997). Lead times assume increased importance 
and as a result production planning and schedul-
ing becomes critical.

Often times, a company has a plethora of 
products that it offers to consumers. However, 
this compounds the scheduling problem as the 
company needs to determine how much of each 
product to make and how best to utilize the limited 
available resources to achieve these production 
targets. Researchers have developed exact and 
approximate solutions the various types of sched-
uling problems commonly encountered in the real 
world. Exact solutions range from exhaustive 
enumeration (Morton & Pentico, 1993; Temiz 
& Erol, 2003) and branch-and-bound techniques 
(Carlier & Rebai, 1996; Ladhari & Haouari, 2005) 
to linear programming models (Pinedo, 1995). 
Approximation methods (Hall, 1998; Sviridenko, 
2004) include heuristic approaches such as genetic 
algorithm (GA) (Goldberg, 1989; Rajendran & 
Chaudhuri, 1992; Chen et al, 1995; Tang & Liu, 
2002; Ravindran et al, 2005), simulated annealing 
(SA) (Osman & Potts, 1989; Ogbu & Smith, 1990; 
Ogbu & Smith, 1991; Ishibuchi et al 1995;Chakra-
varthy & Rajendran, 1999) and more recently ant 
colony optimization (ACO (Maniezzo & Carbon-
aro, 2001; Shyu et al, 2004; Ying & Liao, 2004; 
Rajendran & Ziegler, 2004; Rajendran & Ziegler, 
2005) to name a few. Exact solutions tend to be 
time-consuming and computationally exhaustive.

This chapter will delve into the basics of 
max-plus algebra and its properties. It will then 
explore literature available in the areas of flow-
shop scheduling, stochastic scheduling, assembly 
line balancing, and max-plus algebra. Specific 
models for flow-shops with and without buffers, 
batch processing, and assembly lines will be 
discussed. Finally, the chapter will identify other 
potential areas where max-plus algebra can be 
used to develop efficient schedules.

MAX-PLUS ALGEBRA

This algebra (The notations used and the concepts 
given here have been adapted from (Heidergott, 
2006)) has two main operators viz. the max op-
erator (maximization) which is denoted by the 
symbol ⊕ and the plus operator (addition) which 
is denoted by the symbol ⊗. The operators are 
defined as shown in Equations (1) and (2).

x y x y x y
max

⊕ ∀ ∈= ( , ) ,max   (1)

x y x y x y
max

⊗ + ∀ ∈= ,   (2)

where 
max

 is the union of the set of real numbers 
and the zero element of max-plus algebra, ε=-∞, 
i.e.  

max
= ∪ ε . For example

1⊕2=max(1,2)=2

1⊗2=1+2=3

The zero element and the unit element in 
max-plus algebra are -∞ and 0, and are denoted 
by εand e, respectively. This is shown in Equa-
tions (3) and (4).

x x x
max

⊕ ∀ ∈ε =   (3)

x e x x
max

⊗ ∀ ∈=   (4)

For example,

1⊕ε=max(1,-∞)=1

1⊗e=1+0=1

Further, we also have Equations (5) and (6)

x x
max

⊗ ∀ ∈ε ε=   (5)
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x e x x
max

⊕ ∀ ∈=   (6)

It is clear that the commutative, associative, 
and distributive properties hold in max-plus.

LITERATURE REVIEW

Manufacturing systems can be grouped into 3 
main categories viz. flow-shop, job-shop and 
open-shop (Baker, 1974). Uni-directional flow 
of parts is an important characteristic of flow-
shops where all parts move in the same direction 
through a sequence of machines. In a job-shop, 
the parts do not flow in the same direction, i.e. 
the sequence of machines visited by each part 
can be different. In an open-shop, the operations 
on a part may be performed in any particular or-
der as long as they are all completed. There are 
numerous variations of these three basic types of 
manufacturing systems. In a cyclic system, a set 
of parts are repeatedly processed on the machines 
in a sequence. The figure on the left in Figure 1 
shows the flow of parts when 250 units of each of 
the 3 part types are required. This is also known 

as batch processing. The figure on the right in 
Figure 1 shows a different flow of parts in the 
same setting. This is cyclic flow where the basic 
sequence A-B-C is repeated 250 times to achieve 
the production target. This can be extended to an 
uneven distribution of parts as well as shown in 
Figure 2.

With the increasing popularity of lean prin-
ciples (Womack and Jones, 1996) mass custom-
ization (Pine, 1993) and agile manufacturing 
(Anderson, 1997) concepts, reducing all forms of 
wastes is becoming one of the top priorities for 
manufacturing companies worldwide. Taiichi 
Ohno (1988) classifies wastes into seven broad 
categories viz. overproduction, waiting, transport, 
processing, inventory, motion, and defects. Using 
a smooth and continuous flow of parts as shown 
in Figure 1 and 2 helps reduce overproduction, 
idle times (waiting) and inventory.

Flow-Shop Scheduling

In a permutation flow-shop, the parts are processed 
in a cyclic sequence and the sequence of parts on 
all the machines is the same. Scheduling for such a 
system is known to be a NP-hard problem (Pinedo, 

Figure 1. Flow of parts for uniform distribution

Figure 2. Flow of parts for non-uniform distribution
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1995). Numerous enumerative techniques (Morton 
& Pentico, 1993; Carlier & Rebai, 1996; Temiz & 
Erol, 2004; Ladhari & Haouari, 2005), approxima-
tion algorithms (Hall, 1998; Sviridenko, 2004), 
heuristics such as genetic algorithms (Goldberg, 
1989; Rajendran & Chaudhuri, 1992; Chen et al, 
1995; Tang & Liu, 2002; Ravindran et al, 2005), 
simulated annealing (Osman & Potts, 1989; Ogbu 
& Smith, 1990; Ogbu & Smith, 1991; Ishibuchi 
et al 1995;Chakravarthy & Rajendran, 1999) and 
neural networks (Sabuncuoglu & Gurgun, 1996; 
Sabuncuoglu, 1998; Akyol, 2004; El-Bouri et al, 
2005; Tang et al, 2005) have been developed. The 
main thrust among research (McCormick, 1989a; 
Matsuo, 1990; Roundy, 1992; Chauvet, 2003) in 
cyclic scheduling systems has been for systems 
with buffers. Later in this chapter, we develop a 
mathematical model for permutation flow-shops 
without buffers.

Stochastic Scheduling

Manufacturing systems are seldom static in nature. 
There tends to be significant variability such as 
machine availability, processing times, transporta-
tion times, etc. In this work, our focus is primarily 
on the processing time variability. In general, it 
has been found that stochastic scheduling for 
permutation flow-shop scheduling is NP-hard 
(Wang et al 2005). There are many different ap-
proaches developed in literature which focus on 
various subsets of the generic problem. Pinedo 
(2007) considers a single-machine scheduling 
problem with probabilistic processing times. 
However, Pinedo focuses primarily on batch 
processing and minimizes makespan. Gang et al. 
(2007) minimize the total completion times for 
an online scheduling problem where the release 
times and the processing times are unknown. 
The authors conclude that a non-delay algorithm 
provides good performance. Wang et al. (2006) 
minimize makespan for permutation flow shops 
with stochastic processing times. The authors use 
expected makespan as the performance measure.

Lee et al. (2005) analyze cyclic flow lines with 
intermediate buffers and stochastic processing 
times using a Markovian model. Karabati et al. 
(1998) investigate stochastic cyclic flow lines 
with synchronous transfers from one stage to 
another. Sung et al. (2003) develop an algebraic 
model to minimize the number of late jobs for a 
single-machine scheduling problem with uncertain 
processing times. Kouvelis et al. (2000) look into 
the two-machine flow-shop scheduling problem 
with uncertain processing times. Rao et al. (1999) 
present an algebraic approach to estimate the 
performance measures for cyclic systems with 
stochastic processing times. Other approaches 
to model the stochastic behavior include genetic 
algorithms (Wang et al 2005), mathematical pro-
gramming (Balasubramanian & Grossmann, 
2002), simulation-based algorithms (Honkomp, 
1999). We use the mathematical model developed 
in this chapter to compare cycle times for stochas-
tic systems using average processing times with 
the average cycle time obtained by exhaustively 
iterating through every possible combination of 
processing time values for a given range later in 
this chapter.

Assembly Lines

The concept of assembly lines was introduced 
by Henry Ford (1922). Single Model Assembly 
Line Balancing (SALBP) has been addressed in 
(Baybars, 1986; Ghosh & Gagnon,1989; Scholl 
& Klein, 1999; Becker & Scholl, 2006; Scholl & 
Becker, 2006; Sabuncuoglu et al, 2009). However, 
customers are no longer happy with a single model. 
Thus, mixed-model assembly line balancing, 
where multiple models are produced on the same 
assembly line, has been gaining more and more 
importance. Boysen et al. (2006, 2007, 2009a, 
2009b) provide a classification schema for the 
mixed-model assembly line balancing problem.

Exact approaches such as branch-and-bound 
(Bukchin & Rabinowitch, 2006), goal program-
ming (Choi, 2009) and heuristic approaches such 
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as GA (Khoo & Loi, 2002; Ponnambalam et al 
2000; Sabuncuoglu, 2000; Ying et al, 2009), and 
ACO (McMullen & Tarasewich, 2003) have 
been developed for assembly line balancing. 
Throughput assessment (Dhouib et al, 2009) and 
performance measures (Venkatesh & Dabade, 
2008) for mixed model assembly lines have also 
been investigated.

Task assignment is one of the most significant 
aspects in assembly line balancing problem. Scholl 
et al. (2010) apply various restrictions on task as-
signment to the simple assembly line balancing 
problem where a single product is produced in 
large quantities. The authors explore restrictions 
such as zoning constraints, resource restrictions 
and distance restrictions. In an assembly line, since 
the workers perform the same task over and over 
again, this tends to impact the processing times 
for the various tasks. Toksari et al. (2010) propose 
an integer programming model for a simple as-
sembly line balancing problem with deteriorating 
processing times. There could be inherent vari-
ability (Mirzapour et al, 2009; Weida & Xiao, 
2008) in the task durations too. The sequence of 
parts processed in an assembly line also has a 
significant impact on the throughput of the line. 
Optimization procedures based on beam-search 
methods (Sabuncuoglu et al 2008) and heuristics 
based on simulated annealing (Fattehi & Salehi, 
2009) and genetic algorithm (Cao & Ma, 2008) 
have been proposed to determine the sequence that 
minimizes the total idle costs. Battini et al. (2009) 
consider the same problem with finite buffers. The 
authors propose a branch-and-bound method to 
improve the performance of the assembly while 
minimizing the buffer capacity.

Assembly lines can also be classified into 
single-sided where the assembly operation takes 
place only on one side of the line and two-sided 
(Ozcan & Toklu, 2009a) where assembly operation 
might take place on either side of the assembly 
line. Integer programming models (Ozcan & 
Toklu, 2009a) and fuzzy goal programming mod-
els (Ozcan & Toklu, 2009b) have been proposed 

to solve the two-sided assembly line balancing 
problem. These have also been combined with 
heuristic approaches such as simulated annealing 
(Ozcan, 2010). Another variation of assembly 
lines is parallel workspaces (Becker & Scholl, 
2009) where multiple workers perform multiple 
tasks simultaneously on a single part such as cars 
and trucks. Team-oriented (Cevikan et al, 2009) 
assembly lines is another possible variation. 
We modify the mathematical model developed 
in this chapter for the mixed-model assembly 
line balancing problem. This allows us to obtain 
optimal or near-optimal solutions to sufficiently 
large problems.

Max-Plus Algebra

Max-plus algebra has been used for discrete-event 
systems (Imaev & Judd, 2008, van den Boom & 
De Schutter, 2001a; van den Boom & De Schut-
ter, 2001b; De Schutter & van den Boom, 2000; 
Takahashi et al, 2009) and event-graph modeling 
(Bacelli et al, 1999). It has also been applied to 
model railway network systems (Heidergott et al, 
2006; Heidergott, 2006) for capacity assessment 
and delay estimation, shipbuilding lines (Hiroyuki 
et al, 2009), response time over ethernet (Addad & 
Amari, 2008), distributed computing for telecom-
munications (Nejad et al, 2009), robotic motion 
control (Lopez et al, 2009), performance analysis 
of public transport systems (Nait-Sidi-Moh et al, 
2002). Max-plus algebra has been used to model 
manufacturing systems such as flow-shops (Nam-
biar & Judd, 2007; Nambiar & Judd, 2010; Gorji 
et al, 2007), reconfigurable cells (Zhu et al, 2004), 
lot-delivery in supply chains (Elmahi et al, 2004) 
and assembly lines (Carlo & Nambiar, 2008).

THE MATHEMATICAL MODEL

Block diagrams, such as state space block diagrams 
and transfer function block diagrams, are widely 
used in control theory to model the behavior of 
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continuous-time systems. A transfer function 
block diagram has four basic elements: block, 
line segment, pick-off point and summing node. 
A block may model a controller, a sensor, or a 
whole plant. In a block diagram external input 
and output variables are connected to blocks by 
connection lines. An output of a block may also 
be connected to an input of another block. The 
interconnection of components (blocks) can be 
found by following the paths of signal flow along 
the connecting lines. One of the advantages of the 
transfer function representation is the simplicity 
of the algebraic relations between the subsystem 
transfer functions.

This section presents the block diagram type of 
model for deterministic manufacturing systems. A 
block can be a machine queue, a part, a manufac-
turing cell or a factory. Each block has the same 
input-output structure with three inputs and three 
outputs. The blocks in the block diagram are inter-
connected through a) part-flow interconnections, 
which specify flow of parts through the diagram, 
and b) resource-flow interconnections, which 
specify flow of resources through the diagram. The 
model is hierarchical -- it is shown how a network 
of blocks can be combined into one block that has 
the same input-output structure. Mathematically, 
the model is described by a set of simultaneous 
linear equations in max-plus algebra. Theoretical 
knowledge in max-plus algebra attained over the 
past several decades provides basis for analysis, 
design and control of manufacturing systems.

Manufacturing Block

Consider a manufacturing system. In order to 
operate, the system requires a set of parts and a 
set of resources. After the system is done with the 
parts and the resources, they are released by the 
system. Let m denote an ordered set of system’s 
resources, such as machines, buffers, etc. Let nin be 
the ordered set of parts that enter the system and let 
nout be the ordered set of parts that leave the system. 
The order of elements in either m, nin or nout can 

be chosen arbitrary. Let │x│ denote the size, or 
number of elements in the vector or set x. Then for 
k∈{1,2,…,│m│}, let [m]k denote the k-th resource 
in the set m. Similarly, for i∈{1,2,..,│nin│} and 
j∈{1,2,…,│nout│}, let [nin]i and [nout]j denote the 
i-th part in nin and j-th part in nout, respectively. If 
the manufacturing process involves part assembly 
or disassembly then nin≠nout, since during assembly 
several parts are needed to create a new part and 
during disassembly a single part is disassembled 
into several new parts. If there are no assembly 
and disassembly machines in the system then we 
can set nin=nout=n.

The system can be modeled by a block with 
three inputs and three outputs. The inputs u, v 
and w are defined as

• [u]i is the time when part [nin]i becomes 
available for the system;

• [v]j is the time when part [nout]j is removed 
from the system;

• [w]k is the time when resource [m]k be-
comes available for the system.

The outputs x, y and z are defined as

• [x]j is the time when part [nout]j is ready to 
leave the system;

• [y]i is the time when part [nin]i actually en-
ters the system;

• [z]k is the time when resource [m]k is “set 
free” by the system.

It can be seen that input and output variables are 
defined with respect to m, nin and nout. In particular, 
m is associated with w, z; nin is associated with 
u, y; and nout is associated with x and v.

It is assumed that the system is deterministic, 
i.e. the routing of parts through the resources, the 
processing order of parts on the resources and the 
processing times of parts on the resources are 
known and fixed. Then its output can be described 
in terms of its input by the following equation in 
the max-plus algebra
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where F is a matrix that describes input-output 
relation -- it is called the system matrix.

The model provides an abstraction of any 
deterministic manufacturing system by means 
of block diagram having three inputs and three 
outputs and system matrix Fas shown in Figure 3.

The matrix F and m, nin, nout completely de-
scribe the model, since variables u, v, w, x, y, z 
are defined with respect to m, nin and nout. Hence, 
the model S is denoted by a 4-tuple

S=(F, m, nin, nout).  (8)

A block shown in Figure 3b illustrates flow 
of parts and resources through the model. The 
block has two inputs and two outputs. It does not 
contain information about timing behavior of the 
system. This block can be used instead of the block 
shown in Figure 3a in the case when we are only 
interested in flow of parts and resources through 
a network of manufacturing blocks.

Composition of Blocks

Let Sc be a system composed from a set of M 
manufacturing subsystems {S1, S2, …,, SM}. Let 
mc, nc

in , n
c
out be ordered sets of resources and parts 

associated with Sc. Let the inputs and the outputs 
of Sc, namely uc, vc, wc and xc, yc, zc, be defined 
with respect to mc, nc

in , n
c
out .

Each subsystem Si is represented by an equa-
tion of the form (9) or, specifically,
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for i∈1,2,…,M.
The subsystems S1,S2,…,SM-- all share the 

system’s parts and resources. It is assumed that 
there are no delays associated with transportation 
of parts or resources from Si to Sj-- rather these 
delays can always be modeled by an appropriate 
manufacturing block or as part of Si or Sj.

An example illustrating routing of parts and 
resources through subsystems is given in Figure 
4. The blocks in the diagram have the form shown 
in Figure 3b. There are 4 parts {n1, n2, n3, n4} and 
3 resources {m1, m2, m3}. The labeled arrows that 

Figure 3. Block representation of a manufacturing system: (a) describes block representation of a manu-
facturing system; and, (b) illustrates flow of parts and resources through the block
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interconnect the blocks in the diagram indicate 
flow of parts and resources through the subsys-
tems. Note that m=[m1m2m3]

T, nin=[n1n2n3]
T and 

nout=[n1n4]
T. It can be seen that S3 is an assembly 

operation, in which parts n2 and n3 are assembled 

by m3 to create a new part n4. Since there is an as-
sembly operation in the system, we have nin≠nout.

Consider part n which enters system Si from 
an upstream system Sj.  Suppose that 
n

j
out

l i
in
k

= [ ] = [ ]n n , where indexes l and k point 

Figure 4. Interconnection of manufacturing blocks. An illustrative example.

Figure 5. Interconnection of blocks: (a) part-flow interconnection and (b) machine-flow interconnection
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to the location of n in n
j
out and n

i
in , respectively. 

It is said that [ ]n
j
out

l
is routed to [ ]n

i
in
k

, which is 
denoted by [ ] [ ]n n

j
out

l i
in
k

→ . Since n becomes 
available to Si at the time instance when it is ready 
to leave Sj, we have [ui]k=[xj]l. In addition, the 
part n is removed from Sj when n enters SiSi , 
therefore [vj]l=[yi]k, as shown in Figure 5a.

Likewise, consider a resource m, which is 
first used by Sj and then it is used by Si. Suppose 
that m=[mj]l=[mi]k, where l and k point to the 
location of m in mj and mi, respectively. It is said 
that [mj]l is routed to [mi]k, which is denoted by 
[mj]l→[mi]k. Resource m is available to Si after 
Sj is done using m, therefore [wi]k=[zj]l, as shown 
in Figure 5b.

It follows that flow of parts through manufac-
turing sub-systems is represented by horizontal 
interconnections (e.g., Figure 5a). We will refer 
to this type of interconnections as part-flow 
interconnections. Likewise, flow of resources 
through manufacturing sub-systems is represented 
by vertical interconnections (e.g., Figure 5b). 
We will refer to this type of interconnections as 
resource-flow interconnections.

Routing of parts and resources through the 
diagram is mathematically represented by means 
of part-flow and resource-flow interconnection 
matrices. Define
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Resource-flow interconnection matrices are 
defined as
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Part-flow interconnection matrices are defined 
as
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Similarly define x , y and z . Let
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and similarly define F
xv

, F
xw

, F
yu

, etc. Then
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From the definition of the interconnection 
matrices it follows that
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and the outputs of Sc can be expressed as
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Equations (10), (11) and (12) describe block 
diagram shown in Figure 5 and they can be used 
to find the system matrix Fc.

Equation (11) can be rewritten as
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likewise, equation (12) can be written as
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Substituting (10) into (13) we obtain

Figure 6. Composition of blocks
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It follows that
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and finally, substituting (16) into (14) we get
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Equation (17) gives general expression for the 
system matrix for Sc. This proves that any com-
position of systems represented by (7) results in 
a system that is also represented by (7).

Sometimes instead of explicitly specifying vc 
it is assumed that jobs are removed from the 
system as soon as they are ready to leave the 
system. In other words machines are never blocked 
from outside of the system. Then v x R x

c c out
= =   

and we have
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which can be written as
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Combining (10), (14) and (19) and after some 
algebraic manipulation it follows that
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Example

Consider a network of three manufacturing blocks, 
namely
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Consider a network of blocks comprising of a 
composite manufacturing block defined by
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Flow of parts and resources through the net-
work is given by interconnection diagram in Figure 
4. The goal is to find part-flow and resource-flow 
interconnection matrices.

We have
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From the interconnection diagram in Figure 
4 and using Figure 7 as a guide it follows that
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BASIC BLOCKS

In this chapter timing models of basic manufactur-
ing blocks are presented, namely the models of

1.  single resource manufacturing a part;

Figure 7. Obtaining Q and R from Figure 4
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2.  assembly block;
3.  disassembly block;
4.  buffer models; and
5.  machines with a buffer attached.

All models share the generic structure de-
scribed by (7) with three inputs and three outputs. 
These blocks can then be used to build larger cells 
and manufacturing systems.

Single Machine Processing 
Single Part

Consider machine m processing part n. Let t be 
processing time of n on m. Suppose that the sys-
tem is modeled by using equation of the form (7) 
having inputs u, v, w and outputs x, y, z, which 
are all scalars because there is only one resource 
and one part.

The part n enters the system as soon as both 
m and n are available, therefore

y=u⊕w.

The part is ready to leave the system as soon 
as its processing is done on the machine, therefore

x=t(u⊕w).

The machine is “set free” by the system as 
soon as n is removed from the system, therefore

z=v.

Thus, we have
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Block diagram model of the system is provided 
in Figure 8.

Assembly Machine

An assembly machine takes several input parts 
nin and produces a single new part nout=n as its 
output. Suppose that the system is modeled by 
using equation of the form (7) having inputs u, v, 
w and outputs x, y, z. Let t be the assembly time. 
The block diagram of the assembly machine is 
provided in Figure 9.

Since the assembly machine needs to wait for 
all the required parts before it can start processing 
parts, we have

Figure 8. Model of a single machine manufacturing a single part
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u=[u]1⊕[u]2⊕…⊕[u]N=Yu,

y=YTy,

where Y=[e e … e].
Then the model is described by the following 

equation
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Disassembly Machine

Disassembly machine takes one part nin=n and 
outputs several parts nout. Suppose that the sys-
tem is modeled by using equation of the form 
(7) having inputs u, v, w and outputs x, y, z. Let t 
be disassembly time. The model of disassembly 
machine is shown in Figure 10.

After the disassembly process all the output 
parts are ready to leave the system at the same 
time, therefore

Figure 9. Model of an assembly machine

Figure 10. Model of a disassembly machine
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x=YTx

v=Yv

The model is described by
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Buffer Models

McCormick et al. (1989b) show that a buffer of 
unit capacity can be represented by a resource 
having zero processing time for jobs that enter 
the buffer. Therefore for buffer of unit capacity 
(21) becomes

x

y

z

e e

e e

e

u

v

w





























































=

ε
ε

ε ε
,,  (24)

because t=e. Block diagram representation of (24) 
is provided in Figure 11a.

Consider random access buffer with unlimited 
capacity for storing parts. The buffer is always 
available to accept parts because of its unlimited 
capacity, therefore w=ε and z=ε. The part enters 
the buffer as soon as it becomes available to the 

buffer, hence y=u. Also, the part is ready to leave 
the buffer as soon as it entered the buffer, and 
therefore x=y=u. Hence,
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Block diagram representation of the model is 
shown in Figure 11b.

Machine With a Buffer

A machine preceded by an unlimited buffer can 
be represented by the block diagram shown in 
Figure 12, which can be reduced to the block 
diagram shown in Figure 13. This model is useful 
to model machines in cellular manufacture and 
job shops where parts are buffered before entering 
a machine. Then, the system is described by the 
following equation
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Figure 11. Buffer models
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JOB SHOP EXAMPLE

Consider the job shop system shown in Figure 14 
with 3 machines, m1, m2 and m3, and 3 parts, n1, 
n2 and n3. The order in which part ni, where 
i∈{1,2,3}, is processed on machines is given by 
m
n
i
. The order of parts processed on machine 

mi, where i∈{1,2,3}, is given by n
m
i
. In this 

example we have
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The configuration of the job shop is graphi-
cally illustrated in a routing diagram in Figure 14. 
In the diagram, horizontal connections describe 
routes of parts through the machines. For example, 
it can be seen that part n1 is first processed by m1 
and then by m2 and therefore m

n
m m

1
1 2

= 

 . 

Figure 12. Machine with an infinite buffer in front of it processing a part (detailed block diagram)

Figure 13. Machine with an infinite buffer in front of it processing a part (Reduced block diagram)
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Vertical connections describe order in which parts 
are processed on machines. For example, it can 
be seen that order of parts on machine m2 is n1 
followed by n3, hence n

m
n n

2
1 3

= 

 . Each node 

Si for i∈{1,2,…,6} represents an operation. For 
example, S3 models an operation corresponding 
to m1 processing n2. It is assumed that the machines 
are never blocked, i.e. there is sufficient buffer 
storage in front of every machine. Therefore Si is 
modeled by Equation (26).

Let ti is processing time for operation Si, where 
t1=3, t2=2, t3=2, t4=3, t5=2, and t6=1. A detailed 
block diagram of the system is shown in Figure 15.

We have
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It is assumed that the system is not blocked 
from the outside, i.e. vc=xc. The whole system, 
i.e., the job shop, is modeled by

S
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where Fnb (nb in Fnb stands for “non-blocking 
system”’) describes the following relation

x
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nb c
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= .  

The goal is to find Fnb.

Figure 14. Interconnection diagram for job shop example
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Most of the matrices derived in this section 
are sparse, i.e. they contain many elements that 
equal ε. Therefore, for simplicity, ε’s in all the 
matrices presented in this section are replaced 
by dots. We have

  m n n= = =
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Part-flow interconnection matrices are given by
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Resource-flow interconnection matrices are

Figure 15. Detailed block diagram of the job shop
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(28)

Assume that the system is not blocked from the 
outside, i.e. vc=xc. Plugging in the above values 
into (20) we obtain
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Assume that the parts and machines are avail-
able at time =0, then uc=[e e e]Tand wc=[e e e]T. 
Then it follows that
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.  

The make span of the system is the latest time 
when a part leaves the system and it is equal to 
11 time units.



246

Production Planning Models using Max-Plus Algebra

MODELING MANUFACTURING 
LAYOUTS

Consider again the example presented in Figure 
14. In the example Sc was obtained by compos-
ing basic blocks S1 through S6 in one step. There 
are, however, alternative methods to obtain Sc, 
such as machine-based and part-based modeling 
methods. These methods are based on dividing the 
system into components and then composing these 
components to obtain Sc. The part-based modeling 
approach is illustrated in Figure 16 and 17. The 
approach consists of two steps. In the first step 
the model for processing each part is derived, i.e. 
the models of Sn1, Sn2 and Sn3 as shown in Figure 
16. Then, in the second step, Sc is obtained by 
“vertically” (i.e., using machine-flow intercon-
nections) composing Sn1, Sn2and Sn3as illustrated 
in Figure 17.

The machine-based modeling approach is il-
lustrated in Figure 18 and 19. In this approach, 
we first obtain models of each machine, Sm1, Sm2 
and Sm3, as shown in Figure 18. Then Sm1, Sm2 and 
Sm3 are composed “horizontally” (i.e., using part-
flow interconnections) to produce Sc as shown in 
Figure 19. Numerical examples for part-based 
and machine-based modeling approaches can be 
found in (Imaev 2009).

A similar approach applies to cellular manu-
facturing systems. For example, consider a 
manufacturing configuration shown in Figure 20, 
where there are two manufacturing cells. In Cell 
A machines m1 and m2 are grouped together to 
perform elementary operations S1, S2, S3 and S4. 
In Cell B machines m3, m4 and m5 are grouped 
together to perform elementary operations S5, S6, 
S7 and S8. The modeling approach for cellular 
manufacturing systems consists of two steps. In 
the first step the models of each manufacturing 

Figure 16. Part base approach: obtain models for processing each part, Sn1, Sn2 and Sn3
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Figure 17. Part base approach: combining the part models Sn1, Sn2 and Sn3 into Sc

Figure 18. Machine base approach: obtain models for each machine, Sm1, Sm2 and Sm3
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cell are derived. Scheduling heuristics may be 
used to optimize the performance of an individ-
ual cell. In the second step, models for Cell A and 
Cell B are composed to obtain the model of Sc.

Flow-Shop Scheduling

The scheduling problem for a flow shop system 
of m machines and n parts can best be modeled 

Figure 19. Machine base approach: combine the machine models Sm1, Sm2 and Sm3 into Sc

Figure 20. Modeling cellular manufacturing system
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using the part based system with unit capacity 
machines, Equation (21). Figure 21 illustrates the 
block diagram of the processing of the i-th part. 
Examination of the Figure 21, shows that the part 
process can be modeled by the following equation

zi=Aizi⊕Biwi, i=1,…,n (29)

where
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Equation (29) can be reduced (Bacelli et al, 
1989) to

Zi=Fiwi, i=1,…,n, j=1,…,n, i≠j (30)

where

F A B*
i i i
= .

Since this is a flow-shop, all parts are processed 
by the machines in the same order, hence

wi+1=zi, i=1,2,…,n-1.  (31)

Combining (30) and (31) for all n parts, yields

z Fw Fw
n

i

n

i
= =

=
⊗

1
1 1

 (32)

The make span is then the maximum value of 
F. Notice that the Fi matrices only hold processing 
information and do not depend on the schedule. 
Flow shop scheduling is then reduced simply 
rearranging the order of the part models in Figure 
17, which translates to rearranging the order that 
the Fi are multiplied in (32).

Buffer Allocation

In a system without buffers, a machine is consid-
ered to be blocked if it has completed the current 
part and is unable to off-load the part since the 
subsequent buffer is full. The machine is consid-
ered to be starved if it has completed the current 
part and is unable to begin the next part since the 

Figure 21. Model of the i-th part process for a flow-shop consisting of single capacity machines
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preceding buffer is empty. This is illustrated in 
Figure 22, left and right respectively.

In the figure on the left, machine j is idle for 
want of parts from machine j-1. In the figure on 
the right, machine j-1 is idle because it cannot 
off-load its part to the next machine. Ideally, all 
the idle time can be eliminated by having a buffer 
of infinite capacity after each machine. This would 
keep the machines running at all times. However, 
it is important to bear in mind that buffers increase 
the work in progress and this results in increased 
inventory-carrying costs. Hence, it becomes im-
perative to allocate buffers to the best possible 
locations such that the overall buffer size is kept 
to a minimum and the throughput is increased. A 
heuristic algorithm has been developed (Nam-
biar & Judd, 2007) based on the aforementioned 
mathematical model to analyze the impact of 
having buffers on the system performance and to 
determine the location and size of buffers to 
maximize system throughput. This heuristic used 
the inter-dependencies between operations which 
result in machines getting either blocked or 
starved. This heuristic identified near-optimal 
locations for the limited number of buffer spaces 
available.

Stochastic Scheduling

Schedules can go awry due to unforeseen cir-
cumstances or due to the inherent variation in the 
processes involved. These variations have been 

modeled as probabilistic distributions in literature. 
The aforementioned model can also be used to 
analyze the behavior of the system with uncertain 
processing times. The ability to evaluate numerous 
instances of the problem with minimal computa-
tion time bodes well for this kind of analysis. 
Comparing the average cycle time obtained by 
evaluating every possible combination of process-
ing times with the cycle time obtained by using the 
average processing time for each operation, it was 
observed that the cycle time obtained using aver-
age processing times was within a range of 5-10% 
of the average cycle times. Thus, if computation 
time is of essence and the accuracies of the cycle 
time estimates are not that significant, it might 
be best to use the average processing times even 
in cases of stochastic variability. However, if an 
accurate estimate of the cycle time is desired, the 
aforementioned model can be used to obtain the 
average cycle time computed through exhaustive 
enumeration of all possible combinations.

Assembly Line Balancing

We now consider the mixed-model assembly line 
balancing problem. Here, we consider completely 
independent models being assembled on the same 
assembly line. The aforementioned mathematical 
model can be modified (Carlo & Nambiar, 2008) 
to address this problem. We consider a system of 
n models and m workstations. We assume that the 
processing times or task times for each operation 

Figure 22. Operation inter-dependencies
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are given to us. These tasks can be broken down 
into individual units which may be then re-assigned 
to neighboring machines in order to balance the 
line. We do not consider parallel workstations or 
intermediate buffers in our system. We iteratively 
examine every possible task assignment for a given 
problem to determine the best solution. In order to 
make the computations easier and smarter, we also 
incorporate some efficiency such as storing inter-
mediate matrices. We were able to exhaustively 
search through all possible task combinations for 
a system of 10 models and 10 workstations with 
a 15% time available for re-allocation within 89 
seconds. This allows us to determine optimal 
task assignments for mixed-model assembly lines 
within reasonable amount of time.

CONCLUSION AND FUTURE 
RESEARCH DIRECTIONS

In today’s global and interconnected world, 
companies are facing stiff competition from not 
only local competitors but also from international 
companies who have advantages such as cheaper 
labor that work in their favor. Under these circum-
stances, it becomes imperative for companies to 
continuously strive to improve their operations 
by eliminating all forms of wastes and introduc-
ing newer products that meet customer demands. 
Efficient scheduling of limited resources helps 
improve efficiency and reduce lead times. This 
becomes especially critical when companies have 
factories located far removed from the customer 
market. Efficient schedules also help effectively 
utilize limited resources and help with sustain-
ability efforts. In this chapter, we looked at various 
mathematical models for manufacturing systems 
such as flow-shops, job-shops and assembly lines. 
These models are based on the concept of max-
plus algebra which was also discussed in this 
chapter. The most significant advantage of these 
max-plus algebra-based models is that this allows 
us to identify optimal or near-optimal schedules 

with only a fraction of the computation time it 
would take to exhaustively explore all possible 
schedules. These models can also be applied to 
other discrete-event systems exhibiting similar 
behavior.
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Chapter  12

INTRODUCTION

Cellular manufacturing is considered as a collec-
tion of manufacturing cells that is dedicated to 
manufacture part families or assembly cells that are 
dedicated to process product families (see Askin 
& Standridge, 1993). The cellular manufacturing 

systems can be either machine-intensive or labor-
intensive. In labor-intensive cells, it is easier to 
reconfigure cells when a product is ready to be 
processed. Moreover, moving equipment is much 
easier than it is in machine-intensive cells. Basi-
cally, in labor-intensive cells, most of the opera-
tions require light-weight, and small machines as 
well as equipment that require continuous operator 
attendance and involvement (Süer & Tummaluri, 
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2008). Labor-intensive manufacturing cells have 
been observed in apparel, jewelry manufactur-
ing, electromechanical assembly, sewing, shoe 
manufacturing, medical devices, and car seat 
manufacturing industries. The operator’s role 
in machine-intensive cells is limited due to the 
presence of automatic machines. On the other 
hand, the operator has a key role in labor-intensive 
cells, and the number of operators and their as-
signment to operations has a great impact on the 
cell’s production rate. In some cases, the number 
of operations is less than the number of operators. 
This creates the possibility that multiple operators 
are assigned to perform the same operation. It is 
important to control operator assignments; how-
ever, when the number of cells and the number 
of operators increase, keeping track of operator 
assignment becomes difficult.

In this chapter, concepts such as learning and 
forgetting rates are discussed to show how opera-
tor skill level varies from time to time; thus, the 
assignment decision is affected. Forgetting and 
learning rates affect the operator’s skills and they 
are affected by their current skills. Learning takes 
place when the operator performs an operation 
continuously for a period of time, consequently, 
the operator will be more familiar with perform-
ing an operation. On the other hand, forgetting 
happens when the operator does not perform an 
operation in a number of consecutive periods. This 
chapter addresses both operator assignment and 
cell loading decisions. Operator assignment de-
termines which operators are assigned to perform 
each task and cell loading identifies the products 
to be run in each cell.

The work undertaken in this chapter is an ex-
tension of work by Süer and Tummaluri (2008). 
The operator assignment can be made by using 
two different strategies; 1) Max, 2) Max-Min. Max 
considers only the current state of the operator 
skills for operator assignment to maximize out-
put rate. On the other hand, Max-Min considers 
long-term effect of assignment decisions and at-
tempts to develop more homogeneous work force 

without sacrificing output rate. This homogeneous 
work force may be more effective in dealing with 
drastic variations in demand and product mix in 
the long-term.

The objective of this chapter is to propose bet-
ter mathematical models for operator assignment 
and also compare the performance of two major 
strategies, Max and Max-Min, in highly dynamic 
cellular environments. The main hypothesis is 
that Max-Min is a better strategy in operator as-
signment in the long-run. We want to show that 
long-term planning may help companies to better 
prepare their workforce for long-term operation 
than short-sided approach where only the im-
mediate periods are considered. This approach is 
especially important in highly fluctuating demand 
environments and also in companies where product 
mix can quickly change. It is easier to implement 
such a strategy in companies where workforce is 
stable with low turnaround rate.

BACKGROUND

In the literature, some researchers addressed areas 
related to this subject such as cell loading, operator 
assignment, skills, learning and forgetting rate and 
product sequencing. Süer (1996) discussed, in his 
paper, the subject of optimal operator assignment 
and cell loading in labor-intensive manufacturing 
cells. He stated that the operator assignment to 
cells influences production rate that each cell can 
produce. He proposed a two-phase methodology. 
In phase 1, he generated operator assignments for 
alternative manpower levels by using a mixed 
integer mathematical model. In phase 2, he found 
the optimal manpower levels for each cell and 
optimal product assignment to cells.

Nembhard (2001) discussed a heuristic ap-
proach for assigning workers to task based on 
individual learning rate. Basically, he ran experi-
ments based on two conditions: a long production 
run and a short production run. Results were in-
terpreted and showed that the heuristic approach 
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have an impact on overall productivity. Best results 
were found when workers learn more gradually. 
Nembhard and Osothslip (2002) discussed, in their 
paper, the operator behavior in terms of learning 
and forgetting rates; particularly, in the case of 
performing complex tasks. A study was conducted 
at a textile manufacturing plant, where different 
manual sewing tasks were available. Data was 
collected by studying the behavior of each worker 
over a period of one year. They used a model of 
individual learning and forgetting rate, which 
was introduced first by Nembhard and Uzumeri 
(2000) in order to measure the productivity rate. 
This model was applied to each operator, and 
operator learning and forgetting parameters were 
considered as dependent variables, whereas task 
complexity was considered as independent vari-
able. Results were captured and then statistical 
analysis was done to find if there is a relationship 
between the variability of learning and forgetting 
rates with task complexity. Results indicated task 
complexity significantly affects the variance of 
worker learning and forgetting rates. For higher 
task complexities, workers are more varied in 
their learning and forgetting rate than they are 
at lower task complexities. The impact of task 
complexities on worker learning and forgetting 
affects worker assignment and productivity. Slomp 
et al. (2005) discussed cross-training decisions 
in a cellular manufacturing environment. They 
wanted to minimize the load of the bottleneck 
worker. In their study, they presented an integer 
programming model to calculate which workers 
have to be trained for which machines. Based on 
this model, they discussed the trade-off between 
the operating costs of the manufacturing cell, the 
costs of cross-training, and the workload among 
workers, they showed that the connection be-
tween workers and machines is really important 
to form chaining and this produces an efficient 
cross-training situation. In this case, workload 
can be shifted from heavier loaded worker to 
less loaded worker. Labor flexibility is needed in 
these environments. Unbalanced load may give 

feelings of unfairness in a team. Bidanda et al. 
(2003) presented the importance of focusing not 
only on technical issues, but also human issues 
in cellular manufacturing environments. Techni-
cal issues include cell formation and cell design, 
whereas human issues involve such as worker 
assignment strategies, skill identification, train-
ing, communication, autonomy, reward system, 
conflict management, and teamwork. They con-
ducted a survey to show the importance of human 
issues in cellular manufacturing. The number of 
participants in the survey was 40, and consists of 
workers, managers and academicians. They were 
asked to rank the human issues. Their response 
was analyzed. The results showed that three 
major human issues in cellular manufacturing 
are communication, teamwork and training. The 
degree of autonomy was found the least important 
among all. The reward system was in the middle. 
The assignment strategies were found significant 
among academicians. The skill identification was 
found significant among managers and academi-
cians whereas conflict management is significant 
among workers.

Shirase et al. (2001) developed a system of 
distributed production system which consists 
of some cell groups. They discussed a dynamic 
operator assignment method. In this cooperative 
method, they considered that whenever any cell 
in a group of cells is unable to meet the due date 
of certain part, it has the option to ask for one op-
erator as a support from other groups. Eventually, 
cooperation is taking place between cell groups 
until all due dates are met. They generalized the 
idea in which some disturbances in a production 
system can be treated by cooperation between 
subsystems. Fan and Gassmann (1997) discussed 
allocation functions between worker and machines 
could influence the performance of manufacturing 
cells over a long period of time considered as 15 
months. They concluded that skills development 
and knowledge are really important for keeping 
long-term competitiveness. Allocation of func-
tions has an impact on the long term performance, 
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in which the long period will give more vision 
to make the work smooth through absorbing 
the complexity of the nature of manufacturing 
environment.

Wirojanagud et al. (2005) discussed a strategic 
way to model worker differences for workforce 
planning. Impact of individual differences on 
management decisions is considered and then 
discussed. A problem of job shop environment 
has been formulated in a form of a mixed integer 
programming model. The major concern was to 
identify number of workers who will be hired, fired 
and cross-trained at a minimum cost. Experiments 
are run and then results are analyzed. Workers 
differences are playing a major role in making 
decisions in manufacturing system environment.

Suksawat et al. (2005) discussed the concept 
of evaluating the skill levels of workers. They 
developed a skilled worker–based scheduling 
method based on the skill evaluation and genetic 
algorithm application. They focused on the objec-
tive of improving the production rate by consider-
ing workers’ skill levels. Süer and Dagli (2005) 
discussed manpower decisions in their paper. 
They considered two issues in their paper; product 
sequencing in a cell and cell loading. For the first 
issue, they target to minimize intra-cell manpower 
transfers. A three-phase methodology is proposed, 
in which optimal manpower level for each opera-
tion is found by using a mathematical model, a 
matrix for manpower transfers between products is 
formed, and traveling salesman problem is solved. 
For the second issue, they aim to find the optimal 
assignment of products to cells. Their objective is 
to minimize makespan and number of machines. 
Cesani and Steudel (2005) presented a research 
concerning labor assignment strategies, and their 
impact on the cell performance in cellular manu-
facturing environment. The term labor flexibility 
was discussed and referred to the movement of 
operators between cells and inside the same cell. 
Labor assignments, such as dedicated assignment, 
in which an operator is assigned to one or more 
machines, shared assignment in which two opera-

tors or more are assigned to one or more machines, 
and combined in which an operator is assigned as 
dedicated and shared together. They made their 
discussions based on workload sharing, workload 
balancing and bottleneck operations. Experiments 
and simulation models were implemented and 
discussed. They concluded based on results, that 
the balance in the operators’ workload and the 
level of machine sharing are important factors to 
determine cell performance and behavior. They 
also referred to the importance of cross-training 
issue in improving cell performance.

Mahdavia et al. (2010) developed an integer 
mathematical model to design cellular manufactur-
ing systems. They consider a dynamic environment 
as well. Their model deals with worker assignment 
as well as dynamic configuration of the cellular 
system. The overall objective is to minimize the 
total cost of inventory holding and backorder 
costs, inter-cell material handling cost, machine 
and reconfiguration costs and hiring, firing and 
salary costs of workers.

Süer, Arikan, Babayigit (2008) and Süer, Ari-
kan, Babayigit (2009) developed fuzzy mathemati-
cal models for cell loading in labor-intensive cells 
subject to manpower restrictions. Süer, Cosner and 
Patten (2009) developed various mathematical 
models for cell loading and product sequencing 
in manufacturing cells. Süer, Subramanian and 
Huang (2009) developed several heuristic proce-
dures and mathematical models for cell loading 
and product sequencing in a shoe manufacturing 
company.

Süer and Tummaluri (2008) discussed the 
problem of operator assignment to operations in 
labor-intensive cells. The operators are assigned 
to operations in multi-period context consider-
ing their skill levels, forgetting and learning 
rates. They developed a three-phase hierarchical 
methodology to solve this problem. The first 
phase is generating alternative operator levels 
for each product using operation standard times. 
The second phase is determining cell loads and 
cell sizes using standard times. The third phase is 
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assigning operators to operations. A mixed integer 
mathematical model is used in all phases. Two 
different strategies (Max and MaxMin) are pro-
posed for solving the operator assignment in the 
third phase. The results showed that when using 
Max Strategy, lower makespan allocation values 
are obtained, whereas Max-Min improved the 
skill levels more regularly. The work undertaken 
in this paper is an extention of their work. They 
found that Max-Min is superior to Max Strategy 
in terms of improving operator skill levels; how-
ever, they could not show that Max-Min Strategy 
is better in minimizing makespan as a result of 
improved skill levels. Their work assumed a static 
cellular environment, in which there are no new 
products entering the system and no product is 
leaving the system (i.e. product mix remained the 
same throughout the study). They have classified 
labor skills into nine categories following normal 
distribution. Their work also showed that some 
non-bottleneck operations became bottleneck after 
assigning operators. The reason for that is that they 
have done initial operator assignment based on 
standard times. When they reflected the effect of 
skills on processing times, some non-bottleneck 
operations became bottleneck and adversely af-
fected output rates. In some cases, operators had 
to be re-assigned to fix the problem.

PROBLEM STATEMENT

This chapter introduces several improvements to 
work by Süer and Tummaluri (2008) where, 1) 
Max and Max-Min strategies are compared in a 
highly dynamic environment where product mix 
changes. i.e., new products enter the system and 
some products leave the system. It is believed that 
this will show the benefits of Max-Min strategy 
better in terms of minimizing makespan, 2) number 
of skill levels are reduced to seven. It is believed 
that this is more practical and realistic approach 
than having nine skill levels, 3) skill-level based 
processing times are used directly during opera-

tor assignment process. This helps to avoid re-
computing of bottleneck operation, output rate 
and re-assignment of operators.

Methodology

In this section, the methodology used is described 
in detail.

General Methodology

This study is carried out in a multi-period envi-
ronment. The number of periods included in this 
study is 16 and each period represents a week. 
This allows us to see the impact of the strategies 
in the long-term. Based on the assignments made 
in the previous periods, an operator’s skill level 
may be adjusted. Figure 1 includes the multi-period 
methodology in which the proposed approach is 
implemented and the results are captured. These 
results may affect the operator skill levels; hence, 
they need to be revised each period. Once all pe-
riods are considered for the first strategy, then the 
same procedure is applied for the second strategy, 
and finally the results are compared.

Overview of Strategies

The major phases of the Max strategy as shown 
in Figure 2a are: (1) find optimal operator as-
signment using an integer mathematical model. 
In this phase, the number of workers needed for 
each operation is determined for each product 
so that production rate is maximized with the 
available manpower level. (2) determine cell 
loads to minimize makespan by using an integer 
mathematical model. In this phase, decision about 
what cell to use to produce each product is made. 
(3) determine product sequence in each cell by 
using a simple scheduling rule, SPT (Shortest 
Processing Time). In this phase, the products in 
each cell are sequenced in the increasing order of 
processing time to minimize average flow time 
as well. The first three phases of the Max-Min 
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Strategy is similar to the Max Strategy. However, 
two more phases are included in the Max-Min 
Strategy (see Figure 2b), and they are: (4) iden-
tify bottleneck and non-bottleneck operations for 
each product in the cell. The slowest operation 
(lowest output) for each product is identified as 
bottleneck operation. (5) re-assign low-skilled 
operators to non-bottleneck operations using the 
Min-skill principle. In this phase, the focus is on 
non-bottleneck operations and workers are as-
signed to operations where their skill level is not 
very high as long as it does not adversely affect 
the production rate of the cell. By doing this, we 
expect that operators with low skills will get a 
chance to perform these operations and eventually 
improve their skill levels.

Performance Measures Used

The performance measures used for each task are 
summarized in Table 1. Production rate measures 
the number of units manufactured per unit time. 
Makespan is defined as the maximum comple-
tion time of all jobs (Equation 1) and flowtime 
measures how long a job remains in the system 
(Equation 2).

MS=Cmax (1)

fi=ci-ri (2)

where

ci completion time of job i
fi flowtime of job i
ri ready time of job i

Figure 1. Multi-period methodology



264

Operator Assignment Decisions in a Highly Dynamic Cellular Environment

Skill Levels

In this study, each operator is assumed to have a 
skill level for each operation he performs. These 
skill levels follow the normal distribution (as 
shown in Figure 3), in which µ represents the 
mean value and σ represents the standard devia-
tion. The skill levels are divided into seven cat-
egories and their corresponding probabilities are 
shown in Table 2. Level 4 represents the average 
skill, level 7 represents the best and level 1 is the 
worst. This is an assumption used in this study. 
Süer and Tummaluri (2008) also used a similar 
classification except they used 9 skills as opposed 
to 7 suggested here.

Operation Times

Operation times are calculated according to the 
operator skill levels. The standard processing 
time for each operation is considered to be the 
average time, hence, the operator with skill level 
4 is considered to have the average operation 
time. Other skills below or over will follow the 
normal distribution. Table 3 provides an example 
for different skills of an operation with a standard 
deviation of 5% of the mean. The σ for operation 
1 for product X1 is 0.0035 (=.07*.05). As the skill 
level decreases by 1 level (4 → 3), the operator 
skilled-based time increases to 0.0735 (=.07 + σ).

Figure 2. The general overview of the strategies

Table 1. Performance measures used for each task 

Task Max Strategy Max-Min Strategy

Operator Assignment Maximize Production Rate Maximize Production Rate

Loading Cells Minimize Makespan Minimize Makespan

Product Sequencing Minimize Average Flow Time Minimize Average Flow Time

Re-assigning low-skilled operators ----- Minimize Total Skills Without Violating 
Original Production Rate
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Learning and Forgetting Rates

In this study, a skill level is affected by learning 
and forgetting rates. An operator’s skill level 
increases when he performs an operation for 
many consecutive periods. In the same manner, 
the length of interruption interval affects the skill 
levels adversely; hence, if an operator does not 
perform a certain operation for a number of con-
secutive periods, his skill level decreases. Table 
4 shows the assumed number of required periods 
for improving or lowering skill level, and it also 
shows the probability for that skill to change. 

The probability values follow the notion that an 
operator who has been performing an operation 
for a long time will become more experienced 
operator, and it will take longer for that skill to 
deteriorate. As shown in the same table, a skill 
level can be improved from 1 to 2 with a prob-
ability of 0.7, if an operator keeps performing the 
same operation for 3 periods consecutively. On 
the other hand, improving skill level from 6 to 
7 requires an operator to perform the operation 
for 6 periods consecutively (with a probability 
of 0.3). Meanwhile, an operator’s skill level can 
deteriorate from 2 to 1 with a probability of 0.7, 
if he does not perform the operation for 4 periods 
consecutively. Similarly, if he does not perform 
the operation for 7 periods consecutively, his skill 
will decrease from 7 to 6 with a probability of 0.3. 
No empirical study has been done to validate these 
assumptions due to time restrictions. However, it 
is believed that these numbers reflect the relations 
between learning and forgetting rates of workers 
at different skill levels along with associated 
probabilities reasonably well. The operator skill 
matrix is revised on learning and forgetting rates 
at the end of every period.

Figure 3. The normal distribution curve for skill levels

Table 2. The skill levels and probability 

Skill Level Time Probability

1 µ +3σ 0.0062

2 µ+2 σ 0.0606

3 µ+σ 0.2417

4 µ 0.383

5 µ -σ 0.2417

6 µ-2 σ 0.0606

7 µ -3σ 0.0062

Table 3. The operation times for different skill levels with σ = 5% of the mean 

Skills

Mean Std. Dev. 7 6 5 4 3 2 1

0.07 0.035 .0595 0.063 0.0665 0.07 0.0735 0.077 0.0805
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PROPOSED MATHEMATICAL 
MODELS

In this section, the proposed models are introduced.

Max Strategy

The Max Strategy uses the skill-based times to as-
sign operators into operations such that maximum 
output is achieved. An integer mathematical model 
is used to assign operators. The mathematical 
model is formulated with the objective function of 
maximizing the production rate as shown in Equa-
tion (3). Equation (4) determines which operators 
have to be assigned to each operation. Equation 
(5) ensures that each operator is assigned to only 
one operation within a cell. Equation (6) shows 
that ykj is a binary variable. The mathematical 
model is given below:

Objective Function:

MaxZ=R (3)

Subject to:

( )a y R
kj kj

k fj∈
∑ − ≥ 0 j=1,2,3,…,m (4)

y
kj

j fk

=
∈
∑ 1k=1,2,3,..,n (5)

ykj∈(0,1)  (6)

Indices:
k  Operator index
j  Operation index

Parameters:
akj  number of units operator k can process 

if assigned to operation j
m  number of operations in the cell
fk  set of operations that operator k can 

perform
fj  set of operators who can perform op-

eration j
n  Number of operators

Decision variables:
R  production rate
ykj  1 if operator k is assigned to operation 

j, 0 otherwise

This assignment model is run for each product 
by using ILOG OPL software.

Max-Min Strategy

The Max-Min strategy also uses the skill-based 
times to find the optimal operator assignment to 
maximize the output. In this Strategy, first the 
slowest operation, bottleneck operation, is iden-
tified. The same integer mathematical model is 
used to assign operators and it is solved by using 
ILOG/OPL. However, another constraint is added 

Table 4. The learning and forgetting rates 

Learning Forgetting

Skill level Periods Prob. Skill level Periods Prob.

From To From To

1 2 3 0.70 2 1 4 0.70

2 3 3 0.65 3 2 4 0.65

3 4 4 0.6 4 3 5 0.6

4 5 4 0.5 5 4 5 0.5

5 6 5 0.4 6 5 6 0.4

6 7 6 0.3 7 6 7 0.3
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to determine production rate for each operation 
as given in equation (7).

R a y
j kj kj

k fj

=
∈
∑ ( ) j=1,2,3..m  (7)

Obviously, the lowest production rate operation 
is identified as the bottleneck operation as shown 
in equation (8)

Rb=min(Rj/j=1,2,3,…,m)  (8)

The Max-Min Strategy keeps the operators 
assigned to the bottleneck operation the same; 
however, it re-assigns other operators to non-
bottleneck operations to minimize total skills 
such that the optimal output rate is maintained. 
A mathematical model is used where the objec-
tive function is to minimize the total skills for 
the remaining operators as given in equation (9). 
Equation (10) guarantees that the original produc-
tion rate (optimal) is not violated. Equation (11) 
shows a constraint in which each operator is as-
signed to one operation within each cell. Equation 
(12) shows that ykj is a binary variable.

The math model used is given below as:

Objective function:

MinZ s y
kj kj

j fkk fj

=
∈∈
∑∑ ( )  (9)

Subject to:

( )
k fj

kj kj b
a y R

∈
∑ ≥ j=1,2,3,….m   (10)

j fk
kj
y

∈
∑ = 1k=1,2,3,…n  (11)

ykj∈(0,1)  (12)

where,

Parameters:
skj  Skill level of operator k for operation 

j
Rb  Production rate of bottleneck operation

The difference between these two strategies is 
illustrated in Figure 4 using a hypothetical case. 
Assume; that operation 2 is the bottleneck opera-
tion with operators 3 and 7 assigned to it as shown 
in Figure 4a and the output rate is 80 units/hr. The 
Max-Min Strategy shown in Figure 4b keeps the 
same operators in the bottleneck operation but re-
assigns other operators to minimize skills without 
sacrificing the optimal output rate.

Cell Loading and Product 
Sequencing

Cell loading is the process of assigning products 
to cells. In this paper, a mathematical model is 
used to assign products to cells and the primary 
performance measure is to minimize makespan. 
Equation (13) shows the objective function, 
minimizing makespan. Equation (14) shows that 
the total processing time in each cell should be 
equal to or greater than the makespan. Equation 
(15) ensures that each product is assigned to a cell. 
Equation (16) shows the sign restriction.

Objective function

MinZ=MS (13)

Subject to:

MS p x
i

n

ij ij
− ≥

=
∑

1

0 j=1,2,3,…,c   (14)

j

c

ij
x

=
∑ =

1

1 i=1,2,3,…,n   (15)
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xij∈(0,1)  (16)

Where,

Indices:
c  Number of cells
n  Number of products

Parameter:
pij  Processing time of product i in cell j

Decision Variable:
xij  1 if product i is assigned to cell j, 0 

otherwise

Product sequencing usually comes after cell 
loading in which products are arranged in such 
a way, that a selected performance measure is 
completed. In this chapter, average flow time 
is considered as a secondary measure and it is 
minimized by using the shortest processing time 
technique (SPT). SPT rule orders jobs in the in-
creasing order of processing times.

DATA USED IN EXPERIMENTS

In this section, the data used in experiments are 
given.

Standard Times

The standard times for operations correspond to 
a skill level of 4. The standard times for product 
groups X and Y are randomly generated from a 
random uniform distribution in the intervals shown 
in Table 5. These two product groups are used to 
create the dynamic environment mentioned earlier.

Product Demand

The product demand for all products is randomly 
generated from the uniform distribution in the 
interval of [2200, 8500] for all periods. Table 6 
shows these demand values.

Figure 4. Manpower assignment using both strategies
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Operator Skills

The total number of operators included in the 
study is 30. Each operator is assumed capable 
of performing 3 operations. These operators are 
divided into two cells with 12 operators in cell 1 
and 18 operators in cell 2. The initial skill matrix 
is established randomly by following probabilities 
given in Table 2. The initial skill matrix for all 
operators is given in Table 7.

EXPERIMENTS

Several experiments are conducted using 10 prod-
ucts of type X and 10 products of type Y. Each 
product requires 6 operations. The experiments 
performed are listed below:

1.  Periods 1-14, no chaos
2.  Periods 1-9, no chaos; Periods 10-11, chaos
3.  Periods 1-14, no chaos; Periods 15-16 chaos
4.  Periods 1-14, no chaos; Period 15 chaos with 

new standard deviation

Table 5. Uniform distribution intervals for standard times for product groups X and Y 

Product Operations

Op.1 Op.2 Op.3 Op.4 Op.5 Op.6

X [0.04-0.09] [0.28-0.45] [0.37-1.18] [0.47-0.88] [0.18-0.45] [0.20-0.80]

Y [1.10-1.30] [1.20-1.40] [0.09-0.15] [0.04-0.09] [1.00-1.20] [0.04-0.08]

Table 6. Product demand and total demand for each period 

Period Product Demand Total 
Demand1 2 3 4 5 6 7 8 9 10

1 3500 7500 3400 2700 2200 4000 4500 2200 2300 3000 35300

2 3500 7500 3700 2900 2200 4300 4600 2200 2500 3000 36400

3 3700 4200 3700 3000 2400 4300 4600 2400 2500 3100 37200

4 3100 6500 3700 2750 2150 3500 4400 1900 2500 3100 33600

5 3100 3750 3700 2750 2400 3900 4200 1900 2500 3300 34500

6 4200 8000 3700 3000 2500 4300 4800 2400 2500 3100 38500

7 2800 6400 3700 2250 2150 3200 4400 1900 2300 3100 32200

8 2800 6300 3700 2250 2150 3200 4400 1900 2300 3100 31800

9 3100 7750 3700 2750 2400 3900 4200 1900 2500 3300 35500

10 3300 8450 3700 3050 2600 3900 4400 2000 2500 3500 37400

11 2900 6400 3700 2300 2150 3250 4400 1900 2300 3200 32500

12 3500 7600 3400 3200 2200 3500 4500 2200 2300 3000 35400

13 4100 7700 3500 2500 2400 4800 4000 2400 2500 3400 37300

14 2800 6800 3450 2500 2150 3200 4200 2100 2300 3100 32600

15 3600 6750 3700 3000 2400 3900 4200 1900 2750 3500 35700

16 3400 6900 3700 2900 2200 4300 4600 2200 2500 3600 36300
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Experiment 1

This experiment includes runs using Max and 
Max-Min strategies starting from period 1 to 
period 14. The results are analyzed below:

Impact on Operator Skill Levels

It was found that Max-Min improves operator skill 
levels more significantly than Max did. Benefits 
come from the Max-Min assignment strategy in 
which it finds the optimal operator assignment to 
maximize the output. Later, this strategy keeps the 

Table 7. Initial operator skill matrix 

Operator Operations

Op1. Op.2 Op.3 Op.4 Op.5 Op.6

1 5 5 4

2 3 4 4

3 3 5 3

4 4 3 4

5 2 3 5

6 5 6 4

7 4 4 3

8 4 4 4

9 4 4 4

10 4 3 4

1 4 1 3

12 3 4 5

13 4 5 4

1 5 5 5

1 3 3 5

16 3 3 5

17 5 4 3

18 5 5 5

1 5 5 4

20 5 3 6

21 4 3 2

22 3 5 3

23 3 4 5

24 4 5 3

25 4 3 6

26 3 1 7

27 3 3 5

28 4 2 4

29 5 4 4

30 5 4 5
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operators assigned to the bottleneck operation the 
same but re-assigns the low skilled operators to 
non-bottleneck operations. This strategy allows 
an operator to perform an operation that he or she 
is not skilled at; hence his or her skill does not 
deteriorate and certainly improves. Tables 8 and 
9 show the comparison of these two strategies at 
the end of period 14 in terms of average operator 
skill levels for cells 1 and 2, respectively. In cell 
1, it was found that not only the average opera-
tor skill levels is greater than the initial average 
skill levels when Max-Min was used, but also is 
greater than operators average skill levels when 
Max was used. On the other hand, when Max 
was used, 5 operators had an average skill levels 
greater than their initial ones, 3 operators kept the 
same average and 4 operators were found having 
lower average skill levels.

In cell 2, it was found that the average opera-
tor skill level is greater than the initial average 
skill levels when Max-Min was used. However, 
15 operators had greater average skill levels than 
when Max was used, but 2 operators had the same 
average skill levels and 1 operator had lower 
average skill levels. As to Max strategy, 14 op-

erators had an average skill levels greater than 
their initial ones, 1 operator kept the same average 
and 3 operators were found having lower average 
skill levels than their initial ones.

Impact on Operations

Max-Min Strategy improved operator skill levels 
on each operation more apparently than Max did. 
Table 10 shows average skill levels on each op-
eration. It was found that operation 1 deteriorated 
when Max was used; however average operator 
skills on all operations were greater when Max-
Min was used.

Impact on Makespan

The results have shown that both strategies were 
tied in terms of makespan for the first 11 periods. 
Starting period 12, Max-Min performed better in 
minimizing makespan by 0.2%, 0.2% and 0.1% 
compared to Max approach in periods 12, 13 and 
14, respectively. Table 11 shows the comparison 
of these two strategies in terms of makespan from 
period 1 to period 14.

Table 8. Comparison of two strategies in cell 1 at the end of period 14 

Cell 1
Average operator skill levels 

(at the end of Period 14)

operator Initial average skill level
Max-Min Strategy Max 

Strategy

1 4.67 5.67 4.67

2 3.67 5.33 4.67

3 3.67 4.67 3

4 3.67 6 3.67

5 3.33 5.33 3.67

6 5 6.33 4.67

7 3.67 5.33 3.37

8 4 5 4.33

9 4 5.67 4.33

10 3.67 5.33 3.67

11 2.5 5.67 3.67

12 4 5.33 3.67
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Experiment 2

In this section, chaos is applied in periods 10 and 
11 to create a big shock in the system to see how 
both strategies behave in terms of makespan. This 

is accomplished by introducing new products with 
very different processing times. The results have 
shown that when 5 products of type Y entered the 
system and 5 products of type X left the system, 
Max-Min gave better results (with 0.4% reduction 

Table 9. Comparison of two strategies in cell 2 at the end of period 14 

Cell 2
Average operator skill levels 

(at the end of Period 14)

operator Initial average skill level
Max-Min Strategy Max 

Strategy

13 4.33 5.33 4.33

14 5 7 6

15 3.67 6.33 5.67

16 3.67 6.33 5.33

17 4 5.33 4.67

18 5 6 5.33

19 4.67 5.67 5

20 4.67 6 5

21 3 5.67 5.67

22 3.67 5.33 3.33

23 4 6 5

24 4 5 3.67

25 4.33 6.33 5.33

26 3.67 4 3

27 3.67 6 5.33

28 3.33 5.33 5.33

29 4.33 5.33 4.67

30 4.67 6 6.67

Table 10. Average skill levels on each operation 

Average operator skill levels 
(at the end of period 14)

Operation Initial average skill level
Max-Min Strategy Max 

Strategy

Op.1 4 4.39 3.44

Op.2 3.92 5.23 4.23

Op.3 3.65 6 4.89

Op.4 4 6.25 5.63

Op.5 4.31 6.15 4.62

Op.6 4.25 5.92 4.62
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in makespan) in period 10. In period 11, the entire 
set of products of type Y is manufactured (no 
product X in the system). Max-Min still worked 
better (with 0.4% improvement in makespan). 
Table 12 shows the results of makespan using 
these two strategies in periods 10 and 11. Table 
13 shows another chaotic scenario by entering all 
products of type Y and releasing all products of 
type X in period 10. In this case, the improvement 
with Max-Min over Max was 0.7%.

Experiment 3

The chaos was applied in periods 15 and 16 as 
we did in experiment 2. The results have shown 
that when 5 products of type Y entered the system 
and 5 products of type X left the system, Max-
Min gave better results (with 1.7% reduction in 
makespan) in period 15. In period 16, the entire 
set of products of type Y is manufactured (no 
product X in the system). Max-Min still worked 
better (with 1.2% improvement in makespan). 
Table 14 shows the results of makespan using 

Table 11. The makespan from period 1 to period 14 

period Max Max-Min Difference(%)

1 58.07 58.07 0.0%

2 59.84 59.84 0.0%

3 61 61 0.0%

4 53.13 53.13 0.0%

5 55.92 55.92 0.0%

6 60.07 60.07 0.0%

7 50.23 50.23 0.0%

8 49.684 49.684 0.0%

9 55.76 55.76 0.0%

10 57.9 57.9 0.0%

11 50.64 50.64 0.0%

12 53.19 53.1 0.2%

13 56.25 56.15 0.2%

14 49.04 48.99 0.1%

Table 12. Impact on makespan under chaos in periods 10 and 11 

Max-Min Max Difference (%)

Period 10 (5 products) 71.15 71.43 0.4%

Period 11 (5+5 products) 81.68 82.02 0.4%

Table 13. Impact on makespan under chaos in period 10 

Max-Min Max Difference (%)

Period 10 (10 products) 94.3 94.92 0.7%
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these two strategies in periods 15 and 16. Table 
15 shows another chaotic scenario by entering all 
products of type Y and releasing all products of 
type X in period 15. In this case, the improvement 
with Max-Min over Max was 2.2%.

Experiment 4

In this phase, we wanted to show that the improve-
ment in operators’ skill levels should have better 
impact than what happened in previous experi-
ments. We changed the standard deviation from 
(0.05µ) to (0.2µ) to extend the gap of operator-
operation times, and then we applied these new 
times in period 15 by entering all products of type 
Y in the system. Results have shown that there 
was better gain in terms of minimizing makespan 
and total time. Max-Min performed better by 5% 
than Max approach. Table 16 show these results.

CONCLUSION AND FUTURE WORK

In this chapter, operators were assigned to opera-
tions to maximize the production rate using two as-
signment strategies: Max-Min and Max. The major 
concern is to see how these two approaches impact 
operators’ skill levels, as well as their impact on 
makespan values. The impact is discussed under 
a chaotic environment where sudden changes in 
product mix with different operation times are 
applied and under a non-chaotic environment 
where the same product mix is run period after 
period. In this study, a skill level is affected by 
learning and forgetting rates. An operator’s skill 
level increases when he performs an operation for 
many consecutive periods; on the other hand, if 
an operator does not perform a certain operation 
for a number of consecutive periods, his skill 
level decreases. Max-Min did improve operators’ 
overall skill levels more significantly than Max 
in multi-periods. This is due to the fact that Max-
Min does not only assign operators to maximize 
production rate, but also it re-assigns operators to 

Table 14. Impact on makespan under chaos in periods 15 and 16 

Max-Min Max
Difference  

(%)

period 15 (5 products) 66.48 67.6 1.7%

period 16 (5+5 products) 88.6 89.7 1.2%

Table 15. Impact on makespan under chaos in period 15 

Max-Min Max
Difference  

(%)

Period 15 (10 products) 86.81 89.01 2.2%

Table 16. Impact on makespan under chaos in period 15 

Max-Min Max
Difference  

(%)

period 15 (10 products) 
(SD = 0.2) 55.23 58.02 5%
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operations where they are not very skilled; thus, 
operator’s skill levels continue to improve. On 
the other hand, Max is only assigning operators 
to operations to maximize production rate. More-
over, the previous work assumed a stable cellular 
environment, in which they assumed that there 
are no new products entering the system. Thus, 
in this paper, we introduced a highly dynamic 
cellular environment, in which new products with 
different processing times entered the system and 
some of the existing products left the system. 
Max-Min acts well under chaotic environment 
because it increases operators’ skill levels well 
enough to face the shock applied, where the shock 
contains products with new processing times and 
this requires different manpower allocation. We 
also concluded that the standard deviation used 
in operator time matrix is an important factor for 
helping Max-Min approach to expand the gain in 
terms of minimizing makespan and total time. A 
standard deviation of 5% of the mean is used in 
operator matrix for experiments 1 and 2. In period 
15, when we replaced the whole set of products 
of type X with products of type Y, we found the 
highest gain that shows Max-Min is better in 
minimizing makespan among all periods. This 
gain was captured using a standard deviation 
of (0.05µ); however, when we used a standard 
deviation of (0.2µ), we found that the gain is 
higher than using (0.05µ). A possible extension to 
this work is to take manpower level decision for 
each cell as a variable as opposed to using fixed 
manpower levels. A further expansion would be 
to allow operators shift from one cell to the next 
as opposed to fixing them to the same cell all the 
time. Obviously, this increases flexibility in as-
signing operators to cells. However, this increases 
computational complexity as well.
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INTRODUCTION

The main problems in scheduling of jobs in 
a manufacturing cell are, according to Wight 
(1984), “priorities” and “capacity”. Hejazi and 
Saghafian (2005) characterize scheduling prob-
lem as an effort to specify the order and timing 
of the processing of the jobs on machines, with 

an objective or objectives respecting above-
mentioned assumptions“. Henry Gantt, as the 
inventor of the now well-known Gantt chart, and 
Frederick Taylor, with his theories of Scientific 
Management, give the first scientific consider-
ation to production scheduling. Computer-based 
production scheduling systems that emerged later 
were mostly connected to the shop floor tracking 
systems and used dispatching rules to sequence 
the work (Herrmann, 2006). Such computer aided 
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ABSTRACT

In this chapter an alternative heuristic algorithm is proposed that is assumed for a deterministic flow 
shop scheduling problem. The algorithm is addressed to an m-machine and n-job permutation flow shop 
scheduling problem for the objective of minimizing the make-span when idle time is allowed on machines. 
This chapter is composed in a way that the different scheduling approaches to solve flow shop schedul-
ing problems are benchmarked. In order to compare the proposed algorithm against the benchmarked, 
selected heuristic techniques and genetic algorithm have been used. In realistic situation, the proposed 
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scheduling systems are now being integrated in 
manufacturing execution systems. Similar solu-
tions of scheduling systems are now part of ERP 
systems that was performed in the early 1990s. 
Manufacturing execution systems besides their 
typical functions were developed and used also 
as the interface between ERP and process control 
(Modrák, 2009).

The scheduling that is related to cellular 
manufacturing systems is known as operation 
scheduling or shop scheduling. According to Cox 
et al. (1992), this type of scheduling is aimed to 
find “the actual assignment of starting and/or 
completion dates to operations or groups of op-
erations to show when these must be done if the 
manufacturing order is to be completed on time.” 
The scheduling of cellular manufacturing systems 
(CMSs) is also known as “group scheduling”. Its 
importance has long been recognized as critical the 
successful implementation of Group Technology 
(Mosier, et al., 1984, Ruben and Mahmoodi, 1999). 
Existing research efforts in group scheduling can 
be classified in two groups: those that consider a 
single cell and those that consider multiple cells 
(Hendizadeh et al., 2008). This chapter is con-
cerned with multi machine Flow Shop Scheduling 
Problems (FSPs) that present a class of Group Shop 
Scheduling Problems in which the operations of 
every job have to be processed on m machines in 
this same order. Johnson (1954) has shown that, 
in a 2-machine flow shop, an optimal sequence 
can be constructed. It was demonstrated later that 
m-machine flow shop scheduling problem (FSP) 
is strongly NP-hard for m≥3 (Garey et al., 1976, 
Lenstra et al., 1977). The criterion of optimality in a 
flow shop sequencing problem is usually specified 
as minimization of make-span that is defined as 
the total time to ensure that all jobs are completed 
on all machines. If there are no release times for 
the jobs then the total completion time equals 
the total flow time. In some cases for calculating 
the completion times specific constraints are as-
sumed. For example, such a situation in the FSP 
arises when no idle time is allowed at machines. 

This constraint creates an important practical 
situation that arises when expensive machinery 
is employed (Chakraborty, 2009). The general 
scheduling problem for a classical shop flow 
gives rise to (n!)m possible schedules. With aim 
to reduce the number of possible schedules it is 
reasonable to make assumption that all machines 
process jobs in the same order (Gupta 1975). 
In the classical flow-shop scheduling problem, 
queues of jobs are allowed at any of m machines 
in processing sequence based on assumption that 
jobs may wait on or between the machines (Al-
lahverdi et al., 1999). The proposed alternative 
algorithm for minimizing completion time is 
assumed for a static-deterministic permutation 
flow shop scheduling problem (PFSP) with n 
jobs and m machines. In this chapter, the objec-
tive function for the PFSS problem corresponds 
to the minimization of the make-span when idle 
time is allowed on machines.

LITERATURE REVIEW

One of the important factors that are quite fre-
quently discussed in FSPs is the setup time (see, 
for instance, Allahverdi et al., 2008). The setup 
time represents the time required to shift from 
one job to another on the given machine. In the 
cellular manufacturing environment, “usually a 
negligible or minor setup is needed to change from 
one job to another within a family and hence can 
be included in the processing times of each job” 
(Hendizadeh et al., 2007). While this assumption 
considerably simplifies the problem’s solution, it 
harmfully affects the solution quality for many 
applications (Allahverdi et al., 1999).

The flow-shop problem with make-span (cmax) 
criterion under above mentioned assumption can 
be denoted as either n/m/F/cmax or F//cmax, where 
both are related to an n-job and m-machine. This 
notation was firstly suggested by Conway et al. 
(1967) and until now is handy. Pinedo (2008) 
introduced a term permutation flow-shop prob-
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lem in which the processing sequence on the first 
machine is maintained throughout the remaining 
machines. Accordingly, the make-span criterion 
is denoted as F/prmu/Cmax.

Solution methods for flow shop scheduling 
range from heuristics developed, for example, by 
Palmer (1965), Campbell et al. (1970), Dannen-
bring (1977) to more complex techniques such as 
Branch and Bound (Brucker, 1994), Tabu Search 
(Gendreau, 1998), Genetic Algorithm (Murata et 
al., 1996), Shifting Bottleneck procedure (Balas 
andVazacopoulos, 1998), Ant Colony Algorithm 
(Blum and Sampels, 2004) and others.

The flow shop sequencing problem is one of 
the most well-known classic production schedul-
ing problems. Focusing on the PFSP with Cmax 
criterion function, first classical heuristics was 
proposed by Page (1961). Palmer (1965) adopted 
his idea and proposed the slope index to be utilized 
for the m-machine n-job permutation flow shop 
sequencing problem. A simple heuristic extension 
of Johnson’s rule to m-machine flow shop problem 
has been proposed by Campbell et al. (1970). 
This extension is known in the literature as the 
CDS (Campbell, Dudek, and Smith) heuristic. 
Its principle relies on constructing at most (m-1) 
different sequences from which the best sequence 
is chosen. Each sequence corresponds to the ap-
plication of Johnson’s rule on a new 2-machine 
problem. Another method to obtain a minimum 
idle time based on the optimization of idle time 
last machine presented Gupta (1972). A significant 
approach to solving the FSP proposed Nawaz et 
al. (1983), in which they point out that a job with 
larger total processing time should have higher 
priority in the sequence.

Modern approaches designated for larger in-
stances are known as meta-heuristics. Approaches 
that combine different concepts or components of 
more than one meta-heuristic are named as hybrid 
meta-heuristic algorithms (Zobolas et al., 2009). 
Heuristic methods for make-span minimization 
have been applied, for example, by Ogbu et al. 
(1990) using Simulated Annealing (SA) and by 

Taillard (1990) applying Tabu Search (TS) algo-
rithm. Nagar et al. (1996) proposed a combined 
Branch-and-Bound (BB) and Genetic Algorithm 
(GA) based procedure for a flow shop scheduling 
problem with objectives of mean flow time and 
make-span minimization. Similarly, Neppalli et 
al. (1996) were used genetic algorithms in their 
approach to solve the 2-machine flow shop prob-
lem with objectives of minimizing make-span and 
total flow time. An atypical method based on an 
Artificial Immune System (AIS) approach, which 
was inspired from vertebrate immune system, has 
been presented by Engin and Doyen (2004). They 
used the proposed method for solving the hybrid 
flow shop scheduling problem with minimizing 
Cmax. Obviously, there are plenty of other related 
approaches to this problem that are identified in 
survey studies, such as that of Ribas et al. (2010).

THE PROPOSED APPROACH 
TO MULTI STAGE FLOW 
SHOP SEQUENCING

In the multi stage sequencing problem, the fol-
lowing assumptions are made.

• There are ‘n’ number of jobs (J) and ‘m’ 
number of machines (M).

• The order of sequence of operations in all 
machines is the same.

• The setup time is not considered for calcu-
lating make-span time.

The proposed approach works with simple 
steps as given in the following section ‘The 
Algorithm Description’. The optimum sequence 
is identified in step 7 that adopts the method of 
Johnson’s algorithm (Johnson, 1954), which 
is used to find out minimum make-span while 
2-machine production schedules are included.
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The Algorithm Description

Step 1: Find out the sum of processing time of 
n jobs in machine M1. Repeat Step 1 for 
machines j=1,2,3,...,m.

Step 2: Make two groups from m machines in 
such a way that:

T T
i

j

x

i
j x

m

= = +
∑ ∑ →

1 1

~ minimum  (1)

Step 3: Find out the total machines in each group. 
Let the number of machines in Group I = a 
and the number of machines in Group II = b.

Step 4: Calculate the total operational time T of 
jobs in each group using the formula

for the Group I and Job (J1):

TI
J1= (a.t11)+[(a-1).t12]+ [(a-2).t13]+…+ (1.t1a)  

(2)

Similarly calculate these values for jobs J2, 
J3,…,Jn.

for the Group II and Job (J1):

TII
J1= (b.t1m)+[(b-1).t1m-1]+ [(b-2).t1m-2]+…+ 

 (1.t1a+1)  (3)

Similarly calculate these values for jobs J2, 
J3,…,Jn.

Step 5: Tabulate these values in two rows.
Step 6: Apply a final step of Johnson’s rule to 

find out the best sequence.
Step 7: Calculate the make-span time for the 

sequence obtained in Step 6.
Step 8: Store the results k.

The Algorithm Illustration

To evaluate the proposed algorithm the following 
6-jobs and 5-machines problem from a real life 
has been used. Input values for a calculation of 

total operational time T of jobs in each group are 
shown in Table 1.

In Table 1 each row represents machine ‘j’ and 
each column represents job ‘i’. The processing 
time of an operation of the jobs is mentioned in 
each cell and denoted as ‘tij’.

The sum of processing time of all 5 jobs in 
each machine is calculated in the column ‘Ti’ as 
shown in Tables 2 and 3. Two groups are formed 
based on the formula as given below.

T T
i

j

a

i
j a

m

= = +
∑ ∑ →

1 1

~ minimum  (4)

(a = the arbitrary value from 1 to 5)

Table 1. Input data for the PFSP problem of size 
6 machines and 5 jobs 

j\ i J1 J2 J3 J4 J5

M1 1 1,5 1,5 1 1

M2 0,5 0,75 0,75 0,5 0,5

M3 0,5 1 0,5 0,5 0,5

M4 0,5 1 0,5 0,5 0,5

M5 0,1 0,5 0,2 0,1 0,1

M6 0,2 0,3 0,3 0,1 0,1

Table 2. Group I - pseudo problem of size 5/2 

j \ i J1 J2 J3 J4 J5 Ti ∑Ti

M1 1 1,5 1,5 1 1 6
9

M2 0,5 0,75 0,75 0,5 0,5 3

Table 3. Group II - pseudo problem of size 5/4 

j \ i J1 J2 J3 J4 J5 Ti ∑Ti

M3 0,5 1 0,5 0,5 0,5 3

8
M4 0,5 1 0,5 0,5 0,5 3

M5 0,1 0,5 0,2 0,1 0,1 1

M6 0,2 0,3 0,3 0,1 0,1 1
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T T
i

j
i

j= =
∑ ∑− = −

1

2

3

6

9 8  (5)

Thus, the total number of machines in each 
group is identified.

The number of machines in Group I (Table 
2), a = 2 (M1 and M2 are in Group-I, noted as I).

The number of machines in Group II (Table 
3), b = 4 (M3, M4, M5 and M6 are in Group-II, 
noted as II).

Subsequently, for the identified groups I and 
II the values of TI

Ji and TII
Ji (for i=1 to n) are cal-

culated for all five jobs (Table 4).
The TI

Ji and TII
Ji values are tabulated as shown 

in Table 5.
As per the step 6 of the algorithm, the best 

sequences obtained in this method are J1-J2-J3-
J5-J4 (or) J1-J2-J3-J4-J5.

When idle time is allowed on machines the 
make-span is calculated for the sequence J1-J2-
J3-J5-J4 (see Table 6) since both sequences in 
given case brings identical scheduling results.

With aim to combine criterion for calculating 
the minimum make-span schedules when idle 
time is allowed on machines along with criterion 
for minimum process interruptions it is possible 
to create job schedules by manner shown in Gant 
chart on Figure 1.

Testing of Proposed Algorithm

Proposed algorithm is tested for nine additional 
problems (see Table 7) that are randomly gener-
ated with varied sizes from 4 x 4 to 30 x 25. Input 
data for the nine problems are depicted in Tables 
18-26 (see in Appendix of this chapter). While 
testing this algorithm on the big-size problems, it 
can be found that it is a time consuming procedure 
of finding out the difference between two groups 
(see Step 2 in the algorithm description section). 
So it is necessary to exploit a sub-algorithm to 
find out two groups with minimum difference. 
The algorithms steps are as follows:

1.  Find out the difference between processing 
time of first machine and the sum of process-
ing time of remaining machines.

2.  Increment with the next machine difference 
between first two machines with remaining 
machines.

3.  Repeat Step 2 until the minimum difference 
between two groups is reached.

Based on the calculation according to steps 
1-6 from the above mentioned steps described in 
the section ‘The Algorithm Description’, were 
generated optimal sequences for the different 
problems that are shown in Table 8.

CONCURRENT ALGORITHMS FOR 
FLOW SHOP SEQUENCING

The currently reported approximation algorithms 
can be categorized into two types: constructive 

Table 4. Identified groups calculated for all five 
jobs 

TI
J1 = (2x1,0) + 0.50 = 2,5 TII

J1 = (4 x 0.2) + (3 x 0.1) + 
(2 x 0.5) + 0,5 = 2,6

TI
J2 = (2x1.5) + 0,75 = 3,75 TII

J2 = (4 x 0.3) + (3 x 0.5) + 
(2 x 1.0) + 1,0 = 5,7

TI
J3 = (2x1.5) + 0,75 = 3,75 TII

J3 = (4 x 0.3) + (3 x 0.2) + 
(2 x 0.5) + 0,5 = 3,3

TI
J4 = (2x1,0) + 0,50 = 2,5 TII

J4 = (4 x 0.1) + (3 x 0.1) + 
(2 x 0.5) + 0,5 = 2,2

TI
J5 = (2x1,0) + 0,50 = 2,5 TII

J5 = (4 x 0.1) + (3 x 0.1) + 
(2 x 0.5) + 0,5 = 2,2

Table 5. The sum values of two groups 

Groups\ jobs J1 J2 J3 J4 J5

TI
J 2,5 3,75 3,75 2,5 2,5

TII
J 2,6 5,7 3,3 2,2 2,2
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methods or improvement methods. Constructive 
methods include Slope index based heuristics, 
CDS heuristics and others. Most of improvement 
approaches are based on modern meta-heuristics, 
such as SA, TS and GA (Chakraborty, 2009). 
Mentioned modern meta-heuristic algorithms can 
be easily applied to various FSPs. Moreover, many 
papers showed that by them can be obtained better 
solution than by constructive methods. Results 
obtained by Kalczynski and Kamburowski (2005) 
showed that many meta-heuristic algorithms are 
not better than the simple NEH algorithm. It con-
forms to the No Free Lunch Theorem (Wolpert 
and Macready, 1997) that states that all algorithms 
equal to the randomly blind search if no problem 
information is known, or simply said, no algorithm 
is better to solve all the problems. That is why the 

comparison of concurrent algorithms with differ-
ent sizes will be in the next sections analyzed and 
will be still important.

Gupta’s Method

Gupta (1971) was argued that the sequencing 
problem is a problem of sorting n items so as 
to minimize make-span. He was proposed al-
gorithm to schedule sequence of jobs for more 
than two machines in a flow shop. Given a set of 
n independent jobs, each having m (m>2) tasks 
that must be executed in the same sequence on m 
machines (P1, P2,…, Pm). Output is a schedule 
with a minimum completion time of the last job. 
This algorithm is stated as follows:

Table 6. Proposed method J1-J2-J3-J5-J4 

J M1 M2 M3 M4 M5 M6

I In Out in Out In out In out In Out in Out

J1 0 1 1 1,5 1,5 2 2 2,5 2,5 2,6 2,6 2,8

J2 1 2,5 2,5 3,25 3,25 4,25 4,25 5,25 5,25 5,75 5,75 6,05

J3 2,5 4 4 4,75 4,75 5,25 5,25 5,75 5,75 5,95 6,05 6,35

J5 4 5 5 5,5 5,5 6 6 6,5 6,5 6,6 6,6 6,7

J4 5 6 6 6,5 6,5 7 7 7,5 7,5 7,6 7,6 7,7

Figure 1. Gant chart for the criteria minimum make-span and minimum process interruptions
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Step 1. Calculate the value of the function associ-
ated with job i, f(i), as follows:

f i
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t t

for j M
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if t t

ot

ij i j
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Step 2. Arrange N jobs in ascending order of f(i) 
and in a favour of the job with the least sum 
of process times on all M machines.

Step 3. Calculate the make-span of the predeter-
mined schedule via the recursive relation:

T T T t
ij
k

ij
k

i j
k

ij
= 



 +

−
−max ,

,
1

1
 (7)

Where Tij
k is the cumulative processing time 

up to the kth order for the i job and j machine.
For the problems considered in Table 7, the 

Gupta’s method works well and the best sequences 
for the 10 various sizes are given in Table 9.

CDS Algorithm

The CDS algorithm, developed by Campbell, 
Dudek, and Smith (1970), has been used in many 
studies as a standard algorithm to compare with 
newly developed algorithms Ho and Chang (1991). 
The algorithm first constructs m – 1 two-machine 
problems. Then Johnson’s 2-machine algorithm 
is applied. The formal steps for the algorithm 
execution are:

Step 1. Form number of auxiliary N-job and 
M-machine problems based on variable p, 
where p≤ M-1.

Step 2. Set k to 1 for the first auxiliary problem.
Step 3. Compute the total processing time for each 

job (i) on pseudo machine 1 (MC1), Ti1
k and 

pseudo machine 2 (MC2), Ti2
k:

T t
i
k

ij
i

k

1
1

=
=
∑  (8)

T t
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k

ij
i M k

k

2
1

=
= + −
∑  (9)

Step 4. Apply Johnson’s rules to N-job and 2-ma-
chine problem. Select the smallest process-
ing time in the two-column processing time 
matrix. If the minimal processing time is 
MC1g, do the gth job first. If it is MC2h do 
the hth job last.

Step 5. Set k to k+1 and repeat until k = p.
Step 6. Select the minimal total processing time 

sequence as the best sequence.

As it was above outlined, the CDS heuristics 
algorithm is basically an extension of Johnson’s 
algorithm. The objective of the heuristic is the 
minimization of make-span in a deterministic flow 
shop problem. CDS heuristic forms in a simple 
manner a set of an m-1 artificial 2-machine sub-
problems for the original m-machine problem by 

Table 7. Sizes of tested scheduling problems 

No. Describing a scheduling 
problem

Size of scheduling 
problem

1 F4 | prmu | Cmax 4x4

2 F5 | prmu | Cmax 5x4

3 F6 | prmu | Cmax 6x5

4 F7 | prmu | Cmax 7x7

5 F8 | prmu | Cmax 8x7

6 F10 | prmu | Cmax 10x12

7 F12 | prmu | Cmax 12x12

8 F15 | prmu | Cmax 15x18

9 F23 | prmu | Cmax 23x25

10 F30 | prmu | Cmax 30x25
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summing the processing times in a manner that 
combines M1, M2,..., Mm-1 to pseudo machine 1 and 
M2, M3,…, Mm to pseudo machine 2. Finally, each 
of the 2-machine sub-problems is then solved us-
ing the Johnson’s 2-machine algorithm. The best 
of the sequence is selected as the solution to the 
original m-machine problem. Let us understand 
from the following illustration.

In the example considered in the section ‘The 
Algorithm Illustration’ processing time for M1 to 
M5 is given as is shown in Figure 2a. The sum of 

processing time for all 5 machines is calculated 
and recorded in the last row of Table 10. This row 
is considered as pseudo machine 1.

Similarly, the processing time for M2 to M6 
is given in Figure 2b where the sum of processing 
time for all 5 machines is calculated in the last 
row of Table 10. This row is considered as 
pseudo machine 2.

Let us view only the pseudo machine 1(ps1) 
and 2 (ps2) as can be seen from Table 10.

Table 9. Optimal sequences of Gupta algorithm 

Problem 
size

Optimal Sequence for different problems

4x4 J4 → J1 → J3 → J2

5x4 J1 → J3 → J2 → J4

6x5 J2 → J3 → J1 → J5 → J4

7x7 J5 → J2 → J1 → J4 → J3 → J7 → J6

8x7 J3 → J1 → J7 → J6 → J5 → J4 → J2

10x12 J10 → J5 → J3 → J2 → J11 → J7 → J4 → J1 → J8 → J6 → J12 → J9

12x12 J12 → J9 → J10 → J6 → J7 → J5 → J3 → J1 → J4 → J2 → J11 → J8

15x18 J12 → J11 → J10 → J17 → J16 → J15 → J6 → J8 → J1 → J7 → J3 → J14 → J13 → J5 → J4 → J2 → J18 → J9

23x25 J25 → J10 → J20 → J18 → J16 → J13 → J7 → J5 → J2 → J17 → J3 → J24 → J23 → J8 → J22 → J21 → J19 → J15 
→ J14 → J6 → J4 → J1 → J12 → J11 → J9

30x25 J12 → J22 → J21 → J18 → J15 → J5 → J1 → J24 → J17 → J3 → J23 → J8 → J20 → J19 → J16 → J14 → J13 → J7 
→ J6 → J4 → J2 → J25 → J11 → J10 → J9

Table 8. Optimal sequences of the proposed algorithm (PA) 

Problem size Optimal Sequences for different problems

4x4 J4 → J1 → J2 → J3

5x4 J3 → J2 → J1 → J4

6x5 J1 → J2 → J3 → J5 → J4

7x7 J5 → J2 → J1 → J3 → J4 → J7 → J6

8x7 J2 → J4 → J7 → J1 → J3 → J6 → J5

10x12 J10 → J5 → J2 → J3 → J7 → J1 → J11 → J8 → J9 → J4 → J6 → J12

12x12 J10 → J12 → J6 → J7 → J5 → J1 → J4 → J9 → J2 → J3 → J8 → J11

15x18 J12 → J10 → J8 → J6 → J1 → J7 → J5 → J3 → J16 → J15 → J2 → J4 → J14 → J11 → J17 → J13 → J9 → J18

23x25 J18 → J13 → J9 → J24 → J17 → J16 → J15 → J2 → J5 → J7 → J23 → J21 → J14 → J11 → J1 → J3 → J4 → J19 
→ J22 → J6 → J20 → J8 → J12 → J25 → J10

30x25 J12 → J9 → J18 → J10 → J11 → J25 → J24 → J8 → J4 → J20 → J1 → J16 → J17 → J2 → J15 → J22 → J7 → J5 
→ J14 → J23 → J21 → J6 → J3 → J13 → J19
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At this stage, the problem is considered as 
an n-job, 2-machine problem. The 2-machines 
sub-problem is now solved using the Johnson’s 
2-machines algorithm. The best of the sequence is 
selected as the solution to the original m-machine 
problem. Based on this procedure, the best se-
quences for the 10 particular sizes are given in 
Table 11.

Slope Index Method

The heuristic has been developed in an effort to 
use Johnson’s rule for m≥3, since for m=2. This 
algorithm is slightly different from Johnson’s 
algorithm. The idea of Slope Index method is to 
give priority to jobs so that jobs with process-
ing times that tend to increase from machine to 
machine will receive higher priority, while jobs 
with processing times that tend to decrease from 
machine to machine will receive lower priority.

The slope index (SI) for job ‘i’ is calculated as:

SI j m t i n
i ij

j

m

= − − =
=
∑ ( ) , , , ..., .2 1 1 2

1

 (10)

For illustration, the calculated values of Slope 
Indices for the particular 6-jobs and 5-machines 
problem are depicted in Figure 3.

Then a permutation sequence is determined 
by ordering the jobs in decreasing order of SIi 
such as:

SI SI SI
i i in1 2
≥ ≥ ≥.......  (11)

By applying expression 5 for values in Figure 
3, the J1-J4-J5-J2-J3 sequence was obtained. 
The make-span calculation for the sequence is 
displayed in the Table 12. 

Based on this procedure, the best sequences 
for the 10 particular sizes shown in Table 13 have 
been obtained.

Genetic Algorithm (GA)

Genetic Algorithm is a computerized search and 
optimization algorithm based on the mechanics 
of natural genetics and natural selection. GA is 
a search technique for global optimization in a 
search space. As the term suggests, they employ 
the concepts of natural selection and genetics us-
ing past information for directing the search with 
expected improved performance to achieve fairly 
consistent and reliable results. The traditional 
methods of optimization and search do not work 
well over a broad spectrum of problem domains. 
The GA attempts to mimic the biological evolution 
process for discovering good solutions. They are 

Figure 2. Illustration example of the CDS algorithm (a) pseudo machine 1 (b) pseudo machine 2

Table 10. Processing time of each pseudo machine 

J1 J2 J3 J4 J5

ps1 2,6 4,75 3,45 2,6 2,6

ps2 1,8 3,55 2,25 1,7 1,7
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based on a direct analogy to Darwinian natural 
selection and mutations in biological reproduction 
and belong to a category of heuristics known as 

randomized heuristics that employ randomized 
choice operators in their search strategy and do 
not depend on complete a priori knowledge of the 
features of domain. These operators have been 
conceived through abstractions of natural genetic 
mechanisms such as crossover and mutation and 
have been cast into algorithmic forms. Holland 
(1976) was envisaged the concept of these algo-
rithms in the mid-sixties and it has been applied 
in diverse areas such as music generation, genetic 
synthesis, fault diagnosis, strategy planning and 
also to address business problems such as Travel-
ing Salesman Problem, production planning and 
scheduling problem, facility location problem, 
transportation problems, telecommunications and 
network problems, engineering design problems 

Table 11. Optimal sequence of jobs based on CDS algorithm 

Problem size Optimal Sequence 
CDS

4x4 J4 → J1 → J2 → J3

5x4 J1 → J2 → J3 → J4

6x5 J2 → J3 → J1 → J5 → J4

7x7 J5 → J2 → J1 → J3 → J4 → J6 → J7

8x7 J4 → J7 → J6 → J1 → J5 → J3 → J2

10x12 J10 → J7 → J11 → J5 → J1 → J3 → J2 → J4 → J6 → J8 → J9 → J12

12x12 J10 → J12 J9 → J7 → J6 → J2 → J3 → J1 → J5 → J4 → J8 → J11

15x18 J10 → J12 → J8 → J11 → J17 → J1 → J7 → J14 → J15 → J16 → J6 → J3 → J5 → J13 → J4 → J2 → J18 → J9

23x25 J10 → J25 → J18 → J13 → J20 → J17 → J14 → J7 → J23 → J2 → J16 → J15 → J3 → J21 → J5 → J6 → J22 → J1 
→ J4 → J24 → J11 → J8 → J19 → J9 → J12

30x25 J12 → J9 → J18 → J24 → J17 → J16 → J22 → J1 → J4 → J15 → J5 → J23 → J21 → J6 → J3 → J7 → J2 → J14 → 
J11 → J20 → J8 → J25 → J19 → J13 → J10

Figure 3. An example of slope indices calculation

Table 12. Make-span by the Slope index method 

J M1 M2 M3 M4 M5 M6

I In out In out In out in Out In Out in Out

J1 0 1 1 1,5 1,5 2 2 2,5 2,5 2,6 2,6 2,8

J4 1 1,5 1,5 2 2 2,5 2,5 3 3 3,1 3,1 3,2

J5 1,5 2,5 2,5 3 3 3,5 3,5 4 4 4,1 4,1 4,2

J2 2,5 4 4 4,8 4,8 5,8 5,8 6,8 6,8 7,3 7,3 7,6

J3 4 5,5 5,5 6,3 6,3 6,8 6,8 7,3 7,3 7,5 7,6 7,9
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and image processing and cell design problems. 
The GA differs from traditional optimization and 
search techniques in the following ways. It works 
with a coding of parameters; not with parameter 
themselves. The GA searches from population of 
points; not from a single point. It uses probabilistic 
rules rather than deterministic rules. In the GA, 
the solution is represented in terms of specific 
coding, for which the number of generations or 
iterations needs to be generated (see Figure 4). 
The best solution will be searched in a solution 
space and narrowed down as per the requirement.

In this chapter the GA is used to search for 
solution of make-span minimization and the results 
obtained from the GA are compared with the 
results of proposed algorithm and benchmarked 

algorithms as shown in Table 15. From this table 
it is evident that used GA method gives the best 
results. The following steps shown in Figure 5 
introduce the GA code used for this purpose.

Representation

Representation is made in the form of solution 
string (t). In this problem considered, each gene 
represents Job number and the chromosome 
represents the sequence of various jobs (i.e. J1 
J4 J5 J2 J3).

Table 13. Optimal sequence using slope index approach 

Problem Size Optimal Sequence

4x4 J4 → J1 → J3 → J2

5x4 J3 → J2 → J1 → J4

6x5 J1 → J4 → J5 → J2 → J3

7x7 J2 → J5 → J1 → J3 → J6 → J7 → J4

8x7 J7 → J1 → J6 → J2 → J3 → J4 → J5

10x12 J2 → J5 → J10 → J3 → J8 → J9 → J1 → J7 → J11 → J6 → J4 → J12

12x12 J6 → J12 → J10 → J7 → J5 → J9 → J1 → J4 → J8 → J11 → J3 → J2

15x18 J6 → J1 → J10 → J8 → J7 → J12 → J4 → J5 → J3 → J11 → J16 → J2 → J9 → J17 → J14 → J15 → J13 → J18

23x25 J17 → J18 → J9 → J16 → J24 → J15 → J13 → J5 → J14 → J2 → J19 → J12 → J8 → J1J11 → J23 → J20 → J7 → 
J21 → J10 → J4 → J25 → J22 → J6 → J3

30x25 J1 → J6 → J5 → J10 → J4 → J18 → J21 → J3 → J2 → J11 → J8 → J22 → J17 → J23 → J12 → J25 → J24 → J7 → 
J15 → J9 → J20 → J16 → J14 → J13 → J19

Figure 4. Pseudo code of genetic algorithm
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Reproduction

The objective value (make-span) is computed for 
each string in the population and the objective 
is to find a string with the minimum value. The 
advantage is that the worst string will never be 
reproduced into the next generation.

Crossover and Mutation

The crossover operator is carried out with a prob-
ability known as crossover probability. Crossover 
is exchange of a portion of strings at a point called 
crossover site. The two strings, which take part 
in the crossover operation, are also selected at 
random.

Mutation is also done randomly for each gene 
and it depends upon another parameter called 
mutation probability. In this method inversion 
mutation is adopted where one gene is selected 
at random, and exchanged with another gene 
mutually.

Table 15. Best sequences from the GA algorithm results 

Problem 
size

Best Sequence 
Genetic Algorithm

4x4 J1 → J4 → J2 → J3

5x4 J1 → J3 → J2 → J4

6x5 J1 → J2 → J3 → J4 → J5

7x7 J5 → J1 → J2 → J3 → J4 → J7 → J6

8x7 J7 → J1 → J6 → J5 → J3 → J4 → J2

10x12 J5 → J9 → J8 → J7 → J10 → J11 → J12 → J1 → J2 → J3 → J6 → J4

12x12 J5 → J7 → J12 → J6 → J9 → J10 → J11 → J1 → J2 → J4 → J3 → J8

15x18 J4 → J6 → J3 → J5 → J2 → J7 → J1 → J9 → J10 → J11 → J12 → J13 → J14 → J15 → J16 → J18 → J8 → J17

23x25 J14 → J12 → J13 → J11 → J10 → J15 → J25 → J17 → J18 → J19 → J20 → J21 → J23 → J24 → J16 → J1 → J2 → 
J3 → J4 → J5 → J7 → J8 → J9 → J6 → J22

30x25 J19 → J8 → J22 → J23 → J20 → J1 → J2 → J3 → J4 → J5 → J6 → J7 → J21 → J9 → J10 → J11 → J12 → J13 → 
J14 → J15 → J16 → J17 → J18 → J24 → J25

Figure 5. The genetic algorithm for minimization of make-span

Table 14. GA constraints 

Parameter Value

Population size 15

Generation Number 500

Crossover Probability 0.5

Mutation Probability 0.1
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For purpose of testing the genetic algorithm 
on 10 particular problems, the following GA 
constraints shown in Table 14 have been used.

The best sequences generated through GA for 
various sizes are given in the Table 15.

COMPARISON WITH 
BENCHMARKED ALGORITHMS

In order to compare the proposed algorithm (PA) 
against the benchmarked, the algorithms described 
above have been used. The make-spans for heu-
ristic and meta-heuristic algorithms are calculated 
and displayed in the Table 16. Sequences obtained 
by using GA for the same PFS problems mostly 
equals to the sequences calculated by PA.

The values in Table 16 were evaluated based 
on percentage deviations from the best results 
obtained through genetic algorithm technique. As 
it is evident, the Genetic Algorithm is ideal for 
finding optimal solutions among the concurrent 
algorithms. In order to compare the performance 
of the algorithm and decide which algorithm is 
better to solve the particular problems average 
deviations values were subsequently calculated 

for each technique. The average values of percent-
age deviations are graphically displayed in Figure 
6.

From the graph, it can be seen that proposed 
algorithm gives the closest result (2% average 
deviation from the optimal values) to the solution 
generated by meta-heuristic technique. Other 
heuristic algorithms are in the range of 3,14% to 
5,24%.

Let us now consider the total number of 
permutations of all four benchmarked heuristic 
algorithms. Genetic algorithm is not compared 
to them since it is known that this meta-heuristic 
generates the maximum number of permutations 
for a given size of matrix elements. The com-
parison of benchmarked algorithms based on total 
number of permutations for a given size of matrix 
elements is shown in Table 17.

Based on the results in this table, we have the 
following conjecture. CDS, Slope index procedure 
and proposed algorithm generate broadly the same 
number of permutations. But numbers of permu-
tations generated by Gupta’s Method are in con-
trast to the much smaller numbers of permutations 
from CDS, SI and PA, especially, starting from 
the size 10x12.

Table 16. Comparative results of make-span 

No. Size Optimal Gupta Dev 
[%]

CDS Dev 
[%]

Slope Dev 
[%]

GA Dev 
[%]

PA Dev 
[%]

1. 4x4 156,0 157,0 0,64 156,0 0,00 157,0 0,64 156,0 0,00 157,0 0,64

2. 5x4 51,0 51,0 0,00 51,0 0,00 53,0 3,92 51,0 0,00 54,0 5,88

3. 6x5 7,7 7,7 0,00 7,7 0,00 8,35 8,44 7,7 0,00 7,7 0,00

4. 7x7 65,0 65,0 0,00 67,0 3,08 75,0 15,38 65,0 0,00 65,0 0,00

5. 8x7 66,0 69,0 4,55 66,0 0,00 70,0 6,06 66,0 0,00 71,0 7,58

6. 10x12 96,0 106,0 10,42 104,0 8,33 104,0 8,33 96,0 0,00 96,0 0,00

7. 12x12 110,0 111,0 0,91 114,0 3,64 115,0 4,55 110,0 0,00 111,0 0,91

8. 15x18 145,0 163,0 12,41 153,0 5,52 146,0 0,69 145,0 0,00 145,0 0,00

9. 23x25 236,0 264,0 11,86 259,0 9,75 241,0 2,12 236,0 0,00 239,0 1,27

10. 30x25 268,0 285,0 6,34 271,0 1,12 274,0 2,24 268,0 0,00 278,0 3,73

Average 4,71 3,14 5,24 0,00 2,00
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CONCLUSION

In the present study, the scheduling problem 
with sequence-dependent operations is dealt. The 
main idea is to minimize the make-span time and 
thereby reducing the idle time of both jobs and 
machines since these criteria are often applied for 
operational decision-making in scheduling. Based 
on the tested problems the proposed approach is 
producing at least comparable results than the 
benchmarked algorithms as shown in Table 16.

Many heuristics and meta-heuristics can find 
fast and feasible solutions to such sequencing 
problems that involve multiple jobs and machines 
and sequence-dependent operations. Taking into 
an account the viewpoints of the algorithm simplic-
ity and obtained results, then the proposed method 
seems to be more effective than the benchmarked 
methods. In realistic situation, the proposed algo-
rithm can be used as it is without any modification 
and come out with acceptable results.

Figure 6. Graph of average deviations

Table 17. Number of permutations for heuristic algorithms 

No. Size Gupta’s method CDS algorithm Slope Index Proposed 
algorithm

No. of Perm No. of Perm No. of Perm No. of Perm

1. 4x4 4 1 1 1

2. 5x4 2 1 1 1

3. 6x5 2 2 2 2

4. 7x7 4 1 1 1

5. 8x7 4 2 2 1

6. 10x12 12 3 4 1

7. 12x12 384 1 1 2

8. 15x18 69120 3 2 2

9. 23x25 14631321600 3 1 2

10. 30x25 6270566400 3 1 2
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APPENDIX

Table 18. Illustration: for the problem of size 4 
machines x 4 jobs 

J1 J2 J3 J4

M1 24 61 22 21

M2 7 9 8 6

M3 7 5 6 8

M4 29 15 14 32

Table 19. Illustration: for the problem of size 5 
machines x 4 jobs 

J1 J2 J3 J4

M1 7 6 5 8

M2 5 6 4 3

M3 2 4 5 3

M4 3 5 6 2

M5 9 10 8 6

Table 20. Illustration: for the problem of size 7 
machines x 7 jobs 

J1 J2 J3 J4 J5 J6 J7

M1 3 2 4 5 1 3 5

M2 5 5 8 7 2 5 2

M3 7 8 1 6 8 4 8

M4 1 1 6 1 4 6 4

M5 6 6 7 8 6 8 6

M6 9 7 9 4 7 1 3

M7 4 9 1 3 4 2 2

Table 21. Illustration: for the problem of size 8 
machines x 7 jobs 

J1 J2 J3 J4 J5 J6 J7

M1 5 2 4 2 5 2 1

M2 1 1 5 1 4 8 5

M3 4 2 2 5 8 5 4

M4 5 5 3 4 9 5 2

M5 8 4 5 6 2 6 4

M6 2 5 8 3 4 5 5

M7 4 3 2 2 8 8 2

M8 8 2 5 2 5 5 8

Table 22. Illustration: for the problem of size 10 machines x 12 jobs 

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

M1 3 2 4 5 1 3 5 4 3 2 4 6

M2 5 5 8 7 2 5 2 2 5 1 6 2

M3 7 8 1 6 8 4 8 2 4 1 6 4

M4 1 1 6 1 4 6 4 5 1 6 2 4

M5 6 6 7 8 6 8 6 7 1 2 4 3

M6 9 7 9 4 7 1 3 2 3 1 5 2

M7 4 9 1 3 4 2 2 6 7 2 5 4

M8 5 6 4 3 7 3 6 1 4 2 3 1

M9 2 4 5 3 2 1 2 4 3 1 5 1

M10 3 5 6 2 3 2 5 3 1 4 2 1
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Table 23. Illustration: for the problem of size 12 machines x 12 jobs 

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12

M1 6 6 7 8 6 8 6 7 1 2 4 3

M2 9 7 9 4 7 1 3 2 3 1 5 2

M3 4 9 1 3 4 2 2 6 7 2 5 4

M4 5 6 4 3 7 3 6 1 4 2 3 1

M5 2 4 5 3 2 1 2 4 3 1 5 1

M6 3 5 6 2 3 2 5 3 1 4 2 1

M7 5 2 4 2 5 2 1 1 1 2 1 2

M8 1 1 5 1 4 8 5 7 8 3 1 3

M9 4 2 2 5 8 5 4 1 1 1 3 2

M10 5 5 3 4 9 5 2 1 2 4 1 4

M11 8 4 5 6 2 6 4 2 2 1 4 4

M12 6 3 1 3 6 9 6 4 5 3 1 4

Table 24. Illustration: for the problem of size 15 machines x 18 jobs 

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 J17 J18

M1 5 6 4 3 7 3 6 1 4 2 3 1 3 2 4 5 1 3

M2 2 4 5 3 2 1 2 4 3 1 5 1 5 5 8 7 2 5

M3 3 5 6 2 3 2 5 3 1 4 2 1 7 8 1 6 8 4

M4 5 2 4 2 5 2 1 1 1 2 1 2 1 1 6 1 4 6

M5 1 1 5 1 4 8 5 7 8 3 1 3 6 6 7 8 6 8

M6 4 2 2 5 8 5 4 1 1 1 3 2 9 7 9 4 7 1

M7 3 2 4 5 1 3 5 4 3 2 4 6 4 9 1 3 4 2

M8 5 5 8 7 2 5 2 2 5 1 6 2 4 2 5 2 1 1

M9 7 8 1 6 8 4 8 2 4 1 6 4 5 1 4 8 5 7

M10 1 1 6 1 4 6 4 5 1 6 2 4 2 5 8 5 4 1

M11 6 6 7 8 6 8 6 7 1 2 4 3 4 5 1 3 5 4

M12 8 4 5 6 2 6 4 2 1 3 5 1 2 1 2 1 2 3

M13 2 5 8 3 4 5 5 2 4 1 3 2 1 5 1 2 4 2

M14 4 3 2 2 8 8 2 3 2 5 1 2 3 4 5 7 2 1

M15 8 2 5 2 5 5 8 6 2 5 4 3 2 2 5 8 2 1
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INTRODUCTION

During the past few decades, there have been various 
types of optimization techniques and mathematical 
programming approaches for cellular manufactur-
ing systems under different random situations. In a 
cell manufacturing, once work cells and schedul-
ing of parts in each cell are determined, it may be 
possible that cycle time in a specific cell be more 
than the other cells which creates a bottleneck in 
a manufacturing system. In this way, there are two 
different approaches in order to decrease cycle time 
in bottleneck cell: duplicating bottleneck machines 
or outsourcing exceptional parts which are known 
as group scheduling (GS) in the literature. Select-
ing each approach to balance cycle times among 
all cells can lead to variations in machines layout 
characteristics by changes in type and number 
of machines. Finally, formations of cells are also 
changed according to the changes in scheduling 
decisions. Thus, scheduling problem is one of the 
operational issues which must be addressed in 
design stage concurrently in an integrated prob-
lem so that the best performance of cells would 
be achieved. It is noted that scheduling problem 
includes many tactical parameters with random and 
uncertain characteristics. In addition, uncertainty 
or fluctuations in input parameters leads to fluctua-
tions in scheduling decisions which could reduce 
the effects of cell formation decisions. Figure 1 
indicates transmission of uncertainty from tactical 
parameters to the CMS problem.

Thus, in order to intensify effectiveness of the 
solution, integrated problem in uncertain condi-
tions must be studied so that final solution will 
be robust and immune against the fluctuations in 
input parameters.

In the concerned problem, uncertain parameters 
can be listed as follows:

• Demand,
• Processing time,
• Routings or machine-part matrix,
• Machines’ availability,
• Failure rate of machines,
• Capacities,
• Lead times,
• Set-up considerations,
• Market aspects,
• …,

where the impact of each factor is discussed in 
the following sections.

PROBLEM BACKGROUND

Group technology (GT) is a management theory 
that aims to group products with similar processes 
or manufacturing characteristics, or both. Cellular 
manufacturing system (CMS) is a manufacturing 
concept to group products into part families based 
on their similarities is manufacturing processing. 
Machines are also grouped into machine cells 

Figure 1. Illustration of uncertainty transmission to the CMS decision
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based on the parts which are supposed to be manu-
factured by these machines. CMS framework is a 
important application of group technology (GT) 
philosophy. The basic purpose of CM is to identify 
machine cells and part families concurrently, and 
to assign part families to machine cells in order to 
minimize the intercellular and intracellular costs 
of parts. Some real-world limitations in CF are:

• Available capacity of machines must not 
be exceeded,

• Safety and technological necessities must 
be met,

• The number of machines in a cell and the 
number of cells have not be exceeded an 
upper bound,

• Intercellular and intracellular costs of han-
dling material between machines must be 
minimized,

• Machines must be utilized in effect 
(Heragu, 1997).

Aggregating traditional considerations with 
newly ones such as scheduling, stochastic ap-
proaches, processing time, variable demand, 
sequencing, and layout consideration can be 
more practical. This survey highlights studies that 
are relevant to the uncertainty planning of CMS 
problems; however, a survey of certain conditions 
will also be presented.

Cellular manufacturing decisions are strategic 
decisions which can be affected by operational 
decisions such as scheduling, production planning, 
layout consideration, utilities, productivity and etc. 
Thus, in order to effecting decision making related 
to cell formation design, it is necessary to integrate 
strategic decisions and operational decisions in a 
single problem. Recently, researchers have had 
some efforts in order to integrate two types of 
decisions. But the lack of literature is that most 
of them are studied in certain situations while in 
real-world most of the operational parameters are 
uncertain; and thus, integrated problems must be 
more studied in uncertain situations.

In the literature correspondence to CMS 
problems, uncertainty has been considered un-
der different circumstances. We have classified 
previous researches into different groups which 
are discussed next.

Group 1: Uncertainty could appear either in 
demand or in products’ mix. In this group, 
there are two approaches of fuzzy theory 
and stochastic optimization to handle 
uncertainty. In some of them stochastic 
demand is aggregated with tactical aspects 
such as production planning (Hurley and 
Whybark 1999), layout problem (Song and 
Hitomi1996) or dynamic and multi period 
conditions (Balakrishnan and Cheng 2007). 
Also, in other studies, uncertainty in prod-
ucts’ demand has been resolved by fuzzy 
approach (Safaei et. al. 2008).

Group 2: Researchers formulated and analyzed 
CMS problem considering fuzzy coefficients 
in the objective function and constraints 
(Papaioannou and Wilson 2009).

Group 3: Processing times of products are as-
sumed to be uncertain where mathematical 
programming and fuzzy approaches are 
implemented to obtain the results which 
are immune against the perturbation on the 
uncertainty. Also, some studies such as Sun 
and Yih (1996) and Andres et. al. (2007) 
attempted to achieve solutions by heuristic 
procedures. Some studies have formulated 
the problem as a queue network and then 
analyzed it by queuing theory (Yang and 
Deane 1993).

Group 4: Uncertainty normally appears due to 
fluctuations in design aspects during produc-
tion process. Since, fluctuations in design 
aspects are not certain events, so uncertainty 
can be formulated by a set of future scenarios. 
In this way, some studies applied interval 
coefficient to resolve uncertainty (Shanker 
and Vrat 1998).
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Group 5: In some explorations, uncertainty 
has been considered in the availability of 
resources for production equipments. In 
this way, some works have formulated 
CMS problem applying probability theory 
(Kuroda and Tomita (2005) and Hosseini 
2000). In addition, some of them considered 
multi processing routes to be substituted 
once a machine encounters with failure 
(Siemiatkowski and Przybylski (2007) and 
Asgharpour and Javadian 2004).

Group 6: Uncertainty has been recognized in 
similarity coefficients. For example, a new 
similarity coefficient has been introduced 
where applied fuzzy theory and then trans-
formed it to a binary matrix (Ravichandran 
and Chandra Sekhara Rao 2001).

Group 7: Capacity level of machines is con-
sidered to be uncertain. Since this critical 
parameter has an important role to determine 
bottleneck machine, thus it is vital to make 
flexible decisions under any realization of 
this parameter (Szwarc et al 1997).

Group 8: Finally, uncertainty in CMS problem 
has been detected in products arrival time 
to cells. Classical models assume that all 
products are available at the beginning of 
the production planning while in real ap-
plication it may be occurred that products 
arrive to cell with unknown time. In this 
way, researchers modeled CMS problem as 
queue network to resolve uncertainty (Yang 
and Deane 1993).

Literature survey classifications can be de-
scribed as follows. There exist many researches 
in certain situations for designing CMS in differ-
ent areas such as cell formation integrated with 
scheduling (Solimanpur et al. (2004), Aryanezhad 
and Aliabadi et al 2011), considering exceptional 
elements in CF (Tsai et al. (1997), Mahdavi et 
al. 2007), some works apply meta-heuristics and 
heuristics methods to solve large scale problems 
are more practical and appealing real-case prob-

lems (Xiaodan Wu et al (2006), Venkataramanaiah 
2007).

OPTIMIZATION APPROACHES 
IN UNCERTAIN SITUATIONS

Rosenhead et al (1972) divided decision environ-
ments into three groups of deterministic, risk and 
uncertain. In deterministic situations, all problem 
parameters are considered to be given. In risk 
problems parameters have probability distribution 
function where it is known for decision maker 
while in uncertain situations there is no informa-
tion about probabilities.

The problems which are classified into the 
risk are named stochastic and the primary ob-
jective is to optimize expected value of system 
outcome. Also, the uncertain problems are known 
as robust and the primary objective is mainly to 
optimize performance of the system in the worst 
case conditions.

The aim of both stochastic and robust opti-
mization methods is to find solution with a suit-
able performance in realization of any value for 
uncertain parameter.

Random parameters can be either continues 
or explained by discrete scenarios. If probabil-
ity information are known, uncertainty will be 
explained by continues or discrete distribution 
functions. But if no information is available, 
parameters are assumed to be in predefined in-
tervals. Scenario planning is a method in which 
decision makers achieve uncertainty by indicating 
a number of possible future states. In such condi-
tions, the goal is to find solutions which perform 
well under all scenarios. In some cases, scenario 
planning replaces predicting as a way to assess 
trends and potential modifications in the industry 
environment (Mobasheri et al 1989). Decisions 
makers can thus develop strategic responses 
to a range of environmental adjustments, more 
adequately preparing themselves for the uncer-
tain future. Under such conditions, scenarios 
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are qualitative descriptions of possible future 
states, consequences from the present state with 
consideration of potential key industry events. In 
other cases, scenario planning is used as a tool 
for modeling and solving specific operational 
problems (Mulvey 1996). While scenarios here 
also depict a range of future states, they do so 
through quantitative descriptions of the various 
values that problem input parameters may resolve. 
Scenario based planning has two main negative 
aspects. The first is that identifying scenarios 
and assigning probabilities to them are a difficult 
task. The second is that we are unable to increase 
the number of scenarios since due to limitation 
on computation time which consequently limits 
the future correspondence situations for decision 
making. This approach has the advantageous that 
provides statistical correlation between parameters 
(Snyder 2006).

DECISION MAKING APPROACHES 
IN UNCERTAIN SITUATIONS

There are different approaches which can be ap-
plied in modeling process based on the problem 
characteristics: Stochastic Optimization (SO), 
Robust Optimization (RO) and Queuing Theory 
(QT) with defined decision tree as follows.

• Stochastic Optimization
• Discrete Planning - Set of Scenario
• Continues Optimization
• Mean Value model: the most popular ob-

jective in any SO problem is to optimize 
expected value of the system outcome. 
For example, minimizing expected cost or 
maximizing expected income.

• Mean – Variance Model: in some studies 
variance and expected of system perfor-
mance are considered simultaneously in 
optimization problem.

• Probability Approaches

• Max Probability Optimization: Maximizing 
the probability of a random event that solu-
tion performs good under each realization 
of random parameter.

• Chance Constrained Programming: a prob-
ability event located in problem constraint 
sets such as service level constraint.

• Queuing Theory & Markov Chain: It is a 
well-known approach.

• Robust Optimization

The objective in any stochastic optimization 
problem mainly focuses on optimizing the expect-
ed value of system outcome such as maximizing 
expected profit or minimizing total expected cost.

In any stochastic programming we must 
determine which variables are considered in the 
first stage (design variable) and which are con-
sidered in the second stage (control variable). In 
other words, which variables must be determined 
first and which of them must be determined after 
uncertainty is resolved. In modeling process for 
cellular manufacturing problem, cell formation 
decisions are the first and operational and tacti-
cal decisions are the second variables. If both 
decisions are made in a single stage, the model is 
reduced to a certain problem in which uncertainty 
of parameters are replaced by mean of variables.

Mean-Variance Models

The mean value models discuss only the expected 
performance of the system without reflecting on 
the fluctuations in performance and the decision 
maker’s risk aversion limitations. However, a 
portion of literature incorporates the company’s 
level of risk aversion into the decision-making 
process, classically by applying a mean–variance 
objective function.

Min = E(Cost) + 𝜆Var(Cost)
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Probabilistic Approaches

The mean-variance models consider only the ex-
pected value or variance of the stochastic objective 
function, there is an extensive portion of literature 
which considers probabilistic information about 
the performance of the system; for example, 
maximizing the probability that the performance 
is good or minimizing the probability that it is 
bad, under suitable and predefined explanations 
of “good” and “bad”. We introduce two such 
approaches: (1) max-probability problems; (2) 
chance-constrained programming;

Queuing Theory for CMS Problem

Queuing theory can be applied to any manufac-
turing or service systems (also, in cellular manu-
facturing systems). For example, in a machine 
shop, jobs wait to be machined; (Heragu 1997b). 
In a queuing system, customers arrive by some 
arrival process and wait in a queue for the next 
available server. In the manufacturing framework, 
customers can be assumed as parts and servers 
may be machines or working cells. The input 
process shows how parts arrive at a queue in a 
cell. An arrival process is commonly identified 
by the probability distribution of the number of 
arrivals in any time interval. The service process 
is usually described by a probability distribution. 
The service rate is the number of parts served per 
unit time. The arrival rate of a queuing system is 
usually given as the number of parts arriving per 
unit time. Thus, measurements of a queue system 
such as maximization the probability that each 
server is busy (utilization factor), minimization 
waiting time in queues (that leads to minimization 
work in process in cells) and etc can be optimized 
and cells will be formed optimality.

Robust Optimization

Once there is no probability information about 
the uncertain parameters, the expected cost and 

other objectives discussed in previous section are 
inappropriate. Many measurements of robustness 
have been introduced for this condition. The two 
most common are mini-max cost and mini-max 
regret, which are directly related to one another. 
Just like the stochastic optimization case, uncer-
tain parameters in robust optimization problems 
may be considered as being either discrete or 
continuous. Discrete parameters are formulated 
applying the scenario based planning. Continuous 
parameters are normally assumed to lie in some 
predefined interval, because it is often impossible 
to consider a “worst case scenario” when parameter 
values are unbounded. This type of uncertainty is 
described as “interval uncertainty”.

The two most common robustness measure-
ments consider the regret of a solution, which is 
the difference (absolute or percentage) between 
the cost of a solution in a given scenario and the 
cost of the optimal solution for that scenario. 
Regret is sometimes described as opportunity 
loss: the difference between the quality of a given 
strategy and the quality of the strategy that would 
have been chosen had one known what the future 
held (Snyder 2006).

As it was already described, the performance 
of a cellular manufacturing system heavily influ-
enced by tactical and operational decisions such 
as scheduling, production planning, layout and 
etc. Notable point is that the tactical decisions and 
operational parameters are dependent on many 
uncertainties that affect the system. As a result, the 
tactical and operational decisions are suffering from 
uncertainty. This causes to transfer uncertainty into 
the decisions related cell formation. Therefore, it is 
essential for researchers to recognize different types 
of uncertainty in the problem and make decisions 
regarded to their impact into the problem.

The most important parameters with uncer-
tainty in manufacturing cell formation problem 
considered as below:

• Demand
• Processing time
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• Routings or machine-part matrix
• Machine’s failure rate
• Capacities

One of the factors causing uncertainty in the 
problem associated with product design changes 
during the course of production. Moreover, 
changes in product design with many features of 
the product are altered. Design changes can occur 
based on a variety of reasons such as changes in 
customer expectations, short-term life products, 
and competing products to market entry.

Under such circumstances, many character-
istics of products such as demand and time will 
find a process of change.

Note that the reasons of changes expressed 
are not certain events in the future and thus they 
have to be predicated as some discrete scenarios. 
In such case analytical space problem is discrete 
and can be optimized by discrete optimization.

As it was discussed earlier, one of the product 
features which can be changed due to changes in 
product design is product routings. In this way, 
sequence of machines in which product has to 
visit them may be changed and therefore part – 
machine index may be changed. In such cases, the 
values within the part – machine matrix unlike 
classical models that were only zero or one can 
be a probabilistic value between zero and one. 

In such problems, discrete optimization can be 
applied to formulation.

Another factor with uncertainty is the rate of 
access to machines based on their failure. Since 
failure and machine downtime are not certain 
events, the machine accessibility for the decision 
maker at the time of manufacturing cells with 
defined uncertainty is also under uncertainty.

Another parameter that is uncertain and can 
affect formation of work cells is features of 
capacity. These factors include different items: 
the capacity of processing machinery on parts 
as well as physical capacities for manufacturing 
framework. Such variations must be predicted at 
the beginning planning horizon.

The summary of above discussions can be 
found Table 1.

MATHEMATICAL MODELLING

In this section, different mathematical models with 
different optimization approaches which include 
two new models and one published model are 
discussed. The selected approaches are stochastic 
optimization and queuing theory.

Table 1. Summary uncertainty developments in CMS problem 

No. Uncertain parameter Optimization Approach Decision space

1 demand Stochastic Continuous & Discrete

2 Processing time Stochastic Continuous & Discrete

3 Processing time Robust Continuous & Discrete

4 Processing time Queuing Theory Continuous

5 Routing Stochastic Discrete

6 Routing Queuing Theory Discrete

7 Capacity Stochastic Discrete

8 Machines’ Availability Queuing Theory Continuous & Discrete

9 Machines’ Availability Stochastic Continuous & Discrete

10 Lead times Stochastic & Robust Continuous & Discrete
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Model 1

In this section, a bi-objective mathematical model 
to form manufacturing cells is presented where 
uncertainty is accessed in part – machine matrix. 
As discussed earlier, due to changes in design 
characteristics of products, several factors are 
subject to changes such as the processing routings 
of parts. Thus, according to the forecasting based 
on the scenario planning, forecasting different 
routing processes for a part in uncertain situa-
tion is possible. In this condition, each part can 
have different routing process for each scenario. 
Therefore, in order to design cellular configura-
tion efficiently, all planning conditions must be 
considered. In current problem the factor with 
uncertainty is part – machine matrix. In classical 
models, only zero-one elements are used in part 
– machine matrix while in the presented problem 
each element can be a continuous value between 
zero and one. Each array denotes the probability 
that part i visits machine j with regard to all sce-
narios. For example, if there are two scenarios in 
which the probability of the first scenario is 0.4 
and for the second one is 0.6, we have:

p1 = 0.4 ⇒ Routing in scenario 1 for part 1: Machine 
1 → Machine 2 → Machine 3 → Finish

p2 = 0.6 ⇒ Routine in scenario 2 for part 1: Machine 
1 → Machine 2 → Machine 3 → Finish

a
M M M M

ij[ ]

. . . .

. .
=
















1 2 3 4

0 4 1 0 61
 

Where element [ij] indicates the probability 
that part i processed on machine j.

Since, in both scenarios, machines 1 and 3 
are the same in processing routing, so part 1 has 
to visit them surely (or with probability 1) to do 
operation process. But, based on the first scenario 
this part has to visit machine 2 with probability 
0.4 and also machine 4 with probability 0.6. As it 
can be seen, in introduced part – machine matrix 

each array can have a value between zero and one 
based on the probability occurrence for scenarios.

In a mathematical model which is presented in 
this section, the first objective function minimizes 
the costs associated with the under utilization in a 
manufacturing system. Also, the second objective 
function is optimizing a random event in manufac-
turing system unlike the classical models which 
optimized only certain events. As it was discussed 
in definitions of a cellular manufacturing system, 
one of the most important objectives is to mini-
mize the number of inter cellular transportation. 
In this problem, since processing rout for parts is 
uncertain, therefore the number of inter cellular 
transportation is uncertain too. A random event 
which is considered for optimization is to “mini-
mizing the probability that the number of inter 
cellular transportation exceeds the upper bound 
limitations”. For computing above objective the 
following notations are defined:

Parameters

a
ijs
=







1

0
 

1 if part i needs to be processed on machine j in 
scenario s

0 otherwise
ps: Probability of occurring scenario s
N: Maximum number of intercellular transporta-

tion allowed in each scenario

Decision Variables

ns: Number of intercellular transportation in 
scenario s.

e
s
=







1

0
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1 if no. of intercellular transportation in scenario 
s configuration exceeded up bound N

0 otherwise

or

e
s
=







1

0
 

1 if ns ≥ N
0 if ns < N
zs: Integer additional variable for each scenario.

x
ik
=







1

0
 

1 if part i is assigned to cell k
0 otherwise

y
jk
=







1

0
 

1 if machine j is assigned to cell k
0 otherwise

In order to minimizing under utilization costs 
in the first objective function, the following func-
tion is defined:

MinZ p a x y
s ijs ik jk

jis
1

1= × − × ×∑∑∑ ( )  

(1)

Also, based on the above definitions, an at-
tractive random event for minimizing the second 
function can be defined as follows:

p (no. of intercellular transportation in each 
condition ≥ N)

The above random event must be optimized 
by minimizing the probability of occurrence that 
leads to maximum utility for decision maker in 
final solution. In other words, above probability 
transforms to the following function:

MinZ e p
s s

s
2
= ×∑  (2)

Since there is s scenarios in the proposed 
problem which are similar to s independent ran-
dom events, thus probability of total events will 
be equal to summation of probability of each 
event. In other words, assuming s1,s2,…,sn as n 
independent random events, we have:

P s s s P s P s P s
n n1 2 1 2

∪ ∪ ∪( ) = ( )+ ( )+ + ( )... ...  

As a result, in above function if in scenario s 
the number of inter cellular transportation exceeds 
the upper bound limitation then we can assume 
that inter cellular transportation may be occurred 
with the probability of ps. Finally, the summation 
of the probability of scenarios with unsatisfied 
inter cellular transportation restriction denotes 
the final probability of the problem.

In this model, the objective functions and also, 
the following constraints are effective:

MinZ p a x y

MinZ e p

s ijs ik jk
jis

s s
s

1

2

1= × − × ×

= ×

∑∑∑
∑

( )
 

Constraints

x i
ik

k

= ∀∑ 1  (3)

y j
jk

k
∑ = ∀1  (4)
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n a x y
s ijs ik jk

ji

− × × − =∑∑ ( )1 0  (5)

z
n

Ns
s−













= 0  (6)

z M e
s s
≤ ×  (7)

x y e z n
ik jk s s s
, , { , }∈ ≥ ≥0 1 0 0integer  

The first objective minimizes total expected 
cost associated with the utilization computed 
when a part do not need to be processed on a 
machine placed together in a same cell. The 
second objective minimizes the probability that 
number of inter cellular transportation exceeds 
the maximum transportation. Set constraint (3) 
says that each part must be assigned to a single 
cell. Set constraint (4) states that each machine 
can be assigned only to one cell. Set constraint 
(5) computes total number of inter transportation 
in each scenario. In set constraint (6) additional 
variable zs will be zero if the number of inter trans-
portations in scenario s is less than the maximum 
limit and it is an integer value greater than 1 else. 
Set constraint (7) guarantees that if ns ≥ N then es 
will be 1. Otherwise, es will be 0.

Model 2

Applying Queuing Theory 
to CMS Problem

In this section, we formulate a CMS problem as a 
queue system. Also, assume a birth-death process 
with constant arrival (birth) and service comple-
tion (death) rates. The role of the birth-death 
process in automated manufacturing systems is 
described in detail in Viswanadham and Narahari 
(Viswanadham and Narahari 1992). Specifically, 
let λ and μ be the arrival and service rate of parts, 
respectively, per unit time. If arrival rate is greater 
than the service rate, the queue will grow infinitely. 
The ratio of λ to μ is named utilization factor or the 
probability that a machine is busy and is defined as 
𝜌 = 𝜆 | 𝜇. Therefore, for a system in steady state, 
this ratio must be less than one. In this research, 
we assume M/M/1 queue system for each machine 
in CMS where each part arrives to cells with rate 
𝜆i and parts served by machines. In this condition, 
due to operate different parts (or different custom-
ers) on each machine and each part has different 
arrival rate, so for each machine (server) ρ is 
computed using the following property. Figure 
2 illustrates modeling of cellular manufacturing 
system by queuing theory approach.

Figure 2. A CMS problem and queuing theory framework (Ghezavati and Saidi-Mehrabad 2011)



308

Optimization and Mathematical Programming to Design and Planning Issues

Property 1 the minimum of independent ex-
ponential random variables is also, exponential. 
Let F1, F2,…, Fn be independent random variables 
with parameters 𝜆1, 𝜆2,…, 𝜆n. Let Fmin = min{F1, 
F2,…, Fn}. Then for any t ≥ 0,

P F t P F t P F t P F t

e e e e
n

t t tn

( ) ( ) ( ) ... ( )

...
min
> = > × > × × >

= =− − −
1 2

1 2λ λ λ −− + + +[ ... ]λ λ λ1 2 n t
 

An interesting implication of this property to 
inter-arrival times is discussed in Hillier and Li-
eberman (Hillier and Lieberman 1995). Suppose 
there are n types of customers, with the ith type 
of customer having an exponential inter-arrival 
time distribution with parameter 𝜆i, arrive at a 
queue system. Let us assume that an arrival has 
just taken place. Then from a no-memory prop-
erty of exponential distribution, it follows that 
the time remaining until the next arrival is also 
exponential. Using mentioned property, we can see 
that the inter-arrival time for entire queue system 
or efficient arrival rate (which is the minimum 
among all inter-arrival times) has an exponential 
distribution with parameter:

λ λ
eff i

i

N

=
=
∑

1

 

Hence, utilization factor or the probability that 
each machine (j) is busy is as follow (efficient 
arrival rate divided by service rate):

ρ
λ

µ

λ

µj

eff

j

i
i

N

j

= = =
∑

1  (8)

Chance Constrained Programming

Since, both arrival time and service time are 
uncertain so the amount of time in which each 

customer spends in server will be uncertain, too. 
In order to prevent long waiting time for each 
customer, a chance constraint must be considered 
in the formulation. Note that distribution function 
denoting total time for each customer in a M/M/1 
system is as follows:

PW
s
t e

t
( )

( )
≥ =

− −µ ρ1
 (9)

Proof: Assume that there are N customers in 
a system once a new customer is arrived. Thus, 
based on the conditional probability theory:

PW t PW t N n P N n
s s

n

( ) ( | ) ( )≥ = ≥ = × =
=

∞

∑
0

 

(10)

On the other side, total time in which a new 
customer has to wait is equal to:

W F F F
q n
= + + +

1 2
...  (11)

Where Fi denotes service time for customer 
i. So:

W W F
s q n
= + +1

 (12)

where Fn+1 denotes service time for new arrived 
customer. It is obvious that sum of the n+1 random 
variables with exponential distribution with rate 𝜇
will be an Erlang random variable with parameters 
n+1 and 𝜇. So:

PW t N n P F t e
y
n
d

s i
i

n
y

n

y
t

( | ) ( )
( )

!
≥ = = > = ×

=

+
− ⋅

∞

∑ ∫
1

1

µ
µµ  

(13)

Note that the probability of being n customers 
in a M/M/1 model system is:



309

Optimization and Mathematical Programming to Design and Planning Issues

p
n

n= − =ρ ρ ρ
λ
µ

( )1 where  (14)

Based on the Equations 13 and 14, Equation 
10 will be computed as:

PW t e
y
n
d

s
n y

n

y
tn

( ) ( )
( )

!
≥ = − × − ⋅

∞

=

∞

∫∑ ρ ρ µ
µµ1

0

 

(15)

= − − ⋅

=

∞∞

∑∫µ ρ
ρ µµ( )

( )
!

1
0

e
y
n

dy
n n

n
y

t

 (16)

Also, based on the exponential series, we have:

ρ µ ρ µ λ
n n

n

y yy
n

e e
( )

!=

∞
⋅ ⋅ ⋅∑ = =

0

 (17)

If we replace Equation 17 to the Equation 16, 
the Equation 9 will be proven. It can be found 
that Ws has an exponential distribution function 
with parameter 𝜇 –𝜆.

In order to satisfy service level this probabil-
ity must be at most α. So, the chance constraint 
will be determined as P(Ws ≥ t) ≤ 𝛼. In order to 
linearize this nonlinear constraint the following 
procedure is performed:

PW t
s

( )≥ ≤ α  (18)

⇒ ≤− −e tµ ρ α( )1  (19)

⇒− − ≤µ ρ α( ) ( )1 t Ln  (20)

The achieved constraint indicates that a cus-
tomer will be in system more than critical time t 
with probability at most α.

Property 2. If n types of customers have to 
visit a server to receive service with different 
arrival rate 𝜆i then the probability of a random 

customer in which visits the server be ith type 
will be as follows:

p
i

i

j
j

=
∑
λ
λ

 (21)

In concerned model, the characteristics of a 
Jacson service network will be applied. In a Jacson 
network, it is assumed that each customer has to 
visit multiple servers in order to complete service 
stages. For example, each part refers to several 
machines to complete operation processes. In such 
network, input rate for machines needed for the 
first operation will be equal to the arrival rate of the 
part to the system. But, the ratio for any machines 
need for the second operation input rate will be 
equal to the output rate from the previous server 
(or machine). Similarly, any machine needs for 
the third operation input rate will be equal to the 
exit rate of the second machine and this process 
goes on for the other machines.

In a cellular manufacturing problem formulated 
as a queue system, each part based on its routing 
process visits machines or multi cells in order to 
receive service. Figure 3 illustrates such process.

For each machine, effective input rate is made 
of two elements. The first fraction is the summa-
tion of arrival rate of parts which visit the machine 
in the first operation. The second fraction is the 
summation of input rate of parts which visit the 
machine after the second operation. This rate is 
equal to the output rate of the previous machine. 
Figure 3 illustrates difference between arrival 
rates for machines per a specific part. In this 
model, such procedure will be applied to compute 
effective input rate for each machine.

In this section, a part—machine matrix—will 
be applied where sequence operations of parts are 
determined. This can help us formulate problem 
as a Jacson network. Each element of this matrix 
is defined as follows:
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a
j

ik
=





0

 

j  if kth process of part i is completed by ma-
chine j

0  otherwise

b
k

ij
=





0

 

k  if part i refers to machine j to complete kth 
process

0  otherwise

Other parameters are defined as follows:

z
ij
=







1

0
 

1  if operation on machine j is the first opera-
tion of part i

0  otherwise

c
ij
=







1

0
 

1  if part i needs to be processed on machine j
0  otherwise

𝜆I = A rrival rate of part i to manufacturing system.
𝜇j = service rate of machine j (or [1/𝜇j] denotes 

average operation time on machine j).
pij = The probability that a random part type i 

leaves machine j.
𝛽 = Penalty rate multiplied to arrival process if 

intercellular movement occurs.

It is assumed that if an operation of a part 
has to transfer to the other cell (or inter cellular 
movement) then arrival rate will be multiplied by𝛽 
in which included transfer time and also waiting 
time between cells.

𝜆je
ff = Effective arrival rate for machine j.

Based on the above definitions 𝜆je
ff will be 

computed by the following equation.

λ λ λ
j
eff

ij i ij ij a
eff

i a
i

m

i

z z c p
i bij i bij

= ×( )+ − × × ×
− −

==
∑( )

, ,,
1

1 1
111

m

∑  

In above equation, in order to compute effec-
tive input rate for each machine two fractions are 
considered: the first fraction is the summation of 
the arrival rate for parts which visit machine j in the 
first operation. The second term is the summation 
of input rate for parts which visit the machine after 
the second operation. Number of operation which 
completed by machine j is bij based on the defined 
parameters. Thus, number of previous operation 

Figure 3. Arrival rate for part 1 into the different machines based on the routing
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is bij – 1. Finally, according to the definition of 
aik (the machine completes kth operation of part 
i), the machine which completes previous opera-
tion of part i will be ai,b𝜇-1. Therefore, the second 
term of above equation effective arrival rate for 
parts visit machine j after the second operation 
are computed as follows: effective arrival rate of 
a machine needs before machine j multiplied by 
the probability of leaving for part i from previ-
ous machine.

For example, assume that customers arrive to a 
book store with Poisson distribution with rate 10 
per hour where 60 percent is man and 40 percent 
is women. Hence, the number of men arrives to 
the store will be Poisson with rate 15×0.6 per 
hour and also, number of women arrives to the 
store will be Poisson with rate 15×0.4 per hour.

Note that if operation j of part i needs inter 
cellular transportation, machine j is penalized 
by increasing arrival rate of part i and the rate is 
multiplied by β. Finally, the model must deter-
mine whether each operation needs inter cellular 
transportation or not. It must be mentioned that 
operation j of part i needs inter cellular transpor-
tation when machine j and part i are not located 
in the same cell. Based on the above description 
𝜆eff is computed as follows:

λ λ λ β
j
eff

ik jk i ik jk i
i

m

ij
i a

x y x y

z
p

i b

= ×( )× + × −( )× ×





× +

=
∑ 1

1

, , iij i bij i bij

x y x y
ik jk a

eff
ik jk a

eff

− − −
× ×( )× + × −( )× ×





1 1 1
1λ λ β

, ,






× × −=
∑
c z
ij ij

i

m

( )11

 

(22)

Mathematical Model

In this section, a mathematical model optimizes 
cell formation decisions based on the queuing 
theory will be proposed. The objective function is 
to minimize total cost included under utilization 
cost. Also, a chance constraint will be considered 
in order to prevent additional waiting time of 
parts in a queue line in front of each machine. 
As it was discussed, assuming each machine as a 

M/M/1 model, the chance constraint (13) satisfies 
considered objective.

MinZ a x y
ij ik jk

ji

= − × ×∑∑ ( )1  (23)

Constraints

x i
ik

k

= ∀∑ 1  (24)

y j
jk

k
∑ = ∀1  (25)

λ λ λ β
j
eff

ik jk i ik jk i
i

m

ij

i a

x y x y z

p
i b

= ×( )× + × −( )× ×




× +

=
∑ 1

1

, , iij i bij i bij

x y x y
ik jk a

eff
ik jk a

eff

− − −
× ×( )× + × −( )× ×





1 1 1
1λ λ β

, ,






× × −=
∑
c z
ij ij

i

m

( )11

 

(26)

ρ
λ

µj

j
eff

j

− = 0  (27)

− × − ≤ ∀µ ρ α
j j

t Ln j( ) ( )1  (28)

ρ
j

j≤ ∀1  (29)

p
c

c
i j

ij

i ij

r rj
r

−
×

×
= ∀

=
∑
λ

λ
1

0 ,  (30)

x y p
ik jk j ij
, { , } ,∈ ≥0 1 0ρ  

Constraints (24) and (25) compute effective 
arrival rate and utilization factor for each ma-
chine, respectively. Set constraint (28) guaran-
ties satisfaction of chance constrained for each 
machine where the probability that each part has 
to wait more than critical time t is at most a. Set 
constraint (29) ensures that utilization factor for 
each machine will be less than one. Set constraint 
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(30) determines the probability that a random part 
leaves machine j be type i.

Model 3

Recently, Ghezavati and Saidi-Mehrabad (2010) 
proposed a stochastic cellular manufacturing 
problem in where uncertainty is captured by dis-
crete fluctuations in processing times of parts on 
machines. The aim of their model was to optimize 
scheduling cost (expected maximum tardiness 
cost) plus cell formation costs, concurrently. The 
mathematical model is represented in this part and 
interested readers are referred to read the paper 
for more details.

Parameters

a
ij
=







1

0
 

1  if part i required to be process on machine 
j

0  otherwise
ci:  Penalty cost of subcontracting for part i
𝜇ij:  Cost part i not utilizing machine j
Mmax:  Maximum number of machines permitted 

in a cell
C𝜇:  Maximum number of cells permitted
ps:  Probability of scenario s occurs
tijs:  Processing time for part i on machine j in 

scenario s
DDi:  Due Date of part i
pc:  Penalty cost for unit time delayed

Decision Variables

x
ik
=







1

0
 

1  if part i processed in cell k
0  otherwise

y
jk
=







1

0
 

1  if machine j assigned to cell k
0  otherwise

Z
is r[ ]
=







1

0
 

1  if part i assigned to sequence [r] in scenario 
s

0  otherwise
F[r]ks: The time in which process of part with 

sequence [r] ends in cell k and scenario s
FD[r]ks: Due date of part with sequence [r] in 

cell k in scenario s
L[r]ks: Tardiness of part with sequence [r] in cell 

k in scenario s
MLs: Maximum Tardiness occurred in scenario s
Diks: Total processing times of part i needs to be 

processed in cell k and scenario s
T[r]ks: Total processing times of a part with 

sequence [r] assigned to cell k in scenario s

CF decisions are scenario – independent: 
they must be made before occurring scenarios 
and they are made based on their similarities in 
processing parts and are independent to quantity 
of processing time. Scheduling decisions are sce-
nario – dependent, thus Z, D, T, FD, L, ML and F 
variables are indexed by scenario since they must 
be made after we realize scenario and where the 
processing time is occurred.

Mathematical Model (Ghezavati, 
V.R. and Saidi-Mehranad, M., 2010)

Minimize Z pc p ML

c a x y

u a x

s s
s

i ij ik jk
ijk

ij ij ik

= × × +

− +

−

∑
∑∑∑ ( )

( )

1

1 yy
jk

ijk
∑∑∑

 (31)
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Subject to:

x i
ik

k

= ∀∑ 1  (32)

y j
jk

k
∑ = ∀1  (33)

Z i s
is r

r
[ ]

,∑ = ∀1  (34)

x Z X Z k s r
ik is r

i
ik is r

i
,[ ] [ ]

, ,+∑ ∑≤ ∀
1

 

(35)

D a t x y i k s
iks ij ijs ik jk

j

= ∀∑ , ,  (36)

x Z r s k
ik is r

i
[ ]

, ,∑ ≤ ∀1  (37)

T Z D k s r
r ks is r iks

i
[ ] [ ]

, ,= ∀∑  (38)

F T k s r
r ks ks

r

r
[ ]

, ,= ∀
==
∑∑ α
α 11

 (39)

FD x Z DD k s r
r ks ik is r i

i
[ ] [ ]

, ,= × × ∀∑  

(40)

L F FD k s r
r ks r ks r ks[ ] [ ] [ ]

max , , ,= −{ } ∀0  
(41)

ML Max L k C and r P

s
s r ks
= = =

∀
{ : ,..., [ ] , ..., }

[ ]
1 1  

(42)

y M k
jk

j
∑ ≤ ∀

max
 (43)

x y Z
ik jk isr
, , ~ ( , )0 1  (44)

D T F FD
iks rks rks rks

, , , ≥ 0  (45)

Set constraints (32), (33) and (43) indicate cell 
formation constraints and set constraints (34), (35), 
(36), (37), (38), (39), (40), (41) and (42) perform 
scheduling computations and rational constraints.

Linearization Approaches

In above formulation, since there are both binary 
and continuous variables where are multiplied 
to each other, nonlinear terms are appeared in 
formulation process. Two common types of non-
linear terms are:

Type 1: Pure 0-1 polynomial problem in which n 
binary variables are multiplied to each other 
such as Z = x1 × x2 ×…× xn.

Type 2: Mixed 0-1 polynomial problems which n 
binary variables are multiplied to each other 
and this term is multiplied to a continuous 
variable such as Z = x1 × x2 ×…× xn × Y.

For linearization type 1 the following method 
can be applied by introducing some new auxiliary 
constraints:

Z x i n

Z x n

i

i
i

n

≤ =

≥ − +
−
∑

1 2

1
1

, ,...,

( )
 

Also, for linearization type 2 in a minimiza-
tion problem, the following auxiliary constraints 
will be applied:

P1: Nonlinear problem

MinZ x x x y
n

= × × × ×
1 2

...  

St:

L X Y( , )  
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P2: Linear form

Min Z  

St:

Z y U n x

Z L X Y

i
i

n

≥ − × −










≥
=
∑

1

0 ( , )
 

where U is upper bound for continuous variable 
y and therefore Z will be a continuous variable 
(Ghezavati and Saidi-Mehrabad 2011).

CONCLUSION

In summary, in this chapter basic principles of 
uncertainty in a cellular manufacturing system 
were established. Since CMS problem is affected 
by tactical decisions such as scheduling, produc-
tion planning, layout considerations, utilization 
aspects and many other factors, thus each CMS 
problem must be aggregated with tactical deci-
sions in order to achieve maximum efficiency. As 
it is known, tactical decisions are made of many 
uncertain parameters. Since strategic decisions are 
influenced by tactical decisions, therefore CMS 
decisions will be mixed with uncertainty. There are 
some popular approaches which can analysis un-
certain problems such as: Stochastic Optimization, 
Discrete Planning - Set of Scenario, Continues Op-
timization, Mean Value model, Mean – Variance 
Model, Max Probability Optimization, Chance 
Constrained Programming, Queuing Theory and 
Markov Chain, and Robust Optimization. This 
chapter has proposed two sample mathematical 
models and also one published model [32]. It 
was assumed that processing routing, inter arrival 
and service time and also processing time to be 
uncertain. Stochastic optimization and queuing 
theory were to resolve uncertainty in formulation 

process. A complete survey on meta-heuristic 
methods to solve CMS problems can be found 
by Ghosh et al (2011). For future directions, the 
following suggested developments can be applied 
for researchers and readers:

• Uncertain Processing time optimized by 
robust approach in continuous or discrete 
space

• Uncertain capacities optimized by stochas-
tic or robust approach in discrete space

• Uncertain machines’ availability optimized 
by stochastic or queuing theory approaches 
in continuous or discrete space.

• Aggregating CMS problem with logistics 
considerations in uncertain environments.

• Aggregating CMS problem with pro-
duction planning aspects in uncertain 
environments.

• Aggregating CMS problem with layout 
considerations in uncertain environments.

• Aggregating CMS problem with schedul-
ing concerns in uncertain environments.
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INTRODUCTION

To survive, manufacturing companies strive to 
timely offer a large number of customized products 
at affordable costs. Developing product families, 
instead of single products, has been well accepted 
as an effective means to accommodate the increas-
ingly individualized customer expectations while 

leveraging cost of delivering the resulting variety 
(Meyer and Utterback, 1993). A product family 
refers to a set of customized products that assume 
some common structures and yet possess specific 
features and functionalities to meet particular 
customer requirements. Many approaches and 
methodologies have been introduced to accom-
modate product family development (e.g. Agard 
and Kusiak, 2004; Anderson, 1997; Hsiao and 
Liu, 2005). With focus on design, these methods 

Linda L. Zhang
IESEG School of Management, France

Planning Process Families 
with PROGRES

ABSTRACT

Process family planning has been well recognized as an effective means of maintaining production ef-
ficiency by exploiting process reuse and near mass production efficiency underlying product families. 
To support process family planning automation, this study develops a PROGRES-based approach to 
modeling planning data, knowledge and reasoning. The PROGRES-based process family planning 
models are hierarchically organized. At the top level, a meta model is defined to conceptualize process 
family planning in general. Based on this meta model, generic models are defined for planning process 
families for specific product families (i.e., specific process family planning). Finally, instance models are 
obtained by instantiating the generic models, representing production processes for given product fam-
ily members. The proposed approach is illustrated with planning processes for a textile spindle family.
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can help companies reduce design costs and time 
and reuse proven design knowledge, as evidenced 
by some successful industrial cases, including 
Sony Walkmans (Sanderson and Uzumeri, 1997), 
Compaq personal computers (Meyer, 1997) and 
Lutron lighting systems (Pessina and Renner, 
1998). However, they are not able to facilitate 
other issues of product family development (e.g., 
production). Authors have pointed out successfully 
developing product families hinges on efficiency 
of both design and production (do Carmo-Silva 
and Alves, 2006; Wiendahi et al., 2007)

Due to the finite manufacturing resources 
existing on shop floors and the short delivery 
lead times, product families lead to difficulties in 
production process planning, and further in pro-
duction (Wortmann et al., 1997). This is because 
the production optimality of single products may 
conflict that of a product family (Jiao et al., 2007). 
In response to the inefficiency of the traditional 
approaches to planning, planning production 
processes for product families rather than single 
products (i.e., process family planning) has been 
put forward as an effective means for companies 
to obtain production efficiency of product families 
(Martinez et al., 2000; Schierholt, 2001; Zhang 
and Rodrigues, 2009). This is accomplished by 
exploiting process reuse and near mass production 
efficiency underlying product families. The ratio-
nale of process family planning lies in anchoring 
the planning of production processes for product 
family members to a common platform so as to 
reconfigure the existing processes and capitals 
(Azab et al., 2008).

A process family refers to the set of production 
processes to produce the set of product variants 
in a family. In this regard, a production process is 
to produce a complete product, which consists of 
both component parts and component assemblies. 
It is formed by a number of operations, operations 
precedence and manufacturing resources. Further, 
in accordance with the hierarchy of a product in 
consideration, operations and other associated 
process elements in a production process can 

be grouped as several subprocesses. Each such 
subprocess is to produce the corresponding com-
ponent part or assembly in the product hierarchy. 
In this regard, dealing with part manufacturing, 
cellular manufacturing compliments process fam-
ily planning. With operations and manufacturing 
resources determined in process family planning, 
the appropriate methods reported in cellular 
manufacturing can be used to, e.g., group parts 
with similar routings.

Despite the similar product structures and 
the same item types, product variants in a family 
differ from one another in specific item variants, 
be they parts or assemblies. Thus, the associated 
diverse designs of product variants and com-
ponent items impose requirements for different 
production processes. As a result, process family 
planning involves large volumes and different 
types of data pertaining to a product family and 
the process family to be planned. In this regard, 
how to organize these data as a common platform 
becomes a major issue in process family planning. 
Due to the different component parts, assemblies 
involved in a product family and the limited manu-
facturing resources available on shop floors, there 
are numerous constraints that must be satisfied 
when planning production processes for product 
variants (Zhang and Xu, 2010). These constraints 
complicate the reasoning behind process family 
planning, and further the planning process. In 
this regard, how to model the dynamics (i.e., the 
planning process) and the planning reasoning 
presents itself as another major issue.

To support process family planning automa-
tion, in this chapter, we focus on the above two 
issues. We approach the first issue by addressing 
the static representation of data involved in process 
family planning and the second one by handling the 
dynamic modeling of the planning process. With 
the static representation and dynamic modeling 
developed in this study, we expect to shed light on 
1) the organization of the large volumes of product 
and process family data in a logical way, and 2) 
the reasoning behind process family planning.
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Many modeling tools/languages (e.g., Petri 
nets, simulation, mathematical programming, 
data diagrams, flow charts) have been reported 
in the literature. However, they are designed to 
either represent a system from the static aspect 
(i.e., structure representation involving constitu-
ent elements and their relationships) or model a 
system from the dynamic aspect (i.e., dynamic 
modeling), but not both. In response to this limita-
tion, PROGRES (PROgrammed Graph Rewriting 
System) is developed to model systems by captur-
ing both system’s static structures and dynamic 
behavior (Schurr et al., 1995). Its applications 
have been seen in a wide range of areas, such as 
data structure specification, process modeling 
and configuration management (Szuba, 2005). In 
addition, PROGRES excels in handling derived 
fact, providing parametric rewriting rule specifica-
tion, and supporting data and system consistency 
(Schurr et al., 1995; 1998). The readers may refer 
to (Schurr et al., 1995; 1998) for details about 
PROGRES.

Recognizing its modeling capabilities, we 
adopt PROGRES to model process families and 
their planning. By modeling a process family, 
the attempt is to show how the large volumes of 
data involved in process family planning should 
be organized; by modeling the planning process, 
the aim is to clarify the reasoning behind planning 
production processes for product families.

In section 2, we present a review of the lit-
erature relevant to process family planning. An 
overview of PROGRES-based process family 
planning modeling is given in Section 3. Also 
discussed are the guidelines of PROGRES-based 
modeling. Sections 4 and 5 present the graph 
schema and graph transformations and generic 
models for process family planning modeling. The 
results of a case study are presented in Section 6 
to demonstrate the potential and feasibility of the 
proposal. In Section 7, this chapter is ended with 
conclusions, limitations and potential avenues for 
future research.

RELATED WORK

In view of the importance of production efficiency 
in successfully developing products and the limita-
tions of traditional approaches to planning, more 
and more efforts have been put in developing 
new planning methods. The hope is that with 
these new methods, companies are able to main-
tain production of product families as stable as 
possible by eliminating the unnecessary process 
variations (Lu and Botha, 2006; Pisano, 1997). 
Schierholt (2001) puts forward a concept of pro-
cess configuration for configuring process plans to 
manufacture part families. Similarly, Williams et 
al. (2007) introduce process parameter platforms 
for deriving process parameters to be included in 
machining processes for parts. To facilitate process 
plan generation based on process configuration, 
Zheng et al. (2008) present a systematic model of 
hierarchical, historical and case-based manufac-
turing process knowledge. While the above work 
addresses planning processes for part families, 
other reported work presents methods for assembly 
planning. Gupta and Krishnan (1998) introduce 
a methodology to design assembly sequence for 
a product family. Gottipolu and Ghosh (2003) 
develop an approach for generation, representa-
tion and selection of assembly plan alternatives 
by translating geometric and mobility constraints 
into contact and translational functions. Marian et 
al. (2003) first formalize and solve the assembly 
sequence planning problem; subsequently, they 
discuss an approach based on genetic algorithm to 
optimize the generated assembly plan alternatives 
(Marian et al., 2006). In summary, based on given 
inputs, such as parts, operations and machines, 
methods in the above work attempt to specify 
detailed process parameters (e.g., cutting speed, 
feed rate, collision path) for manufacturing parts 
or producing assemblies. To ensure the accuracy 
of these planning activities by providing the cor-
rect/optimal inputs, production processes for final 
products should be planned (do Carmo-Silva and 
Alves, 2006; Wiendahi et al., 2007).
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A concept of process family planning is 
introduced in (Zhang and Rodrigues, 2009), in 
attempting to determine the processes to achieve 
optimal production in terms of e.g. lead time, 
resource utilization for the product family as a 
whole. While the authors put forward the con-
cept of process family planning, they focus on 
the construction of a generic routing structure 
underpinning the product and process families 
from data existing in companies’ databases. In 
attempting to facilitate constraint construction, 
Jiao et al. (2008) discuss an approach based on 
association rule mining to identify the mapping re-
lationships between product and process families. 
In a recent work (Zhang and Xu, 2010), process 
family planning is formulated as a constraint sat-
isfaction problem (CSP) and solved based on the 
techniques existing in the CSP literature. While 
these studies approach process family planning 
from different perspectives by formulating and 
solving the problems concerned, they leave data 
organization and planning reasoning untouched. 
In view of their importance in process family 
planning automation, this chapter thus focuses on 
data organization and planning reasoning.

OVERVIEW OF PROGRES-BASED 
PROCESS FAMILY PLANNING

Process Family Planning

For a given product family, a generic routing struc-
ture can be constructed by integrating a generic 
product structure with a generic process structure 
(Zhang and Rodrigues, 2009). While the generic 
product structure models all design data pertain-
ing to the product family, the generic process 
structure organizes all process data describing the 
corresponding process family. With such a generic 
routing structure, process family planning gener-
ally entails activities from two views, including 
the design view and the production view. From 
the design view, process family planning is to 

specify product variants based on given customer 
requirements; from the production view, it deter-
mines the corresponding production processes. 
Thus, in the design view, process family planning 
is characterized by the generic product structure 
involving a set of design parameters, compatible 
constraints among these parameters, product items 
and relationships among them; in the production 
view, process family planning is characterized by 
processes, sequence relationships, operations and 
operations precedence organized in the generic 
process structure. The processes are associated 
with component items that can be located in the 
generic product structure. More specifically, a 
process is to produce a parent item by taking 
several child items as input. These processes are 
connected by sequence relationships, and detailed 
by operations and operations precedence. Unlike 
the output of processes, the output of some opera-
tions are pseudo items, which cannot be found in 
the generic product structure, and are formed by 
child product items and/or child pseudo items.

Consistent with the above understanding, plan-
ning a specific production process involves two 
phases: product variant specification and produc-
tion process determination. With given customer 
requirements, a user (e.g., a designer) assigns val-
ues to parameters, resulting in a list of compatible 
parameter value pairs which define an end-product. 
These parameter values then propagate along the 
hierarchy of the generic product structure, deter-
mining parameter values of items. Each item, be it 
a secondary or a primary, is instantiated according 
to the parameter values obtained from parameter 
propagation. Item instantiation leads to a specific 
hierarchy pertaining to the product variant. With 
the item variants and the goes-into relationships 
(i.e., parent-child relationships) among them, 
the processes, sequence relationships, operations 
and operations precedence in the generic process 
structure are instantiated. Such instantiation is 
accommodated by the interconnections between 
the generic product and process structures and the 
conditions to include an operation or process. The 
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instantiation results a production process includ-
ing several groups of ordered operations for the 
product variant, with each group producing one 
product item.

Overview of PROGRES-Based 
Process Family Planning

By following PROGRES language constructs, this 
chapter develops a PROGRES model of process 
family planning. In the model, design parameters, 
compatible constraints, items, processes, opera-
tions, etc. are represented as nodes; relationships 
among them are represented as edges; and ma-
nipulations of items, processes and operations are 
modeled as productions. The graph representing 
product family elements that construct the start-
ing point of process family planning is adopted 
as a starting graph. The graph of a production 
process is transformed based on the starting graph 
by invoking proper productions. In addition to 
productions, graph generation is accomplished 
with control structures, which define the execu-
tion order of productions.

To achieve the above PROGRES-based pro-
cess family planning modeling, a graph schema 
is designed to model all involved objects. It 
consists of a set of graph entities common to 
graphs of production processes of the family. In 
addition, it describes all the necessary types of 
nodes and edges, as well as their associated at-
tributes. Furthermore, the productions and control 
structures are programmed to manipulate graphs, 
more specifically nodes and edges, by reasoning 
about planning production processes for given 
product variants.

In accordance with the stratified character of 
PROGRES, models at three levels of abstraction 
are developed in the PROGRES-based modeling 
of process family planning. They include meta 
models at the top (or meta) level, generic models at 
the family level and instance models at the variant 
level. A meta model captures the abstraction of 

objects/concepts and their relationships common 
to planning of production processes for different 
product families. The abstraction is specified 
by defining the corresponding node classes and 
edge types. In addition, to generalize the graph 
manipulations that are common to all process 
families, the related graph transformations are 
defined at this meta level. The generic model 
represents the unified generic data structure of 
a process family, where family related elements, 
such as items, processes, operations and design 
parameters, are specified using node classes. The 
relationships among these elements are specified 
using edge types. The graphical representation 
of a generic model is called a family graph. For 
a process family of a particular product family, 
the corresponding generic model can be defined 
by adapting relevant entities of the meta model 
to specific characteristics of the product and pro-
cess families. A family graph can be transformed 
to variant graphs, representing operations and 
operations precedence of a specific production 
process. Essentially, these variant graphs are 
instance models.

The meta model and graph transformations 
are defined by the classes and productions in the 
PROGRES formalism. To adapt the meta model 
to a family specific generic model, node types of 
the process family are specified from two different 
views: the design view and the production view. 
By emerging these specific types with classes and 
productions, a complete PROGRES specification 
of the particular process family is obtained. The 
starting graph for design consists of design pa-
rameters, products, items, compatible constraints, 
goes into relationships, selection constraints and 
the relationships among them, thus named as the 
design view family graph. The starting graph 
for production consists of processes, sequence 
relationships, operations, precedence relation-
ships, selection constraints and the relationships 
among them, thus named as the production view 
family graph.
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Based on the family specific generic model 
and the given customer requirements, users in-
put the values for design parameters. The design 
view family graph is then rewritten according to 
the pre-defined control structures. The result is 
a variant graph – graphical representation of a 
product variant that can satisfy the given customer 
requirements, more specifically its product hier-
archy. The product hierarchy is then transferred 
to the production view in the form of items and 
their goes into relationships. Taking these items 
and goes into relationships as input, the production 
view family graph starts to transform according 
to the pre-defined control structure. The resulted 
variant graph represents the production process 
to produce the product variant.

META MODELS OF PROCESS 
FAMILY PLANNING

Applicable to planning of process families for dif-
ferent product families, the meta model includes 
a class level graph schema (as shown in Figure 1) 
and graph transformations. The class level graph 
schema generalizes the entities common to dif-
ferent process families and models them as node 
classes and edge types. By involving a number of 
productions, transactions and control structures, 
graph transformations model the dynamic behav-
ior of process family planning.

Graph Schema

The class level of PROGRES graph schema con-
tains all common entities of process families, and 
defines all nodes and edge classes occurring in 
process family planning. As shown in Figure 1, 
PFP_OBJECT acts as the root of the class hier-
archy. To model the two views of process family 
planning (i.e., the design view and the production 
view), two subclasses – DSGN_OBJECT and 
PROD_OBJECT – are defined. These two sub-

classes are further elaborated in the design view 
and the production view meta models, respectively.

As shown, DSGN_OBJECT is a superclass 
encompassing all entities occurring in the design 
view meta model. A defines edge between PROD-
UCT and PARAMETER indicates that design 
parameters define products. The edge, valueOf, 
between PARAMETER and VALUE models the 
fact that a parameter can assume a number of 
values, the determination of which defines specific 
products (i.e., product variants). An affects edge 
models the fact that a parameter (the affecting pa-
rameter) whose value is the antecedent of the value 
of another parameter (the affected parameter) must 
be assigned a value before the value assignment 
of the latter parameter. (See below the meaning 
of antecedent.) Assigned is a derived attribute of 
PARAMETER, indicating whether or not the value 
of this parameter has been selected (true) or not 
(false). Its default value is false. When a suitable 
value is selected, it becomes true.

To handle compatible constraints between 
parameter values, a node class, COMPAT-
IBLE_CONSTR-AINT, is defined. Moreover, a 
COMPATIBLE_CONSTRAINT node connects 
the antecedent and consequent of the modeled 
compatible constraint with the edges anteced-
ent and consequent, respectively. The derived 
attribute, AnteSelected, of COMPATIBLE 
_CONSTRAINT is determined by the Selected 
attribute of its antecedent. A COMPATIBLE 
_CONSTRAINT can be a REQUIRE_CON-
STRAINT or an EXCLUDE_CONSTRAINT. A 
REQUIRE_CONSTRAINT is defined to model 
that: if a specific value, A*x, of parameter A (the 
antecedent) is selected and assigned to A, then a 
value, B*y, of parameter B (the consequent) must 
be selected for B. An EXCLUDE_CONSTRAINT 
captures that: if A*x is selected for A, then B*y 
must not be selected for B.

To model product items and the relationships 
among them, a GOES INTO_RELATIONSHIP 
node class and an ITEM node class are defined. An 
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ITEM can be a PRIMARY or SECONDARY one. 
A primary item cannot be further decomposed and, 
is represented by one or more PRIMARY_VARI-
ANT. A secondary item is the parent item of lower 
level child items that may be primary or secondary. 
PRODUCT contains items of both types.

A GOES INTO_RELATIONSHIP can be a 
COMMON_GIR or OPTIONAL_GIR. While 
the COMMON _GIR models those relationships 
between parent and child items that are common to 
all product variants in a family, OPTIONAL_GIR 
captures these parent-child item relationships that 
appear in several, but not all, product variants. To 
indicate a COMMON_GIR, an attribute, included, 
is introduced as a meta attribute whose value is 
always true. The derived attribute, included, of 
OPTIONAL_GIR is determined by the parameters 
of parent items, which are ultimately determined 
by these of the products. The node class, SELEC-
TIVE_RELATIONSHIP, defines the relationships 
between primary items and their variants. The 
included attribute of a SELECTIVE_RELATION-
SHIP is instantiated according to the parameters 
of the associated primary item. A primary item 
variant is included in the product’s structure when 
included = true.

To model the relationships among node classes, 
such as PRODUCT and GOES INTO_ RELA-
TION-SHIP, two edge classes, namely toParent 
and toChild, are defined in the schema. A toPar-
ent edge links a GOES INTO_RELATIONSHIP 
to the associated parent item; and a toChild edge 
connects a GOES INTO _RELATIONSHIP with 
the associated child item. In addition, a toParent 
edge links a SELECTIVE_ RELATIONSHIP to 
the primary item; and a toChild edge connects a 
SELECTIVE_RELATIONSHIP with a primary 
item variant.

As shown in Figure 1, PROD_OBJECT is a 
superclass covering all entities occurring in the 
production view meta model. A node class, PRO-
CESS, is defined to model processes to produce 
parent items while taking child items as input. In 
this regard, two edge classes, produces and inputs, 

connect the ITEM node in the design view with 
the PROCESS node in the production view. A 
SEQUENCE_RELATIONSHIP node class mod-
els the relationships between items’ processes. In 
accordance with the common and optional goes 
into relationships in the design view meta model, 
a SEQUENCE_RELATIONSHIP can be either a 
FIXED_SR or VARIED_SR. While FIXED_SR 
models those sequence relationships common to 
all production processes of product variants, VAR-
IED_SR captures sequence variations, meaning 
the relevant sequence relationships are only as-
sumed by production processes of several product 
variants. Similarly, a meta attribute, included, with 
a value true is introduced to FIXED_SR, indicat-
ing the modeled sequence relationship appears 
in production processes of all product variants. 
The derived attribute, included, of VARIED_SR 
is determined by the inclusion of the items to be 
produced. Two edge classes, toSucceeding and 
toPreceding, link SEQUENCE_RELATION-
SHIP with PROCESS. A production process of 
a product variant thus contains all processes to 
produce product items and the sequence relation-
ships among them.

An OPERATION node class is further defined 
to model the operations detailing processes to 
produce items. An operation can be a STARTING 
or an INTERMEDIATE one. A starting operation 
is the first one involved in a process to produce 
an item, whereas an intermediate one can be any 
other operation including the last one. PRECE-
DENCE_RELATIONSHIP models the prece-
dence relationships between operations. It can be 
a FIXED_PR modeling precedence relationships 
common to all processes in relation to all vari-
ants of an item family or VARIED_PR indicating 
operations variations. To model a FIXED_PR, 
the meta attribute, included, with value true is 
introduced; and to indicate a VARIED_PR, the 
derived attribute, included, is determined by the 
previous operation. Two edge classes, toFollowing 
and toPrevious, connect PRECEDENCE_RE-
LATIONSHIP with OPERATION, modeling the 
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previous operation and the following operation 
in a precedence relationship. Another node class, 
INCLUSIVE_RELATIONSHIP, models the 
inclusion of STARTING_VARIANT (modeling 
variants of starting operations) in a process. The 
included attribute of an INCLUSIVE_RELA-
TIONSHIP is determined by parameters of the 
item to be produced. Included = true indicates 
that a starting operation variant is included in 
the process.

Graph Transformations

While the class level schema addresses the static 
part of PROGRES-based process family planning, 
graph transformations deal with the operational 
behavior. The basic operations involved in process 
family planning are modeled as productions; and 
complex operations (defined as graph transac-
tions) thus involve a number of productions to 
be executed by following control structures. In 
this regard, graph transformations associate with 
transactions, productions and control structures.

To support process family planning modeling, 
some operations are necessary at the meta level, 
thus being independent of process families of 
particular product families. First, there should be 
operations to allow designers to assign values to 
design parameters characterizing a product family. 
These operations are modeled by the production, 
AssignValue, as shown in Figure 2. The dashed 
rectangles above and below the separator::= define 
the LHS (left hand side) and RHS (right hand 
side) of the production, respectively. The rule 
can be applied only if all conditions are fulfilled. 
The first statement in the condition part is used to 
check whether the parameter has been assigned 
a value; the second statement ensures that there 
is no affecting PARAMETER to which a value 
should be assigned before the values is assigned 
to this parameter or the affecting parameters 
have been assigned values; finally, the third one 
is to check that the affected parameters have not 
been assigned values. If all condition statements 

hold true, the elements of the LHS in the family 
graph are replaced by the elements of the RHS. 
Those unselected values are thus removed from 
the graph and the node attribute receives its new 
values according to the transfer function.

If a parameter value, which is the antecedent 
of a compatible constraint, is selected, there should 
be operations to process consequent according to 
whether it is an exclude constraint or a require 
constraint. In case of an exclude constraint, the 
consequent of the constraint should be deleted 
from those possible values of the affected param-
eter. In case of a require constraint, the consequent 
of the constraint should be deleted from those 
possible values of the affected parameter. The two 
productions in Figure 3 are designed to model 
these two types of operations. While the produc-
tions in Figures 2 and 3 are performed on the 
design view meta model, the productions model-
ing the below operations are preformed on the 
design and production views family graphs.

There should also be operations to delete items, 
primary item variants and processes that are not 
included in the graphs of a product variant and 
the production process. The productions in Figure 
4 are designed to model these operations; they 

Figure 2. Production modeling assigning values 
to a parameter
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are performed on the design view family graph. 
At last, there should be operations to 1) determine 
operations to be included in an item’s process, 
and 2) delete operations and starting operations 
variants that are not in included in the graph of 
the desired production processes. The productions 
in Figure 5 are designed to model these operations; 
they are performed on the production view fam-
ily graph.

Control Structures in Production 
Process Derivation

Due to the complexity involved, transforming a 
family graph into a variant graph necessitates the 
execution of more than one production. In this 
regard, imperative control structures are a key to 
enforce certain orders of production application 
(Schurr, 1990). The control structure is designed 
to manage the execution of productions for deriv-
ing production processes. It consists of two parts 
with the first part deriving a product variant (see 
Appendix A), and the second part deriving the cor-
responding production process (see Appendix B).

First, a graph test on the design view family 
graph is performed (see Appendix A). A parameter, 
whose value has not been assigned, is thus selected. 

If there is no value-unassigned parameter preced-
ing this selected parameter, the selected parameter 
and its allowable values are listed to users for them 
to choose. After obtaining the users’ input (i.e., 
a selected value), a production, AssignValue, is 
applied to the family graph. If the selected value 
is the antecedent of certain constraints, these 
constraints will be processed. It then goes back 
to process another value-unassigned parameters 
till every parameter obtains a value. With all the 

Figure 3. Productions modeling constraint handling for the design view meta model

Figure 4. Productions removing items and item 
variants
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parameter values assigned, the control structure 
starts to determine the product items and their 
relationships to be included in the product vari-
ant. This operation is automatic as both parameter 
propagation from parent items to child items and 
include conditions have been modeled as derived 
attributes (see the following section). Derived at-
tributes are evaluated; and all those un-included 
items and primary item variants are removed. The 
desired product variant graph is thus obtained.

As with the graph test on the design view family 
graph, a graph test is conducted on the produc-
tion view family graph first (see Appendix B). 
An item whose process has not been determined 
is thus selected. If the process of its parent item 
has been determined, then a process will be se-
lected to produce this item. Once all the processes 
together with their sequence relationships have 
been determined for the corresponding items, the 
control structure will specify, for each process, the 
operations and starting operation variants to be 
removed from the production view family graph. 
Similarly, the operation to determine processes 
and operations is automatic since include condi-
tions have been modeled as derived attributes 

according to the goes into relationships of items 
and the parameter values of items, respectively. 
The production process graph is finally derived.

GENERIC MODELS OF 
PROCESS FAMILY PLANNING

While a meta model acts as a general pattern of 
process family planning, a generic model functions 
as the fundamental mechanism to support a specific 
process family planning (i.e., planning a process 
family for a particular product family). Hence, 
meta models need to be transformed to generic 
models so as to enable the planning of specific 
process families. To do so, all family specific pa-
rameters, generic items, generic processes, generic 
operations, etc. in the generic routing structure of 
the process family are specified as node types. 
A node type declaration defines the label of a 
group of nodes (i.e., node instances) and the node 
class to which it belongs. It determines the static 
properties of node instances. The declaration is 
accomplished by defining three kinds of attributes: 
the intrinsic, derived and meta attributes. Some 

Figure 5. Productions removing processes, operations and operations variants
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examples of node type definitions are given for 
AssyProc4Chair, AssyProc4Armrest and MOp-
4Wheel (see Appendix C). AssyProc4Chair is 
an abbreviation for assembly process for chair 
modeling a process family (i.e., a generic assembly 
process) to assemble a chair family (i.e., a generic 
chair) from immediate child item families (i.e., 
generic child items); AssyProc4Armrest captures 
an assembly process family for an armrest family; 
and finally, MOp4Wheel models a machining 
operations family involved in manufacturing a 
wheel family. (Note an armrest is one of the im-
mediate child items of a chair.)

Intrinsic attributes have the values that are di-
rectly assigned and, do not depend on the values of 
any other attribute. For example, in the assembly 
process family of the chair family, such attributes 
as item_ toProduce, item#1_Input, proc#1_Pre-
ceding and proc#n_Preceding are intrinsic at-
tributes (see Appendix C). An intrinsic attribute 
has a type-dependent initial value, which may be 
changed by performing a graph transformation. 
If an item is modeled as an intrinsic attribute, its 
default value can be set to be the initial value of 
the attribute. Unlike intrinsic attributes, meta at-
tributes are the attributes that posses constant type-
dependent values. Thus, those attributes whose 
values are common among family members can 
be assigned as meta attributes. This enables the 
handling of those node properties having the same 
value for all instances of a given node type. For 
example, for the assembly process family of the 
chair family, a statement that the value of a meta 
attribute, included, is true means that production 
processes of all chair variants in the family as-
sume a chair assembly process (see Appendix C).

In determining product items, parameter 
propagation from a parent node (representing a 
parent item) to child nodes (representing child 
items) can be modeled by derived attributes that 
have node instance specific values and change 
their values as a result of graph transformations 
performed. Similarly, with derived attributes, the 
corresponding processes can be determined to 

be included in production processes of product 
variants. For example, for the assembly process 
family of the armrest family, whether or not an 
armrest assembly process is included depends on 
the fact whether or not an armrest is involved in 
the chair variant (see Appendix C). In this regard, 
the derived attributes of processes are associated 
with the relevant product items. Unlike determin-
ing items to be included in products, which is 
of top-down, specifying operations involved in 
processes follows a bottom-up approach (i.e., the 
inclusion of operations is determined based on 
that of the previous operations). This is modeled 
by the derived attributes as well. For example, 
in MOp4Wheel, whether or not the machining 
operation to be included in manufacturing a wheel 
depends on the inclusion of its previous operation 
– FOp4Wheel (fabrication operation for wheel).

Node types together with associated edges 
comprise generic models of product and process 
families, which can be represented as family 
graphs. The design view family graph consists of 
family specific node types for parameters, values, 
compatible constraints, goes into relationships, 
items, primary item variants and selective relation-
ships. The production view family graph includes 
family specific node types for processes, opera-
tions, sequence relationships, starting operations 
variants, precedence relationships and inclusive 
relationships.

CASE STUDY

The proposed PROGRES-based process family 
planning is applied to textile spindle production 
in an Indian company. (Due to the confidential 
issue, the company’s name is not revealed; and 
the original data is modified without losing the 
capability to highlight the characteristics of this 
study.) On one hand, compared with other products 
(e.g., airplanes, semiconductor manufacturing 
equipment), textile spindles are not complicated 
products; on the other hand, the degree of textile 
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spindles’ product complexity not only allows il-
lustrative simplicity but also enables the case ap-
plication to be representative enough. The fact that 
meta models in Section 4 are common to process 
family planning of any product families highlights 
the importance in addressing generic models and 
instance models in application cases. Hence, in this 
case study, the focus is on the generic models of 
process family planning of a textile spindle family 
and how production processes of textile spindle 
variants are derived based on family graphs in the 
generic models and graph transformations defined 
in the meta models.

Family Graphs

From the design view, there are four design pa-
rameters characterizing the textile spindle product 
family, as shown in Table 1, including length, 
diameter, thread pitch and chamfer. Also shown 
are the possible values of these parameters and 
the compatible constraints among them. A textile 
spindle is assembled from two immediate child 
items, shaftassy (shaft assembly) and rockerar-
massy (rockerarm assembly), which are secondary 
items. The secondary and primary items involved 
in the textile spindle family are given in Table 1 as 
well. The determination of the parameter values 
of these item variants is based on these defining 
textile spindle variants in Table 1.

Based on the available product-related data 
and the company’s designers’ domain knowledge, 
the generic model in the design view is con-
structed, including node type specifications in the 
textual form (see Appendix D) and the correspond-
ing family graph in Figure 6.

From the production view, planning production 
processes for the textile spindle family involves 
a number of processes in accordance with the 
child items at different levels of the product hi-
erarchies. Each of these processes is further de-
tailed by operations together with operations 
precedence. Similarly, the production view ge-
neric model is constructed, capturing all process-

related elements and their relationships involved 
in process family planning for the textile spindle 
family. While Appendix E shows this generic 
model in the textual form (i.e., the node type 
specifications), Figure 7 shows the graphic rep-
resentation of this generic model (i.e., the family 
graph). For illustrative simplicity, only the op-
erations details for Proc4St (process for shaft) 
and for Proc4RA (process for rockerarmassy) are 
shown in Figure 7.

Production Process Derivation

Essentially, the above family graphs are starting 
graphs of process family planning for the textile 
spindle family. While family graphs concern all 
node labels, node attributes and edge labels from 
the static structural perspective, other elements 
of process family planning such as productions 
and control structures, after being adapted to the 
generic models, enable graph transformations from 
the dynamic behavior perspective. Therefore, pro-
duction process derivation entails a series of graph 

Table 1. Parameters, values, compatible con-
straints and secondary and primary items 

Elements in PFP for the textile spindle family

Parameter Value

Length 45mm, 50mm

Diameter 10mm, 12mm

Thread pitch 1mm, 2mm

Chamfer 30°, 45°

Compatible constraint If Diameter = 12mm, Then 
Thread pitch = 1mm;

If Thread pitch = 2mm, Then 
chamfer = 30°;

If Length = 45mm, Then 
Diameter ≠ 12mm.

Secondary items Textile spindle, shaftassy, 
rockerarmassy

Primary items Shaft, needle, rockerarm, 
sleeve.

Common items Shaft, needle, rockerarm, 
sleeve.
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Figure 6. The family graph in the design view

Figure 7. The family graph in the production view
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transformations. All production processes that can 
be obtained by graph rewriting form the process 
family to produce the textile spindle family.

Suppose a designer decides the following 
parameter values when defining a textile spindle 
variant: length = 50mm, diameter = 10mm, thread 
pitch = 1mm, chamfer = 30°. With these input 
values, the PFP system can first generate the 
spindle variant in terms of product items together 
with their relationships and, finally generate the 
production process desired. Figure 8(a) shows the 
spindle variant in the design view. It results from 
removing all unselected items and item variants 
from the design view family graph in Figure 6. 
The transformation of Figure 6) to Figure 8(a) thus 
demonstrates the graph rewriting process from a 
starting graph to a variant graph. The production 
process graph, as shown in Figure 8(b), is derived 
by transforming the production view family graph 
in Figure 7 based on the control structure in Ap-
pendix B. To better represent the textile spindle 
variant and its production process, the graphs in 
Figure 8 can be transformed into the corresponding 
BOM (bill of materials) -like graph in Figure 9(a) 
and the tree-like graph in Figure 9(b).

CONCLUSION

Process family planning appears to be a promis-
ing approach to planning production processes 
for product families in order to achieve product 
family production efficiency. To support process 
family planning automation, this chapters devel-
ops a PROGRES-based process family planning 
model. The modeling addresses both the static 
structure of a process family and the dynamic 
process of its planning. It is approached from 
two views: design and production. In the design 
view, process family planning is represented as a 
design view family graph. The nodes of the graph 
describe diverse product family elements, such as 
design parameters, values and items. The edges 
model the relationships among these product 
family elements. In the production view, process 
family planning is modeled as a production view 
family graph. This graph consists of a number of 
nodes representing processes, sequence relation-
ships, operations and operations precedence, etc. 
along with edges denoting the relationships among 
them. These family graphs act as the starting 
graphs for graph transformations, through which 

Figure 9. The BOM structure and the production process tree
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production process graphs can be derived by 
executing productions according to pre-defined 
control structures. Each production process graph 
represents the production process to produce a 
product variant.

In line with the unique features of PROGRES 
(e.g., distinguishing among node classes, node 
types and node instances), we define 1) meta 
models for family graphs by generalizing process 
family planning at a higher level, and 2) generic 
models modeling all specific elements pertaining 
to particular process families, and obtain data 
structures describing production processes for 
product variants. Attribute dependency in PRO-
GRES is used to model parameter propagation 
in the generic product structure and the include 
conditions in the generic process structure. The 
hierarchical graph schema supports multiple in-
heritances of graph elements. Parametric rewriting 
rules support controlled use of formal node type 
parameters within generic subgraph tests and 
graph transformations.

The application of the proposed PROGRES-
based process family planning to textile spindling 
production process planning demonstrates that it 
accommodates documenting the knowledge from 
existing design and planning practice. Besides, the 
PROGRES-based process family planning further 
accommodates knowledge reuse in an interactive 
environment, where users can select parameter 
values to define product variants. Consequently, 
it facilitates process family planning automation. 
Nevertheless, the PROGRES-based process fam-
ily planning is developed based on one implicit 
assumption, that is, the product family has been 
designed. This allows the organization of data 
pertaining to the product and process families as 
the generic routing structure. Hence, for a new 
product family design, the proposed model might 
not be sufficient to facilitate planning its process 
family. Accordingly, efforts may be geared to 
develop such models that allow planning process 
families for new product families. In accordance 
with the link between process family planning and 

cellular manufacturing (i.e., the former provides 
inputs, such as parts, operations and resources to 
the latter), further research might be directed to 
rigorously formulate this link in order to establish 
interconnection between production of complete 
products and manufacturing of parts. With such 
interconnection, the complexities in the low-
volume, high mix production might be reduced.
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APPENDIX A: THE CONTROL STRUCTURE 
SUPPORTING PROCESS FAMILY PLANNING

Figure 10. Deriving product variants
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APPENDIX B: THE CONTROL STRUCTURE 
SUPPORTING PROCESS FAMILY PLANNING

Figure 11. Deriving production processes
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APPENDIX C

Figure 12. Declaration examples of intrinsic, derived, and meta attributes
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APPENDIX D

Figure 13. Node type specifications of the generic model in the design view
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APPENDIX E

Figure 14. Node type specifications of the generic model in the production view
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ABSTRACT

This chapter focuses on providing a methodology for lean thinking based investment planning from the 
perspective of cellular or hybrid manufacturing systems. The chapter has been divided into three parts. 
First part provides a general explanation of why lean thinking is so beneficial for managing manufactur-
ing processes and obtaining sustained improvement. This part then moves to the aim of cell formation, 
and then uses value stream mapping to map current state for visualizing material-information flow and 
to design a desired future state for examining economic aspects of new machine investment decisions 
aligned with lean manufacturing principles. The purpose of second part is to explore axiomatic design 
approach; it provides an overall view of what to do. The third part presents the actual use of the meth-
odology with implementation of hybrid system at a furniture factory; it helps to see application results 
of this methodology as part of a lean manufacturing program.
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INTRODUCTION

Traditional manufacturing systems are built on 
a functional layout or an assembly line with the 
principle of economies of scale. This point of view 
causes much capital investments in high-volume 
operations and large work-in-process inventories. 
As an alternative to traditional manufacturing, 
the principles of the Toyota Production System 
(TPS) have been widely adopted in recent years. 
Application of TPS principles have led to lean 
manufacturing (Sullivan et al., 2002). Womack 
& Jones (1996) used the term lean thinking as the 
thinking process of Taiichi Ohno and the set of 
methods describing the Toyota Production System 
(Womack & Jones, 1996; Monden, 1993). Lean 
manufacturing emerged as a global approach that 
uses different tools to focus on waste elimination 
and to manufacture products that meet customer’s 
needs (Hines & Taylor, 2000). Lean manufacturing 
has been increasingly adopted as a potential solu-
tion for many organizations, particularly within 
the automotive industries (Womack, et al., 1990; 
Day, 1998; Jones, 1999) and aerospace industries 
(Abbett et al., 1999; Womack & Fitzpatrick, 1999).

Lean production requires the analysis of the 
“value stream”. A value stream is defined as all 
the value-added and non-value-added operations 
required manufacturing specific products and 
services to a customer (Womack & Jones, 1996; 
Rother & Shook, 1998). Value Stream Map is an 
enterprise improvement technique to visualize 
entire production process, representing informa-
tion and material flows, to improve the produc-
tion process by identifying waste and its sources 
(Rother & Shook, 1998).

Lean manufacturing focuses on the waste 
elimination and produces products that meet 
customer expectations. Lean production uses pro-
duction and assembly cells consisting of product 
focused resources. The aims of the cell formation 
are smoothing work flow with flexible opera-
tion across a wide variety of low cost and high 
quality products by means of waste elimination. 

Economic benefits of lean manufacturing include 
smaller floor space requirements, lower work-in 
process, reduced lead-times and higher throughput 
(Sullivan, et al., 2002). Lean production focuses 
on value pulled from the next upstream activity 
as customer. As value is specified, value streams 
are identified eliminating steps that do not create 
value, so the product will flow smoothly toward 
the customer. A value stream mapping is an en-
terprise improvement technique to visualize an 
entire production process by identifying waste 
(Braglia et al., 2006).

Cellular manufacturing is an important tech-
nique in the planning and controlling of manu-
facturing system. Cellular manufacturing offers 
three groups of benefits. These benefits are: hu-
man related factors facilitated by empowerment 
in smaller cells; improved flow and supervisory 
control in cells to deal with smaller number of parts 
and facilities; improved operational efficiency, 
obtainable due to similarity; setup reduction; 
batch size reduction; improvement in performance 
related to productivity, quality and agility (Babu 
et al., 2000). In practice, it is usually hard to 
partition all machines into independent cells. So, 
a functional layout generally becomes necessary. 
Because of this fact, hybrid cellular manufactur-
ing systems (HMS) are required (Suresh 1991).

Hybrid manufacturing system (HMS) is the 
system where manufacturing cells and functional 
layout coexist (Shambu & Suresh, 2000), and also 
it has an advantage of more product flexibility 
(Satoglu et al., 2009) and less capital investment 
for machines. Utilization of alternative machines 
in the HMS reduces additional machine purchas-
ing requirements, and therefore it is beneficial 
(Satoglu et al., 2009).Empirical evidences also 
show that hybrid manufacturing system is com-
mon for practice (Marsh et al., 1999).

Lean manufacturing tools and techniques pro-
vide economical basis to managers for investment 
planning decisions. Value stream mapping creates 
a common language about a production process, 
enabling more purposeful decisions to improve 
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the production system. Value stream map of the 
system should be taken into account for the design 
of future state to examine the economic aspects 
of new machine investment decisions (Sullivan, 
et al., 2002).This chapter attempts to provide 
insight as to the choice and use of appropriate 
tools for designing a successful lean manufactur-
ing system. Although it does not cover every lean 
manufacturing aspect, it does offer a road map that 
can guide a company for effective new machine 
investment decisions toward the development of 
a lean manufacturing environment.

Investment planning is the determination 
of suitable machines for manufacturing of part 
families within the cell. Investment planning for 
cellular manufacturing can enhance the operating 
characteristics of the system. After equipment 
purchases are decided, it is necessary to measure 
the effectiveness of this decision by evaluating 
the effects of the new equipment on the system 
(Gosh, 1989). In existing factories, investment 
decisions for purchasing new machines in favor 
of cellular or hybrid manufacturing systems can 
be troublesome to managers. Many of investment 
decisions in manufacturing industry are not ben-
eficial and economical (Sullivan, et al., 2002). For 
this reason, this chapter aims to be a guideline to 
managers for effective new machine investment 
decisions in implementation of cellular or hybrid 
manufacturing layout. This chapter focuses on 
providing a methodology for lean thinking based 
investment planning in restructuring manufactur-
ing environment from the perspective of cellular 
or hybrid manufacturing layout. To do this, we 
used axiomatic design methodology for creating 
a systematic perspective.

Axiomatic design (AD) is a design theory 
that was created by Professor Nam Pyo Suh of 
the Massachusetts Institute of Technology (Suh 
1990). The goal of AD is to establish a scientific 
basis for design and to improve design activities 
by providing logical and rational processes and 
tools to designer. In accomplishing this goal, AD 
provides a systematic search process through 

the design space to minimize the random search 
process and determines the best design solution 
among many alternatives (Kulak et al., 2005).

Some of algorithmic methods can be effective 
if the design has to satisfy only one functional 
requirement, but when many functional require-
ments must be satisfied at the same time, they 
are less effective. Axioms provide the boundaries 
within which these algorithms are valid, in addition 
to providing the general principles. AD includes 
four domains: customer domain, functional do-
main, physical domain and process domain. In 
the customer domain, there are customers’ needs 
or attributes (CAs) from a product, service or 
system. The functional domain includes customer 
needs transformed into functional requirements 
(FRs). To answer FRs, physical domain has de-
sign parameters (DPs). Finally, process domain 
is characterized by the process variables (PVs) 
to develop a process for production (Suh, 2001). 
These functional domain and physical domain and 
mapping between them are illustrated in Figure 1.

The most important concept in axiomatic 
design is the existence of the design axioms. These 
axioms are (Suh, 2001):

1.  Axiom: Independence axiom: The FRs are 
defined as the minimum set of independent 
requirements that the design must satisfy. 
A set of FRs is the description of design 
goals. The independence axiom states that 

Figure 1. Hierarchical structure of axiomatic 
design (Durmusoglu & Kulak, 2008)
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when there are two or more FRs, the design 
solution must be such that each one of the 
FRs can be satisfied without affecting the 
other FRs. That means we have to choose 
a correct set of DPs to be able to satisfy the 
FRs and maintain their independence (Suh, 
2001).

2. Axiom: Information axiom: The design 
that has the smallest information content is 
the best design. The information content is 
defined in terms of probability; this axiom 
also states that the design that has the high-
est probability of success is the best design 
(Suh, 2001).

{FR} = [A] {DP}  (1)

Here, {FR} is the functional requirement vec-
tor, {DP} is the design parameter vector, and [A] 
is the design matrix that characterizes the design. 
The structure of [A] matrix defines the type of 
design being considered. In order to satisfy the 
independence axiom, [A] matrix should be an 
uncoupled (a diagonal matrix) or decoupled design 
(a triangular matrix) (Suh, 2001).

The design of an ideal manufacturing system 
depends on the selection of functional require-
ments (FRs) the system must satisfy within a 
given set of constraints (Cs). Therefore, an ideal 
manufacturing system design is not time invariant. 
It changes with the selection of specific sets of 
FRs and Cs. An efficient manufacturing system 
must utilize things, people and information in a 
rational manner, consistent with basic principles 
(Suh, 2001).

BACKGROUND

There have been many publications on lean manu-
facturing and cellular manufacturing systems. 
Some subsequent steps need for a complete cell 
formation as Durmusoglu and Nomak (2005) 
observed in their CMS design implementation. 

Nancy and Wemmerlöv (2002), published a paper 
for defining part families and related machine 
groups, and Sarher and Mondal (1999) studied the 
evaluation of grouping efficiency measures. Aneke 
and Carrie (1986) studied on designing of multi 
product flow lines on the basis of one piece flow.

Many AD applications in designing products, 
systems, organizations and software have appeared 
in the literature so far. AD theory and principles 
have been introduced first time by Suh (1990). Suh 
(1997) described a conceptual approach for design-
ing of the systems using AD methodology. Suh 
et al. (1998) provided an AD-based model for an 
ideal production system based on lean principles. 
Cochran, Eversheim et al. (2000) used lean prin-
ciples to structure smaller production segments by 
AD. Houshmand & Jamshidnezhad (2002) also 
provided a lean manufacturing based production 
system design model using AD approach. In this 
model, organizational capabilities, technological 
capabilities and value stream analysis are used as 
the basis. Kulak et al. (2005) published a paper 
for a complete cellular manufacturing system 
design methodology based on axiomatic design 
principles.

Sullivan et al. (2002) illustrated an equip-
ment replacement decision problem within the 
context of lean manufacturing implementation. 
In particular, they demonstrated how the value 
stream mapping (VSM) tools can be used to map 
the current state of a production line and design 
a desired future state. Further, they provided a 
roadmap for how VSM can provide necessary 
information for analysis of equipment replace-
ment decision problems encountered in lean 
manufacturing implementation.

Considering the literature mentioned above, 
a road map including a systematic design model 
for equipment investments in cellular/hybrid 
manufacturing system is not found. In this study, 
a methodology is developed using AD principles 
in order to fill this gap.
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LEAN THINKING BASED 
INVESTMENT PLANNING 
BY AXIOMATIC DESIGN 
FOR CMS OR HMS

Main focus of the chapter is giving a systematic 
methodology by axiomatic design principles to 
design a desired future state aligned with lean 
manufacturing principles by using value stream 
mapping and its associated tools and to provide 
a roadmap for investment decisions in cellular/
hybrid manufacturing.

The first step of axiomatic design is defining 
the functional requirement at the highest level of 
the system hierarchy of functional domain (Suh 
et al., 1998).

Step 1. Defining Functional Requirements 
(FR1): The design goal of the production 
system (functional requirement at the highest 
level) was defined as;

FR1= Improve the system performance

The companies, focusing on lean, aim eliminat-
ing wastes and improving system for responding 
quickly to customer needs.

Step 2. Mapping of FRs in the Physical Domain 
(DP1): Design parameter (DP), which satis-
fies the FRs established in the previous step, 
is selected as below.

DP1= Design of a lean manufacturing system
Step 3. Decomposition of FR (FR1): If the DPs 

can not be implemented without further 
clarification, the AD principles recom-
mend returning to the functional domain 
for decomposing the FRs into their lower 
functional requirement set (Suh, 2001). 
The following functional requirements are 
defined for decomposing the FR determined 
in the first step.
 ◦ FR11= Define customer requirements 

and expectations
 ◦ FR12= Make experts and employees 

conscious on lean thinking

 ◦ FR13= Divide production system 
into sub-systems for simplification of 
the system

 ◦ FR14= Visualize wastes
 ◦ FR15= Apply the proposed plan to 

eliminate waste in production pro-
cesses and offices

Step 4. Defining the Corresponding DPs of FRs 
(DP1): We move from the functional domain 
to the physical domain. The following DPs 
in response to satisfy the five FR1ns defined 
in step 3 are listed below.
 ◦ DP11= Market research
 ◦ DP12= Training procedure on lean 

manufacturing
 ◦ DP13= Selection procedure of prod-

uct families
 ◦ DP14= Current state value stream 

mapping
 ◦ DP15= Future state value stream 

management system
Step 5. Structuring of Design Matrix (FR1-

DP1): The FR-DP sets are defined in Step 3 and 
Step 4, and the corresponding design matrix 
(DM) providing the relationship between the 
FR and DP elements is structured. In the design 
matrix, a symbol X represents a strong relation-
ship between the corresponding FR-DP pair. It 
is important to ensure that this DM satisfies the 
Independence Axiom (IA) of the AD principles. 
If the DM matrix is uncoupled or decoupled, 
then it satisfies the Independence Axiom of AD 
principles (Suh, 2001). The design equation and 
the DM corresponding to the FR-DP sets are as 
follows and depicted in Figure 2. Equation 2 is a 
decoupled design, and satisfies the IA.
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Defining Customer Requirements and Ex-
pectations (FR11-DP11): Making market re-
search is one of the effective working criteria for 
companies. The companies not giving importance 
to the research face various risks. Market research 
is collecting and analyzing of systematic and 
objective information about products, market and 
consumers (Megep, 2008). Market research is 
very important for defining customer demands, 
sales forecasting in production planning and new 
product developments.

Making Experts and Employees Conscious 
on Lean Thinking (FR12-DP12): Employee 
training is the most efficient method for using hu-
man resource effectively in a company. Employee 
training directly affects company’s profitability 
and decreasing employee turnover by increasing 
employee satisfaction. Applying of lean thinking 
and making it company’s culture are possible with 
by training program which makes employees 
conscious about lean.

Dividing Production System into Sub-sys-
tems for Simplification of the System (FR13-
DP13): The products should be classified up to 
the similarities based on production system’s 
characteristics. So, the first step consists of iden-
tification of product families and in the selection 
of one with its production sub-system as the pilot 
application for improvement. This step continues 
until all of the product families have been selected.

Pareto Analysis (ABC analysis) is used for 
separating the vital few from trivial many. Pareto 
analysis is essential for visualizing volume of the 
product families in total production. By doing this 
analysis, it is possible to see how the customer 
demand is distributed among different product 
types (Durmusoglu & Kulak 2008). High volume 
products are responsible for the largest amount of 
waste’s costs (work in process, material handling, 
other operational costs, etc.). Focusing on these 
high volume products affects overall performance 
of the company.

Product family could be a group of high vol-
ume products, which pass through the similar 

operational steps at common machines. Another 
example of product families is to divide products 
into catalogued products and specific-project type 
products. Therefore determining product families 
depends on production system’s characteristics. In 
order to determine product family, the relationship 
matrix, including products, production volume, 
processes, production functions and customers is 
needed (Durmusoglu & Kulak 2008).

Visualizing Wastes (FR14-DP14): Value 
stream mapping (VSM) visualizes value and waste 
resources through the production processes for a 
defined product family. Therefore, it is used for 
understanding how the process flow must be, and 
then, it combines lean tools.

Value stream mapping is a tool, which was cre-
ated for redesigning production system (Rother & 
Shook 1998; Womack & Jones, 2002; Pavnaskar 
et al., 2003). To find causes of waste, it is useful 
to show parameters for each production processes 
in detail (Braglia et al., 2006).

Applying the Proposed Plan to Eliminate 
Waste in Manufacturing Processes and Of-
fices (FR15-DP15): The last step of the proposed 
methodology is the future state value stream 
management. For future state, applied for de-
veloping the system in redesign stage, the initial 
aim must be performing a plan that is proposed 
without any investment. Before the application 
stage, several scenarios can be tried for deciding 
new machine investment(s) is needed or not, and 
finally the cost analysis must be performed based 
on lead time for decision making. Initial aim of 
the axiomatic design model is designing cells for 
products families processed in current machine 
resources on hand. As seen in the industry, new 
machine investments to solve bottlenecks of the 
system are dominated point of view as the key 
solution. Whereas the majority of new machinery 
purchasing decisions may create new unnecessary 
waste resources. This systematic study underlines 
the necessity of value stream mapping for new 
investment decisions.
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For future state value stream management 
plan, cell design, kaizen plans, poka-yoke appli-
cations, total productive maintenance, heijunka 
boxes for leveling of production and pull/hybrid 
system design must be done as lean manufactur-
ing tools with using current resources. Supporting 
lean manufacturing practices to increase overall 
performance is possible by lean transition within 
the whole organization. Therefore, lean office 
applications have been planned for other units 
that support production. After the determination 
of the pilot study group for lean office applica-
tions, designing new processes and office cells, 
and applying visual management practices are 
aimed to be strengthening with the help of value 
stream maps and new process flow charts.

Step 6. Decomposition of FR12: FR12 (Make 
experts and employees conscious on lean 
thinking) and DP12 (Training procedure on 
lean manufacturing) are decomposed below:
 ◦ FR121= Teach about lean 

manufacturing
 ◦ FR122= Provide the basic infor-

mation of lean manufacturing to 
participants

 ◦ FR123= Prepare a training program 
by using current resources effectively

 ◦ FR124= Ensure continuity of lean 
manufacturing training activities

 ◦ FR125= Ensure and increase the ef-
fectiveness of lean manufacturing 
training

Design parameters satisfying the five FRs 
defined above are as follows;

• DP121= Choice procedure of qualified 
trainer

• DP122= Conceptualization of determined 
training program

• DP123= Planned training schedule
• DP124= Determination of participants 

procedure

• DP125= Training performance measure-
ment and evaluation procedure

The design equation and the DM corresponding 
to the FR-DP sets are as followed and depicted in 
Figure 3. This is a decoupled design, and satis-
fies the IA.
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Teaching about Lean Manufacturing 
(FR121-DP121): To increase the efficiency of 
lean manufacturing and to ensure continuity, 
employees should be educated on this issue. 
Planned training program for this purpose is re-
quired to be updated continuously to ensure the 
continuity. Therefore, the experienced instructors 
from outside or inside the company must be de-
termined for contributing to the preparation and 
implementation of training programs.

Providing the Basic Information of Lean 
Manufacturing to Participants (FR122-
DP122): Lean manufacturing system, considered 
to be implemented, brings all the principles of 
new business culture understanding. To achieve 
the success of the designed system, employee 
resistance to new ideas must be eliminated, and 
then, the new philosophy must be adapted to 
all employees. Training needs of all employees 
must be determined and after this, preparation of 
multi-purpose training programs that meet these 
needs is necessary.

Preparing a Training Program by Using 
Current Resources Effectively (FR123-DP123): 
A timetable for trainers and participants should 
be identified in parallel with the implementation 
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steps of designed system, and all staff should be 
informed about lean tools by training programs.

Ensuring Continuity of Lean Manufac-
turing Training Activities (FR124-DP124): 
Participants have to be determined according 
to the company’s planned training program and 
schedule. Selected instructor(s) should determine 
the training periods and the number of employees 
to participate in training with a balanced planning 
in order to ensure the effectiveness of training.

Ensuring and Increasing the Effectiveness of 
Lean Manufacturing Training (FR125-DP125): 
At the end of the training, questionnaires should 
be distributed to evaluate the content of train-
ing program. Performances of instructors and 
training program’s content should be reviewed 
according to the evaluation results obtained from 
questionnaires. Finally, the scope of further train-
ing programs should be revised according to the 
evaluation results.

Step 7. Decomposition of FR13: FR13 (Divide 
production system into sub-systems for 
simplification of the system) and DP13 
(Selection procedure of product families) 
are decomposed as below:
 ◦ FR131= Classify products based on 

customer demand
 ◦ FR132= Determine product fami-

lies based on production system’s 
characteristics

The corresponding DPs satisfying FRs at this 
step are stated as:

• DP131= Pareto Analysis
• DP132= Products- production volume- 

processes-production functions-customers’ 
relation matrix

The design matrix for the above set of FRs 
and DPs are as followed and depicted in Figure 
4. This is a decoupled design, and satisfies the IA.
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Classify Products Based on Customer De-
mand (FR132-DP132): In order to simplify the 
production system for analysis, products should 
be classified based on customer demand. Pareto 
(ABC) analysis is used for this classification and 
it is essential for visualizing volume of the prod-
uct families. High volume products are respon-
sible for the largest amount of waste’s costs (work 
in process, material handling, other operational 
costs, etc.). Focusing on these high volume prod-
ucts affects overall performance of the company. 
So, pareto analysis is used for determining which 
product families should be selected first for pilot 
applications.

Determine Product Families Based on 
Production System’s Characteristics (FR131-
DP131): Products based on production systems 
characteristics are grouped as families. For ex-
ample, products belonging to “A” class, which 
pass through the similar operations, are grouped 
as a family. In order to determine product fami-
lies, constructing a relationship matrix, including 
products, production volume, processes, produc-
tion functions and customers, is needed.

Step 8. Decomposition of FR14: FR14 (Visual-
ize wastes) and DP14 (Current state value 
stream mapping) are decomposed as below:
 ◦ FR141= Define process parameters 

in proposed processes and collect 
information in response to these 
parameters

 ◦ FR142= Define relations between op-
erations and knowledge processes

The corresponding DP14s satisfying FR14s 
at this step are stated as followed:

• DP141= Information collecting procedure
• DP142= Value stream mapping procedure
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The design equation and the DM correspond-
ing to the FR14-DP14 sets are as followed and 
depicted in Figure 5. This is a decoupled design, 
and satisfies the IA.
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Defining Process Parameters in Proposed 
Processes and Collect Information in Response 
to These Parameters (FR141-DP141): The first 
step for the implementation of lean manufacturing 
tools is visualization of wastes. Before drawing 
the current state value stream mapping, necessary 
information such as the process routes, the daily 
product demands, supplier delivery schedules, 
available production time, cycle times, setup times, 

uptime, scrap rates, number of employees, num-
ber of shifts, inventory locations and quantities, 
times between processes, should be collected, and 
then, should be transferred to value stream maps.

Defining Relations between Operations and 
Knowledge Processes (FR142-DP142): Drawing 
current state value stream map helps to visualize 
the whole system through operation steps by the 
representation of information and material flow. It 
also helps to eliminate the non-value added activi-
ties. By the use of value stream map, purposeful 
decisions can be made for the selection of neces-
sary lean tools to eliminate wastes in the system.

Value stream mapping has two parts: big picture 
mapping and detailed mapping. Before starting 
detailed mapping of any core process, it is useful 
to develop an overview of the key features of that 
entire process. This will (Hines & Taylor, 2000):

Figure 4. The decomposition FR13-DP13
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• help you to visualize the flows,
• help you to see where waste is,
• pull together the lean thinking principles,
• help you to decide who should be in the 

implementation teams,
• show relationships between information 

and physical flows.

Big picture mapping makes easier to under-
stand current state of the system. Big picture 
mapping consists of five basic steps (Hines & 
Taylor, 2000):

Phase 1: Record customer requirements
Phase 2: Add information flows
Phase 3: Add physical flows
Phase 4: Linking physical and information flows
Phase 5: Complete mapping

After big picture mapping, detailed mapping 
should be done for drawing value stream map to 
visualize whole system. Collected information 
should be reflected to the map by value stream 
mapping symbols.

Step 9. Decomposition of FR15: FR15 (Apply 
the proposed plan to eliminate waste in 
manufacturing processes and offices) and 
DP15 (Future state value stream manage-
ment system) are decomposed as below:
 ◦ FR151= Ensure production pace 

based on customer demand
 ◦ FR152= Ensure the part family flows 

in product families in the system
 ◦ FR153= Ensure one-piece flow
 ◦ FR154= Visualize the planned system
 ◦ FR155= Increase performance on the 

systems supporting manufacturing

Figure 5. The decomposition FR14-DP14
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 ◦ FR156= Define other parameters 
needed for improvement

 ◦ FR157= Eliminate the rest trouble 
bottlenecks

 ◦ FR158= Visualize the system with 
investment

 ◦ FR159= Evaluate the system perfor-
mance with investment

 ◦ FR1510= Decrease the excessive 
volume fluctuations and variations in 
production

 ◦ FR1511= Provide pulling between in-
ter cell flows

The corresponding DP15s satisfying FR15s 
at this step are stated as:

• DP151= Calculated takt time
• DP152= Clustered machine groups based 

on part families
• DP153= Cell(s) design procedure
• DP154= Future state value stream map-

ping procedure
• DP155= Lean office design
• DP156= Kaizen procedures correspondent 

to parameter
• DP157= Multi-attribute decision making 

procedure for machine and/or software 
selection

• DP158= Value stream mapping of invested 
future state

• DP159= Cost analysis based on lead time
• DP1510= Heijunka system
• DP1511= Kanban/hybrid system design

The design equation and the DM correspond-
ing to the FR15-DP15 sets are as followed and 
depicted in Figure 6. This is a decoupled design, 
and satisfies the IA.
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(6)
The stage after drawing the current state value 

stream map is put into practice the lean principles 
and lean tools by focusing on waste points. Pri-
marily aim at this point will be making planning 
for elimination of wastes without any investment 
in equipment. At this stage, if equipment invest-
ment is needed, the system should be re-planned 
in accordance to the new situation. The starting 
point is making a decision to focus on which 
specific areas (the price reduction request from 
customers, lead time reduction demand, presence 
of competing products on the market, product 
quality problems, etc.). For the purpose of waste 
elimination plan without any investment, work-
flow should be simplified, takt time should be 
calculated to determine the production pace ac-
cording to customer demand, cell designs should 
be done, and later other parameters should be 
taken into account for developing. After configu-
ration plan of the cells, Heijunka and pull system 
should be established in accordance with the lean 
principles for reduction of work in process inven-
tories and performing manufacturing just in time 
according to the customer demand. After this 
planning stage, the value stream map should be 
drawn by visualization of the developed system 
without investment.

After elimination of wastes in production 
environment, lean office working must be per-
formed in order to increase the performance of 
systems, supporting manufacturing. By the result 
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of all these activities, if there are still bottlenecks 
in the system, software or machinery investment 
decisions were taken into account and the future 
state value stream map must be revised. Cost 
analysis based on lead time is recommended for 
the system’s performance evaluation before any 
investment.

Ensuring Production Pace based on Cus-
tomer Demand (FR151-DP151): Rather than 
producing at high-speed, producing according to 
takt time is preferred (Byrne, 1995). In accordance 
with the competitiveness conditions, enterprises 
have to build production systems that will produce 
the amount that customer demands. Takt time is 
the cycle time that customers request. Takt time 
that is calculated by dividing daily operating time 
to daily customer demand is used to determine 
the pace of production.

Ensuring the Part Family Flows in Product 
Families in the System (FR152-DP152): In a 
manufacturing system for a product family, de-
termination of parts and manufacturing processes/
machines assigned to the cell(s) is needed.

For this purpose, there are three approaches:

• Intuitive and Visual Analysis
• Classification & Coding
• Analysis of Routings, Part-Machine 

Clustering Procedures

If the system is complex, the clustering pro-
cedure is necessary. Using clustering method is 
more practical and appropriate than alternative 

classification and coding methods for configura-
tions of cells (Gallagher & Knight 1973).

Ensuring One-Piece Flow (FR153-DP153): 
Cellular manufacturing system leads to one-piece 
flow (Miltenburg, 2001). The one-piece flow 
principle stipulates that parts in a batch travel 
between machines or processes as single pieces, 
and do not wait for the rest of the batch to be 
completed. In other words, part operations on 
different machines are overlapped and carried 
out in parallel, which reduces part waiting times, 
and therefore manufacturing lead-times (Satoglu 
et al., 2009).

Creating a cellular layout helps to achieve the 
targeted one-piece flow without repeat and back-
tracking movements between machines and/or 
work stations (Satoglu et al., 2009). Figure 7 shows 
all possible parts movements. If the workflow is 
complex within the cell, an algorithm, for example, 
developed by Aneke & Carrie, (1986) would be 
useful for the design of intra-cell movements.

After using of multi product flow line algorithm 
developed by Aneke & Carrie, (1986), one piece 
flow in the cells is ensured. Following the deter-
mination of relative positions of the work stations 
in the cell, the work station layout, preferably 
U-shaped layout, must be decided. While planning 
the layout of work stations, transport of materials 
within the cell and transportation distance should 
be minimized. Material handling costs in total 
production costs are ranged from 30% to 75% 
(Sule,1994). Also, the cells, which have high 
material transportation traffic between each 

Figure 7. Four types of product flow (Aneke & Carrie, 1986)
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other, should be placed as close to each other for 
reducing the number and size of stock area.

Visualizing the Planned System (FR154-
DP154): Primary goal is performing the future 
state plan without any equipment investment. 
For this purpose, implementation of improvement 
methods (Kaizen applications, heijunka boxes 
for production leveling and pull/hybrid system 
design, reduction of setup times, total productive 
maintenance, etc.) should be planned. If these 
improvement methods are not sufficient and there 
are still some bottlenecks in the production system, 
new machine investment should be considered. 
For visualization of the planned system, drawing 
of future state value stream map is necessary.

Drawing of future state value stream map 
includes customer demand, workflow and dis-
tribution of operations to machines by reducing 
of work in process inventory, etc.. Moving from 
the current state value stream map, future state 
is designed by using lean metrics and tools (Tap-
ping, et al., 2002).

Increasing Performance on the Systems 
Supporting Manufacturing (FR155-DP155): 
One of the reasons for long respond time to 
customer inquiries can be long lead time related 
to office operations (Suri, 1998). An important 
method for solving this problem should be lean 
office. Lean office is elimination of waste from 
workplace to provide better service to internal 
and external customers. For reducing non-value 
added activities and decreasing lead times, the 
organizational structure should be reconfigured 
into office cells. At the same time, office cells cre-
ate a good environment for teamwork. For office 
cell design, product/service/project families must 
be determined (with clustering), accordingly the 
team members should be selected and relevant 
skill development planning should be done (team 
building), then the physical office layout should be 
configured. Moreover, an effective management 
model should be developed for team work within 
cells (Durmusoglu & Kulak, 2008).

Defining Other Parameters Needed for 
Improvement (FR156-DP156): To increase the 
success in implementation of the planned future 
state value stream map, Kaizen plans (continuous 
improvement plans) are recommended (Tapping, 
et al., 2002). For parameters decided to develop, 
kaizen tools as 5S for work environment, Single 
Minute Exchange of Die (SMED) for setup time 
reduction, Poka-Yokes for reduction of defects, 
Total Productive Maintenance (TPM) for reduction 
of potential equipment breakdowns and process 
kaizens should be applied.

Eliminating the Rest Trouble Bottlenecks 
(FR157-DP157): After application of kaizen 
plans, there are still bottlenecks in the system, 
new investments can be considered. The selec-
tion of appropriate machines is very important 
for prevention of problems caused by production 
quality, delivery and cost. Many of the decision 
variables in selection of machines between alterna-
tives make decision making process difficult for 
managers. In the literature, there are many deci-
sion making methods (analytic hierarchy process, 
second axiom in axiomatic design, etc.) related to 
machine selection (Saaty, 1990; Babic 1999). On 
the other side, in the previous step of the axiomatic 
design model for lean office operations, software 
investment can be made for accelerating office 
works, easier information sharing and keeping 
up to date of office operations.

Visualizing the System with Investment 
(FR158-DP158): Since the equipment invest-
ment decision affects the cell configurations, the 
future state value stream map should be revised 
according to the new situation.

Evaluating the System Performance with 
Investment (FR159-DP159): Waste elimination 
in the existing plants and responsibility for new 
equipment investments are challenging for man-
agers (Sullivan, et al., 2002). Economic analysis 
based on value stream map should be done in 
born of the need for equipment investment. Better 
investment decisions can be made with the use of 
value stream maps. Cost analysis based on lead 
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time should be made before implementation of 
future state value stream maps with investment 
and non-investment decisions. In addition to this, 
the economic lives of the new equipments affect 
the investment decision.

Decreasing the Excessive Volume Fluctua-
tions and Variations in Production (FR1510-
DP1510): For application of pull production 
control system according to the lean principles, 
the production flow must be smoothed primarily. 
If the flow is leveled according to production-mix 
throughout the production, the work-in-process 
inventories and therefore the total lead time will 
be reduced dramatically. By the accordingly de-
signed Heijunka boxes, the amount of production 
and how much time it will take to produce this 
amount can be determined.

Providing Pulling between Inter Cell Flows 
(FR1511-DP1511): Pull production control sys-
tem combines the demand and production. Kanban 
cards are used for the pull production control 
system. To be successful in Kanban, smoothed 
production flow is required. Kanban system is a 
different approach for manufacturing according 
to the customer demand and communication in 
the production environment for purchasing the 
materials needed. Kanban assigned to the cells 
draws parts from the cells, which produces these 
parts (Suzaki, 1987).

So far, a road map was presented for lean think-
ing based investment planning at design stage of 
cellular/hybrid manufacturing system (see Figure 
8). Design matrixes also showed that leaf-level 
design decisions are consistent.

Implementation of the Proposed 
Methodology

The proposed methodology was tested on a real 
case application. The proposed methodology was 
implemented step by step for transforming the ex-
isting traditional manufacturing system to cellular/
hybrid manufacturing system at a furniture factory. 
Before implementation, the facility layout of the 

system was functionally organized (see Figure 
9). Plans have been devised for company-wide 
participation. The first main step (FR11-DP11) 
was the collection of information about market 
to define customer requirements. The second 
main step (FR12-DP12) was making experts and 
employees conscious on lean thinking by training 
programs. Around this time, lean manufacturing 
training programs were prepared and nearly 90% 
of the employees participated to lectures and 
workshops about lean tools and techniques.

The third main step (FR13-DP13) was to divide 
production system into sub-systems for simplifi-
cation of the system. At this stage, the product 
families were defined based on manufacturing 
characteristics. The fourth main step (FR14-DP14) 
was drawing current state value stream map for 
the selected product family to visualize wastes 
and to define which lean tools would be applied 
to eliminate waste resources. The last main step 
(FR15-DP15) for the roadmap was applying the 
proposed plan to eliminate waste in production 
processes and offices by future state value stream 
management. The takt time was determined for 
the selected product family. Determination of 
parts for that product family and proper allocation 
of machines for each cell have also been done.

By application of the multi product flow line 
algorithm developed by Aneke & Carrie (1986), 
the new layout of the facility was decided based 
on one piece flow. The new layout consists three 
newly formed cells and a functional area. Staffing 
of the cells was finalized regarding of the current 
cell configurations according to the takt time. Final 
acquisition in each cell was determined with the 
participation of cell teams. Machine locations were 
defined in the sequence of part movements. After 
this stage, to increase performance of the systems, 
supporting manufacturing, lean office studies were 
planned and started. Before making new invest-
ment, the system was tried to improve by kaizen 
procedures. For maintaining the 5S discipline, 
5S evaluation worksheets were designed and 
routinely implemented. Once the standard works 
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in each cell were defined, proper metrics were de-
veloped for continuous improvement monitoring. 
In order to maintain and improve the performance, 
equipment effectiveness was calculated and also, 
total productive maintenance applications and 
visual management tools were developed. Single 
minute exchanges of die (SMED) plans were ap-
plied to machines to reduce setup times. Beside 
these, process kaizens were applied continuously 
for the bottleneck areas.

At this stage, there were still some bottlenecks 
on the manufacturing system. New machines in-
vestment was needed for solving those bottlenecks. 
Future state value stream map was revised consid-
ering new machine investment decision. Finally, 
four new machines investment is needed to be 
installed in order to maintain smooth product flow 

(see Figure 10). Each machine was selected with 
an AHP based model for the cell and functional 
area. To evaluate the system performance with 
investment before purchasing, some economical 
cost analysis based on lead time was done for the 
cases of before and after investment. Finally, we 
decided to make new machine investments by 
considering the cost analysis results.

At this stage, new machine purchasing proce-
dure was completed, and then, to decrease the 
excessive volume fluctuations and variations in 
production, heijunka boxes were planned and to 
provide continues part flow, a combination of 
Kanban and push production control system were 
planned. Based on customer demands and fore-
casted sales, mixed leveled production plans were 
established for each cell. Based on these leveled 

Figure 9. Spaghetti diagram before cell formation
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production plans, the convenient batch sizes have 
been determined for each product family. For 
Kanban card implementation, new cards were 
designed. The Kanban cards traffic between the 
cells and supermarkets were planned. Finally, it 
has been seen that this methodology is very prac-
tical and beneficial for production system perfor-
mance improvement and economical investment 
decisions. The result of this implementation on 
this real case is listed in Figure 11.

Some of the indicators used in Figure 11 are 
as explained as follows:

Manufacturing lead time is called as duration 
from the moment the chipboards entered to the 
storage is ready for assembly. It is calculated as 
following:

LeadTime
Work In ocess Inventory units

Demand Rate units day
=

Pr ( )

( / ))
 

(7)
Training time is called as multiplication of the 

planned duration of training for lean manufactur-
ing applications by the number of participants. 
Cellular equipment effectiveness (CEE) is the 

Figure 10. Spaghetti diagram after cell formation

Figure 11. Comparison of business metrics
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ability to produce high quality and at the right 
speed at the machineries of cell and to use ma-
chines when necessary.

Equipment Effectiveness Availability Performance Quality= * *  
(8)

Availability
TotalTime Downtime

TotalTime
=

−( )
 

(9)

Performance Efficiency
Actual Run Rate

Ideal Run Rate
=  

(10)

Ideal Run Rate
TaktTime

=
1  (11)

Quality
TotalQuantity Manufactured Number

TotalQuant
=

− Rejected

iity Manufactured
 

(12)

Number of Poka-Yoke is the number of er-
ror preventing applications. Number of Kaizen 
suggestion is the annual number of suggestions 
for continuous improvement. First time through 
is called as the ratio of the number of error-free 
parts to total quantity manufactured. Scrap rate is 
the ratio of the number of scrapped parts to total 
quantity manufactured. Reduction of setup time is 
the decline in the percentage of duration between 
the last good part of the previous setup and the 
first acceptable part in the new setup.

As shown in Figure 11, all the indicators were 
improved significantly. In order to simplify the 
work flow further as a continuous improvement 
effort, a new facility layout has also been planned 
as shown in Figure 12. This facility layout is ex-

Figure 12. Spaghetti diagram for future state goal



363

Lean Thinking Based Investment Planning

pected to decrease the current lead time by 20%. 
After investigation on the accidents has occurred 
previously, the number of Poka-Yokes was decided 
to enhance for the prevention of accidents resulting 
from misuse of machines. The types of kaizen gifts 
have been decided to increase. After maturation 
of lean practices, the number of monthly control 
tables was planned to increase. For the develop-
ment related to the considered parameters, it was 
also decided to form the numerous Kaizen teams.

CONCLUSION

Lean manufacturers must use lean thinking when 
implementing new purchasing strategies for ma-
chines that coincide with the product value stream. 
Most companies are ignoring the value stream in 
the decision-making process. In this chapter, we 
have provided a methodology for transforming a 
process oriented manufacturing facility into a CMS 
or HMS with a reasonable investment decision 
making. The proposed methodology is based on 
Axiomatic Design principles. Here, a roadmap for 
how lean thinking based investment planning can 
be applied at the design stage of cellular/hybrid 
manufacturing system has been presented. The 
concept in this chapter can be applied easily to 
real cases. Value stream mapping is the best tool 
to visualize wastes and to determine which lean 
tools can be applied to the system. Visualizing 
the current state helps to plan the future state by 
value stream mapping.

In future studies, the proposed methodology 
for new investment planning can be extended to 
the process domain which is comprised of the 
process variables. Decision making when there are 
multiple axiomatic design alternatives is another 
research field for the future.
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ABSTRACT

Cellular manufacturing systems (CMSs) are an effective response in the economic environment char-
acterized by high variability of market. The aim of this chapter is to compare different configurations of 
cellular models through the main performance. These configurations are fractal CMS (defined FCMS) 
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mark. FCMSs consist of a cellular system characterized by identical cells each capable of producing 
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specific conditions is able to perform all the technological operations. A simulation environment based 
on Rockwell ARENA® has been developed to compare different configurations assuming a constant mix 
of demand and different congestion levels. The simulation results show that RCMSs can be a competitive 
alternative to traditional cells developing opportune methodologies to control the loading of the cells.

DOI: 10.4018/978-1-61350-047-7.ch017



367

Performance Comparison of Cellular Manufacturing Configurations

INTRODUCTION

Competitiveness in today’s market is much more 
intense compared to the past decades. Considerable 
resources are invested on facilities planning and 
re-planning in order to adapt the manufacturing 
systems to the market changes. A well-established 
manufacturing philosophy is the group technol-
ogy concept.

Group technology (GT) can be defined as a 
manufacturing philosophy identifying similar 
parts and grouping them together to take advantage 
of their similarities in manufacturing and design 
(Selim et al.,1998). It is the basis of so-called 
cellular manufacturing systems (CMSs). In cur-
rent production scenario demand for products is 
characterized by continuous fluctuations in terms 
of volumes, type of product (part mix), new prod-
ucts introduction and the life cycle of products 
has significantly reduced. The planning horizon 
needs to be divided into smaller horizons (time 
bucket) and the length of each period is related to 
the characteristics of products. These character-
istics need to be considered in design process of 
a manufacturing system. Introduction of Cellular 

Manufacturing Systems has already introduced 
significant improvements. They are conceived 
with the aim of reducing costs such as setup costs 
or handling costs and also to reduce lead time and 
work in process (WIP). They combine advantages 
of flow shop and job shop, but a further step can 
be accomplished to be competitive in the mar-
ket. They allow significant improvements such 
as: product quality, worker satisfaction, space 
utilization. Benefits and disadvantages (Irani et 
al.,1999) are showed in Table 1. They documented 
that companies implementing cellular manufac-
turing have a very high probability of obtaining 
improvements in various areas.

The first column of Table 1 shows the case 
studies with improvements and the second column 
reports the percentage of improvement of the 
measures. Similarly, the third column shows the 
percentage of cases with worsening and in the 
fourth column is evidenced the rate of deteriora-
tion.

The demand volatility and continuous new 
product introduction lead to re-configure several 
times the cellular manufacturing systems in order 
to keep a high level of performance.

Table 1. Benefits and disadvantages of CMS 

Measure
Percentage cases 

with 
improvements

Average percentage 
improvement

Percentage cases with 
worsening

Average percentage 
worsening

Tooling cost 31% -10% 69% +17%

Labor cost 91% -33% 9% +25%

Setup Time 84% -53% 16% +32%

Cycle Time 84% -40% 16% +30%

Machine utilization 53% +33% 47% -20%

Subcontracting 57% -50% 43% +10%

Product quality 90% +31% 10% -15%

Worker satisfaction 95% +36% 5% -

Space utilization 17% -25% 83% +40%

WIP inventory 87% -58% 13% +20%

Labor turnover/absenteeism 100% -50% 0 -

Variable production cost 93% -18% 7% +10%
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For the above reasons, new configurations 
have been proposed in literature such as Virtual 
Cell Manufacturing System (VCMS), Fractal Cell 
Manufacturing System (FCMS), Dynamic Cell 
Manufacturing System (DCMS), with the aim of 
keeping high flexibility of manufacturing systems.

The concept of DCMS was introduced for the 
first time by Rehault et al. (1995). It provides a 
physical reconfiguration of the cells. The recon-
figuration activity can be periodic or resulting 
from the variation of performance parameters. 
Reconfigure can mean duplicating machines, 
relocating machines between cells, removing 
machines, or also subcontracting some parts to 
other companies. These problems must be ad-
dressed by the decision maker.

The concept of VCMS requires that the ma-
chines are dedicated to a part family but these 
machines are not necessarily close together in a 
classical cell. One machine can belong simultane-
ously to different cells. Hence sharing of machine 
makes the system more flexible. Moreover the 
machines are not shifted as dynamic cellular 
system therefore costs of reallocation are elimi-
nated. On the other hand we must consider the 
increase in the movements of parts (or batches) 
across machines. A further problem may be the 
complication in the measurement of performance 
of the cells. This is because monitoring stations 
are usually located out of the cell, but in this case 
the cell does not exist physically.

The FCMSs are based on the constructions of 
identical cells and they are not built for different 
families. The idea comes from Skinner (1974) 
and that is to build factory within a factory with 
duplication of processes. Each cell can work 
all products. Working time will be greater but 
these configurations are very effective if there 
are changes in part mix and in cases of machine 
breakdowns. Even if for example there are flash 
orders.

A further idea was mentioned by Sripathy Mad-
disetty (2005). The author referred to so-called 
remainder cells and we can call them RCMSs. In 

addition to traditional cells refer to the product 
families you may create an additional cell that 
operates when conditions such as machine fail-
ures or overloaded machines occur. Focusing on 
an advanced design the RCMSs could provide 
interesting results in terms of competitiveness.

Our goal in this chapter is to compare the vari-
ous approaches to the design of manufacturing 
systems, making a complete performance com-
parison. In particular we aimed to compare the 
following systems: CMSs, FCMSs and RCMSs. 
A simulation environment has been developed to 
compare the performance (WIP, Throughput Time, 
Tardiness, Throughput and Average Utilization) 
using as a benchmark the classic CMS. The aim 
is to evaluate the responses of different systems 
when market fluctuations occur in terms of arrival 
demand. The chapter is structured as follows. 
Section 2 provides an overview of the literature 
of various manufacturing system configurations, 
while in section 3 the system context is formu-
lated. In section 4 there is a brief description of 
scheduling approaches. Section 5 presents the 
simulation environment and the case study while 
in section 6 are discussed simulation results. In 
Section 7 conclusions and future developments 
are discussed.

BACKGROUND

Recently, several authors have investigated the 
configuration of manufacturing cells in order to 
keep a high level of performance when the market 
conditions change.

Hachicha et al. (2007) proposed a simulation 
based methodology which takes into consideration 
the stochastic aspect in the CMS. They took into 
account the existence of exceptional elements 
between the parts and the effect of the correspon-
dent inter-cell movements. They compared two 
strategies: permitting intercellular transfer and 
exceptional machine duplication. They used the 
simulation (Rockwell Arena) and they analyzed 
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the following performance: mean transfer time, 
mean machining time, mean wait time, mean flow 
time. They assumed demand fixed and known 
for the parts. They did not consider failures of 
machines and maintenance policies.

A multi-objective dynamic cell formation 
was presented by Bajestani et al. (2007) where 
purpose was to minimize simultaneously total cell 
load variation and sum of miscellaneous costs 
(machine cost, inter-cell material handling cost, 
and machine relocation cost). Since the problem 
is NP-hard they used a scatter search approach 
for finding locally Pareto-optimal frontier.

Safei et al. (2007) proposed to use an approach 
based on fuzzy logic for the design of CMS under 
uncertain and dynamic conditions. They began by 
finding that in most of research related on DCMS 
input parameters were considered deterministic 
and certain. Therefore they introduced fuzzy logic 
as a tool for the expression of the uncertainty in 
design parameters such as part demand and avail-
able machine capacity.

Ahkioon et al. (2007) tried to investigate 
DCMS focusing on routing flexibility. They 
studied the creation of alternate contingency 
process routings in addition to alternate main 
process routings for all part types. Contingency 
routings had the function to provide continuity 
in case of exceptional events such as machine 
breakdowns but also flash orders. Furthermore 
their work provided discussions on the trade-off 
between the additional cost related to the forma-
tion of contingency routings and the advantages of 
increased flexibility. Linearized model proposed 
by the authors was solved with CPLEX.

Aryanezhad et al. (2008) developed a new 
model which simultaneously embrace dynamic 
cell formation and worker assignment problem. 
They focused on two separate components of 
cost: the machine based costs such as production 
costs, inter-cell material handling costs, machine 
costs and human related costs such as hiring costs, 
firing costs, training costs and wages. They made 

the comparison of two models. One considered 
the machine costs and the other considered both 
machine costs and human related costs. The model 
was NP-hard even though they did not consider 
learning curve.

Xiaoqing Wang et al. (2008) proposed a 
nonlinear multi-objective mathematical model 
in dynamic cells formation problem by giving 
weighing to three conflicting objectives: machine 
relocation costs, utilization rate of machine capac-
ity, and total number of inter-cell moves over the 
planning horizon. A scatter search approach was 
developed to solve the nonlinear model. Results 
were compared with those obtained by CPLEX. 
They considered certain demand and they did not 
consider machine breakdowns.

Safei et al. (2009) proposed an integrated math-
ematical model of the multi-period cell formation 
and production planning in a dynamic cellular 
manufacturing system (DCMS). The focus was 
on the effect of the trade-off between production 
and outsourcing costs on the reconfiguration of 
the cells.

Balakrishnan (2005) discussed cellular manu-
facturing system under conditions of changing 
product demand. He made a conceptual compari-
son to virtual cell manufacturing and he discussed 
a case study.

Kesen et al. (2008) investigated three different 
types of system (cellular layout, process layout 
and virtual cells) by using simulation. They paid 
attention to the following performance: mean 
flow time and mean tardiness. Based on these 
simulations they used regression meta-models 
to estimate the systems behaviours. They only 
considered one family-based scheduling scheme 
and they did not consider extraordinary events 
such as machine failures.

Vakharia et al. (1999) proposed and validated 
analytical approximations for comparing the 
performance of virtual cells and multistage flow 
shops. First they used these approximations and 
hypothetical data to identify some key factors that 
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influenced the implementation of virtual cells in 
a multistage flow shop environment. Then they 
concluded with an application of approximations 
to industrial data.

Kesen et al. (2009) examined the behaviours 
of VCMs, process layouts and cellular layouts. 
They addressed the VCMs by using family-based 
scheduling rule. The different systems were com-
pared by simulation. Subsequently they developed 
an ant colony optimization based meta-models to 
reflect the system’s behaviours.

Kesen et al. (2010) presented a genetic algo-
rithm based heuristic approach for job scheduling 
in virtual manufacturing cells (VMCs). Cell con-
figurations were made to optimize the scheduling 
objective under changing demand conditions. 
They considered the case with multiple jobs and 
different processing routes. It was considered 
multiple machine types with several identical 
machines in each type and they were located in 
different locations in the shop floor. The objective 
was to minimize the total travelling distance. To 
evaluate the effectiveness of the genetic algorithm 
heuristic they compared it with a mixed integer 
programming solution. Results showed that ge-
netic algorithm was promising in finding good 
solutions in very shorter.

Uday Venkatadri et al.(1997) proposed a 
methodology for designing job shops under the 
fractal layout organization as an alternative to 
the more traditional function and product or-
ganizations. The challenge in assigning flow to 
workstation replicates was that flow assignment 
is in itself a layout dependent decision problem. 
They proposed an iterative algorithm that updated 
layouts depending on flow assignments, and flow 
assignments based on layouts. Their work has had 
the far-reaching consequence of demonstrating 
the validity of the fractal layout organization in 
manufacturing systems (FCMSs).

Montreuil (1999) developed a new fractal 
alternative for manufacturing job shops which 
allocated the total number of workstations for 
most processes equally across several fractal 

cells. He introduced fractal organization and he 
briefly discussed the process of implementing 
fractal designs. He illustrated a case example 
and he showed that system is characterized by 
great flexibility.

Maddisetty (2005) discussed the design cells in 
a probabilistic demand environment. He discussed 
idea of remainder cells (RCMS). A remainder cell 
is a kind of lung to cope in changes in demand. 
He examined the following performance: total 
WIP, average flow time, machine utilization. He 
proposed a comparison using three different ap-
proaches: mathematical, heuristic, and simulation.

Süer et al. (2010) proposed a new layered 
cellular manufacturing system to form dedicated, 
shared and remainder cells to deal with the 
probabilistic demand. Moreover they proposed 
a comparison of its performance with the clas-
sical cellular manufacturing system. Simulation 
and statistical analysis were performed to help 
identify the best design within and among both 
layered cellular design and classical cellular de-
sign. They observed that the average flow time 
and total WIP were not always the lowest when 
additional machines were used by the system, but 
the layered cellular system performed better when 
demand fluctuations was observed.

There are several limitations encountered in 
existing literature. In previous research the de-
mand of products was usually determined at the 
beginning of each period and it was known. The 
change in part mix was rarely assumed. Frequently 
the bottleneck station in each cell was considered 
as fixed and independent of the type of the part. 
Almost never were held in account exceptional 
events such as machine failures and maintenance. 
Almost never flash orders was considered and 
similarly backorders. The concept of learning 
curve was rarely covered. Furthermore hardly 
researchers focused on a wide range of perfor-
mance measures.

In this chapter the objective is to evaluate the 
reaction of different manufacturing systems con-
figurations (CMSs, FCMSs and RCMSs) when 
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there is a fluctuation in terms of arrival demand. 
The configurations are investigated considering 
the same machines for all cases; the machines 
are set in order to obtain the particular configura-
tion. The analysis conducted allows to highlight 
the most promising configurations in terms of 
performance measures. Another objective of the 
chapter is to develop a simulation environment 
based on Rockwell Arena® tool in order to anal-
yse the different configurations. The simulation 
allows build a model with minor simplification 
compared to mathematical models which require 
significant simplifications (linearization) in cases 
of complex systems. Moreover the dynamic model 
(demand not known a priori, unexpected events 
like machine breakdowns) cannot be obtained 
with mathematical models.

MANUFACTURING 
SYSTEM CONTEXT

The mentioned objective of this chapter is to 
compare the performance of different manufac-
turing systems. In particular, the configurations 
analyzed by using simulation tools based on the 
software Rockwell ARENA® are: CMS, FCMS 
and RCMS. Moreover another configuration has 
been considered changing the layout of machines 
and obtaining a CMS in line.

The manufacturing system consists of M 
machines general purpose that are used for each 
configuration. It has been considered three part 
families. We consider a constant mix of each 
part family.

We introduce the following assumptions for 
the model:

• the demand for each part type is unknown 
at priori end it is extracted randomly from 
an exponential distribution. Therefore, 
the parameter to set is the exponential 
parameter;

• set-up times are not simulated. When, the 
manufacturing cells are configured the set-
up times are very low for the product fam-
ily assigned to the cell;

• the due date is obtained by processing time 
multiplied with an index greater than or 
equal to 1;

• Machine breakdowns and maintenance are 
not considered;

• intra-cell handling times are negligible;
• it is assumed that parts moved in units;
• each configuration presents the same num-

ber of machines in order to make a com-
parison in the same conditions.

The performance measures used to compare 
the manufacturing systems are the following:

• Work in Process (WIP);
• Average utilization of the manufacturing 

system;
• Throughput time;
• Average throughput time;
• Tardiness (total of all the parts);
• Throughput.

Figure 1 describes the parameters and the 
performance analyzed in this research.

The first manufacturing system configuration 
considered is a classical cellular system (CMS). 
The scheme is showed in Figure 2.

The system manufactures N product families 
with N cells. Each cell is specialized to perform 
the technological operations required by the 
product family assigned (setup time is not neces-
sary). In this chapter, it has been also considered 
a CMS with a different routing, as showed in 
Figure 3.

The second configuration considered is the 
FCMS. In this case, the allocation of machines to 
cells is performed in order to obtain N identical 
cells. Each cell manufactures all product families 
with higher processing time, because the machines 
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will be able to perform all the technological op-
erations required. The scheme of FCMS is shown 
in Figure 4.

The third configuration considered is the 
RCMS. In this configuration there are N cells 
respectively for N product families. In addition, 

there is a further cell called remainder cell where 
all operations can be performed with higher pro-
cessing times. It may be useful in case of machine 
failures but also in case of congestion of the sys-
tem. The scheme of RCMS is showed in Figure 
5.

Figure 1. Manufacturing configurations analysis

Figure 2. CMS configuration

Figure 3. CMS in line configuration
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Each configuration includes the same number 
of machines and the time to manufacture each 
part is assumed the same, except for fractal cells 
(belonging to FCMS) and the remainder cell 
(belonging to RCMS) where machines can produce 
all kinds of part with a higher processing time 
(general purpose machine configuration). There-
fore the processing time of machine i-th in fractal 
cell (ptif) and processing time of machine i-th in 
remainder cell (ptir) is major of processing time 
of the machine i-th in the cell j-th in CMS (machine 
configured for the technological operations of a 
particular family) (ptij):

over
pt

pt

pt

pt
overif

ij

ir

ij

= = >, 1  (1)

LOADING POLICY

In the previous section we have discussed the 
different cell configurations. Each configuration 
needs a loading approach policy to operate.

For classical CMS parts arrive in the system 
and each family has its own cell competence. In 
CMS we have provided two different layouts: one 
with parallel machines and other with machines 
in line, as described above.

Figure 4. FCMS configuration

Figure 5. RCMS configuration
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In FCMS configuration parts arrive in the 
system and they are routed to cells with minor 
workload.

The RCMS needs a specific loading policy for 
the use of the remainder cell. Parts arrive in the 
system and each cell is designed for a part family. 
In each cell, there is a controller that adopts the 
following strategy: it measures the number of parts 
in queue in each machine. If the measured value 
in cell j-th is greater than a maximum threshold of 
the cell (defined Smaxj) then the part is conveyed 
to the remainder cell. Similarly, when the measured 
value is minor of a minimum threshold of the cell 
j-th (defined Sminj) then the part is assigned to 
the cell designed for the part family. The logic 
of controller above described is showed in the 
flowchart of Figure 6.

SIMULATION ENVIRONMENT

The manufacturing system consists of M=10 ma-
chines. All different configurations are obtained 
re-allocating the same number of machines avail-
able. It is considered that each machine functions 
for 24 hours a day. Therefore total numbers of 
minute that system works is considered to be 

43200 minutes per month. This is the simulation 
horizon considered.

In order to evidence only the difference among 
the configurations, it is assumed that each part 
needs 40 minutes to complete processing. This 
technological time is divided by the number 
of machines used in the process, depending on 
manufacturing configuration. As above introduced 
it is equal for all parts except for those made in 
fractal cells and remainder cell where machines 
take more time.

We assume three product families. The prod-
uct mix is as follow: Product 1 (40%), Product 2 
(40%) and Product 3 (20%).

We have analyzed the performance of four dif-
ferent cellular systems changing one parameter: 
the average inter-arrival time. We have considered 
five different values of inter-arrival time that leads 
to different congestion levels of the manufacturing 
system (see Table 2).

These values were selected to keep the average 
utilization of machines in a range that goes from 
0.56 (low utilization) to 0.99 (high utilization).

The demand for each part type is unknown 
at priori and it is extracted randomly from an 
exponential distribution with mean equal to the 
inter-arrival time reported in Table 2.

Figure 6. The logic of RCMS
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The due date is obtained from the sum of the 
arrival time (tnow) and the technological working 
time (WT) multiplied with an index (DdateIN-
DEX), as showed in equation 2.

Ddate tnow WT Ddate
INDEX

= + ⋅( )  (2)

The WT is obviously equal to 40 minutes. The 
Ddateindex is 1.5 for parts 1 and 2, while it is 1 for 
part 3. The minor index of part 3 is justified by the 
lower demand than other part-mix, so there is no 
shift of the due date. However the due dates are the 
same for all configurations examined. Therefore 
not affect the comparison, but they are included 
in the model for completeness.

Cellular systems analyzed are those already 
mentioned: CMS, CMS in line, RCMS and 
FCMS. The benchmark system is the CMS. The 
simulation environment has been developed by 
Rockwell Arena® tool.

Arena is characterized by a block diagram that 
makes it more familiar environment simulation. 
The arrival stations of the parts and the exit station 
are showed in the Figure 7.

In the first three boxes are showed the arrival 
stations where to each part is assigned a delivery 
time and a destination in the respective cell for 
processing; then the parts leave the arrival station.

Exit station is equal for all types of configura-
tion: if the delivery time has been observed then 
the WIP is updated and the part leaves the system. 
Otherwise the delay is calculated.

Cellular Manufacturing System

In this case we consider three cells of produc-
tion. The first two cells containing four identical 
machines working in pairs and in parallel. These 
cells are respectively for both products type 1 
and type 2. The third cell contains 2 machines 
for products of type 3 (minor product mix). Each 
machine has a process time equal to 20 minutes. 
The scheme is showed in Figure 8.

In each rectangle is indicated the working time.

Cellular Manufacturing 
System in Line

In this case we also consider 3 cells of produc-
tion. The first two cells containing 4 machines in 

Table 2. Average inter-arrival times 

Average inter-arrival times (min)

4

4.5

5

6

7

Figure 7. Arrival and exit stations
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line. Each machine has a process time equal to 
10 minutes. These cells are respectively for type 
1 and type 2. The third cell contains 2 machines 
for product type 3, each machine has a process 
time equal to 20 minutes. The scheme is showed 
in Figure 9.

Fractal Cellular Manufacturing 
System

In this case there are 5 identical cells. Each cell 
contains 2 machines and each cell is able to work 
on all the product mix. The scheme is showed in 
Figure 10.

Naturally the machines perform the manufac-
turing operations with a major process time (see 

equations 1 and 2) because they are not dedicated 
to a part family but they are configured for all 
operations. In fact the process time of each machine 
is equal to 20 units time increased by 20% 
(over=1.2).

Remainder Cellular 
Manufacturing System

In this case there are 3 cells (one for each part type) 
and there is a remainder cell where is defined a 
loading policy based on the number of parts in 
queue in other cells. The scheme is showed in 
Figure 11.

The three machines operating in cell 1 (prod-
uct type 1) has a process time equal to 13,33 

Figure 8. CMS considered in simulation

Figure 9. CMS in line considered in simulation
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minutes. The same for the machines operating in 
cell 2 (product type 2). The two machines operat-
ing in cell 3 has a process time equal to 20 minutes. 
The machines assigned to the remainder cell 
perform the manufacturing operations with a 
major process time (see equations 1 and 2) because 
they are configured for all operations; the process 
time of each machine is equal to 20 units time 
increased by 20%(over=1.2).

In this work, it has been investigated different 
instances of the same policy loading about the 
use of remainder cell. Each cell has a controller 
that measures the number of parts in queue in 
each machine. Using thresholds the parts can be 

conveyed to the remainder cell. In ARENA the 
controller is showed in Figure 12.

The first “scan” controls the maximum thresh-
old (Smaxj) and therefore assigns the part to the 
cell. Similarly, the second “scan” checks the 
minimum thresholds(Sminj).

For the values of maximum (Smaxj) and 
minimum (Sminj) thresholds have been considered 
respectively six cases, equal for all three cells 
(see Table 3).

SIMULATION RESULTS

The length of each simulation is fixed to 43200 
minutes. During this period the average inter-
arrival time and part mix are both constant. Table 
4 reports the design of simulation experiments 
conducted for all four configurations of the manu-
facturing system.

Combining the five inter-arrival times, four 
system configurations, and for the last configura-
tion (RCMS) six cases regarding the thresholds, 
it has been obtained 45 experimental classes.

For each experiment class have been conducted 
a number of replications able to assure a 5% con-
fidence interval and 95% of confidence level for 
each performance measure.

As previously described the performance 
measures investigated are the following:

Figure 10. FCMS considered in simulation

Figure 11. RCMS considered in simulation
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• Work in Process (WIP);
• Average utilization of the manufacturing 

system (av.utilization);
• Throughput time for each part j(thr. Time 

j);
• Average throughput time (average thr.

Time);
• Total tardiness time of all the parts 

(tardiness);
• Throughput (thr.).

The objective of the analysis of simulation 
results is the comparison between different manu-
facturing configurations and classical cellular 
configuration (CMS, used as base for percentage 
computation). The aim is to use the performance 
parameters to highlight the behaviour of different 
configurations when changing the volume of de-
mand (the variation of average inter-arrival times).

Table 5 shows the average utilizations of ma-
chines in classical CMS at different inter-arrival 
times.

Therefore the simulations are performed for 
five congestion levels of the manufacturing sys-
tem. It is important to emphasize that the results 
showed do not include machine breakdowns.

Table 6 reports the first three parameters 
(WIP, Tardiness and Throughput) for the different 
manufacturing configurations. Table 6 shows the 
average values over inter-arrival times with the 
respective standard deviations (St.dev). The stan-
dard deviation allows to highlight the variability 
of the results when the inter-arrival changes. The 
percentages refer to the comparison with the clas-
sical CMS. The positive percentages represent an 
increase of the respective factor while the negative 
percentages represent a decrease. Table 7 is the 
same for the throughput time of different parts 
and for the average throughout time.

Tables 6 and 7 show that CMS with configura-
tion in line has almost the same behaviour of the 
classical CMS except for the tardiness that incre-
ments significantly.

Tables 6 and 7 also show that fractal configura-
tion (FCMS) is the worst configuration. This is 
because the scheduling policy used is more simply. 
An opportune policy needs to be implemented for 
the FCMS. This is a limit of FMCS configuration, 
because a more complex control system has to 
be designed. The standard deviation shows the 
variability of the performance measures related 
to the inter-arrival changes in fact the FCMS is 
the configuration with the higher dependence on 
the inter-arrival changes. As the reader can notice, 

Figure 12. Control blocks cell 1

Table 3. Threshold values 

Cases Smax Smin

1 7 5

2 5 3

3 3 2

4 4 1

5 3 1

6 2 1
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the RCMS performance depends on the choose 
of the threshold values.

Table 8 reports the variation of performance 
observed in correspondence of three values of 
inter-arrival times (5, 6, and 7). The percentages 

always refer to the comparison with the classical 
CMS.

Among the various configurations of RCMS 
is showed only one (with thresholds 2, 1) with 
the most interesting results (see Table 8). Except 
for value of tardiness (when inter-arrival time is 
equal to 5) the other performance converge to 
values close to CMS configuration with differ-
ences about 10%. The better performance of 
RCMS is obtained with inter-arrival time equal 
to 5 therefore with a medium –high average uti-
lization of the manufacturing system (see Table 
5). With high and low congestion levels the 
other configurations compared to CMS have very 

Table 4. Experimental classes 

Exp. No. Configuration Inter-arrival Exp. No. Configuration Inter-arrival

1 CMS 4 26 RCMS(3,2) 4

2 CMS 4,5 27 RCMS(3,2) 4,5

3 CMS 5 28 RCMS(3,2) 5

4 CMS 6 29 RCMS(3,2) 6

5 CMS 7 30 RCMS(3,2) 7

6 CMS in line 4 31 RCMS(4,1) 4

7 CMS in line 4,5 32 RCMS(4,1) 4,5

8 CMS in line 5 33 RCMS(4,1) 5

9 CMS in line 6 34 RCMS(4,1) 6

10 CMS in line 7 35 RCMS(4,1) 7

11 FCMS 4 36 RCMS(3,1) 4

12 FCMS 4,5 37 RCMS(3,1) 4,5

13 FCMS 5 38 RCMS(3,1) 5

14 FCMS 6 39 RCMS(3,1) 6

15 FCMS 7 40 RCMS(3,1) 7

16 RCMS(7,5) 4 41 RCMS(2,1) 4

17 RCMS(7,5) 4,5 42 RCMS(2,1) 4,5

18 RCMS(7,5) 5 43 RCMS(2,1) 5

19 RCMS(7,5) 6 44 RCMS(2,1) 6

20 RCMS(7,5) 7 45 RCMS(2,1) 7

21 RCMS(5,3) 4

22 RCMS(5,3) 4,5

23 RCMS(5,3) 5

24 RCMS(5,3) 6

25 RCMS(5,3) 7

Table 5. Average utilizations 

Configuration Inter-arrival time Av. utilization

CMS

4 0,99

4,5 0,88

5 0,80

6 0,66

7 0,57
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Table 6. Simulation results 

WIP Tardiness Throughput

average St. dev average St. dev average St. dev

CMS(in line) 2,15% 1,62% 85,97% 179,28% 0,01% 0,19%

FCMS 495,96% 699,08% 956,98% 1583,56% -4,49% 6,74%

RCMS 7,5 62,55% 64,65% 148,50% 49,65% -0,77% 1,66%

RCMS 5,3 76,76% 91,60% 136,93% 49,38% -0,99% 2,10%

RCMS 3,2 107,54% 118,07% 134,58% 71,72% 18,64% 45,45%

RCMS 4,1 95,70% 133,95% 133,78% 96,78% -1,47% 2,92%

RCMS 3,1 132,86% 170,05% 191,64% 237,27% -1,62% 3,36%

RCMS 2,1 203,37% 265,32% 315,70% 514,08% -2,21% 3,81%

Table 7. Simulation results 

Thr. Time 1 Thr. Time 2 Thr. Time 3 Average Thr. Time

average St. dev average St. dev average St. dev average St. dev

CMS(in line) 3,27% 1,24% 2,21% 2,68% 0,42% 0,79% 2,17% 1,58%

FCMS 551,65% 775,44% 547,81% 770,79% 352,77% 508,21% 496,34% 699,14%

RCMS 7,5 76,62% 63,94% 75,71% 63,20% -12,66% 13,99% 53,20% 43,86%

RCMS 5,3 88,43% 87,56% 87,40% 86,09% -7,56% 5,58% 62,97% 63,25%

RCMS 3,2 113,21% 101,38% 112,44% 100,65% 17,07% 44,23% 87,72% 78,76%

RCMS 4,1 101,34% 117,21% 100,78% 116,89% -0,88% 16,07% 74,25% 89,56%

RCMS 3,1 139,38% 162,54% 136,99% 159,71% 12,55% 31,48% 104,75% 125,62%

RCMS 2,1 208,51% 275,98% 205,19% 272,66% 38,91% 75,03% 161,62% 218,90%

Table 8. Simulation results: arrival comparison 

Inter-arrival 
time WIP Thr. time 1 Thr. time 2 Thr. time 3

Average 
Thr. Time Tardiness Throughput

CMS in line

5 3,20% 4,41% 3,21% 0,83% 3,08% 7,56% 0,17%

6 3,08% 3,72% 4,00% 0,02% 2,94% 5,88% 0,22%

7 2,56% 3,56% 3,51% 0,15% 2,77% 4,80% -0,23%

FCMS

5 65,16% 77,98% 76,58% 29,02% 64,87% 247,06% 0,08%

6 13,64% 19,60% 19,42% -4,64% 13,72% 22,65% -0,10%

7 13,23% 17,97% 17,96% 0,26% 13,92% 22,87% -0,58%

RCMS 2,1

5 18,39% 31,34% 30,25% -18,17% 18,25% 63,03% 0,08%

6 7,95% 14,47% 14,27% -11,52% 8,18% 6,19% -0,20%

7 9,17% 13,43% 13,43% -5,43% 9,14% 12,61% 0,12%
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low performance level. This is confirmed in Fig-
ure 13 that shows the profile of performance at 
different congestion levels.

Figures 14 and 15 show the comparison of the 
performance measures. It is clear that FCMS 
configuration in all cases performs worse espe-
cially for average inter-arrival time equal to 5. 
The design of this configuration needs to be re-
thought. For higher inter-arrival times the differ-
ences tend to decline. The behaviour of RCMS is 
more interesting and there is more possibility for 
improvement. In Figure 13 observing the curve 
of RCMS (2,1), it is interesting to note that the 
throughput time of product 3 performs better than 
other configurations. This is probably due to the 
fact that the cell 3 has lower loads (since part mix 
3 is 20%) and it obtains more synergy from the 
remainder cell. In that configuration queues 
larger than 2 units (parts) are not tolerated. In this 
case, the remainder cell is used frequently and 
this is the key to a better behaviour of system 
configuration. The results showed indicate that a 
better balance of utilizations between dedicated 
cells and remainder cell leads to an improvement 
in performance.

CONCLUSION AND FUTURE 
DEVELOPMENT

This chapter investigates several configurations 
of the cellular manufacturing systems. A simula-
tion environment is used to create equal operating 
conditions for different cellular systems. Each 
simulation includes the same number of machines. 
Thus the comparison between systems is normal-
ized. Volume changes are analysed changing of 
inter-arrival times. It has been considered inter-
esting to compare the performance because the 
economic environment is extremely turbulent. In 
particular our attention has focused on alternative 
approaches to traditional cells. A solution that 

looks interesting results is the remainder cellular 
manufacturing system (RCMS). The results of 
this research can be summarized as it follows:

• the classical cellular configuration with 
machines placed in line (CMS in line) is 
the best solution with static market condi-
tions; the results are very close to the case 
of machines that are not in line (CMS);

• the fractal cellular configuration(FCMS) 
gives bad results as it is conceived in a 
static environment and should think a 
more complex logic with different loading 
policies;

• the cellular manufacturing system with re-
mainder cell (RCMS) is already competi-
tive in some cases with larger inter-arrival 
times; the best configuration is one that 
requires more stringent threshold values 
which imply a greater use of the remainder 
cell.

From this it follows that RCMS could become 
very competitive when the presence of a turbulent 
market would involve a greater use of remainder 
cell, and similarly the presence of noise on the 
manufacturing system(such as machine break-
downs or maintenance).

In literature, it is known that the FCMS and 
the RCMS are not very competitive against clas-
sical CMS.

But in previous studies remainder cells were 
often used as support cells with exclusive use in 
special circumstances. Our proposal is to adopt 
loading policies designed to achieve a strategic 
use of the remainder cells. Simple loading poli-
cies included in simulation models show how the 
remainder cell can be used to keep different per-
formance under certain conditions. This work aims 
to demonstrate under certain dynamic conditions 
the proposed configurations can be competitive 
with classical CMS. Furthermore this chapter 
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Figure 13. Performance comparison: RCMS

Figure 14. Performance comparison: interarrival time

Figure 15. Performance comparison: interarrival time
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demonstrates the strong dependence of the results 
from the design of loading approaches, which 
deserve special attention.

Future research could focus on defining 
complex loading policies able to maintain high 
performance of the manufacturing system in dif-
ferent operating conditions and also taking into 
account the need for maintenance and possible 
failures of the machines(also for those belonging 
to remainder cell). These policies will certainly 
improve both the RCMS as for FCMS.

Moreover in the RCMS the logic of loading 
machines have a strong influence on the perfor-
mance. Under dynamic conditions with market 
fluctuations these strategies using remainder cells 
can avoid the reconfigurations of manufacturing 
systems, avoiding downtimes and reducing costs.

Future works could investigate a variety of 
systems that integrate the configurations showed 
in this chapter with decision-making systems 
with intelligence to interpret the variability of 
real production scenario, moreover would also 
be interesting to analyze the economic aspect of 
different manufacturing solutions and how it may 
influence the choices.
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INTRODUCTION

Manufacturing systems, where the materials which 
are handled are mainly composed of discrete en-
tities, for example parts that are machined and/
or assembled, are called discrete manufacturing 
systems. Due to its complexity, manufacturing 

system control is commonly decomposed into a 
hierarchy of abstraction levels: planning, sched-
uling, coordination and local control. Each level 
operates on a certain time horizon. The planning 
level determines at which time each product will 
be introduced in the manufacturing system. The 
scheduling level produces a sequence of times 
for the execution of each operation on each ma-
chine or a total ordering of all the operations. The 
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ABSTRACT

The methods of modeling and control of discrete event robotic manufacturing cells using Petri nets are 
considered, and a methodology of decomposition and coordination is presented for hierarchical and 
distributed control. Based on task specification, a conceptual Petri net model is transformed into the 
detailed Petri net model, and then decomposed into constituent local Petri net based controller tasks. 
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coordination level updates the state representa-
tion of the manufacturing system in real-time, 
supervises it and makes real-time decisions. 
The local control level implements the real-time 
control of machines and devices etc., interacting 
directly with the sensors and actuators. All the 
emergency procedures are implemented at this 
level, so real-time constraints may be very hard. 
At each level, any modeling has to be based on 
the concepts of discrete events and states, where 
an event corresponds to a state change (Martinez, 
1986), (Silva, 1990).

A flexible manufacturing system is formed of 
a set of flexible machines, an automatic transport 
system, and a sophisticated decision making sys-
tem to decide at each instant what has to be done 
and on which machine. A manufacturing cell is an 
elementary manufacturing system consisting of 
some flexible machines (machine tools, assembly 
devices, or any complex devices dedicated to 
complex manufacturing operations), some local 
storage facilities for tools and parts and some 
handling devices such as robots in order to transfer 
parts and tools. Elementary manufacturing cells 
are called workstations. At the local control level 
of manufacturing cells many different kinds of 
machines can be controlled, and specific languages 
for different application domains are provided; for 
example, block diagrams for continuous process 
control and special purpose languages for CNC 
or robot programming. For common sequential 
control, special purpose real-time computers 
named Programmable Logic Controllers (PLCs) 
are used. PLCs are replacements for relays, but 
they incorporate many additional and complex 
functions, such as supervisory and alarm functions 
and start-up and shut-down operations, approach-
ing the functionalities of general purpose process 
computers. The most frequent programming lan-
guages are based on ladder or logic diagrams and 
boolean algebra. However, when the local control 
is of greater complexity, the above kinds of lan-
guages may not be well adapted. The development 
of industrial techniques makes a sequential control 

system for manufacturing cells more large and 
complicated one, in which some subsystems oper-
ate concurrently and cooperatively. Conventional 
representation methods based on flowcharts, time 
diagrams, state machine diagrams, etc. cannot be 
used for such systems.

To realize control systems for flexible manu-
facturing cells, it is necessary to provide effec-
tive tools for describing process specifications 
and developing control algorithms in a clear and 
consistent manner. In the area of real-time control 
of discrete event manufacturing cells the main 
problems that the system designer has to deal with 
are concurrency, synchronization, and resource 
sharing problems. For this class of problems, 
Petri nets have intrinsic favorable qualities and it 
is very easy to model sequences, choices between 
alternatives, rendezvous and concurrent activities 
by means of Petri nets (Reisig, 1985). When using 
Petri nets, events are associated with transitions. 
Activities are associated to the firing of transitions 
and to the markings of places which represent 
the states of the system. The network model can 
describe the execution order of sequential and 
parallel tasks directly without ambiguity (Murata, 
et al. 1986), (Crockett, et al. 1987). Moreover, 
the formalism allowing a validation of the main 
properties of the Petri net control structure (live-
ness, boundedness, etc.) guarantees that the control 
system will not fall immediately in a deadlocked 
situation. In the field of flexible manufacturing 
cells, the last aspect is essential because the se-
quences of control are complex and change very 
often. Furthermore, a real-time implementation 
of the Petri net specification by software called 
a token player can avoid implementation errors, 
because the specification is directly executed by 
the token player and the implementation of these 
control sequences preserves the properties of the 
model (Bruno, 1986). In this approach, the Petri 
net model is stored in a database and the token 
player updates the state of the database according 
to the operation rules of the model. For control 
purposes, this solution is very well suited to the 
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need of flexibility, because, when the control 
sequences change, only the database needs to be 
changed(Silva, et al. 1982), (Valette, et al. 1983).

In addition to its graphic representation dif-
ferentiating events and states, Petri nets allows 
the modeling of true parallelism and the possi-
bility of progressive modeling by using stepwise 
refinements or modular composition. Libraries of 
well-tested subnets allow components reusability 
leading to significant reductions in the modeling 
effort. The possibility of progressive modeling is 
absolutely necessary for flexible manufacturing 
cells because they are usually large and complex 
systems. The refinement mechanism allows the 
building of hierarchically structured net models.

Some techniques derived from Petri nets have 
been successfully introduced as an effective tool 
for describing control specifications and realizing 
the control in a uniform manner. However, in the 
field of flexible manufacturing cells, the network 
model becomes complicated and it lacks the 
readability and comprehensibility. Therefore, the 
flexibility and expandability are not satisfactory 
in order to deal with the specification change of 
the control system. Despite the advantages offered 
by Petri nets, the synthesis, correction, updating, 
etc. of the system model and programming of the 
controllers are not simple tasks (Desrochers, et 
al. 1995), (Lee, et al. 2006).

In this chapter, a Petri net based specification 
and real-time control method for large and com-
plex manufacturing cells is presented. Based on 
the hierarchical and distributed structure of the 
manufacturing cell, the specification procedure is 
a top-down approach from the conceptual level to 
the detailed level such that the macro representa-
tion of the system is broken down to generate the 
detailed Petri nets at the local machine control 
level. Then the Petri nets are decomposed and 
assigned to the machine controllers to perform 
distributed control using Petri net based multitask 
processing. An algorithm is proposed for coordi-
nation of machine controllers. By the proposed 

method, modeling, simulation and control of large 
and complex manufacturing cells can be performed 
consistently using Petri nets.

MODELING OF MANUFACTURING 
CELLS USING MODIFIED 
PETRI NETS

A manufacturing process is characterized by the 
flow of workpieces or parts, which pass in ordered 
form through subsystems and receive appropriate 
operations. Each subsystem executes manufactur-
ing operations, that is, physical transformations 
such as machining, assembling, or transfer opera-
tions such as loading and unloading.

From the viewpoint of discrete event process 
control, an overall manufacturing process can be 
decomposed into a set of distinct activities (or 
events) and conditions mutually interrelated in a 
complex form. An activity is a single operation 
of a manufacturing process executed by a subsys-
tem. A condition is a state in the process such as 
machine operation mode.

Considering the nature of discrete event 
manufacturing cells which are characterized by 
the occurrence of events and changing conditions, 
the condition-event net based specification method 
has been investigated. The Petri net is one of 
the effective means to represent condition-event 
systems. The specification method is a graphical 
model used as a tool to identify types of activi-
ties, conditions, and their mutual interrelation. It 
describes explicitly the concept of the manufactur-
ing process to be carried out in the discrete event 
manufacturing cells.

Considering not only the modeling of the 
systems but also the actual well-designed control, 
the guarantee of safeness and the capability to 
represent input and output signals from and to 
the machines are required. In the condition-event 
systems, deadlock occurs when the system enters 
into a state that is not possible for any event to 
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occur. Further bumping occurs when, despite 
the holding of a condition, the preceding event 
occurs. This can result in the multiple holding 
of that condition. Therefore, the basic Petri net 
which is called Place/Transition-net should be 
modified and extended in order to represent the 
activity contents and control strategies for the 
manufacturing system control in detail.

The extended Petri net consists of the following 
six elements: (1) Place, (2) Transition, (3) Directed 
arc, (4) Token, (5) Gate arc, (6) Output signal 
arc (Hasegawa, et al. 1984). A place represents a 
condition of a system element or action. A transi-
tion represents an event of the system. A directed 
arc connects from a place to a transition or from 
a transition to a place, and its direction shows the 
input and output relation between them. Places 
and transitions are alternately connected using 
directed arcs. The number of directed arcs con-
nected with places or transitions is not restricted. 
A token is placed in a place to indicate that the 
condition corresponding to the place is holding.

A gate arc connects a transition with a signal 
source, and depending on the signal, it either 
permits or inhibits the occurrence of the event 
which corresponds to the connected transition. 
Gate arcs are classified as permissive or inhibi-
tive, and internal or external. An output signal 
arc sends the signal from a place to an external 
machine. Thus a transition is enabled if and only 
if it satisfies all the following conditions:

1.  It does not have any output place filled with 
a token.

2.  It does not have any empty input place.
3.  It does not have any internal permissive arc 

signaling 0.
4.  It does not have any internal inhibitive arc 

signaling 1.

Figure 1 shows the place and gate variables 
for transition firing test.

Formally, the enabling condition and the ex-
ternal gate condition of a transition j are described 
using the logical place and gate variables as fol-
lows:
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where,

• M: set of input places of transition j
• p k

j m
I
,

( ) :  state of input place m of transi-
tion j at time sequence k

• N: set of output places of transition j
• p k

j n
O
,
( ) :  state of output place n of transi-

tion j at time sequence k
• Q: set of internal permissive gate signals 

of transition j

Figure 1. Place and gate variables for transition 
firing test
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• g k
j q
IP
,
( ) :  internal permissive gate signal 

variable q of transition j at time sequence k
• R: set of internal inhibitive gate signals of 

transition j
• g k

j r
II
,
( ) :  internal inhibitive gate signal 

variable r of transition j at time sequence k
• U: set of external permissive gate signals 

of transition j
• g k

j u
EP
,

( ) :  external permissive gate signal 
variable u of transition j at time sequence k

• V: set of external inhibitive gate signals of 
transition j

• g k
j v
EI
,
( ) :  external inhibitive gate signal 

variable v of transition j at time sequence k

The state (marking) change, that is, the addi-
tion or removal of a token of an input or output 
place, is described as follows:

p k p k t k g k
j m
I

j m
I

j j
E

, ,
( ) ( ) ( ( ) ( ))+ = ∧ ∧1  (3)

p k p k t k g k
j n
O

j n
O

j j
E

, ,
( ) ( ) ( ( ) ( ))+ = ∨ ∧1  (4)

An enabled transition may fire when it does 
not have any external permissive arc signaling 0 
nor any external inhibitive arc signaling 1. The 
firing of a transition removes a token from each 
input place and put a token in each output place 
connected to it. The assignment of tokens into 
the places of a Petri net is called marking and it 
represents the system state. In any initial mark-
ing, there must not exist more than one token in 
a place. According to these rules, the number of 
tokens in a place never exceeds one, thus the Petri 
net is essentially a safe graph; the system is free 
from the bumping phenomenon.

For the actual control, the operations of each 
machine are broken down into a series of unit 
motions, which is represented by mutual con-
nection between places and transitions. A place 
means a concrete unit motion of a machine. From 

these places, output signal arcs are connected to 
the machines, and external gate arcs from the 
machines are connected to the transitions of the 
Petri net when needed, for example, to synchronize 
and coordinate operations. When a token enters a 
place that represents a subtask, the machine de-
fined by a machine code is informed to execute a 
specified subtask with positional data and control 
parameters; all the code and data are defined as 
the place parameters.

If a place has two or more input or output 
transitions, these transitions may be in conflict for 
firing. When two or more transitions are enabled 
only one transition should fire using gate arcs or 
some arbitration rule. The Petri net described in 
detail by such a procedure mentioned above can 
be used as a program for the system control, while 
features of discrete event manufacturing cells such 
as ordering, parallelism, asynchronism, concur-
rency and conflict can be concretely described 
through the extended Petri net.

The extended Petri net is a tool for the study 
of condition-event systems and used to model 
condition-event systems through its graphical rep-
resentation. Analysis of the net reveals important 
information about the structure and the dynamic 
behavior of the modeled condition-event system. 
This information can then be used to evaluate 
the modeled condition-event system and suggest 
improvements or changes.

DESIGN OF HIERARCHICAL AND 
DISTRIBUTED CONTROL SYSTEM

A specification procedure for discrete event manu-
facturing cells based on Petri nets is as follows. 
First, the conceptual level activities of the discrete 
event manufacturing cells are defined through a 
Petri net model considering the task specification 
corresponding to the manufacturing process. A 
conceptual Petri net model describes the aggregate 
manufacturing process. At the level, each subtask 
composing the task specification is represented as 
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a place of the Petri net, where the activity of each 
equipment is also represented as a place. Then, 
the detailed Petri nets describing the activities 
are deduced based on activity specification and 
required control strategies. The macro representa-
tion of the manufacturing process is effectively 
used for achieving a top-down interpretation 
down to the concrete lower level activities using 
Petri nets. Based on the hierarchical approach, the 
Petri net is translated into the detailed Petri net by 
stepwise refinements from the highest conceptual 
level to the lowest machine control level. This 
procedure is repeated up to an appropriate level 
corresponding to the control level of the equip-
ment responsible for the activity execution. At 
each step of detailed specification, places of the 
Petri net are substituted by a subnet in a manner 
which maintains the structural properties (Miyagi, 
1988). The overall procedure of the Petri net based 
implementation of hierarchical and distributed 
control for robotic manufacturing cells is sum-
marized as shown in Figure 2.

It is natural to implement a hierarchical and 
distributed control system, where one controller 
is allocated to each control layer or block. For the 
robotic manufacturing cells composed of robots, 
machine tools, and conveyors, an example struc-
ture of hierarchical and distributed control is 
composed of one station controller and three 
machine controllers as shown in Figure 3, although 
each robot may be controlled by one robot con-
troller. The detailed Petri net is decomposed into 
subnets, which are assigned to machine control-
lers.

In the decomposition procedure, a transition 
may be divided and distributed into different 
machine controllers as shown in Figure 4. The 
machine controllers should be coordinated so that 
these transitions fire simultaneously, that is, the 
aggregate behavior of decomposed subnets should 
be the same as that of the original Petri net. De-
composed transitions are called global transitions, 
and other transitions are called local transitions.

By the Petri net model, the state of the discrete 
event system is represented as the marking of 
tokens, and firing of any transition brings about 
change to the next state. So the firing condition 
and state (marking) change before decomposition 
should be the same as those after decomposition. 
If transition j is divided into s transitions j1, j2,,, 
js, as shown in Figure 5, the firability condition 
of the transition after decomposition is described 
as follows:

t k p k p k

g

jsub jsub m
I

m

Msub

jsub n
O

n
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jsub q
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( ) ( ) ( )
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= =1 1
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v
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, ,

= ∧
= =1 1
 

 (6)

Figure 2. Flow chart of Petri net based imple-
mentation of hierarchical and distributed control 
system
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From Equation 1 and Equation 5,

t k t k
j jsub

sub

S

( ) ( )=
=1


 (7)

From Equation 2 and Equation 6,

g k g k
j
E

jsub
E

sub

S

( ) ( )=
=1


 (8)

where,

• S: total number of subnets
• Msub: set of input places of transition jsub 

of subnet sub
• p k

jsub m
I

,
( ) :  state of input place m of transi-

tion jsub of subnet sub at time sequence k

• Nsub: set of output places of transition jsub 
of subnet sub

• p k
jsub n
O

,
( ) :  state of output place n of transi-

tion jsub of subnet sub at time sequence k
• Qsub: set of internal permissive gate sig-

nals of transition jsub of subnet sub
• Rsub: set of internal inhibitive gate signals 

of transition jsub of subnet sub
• Usub: set of external permissive gate sig-

nals of transition jsub of subnet sub
• Vsub: set of external permissive gate sig-

nals of transition jsub of subnet sub

The addition or removal of a token of a place 
connected to a decomposed transition is described 
as follows:

Figure 3. Example structure of distributed control system

Figure 4. Decomposition of transitions
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p k p k t k g k
jsub m
I

jsub m
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E

, ,
( ) ( ) ( ( ) ( ))+ = ∧ ∧1  

(9)

p k p k t k g k
jsub n
O

jsub n
O

j j
E

, ,
( ) ( ) ( ( ) ( ))+ = ∨ ∧1  

(10)

Consequently it is proven that the firability 
condition of the original transition is equal to AND 
operation of firability conditions of decomposed 
transitions. If and only if all of the decomposed 
transitions are firable, then the global transitions 
are firable. To utilize the above results, the coor-
dinator program has been introduced to coordinate 
the decomposed subnets so that the aggregate 
behavior of decomposed subnets is the same as 
that of the original Petri net.

There may exist a place which has several input 
transitions and/or several output transitions. This 
place is called a conflict place. The transitions 
connected to a conflict place are in conflict when 
some of them are firable at the same time. In this 
case, only one of them can be fired and the others 
become disabled. The selection of firing transi-
tion is done arbitrarily using an arbiter program.

In case that a transition in conflict with other 
transitions is decomposed as shown in Figure 6, 
these transitions should be coordinated by the 
system controller. If arbitrations of the transitions 
are performed independently in separate subnets, 
the results may be inconsistent with the original 
rule of arbitration. Therefore the transitions should 
be arbitrated together as a group. On the other 
hand, arbitration of local transitions in conflict is 
performed by local machine controllers.

The hierarchical and distributed control system 
composed of one station controller and several 
machine controllers has been implemented. The 
conceptual Petri net model is allocated to the 
Petri net based controller for management of the 
overall system. The detailed Petri net models are 
allocated to the Petri net based controllers in the 
machine controllers. Each machine controller 
directly monitors and controls the sensors and 
actuators of its machine.

The control of the overall system is achieved 
by coordinating these Petri net based controllers. 
Figure 7 shows the Petri net based control struc-
ture with the coordinator. System coordination is 
performed through communication between the 

Figure 5. Place and gate variables after decomposition of transition

Figure 6. Decomposition of transition in conflict
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coordinator in the station controller and the Petri 
net based controllers in the machine controllers 
as the following steps.

1.  When each machine controller receives the 
start signal from the coordinator, it tests the 
firability of all transitions in its own Petri 
net, and sends the information on the global 
transitions and the end signal to the 
coordinator.

2.  The coordinator tests the firability of the 
global transitions, arbitrates conflicts among 
global transitions, and sends the names of 
firing global transitions and the end signal 
to the machine controllers.

3.  Each machine controller arbitrates conflicts 
among local transitions using the informa-
tion from the coordinator, generates a new 
marking, and sends the end signal to the 
coordinator.

4.  When the coordinator receives the end signal 
from all the machine controllers, it sends the 
output command to the machine controllers.

5.  Each machine controller outputs the control 
signals to its actuators simultaneously.

REAL-TIME CONTROL OF A 
MANUFACTURING CELL

The example manufacturing system has two ro-
bots, one machining center, and two conveyors, 
where one is for carrying in and the other is for 
carrying out, as shown in Figure 8. The main ex-
ecution of the system is indicated as the following 
task specification:

1.  A workpiece is carried in by the conveyor 
CV1.

2.  The robot R1 loads the workpiece to the 
machining center MC.

3.  The machining center MC processes the 
workpiece.

4.  The robot R2 unloads the workpiece from 
the machining center and places it on the 
conveyor CV2.

5.  The workpiece is carried out by the conveyor 
CV2.

A conceptual Petri net model is first chosen, 
which describes the aggregate manufacturing 
process. The places which represent the subtasks 
indicated as the task specification are connected 
by arcs via transitions in the specified order cor-
responding to the flow of subtasks and a workpiece. 
The places representing the machines are also 
added to connect transitions which correspond to 
the beginning and ending of their subtasks. Thus 
at the conceptual level the manufacturing process 
is represented as shown in Figure 9. In this step, 
if necessary, control conditions such as the capac-
ity of the system between the respective subtasks 
must be connected to regulate the execution of the 
Petri net. For the cell with one robot, the place 
“Robot” has two input transitions and two output 
transitions, but these transitions are not firable at 
the same time, so they are not in conflict for fir-
ing. The firing of only one of these transitions is 
permitted using gate arcs (Yasuda, 2008). Next, 
each place representing a subtask at the conceptual 

Figure 7. Petri net based control structure with 
coordinator
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level is translated into a detailed subnet. Figure 
10 shows the detailed Petri net representation of 
loading, processing and unloading in Figure 9.

For the example system, the hierarchical and 
distributed control system has been realized using 
a set of PCs. Each machine controller is imple-
mented on a dedicated PC. The station controller 
is implemented on another PC. Communications 
among the controllers are performed using serial 
communication interfaces.

The names of global transitions and their 
conflict relations are loaded into the coordinator 
in the station controller. The connection structure 
of a decomposed Petri net model and conflict 
relations among local transitions are loaded into 
the Petri net based controller in the corresponding 
machine controller. In the connection structure, a 
transition of a Petri net model is defined using the 
names of its input places and output places; for 
example, t1-1=p1-1, -p1-11, where the transition 
no.1 (t1-1) of Robot controller (subsystem no.1) 

is connected to the input place no.1 and the output 
place no.11. For the distributed control system 
shown in Figure 3, the Petri net representations 
assigned to the machine controllers are shown in 
Figure 11. Structural information for the robot 
controller inputted to the loader is shown in Table 1.

Using the names of transitions in the subsys-
tems, global transitions are defined; for example, 
G2: t0-2, t1-21, t2-22, t3-23 indicates that the 
global transition G2 is composed of the transition 
no.2 of Station controller (subsystem no.0), the 
transition no.21 of Robot controller, the transition 
no.22 of MC controller (subsystem no.2), and the 
transition no.23 of Conveyor controller (subsys-
tem no.3). Then, the coordinator information for 
the example distributed control system is shown 
in Table 2.

By executing the coordinator and Petri net 
based controllers algorithms based on loaded 
information, simulation experiments have been 
performed. The robot controller executes robot 
motion control through the transmission of com-
mand. The MC controller and the conveyor 
controller communicate with a dedicated PLC. 
The Petri net simulator initiates the execution of 
the subtasks attached to the fired transitions 
through the serial interface to the robot or other 
external machine. When a task ends its activity, 
it informs the simulator to proceed with the next 
activations by the external permissive gate arc 
(Yasuda, 2010). The detailed Petri net representa-

Figure 8. Example of robotic manufacturing 
system

Figure 9. Petri net representation of the example system at the conceptual level
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tion for real-time external machine control is 
shown in Figure 12. External permissive gate arcs 
from sensors for detecting the completion of work 
handling are employed as shown in Figure 13.

The machine controllers control two convey-
ors or robots, so control software on each PC is 
written using multithreaded programming. Petri 
net simulation and task execution program through 
serial interface are implemented as threads in each 
machine controller. Real-time task execution us-
ing multithreaded programming is shown in 
Figure 14.

In multithreaded system a thread is an inde-
pendent flow of execution. All threads share code, 
data, stack, and system memory areas. So, all 
threads can access to all global data. Further, 

because each thread has a separate CPU state and 
its own stack memory, all local variables and 
function arguments are private to a specific thread. 
Context switching between threads involves 
simply saving the CPU state for the current thread 
and loading the CPU state for the new thread. It’s 
easy for threads to interact with each other by 
way of synchronization objects and intertask 
communications, because they have some shared 
memory. Memory management data structures 
do not need to be changed, because the threads 
share the same memory areas (Grehan, et al. 1998).

In the implementation both the Petri net 
simulation and task execution threads access to 
the external gate variables as shared variables; 
the task execution thread writes the new values 
of the gate variables and the Petri net simula-
tion thread reads them. Mutual exclusive access 
control is implemented, so that, while one thread 
accesses to the shared variables, the other thread 
can not access to them. Control software using 
multithreaded programming was written in Visual 
C# under OS Windows XP SP3 on a general PC. 
Experiments using a real industrial robot show 
that the Petri net simulation thread and the task 
execution threads proceed concurrently with even 
priority, and the values of external gate variables 
are changed successfully; after the task execution 
threads write the new values, the Petri net simula-
tor thread reads them immediately.

Experimental results show that the decom-
posed transitions fire simultaneously as the 
original transition of the detailed Petri net of the 
whole system task. The robots cooperated with 
the conveyors and the machining center, and the 
example manufacturing cell performed the task 
specification successfully. Firing transitions and 
marking of tokens can be directly observed on the 
display at each time sequence using the simulator 
on each PC (Yasuda, 2009), as shown in Figure 
15. The Petri net modeling thread is executed as 
the main thread to perform the modeling, drawing 
and modification of the overall system control 
net model based on task specification. When the 

Figure 10. Detailed Petri net representation of 
subtasks
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Figure 11. Petri net representation of machine controllers (: global transition, : local transition)

Table 1. Structural information for the robot 
controller, as inputted to the loader 

t1-21=-p1-11 t1-41=-p1-21

t1-100=p1-11, -p1-12 t1-102=p1-21, -p1-22

t1-71=p1-12, -p1-13 t1-91=p1-22, -p1-23

t1-101=p1-13, -p1-14 t1-103=p1-23, -p1-24

t1-81=p1-14, -p1-15 t1-51=p1-24

t1-31=p1-15

Table 2. Coordinator information for the example 
distributed control system 

G1: t0-1, t3-13 start of carrying in

G2: t0-2, t1-21, t2-22, t3-23 start of loading from CV1

G3: t1-71, t3-73 end of grasp on CV1

G4: t1-81, t2-82 end of putting on MC

G5: t0-3, t1-31, t2-32 end of loading into MC

G6: t0-4, t1-41, t2-42, t3-43 start of unloading from MC

G7: t1-91, t2-92 end of grasp on MC

G8: t0-5, t1-51, t3-53 end of putting on CV2

G9: t0-6, t3-63 end of carrying out
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transformation of graphic data of the Petri net 
model into internal structural data is finished, the 
Petri net simulation thread starts. During simula-
tion and task execution, liveness or deadlock is 
possibly decided, and the user can stop the task 
execution at any time.

CONCLUSION

A methodology to construct hierarchical and 
distributed control systems, which correspond to 
the hardware structure of manufacturing cells, has 
been proposed. By introduction of the coordina-
tor, the Petri net based controllers are arranged 

Figure 12. Detailed Petri net representation of 
real-time machine control

Figure 13. External permissive gate arcs from 
sensors for work handling

Figure 14. Real-time execution of subtasks using multithreaded programming
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according to the hierarchical and distributed nature 
of the overall manufacturing system; the coordi-
nation mechanism is implemented in each layer 
repeatedly. The Petri net model in each Petri net 
based machine controller is not so large and easily 
manageable. The overall control structure of the 
example robotic manufacturing cell was imple-
mented on a communication network of PCs using 
multithreaded programming. In accordance with 
the implementation using multithreaded program-
ming, hierarchical and distributed implementation 
under a real-time operating system on a network of 
microcomputers connected via a serial bus is also 
possible, where each microcomputer is dedicated 

to the local Petri net model of a subsystem in the 
manufacturing cell. Thus, modeling, simulation 
and control of large and complex manufacturing 
systems can be performed consistently using 
Petri nets.

The proposed methodology has the following 
advantages especially for manufacturing cells 
composed of several parallel processes.

1.  Because of decomposition of detailed Petri 
net model, design and implementation of 
lower level controllers can be performed 
efficiently for each subsystem. Modification 
or breakdown in a lower level controller is 

Figure 15. View of Petri net simulator
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restricted to the corresponding controller. 
Machine controllers can be realized using 
conventional relay circuits, PLCs, or mi-
crocomputers. From the practical point of 
view, transformation Petri nets into ladder 
diagrams, PLC or microcomputer programs, 
and inversely transformation them into Petri 
nets, are desirable.

2.  By monitoring the flow of token in the up-
per level controller, the global state of the 
system can be conceptually understood.

3.  By realizing the upper level controller using 
a general PLC or computer, the Petri net 
model (places and transitions) can be easily 
changed according to task specification.

From the proposed coordinator algorithm the 
coordination mechanism is performed with the 
master-slave multicomputer architecture; the 
upper level controller is the master and the lower 
level controllers are slaves. So access conflict 
and lock out do not occur, and both hardware 
and software structures can be simply realized, 
especially including non-homogeneous system. 
Although in the master-slave architecture of oper-
ating systems the performance of the upper level 
controller is required to be sufficiently high, there 
is no problem because robotic arms, conveyors 
and machine tools are very slow in comparison 
with the controller. In case of an accident or 
breakdown of the upper level controller, manual 
operation modes must be provided for the lower 
level controllers. In order to improve the Petri 
net based control system for manufacturing cells, 
future works include the following:

1.  The number of token is increased and some 
kinds of tokens are provided in a place.

2.  The time required for transition firing condi-
tion in a place is provided.

The above extensions of the Petri net is 
necessary to optimize the process control in a 
manufacturing cell using simulations without real 

machines. It is also possible to analyze deadlock 
phenomena in Petri net models based on detailed 
simulations.
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ABSTRACT

The main problem of establishing equipment replacement decisions rules under specific conditions is 
to find decision variables that minimize total incurred costs over a planning horizon. Basically, the 
rules differ depending on what type of production type is used. For a batch production organization 
the suitable criterion is built on the principle of economies of scale. Proposed econometric models in 
this chapter are focused on a multiple machine replacement problem in flexible manufacturing cells 
with several machines for parts’ processing, and industrial robots for manipulation and transportation 
of manufactured objects. Firstly, models for a simple case multiple machine replacement problems are 
presented. Subsequently, the more complicated case is considered where technological improvement is 
taken into account.



402

Equipment Replacement Decisions Models

INTRODUCTION

Historically, development of production pro-
cesses has passed from production structures in 
automatic rigid flow lines, efficient for mass and 
wide-range production, to flexible structures, 
especially efficient in low and medium-range 
production. Because manufacturing firms has to 
be flexible towards new market requirements, 
flexible production forms are increasingly seen as 
one of the most important manufacturing concepts. 
Currently, the trend in flexible manufacturing 
systems is toward small flexible manufacturing 
structures, called flexible manufacturing cells 
(FMC). In this sense, two or more CNC machines 
are considered a flexible cell and two or more cells 
are considered a flexible manufacturing system 
(Groover, 2001). Flexible manufacturing cell, in 
general, allows the processing of pieces which are 
different in terms of shape and dimensions, in a 
determined range. This creates prerequisites for the 
accomplishment of variable products, under high 
yield conditions. Considerable savings are made 
because the utilizations increases, the process-
ing time is shortened, the handling distances are 
reduced, intermediate storage expenses decrease, 
the area required for production is reduced, the 
process may be systematized, proper conditions for 
continuous work are created and direct expenses 
are reduced. However, the real occurrence of 
failures during the exploitation stage can mark-
edly modify the FMC performances (Corbaa et 
al, 1997). For this reason, downtime of FMC has 
to be analyzed and its influence on the process-
ing cost has to be pondered over. In addition, to 
ensure that manufacturing process is held to be 
competitive, upgrading or replacing of equipment 
due to rapid innovations in technology also has to 
be considered. In this context often encountered 
issues in production planning are: Should this 
equipment be replaced? If not now, then when? 
Usually, written equipment replacement policy, in 
which units are scheduled for replacement based 
on age and expected condition, contains answers 

on such questions. In this chapter we wish to show 
several econometric models that could inspire 
managers to develop their own specific tools in 
building of an effective equipment replacement 
policy.

THE PROBLEM STATEMENT

Theoretically, any equipment replacement deci-
sion would be made based on thorough modeling 
equipment deterioration and projected remaining 
life. Practical approaches to equipment replace-
ment decisions are mostly based on subjective 
appraisal. But it is generally accepted that tools 
for equipment replacement decision create im-
portant element of repair/replacement policy. 
Such a policy provides guidance to production 
and economic manager regarding when to replace 
existing equipment or its part; how to conduct the 
acquisition process; and what should be done with 
the equipment being replaced. Then, the main 
importance of developing of equipment replace-
ment decision models in production planning 
consist in establishing rules for the replacement 
of old equipment or its part(s) by new. The main 
problem of establishing the rules is to find deci-
sion variables that minimize total incurred costs 
over a planning horizon (Dehayem Nodem et al 
2009). Basically, the rules differ depending on 
what type of production type is used. For batch 
production organizations suitable criteria are built 
on the principle of economies of scale, where the 
large fixed costs of production are depreciation-
intensive because of huge capital investments 
made in high-volume operations and are spread 
over large production batch sizes in an effort 
to minimize the total unit costs of owning and 
operating the manufacturing system (Sullivan, 
2002). When solving equipment/parts replace-
ment problem within a flexible manufacturing 
cell, it is necessary to consider the impacts of the 
replacement decisions on all of the components 
of the system. Therefore, possible equipment 
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stoppages due to wrong decision results at least 
in diminishing capacity or stopping the operations 
in a manufacturing cell. Accordingly, proposed 
methods are dedicated for a multiple machine 
replacement problem that is also characterized 
as a flexible flow shop problem. A parallel flow 
shop production concept is consisting of a number 
of production lines. Jobs in such work shop may 
be composed of a series of works, each requiring 
several machines (Jianhua and Fujimoto, 2003).

Firstly we will model a simple case multiple 
machine replacement problem that is characterized 
for a parallel flexible flow shop environment, in 
which no technological improvement in equipment 
is in concern. Then we will consider the more 
complicated case where we also take account of 
technological improvement.

RELATED WORK

Equipment replacement, as a specific field of 
knowledge and practice, has been extensively 
studied in the professional literature from the 
third decade of the 20th century (Castro et al 
2009). Operations research approaches utilized 
in this domain are classified based on methods 
used to solve replacement problems, such as: 
integer programming (Hritonenko and Yatsenko, 
2007), dynamic programming (Flynn and Chung, 
2004), simulation techniques (Freeman, 1996) and 
Markov decision problems (Love et al, 2000).

Equipment replacement decision approaches 
related to this work can be divided into two basic 
types: parallel and series. The difference between 
these two categories is that in parallel models, 
the capacity of the system is simply the sum of 
the capacities of the individual assets and in the 
series – flow shop models, the minimum capac-
ity assets in the series defines the capacity of the 
system (Hartman and Ban, 2002). The literature 
on parallel models is relatively rich. Among the 
many papers published on this topic, the inter-
ested reader may refer to Bean et al. (1994). As 

regards to series models, there is limited work. 
For instance, Tanchoco and Leung (1987), Suresh 
(1991, 1992) and Stinson and Khumawala (1987) 
present various approaches in which machines 
operate in series.

Equipment Replacements models can be 
grouped as: simple and complex ones. By simple 
models are meant those with a small number of 
unknown parameters. An instance, where only a 
small number of observations of time to fail are 
required to determine a near-optimal value of the 
critical age for preventive replacement may be an 
example for age-based replacement models (Baker 
and Scarf, 1995). The second group of models with 
a large number of parameters is characterized by 
high correlations between parameter estimates. 
This indicates that the available data is insufficient 
to distinguish between equally plausible parameter 
combinations (Scarf, 1997).

Recent discussions in econometric models are 
highlighted the question when to use a capital re-
placement modeling or an economic life modeling. 
By comparison of these two approaches, capital 
replacement modeling methods are evidently more 
application-oriented than second ones (Christer 
and Scarf, 1994; Scarf and Bouamra, 1995).

Pioneering approaches of equipment replace-
ment studies are mainly addressed to the replace-
ment of single machines or systems. Developed 
methods stated to multi-machine systems have 
mostly assumed linear production flows, with 
limited operational flexibility. A multi-period 
replacement model for flexible automated sys-
tems was developed by Lotfi and Suresh (1994). 
Their model was formulated as a nonlinear integer 
programming problem and was intended to serve 
as an analytical approximation along with closed 
queuing networks.

Obviously, it would be possible to mention 
more similar works from different authors on that 
topic, but this was comprehensively provided, for 
instance, by Fine and Freund (1990) or Cheevap-
rawatdomrong and Smith (2003).
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MODELS DEVELOPMENT

The further presented equipment replacement 
decisions models are econometric-based methods. 
Econometric methods are in generally concerned 
with using relevant data for modeling relations 
between economic and business variables. In 
these methods one problem is the fact that the 
selection of variables is somewhat subjective. 
Their role in decision support for the equipment 
management and replacement consists of finding 
the adequate moment to change machine-tool in 
use or its part(s), based on a specified criterion. 
In the next subparagraphs several mathematical 
methods regarding the equipment replacement 
decision are described.

The OEC and ORC Dependence 
Based Method

The problem is to choose an optimal replacement 
policy such that sum of operating equipment cost 
(OEC) and replacement equipment cost (REC) 
per unit time is minimized.

In general, the calculation of operating costs 
(OC) requires the examination of various in-
fluencing parameters. Moreover, there is some 
difference of opinion about whether the wages 
of equipment operators should be included in the 
operating equipment cost (Sears et al 2008). In 
this method the wages are included to this cost. 
Because we are looking at all costs from cash flow 
perspective equipment, thus a replacement cost in 
our approach deals with present value analysis.

The instrumental assumptions of this method 
imply that at the beginning of every year, data 
regarding operation and replacement costs of a 
certain machine are collected. The data usually 
shows an increase in the operation cost, because 
of the damages in certain components of the 
machine. Some of these components may be 
replaced, thus the equipment operating cost are 
reduced. The replacement thereof implies costs 
with the materials and salaries and, hence, such 
costs have to be compensated through the savings 

which may be obtained pursuant to the reduction 
of operating costs. Thus, we want to determine 
an optimal replacement policy, able to minimize 
the sum of operating and replacement expenses 
during the period between two successive data 
collections.

Let us consider c(t), the operating cost per time 
unit at the moment t, after replacement and cr, the 
cost of a replacement. Then, the relation between 
the operating cost, replacement cost and time is 
shown in Figure 1.

The replacement policy is presented in Figure 
2, with the following notations: [0,T], the time 
interval regarding the collection of data on the 
machine and tr, intervals when n replacements 
shall occur.

The assumed goal is the determination of the 
optimal interval between successive replacements, 
so that the sum of the operating and replacement 
cost C(tr) is minimal.

Then, C(tr) present the replacement cost dur-
ing the period [0,T], plus operating cost during 
the period [0,T].

Replacement cost by period [0,T] is calculated 
by

C n C
r r∑ = ⋅  (1)

Thus, n are the number of replacements by 
period [0,T] and Cr, the cost of one replacement.

The total cost per time unit C(tr), for the re-
placement performed at the moment tr is: C(tr) 
i.e. total cost in the interval (0,tr) related to the 
length of the interval.

The total cost in the interval (0,tr) is the operat-
ing cost plus replacement cost.
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As we may see, the two different cost calcula-
tion procedures are similar, because the minimiza-
tion of C(tr) is desired, depending on tr.

Neither of the two procedures considers the 
time Tr (see Figure 3) required for performing a 
replacement.

If the time required for performing a replace-
ment is considered, Equation 2 becomes:

C t

c t dt C

t Tr

t

r

r r

r

( ) =
( ) +

+

∫
0  (3)

Even though this method is also applicable 
for job shop problems, the given procedures meet 
essential requirements of the Total Productive 
Maintenance concept that have a very important 
role to effective use the automated production 
systems like FMC and flexible manufacturing 
systems.

Figure 1. Relation between operation cost and replacement cost

Figure 2. Graphical representation of the replacement policy
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The Method of Replacing the 
Equipment at a Certain Age

We consider that the machine shall be used for a 
certain number of years. Further, we assume that 
a certain machine fabricates certain products, 
according to the production plan. In this case 
the goal, in order to minimize the total operating 
and replacement cost for a fixed time period, 
consists in the determination of the replacement 
policy establishing whether: at a certain age of 
the machine; the latter should be replaced or left 
to operate continuously.

Let us use I to denote the age of the equipment 
(from the last replacement, with n plan periods of 
proper operation, until the end of the production 
plan); c(a) to represent the cost of operating the 
equipment for a plan period, when the equipment 
has age a; J to represent the age of the equipment 
from the moment of the last replacement, having 
(n-1) operating time periods until the end of the 
production plan; Cr, replacement cost; C(I,J), 

total cost during the period when the equipment 
develops from age I to age J. The proposed goal 
consists in the determination of a replacement 
policy, so that the cost of operating and replac-
ing the machine Cn(i), along the following n time 
periods is minimal. When Cn(i) has a minimal 
value, the smallest cost is defined as fn(i).

Ten weeks before the end of the production 
plan, two decisions may be made: continuous use 
or replacement of the machine. If it is decided that 
the machine should operate further, the equipment 
shall have age 4 when a new decision may be 
made (Figure 4).

The total operating cost for the period (10, 9) 
is:

C C3 4 3,( ) = ( )  (4)

If the decision to replace the machine is made, 
then the total cost for the period (10, 9) shall be:

C C C
r

3 1 0,( ) = + ( )  (5)

Thus, Cr is the replacement cost, and C(0), 
the operating cost for a period, when the machine 
has age 0.

The optimal replacement policy is graphically 
presented in Figure 5.

The mathematical model used for identifying 
this optimal policy has the following form:

Figure 4. Replacement policy for the machine with age “4”

Figure 3. Time structure of cycle between two 
replacements
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Consider: fn(i), the minimal cost resulting from 
taking the best decision at the beginning of the 
period n plus the cost of the best decision taken 
on the remaining periods (n-1); C(i,j) represent 
the cost resulting from taking the decision at the 
beginning of the period n; fn-1(j), minimal cost by 
periods (n-1) remaining at the moment when the 
machine has the age J.

The cost by the n periods is:

C i j f j
n

, ,( )+ ( )−1
 (6)

so:

f i C i j f j
n n( ) = ( )+ ( )



−min ,

1
 (7)

with:

f i

j i
0

0

1
( ) =
= + or 0

 

The equation (7) that may be solved by means 
of dynamic programming can be used to determine 
the replacement policy under a given specifications 
formulated in a section ‘The problem statement’.

The Method of Replacement 
Based on the Existence of 
Equipment in Standby

It implies the replacement of assets provided that 
the manufacturing flow contains a spare asset, and 
the operating cost increases with the use of the 
asset existing in production.

In this case, an optimal replacement policy 
must be determined, combined for the two assets, 
which shall minimize the total replacement and 
operating cost for a fixed time period.

The state of the production system at the be-
ginning of a period shall be noted with I, where I 
is equivalent to the pair of numbers (x, y), where 
x refers to the asset (A or B) which is generally 
used, and y, to the age of the asset.

Consider: Cx(y), the operating cost for a pe-
riod; j, the state of the production system at the 
end of a period, where j is equivalent to (x,y); Cr 
= replacement cost, considered equal for both 
assets C(i,j,), total cost of the system between the 
states of the system i and j. The time required for 
the replacement of an asset is a period when the 
replacement decision is made, and then the stand 
by asset becomes operative. The proposed goal is 
the determination of an optimal combined policy 
for replacement/operation, so that the operating 

Figure 5. Optimal replacement policy
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and replacement cost for the following n time 
periods is minimal. Figure 6 shows such a policy, 
where n=10, the system is in state I=(B,2). At the 
beginning of period 10, a decision is made to go 
on with asset B.

At the beginning of period 9, a decision is 
made to replace asset B etc. The total minimal 
cost for replacement and operation, for the n 
periods is fn(i).

The cost of the first decision taken at the 
beginning of the period n is C(i,j). At the end of 
this period, the system is in state j, having (n-1) 
operating periods. Then the minimal cost for the 
remaining period fn-1(j) is:

Total t C i j f j
n

cos ,= ( )+ ( )−1
 (8)

and

f i C i j f j
n n( ) = ( )+ ( )



−min ,

1
 (9)

In the next section we will describe the replac-
ing policy model based on considering technologi-
cal changes.

The Method of Replacing 
the Equipments Based on 
Technological Improvement 
in Finished Time Horizon

Considers that the replacement of an old machine 
by a new one not always is an exact copy of the old 
one, but that the latter is better, so that operating 
and maintenance costs are smaller, efficiency is 
higher etc. The following model aims at determin-
ing the way how the new available machines may 
be used with a successful purpose, considering 
that the time period is fixed and finite.

Consider: n, the number of operating periods 
(periods when the machine must operate); Cp,i, 
maintenance cost of the current equipment in the 
period I (i =l,2,...n); Sp,i, sales value of the cur-
rent equipment at the end of the time period; A, 
purchase cost for the new, better equipment; Ct,j, 
maintenance cost of the new machine in the dj 
period after installation (j = l,2,...n); St,j, sale value 
of the new equipment at the end of the operating 
period j; r – update factor.

The method aims at determining the value T 
when replacement should be made with the new, 
better machine (Figure 7), T = 0, 1,2,....,n.

Figure 6. Replacement policy given the existence of the standby asset
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The total updated cost for the n periods when 
replacement occurs at the end of the T period is: 
C(T), updated cost for the maintenance of the 
current machine in the period (0,T), plus the up-
dated maintenance cost of the new machine in the 
period (T,n), plus the updated purchase cost of 
the new machine, minus the updated sale value 
of the current equipment at the end of the T time 
period, minus the updated sale value of the new 
equipment at the end of period n:

C T C r C r C r

C r C r C
p p p T

T

t
T

t
T

t

( )
, , ,

, , ,
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Hence,
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As the sole unknown variable is T, the minimi-
sation of C(T) does not raise further related issues.

DISCUSSION AND CONCLUSION

Because of the fact that above presented methods 
are more or less applicable based on specific theo-

retical preconditions, it can be handy to view the 
given problem from a wider user base. Prior to 
analysing decisions about equipment replacement 
in flexible manufacturing cells from practical 
point of view it is useful recognize two different 
approaches: deterministic or probabilistic. The 
probabilistic decisions to replace machines re-
ferred to as preventive actions are those decisions 
where the risk is given by the impossibility to 
exactly determine the moment when such machine 
falls or the transition moment from proper operat-
ing state to non-operating state. Another source 
of risk is given by the impossibility to determine 
the state of the equipment when no inspection or 
other maintenance activity occurs. Let us consider 
that there are only two states of the equipment 
that are always known: a proper operating state 
or a non-operating state. Then, in order to avoid 
equipment stoppages in flexible manufacturing 
cells, the positive replacement decision should 
come during a proper operating state and accord-
ingly should have a preventive character. In such a 
way understood preventive replacement for fixed 
assets implies two conditions:

• the total replacement cost shall be higher 
after the fall itself at the moment when the 
preventive replacement is made;

• the replacement of the machine before the 
fall itself does not affect the chance that 

Figure 7. Graphical calculation of T value
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the equipment may fall at the following 
moment.

Therefore, preventive replacement is only 
justified when the rate of replacement grows. In 
case the machine is damaged, specialists in the 
department should increase the preventive replace-
ment activities. This may lead to a mistake, as the 
preventive replacement of machines or their parts 
is not always justified.

Another above presented approach to equip-
ment replacement decisions is based on consider-
ing technological shifts. Even though it is often 
assumed that an acceleration in technological 
improvement should result in a more rapid intro-
duction of new technology, according to Cheevap-
rawatdomrong and Smith (2003), rapid technologi-
cal improvement may not and indeed should not 
necessarily lead to more rapid replacement of old 
technology. In addition, as regards to methods of 
replacing the equipments based on technological 
improvement, it has to be ‘calculated’ with known 
difficulties and problems such as:

• workers’ resistance, as they are used to the 
old machine;

• lack of will to change the work style;
• fear of the unknown, i.e. workers are 

scared that they will lose their jobs pursu-
ant to the introduction of new technologies 
or that they won’t be able to adjust to the 
new working requirements;

• lack of support regarding specialized 
documentation;

• difference of opinions regarding the opera-
tion of the equipment.

Accordingly, a management attitude toward 
new manufacturing technology will play a major 
role in determining whether a firm will acquire 
such technology (Dorf and Kusiak,1994).
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ABSTRACT

Cellular manufacturing meets the diversified production and quantity requirements flexibly. However, its 
efficiency mainly depends on the operators’ working performance. In order to improve its efficiency, an 
effective assembly-support system should be developed to assist operators during the assembly process. 
In this chapter, a multi-modal assembly-support system (MASS) was proposed, which aims to support 
operators from both information and physical aspects. To protect operators in MASS system, five main 
safety designs as both hardware and control levels were also discussed. With the information and physi-
cal support from the MASS system, the assembly complexity and burden to the assembly operators are 
reduced. To evaluate the effect of MASS, a group of operators were required to execute a cable harness 
task. From the experimental results, it can be concluded that by using this system, the operators’ as-
sembly performance is improved and their mental work load is reduced. Consequently the efficiency of 
the cellular manufacturing is improved.
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INTRODUCTION

Traditionally, when the mass production was major 
in industry production, various assembly systems 
had been designed as automated manufacturing 
lines, which are aimed to produce a single specific 
product without much flexibility. Nowadays, the 
tastes of consumers change from time to time; 
therefore, traditional automated manufacturing 
lines cannot meet the flexibility and efficiency 
at the same time. To solve this problem, cellular 
manufacturing system, also called cell production 
system, has been introduced. In this system, an 
operator manually assembles each product from 
start to finish (Isa & Tsuru, 2002; Wemmerlov & 
Johnson, 1997). The operator enables a cellular 
manufacturing system to meet the diversified 
production and quantity requirements flexibly. 
However, due to the negative growth of the 
population in Japan, it will become difficult to 
maintain the cellular manufacturing system with 
enough skilled operators in the near future. How 
to improve the assembly performance of the opera-
tors and how to reduce their assembly burden are 
two important factors, which limit the efficiency 
of the cellular manufacturing system.

Without an effective supporting system, it 
is difficult to maintain the cellular manufac-
turing system in Japan. Taking the advantages 
of the operators and robots, but avoiding their 
disadvantages at the same time, a new cellular 
manufacturing system was proposed, namely, 
the human-robot collaboration assembly system 
(Duan, 2008). In this human-robot collaboration 
assembly system, the operators are only required 
to execute the complicated and flexible assembly 
tasks that need human assembly skills; while the 
robots are employed to execute the monotonous 
and repeated tasks, such as the repetitions of parts 
feeding during assembly process (Arai, 2009). To 
make this system has the applicability to assemble 
a variety of products in different manufacturing 
circumstances, the following assembly sequence 
is assumed: each assembly part is collected from 

the tray shelf by manipulators; all the parts are 
automatically fed to the operator on a tray as a 
kit of parts; an operator grasps the individual 
part respectively and assembles it to form a final 
product; the assembled product is transferred out 
to the next station, and so on.

In the following part, a multi-modal assembly-
support system (MASS) is introduced, which 
aims to support an assembly operator in a cellular 
manufacturing system from both information 
side and physical side while satisfying the actual 
manufacturing requirements. MASS system uti-
lizes robots to support the operator and several 
information devices to monitor and guide the 
operator during the assembly process. Since it is 
a human-robot collaboration assembly system, 
safety strategy must be designed to protect the 
operator with a reasonable cost benefit balance 
in the real production line.

The remainder of the chapter is organized 
as follows: Firstly, the background information 
and the related studies are introduced. Then, 
the entire MASS system and its subsystems are 
briefly described. After that, a description of two 
manipulators and a mobile base are introduced in 
physical support part, which are used to feed as-
sembly parts to the assembly operator. Assembly 
information support part contains a discussion of a 
multimedia-based assembly table and correspond-
ing devices. Safety standard and safety design are 
presented in safety strategy part. Taking a cable 
harness task as an example, the effect of MASS 
system was evaluated. Finally, the conclusion and 
the future work are given.

PREVIOUS RELATED STUDIES

To improve the efficiency of the cellular manu-
facturing system, various cellular manufacturing 
systems have been designed to improve the as-
sembly performance of the operators and reduce 
their assembly burden.



414

Multi-Modal Assembly-Support System for Cellular Manufacturing

Seki (2003) invented a production cell called 
“Digital Yatai” which monitors the assembly 
progress and presents information about the 
next assembly process. Using a semi-transparent 
head mount display, Reinhart (2003) developed 
an augmented reality (AR) system to supply in-
formation to the operator. These studies support 
the operator from information aspect. To reduce 
the operator’s physical burden and improve the 
assembly precision, Hayakawa (1998) employed 
a manipulator to grasp the assembly parts during 
the assembly process. This improved the assembly 
cell in physical support aspect. Sugi (2005) aimed 
to support the operators from both information 
side and physical side, and developed an atten-
tive workbench (AWB) system. In this system, 
a projector was employed to provide assembly 
information to the operator; a camera was used 
to detect the direction of an operator’s pointing 
finger; and several self-moving trays were used 
to deliver parts to the operator. Although AWB 
achieved its goal of supporting operators from 
both information aspect and physical aspect, 
the direct supporting devices are just a projector 
and several self-moving trays, which are general 
purpose instruments that cannot meet the actual 
manufacturing requirements.

In the coming aging society, it will be impos-
sible to maintain the working efficiency if ev-
erything is done manually by the operator in the 
current cellular manufacturing system. In order 
to increase working efficiency, many researchers 
have used robot technologies to provide supports to 
the operator (Kosuge, 1994; Bauer, 2008; Oborski, 
2004). According to these studies, human-robot 
collaboration has potential advantages to improve 
the operator’s working efficiency. However, before 
implementing this proposal, the most fundamental 
issue will be the safety strategy, which allows the 
operators and the robots to execute the collabora-
tion work in their close proximity.

Human-robot collaboration has been studied in 
many aspects but has not been utilized in the real 
manufacturing systems. This is mainly because 

safety codes on industrial robots (ISO 12100, ISO 
10218-1, 2006) prohibit the coexistence of an 
operator in the same space of a robot. According 
to the current industrial standards and regula-
tions, in a human-robot collaboration system, 
a physical barrier must be installed to separate 
the operator and the assisting robot. Under this 
condition, the greatest limitation is that the close 
range assisting collaboration is impossible. Based 
on the definition of Helms (2002), there are four 
types of human-robot collaboration: Independent 
Operation, Synchronized Cooperation, Simulta-
neous Cooperation, and Assisted Cooperation. 
The assisted cooperation is the closest type of 
collaboration, which involves the same work 
piece being processed by the operator and the 
robot together. In this kind of human-robot col-
laboration, the operator is working close to the 
working envelope of the assisting robot without 
physical separation, so that both of them can work 
on the same work piece in the same process. The 
most distinguished concept of this study is that 
the assisting robot in this work is active and is 
able to work independently as robot manipulator. 
The advantage of this collaboration is to provide 
a human-like assistance to the operator, which 
is similar with the cooperation between two op-
erators. This kind of assistance can improve the 
working efficiency by automating portion of the 
work and enable the operator to focus only on the 
other portion of work which requires human skill 
and flexibility. However, since the active robot is 
involved, this kind of collaboration is extremely 
dangerous and any mistake can be fatal (Beau-
champ & Stobbe, 1995).

The challenge of this research work is to design 
an effective assembly supporting system, which 
can support the operator in both physical and in-
formation aspects. During the assembly process, 
employing of the assisting robot is an effective 
method to reduce the operator’s assembly burden 
while improving the working efficiency. This in-
volves the safety issue in this kind of close range 
active human-robot collaboration. However, there 
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are no industrial safety standards and regulations. 
Besides the design of the assembly supporting 
system, the scope of this work also covers both 
safety design study and development of prototype 
production cell in cellular manufacturing.

MULTI-MODAL ASSEMBLY-
SUPPORT SYSTEM

Structure of the Entire System

Following the fundamental idea that robots and 
operators share the assembly tasks can maximize 
their corresponding advantages, the MASS sys-
tem was designed and its subsystems are shown 
in Figure 1 as structure view and in Figure 2 as 
system configuration.

The entire MASS system is divided into 
physical support part and assembly information 
support part, as shown in Figure 1.

1.  Physical Supporting Part: The physical 
supporting part is aimed to support operators 
from physical aspect, and it is composed 
of two manipulators with six degrees of 
freedom and a mobile base, which have two 
functions: one is to deliver assembly parts 
from a tray shelf to an assembly table; and 
the other is to grasp the assembly parts and 
prevent any wobbling during the assembly 
process.

2.  Information Supporting Part: The assem-
bly information supporting part is designed 
to aid operators in assembly information 
aspect. An LCD TV, a speaker, and a laser 
pointer are employed to provide assembly 
information to guide the operator.

3.  Safety Control Part: To guarantee the opera-
tor’s safety during the assembly process, vital 
sensors are used to monitor the operator’s 
physical conditions during the assembly 
process, and a serial of safety strategies is 
used to protect the operator from injury by 
the manipulators. It controls the collabora-
tion between a robot and an operator (also 
referred to Figure 2).

Figure 1. Structure of the entire MASS system

Figure 2. Configuration of MASS system
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In the developed MASS system, there are two 
stations connected through an intelligent part tray 
as shown in Figure 2, on which all the necessary 
parts are fed into the assembly station and the 
assembled products are transferred out through 
a shipment from the assembly station.

1.  Part Feeding Station: Only robots work 
here. It is mainly in charge of part handling, 
such as bin picking, part feeding, kitting and 
part transferring.

2.  Assembly Station: An operator executes 
the assembly tasks with some aid of the 
robots. Supporting information from the 
MASS system is implemented to accelerate 
the operator assembly efficiency.

Figure 1 illustrates the setup of the MASS 
system, in which an operator assembles a product 
on the workbench in the area of assembly station. 
The operator is supported with the assembly 
information and with physical holding of parts 
for assembly. In this study, the sample product to 
assemble is a cable harness with several connec-
tors and faster plates. Even experienced operators 
maybe spend about 15 minutes finishing this 
assembly task.

Simulator of the Entire System

To reduce the design period, in this study, a simu-
lator of the entire system was developed based 
on ROBOGUIDE (FANUC ROBOGUIDE) and 
OpenGL (Neider, 1993), as shown in Figure 3. 
This simulator can not only reproduce the actual 
motion of the manipulators but also predict col-
lisions in the work space.

Since MASS system is a human-robot coop-
eration assembly system, considering the opera-
tor’s safety, the distance between the manipulators 
and the operator should be optimized to prevent 
the collisions between them. Furthermore, the 

moving trajectories of the manipulators should 
also be optimized to prevent the collisions between 
themselves. In order to accelerate the development 
period, all of the optimization assignments are 
done in this simulator first, and then evaluated in 
the actual MASS system. With the aid of this 
simulator, the distance between manipulators and 
the operator can be adjusted easily, and the mov-
ing trajectories of the manipulators’ end points 
can also be reproduced conveniently during the 
manipulators’ moving process. Therefore, based 
on the simulation results, the actual system could 
be conveniently constructed.

Physical Support

To increase the physical support provided by the 
MASS system, two manipulators with six degrees 
of freedom are installed on a mobile base and used 
to deliver assembly parts to the operator, as shown 
in Figures 1-4. A CCD camera with an LED light 
is equipped to each manipulator respectively for 
recognition of picking target from a part bin in 
scramble.

The manipulators are utilized in part feeding 
station to

Figure 3. Simulator of the entire MASS system
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1.  Draw a part bin from part shelves;
2.  Pick a part from the bin one by one;
3.  Kit parts onto a tray;
4.  Check visually the parts in a tray.

The parts are efficiently fed by the manipula-
tors, because one manipulator hangs a bin up and 
the other one grasps a part out like an operator 
does. Since the bin picking system by manipulators 
can work 24 hours a day, it enables high produc-
tivity. The base carries a few trays and moves to 
the assembly station, where the base docks in the 
electric charge connector. In the assembly station, 
an operator continuously assembles parts one by 
one, which are transferred by one of the mobile 
twin manipulators. To increase the precision of 
assembly and reduce the operator’s burden, one 
manipulator can grasp an assembly part to pre-
vent wobbling during assembly, and the operator 
executes the assembly task on the basis of the 
manipulator’s assistance, as shown in Figure 4.

Obviously, the assistant manipulators move 
near to the operator during the assembly process. 
To achieve this collaboration, the manipulators 
have to penetrate the operator’s area. Since the 
penetration is prohibited by the regulations of 
the industrial robots (ISO 12100), a new coun-
termeasure must be developed. After finishing an 
assembly step, the operator pushes a footswitch 
to send a control command to the manipulators, 
and the manipulators provide the next assembly 
part to the operator and the assembly information 

of the next assembly step is given. Without this 
control command, the manipulators cannot move 
to the next step. Furthermore, the operator can 
stop the manipulators with an emergency button 
when an accident occurs. These strategies enable 
the manipulators to support human operators in 
physical aspect effectively and safely.

Assembly Information Support

Previous studies, Szeauch as Digital Yatai (Seki, 
2003), have already testified that providing as-
sembly information to the operator during his as-
sembly process can not only improve his assembly 
efficiency, but also reduce his assembly errors. 
Taking the advantages of the previous studies, 
and also considering the characteristics of human 
cognition, an assembly information supporting 
system is designed to guide operators by means 
of indicating the next assembly sequence and/or 
an appropriate way of operation.

The developed system has three major ad-
vantages:

1.  Each assembly sequence is instructed step 
by step;

2.  Considering the characteristics of human 
cognition, the assembly information can be 
provided as easily understandable formats 
for humans, including text, voice, movie, 
animation and flashing emphasis marks;

3.  The assembly information can be selected 
and provided to the operator according to 
his assembly skill level.

The total software system of MASS system in 
Figure 5 has been developed. It consists of three 
subsystems as

1.  Multi-modal Assembly Skill Transfer 
(MASTER);

2.  Multi-modal Assembly Information 
SupportER (MAISER);

Figure 4. Assembly operations with the aid of 
manipulators
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3.  Multi-modal Assembly FOSTER 
(MAFORSTER).

MASS is designed to extract the skill infor-
mation from skilled operators by MASTER and 
to transfer it to novice operators by MAISER as 
illustrated in Figure 5. Here, a human assembly 
skill model was proposed (Duan, 2009), which 
extracts and transfers human assembly skills as 
the cognition skill part and the motor skill part. 
In the cognition skill part, depending on question-
naire, MASTER obtains the different cognition 
skills between the skilled operators and the nov-
ice operators. In the motor skill part, MASTER 
mainly utilizes motion capture system to obtain 
the different motor skills between the skilled op-
erators and the novice operators, especially in the 
assembly pose aspect and the assembly motion 
aspect (Duan, Tan, Kato, & Arai, 2009). MAISER 
provides understandable instructions to novice 
operators by displaying multi-modal information 
about assembly operations. MAFOSTER controls 
interface devices to organize comfortable environ-
ment for operators to execute the assembly task 
like a foster does. MAISER works mainly off-line 
at a data-preparation phase, and watches on-line 

the state of an operator to avoid bad motion and 
dangerous states (Duan, Tan, Kato, & Arai, 2009). 
MAISER takes the role of an instruction phase.

Interface devices are installed as shown in 
Figure1 and Figure 4 again:

1.  LCD TV: The horizontal assembly table 
with built-in 37 inch LCD TV as shown in 
Figure 4 may be the first application for as-
sembly. Since it enables operators to read the 
instructions without moving his/her gaze in 
different direction, assembly errors can be 
decreased. The entire assembly scheme is 
divided into several simple assembly steps, 
and the corresponding assembly informa-
tion is written in PowerPoint slides (Zhang, 
2008). During the assembly process, these 
PowerPoint slides are inputted into the LCD 
TV and switched by footswitch.

2.  Laser Pointer: Showing the assembly 
position to the operator is an effective way 
to reduce assembly mistakes. To this end, a 
Laser pointer, which is fixed on the environ-
ment, is projected onto a task to indicate the 
accurate position of assembly as shown in 
the left photo of Figure 4. The position can 

Figure 5. Software system of MASS system
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change by the motion of the manipulator. The 
operator can insert a wire into the instructed 
assembly position with the aid of the Laser 
spot.

3.  Audio Speakers: To easily permit the opera-
tor to understand the assembly information, 
a speaker and a wireless Bluetooth earphone 
are used to assist the operator with voice 
information.

4.  Footswitch: During the assembly process, 
it is difficult for the operator to switch the 
PowerPoint slides with his hands. Therefore, 
a footswitch is used, as shown in Figure 1. 
There are two kinds of footswitches: foot-
switch A has three buttons, and footswitch 
B has one button. Just stepping the differ-
ent buttons on footswitch A, the operator 
can move the PowerPoint slides forward or 
backward. Stepping the button on footswitch 
B, the operator controls the manipulators to 
supply the necessary assembly parts to the 
operator, or makes manipulators change the 
position and orientation of the assembly part 
during the assembly process.

5.  Assembly Information: The assembly sup-
port information is provided to the operators 
to improve the productivity by means of 
good understanding in assembly tasks and 
of skill transfer with audio-visual aids. As 
the software structure for the assembly task 
description is not discussed in this study, 
please refer to our papers (Duan, 2008; Tan, 
2008). Applying Hierarchical Task Analysis 
(HTA) one assembly task is divided into 
several simpler assembly steps, whose cor-
responding information is stored in multime-
dia. Then appropriate level of information is 
displayed on LCD panel as shown in Figure 
6. In each PowerPoint slide, the assembly 
parts and assembly tools are illustrated with 
pictures. The assembly positions are noted 
with color marks. Following the assembly 
flow chart, videos showing the assembly 

motions of the experienced operators will 
appear to guide the novices to execute the 
assembly tasks. To facilitate the operator’s 
understanding of the assembly process, the 
colors of the words in the slides are the same 
as the actual colors used for the assembly 
parts. For example, there are “blue cable” 
and “grey cable” in Figure 6. In each slide, 
several design principals of data presentation 
are introduced such as multimedia principle, 
coherence principle and spatial contiguity 
principle (Mayer, 2001). In Figure 6, three 
types of information are displayed as (a) 
text instruction, (b) pictorial information, 
(c) movie, and the sequence of assembly is 
also illustrated. During the assembly process, 
the PowerPoint slides are output to an LCD 
TV and switched by the operator’s foot with 
footswitch during the assembly process.

6.  Assembly Information Database: In this 
multimedia based assembly supporting 
system, the assembly information is classi-
fied into paper, audio, and video files. The 
assembly guidance is concisely written in 
paper files. Guidance of each assembly step 
is recorded in audio files. After the standard 
motions of the experienced operators are 
recorded and analyzed into primitive assem-
bly motions, they are saved into video files. 
Tan (2008) set up an assembly information 
database to preserve all of these assembly 
information files and provide them to the 
operator depending on the situation. This 
database contains training data and assembly 
data: training data are designed for novices, 
and the assembly information files contain 
assembly details. Assembly data are used to 
assist experienced operators by indicating the 
assembly sequence but not assembly details. 
As a consequence, this system may promote 
both novice and experienced operators to 
enter the workforce.
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All the operators who used the assembly table 
with LCD evaluated positively that the instruction 
on LCD can be read easily and understood 
smoothly.

Safety Strategy

MASS system is a kind of human-robot coopera-
tion system. Although employing the assistant 
robots to support the operator can increase the 
assembly efficiency and reduce the assembly 
burden, this collaboration can be extremely dan-
gerous because the active robot is involved and 
any mistake can be fatal. To protect the operator 
during the assembly process, several safety designs 
are proposed and developed in this manufacturing 
system, which cover both hardware and software 
to achieve good robot-human collaboration. Fun-
damental concepts are:

1.  Risk assessment by ISO regulation;
2.  Area division by safety light curtains as il-

lustrated in Figure 7;
3.  Speed/Force limiter by serve controller;
4.  Collision protector by physical devices;
5.  Collision detector by IP cameras;
6.  Inherent safety theory.

Risk Assessment by ISO Regulation

Since no direct industrial safety standards and 
regulations that govern this type of close range ac-
tive human-robot collaboration, the safety design 
in this work is formulated by collective reference 
to related safety standards and regulations to verify 
component systems’ safety first (non-collaboration 
safety) and then assess system safety as a whole 
(collaboration safety). Table 1 summarizes the 
referred industrial safety standards and regulations 
in mobile robot manipulators system development 
and total system development.

This chapter mainly focuses on the discussion 
on human-robot collaboration safety; therefore 
the non-collaboration safety of component systems 
is omitted. However, it is important to bear in 
mind that the following safety designs for col-
laboration are built in accordance with the referred 
standards and regulations in the component level. 
EU standard permits the collaboration of robots 
with the operator when the total output of robots 
is less than 150 (N) at the tip of the end-effecter. 
Japanese standard defines that each actuator has 
the power less than 80 (W). The collaboration 
safety design is presented in hardware design and 
control design in the following.

Figure 6. Multimedia based assembly supporting information



421

Multi-Modal Assembly-Support System for Cellular Manufacturing

Area Division by Safety Light Curtains

The software systems in robot controller and other 
computers are prepared as Dual Check Safety 
(DCS), which checks speed and position data of 
motors with two independent CPUs in the robot 
controller. In risk assessment, we listed up to 168 

risks and take its countermeasure respectively 
so as to satisfy the required performance level. 
Whatsoever definition industrial robots are, it is 
strongly prohibited that robots exist with the op-
erator in the same space. Thus a cage is required 
to separate the operator from the robots. For the 
area division, the whole cell in Figure 7 is divided 

Table 1. Related safety standards and regulations 

Standards and 
Regulations Descriptions

Related to mobile robot manipulators system development

IEC 60364-4-41 
(JIS C0364-4-41)

Low-voltage electrical installations – Part 4-41: Protection for safety – Protection against electric shock

IEC 60364-7-717 Electrical installations of buildings – Part 7-717: Requirements for special installations or locations – Mobile 
or transportable units

IEC 61140 
(JIS C0365)

Protection against electric shock – Common aspects for installation and equipment

BS EN 1175-1 Safety of industrial trucks – Electrical requirements – Part 1: General requirements for battery powered 
trucks

ISO 10218-1 
(JIS B8433-1)

Robots for industrial environments – Safety requirements – Part 1: Robot

Related to total system development

ISO 12100-1 
(JIS B9700-1)

Safety of machinery – Basic concepts, general principles for design – Part 1: Basic terminology, methodol-
ogy

ISO 12100-2 
(JIS B9700-2)

Safety of machinery – Basic concepts, general principles for design – Part 2: Technical principles

ISO 14121-1 
(JIS B9702)

Safety of machinery – Risk assessment – Part 1: Principles

ISO 14121-2 Safety of machinery – Risk assessment – Part 2: Practical guidance and examples of methods

ISO 13849-1 
(JIS B9705-1)

Safety of machinery – Safety-related parts of control systems – Part 1: General principles for design

BS EN 954-1 Safety of machinery. Safety related parts of control systems. General principles for design

ANSI/RIA R15.06 Industrial Robots and Robot Systems - Safety Requirements

ISO 13852 
(JIS B9707)

Safety of machinery – Safety distances to prevent danger zones being reached by the upper limbs

ISO 14119 
(JIS B9710)

Safety of machinery – Interlocking devices associated with guards – Principles for design and selection

ISO 13854 
(JIS B9711)

Safety of machinery – Minimum gaps to avoid crushing of parts of the human body

ISO 14118 
(JIS B9714)

Safety of machinery – Prevention of unexpected start-up

ISO 13855 
(JIS B9715)

Safety of machinery – Positioning of protective equipment with respect to the approach speeds of parts of 
the human body

ISO 14120 
(JIS B9716)

Safety of machinery – Guards – General requirements for the design and construction of fixed and movable 
guards
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into human area (H), robot area (R), and buffer 
area (B) by safety fences, photoelectric sensors 
and light curtains in order to obtain safe working 
areas and to monitor border crossing for safety. 
Robots are allowed to operate in high speed mo-
tion in area R but low speed movement in area 
B. In area H, the strong restrictions are applied to 
robot motions. When the manipulators move too 
close to the operators and cross the light curtain 2, 
the power of the manipulator is cut down by the 
light curtain. Consequently, the manipulators stop.

Speed/Force Limiter by Serve 
Controller

As shown in Figure 8, by the servo controller, the 
speed of the mobile manipulators is limited, and 
the force/torque at the end-effecter is also limited 
by software. The controller also has a function of 
abnormal force limiter in case of unexpected col-
lision of the manipulator against the environment. 
Based on the recommendation from safety stan-
dards and risk assessment, during collaboration 
process, the speed of the mobile manipulators is 
limited to below 150 (mm/s) and the working area 
of the robot is restricted within the pink region 
in Figure 8. The minimum distance between the 
robot gripper and surface of the workbench is 120 
(mm) according to ISO 13854.

Collision Protectors by Physical 
Devices

During the assembly process, several collision 
protectors by physical devices have been designed 
for accident avoidance and the protection of the 
operator.

1.  Mobile Base: To prevent the operator from 
being hurt by the manipulators, the localiza-
tion accuracy of the mobile base should be 
maintained. With vision system to detect 
marks on the floor, the system has a local-
ization accuracy of 5 (mm) and 0.1°. The 
base is equipped with bumper switch for 
object collision detection and wheel guard 
to prevent foreign object being tangled with 
the wheels, as illustrated in Figure 8.

2.  Footswitch: In the MASS system, the twin 
mobile manipulators are used to assist the 
operator to execute the assembly tasks dur-
ing the assembly process. Without a safety 
strategy, the operator could be injured by 
the manipulators. An effective working se-
quence is one of the effective ways to reduce 
the probability of collision between an op-
erator and a manipulator. The manipulators 
are prevented from moving in the direction 
of the operator as he performs an assembly 
task. The probability for collisions is re-
duced with the introduction of the working 
sequence. To realize the proposed working 
sequence, a footswitch is used to control 
the manipulators, as illustrated in Figure 
9. When the operator finishes an assembly 
step, he steps on footswitch, which signals 
the manipulators to provide the assembly 
parts to the operator for the next step.

3.  Emergency Button: When an accident 
occurs, the operator can just push the emer-
gency button on the right-hand side of the as-
sembly workbench to stop the entire system, 
as shown in Figure 9. After any problem has 

Figure 7. Three robot working zones for safety
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been solved, the operator pushes the reset 
button to restart the assembly process.

4.  Safe Bar: In addition, steel safe bar is in-
stalled in front of the assembly workbench 
(referred to Figure 9). If other strategies 
failed to stop the manipulator to collide 
the operator, this safe bar can protect the 
operator.

Collision Detector by IP Cameras

The developed system installs a robot with higher 
ability than both EU and Japan Standard. Even 
though various countermeasures are introduced, 
the risk assessment shows residual risks. For the 

intelligent compensation of safety, two IP cam-
eras are utilized to monitor the operator’s safety 
(referred to Figure 10); that is, the cameras track 
the color marks on the head and shoulders of the 
operator to measure the body posture and posi-
tion to estimate the human operation conditions 
(Duan, 2009). The vision monitoring system has 
positioning accuracy of 30 (mm) and process 
delay of 0.6 (s).

Inherent Safety Theory

Although several safety strategies are adopted, 
there is no guarantee that a collision between a 
manipulator and an operator will never occur. 
Therefore, the manipulators should be amelio-
rated according to inherent safety theory (Ikeda & 
Saito, 2005) to reduce the injury of the operator. 
The sharp edges of the manipulators are softened 
into obtuse-angled brims. The force and speed of 
the manipulators are reduced as much as possible 
while still meeting the assembly requirement. In 
addition, the overall mobile robot manipulators 
system is built with low center of gravity design 
to prevent tipping.

Figure 8. Robot speed, force, and area restrictions

Figure 9. Collision protectors by physical devices Figure 10. Operator safety monitoring system
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Evaluation of MASS System

To evaluate the effect of the MASS system, a 
group of operators were required to execute an 
assembly task of cable harness, as illustrated in 
Figure 11. In this task, operators must insert cor-
rect cables into corresponding correct holes in the 
connector. After that, following the cable routes, 
operators must fix the cables to the jigs on the 
assembly table. The operators executed the cable 
harness task in two cases: (1) all of the assembly 
information, including the cable type, the posi-
tion of the hole in the connector and the assembly 
step, was only provided by the assembly manual 
(Exp I); (2) operators executed the cable harness 
task under the support of MASS (Exp II). Two 
parameters were measured in the experiments: 
assembly time and assembly error. The assembly 
time is compared between conventional manual 
assembly setup (Exp I) and the new setup (Exp 
II). Five novice operators and five expert ones 
performed three assembly trails respectively for 
both the setups. From Figure 12, it is proved that 
the overall performance is better (shorter in as-
sembly time) in the new setup (Exp II). Novices 
and experts show almost the same assembly time 
from the first trial in the case of the new setup as 
the dotted lines.

It means that the assembly can be executed at 
the minimum time even by the unskilled operators. 
Comparing to the assembly time of the conven-
tional setup (Exp I), the novice operators need 
only 50% of the time in the MASS system (Exp 
II), which indicates double productivity. Note that 
the assembly time at the third trial converges to 
the minimum by all the cases. This implies that 
the assembly operation is easy to achieve and the 
human ability of learning is high. In other words, 
this system may be beneficial for very frequent 
change of products. In terms of assembly quality, 
10% to 20% of assembly error (insertion error) 
is observed in conventional setup (Exp I), while 
in new cell production setup (Exp II) the error is 
totally being prevented by the robot assistance, 
especially by guidance of laser pointer and by the 
instruction of the assembly sequences.

According to the experimental results, it can 
be concluded that the developed MASS system 
can accelerate the operator’s assembly process as 
well as prevent assembly errors.

According to Zhang (2008), this cable harness 
task is a kind of cognitive assembly task (Nor-
man, 1993); therefore, the mental work load of 
the operators cannot be ignored. To evaluate the 
mental work load of the operators in (Exp I) and 
(Exp II), NASA-TLX (Task Load Index) method 
(NASA-TLX for Windows U.S.) was used. After 

Figure 11. Cable harness task Figure 12. Difference of assembly time by experts 
and novices
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the operators finished the cable harness task, they 
were required to answer the questionnaires. Based 
on the NASA-TLX method, the mental work load 
of the operators can be computed. The mental 
work load of (Exp I) is 62, which is much higher 
than that of (Exp II), which is 38. This means that 
based on the support of MASS, the mental work 
load of the operators can be reduced significantly.

CONCLUSION

This work aims to realize a new cellular manufac-
turing system for frequent changes of products. 
In this chapter, a multi-modal assembly-support 
system (MASS) was developed for a cellular 
manufacturing system. In the MASS, two ma-
nipulators are used to replace the operators to 
execute the laborious tasks. Based on the assembly 
information database and assembly information 
supporting system, this system is capable of meet-
ing the assembly and training requirements of the 
experienced and the novice operators. Besides 
developing the actual system, a simulator for an 
entire assembly system was created to reduce 
the time and costs required for development. To 
protect the operator from harm, several safety 
strategies and equipments were presented. Ac-
cording to inherent safety theory, two manipulators 
are ameliorated, which could reduce the injury of 
the operators even when they were collided by 
the manipulators.

To evaluate the effect of MASS, a group of 
experienced operators and novice operators were 
required to execute a cable harness task. According 
to the experimental results, basing on the support 
of MASS, not only the assembly time and the er-
ror ratios are reduced, but also the mental work 
load of the operators is reduced. Therefore, the 
MASS allows an operator to receive physical and 
informational support while working in the actual 
manufacturing assembly process.

Future studies should be directed at identify-
ing and monitoring the conditions that contribute 
to the operator’s fatigue and intention during 
the assembly process; these efforts will lead to 
improvements in comfort for the operators and 
assembly efficiency.
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