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Since the financial crisis, risk and finance practitioners have been even more keenly
aware of the need to combine successfully practical and theoretical knowledge.
Finance is an area where there are competing theories of asset pricing and empirical
observations that can undermine confidence in our theoretical beliefs. Knowledge is
evolving, even though some of the most intractable challenges and market failures
appear to repeat themselves with alarming regularity; for example, the problems of
spotting bubbles and avoiding market panics.

This book is designed to meet the needs of students and practitioners in finance
who wish to advance their knowledge of asset and risk management especially in
equities, with a particular focus on bringing together theory and practical applica-
tions. It will bring experienced practitioners up to date with recent developments
and advances in theory and puts into context behavioral finance, traditional asset
pricing, and observations from financial markets such as the flash crash, the Greek
crisis, and others. It will help those who wish to understand many different types of
stock market anomalies, and why they might arise in a nearly efficient market.

The global financial crisis caused many to reexamine practices in the finance
industry and to wonder whether there had been too strict an adherence to theoretical
concepts at the expense of a more pragmatic or practical viewpoint. Thankfully,
practitioners in the industry have not neglected theory, but have endeavored to build
on it and blend it with practice, and by doing so learn from the events of 2007-2009.
This book will help in that important job.

Global Chief Investment Officer Richard Lacaille

State Street Global Advisors (SSgA)
August 2014
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In March 2014, when this book was finished and handed over to the publishers,
more than 5 years had passed since the collapse of the U.S. investment bank Lehman
Brothers. Yet, the consequences of this bankruptcy, which was the culminating point
of the subprime crisis, can still be felt today. And when we look at the current status
of the euro crisis, which itself was triggered by the subprime crisis, we find few
convincing signs that the financial issues in Europe have really been fundamentally
solved.

The cepDefault-Index 2014, published in February 2014 by the cep (Center for
European Policy, a think tank), shows that while the creditworthiness of countries
like Ireland and Spain has improved, Greece is still far from having regained the
trust of the investors.! The situation of France has remained unchanged, whereas
the credit standing of Italy continues to decline. Surprisingly, for the first time, there
are troubling signs of a deteriorating creditworthiness of Belgium and Finland, two
core countries of the eurozone.

The euro crisis and the subprime crisis are only the latest crises in a long line of
historical financial meltdowns and stock market crashes. However, the frequency of
these crashes has become higher and their impact has become more severe in the
recent past. Therefore, when we deal with asset and risk management today, these
extreme market situations should be considered, as we have endeavored to do in this
book.

This book takes a practical look at the rational and irrational aspects of investing.
In financial research, these two sides of the coin are represented by modern portfolio
theory and behavioral finance. The significance of both was recently highlighted by
the decision of the Nobel Prize Committee to award the Nobel Prize in Economics
to Eugene Fama, a proponent of a rational view of finance, as well as to Robert
Shiller, who follows the approach of behavioral finance.

This book is intended to serve as a comprehensive introduction to asset and risk
management for bachelor and master students in this field as well as for young
professionals in the asset management industry. In addition, the account of the actual

'Gerken and Kullas (2014, p. 1).



X Preface

investment behavior of investors given in this book may be appreciated also by more
senior professionals.

There are two central questions that this book refers to, which were provoked by
the worldwide events in the stock markets since the middle of the last decade:

*  Why do crashes happen when in theory they should not?

* How do investors deal with such crises in terms of their risk measurement and
management and, as a consequence, what are the implications for the chosen
investment strategies?

While the first question concerns critical situations that we have all encountered
over the last two decades, the second question is much more important to financial
investors, be it big institutional investors, like pension funds or sovereign wealth
funds, or retail investors, like you and me: how do investors respond to these crises?
How do they manage tail risk and prevent drawdowns?

We start, in Chap. I, with presenting the necessary basic concepts used to
measure the risk and the return of a portfolio or a single investment. The math-
ematical definitions will be introduced using simple math and many illustrations.
This is supported by many detailed examples and a step-by-step business case. All
calculations are done in Microsoft® Excel®. The Excel® file with the calculations
and solutions for all 17 examples as well as all business case calculations can be
downloaded at http://www.pecundus.com/publications/springer-solutions.

In Chap.2 we utilize these concepts to introduce modern portfolio theory. We
will present the capital asset pricing model (CAPM) and investigate its validity.
Our result is that while CAPM is an elegant theoretical concept, it rarely reflects
reality. Its most famous extension, the Fama—French three-factor model, is also not
supported by empirical results, as we will show in the final part of Chap. 2.

In Chaps.3-5 we shift our attention to events and developments which cannot
be sufficiently explained by MPT and contradict the concept of the investor as a
rational Homo economicus. Chapter 3 is devoted to various forms of stock market
anomalies. Some are persistent over a very long time and in various asset classes like
the turn-of-the-month effect while others are not. Chapter 4 focuses on stock market
crashes and looks at crashes with a regional impact and crashes with a global effect.
The chapter ends with the analysis of the possibility of a crash in China.

Chapter 5 introduces behavioral finance, a field of research that evolved in the
1970s and includes the psychology of investing. We present the key behavioral
biases that seem to have the most significant explanatory power for stock market
crashes. At the end of this chapter we look especially into the October 1987 crash
and try to find a potential answer to the question why these crashes happen.

After having introduced a lot of concepts and empirical tests concerning the
theory and practice of stock markets, the final Chap.6 answers the second key
question of this book: How do investors deal with such crises in terms of their risk
measurement and management? Doing so, we distinguish between different EMEA
regions and investor types, i.e., institutional investors, retail investors, sovereign
wealth funds, and central banks. We describe how investors managed risk in the time


http://www.pecundus.com/publications/springer-solutions

Reference Xi

before the Lehman demise, i.e., up to the middle of 2008, which risk measures were
applied during the crisis and which changes occurred since mid-2009 until early
2014. We take a detailed look at a study of the Economist Intelligence Unit from
summer 2012 that shows that drawdown protection was a priority of investors in the
years 2011 and 2012 and we discuss the consequences for product development in
light of the market situation.

This book would not have been possible without the assistance and support from
various people. First of all I want to thank my co-authors Yves-Michel Leporcher
and Ching-Hwa Eu, Ph.D., who were ready to join me in this publication project
and to contribute their expertise and their share of work. Ching-Hwa Eu produced
Chap.?2 and Yves-Michel Leporcher authored Chaps. 3, 4, and 5, while I wrote
Chaps. 1 and 6 and was in charge of the general oversight of our work. We developed
the book concept together, but each of us is responsible for the content that he has
provided.

I am particularly grateful to Christian Theis who doublechecked the whole text
and gave valuable input. Many thanks go to Alexander Schmid whose support when
finalizing the book was a great aid.

Last but not least, we all wish to thank our wives, partners, and significant others.
If it had not been for their ongoing encouragement, we might not have been able to
achieve the publication of this book.

Munich, Germany Marcus Schulmerich
March 2014
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1.1 Introduction

Everyone has heard of stock market crashes in the time between 2008 and now,
whether he or she followed the events on the financial markets or not. The subprime
crisis, which unfolded in 2008, has affected every person in almost every country in
the world. When we try to explore what happened, as we intend to do in this book,
we are immediately drawn to key questions of today’s discussions in finance and
economics: Why does traditional finance theory fail to explain these crises and why
seems behavioral finance, the psychology of investing, better suited to provide an
explanatory model?

The first of the two focal questions of this book is, therefore: Why do crashes
happen when in theory they should not? The second question is: How have investors
reacted to the recent crisis in terms of their risk measurement and management and
what are the implications for the chosen investment strategies?

Centered around these two key questions, this book provides a thorough intro-
duction to applied asset and risk measurement in today’s markets which are more
and more driven by behavioral finance as could be observed in 2008 (a stock market
crash) and 2009 (a stock market rally). The six chapters are designed to answer
the two questions above by offering a structured introduction to modern portfolio
management, behavioral finance and abnormal market behavior. Thereby, this book
is ideally suited for bachelor and master students in the field of modern portfolio
management as well as for young professionals in the asset and risk management
industry.

Chapter 1 presents the mathematical prerequisites to understand the mathemat-
ical part of what follows thereafter. While the mathematical description is not the
focus of this book, formulas cannot be completely avoided as finance, and here
in particular asset management, is about performance and risk. Therefore, Chap. 1
presents the measurement of both with many applications. Chapter 2 then explains

© Springer-Verlag Berlin Heidelberg 2015 1
M. Schulmerich et al., Applied Asset and Risk Management,
Management for Professionals, DOI 10.1007/978-3-642-55444-5__1



2 1 Risk Measures in Asset Management

the theory of asset management, also known as modern portfolio theory (MPT) as
introduced in the 1950s by Harry Markowitz. The focus is placed on the capital asset
pricing model (CAPM) and its extension, the Fama-French three-factor model. In
particular, the key historical tests undertaken in the past 50 years will be presented
to see how the theory holds against reality.

The remaining four chapters of this book deal with the reality of investor
behavior and stock markets. Chapter 3 provides an overview of stock market
anomalies which should not exist according to MPT. However, they do exist and
have been extensively researched since the early 1980s. Thereafter, Chap. 4 presents
a historical survey of the most significant market crashes.

Chapter 5 then returns to the question how crashes can happen. To answer it,
the psychology of investors has to be taken into consideration. The research field of
behavioral finance and the behavioral biases associated with it will be introduced
and used to explain crashes, in particular the crash of 1987.

Finally, Chap.6 answers the second essential question of this book: How do
investors respond to these crises in terms of their risk measurement and management
and what are the implications for the chosen investment strategies? Broken down by
country and investor type, a market intelligence report covering the period 2004—
2014 will be presented.

A changed investor view of risk would have important implications in the way
risk is handled by the asset managers and on how new strategies have to be
developed. As clients are more and more concerned with the downside of their
investment, which is a direct result of the catastrophic stock market performance
in 2008, the bad equity returns in 2011 and the ongoing euro crisis, we need to take
a closer look on downside risk measures.

Since symmetrical traditional risk measures like volatility or tracking error
are not effective in this respect, investors are now increasingly leaning towards
asymmetrical risk measures, for example, semi-volatility, drawdown or shortfall
risk. Therefore, in the following sections, we present the most important risk and
risk-adjusted return measures used in asset management practice.

We start in Sect. 1.2 with looking into measuring investment returns in general,
introducing also the notation used throughout this chapter. This section concludes
with the key formulas for calculating returns. In Sect. 1.3, we will present traditional
measures. At first we look at absolute return portfolio management, i.e., when the
portfolio is not managed against any benchmark. Then, we look at relative portfolio
management against a certain index as the portfolio’s benchmark. The overview
of the presented traditional risk and risk-adjusted return measures is listed in
Table 1.1.

In Sect. 1.4 we will describe non-traditional measures, especially asymmetrical
and downside risk measures. This will be done again for absolute and relative
portfolio management. An overview of these non-traditional return, risk and risk-
adjusted return measures is given in Table 1.2.



1.2 Measuring Investment Returns 3

Tab'le' 11 Examples of Absolute portfolio Relative portfolio
tFadltlo.nal risk and management management
risk-adjusted return measures * Volatility (Sect. 1.3.1)  Tracking error (Sect. 1.3.2)
* Sharpe ratio (Sect. 1.3.7) * Covariance and correlation
(Sect. 1.3.4)

¢ Beta (Sect. 1.3.5)

¢ Bull and bear beta
(Sect. 1.3.6)

¢ Information ratio (Sect. 1.3.8)
* Treynor ratio (Sect. 1.3.9)

Source: Own

Table 1'.2. Exal.nples of Absolute portfolio Relative portfolio
non-traditional risk and management management
risk-adjusted return measures . B B

J ¢ Maximum absolute ¢ Maximum relative drawdown

drawdown (Sect. 1.4.1) (Sect. 1.4.2)

¢ Semi-deviation and
Semi-variance (Sect. 1.4.3)

 Shortfall risk/probability
(Sect. 1.4.4)

 Sortino ratio (Sect. 1.4.5)

Source: Own

Downside risk measures are not new, but until now they were primarily used
for portfolios with nonsymmetrical return distributions. Such a pattern is typical for
hedge funds, see, for example, Lhabitant (2004). However, after the erratic stock
market behavior since early 2008 this kind of return pattern could also be observed
in the more traditional part of institutional asset management which of course scared
investors.

Therefore, Sect. 1.2 is a necessary first step for the beginner and a brief reminder
to the experienced reader. After being familiar with all of these risk and return
measures we then turn our attention to modern portfolio theory in Chap. 2 and see,
how assets should be managed in theory before we switch to reality in Chaps. 3—6.

1.2  Measuring Investment Returns

1.2.1 Notation

Before we can look at the relevant return and risk measures in detail, we need
to introduce a suitable notation. We start with the historical time period, using a

notation which has to be consistent for any investment analysis, be it short-term
or long-term. Its mathematical expression is the interval [0, T'], where T is the end
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point of the time period, expressed in years. The initial time point (for example,
today) is set as fp = 0. Time point ¢ is always expressed in years or a fraction of
years.

If, for example, we want to analyze the upcoming 3 years, we will look at the
time period [0, 3] with T = 3 years. Time points ¢ and 7 can be any real positive
number, for example, ¢ = 15—2 is the time point % years or 5 months starting from 0.

For analysis purposes, we now divide time interval [0, T'] into N (where N can
be any positive integer') equidistant subintervals with length At = % The time

pointsare ty = k - At = k - %,i =0,1,...,N. For example, if we want to look
at the months over the next 3 years we have to split our time period [0, 3] into 36
subintervals with length A = % = 11—2 years (i.e., | month).

Let us summarize the notation:

tp = 0 = starting point (today),

T = time point at the end of the whole period [0, T'],
N = number of time periods in [0, 7],
At = T/N,

tr = k-At = timepointk,1 <k <N,

[tx—1,tx] = subintervalk,1 <k < N.

Figure 1.1 displays this general framework. In the center of the figure is the time
axis, starting on the left with time point 7, = 0 and ending with time pointty = T'.
Time point ¢, is At = % after #(, time point #, is At after ¢; and so on. The next
to last time point #y—; is A¢ before the end time point 7x. In general, time point
tr = k - At. The top of the figure shows the N equidistant subperiods, and the
bottom of the figure illustrates their length, which is At = %

Let us look at our example again with its 3-year time period using monthly data,
ie., T = 3 years and N = 36 months, yielding At = 3/36 = 1/12 years. Each
subperiod is exactly 1 month. If we start our analysis on, say, January 1, 2008, and
finish on December 31, 2010, then the first month is January 2008, the second month
is February 2008 and the 36th month is December 2010.

This example is displayed in Fig. 1.2. The time axis starts from time point o = 0
and ends with time point 7 = 35 = 3 years. Time point ¢, is 11—2 years (or 1 month)
after #¢, time point #, is % years after ¢, etc. Time point #; is k - % Above the time
axis are the subperiods, i.e., the different months. Their length A¢ which is % years
is indicated below.

'An integer is a number that can be written without a fractional or decimal component. For
example, 1,55, —11, 0, and 1,270 are integers, but 0.25 or 9.76 are not. The name derives from the
Latin word integer, meaning literally untouched, hence whole. Source: http://www.wikipedia.org.
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1.2.2 Basic Performance Measures

In this section we will introduce the return as a measure to evaluate historic invest-
ment performances. At first we will look at the absolute return of an investment.”
Thereafter, we define the relative return of an investment versus a benchmark.

Definition: Time Value and Absolute Return
For an asset i we make the following definitions:

Vl-"‘ = value of the asset at time point #,
Vl-t"’1 = value of the asset at time point ¢z,
rl-k = percentage change of the asset value in subperiod k,
Cl.t" = cash amount that the asset pays out at the end

of the time period k (for example, coupon, dividend).

If no cash flow happens in the subperiod, the asset’s absolute return in
subperiod k is

Vtk _ V_tkfl
k i i
;= —V_tk*I 5 (11)

l

If the asset pays out a cash amount at the end of subperiod k, the return of
the investment is

V_tk ka _ Vtk—l
rk =2 +Vl’k—1 i (1.2)

1

In the specific case of V,° being the value of the asset i at time 0 and
Vl.T’ad’ being the value at time 7', adjusted for stock splits and dividends (i.e.,

dividends are assumed to be reinvested in the stock), then the cumulative

absolute return for the entire period [0, T'] is r{*" where:
v T

The cumulative absolute return for the period [0, 7] can also be calculated from
the absolute returns of all the subperiods, i.e., we continue to look at the return of
the portfolio on a stand-alone basis and not relative to a benchmark. We do not

2Lhabitant (2004, p. 27). Often, the term holding period return is used (Lhabitant (2004)).
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distinguish between a single asset and a portfolio but rather we generally talk about
the portfolio return. If the portfolio consists of a single asset, the portfolio return is

the single asset return.

Definition: Cumulative and Annualized Absolute Return

Using the notation introduced above for time measurement we can now
proceed to look at the calculation for a portfolio return (percentage return)
over time using the subperiods’ percentage returns. For each subinterval k we
define:

r’1§f = return of the portfolio during k-th subinterval [tx—, t],
rk = return of the benchmark during k-th subinterval [t;—1, %],
rpr = (cumulative) return of the portfolio in time period [0, 7],
rgm = (cumulative) return of the benchmark in time period [0, T'],
rp; = annualized return of the portfolio in time period [0, 7],
rg¢ = annualized return of the benchmark in time period [0, T].

The cumulative return (percentage return) of the portfolio and the bench-
mark over time period [0, 7'] can then be calculated as

N
rep = (l_[(l + rlfff)) -1

k=1
and (1.4)

N
Fom = (]_[(1 + rgm)> ~ 1.
k=1

If T is at least 1 year we can calculate the annualized percentage return of
the portfolio and the benchmark over the time period [0, 7] as®

rlljf-a. =1+ I'Pf)% =1 and et =(1+ er)% —1. (1.5)

In the specific case that the subintervals are months, fraction % in Eq. (1.5)

gets replaced by }V_z since then 12-7 = N.

As mentioned before, in the special case that the portfolio is a single asset (i.e.,
a single asset portfolio), Egs. (1.4) and (1.5) can also be used to only calculate the

3Esch, Kieffer, and Lopez (2005, p. 36).
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return of the single asset. Let us now look at the average returns for each of the N
subintervals within [0, T'].

Definition: Arithmetic and Geometric Mean
Using the notation introduced above, the arithmetic means 7ps and 7., of the
N subinterval portfolio and benchmark returns are*

N N

_ 1 _ 1

Tpr = N E r{éf and TBm = N E rgm. (1.6)
k=1 k=1

The arithmetic mean will be used when looking at the standard deviation
of returns (i.e., volatility) below. The geometric means for any one of the N
subintervals over the time period [0, 7] are

For=(+rp)¥ =1  and  Pgu=(1+rgn)¥ — 1. (1.7)

The key part of this and the next chapter are exercises to further demonstrate the
presented concepts. Two types of exercises will be used:

* Examples:
Examples with hypothetical data are used throughout Chap.1 for illustrative
purposes. All calculations will be explained in detail and the Microsoft® Excel®
formulas will be provided that were used to generate the result.

* Business Case:
We will use a business case based on real data which will be extended as we
progress through Chaps. 1 and 2. The business case starts with data displayed in
Table 1.3.

An Excel® file with the calculations and solutions for all 17 examples as well
as all business case calculations can be downloaded at http://www.pecundus.com/
publications/springer-solutions (username: solutions; password: springer-book-sle).

Business Case

The business case serves as a large example using historical data on the
Lufthansa stock and other assets. We will frequently return to it and expand it
over the course of Chaps. 1 and 2.

(continued)

“4Esch et al. (2005, p. 36).
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Table 1.3 Calculation of absolute returns for Lufthansa common stock from time series of end-
of-month stock values

Absolute return

Time point Stock value Dividend 1Ky (in %, based

i I Month V%4 (in EUR) (in EUR) on EUR)
0 0 Dec 2008 11.19

1 1/12 Jan 2009 9.50 —15.10
2 2/12 Feb 2009 8.70 —8.42
3 3/12 Mar 2009 8.17 —6.09
4 4/12 Apr 2009 9.66 0.70 26.81
5 5/12 May 2009 9.77 1.14
6 6/12 Jun 2009 8.93 —8.60
7 7/12 Jul 2009 9.48 6.16
8 8/12 Aug 2009 11.20 18.14
9 9/12 Sep 2009 12.11 8.13
10 10/12 Oct 2009 10.50 —13.29
11 11/12 Nov 2009 10.63 1.24
12 1 Dec 2009 11.75 10.54
13 13/12 Jan 2010 11.62 —1.11
14 14/12 Feb 2010 10.96 —5.68
15 15/12 Mar 2010 12.28 12.04

Dividend was paid on April 27, 2009, but for simplicity, we assume that the payment was made at
the end of April 2009. The difference is only minor. Ticker: LHA.DE. Source: Yahoo! Finance

To start, let us look at the price of Lufthansa (LHA) stock over the 15
months in the time period January 2009-March 2010. First, we will calculate
the stock’s return. Table 1.3 shows the end-of-month values of one Lufthansa
(LHA) stock, together with the absolute returns in the respective months,
using Egs. (1.1) and (1.2) in the case of dividends being paid.

Please note that deviations from the stated results can occur due to
rounding errors and depending if the input data are truncated in decimal places
3 and higher or not. For example, the cumulative return using the original data
without truncating decimals is 17.69 % while it is 17.71 % if only two digits
after the decimal point are used.

For the month February 2009, the absolute return of the Lufthansa stock
can be calculated as follows:

2/12 1/12

o _ Vi — Vi _ €870-€950 . )

LHA y /12 €9.50 T '
LHA

(continued)
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Since the Lufthansa stocks paid a dividend in April 2009, we have to take
this into account for the absolute return calculation for that month, using
Eq. (1.2):

4/12 4/12 3/12
A _ Viaa +Craa —Vina
LHA — V3/12
LHA
_ €9.66+€0.70—€8.17
- €8.17
= 26.81%. (1.9)

Using Eq. (1.3), the cumulative absolute return for the period from January
2009 to March 2010 is calculated as

rim = (i) (L rig) o (L) — 1
= (1-1510%)-(1—8.42%)-...-(1 +12.04%) — 1
= 17.69 %. (1.10)

If Lufthansa had not paid any dividends in this period, we could simply
calculate the cumulative return from Eq. (1.1) by using the end values and
initial values of Lufthansa stock:

o Vign—Vina _ €1228—€11.19
L Via €11.19
9.74 %. (1.11)

But in the case of a dividend payment, this gives us a wrong number!
For the cumulative return calculation, we have to account for the payment:
We assume that at the end of April 2009, the €0.70 dividend is reinvested
in €0.70/€9.66 = 0.07246 stocks, so that by this time, the investor holds
1.07246 shares of Lufthansa.

Hence, we have to adjust the end value of Lufthansa stock by the factor
1.07246:

Vi 2@ = 1.07246- V1"
= 1.07246-€12.28 = €13.17. (1.12)

This time, we use Eq. (1.3) to calculate the cumulative return

11

(continued)
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15/12,adj 0
cum  __ VLHA — VLHA

Viua
€13.17-€11.19

= = 17. 1.1
€11.19 (e (1-13)

and get the same result as in Eq. (1.10). The annualized return is calculated
from Eq. (1.5) (with T = 15/12):

e = (LT -1

(1417.69%)° -1 = 13.92%. (1.14)

At the end of this section let us have a look on the return of an investment versus
a benchmark.

Definition: Relative Return

When considering a portfolio which is managed against an index as a
benchmark, the difference of the portfolio return and the benchmark return
is crucial. This excess return of the portfolio versus its benchmark is often
named alpha.’ With of being the alpha in the k-th subperiod, o being
the (cumulative) alpha over time period [0, T], T > 1, and a”“: being the
annualized alpha over this time period, we define:

ok = rﬁf —rk. and alt = r,fj;a' —rhe (1.15)

Example 1

To illustrate the concept, let us use a hypothetical example of the monthly
performance of an actively managed portfolio and its benchmark over a period
of 18 months, as shown in Table 1.4. In our terminology, we have T = 1.5 years,
to =0, N = 18 and At = 1/12 years.

Like in Microsoft® Exce1®, the columns and rows are marked with letters
and numbers, respectively. The first column is labeled A (month) and the second
B (monthly portfolio performance). Applying Excel® functions, the portfolio
return, the benchmark return and alpha are calculated as follows below. Please

5Chincarini and Kim (2006).
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Table 1.4 Example 1: Return calculation

O |0 | N |W N -

DO | et | ot |t |t |t | e | | e | ek |k
[=REN-RERIEN RN WEV, RSN RUS RN SRR e

21

A B C

Monthly portfolio Monthly benchmark
Month performance performance
07/2012 6.10 % 6.01 %
08/2012 5.50 % 5.45%
09/2012 4.70 % 4.63 %
10/2012 —5.00 % —6.99 %
11/2012 —5.10% —4.16 %
12/2012 6.70 % 7.07 %
01/2013 6.03 % 5.97 %
02/2013 —3.23% —2.95%
03/2013 5.12% 4.66 %
04/2013 5.21% 491 %
05/2013 —4.10 % —4.01 %
06/2013 —4.50 % —3.87%
07/2013 1.75 % —2.95%
08/2013 3.71 % 4.52 %
09/2013 —4.20 % —3.93%
10/2013 4.26 % 4.99 %
11/2013 —4.00 % —3.84 %
12/2013 5.10% 4.99 %

rpr = 24.60 % rgm = 20.15 %

r,ff'"' =1579% rht =13.02%

Source: Own, for illustrative purposes only

Cumulative portfolio return rpy in cell B20:
24.60% = {PRODUCT(1 + B2: B19)—1}

Cumulative benchmark return rg,, in cell C20:
20.15% = {PRODUCT(1+ C2:C19)—1}

Cumulative alpha « in cell D20:
445% = B20—-C20

Annualized portfolio return r,f];a' in cell B21:
1579% = {PRODUCT(1 + B2: B19)"(12/18) — 1}

Annualized benchmark return rj " in cell C21:
13.02% = {PRODUCT(1 + C2:C19)*(12/18) — 1}

D

Monthly alpha
0.09 %
0.05 %
0.07 %
1.99 %

—0.94 %

—0.37%
0.06 %

—0.28 %
0.46 %
0.30 %

—0.09 %

—0.63 %
4.70 %

—0.81%

—0.27 %

—0.73 %

—0.16 %
0.11 %

o =4.45%

P =277%

13

note that the brackets {...} are generated by hitting the three keys CTRL +
SHIFT 4+ RETURN at the same time rather than hitting RETURN alone:
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* Annualized alpha a? in cell D21:
277% = B21-C21

End of Example 1

Until now, we have calculated the historical returns. However, every investor is
even more interested in the returns of the future. But while the past return of an asset
can always be expressed as a certain number, we do not know the future asset return
with certainty and, therefore, treat it as a random variable. Using this notion, we
introduce the expected value to describe

« the return that we can expect to earn despite the uncertainties, i.e., the expected
return (see the following section)

» the uncertainty in our return forecast, i.e., the volatility of the investment’s
percentage return (see Sect. 1.3.1).

1.2.3 Random Variable and Expected Value

A random variable® is a quantity whose future outcomes (possible values) are
uncertain, but have certain probabilities. In general, we denote a random variable
with capital letters, for example, as random variable X .

The absolute return of a portfolio is a random variable. But although the exact
return on an investment is unknown, you can make a forecast and estimate the
average return. This is the purpose of the expected value.

The expected value’ of a random variable X is the probability-weighted average
of the possible outcomes of X. It is written as IE[X].

The future asset return is also a random variable. We will use a notation for future
returns in analogy to the notation for past returns (see Sect. 1.2.2) and apply the same
time period framework introduced in Sect. 1.2.1. For distinction, we use R when
describing future returns instead of r. Always remember that R is a random variable
while r is a specific number. To use a small letter in Sect. 1.2.2 was appropriate
since only past data were analyzed. For the future time period [0, 7'] and an asset i,
we write

* R{"" for the cumulative absolute return,

« R for the annualized return,

6See the non-formal definition of random variable in DeFusco, McLeavey, Pinto, and Runkle
(2004, p. 232). The book mentioned here is the standard reference for the quantitative part of the
CFA program. It offers a good summary of the basic mathematical/statistical methods in finance.
This book is helpful as a starting point for those with a non-mathematical background who would
like to get some basic understanding in this topic without too much mathematical formality. The
material in this book is also useful for the preparation of the CFA exam if you need to review
quantitative methods.

"DeFusco et al. (2004, p. 194).
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both as random variables.
Since the future asset return is a random variable, it has an expected value. When
talking about the expected value of returns, we simply use the term expected return:

o E[R{""], the expected cumulative absolute return, is the cumulative absolute
return we expect to earn on average.

. ]E[Rf7 ‘", the expected annualized return, is the annualized return we expect to
earn on average.

Example 2
The following hypothetical example in Table 1.5 shows three scenarios (bear,
normal, bull market®) for an asset i, together with their probabilities and the
outcomes for the absolute return R{"" in a future time period:

The expected return R{"" of asset i is

E[R{"™] = 0.20-(—-10%)+0.50-5% +0.30-18% = 5.9%,
i.e., the investor should expect to earn 5.9 % on this asset.
End of Example 2

Having covered the return side, we can now look at risk as the other side of
the coin. In Sect. 1.3 we will look at traditional risk measures and the so-called
risk-adjusted return measures. Risk-adjusted return measures are return measures
that also take into consideration the engaged risk. Obviously, of two investments
that have the same return over the same time period but different risk, the investor
prefers the investment with the least risk. Clearly, the exact meaning of risk needs
to be specified.

Thereafter, in Sect. 1.4, we will present the most important risk and risk-adjusted
return measures. In each section we have to distinguish if we analyze a portfolio
which is managed against a benchmark (relative portfolio management which has
an alpha target) or if the portfolio is managed on an absolute return basis (i.e., with
an absolute return target).

Table 1.5 Example 2: Absolute return
Calculation of the expected Scenario Probability Reum
t ith three different :
return wi ree dulteren Bear market 0.20 —10%
scenarios for an asset
Normal market 0.50 5%
Bull market 0.30 18 %

Source: Own

8The use of bull and bear to describe markets comes from the way the animals attack their
opponents. A bull thrusts its horns up into the air while a bear swipes its paws down. These actions
are metaphors for the movement of a market. In a bull market, the trend is up, in a bear market, the
trend is down. Source: http://www.investopedia.com.
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1.3  Traditional Risk and Risk-Adjusted Return Measures
1.3.1 Volatility

All investments offer returns, but also carry risk. These are the two sides of the coin.
But what is risk and how do we describe risk mathematically? The following list
provides a brief overview of financial disasters that affected not only professional
investors but also the man on the street. They reflect different kinds of risk:

* The fixed exchange rate system broke down in 1971, leading to flexible and
volatile exchange rates.

* The oil-price shocks starting in 1973 were accompanied by high inflation and
wild swings in interest rates.

* On Black Monday, October 19, 1987, U.S. stocks collapsed by 23 %.

* In the bond debacle of 1994, the FED, after having kept interest rates low for 3
years, started a series of six consecutive interest rate hikes that erased $1.5tn.
in global capital. A specific example is the Orange County case: Orange County
went bankrupt in 1994 due to losses of $1.7bn. as their treasurer Robert Citron
speculated with reverse floaters on decreasing interest rates while rates actually
increased dramatically.’

e The Russian default in August 1998 sparked a global financial crisis that
culminated in a near failure of the big and prominent hedge fund Long Term
Capital Management (LTCM).'?

Here, we will not look at all kinds of risk but only at a specific type known as
market price risk, i.e., the risk of the returns fluctuating around a mean value. In the
world of finance, the standard measure of risk is called volatility.

The understanding of risk as the variation of investment returns (in percentage)
goes back to the definition of risk used by Harry Markowitz in 1952 when he
invented what is now known as modern portfolio theory.'! To illustrate this, let
us compare the price movements of Lufthansa stock with the gold price in the time
period December 2008—March 2010. Figure 1.3 shows the end-of-month prices of
Lufthansa (in EUR), Fig. 1.4 the end-of-month prices of one ounce of gold (in EUR).

While the Lufthansa stock price shows stronger fluctuations, the gold price
remains very stable. Therefore, at that time, Lufthansa was the riskier investment.
The stronger the up-and-down movements of the stock price, the greater the
perceived risk, because if you sell your asset at the wrong time, you may end up
with a large loss. This is the idea of volatility, the standard measure for absolute
risk, which measures the strength of the fluctuations.

(’Zagst, Goldbrunner, and Schlosser (2010), Orange County, Chap. 3.
107 owenstein (2002).

1See Markowitz (1959) for the original English version or Markowitz (2008) for a German
translation. A short summary of the key ideas of modern portfolio theory with focus on the concepts
rather than on formulas can be found in Schulmerich (2013).



1.3 Traditional Risk and Risk-Adjusted Return Measures 17

= i
BAM
wn
2 F 127

= 3
g £ 109
2 -
2L 81
3 &
£ 3 67
22 a9
R
fj\./QA
b=}

— 0 T T

T T T
Dec 2008  Mar 2009  Jun 2009 Sep 2009 Dec 2009  Mar 2010
Month-end
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Fig. 1.4 End-of-month prices for one ounce of gold in the time period December 2008—March
2010. Ticker: XAUEUR. Source: http://www.fxhistoricaldata.com

Let us now take a look at Figs. 1.5 and 1.6: The graphs plot the monthly returns of
Lufthansa stock and gold in the period January 2009-March 2010. The horizontal
lines represent the respective arithmetic mean returns of these investments in this
period. In this plot, the monthly returns of Lufthansa stock which are shown in
Fig. 1.5 are much further from the line than the gold returns (see Fig. 1.6). The short-
term fluctuations of Lufthansa stock prices are greater.

As a measure for risk, we could use the average distance of the plotted points
to the line. But in practice, the expected squared distance is used because it puts a
greater weight on individual big outliers besides measuring the overall fluctuations,
and this is exactly what the variance and volatility of an investment describes.

Now, we need to measure volatility. This means we have to use the concept of
random variables.
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The variance'? Var(X) of a random variable X is
Var(X) = E[(X — E[X])?]. (1.16)

The standard deviation'® o(X) of a random variable X is defined as

o(X) = Var(X). (1.17)

12DeFusco et al. (2004, p. 195).
13DeFusco et al. (2004, p. 195).
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Now, we apply this concept to the annualized return of an asset 7, replacing X
with R”“". We call the standard deviation of the annualized return the annualized
volatility o;:

0r = o/ = o(RI") = \/E[(RI" — B[R] (1.18)

1

The variance of the asset returns,
Var(R;) = E[(R; — E[R;])’] = o}, (1.19)

is also called the variance of the asset.

These definitions can also be applied to a portfolio, including single asset
portfolios. As before, in the special case of a single asset portfolio we get the
formulas above. However, we will now define the portfolio volatility without
explicitly using the concept of random variables.

Definition: Volatility and Variance

The volatility ops of a portfolio is an absolute risk measure which evaluates
the magnitude of fluctuations of the portfolio’s percentage return around its
arithmetic mean' return 7p; within time period [0, T].

When we split time interval [0, 7] into N equidistant subintervals, which
are usually days or months, then, the volatility is the standard deviation of the
subperiod percentage returns 7, I, - - -, 7y of the portfolio. Depending on
the chosen subperiods we get the respective volatility: Daily returns as input
lead to a daily volatility, monthly returns lead to a monthly volatility. The
monthly volatility can be calculated as'>

monthly

g = ar(rl ) = ey ). (120)

with N representing the number of months in [0, 7']. Formula (1.20) can easily
be modified for using daily returns as input. Then, N is the number of days in
[0,7T]:

ag;ﬂy = \/Var(r}f,r,%f,...,r,’,\]’c) = Stdev(r,l,f,rf,f,...,rgc). (1.21)

In practice the volatility can easily be calculated using the percentage
subinterval returns of the portfolio within time period [0,7]. By using
monthly returns, this means mathematically:

(continued)

14Also simply called mean or average.
I5Esch et al. (2005, p- 41).
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N
mon, 1 7
o thy  _ — Z(rligf _ rPf)z. (1.22)
k=1

The variance of the portfolio is then simply the squared volatility, noted by

0_}2)}monthly for the monthly and aﬁj’cd”ily for the daily variance.

Since the volatility concept does not include any benchmark, volatility is an
absolute risk measure. As the standard deviation from a mean return, it is a
symmetrical risk measure which looks at deviations both above and below the
average of the subperiod returns. This is not what the layman person would
understand as risk. However, it makes sense in the financial world (at least in normal
times) as it refers to the risk of withdrawing money at the wrong time, i.e., it is
relevant for market timing decisions.

It is important to note though that Eq. (1.22) needs some clarification since in
practice we calculate volatility based on sample data. Therefore, we first have to
discuss the relationship of sample vs. population.

1.3.1.1 Sample vs. Population
Ideally, when doing a statistical analysis, one would like to have all data points
available. For example, if the daily returns of the Dow Jones Industrial Average
Index were known since its inception in 1884, then all important key figures, such
as arithmetic mean, variance or standard deviation, could be exactly calculated.
The totality of data points for a random variable is called population. However, in
reality, we usually only have access to a sample of this population. Furthermore, it
is sometimes not meaningful to take all data points into consideration, for example,
the standard deviation of the Dow Jones Industrial Average Index since its creation
might be of no use since the market activity may have changed over time. Therefore,
data of a recent time period is preferred and inferences are made from a sample to
the population.

Let us have a look at, for example, the standard deviation. The formula for the
population standard deviation of a random variable X with N observations is'®

1 & -
o = NZ(Xi—X)Z (1.23)

i=1

N
— 1
with X being the arithmetic mean N ZX ;- When we observe a population

i=1
and calculate the arithmetic mean, then this is the expected value of X. If you

16Compare Esch et al. (2005, p. 41).
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Table 1.6 The importance A B C

of sample vs. population Monthly portfolio Monthly benchmark

1 Month performance performance
2 07/2012 | 6.10% 6.01 %
3 08/2012 | 5.50% 5.45 %
4 09/2012 | 4.70 % 4.63 %

Source: Own, for illustrative purposes only

compare Eq. (1.23) with the sample standard deviation in Eq. (1.22), then the only
difference is the factor % instead of ﬁ

The reason for this distinction between the factors ﬁ or ﬁ is the so-called
unbiased estimator. If the expected value of the sample standard deviation is equal
to the population standard deviation, the estimator for the population standard
deviation in Eq.(1.22) is unbiased. This is achieved using ﬁ instead of % in
Eq. (1.22).

In the following, we will illustrate the difference in the formulas for population
and sample estimators. Let us first look at Table 1.6 where you find the monthly
performance of a hypothetical portfolio and its benchmark for a period of 3 months,
ie, N =3.

Below you see the outcome of the different Excel® formulas either using . P in
case the three data points characterize a population and .S if they represent only a
sample of a population.

* Population monthly portfolio variance ogkm”"’hly :

0.003% = VAR.P(B2: B4)

* Sample monthly portfolio variance cr;;m””’hly;

0.005% = VAR.S(B2: B4)

 Population monthly portfolio volatility o;,'j’f”’hly-

0.57% = STDEV.P(B2: B4)

monthly

¢ Sample monthly portfolio volatility o),
0.70% = STDEV.S(B2: B4)

Obviously, there are differences that cannot be ignored. They are evident, because
we look at a population or sample that consists only of three data points. It makes a
big difference if one divides by 2 or by 3. Since, as a rule of thumb, the deviations
vanish if the number of observations N is greater than 30, the size of available
data is crucial. On the other hand, the factors % or ﬁ have no impact on the
correlation as long as it is computed by using either the population formulas or the
sample formulas. This is because in the formula for the correlation, see Eq. (1.47),
the terms 5 or = simply vanish.

Let us look at a concrete example.
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Example 3

An analyst follows the stock of company XYC Ltd. over a 3-month period. At the
beginning of the first month, the stock has a value of € 100. It rises to € 110 at
the end of the first month, and to € 122 at the end of the second month. At the
end of the third month the stock is priced at € 136.

In order to calculate the volatility using the formula in Eq. (1.22), we first
have to calculate the percentage stock returns every month. Then we calculate
the arithmetic average of these three percentage returns and plug the results into
Eq. (1.22). Knowing that, in practice, only three relative returns are insufficient
to get a meaningful volatility value, this example is only for illustrative purposes.

Calculation for the percentage returns rky for each subperiod k = 1,2 and
3=N:

. €110—€100

o= Tgqg 0%

, €122-€110

rXYC = W =10.91 %
€136 -€122

r;}YC = W =11.48%.

Calculation of the arithmetic average of the percentage returns in the three
subperiods:

”JI(YC + ”)Z(YC + ”)?}YC
N
10% + 1091 % + 11.48 %
3

Txyc =

10.80 %.

monthly .

According to Eq. (1.22) the stock’s monthly volatility oyy. - is then

3

monthly (lﬁZ) 1 k — 2
Oxyc = Z(rxyc — Txvc)
N-—1 P

_ [551(10% — 10.80 %)? + (10.91 % — 10.80 %)+
B +(11.48 % — 10.80 %)?]

= 0.75%.

End of Example 3

In practice, neither a monthly nor a daily volatility is used, rather an annual
volatility. This would call for annual returns over non-overlapping consecutive years
and the time series would need to be sufficiently long, for example, 20 years, in order
to get a meaningful volatility figure. However, this is not practicable: Over such a
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long time, the management of a fund will most likely have changed or the fund
will have existed only for a much shorter time period. But to calculate an annual
volatility using only a few years of returns is meaningless. This brings us to the
question of how to calculate an annualized volatility using less data.

In order to do this we use daily or monthly return data and annualize them.
At least 1 year’s worth of data are required, i.e., 7 > 1 year. For example, we look
at a historical 3-year period using either 36 monthly percentage returns or (roughly)
750 daily percentage returns.

Let us assume we have N > 12 monthly Zpercentage returns. Using this data in

Eq. (1.22) yields the monthly volatility a;"f”"’h ”. We now can annualize this monthly

volatility which yields the annualized volatility o/ by scaling cr;,';c”mhly with the
square root of 12, i.e.: ' ‘
ob = V12 op™, (1.24)

Similarly, if daily percentage return data are used, the calculated daily volatility
daily . . . . .
Opp -~ can be annualized by scaling it with the square root of business days per year

which is roughly 252, i.e.:
of" = N252- opy”. (1.25)

For the interpretation of volatility we have to turn to a research field called
financial engineering. Assuming that the portfolio value follows a so-called Geo-
metric Brownian Motion (GBM), the percentage returns of the portfolio in the
subperiods are normally distributed.!” Accordingly, we assume that for a future
I-year time period [0, 1] the annualized return Ri’7 " as a random variable, is
normally distributed. The interpretation of the annualized volatility o/ of an
asset i, as shown in Fig. 1.7, is then as follows:

Let u; = E[R”“] be the expected annualized return and o/ its annualized
volatility. Then the probability distribution for the annualized returns R/ is
described by a symmetrical bell-shaped curve which peaks at R’ = ;. In this
figure, the probability of the return being between two return values is the stated
area under the curve (the entire area under the graph is 1). The percentages in the
diagram show the area under the graph in the respective intervals, for example,
the probability for the return to lie between y; and p; + 0/ is 34.13 %. Thus, the
probability of the annualized return R to be

e atmost g7

i

off from the expected annualized return p; is 68.3 %.

a

* atmost 2 -0/ off from the expected annualized return j; is 95.4 %.

 atmost 3 -0/ off from the expected annualized return ; is 99.7 %.

17Please note that no further mathematical analysis on this will be provided here. For further details,
please see the basic introductions in Schulmerich (2010a, Chap. 2), Schulmerich (2005, Chap. 2),
Schulmerich (2008a, Chaps.1 and 2) or Schulmerich (1997, Chaps.1 and 2). For a rigorous
mathematical introduction to this topic see, for example, Neftci (2000) or Bksendal (1995).
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Fig. 1.7 Graphical illustration of annualized volatility for normally distributed returns. Source:
Reilly and Brown (1997, Appendix D, p. 1047)
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Fig. 1.8 Graphical illustration of the worst-case scenarios (1, 2.5, 5 %) for normally distributed
returns. Source: Reilly and Brown (1997, Appendix D, p. 1047)

Volatility can also be used to illustrate worst-case scenarios, as shown in Fig. 1.8.
Typically investors look at the worst 5, 2.5 and 1 % outcomes when they want to
assess risk. The lines below the return axis show the left tails which make up 5, 2.5
and 1 % of the total area under the graph, corresponding to our worst-case scenarios.
The probability that the annualized return Rf ‘" is less than

* the expected annualized return p; minus 1.65 times the annualized volatility
ol is 5.0 %.

* the expected annualized return p; minus 1.96 times the annualized volatility
ol s 2.5 %.

 the expected annualized return p; minus 2.33 times the annualized volatility crip “
is 1.0 %.
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Let us now look at a practical example for calculating volatility.

Example 4

25

In Table 1.7 the monthly and annualized volatility is calculated based on the
percentage returns of a portfolio and its benchmark for 18 consecutive months.
The return data are the same as shown in Table 1.4 for Example 1. Using the
column and row notation from Microsoft® Excel®, the first column is labeled
A (month) and the second B (monthly portfolio performance). Applying Excel®

functions, the volatility of the portfolio can easily be calculated:

» Monthly portfolio volatility Uirff”"lhly in cell B20:

476 % =

STDEV.S(B2 : B19)

* Annualized portfolio volatility a};];“' in cell B21:
SQORT(12) x STDEV.S(B2 : B19)

16.49% =

Table 1.7 Example 4: Volatility calculation

A

1 Month
2 07/2012
3 08/2012
4 09/2012
5 10/2012
6 11/2012
7 12/2012
8 01/2013
9 02/2013
10 03/2013
11 04/2013
12 05/2013
13 06/2013
14 07/2013
15 08/2013
16 09/2013
17 10/2013
18 1172013
19 12/2013
20

21

B
Monthly portfolio
performance

6.10 %

5.50 %

4.70 %
—5.00 %
—5.10%

6.70 %

6.03 %
—3.23%

512 %

521%
—4.10%
—4.50 %

1.75 %

3.71 %
—4.20 %

4.26 %
—4.00 %

5.10 %
o™ =476 %
op =16.49%

Source: Own, for illustrative purposes only

C
Monthly benchmark
performance

6.01 %

5.45 %

4.63 %
—6.99 %
—4.16 %

7.07 %

5.97 %
—2.95%

4.66 %

491 %
—4.01 %
—3.87%
—2.95%

4.52%
—3.93%

4.99 %
—3.84%

4.99 %
o — 491 %
ot = 17.02%

D

Monthly alpha
0.09 %
0.05 %
0.07 %
1.99 %

—0.94 %

—0.37 %
0.06 %

—0.28 %
0.46 %
0.30 %

—0.09 %

—0.63 %
4.70 %

—0.81%

—0.27 %

—0.73 %

—0.16 %
0.11 %
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* Monthly benchmark volatility o/p""" in cell C20:

491% = STDEV.S(C2:C19)

+ Annualized benchmark volatility o in cell C21:
17.02% = SORT(12) % STDEV.S(C2 : C19)

Using the interpretation of a normal distribution in Fig. 1.7 this means: With
a probability of 68 %, the 1-year percentage return of our portfolio lies between
ppr — 16.49% and ppr + 16.49 % with ppy being the average of the historical

yearly portfolio returns.

Using ppr = 15.79 % as calculated in Example 1 (same data series as in
Example 4), there is a probability of 68 % that the 1-year percentage return of
our portfolio lies in the interval [-0.70 %, 32.28 %].

End of Example 4

We will now return to our business case and expand it to include gold. For
our calculations we will use Table 1.8 which shows the end-of-month gold prices
in EUR together with the monthly absolute returns (in percentages) in the period

Table 1.8 Calculation of absolute returns for one ounce of gold from time series of end-of-month
stock values

O 0 AN W= O

| | | |
AWl —~ O

15

Time point
Tk

0
1/12
2/12
3/12
4/12
5/12
6/12
7/12
8/12
9/12
10/12
11/12
1
13/12
14/12
15/12

Month
Dec 2008
Jan 2009
Feb 2009
Mar 2009
Apr 2009
May 2009
Jun 2009
Jul 2009
Aug 2009
Sep 2009
Oct 2009
Nov 2009
Dec 2009
Jan 2010
Feb 2010
Mar 2010

Gold value (one ounce)
vk, (in EUR)
627.10

724.18

742.54

693.13

669.67

692.11

659.94

667.30

663.53

688.26

709.76

786.08

765.89

780.06

820.11

824.08

Ticker: XAUEUR. Source: http://www.fxhistoricaldata.com

Absolute return
i .
T o (0 %)

15.48
2.54
—6.65
—3.38
3.35
—4.65
1.12
—0.56
3.73
3.12
10.75
—2.57
1.85
5.13
0.48
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Business Case (cont.)

In our business case, the annualized volatility for Lufthansa stock is 41.26 %,
whereas the annualized volatility for gold is 19.71 %, implying that the
Lufthansa stock fluctuated roughly twice as much as gold. These quantities,
which show the greater risk of Lufthansa stock, will be calculated below
[Eqgs. (1.28) and (1.31)]. Let us first calculate the volatility for Lufthansa
based on the monthly returns in the period January 2009-March 2010 from
Table 1.3. First, we start with the arithmetic mean monthly return:

- _ k
YLHA = 1_5 § YA
k=1

1
= [5(-15.10% + (~8.42%) + ... + 12.04%)

= 1.73%. (1.26)

Then, we use Eq. (1.22) to calculate the volatility (o}, "Y in our example):

monthly k = 2
OrHA = 14 § :(rLHA —TLHA)

\/— [(—15.10% — 1.73%)2 + ... + (12.04 % — 1.73 %)?]

= 11.91%. (1.27)

To obtain the annualized volatility, multiply the monthly volatility by the
factor /12, see Eq. (1.24):

ol = V12-0p"™ = J12-1191% = 41.26%. (1.28)

Let us now calculate the volatility for one ounce of gold based on the
monthly returns in the period January 2009-March 2010 from Table 1.8.
First, we start with the arithmetic mean monthly return:

1 1
oot = 1z D g = 75(15.48% + (254%) + ... +0.48 %)
k=

= 1.98 %. (1.29)
Then, we use Eq. (1.22) to calculate the volatility (U'G";’,”;hly in our example):

(continued)
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| b

monthly k = 2

OGola = = 11 Z(” Gold — T Gold)
k=1

1
= \/ﬁ [(15.48% — 1.98 %) + ... + (0.48 % — 1.98 %)?]

= 5.69%. (1.30)

To obtain the annualized volatility, multiply the monthly volatility by the
factor /12, see Eq. (1.24):

ol = J12.00" = V12:5.69% = 19.71%. (1.31)

To illustrate the volatility, we need to calculate the annualized return of
gold. The cumulative return is [using Eq. (1.3)]

-
Gold
_ €824.08 — €627.10
€627.10
= 31.41%, (1.32)

and the annualized return is [using Eq. (1.5), with T = 15/12]
rGa = (L+rg)"T =1

(14 31.41%)"/15 -1

24.42 %. (1.33)

Based on our results the

» annualized return for Lufthansa stocks is 13.9 % [see Eq.(1.14)] and the
annualized volatility is 41.3 % [Eq. (1.28)].

e annualized return for gold is 24.4 % [Eq.(1.33)] and the annualized
volatility is 19.7 % [Eq. (1.31)].

Assuming that the expected return equals the past annualized return, we

can illustrate the volatilities in Figs. 1.9 and 1.10, based on the general pictures
of Figs. 1.7 and 1.8.

(continued)
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—————
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—68.7% —27.4% 13.9%  55.2%  96.5%
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—82.3% Annualized return R},

—67.0%
—54.2%

Fig. 1.9 Graphical illustration of annualized volatility for Lufthansa stock, assuming normally
distributed returns. Sources: Reilly and Brown (1997, Appendix D, p. 1047), Yahoo! Finance

The graph shows that for Lufthansa stock, the probability that

e the annualized return lies between —27.4 and 55.2 % is 68.3 %.
e the annualized return lies between —68.6 and 96.4 % is 95.4 %.

For gold, the probability that

e the annualized return lies between 4.7 and 44.1 % is 68.3 %.
e the annualized return lies between —15.0 and 63.8 % is 95.4 %.

Comparing Figs. 1.9 and 1.10 we see that because of the smaller volatility
the ranges of the annual returns are narrower for gold.

Let us compare the left tails: For Lufthansa stock, the expected return is
* less than —54.2 % with a probability of 5 %.
e less than —66.9 % with a probability of 2.5 %.
* less than —82.2 % with a probability of 1 %.
For gold, the expected return is
* less than —8.1 % with a probability of 5 %.
* less than —14.2 % with a probability of 2.5 %.
* less than —21.5 % with a probability of 1 %.

The lower volatility of gold has the effect that the left tail risks are very
low compared to Lufthansa.
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95.4%

68.3%

Return density

—15.0%  4.7% 24.4%  441%  63.8%
1% —1

—21.5% Annualized return RZ;,
fe——2.5% ——1
—14.2%
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Fig. 1.10 Graphical illustration of annualized volatility for gold (in EUR), assuming normally
distributed returns. Sources: Reilly and Brown (1997, Appendix D, p. 1047), http://www.
fxhistoricaldata.com

1.3.1.2 Conclusion

The volatility, i.e., the standard deviation of the subperiods’ portfolio percentage
returns, is the traditional risk measure of a portfolio. Since there is no benchmark
needed in the calculation, this risk measure can also be called an absolute risk
measure. As it is a standard deviation and, therefore, considers positive and negative
deviations from the mean in the same way, it is a typical symmetrical risk measure.

In active portfolio management both the portfolio and the benchmark volatility
are usually calculated on a stand-alone basis and then compared with each other.
Active portfolio management ideally achieves an excess return over the benchmark
with the same level of volatility as the benchmark and not with a higher level.
We will look more into the relationship of risk and return for active portfolio
management once we have introduced an appropriate measure for risk versus a
benchmark.

Up to now, we have only considered portfolios that are not measured against an
index and dealt with absolute return portfolio management which is typical for
hedge funds. In traditional institutional asset management, a portfolio is, however,
in most of the cases managed against an index as a benchmark and the portfolio
manager aims to beat this benchmark by generating a higher return. This calls for
another risk measure.

Therefore, in the next step, we will introduce a risk measure that is benchmark-
oriented: Managing a portfolio versus the benchmark with a relative return (i.e.,
alpha) target, the corresponding risk has to be relative, i.e., benchmark-oriented, as
well. This relative risk is defined in line with volatility and is called tracking error.
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1.3.2 Tracking Error

Tracking error (TE) is one of the most commonly used relative risk measures
in active management.'® Its definition is in line with the definition of volatility.
However, TE does not use an absolute return time series but a relative return time
series, i.e., a time series of alphas.

Tracking error is the typical risk measure used when managing a portfolio
versus an index as a benchmark. Therefore, TE is a relative risk measure, similarly
constructed like its absolute counterpart volatility. Like volatility, tracking error is
a symmetrical risk measure since it looks at both deviations above and below the
average of the subperiod alphas.

Definition: Tracking Error

Like in the previous sections, we again split time interval [0, 7] into N
equidistant subintervals which are usually days or months. Let us denote the
subperiod percentage returns of the portfolio as always with

12 N
Tprs Tpps - s Tpps

the subperiod percentage returns of the benchmark with

1 2 N
B> "B =+« > I'pms

and the alpha for the k-th subperiod with &%, 1 <k < N.
Then, the tracking error of the portfolio versus its benchmark is the
standard deviation of the subperiod percentage alpha returns o', &%, ..., V.
Depending on the chosen subperiods, we get the respective tracking error:
daily alphas as input lead to a daily tracking error. Monthly alphas lead to
a monthly tracking error. Mathematically, the monthly tracking error can be

calculated as'’

TE™"™ = /Var(a!,a?,...,aN) = Stdev(a',o?,....aV) (1.34)

with N representing the number of months in [0, 7']. Formula (1.34) can easily
be modified for using daily returns as input. Then, N is the number of days in
[0,7]:

TED = \/Var(al,az,...,aN) = Stdev(a!,o?,....aV). (1.35)

(continued)

I8_habitant (2004, p. 59).
19 habitant (2004, p. 59).
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In practice the tracking error can easily be calculated using the subperiod
alphas within time period [0, 7]. By using monthly returns, this means
mathematically:

N
1
amonthly — m Z(ak _&)2 (136)
k=1

1.3.2.1 Note

The name tracking error stems from passive portfolio management where the goal
is to achieve an alpha of zero. If, for example, for each month alpha is zero, then
the alpha of the whole period is of course zero as well. If, however, one or more
of the monthly alphas are different from zero it is most likely that over the whole
time period alpha is different from zero as well. This deviation for the whole period
can be measured with the standard deviation of each subperiod’s alpha, i.e., tracking
error.”’ More specifically:

» Tracking error quantifies the error made by the passive portfolio manager when
tracking the benchmark.

* A perfect passive portfolio manager generates an alpha of zero in each subperiod,
ie,ak =0for1 <k < N.This automatically leads to TE = 0.

* The less perfect the passive portfolio manager, the higher 7E and the more the
portfolio manager will deviate from his overall alpha target of zero.

It is important for tracking error calculation that the type of input determines the
interpretation of the output. If the alphas used as input to calculate tracking error are
monthly alphas in % over the last 3 years, the calculated tracking error is a monthly
tracking error and also in %.

As with volatility, a daily or monthly tracking error is not very meaningful. Only
an annualized tracking error derived from a daily or monthly tracking error is used.
This annualized tracking error can then be compared to an annualized alpha over
the same time interval [0, 7']. To annualize a tracking error, 7" has to be at least 1
year, i.e., T > 1.

In order to annualize a monthly tracking error TE™""" we have to scale it by
the square root of 12, i.e.:

TEP* = 12 . TE™". (1.37)

Similarly, if a daily tracking error is given, this has to be scaled with the square
root of the number of business days per year which is roughly 252, i.e.:

20Natenberg (1994, pp. 60-61).
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TEP* = /252 . TE%l, (1.38)

The reasons for the scaling in Eqs.(1.37) and (1.38) are (like in the case of
annualizing a volatility) rooted in financial engineering and will not be discussed
further here. As a standard deviation, the tracking error can never be negative. And,
if we assume a normal distribution for subperiod alphas, as we did when interpreting

volatility, the standard deviation concept allows a neat interpretation of the tracking
error.

1.3.2.2 Interpretation

For interpretation purposes, we assume that the future annualized alpha o”¢ is
a normally distributed random variable. Let then TE?“ be the corresponding
annualized tracking error. Then the probability distribution for the annualized alpha
al? is described by a symmetrical bell-shaped curve which peaks at IE[oe”#]. This
expected value can be interpreted as the p.a. alpha target of the actively managed
portfolio versus its benchmark, see Fig. 1.11:

In Fig. 1.11, the probability of the return being in the interval [o/, oz”] is the area
under the curve between a”% = o and P4 = o (the entire area under
the graph is 1). The percentages in the diagram show the area under the graph in
the respective intervals, for example, the probability for the return to lie between
o =Ele?*]anda” = E[a?“] + TEP® is 34.13 %.

Thus, the probability of the annualized return E[o?“] to be

e at most TE”“ off from the expected annualized return E[a?#"] is 68.3 %,
e atmost 2 - TE”“ off from the expected annualized return E[a” ] is 95.4 %,

e atmost 3 - TEP“ off from the expected annualized return E[a”*] is 99.7 %.

0.13%  2.14% 2.14%  0.13%

Return density

13.59%

Ela”™] + TE"* -

]E[ap.a,.] _3.TEP%
Ela”*] — 2 TE"*
]E[ap.a.] _ Tgpra |

E[e?*] +2-TE"* -
]E[ap.a.] +3TEpu _

Annualized alpha o

Fig. 1.11 Graphical interpretation of the tracking error: normal distribution of the annualized

alpha for a portfolio managed against a benchmark with alpha target IE[a”“'] and tracking error
TEP“. Source: Own
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Table 1.9 Example 5: Tracking error calculation

A B C D
Monthly portfolio Monthly benchmark
1 Month performance performance Monthly alpha
2 07/2012 6.10 % 6.01 % 0.09 %
3 08/2012 5.50 % 5.45% 0.05 %
4 09/2012 4.70 % 4.63 % 0.07 %
5 10/2012 —5.00 % —6.99 % 1.99 %
6 11/2012 —5.10 % —4.16 % —0.94 %
7 12/2012 6.70 % 7.07 % —0.37 %
8 01/2013 6.03 % 5.97 % 0.06 %
9 02/2013 —3.23% —2.95% —0.28 %
10 03/2013 5.12% 4.66 % 0.46 %
11 04/2013 521 % 491 % 0.30 %
12 05/2013 —4.10% —4.01 % —0.09 %
13 06/2013 —4.50 % —3.87% —0.63 %
14 07/2013 1.75 % —2.95% 4.70 %
15 08/2013 3.71 % 4.52 % —0.81%
16 09/2013 —4.20 % —3.93% —0.27 %
17 10/2013 4.26 % 4.99 % —0.73 %
18 11/2013 —4.00 % —3.84 % —0.16 %
19 12/2013 5.10% 4.99 % 0.11 %
20 TE"hY = 1.29%
21 TEP¢ = 4.48 %

Source: Own, for illustrative purposes only

Example 5
Let us now take a look at the example of a fund and its benchmark. Table 1.9
shows the monthly performance of both and the resulting alpha over a time period
of 18 months, i.e., T = 1.5 years and N = 18 months.

Using Eqgs. (1.34) and (1.37) to calculate the monthly and annualized tracking
error over time period [0, T'], respectively, we need the following functions in
cells D20 and D21:

* Monthly tracking error TE"™"" in cell D20:
1.29% = STDEV.S(D2: D19)

* Annualized tracking error TE?*“" in cell D21:
4.48% = SQRT(12)+« STDEV.S(D2: D19)

End of Example 5
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1.3.2.3 Conclusion

Tracking error is the risk measure in benchmark-oriented portfolio management.
As a relative risk measure, it corresponds in its definition and interpretation to
volatility as an absolute risk measure in benchmark-agnostic portfolio management.
Both risk measures are symmetrical, and their interpretation which is based on the
mathematical concept of confidence intervals is only valid, if the underlying data
(either an absolute return or a relative return time series) are normally distributed.
This especially means that tracking error (as well as volatility) treats positive and
negative deviations in the same way.

1.3.3 Relationship of Tracking Error and Alpha

As already mentioned above, the interpretation of TE depends on the underlying
relative performance data: daily alphas result in a daily TE and monthly alphas result
in a monthly TE. Irrespective of the underlying data, it can be concluded that the
higher TE, the more volatile the daily or monthly alphas and the further the portfolio
performance will deviate from the benchmark. While this is not wanted in passive
portfolio management (hence, TE and alpha targets are zero), it is desirable (to a
certain and controlled degree) in active portfolio management.

In fact, there exists an interesting relationship between tracking error and
the possible alpha. This relationship is known as the fundamental law of active
management. The fundamental law of active management states a basic relationship
between relative risk and return that holds true for both fundamentally?! and
quantitatively?? managed portfolios.? It was first presented’* by Richard Grinold?

21A fundamentally managed portfolio is a portfolio that follows the fundamental approach to
investing. This means that fundamental portfolio managers when constructing a portfolio use the
evaluations of fundamental analysts who gather and analyze information on potential investments,
for example, by examining balance sheets and income statements.

22A quantitatively managed portfolio is a portfolio that follows the quantitative approach to
investing. Quantitative analysts develop computer algorithms that evaluate the potential return of
an investment. Quantitative portfolio managers use this return estimation in order to achieve an
optimal portfolio using portfolio construction software that includes trading costs and risk limits.

2 A detailed comparison between the fundamental and quantitative approach to asset management
can be found in Glavin and Reinganum (2013), Schulmerich, Hooker, McGoldrick, and Mallik
(2008), Hooker and Schulmerich (2008) and Schulmerich and Hooker (2008). Interesting articles
about quantitative equity investing in crisis times or shortly thereafter can be found in Schulmerich
(2008b), Schulmerich et al. (2009), Schulmerich (2009) and Schulmerich (2010b).

24Grinold (1989).

ZRichard C. Grinold, Ph.D., was until 2009 managing director of the Advanced Strategies
and Research group at Barclays Global Investors. Dr. Grinold was for 20 years on the faculty
at the School of Business Administration at the University of California, Berkeley. He has
published extensively and is widely known in the industry for his pioneering work on risk models,
portfolio optimization, and trading analysis; equity, fixed income, and international investing; and
quantitative approaches to active management.
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in 1989. This version was then improved in 2002 by Roger Clark,?® Harindra de
Silva?” and Steven Th01r1ey,28 see Clarke, de Silva, and Thorley (2002).

The link between the engaged relative risk (measured by tracking error) and the
relative return (measured by alpha) in benchmark-oriented portfolio management
is based on the assumption that in the portfolio all desired positions can be
implemented. No restrictions, for example, on short selling or portfolio weights are
considered. This, of course, is unrealistic in active portfolio management practice
as there are severe restrictions, like the long-only constraint which prohibits short
positions in portfolios.”” These restrictions were included into the fundamental law
of active portfolio management by Clark, de Silva and Thorley in 2002. De Silva
and Clark work for Analytic Investors, a quantitative asset management firm in Los
Angeles.*® Their version is what nowadays is understood under the fundamental law
of active management and this is the version that will be presented here.

Simply speaking, the basic message is “no risk no fun”. In active portfolio
management, the fun part is alpha while the risk part is the engaged tracking error.
Before we can mathematically state the fundamental law of active management we
need to define a few variables:

In portfolio management, the investment universe is the set of all securities
a portfolio manager chooses from when creating his portfolio. For a European
equity portfolio, the investment universe comprises all European equities. Let IC
be the information coefficient, TC the transfer coefficient and N the breadth of the
investment universe:

1. Breadth N:
N is the number of stocks in the investment universe adjusted by correlations
between the stocks to achieve independence.’! Each stock can be seen as a

26Roger G. Clarke, Ph.D., is the chairman of Analytic Investors. Recognized as an authority with
more than 20 years experience in quantitative investment research, Roger Clarke has authored
numerous articles and papers including two tutorials for the CFA Institute. He also served on the
faculty of Brigham Young University for 8 years where he specialized in investment and options
theory and continues to lecture as a guest professor.

2"Harindra de Silva, Ph.D., CFA, is the president of Analytic Investors and a portfolio manager.
De Silva has authored several articles and studies on finance-related topics including stock market
anomalies, market volatility and asset valuation.

28Steven Thorley, Ph.D., CFA, is the H. Taylor Peery Professor of Finance at the Marriott School
of Management at Brigham Young University in Provo, UT.

29This is most common in retail funds, i.e., funds available for public distribution.

30 Analytic Investors, LLC was founded in 1970. The original firm was known for its expertise
in derivatives strategies. Nowadays, Analytic is part of Old Mutual Asset Management (U.S.), a
group of affiliate firms selected by Old Mutual that have complementary investment styles (non-
overlapping) and are considered top-quality investment management firms.

3IThis is, for example, done by using risk models like BARRA. It is a highly mathematical task,
so we do not go into further detail here.
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“strategy”,” i.e., as the outcome of a decision on how to weight a particular stock

in the portfolio. In active portfolio management, its weight is mainly expressed
as the relative security weight in the portfolio versus the index. This is also
called over- or underweight. For example, if a security has 1.5 % weight in the
index but only 1.0 % weight in the portfolio, the security has an underweight of
0.5 % versus the benchmark. This over- or underweight decision compared to the
benchmark is a strategic decision of the portfolio manager. In this respect, N is
the number of independent strategies the portfolio manager can invest in.

2. Information Coefficient I/C:
The IC is a coefficient that measures the correlation between the predicted and the
finally realized alphas, i.e., the quality of the predictions of the portfolio manager
about the future alpha of each stock in the investment universe.

3. Transfer Coefficient 7C:
The TC is a coefficient that measures the correlation between the portfolio
manager’s alpha predictions and the implemented strategies in the portfolio, i.e.,
the implementation quality of a portfolio manager.

Using these definitions the ex-ante alpha of the fundamental law of active
management can be written as

Oyy—ame =~ IC - TC - TE - V/N. (1.39)

Equation (1.39) is only valid when the impact of fees like management fees,
administration fees, depot bank cost, etc. is neglected. In this case alpha is called
gross-of-fee alpha.>® These costs only pertain to the portfolio but not to the
benchmark.

It is important to repeat that the fundamental law of active management holds
for all types of active asset management vs. a benchmark. The term fundamental
does not refer to fundamental asset management (as opposed to quantitative
asset management) but simply states that this is a general (i.e., fundamental)
rule governing all types of benchmark-related active asset management, let it be
fundamental or quantitative, equity or fixed income portfolio management.

Example 6

Let us consider an equity portfolio comprising European large-cap stocks
managed against the MSCI Europe Index. While the index comprises roughly
450 equities, the number of stocks an active portfolio manager can usually invest
in, i.e., the investment universe, is almost 1,600.>* However, some of these
securities are highly correlated. For example, stocks within the same industry and

32Sometimes also called bet.
331f these costs are already subtracted, alpha is called net-of-fee alpha.

34 Assuming the portfolio manager is not restricted to invest only in benchmark securities, i.e.,
off-benchmark positions are allowed.
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within the same country are likely to have a higher correlation than stocks from
different industries and countries. Breadth N is corrected for this correlation
using financial engineering software. As a result, breadth N of a European
investment universe is roughly 900.

Assuming the allowed tracking error as given by the client is 3 % = % we
can calculate the expected alpha of the portfolio. But while N (via the investment
universe) and TE are both specified by the client in the portfolio’s investment
guidelines,® IC and TC depend solely on the quality of the portfolio manager.

For a very good portfolio manager, we roughly have the long-run IC = % and
C = % Putting these data in Eq. (1.39), we get as the expected (i.e., ex-ante)
alpha:

Uex—ante ~° Ic - 1C - TE - \/N

1 1 3
=70 "3 100 YW

=3%. (1.40)

This means, the fundamental law of active management predicts the expected
(therefore, ex-ante) p.a. alpha based on the client’s investment universe and
tracking error specification in combination with the skills of the portfolio
manager.

End of Example 6

1.3.4 Covariance and Correlation

When investing in more than one security, another risk measure besides the
individual volatility of each stock has to be taken into consideration. Investors want
to know: What is the relationship or interaction between the percentage return for
two assets in the equidistant subperiods of, for example, 1 day or 1 month?

When you create a portfolio of single assets, you should not only consider
the volatility of the single assets but also how the return streams interact. This
interaction is the reason for what we have called diversification in Chap. 2. In order
to measure it, we first have to calculate the covariance or, more standardized, the
correlation between the subperiods’ percentage returns for each pair of securities.
This will then allow us to calculate the portfolio volatility by using the volatility of
the single assets and the correlations of the assets amongst each other.

For illustration, let us take a look at the price movements of the airlines Delta and
US Airways and oil: Fig. 1.12 plots the end-of-month values of US Airways (black),

35 Also known as IMA, Investment Management Agreement.
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Fig. 1.12 End-of-month prices of Delta (NYSE:DAL), US Airways (NYSE:LCC) and oil (Crush-
ing, OK Crude Oil Futures Contract, price per barrel) in the period December 2008—June 2010.
Based on starting value of $100. Sources: Yahoo! Finance, U.S. Energy Information Administration

Delta (red) and oil (green) during the time period January 2007—June 2010, based on
a starting value of $100. We can observe that the oil price and the airline stock prices
tend to move in opposite directions, while the airline stock prices tend to move in
tandem. The idea of covariance and correlation is to measure how asset prices move
together. In our case, oil prices and Delta (or US Airways) have negative covariance
and are negatively correlated while Delta and US Airways show positive covariance
and are positively correlated.

Let us now take alook at Fig. 1.13 which plots the monthly returns of US Airways
(black), Delta (red) and oil (green) during the time period January 2008—June 2010.
US Airways tends to perform relatively well (relative to the average US Airways
performance) when Delta performs relatively well (relative to the average Delta
performance), while it is the opposite for US Airways and oil. US Airways and
Delta tend to have above-average and below-average returns at the same time, and
consequently, the product of US Airways relative returns (by relative, we mean
relative to its average monthly return, i.e., we subtract its average monthly return
from its monthly return) with Delta relative returns is typically positive, and tends to
be bigger, when the return values move closely together. US Airways and oil show
the opposite behavior, i.e., above-average returns of US Airways tend to coincide
with below-average returns of oil, and below-average returns of US Airways tend to
coincide with above-average returns of oil and vice versa. A a result, the product of
US Airways relative returns and oil relative returns is typically negative. This is the
idea of the covariance and correlation measures.

After having discussed the motivation for covariance and correlation, we will
proceed with the relevant general definitions. As with the expected value and
variance, we will first provide the correct mathematical definition which is then
followed by the definition that should be used in practical application.
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Fig. 1.13 Monthly returns of Delta (NYSE:DAL), US Airways (NYSE:LCC) and oil (Crushing,
OK Crude Oil Futures Contract, price per barrel) in the period January 2008—June 2010. Sources:
Yahoo! Finance, U.S. Energy Information Administration
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The covariance”® oy y of two random variables X and Y is defined as

oxy = E[(X —E[XDY - E(X))]. (1.41)

In particular, we can specify the two random variables X and Y to be the returns
R, and R, of the two assets 1 and 2, respectively, over a certain future time period
[0, T]. Then,

o012 = E[(R; — E[R])(R; — E[R2])] (1.42)

is the covariance of subperiod returns in time period [0, T'| between the two assets
1 and 2 or just the covariance between the assets 1 and 2. Please note that as always
the returns are percentage values.

The covariance o0} > alone does not tell the strength of the relationship between
the asset returns. Its absolute value lies between zero and the product of the
volatilities o7 and o,. The covariance can therefore be normed by dividing it by
the product o7 - 07. The resulting measure is called correlation®’ (p12):

012

P2 = (1.43)

o1-00

Please note that p; » is zero if 0] or 0, is zero. In general, for any pair of random
variables X and Y, the correlation py y is defined as

36DeFusco et al. (2004, p- 204).
37DeFusco et al. (2004, p. 207).
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pxy = —21 (1.44)
Ox * Oy

After having introduced the mathematical definitions of covariance and correla-
tion using random variables, we now will present the definition of covariance that
can be used in practice in order to calculate covariance using historical return data.
Thereafter, we will look at the properties of covariance and correlation and provide
several examples for illustration. To do this, we first have to look at time period
[0, T'] and divide it, as usual, into subintervals.

Definition: Covariance and Correlation

We divide time period [0, T'] into N equidistant subintervals. The return of

security 1 over the k-th subinterval [tx—;, #%],0 < k < N, is denoted by r{‘.

Accordingly, let ré‘ be the return of security 2 over the k-th subinterval.
Then, the covariance o7 , of the securities’ subinterval returns measured by

N subintervals of time period [0, T'] is defined as®®:

N
012 = ﬁ;(r{‘ —T1)(ry —T2) (1.45)
where
= 1 ¢ k — 1 ¢ k
T = N};rl and Ty = N};rz

are the arithmetic average returns of the two assets, respectively. If we have
monthly subintervals, we also denote the covariance as

_ monthl;
012 = 01’2 .

For daily subintervals, we denote the covariance as

_ daily
O12 = 0'1!2 o

If the two assets are identical (1=2), the calculated covariance is the asset’s
variance, i1.€.:

ih 2, monthl dail 2, dail
o " =™ and  oyy” =0, (1.46)

(continued)

3Based on Lhabitant (2004, p. 127).
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Using Eq. (1.20) to calculate the volatilities o, 07, respectively, allows us
to calculate the correlation [see Eq. (1.43)] as*:

01,2

P12 = (1.47)

o] - 0p

with 0, and o, being the volatility of the percentage return of security 1 and
2, respectively, over N subintervals.

1.3.4.1 Notes
When calculating covariance and correlation, the following points should be
remembered:

In order to calculate covariance and correlation, percentage return data for
consecutive subintervals (for example, days or months) are needed without any
data missing for any of the two relative return time series.

Therefore, a monthly covariance is more common than a daily covariance since
there may be days where one asset has a return and the other one has not.
For example, if asset 1 is a stock listed in a Middle East country where Friday
is a weekend day, then it does not have a return for Fridays. If you want to
calculate the correlation of this security with another security listed in London
where you do have a Friday return, this poses mathematical difficulties. This does
not happen if monthly data are used.

Although less common in practice, one can annualize a covariance if 7 > 1
(like for return and volatility) according to the following formulas depending on
whether the subintervals are, for example, months or days‘“):

ol =12 05", (1.48)

oly =252 05", (1.49)

1.3.4.2 Properties of Covariance and Correlation
A covariance has the following properties:

If the covariance is positive, then one asset tends to have high (low) returns
whenever the other one also has high (low) returns. Usually, this is the case for
stocks of companies from the same industry.

3Esch et al. (2005, p. 42).
40Hull (2009, p. 284). We assume 252 trading days per year.
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 [If the covariance is negative, then one asset tends to have high (low) returns when
the other one has low (high) returns. For example, high oil prices negatively affect
airlines. Hence, the covariance between the returns of airline stocks and oil prices
is negative.

¢ If the covariance is zero, then there is no linear relation between the asset returns:
knowledge of the return of one asset will not lead to any knowledge about the
return of the other asset.

A correlation has the following properties*!:
¢ The correlation between two assets lies between —1 and 1:
—1<pa2=1L (1.50)

e If the correlation is positive, then one asset tends to have high (low) returns
whenever the other one also has high (low) returns. If the correlation is 1, then
the relationship between the asset returns is positively linear.

» If the correlation is negative, then one asset tends to have high (low) returns
whenever the other one has low (high) returns. If the correlation is —1, then the
relationship between the asset returns is negatively linear.

e If the correlation is 0, then there is no linear relationship between the asset
returns.

* The greater the absolute value of the correlation, the stronger the association
between the asset returns.

To illustrate the last property of this list, let us first look at Table 1.10.
It lists different absolute values for the correlation coefficient together with the
corresponding strength of the association between the asset returns. The degree of
association is very high for 0.80 and above, and very low for values below 0.20.

Next, we will visualize various correlations by using a scatter plot. A scatter

plot** is a type of mathematical diagram using Cartesian coordinates to display
Table 1.10 Absolute value Absolute Strength of association
of correlation coefﬁciept and value of correlation between asset returns
Ztsrseori:gizlltli(())[fl corresponding 0.80-1.00 Very strong association
0.60-0.79 Strong association
0.40-0.59 Moderate association
0.20-0.39 Weak association
0.00-0.19 Little if any association

Source: Lhabitant (2004, p. 129)

41DeFusco et al. (2004, pp. 207-208).
42 Also called scatter chart, scattergram, scatter diagram or scatter graph.
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Fig. 1.14 Scatter plots for different correlations. Each graph illustrates returns of assets 1 and 2
during some time period [0, '] with 100 subintervals in which the returns are measured. Source:
Own, for illustrative purposes only

values for two variables for a set of data. The data are displayed as a collection
of points, each having the value of one variable determining the position on the
horizontal axis and the value of the other variable determining the position on the
vertical axis.

The scatter plots in Figs. 1.14, 1.15, 1.16, and 1.17 illustrate correlation graphi-
cally. They show examples with two different assets 1 and 2 during some time period
[0, T'] with 100 subintervals where returns

1.2 100
S O
and
1 .2 100
ST R s

are measured. The points
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Fig. 1.15 Scatter plots for different correlations. Each graph illustrates the returns of assets 1 and
2 during some time period [0, 7'] with 100 subintervals in which the returns are measured. Source:
Own, for illustrative purposes only

(rlls rzl)v (rlzv r22)7 ] (rlloo’ rZIOO)

are plotted on the graphs which represent the absolute returns of these assets in the
respective subintervals, for example, (rlso, r250) represents the returns of assets 1 and
2 in the 50th subinterval.

These scatter plots show the typical pictures for different correlations.

* For correlation 1 (—1), the points lie exactly on a line with positive (negative)
slope.

* For £0.95, the points are still close to a line.

e For £0.90 and +0.80, the graphs show a strong relationship between the asset
returns.

* The relationship is weaker for +0.60 and £0.40.

* For £0.20, you can hardly spot any relationship at first sight, and for 0.00, there
is no relationship between the asset returns.
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Fig. 1.16 Scatter plots for different correlations. Each graph illustrates the returns of assets 1 and
2 during some time period [0, 7'] with 100 subintervals in which the returns are measured. Source:
Own, for illustrative purposes only

In Fig. 1.18, we see the scatter plot of the monthly returns of US Airways (LCC)
against Delta (DAL) for the period January 2008—June 2010. Given the monthly
returns
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of US Airways, the graph plots the points
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Fig. 1.17 Scatter plots for different correlations. Each graph illustrates the returns of assets 1 and
2 during some time period [0, 7'] with 100 subintervals in which the returns are measured. Source:

Own, for illustrative purposes only

The correlation, which is calculated below in Eq.(1.66), is 0.789, i.e., the
relationship between the monthly returns of the respective airline stocks is strong.
This is graphically supported by the plot in Fig. 1.18.

Figure 1.19 shows the scatter plot of monthly returns of US Airways (LCC)
against oil for the period January 2008—June 2010. Given the monthly returns
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of oil, the graph plots the points
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Fig. 1.18 Scatter plot of
monthly returns of US
Airways (LCC) against Delta
(DAL) for the period January
2008-June 2010. Source:
Yahoo! Finance

Fig. 1.19 Scatter plot of
monthly returns of US
Airways (LCC) against oil
(Crushing, OK Crude Oil
Futures Contract) for the
period January 2008—June
2010. Sources: Yahoo!
Finance and U.S. Energy
Information Administration
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The correlation, which is calculated below in Eq.(1.68), is —0.435. The plot
shows that the monthly returns of US Airways tend to be negatively affected by oil.

We will now extend our business case with additional data displayed in
Table 1.11. Please note, that we will refer to Table 1.11 again in Chap.2 when
we continue with this business case in the context of regression analysis.

Business Case (cont.)

Let us determine the covariances and correlations between the monthly
returns of the airline stocks Delta (DAL) & US Airways (LCC), and the
monthly returns on crude oil. The calculation is based on the monthly
data from the period January 2008—June 2010 as shown in Table 1.11. To
calculate the different correlations, we have to start with the covariances using
Eq. (1.45). This requires to calculate the arithmetic mean monthly returns first:

(continued)
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Table 1.11 Time series of end-of-month stock values of Delta (NYSE:DAL), US Airways
(NYSE:LCC), both paying no dividends, and oil (Crushing, OK Crude Oil Futures Contract, price
per barrel) in the period January 2008—June 2010, together with the respective monthly returns

Time point Vot ThaL Viee ricc Vo Toi

k| n Month | (inUSD) |(in%) |(inUSD) |(in%) | (inUSD) |(in %)
0 |0 Dec 2007 | 14.89 14.71 95.98

1 1/12 Jan 2008 16.82 12.96 | 13.84 —5.91 91.75 —4.41
2 2/12 Feb 2008 | 13.35 —20.63 | 12.40 —10.40 | 101.84 11.00
3 13/12 Mar 2008 8.60 —35.58 | 8.91 —28.15 | 101.58 —0.26
4 | 4/12 Apr 2008 8.51 —1.05 | 8.59 —3.59 | 113.46 11.70
5 |5/12 May 2008 | 6.15 —27.73 | 3.96 —53.90 | 127.35 12.24
6 6/12 Jun 2008 5.70 —7.32 2.50 —36.87 | 140.00 9.93
7 712 Jul 2008 7.54 32.28 5.06 102.40 |124.08 —11.37
8 8/12 Aug 2008 8.13 7.82 8.49 67.79 | 115.46 —6.95
9 |9/12 Sep 2008 7.45 —8.36 | 6.03 —28.98 | 100.64 —12.84
10 | 10/12 Oct 2008 | 10.98 47.38 |10.14 68.16 | 67.81 —32.62
11 | 11/12 Nov 2008 8.81 —19.76 5.96 —41.22 54.43 —19.73
12 |1 Dec 2008 | 11.46 30.08 7.73 29.70 44.60 —18.06
13 | 13/12 Jan 2009 6.90 —39.79 5.67 —26.65 41.68 —6.55
14 | 14/12 Feb 2009 5.03 —27.10 2.85 —49.74 44.76 7.39
15 | 15/12 Mar 2009 5.63 11.93 2.53 —11.23 | 49.66 10.95
16 | 16/12 Apr 2009 6.17 9.59 3.79 49.80 | 51.12 2.94
17 | 17/12 May 2009 5.81 —5.83 2.58 —31.93 66.31 29.71
18 | 18/12 Jun 2009 5.79 —0.34 2.43 —5.81 69.89 5.40
19 | 19/12 Jul 2009 6.93 19.69 | 2.93 20.58 69.45 —0.63
20 | 20/12 Aug 2009 7.22 4.18 3.40 16.04 | 69.96 0.73
21 |21/12 Sep 2009 8.96 24.10 | 4.70 38.24 | 70.61 0.93
22 | 22/12 Oct 2009 7.14 —20.31 3.06 —34.89 77.00 9.05
23 | 23/12 Nov 2009 8.19 14.71 3.69 20.59 77.28 0.36
24 |2 Dec 2009 | 11.38 38.95 4.84 31.17 79.36 2.69
25 |25/12 Jan 2010 12.23 7.47 5.31 9.71 72.89 —8.15
26 |26/12 Feb 2010 |12.92 5.64 7.33 38.04 | 79.66 9.29
27 | 27/12 Mar 2010 | 14.59 12.93 7.35 0.27 83.76 5.15
28 | 28/12 Apr 2010 | 12.08 —17.20 7.07 —3.81 86.15 2.85
29 |29/12 May 2010 | 13.58 12.42 8.83 24.89 73.97 —14.14
30 | 30/12 Jun 2010 | 11.75 —13.48 | 8.61 —2.49 | 75.63 2.24

Sources: Yahoo! Finance (for DAL and LCC) and U.S. Energy Information Administration (for oil)



1 Risk Measures in Asset Management

(continued)




1.3 Traditional Risk and Risk-Adjusted Return Measures

(continued)




52

1 Risk Measures in Asset Management

30

monthly __ k = 2
%i = |39 Z(V Lcc — T'Lee)
k=1

\/ %{(—4.41 % — (—0.04%))2 + ... + (2.24 % — (—0.04 %))?]

= 0.12133. (1.62)

Using Eq. (1.24), the annualized monthly volatilities are:

obl = V12002 = V12021914 = 0.7591, (1.63)
ol = V120" = J12-0.37816 = 13100, (1.64)
ol = V12-000" = V12.0.12133 = 0.4203. (1.65)
We use Eq. (1.43) to calculate the correlations:
pa. ODAL.LCC 0.7844
= - = 0.789, 1.66
IODAL,LCC OpAL * OLcC 0.7591 - 1.3100 ( )
pa. ODAL,0il —0.1210
- = = —0.379, 1.67
pDAL’Oll OpAL * 0O0il 0.7591 - 0.4203 ( )
p.a. O1CcC,oil —0.2394
. = = = —0.435. 1.68
Precoi = G oo 1.3100 - 0.4203 (1.68)

The correlations indicate that the stock prices of both airlines are strongly
correlated and have a tendency to move together, whereas their correlations
with the oil price are negative, i.e., their stock prices and the oil price tend to
move in opposite directions.

Having demonstrated several applications of our formulas of covariance and

correlation in the business case, we now turn to our hypothetical examples in order

to

show how these values can be easily calculated using Excel® formulas.

Example 7
Table 1.12 shows the consecutive monthly relative returns of two assets A and
B. In this example we assume that the two assets are two portfolios available to
investors as retail funds. The goal is to calculate the covariance and correlation
of these two funds over a given time period of 18 consecutive months.

Using again the column and row notation from Microsoft® Excel®, the first
column is labeled A (month), the second B (monthly performance of fund A)
and the third C (monthly portfolio of fund B). Applying Excel® functions, the
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Table 1.12 Example 7: Covariance and correlation calculation

O |0 |\ N |W N -

DO | ot | ot |t |t |t | e | | e | k| ek
[=REN-RERIEN RN WEV, RSN RUS RN SRR e

21

A

Month

07/2012
08/2012
09/2012
10/2012
1172012
12/2012
01/2013
02/2013
03/2013
04/2013
05/2013
06/2013
07/2013
08/2013
09/2013
10/2013
11/2013
12/2013

B
Monthly performance
of fund A
6.10 %
5.50 %
4.70 %
—5.00 %
—5.10%
6.70 %
6.03 %
—3.23%
5.12%
521 %
—4.10%
—4.50 %
1.75 %
371 %
—4.20 %
4.26 %
—4.00 %
5.10%

monthly __
A.B -

PAB =

Source: Own, for illustrative purposes only
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C
Monthly performance
of fund B
7.71 %
6.38 %
4.83 %
—7.70 %
—4.90 %
532%
6.48 %
—3.95%
3.80 %
5.20%
—3.00%
—2.01%
—3.54 %
4.90 %
—1.62%
6.05 %
—4.10%
6.20 %
0.00224
0.9261

covariance and the correlation of funds A and B over this time period can be
calculated as:

» Covariance of the monthly percentage fund returns o

0.00224

monihly in cell C20:

A,B

COVARIANCE.S(B2: B19,C2:C19)

* Correlation of the monthly percentage fund returns p’Zf’gthly in cell C21:
CORREL(B2: B19,C2:C19)

0.9261

This concept will be needed in the next section where beta is introduced as
a measure of the systematic risk of a portfolio (or single security) versus an index.

End of Example 7

1.3.5 Beta

A key principle of MPT is the idea of diversification, i.e., the reduction of the overall
portfolio volatility through the combination of securities in a portfolio. As seen
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Fig. 1.20 Systematic and
unsystematic risk in a
portfolio in relation to the
number of portfolio
constituents. Source: Own,
for illustrative purposes only

Portfolio volatility

Unsystematic risk

Systematic risk

Average portfolio standard deviation

Number of stocks in portfolio

above, the critical component when constructing this portfolio is the covariance of
all its securities. This idea is illustrated in Fig. 1.20.

Figure 1.20 distinguishes between systematic and unsystematic risk. Systematic
risk is the inherent risk in the market which cannot be diversified away, hence it
is systematic. The second risk component of the portfolio volatility is unsystematic
risk which is the unique risk of the portfolio. As this figure shows, the effect of
diversification reduces unsystematic risk. Systematic risk is called beta (B).

Figure 1.21 illustrates the idea of beta. In this diagram, the horizontal axis shows
the 250 daily relative returns (not all data points are shown) of a benchmark for
a portfolio. The corresponding 250 daily returns of the portfolio are displayed on
the vertical axis. The daily returns of the benchmark and the portfolio are denoted

. daily daily . . . . . .
with rp,~ and rp,~, respectively. This diagram also applies if the portfolio only
comprises one single security. In such a situation, beta is the security’s beta versus
the index. Now, a simple linear regression is run (for example, using Microsoft®
Excel®) which yields a linear regression line shown in Fig. 1.21. The regression
outpdutl shows two parameters which determine the regression line as a function
of rg™:

* The slope of the regression line which is the systematic risk measure ,Bﬁ;ﬁﬂy.

¢ The value y}l]‘fﬂy where the regression line intersects with the vertical axis.

A detailed introduction to linear regression will be presented in Sect. 2.2 in order
to explain the tests of the capital asset pricing model (CAPM). However, regression
is not needed in the calculation of beta as we will see in the following definition.

Definition: Beta

Bpr measures the interaction of a portfolio with an index as a benchmark;, i.e.,
how the portfolio return changes depending on the returns of the benchmark.
To measure this interaction mathematically, we again split time interval [0, T']

(continued)
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,,,;;}_'LI:U
Regression line:

daily _ _ daily | pdaily _daily °
pf = Vpy Jfﬁpj Bm ° .

daily
Bm

Fig. 1.21 Description of the regression’s beta. See also Fig.2.3 on page 106. Parameters yﬁ;il"

daily . . .
and B P}" » are the regression parameters (real values). Source: Own, for illustrative purposes only

into N equidistant subintervals. These are usually days or months. Let further

12 N
Tpps Tops -+ s Top

be the subperiod percentage returns of the portfolio and

1 2 N

Tgms VB> -+ » T'Bm
the subperiod percentage returns of the benchmark. Depending on the chosen
subperiods we get the respective beta: daily returns as input lead to a daily
beta, monthly returns lead to a monthly beta. Using the monthly covariance

2 ,monthly . . 2,monthly
Oprpm ~ Of portfolio and benchmark as well as the monthly variance oy,

of the benchmark, the monthly beta can be calculated as*}

monthly

monthly __ 7 Pf.Bm
ﬂPf - UZ,monthly (1.69)

Bm

with N representing the number of months in [0, 7]. Formula (1.69) can be
easily modified for daily returns as input. Then, N is the number of days in
[0,7T]:

daily

. o
daily __ "~ Pf.Bm
Ber™ = = aay (1.70)
OBm

Note that the use of daily data is more common in practice.

43Esch et al. (2005, p-91).
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1.3.5.1 Interpretation
By using Fig. 1.21 and our notation from above, it is easy to interpret beta. The
regression equation for the regression line in Fig. 1.21 is

rg;ily — yg;ily + ,Bi;ily . rgaily. (171)

To be precise: In statistics, the left term rg;ﬂy is called estimator. If we interpret
this term as a scalar parameter we would have to include an error term on the right
hand side of the equation.

Equation (1.71) leads to the interpretation of beta as a sensitivity measure. If the
benchmark value changes by rgf:y in 1 day, then the portfolio value on that day
changes by

daily daily
IBPf “Tgm -

For example, if the portfolio beta for daily data is 0.8 and the benchmark return
on a certain day is —2.4 %, then the expected percentage return of the portfolio
on that day is 0.8 - (—2.4) = —1.92, i.e., the portfolio is less sensitive than the
benchmark.

Obviously, a beta below one is advantageous in falling markets and a beta of
above one is advantageous in rising markets. A beta of one indicates that the
portfolio return is in line with the benchmark return. The choice of beta, based on
the portfolio manager’s expectations on the future development of the benchmark, is
often referred to as market timing. However, smart market timing is a very difficult
task.

Example 8
Table 1.13 shows the monthly percentage returns of fund A and its benchmark.
The goal is to calculate the portfolio beta using Eq. (1.70).

A beta of 0.9345 as calculated in Table 1.13 means that the monthly
percentage returns of the portfolio are highly correlated with the respective
benchmark returns. Simply speaking, a 1 % return of the benchmark will lead
(on average) to a 0.9345 % return of the portfolio.

As usual, the first column is column A (month). In column B and C the
monthly performance of the portfolio and the benchmark are displayed. Using
Excel®, the calculation of beta is easy if the covariance and the correlation are
calculated up-front as done in the previous section:

« Covariance of the monthly portfolio and benchmark returns Ug{’l;'zly in cell

C21:

0.00226 = COVARIANCE.S(B2: B19,C2:C19)

* Monthly benchmark volatility oo™ in cell C23:

491% = STDEV.S(C2:C19)
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Table 1.13 Example 8: Calculation of the portfolio beta

A B C
Monthly benchmark

1 Month Monthly portfolio performance
2 07/2012 6.10 % 6.01 %
3 08/2012 5.50 % 5.45 %
4 0972012 4.70 % 4.63 %
5 10/2012 —5.00 % —6.99 %
6 1172012 —5.10% —4.16 %
7 12/2012 6.70 % 7.07 %
8 01/2013 6.03 % 5.97 %
9 02/2013 —3.23% —2.95%
10 03/2013 5.12% 4.66 %
11 04/2013 5.21% 4.91 %
12 05/2013 —4.10 % —4.01 %
13 06/2013 —4.50 % —3.87%
14 07/2013 1.75 % —2.95%
15 08/2013 3.71 % 4.52 %
16 09/2013 —4.20% —3.93%
17 10/2013 4.26 % 4.99 %
18 11/2013 —4.00 % —3.84 %
19 12/2013 5.10 % 4.99 %
21 Tpam = 0.00226
23 oot — 4.91%
25 B = 0.9345

Source: Own, for illustrative purposes only

» Monthly portfolio beta ,Bgfmhly vs. benchmark in cell C25:

0.9345 = COVARIANCE.S(B2 : B19,C2: C19)/STDEV.S(C2 : C19)"2
End of Example 8

1.3.5.2 Note

B is often understood as a sort of correlation. But although the formulas look the
same, 8 can have values that are less than —1 and greater than 1. For example, a
beta of two states a higher sensitivity to the market, i.e., on average the portfolio
earns a return twice as high as the market return.

In the long run, the beta of a portfolio or single security versus a comparable
index is positive. However, there may be periods with negative beta. A prominent
example is Volkswagen in 2008, when it was engaged in take-over and merger
discussions with Porsche. Although the German stock index DAX showed primarily
negative returns in 2008, the Volkswagen stock increased, resulting in a negative
beta over the time period October 23, 2007-October 24, 2008, see Fig. 1.22.
However, if the time period only changes slightly like in Fig. 1.23, the stock beta
is not negative any more.
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daily

Fig. 1.22 Example of a o
negative stock beta over the

time period October 23,

2007-October 24, 2008.

Source: Bloomberg (Tickers:

VOW for Volkswagen and
DAX for DAX Index)
Regression line:
ret? = 0.00126 — 0.09719 - Y
Fig. 1.23 Example of a rdaily

positive stock beta over the
time period November 1,
2007—October 7, 2008.
Source: Bloomberg (Tickers:
VOW for Volkswagen and
DAX for DAX Index)

daily
DAX

Regression line:

P 0.00217 + 0.13130 - 55

1.3.5.3 Conclusion

Beta is an important risk measure for assessing the performance of a portfolio
versus the market represented by an index. The value of beta depends on the
chosen subperiod length, for example, daily or monthly return data. As seen in the
Volkswagen example, the value of beta is very sensitive to the chosen historical time
period. However, if a security reacts differently in up and down markets, this cannot
be captured by beta. For this, we would need to look at a more specialized concept
of beta, the bull and bear market beta.

1.3.6 Bull and Bear Market Beta

If beta is only measured in bull markets the value will be different than when
calculated in bear markets for the same security.** This observation lead to the
concept of the bull and bear market beta whose importance is shown by the fact that
investment houses regularly publish separate betas over bull and bear markets for a
range of securities to show differing levels of upside potential and downside risk.

4For more information see, for example, Woodward and Anderson (2009).
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Definition: Bull and Bear Market Beta
Let us split time interval [0, 7] into N equidistant subintervals which are
usually days or months. Let further

1 2 N
Tpps Tpps -+ s Tpf
be the subperiod percentage returns of the portfolio and

Toos Toms =+ s Thn
the subperiod percentage returns of the benchmark. Using the notation from
above, ™! Bp; and *“*" Bp; can mathematically be calculated in a similar way
as the overall beta 8p;. However, the overall covariance and volatility have to
be replaced with conditional measures.

For this let N”/ be the number of subperiods in [0, 7] with a positive
benchmark return and N%¢“" the number of subperiods in [0, 7'] with a zero or
negative benchmark return. Then, we obviously have N?/ 4+ Nber = N

Covariance "opsp,, between the portfolio and the benchmark in case
of bull markets is then calculated using Eq. (1.45) but applying only N
subintervals with a positive benchmark return.

Similarly, covariance be‘"apﬁ pm between the portfolio and the benchmark
in case of bear markets is calculated using Eq. (1.45) but applying only N ?¢"
subintervals with a zero or negative benchmark return.

As a special case we get the bull and bear variances for bull and bear
markets:

bull _2 __ bull bear _2 __ bear
Opm = OBm.Bm and Opm = OBm.Bm- (1.72)

The bull and bear market beta can be calculated as

bear OPfBm

bear 2
oBm

bull
“CoprBm

bull/ng — W and bearﬁpf — (173)
Bm

These definitions can be done using daily subintervals or monthly subintervals.
We then get

bull _daily bull _monthly
OprBm and OpfBm

as the bull market covariance,

bear _daily bear _monthly
o-Pf. Bm and 0Pf,Bm

as the bear market covariance,

bull Gz,daily

bull _2,monthly
Bm o

and B
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as the bull market variance,

bear _2.daily bear _2,monthly
Opm and Opm

as the bear market variance,

bull IBdaily

bull gmonthly
Pf and B

Pf
as the bull market beta and

bear ﬁdaily bear gmonthly
and B .
Pf Pf

as the bear market beta.

1.3.6.1 Interpretation

While Spr measures the sensitivity of a portfolio to its benchmark over all N
subintervals in time period [0, T], the bull market beta */! 8p; is more specific and
considers only subintervals with a positive benchmark return. On the other hand,
the bear market beta hearﬂpf measures this sensibility relative to subintervals with
a zero or negative benchmark performance. The interpretation of the bear-beta and
bull-beta is, therefore, straightforward:

o If ”"”’ﬂpf > 1, then the portfolio return drops faster than the benchmark in a
downward trending market.

o If(Q < bear Bpr < 1, then the portfolio return drops, but less than the benchmark
in a declining market.

o If hearﬂpf < 0, then the performance of the asset rises, if the benchmark’s
performance drops.

Therefore, in a bear market, the best is to have a negative bear beta: the portfolio
wins even when the benchmark loses. The interpretation of the bull market beta
bull e is as follows:

o If P8y, > 1, then the portfolio return rises faster than the benchmark in an
upward trending market.

o IfQ < bul Bpr < 1, then the portfolio return rises, but less than the benchmark in
a rising market.

o If%IBp, < 0, then the performance of the portfolio drops, if the benchmark rises.

Obviously, it is advantageous to have a bull beta above 1 in rising markets. In
combination, an ideal portfolio has a below 1 or, even better, negative bear beta and
a rather high bull beta (at a minimum above 1).
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Example 9

The following example analyzes a portfolio versus its benchmark over a period of
18 months, i.e., T = 1.5 years and N = 18 months. The monthly performance
data of portfolio and benchmark are provided in Table 1.14 on page 62 which
displays the same performance figures shown in Table 1.13 for Example 8. To
calculate the bull and bear market beta, new columns D to G were added. In
these columns, an Excel® IF-function is used to obtain the positive and negative
values of the benchmark returns only.

* Positive monthly benchmark return rp"* in cell D2:
601% = IF(C2>0,C2,)

« Negative monthly benchmark return g in cell F2:
= IF(C2<0,C2,”)

» Monthly portfolio return r}’,;f’mhly, if rp™" is positive, in cell E2:

6.10% = IF(D2 <> *",B2,*")

* Monthly portfolio return r;ff”"’hly , if oy

= [F(F2 <>‘",B2,”)

is negative, in cell G2:

. thly .. .
* Bull market covariance "oy’ ™ for positive benchmark returns in cell D20:

0.000064 = COVARIANCE.S(D2: D19, E2: E19)

bear

. thly . .
* Bear market covariance "oy, for negative benchmark returns in cell

F20:
0.000146 = COVARIANCE.S(F2: F19,G2:G19)

« Bull market variance /o ”""" for positive benchmark returns in cell D21
0.000066 = VAR.S(D2: D19)

bear

. 2 monthly . .
* Bear market variance "o, """ for negative benchmark returns in cell F21:

0.00159 = VAR.S(F2: F19)

Then, the bull and bear market beta can be calculated via Excel® as follows:
 Monthly portfolio bull market beta ?*/! ,Bgfmhly in cell D22:

0.9726 = D20/D21
 Monthly portfolio bear market beta ?¢4" ,B}’,;ﬁmthly in cell F22:

0.9188 = F20/F21
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All calculation results are provided in Table 1.14. As can be seen in cell
D22, the bull market beta stands at 0.9726, i.e., if the benchmark increases by
1 %, the portfolio, on average, increases only by 0.9726 %. The bear market
beta of 0.9191 indicates that when the benchmark decreases by 1 %, the fund
decreases only by 0.9191 %. Such a portfolio would behave nicely during up-
and downward movements of the market: the bull beta should be much higher
than the bear beta which is here the case. Ideally, the bull beta should be higher
than 1 and the bear beta should be close to 0 or even negative, but the latter is
difficult to achieve with long-only portfolios.

End of Example 9

1.3.6.2 Conclusion

The bull and bear beta are plausible concepts that build on the general beta concept.
Investors can more thoroughly analyze a portfolio’s behavior compared to the
market development. Therefore, it makes sense to not only look at the overall beta
but also to consider the bull and bear market beta.

1.3.7 Sharpe Ratio

In order to analyze a portfolio we have presented various return and risk measures.
However, how do you compare two portfolios with different risks? This calls for
adjusting return by risk: The portfolio’s efficiency has to be measured, i.e., the
achieved return per unit of risk. Mathematically, this means that we divide a return
measure by a corresponding risk measure.

Definition: Sharpe Ratio

The Sharpe ratio or, as it is also sometimes called, the reward-to-variability
ratio is the measure of a portfolio’s percentage return per unit of absolute
risk (volatility), i.e., a risk-adjusted return ratio. It applies to a portfolio and
therefore, especially also to a single asset.

The portfolio return can be expressed in two ways. It may be indicated by
simply using the percentage return of the portfolio alone, but it can also be
formulated using the portfolio’s percentage return over a risk-free interest rate,
the so-called risk premium.

To formally define the Sharpe ratio SR, let [0, 7’| be the analyzed historical
time period with 77 > 1 year. A time period of this length is required, since
the Sharpe ratio is based on annualized data. There are two definitions for the
Sharpe ratio of the portfolio and the benchmark®:

(continued)

4Lhabitant (2004, p. 65).
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p.a.
;
SRy = SR = (1.74)
opf
or
p.a. p.a.
et —r
SRy = SRb" = L7 (1.75)
ap;
Hereby:
rp; = annualized return of the portfolio,
ré’ga' = annual risk-free interest rate,
opi = annualized volatility of the portfolio.

1.3.7.1 Notes

* The Sharpe ratio is a risk-adjusted return measure in the absolute world, i.e., no
benchmark is considered.*® It was developed by William Sharpe*” in 1966.%3

* The definition using the risk premium is a key part of modern portfolio theory
when deriving the efficient frontier and the CAPM as will be done in Chap. 2. But
this definition of the Sharpe ratio requires the specification of the risk-free rate.
In order to avoid this, the first definition is often used in risk and performance
measurement practice.

* Also for portfolios which are actively managed against a benchmark it makes
sense to calculate the Sharpe ratio. In this situation, Eqgs. (1.74) and (1.75) are
applied and the two Sharpe ratios are compared. In active portfolio management
one would expect the Sharpe ratio of the portfolio to be higher than the
benchmark’s Sharpe ratio over the same time period using the same subintervals.

1.3.7.2 Interpretation

If we analyze a portfolio that is managed against a benchmark, it does not make
sense to only look at the portfolio’s Sharpe ratio. In this situation we have to compare
the Sharpe ratios of the portfolio and the benchmark. For passively managed

4Tf we include a benchmark, the risk-adjusted return measure is a relative measure versus a
benchmark called information ratio. This concept is explained in Sect. 1.3.8.

4TWilliam F. Sharpe was born on June 16, 1934, in Boston, MA/USA. He is the STANCO 25
Professor of Finance, Emeritus at Stanford University’s Graduate School of Business and the
winner of the 1990 Nobel Memorial Prize in Economic Sciences. Sharpe was one of the originators
of the capital asset pricing model (CAPM) and created the Sharpe ratio for risk-adjusted investment
performance analysis. He contributed to the development of the binomial method for the valuation
of options, the gradient method for asset allocation optimization, and returns-based style analysis
for evaluating the style and performance of investment funds.

“8Sharpe (1966, p. 123).
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Table 1.15 Example 10: Calculation of the Sharpe ratio for portfolio and benchmark

A B C
Monthly portfolio Monthly benchmark

1 Month performance performance
2 07/2012 6.10 % 6.01 %
3 08/2012 5.50 % 5.45 %
4 09/2012 4.70 % 4.63 %
5 10/2012 —5.00 % —6.99 %
6 11/2012 —5.10% —4.16 %
7 12/2012 6.70 % 7.07 %
8 01/2013 6.03 % 5.97 %
9 02/2013 —3.23% —2.95%
10 03/2013 5.12% 4.66 %
11 04/2013 5.21% 491 %
12 05/2013 —4.10 % —4.01 %
13 06/2013 —4.50 % —3.87%
14 07/2013 1.75 % —2.95%
15 08/2013 3.71 % 4.52%
16 09/2013 —4.20 % —3.93%
17 10/2013 4.26 % 4.99 %
18 11/2013 —4.00 % —3.84%
19 12/2013 5.10% 4.99 %
20 Annual. return 15.79 % 13.02 %
21 Annual. volatility 16.49 % 17.02 %
22 Sharpe ratio 0.96 0.76

Source: Own, for illustrative purposes only

portfolios we expect these two to be (almost) identical. For actively managed
portfolios we expect the portfolio’s Sharpe ratio to be higher.

If we look at an absolute return portfolio like a hedge fund, the Sharpe ratio has
explanatory power on a stand-alone basis: the higher its value, the better.

Example 10
This example, displayed in Table 1.15, shows how the Sharpe ratio can be
calculated for a portfolio which is managed against a benchmark. Column A
lists the month, column B the monthly portfolio return, column C the monthly
benchmark return. To calculate the Sharpe ratio, we choose the formula without
the risk-free rate to avoid additional calculations which are unnecessary for the
interpretation. Further, T = 1.5 years and N = 18 months.

The lower part of the table shows the performance, risk and risk-adjusted
performance of the portfolio and benchmark. The Excel® calculations behind
these results are as follows:

* Annualized portfolio return 5" in cell B20:
1579% = {PRODUCT(1 + (B2 : B19))"(12/18) — 1}
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¢ Annualized benchmark return rgl;f' in cell C20:
13.02% = {PRODUCT(1+ (C2:C19))"(12/18)— 1}

* Annualized portfolio volatility o5 in cell B21:

16.49% = SQRT(12) * STDEV.S(B2 : B19)

* Annualized benchmark volatility o in cell C21:
17.02% = SORT(12) % STDEV.S(C2 : C19)

* Sharpe ratio of portfolio SRp in cell B22:
0.96 = B20/B21

* Sharpe ratio of benchmark SR, in cell C22:
0.76 = C20/C21

The portfolio has a higher Sharpe ratio than the benchmark, i.e., for one unit
of risk (volatility) the investor in the portfolio receives a higher additional return
than when passively investing in the index.

End of Example 10

1.3.7.3 Conclusion
The Sharpe ratio is a key ratio when evaluating a portfolio. It is an absolute risk-
adjusted return measure as it does not look at portfolio returns versus a benchmark,
but rather at the portfolio returns by themselves. In order to calculate the Sharpe
ratio, either the portfolio’s percentage return or the return premium (return minus
risk-free rate) can be used. The associated risk is always volatility. In practice, the
risk-free rate should be omitted to avoid questions on the choice of the risk-free
rate or its computation. For benchmark-oriented portfolios, the Sharpe ratio should
be calculated both for the portfolio and the benchmark in order to find out if the
portfolio or the benchmark delivers a better risk-adjusted return in absolute terms.
However, what risk-adjusted return measure would we need to analyze a portfolio
versus the benchmark performance? In principle, a relative risk-adjusted return
measure is very similar to the absolute risk-adjusted return measure Sharpe ratio.
We only need to replace the absolute return by the relative return (alpha) and the
absolute risk measure (volatility) by the relative risk measure (tracking error). This
new risk-adjusted return measure is called information ratio.

1.3.8 Information Ratio
Similar to Sect. 1.3.7 where we defined the Sharpe ratio as the risk-adjusted return

measure in an absolute (i.e., benchmark-agnostic) world, we now introduce the
information ratio as its relative counterpart.
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Definition: Information Ratio

Let [0,7] with T > 1 year be the analyzed historical time period. The
information ratio /R measures the annualized relative return (alpha) of a
portfolio generated per unit of annualized relative risk (tracking error) for
a portfolio that is managed against a benchmark*’:

ara rBC e
= pa. — —
IR = IR?* = TEre = Tpre (1.76)
Hereby:
rp = annualized portfolio return using data
from time period [0, 7],
rp" = annualized benchmark return using data
from time period [0, 7],
aP“ = annualized excess return of portfolio over its benchmark,
using data from time period [0, 7],
TEP“ = annualized tracking error of the portfolio vs. its benchmark,

using data from time period [0, T°].

Ideally, a high information ratio is achieved by having a high positive alpha
and a low tracking error.

1.3.8.1 Note

Since at least 1 year of performance data is needed to calculate tracking error, the
calculation of the information ratio for time periods below 1 year is meaningless.
When using monthly return data, ideally 3 years of data should be available to
get a meaningful value. Tracking error and alpha have to be annualized. For the
calculation of the information ratio it is important to use the same underlying return
data, especially, with the same data frequency (for example, monthly or daily).

1.3.8.2 Interpretation

For example, a typical actively managed equity fund, the information ratio can
(based on practical experience) broadly be categorized in the following way, if the
underlying time series is sufficiently long (ideally five or more years):

* IR = 1.5 and higher: top portfolio
* IR ~ 0.8 — I: very good portfolio
e IR ~ 0.5: average portfolio

“9Lhabitant (2004, p. 67).
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e IR ~ 0.2: poor portfolio
* IR negative: bad portfolio since it has a negative alpha

This interpretation is only valid using gross-of-fee return data, (i.e., without
considering fees for management, which can be substantial, for example, for
portfolios of emerging markets equity). Therefore, it would be more precise to
talk about a gross-of-fee information ratio. In contrast, if the fees were already
subtracted from the return (net-of-fee), the interpretation for such a net-of-fee
information ratio would look slightly different and depend on the charged fees. The
information ratio is the risk-adjusted return measure for actively managed portfolios
irrespective of if the investment approach is fundamental, quantitative or a hybrid of
both.

Example 11

Table 1.16 is an extension of Table 1.7 to calculate the information ratio. Use the
following Excel® formulas to obtain the information ratio:

Table 1.16 Example 11: Calculation of a portfolio’s information ratio

A B C D
Monthly portfolio Monthly benchmark Monthly alpha

1 Month performance (%) performance (%) (%)

2 07/2012 6.10 % 6.01 % 0.09 %
3 08/2012 5.50 % 5.45 % 0.05 %
4 09/2012 4.70 % 4.63 % 0.07 %
5 1072012 —5.00 % —6.99 % 1.99 %
6 11/2012 —5.10% —4.16 % —0.94 %
7 12/2012 6.70 % 7.07 % —0.37 %
8 01/2013 6.03 % 5.97 % 0.06 %
9 02/2013 —3.23% —2.95% —0.28 %
10 03/2013 5.12% 4.66 % 0.46 %
11 04/2013 521% 4.91 % 0.30 %
12 05/2013 —4.10% —4.01 % —0.09 %
13 06/2013 —4.50 % —3.87 % —0.63 %
14 07/2013 1.75 % —2.95% 4.70 %
15 08/2013 3.71% 4.52 % —0.81%
16 09/2013 —4.20 % —3.93 % —0.27 %
17 10/2013 4.26 % 4.99 % —0.73 %
18 11/2013 —4.00 % —3.84 % —0.16 %
19 12/2013 5.10% 4.99 % 0.11%
20 TE™"hY = 1.29 %
21 TEP¢ = 4.48 %
22 r,ff'"' = 15.79 % rpt = 13.02 %
23 IR = 0.62

Source: Own, for illustrative purposes only
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* Annualized portfolio return r,f];a' in cell B22:
1579% = {(PRODUCT(1+ B2: B19))"(12/18) — 1}

« Annualized benchmark return rj, ¢ in cell D22:
13.02% = {(PRODUCT(1 + C2: C19)(12/18) — 1}

* Monthly tracking error TE™"" in cell D20:
1.29% = STDEV.S(D2: D19)

* Annualized tracking error TEP** in cell D21
4.48% = SQRT(12) «+ STDEV.S(D2: D19)

* Information ratio /R of the portfolio in cell B23:
0.62 = (B22—-D22)/D21

An information ratio of 0.62 is rather average. However, a meaningful inter-
pretation of this value is difficult as only 18 months of performance data are
available.

End of Example 11

1.3.8.3 Conclusion

The information ratio is used to evaluate the added value (alpha) of an actively
managed portfolio and, thereby, the quality of its portfolio manager on a risk-
adjusted basis. The higher the information ratio, the better. In the long run, an
information ratio of 1 is very good: It indicates that for each additional percentage
of tracking error the active manager can generate an additional percentage point of
alpha.

1.3.9 Treynor Ratio

The final traditional risk-adjusted return measure that will be presented here is
the Treynor ratio introduced by Jack Treynor™® in 1985 as the reward-to-volatility
ratio.>' Tt is based on the differentiation of risk (volatility) into systematic and
unsystematic risk. This idea was already presented in Sect. 1.3.5 and graphically
shown in Fig. 1.20. The key question here is: why use the overall risk as a risk
measure for calculating a risk-adjusted return, when part of this overall risk is the

30Tack Treynor was born 1930 and is a U.S. financial engineer and portfolio manager. He studied
mathematics at Haverford College and completed the MBA program at Harvard Business School
1955. In 2007, the International Association of Financial Engineers (IAFE) named Treynor as the
2007 IAFE/SunGard Financial Engineer of the Year (FEOY), recognizing him for his preeminent
contributions to financial theory and practice, particularly the essence of the CAPM.

S1Torion (2001, p. 395).
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systematic risk of the index? If volatility is used as the only risk measure, systematic
and unsystematic risk are mixed together, and the portfolio’s beta is hidden.

While the Sharpe ratio uses systematic and unsystematic (idiosyncratic) risk
together in the form of volatility as the risk measure, the Treynor ratio uses the
systematic risk component of a portfolio.

Definition: Treynor Ratio

The definition of the Treynor ratio 7R is similar to the definition of the Sharpe
ratio in Eq. (1.74). However, the Treynor ratio uses beta as risk measure. To
formally define the Treynor ratio, let [0, '] be the analyzed historical time
period with T > 1 year. Then?:

r pa. r p.a.
TR = TRM = L1 (1.77)
Brs
Hereby:
r}ff'“' = annualized return of the portfolio,
r,fc'a' = annual risk-free interest rate,
ﬁé’f'”' = beta of the portfolio versus benchmark.

1.3.9.1 Interpretation
The Treynor ratio measures the excess return of a portfolio over the risk-free interest
rate versus the engaged systematic risk measured by the portfolio beta versus the
index. Therefore, the Treynor ratio is a symmetrical and relative risk-adjusted return
measure. It shows how much excess return over the risk-free rate the portfolio
manager can generate per unit of beta.

Equation (1.77) of the Treynor ratio can also be used for the benchmark instead
of the portfolio. In this case the different Treynor ratios would be indicated by a
subscript. However, in this case the benchmark beta is 1 and the return difference
is simply the benchmark return minus the risk-free rate. The latter is known as
the equity risk premium which plays a significant role in the models presented in
Chap. 2.

Example 12
Table 1.17 shows various ratios for two portfolios A and B managed versus a
benchmark. The data of portfolio A and the benchmark are the data used in the

S2Lhabitant (2004, p. 75).
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Table 1.17 Example 12: Calculation of Treynor ratio and comparison, rr'}mmmy =02%

A B C D
Monthly Monthly Monthly
performance performance performance
1 Month of portfolio A of portfolio B of benchmark
2 07/2012 6.10 % 7.71 % 6.01 %
3 08/2012 5.50 % 6.38 % 5.45 %
4 09/2012 4.70 % 4.83 % 4.63 %
5 10/2012 —5.00 % —7.70 % —6.99 %
6 11/2012 —5.10% —4.90 % 4.16 %
7 12/2012 6.70 % 5.32% 7.07 %
8 01/2013 6.03 % 6.48 % 5.97 %
9 02/2013 —3.23% —3.95% —2.95 %
10 03/2013 512 % 3.80 % 4.66 %
11 04/2013 5.21% 5.20% 4.91 %
12 05/2013 —4.10 % —3.00 % —4.01 %
13 06/2013 —4.50 % —2.01 % —3.87 %
14 07/2013 1.75 % —3.54 % —2.95 %
15 08/2013 3.71 % 4.90 % 4.52 %
16 09/2013 —4.20 % —1.62 % —3.93%
17 10/2013 4.26 % 6.05 % 4.99 %
18 11/2013 —4.00 % —4.10 % —3.84 %
19 12/2013 5.10% 6.20 % 4.99 %
20 Annualized return 15.79 % 17.11 % 13.02 %
21 Annualized volatility 16.49 % 17.63 % 17.02 %
22 Beta 0.93 1.01 1
23 Sharpe ratio 0.96 0.97 0.76
24 Treynor ratio 0.14 0.15 0.11

Source: Own, for illustrative purposes only

previous tables. Looking at the Sharpe ratio and the absolute returns, portfolio
B looks better than portfolio A. The Treynor ratio which is slightly higher for
portfolio B than portfolio A supports this assessment, but portfolio B contains
more systematic risk than portfolio A.

Below we show the calculations needed to obtain the results in Table 1.17:

* Annualized return ri'a' of portfolio A in cell B20:
1579% = {PRODUCT(1 + B2: B19)"(12/18)— 1}

* Annualized return rg'a' of portfolio B in cell C20:

17.11% = {PRODUCT(1 4+ C2: C19)*(12/18) — 1}

* Annualized return 7" of the benchmark in cell D20:

13.02% = {PRODUCT(l + D2 : D19)*(12/18) — 1}
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Annualized volatility af; “ of portfolio A in cell B21:
16.49% = SQRT(12) x STDEV.S(B2: B19)

Annualized volatility o3 of portfolio B in cell C21:
17.63% = SORT(12) % STDEV.S(C2 : C19)

Annualized volatility o5 of the benchmark in cell D21:

17.02% = SQRT(12) x STDEV.S(D2 : D19)

Beta /""" of portfolio A versus benchmark in cell B22:

0.93 = COVARIANCE.S(B2: B19, D2 : D19)/VAR.S(D2 : D19))

Beta """ of portfolio B versus benchmark in cell C22:

1.01 = COVARIANCE.S(C2:C19,D2: D19)/VAR.S(D2 : D19))

Beta 52" of the benchmark versus the benchmark in cell D22:

1 = COVARIANCE.S(D2: D19, D2 : D19)/VAR.S(D2 : D19))

Sharpe ratio SR4 of portfolio A in cell B23:
0.96 = B20/B21

Sharpe ratio SR of portfolio B in cell C23:
097 = C20/C21

Sharpe ratio SRp,, of the benchmark in cell D23:
0.76 = D20/D21

Treynor ratio TR 4 of portfolio A in cell B24:
0.14 = (B20—((1+0.2%)"12—1))/B22

Treynor ratio TR p of portfolio B in cell C24:
0.15 = (C20—((14+02%)"12—-1))/C22

Treynor ratio TRp,, of the benchmark in cell D24:
0.11 = (D20—((1+0.2%)"12—1))/D22

End of Example 12

1.3.9.2 Note
According to Spremann, in most cases the values of the Treynor ratio range between
—0.3 and +0.5.% Important to note is also that the Treynor ratio can only be

33Spremann (2008, p. 381).
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meaningfully applied to portfolios whose betas are calculated against the same
index.

1.3.9.3 Conclusion

The Treynor ratio is a symmetrical, relative risk-adjusted return measure for the
portfolios managed against a benchmark. It measures the added value per unit of
beta, i.e., per unit of systematic risk. Thereby, the Treynor ratio does not consider
the idiosyncratic risk of a portfolio.

1.4  Advanced Risk and Risk-Adjusted Return Measures

Until now, we have presented the typical risk and risk-adjusted return measures
which are symmetrical measures: they treat a gain and a loss of the same magnitude
in the same way. In addition, a neat interpretation for both of these risk measures
is based on the assumption that the underlying return data are normally distributed.
While this assumption is questionable in general, it became even more dubious when
the most recent financial crisis started in August 2007 with the so-called quant crisis.

In August 2007, over-leveraged hedge funds started to aggressively unwind their
positions and continued to do so through the last few months of 2007. Increased
risk aversion and immediate margin calls led to what might be described as clumsy,
reactionary trading during August. To meet capital requests from liquidations,
traders at these hedge funds had between one and three months, depending on the
notice period of the fund, to structure more sophisticated, non-linear trades to both
mask and hedge the impact and size of the trades. This was evident, to some extent,
in August 2007 and had a highly significant influence on the market and quant asset
managers in general in November 2007.

Hedge funds tried to hide their liquidity redemption needs through carefully
structured trades. This becomes clear from an analysis of the quant equity strategies
that have performed poorly around the world: most of the underperforming strate-
gies were from the developed markets, where hedge funds are prominent. Regions
such as Pacific ex-Japan and the emerging markets, where hedge funds are scarcer,
did not suffer such extremes in relative performance vs. index.

Although quant models of quantitative asset managers vary greatly in terms of
their specific inputs, quant factors probably had some overlap and correlation with
the reactionary trades carried out by hedge funds in August. The large variance
of intra-month alpha in August 2007 shows that liquidity had a significant impact
on excess returns. Whilst not as dramatic, excess returns in November 2007 were
still subject to liquidity pressures: In November, growing concerns over inflationary
risks undermined expectations that Western central banks would cut interest rates in
order to mitigate the impact of the credit crisis and the slowing economic growth.

The crisis, often called subprime crisis, continued in 2008 and deepened with
the default of Lehman Brothers in September 2008. After a strong recovery in
the second, third and fourth quarter of 2009 and good returns in 2010, the crisis
came back in 2011 because of the euro problems. Figure 1.24 shows the changes of
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Fig. 1.24 Daily price development of the MSCI World Index (in black), the MSCI Emerging
Markets Index (in green) and the MSCI Europe Index (in red). All indices are net dividends
reinvested and in USD from December 31, 2007, (base value = 100) to December 31, 2013. Source:
Factset (Tickers: 990100, 891800 and 990500)

various key indices: the MSCI World Equity Index, the MSCI Emerging Markets
Equity Index and the MSCI Europe Index, based on an investment of $100 on
December 31, 2007. Figure 1.25 shows the corresponding drawdown diagrams>*
for the indices displayed in Fig. 1.24.

The extreme movements in 2008 have been called the Great Recession echoing
the Great Depression that started 1929. The crisis entered a new phase when, in
spring 2010, the debt of countries like Greece and the resulting euro crisis took
center stage.”

In the financial markets, movements with high and highest volatility as well as
so-called Black Swan events have occurred frequently since 2008. A Black Swan
is an unexpected event of large magnitude, an extreme outlier which compared to
the normal distribution assumption should not or only rarely occur.’® A common
feature of the equity markets worldwide, be it developed or emerging markets, were
the extremely high volatility levels: market downturns, especially end of 2008 and
early 2009, alternated with strong market upturns, for example, between April and

A drawdown diagram shows the development of an index whereby positive subinterval returns
are only taken into account if the index value is below 1. If a subinterval return is positive while the
index value is already 1, the index value will remain at 1. A drawdown diagram shows the losses
an index suffers and how long it takes to regain these losses and reach the initial investment of 1.

3Portugal, Italy, Ireland, Greece and Spain were often referred to as the PIIGS countries. Common
to all of them were the increasing debt ratios that in many cases already had been high even before
the crisis.

%6See page 77 for more details.
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Fig. 1.25 Corresponding drawdown diagrams of all indices displayed in Fig. 1.24: MSCI World
Index in black, Emerging Markets Index in green and MSCI Europe Index in red. All indices are
net dividends reinvested and in USD from December 31, 2007 to December 31, 2013. Source:
Factset (Tickers: 990100, 891800 and 990500)
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Fig. 1.26 Monthly returns of the MSCI World Index (net dividends reinvested) in USD from
January 2008 to December 2013. Source: Factset (Ticker: 990100)

December 2009. The instability of the markets is visible in Fig. 1.26 which shows
the monthly returns of the MSCI World Index (net dividends reinvested) in USD
from January 2008 to December 2013.

In addition, Fig.1.27 displays the VIX Index which measures the implied
volatility of the S&P 500 Index, covering the same time period from January 1,
2008 to December 31, 2013.

Obviously, the VIX Index increased significantly in the middle of 2008 and
spiked during September 2008 when Lehman Brothers went bankrupt. Thereafter
and over the course of 2009 the implied volatility fell significantly before steeply
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Fig. 1.27 Daily development of the VIX Index from January 1, 2008 to December 31, 2013.
Source: Factset (Ticker: VIX)

Table 1.18 Black Swans: S&P 500 Index
Extreme daily S&P 500 Index

. . Day return (in USD)
returns in recent history
October 19, 1987 —17.13%
October 25, 1987 —8.26 %
April 14, 2000 —6.63 %
August 31, 1998 —6.59 %
October 27, 1997 —6.53 %
January 8, 1997 —5.54 %
October 13, 1989 —5.34 %
September 17, 2001 —5.07 %
October 16, 1987 —4.72 %
September 11, 1986 —4.35%

Source: Bloomberg

rising again early 2010 when it seemed as if the crisis of 2008 would return.
A similar situation could be observed middle of 2011. Thereafter, the VIX Index
returned to pre-Lehman levels as shown in the figure.

Such extreme market movements with corresponding spikes in market-implied
volatility could already be observed in previous crises. Table 1.18 provides an
overview of various extreme daily returns of the S&P 500 Index in the U.S.
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Taleb” calls such events Black Swans>® and described them in detail in Taleb
(2010). In practice, most return distributions are neither normal nor even symmetri-
cal. An even more troublesome feature of real life return distributions are so-called
fat tails. This term describes the fact that extreme positive and extreme negative
returns are much more likely than a normal distribution assumption implies.
Obviously, fat tails on the positive side are not harmful but rather wanted. However,
the trouble stems from fat tails on the negative side. Events like in 2007 and 2008
contributed greatly to fat tails on the left hand side of the return distributions.

The idea of confidence intervals can be used to interpret the extreme market
events cited in Table 1.18. For example, there is a 0.001 % probability of the
outcome of a 60 (standard deviation) event, i.e., it should occur only once in 10,000
trading days (roughly 40 years). However, such events were much more frequent in
the past 40 years, resulting in asymmetrical return distributions.

It is questionable how relevant the dispersion of returns around an average (as
measured by symmetrical risk measures) is from an investor’s standpoint. Indeed,
investors are more averse to negative deviations from the mean value than pleased
with positive ones of the same magnitude. Most only perceive risk as a failure
to achieve a specific goal (for example, achieving a risk-free rate of return or the
benchmark return) or as losing part of the initial investment. This is why we now
need to look for tools that allow to measure, loosely speaking, the left hand side of
the return distribution.

Table 1.19 shows the month-end dates of 60-month market lows and declines
from peak values during previous 59 month-end dates as measured by the CRSP’
value-weighted market index (December 1925-March 2010). Month-end dates of
60-month lows are based on S&P 500 Index values. Declines from peak values are
calculated using the broader value-weighted index provided by the CRSP inclusive
of dividend reinvestment.

Table 1.20 shows the 1- and 5-year market returns following extreme month-
end market lows. The returns are calculated using the value-weighted market index
provided by the CRSP and include dividend reinvestment.

57Nassim N. Taleb (born January 1, 1960, in Amioun, Lebanon) is an essayist, scholar and former
practitioner of mathematical finance. He is best known as the author of the book The Black Swan.
Taleb has pursued three distinct careers. Firstly, he is a bestselling author with about 3 millon copies
sold in over 30 languages. Secondly, he is a university professor in risk engineering, a scholar, an
epistemologist and a philosopher of science. Finally, he is a former senior Wall Street trader, risk
expert, and practitioner of mathematical finance. The Black Swan has been described by The Times
as one of the 12 most influential books since World War II.

38The Black Swan theory or theory of Black Swan events, was developed by Nassim N. Taleb. Tt
explains the disproportionate role of high-impact, hard-to-predict, and rare events that are beyond
the realm of normal expectations in history, science, finance and technology. Unlike the earlier
philosophical Black Swan problem, Taleb’s Black Swan theory refers only to unexpected events
of large magnitude and consequence and their dominant role in history. Such events, considered
extreme outliers, collectively play vastly larger roles than regular occurrences.

SCRSP is the Center for Research in Security Prices at the University of Chicago.
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Table 1.19 Extreme stock market lows

Index decline from peak
Month-end date | CRSP value-weighted | value during previous S&P 500
Episode | (yyyy-mm) market index 59 months (in %) market index
1 1931-09 1.18 —68.30 9.71
1 1931-11 1.16 —68.82 9.50
1 1931-12 1.01 —72.98 8.12
1 1932-01 1.00 —73.27 7.89
1 1932-03 0.94 —74.85 7.31
1 1932-04 0.77 —79.35 5.83
1 1932-05 0.610 —83.64 4.47
1 1932-06 0.607 —83.72 4.43
2 1942-03 1.91 —34.16 8.01
2 1942-04 1.82 —37.00 7.66
3 1970-05 59.80 —29.72 76.55
3 1970-06 56.74 —33.30 72.72
4 1974-08 60.47 —39.53 72.15
4 1974-09 53.84 —46.16 63.54
5 2002-09 1748.88 —44.88 815.29
6 2008-10 2510.65 —37.51 968.75
6 2008-11 2296.74 —42.84 896.24
6 2009-01 2164.36 —46.13 825.88
6 2009-02 1945.84 —51.57 735.09

Source: Reinganum (2010, p. 1)

Table 1.20 One- and five-year market returns following extreme month-end market lows,
calculated using the CRSP value-weighted market index (including dividend payments)

Subsequent 1-year | Subsequent 5-year | Subsequent 5-year
Month-end market return market return market return

Episode | date (yyyy-mm) | (total and in %) (total and in %) (annualized and in %)
1 1932-06 156.35 337.82 34.36

2 1942-04 61.02 151.62 20.27

3 1970-06 44.30 49.12 8.32

4 1974-09 38.72 144.66 19.59

5 2002-09 27.59 123.94 17.50

6 2009-02 58.22 N/A N/A

Source: Reinganum (2010, p. 2)

Table 1.21 shows corrections after initial market rallies that follow extreme
stock market lows. The exact dates of stock market lows are determined using the
value-weighted market index provided by the CRSP. The return advances during
market rallies and return declines in the subsequent corrections include dividend
reinvestment as calculated by the CRSP. The market correction return for episode
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Table 1.21 Corrections after initial market rallies that follow extreme stock market lows,
calculated using the CRSP value-weighted market index (including dividend payments)

Date of market| Initial market, Length of rally Subsequent market| Length of correction

low rally

Episode| (mm/dd/yyyy) | (in %)

1
2
3
4
5

6

07/08/1932 +102.10
04/28/1942 +81.96
07/07/1970 +54.18
10/03/1974 +61.17
10/09/2002 +21.16
03/09/2009 +79.93

Source: Reinganum (2010, p. 3)

in calendar
days
61
442
295
285
49
410

correction
(in %)
—36.15
—10.44
—12.86
—13.56
—13.2
—12.52

in calendar
days
173
138
209
78
104
42

6 is calculated using the S&P 500 Index (without dividend reinvestment) over the
period from April 23, 2010, through June 4, 2010.
All these tables give a feeling for how volatile the market can get and how quickly
a market drawdown can occur. Especially, Table 1.21 already indicates what will be
the topic of Chap.3: the bubble before the crash. Therefore, we need to look at
measures for such negative events. Depending on the definition of negative event
various asymmetrical risk measures can be defined.

1.4.1

Definition: Maximum Absolute Drawdown

The absolute drawdown® measures the cumulative loss of a portfolio that
sustains consecutive negative returns. It is calculated using the absolute
returns of the portfolio. The largest cumulative loss is called the maximum
absolute drawdown MADD.

Example 13

Maximum Absolute Drawdown

Although the maximum absolute drawdown can be defined mathematically,
we omit the mathematical definition here because of its complexity. The idea,
however, can be easily explained with an example. As usual, we split interval
[0, T] into N equidistant subintervals. For the observed time period [0, 7], the
value of T is 1.5 years with N = 18 representing the 18 monthly subintervals.
Figure 1.28 explains the situation graphically, spanning the 18 months from July

0L habitant (2004, pp. 55-56).
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Fig. 1.28 Notation concerning MADD. Source: Own, for illustrative purposes only

Table 1.22 Example 13: Calculation of the maximum absolute drawdown MADD

A B C D
Cumulative return
Monthly portfolio Absolute drawdown in drawdown

1 Month performance (yes/no)? period

2 07/2012 6.10 % No

3 08/2012 5.50 % No

4 09/2012 4.70 % No

5 10/2012 —5.00 % Yes —5.00 %
6 11/2012 —5.10% Yes —9.85%
7 12/2012 6.70 % No

8 01/2013 6.03 % No

9 02/2013 —3.23% Yes —3.23%
10 03/2013 512 % No

11 04/2013 5.21 % No

12 05/2013 —4.10 % Yes —4.10 %
13 06/2013 —4.50 % Yes —8.42 %
14 07/2013 1.75 % No

15 08/2013 3.71 % No

16 09/2013 —4.20 % Yes —4.20 %
17 10/2013 4.26 % No

18 11/2013 —4.00 % Yes —4.00 %
19 12/2013 5.10 % No

20 MADD = —9.85%

Source: Own, for illustrative purposes only

2012 until December 2013. For each of these subintervals we note the absolute
return of a portfolio. The data which are identical with Example 12 above are
listed in Table 1.22 below, together with the calculations.

Figure 1.29 shows that there are five time periods that qualify as drawdown
periods with consecutive negative returns. Such a drawdown period ends when it
is followed by a subperiod (in our case a month) with a positive portfolio return.
A drawdown period can consist of one single subperiod only. The choice of N,
i.e., the choice of the subperiods (daily, weekly, monthly, etc.) plays a critical
role in the calculation of the maximum absolute drawdown.
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Fig. 1.29 Graphical illustration of the monthly returns
illustrative purposes only

Drawdown periods in our example:

06/2013
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Example 13.

* Drawdown period 1: October and November 2012, 2 months

* Drawdown period 2: February 2013, 1 month

* Drawdown period 3: May and June 2013, 2 months
* Drawdown period 4: September 2013, 1 month
* Drawdown period 5: November 2013, 1 month

11/2013
12/2013

Source:
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Own, for

The stated length in this list is the respective drawdown duration. After having
determined the drawdown periods with the consecutive negative absolute returns
we have to calculate the magnitude of the negative returns for each of the five
drawdown periods using the idea of Eq.(1.4) from page 8. This yields the
following results for each of the five drawdown periods in the analyzed time

frame:

* Drawdown period 1: cumulative absolute return of —9.85 %
* Drawdown period 2: cumulative absolute return of —3.23 %
* Drawdown period 3: cumulative absolute return of —8.42 %
* Drawdown period 4: cumulative absolute return of —4.20 %
* Drawdown period 5: cumulative absolute return of —4.00 %

Therefore, the worst drawdown period was the first one spanning October
and November 2012 with a drawdown duration of 2 months and a cumulative
absolute return of —9.85 % which is the MADD. Figure 1.30 shows the same
situation again, displaying the cumulative returns on the vertical axis. This
allows to better spot the time point when the loss of a drawdown period is
recovered. This so-called recovery period is often sought after by investors who
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Fig. 1.30 Graph of the cumulative absolute returns in Example 13 which allows to spot the
drawdown periods and recovery periods in a MADD situation. Source: Own, for illustrative
purposes only

after consecutive losses want to know how long it takes (based on historical
experience) to recover the losses.

As Fig. 1.30 shows, it only took 2 months after the MDD period to recover
all the suffered losses. Table 1.22 below displays the data used in order to create
Figs. 1.29 and 1.30.

The required Excel®-functions for calculating MADD are as follows:

* Occurrence of a drawdown (i.e., negative monthly return) in cell C5:
yes = IF(B5 < 0,’yes”,’no”

¢ Cumulative portfolio return r5¢™ in drawdown period in cell D5:

—5.00% = IF(B5<0,(1+ D4)%(1+ B5)—1,0)

¢  Maximum absolute drawdown MADD in cell D20:
—9.85% = MIN(D2: D19)

End of Example 13

Conclusion

The maximum drawdown is a typical downside risk measure. It looks at consecutive
negative losses and states the worst loss over a historical time period, called
maximum absolute drawdown MADD. Other things being equal, maximum absolute
drawdowns will be greater if the length of the subperiods increases. It is much easier
to have 2 months of consecutive negative monthly returns than having 40 (business)
days of consecutive negative daily returns. Other things being equal, an MADD is
also likely to be greater for longer historical time periods. Therefore, a portfolio with
a longer track record will tend to have a more severe MADD as it will also include
more periods of negative portfolio performance. In consequence, an MADD should
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be given with stating the observed historical time period and the considered time
subperiods. Especially, when calculating the MADD for two different portfolios, it
is mandatory to apply the MADD calculation to the same historical time period and
the same subintervals. Otherwise the two calculated MADDs are not comparable.

1.4.2 Maximum Relative Drawdown

When looking at active portfolio management, however, clients—when evaluating
a portfolio manager—are not interested in the absolute return or risk, but in the
relative return or risk versus the assigned benchmark. They do not care about the
absolute losses discussed above, but focus on the relative losses versus the index,
i.e., on consecutive negative alphas. They simply want to know the worst drawdown
relative to the benchmark and the time the asset manager needed in the past to
recover these consecutive negative alphas.

Definition: Maximum Relative Drawdown

The relative drawdown measures the sustained cumulative relative loss of a
portfolio versus its benchmark, i.e., consecutive negative alphas. The worst of
these relative drawdowns is called maximum relative drawdown MRDD.

In this section, we will use an example—Example 14—which expands Exam-
ple 13 from the previous section by including the benchmark that was already used
in other examples before. Like MADD, the maximum relative drawdown can be
defined mathematically, but we omit the mathematical definition due to complexity.
The idea, however, can again be easily explained when looking at a picture, i.e.,
Fig. 1.31 below.
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Fig. 1.31 Graphical illustration of the monthly excess returns in Example 14. Source: Own, for
illustrative purposes only
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1.4.2.1 Interpretation

We have dealt with MADD by looking at the drawdown of a portfolio alone.
However, if we analyze an active portfolio managed against a benchmark, this
absolute drawdown measure is irrelevant. What has to be analyzed is its relative
counterpart MRDD. This measure provides information about the active asset
manager’s consecutive negative alphas and allows to analyze the asset manager’s
ability to regain positive alphas.

Example 14

Figure 1.31 shows the monthly excess returns of a portfolio versus its benchmark
between July 2012 and December 2013. The data used are identical to Exam-
ple 13 for MADD displayed in Table 1.22. However, we have now added the
benchmark using data provided in Example 12, see Table 1.23. For the observed
time period [0, T'] the value of T is 1.5 years with N = 18 representing the 18
subintervals (here: months).

In Fig. 1.31 we can identify four drawdown periods with consecutive negative
alphas. Such a relative drawdown period ends when it is followed by a subperiod
(in our case a month) with a positive alpha. This especially means that a
drawdown period with consecutive negative alphas can also be one single
subperiod only. It also shows that the choice of N, i.e., the choice of the
subperiods (daily, weekly, monthly, etc.) plays a critical role in the MRDD
calculation. Drawdown periods in our example are:

* Drawdown period 1: November and December 2012, 2 months.
* Drawdown period 2: February 2013, 1 month.

* Drawdown period 3: May and June 2013, 2 months.

* Drawdown period 4: August—-November 2013, 4 months.

The stated length in the list above is the respective drawdown duration. After
having determined the drawdown periods with the consecutive negative alphas
we have to calculate the magnitude of the negative returns for each of the four
drawdown periods. This is shown graphically in Fig. 1.32.

Using the idea of Eq. (1.4) from page 8 we get:

* Drawdown period 1: cumulative relative return of —1.36 %.
* Drawdown period 2: cumulative relative return of —0.28 %.
* Drawdown period 3: cumulative relative return of —0.69 %.
* Drawdown period 4: cumulative relative return of —1.93 %.

Therefore, the worst relative drawdown occurred in period 4 with MRDD =
—1.93 % spanning the 4 months from August to November 2013. The calcula-
tions of the relative drawdowns are shown in Table 1.23 on the next page. The
necessary formulas for the cells D2 to H2 are:
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Fig. 1.32 Graph of the cumulative relative returns in Example 14 with drawdown periods and
recovery periods. Source: Own, for illustrative purposes only

* Monthly portfolio alpha o in cell D6:
—094% = B6—-C6

* Occurrence of a relative drawdown (i.e., negative monthly alpha) in cell E6:
yes = IF(D6 <0, yes”, ’no”

¢ Cumulative portfolio return 75" in the drawdown period in cell F6:

—5.10% = IF(D6<0,(1+ B6)* (14 F5—1,")

* Cumulative benchmark return rg;" in the drawdown period in cell G6:

—4.16% = IF(D6<0,(1+C6)*(1+G5)—1"")

* Cumulative alpha o™

—094% = IF(D6<0,F6—G6,")

in the drawdown period in cell H 6:

The maximum relative drawdown MRDD in cell H20 is then obtained by
MIN(H2: H19) = —1.93%.

Therefore, the worst drawdown period was the last one spanning August—
November 2013 with a duration of 4 months and a cumulative alpha of —1.93 %.
Figure 1.33 shows the same situation again, now displaying the cumulative alpha
on the vertical axis. This allows to better spot the time point when the loss of
a drawdown period is recovered. This recovery period is an important measure
since it shows the capability of an asset manager to cope with difficult investment
periods (based on historical experience).
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Fig. 1.33 Drawdown diagram for Example 14. Source: Own, for illustrative purposes only

To finalize this section, let us look at another graphical representation of the
relative drawdown. Figure 1.32 shows the relative drawdowns and the length of
the recovery periods, but the magnitude of the drawdown is not obvious to see.
Therefore, drawdowns are often represented like in Fig. 1.33 which graphically
represents column H of Table 1.23. Here, the magnitude of each single relative
drawdown and the MRDD can be seen directly (but not the recovery period).

End of Example 14

1.4.2.2 Conclusion

The maximum relative drawdown is a key asymmetrical risk measure in active
portfolio management which shows the maximum consecutive negative alpha a
portfolio had in the past. In combination with the measured drawdown and recovery
period an investor can evaluate the portfolio manager’s ability to regain losses versus
the benchmark using historical data. As in the case of the absolute drawdown, the
length of the historical time period and the choice of the subperiods is key. The
shorter the subperiods (for example, days vs. months) and the analyzed historical
time period, the less severe the MRDD will be.

The historical time period should cover at least one market crash in order to
deliver a meaningful MRDD. For example, doing an MRDD analysis for an active
equity portfolio in the beginning of 2008 based on data for 2004-2007 would be
irrelevant, since no stock market crash occurred during this time. Here, extending the
time period to include the internet bubble 1999-2003 would be necessary, assuming
the equity portfolio already existed then.

MRDD is a powerful instrument to compare the drawdown risk and the recovery
potential of actively managed funds. The historical time periods and subperiods used
for this comparison have to be identical for all analyzed portfolios. Otherwise, an
MRDD comparison is meaningless.
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1.4.3 Semi-deviation and Semi-variance

Definition: Semi-deviation and Semi-variance

Semi-deviation measures, similar to volatility, a dispersion. However, it
measures the dispersion below a target rate of return and does not consider
time periods with above target rate returns. This means that semi-deviation
only looks at the left hand side of the return distribution and is, therefore, an
asymmetrial risk measure. Using the same notation as before, semi-deviation
can mathematically be defined as follows®!:

(1.78)
where
T = time point at the end of the whole period [0, 7],
N = number of equidistant time periods in [0, 7],
r* = target rate of return for any of the N
equidistant subintervals in [0, 77,
rﬁf = return of the portfolio in the
k-th subinterval [ty—1, %], 1 <k < N.
dp = r*— r{éf if rﬁf <r*

0 otherwise.

In this definition, the target rate of return r* is a constant. However, it can
also be dependent of the subinterval k, 1 < k < N. For example, r* = r*(k)
can be defined as the benchmark return in subinterval k. In this case semi-
deviation only takes subintervals into account where the achieved return is
below the benchmark, i.e., where alpha is negative.

Semi-variance o7, is the square of semi-deviation. If r* is not a
constant, semi-variance and semi-deviation are also sometimes called below-
target semi-deviation and below-target semi-variance.

If the subintervals are months, we write d”w"o;,']’f"thly for the monthly semi-

o L. 2, thi . .
deviation and “*"g,""""" for the monthly semi-variance.

61Lhabitant (2004, p. 51).
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1.4.3.1 Interpretation

The interpretation of semi-deviation is not as easy as the interpretation of volatility
assuming a normal distribution for the subperiod percentage returns. But the
advantage of semi-deviation is that such an assumption is not needed. It can best be
interpreted in comparison: The higher the semi-deviation (all else equal), the higher
the drawdown risk, i.e., the risk of having below target returns. In the extreme case
of a semi-deviation of 0, all subperiods in time period [0, 7] have returns equal
or above the subperiods’ target rates which indicates a very low drawdown risk.
However, a semi-deviation of 0 does not imply that there is no drawdown risk
in general, since the choice of [0, 7] is important for the calculation of the semi-
deviation.

Example 15

Let us consider portfolio A from the previous examples over the time period
from July 2012 until December 2013. This means 7 = 1.5 years and N = 18
subintervals. In each month the return of the portfolio is compared to the target
rate of return r* which is assumed to be the risk-free rate.®® In this example the
monthly risk-free rate is assumed to be 0.2 % like in Example 12. The data and
the final results are displayed in Table 1.24. Column C answers the question if the
return of a particular month is below the target of 0.2 %. The Excel® formulas
for calculating the values in Table 1.24 are as follows:

* The answer (“yes” or “no”) in cell C2:
no = IF(B2 < 0.002,”yes”, ”no”)

* Squared deviation of the portfolio return from the target rate in case of an
underperforming portfolio in cell D2:
0.00% = IF(B2 < 0.002,(0.002— B2)"2,0)

» Monthly portfolio semi-variance d"”’"(f;];m”"’hly in cell D20:
0.08% = (1/18)% SUM(D2 : D19)

 Monthly portfolio semi-deviation d"”’"a;y]'fm’hly in cell D21:
283% = SORT((1/18) % SUM(D2 : D19))

End of Example 15

1.4.3.2 Conclusion

Semi-deviation and semi-variance are the first asymmetrical risk measures presented
in this chapter. They only look at subperiods where the achieved return is below a
certain target rate (either static or dynamic) and measure the “downside” deviation
from this target rate. This allows to see how a portfolio behaves regarding losses, i.e.,

2In this example a static target rate of return is used. However, the mechanics remain the same for
a non-static return target. Often, the benchmark return is used as the target.
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Table 1.24 Example 15: A B C D
Calculation of semi-deviation

Lo Month | Monthly returns | Is r’,ff <r*
and semi-variance,

= 02% 1 | ® of portfolio (yes/no)? d?
2 072012 | 6.10% No 0.00 %
3 082012 | 550% No 0.00 %
4 109/2012 | 4.70% No 0.00 %
5 102012 | —5.00% Yes 0.27%
6 |11/2012 | —5.10% Yes 0.28%
7 1272012 | 6.70% No 0.00 %
8 |01/2013 | 6.03% No 0.00 %
9 |02/2013 |—3.23% Yes 0.12%
10 |03/2013 | 5.12% No 0.00 %
11 |04/2013 | 521% No 0.00 %
12 1 05/2013 | —4.10% Yes 0.18%
13 | 06/2013 | —4.50 % Yes 0.22%
14 107/2013 | 1.75% No 0.00 %
15 |08/2013 | 3.71% No 0.00 %
16 |09/2013 | —4.20% Yes 0.19%
17 |10/2013 | 4.26% No 0.00 %
18 | 11/2013 | —4.00% Yes 0.18%
19 |12/2013 | 5.10% No 0.00 %
20 down g2 — 10,08 %
21 d0‘¢'l16;3’;0"fh[}' — 2.83%

Source: Own, for illustrative purposes only

returns below the target rate. Volatility and variance, the symmetrical counterparts
introduced in Sect. 1.3.1, are not able to provide such information.

1.4.4 Shortfall Probability

Definition: Shortfall Probability

Semi-deviation and semi-variance concern time periods where the achieved
portfolio return is below the target return, but do not provide information
on the probability of their occurrence. This is measured by the shortfall
probability.

Shortfall probability, also called shortfall risk, is a simple tool to evaluate
the probability of a portfolio return being below a target return »*. The target
return r* has to be defined up-front. Using the same notation as before the
shortfall risk shortfallp; of the portfolio can be calculated as®®

(continued)

63Bacon (2008, p. 94).
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shortfallpy = P(rf.ff <r"), (1.79)
where:

P(.) = probability function,
k

rp; = portfolio return in time
period [te—1, %], 1 <k < N,
r* = targetrate of return for any subperiod k.

Like before, the target rate r* can be constant or dynamic. The shortfall risk
only evaluates the probability of a shortfall with respect to the target * in a
subinterval, but not the potential size of the shortfall. If the subintervals are
months we write shortfallp™""

Clearly, given that the shortfall risk is calculated with historical data, its
application for the future is not without shortcomes. The implicit assumption
is that the past is representative for the future. However, this can be mislead-
ing: If historical time series for 2004—2007 had been used for calculating the
shortfall risk, they were of little use in 2008 when the economy slid into the
Great Recession. The macroeconomic environment has to be accounted for
when applying this risk measure.

1.4.4.1 Interpretation

The interpretation of shortfall risk is straightforward: it is the probability that the
portfolio return is below the target return in a certain time period. In practice, it
is the relative frequency of a portfolio return being below the target rate within
the N subperiods of the historical time period [0, 7']. This relative frequency is
then interpreted as probability assuming the past behavior of the portfolio vs. the
target rate continues into the future. For example, a shortfall probability of 50 %
means that in the past the portfolio did not reach the target return 50 % of the time.
Assuming comparable macroeconomic conditions for this portfolio and given a
sufficient length of the time series used to calculate the shortfall probability, we
can estimate that in the coming years, the shortfall probability will be close to this
calculated number.

Let us now look at shortfall probability through a computational example.

Example 16

We consider a portfolio which is managed against a benchmark and use the same
data as in the previous examples. The historical time period is from July 2012 to
December 2013, i.e., T = 1.5 years using monthly data (i.e., N = 18). All data
can be found in Table 1.25.
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Table 1.25 Example 16: A B C D

Calcul;.it?on of shortfall Monthly Monthly

probability

portfolio benchmark Below

1 |Month | performance |performance target?
2 |07/2012 | 6.10% 6.01 % No
3 |08/2012 | 5.50% 5.45 % No
4 109/2012 | 4.70% 4.63 % No
5 |10/2012 | —5.00 % —6.99 % No
6 |11/2012 | —5.10% —4.16 % Yes
7 |12/2012 | 6.70% 7.07 % Yes
8 01/2013 | 6.03% 5.97 % No
9 102/2013 | —3.23% —2.95% Yes
10 | 03/2013 | 5.12% 4.66 % No
11 |04/2013 | 521% 491 % No
12 | 05/2013 | —4.10 % —4.01 % Yes
13 |1 06/2013 | —4.50 % —3.87% Yes
14 | 07/2013 1.75 % —2.95% No
15 108/2013 | 3.71% 4.52 % Yes
16 | 09/2013 | —4.20 % —3.93% Yes
17 | 10/2013 | 4.26% 4.99 % Yes
18 | 11/2013 | —4.00 % —3.84% Yes
19 | 12/2013 | 5.10% 4.99 % No
22 Number of shortfalls | 9
23 shortfall ;"™ 50 %

Source: Own, for illustrative purposes only

To obtain the shortfall probability, we use the Excel® formulas below.
Column C shows if within the subperiods there is a shortfall (i.e., a portfolio
return below the benchmark) or not. Column D can be filled out using the
IF-function in Excel®.

¢ Occurrence of a shortfall in cell D2:
no = IF(B2 < C2,’yes”,)’no”

* Number of shortfalls over the observed time period in cell D22:
9 = COUNTIF(D2 : D19,”yes”)

» Monthly portfolio shortfall risk shortfall,""” in cell D23:
50% = D22/COUNT(D2: D19)

Thus, cell D22 contains the number of shortfalls and cell D23 the number
of shortfalls (9) divided by the number of subperiods in total (18), yielding the
percentage (relative frequency) of months with a shortfall. As elaborated above,
we now interpret this figure as the shortfall probability going forward. This
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implicitly assumes that the analyzed historical time period is representative for
the time to come such that we speak in general of a shortfall probability of 50 %.

End of Example 16

1.4.4.2 Conclusion

The shortfall probability, or shortfall risk, states (based on historical data) the
probability of a portfolio return falling short of a target return. However, this
measure does not indicate the magnitude of a downside deviation.

1.4.5 Sortino Ratio

Definition: Sortino Ratio

The Sortino ratio (SoR) is a relative risk-adjusted return ratio that uses an
asymmetrical risk measure.®* It measures the excess return of a portfolio over
a so-called minimum acceptable rate of return per unit of asymmetrical risk
measured by semi-volatility with respect to the minimum acceptable rate of
return.

In order to mathematically define the Sortino ratio SoR,% time interval
[0,T],T > 1, is split, as always, into N equidistant subintervals. These are
usually days or months. The minimum acceptable rate MAR, a constant, is
the return that is the minimum aimed for in each subinterval. Let us then
calculate the portfolio’s semi-volatility “*"op; according to Eq. (1.78) from
page 88 with r* = MAR, i.e., dOW”OPf is the portfolio’s semi-volatility with
respect to the minimum acceptable rate of return for a subperiod.

Let further r’;f be the return of the portfolio during the k-th subperiod
[tk—1, %], 1 < k < N. According to Eq. (1.4) from page 8 and Eq. (1.7) from
page 9, the geometric mean portfolio return 7p; of a subinterval within time
period [0, T'] can be calculated as

N
=[] +rip7 - 1. (1.80)
k=1

Then, the Sortino ratio is defined as

Ppr — MAR
SoR — B AKX (1.81)

downO-Pf

%The Sortino ratio was devised by Brian M. Rom, founder and president of the software
development company Investment Technologies, in 1983. The ratio is named after Dr. Frank A.
Sortino, an early popularizer of downside risk optimization.

65Sortino and Price (1994).
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1.4.5.1 Interpretation

As with the other risk-adjusted return ratios presented above, the higher the value of
the Sortino ratio, the better the risk-adjusted performance of the portfolio. The key
in the Sortino ratio is its use of semi-volatility versus a minimum acceptable return,
i.e., it is a downside risk measure. Therefore, the Sortino ratio can also be called a
downside-adjusted return ratio where the return is the excess return of the portfolio
over the minimum acceptable return. It is a very important measure for comparing
two portfolios in terms of their ability to generate returns by taking their downside
risk into consideration.

Example 17
Using the data from Example 16 and assuming an MAR of 0.2 % per month, we
can calculate the Sortino ratio as done in Table 1.26.

The portfolio’s semi-variance d"w"a;];m””mly in cell D20 and semi-volatility

down o 3 cell D21 are calculated in exactly the same way as in Example 16.

Other Excel® formulas include:

* Using Eq. (1.80) for the geometric mean 7p in cell B20:
1.23% = {PRODUCT(1 + B2: B19)"(1/18) — 1}

Table 1.26 Example 17: A B C D
Calculation of the Sortino

ratio, MAR = 0.2.% Month | Monthly returns| Is

1|k of portfolio s, <r*? d:

2 (072012 6.10% No 0.00 %
3082012 5.50% No 0.00 %
41092012 4.70% No 0.00 %
5 102012 —5.00 % Yes 0.27 %
6 [11/2012 —5.10% Yes 0.28 %
71212012 6.70% No 0.00 %
8 1012013 6.03% No 0.00 %
9 [02/2013 —3.23% Yes 0.12%
10 03/2013]  5.12% No 0.00 %
11042013 5.21% No 0.00 %
12,05/2013 —4.10 % Yes 0.18%
13/ 06/2013 —4.50 % Yes 0.22%
14 07/2013]  1.75% No 0.00 %
15 08/2013  3.71% No 0.00 %
16 09/2013 —4.20 % Yes 0.19%
17 10/2013 4.26% No 0.00 %
18 11/2013 —4.00 % Yes 0.18%
19 12/2013 5.10% No 0.00 %
207y = | 123% down 2 —| 0,08 9%
21/SoR = | 0.36 down oY — | .83 9

Source: Own, for illustrative purposes only
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e Sortino ratio SoR in cell B21:
0.36 = (B20—0.2%)/D21

End of Example 17

1.4.5.2 Conclusion

The Sortino ratio can be considered as an improvement of the Treynor ratio. The
risk-free rate is replaced by a chosen minimum acceptable return and the risk is
evaluated by the risk of losing money, a downside risk measure. Therefore, the
Sortino ratio is a key ratio when evaluating the risk-return relationship of a portfolio
in times of crisis, i.e., when downside risk is the risk measure to look at and not
simply the volatility.

1.5  Portfolio Return and Volatility

Until now, we have introduced various measures of return and risk for an investment
which usually would be a portfolio. What we have not done yet (but what will be
needed in the next chapter) is to calculate the portfolio return and risk if we only
know the return and risk figures of the portfolio’s constituents. This is the topic of
this section where we specify risk as volatility.

Let us look at an example first: If we invest 50 % in security 1 which has an
expected return of 5 % and the other 50 % in security 2 which has an expected return
of 10 %, then the expected return of our portfolio lies exactly in the middle at 7.5 %.

What if security 1 has a volatility of 10 % and security 2 has a volatility of 20 %?
Does the portfolio necessarily have a volatility of 15 %? No! The reason is that the
expected value is linear [see Eq. (1.82) below] but volatility is not [see Eq. (1.83)
below]. To calculate the volatility, we also need to know the covariance between the
returns of the securities 1 and 2. Let us formulate this mathematically.

Let w; be the weight of security i in the portfolio with M securities during a fixed
time interval where the proportion of the portfolio invested in securityi, 1 <i < M,
remains unchanged. Using R; as the random variable representing the return of
security i and Rpy as the random variable representing the portfolio return over this
time period, we calculate the expected return of the portfolio as®

M M
E(Rp) = E(Zwi~Ri) = > wi-B(R). (1.82)

i=1 i=1

Calculating the volatility of the portfolio is trickier.” We need to consider the
covariance of the various portfolio securities, which is the reason for what in Chap. 2

%6For the formula, see Reilly and Brown (1997, p. 254).
7Reilly and Brown (1997, p. 261).
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will be called diversification. Here, we focus on the formula for calculating the
portfolio volatility. For this let o; be the volatility of security i,1 <i < M,and o; ;
the covariance between security i (1 <i < M) and security j (1 < j < M). Then,
the portfolio volatility can be calculated as

\/ Var(Rpy)

opr =
M
= Var (Z w; - Ri)
\ i=1
M M M
= D w4 Y > 2-wiew0 (1.83)
i=1 i=1j=i+1
In our example from above, we have w; = w, = 50 %. Then, according to

Eq. (1.82), the expected return of the portfolio is
E(Rpf) = wy-E(Ry) + wy - E(Ry)

05-5%+05-10% = 75% (1.84)

and, according to Eq. (1.83), the volatility is [using 01> = p; 201072 from Eq. (1.43)]

opr = \/W%O'IZ + W%O’zz + 2W1W20’1,2

— 22 2.2
= \/WIO'I + W50, + 2W1W2p1q20’10’2

V052012 £052.0.22 +2:0.5-0.5- p12-0.1-02

1/0.0125 + 0.01 - py 5. (1.85)

The volatility of the portfolio depends on the correlation p; ;. The lower the
correlation, the lower the volatility of the portfolio, the better the diversification
benefits. Let us assume the correlation to be p; » = —0.44. Then Eq. (1.85) yields

opy = +/0.0125+0.01-(—0.44) = +0.0081 = 9%. (1.86)

The volatility of the portfolio is lower than the volatilities of both assets 1 and 2.
To conclude this chapter, we return to our business case and calculate the
volatility of the portfolio.
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Business Case (cont.)

Let us continue to look at our business case using the Delta (DAL) stock
and oil. Oil has a volatility of 42.03 % [Eq. (1.65)], Delta has a volatility of
75.91 % [Eq. (1.63)], and the correlation is —0.379 [Eq. (1.67)]. If we invest
70 % in oil and 30 % in Delta, how much is the volatility of the portfolio?
We use Eq.(1.85) to calculate the portfolio volatility, where oil is the first
asset and Delta stock is the second asset. Then

\/ 0.72 - 0.4202 + 0.32 - 0.7592+
opr =

2-0.7-0.3:(—0.379) - 0.420 - 0.759

29.59 %. (1.87)

This portfolio has a lower volatility than its individual components oil
and Delta, because the correlation between oil and Delta is negative. The
diversification works very well.

1.6 Summary

In this chapter, after having briefly introduced the basic principles of calculating
cumulative and annualized returns for an investment, we have described various
measures of risk and distinguished two scenarios. There are portfolios managed
on an absolute return basis, i.e., with absolute return targets which are not tied to
an index as a benchmark. There are also portfolios managed against a benchmark
with relative return targets known as excess returns or alphas. For both scenarios
we have presented different risk measures which can be classified as symmetrical
and asymmetrical risk measures. Symmetrical risk measures look at both sides of
the return distribution. In times of market stress, however, more investors care about
downside risk measures and look for protection against tail risk.

Before 2008, asymmetrical risk measures were not widespread in traditional asset
management but common in hedge fund management where returns are almost
always asymmetrical. This has significantly changed as we will show in Chap. 6.
The foundations laid in Chap. 1 will now be used in Chap.2 to introduce the key
principles of modern portfolio theory.
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2.1 Introduction

A quant revolution started on Wall Street in 1952, when Harry M. Markowitz estab-
lished the modern portfolio theory (MPT) which applies mathematical concepts to
finance. Based on his work, the capital asset pricing model (CAPM) was developed
one decade later. Today, the results of the CAPM (and its extended versions) are
widely used for describing the risks and returns of portfolios and for performance
measurement. This chapter is devoted to the theoretical part of asset management
and shows the key tests that compare this theory to practice.

Using the mathematical prerequisites on risk and return measurement from the
first chapter, we will look at modern portfolio theory in detail. Before we present
MPT, Sect. 2.2 provides a review of regression analysis as needed for this chapter.
The concept of regression will be shown by extending our business case from the
first chapter. The capital asset pricing model is thereafter introduced in Sect. 2.3,
a model which allows us to estimate the required return of a risky asset (or a
portfolio) based on its f, i.e., its sensitivity to market movements. This model will
be presented together with its assumptions and empirical tests. This section will
discuss the validity of the CAPM based on the empirical tests and also present some
critical views on the simplistic assumptions of the CAPM.

Although the CAPM has found useful applications, for example, in performance
measurement, in explaining the benefits of diversification (by introducing the
notion of systematic and unsystematic risk), and as a tool for finding underval-
ued/overvalued securities, empirical evidence suggests that the model describes
capital markets returns only incompletely. Some returns can be influenced by other
risk factors than the exposure to the market, some by stock market anomalies. Stock
market anomalies will be described in detail in Chap. 3, and historical stock market
crashes will be summarized in Chap. 4. Anomalies and crashes are not captured by
the CAPM but rather by taking psychological factors into account. The irrational
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behavior of market participants heavily influences market prices and the returns of
assets. This is researched by behavioral finance, which will be covered in Chap. 5.

Empirical evidence suggests that the returns of a risky asset/portfolio are not only
driven by market movements, but also by other risk factors which are not included in
the CAPM. In 1992, Eugene Fama' and Kenneth French? developed an extension of
the CAPM, the Fama—French three-factor model (FF3M), introduced in Sect. 2.3.6,
which incorporates two of these factors: the size of companies and the book-to-
market ratio. Like in the discussion about the CAPM, empirical tests of the FF3M
will be presented, together with some critical views of this model.

As said before, this chapter looks at the theory while Chaps. 3 and 4 look at the
reality of financial markets. Chapter 3 discusses stock market anomalies, i.e., market
irregularities which distort the price-return relationship of assets and contradict
traditional finance theory. For example, calendar effects have an impact on asset
returns while standard finance theory does not distinguish between the holiday
season and spring. That is, according to standard finance theory, a calendar effect
should not exist. Chapter 4 then looks at behavioral finance, the psychology of
investing. Here we will see how psychology plays an important role in finance
which again, according to standard finance theory, should not be the case. Yet,
behavioral factors were of critical importance for what happened in the worldwide
stock markets in 2000-2003, 2008—2009 or 2011.

2.2 A Quick Review of Regression Analysis

Regression analysis is a widely used technique in finance, especially in applications
of the CAPM and of the Fama—French three-factor model.® The goal of regression
analysis is to model a variable Y as a function of different input parameters
X1, ..., Xk. For our purposes, the asset return is the variable Y, and the different
factors which contribute to the asset returns serve as the X -parameters, for example,

'Eugene F. Fama, born in 1939, is an American economist. He is known for his work on portfolio
theory and asset pricing, both theoretical and empirical. He won the Nobel Prize in Economics
in 2013 together with Robert J. Shiller and Lars Peter Hansen, see Reinganum (2013). His Ph.D.
thesis (one of his supervisors was Nobel Prize winner Merton Miller) concluded that stock price
movements are unpredictable and follow a random walk. Fama (1970) proposes the ground-
breaking concept of efficient-markets (see Sects. 3.1 and 5.1) such that Fama is most often thought
of as the father of the efficient-market hypothesis. Currently, he is a professor of finance at the
University of Chicago, Booth School of Business.

2Kenneth R. French, born in 1954, is an American economist and professor of finance at Dartmouth
College, Tuck School of Business. He has previously been a faculty member at MIT, the Yale
School of Management, and the University of Chicago Booth School of Business. He obtained his
Ph.D. in Finance in 1983 from the University of Rochester. French is an expert on the behavior
of security prices and investment strategies and is most famous for his work on asset pricing with
Eugene Fama and the Fama—French three-factor model (1992) as an extension of the CAPM (see
Sect. 2.4).

3This paragraph is based on Lhabitant (2004, pp. 147-175).
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return on the market, return on oil, GDP growth, etc. While the correlation quantifies
how consistently two variables vary together, regression analysis describes the
specific relationship between two (or more) variables. Therefore, regression analysis
can be seen as an extension of the correlation/covariance concept.

2.2.1 Simple Linear Regression

The most basic type of regression is the simple linear regression. In order to
understand the concept, let us go back to our business case from Chap.1 and
continue to analyze the stock returns of US Airways (LCC), Delta Airlines (DAL)
and the oil price. On page 52 we found that the stock return of US Airways is
positively related to the stock return of Delta Airlines, but negatively correlated to
oil. The goal of simple linear regression is to find a linear relationship. How much
has the price of US Airways changed when oil went up 1 % or when Delta Airlines
went up 1 %? And how accurate is this linear relationship?

Let us analyze the period January 2008—June 2010, divided into 30 monthly
subperiods. For example, we describe the dependency of US Airways’ monthly
returns rfcc (in the kth month) to oil monthly returns réil in the form

k k
g = a+borg 4+ & . 2.1)
L I
ce \—i/ N, e’
linear model error term

The linear relationship, described by a regression line of the form

monthly monthly

TLoe = a+b-ry, (2.2)

is what we are looking for, and the numbers ¢ and b have to be calculated. The
monthly return of oil is used to explain the monthly returns of Delta, this is why we
call 70" an explanatory variable. The error term

&g = rLCC (a+b- roll) 2.3)

accounts for the deviation from our model due to other factors which explain the
returns on US Airways, but are not related to oil. Take a look at Fig. 2.1 which is
the same as Fig. 1.19 on page 48, but with the regression line (2.2) added (which

still has to be calculated). Given the monthly returns r} ¢, ricc, ..., riec of US
Airways and 1)y, 2, ..., r3) of oil, the graph plots the points
1o 2 2
(oiTicc): (i Tice) -+ (ronTicc).

The line (2.2) is drawn such that the error terms &, i.e., the distances of the points
(ks Tk cc) from the line, are kept small on average. We could search for the line
which minimizes the average distance from the line, but in practice, the squared sum
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Fig. 2.1 Scatter plot of o (in %)
monthly returns of US
Airways (LCC) against oil 100 -

(Crushing, OK Crude Oil
Futures Contract) for the
period January 2008—June
2010, together with
regression line. Sources:
Yahoo! Finance and U.S.
Energy Information
Administration

80 +

koo
Tou (in %)

Regression line

of the error terms is used as the term to be minimized which puts greater weight to
big outliers.
We get the numbers a and b for the regression line (2.2)

monthly _ monthly
TLce = a+b-ry

by solving the following problem: Find the numbers @ and b such that the sum of
squared errors

30 30
dosi = Y (rfec—(a+b-riy) 2.4)
i=k

k=1

is minimal. We will present the solution to this problem after we have introduced
the general problem and the general solution.

Given data points (X1, Y1), (X2,Y2),..., (Xn,Yn), in the general problem
we want to find the regression line (or best-fit line)

Y=a+b-X 2.5)

which describes best the relationship between X; and Y;.* In this regression
equation, we call X the independent variable, Y the dependent variable, a the
intercept (where the line crosses the Y -axis) and b the slope coefficient.> We refer
to a and b as the regression coefficients.

4For an introduction to linear regression, see also DeFusco, McLeavey, Pinto, and Runkle (2004,
pp- 395-420).

5The terms are from DeFusco et al. (2004, p- 395).
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Fig. 2.2 Regression line for Y

perfect linear relationship

between Y and X. Source: Regression line Y =a+b- X
Own, for illustrative purposes

only Slope b

/./

X is also called explanatory variable® because X is used to explain the variable
Y. The larger the absolute value of b, the greater the explanatory power of X. If
b is close to zero, then changes in X cannot explain changes in Y, and X has no
explanatory power.

The graph in Fig. 2.2 shows a scatter plot where all data points (X,Y) lie on the
line Y = a + b - X. In practice, you usually have a scatter plot like in Figs. 2.3 or
2.4 where the data points are scattered around a line and where you can still see a
linear tendency, but in the latter plot, the linear relationship is weak.

For any data point (X}, Y ), the error term &, is the difference between the actual
Y\ value and the Y value predicted by the line (2.5), hence

& = Yri—(a+b-Xp). (2.6)

The numbers a and b for the regression line Y = a + b - X are chosen such that the
sum of the squared error terms

N

N
dYoeg = Y (—(@+b-Xp) 2.7)

k=1 k=1

is minimized. For that reason, this is also called the ordinary least squares (OLS)
method.

For example, the term explanatory variable is used in Fama and MacBeth (1973, p. 618).
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Fig. 2.3 Regression line for Y
an approximate linear
relationship between Y and
X . Example for a high
coefficient of determination
R2. Source: Own, for
illustrative purposes only

Regression line Y =a+0b-X

% . L
o l Error term ¢
° L]

Fig. 2.4 The regression line Y
provides only a weak
description of the relationship
between Y and X. Example . P . .
for a low coefficient of . e o o e Vv S

determination R2. Source: . . . ’*./_r_',;__f/
. . . ) 5 .
Own, for illustrative purposes R T Regression line Y =a +b- X

only e ... O " o X
Let
) | X ) |
X = NZXk and Y = NZYk.
k=1 k=1
Then, the solutions for the parameters a and b are
N _ _
(X —=X)- (Y =Y)
po= L 2.8)
> (X — X)?
k=1
and
a=Y—-b-X. (2.9)

For any plot one can find a regression line, but it does not always describe the
relationship between Y and X well. Figure 2.3 shows one example where the data
points are close to the regression line, and Fig. 2.4 shows one example where they
are far off the line.
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In order to describe the quality of the regression Y = a + b - X, we use the R?
measure, also known as the coefficient of determination R*. Let Yy be the predicted
Y value based on the Xy value and the regression equation. In the case of the simple
linear regression,

Yo = a+b-X;. (2.10)

Then R? is the ratio between the variation explained by our regression model
N
> (Y —Y1)
k=1
and the total variation
N
> (i —Y)%
k=1
In other words:

N
Y (Y—Y)?
k=1

R? = - (2.11)
kZ(Yk—Y)Z
=1

In our case of simple linear regression where Y = a + b - X, R? can also be
calculated as’

N 2
(So-m-00-1)
R = 15:1 - . (2.12)
k2—:1(Xk -X)? kX_:I(Yk -Y)?

Please note:

e R? lies between zero and one. The larger the value of R2, the more accurate
the regression. R? is 1 if and only if all data points lie on the regression line
Y=a+b X.

* The value of R? provides the percentage of the variation of the variable ¥ which
is explained by the variation of the variable X. For example, R> = 0.75 means
that the variable X explains 75 % of the variation of the variable Y.

"DeFusco et al. (2004, p. 403): For simple linear regression, R is the square of the correlation
between X and Y.
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« In Fig.2.3, R? is large (but not 1) because the data points lie close to the
regression line, which describes the relation between Y and X well.

» In Fig.2.4, R? is small because the regression line only vaguely represents the
relationship between Y and X.

Business case (cont.)
Let us get back to our business case from Chap. 1 (an Excel® file
with the calculations can be downloaded at http://www.pecundus.com/
publications/springer-solutions [username: solutions; password: springer-
book-sle]). We want

monthly _ monthly
TLee = a+b-ry

The equation for the slope coefficient b from (2.8) can be rewritten as

b o= Zecor 2.13)

00il

using formulas for monthly volatility (1.22) and monthly covariance (1.45).
We use the known results (1.56) and (1.62) for calculation.

monthly

o : —0.019952
= o _ = —1.355. (2.14)
monthly 0121332
(UOil )

The intercept a is calculated using Eq. (2.9), together with the results from
Egs. (1.53), (1.52) and (2.14):

a = Trec—b - Toi

4.73% — (—1.356 - (—0.04 %)) = 4.68 %. (2.15)
The resulting regression line is
rent — 4.68 % — 1.356 - ripe"™. (2.16)

The R? formula (2.12) can be rewritten as a square of the correlation,
using formulas for volatility (1.20) and monthly covariance (1.45) and
correlation (1.43):

o2

> Oircc 5

R = ——=— = Pourcc (2.17)
%0i1 " 9Lcc

(continued)
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Use the result (1.68) to calculate
R* = plecoy = (—0.435)7% = 0.189. (2.18)

Our interpretation of the result is: For every 1 % increase (decrease) of the
oil price in a given month, the US Airways stocks tend to decrease (increase)
by 1.356 %. 18.9 % of the variation of US Airways can be explained by the
movements of oil prices.

Let us calculate the regression line for the monthly returns ri"gghly of US
Airways (LCC) against the monthly returns rI')"XZthly of Delta Airlines (DAL),
based on the period January 2008—June 2010 (see Table 1.11). The regression
equation is

monthly _ monthly
Pt = a-+t+b-rpy . (2.19)

The slope b is calculated using Eq. (2.8), together with the results from
Egs. (1.54) and (1.60):

monthly

_ Obiiec  _ 0065368 _ o)
monthly 2 0219142 ’ ’ ’
(UDAL )

The intercept a is calculated using Eq. (2.9), together with the results from
Egs. (1.52), (1.51) and (2.20):

a = Trec—b-Tpa
= 473% —1.361-159% = 2.57%. (2.21)

The resulting regression line is
et — 257 % + 1.361 - rper™. (2.22)

R? is calculated from Eq. (2.12) using (1.66):

R* = phircc = 0.789% = 0.623. (2.23)
Our interpretation of the result is: For every 1 % increase (decrease) of
Delta Airlines stocks in a given month, the US Airways stocks tend to increase
(decrease) by 1.361 %. 62.3 % of the variation of the US Airways stocks can

be explained by movements of Delta Airlines stocks.

(continued)
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Fig. 2.5 Scatter plot of koo (in %)

monthly returns of US

Airways (LCC) against Delta 100 + °
(DAL) for the period January

2008-June 2010, together 80 T

Regression line

with regression line. Source:

Yahoo! Finance 60 7

40

T T rhar (in %)

Figure 2.5 on the following page shows the scatter plot of monthly returns
of US Airways against Delta Airlines for the period January 2008—June 2010,
together with the regression line from Eq. (2.22).

When we compare the scatter plots in Figs. 2.5 and 2.1, we can see that
the data points of the former are much closer to the regression line than those
of the latter. This can be explained with R? being much greater in the former
case [0.623, see Eq. (2.23)] than in the latter case [0.189, see Eq. (2.18)].

2.2.2 Multi-Linear and Non-Linear Regression

We can extend the concept of simple linear regression to multi-linear (or non-linear)
regression to study the dependency of a variable on multiple variables (or to study
non-linear dependencies).’

An example for multi-linear regression is

Y = a+b-X+c-W+H+d-Z (2.24)
An example for non-linear regression is

Y = a+b-X+c¢-X*+d-Z. (2.25)

8For an introduction to multi-linear regression, see also DeFusco et al. (2004, pp. 441-494).
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For any observed data point, the error term ¢y, is the difference between the actual
observed Y value and the value Y predicted by the regression equation, i.e.,

g = Yir—(a+b-X+c-WH+d-2Z) (2.26)
in our multi-linear example and
er = Yi—(a+b-X+c-X>4+d-2) (2.27)

in our non-linear example. We call X, W and Z the independent variables, Y the
dependent variable, a the intercept (where the line crosses the Y -axis) and b the
slope coefficient.” We refer to a and b as the regression coefficients.

In analogy to the simple linear regression, we get the regression equation by

finding the regression coefficients a, b, ¢, d (and we may have more parameters for
N
other examples) such that the sum of squares ) 5% is minimal.
k=1
The variables X, W and Z are also called explanatory variables because they

serve as variables to explain changes in Y. The larger the slope coefficients b, ¢ and
d, the stronger the explanatory power of the corresponding explanatory variables X,
W and Z in describing changes in Y. If a slope coefficient (for example, d) turns
out to be close to zero, then the corresponding explanatory variable (Z) is rather
useless for describing the variable Y.

The R? measure from the simple linear regression [see Eq.(2.11)] is also used
here to measure the quality of the regression. Multi-linear regressions also use R>

adj®
the adjusted R?,' to describe the quality of the regression:

2 N-1 2
Ry =1 N—I—l(l R”) (2.28)
where N is the number of observations and / is the number of independent
variables.

We now have all prerequisites in order to understand the basic concepts of
MPT as presented in the following section. We will start with the key idea of
diversification and then continue and introduce the mean-variance efficient portfolio
which will lead us to the famous capital asset pricing model (CAPM). When looking
at empirical tests of the CAPM we will see that the CAPM often does not hold in
reality. Therefore, we will present an extension of the CAPM: the Fama—French
three-factor model.

9The terms are from DeFusco et al. (2004, p- 443).
19DeFusco et al. (2004, p. 457).
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2.3 The Capital Asset Pricing Model (CAPM)
2.3.1 Introduction

Harry Markowitz!' laid down the foundation of modern portfolio theory (MPT)'?
in his article Markowitz (1952) and his book Portfolio Selection: Efficient Diversi-
fication of Investments. A decade later, Treynor in 1961 (see French 2002), Sharpe
(Sharpe 1964), Lintner (Lintner 1965a) and Mossin (Mossin 1966) built on his work
to develop the capital asset pricing model (CAPM).

In Sect. 2.3 of this book, Sect. 2.3.2 presents the assumptions which are necessary
for the CAPM to hold. Although these assumptions will turn out to be too idealized
and unrealistic which is why the CAPM is not exactly true, the main implications
and theories are still valid. Section 2.3.3 introduces the capital asset pricing model.
Using a hypothetical market portfolio, i.e., a portfolio containing all risky assets, the
set of optimal portfolios turns out to be a combination of the risk-free asset and the
market portfolio. As a result, the expected return of a portfolio can be calculated by
the CAPM equation as the sum of the risk-free rate plus the excess return (market
return minus risk-free rate) multiplied by 8, the sensitivity of the portfolio to market
movements. This equation implies that the market rewards investors who take risk
in terms of 8. A brief summary of important aspects in Sects.2.3.2 and 2.3.3 can
be found in Schulmerich (2012a) or Schulmerich (2013b), The Efficient Frontier in
Modern Portfolio Theory: Weaknesses and How to Overcome Them (white paper).'3

Various empirical tests of the CAPM have been conducted with mixed results.
The tests are presented in Sect. 2.3.4, followed by a discussion about the empirical
validity of the CAPM in Sect. 2.3.5. The CAPM is often criticized for its unrealistic
assumptions which may lead to questionable results. Section 2.3.6 will discuss the
assumptions and show that by relaxing them the results will be slightly changed
without changing the main implications.

11Harry M. Markowitz, born August 24, 1927, in Chicago, Illinois, is an American economist
who become famous for his pioneering work in modern portfolio theory. He earned his Bachelor
of Philosophy from the University of Chicago in 1947 and received his Master and Doctor of
Economics at the same university in 1950 and 1954, respectively. He held various positions with
RAND corporation (1952-1963), Consolidated Analysis Centers, Inc. (1963-1968), the University
of California, Los Angeles (1968-1969), Arbitrage Management Company, (1969-1972), and
IBM’s T.J. Watson Research Center (1974—1983) before becoming a professor of finance at Baruch
College of the City University of New York. He joined the University of California, San Diego in
1994 as a research professor of economics where he became a finance professor at the Rady School
of Management in 2006. He received the John von Neumann Theory Prize in 1989 and the Nobel
Memorial Prize in Economic Sciences in 1990.

12 Although he is known as the father of MPT, Markowitz credits Andrew D. Roy with half of the
honor in Markowitz (1999).

3An extension of these articles on MPT including different risk measures can be found in
Schulmerich (2012b), Extending Modern Portfolio Theory: Efficient Frontiers for Different Risk
Measures (white paper). A third white paper in this MPT trilogy is Can the Black—Litterman
Framework Improve Asset Management Outcomes?, see Schulmerich (2013a).
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2.3.2 Assumptions

Before we introduce the CAPM, we need to talk about its assumptions first. These
14.
are'":

e Assumption 1 (A1):
All investors have homogeneous expectations, i.e., they expect the same proba-
bility distribution of returns.

e Assumption 2 (A2):
All investors want to invest in an optimal portfolio based on Markowitz’s mean-
variance framework, i.e., for a given expected return, they target the portfolio
with the lowest volatility.

e Assumption 3 (A3):
All investors can lend and borrow any amount of money at the risk-free rate.

e Assumption 4 (A4):
All investors have the same one-period horizon.

e Assumption 5 (A5):
All assets are infinitely divisible.

e Assumption 6 (A6):
There are no taxes and transaction costs.

e Assumption 7 (A7):
There is no inflation or any change in interest rates, or inflation is fully
anticipated.

e Assumption 8 (A8):
Capital markets are efficient, i.e., they are in equilibrium.

These assumptions are idealized and unrealistic. Does this mean that the CAPM
is useless because it is based on “wrong” assumptions? There are two important
points to note'3: Many of these assumptions can be relaxed to get closer to the real
world, which is discussed in Sect. 2.3.5. This will lead to slight modifications of the
CAPM without changing the main conclusions. The other point is that “a theory
should never be judged on the basis of its assumptions, but rather on how well it
explains and helps us predict behavior in the real world”. '

14Reilly and Brown (1997, p. 279). This work offers a good introduction and is used as a standard
reference work in the CFA curriculum. The sections in this book about the CAPM and its
assumptions are based on this reference.

5Reilly and Brown (1997, p. 279).

16Reilly and Brown (1997, p. 279).



114 2 Modern Portfolio Theory and Its Problems

2.3.3 The Model

After we have defined the set of assumptions of the capital asset pricing model, we
now turn to the model itself. Of course, the simplistic assumptions in Sect. 2.3.2 will
lead to a rather simplistic model. This model should be thought of as a fundament for
financial analysis which helps us to understand the relation between risk and return.
It helps us to understand the real world, but does not represent the real world.

You may ask why you should care about an oversimplistic model. Maybe
you remember the Bohr'” atom model from high school physics. In this model,
the atom consists of a heavy positively charged nucleus surrounded by electrons
which travel around the nucleus on circular orbits. You can compare this model
to our solar system, where the planets orbit around the sun. Although this model
was a breakthrough to understand atomic physics, it is very simplistic and was
later substituted by the theory of quantum mechanics. The point is, that like the
Bohr model, the CAPM should just be treated as a starting point to understand
mathematical finance. You have to understand the basic model before you can deal
with more complex questions.

Like models in physics, models in finance have to be positively tested until they
are accepted. The most important tests of the CAPM will be presented in Sect. 2.3.3,
followed by a discussion about the empirical validity of the CAPM in Sect.2.3.4.
Section 2.3.5 will then deal with relaxed assumptions for the CAPM which lead to
a slightly modified model.

Let us assume a future 1-year horizon [0, 1], for which we have available data
about the expected (annual) returns of individual securities, their risks in terms
of (annual) volatility, and the correlations between the securities. For every single
portfolio, we can calculate the expected annual return E[Rp/] [see Eq. (1.82)] and
its annual volatility ops [see Eq. (1.83)], as outlined in Sect. 1.5.

Please note:

* The future horizon for the CAPM does not have to be 1 year, but we assume this
for simplicity. You could also have one quarter year, one month, one week, etc.
as a future horizon, and if not dealing with annual returns, the CAPM makes the
same statements about quarterly, monthly and weekly returns.

*  We use capital letters for random variables, for example the future annual return
of a portfolio Rpy which is uncertain, and lower letters are used for numbers like
historical returns which we know with certainty.

¢ For annual returns on the time horizon [0, 1] we use the same notations as for
annualized returns because they are the same.

17Niels H.D. Bohr (October 7, 1885-November 18, 1962) was a Danish physicist who made
foundational contributions to understanding atomic structure and quantum theory, for which he
received the Nobel Prize in Physics in 1922.
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Fig. 2.6 Mean-variance Expected return IE[Rpf]
diagram with efficient

frontier. Source: Own, for
illustrative purposes only

Efficient frontier

Minimum variance portfolio (MVP)

Volatility opy

The rational investor who is the presumed CAPM protagonist, wants to earn
a certain return and tries to identify a portfolio of minimal risk which satisfies
this goal. Following this purpose, we plot all possible portfolios of risky assets
in a mean-variance diagram,'® as shown in Fig. 2.6 where the points represent the
expected returns IE[Rp] (vertical axis) and the volatilities opy (horizontal axis) of
the portfolios.

A portfolio is called mean-variance efficient (or just efficient), if for a given
volatility there is no portfolio with a higher return. As Merton'® notes, the set of
efficient portfolios in the mean-variance diagram is called the efficient frontier and
has the shape of a hyperbola.?” It is the upper boundary of all portfolios in the mean-
variance diagram from Fig. 2.6. This is exactly the set of portfolios, that the rational
investor in our framework is looking for: They maximize the expected return for a
given risk, and they minimize the risk for a given return.

8Technically a volatility-mean diagram, it is called mean-variance diagram for historical reasons
because when Harry Markowitz introduced MPT in Markowitz (1952, 1999), he plotted the
variance against the mean return, although today it is more common to plot mean return against
volatility.

19Robert C. Merton (born July 31, 1944), an American economist and professor at the MIT Sloan
School of Management, is known for his significant contributions to continuous-time finance,
especially the first continuous-time option pricing model, the Black—Scholes—Merton formula.
Together with Myron Scholes, Merton received the Alfred Nobel Memorial Prize in Economic
Sciences in 1997 for expanding the Black—Scholes—Merton formula. He earned his Doctor of
Economics from the MIT in 1970 under the guidance of Paul Samuelson. He then joined the
faculty of the MIT Sloan School of Management where he taught until 1988 before moving to
Harvard Business School, where he stayed until 2010. In 2010 he rejoined the MIT Sloan School
of Management as the School of Management Distinguished Professor of Finance. He is the past
President of the American Finance Association.

20Merton (1972, p. 1856).
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Fig. 2.7 The mean-variance
diagram shows the capital
market line (CML) which
connects the risk-free asset
with the tangency point on
the efficient frontier, the
market portfolio. The efficient
frontier is based on portfolios
without the risk-free asset.
Source: Own, for illustrative
purposes only
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Expected return IE[Rpy]
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O Mkt Volatility o py

The portfolio on the efficient frontier with the lowest volatility is called
minimum-variance portfolio (MVP).>' If a risk-free asset* exists, that is, an asset
with zero volatility, then the set of mean-variance efficient portfolios, formed with
risk-free and risky assets, is a line from the risk-free asset to the tangency point
on the efficient frontier, as shown in Fig.2.7. We call the tangency point and the
corresponding portfolio “Mkt”, and the risk-free asset is labeled “rf”. The reason
why we get a line is that the volatility 0,7 and also the covariance o, 7y, are zero
(see definition of covariance in Eq. (1.42). We use r,y = IE[R,/]), so the volatility
of the portfolio, with weight wyy, invested in “Mkt” and 1 — wyy, invested in the
risk-free asset, is [see Eq. (1.83)]

opr = \/Wﬁkﬁ@kﬁ(l—wﬁkt) Orr 2w (1= Waske) Orfaie
) ——

= WMkt * OMkt-

Then

E[Rp]

——
=0 =0
(2.29)
WMktE[RMkt] + (1 - WMkt)rrf
rrf + WMkt(E[RMkt] - rrf)
B[Ry — 1+
Frf + Opy - ElRwi = 1oy (2.30)

O Mkt

21Bodie, Kane, and Marcus (2009, p. 211).
22Risk-free assets are discussed below on page 118.
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This gives us the equation for our line which is called the capital market line (CML).
All portfolios on the CML are a combination of the tangency portfolio and the risk-
free asset. Since it is assumed that capital markets are in equilibrium, every investor
holds a portfolio on the CML and therefore a part of the same tangency portfolio,
the latter has to be the market portfolio.

Black,?® Jensen?* and Scholes® were among the first to use the term market
portfolio.?® The market portfolio is a theoretical portfolio which is central to the
CAPM. It contains every risky asset in the market,?’ including stocks, bonds,
options, real estate, coins, stamps, art, antiques®® and also human capital.>® The
assets are weighted according to their market value.

The reason for this is simple®’: In our framework, every investor invests in the
same risk-free asset and the same risky portfolio. For example, if all investors have
1 % of their risky portfolio invested in Apple Inc., then Apple comprises 1 % of the

2Fischer S. Black (January 11, 1938—August 30, 1995), an American economist, is one of the
authors of the famous Black—Scholes equation. He graduated from Harvard College in 1959 and
received a Ph.D. in Applied Mathematics from Harvard University in 1964. He was initially
expelled from the Ph.D. program due to his inability to settle on a thesis topic, having switched
from physics to mathematics, then to computers and artificial intelligence. In 1971, he began to
work at the University of Chicago but later left to work at the MIT Sloan School of Management.
In 1984, he joined Goldman Sachs where he worked until his death in August 1995 from throat
cancer.

2*Michael C. Jensen (born November 30, 1939 in Rochester, Minnesota, U.S.) is an American
economist working in the area of financial economics. He is currently the managing director
in charge of organizational strategy at Monitor Group, a strategy consulting firm, and the Jesse
Isidor Straus Professor of Business Administration, Emeritus, at Harvard University. He received
his B.A. in Economics from Macalester College in 1962 and both his M.B.A. (1964) and Ph.D.
(1968) degrees from the University of Chicago Booth School of Business, notably working with
Professor Merton Miller, the 1990 co-winner of the Nobel Prize in Economics. Jensen is also the
founder and editor of the Journal of Financial Economics. The Jensen Prize in corporate finance
and organizations research is named in his honor.

25Myron S. Scholes (born July 1, 1941), a Canadian-born American financial economist, is one
of the authors of the Black—Scholes equation. In 1968, after finishing his dissertation under the
supervision of Eugene Fama and Merton Miller, Scholes took an academic position at the MIT
Sloan School of Management where he met Fischer Black and Robert C. Merton, who joined MIT
in 1970. For the following years Scholes, Black and Merton undertook groundbreaking research
in asset pricing, including the work on their famous option pricing model. In 1997 he shared the
Nobel Prize in Economics with Robert C. Merton “for a new method to determine the value of
derivatives”. Fischer Black, who co-authored with them the work that was awarded, had died in
1995 and thus was not eligible for the prize. In 1981 Scholes moved to Stanford University, where
he remained until he retired from teaching in 1996. Since then he holds the position of Frank E.
Buck Professor of Finance Emeritus at Stanford.

26B]ack, Jensen, and Scholes (1972, p. 444).
?TReilly and Brown (1997, p. 284).
28This list of examples is mentioned in Reilly and Brown (1997, p. 284).

2Richard Roll mentioned human capital as part of the market portfolio in Roll (1977, p. 131 and
p. 155).

30This reasoning is from Bodie, Kane, and Marcus (1999, p. 253).
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whole market, and vice versa. Every investor holds the same risky portfolio which
excludes the possibility that Apple stock represents a 1.5 % portion in the portfolio
of one investor and a 0.5 % portion in a another one.

The market portfolio cannot only contain stocks or bonds, it has to contain
everything. If it did not include any Picasso paintings, then by our theory nobody
would own Picasso paintings, because everyone’s risky portfolio is supposed to
be the same. There would be no demand for those, and they would not be worth
millions. According to our theory, every investor who makes a risky investment
holds some tiny fractions of Picasso paintings. Of course, this is not realistic, and
this clearly shows the limitations of CAPM.

It is common practice to use Treasury bills as the risk-free asset and its yield as
the risk-free rate r,/3': As a short-term fixed income investment it is insensitive to
interest rate fluctuations. It is backed by the U.S. government and has virtually no
default risk. In practice, all money market instruments can be treated as risk-free
assets because their short maturities make them virtually free of interest rate risk.
They are fairly safe in terms of default or credit risk, and as one of the most liquid
asset types their liquidity risks are low. Money market instruments are short-term
debt instruments that have original maturities of 1 year or less.*> They include U.S.
Treasury bills, commercial paper, some medium-term notes, bankers acceptances,
federal agency discount paper, most certificates of deposit, repurchase agreements,
federal funds, and short-lived mortgage- and asset-backed securities.

After having discussed the optimal portfolios which are situated on the CML,
we want to take a closer look at the individual securities within the portfolio. Since
the rational investor does not hold one single, but many securities in his portfolio,
we have to assess the risk of these securities in the portfolio context and not just
the volatility which describes the risk of holding only one security alone. Let us
take a look at the mean-variance diagram in Fig. 2.8, and analyze security A. If you
are invested only in this asset and nothing else, then the volatility o4 is the risk
which matters. But if you hold security A as part of a portfolio on the CML, then
some of the risk, the unsystematic risk o, 4, is diversified away, and what is left is
the systematic risk B4 - oy (B4 is defined in Eq. (2.31)). In this case, security A
becomes equivalent to a portfolio B on the CML with the same expected return as
portfolio A, but with a lower risk 84 - o

This risk cannot be diversified away. Dividing it by oan, produces the standard-
ized measure of systematic risk, beta 4. The market portfolio has beta 1. Since
every rational investor is assumed to hold a portfolio on the CML, we only have to
take account of the systematic risk, i.e., 8.

In equilibrium, all securities and all portfolios are on the security market line
(SML), as shown in Fig. 2.9 which plots the expected return of a portfolio against
its beta. The beta of the risk-free asset is 0, the beta of the market portfolio is 1, and
the SML is the line which connects these portfolios.

31Bodie et al. (1999, p. 181).
32Fabozzi, Mann, and Choudhry (2002, p. 1).
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Expected return IE[Rpy]

Capital market line (CML)

Market portfolio (Mkt)

E[Rmit] p=======——————————
I
1
| | |
I | I
r I I
of \ 1 I
MVP | 1 1
| ! |
: O Mkt : Volatility o py
1 I
Systematic risk Unsystematic risk
Ba - oMkt Te,A

Total risk o4
Fig. 2.8 The mean-variance diagram shows the capital market line (CML) which connects the
risk-free asset with the tangency point on the efficient frontier, the market portfolio. Source: Own,

for illustrative purposes only
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Fig. 2.9 The diagram shows the security market line (SML) which connects the risk-free asset
with the market portfolio. In equilibrium, all assets and portfolios plot on the SML. Source: Own,
for illustrative purposes only

The beta (Bps) of a portfolio is the covariance between the portfolio return and
the market return divided by the variance of the market return:

[0}
By - PZM’“, (2.31)
Ok

In an efficient market, the expected value IE of the portfolio return Rpy satisfies
the CAPM equation for any possible portfolio

E[Rps] = rrp + By - (E[Raa] — 1), (2.32)
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where the portfolio beta is Bpf, the risk-free return is 7,7, and the market return is
Fuie- The difference IE[Ryu | — /s is called the market risk premium. This equation
also shows that the investor is directly rewarded for taking risk in terms of Bps, but
not for volatility opy.

There are big differences between the two risk measures beta and volatility:

* While the volatility of a portfolio is an absolute measure which depends only on
its returns, beta is a relative measure, since it measures how the portfolio moves
relative to the market. A Bp; of 0.8 means that a 1 % increase in the market
return increases the portfolio return by 0.8 %. Contrary to the volatility, 8pf could
be negative which would mean that market returns and portfolio returns tend to
move in opposite directions.

* While computing the volatility ops of a portfolio with M securities (with portfo-
lio weights wy, ..., wys), one has to take into account the pairwise covariances

orj (=i, j<=Mi#]j)
among these M securities besides their volatilities
oo (1<i<M),
see Eq. (1.83). The relation for beta is linear:
Ber = wi-Bi+wr-Bo+...+wy- Bu. (2.33)

According to the CAPM, all optimal portfolios are a combination of the risk-free
portfolio and the market portfolio, so every investor—independent of his risk-
preference—will always hold a combination of those two portfolios. If wyy, is the
portfolio weight invested in the market portfolio and 1 —wg, the proportion invested
in the risk-free asset, then the portfolio beta Bps is wag,. In order to construct
individually tailored optimal portfolios, two tasks have to be completed, which can
be done separately (this is also called Tobin separation®):

3Spremann (2008, pp. 227-228), initially discussed in Tobin (1958, p. 66). In Markowitz (1999,
p. 10), Harry Markowitz refers to the Tobin (1958) article as the first CAPM, and summarizes
Tobin’s work. In Sect. 3.6. of Tobin’s article, the author presented his seminal result, today known
as the Tobin separation theorem. Tobin assumed a portfolio selection model with M risky assets
and one riskless asset: cash. Because these assets were monetary, i.e., “marketable, fixed in money
value, free of default risk” (see Tobin 1958, p. 66), the risk was market risk, not default risk.
Holdings had to be nonnegative. Borrowing was not permitted. Implicitly, Tobin assumed that
the covariance matrix for risky assets is nonsingular. The result was that “the proportionate
composition of the non-cash assets is independent of their aggregate share of the investment
balance. This fact makes it possible to describe the investor’s decisions as if there were a single
non-cash asset, a composite formed by combining the multitude of actual non-cash assets in fixed
proportions.” (see Tobin 1958, p. 84).
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Table 2.1 Example for i Weight w; Beta B;
calculating the expected 1 5% 12
return of a portfolio using 7 :
CAPM 2 20 % 0.6
3 25% 0.5
4 15 % 2.4
5 25% —0.4

Source: Own, for illustrative purposes only

* Construct the risk-free portfolio (with money market instruments) and the market
portfolio. This is the task of the portfolio manager.

* Determine the correct risk profile of the client and find the optimal allocation
between risk-free and risky investments. This is the role of the investment
advisor.

In order to find the optimal portfolio, one would have to know the composition
of the market portfolio. In theory, this would also include non-tradable assets like
human capital, rarely traded assets like art collections, and assets like real estate
which are difficult to value. Their respective market capitalization has to be known
in order to set up the market portfolio. But given that human capital makes up a
large part of the market portfolio with estimates of its proportion within the portfolio
ranging from 50 to 90 %,** the market portfolio cannot be measured as long as the
valuation of human capital remains questionable.®

Example

Let us consider the following example: We want to calculate the expected return
of a portfolio containing five different assets. Table 2.1 shows the weights of the
assets in our portfolio. Assume that the risk-free rate r,s is 5 % and the expected
market return E[Ryz,] is 13 %.

The first step is to calculate the portfolio beta Sp; using Eq. (2.33) with M = 5:

,BPf = Wl',B1+...+W5-,35
= 0.15-1.240.20-0.6+0.25-0.5+0.15-2.4 + 0.25-(—0.4)
= 0.685. (2.34)

We use this result to calculate the expected return IE[Rp/] of the portfolio from
the CAPM equation—Eq. (2.32):

3In the studies Kendrick (1974, 1976, 1994) and Eisner (1985, 1989) which used the cost-based
approach, the size of human capital was about the size of non-human capital. In the study Jorgenson
and Fraumeni (1989, 1992) which used the income-based approach, the share of human capital in
total wealth was over 90 %.

35 A good summary about the market portfolio is provided in Le, Gibson, and Oxley (2003).
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E[Rp] = 1oy + Brr - (E[Ram] = 1vy)
= 5%+0.685-(13%—-5%) = 10.48 %. (2.35)
The expected return of our portfolio is 10.48 %.

End of Example

Remark. We have derived the CAPM equation—Eq. (2.32)—for a 1-year period
and for annualized returns. But the CAPM also holds for arbitrary periods, for
example, quarters, months, weeks, days, and you also get CAPM equations with
quarterly, monthly, weekly and daily returns. For example, for monthly returns, the
CAPM formula is

E[erf;mhly] — r:;l‘{)11thl}' + ,BPf . (E[Rﬂrr/;(lz?thl}] _ r;?;{)ntlzl)*)' (236)

2.3.4 Empirical Tests

We have described the CAPM after starting with very simplistic and unrealistic
assumptions in Sect. 2.3.1 and made two points about the usefulness of the theory?:
First, many assumptions can be relaxed to approximate real-world conditions. This
would slightly modify the CAPM without changing the main implications. Second,
a theory should “not be judged on the basis of it assumptions, but on how well it
explains relationships that exist in the real world”. "

Therefore, in this section, we will discuss the empirical tests of the CAPM. This
section is based on the paper Fama and French (2004) and Reilly and Brown (1997,
pp- 310-311).

2.3.4.1 The Testable Hypotheses
Let us recall the CAPM equation (2.32) which should be tested:

Given the risk-free return r,y and the market return Ry, the expected return
E[Rp/ of the portfolio depends only on the systematic risk, the portfolio beta Bp¢
(i.e., the covariance of the portfolio Pf with the market portfolio Mkt divided by the
variance of the market portfolio), satisfying the equation

E[Rps] = rrp + Brr - (E[Ryi] — 1rp). (2.37)

The first question which arises is if beta is a stable measure of systematic risk.*
Can historical betas be used as an estimate for future betas? If betas change too

36Reilly and Brown (1997, p. 279).
37Reilly and Brown (1997, p. 310).
3Reilly and Brown (1997, p. 310).
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much over time, then they are no useful measures for future risks and for estimating
expected returns with the CAPM formula.
Equation (2.37) has four testable implications which are to be tested™:

¢ Hypothesis 1 (C1)—Linearity:
Expected returns of all assets are linearly related to their betas.

¢ Hypothesis 2 (C2)—No systematic non-beta risks:
Beta is a complete measure of risk for an asset in the market portfolio. No other
variable has marginal explanatory power to explain returns.

e Hypothesis 3 (C3)—Positive beta premium:
The beta premium,‘m i.e., the difference between the expected return of the
market portfolio and the expected return of assets uncorrelated to the market,
is greater than zero. In other words, the expected return of the market portfolio
exceeds the expected return of assets uncorrelated to the market.

e Hypothesis 4 (C4)—Risk-free return on zero-beta assets:
Assets uncorrelated to the market portfolio have expected returns equal to the
risk-free rate.

2.3.4.2 Regressions
There are two different simple linear regressions which are used to test Eq. (2.37):

» The cross-sectional regressions test the CAPM across assets with different betas.
The returns of different assets are regressed over the betas.

* The time-series regressions test the CAPM equations for each individual asset
over time. The excess portfolio returns in the subperiods are regressed over the
respective excess return of the market portfolio.

Cross-Sectional Regression
The cross-sectional regression is the main tool used to test Eq. (2.37) over a period
[0,T] of T years. CAPM tests do not exactly test Eq.(2.37) because it includes
expected returns which are not measureable. Instead, the question is if the relation
holds for realized returns, i.e., if the relation has been correct in the past. The cross-
sectional regression tests the CAPM equation by regressing the (arithmetic) average
annual return 7 4 of an asset A over beta.

Figure 2.10 shows a typical cross-sectional regression. For every asset A4, the data
point (B4, r4) is plotted with B4 its beta and 74 as its (arithmetic) average annual
return. We then get the regression line which has the form

¥These are from Fama and French (2004, p. 30), and Fama and MacBeth (1973, p. 610 and p. 613).

“OLiterally, the beta premium is the premium per unit of beta. The CAPM implies that the beta
premium is the excess market return, i.e., the difference between the expected return on the market
portfolio and the risk-free rate. But this equality is equivalent to the fourth hypothesis, that zero-
beta assets expect to earn the risk-free rate. The positive beta premium does not test the equality
with the excess market return, only the positivity.
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Fig. 2.10 Cross-sectional Annual return 7
regression. Annualized
returns of asset returns are
regressed over their respective
betas. Source: Own, for
illustrative purposes only

T T T T Beta a4

T4 =a+b-,3,4. (2.38)

This diagram looks very similar to Fig. 2.9 where the expected returns of assets
are plotted against their betas. They lie on the security market line (SML) which is
the line predicted by the CAPM, whereas the regression line is the empirical one
we observe, based on historical data. The empirical test of the CAPM examines
if both lines are equal, or in other words, if the data fits the predicted line, the
SML. The intercept a in Eq. (2.38) and the slope coefficient » (the beta premium)
correspond to the risk-free rate r.s in Eq. (2.37) and the market risk premium Ry, —
r.r, respectively. With this regression, we can check hypotheses (C3) and (C4) from
the list on page 123:

* Positive beta premium: The beta premium b is positive.
* Risk-free return on zero-beta assets: The intercept a equals the risk-free rate r,.

Given the market data, we still need the betas S, to plot a diagram like
Fig.2.10 and to perform our regression analysis. We get the betas from a time-series
regression.

Time-Series Regression

The time-series regression tests the CAPM equation for each individual asset
separately on N equidistant subperiods of a time horizon [0, T']. The excess asset
return in each subperiod k is regressed over the excess market return from the same
subperiod. Figure 2.11 shows a typical time-series regression. Given an asset A, for
every subperiod k, the data point FA’}M, Ffl is plotted where Fff,lkt = rff,lkt — rff is the
excess return of the market portfolio in subperiod k, i.e., the difference between the
market return and the return on a risk-free asset, and fﬁ = rfl — rff is the excess
return of the asset A4 in the subperiod k. ‘

We get a regression line of the form

~subperiod _ ~subperiod
N = a+b-1y, (2.39)
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Fig. 2.11 Time-series Excess asset return 75

regression. Excess returns of

an asset A in subperiod i are 24 o
regressed over the excess

market return. Source: Own, 207 Regression line

for illustrative purposes only

sq - n 7k
Excess market return 737,

where subperiod can be quarterly, monthly, weekly, daily, etc. and refers to the
length of the subperiods. For example, if we choose monthly subperiods, then we
have a regression on monthly returns:

~monthly ~monthl}
Fu =a+b-ry . (2.40)
——

monthly excess return

Let us recall the CAPM equation using monthly returns (Eq. (2.36)):

E[thonthly] — :;t[onthly + ,BA (E [Rﬁrzz?thly] monlhly

Rewrite this as

[ monlhly] monthly — ﬂA . (]E [Rﬁrzz?thly] monlhly) (241)

expected monthly excess return

and we can see that in the regression equation—Eq. (2.40)—a should be zero and
b is the beta B 4. For any asset A, we call the intercept a from the above regression
the alpha of A. In case of monthly subperiods, we write ;""" similarly to other
subperiods. The alpha represents the incremental rate of return which exceeds the
theoretical rate of return implied by the CAPM. It is introduced in Jensen (1967) as
the intercept of the linear time-series regression and as a performance measure to
evaluate a portfolio manager who invests in portfolio A4.*!

#Jensen (1967, p. 8).
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Regarding the CAPM hypotheses on page 123, the time-series regression can be
used to test hypothesis (C4):

Risk-free return on zero-beta assets: The alphas of all assets are zero.

Note that for our regressions, we do not use the real market portfolio Mkt because
it is hardly observable. Instead, we use a proxy like a stock market index to mimic
the market return.

2.3.4.3 Beta Stability
In the CAPM, the only relevant risk measure is the systematic risk, beta. For any
asset with historical data, we can calculate the historical beta with a time-series
regression. But is the historical beta reliable enough to assess future risk? Fig-
ure 2.12 depicts the following scenario for an investor: Assume that you are looking
for a rather conservative investment with a low beta of around 0.5, and you have
found a portfolio with a historical beta of 0.5. Your natural question to ask is if the
portfolio’s beta will only change little over time, i.e., whether it will remain stable.
There have been lots of studies on this topic, with similar results. They are
summarized in Reilly and Brown (1997, pp. 310-311), and this section about beta
stability is based on this book. The two researchers tested the correlation between
two consecutive time periods, as illustrated in Fig.2.13: The earlier period is
called estimation period, the latter is termed subsequent period.** If the correlation
between the betas of both periods is high, then beta is stable, and the investor
can rely on the historical beta to provide a good estimate of the future beta. The
correlation of betas of consecutive time periods is therefore used as a measure for
beta stability.

Today
| | |
N A J Time axis
Historical period Future period
Historical beta = 0.5 Future beta close to 0.57
Fig. 2.12 Illustration of historical beta vs. future beta. Source: Own
Today
| | |
. J Time axis
Estimation period Subsequent period

Correlation?
Beta Beta

Fig. 2.13 Tllustration of two consecutive periods: estimation period and subsequent period.
Source: Own

“2This terminology is from Roenfeldt, Griepentrog, and Pflaum (1978).
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Marshall E. Blume studied the variation of the beta measure for all NYSE
common stocks (the number of stocks ranged from 415 to 890)* in the period July
1926—June 1968 in his paper Blume (1971). He split this 42-year period into seven
consecutive 6-year periods for which he calculated the betas (based on monthly
returns) of portfolios with 1, 2, 4, 7, 10, 20, 35, 50, 75 and 100 stocks. He then
calculated the correlations of betas between consecutive periods, as illustrated on
the timeline in Fig. 2.14.

His result is that the correlations of betas are low for one single stock (around
0.6), but these numbers increase with the number of stocks in the portfolio. With 50
stocks, the correlation becomes very high (0.98). The beta is unstable for individual
stocks, but it is very stable for a larger portfolio with 50 stocks.**

Robert A. Levy did a similar study in Levy (1971). Here, the time periods were
much shorter: 13 weeks, 26 weeks and 52 weeks. The betas were calculated based
on weekly returns. Short-term betas are more important for portfolio managers with
shorter time horizons.*> Again, the beta of the single stock was unstable. The longer
the time period (at least 26 weeks) and the more stocks (at least 25 stocks) in the
portfolios, the more stable the beta of the portfolio.

R.B. Porter and John R. Ezzell argue in Porter and Ezzell (1975) that the
high correlation of betas in Blume’s study is only due to his portfolio selection
methodology. Blume selected the portfolios in his study based on the betas*®: The
stocks with the lowest betas are assigned to portfolio 1, the next smallest ones
to portfolio 2, etc. Porter and Ezzell repeated his study with randomly selected
portfolios and found that in contrast to Blume’s results, the stability of beta is
“relatively light and |...] totally unrelated to the number of securities in the

portfolio”. %
Mid Mid Mid Mid Mid Mid Mid Mid
1926 1932 1938 1944 1950 1956 1962 1968
| | | | | | | |
I T T T T T T ™ >
Time axis
Corr. Corr. Corr. Corr. Corr. Corr.
B B B B B B B

Fig. 2.14 Tllustration of the timeline used in Blume (1971) to study the stability of beta. The
time period July 1926-June 1968 is split in seven equidistant subperiods for which the betas are
measured. The correlation between the betas of consecutive subperiods are calculated and used as
a measure for beta stability. Source: Own

“Blume (1971, p. 4).
“Blume (1971, p. 7).
Levy (1971, p. 57).
4Blume (1971, p. 6).

4IQuote from Porter and Ezzell (1975, p. 369). See p. 370, Table 2, which compares Blume’s to
Porter’s & Ezzell’s correlation numbers.
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T.M. Tole examined the standard deviation of betas as another measure of beta
stability in Tole (1981). He found a significant decrease in the standard deviation
(and therefore an increase in beta stability) with increasing portfolio size,*® even
beyond 100 stocks.*’

To which extent does beta stability depend on the lengths of the estimation
and subsequent periods? In Baesel (1974), the beta stability of single U.S. stocks
is examined by using different lengths for the two periods. Baesel found that an
increase in these lengths also increases the beta stability.”* Altman, Jacquillat, and
Levasseur (1974) presents the same results for French stocks. While both periods
were equally long in these two studies, Roenfeldt et al. (1978) compares the beta
of a 4-year estimation period to the betas of subsequent 1-year, 2-year, 3-year and
4-year periods. They found that estimated betas based on the 4-year period were
more reliable as a forecast for subsequent 2-year, 3-year and 4-year periods than for
a subsequent 1-year period.>!

According to Reilly and Brown (1997), the overall conclusion of the empirical
tests is that individual betas are generally volatile, whereas portfolio betas are stable.
The estimation period should be at least 36 months to forecast beta.>>

2.3.4.4 Tests of the Main Hypotheses
Now we discuss tests of the main hypotheses which were formulated on page 123.
Because the beta stability was low for individual securities and high for large
portfolios (as discussed in the Section “Beta Stability” above), the CAPM was
only tested for portfolios. This is plausible, since the CAPM is only interesting for
portfolios where the beta is supposed to be the significant risk measure, in contrast
to an individual security. An application to single securities does not make sense.
A few years after the CAPM was developed in Sharpe (1964), Lintner (1965a)
and Mossin (1966), the first empirical tests were performed. We want to focus
on three groundbreaking empirical studies which shaped the discussion about the
empirical CAPM and led to modifications of this model: Black et al. (1972), Fama
and MacBeth (1973) and Fama and French (1992).

Black, Jensen and Scholes (1972): The Capital Asset Pricing Model: Some
Empirical Tests

The early empirical cross-sectional tests in Douglas (1969) and Miller and Scholes
(1972) showed that zero-beta assets earned more than the risk-free rate and that the
beta premium was lower than the market excess return, in violation with hypothesis
(C3).%® Friend and Blume (1970) also showed that low-beta assets earned positive
alpha and high-beta assets earned negative alpha. Black et al. (1972) provided

“8Tole (1981, p. 47, Exhibit 1).

“9This is pointed out in Reilly and Brown (1997, p. 310).

30Conclusion in Baesel (1974, p. 1493). Compare Table 1 on p. 1492 with Table 2 on p. 1493.
3lConclusion in Roenfeldt et al. (1978, p. 120 and Table 1 on p. 119).

32Reilly and Brown (1997, p. 311)

33Fama and French (2004, p- 32).
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additional time-series and cross-sectional tests in support of these results and, as
a consequence, postulated a modified version of the CAPM, the zero-beta CAPM,
which accommodated zero-beta returns above the risk-free rate.

The data used in the tests to be described were taken from the University of
Chicago Center for Research in Security Prices monthly price relative file, which
contains monthly price, dividend, and adjusted price and dividend information for
all securities listed on the New York Stock Exchange in the period January 1926—
March 1966.5 The monthly returns on the market portfolio Rj'™ were defined
as the returns that would have been earned on a portfolio consisting of an equal
investment in every security listed on the NYSE at the beginning of each month.>
The risk-free rate was defined as the 30-day rate on U.S. Treasury bills for the period
1948-1966. For the period 1926-1947, where Treasury bill rates were not available,
the dealer commercial paper rate was used.

Portfolio selection process®®: The tests used portfolios with a wide range of betas.
This was done by ranking individual securities by their betas and then assigning the
ones with the highest beta to portfolio 1, the next highest to portfolio 2, etc. But
if these betas were used as an input for the regression analysis, this would cause a
bias.”’ This is why the analysis is split in two phases:

1. Portfolio formation period: In this period, the betas of individual securities are
calculated and ranked. Based on the rankings, the portfolios are formed. The
betas from this period are not used in the test period.

2. Test period: The returns and betas of portfolios which are used for regression
analysis are computed. The beta is calculated only on the basis of the test period.

For the beginning of January 1931, only stocks with at least 24 months of
available data were considered, and their individual betas were calculated based
on the monthly returns in the 5-year period January 1926-December 1930 (or from
a shorter period if less than 5 years of data were available). These securities were
ranked according to the calculated betas and then assigned to ten portfolios, with
an equal investment in each security®®: the 10 % with the largest beta to the first
portfolio, the next 10 % to the second portfolio, etc. The return in each of the next
12 months for each of the ten portfolios was calculated.

After 12 months, for the beginning of January 1932, the ten portfolios were
rebalanced using the same procedure: Only stocks with at least 24 months of
previous monthly returns were considered, their betas were calculated based on the

S4Black et al. (1972, p. 10).
SSBlack et al. (1972, p. 8).
S6Black et al. (1972, p. 11).
STBlack et al. (1972, p-9).

38Black et al. (1972, p. 8): An equal investment is indicated by using the average return and average
risk (beta) of all securities in a portfolio.
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Table 2.2 Summary of portfolio formation period and testing period

Period 1 2 . 35
Portfolio formation period 1926-1930 1927-1931 .. 1960-1964
Testing period 1931 1932 . 1965

Source: Black et al. (1972, p. 11)

Table 2.3 Summary of regression statistics for the time-series regression for ten different
portfolios based on monthly returns in the period January 1931-December 1965

Portfolio # | 1 2 3 4 5 6 7 8 9 10

B 1.561 | 1.384| 1.248| 1.163| 1.057|0.923 |0.853 | 0.753 |0.629 | 0.499
o (in %) | —0.083 | —0.194 | —0.065 | —0.017 | —0.054 | 0.059 | 0.046 | 0.081 | 0.197 | 0.201
Source: Black et al. (1972, Table 2, p. 14)

5-year period January 1927-December 1931 (or on a shorter period if less than
5 years of data were available), the stocks were ranked and assigned to the ten
portfolios based on the rankings.

This process was repeated for the beginnings of January 1933, January 1934, etc.
through January 1965. Table 2.2 summarizes the periods:

The total number of stocks in the portfolios ranged from 582 to 1,094. For each
portfolio, we get 35 years of monthly data.

Time-series regression was run on the ten portfolios based on 35 years of monthly
returns in the period January 1931-December 1965 (420 observations). The results
are shown in Table 2.3.

The table shows the alphas and betas of the ten portfolios, calculated with a linear
time-series regression. Portfolio number 1 contains the highest-beta securities,
portfolio number 10 consists of the lowest-beta securities. The portfolio betas
range from 0.499 to 1.561. The critical result is that the high-beta portfolios
(B > 1) consistently show negative alphas while low-beta portfolios (8 < 1) show
positive alphas. In other words, high-beta portfolios yield lower returns and low-
beta portfolios yield higher returns than predicted by the CAPM. This rejects the
CAPM hypothesis (C4) (see the list of hypotheses on page 123) that alpha should
be zero. Furthermore, the study shows that the incremental return per unit of risk j
(the beta premium) is smaller than implied by the CAPM.

Black et al. (1972) also performed a cross-sectional regression analysis with the
same ten portfolios for the period January 1931-December 1965, which is illustrated
in Fig. 2.15.

For each of the ten portfolios, the average excess monthly return®® (vertical axis)
and the beta (horizontal axis) are plotted (represented by dots), together with the
(bold) regression line. The square represents the market portfolio and has beta 1.

The excess return of a portfolio is the difference between the return of a portfolio and the return
on a risk-free asset.
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Fig. 2.15 Average excess monthly returns of ten portfolios (denoted by dots) and the market
portfolio (denoted by the square) are plotted against their betas for the 35-year period 1931-1965.
The bold line is the regression line, the dotted line is the theoretical line implied by the CAPM.
Source: Black et al. (1972, p. 21)

The dotted line is the theoretical CAPM line (i.e., the SML) which goes through
(0,0) and the market portfolio is also drawn to compare it with the regression
line. The regression line has a flatter slope than the theoretical line and a higher
intercept which is significantly greater than zero. The latter contradicts®® the CAPM
hypothesis (C4) (see the list of hypotheses on page 123). On the other hand, the
ten data points representing the portfolios plot close to the line, indicating a linear
relationship between return and beta (in support of (C1)).

Black et al. (1972) proceeded by examining the time-dependency of the regres-
sion line and its variation over time. A 35-year period was divided in four equal
subperiods of 105 months length, and the same cross-sectional regression analysis
was done for these subperiods. Figure 2.16 shows the regression for the period
January 1931-September 1939. The intercept was significantly less than zero and
the regression line was steeper than the theoretical line. Figure 2.17 shows the
regression for October 1939-June 1948. The intercept is significantly greater than
zero, and the regression line is flatter than the theoretical line. Figure 2.18 shows
how the regression line became even flatter in the period July 1948-March 1957.
From April 1957 to December 1965, the regression line in Fig.2.19 even shows
a negative slope, implying a negative beta premium which contradicts hypothesis
(C3).

%In the general cross-sectional regression (2.38) that we described earlier, the average return, not
the average excess return, is regressed on beta. The only difference is that we have to shift the graph
from Fig. 2.16 down by the average risk-free rate r,7. So the second hypothesis stated on page 124,
i.e., risk-free return on zero-beta assets, translates into: “The intercept a is zero.”
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Fig. 2.16 Average excess monthly returns of ten portfolios (denoted by dots) and the market
portfolio (denoted by the square) are plotted against their betas for the 105-month period January
1931-September 1939. The bold line is the regression line, the dotted line is the theoretical line
implied by the CAPM. Source: Black et al. (1972, p. 24)
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Fig. 2.17 Average excess monthly returns of ten portfolios (denoted by dots) and the market
portfolio (denoted by the square) are plotted against their betas for the 105-month period October
1939-June 1948. The bold line is the regression line, the dotted line is the theoretical line implied
by the CAPM. Source: Black et al. (1972, p. 24)

On the other hand, in all four subperiods which show different behaviors of the
regression line (the slope was greater than the theoretical line in one subperiod and
negative in an other subperiod), the data points plot close to the regression line,
supporting hypothesis (C1) about the linearity between return and beta.

The overall conclusion of the empirical tests is that linearity between return
and beta is supported by the data, but the hypothesis that zero-beta assets earn the
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Fig. 2.18 Average excess monthly returns of ten portfolios (denoted by dots) and the market
portfolio (denoted by the square) are plotted against their betas for the 105-month period July
1948-March 1957. The bold line is the regression line, the dotted line is the theoretical line implied
by the CAPM. Source: Black et al. (1972, p. 24)
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Fig. 2.19 Average excess monthly returns of ten portfolios (denoted by dots) and the market
portfolio (denoted by the square) are plotted against their betas for the 105-month period April
1957-December 1965. The bold line is the regression line, the dotted line is the theoretical line
implied by the CAPM. Source: Black et al. (1972, p. 24)

risk-free rate is rejected. The paper therefore suggests a modified CAPM without
the assumption of risk-free borrowing and lending, the zero-beta CAPM (see also
Sect.2.3.5):

Let Rz be the return on an asset Z which has zero beta. Then

Rpr = E[Rz] + Bpr - (E[Rui] — E[RZ]). (2.42)
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The zero-beta CAPM was introduced in Black (1972), where it was shown that
Eq. (2.42) holds when all CAPM assumptions from Sect.2.3.1 are true except the
assumption of risk-free borrowing and lending (A3). The empirical tests from Black
et al. (1972) are consistent with this model.%!

Fama and MacBeth (1973): Risk, Return, and Equilibrium: Empirical Tests
Before Eugene F. Fama and James D. MacBeth published their study in 1973,
empirical tests of the CAPM were focused on the hypothesis that zero-beta assets
earn the risk-free rate (C4, see page 123).9? This hypothesis was rejected in several
papers, including Douglas (1969), Friend and Blume (1970), Miller and Scholes
(1972) and Black et al. (1972). This led to the introduction of the zero-beta
CAPM (2.42).

Fama and MacBeth (1973) made the next step: They formulated®® the list
of testable hypotheses (C1)—(C4) implied by the CAPM as shown on page 123
and tested these hypotheses by extending the cross-series regression with beta as
the only explanatory variable to a multi-linear regression with three explanatory
variables:

* Beta:
As applied in the cross-sectional regressions above.

* Beta squared:
Beta squared is used to test linearity (C1). If it turns out to have explanatory
power in explaining returns, then the relation between return and beta cannot be
linear. Beta squared serves as an explanatory variable for possible low-beta or
high-beta tilts.%* If the slope coefficient of beta squared is positive, then high-
beta securities have higher expected returns and low-beta securities have lower
expected returns than predicted by the CAPM. If the slope coefficient is negative,
then it is the other way round.

¢ Unsystematic risk:
Total risk (in terms of volatility) is the sum of systematic and unsystematic
risk which are not correlated with each other.®> Unsystematic risk is used as
an explanatory variable in the regression to test (C2), i.e., if non-beta risks also
explain returns. If the CAPM is valid, then unsystematic risk should have no
explanatory power.

The data used in the study are the monthly returns (including dividends and
capital gains with the appropriate adjustments for capital changes such as splits and
stock dividends) for all common stocks traded on the New York Stock Exchange

61Black et al. (1972, p. 25).

62Fama and MacBeth (1973, p. 614).

63Fama and MacBeth (1973, p. 610 and p. 613).
64Fama and MacBeth (1973, p. 614).

65Fama and MacBeth (1973, p. 616).
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during the period January 1926-June 1968.%° The data are taken from the Center for
Research in Security Prices of the University of Chicago. Fisher’s arithmetic index
is chosen as the market portfolio, an equally-weighted index on all stocks listed on
the New York Stock Exchange.®” The monthly risk-free rate is taken to be the yield
on the 1-month Treasury bills.®

The portfolio selection process for the study is similar to Black et al. (1972),
as described on page 129. 20 portfolios are selected based on the beta rankings
of the securities, with equal investment in all securities after a portfolio formation
period of 7 years (except for the first period which is 4 years long, see Table 2.4).
Data which is used for beta rankings is not reused for regression analysis because
this introduces statistical biases.%” The next 5 years of data in the initial estimation
period is used to estimate the betas and the unsystematic risk (the average of the
unsystematic risks of all securities in the portfolio) of the portfolios. After that, in
the festing period, monthly returns of the 20 portfolios are measured. For every
month in the testing period, the monthly returns of the 20 portfolios are regressed
over beta, beta squared and unsystematic risk which are measured based on the
preceding 5 years of data. Then the regression coefficients are averaged to get the
result. Table 2.4 shows the different periods.

Let us illustrate the methodology for period 1: First, the betas of the securities are
measured based on the period 1926-1929 and ranked. The 5 % of the securities with
the lowest betas go to portfolio 1, the next lowest 5 % to portfolio 2, etc., until 20
portfolios are established. The first month in the test period is illustrated in Fig. 2.20:
In January 1935, the monthly returns of the 20 portfolios are measured, and they
are cross-sectionally regressed over beta, beta squared and unsystematic risk which
were measured based on the preceding 60 months of data (January 1930-December
1934).

Table 2.4 Portfolio formation, estimation and testing period

Period 1 2 3 4 5

Portfolio formation period | 1926-1929 |1927-1933 | 1931-1937 | 1935-1941 | 1939-1945
Initial estimation period 1930-1934 | 1934-1938 | 1938-1942 | 1942-1946 | 1946-1950
Testing period 1935-1938 | 1939-1942 | 1943-1946 | 1947-1950 | 1951-1954

Period 6 7 8 9

Portfolio formation period | 1943-1949 | 1947-1953 | 1951-1957 | 1955-1961

Initial estimation period 1950-1954 | 1954-1958 | 1958-1962 | 1962-1966

Testing period 1955-1958 | 1959-1962 | 1963-1966 | 1967-1968
Source: Fama and MacBeth (1973, Table 1, pp. 618-619)

%Fama and MacBeth (1973, p. 614).
67Fama and MacBeth (1973, p. 614).
%8Fama and MacBeth (1973, p. 626).
%Fama and MacBeth (1973, p. 615).
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Fig. 2.20 Fama-MacBeth regression illustrated: 1st month of period 1. Source: Own
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Fig. 2.21 Fama-MacBeth regression illustrated: 2nd month of period 1. Source: Own
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Fig. 2.22 Fama-MacBeth regression illustrated: last month of period 1. Source: Own

The second month in the test period is illustrated in Fig. 2.21: In February 1935,
the monthly returns of the 20 portfolios are measured, and they are cross-sectionally
regressed over beta, beta squared and unsystematic risk which were measured based
on the preceding 60 months of data (February 1930-January 1935).

This procedure is continued until the last month of period 1, illustrated in
Fig.2.22: In December 1938, the monthly returns of the 20 portfolios are measured,
and they are cross-sectionally regressed over beta, beta squared and unsystematic
risk which were measured based on the preceding 60 months of data (December
1933-November 1938).

For each of the 48 months in the testing period 1935-1938, a cross-sectional
regression is performed and regression coefficients are calculated. These are
averaged for the whole period 1935-1938. This process is repeated for the other
eight testing periods (see Table 2.4), the regression coefficients are averaged over
all months of the period 1935-1968, and the result for the entire period is obtained.

This regression method, which is also known as the Fama—MacBeth regression,
has become standard in the literature.”” Fama and MacBeth performed their tests
on the 20 portfolios for the period January 1935—June 1968 and its subperiods (see
Table 2.4). The results of Fama’s and MacBeth’s tests were the following”':

* The beta premium is positive for the overall period, which validates hypothesis
(C3) that beta is positively related to return.’””

7Fama and French (2004, p. 31).
7IFama and MacBeth (1973, p. 624).

72The beta premium turned negative during a short subperiod (1956-1960), but this does not
invalidate the long-term result.
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e Beta squared showed no explanatory power for returns. Therefore, the test
supports hypothesis (C1) that the relation between return and beta is linear.

* Unsystematic risk showed no explanatory power for returns, which supports
hypothesis (C2) that no variable other than beta explains returns.

The results support the zero-beta CAPM (2.42). In addition, the cross-sectional
regression analysis with beta as the only explanatory variable shows that the returns
on zero-beta assets are higher than the risk-free rate, thus invalidating hypothesis
(C4).

There is one big difference between the cross-sectional regressions used in
the tests in Black et al. (1972) and Fama and MacBeth (1973): In Black et al.
(1972), monthly returns and betas are measured in the same testing period. While
this is a test of the CAPM, this is not a test if estimated betas can be used for
predicting returns because beta is unknown before the returns are measured. The
Fama—MacBeth regression is an improvement because betas are measured before
the monthly returns are realized. So this empirical test also supports the assertion
that estimated betas can be used for making predictions and decisions.”> Another
difference is that while the early cross-sectional tests treated the zero-beta returns as
constant (because the CAPM assumes a constant and deterministic risk-free rate),
the Fama—MacBeth regression uses time-varying zero-beta returns which come
closer to the stochastic nature of zero-beta returns, as postulated in the zero-beta
CAPM.

Other tests like Blume and Friend (1973) and Stambaugh (1982) also positively
tested the linearity assumption (C1) while rejecting (C4).

Fama and French (1992): The Cross-Section of Expected Stock Returns

After the CAPM was developed, some researchers started to doubt the relation
between beta and return. Reinganum (1981) found no significant relationship
between the beta and the returns of NYSE/AMEX stocks in the period 1964-1979.
Lakonishok and Shapiro (1986) arrived at the same result for NYSE stocks in the
period 1962-1981.

While more and more doubts were raised about beta as a basis to predict returns,
other factors like size and price ratios were discovered to play a role as well.”* Basu
(1977) showed that high P/E stocks earned lower returns and low P/E stocks earner
higher returns than predicted by the CAPM. Banz (1981) showed a size effect: small
firm stocks earned a higher return and large firm stocks earned a lower return than
indicated by the CAPM. Bhandari (1988) found a positive relation between leverage
(in terms of debt-equity ratio, the book value of debt over market value of equity)
and returns, controlling for beta and size.

Rosenberg, Reid, and Lanstein (1985) showed that U.S. stocks with high book-
to-market equity ratios (the book value of common stock over its market value)

73Fama and MacBeth (1973, p. 618).
74This summary is from Fama and French (2004, p. 35).
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earned higher returns than stocks with lower book-to-market ratios, controlling
for betas. Chan, Hamao, and Lakonishok (1991) came to the same conclusion for
Japanese stocks. Note that all of these new factors (size, P/E, leverage) contain the
stock price which reflects the expected future returns,” so the fact that these factors
explain returns should not be seen as a big surprise.

Fama and French (1992) provided an extensive test on the role of beta, size,
book-to-market (B/M) ratio, leverage, earnings-to-price (E/P) and their combi-
nations in explaining average returns. The study covered the period July 1963—
December 1990 and confirmed the results of the other studies mentioned above.

The authors used market data of non-financial stocks traded on the NYSE,
AMEX and NASDAQ which they obtained from the Center for Research in
Security Prices (CRSP).”® The accounting data was taken from COMPUSTAT, also
maintained by CRSP. The 1962 start date reflects the fact that book values were not
generally available before. The market portfolio is the value-weighted portfolio of
all NYSE, AMEX and NASDAQ stocks.”’

For examining the effect of beta and size on returns, 12 portfolios were
constructed based on pre-ranking betas and sizes. They were rebalanced for July
in every year. All portfolios were equally weighted.”®

Construction of Beta-Based Portfolios
To set up the portfolios for the 1-year period July 1963—June 1964, the securities
were ranked based on the beta estimates of the preceding 60 months (July 1958-
June 1962). The distribution scheme of the portfolios is shown in Table 2.5, starting
with the lowest betas on the left (1A) and ending with the highest betas on the right
(10B).

The 5 % of the securities with the lowest beta are in portfolio 1A, the next5 % in
1B, the following 10 % in portfolio 2, etc.

Table 2.5 Distribution scheme for f-based portfolios from low beta (1A) to high beta (10B)
which is also used for size-based portfolios

1A 10B
Portfolio (low) | 1B |2 3 4 5 6 7 8 9 10A | (high)
Distribution |5% (5% [10% [10% [10% |10% | 10% | 10% | 10% [10% |5% |5%
Source: Fama and French (1992, Table II, pp. 436—437)

75This argument was initially used for the E/P ratio in Ball (1978). But it was generalized to other
factors in Fama and French (1992, p. 428).

76Fama and French (1992, p. 429). Financial stocks were excluded because the high leverage that
is normal for these firms probably does not have the same meaning for non-financial firms, where
high leverage more likely indicates distress.

7TFama and French (1992, p. 431).

78Fama and French (1992, p. 431 and p. 433).
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Table 2.6 Portfolios formed on pre-ranking § from lowest 8 (1A) to highest 8 (10B) with average
monthly returns and post-ranking f in the period July 1963—-December 1990
1A 10B
Portfolio |(low) |1B |2 3 4 5 6 7 8 9 10A | (high)
Return 1.20 |1.20 |1.32 |1.26 |1.31 |1.30 [1.30 [1.23 |1.23 |1.33 | 1.34 |1.18
B 0.81 |0.79 {092 |1.04 | 1.13 |1.19 |1.26 |1.32 |1.41 |1.52 | 1.63 |1.73

Source: Fama and French (1992, Table 11, pp. 436-437)

After 1 year, the portfolios for the period July 1964-June 1965 were recon-
structed, again based on the beta estimates of the preceding 60 months (July
1959—June 1963). We continued this procedure for every year until 1990 to get the
12 portfolios for the period July 1963—December 1990. Table 2.6 lists the average
monthly returns of the portfolios, together with their post-ranking betas which are
based on the whole period July 1963—December 1990.7°

Construction of Size-Based Portfolios

A similar procedure was applied to construct 12 size-based portfolios. To set up the
portfolios for the 1-year period July 1963—June 1964, the securities were ranked
based on their size (in terms of market equity, or ME, i.e., stock price times number
of shares outstanding) at the end of June 1963. The distribution scheme of the size-
based portfolios was the same as for the beta-based portfolios shown in Table 2.5,
starting with the lowest size on the left (1A) and ending with the highest size on the
right (10B).

After 1 year, the portfolios for the period July 1964-June 1965 were recon-
structed, based on the sizes at the end of June 1964. This procedure was continued
for every year until 1990 to establish the 12 portfolios for the period July 1963—
December 1990. Table 2.7 lists the average monthly returns of the portfolios,
together with their post-ranking betas which are based on the whole period July
1963-December 1990.%°

In Table 2.7, we can observe that when forming portfolios based on size, the
average return decreases with increasing size (portfolio 1A contains the smallest
companies, 10B the largest), from 1.64 % per month for the smallest-size portfolio
to 0.90 for the largest. This shows the size effect, i.e., size is negatively related
to return. We can also see that with increasing size, 8 decreases like the return,
from 1.44 for the smallest-size portfolio to 0.90 for the largest, suggesting a strong
positive relationship between return and 8. But for portfolios based on pre-ranked
betas, Table 2.6 shows a rather flat relationship between return and B: While the

7The betas are calculated based on the monthly returns which were realized by the portfolios after
they were set up. They have nothing to do with the beta used for the pre-ranking.

80The beta is calculated based on the monthly returns which were realized by the portfolios after
they were set up. They have nothing to do with the beta used for the pre-ranking.
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Table 2.7 Portfolios formed on size, from lowest size (1A) to highest size (10B) with average
monthly returns and post-ranking § in the period July 1963—-December 1990

1A 10B
Portfolio |(low) |1B |2 3 4 5 6 7 8 9 10A | (high)
Return 1.64 |1.16 |1.29 |1.24 |1.25 |[1.29 |1.17 | 1.07 |1.10 |0.95 |0.88 |0.90
B 144 144 139 [1.34 |[1.33 [1.24 |[1.22 |1.16 |1.08 |1.02 |0.95 |0.90

Source: Fama and French (1992, Table II, p. 436)

betas range from 0.81 to 1.73 (and this range of betas is larger than the range of
betas for the size-based portfolios), the range of average returns is quite small, from
1.18 to 1.34 % per month. The lowest-beta portfolio (1A) even shows a higher return
(1.20 %) than the highest-beta portfolio (10B) (1.18 %). So a variation in 8 which
is tied to size is positively related to return, while a variation in 8 alone does not
explain a variation of returns.

To examine the pure effect of 8 on returns without any size effects on 8, we form
100 size-B portfolios.

Construction of Size-f Portfolios

For the end of June 1963, we rank the stocks based on size (market equity). We
divide the stocks in ten size groups based on data for the end of June 1963, i.e., ME-
1 contains the smallest 10 % stocks, ME-2 the next smallest 10 %, etc. Next, for each
of the size groups we form ten portfolios based on the pre-ranking § (calculated
on the basis of the preceding 60 months, i.e., July 1958—June 1963). For example,
within the size group ME-2, we put the 10 % lowest-beta stocks into portfolio ME-
2/B — 1, the next 10 % into ME-2/8 — 2, etc. We hold these portfolios for the period
July 1963—June 1964.

For the end of June 1964 the portfolios are rebalanced: We rank the stocks based
on size at the end of June 1964, divide them in ten size groups, and for each size
group form ten portfolios based on the pre-ranking 8 (calculated on the basis of the
preceding 60 months, i.e., July 1959-June 1964). We hold these portfolios for the
period July 1964-1965.

We repeat this process year after year and set up 100 portfolios (ten in each size
group) with different size-beta characteristics for the period June 1963—-December
1990. Since the ten portfolios from the same size group have a wide range of betas,
but similar stock sizes, we can always use the ten portfolios from the same size
group to test the effects of B which are unrelated to size. Table 2.8 shows the post-
ranking betas and Table 2.9 shows the average monthly returns (in %) of the 100
size-B portfolios. Each row in these tables represents a certain size group, and when
we read the numbers within a row from left to right, we can observe the results for
increasing betas within a size group.

We can see that the betas in Table 2.8 increase from left to right: This is how we
constructed the portfolios. In Table 2.9 when reading each row from left to right, we
can see how increasing beta—while keeping size constant—effects returns:
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Table 2.8 Post-ranking betas of the size-8 portfolios formed on size (down) and then 8 (across)
in the period July 1963—December 1990

B-1 pB-10

(low) B2 |B-3 B4 |B-5 |B-6 |B-7 |B-8 |B-9 |(high)

Post-ranking fs
ME-1 (small) |1.05 1.18 | 1.28 |1.32 |1.40 |1.40 |1.49 |1.61 |1.64 |1.79
ME-2 0.91 1.15 | 1.17 |1.24 |1.36 |1.41 |1.43 |1.50 |1.66 |1.76
ME-3 0.97 1.13 | 1.13 |1.21 |1.26 |1.28 |1.39 |1.50 |1.51 |1.75
ME-4 0.78 1.03 | 1.17 |1.16 |1.29 |1.37 |1.46 |1.51 |1.64 |1.71
ME-5 0.66 0.85 |1.12 |1.15 | 1.16 |1.26 |1.30 | 1.43 |1.59 |1.68
ME-6 0.61 0.78 |1.05 [1.16 |1.22 |1.28 |1.36 | 1.46 | 1.49 |1.70
ME-7 0.57 092 |1.01 |1.11 |1.14 |1.26 |1.24 |1.39 |1.34 | 1.60
ME-8 0.53 074 1094 |1.02 |1.13 |1.12 |1.18 |1.26 |1.35 |1.52
ME-9 0.58 0.74 1 0.80 (0.95 |1.06 |1.15 |1.14 |1.21 |1.22 |1.42
ME-10 (large) | 0.57 0.71 | 0.78 |0.89 |0.95 092 [1.02 |1.01 |1.11 |1.32

Source: Fama and French (1992, Table I, p. 435)

Table 2.9 Average monthly returns of the size-f portfolios formed on size (down) and then S
(across) in the period July 1963-December 1990

B-1 B-10
(low) |B-2 |B-3 |B4 |B-5 |p-6 |B-7 |B-8 |B-9 |(high)
Average monthly return (in %)

ME-1 (small) 1.71 1.57 |1.79 161 |1.50 |1.50 |1.37 |1.63 |1.50 |1.42

ME-2 1.25 142 136 |139 |1.65 |1.61 |1.37 |1.31 |1.34 |1.11
ME-3 1.12 131 | 1.17 |1.70 |1.29 |1.10 |1.31 |1.36 |1.26 |0.76
ME-4 1.27 1.13 | 154 106 |1.34 |1.06 141 |1.17 |1.35 |[0.98
ME-5 1.34 142 139 148 |142 |1.18 |1.13 |1.27 |1.18 |1.08
ME-6 1.08 1.53 127 |1.15 |1.20 |1.21 |1.18 |1.04 |1.07 |1.02
ME-7 0.95 121 126 [1.09 |1.18 |1.11 |1.24 [0.62 |1.32 |0.76
ME-8 1.09 1.05 |1.37 |1.20 |1.27 098 |1.18 |[1.02 |1.01 |0.94
ME-9 0.98 088 |1.02 |1.14 |1.07 |1.23 094 (082 |0.88 |0.59

ME-10 (large) | 1.01 093 |1.10 |094 |093 |0.89 |1.03 |0.71 |0.74 |0.56
Source: Fama and French (1992, Table I, p. 434)

The relationship between average monthly returns and betas is flat. More sur-
prisingly, in each size group, the lowest-beta portfolio (8-1) earned a higher return
than the highest-beta portfolio (8-10)! For example, within the size group ME-5,
the lowest-beta portfolio (ME-5/8-1) earned 1.34 % per month and outperformed
the highest-beta portfolio (ME-5/8-10) with 1.08 % per month.

The overall conclusion about beta is “that variation in beta that is tied to size is
positively related to return, but variation in beta unrelated to size is not compensated
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in the average returns in 1963—1990”.%' Fama and French did the same test on
NYSE stocks in the 50-year period 1941-1990 and found the same result: There
is a “reliable size effect [...] but little relation between beta and average return”.
On the other hand, there was a positive relation between beta and average return
in the period 1941-1965, which is exactly the period which was used in the early
CAPM tests. But “even for the 1941-1965 period, however, the relation between
beta and average return disappears when we control for size.” %> Due to this striking
discovery that beta appears to have no relation to average returns, the paper raised
the question “Can B Be Saved?” %3

Construction of B/M-based Portfolios
By constructing size-based portfolios, we have observed a negative relation between
size and average return. We apply the same approach to examine the relation
between the book-to-market ratio and average returns. To set up portfolios for the
1-year period July 1963—June 1964, we rank the stocks based on the book-to-market
value at the end of December 1962 using accounting data from the latest fiscal
year.* The stocks are assigned to the portfolios based on the scheme explained in
Table 2.5, from smallest B/M (1A) to highest (10B). After 1 year, the portfolios are
rebalanced for the period July 1964—June 1965 based on the book-to-market value
at the end of December 1963. This procedure is continued for every year until 1990.
According to Table 2.10, the average monthly return of portfolios based on B/M
increases with increasing B/M ratio, from 0.30 % per month for the smallest B/M
ratio to 1.83 % per month for the largest B/M ratio. The difference between the
largest and the smallest B/M portfolio is 1.53 % and even twice as large as the
difference between the largest- and smallest-size portfolio of 0.74 % (see Table 2.7).
Note that beta stays flat across different B/M ratios, so the difference in return cannot
be explained by beta!

Table 2.10 Portfolios formed on book-to-market (B/M) ratio, from lowest B/M (1A) to highest
B/M (10B) with average monthly returns and post-ranking 8 of the portfolios

1A 10B
Portfolio | (low) | 1B |2 3 4 5 6 7 8 9 10A | (high)
Return 0.30 |0.67 0.87 {097 [ 1.04 |1.17 | 1.30 | 1.44 |1.50 | 1.59 |1.92 |1.83
B 1.36 | 1.34 | 1.32 | 1.30 | 1.28 | 1.27 |1.27 |1.27 |1.27 | 1.29 | 1.33 | 1.35
Source: Fama and French (1992, Table 1V, p. 442)

81Fama and French (1992, p. 433).
82Fama and French (1992, p. 440).
83Fama and French (1992, p. 439).
84Fama and French (1992, Table IV, p. 442).
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Fama-MacBeth Regression

The Fama—MacBeth regression serves to determine the effects of beta, size, leverage
and E/ P ratio (as single variables and also in combination) on average return. Fama
and French (1992) describes the regression of monthly returns of stocks over B,
In(M E) (ME = market value of common equity in millions of dollars, as a proxy
for size), In(BE/ME) ratio (BE = book value of common equity), /[n(A/ME) and
In(A/BE) (as proxies for leverage, A = value of total assets) and E/ P ratio. The
regression coefficients were averaged over the period July 1963—December 1990. In
particular, for each of the 12 months in the period July 1963—June 1964, the monthly
returns of the stocks were regressed over

* the post-ranking beta of the size-f portfolio to which the stock was assigned at
the end of June 1963. This was used as an approximation of the stock’s beta
because it is much more stable than the individual stock’s beta.

¢ the size (measured in In(ME)) where the market value was taken as of end of
June 1963.

e leverage, BE/ME and E /P ratio: the accounting variables were taken from the
fiscal year ending in December 1962.

After 12 months, the data was updated. For the period July 1964—June 1965, the
monthly returns of the stocks were regressed over post-ranking beta at the end of
June 1964, size at the end of June 1964, and leverage, /n(BE/ME) and P/E ratio
from the fiscal year ending in December 1963. This process was repeated for every
year and the result was averaged. The conclusions of the Fama—MacBeth regression
are that

* beta® does not help explaining average stock returns in 1963—1990, neither alone
nor in combination with size, leverage and E/ P ratio.

* as single explanatory variables, size®® and total assets-to-book ratio®’ are neg-
atively related to average returns, whereas book-to-market ratio,3® total assets-
to-market ratio® and earnings-to-price ratio” are positively related to average
returns.

* when combining all explanatory variables, the size and book-to-market effect
turn out to be most significant, making the other variables redundant. The book-
to-market effect is even more powerful than the size effect.”!

85Fama and French (1992, p- 438).
86Fama and French (1992, p- 438).
87Fama and French (1992, pp. 441-442).
8Fama and French (1992, p. 441).
8Fama and French (1992, pp. 441-442).
“Fama and French (1992, pp. 442-443).
°IFama and French (1992, p. 440).
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Other Empirical Tests and the Revival of Beta

As a response to the studies which showed that the relationship between return and
beta is flat, Pettengill, Sundaram, and Mathur (1995) argued that previous tests of the
CAPM were flawed.”?> They offered a modification: Although the CAPM predicts
that the expected return should be positively related to beta, this should not be true
for all realized returns. When markets go up, then high-beta assets overperform
low-beta assets. But when the market goes down, then assets with high beta (and
therefore with higher risk) should underperform conservative low-beta assets. This
kind of behavior of high-beta stocks illustrated why they carry higher risk than low-
beta stocks. Previous tests like Fama and French (1992) which only looked for a
general positive relationship between beta and returns did not take this implication
of the CAPM into account. The empirical test by Pettengill et al. (1995) which
covered U.S. stocks (which were available in the Center for Research in Security
Prices (CRSP) monthly returns file) in 19361990 used a slightly different approach:
They tested the relationship between beta and return for up markets (i.e., months
where the monthly return of the market portfolio exceeded the monthly risk-free
rate) and down markets (i.e., months where the monthly returns of the market
portfolio was below the monthly risk-free rate) separately. The sensitivity of returns
to up markets/down markets is also known as bull beta and bear beta, see also
Sect. 1.3.6.

The empirical result is that during the period 1936-1990 and also during the
subperiods 1936-1950, 1951-1970, 1971-1990, the relationship between beta and
return was positive in up markets and negative in down markets.”> When running
the usual CAPM test without distinguishing down and up markets, Pettengill et al.
(1995) found a positive relationship between beta and return only in the subperiod
1936-1950, but a flat relationship in the subperiods 1951-1970 and 1971-1990. The
authors suggested that these “results are biased due to the aggregation of positive
and negative market excess return periods”.** The separate CAPM tests for up
markets and down markets became increasingly popular and this method was used
in several other publications (see also Table 2.11).

2.3.4.5 Roll’s Critique: The Market Portfolio Problem

Researchers have done several empirical tests which have supported and rejected
implications of the CAPM. But in Roll (1977), Richard Roll*® questions their
validity because the tests only used stocks (or stock market indices like the S&P

9Pettengill et al. (1995, pp. 102-104) for the argument.

9Pettengill et al. (1995, p. 110).

9Pettengill et al. (1995, p. 109).

%Richard Roll (born October 31, 1939) is an American economist, best known for his work on
portfolio theory and asset pricing, both theoretical and empirical. In 1968, he received his Ph.D.
from the Graduate School of Business at the University of Chicago in economics, finance, and
statistics. In 1976, Roll joined the faculty at UCLA, where he remains as Japan Alumni Chair
Professor of Finance. In 1987, Roll was elected President of the American Finance Association.
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500) to represent the whole market. However, the market portfolio of the CAPM
should contain every risky asset in the market, including stocks, bonds, options, real
estate, coins, stamps, art, antiques,”® and also human capital.”’ Since a lot of assets
have been ignored, Roll (1977) argues that the CAPM has never been tested.

The trouble is that the zero-beta CAPM

Rpr = E[Rz] + Bpr - (B[R] — E[RZ]) (2.43)

holds for any mean-variance efficient portfolio 7 and vice versa.

The zero-beta CAPM is tautological to the market portfolio Mkt being mean-
variance efficient, and so are the implications (C1)—(C3) from page 123 (linearity
in beta, no non-beta risk, positive beta premium) which were empirically tested.
So the hypotheses (C1)—(C3) are not independently testable, and it just comes
down to the question if the market portfolio is mean-variance efficient or not.
This cannot be answered by using stock-only market proxies, and the market is
unobservable. Roll argues in Roll (1977, p. 130): “The theory is not testable unless
the exact composition of the true market portfolio is known and used in the tests.
This implies that the theory is not testable unless all individual assets are included
in the sample.” *3

The equation

Rpr = E[Rz] + Bpr - (B[R] — E[Rz]) (2.44)

holds for any mean-variance efficient portfolio 7. This is a mathematical fact
without any model assumptions.'® Even if the CAPM hypotheses (C1)~(C3) are
positively tested for a market proxy m, this only implies that the market proxy m
is mean-variance efficient, but the true market portfolio might be still inefficient
(therefore rendering CAPM invalid), leading to the wrong validation of CAPM.
Or the CAPM hypotheses (C1)—(C3) are negatively tested with a wrong proxy
m (which is inefficient), while the true market portfolio is efficient, leading to a
wrong rejection of CAPM. Therefore, CAPM tests with wrong market proxies are
inconclusive.

2.3.5 Evaluation of the CAPM

Let us summarize the results of the empirical tests: Early tests (Black et al. 1972;
Douglas 1969; Miller and Scholes 1972) rejected the hypothesis (C4) that zero-beta

9This list of examples is mentioned in Reilly and Brown (1997, p. 284).

9TRichard Roll mentions human capital as part of the market portfolio in Roll (1977, p. 131 and
p. 155).

%Roll (1977, p. 136).

9 Bpr is the portfolio beta measured relative to the portfolio 7. The zero-beta asset Z has zero beta
relative to m.

100Ro11 (1977, p. 130 and p. 136).
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returns equal the risk-free rate. This led to the introduction of a modified version of
the CAPM, the zero-beta CAPM (see Black 1972).

Fama and MacBeth (1973) tested the linearity between return and beta and
non-beta risk as explanatory variable for returns. Unsystematic risk was provided
as a proxy for non-beta risk. The Fama—MacBeth regression, which provided an
important framework for future tests, supported the linearity (C1) and beta as the
only variable with explanatory power for returns (C2). The linearity assumption was
also supported in other tests, like Blume and Friend (1973) and Stambaugh (1982).

Early studies declared a positive beta effect on expected returns (C3) in the U.S.
stock market, as shown in Black et al. (1972) for the period 1931-1965 and in Fama
and MacBeth (1973) for the period 1935-1968. But Black et al. (1972) also revealed
that the relation between average return and beta flattened over time. Doubts about
the role of beta in explaining returns were articulated in Reinganum (1981), when
no significant relationship between beta and the returns of NYSE/AMEX stocks
was found in the period 1964-1979. The same result was obtained for NYSE stocks
in the period 1962—1981 in Lakonishok and Shapiro (1986). Instead of beta, other
variables like P/E ratio (Basu 1977), size (Banz 1981), leverage (Bhandari 1988),
and book-to-market ratio (Rosenberg et al. 1985) were found to play significant
roles in explaining returns.

Fama and French (1992) raised the question “Can B be Saved?” when the
authors discovered that beta played no role in explaining average returns for the
50-year period 1941-1990. They showed that even in the 1941-1965 period, where
authors of the early CAPM tests had agreed that the beta premium was significant,
the relationship between beta and return vanished when controlling for size.

Roll (1977) argued that the empirical tests were not a test of the CAPM which
requires the true market portfolio. The hypotheses (C1)—(C3) are true for any mean-
efficient portfolio used as a market proxy, because of a mathematical tautology and
without any model assumptions.

The conclusion of the tests is that the CAPM “never has been an empirical
success”. 1! The zero-beta CAPM had some success until other variables like
size and price ratios were discovered which explained average returns. Fama and
French (2004, p. 43), states: “The problems are serious enough to invalidate most
applications of the CAPM”.'%> CAPM estimates for high-beta stocks are too high,
and estimates for low-beta stocks turned out to be too low. The risk-adjusted
performance measure «, introduced in Jensen (1967), which is the return in excess
of the CAPM-implied return, turns out to be larger for small-beta portfolios and
smaller for large-beta portfolios. Funds could simply concentrate on stocks with
low beta, small size and high B/M and earn positive alpha without special stock
picking skills.'®

101Fama and French (2004, p. 43).
102Fama and French (2004, pp. 43-44).
103Fama and French (2004, p. 44).
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Pettengill et al. (1995) revived the importance of beta, suggesting that previous
tests of the relation between beta and return have been biased due to the aggregation
of up markets and down markets. By testing up markets and down markets
separately, they found significant relationships (i.e., positive for up markets and
negative for down markets) between beta and return.

Table 2.11 shows a summary of the empirical tests.

2.3.6 A Critical View of the CAPM Assumptions

The CAPM has been criticized for its unrealistic assumptions (listed in Sect.2.3.1).
We will now discuss some relaxations of these assumptions which lead to slight
modifications of the model. This section is based on Reilly and Brown (1997,
pp. 305-309).

2.3.6.1 Zero-Beta CAPM

The zero-beta CAPM was derived in Black (1972). It was postulated in Black et al.
(1972) after empirical tests rejected the hypothesis that the return of a zero-beta
asset is the risk-free rate.

The zero-beta CAPM makes all the assumptions from the original CAPM except
(A3), i.e., that all investors can lend and borrow any amount of money at the risk-
free rate.

By combining different assets (since shorting is allowed), several portfolios
can be created with zero beta. Let Z be the zero-beta portfolio with minimal
variance. Then all portfolios plot on a security market line (SML) which connects
the portfolios Z and Mkt (market portfolio), as shown in Fig. 2.23.

The equation for the zero-beta CAPM is

E[Rp] = E[Rz] + Bpr - (E[Rui] — E[RZ]). (2.45)

2.3.6.2 Different Borrowing and Lending Rates

The CAPM assumption (A3) that all investors can borrow and lend any amount for
the risk-free rate is unrealistic. While investors can lend any amount at the risk-free
rate r,¢ by buying Treasury bills, most investors usually have to pay a higher rate r,,
for borrowing. The effect of the different borrowing and lending rates is illustrated
in Fig. 2.24. It shows the mean-variance diagram with the efficient frontier, together
with the risk-free rate s and the borrowing rate r,. The line segment between
rrr — Mkt represents all portfolios which are combinations of the market portfolio
and the risk-free asset (i.e., lending at r,r). If it were possible to borrow at r,, then
this line segment would extend beyond the point Mkz. The point K is the tangency
point from r, to the efficient frontier, and this tangency line ends at G. The line
segment K — G represents all investment opportunities where the investors borrow
at the rate r, and invest in the portfolio K. The segment Mkt — K on the efficient
frontier does not involve any borrowing or lending. The CML, the set of all optimal
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Expected return IE[Rpf]

Security market line (SML)

Market portfolio (Mkt)
E[Ryt] F———==——======——=—=

ERa]l F-—-—-—=————=
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|
|
|
|
|
|
|
|
|
|
1

Fig. 2.23 The diagram shows the security market line (SML) without the risk-free asset. The
SML connects the market portfolio with the zero-beta portfolio Z. In equilibrium, all assets plot
on the SML. Source: Own, for illustrative purposes only

Portfolio beta [py

Expected return IE[Rpf]

Capital market line (CML) G

b

Trf

MVP

Volatility o py

Fig. 2.24 The mean-variance diagram shows the CML when borrowing cost () is greater than
the risk-free rate (r.7). The CML (marked in blue) is made up of r,y — Mkt — K — G, ie., of a
line segment r,; — Mkt, a curve segment Mkt — K and a line segment K — G. Source: Own, for
illustrative purposes only

investment opportunities, is made of r,y — Mkt — K — G, i.e., of a line segment
7.y — Mkt, a curve segment Mkt — K and a line segment K — G.

2.3.6.3 Transaction Costs

The CAPM assumes no transaction costs (A6), which means that investors will even
buy or sell securities when they are only slightly mispriced. If a security plots above
the SML, then its expected return is higher than its theoretical return implied by the
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Expected return IE[R py]

E[Rkt]

1 Portfolio beta Bpy

Fig. 2.25 Security market line (SML) with transaction costs. Source: Own, for illustrative
purposes only

CAPM, i.e., the security price is underpriced. Investors will buy this security and bid
up the price until it is fairly valued, i.e., it plots on the SML. If a security plots below
the SML, then investors short it until it plots on the SML. With transaction costs,
investors will not correct small mispricings when the costs of buying and selling eat
up the potential gains. So the SML will rather be a band, as illustrated in Fig. 2.25,
and the greater the transaction costs, the wider the band becomes.

2.3.6.4 Heterogeneous Expectations, Investment Horizons and Taxes
The CAPM assumes homogeneous expectations (A1), while in reality, investors
have different expectations about risk and returns. If we assume that every investor
has his own beliefs, then each one would have a unique CML and/or SML. The
composite graph would be a band, and its breadth would reflect the divergence of
opinions.

The result is similar when we allow for different investment horizons. The CAPM
presupposes the same investment horizon (A4) for all investors, but in reality you
have short-time investors who need their money in 1 month and long-term investors
saving for their retirement in 30 years. The CAPM is a one-period model, but the
investor with a 1-month investment horizon has a different CML/SML from the
investor with a 30-year planning period.

The CAPM does not account for taxes (A6) , but investors pay different taxes
on capital gains and dividends, and rational investors will consider their after-tax
returns. Since taxes have an impact on the after-tax return, different taxes will cause
different CML/SML among investors.'**

104For a detailed discussion on taxes, see Black and Scholes (1974) and Litzenberger and
Ramaswamy (1979).
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24 The Fama-French Three-Factor Model
2.4.1 Introduction

After the development of the capital asset pricing model (CAPM) in the 1960s
(Treynor in 1961 (see French 2002), Sharpe 1964, Lintner 1965a and Mossin 1966),
many empirical tests were developed. Early tests (Black et al. 1972; Douglas 1969;
Miller and Scholes 1972) rejected the CAPM and led to a modification of the model,
the zero-beta CAPM (Black 1972). Empirical tests in the 1970s (Black et al. 1972;
Fama and MacBeth 1973) validated that model, but later on significant doubts were
raised about the beta premium (Lakonishok and Shapiro 1986; Reinganum 1981).
On the other hand, other factors like P/E ratio (Basu 1977), size (Banz 1981),
leverage (Bhandari 1988), and book-to-market ratio (Rosenberg et al. 1985) were
found to play significant roles in explaining returns.

In Fama and French (1992), various factors were tested (as single explanatory
variables and in combinations). The size and book-to-market ratio were found to be
the most significant ones for describing returns. These variables were incorporated
into the Fama—French three-factor model (FF3M) which is a modification of the
CAPM. The big difference between the two is that the CAPM was derived from
market portfolio theory with a huge list of idealized assumptions, whereas FF3M is
a model developed as a modification of the CAPM to better fit the empirical data.

2.4.2 The Model

The Fama—French three-factor model was introduced in Fama and French (1993)
as a modification of the CAPM and included the size and book-to-market ratio as
additional factors describing returns. These were found in Fama and French (1992)
to be the most significant ones: Small-caps outperformed large-caps and high-B/M
stocks outperformed low-B/M stocks.

For the model, we first have to specify a certain stock market. For a stock A,

according to the Fama—French three-factor model,'% the monthly return R’;”"*" is
Rzmnthly = a + r:;l‘{)11thl}' + ﬁl,A . (RArr/;(lz?thly _ r;?;{int/1l}*)
+ Poa-SMB + B34 -HML, (2.46)
where
. r:;lf'mhly is the monthly risk-free rate.

« R™D s the monthly return on the portfolio of all stocks (in the specified stock

market).

105For the equation, see Fama and French (1993, p. 24, Table 6). It is also on p. 37, Table 9a, as
one of the regression equations studied in Fama and French (1993).



2.4 The Fama-French Three-Factor Model 159

e SMB (“small minus big”) is the difference between small-cap and large-cap
returns (defined below).

e HML (“high minus low”) is the difference between high-B/M and low-B/M
returns (defined below).

e « is the component of the return not described by the factors and should be
insignificant.

The model would also apply to annual, quarterly, weekly, daily returns, etc.,
but Fama and French (1993) originally used monthly returns when FF3M was
formulated and studied.

In the Fama-French model from Fama and French (1993), the method to
calculate SMB and HML is as follows'%:

All stocks are ranked according to size, and the largest 50 % are put into the big
group, the smaller 50 % into the small group. Independent from that, the stocks are
also ranked according to B/M ratio. The highest 30 % end up in the high, the middle
40 % in the medium, and the lowest 30 % in the low group.

Six portfolios are formed from the combinations of these groups (small/high,
small/medium, small/low, big/high, big/medium, big/low).

SMB is the difference between the arithmetic average of the monthly returns
on the three small-stock portfolios (small/high, small/medium, small/low) and the
arithmetic average of the monthly returns on the three big-stock portfolios (big/high,
big/medium, big/low). SMB describes the difference between a large-cap portfolio
and a small-cap portfolio with similar book-to-market equity.

HML is defined similarly: the difference between the arithmetic average of the
monthly returns on the high-B/M portfolios (small/high, big/high) and the arithmetic
average of the monthly returns on the low-B/M portfolios (small/low, big/low). HML
describes the difference between a high-B/M and a low-B/M portfolio with similar
size.

SMB and HML are usually positive, since small-caps tend to outperform large-
caps and high-B/M portfolios tend to outperform low-B/M portfolios.

The variables f;, B, and B3 are determined by a time-series regression'"’:

* B is the market sensitivity of the stock, controlling for size and B/M. Note that
this is usually different from the CAPM-8 which accounts only for the market
sensitivity of the stock.

* B, is the size coefficient. Smaller companies tend to have larger ,s than larger
companies.

* B3 is the B/M coefficient. High-B/M companies tend to have larger B3s than low-
B/M companies.

106Fama and French (1993, pp. 8-9). Although the original method in Fama and French (1993) was
slightly more complicated, the method we present here will more easily convey the idea behind it.

107The time-series regression was introduced on page 124 for one independent variable, but can
easily be extended to multiple variables.
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2.4.3 Theoretical Explanations of the Fama-French Three-Factor
Model

The main difference between the capital asset pricing model and the Fama—French
three-factor model is that the former has a theoretical foundation while the latter is
an ad hoc model which was just introduced because it better fits the empirical data.
The reason why Fama and French (1993) introduced FF3M is because a higher
return for small-size and high-B/M firms was observed. The theoretical justification
from Fama and French (1993) of size and B/M as factors to drive returns was that
firms with high B/M or low size tend to have higher earnings, therefore describing
risk factors.!%®

Other explanations of the value premium (i.e., the effect that high-B/M firms
outperform low-B/M firms) stem from behavioral finance'®:

Lakonishok, Shleifer, and Vishny (1994) offers the view that the value premium
is due to the overreaction of the markets.!!” They overreact to good news and
therefore overbuy glamour stocks which have performed well in the past. These
stocks are overpriced and therefore have low B/M. On the other hand, investors
also overreact to bad news and oversell badly performing stocks. These value
stocks are underpriced and have high B/M. When the market corrects the over-
reaction, value stocks overperform glamour stocks. De Bondt and Thaler (1985)
validates the overreaction hypothesis by pointing out that “losers” overperform
“winners”.

One other behavioral view is that investors simply like growth stocks (low B/M,
strong firms) and dislike value stocks (high B/M, weak firms).'!! In this case, the
value premium would not be due to risk but to characteristics of value stocks which
have the effect of turning investors away. Daniel and Titman (1997) formulates and
presents the theory and evidence that the similar characteristics of high-B/M firms
rather than the factor loadings from the FF3M drive their returns and explain the
high correlation of returns among those.'!?

We summarize the theoretical arguments for the size effect from van Dijk (2011,
pp. 11-23):

The argument from Daniel and Titman (1997) that characteristics and not factor
loadings describe returns also applies to size, contrary to the view in Fama and
French (1993) that size describes a risk factor related to financial distress.

Another reason for the size effect is that it includes transaction costs and liquidity
risks: Stoll and Whaley (1983) argues that dealers require bigger bid-ask spreads for
trading in small firms because of the infrequent trading activity and higher risk.'"3

1%8Fama and French (1993, pp. 7-8).

109These explanations can be found in Davis, Fama, and French (2000, pp. 389-390).
1107 akonishok et al. (1994, p. 1542).

MDavis et al. (2000, p. 390).

"2Daniel and Titman (1997, pp. 3—4).

113801l and Whaley (1983, p. 58).
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For NYSE stocks from 1960-1978, the abnormal returns are shown to be eliminated
for investment horizons of less than 1 year.''* Amihud (2002) finds an illiquidity
premium, i.e., that expected market illiquidity positively affects stock returns.''?
Since small firms are more affected by illiquidity, this explains part of the size effect.

Pastor and Stambaugh (2003) explains that sensitivity to market liquidity is
priced''® as a risk factor and that the smallest firms tend to be most affected by
market illiquidity because their shares are illiquid.''” But on the other hand, the
paper contends that the relation between the liquidity of stocks and market liquidity
is not straightforward. A drop in market liquidity causes many investors to move
from stocks to bonds, therefore selling the most liquid (large-cap) stocks to save
transaction costs.'

Last, but not least, there are also explanations of the size effect from behavioral
finance.

The overreaction hypothesis which explains the value premium might also be
applicable to size, and Chan and Chen (1991) indicates that many small-size firms
have performed poorly and lost market value in the past,''” but it seems to be
unexplored whether overreaction is a driving factor of the size effect.'?”

One behavioral view of the value premium is that investors like growth stocks and
dislike value stocks. The same argument also applies to large-cap stocks vs. small-
cap stocks. Gompers and Metrick (2001) found that institutional investors increased
the demand for liquid, large-cap stocks in the U.S equity markets in 1980-1996.
The shift from individual to institutional ownership led to a disappearance of the
size effect in that period.'?' This is an example for the theory of Daniel and Titman
(1997) that size as a characteristic and not as a risk factor drives returns.

Market frictions are also found to have impact on returns: Hou and Moskowitz
(2005) holds that the delay, i.e., the time needed until the price reflects information,
requires a premium. Small firms are most affected by the delay which captures part
of the size premium.'?

After we have explored the theoretical explanations of the FF3M, we turn to the
empirical tests.

114Stoll and Whaley (1983, p. 58).

115 Amihud (2002, p. 31).

116p4stor and Stambaugh (2003)

"7P4stor and Stambaugh (2003, p. 677).
18p4stor and Stambaugh (2003, p. 677).
119Chan and Chen (1991, pp. 1467-1468).
120yan Dijk (2011, p. 16).

121Gompers and Metrick (2001, p. 17).
122Hou and Moskowitz (2005, p. 981).
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2.4.4 Empirical Tests

2.4.4.1 Fama and French (1993): Common Risk Factors in the Returns

on Stocks and Bonds
After Fama and French (1992) found that size and book-to-market equity were
the most significant drivers of returns, the Fama—French three-factor model was
developed in Fama and French (1993) which included these factors besides beta.
An empirical study was also done in the same paper.

The study uses the same data as Fama and French (1992)'?3: The market data
were from non-financial stocks which were traded on the NYSE, AMEX and
NASDAQ and taken from the Center for Research in Security Prices (CRSP).'*
The accounting data was taken from COMPUSTAT, also maintained by the CRSP.
The 1962 start date reflects the fact that book values were not generally available
before. The market portfolio is the value-weighted portfolio of all NYSE, AMEX
and NASDAQ stocks.'? The risk-free rate is the 1-month treasury bill rate.'2¢

Calculation of SMB and HML

SMB and HML are calculated by dividing the U.S. stocks in small/big and
high/medium/low."”” We do these calculations year after year, from July 1963 to
June 1964:

At the end of June 1963, all NYSE stocks on CRSP are ranked on size. The
median NYSE size splits the NYSE/AMEX/NASDAQ stocks into the groups small
and big. To form the B/M-groups, we determine the breakpoints for top 30 % (high),
middle 40 % (medium) and bottom 30 % (low) based on the B/M ratios of the NYSE
stocks. We use the accounting data from January 1962 to December 1962 from
COMPUSTAT for book equity. We divide it by the market equity at the end of
December 1963 to get B/M. Firms with negative book value are excluded from the
study.

SMB (small minus big) is the difference between the arithmetic average of
the monthly returns on the three small-stock portfolios (small/high, small/medium,
small/low) and the arithmetic average of the monthly returns on the three big-stock
portfolios (big/high, big/medium, big/low).

HML (high minus low) is the difference between the arithmetic average of the
monthly returns on the high-B/M portfolios (small/high, big/high) and the arithmetic
average of the monthly returns on the low-B/M portfolios (small/low, big/low).

125Fama and French (1993, p. 4) which mentions that it extends the study of Fama and French
(1992, using p. 429 for the data).

124Financial stocks were excluded because the high leverage that is normal for these firms probably
does not have the same meaning for non-financial firms, where high leverage more likely indicates
distress.

125Fama and French (1992, p. 431).
126Fama and French (1993, p. 10).
12"Methodology from Fama and French (1993, pp. 8-9).
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For July 1964-June 1965, we repeat the same method: At the end of June 1964,
we form the groups big/small based on size and the groups high/medium/low based
on B/M. To calculate B/M, the book equity data at the end of December 1964 is
used. Then SMB and HML are calculated as above. The whole process is repeated
for every year until December 1991.

Construction of Size-B/M Portfolios

The construction of the 25 size-B/M portfolios is similar to the construction of
the small/big and high/medium/low portfolios above, but we use five different
size groups and B/M groups (based on the NYSE size and B/M quintiles). By
intersecting them we form the 25 size-B/M combinations.'?® In Table 2.12, you can
see the average monthly excess returns (i.e., return minus risk-free rate) of the 25
size-B/M portfolios. They range from 0.32 to 1.05 %. The table shows the negative
effect of size and the positive effect of B/M on returns. For all sizes, the returns rise
with B/M. For all but the lowest B/M, the returns tend to decrease with size.

Time-Series Regression

Different time-series regressions were done on each of the 25 size-B/M portfolios to
compare the explanatory power of the regression of the CAPM against the FF3M.
Let

;;r}omhly — r]r)r]l(omhly _ r;mnthly (247)
be the monthly excess return of the portfolio Pf over the risk-free rate r""""".
The regression which is shown in Table 2.13 explains a big part of the variation
of returns, although there is still some room for improvement'?’: The R? value is
around 0.9 for the big-stock and low-B/M portfolios, but most of the portfolios have
an R? of about 0.7 to 0.8.

Table 2.12 Average monthly excess returns of the 25 size-B/M portfolios in the period July
1963-December 1991

B/M-1 B/M-5
(low) B/M-2 B/M-3 B/M-4 (high)
Average monthly return (in %)
Size-1 (small) 0.39 0.70 0.79 0.88 1.01
Size-2 0.44 0.71 0.85 0.84 1.02
Size-3 0.43 0.66 0.68 0.81 0.97
Size-4 0.48 0.35 0.57 0.77 1.05
Size-5 (big) 0.40 0.36 0.32 0.56 0.59

Source: Fama and French (1993, Table 2, pp. 14-15)

128Fama and French (1993, p. 8).
129Fama and French (1993, p. 19).
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Table 2.13 Regression of excess stock returns of the 25 size-B/M portfolios on excess market
return in the period July 1963-December 1991

. ~monthly __ ~monthly
Regression 7pe ~ =a + BTy,

B/M-1 B/M-5
(low) B/M-2 B/M-3 B/M-4 (high)
B
Size-1 (small) 1.40 1.26 1.14 1.06 1.08
Size-2 1.42 1.25 1.12 1.02 1.13
Size-3 1.36 1.15 1.04 0.96 1.08
Size-4 1.24 1.14 1.03 0.98 1.10
Size-5 (big) 1.03 0.99 0.89 0.84 0.89
R2
Size-1 (small) 0.67 0.70 0.68 0.65 0.61
Size-2 0.79 0.79 0.76 0.76 0.71
Size-3 0.84 0.84 0.80 0.79 0.74
Size-4 0.89 0.90 0.87 0.80 0.76
Size-5 (big) 0.89 0.92 0.84 0.79 0.69

Source: Fama and French (1993, Table 4, p. 20)

Table 2.14 shows the results of a linear regression of monthly excess stock returns
over monthly excess market return, SMB and HML over the time period July 1963—
December 1991. Compared to the CAPM-J in Table 2.13, the market sensitivities
(B1) change once other factors like SMB and HML are included in the regression.
The B1s are much closer to 1 than the 8s from Table 2.13. In Table 2.14, we can
see that B, increases for decreasing size and B3 tends to increase for increasing
B/M. This is exactly how the coefficients are supposed to behave according to the
FF3M: Small-caps earn higher returns than large-caps, high-B/M firms earn higher
returns than low-B/M firms. Most of the R? values from Table 2.14 are greater than
90 %, which means that the data fits the model very well. The R? values are much
higher than those from the CAPM regression in Table 2.13, indicating a significant
improvement.

There were studies which have questioned the significance of the CAPM-p,'%
and when looking at Table 2.14, one may think that 8, plays an insignificant role.
The variation is small, having barely any effect in describing returns. However, the
market sensitivity B, in the Fama—French three-factor model does play a significant
role. Fama and French (1993) ran a regression of monthly excess returns on size and
B/M alone, and the results can be seen in Table 2.15. The R? values range from 0.04
to 0.65. For small-caps, the R? value is around 0.6, but it decreases for larger sizes.

Compared to the CAPM regression in Table 2.13, the R? values of the regression
on only size and B/M are low. So although the values of §; differ very little across

139See Sect. 2.3.3 about empirical tests.
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Table 2.14 Regression of excess stock returns of the 25 size-B/M portfolios on excess market
return, SMB and HML, in the period July 1963—December 1991

Regression FZ;""W“V =a+p - 7,"2,2,"”'[" + B2 - SMB + B3 - HML

B/M-1 B/M-5
(low) B/M-2 B/M-3 B/M-4 (high)
B1 (coefficient of market excess return)
Size-1 (small) 1.04 1.02 0.95 0.91 0.96
Size-2 1.11 1.06 1.00 0.97 1.09
Size-3 1.12 1.02 0.98 0.97 1.09
Size-4 1.07 1.08 1.04 1.05 1.18
Size-5 (big) 0.96 1.02 0.98 0.99 1.06
B> (coefficient of SMB)
Size-1 (small) 1.46 1.26 1.19 1.17 1.23
Size-2 1.00 0.98 0.88 0.73 0.89
Size-3 0.76 0.65 0.60 0.48 0.66
Size-4 0.37 0.33 0.29 0.24 0.41
Size-5 (big) —-0.17 —0.12 —0.23 —0.17 —0.05
B3 (coefficient of HML)
Size-1 (small) —0.29 0.08 0.26 0.40 0.62
Size-2 —0.52 0.01 0.26 0.46 0.70
Size-3 —0.38 0.00 0.32 0.51 0.68
Size-4 —0.42 0.04 0.30 0.56 0.74
Size-5 (big) —0.46 0.00 0.21 0.57 0.76
R2
Size-1 (small) 0.94 0.96 0.97 0.97 0.96
Size-2 0.95 0.96 0.95 0.95 0.96
Size-3 0.95 0.94 0.93 0.93 0.93
Size-4 0.94 0.93 0.91 0.89 0.89
Size-5 (big) 0.94 0.92 0.88 0.90 0.83

Source: Fama and French (1993, Table 6, pp. 24-25)

portfolios in the three-factor regression, the market sensitivity is needed as a factor
together with size and B/M to make the data fit very well.'*!

After we have analyzed the sensitivities B, B, B3 and the coefficient of
determination RZ, we will look at the intercept « and test if it is close to zero.
Table 2.16 shows the results for the CAPM, the FF3M and the two-factor model
with size and B/M only. The usual CAPM regression (1) shows mainly positive
intercepts. This was usually observed in CAPM tests and led to an early rejection
of the original CAPM. The intercept decreases with increasing size (except for the
lowest B/M quintile) and increases with increasing B/M.

Regression (2) with size and B/M as factors shows positive large intercepts.
Nineteen of the portfolios have an intercept greater than 0.5 %, and four have

131Fama and French (1993, p. 21).
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Table 2.15 Regression of excess stock returns of the 25 size-B/M portfolios on SMB and HML
in period July 1963—-December 1991

Regression 7;;”"”14" =a+ B, SMB + B3 - HML

B/M-1 B/M-5
(low) B/M-2 B/M-3 B/M-4 (high)
B> (coefficient of SMB)
Size-1 (small) 1.93 1.73 1.63 1.59 1.67
Size-2 1.52 1.46 1.35 1.18 1.40
Size-3 1.28 1.12 1.05 0.93 1.16
Size-4 0.86 0.82 0.77 0.72 0.95
Size-5 (big) 0.28 0.35 0.22 0.29 0.44
B3 (coefficient of HML)
Size-1 (small) —0.95 —0.57 —0.35 —0.18 0.01
Size-2 —1.23 —0.66 —0.38 —0.16 0.00
Size-3 —1.09 —0.65 —0.31 —0.11 —0.01
Size-4 —1.11 —0.65 —0.36 —0.11 —0.01
Size-5 (big) —1.07 —0.65 —0.42 —0.06 0.08
R2
Size-1 (small) 0.65 0.60 0.60 0.60 0.59
Size-2 0.59 0.53 0.49 0.42 0.44
Size-3 0.51 0.43 0.37 0.31 0.35
Size-4 0.43 0.30 0.24 0.18 0.23
Size-5 (big) 0.34 0.18 0.08 0.04 0.06

Source: Fama and French (1993, Table 5, p. 22)

an intercept between 0.4 and 0.5 %. This reveals that size and B/M alone do not
“explain the average premium of stock returns over 1-month bill returns.” 132

When adding the excess market return to the previous regression, the intercepts
get closer to zero. In absolute terms, the intercepts of 16 portfolios are smaller than
0.1 %, 22 are smaller than 0.2 %. “Intercepts close to 0 say that the regressions
that use [monthly excess returns], SMB and HML to absorb common time-series
variation in returns do a good job explaining the cross-section of average stock
returns.” 133

The conclusion is that SMB and HML explain the variation of returns across
stocks, whereas the market factor explains why stock returns are on average higher
than the risk-free rate.'3*

By using the Gibbons, Ross, and Shanken (1989) test,'*> Fama and French (1993)
rejected the assertion that all intercepts in the regression (1), (2) and (3) from

132Fama and French (1993, p. 35).
133Fama and French (1993, p. 38).
134Fama and French (1993, p. 38).
135Fama and French (1993, p. 40).
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Table 2.16 Intercepts « from the regression of excess stock returns on excess market return, SMB
and HML, in the period July 1963—-December 1991

Intercept o

B/M-1 B/M-5
(low) B/M-2 B/M-3 B/M-4 (high)
(1) Regression 7,':'fomhly =a+ B F;,'Z," Ly
Size-1 (small) —0.22 0.15 0.30 0.42 0.54
Size-2 —0.18 0.17 0.36 0.39 0.53
Size-3 —0.16 0.15 0.23 0.39 0.50
Size-4 —0.05 —0.14 0.12 0.35 0.57
Size-5 (big) —0.04 —0.07 —0.07 0.20 0.21
(2) Regression 7o = o + B, - SMB + B3 - HML
Size-1 (small) 0.24 0.46 0.49 0.53 0.55
Size-2 0.52 0.58 0.64 0.58 0.64
Size-3 0.52 0.61 0.52 0.60 0.66
Size-4 0.69 0.39 0.50 0.62 0.79
Size-5 (big) 0.76 0.52 0.43 0.51 0.4
(3) Regression 75" = o + f1 - Py + B> - SMB + B3 - HML
Size-1 (small) —0.34 —0.12 —0.05 0.01 0.00
Size-2 —0.11 —0.01 0.08 0.03 0.02
Size-3 —0.11 0.04 —0.04 0.05 0.05
Size-4 0.09 —0.22 —0.08 0.03 0.13
Size-5 (big) 0.21 —0.05 —0.13 —0.05 —0.16

Source: Fama and French (1993, Table 9a, pp. 36-37)

Table 2.16 are zero.'*® The Fama—French three-factor model performed best in the
test and just failed it slightly. The reason for the rejection of FF3M is the data for
the low-B/M portfolios: The return on the small-size portfolio was too low (intercept
—0.34) and the return on the big-size portfolio was too high (intercept 0.21).'%” In
other words, the size effect was missing in the lowest-B/M quintile. But despite the
marginal rejection of the FF3M based on the Gibbons et al. (1989) test, Fama and
French (1993) finds that the FF3M “does a good job on the cross-section of average
stock returns” 3% The R? values are very high (see Table 2.14) and intercepts are
all close to zero except for the smallest-size lowest-B/M portfolio.'*

2.4.4.2 Other Empirical Tests

In Sect. 2.4.4.1 we looked as an example at an empirical test conducted by Fama and
French in 1993. However, many other tests of the Fama-French three-factor model
exist. Table 2.17 shows a summary of these empirical tests.

136Fama and French (1993, p. 39).
137Fama and French (1993, pp. 40—41).
13%Fama and French (1993, p-41).
139Fama and French (1993, p-41).



2 Modern Portfolio Theory and Its Problems

168

(panunuod)

“JuedyIugIs
9q 0) pUNOJ JOU Sem I0JOBJ JoyTew/j0ooq Ay} Inq ‘e poroddns 1s0) prepy

NEAA paroddns 1593 SYO

"SULIY [[ews

wuoyradino suy §1q Jey) SUBdU YoIym ‘gS 2ANESU “9'T “JO3JJ0 9ZIS PISIIAI
© SPUY INq 43S9) UOSPIBYIRY—AB[ULS[ORIA 93 Sursn uonenba ¢4 oy} spoddng
‘ueder 1dooxa sarnuNod [[e 10J NE] (P[I0M/d1ISaUWIOP) Y1 Pajdalal 1591 YO
Ay} Ing ‘[opoW Youalj—ewe,] PHIOM dY} UBY) 19)Joq Yonw elep 9y) 1 SUOISIOA
oNSAWOP YL, ‘JNEA Y JO UOISIIA PLIOM B 0) paredwiod Sem [opowl J0J0BJ-931Y)
[OUQI—BUIE,] ONSOWOp 3y} “y'N pue uede[ ‘epeue)) ‘Y[ SALNUNOD Y} I0]

‘sorjoyiod Jo)IeU/}00q-MO] Y} JOJ INDI0
JOU PIP J09JJQ JZIS A} ASNBIA] ;1593 SYD Y £q JNEA] 9Y3 JO uonoafor feurSIey
Synsay

(VASHAOE) 93ueyoxy yo0i§
o[neJ oes Ay} WOIJ S)00)S [BIoUBUL

-UON 19007  un[—G661  Amf

(e8ueyoxy J001S§

Aequiog) xopu] 00 [-SH Yi woy
SYO0IS 6L :900C Sunf—100¢ AInr
(XSV)

J3ueyoxyg 001§ UeIEISNY Y}
woly $0IS 6661 [HdV—-9661 ABIN

> pue

uede[ ‘epeue) ‘YS WOIJ SYO0IS
16661 Ioquoo-186] Arenuef
OVASVYN

pue  (XHANV) OSueydxg ooig
ueooWyY  ‘(FSAN)  23ueyoxg
YO0IS IOX MON 9y} UO popen
AIoM YOIYM SYO0)S [BIOUBUL-UON
‘1661 19quIaRd—-£961 Amng

pasn eleq

Jay40 uv1IZDAg Y3 Ul Yovoiddy
DIog PADMIY pup [IPO YOUdL]
pup vy ‘WJvD Jo Apnig aayvind
-w0?) (L007) 01eINIS pue S1Z0Y

SUAN]IY
¥001§ upipuj 2yi 40f SUDLIDA SI1
pupn  [2pO  A01IDJ-224Y [ YIUdL]
puv v 2y3 Sunsaf (9007) 1yed

20Uap142 UPIDAISNY DID K
3uis) 19poW Yyoual puv puw.j
ay1 fo 1s2f apdung v :(4007) Hed

Jolf1oadsg
£43uno) 10 [pqoD) S101OD YOUdL]

puv pumq ays 21y {(Z007) ULFID

spuog pup $3201§
U0 SUINIDY Yl Ul SI01ID YS1Y

uouwto)) (¢661) Youdl] pue eweq
Apms

[opow J0)OBJ-921Y) YoudLj—ewe,] Y3 Jo s1s9) [eodwy £1°Z 3jqeL



169

2.4 The Fama-French Three-Factor Model

(1661) uospIeyory pue Ae[UIS[ORIA AQ PAdO[AIP (NJAID) SIUSWIOW JO POYIOW PIZI[BISUST Y} ST 219y PIsn 183} Y, o
(6861) ‘T® 10 suoqqro) ur pado[eAap o1snIels 159) Ay} I0J Spuels 1591 SYO .

“JUeOYTUSTSUT SEM J09JJ0
9Z1S Y} ‘s00)s *S') Jo d[dures B 10J [IYM ‘PIAIISQO Sem JO9JJQ 9ZIS JUBOYIUSIS
© ‘syo0)s ueadoinyg 10 ‘surar Surure[dxe USYM JUBOYIUSISUI ST J[Iew/yooq
"% 68 0} ¢/ woly pasuer Ly pasnlpe ayy ‘sorjoyuiod 183} Ay JoJ [qqnq Yyod)
oy} Sunmp pareos yorym sdn-1reys Auet paureIuod I 9SNEOAq SUINJAI [eULIOUqe
31q pey orjopiod joyrew/yooq-mo| deo-[rews oyl NEJ proalar 159 YD

"% (08 MO[9q 1M SAN[BA L Y} JO JSOW Ing ‘% 9°[§ Sem
o1[oj110d 1531 © 10J on[eA L3 1SAYSIY AU, 1531 SYD Y3 AQ Pa1oafar sem WA YL

“JONTRW/Y00q UBY) QIOW SINIBW JZIS *% 6T AQ sdaoidwit _y pajsnfpe oFeroae
Y ‘INdVD 01 patedwio)) "sJoyIeW JO0Is UAAIS [[ Ul NEI] portoddns 1591 SO

uonezieded
joyrew ueadong ay) Jo 9, g INOQE
SULI2A0D 3] AY) PUL PUB[IIZIIMS
‘uopoms ‘uredg ‘reSmyiog  ‘Aem
-ION ‘SpuB[IoUIoN ‘A[el] ‘puelaI]
900010) ‘AuBUIIOn) ‘Q0uUBI] ‘pue|
-ul Spewud ‘wnidPg ‘ensny
Jo so3ueyoxe woil SYI0IS (00T
IOAQ :TO0T Qdun[—986] Areniqoq

93ueyoxy 001§ HNP[UBL]
Y} WOl SY00)S [BIOUBUY-UOU ()06

1AQ 9007 1qUIAA-T96T AINf

(L661-9L61) 210desurg
pue (8661-0661) BISSUOPUL (6661
—€861) PUeRYL  ‘(6661-6L61)
vISARRIN  “(6661-C861)  B2I0Y
ynog  (6661-1861) Suoy] Suoy

“0007—9L61) ueder  :sjoqIeW
O0IS  JUAIQJJIP UIAIS UO 1S9,

adoanyg
Ul SUPUIOUY JIYADJ YI0IS Pup
Suidld 12ssy [puolipuo) (010¢)
UBWIOYOS PUB ‘SUBWIISOD ‘Ioneqg

20UIPINT MIN PUD DID MIN
ISUINIDY YO0IS UPULIDL) [O U011IIS

-$504D Y], (T107) USSSIdY] pue
‘gooy] ‘Jdwioy] ‘muL] ‘uuBUNIY

S1YAD I
uisvg of1ovg Yl ur S]Ppopy Sut
DL 19SS A01DfUMN pup 2]3uU1g
A0f §21821p.41 01]0[110g puv Su1say
uttofiuf) :(600¢) Sued pue uey)

(ponunuoo) £1°z syqeL



170 2 Modern Portfolio Theory and Its Problems

2,5 Summary

In this chapter, we have presented the basics of modern portfolio theory as
introduced by Markowitz in the 1950s. The ideas of diversification and the efficient
frontier are key when investing today. The capital asset pricing model allows
investors to detect over- and undervalued securities, but it shows weaknesses when
it is subjected to empirical tests. Its extension, the Fama—French three-factor model,
uses more input parameters than the CAPM when determining investment returns,
but also exhibits shortcomings in practice. Both models are theoretically plausible,
but there is a discrepancy with reality which, in times of crisis, is significant.
Moreover, traditional finance theory cannot explain market situations like crashes
and stock market anomalies. The latter will be the topic of the next chapter.
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3.1 Introduction

Most of the people who studied finance were taught that stock markets are efficient.
According to Fama, there are three general forms of efficiency':

* Weak form:
Only historical price data is reflected in today’s stock price.
* Semi-strong form:
All publicly available information is reflected in today’s stock price.
¢ Strong form:
All publicly available information plus all insider knowledge is reflected in
today’s stock price.

The efficient market hypothesis states that financial markets are semi-strong
efficient or informationally efficient. Consequently, an investor cannot consistently
achieve returns in excess of average market returns on a risk-adjusted basis. This
is a key part of traditional finance theory (presented in the previous chapter) which
assumes that the investor is rational (Homo economicus).

However, theoretical implications from MPT and the efficient markets hypothesis
do not allow for stock market anomalies that have been increasingly observed since
the 1980s. A stock market anomaly is a market situation that cannot be explained
by traditional finance theory. To some degree it is a persistent situation and not an
arbitrage opportunity which, as soon as spotted, disappears because everyone aims
to exploit it. A stock market anomaly persists although people trade on it and can
make consistent gains.

'Fama (1970).
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This chapter provides a summary of the most important stock market anomalies
that have occurred to date. One can classify them in at least four categories.

The first one is based on fundamentals. In other words, anomalies can be noticed
through the study of accounting data and possibly exploited. One example of such
anomalies would be the P/E (price-to-earnings) ratio effect.> The second kind of
stock market anomalies refers to the calendar. Stocks seem to perform differently
depending on the time of the year, holidays, end of the month, etc. The third
type are structure-related anomalies. For instance, unfair competition, regulations
or market transparency can be the origin of exploitable anomalies. The fourth kind
are behavior-based anomalies. For example, economic agents like arbitrageurs or
other investment experts may generate trading patterns that affect the market and
can thus be exploited.

The aim of this chapter is to provide the reader an overview of the most important
market anomalies:

¢ Weekend effect (Sect. 3.2)

* January effect (Sect.3.3)

e Turn-of-the-month effect and holiday effect (Sect. 3.4)
¢ S&P 500 effect (Sect. 3.5)

» Trading by insiders (Sect. 3.6)

*  Momentum of industry portfolio (Sect. 3.7)

¢ Home bias (Sect. 3.8)

* Value Line enigma (Sect. 3.9)

» Expiry of IPO lockups (Sect. 3.10)

Each section describes the anomaly and supplies evidence and explanations on
the issue when available. For a summary of stock market anomalies see Schulmerich
(2014).

3.2 Weekend Effect

The weekend effect is one of the oldest existing stock market anomalies, given that
it has existed for many decades. In this section, we define the anomaly, present the
evidence and discuss its persistence.

2Basu has shown that low P/E stocks tend to outperform both the market and high P/E stocks.
In What Works on Wall Street, O’Shaughnessy found that the P/E ratio is particularly relevant for
large stocks. However, he argued that the price-to-sales ratio is an even better indicator of excessive
returns. Fama and French find that market and size factors in earnings help explain the P/E ratio
effect. See O’Shaughnessy (1998, p. 16), Basu (1977) and Fama and French (1995).
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3.2.1 Description

The weekend effect can be defined as a Friday’s return minus the following
Monday’s return for a single security or a portfolio of securities.> Under normal
conditions, there should be no substantial difference between each day of the week
through a long time span. However, in 1980, French analyzed daily returns of
stocks for the period 1953-1977 and found that there is a tendency for returns to
be negative on Mondays whereas they are positive on the other days of the week.*
He writes that these negative returns are “caused only by the weekend effect and
not by a general closed-market effect.” A general closed-market effect would mean
that most of the market agents would sell on Friday and buy on Monday. However, it
seems that abnormal positive stock returns occur on Friday and the contrary happens
on Mondays. So buying regularly on Monday and selling on Friday may bring
abnormal returns.

3.2.2 Evidence

In Table 3.1, all the common shares traded on the NYSE, the AMEX and NASDAQ
have been regrouped and divided into two categories. The first category represents
the stocks traded on the equally-weighted (EW) index, i.e., each stock has the
same weight in the index. The second category includes the stocks traded on the
value-weighted (VW) index where the weight for each share is proportional to the
capitalization of the company relative to the capitalization of the whole traded index.
The mean daily returns in percent of these shares have been computed for the period
starting from July 1962 to July 2001.

The weekend effect reaches 0.34 % if and only if the index is equally-weighted.
The difference of returns among the weekdays from July 1962 to July 2001 can be
seen at a glance in the chart in Fig. 3.1.

It is evident that there is a performance shift between Fridays and Mondays
which leads to abnormal returns. It is important to note that the difference in returns
through the week is fairly low, namely 0.33 %, yet considerable in comparison with
other week days. Researchers also found that the weekend effect changed over time
to such a point that during the period 1990-2001 there were negative returns in an
equally-weighted index. They also observed that the effect was strengthened during
long weekends while it was weakened when investors could trade on Saturdays.’

The discovery of the weekend effect lead Kamara to study the S&P 500 from
1962 to 1993.° He found no significant Monday effect after April 1982 except for
a portfolio of smaller U.S. stocks where the Monday effect remained undiminished

3Chen and Singal (2003, p. 80).
“French (1980, p. 56).

3Singal (2006, p. 45).

SKamara (1997).
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Table 3.1 Daily average return in percent of common stocks on the NYSE, AMEX and NASDAQ
from July 1962 to July 2001

Weekend
Monday | Tuesday | Wednesday | Thursday |Friday | (Fri.—Mon.)

Overall period

1962-2001

EwW —0.093 0.000 0.133 0.125 0.246 0.339
VW —0.055 0.044 0.099 0.047 0.098 0.153
By decades

1962-1970

EwW —0.105 —0.008 0.176 0.074 0.218 0.326
VW —0.124 0.022 0.145 0.028 0.131 0.255
1971-1980

EW —0.082 —0.019 0.112 0.115 0.245 0.327
VW —0.100 0.035 0.098 0.049 0.111 0.211
1981-1990

EwW —0.173 —0.038 0.108 0.123 0.231 0.403
VW —0.078 0.062 0.112 0.049 0.109 0.187
1991-2001

EW —0.021 0.056 0.144 0.174 0.283 0.304
VW 0.063 0.053 0.057 0.057 0.050 —0.013

Source: Singal (2006, p. 42)
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Fig. 3.1 Weekday returns in percent for an equally-weighted index over the 1962-2001 period.
Source: Singal (20006, Fig. 3.1, p. 44)
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until 1993. Apparently, the weekend effect was tightly linked to small capitalization
and has a higher impact on equally-weighted indices than on value-weighted
indices.

The following research focused on the international scale. Did the weekend
effect occur outside U.S. markets? In 1994, Agrawal and Tandon found significant
negative returns on Mondays in nine countries and on Tuesdays in eight countries,
while large and positive returns could be observed on Fridays in 17 of the 18
countries studied.” Unfortunately, their data did not extend beyond 1987.

A quite interesting study was conducted in 2001: Steeley noticed that the
weekend effect in the U.K. had disappeared in the 1990s,® while in 2010 Benjamin
Liu and Bin Li could still note its existence on the Australian stock exchange, yet
with varying strength among shares and industries.’

3.2.3 Explanations

It was only in 2003 that Chen and Singal provided a satisfying explanation for this
long-lasting anomaly which seemed to curiously disappear in the 1990s in a few
developed countries. The weekend effect can be mostly attributed to short sellers.'”
There are two kinds of short selling: hedging and speculation. In the first case, short
selling is used to offset an existing position, resulting in a neutral position. On the
other hand, speculative short selling consists in selling an asset without having it,
and then re-buying it later. The difference generates the profit or loss. The key aspect
is to sell something before owning it.

To do so, investors borrow the asset and keep it as long as the initial owner does
not want it back. This speculative strategy is quite risky because if the initial owner
reclaims his asset at a time when the price is not beneficial to the short seller, he
has to buy back the sold asset so as to then give it back to the initial owner. He
may thus incur a loss. This happened before organized derivatives markets existed,
and happens also now. The second drawback of short selling is that the expected
loss is virtually unlimited. This is even more true for futures and options, which are
financial products whose prices and returns are derived from assets like stocks. For
example, if a stock costs $20, and drops to $19, the loss is not overwhelming. But the
loss for the derivative may amount to, say, $1,000. Moreover, while the maximum
loss of the share is $20 (the share has then no value), the loss on the derivatives
market could reach $20,000, while only $2,000 were initially invested.

After these remarks on short selling, we can focus on Chen and Singal’s
explanations. Short sellers go for a quick profit and prefer not to hold their position
too long, because of the high volatility and the cost of borrowing. Taking a long

7 Agrawal and Tandon (1994, p. 101)
8Steeley (2001).

Liu and Li (2010).

19Chen and Singal (2003).
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and a short position, namely in derivatives, is costly. If these operations happen
too frequently the profit suffers. A single day strategy would be too short for short
sellers, as a daily renewal of their positions would be too costly. However, weekends
represent close to 50 h without trading. They are a landmark for buying back what
was short sold at the beginning of the week. A buy order on a stock is then executed
on a Friday to settle the short sell order of a Monday. An increase in asset prices
is then observed on stock exchanges on Fridays and a decrease is observed on
Mondays. The same effect occurs before and after holidays.'!

Since options are easily available and less expensive for large stocks, the
weekend effect for the value-weighted index began to disappear in recent years.
Researchers noticed these changes after the introduction of organized option
markets. On the other hand, for an average stock, options are either non-existent
or too expensive to trade. That is why the weekend effect for the equally-weighted
index remained fairly unchanged through time.'?> Furthermore, the weekend effect
tends to be stronger if institutional investors engage in the market.'3

Additional explanations emerged from other researchers:

* Measurement errors

* Specialist-related biases in prices

* Timing of corporate releases after the stock exchanges close on Fridays
* Reduced institutional trading and greater individual trading on Mondays
* Daylight saving time changes for two weekends of the year

+ Delay in the settlement of trades and bid-ask bounce'*

3.2.4 Persistence

The weekend effect was observed for a wide spectrum of assets, indices and time
spans. It has been assumed that the timing of news releases was the main reason
for the observed abnormal returns on worldwide indices. However, news releases
are not restricted to a given type of firm, and explain no more than 3.4 % of the
weekend effect.!> So the timing of the delivery of bad news may not be a sufficient
reason to explain this anomaly. Daylight saving time changes did not seem to impact
the weekend effect in 1989,' neither did they later between 2001 and 2010.!7 The

!Singal (2006, p. 48).
12Singal (2006, p. 48).
13Sias and Starks (1995, p. 66).

4“The bid-ask bounce is the process that on Fridays, the asset is traded at Friday’s ask price at
the close of trading, whereas on Mondays, it trades at Fridays’ bid price at the start of the trading
session.

SDamodaran (1989, p. 607).
16Damodaran (1989, p. 616).
17Patel (2012, p. 109).



3.3 January Effect 181

delay in settlement is assumed to represent around 17 % of the weekend effect, while
the bid-ask bounce would explain 32 and 10 % of the observed market anomaly in
an equally-weighted and value-weighted index, respectively.!'®

The effect can still be noticed nowadays. It has lasted so long for three major
reasons:

It was not understood before 2003.
» It is tightly linked to specific index and share types.
¢ [Its magnitude is small.

3.2,5 Summary

Before 2003, the reasons of the weekend effect were hardly understood. It could thus
disappear without notice. It was also impossible to optimize and refine a strategy to
capture the highest available profit. This anomaly is close to non-existent in a value-
weighted index, and it is hard to benefit from an equally-weighted index. Illiquid
markets for small-caps and high trading costs can make it prohibitive to surf on the
weekend effect. It is even more complicated to generate a profit since the average
returns do not exceed 0.33 %.'° That is why the best an investor can do would be to
just buy stocks on Mondays and sell them on Fridays.

3.3  January Effect

The January effect is a particularly interesting anomaly because it has not dis-
appeared, despite being well known since the mid-1970s. According to arbitrage
theory, any anomaly should disappear as traders attempt to exploit it. How was it
discovered and what are its properties?

3.3.1 Description and Evidence

The January effect is an abnormal return on a given set of stocks achieved in January
compared to other months of the year. In 1976, Rozeff and Kinney discovered that
abnormal higher returns were achieved during the first days of January as compared
to other months of the year.”’ They found that the average return on the New York
Stock Exchange small-caps between 1904 and 1974 reached 3.48 % during this

18Singal (2006, p. 47).
19Singal (2006, p. 42).
20R ozeff and Kinney, Jr. (1976, p. 349).
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month versus 0.42 % during other months.?' In 1983, Donald Keim?? who was then
a graduate student at the University of Chicago, observed that stock prices increase
during the month of January in almost every year.”* Furthermore, he found that such
abnormal returns could not be traced back to price information. This contradicts the
efficient market hypothesis (EMH).

This anomaly has persisted through time, notably in more recent years. Bhardwaj
and Brooks as well as Eleswarapu and Reinganum proved its occurrence in the
periods 1977-1986 and 1961-1990, respectively.>* These findings allowed Robert
Haugen and Philippe Jorion to note that “the January effect is, perhaps, the best-
known example of anomalous behavior in security markets throughout the world.”*

Additional properties of the January effect were unveiled by Chang and Pinegar
in 1986. They actually discovered that it also occurred in bonds market.?® In 1998,
Maxwell additionally showed that this anomaly is strong for non-investment grade
bonds, but not for investment grade bonds.?’

3.3.2 Explanations

According to this and further research, the January effect is attributed to the rebound
of stocks after the year-end tax selling period. Actually, stocks depressed near
year-end are more likely to be sold for tax purposes. On an accounting basis, any
stock which lost value during the former year yields a tax credit and the investor
has less to pay to the state for the past or future period, according to accounting
standards. Yet, Chen and Singal,28 among others, have also identified a December
Effect, which seems to stem from the requirement that many funds report holdings
at this time of the year as well as from investors who buy in advance of potential
January increases.”” Fund managers have to follow investment objectives. Given

2Rozeff and Kinney, Jr. (1976, p. 349).

22Donald Keim received his Ph.D. from the University of Chicago in 1983. He is very well known
and widely cited for the discovery of the January effect. Currently, he is teaching at Wharton
University as John B. Neff Professor of Finance.

2Keim (1983).

24Bhardwaj and Brooks (1992) and Eleswarapu and Reinganum (1993).

25Haugen and Jorion (1996, p. 27).

26Chang and Pinegar (1986).

YInvestment grade bonds are bonds audited by rating agencies like Moody’s or Fitch Rating. An
investment grade is any rate between AAA and BBB- or Aaa and Baa. Non-investment grade
(also known as junk) spans from BB (or Ba) to D (default). They help to evaluate the default risk
associated with a bond and are used by investors to assess the credit worthiness of a corporate or
sovereign bond. See Maxwell (1998).

28Honghui Chen is an assistant professor at the University of Central Florida, Orlando. Vijay
Singal, CFA, is J. Gray Professor of Finance at Pamplin College of Business, Virginia Tech,
Blacksburg.

2Chen and Singal (2003).
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their aggregated weight and knowledge of the global direction of selected stocks
thanks to fundamental or quantitative analysis, they can have an observable impact
on the market as a whole. Finally, Bhabra, Dhillon, and Ramirez (1999) document a
November Effect,*® which has occurred only after the Tax Reform Act of 1986. They
also found that the January effect has become stronger since then. Taken together,
their results point toward a tax-loss selling explanation of the January effect.

3.3.3 Persistence

The January effect persists because it is not possible to arbitrage the anomaly. It
is also important to note that the stocks affected by the January effect are rather
small. It reaches only the bottom 20 % of all stocks that trade on organized stock
exchanges and NASDAQ: From the overall 6,500 stocks, the anomaly concerns
only 1,300 stocks with a median market capitalization of about $25 mn.?! Because
of high trading costs, investors will not be able to benefit from this anomaly. Even
index futures, options, and mutual funds are useless for diminishing trading costs,
because their capitalization size is too small to take benefit of it. On the other end,
the December and November effects are not as clearly understood. That is why
experts estimate that these effects should disappear through time.*> Meanwhile,
buying stocks at the beginning of December or 6 days before year end and selling
them on the last trading day of the year could generate consistent abnormal returns.

In addition to the January effect, a comparable anomaly occurs at each end of the
month: the turn-of-the-month effect.

3.4  Turn-of-the-Month and Holiday Effect

The turn-of-the-month effect and the holiday effect are two typical seasonal
anomalies. They are explained here together because they share similar properties.

3.4.1 Description

The turn-of-the-month effect is a typical seasonal stock market anomaly. Studies
have shown that stocks offer higher returns on the last and first days of every month
relative to the other days. This effect is called turn-of-the-month effect and has been
well documented over time and across countries. Depending on researchers, the turn
of the month is defined as the three to five trading days at the end of the month and

30Bhabra et al. (1999).
31Singal (2006, p. 33).
32Singal (2006, p. 37).
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at the beginning of the next month.*? The holiday effect is similar in that returns are
on average higher on the day before a holiday, compared to other trading days.>*

3.4.2 Evidence

Lakonishok and Smidt (1988) shows that U.S. stock returns are significantly higher
during the turn-of-the-month period.>> Ariel (1987) points out that returns tend to
be higher on the last day of the month.

In 1991, Ziemba discovered a turn-of-the-month effect for Japan when the turn
of the month is defined as the last five and the first two trading days of the month.?’
Hensel and Ziemba found that returns at the turn of the month consistently and
significantly exceeded averages during the period 1928—1993 and declared that “the
total return from the S&P 500 over this sixty-five-year period was received mostly
during the turn of the month.”*® Two years later, in 1998, Kunkel and Compton
unveiled a turn-of-the-month effect on the S&P 500 Index but for a different time
span.’ Both studies underline how abnormal returns can be earned by exploiting
this anomaly. However, in 1992, Cadsby and Ratner detected similar turn-of-the-
month effects in some countries like Canada, the U.K., Australia and Switzerland,
but they also discovered that it does not occur in other countries.*” More recently,
Frank Russell Company examined the returns of the S&P 500 over a 65-year period.
They also found that U.S. large-cap stocks consistently generate higher returns at the
turn of the month.*!

A second very famous seasonal anomaly is the holiday effect. A range of
researchers provided evidence that returns are on average higher on the day before a
holiday than on other trading days.*? This effect is present across major U.S. stock
exchanges, namely the NYSE, the AMEX, and NASDAQ.* It is also noticeable
in other parts of the world like Japan and the United Kingdom.** Brockman and

3Kunkel and Compton (1998, p. 207), Ziemba (1991, p. 119) and Hensel and Ziemba (1996,
p- 17).

34Scott (2003).

35Lakonishok and Smidt (1988).

36 Ariel (1987).

37Ziemba (1991).

3Hensel and Ziemba (1996, p- 21).

3Kunkel and Compton (1998).

40Cadsby and Ratner (1992).

4IRussell TInvestment Group website: http://www.russell.com/us/education_center. See also
Gonzalez (1996).

“2Lakonishok and Smidt (1988), Ariel (1990), Cadsby and Ratner (1992).

43The acronyms stand for New York Stock Exchange, American Stock Exchange and National
Association of Securities Dealers Automated Quotations.

44Kim and Park (1994).


http://www.russell.com/us/education_center

3.5 S&P 500 Index Effect 185

Michayluk (1998) add that the pre-holiday effect is one of the oldest and most
consistent of all seasonal irregularities.*

3.4.3 Explanations

As for now, a set of explanations are proposed for both anomalies. The most plau-
sible one for the turn-of-the-month effect appears to be related to the information
delivery process. It seems that these anomalies arise from clustered information on
the macroeconomic level. Given that this information is systematically released at
specific known dates, market agents and investors seem to ask for a higher risk
premium on these dates. On a risk-adjusted basis, the anomaly seems to disappear.

A similar explanation is sometimes given for the holiday effect. However, some
researchers also believe that the holiday effect is due to end-of-month cash flows
(salaries, mortgages, credit cards, etc.).*® Singal underlines that part of this effect is
also due to short sellers,*’ as short sellers close their position by buying back the
stock they have previously short sold.

3.4.4 Persistence

Unfortunately, there is no consensus regarding the explanation of the turn-of-the-
month effect or the holiday effect. However, assuming that the effect arises from
information delivery, it seems impossible to hedge against or to take advantage
of these anomalies unless one can benefit from information which has not been
publicly released. But if the effect is assumed to be due to cash flow delivery or
even to short selling, then one can buy the stock slightly before the end of the month
or the holidays’ starting day.

Stock market anomalies are not only seasonal or periodic. They can be structural
as in the case of the S&P 500 Index effect.

3.5 S&P 500 Index Effect

The S&P 500 effect is also known as the S&P game. It is quite easy to recognize
but less easy to explain. In the following part, we will briefly present the index
and the effect linked to it. Then, we provide a series of evidence followed by a list
of possible explanations of this conspicuous anomaly which has persisted with its
present characteristics.

4Brockman and Michayluk (1998, p. 205).
46Russel and Torbey (2002).
47Singal (2006, p. 47).
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3.5.1 Description

Through the 1970s, new indices started to emerge and were increasingly used as
benchmarks for trading. Yet, much earlier, in 1957, the S&P 500 Index was founded.
This index is a portfolio that tracks five hundred top U.S. shares. The included firms
are supposed to represent the leading industries in the U.S. economy, and the index
is believed to be a good indicator of the country’s market performance. The adjusted
market capitalization as of September 2013 was about $15 tn. The included stocks
can reach a market capitalization as high as $401.73 bn., and as low as $1.99 bn., for
an average of $30.35bn.*

Stocks can be added or withdrawn from the index based on the four following
criteria:

* The ownership of the firm must not lie in the hands of only a few shareholders.

* The firm is a market leader with a large market share.

* The firm is profitable and is expected to continue to be so in the long run.

* The stock is traded in sufficient volumes and has a high liquidity on the stock
exchange.

But there are many more companies that fulfill these criteria than can be included
in the index. As a result, a necessary subjectivity in the process of selecting the index
constituents makes the outcome unpredictable. However, market observers keep
trying to identify the happy few who are qualified to enter the index. For example,
Lehman Brothers, a former leading investment bank in the United States before the
subprime crisis, identified nineteen candidates to be included versus ten stocks to be
excluded in 2002. It turned out that four of the identified companies were included
and two of them were excluded.*’ In any case, on the day of addition/deletion, the
S&P 500 Index is always composed of exactly 500 stocks. So, if two stocks are
deleted from the index, two new companies’ shares are included.

As previously said, the index is used as a benchmark, and fund managers and
other investors who are willing to track the index as closely as possible will adapt
their portfolio in the case of the addition or deletion of a new stock. To prevent any
excess volatility, starting from 1989, such an event will be announced a week before
it takes effect.

Now, we can deal with the S&P 500 effect. In 1986, Harris, Gurel and Schleifer
found an abnormal increase in stock prices that could reach 3 % because of the
announcement of a stock’s inclusion into the S&P 500 Index.”® Their discovery
triggered a wide range of research trying to define and explain this observation.

Today, the S&P 500 Index reflects the fact that a newly added stock will yield an
abnormal return following its listing. This effect will vanish within a few weeks or

4 Source: http://www.spindices.com/indices/equity/sp-500.
“Singal (2006, p. 165).
S0Harris and Gurel (1986, p- 815) and Shleifer (1986, p. 583).
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at most a month. A deleted stock will first drop in value, but including an already
listed stock into an index does not seem to reveal information. However, it does have
an impact on its return and volatility. Therefore it is an anomaly which runs against
the idea of the efficient market hypothesis.

3.5.2 Evidence

To be deleted or added to the S&P 500 Index has a significant impact on a company
as can be seen in Tables 3.2 and 3.3. Table 3.2 represents the price impact of
additions to the S&P 500 Index from 1962 to 2000. Table 3.3 is its equivalent in
the case of a deletion. Note that the number of companies included into this sample
is significantly smaller than for additions. This is due to the fact that only stocks
that were removed from the index by Standard and Poor’s are taken into account.
Bankruptcy, mergers or acquisitions are not considered so as to minimize the sample
selection bias. Also note that AD is an acronym for announcement date and ED
stands for effective date.

Table 3.2 shows different time periods. The first period runs from 1962 to 1976.
Until 1976, as noticed before, indices were not a popular tool. Hence, Standard and
Poor’s made no public announcement. The second period runs from 1976 to 1989.
Starting 1976, Standard and Poor’s announced changes in their index after market
close on Wednesdays, a day before the changes became effective. However, these

Table 3.2 Price impact of additions to the S&P 500 Index from 1962 to 2000

Abnormal | Abnormal Abnormal
Additions | Abnormal | returnto |return to return to
Total in the return on AD + 1 |20 days after | 60 days after

Period addition | sample AD+1 (%) | to ED (%) | ED (%) ED (%)
7/1962-8/1976 | 304 285 0.0 N/A —0.5 0.9
9/1976-9/1989 | 297 274 3.0 N/A 2.9 35
1989-2000 278 224 53 8.4 5.6 4.5
1990 13 11 3.1 6.7 3.1 —3.8
1991 13 9 5.8 8.2 4.5 0.3
1992 7 6 4.6 6.4 6.6 2.3
1993 13 9 4.7 7.3 5.6 6.3
1994 18 16 2.2 4.7 1.2 0.3
1995 32 21 4.3 7.2 3.0 2.5
1996 27 20 3.8 7.5 2.9 3.8
1997 28 24 8.1 10.5 7.5 5.8
1998 48 37 5.5 9.3 3.5 0.5
1999 41 38 5.8 8.5 6 7.8
2000 33 29 7.1 10.7 13.5 12.5

Source: Singal (2006, Table 8.1, p. 166)
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Table 3.3 Price impact of deletions from the S&P 500 Index from 1962 to 2000
Abnormal | Abnormal Abnormal

Deletions | Abnormal | return on | return to return to
Total in the return on AD + 1 |20 days after | 60 days after
Period addition | sample AD+1 (%) | to ED (%) | ED (%) ED (%)
7/1962-8/1976 | 304 170 —0.3 1.6 3.5
9/1976-9/1989 | 297 61 —1.6 —3.8 —2.9
1989-2000 278 88 —54 —10.3 —3.3 2.6
1990 13 5 —-1.6 —4.6 —9.1 43.7
1991 13 4 —19.3 —19.3 20.1 214
1992 7 5 —10.2 —324 6.0 8.2
1993 13 6 —2.3 —7.2 —4.9 33
1994 18 10 —2.8 —5.4 1.4 23
1995 32 11 —5.8 —15.7 —10.7 —16.7
1996 27 13 —4.0 —7.4 —0.1 3.0
1997 28 4 —5.2 —7.4 4.9 22.5
1998 48 8 —-7.3 —10.5 —12.1 —2.8
1999 42 9 3.2 —-33 2.8 4.4
2000 32 12 -59 —10.9 —-11.9 —=17.7

Source: Singal (2006, Table 8.2, p. 167)

notifications were only given to interested investors, for example, fund managers,
and were not entirely public information.

Index management became more and more popular. The research on the benefits
of indices created a growing interest from institutional and private investors. As a
result, on the D-days of introduction or withdrawal, abnormal volatilities, volumes
and returns were observed for the newly included or deleted stocks of the S&P 500
Index. That is why, in 1989, the company in charge of this index started to make
announcements a week before the effective date of a new addition or deletion. This
procedure has not been changed as of March 2014.

Stocks that are added to the S&P 500 are already present on a stock exchange,
like the AMEX, NASDAQ or even the NYSE. All public information is already
available. Given that apparently no information is added through the listing or
delisting process, no abnormal return should be witnessed. However, a clear pattern
has emerged which is very different in the case of an addition or a deletion. Let us
first analyze Table 3.2, which shows the addition effect on the price.

In the years 1962-1976, in the event of an addition, abnormal returns oscil-
late between —0.5 and 0.9 % after 20 and 60 days following the introduction,
respectively. The day following the announcement, and thus the effective date of
the inclusion, is null, in statistical terms it is a non-event. From 1976 to 1989,
a shift seems to appear. An abnormal positive return can be observed, varying
from 2.9 to 3.5 % for 20 and 60 days after the effective date. A single day after
the announcement date, an investor could generate a substantial 3.0 % return. The
pattern intensifies from 1989 to 2000 with a 5.6 versus 4.5 % abnormal return after
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Fig. 3.2 Impact of additions from the S&P 500 Index from 1989 to 2000. Source: Own, based on
Singal (2006, p. 166)

20 and 60 days following the introduction. Such a figure is even more outstanding
if one focuses on the day following the announcement date: It offered a return of
5.3 %. This could sky-rocket to 8.4 % if the position was held until the effective
inclusion date.

Figure 3.2 also shows that the effect strengthened over time. It can also be
observed that in 2000, most abnormal returns were generated 1 day after the
announcement date.

In Table 3.3, we analyze the effect of a deletion. In the years 1962-1976, in the
event of a deletion, abnormal returns of 1.6 and 3.5 % occur after 20 and 60 days
following the effective date. During the period 1976-1989, returns are negative and
amount to —3.8 and —2.9 %, respectively. Even more intriguing, from 1989 to 2000,
one could expect a —3.3 % abnormal return 20 days after the effective date and yet
get a positive 2.6 % return 40 days later.

How is this possible? Generally speaking, on the day following the announce-
ment date, a significant loss occurs and widens from —0.3 in the 1962-1976 period
to —5.5% in the 1989-2000 period. However, Fig.3.3 below which represents
the impact of deletions from the S&P 500 Index from 1989 to 2000, shows that
approaching the 2000s, the effect seems to contract around —5.0 to —10.0 %.

It took years for financial researchers to find explanations for these observations
made at various times,’' yet none of them is fully satisfying. We will look at them
in the next section.

ST Arbel (1985, p- 4) and Chen, Noronha, and Singal (2003, pp. 1901-1902).
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3.5.3 Explanations
As for now, five possible explanations co-exist to explain the S&P 500 effect:

» Certification

* Imperfect substitutes

e Liquidity improvement

* Price pressure

* Recognition from investors

3.5.3.1 Certification

The certification explanation proposes that the addition of a stock to the index
produces additional information about the firm (i.e., expected long-term profitabil-
ity),’ even though Standard and Poor’s analysis is based on all publicly available
information. According to this hypothesis, the listing or delisting of a stock should
lead to positive or negative price movements, respectively. This was definitely the
case in recent years. However, in the period 1964-1976, stocks were introduced
and withdrawn, yet with no significant effect on the market prices. Furthermore, the
certification hypothesis cannot explain the temporary effect of the price drop.>® If it
held true, the negative effect should be permanent since the information about, say,
negative expectations about the long-term profitability would not vanish in a matter
of weeks.

52Denis, McConnell, Ovtchinnikov, and Yu (2003, p. 52).
53Shleifer (1986, p- 579).
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3.5.3.2 Imperfect Substitutes

The imperfect substitutes hypothesis is a second explanation. First, it assumes that
a listing on the S&P 500 does not create any additional information. If it were
created, then prices should have varied already before 1976, which was not the case.
Moreover, Standard and Poor’s bases its analysis on publicly available information.
At best, a re-release of information would bring information to the market. Such
an effect occurs when the Wall Street Journal publishes its column Insider Trading
Spotlight but has yet to be proven for the re-composition of the S&P 500.>* Liquidity
improvement is not significant as will be discussed. So the single reason left is the
shock in demand created by indexers, i.e., fund managers who replicate an index.
They create an upward price shift in the case of an addition and a price drop in the
case of a deletion. The key point is the following:

In theory, a firm’s share represents very little in comparison to the market as a
whole. Hence, it is assumed under the efficient market hypothesis that all shares
are perfect substitutes between each other. So, in theory, buying Boeing, Airbus
or Lockheed Martin would make no difference, since these companies are all in
the aeronautics and defense industry. If a stock rises more than its competitors,
then a short sell followed by a buy order on one of the competitors would nullify
the abnormal return. However, assuming stocks have imperfect substitutes, the
arbitrageurs can profit from the situation and generate abnormal returns. This can
be an explanation for the observations made in Tables 3.2 and 3.3.

But this hypothesis, while being a best-fit, is contradicted by two facts. The
first one is that no relation so far has been found between indexing and price
impact. If the imperfect substitutes hypothesis is true, the greater the demand for the
introduced stock, the greater the price impact. But this is not the case.”® A second
issue is that the price loss through deletion should be as permanent as it seems to
be for an addition. This is against observations, therefore, another explanation is
required.

3.5.3.3 Liquidity Improvement

A third explanation is liquidity improvement. The S&P 500 shares benefit from a
very liquid market. Hedge and McDermott observe an improved liquidity for added
stocks primarily due to lower transaction costs and an improvement in information
flow around the announcement date.>® For deleted stocks, the liquidity declines over
3 months on average. However, in the meantime, the number of shares available for
trading may negatively impact the liquidity of the shares and very few studies show
a permanent increase in liquidity.>” Most of the studies report that liquidity increases
or decreases vanish within days in the case of an introduction, and within months in
the case of a deletion. This explanation is thus not sufficient to explain the anomaly.

34Chang and Suk (1998).

SSWurgler and Zhuravskaya (2002, p. 583).
S6Hegde and McDermott (2003).

37Singal (2006, p. 171).
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3.5.3.4 Price Pressure

A fourth explanation is the price pressure hypothesis. It also relies on imperfect
substitutes but focuses more on short-term price changes. Under this hypothesis,
adding a new stock to the index generates a burst in demand for the stock. This
generates an upward price pressure in the case of an addition, and a downward
pressure in the case of a deletion. In the case of an introduction, as soon as the
demand is satisfied, the temporary abnormal return reaches a stable new level.
This fits with observations stated in Table 3.2 starting from 1989. Kaul, Mehrotra
and Morck found equivalent results for the Toronto Stock Exchange in 1996
with no long-term reversal.”® Harris and Gurel’s observations also fit with the
hypothesis.”® However, in their sample which preceded 1986, it seems that the
stock that appreciated after an introduction loses its abnormal return in a matter
of 2 weeks. It thus seems that a significant shift did occur around 1989, so that the
price pressure hypothesis does not hold. The price drift should disappear with time
passing by, but this has not been the case anymore starting from 1989 as stated in
Table 3.2 and subsequent research.

3.5.3.5 Recognition from Investors

A fifth and last explanation is proposed which is known as investor recognition.®’
The argument is that newly introduced stocks get a bigger visibility, and deleted
ones progressively lose it. A firm with higher visibility may get better access to
capital markets, even if the stock has already been introduced years ago. Financial
analysts and observers will monitor the company much closer. Mechanically, this
visibility is also granting them greater access to capital markets since the index is
used as a benchmark for many funds. Getting access to the index also grants the
newly indexed company access to indirect investors.

As a result, larger projects can be started. Financial institutions may be more
willing to lend at lower costs, which leads to a higher debt capacity. The market
value of the company, on a fundamental basis, should then see its value increased.
On the other hand, the deleted stocks cannot become suddenly unknown to
investors. The investor recognition hypothesis therefore assumes an asymmetric
effect between the addition and the deletion of a stock. Before 1976, Standard and
Poor’s did not make any announcement about an introduction or a deletion, and
stock prices were not impacted. Starting from 1976, selective announcements were
made and price changes occurred with abnormal returns of 3 %. Since 1989, the
announcements take place at least a week before taking effect, and the information
is widely and publicly delivered.®! A correlation with a higher abnormal return can
be observed in the following decade in Tables 3.2 and 3.3.

58K aul, Mehrotra, and Morck (2000).
Harris and Gurel (1986).

60Singal (2006, p. 172).

61Singal (2006, pp. 171-173).
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However, this explanation is tightly linked with another anomaly: the neglected
or small firm effect. It states that small-sized firms or firms poorly monitored by
outside observers tend to perform better. Newly introduced stocks get known and
the stock price moves upward. Newly deleted firms become less well known and
are temporarily undervalued. Yet, because they tend to be monitored, an upward
movement of the stock price is realized in the following months.

Out of these five possible explanations for the price impact of index changes, the
investor recognition hypothesis seems to be the most consistent one. But in the case
of a deletion of a stock, this hypothesis does not provide an easy explanation. In this
case, the imperfect substitute hypothesis needs to be considered. Let us now focus
on the persistence of the S&P 500 effect.

3.5.4 Persistence

The index effect has to be divided into two parts: a permanent and a temporary part.
The permanent part seems to be explained thanks to the hypotheses presented above,
namely the investor recognition and imperfect substitute hypotheses. Therefore, this
part is not exploitable, yet the temporary part is.

When the addition of a stock occurs, both parts co-exist. Starting from the
day of the announcement that the stock is going to be included in the index, the
permanent S&P 500 Index effect becomes evident. However, the abnormal return
generated between the announcement date and the effective date is a temporary
effect that is meant to disappear. Standard and Poor’s confirms this observation: “a
stock being added to the index would rise about 8.5% between announcement and
implementation dates.” ©

Only the temporary effect is visible when a stock is deleted. All of the abnormal
return generated during the period following the effective date of deletion seems to
evaporate. This observation is extracted from Fig. 3.3 and corroborates Standard and
Poor’s year 2000 report: “The average market decline across all the deletions since
1998, a total of 53, was 11.7%. On average, this decline was nearly fully reversed
by the sixth trading day.” %

The issue then is to understand the persistence of the temporary effect. Why has it
not disappeared after more than 20 years of existence? There are two interconnected
reasons for this:

* The index fund evaluation process of index fund managers.
e The announcement of an upcoming re-composition of the index which is
exploited by arbitrageurs.

2Bos (2000).
%Dash (2002).
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The evaluation of index fund managers includes the assessment of their ability
to reduce tracking error.* As seen in Sect. 1.3.2, tracking error can be used to
measure how close the passive portfolio manager tracks the actual index. Typically,
tracking error shall not exceed 0.1 % for an index tracking portfolio. Therefore,
fund managers are likely to buy or sell stocks precisely on the effective date of
introduction. This is one part of the game.

But in this scenario, arbitrageurs also play their role. They know how fund
managers are evaluated, and in the case of an introduction in the index, they buy the
stock around the announcement day and sell it in the days following the effective
date. They sell massively and generate an abnormal profit because the demand of the
fund managers is large enough to absorb the selling effect. In the case of a deletion,
the profit is even more interesting. Arbitrageurs believe in the hypothesis of the
imperfect substitute. They short sell the stock to be deleted on the announcement
date. The stock price is driven down until the effective date when they repurchase
the stock at a lower price to give it back to fund managers. An abnormal profit
is generated. Later on, because the price movements are not based on additional
information, the stock price is likely to reach its former level.

3.5.5 Summary

To sum up, a listing on the S&P 500 Index is a major event for a firm. It becomes
more visible and gains a potentially better access to capital markets. It will also
attract investments from fund managers tracking the index. This may increase the
liquidity of the stock. Starting from 1989, the investor behavior regarding S&P
500 Index introductions and withdrawals changed. This correlates with Standard
and Poor’s decision to introduce longer announcement periods in order to limit the
demand shock on the effective date, by introducing a longer announcement period.
Surprisingly, while the objective definitively was to limit the volatility of a stock
by increasing information transparency, the opposite effect was produced. This
anomaly is rather structural than seasonal. Let us now focus on another anomaly:
trading by insiders.

3.6 Trading by Insiders

An anomaly can be seen as a means which, if exploited, can lead to a significant
overperformance over the market. This is also true for the legal trading by insiders.
In the following sections, we will take a look at the definition of insiders and how
they trade. We will present the evidence and the persistence of this stock market
anomaly.

54Blume and Edelen (2002, p. 1).
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3.6.1 Description

The SEC® defines an insider or inside investor as the chairman, CEO or president
(top executive), or a senior executive (or an officer) of a company, a member of
the board of directors (director), an owner of 10 % or more of the firm’s shares
(a large shareholder), or a close relative of such persons.®® These people have the
right to invest into the company they are managing or to sell their shares as long as
they follow the rules set by the SEC. Such rules are strict and trading by insiders can
prove to be tricky and complicated. This is why only few people are really interested
in this investment possibility.

According to the strong-form efficient market hypothesis, the stock exchanges
use all available information, i.e., past, present and insider information. Practitioners
believe, however, that stock exchanges follow the semi-strong hypothesis, i.e., that
actual prices reflect all publicly available data including past data, but not insider
knowledge. This is important because in theory, if an investor can understand the
investment choices of an insider as defined above, he might be able to continuously
generate above-market portfolio returns. It is reasonable to assume that an insider
has a better understanding of the company he manages and his industry than an
outside observer or an individual trader. With this knowledge, their predictions
ought to be more accurate than the predictions or expected future trends based on
publicly available information. Since information appears to be essential for price
assessment, an investor may be able to generate abnormal returns if he can decipher
the information provided by the investments of the insiders.

3.6.2 Evidence and Insider Behavior

On a global level, the evidence for this anomaly is mixed. In general, very little
market movement is observed when insiders trade and when they report their trades
to the SEC.%7 For example, in 1998 Espen and Smith found no abnormal positive
performance by insiders on the Oslo Stock Exchange.® If markets are efficient, an
anomaly should vanish in a short time if there is any. If there is no important market
move, one can assume no anomaly exists.

However, a growing academic literature tends to show that insider trading,
motivated by private information, mostly occurs close to corporate announcements.
Damodaran and Liu found strong support for the hypothesis that inside traders buy
after receiving favorable appraisal news, while they seem to sell after receiving

95SEC stands for Unites States Securities and Exchange Commission. Their mission is to monitor
and control investment activities.

66Singal (2006, p. 135).
67Lakonishok and Lee (2001).
%8Eckbo and Smith (1998).
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a negative appraisal news.®” This leads to significant abnormal returns during
the appraisal period. Kahle confirms this observation.”’ She shows that insider
sales increase and purchases decrease prior to the issue of information-sensitive
securities, i.e., convertible debt and equity. The reason may be the dilution factor that
would diminish insiders’ wealth. Such an analysis holds true for industrial firms, it
does not seem to apply for utility companies. This difference was not accounted for
by Kahle’s analysis.

According to the analysis of Seyhun who documented the period 1975-1989,”!
the aggregate net number of open market purchases and sales by corporate
insiders predicts up to 60 % of the variation in the 1-year-ahead aggregate returns.
Lakonishok and Lee conducted an analysis of insider trades on a much larger scale
which covered over 20 years of trading on the NYSE, the AMEX and NASDAQ
from 1975 to 1995. According to the researchers, if insiders buy in 1 month, there
is a 38 % chance that they will buy in the following month, versus a 11 % chance
that they will sell.”” An equivalent pattern seems to exist for insider sales, which is
far less obvious though. Furthermore, a stock appears to be more likely to perform
better following an insider buying month as compared to following an insider selling
month. The difference in returns over the subsequent year varies from 4.8 to 18.7 %
according to Singal.”?

Overall, when insiders actively purchase their own firm shares, these stocks
outperform those which insiders have been actively selling. If one uses the monthly
trade of insiders as a signal, these stocks gain 24 % on a purchase versus 15.1 %
on a sale in the following year.” The effect is even more striking as the investment
horizon shrinks.

Two theories can explain the positive impact of a buy order from insiders, i.e.,
the information effect and the stealth trading hypothesis.

3.6.3 Information Effect

The first explanation is based on what is called the information effect. Following the
new SEC regulations of 1993-1995, share prices react positively to large managerial
purchases.” These new regulations required inside traders to publish their trading
operations in a timelier manner. The price reacts positively with even more strength
if the stock belongs to a firm that is either small or undervalued or experiences

%Damodaran and Liu (1993).

70Kahle (2000).

7ISeyhun (1992, p. 1303).

72Lakonishok and Lee (2001, pp. 89-96).
73Singal (2006, p. 139).

74Singal (2006, p. 155).

75Roth and Saporoschenko (1999).
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conflicts between managers and shareholders. Even more interesting, this effect is
not reversed within a year and provides a good long-term investment.

3.6.4 Stealth Trading Hypothesis

The second explanation is based on what is called the stealth trading hypothesis.”®
Barclay and Warner proposed the hypothesis after they examined the proportion
of a stock’s cumulative price change in pre-set trade-size categories. Although the
majority of trades were small, most of the cumulative stock-price change seemed
to be due to medium-size trades. This observation is consistent with the hypothesis
that informed trades are concentrated in the medium-size category, and that price
movements are mostly related to the private information of inside traders. As a
matter of fact, stocks are bought in medium-size sets so as not to alarm the market
or in order to comply with legal requirements. The sell orders are realized on a
multiple month period. This is why prices will steadily increase through time. This
hypothesis is consistent with observations of short- versus long-term investment.
Inside traders, due to a strong confidence in their firm’s performance, tend to
overvalue their company’s stock in the long-term,”’ which does not offer a good
long-term investment.

Inside traders seem to possess superior knowledge about the market that they use
to decide whether to purchase or not their own firm’s stock. Hence, stock prices
have a high probability of rising following a buy order. A third characteristic of
inside traders is the timing. If an insider is willing to buy but expects prices to fall,
he is more likely to wait. If he estimates that the stock price will not rise any further,
he should be prone to sell. There is a 69 % probability that insiders sell shares once
the firm’s stocks have increased by more than 10 %, while the probability of a sale
drops to 52 % after the share price has fallen by 10 %.”® According to Singal, these
results combined with the continuity of returns and trading patterns indicate that
inside traders are able to time their trades.

It seems possible to benefit from insider trading by mimicking the behavior of
the traders. However, a perfect mimicking might not be a good choice as we have
seen above. Moreover, inside traders tend to have a rather risky profile. According to
Lakonishok and Lee insiders are in aggregate contrarian investors, i.e., they bet on
a bouncing market when it is falling and vice versa.”® The effect, however, is driven
by the ability of the insiders to predict returns in smaller firms. In addition, the
informativeness of insiders’ activities is linked to purchases, while insider selling
appears to have no predictive ability.’" An option exercise may also include some

76Barclay and Warner (1993).
TKahle (2000).

T8Singal (2006, p. 142).
79Lakonishok and Lee (2001).
80Lakonishok and Lee (2001, p. 93).
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information, but evidence shows that the predictability of stock sales following an
option exercise is very small.3! Therefore, a cautious investor who tries to follow
the trading strategy of an inside trader should rather focus on the buying orders than
on the selling orders so as to generate typically abnormal returns between 10 and
15 % per year.?

3.6.5 Newspaper and Mimicking

The purpose of this part is not to depict precisely how but if it is possible to generate
abnormal returns out of insider information gained from their purchases and sales,
based on academic research.

Bettis, Vickrey and Vickrey underline that, while previous research indicated
that corporate insiders can systematically earn abnormal returns, observers could
not generate a substantial profit in their attempt to copycat insiders.®> However, in
1993 the results of their research lead to the general assumption that the market is
not semi-strong efficient, and that it is possible to consistently generate abnormal
returns.

The question then is what are the tools we dispose of? A good deal of magazines
and newspapers publish daily or weekly insider trading information as required
by the SEC, at the latest 2 days after operating the transaction. Considered to be
complicated, the process of analyzing trading by insiders requires a lot of number
crunching. The provided data are already partially processed. Therefore many
investors prefer to choose more accessible trading strategies. Still, the Consensus of
Information (COI) or the Wall Street Journal Insider Trading Spotlight can provide
information on inside trading.

In 2002, Friederich, Gregory, Matatko and Tonks tried a mimicking strategy
on the London Stock Exchange so as to examine patterns in abnormal returns in
the days around inside trader investment decisions.®* They found what has already
been underlined, namely, that directors engaging in short-term market timing®> have
superior predictive content for future returns. This is especially the case for medium-
sized trades which are more informative. This is in line with the stealth hypothesis
previously presented. The interesting aspect of their research is, however, that even
after netting positions, abnormal returns did not disappear. Therefore, one could
definitely outperform the market, based on insider trading.

81Benesh and Pari (1987).

%Singal (2006, p. 158).

83Bettis, Vickrey, and Vickrey (1997).
84Friederich, Gregory, Matatko, and Tonks (2002).

85Market timing is the strategy of making buy or sell decisions of financial assets by attempting to
predict future market price movements, in this specific case short-term movements.
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Ferreira and Brooks uncovered that on re-release®® dates in the Wall Street
Journal, a significant price change could be witnessed for common stocks between
1994 and 1995.87 On the day of publication, insiders generate a positive abnormal
profit in the case of purchases and incur an abnormal loss in the case of sales.
But how were the observers’ profits? The trading volumes increased significantly
compared to the thirty previous days. Yet, more importantly, the researchers
discovered a relationship between the abnormal returns and the relative trading
volumes on the publication date. In other words, the Insider Trading Spotlight
column available in the Wall Street Journal seems to provide additional information
to the market.

This corroborates evidence found by Bettis, Vickrey and Vickrey, i.e., that
the market does not have a semi-strong form efficiency. Therefore, following
recommendations from the Wall Street Journal might lead to substantial abnormal
returns. Chang and Suk drew equivalent conclusions for the time around the Wall
Street Journal publication day.®® They added that a secondary dissemination of
information can affect stock prices if the initial public disclosure attracts only
limited attention.

Benesh and Pari conducted a similar study based on a different database: the
COL® They noticed that stocks listed in the COI newsletters were characterized
by excess positive returns over the 4 months immediately preceding listing. Yet,
on the listing date, much of the abnormal return was already gone. Furthermore,
users of the COI’s recommendations could have earned moderate excess returns by
consistently placing a buy order on each recommendation and holding the stock for
a year.

Yet, the evaluation of insider trades is not easy. Newsletter performances are
not spectacular either. For example, as Singal notes, two newsletters followed by
Hulbert Financial Digest underperformed the broader market: The first portfolio
earned 118.9 % versus the market’s 197.6 % return from January 1985 to June
1992; Market Logic, the second newsletter, had a portfolio that cumulated a 339.2 %
versus the market’s 432.7 % return.”

3.6.6 Persistence
There is no clear explanation of the persistence of this anomaly. The reasons which

are evoked either betray a lack of understanding of inside trading strategies or are
based on the belief that inside trading is forbidden by the law. The complexity and

86 A re-release is a piece of information that has already been given public. The Wall Street Journal
in this case publishes once again an information that is already public on the market.

87Ferreira and Brooks (2000).
8Chang and Suk (1998).
89Benesh and Pari (1987).
%0Singal (2006, pp. 137-138).
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the uncertainty of the method lead practitioners to leave this strategy out of their
investment spectrum. Newsletters devoted to this particular kind of strategy have not
been very popular or effective either. Yet, the anomaly exist, just as the momentum
of industry portfolios.

3.7 Momentum of Industry Portfolios

The momentum of industry portfolios is a topic which is fiercely discussed by
academics. Its very existence is contested by many researchers and institutional
investors. Observations of the market price behavior seem to prove its existence.
In this section, a clear definition of the various industry momenta is provided. Then,
evidence of its existence is shown in the following section. Unfortunately, no clear
explanation can be provided to justify this anomaly. This is why several hypotheses
are proposed, based on current research results. The section is closed by discussing
the persistence of this intriguing market anomaly.

3.7.1 Description

A market momentum is a measure of an overall market sentiment, calculated as the
change in the value of a market index multiplied by the aggregate trading volume
occurring within the index components. In the case of an industry, and not of the
market as a whole, the momentum of a stock is a measure of the stock’s performance
relative to its industry. The momentum of an industry is a measure of the industry’s
performance over its benchmark, most of the time a well-known index. The concept
is also known under the term relative strength.

There are various kinds of momentum: stock momentum, intra-industry momen-
tum, cross-industry momentum, etc.’’ The basic concept is the same and can be
understood as a lag in price increase following an information event. More generally
speaking, it can be depicted as the fact that a firm that had a poor performance in the
previous period is likely to pursue its low return path. Likewise, great performers
of previous periods tend to bring high returns in the following period. Past winners
and losers are expected to be the future winners and losers, respectively.

Economic conditions, market or industry expectations or even the mood of
investors create investment shifts from one industry to another. At some point in
time, investors may prefer to invest in steel, then they switch to paper or automotive
or electronics or aeronautics or the Internet industry. Each time the market has a new

°IThe stock momentum is calculated based on the change in the value of stocks between two
dates. The intra-industry momentum is calculated based on the change in the value of stocks in
a specific industry index multiplied by the aggregate trading volume occurring within the index
components. The cross-industry momentum is calculated based on the change in the value of an
industry index multiplied by the aggregate trading volume occurring within the selected industries
used as benchmark.
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fad, the favored industries perform better than the market as a whole. As a result,
selecting these industries may lead to risk-adjusted abnormal returns compared to
the market index which is used as a benchmark. The first question is to select which
kind of momentum investors should focus on to get the highest and most consistent
abnormal return.

Evidence proves that cross-industry momentum, industry momentum versus
a benchmark and intra-industry momentum provide excess returns above their
benchmark. Let us now focus on this point.

3.7.2 Evidence

September 11, 2001: The World Trade Center collapses under a terrorist attack.
Investors understood that the defense and security industry would be favored in the
new politico-economic era, but nobody knew what public institutions and private
investors were willing to invest to fight the new threat. As the investors’ interest
shifted toward this industry, stock prices should have mirrored this change, and a
price surge should have been witnessed. However, because of the high uncertainty
of future prospects stock prices changed only slowly in the security and defense
industry. Evidence tends to support that gradual movements in industries and in the
returns of industry portfolios are frequent and believed to be normal by investors.®”
Similarly, yet less terrorizing, catastrophic weather conditions in Asia can impact
delivery of semi-conductors to IT firms as witnessed in 2004 and 2009, which in
turn slows down sales of the firms, and the IT industry does not perform as well as
expected. Less investors are then interested in IT stocks whose prices fall across the
world since many IT companies have outsourced a significant part of their supply
chain to Asia.

The gradual effect is of importance because it may be taken advantage of, even
though no absolute information is required or necessary. Abnormal profits can be
generated based on historical data. This is in clear contradiction with the efficient
market hypothesis, given that the drift takes on average several months to cool
down or to revert. The following evidence of momentum is presented in three parts,
namely for cross-industry momentum level, industry level and stock level relative
to its industry.

Cross-industry momentum defines a relative price strength of certain industries
compared to the market, which is typically represented by a benchmark like the
Dow Jones Industrial Average Index, the S&P 500 Index, etc. According to Menzly
and Ozbas, industries related to each other through the supply chain (upstream
or downstream) exhibit strong cross-momentum.”® Trading strategies that consist
of buying industries with large positive returns and selling industries with large

92Singal (2006, p. 78).

93 A company in the upstream part of a supply chain is one of the final customers of the product.
If for instance, Goodyear, which produces tires for the car industry, is the upstream company, then
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Fig. 3.4 Performance of upstream and downstream strategies from 1964 to 2002. Source: Menzly
and Ozbas (2004, p. 28)

negative returns over the previous month yield significant profits.”* As a matter
of fact, a zero-investment strategy consisting in buying cross-industry winners and
short selling losers should in theory provide abnormal returns, but the study does
not take into account trading costs and other related costs.

Figure 3.4 represents the performance of upstream and downstream strategies
from 1964 to 2002 in the context of a cross-industry momentum measurement
attempt. An upstream strategy means buying a top performer industry and industries
to which it sells its raw material or components. A downstream strategy buys a
top performer industry and its suppliers. To build this figure, the researchers first
ranked industries into five categories, from top performers to poor performers so
that there is exactly the same number of stocks in each category. Performance was
estimated from the past 1-month period. An equally-weighted and a value-weighted
(using industry market capitalization) portfolio were built that bought industries in
the highest category and sold industries in the lowest category.

As one can see, the cumulated abnormal returns differ depending on the strategy.
They follow a steady path, but the returns are fairly low. Figure 3.5 has a focus on

the corporation owning the trees which supply the raw material would be a downstream company
in the supply chain. See Menzly and Ozbas (2004).

%Menzly and Ozbas (2004, p. 9).
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Fig. 3.5 Cross-industry momentum beyond the first month. Source: Menzly and Ozbas (2004,
p.27)

the behavior of the cross-industry momentum after implementing the strategy. The
implementation date and abnormal return are visible at the junction of the vertical
and horizontal line, respectively. While the cumulative return still appears low, the
mountain shape of the return is of great interest. Preceding the implementation date
of the strategy, a price increase is fairly noticeable. In the long term, an inverted
U shape seems to appear, regardless of the employed strategy. This is typical of
momentum, be it for a stock, an industry or a cross-industry portfolio. The abnormal
return of the equally-weighted strategy reaches 6.8 % per year, against 6.5 % of the
value-weighted strategy. Hence, the Sharpe ratio of the equally-weighted strategy is
significantly better than that of the value-weighted strategy: 0.852 versus 0.573.%

On the industry momentum level, Moskowitz and Grinblatt conducted a very
important research in 1999.% They implemented a strategy of buying the winners of
previous periods and selling the losers and found a very strong prevalent momentum
effect in industry component stock returns which accounts for a significant part
of the stock momentum anomaly. After canceling the industry’s momentum, the
strategy earns a significantly less profitable return. This is, however, in contradiction
with Grundy and Martin who report that neither industry effects nor cross-
sectional differences in expected returns are the primary cause of the momentum
phenomenon,”” but rather time varying factor models.

9Menzly and Ozbas (2004, p. 12).
9Moskowitz and Grinblatt (1999).
97Grundy and Martin (2001, pp. 1, 22 and 31).
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Nevertheless, Moskowitz and Grinblatt add that their strategy, i.e., exploiting
industry momentum, is highly profitable even after controlling for size, book-
to-market equity, individual stock momentum, the cross-sectional dispersion in
mean returns, and potential micro-structure influences.”® In other words, even after
suppressing a possible size effect, a surprise earnings effect, an abnormal correlation
in returns or industry-specific developments, this strategy seems to be interesting.
But what abnormal return can an investor expect compared to a benchmark? How
long should the portfolio be invested? O’Neal declares that according to latest
academic research, the momentum present in U.S. stock returns is, to a large extent,
a result of industry momentum if and only if the investment horizon is between 3
and 12 months.”” He confirms that during this time span, a strong (weak) industry
performance is followed by a continuously strong (weak) industry performance. In
practice, he bought and held for 6 months top-performing sector funds based on
their previous 6-month performance from May 1989 to April 1999.!%° Each fund
was invested in a particular industry. This strategy outperformed the S&P 500 and
generated a 12 % abnormal return per year according to the paper. Chan, Jegadeesh
and Lakonishok found equivalent results for the periods 1973-1993 and 1994—
1998.101

Jegadeesh and Titman found similar results at the stock level compared to the
industry.'%? Purchasing stocks that have performed well in the past and selling stocks
that have performed poorly generates significant positive returns over a holding
period of 3-12 months. More interestingly, according to the researchers, these
abnormal returns are not due to systematic risk or to delayed reactions to common
factors (for example, earnings announcements, liquidity risk, etc.). Another very
important point is that part of the abnormal returns generated in the first year after
the portfolio formation disappears in the following 2 years.

A similar observation is made about the earnings announcements of past winners
and losers. In other words, a holding period of more than 2 years destroys the
momentum anomaly which is possibly initiated by a public information release.
Given that this characteristic is shared by all industries, it seems unwise to keep
the investment for more than 2 years if the investors wish to take advantage of the
stock’s momentum. A buy and hold over 6 months generates a compounded interest
of 12.01 % per year on average.'”> Such an outperformance does not seem to be
the result of systematic risk taking.'® Jegadeesh and Titman underline, however,
that this lag is consistent with a delayed price reaction to firm-specific information.

9Moskowitz and Grinblatt (1999).

90’ Neal (2000, p. 37).

100’ Neal (2000, p. 37).

101Chan, Jegadeesh, and Lakonishok (1999).
102Jegadeesh and Titman (1993).
1037egadeesh and Titman (1993, p. 89).
104Jegadeesh and Titman (1993, p. 89).
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Fig. 3.6 Annualized returns of S&P 500 versus above and below average sectors based on 5-week
and 15-week estimation period from 1997 to 2001. Source: Singal (2006, p. 99)

This effect seems to disappear on the industry level according to Moskowitz and
Grinblatt’s report.'?®

Figure 3.6 represents research results for the period from 1997 to 2001. Top
performers are compared to poor performers and a benchmark, the S&P 500 Index,
based on their respective performance in a 5- and 15-week estimation period,
respectively. Returns are annualized.

Hence, top performers effectively outperform by approximately 9% for a
5-week estimation period followed by a 5-week holding period. This abnormal
performance jumps to 13 % above the index in case of a 15-week estimation period
followed by a 5-week holding period. Based on equivalent periods, poor performers
underperform the index by respectively 6 and 8 %. Apparently, a trading strategy
can effectively generate abnormal profits. However, evidence which shows a risk-
adjusted overperformance on the cross-industry and industry level seems to be
related to additional systematic risk on the stock level. The momentum effect reveals
different properties depending on the subject of study (cross-industry, intra-industry,
etc.). Yet, no explanation has been provided to date to understand the industry
momentum, whatever the level.

3.7.3 Explanations

There are many reasons that could lead to momentum in a stock, an industry or even
an index. Possible explanations include:

* Irrationality of the agents
* Lead lags in information dissemination
* Herding behavior

105Moskowitz and Grinblatt (1999).
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* Market friction and information uncertainty
* Dividend growth rate variations through time

3.7.3.1 Irrationality of the Agents

The first hypothesis explaining industry or stock momentum is the irrationality
of the agents. According to this explanation, investors are reluctant to change
their beliefs quickly in the short term, even in the face of convincing information.
Every investor, at some point in time, believes that the information he holds is of
superior quality. This may lead to overconfidence as will be discussed in more detail
in Sect.5.3.5, which deals with behavioral finance biases. This overconfidence is
progressively undermined by price movements, which do not necessarily follow the
expected direction. As more information becomes impounded in prices partially and
gradually over time, a price drift is observed through days, weeks or months.'% In
the long term, however, a feedback effect occurs and investors who did not close
their losing positions, sell massively, leading to overreactions. So according to this
hypothesis, the combination of underreaction (due to the overconfidence of a set
of agents) and overreaction leads to momentum. A slow upward price drift should
thus be witnessed. For example, investors were well aware about the overvaluation
of the Internet stocks in the 2000s, but they still tried to surf on the upward price
movement wave. %’

3.7.3.2 Lead Lags in Information Dissemination

The second hypothesis is about lead lags in information dissemination. Large firms
or hot industries, like the Internet firms in the 2000s, tend to be in the focus of a large
number of analysts, while smaller firms have less visibility. The extent of coverage
affects the frequency with which stocks are reviewed. The stocks of large firms or
hot industries are reviewed early, which increases the availability of information.
Smaller stocks or neglected industries are reviewed later which delays the impact
of information on the price.'”® This point, while being controversial, underlines
that information dissemination is not immediate. In order to capture the effect of
information dissemination, Hong and Stein designed a model with news watchers
on a side and momentum traders on the other.'” Each news watcher observes
some private information, but fails to extract other news watchers’ information from
prices. If information diffuses gradually across the population, prices underreact in
the short run. The underreaction means that the momentum traders can profit by
trend chasing. However, if they can only implement simple (i.e., single variable)
strategies, their attempts at arbitrage must inevitably lead to overreaction in the long
run.'1?

106\Menzly and Ozbas (2004) and Holden and Subrahmanyam (2002).
107Singal (2006, p. 83).

108Gingal (2006, p. 83).

1Hong and Stein (1999).

"9Hong and Stein (1999, p. 2143).
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Real estate investment trusts (REITs)!!'! provide a good setting to examine this
hypothesis because the industry experienced structural changes beginning in the
1990s in the U.S. Chui, Titman and Wei tested predictions that are related to investor
overconfidence and the speed of information diffusion.'!?

If overconfidence is the reason for industry momentum, a stronger momentum
effect in REITs should have occurred in the post-1990 period compared to the
pre-1990 period due to a higher valuation uncertainty in the post-1990 period.
On the other hand, if the speed of information diffusion is the key factor, then
the momentum effect in REITs should have been stronger in the pre-1990 period
than in the post-1990 period due to the higher speed of information diffusion in the
post-1990 period. The report established that the evidence tends to support the first
prediction. Specifically, while no momentum effect occurred in REITSs during the
pre-1990 period, a strong and prevalent momentum effect in REITs became visible
during the post-1990 period.''® Therefore, in the case of REITs, the hypothesis does
not seem to hold true and is less plausible than the irrationality of the agents.

3.7.3.3 Herding Behavior
A third hypothesis concerns herding behavior. Herding is a behavioral finance
concept that will be explained later in detail. In short, it means that if the market
develops a trend, an individual investor is more likely to irrationally follow it.
This may happen even if the investor possesses high quality factual information
and is fully aware of his mistake. According to Singal, sell-side equity analysts''*
at times have a tendency to herd towards the consensus estimate when making
their quarterly earnings forecasts.''> Gao argues that such a herding tendency
leads to the inefficient aggregation of private information and consequently to
the price momentum in stocks.''® According to his analysis, the price momentum
phenomenon presented by Jegadeesh and Titman occurs only during periods when
analysts who follow the concerned stocks herd together.'!”

The herding tendency is stronger for smaller stocks, growth stocks, and stocks
with higher share turnover ratio and more news media coverage.''® Finally, Gao
states that these findings are distinct from earnings momentum effects, information

1T A real estate investment trust is a security that sells like a stock on the major exchanges and
invests in real estate directly, either through properties or mortgages. REITSs receive special tax
considerations and typically offer investors high yields, as well as a highly liquid method of
investing in real estate.

"2Daniel, Hirshleifer, and Subrahmanyam (1998, p. 363) and Hong and Stein (1999).
113Chui, Titman, and Wei (2003).

114Sell-side analysts analyze a small amount of stocks in a specific industry and try to sell their
report stating a given expected return in the upcoming period.

13Singal (2006, p. 83).

116Gao (2006).

7Jegadeesh and Titman (1993, p. 90).
118Jegadeesh and Titman (1993, p. 65).
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uncertainty effects and liquidity risk. Grinblatt, Titman, and Wermers (1995) seem
to support his report: their research proves that 77 % of mutual funds were held by
momentum investors who exhibit herding behavior.'"”

The difference from the previous topic is subtle. Lead lags in information
dissemination refer to the timing of information releases, in particular to the release
of timely, independent high quality information from financial analysts which may
have the effect to promote hot stocks. Herding behavior occurs, when investors
count on each other’s beliefs. Depending on the belief mix, they adjust their
recommendations, but the quality of the information is not at stake. In the case
of an asymmetry between the value of the information and the perception of the
information, a momentum effect appears. If many fund managers bought a stock
which performs poorly, their performance will be less harshly judged since they
followed the crowd, and most investors believed that the stock would rise. Therefore,
when a few institutional managers begin to buy a particular stock, other managers
may feel safe in buying the same stock, which results in momentum. The herding
explanation matches with empirical observations and the analysis of the REITs
case.!??

3.7.3.4 Market Friction

The fourth hypothesis is market friction. Financial assets are known to reflect all
historical market data, but also future expectations discounted at an appropriate rate.
The price of real goods, like corn or house prices, reacts more sluggishly under a
price movement perspective. This lag between financial markets and the real goods’
market creates market friction and is the origin of momentum in a given industry.'?!

The oil market has a futures market. Futures on oil are financial products that
derive their price and performance from crude oil. In general, commodity futures
reflect the expectations on the underlying good.

For example, when the crude oil spot price (actual price) is stated on the physical
market and if the futures oil price on this specific crude oil category is higher, an
investor can fairly accurately estimate the demand and offer for oil for a specific
time horizon. It is important to note that not all futures markets behave in the same
way. For some asset classes, futures prices trade higher than spot prices and are
said to move in contango, while for other asset classes, they trade lower than spot
prices and are said to move in backwardation. If there are no benefits in holding an
asset, the market will move in contango. If there are benefits in holding the asset,
the market will move in backwardation.

As a result, the existence of a futures market should diminish the uncertainty
on physical markets and the available evidence seems to confirm this.'?> Forecasts
are easier, more accurate, and can be retraced on a curve. However, while there

"9Grinblatt, Titman, and Wermers (1995, pp. 1088 and 1093).
120This paragraph was based on Chui et al. (2003).

121Singal (2006, p. 87).

122Feder, Just, and Schmitz (1980).
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Table 3.4 Returns of FSDAX S&P 500

Fidelity’s sector fund for the Month return (in %) | return (in %)
defense industry (ticker:

FSDAX) versus the S&P 500 October 2001 3.6 1.9
return from October 2001 to November 2001 3.8 17
June 2002 December 2001 4.1 0.9
January 2002 5.8 —1.6
February 2002 2.3 —1.9
March 2002 4.6 3.8
April 2002 2.0 —6.1
May 2002 0.7 —0.7
June 2002 3.0 7.1
Total: 23.9 —-3.0

Source: Singal (2006, p. 84)

are futures markets for oil or corn, they do not exist for some products classes or
industries, for example, semi-conductors. Without a futures market a proper forecast
for this industry can only be based on a thorough analysis, but an analyst would at
best be able to generate scattered estimates on a given time horizon and not a curve.
Under these circumstances, mathematical tools do not offer much help for the trend
estimation process.

A simple case study should be sufficient to test the market friction hypothesis.
The terrorist attack of September 11, 2001, was a positive signal for defense and
security firms and for the likely rise of their stock prices. Table 3.4 retraces the
returns of Fidelity’s sector fund for the defense industry versus the S&P 500 return
from October 2001 to June 2002.

If the market friction hypothesis holds true, two developments should take place.
First, the stock prices of defense and security industry as a whole should outperform
the market. Second, given that there is no specific futures market, a drift due to future
sales of defense products should progressively impact the industry, followed by a
necessary downward correction. Table 3.4 shows that from October 2001 to June
2002, the defense and security sector outperforms the benchmark by 26 %. In June
2002, a correction seems to appear in the sample. In this case, the market friction
hypothesis matches the observations. However, this hypothesis is event-driven. It
does not account for investor fads and cyclical asset allocations witnessed on the
market. Neither does it explain properly the abnormal returns generated from buying
top-ranked companies and selling poor performers.

3.7.3.5 Dividend Growth Rate Variations Through Time

A last rational explanation arises from the dividend growth rate variations through
time. According to this hypothesis, the momentum effect does not need to imply
investor irrationality, heterogeneous information, or market frictions. Johnson
proposes a simple, single firm model with a standard pricing kernel which can
produce a short-term underreaction when the expected dividend growth rates vary
over time. An enhanced model, where persistent growth rate shocks occur as
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illustrated in Table 3.4, matches many of the features documented by the empirical
research. According to Johnson, the same basic mechanism potentially accounts for
underreaction anomalies in general.'?® This is in line with Grundy and Martin’s
report, which presents a ranking system similar to previous research results.'?*
They argue that buying recent winners and shorting recent losers guarantees the
returns connected to common risk factors, while protecting investments from those
time-varying risk factors during the ranking period. Adjusted for this dynamic
risk exposure, momentum profits were remarkably stable across the subperiods
of the entire post-1926 era. While factor models can explain 95 % of the positive
and negative return variability, this hypothesis cannot explain the mean return
component of the industry momentum.'?® In this case, it is not the economic
uncertainty that drives the underreaction process, but corporate managers who chose
to re-evaluate the dividends.

To sum up, there is no consensus about the reasons underlying the momentum
effect, whatever the chosen level. On the industry level at least, it seems highly
probable that its emergence is related to herding behavior. Given that this explana-
tion is less mathematical than a dividend yield or a short-term price drift, and given
that empirical skepticism about the industry momentum persists despite numerous
evidences, further research on the topic might be required to unveil the proper
reasons for this effect.

3.7.4 Persistence

Being cross-sectional, industry-only or related to single stocks, the momentum
effect has persisted remarkably well for decades,'?® i.e., since 1926. But how to
exploit it? A fund that specifically invests in one industry might be the appropriate
tool to generate abnormal profits. Dellva, DeMaskey and Smith tried to test the
selectivity and timing performance of the Fidelity sector mutual funds during
the 1989-1998 time period.'>” They used the S&P 500, the Dow Jones Industry
Group Total Return Indexes, and the Dow Jones Subgroup Total Return Indexes as
benchmarks. Compared to the Dow Jones Industry benchmarks, the results indicate
a positive selectivity and a negative timing ability of many sector fund managers.'?®
In other words, part of the performance is lost through the timing process. Secondly,
regulations oblige the fund manager to keep part of the invested amount in the fund
in cash. The momentum of the industry might not be fully exploited because of

12330hnson (2002).

124Grundy and Martin (2001).

125Grundy and Martin (2001, p. 29).
126Grundy and Martin (2001, pp. 1 and 3).
127Dellva, DeMaskey, and Smith (2001).
128Dellva et al. (2001).
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the inactive amount of money, and that even before trading costs are taken under
consideration.

Furthermore, in 2004, Lesmond, Schill, and Zhou published a test on the
profitability of relative strength or momentum trading strategies (buying past strong
performers and selling past weak performers).'> They found that standard relative
strength strategies require frequent trading in disproportionately high cost securities.
Trading costs are so high that they prevent the execution of profitable strategies.
In the cross-section, the authors found that stocks that generate large momentum
returns are precisely stocks with high trading costs. That is why they conclude
that the magnitude of the abnormal returns associated with these trading strategies
creates an illusion of profit opportunity when, in fact, none exists.

To conclude, the industry momentum supports the concept that abnormal returns
can be generated by buying top performing companies and selling poor performers,
thanks to an apparent lag in price adjustment. The most plausible explanation for
this anomaly is the herding behavior of agents. They prefer to state, compare and
evaluate rather subjectively their private information together with other agents.
The industry momentum persists although no real profit can be generated out of
it. Apparently, stocks that would be the source of abnormal performance appear to
be linked to high trading costs, thus killing the possible profit.

However, some limitations have to be added. In 2007, the subprime crisis
launched a wave of risk management and investment process re-engineering, which
could have altered the structure of the market sufficiently to modify the existence
or the nature of momentum. But as of summer 2013, no academic research starting
in 2007 or later regarding the momentum effect could be found to clarify possible
changes in the characteristics of market, cross-industry or intra-industry momentum.

3.8 Home Bias and International Investing

The home bias is a puzzle for academics. According to MPT, an optimal portfolio
should consist of a large number of assets which should include both domestic
and foreign stocks. However, empirical research tends to show that investors hold
a substantially larger proportion of their wealth portfolios in domestic assets,
a phenomenon called equity home bias."** Evidence supporting the anomaly
lead Tesar and Werner to find that existing explanations to the home equity bias
are unsatisfactory and to conclude that the issue poses a challenge for portfolio
theory.!?!

129 esmond, Schill, and Zhou (2004).
130Lewis (1999).
131 Tesar and Werner (1995).
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3.8.1 Description

From all anomalies reviewed until now, the home bias does not specifically defy
the efficient market hypothesis but instead the capital asset pricing model itself.
The home bias is an anomaly with regard to the model and describes the abnormal
overweight in domestic assets in the portfolio asset allocation process compared to
what should be observed in the quest of diversification. It shows that if an investor
had better diversified his portfolio with stocks of companies traded on foreign
exchanges, he would have realized a higher risk-adjusted performance.

3.8.2 Evidence of the Advantages of International Investing

The first evident characteristic when an observer looks at home bias figures is how
strong this bias is. In 1991, French and Poterba analyzed and constructed estimates
of the international equity portfolio holdings of investors in Britain, Japan and the
United States.'*> More than 82 % of the equity portfolio of British investors was
held domestically; for Japan and the United States, the figure increased to 94 and
98 %, respectively.'3* In 2001, Jeske provided similar results as depicted in Fig. 3.7.
The figure plots the percentage of domestic stocks in equity portfolios and the world
market share of the domestic market of eleven industrialized countries in 2000.'3*
The home bias of the United States and most of European developed countries in
2013 is shown in Table 3.5.

All countries appear heavily biased toward holding more of their domestic equity
than foreign assets. Great Britain is estimated to have portfolios where domestic
assets represent 78 % of the total value. Japan keeps a top score with 92 %. The U.S.
still has one of the highest domestic shares of about 89 %. The other countries of the
study almost reach or narrowly exceed the 80 % mark.

Lintner asserts that in theory, a well-balanced portfolio which attempts to reach
the highest risk-adjusted return on an optimal portfolio should include assets
from different countries with identical proportions.'*> This assertion, together with
market clearing,'3® implies that each country should hold a portfolio where the
proportion of domestic assets equals the share of these assets in world market
capitalization.

132French and Poterba (1991).

133French and Poterba (1991, p- 223).

134The home share was computed using market capitalization data from the International Federa-
tion of Stock Exchanges (FIBV), and the international investment positions were provided by the
International Monetary Fund (IMF). See Jeske (2001, p. 33).

35Lintner (1965, p. 13).

136 A market clearing price is the price of a good or service at which the quantity supplied is equal
to the quantity demanded. It is sometimes referred to as equilibrium price.
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Fig. 3.7 Domestic stocks and their relative market capital allocations in 2000. Source: Jeske
(2001, chart 1, p. 33)

Table 3.5 Estimates of home bias (in %) in 2012

Investment in

Country Market capitalization as % of world | domestic stocks Home bias
Australia 2.66 88 > 85
Canada 4.23 88 > 85
China 7.52 88 > 85
France 3.48 83 > 75
Germany 2.63 80 > 70
Italy 0.96 93 > 90
Japan 7.85 91 > 75
Netherlands 1.32 75 > 70
Spain 2.29 95 > 90
Sweden 1.04 72 > 65
United Kingdom 2.67 78 > 65
United States 34.69 90 > 40

Source: Own, based on The World Bank Data as of March 2013. See World Bank (2013)

Accordingly, an investor who follows Lintner’s requirements should balance his
portfolio with 7.85 % of Japanese stocks and 34.69 % of U.S. stocks, because Japan
and the U.S. have this weight in world market capitalization, respectively, according
to the World Bank. But the data provided by the World Bank is an estimate of
the relative country capitalization compared to the world’s total capitalized wealth.
Using the MSCI equity index scheme would lead to very different results, especially
in the domestic versus emerging markets differentiation.

A second property of the home bias is also related to the domestic market of the
investors. French and Poterba developed a simple model of investor preferences and
behavior to show that current portfolio patterns imply that investors in each nation
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expect returns in their domestic equity market to be several hundred basis points
higher than returns in other markets.'>” Empirical observations seem to confirm
their conclusions.

Jeske conducted a large scale research on the 1991-2000 period.'?® In the U.S.,
the home bias is almost 150 basis points per year, by far the lowest among all
industrialized nations. Australia, Canada, and most European countries display a
home bias of between 200 and 500 basis points. The situation gets worse for Italy,
Japan, Sweden and Spain: Annual costs are in the range of 700—1,500 basis points.
This lack of diversification appears to be the result of investor choices, rather than of
institutional constraints.'3° Still, the creation of the European Union and its common
currency seems to diminish this spread.

On the investor side, the available research seems to confirm that the behavior of
market agents is at least partially responsible for the home bias. The bias might be
connected to the reluctance of decision makers to open their domestic stock markets
to foreign investors because of possible risks for their domestic market. The question
is then: Is there any risk for countries who receive additional attention from foreign
investors from a financial point of view?

Before focusing on the mathematics of portfolio optimization, which seems
to aim at maximizing short-term interests only, let us look at the long-term
consequences following an opening-up of a domestic financial market to foreign
financing. Kim and Singal conducted a research in regard to emerging markets
which opened up their stock exchanges to foreign investment.'*” On a fundamental
level, they find that when emerging economies open their stock exchange, the level
of stock prices tends to rise without an associated increase in volatility. Hence, more
capital becomes available for domestic investment at a lower cost.

The stock markets also appear to become more efficient, which leads to a better
allocation of resources. On a macroeconomic level, the inflow of foreign capital
does not lead to higher inflation or stronger currencies. The volatilities of inflation or
exchange rates do not increase either. Kim and Singal conclude that the experience
of emerging countries who opened their markets to overseas investors has been
largely beneficial for the host countries. They add that if some countries experience
large capital outflows with damaging consequences, the culprits are not the foreign
investors, but rather the futile attempt of policymakers to defy market forces and the
failure of the domestic economies to put the inflowing capital to productive uses.

To sum up, the opening of the market leads to a higher performance on the
stock market without a statistically significant increase in volatility. Inflation and

37French and Poterba (1991).

138Monthly returns are annualized. Nominal returns for countries’ equity markets were taken
from MSCI (http://www.msci.com). Returns were then deflated by countries’ CPI (consumer price
index) data (from International Financial Statistics) and converted into the corresponding country’s
home currency. See Jeske (2001).

139French and Poterba (1991).

149Kim and Singal (1997).
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currency are not significantly changed either. These developments are even more
positive if investment decisions are taken under a longer historical perspective.'*!
In the opinion of Kim and Singal, subsequent crashes are caused by the mistakes of
policymakers after their loss of power in favor of financial markets. It is important
to note, however, that if the money inflows would occur suddenly and on a massive
scale the results of the study might differ significantly.

Sarkar and Li identified a complementary characteristic to foreign investing.
They examined the international diversification benefits when short selling is not
allowed.'*” The benefits remain substantial for U.S. equity investors when they
are prohibited from short selling in emerging markets. In contrast, the benefits
of investing in developed countries, that are small on average, disappear if short
selling is not allowed. Sarkar and Li also pointed out another very important
feature. The integration of world equity markets reduces, but does not eliminate,
the diversification benefits of investing in emerging markets subject to short-
sale constraints. In technical terms, the correlation between international markets
increases.!*?

Then what are the benefits for investors to invest in developing or developed
countries? In the late 1980s and early 1990s, the emerging stock markets witnessed
high rates of economic growth combined with stock market liberalization. In
1993, for example, the composite return of emerging markets (measured in U.S.
dollars) was no less than 68 %,'** which compares very favorably to the S&P
500 performance of still respectable 10 %. However, such high returns are highly
volatile. Emerging markets show much more volatile features than developed
markets. For instance, the Brazilian stock market fell 63 % in 1987, rose 126 %
in 1988, fell 66 % in 1990, and rose 170 % in 1991. The Turkish stock market fell
61 % in 1988, rose 502 % in 1989, fell 42 % in 1991, fell 53 % in 1992, and rose
234 % in 1993. All returns are expressed in U.S. dollars.'*> Let us now look at the
annual stock returns broken down by region which are shown in Table 3.6.

From year to year one region performed better than the other. Table 3.6 shows
5 years of impressive market returns in the U.S. Nobody could predict that in
the following years investments in any other country were a better choice. While
investing in emerging markets was a good choice in 1991-1993 with successive
performances of 62.6, 12.1, 76.5 %, EAFA (Europe, Australia and the Far East)
was more rewarding during the next 3 years. The objective regarding this table
would be to identify a significant part of top performers while diminishing risk.
As seen in Sect. 1.5, a basket of two shares has a volatility which comprises the
volatility of the two shares, their weights and their correlation. Let us assume the
first share is a domestic index, and the second share is a foreign index. In this case,

141Kim and Singal (1997).

142Sarkar and Li (2002).

143Sarkar and Li (2002, p. 3).

144International Finance Corporation (1997, p. 55).

145 All the figures presented are extracted from International Finance Corporation (1997, p. 55).
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Table 3.6 Annual stock returns by region from 1988 to 2002 (in %)

Europe,
Australia and | Emerging | All countries All
the Far East markets except the U.S. | countries
Year S&P 500 | (EAFE) (EMF) (AC-ex-U.S.) (AC)
1988 17.1 30.0 41.8 30.1 24.7
1989 32.5 12.3 712 13.0 18.7
1990 —1.6 —19.9 —6.8 —19.8 —14.5
1991 31.9 14.2 62.6 15.7 21.2
1992 7.9 —11.0 12.1 —10.1 -3.9
1993 10.3 34.8 76.5 36.9 25.6
1994 1.8 8.9 —5.5 7.9 5.7
1995 37.7 12.4 —4.1 10.4 19.9
1996 23.6 6.6 6.7 6.1 13.5
1997 34.9 33 —8.9 3.1 16.1
1998 31.4 22.4 —18.8 17.6 18.8
1999 22.0 28.3 70.5 31.4 33.8
2000 —7.9 —13.2 —29.7 —15.2 —13.1
2001 —10.2 —20.1 2.0 —18.2 —14.5
2002 —27.0 —15.4 —5.1 —14.5 —21.8
Average annual return 13.6 6.2 17.6 6.3 8.7

Source: Singal (2006, Table 10.2, p. 237)

the diversification process in each country should have already taken effect. Hence,
the domestic investor can only improve on two issues to reach a higher return: the
volatility of the foreign index and the correlation between his domestic market and
the foreign market. The first can be shrunk thanks to hedging strategies, the latter
can be diminished by choosing a foreign index which has a very low correlation
with the domestic one. Ideally, a correlation close to zero would lead to a minimum
performance loss.

In 1999, Clarke and Tullis looked at the impact of foreign investment exposure
on the return and risk of a U.S.-based investment portfolio, based on the relative
returns, the currency forward premium and the currency return (and exposure).'46
They developed a framework for analyzing the optimal foreign asset exposure, and
modeled a simple portfolio, with a fixed exposure to foreign assets. To test each
component, they used performance data from the Morgan Stanley Europe, Australia
and Far East Index from 1991 to 1997 to create the 36-month volatility of hedged
and unhedged to currency returns against a diversification threshold, returns and
cumulative returns.

146Clarke and Tullis (1999).
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Table 3.7 Optimal portfolios for different periods

U.S. U.S. Portfolio Portfolio Optimal Optimal

portfolio portfolio allocation | allocation Portfolio portfolio
Period return (in %) | risk (in %) | U.S. (in %) | EAFE (in %) | return (in %) | risk (in %)
1970-2000 | 12.70 15.30 100 0 19.60 18.60
1970-2000 | 12.70 15.30 70 30 13.00 14.00
1971-1998 | 13.40 15.30 13.50 14.30
1980-1992 | 17.20 15.80 41 59 20.00 14.50
1971-1988 | 9.90 16.20 13.90 14.50
1971-1988 | 9.90 16.20 100 18.20 17.50

Source: Singal (2006, Table 10.4, p. 240)

The results show that hedging reduces the volatility of international assets.
However, there is more stability in the relative risk (volatility) between markets
than between the relative returns. Given that volatility is relatively stable, Clarke
and Tullis applied a minimum-variance allocation and analyzed long-run trade-offs
between risk and return. Since the equation is fairly easy to compute, the empirical
results allow for the inclusion of parameters, i.e., weights and variables can be
included in the equation. Clarke and Tullis concluded that a 20-30 % allocation to
foreign equity would increase the performance, subject, for example, to whether the
forward currency premium is positive or negative. Simply speaking, with 20-30 %
of the portfolio dedicated to foreign markets, one can optimally minimize volatilities
and achieve maximum returns. !4’

Table 3.7 retraces an optimal portfolio for different periods. This portfolio is
a world portfolio containing EAFE'*® and U.S. assets. The optimal weights for
the optimal portfolio construction are based on previous research results.'*’ The
performance and risk of the optimal portfolio is shown in the last two columns.

In the first two lines we oppose a diversified versus a non-diversified worldwide
portfolio for a long period. The U.S. portfolio has a 12.70 % return and a 15.30 %
volatility during the period 1970-2000. The optimal portfolio shows a higher return
and a higher volatility, namely 19.60 and 18.60 %, respectively. If the investor
implements the recommendations of Clarke and Tullis, he will optimize his portfolio
with a 30 % weight of EAFE stocks, and ends up on the second line of Table 3.7.

Let us now consider the subperiod 1971-1998 which is a special case. During
this subperiod, investing in the U.S. yielded nearly the same return as investing in a
world portfolio (13.40 versus 13.50 %), but at a higher risk (15.30 versus 14.30 %).
Global investing necessarily leads to lower risk characterized by a 1 % volatility
diminution.

147Clarke and Tullis (1999, p- 33).

148The acronym EAFE stands for Europe, Australasia (Australia and New Zealand), and the Far
East.

149Singal (2006, p. 239).
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The subperiod of 1980-1992 in the fourth line is another special case. The
annual return is outstanding compared to the 30 years average, namely 17.20 versus
12.70 %. However, even with such impressive returns, the diversification process
with a large proportion of EAFE countries (59 % of the portfolio total weight) brings
an additional 2.80 % return while reducing the risk from 15.80 to 14.50 %. Please
note that starting from 1992 market returns were much lower.

The last two lines show a U.S. stock market average return of 9.90 % for the
1971-1988 subperiod versus a 12.70 % return for the longer period spanning from
1970 to 2000. Until 1988, investors might have been interested in investing all their
funds outside of the U.S., but doing so was not appropriate: a nearly doubled return
of 18.20 % came at the cost of higher risk, i.e., 17.50 versus 16.20 %.

To sum up, one benefits from diversification when returns are lower than the
world average thanks to a lower risk exposure. For the same reason, the investor
also takes advantage of foreign investing in the event of equivalent returns for both
the domestic and the world market. If returns are high on the domestic market, an
even higher return at lower risk can be generated by diversification. Not diversifying
under poor domestic conditions can be more risky and less profitable as illustrated
in the fifth line of Table 3.7. Finally, investing all funds in a foreign country in
the event of high domestic risk and low domestic returns is not necessarily positive.
Higher returns could be generated outside of the domestic market, but at the expense
of higher risk. Generally, it seems always appropriate for a U.S. based investor to
diversify his portfolio at least including stocks from EAFE countries.

As a matter of fact, it seems evident to rational U.S. investors to diversify their
portfolio in foreign countries, assuming their decision process is solely based on
the return/variance framework stated by the capital asset pricing model. Similar
patterns emerge for investors outside of the U.S. One major reason lies in the fact
that the market capitalization of U.S. stocks represents approximately a third of
world capitalization as of year 2013 and is by itself very diversified domestically
compared to France, Germany or the U.K. For an investor with less diversified
funds, the benefits of international investing are then necessarily at least similar or
higher. However, the home bias, i.e., the abnormal domestic investment relative to an
optimal investor portfolio, persists. What can explain such an intriguing anomaly?

3.8.3 Explanations

Many explanations have been proposed to explain home bias. A very large literature
supports many hypotheses and explains how they are linked to agents or market
structures. The major explanations are:

* Adverse selection problem: a geographic or familiarity preference
* Shadow costs

* Information costs

* Foreign inflation issues
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* Optimistic or certain expectations about the domestic market
* [Irrational agent behavior

3.8.3.1 Adverse Selection Problem

The adverse selection problem' arises when an investor faces an issue of infor-
mation asymmetry, typically found with small firms with little public coverage.
According to this hypothesis, investors prefer to choose companies geographically
near to them, believing they have a better access to information. Hence, proximity
would become a means to overcome an information deficit. In 1999, Coval and
Moskowitz documented a strong bias in favor of domestic securities in international
investment portfolios.'>! They show that the preference for investing close to home
also applies to portfolios of domestic stocks. In particular, U.S. investment managers
exhibit a strong preference for locally headquartered firms, particularly small, highly
levered firms that produce non-traded goods. The empirical evidence suggests that
the information asymmetry between local and non-local investors may drive the
preference for geographically proximate investments.

A second explanation of the adverse selection problem refers to the familiarity
of investors with domestic shares. As previously said, Coval and Moskowitz show
that even in a domestic environment, professionals tend to buy geographically local
stocks.'>?> Huberman adds that investors have the general tendency to concentrate
their portfolio on shares they are familiar with.">® This attitude leads to very
undiversified portfolios: shares of firms which are geographically close to their
investors are overrepresented. To support this hypothesis, Huberman shows that
shareholders of a Regional Bell Operating Company (RBOC) tend to live in the
area which it serves, and that its customers tend to hold its shares rather than an
equity of other RBOCs.'>* While the information asymmetry appears to provide a
plausible explanation, no existing model can account for the whole home bias effect,
nor for its variation across countries.

3.8.3.2 Shadow Costs
The second hypothesis holds that shadow costs prevent investors from diversifying
their portfolio with foreign shares. Let us assume an investor who is U.S. based

150 Adverse selection, anti-selection or negative selection is a term used in economics. It refers
to a market process in which undesired results occur when buyers and sellers have asymmetric
information (access to different information); the bad products or services are more likely to be
selected.

151Coval and Moskowitz (1999).

152Coval and Moskowitz (1999).

1533 Huberman (2001).

154Regional Bell Operating Companies (RBOC) are the result of what is called United States v.
AT & T, the U.S. Department of Justice antitrust suit against the former American Telephone &
Telegraph Company (later known as AT&T Corp.). On January 8, 1982, AT&T Corp. settled the

suit and agreed to divest its local exchange service operating companies. Many local firms emerged
from the AT&T split into regional companies.
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and wishes to invest in Toyota on the Tokyo Stock Exchange. He might be stunned
by the trading costs, which are much higher than for domestic stocks and he may
look for other solutions, namely mutual funds,'> ADRs (American Depository
Receipts),'® iShares'>” or U.S.-traded foreign stocks.'>® But the performance of
these investments can also be hampered by high trading costs, like mutual fund
managers’ fees etc. These costs are called shadow costs. Shadow costs are the
perceived annual cost of foreign equity necessary to create a bias away from perfect
international risk sharing and toward domestic equity.'>’

To measure how severe home bias is, Jeske introduced a method of quantifying
it. He uses a simple asset allocation model to determine the shadow costs of foreign
investment. It shows that in most industrialized nations the shadow costs would
have to be unrealistically high to account for home bias. For instance, in the United
States the home bias is almost 150 basis points per year (1.5 %), by far the lowest
among all industrialized nations,'®® while it can climb from 700 to more than 1,500
basis points in countries like Italy, Japan, Sweden or Spain. Therefore, shadow costs
cannot explain home bias.

3.8.3.3 Information Costs

The third hypothesis assumes that information costs are cheaper for domestic assets
than for foreign assets. It would then be irrational to invest in foreign markets:
most of the price appraisal would be offset by the acquisition costs or the delays
of delivery of the new information. Logically, a home bias would be generated.
While this explanation is intuitively plausible, Jeske demonstrates, by using both a

155Mutual funds that invest internationally probably will have higher costs than funds that invest
only in U.S. stocks. They are also liable to investment style risk: although the fund prospectuses
mandate the percentages and limits of where and what to invest in, the latitude can still allow for
some wide variances in style and strategy.

156 An ADR is a registered security issued by a U.S. bank representing shares of a foreign stock.
ADRs trade on U.S. stock exchanges and on the over-the-counter market. The price of an ADR
corresponds to the price of the foreign stock in its home market, with some adjustments.

157iShares are index funds that trade like stocks. They are similar in fashion to ETFs (equity traded

funds). Shares are available for both U.S. and international equity indexes. The key difference
between iShares and mutual fund index funds is that mutual fund trades are executed at the end of
the day (market close). iShares trade throughout the day whenever the market is open.

158 Although in the U.S. markets most foreign stocks trade as ADRs, some foreign stocks trade in
the same form as in their local market. International investing can be more expensive than investing
in U.S. companies. In smaller markets, there may be a premium for purchasing shares of popular
companies. In some countries, there may be unexpected taxes or transaction costs such as fees or
broker commissions. Taxes are often higher than in U.S. markets. Mutual funds that invest abroad
often have higher fees and expenses than funds that invest in U.S. stocks, in part because of the
extra expense of trading in foreign markets.

139eske (2001, p. 31).
160Jeske (2001, pp. 35-36).
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naive model and a rational expectations model, that the theory is unable to account
for observed patterns of home bias. He concludes that home bias is still a puzzle.'®!

3.8.3.4 Foreign Inflation

Foreign inflation issues are a much discussed topic to explain home bias. What
would be the benefits of diversification if the returns on a foreign market sky-rocket
to 65 % with inflation reaching 64 %, while the domestic market shows an average
10 % return for equivalent volatility? Moreover, assuming inflation can be hedged,
what are the benefits of hedging if the cost is higher than the profit? To answer both
questions, Coen developed an international capital asset pricing model and tested it
regarding home bias observed in portfolio choices for nine countries including the
United States, Canada, United Kingdom, Japan, Germany, France, Italy, Spain and
Sweden from March 1981 to December 1994.'%% First he tested whether the hedge
against inflation alone could explain the home bias and showed that this explanation
requires very high levels of risk tolerance and negative correlation between asset
returns and the domestic inflation rate. By definition, investors are risk-averse, and
empirical evidence shows that negative correlation is very seldom. In a second
step Coen improves his model with deadweight costs including inflation.'®3 Using
different levels of risk aversion, he computed the necessary deadweight costs to
explain home bias in late December 1994. Again, the calculated costs are too high
compared to the real costs carried by international investors. Therefore, inflation
issues do not seem to provide an accurate home bias explanation.

3.8.3.5 Optimistic or Certain Expectations About Domestic Markets
Versus Foreign Markets

Another intuitive hypothesis holds that domestic investors hold more optimistic
or certain expectations. Foreign markets are believed to be more risky and less
lucrative. In 1991, French and Poterba provided evidence which supported this
hypothesis.'®* Nine years later, Hasan and Simaan developed a model that incorpo-
rates both the foregone gains from diversification and the informational constraints
of international investing.'® They show that home equity bias is a CAPM parameter
issue, i.e., of return and volatility evaluation. In particular, they prove that the risk
estimations for international markets can be responsible for this phenomenon. If
the expectations of investors about the mean return (currency effect deducted) and
the volatility of domestic and foreign markets exceed the observed values, domestic

161 Jeske (2001, pp. 35-36).
162Cogn (2001).

163Deadweight cost is the extent to which the direct impact of an increase or reduction in tax (or
subsidies) is lessened by its indirect effect. For instance, a corporate tax hike will boost government
revenue but may also cause companies to go broke, which would have a negative impact on
government finances.

164French and Poterba (1991).

165Hasan and Simaan (2000).
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allocation overrules international diversification. To test their hypothesis, French
and Poterba examined the returns on eleven international markets during 25 years
from the perspective of German, Japanese and U.S. investors. Very impressively, the
empirical evidence is consistent with their hypothesis. The key concept underlying
home bias would then appear to be related to volatility and return parameters prior
to investing in foreign markets.

3.8.3.6 Irrational Behavior and the Overconfidence of Market Agents
The sixth hypothesis is related to the irrational behavior of market agents. The
explanation arises from behavioral finance concepts, as overconfidence'® or herd-
ing behavior.'®” Such an attitude, if assumed by a wide set of agents would give
rise to a market anomaly. In the present case of home bias, herding would lead
investors to overweight their portfolios with domestic poor performing stocks
because a majority of investors do it. In 2001, Goetzmann and Kumar tested
this hypothesis.'®® They analyzed the diversification choices of more than 60,000
individual investors at a large U.S. discount brokerage house during a 6-year period
from 1991 to 1996. This study shows that U.S. individual investors, especially
retired people, hold underdiversified portfolios. The level of underdiversification is
greater among younger, low-income, less educated, and less sophisticated investors.
The level of underdiversification is also correlated with investment choices that
are consistent with overconfidence, trend-following behavior (herding), and local
bias (geographical bias). Investors who overweight stocks with higher volatility
and higher skewness (larger extreme event probability) are also less diversified.
In contrast, there is little evidence that portfolio size or transaction costs constrain
diversification. While being appealing, the report of Goetzmann and Kumar does
not explain the magnitude of the home bias, nor its global prevalence. It shows that
poorly educated people who account for a large proportion of the U.S. population
might create the shift toward domestic preference.'®® But given that there is a high
correlation between income and education, their cumulative weight should not have
a strong impact on the market.

3.8.4 Summary

There are currently six popular explanations for home bias, but each one of
them is unable to fully and accurately account for this anomaly. The optimistic

166Qverconfidence arises from the belief that one’s knowledge is of great quality in spite
of conflicting evidence. An in-depth explanation is proposed in Sect.5.3.5 which introduces
behavioral finance in order to explain stock market crashes.

167Herding is an attitude of individuals who follow a trend rather than higher quality information
which they possess in the context of finance for instance. See Sect.5.3.3 for an in-depth
explanation.

168 Goetzmann and Kumar (2001).

169Ryan and Siebens (2012, p. 2).
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expectations about domestic markets compared to foreign markets seem to be
the most rational explanation for the overweight of domestic assets. There is still
controversy about human capital limitations, i.e., the amount invested in stocks is
not large enough to allow for international allocation. For instance, Goetzmann and
Kumar argue that there is little evidence that portfolio size or transaction costs
constrain diversification,'’ while Coen affirms that portfolio size does have an
impact, yet not big enough to justify the bias.'”!

The persistence of home bias is not at stake, given that it cannot be arbitraged.
However, considering the creation of the euro currency and its use in the eurozone,
Schoenmaker and Bosch argue that its effect is shrinking in an uneven way
among European countries.'’”> Generally speaking, the home bias does not bring
abnormal profits, since the systematic attempt to diversify portfolios gives rise
to a higher correlation between foreign markets, thus hampering the international
diversification effect.

3.9 Valueline Enigma

The Value Line enigma is a very interesting anomaly related to stock exchanges. It
is also sometimes referred to as the typical implementation pitfall.

It started when a company called Value Line Investment Survey (below: Value
Line) launched a fund, after it had ranked a majority of U.S. outstanding shares
based on their historical performance. On paper, the strategy generated a return
of more than 33,000 % for the period from 1965 to 2012. However, the fund
did not perform as well as predicted and performed even worse than the Dow
Jones Industrial Average Index.!”> How was this possible? In the following, Value
Line and its infamous Ranking System Timeliness are presented and evidence of
the estimated performance is provided and explained. The section is closed by
discussing the incredible persistence of this anomaly.

3.9.1 Description of Value Line Ranking System Timeliness

Value Line is a company that provides investment services on a large scale of
products and strategies. One of its most famous services is a trade mark called
Ranking System Timeliness (below: Timeliness), which ranks approximately 1,700
stocks relative to each other according to their price performance. This amount
accounts for approximately 90 % of the market capitalization of all stocks traded in
the United States. The objective of this service is to predict stock price movements

10Goetzmann and Kumar (2001).
171Cotn (2001).
1728 choenmaker and Bosch (2008).

1T3http://www.valueline.com/About/Ranking_System.aspx.
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over a 3—6-month period, or 6-12-month period, depending on its version. To
compute the ranking, various criteria are applied. The major ones are the 10-year
trend of relative earnings and prices, recent earnings and price changes, and earnings
surprises. The ranking is computed and published every week.

Stocks are classified into five categories. Category 1 is the highest-ranked
category and includes stocks which are expected to reach the highest expected
returns. Category 5 is at the bottom end of the ranking.'”* Each category is best
described as follows:

¢ Rank 1 (Highest):
These stocks, as a group, are expected to be the best performers relative to the
Value Line universe during the next 6—12 months (100 stocks).

* Rank 2 (Above Average):
These stocks, as a group, are expected to achieve a better-than-average price
performance (300 stocks).

¢ Rank 3 (Average):
These stocks, as a group, are expected to show a price performance in line with
the Value Line universe (approximately 900 stocks).

¢ Rank 4 (Below Average):
These stocks, as a group, are expected to perform below average (approximately
300 stocks).

¢ Rank 5 (Lowest):
These stocks, as a group, are expected to have the poorest performance (100
stocks).

According to the company’s website, changes in the Timeliness ranking can
result from either new earnings reports of company forecasts, or changes in the
price movement of the stock in comparison with the sample’s stocks, or a shift in its
relative position versus other stocks.

3.9.2 Evidence of Outperformance

Let us now look at the performance of the ranking, which is shown in Fig. 3.8. The
figure, which is extracted from the corporate website,'’> represents the cumulative
historical performance of Value Line’s Timeliness from April 16, 1965 to June 28,
2013. Note that this graph is based on weekly stock rankings. Value Line provides
less frequent ranking re-evaluations, while achieving astonishing expected returns.
It is important to recall that the ranking system is based on public information only.

The performance ranges from —99 % to an estimated 40,616 % for June 2013.
The Dow Jones Industrial Average Index is used as a benchmark. Let us recall that

174http://www.valueline.com/About/Ranking_System.aspx.
175hitp://www.valueline.com/About/Ranking_System.aspx.
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Record of Value Line Ranks for Timeliness
Allowing for Changes in Rank Each Week (1965 - 2013)
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Fig. 3.8 Cumulative performance of Value Line’s Timeliness from April 16, 1965 to June 28,
2013. Source: Value Line website at http://www.valueline.com/About/Ranking_System.aspx

the DJIA reached 1,000 points on January 18, 1966, and rose to 14,000 points on
July 16, 2007, creating a maximum wealth multiple of fourteen.'’® On December
30, 1965, the DJIA stood 969.26 points versus 14909.60 on June 28, 2013, i.e., in
this period, an initial investment would have been multiplied by a bit more than
fourteen.'”” An investment in the first rank of Value Line would have multiplied by
more than three hundred. An investment in the stocks of rank 1 and 2 would have
generated a yearly return of 13.3 % over the period.'”® This is far more than the
historical DJIA yearly return of 9.4 %.!7

Unfortunately, only few of the readers of this book could have invested that long
ago. Therefore, Fig. 3.9 is extracted from the corporate website.' It represents the
cumulative historical performance of Timeliness from December 30, 1988 to June
28, 2013.

The performance ranges from 664 to 1,924 % for June 2013, despite two major
financial shocks. A second interesting point in this figure is the addition of the S&P

176 Source: Bloomberg (ticker: INDU:IND).
177 Source: http://www.fedprimerate.com/dow-jones-industrial-average-history-djia.htm.

'78This is the weighting average for rank 1 and 2 stocks, given that there are 100 stocks in rank
1 and 300 stocks in rank 2, we then have to multiple their relative weight by their respective
performance.

179 Source: Own, based on historical data. Large differences are still observed even starting in 1900
or in 1982 until 2013.

18%http://www.valueline.com/About/Ranking_System.aspx.
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Record of Value Line Ranks for Timeliness
Allowing for Changes in Rank Each Week (1989 - 2013)
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Fig. 3.9 Cumulative performance of Value Line’s Timeliness from December 30, 1988 to June
28, 2013. Source: Value Line website at http://www.valueline.com/About/Ranking_System.aspx

500 Index and the DJIA for a direct comparison. For the equivalent period, their
performance was 478 and 588 %, respectively. In other words, the first rank category
of Value Line still presents an outstanding performance, but even the rank 5 stocks
outperform compared to a typical benchmark. As a matter of fact, the impressive
performance of the rating system led many to refer to it as the Value Line enigma.'®!
It is very important, however, that the two figures do not include any trading costs,
neither for the Value Line stocks nor for the benchmark indices.

In 1973, Fischer Black conducted the first large scale test of the Value Line
enigma.'®? In his article, Black admits that he had been a strong believer in the
EMH and passive management. He found that the rank 1 portfolio earned annual
risk-adjusted returns 20 % greater than the rank 5 portfolio. The system did produce
significant excess returns over a 5-year period. According to his report, abnormal
returns would have resulted even after taking 2 % out for round trip transactions
costs, given that the turnover in the ranked stocks was high.

Copeland and Mayers extended Black’s study until 1978.'%3 They found equiv-
alent results, with a 7.07 % return differential between rank 1 and rank 5 firms

181porras and Griswold (2000).
182B]ack and Kaplan (1973).
183Copeland and Mayers (1982).
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for semi-annual portfolios when future benchmarks are computed using a market
model. Stickel also found positive risk-adjusted abnormal positive returns using
Value Line rankings to form trading strategies, thus challenging the EMH.'3*

Based on strong academic support for its strategy, Value Line decided to launch
a mutual fund, the Value Line Centurion fund which invested in rank 1 and rank
2 stocks only (four hundred stocks). However, not only did the real-money fund
not keep pace with the paper returns from the top-rated stocks, which continued
to outperform, but it hardly outperformed the market during its first years of
existence.'®> But over the period from 1979 to 1991, the real Value Line fund had
an annualized return of 16.1 %, which is more than the historical long-term average
DIJIA yearly return of 9.4 %, although it is less than the annualized return of the
Value Line paper portfolio of 26.2 %.'%6 Value Line continues to be one of the
highest ranked newsletters by the Hulbert Financial Digest which does account for
costs.'87

Two questions have to be asked: How is it possible to generate such an abnormal
return compared to passively managed indices (i.e., DJIA, S&P 500, etc.)? How
come the implementation of the ranking system did not produce the expected results
despite a rather conservative approach about trading costs? We will first deal with
the question of abnormal returns.

3.9.3 Possible Explanations for Abnormal Returns

There are currently four hypotheses to explain the overperformance, but none is
really satisfying:

¢ Post-announcement effect

* New information provided by Value Line
¢ Construction scheme of Timeliness

¢ Economic state factors

3.9.3.1 Post-announcement Drift

The first proposed explanation is related to what is called a post-announcement
drift. In other words, the market receives a new positive or negative information,
and the price of the given stocks reacts with a time lag. Since Value Line’s
Timeliness is managed weekly, the outperformance would only be the result of a lag
between the information publication and its short-term inclusion in the stock price.
Affleck-Graves and Mendenhall addressed the issue whether Value Line was able
to predict future stock prices or whether the outperformance of its fund was related

184Stickel (1985).

185Porras and Griswold (2000, p. 39).
1861 einweber (1995, p. 2).

187Porras and Griswold (2000, p. 40).
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to post-announcement drift.'8® According to their research, the abnormal returns
across Value Line Timeliness ranks are no longer significant when post-earnings
announcements are deleted. They also add that Timeliness’ ranks have no predictive
power for firms with small earnings surprises (i.e., unexpected excess earnings
compared to consensus expectations). They assume that the Value Line enigma is a
manifestation of post-earnings-announcement drift. This is in line with Stickel, who
asserts that the price reaction takes place several days later, with a stronger effect
on small firms.'®® However, even though this analysis concurs perfectly with the
efficient market hypothesis, Choi and Peterson found contrary evidence about the
underreaction of agents.'*"

3.9.3.2 New Information Provided by Value Line

The second reason invoked to explain the outstanding paper performance of Value
Line’s Timeliness is information supply. According to this hypothesis, the company
provides additional information that is reflected in the price of its recommended
stocks thanks to their ranking. Since the publication of Copeland and Mayers’s
article, researchers have focused their attention on the market reaction on the
release date of Value Line’s weekly ranking.'”! In 1995, Peterson wanted to know
if abnormal returns are due to pertinent information or post-announcement drift
through an examination of the Stock Highlights section of Value Line.'”> He
concluded that highlighted stocks earned abnormal returns of 2.42% over a 3-
day announcement period.'”> No correlation could be found between abnormal
returns and the time lag between the last earnings announcement and the Value Line
publication. Choi also analyzed the investment advice implied in the Timeliness
rankings from 1965 to 1996. However, to prevent any bias due to earnings surprises,
which Peterson did not, he selected a sample which eliminated post-announcement
drift. According to Choi, Value Line recommendations exhibit a performance
beyond what is predicted by existing models of expected return.'** In 1999, Graham
provided evidence that other investment newsletters view Value Line as the market
leader and respond to its recommendations.'”> Apparently investors believe that
Value Line does provide additional information. However, this seems inconsistent
with the fact that Value Line only uses publicly available information.

188 Affleck-Graves and Mendenhall (1992).

189S ickel (1985, p. 121).

1%Choi (2000) and Peterson (1995).

191Copeland and Mayers (1982).

192peterson (1995).

1937hang, Nguyen, and Le (2010) reaches the same conclusion, see p. 372.
194Choi (2000).

195Porras and Griswold (2000).
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3.9.3.3 Construction Scheme of Timeliness
A third hypothesis is related to how Timeliness is constructed. Bad performers
are simply not included in the model. In 2000, Porras and Griswold re-examined
Copeland and Mayers’s study with former and newly found models since the
1980s.!% Like Copeland and Mayers, they underline that the outperformance is a
result of the abnormal negative performance of firms that Value Line ranks poorly,
not of the positive performance of firms it recommends. This result appears clearly
counter-intuitive. Yet, while a comprehensive explanation should account for each
rank of Timeliness, this observation cannot explain the abnormal returns of rank 1.
A second construction-related issue is about firm size. Previous research has
shown that small firms on the New York Stock Exchange have performed better with
a cumulative return of 20.65 % than large firms with only 1.53 % over 28 years.'"’
Given that in an index of 1,700 shares there is a much higher quantity of small
firms than, for example, in the S&P 500 Index, an upward bias should be expected.
Huberman and Kandel studied the relation between Value Line’s successful record
in predicting relative stock price movements and the firm size effect.!”® The data
suggests little direct relation between the two phenomena. They also remarked that
Value Line tends not to rank stocks of small firms. Even if they are ranked, they
are more likely to receive a low rank than large firms. Stickel further notices that a
downgrade from category 1 to category 2 has the most dramatic price effect. This
effect is negatively increased in the case of a downgrading of a small-sized firm.'*’
As a matter of fact, neither the small firm effect nor the general construction of
Timeliness can explain the outperformance.

3.9.3.4 Macroeconomic Factors

A last and fourth explanation is related to macroeconomic factors. According to this
hypothesis, Value Line was strongly favored by specific economic developments.
For instance, the company could promote firms selling wind turbines when a big
rush on renewable energy was foreseeable. In 1990, Huberman and Kandel proposed
that the outperformance of the rank 1 portfolio was simply a compensation for
holding systematic risk,””® which contradicts Black and Kaplan (1973).2°! What is
more, looking back to Fig. 3.9, rank 1 shares suffered a lot during the subprime crisis
in 2008 and the dotcom crisis beginning 2000. It seems unlikely that Timeliness
has benefited from particular economic trends. Timeliness also seemed to perform
poorly before the bubble burst. Furthermore, the out- or underperformance does not
hold for former crises, for example, the oil price shocks in the 1970s. Why did the

19Porras and Griswold (2000).

197 ustig and Leinbach (1983, p. 46).

198 Huberman and Kandel (1987).

195 ickel (1985, p. 121).

200Huberman and Kandel (1990, p. 187).
201BJack and Kaplan (1973).
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rank 1 stocks still perform better? Such an hypothesis, while being plausible, is
difficult to prove for a long time period.

From all possible explanations, only the new information hypothesis appears
plausible and sufficient to explain the Value Line enigma. Value Line does not
exactly present new information. However, a plausible explanation would be that
it makes available information more visible, based on quantitative and qualitative
results, i.e., the ranking process. This definitely plays a role in the information
spreading process, but the very existence of Value Line proves a significant lag in
the diffusion of information, and as such brings serious harm to the efficient market
hypothesis.

After the at least partial explanation of the abnormal returns of the Value Line
strategy, we can focus on the implementation shortfall.

3.9.4 Possible Explanations for Implementation Shortfall

The term implementation shortfall was coined by Andre Perold who has written
extensively on the subject and how to measure it.”> In the case of the Value Line
enigma, two major reasons seem to be plausible for the implementation shortfall:

* Trading costs and cash disposal
* Victim of its own success

3.9.4.1 Trading Costs and Cash Disposal

The first hypothesis for the implementation shortfall is related to trading costs and
money disposal. Trading costs reduce the potential benefit that could arise from
an information advantage or mispricing. This is very common on stock exchanges
which means that strategies that seem to offer an advantage to investors may not
work under real world conditions because of transaction costs and other costs.”’?
Perold also argued that the larger a portfolio, the harder it is to exploit any
informational advantage. Previously, a most probable explanation of the abnormal
return of Value Line’s Timeliness seemed to be the addition of information. But
given that the portfolio contains no less than 1,700 stocks, the value of additional
information can be strongly diluted or may be neutralized by costs related to taking
advantage of the information, or more simply to obtain this information. Investors
must also account for the bid-ask spread, and mutual funds typically have the added
burden of not being 100 % invested because of the need to maintain cash reserves.
In 2000, Choi, who does recognize model-based abnormal returns, expressed his
doubt about the actual realization of these abnormal returns.?*

2021 einweber (1995, p. 2).
203perold (1988).
204Choi (2000).
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3.9.4.2 Victim of Its Own Success

The second hypothesis refers to the outstanding success of Value Line’s Timeliness.
As previously mentioned, Leinweber computed that, from 1979 to 1991, the Value
Line paper portfolio had an annualized return of 26.2%,”” whereas the real
Value Line fund only earned 16.1 % per year,” i.e., the paper returns were not
realizable by the mutual fund. The reporter Salomon Jr. states in Value Line’s self-
defeating success: “Value Line’s rankings are a prisoner of their own success:
They work so well that too many people try to act on them.” >’ Simply speaking,
the anomaly seems to diminish with time passing by as it should in theory. But
this observation can hardly be validated for 2012 considering the difficult general
economic situation. For 2012 the strategy seems to be successful as shown in Fig. 3.9
although the data are not risk-adjusted. It is also important to note that a court order
in the 1960s mandated a delay between the publication of Value Line rating changes
and trading in the portfolio.??® Once again, finding an anomaly and exploiting it are
two different things.

The available evidence seems to show that trading costs are the main reason for
Value Line’s implementation shortfall. This apparently prevents any investor from
beating the market. But even assuming trading costs were cut, what is the reason for
the persistence of the Value Line enigma?

3.9.5 Persistence

A recent research of Zhang, Nguyen and Le published in 2010 deals with an
event concerning the Value Line enigma.’”® Initially, the weekly update of the
Timeliness ranking was published on Fridays. However, starting from June 5, 2005,
Value Line published it 1 day before: on Thursdays. The publication states that
the Value Line effect still exists after more than 50 years of existence. It persists,
despite the large academic work about it. The researchers assert, contradicting
previous research, that the next-day abnormal return after the announcement has
disappeared. They interpret this as an improvement in market efficiency, and as a
sign of a possible weakening of the Value Line anomaly. The highest cumulative
abnormal return reaches 9.07 % over a 50-day window, and is not achieved by the
rank 1 portfolio.”'” Finally, despite the evident mutation of the Value Line enigma,
post-earning-announcement drift is once again disproved, thus confirming the new
information hypothesis as the explanation for price increases.

2051 einweber (1995, p- 41).

2061 einweber (1995, p. 42).
207Salomon Jr. (1998).

208Porras and Griswold (2000, p. 40).
209Zhang et al. (2010).

210Zhang et al. (2010, p. 362).
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The Value Line enigma has not been completely solved yet. It seems that the
observed abnormal returns are related to the re-release of already public information
by Value Line. The performance of Timeliness may be achieved by the exclusion of
poorly performing stocks rather than by the aggregation of hot stocks. Value Line
Centurion, the mutual fund implementing the strategy, has to face three technical
issues. The first one is implementation shortfall, which is common on the stock
exchanges. The second is that strategies back-tested by historical data do not
necessarily indicate future returns in correlation with past ones. The third one is
related to trading costs. The high turnover in each Timeliness rank deteriorates the
performance. The fund managers are also tied by regulatory issues: to observe a
delay between the publication of the ranking and trading. Therefore, the exploitation
of the anomaly by the fund is not optimal. Private investors face even higher
difficulties because trading costs are for them higher than for investment institutions.
The Value Line anomaly persists, while possibly changing due to recent economic
conditions.

3.10 Expiry of IPO Lockups

The expiry of IPO lockups is another interesting structural market anomaly, the last
one we will look at. Actually, the anomaly has been widely documented and several
explanations have been suggested. But as for many other anomalies, the abnormal
returns do not seem to have a single explanation but many possible ones. In this
section we describe the anomaly and the pertinent technical terms. Then, evidence
and explanations are presented before discussing the persistence of the anomaly.

3.10.1 Description

An PO is the introduction of a new firm on a stock exchange. It stands for initial
public offering. Lockups are agreements made by insiders of the stock-issuing firms
to abstain from selling shares for a specified period of time after the issue. The
lockup period typically ranges from 90 to 180 days, but is not always mandatory.
Figure 3.10 plots the number of IPOs and their lockup lengths in days in each year
from 1988 to 1997 for 2,529 companies. During this period, 180 days seemed to be
the rule. For the subsequent decade, analogous results were found.

Early studies by Reilly and Hatfield (1969) and Stoll and Curley (1970) show a
significant difference between the offering price of IPOs (determined by the firm and
the underwriter) and the first-day or first-week closing market price.”!" From 1990
to 2001, first-day returns on U.S. IPOs were approximately 25 %.2!? This raises the
question whether firms and underwriters misprice IPOs because it appears as if they

211Reilly and Hatfield (1969) and Stoll and Curley (1970).
2I2Ritter and Welch (2002, Table 1, p. 4).
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Fig. 3.10 Number of IPOs and lockup length by year from 1988 to 1997. Source: Bradley, Jordan,
Roten, and Yi (2001, Fig. 1, p. 48)

could have sold the shares at a higher price. The second issue lies in the fact that
apparently, even if the final date of the lockup is publicly disclosed, the expiry of
IPO lockup effect remains. The anomaly arises from an abnormal estimated loss of
—1.5 % in the time immediately surrounding the announcement day.?'* However, on
August 16, 1999, Healtheon’s stock?!* fell 18.5 % in a single day.?'> More recently
in 2012, Facebook?!® shares grew 11 % on the lockup end date, while investors had
been nervous about this previously hot stock falling apart for months.?!” A large
scale analysis is required to define the general properties of the anomaly if there
are any. They would help investors to understand the two issues connected to IPO
lockups, and would prevent fear effects that might distort stock prices.

213Fjeld and Hanka (2001, p. 472).

2l4Healtheon was a dotcom startup company. Healtheon’s business plan was to streamline
communication and paperwork in the United States health care system. They developed software
that placed their company between physicians, patients, and health care institutions, eliminating
unnecessary paperwork and facilitating networking and communication amongst the three.
215Field and Hanka (2001, p. 472).

216Facebook is a social networking service launched in February 2004. In 2012, Facebook had over
one billion active users.

217Source: Bloomberg (ticker: FB:US).
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3.10.2 Evidence

Ritter demonstrated that long-term investors in IPOs, who buy shares immediately
after the offering at market prices, realize low returns.?'® Together with Loughran,
he also showed that IPOs underperform non-IPO firms by approximately 25 and
50 % on a respectively 3-year and 5-year horizon, respectively.?'® This empirical
result is interpreted as evidence for the overvaluation of IPOs during the first days
of market trading.??° About at the same time, Aggarwal and Rivoli used a large scale
IPO database to study the abnormal return generated by a buy and hold position
following the introduction date of the IPO and measured negative performance.?’!
This contradicts the popular belief that IPO investing is smart.

Ten years later, Fields and Hanka analyzed 3,217 lockup agreements that
prevented insiders from selling shares immediately after the IPO from 1988 to 1997.
In the week the lockup period expires, they found a permanent 40 % increase in
average trading volume and a cumulative abnormal return of —1.8 % on the studied
sample.??> The abnormal return seems to be stable over the 10 year sample period,
yet this is not due to changes in the proportion of trades at the bid price. Technically
speaking, there is no mean reversion. The abnormal return is much more pronounced
when the firm is venture-financed. Actually, venture funds sell more aggressively
than other pre-IPO shareholders.???

Figure 3.11 illustrates the cumulative abnormal return from day —5 to day +23
around lockup expiration for the sample of 2,529 firms. Cumulative abnormal
returns are calculated using the value-weighted index from 1988 through 1997. The
figure, which is taken from the empirical study of Bradley et al. (2001), shows that
after a single business week, the price drift reaches —5 % and seems to remain at
the same level through the following month.??* There is, however, a decrease a few
days before the actual end date of the lockup period. This might be interpreted as an
adaptation of market agents to upcoming future downward price movements.

Figure 3.12 illustrates the impact of the lockup end date on the average daily
trading volume for venture-backed and non-venture-backed IPOs around lockup
expiration from 1988 through 1997. Day 0 represents the lockup expiration. In the
case of a non-venture-backed security, the impact on the volume appears negligible.
It is a non-event. However, venture backing proves to have a significant impact on
trading volumes. This might be a caused by inside traders who make money from
their investment and spread a much larger volume of stock on the stock exchange.

28Rjtter (1991).

219Loughran and Ritter (1995, p. 30).

2201 oughran and Ritter (1995, p. 49).

221 Aggarwal and Rivoli (1990).

222Fjeld and Hanka (2001, Table TV, p. 482).
223Field and Hanka (2001, Table TV, p. 482).
224Bradley et al. (2001, p. 14).
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1988 to 1997. Source: Bradley et al. (2001, Fig. 5, p. 52)

A last characteristic of IPO lockups is related to their agents. Fields and Hanka
found that prior to the scheduled expiration date, 6 % of lockup agreements are
abrogated by substantial insider share sales.’>> These unrestricted investors liquidate
positions prior to the scheduled lockup release, thus possibly generating negative

225Field and Hanka (2001, p. 473).
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returns. It seems that negative abnormal returns are more robust for firms that are
not influenced by SEC Rule 144.%° It seems logical that insider sales have an impact
on price movements. Yet, clear explanations are still needed.

3.10.3 Explanations
Three major hypothesis exist to explain this anomaly:

e Adverse selection
¢ Stock momentum
* Market inefficiency

3.10.3.1 Adverse Selection

Brau, Lambson, and McQueen (2005) consider IPO lockups as a solution to the
adverse selection problem*”’ which results from information asymmetries at the
time of the stock issue.??® Insiders who stick to their lockup commitments send a
positive signal, whereas insiders who sell faster than expected send a bad signal.
Therefore, to forgo sales within the lockup period is a costless way for insiders
to prevent negative price movements. If the hypothesis holds true, lockups should
be shorter when the degree of asymmetric information is small (high-transparency
firms) and when the cost of mimicking is high (risky firms). The empirical results
for a sample of 4,013 initial public offerings and 3,279 seasoned equity offerings
between 1988 and 1999 support these predictions. Therefore, adverse selection may
appear as the best explanation. It explains the underpricing of IPOs at least in the
short term and takes into account that venture capital investors and inside traders
tend to dispose of their shares at an early stage. But it does not explain the long-
term effect of negative abnormal returns.

3.10.3.2 Stock Momentum

The second explanation represents another interpretation of the usefulness of the
lockup period. Does the lockup period answer to a psychological need to protect
bankers and potential investors from a large negative price drift? According to Brav
and Gompers, evidence shows that lockups are a bonding solution for a moral hazard

226Rule 144 allows the public resale of restricted and controlled securities if a number of conditions
are met. For example, holding period, adequate stock information, personal information and trading
volume are criteria limiting the resale. The complete rule set is available at the following website:
http://www.sec.gov/investor/pubs/rule144.htm. Also see Keasler (2001).

227 Adverse selection, anti-selection, or negative selection is a term used in economics. It refers
to a market process in which undesired results occur when buyers and sellers have asymmetric
information (access to different information); the bad products or services are more likely to be
selected.

228Brau et al. (2005).
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problem and not a solution for an adverse selection problem.?* In 2002, Aggarwal,
Krigman and Womack developed another theory: managers strategically underprice
IPOs to maximize personal wealth from selling shares at lockup expiration.>*
According to this hypothesis, the underpricing generates information momentum
by attracting attention to the stock and thereby increasing the demand for the stock.
This allows managers to sell shares at lockup expiration at higher prices than they
would have obtained otherwise.

A sample of IPOs in the 1990s shows that higher ownership by managers is pos-
itively correlated with first-day underpricing. Underpricing is positively correlated
with research coverage, and research coverage is positively correlated with stock
returns and insider selling at lockup expiration. These results are consistent with the
model of Rajesh, Krigman and Womack. The IPO mispricing is done on purpose
with the objective to generate a momentum effect.*! Given that a momentum is
the combination of an underreaction, followed by an overreaction, inside traders
and bankers can generate abnormal returns at a later date (lockup expiration date)
as compared to the introduction date of the new stock. While being very satisfying
in many aspects, this explanation does not cover the 6 % of early sales of inside
traders.>*?

3.10.3.3 Market Inefficiency

The third hypothesis holds that IPOs are launched at the appropriate price. Markets,
however, are then believed to be inefficient in the post-IPO period, as prices do
not reflect all available information. If the market were efficient, newly introduced
stocks should perform at least as well as their counterparts on the stock exchange.
In 2001, Ofek and Richardson investigated the volume and price patterns around
the lockup ending period.”** They showed that, even though the event is totally
anticipated, stock prices drop from —1.15 to —3.09 %, and the trading volume
increases by 38 %, when the lockup expires.?** Does the market adapt to upcoming
events? The researchers tested bid-ask bounce,?® liquidity effects,>*® and biased
expectations of supply shocks,?*’ but found little support for the relevance of these
factors. Nevertheless, the evidence points to a downward sloping demand curve for

229Brav and Gompers (2003).

230 Aggarwal, Krigman, and Womack (2002).

21 Aggarwal et al. (2002).

232Fjeld and Hanka (2001, p. 473).

2330fek and Richardson (2000).

2340fek and Richardson (2000, p- 2).

23Closing ask price on the previous day can be taken as today’s bid price. While creating no
abnormal return, the anomaly would be related to normal market frictions between bought and
sold stocks.

26Tnvestors prefer liquid assets and pay a premium for them. Tlliquid assets perform less well.
237Large demand or supply expectations are a fear factor for investors. In the case of not knowing
the appropriate expectation, a small drift toward the correct stock price can be observed.
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shares, with the most likely explanation pointing to a permanent, long-run effect.
With a positive shift in supply?* and a downward sloping demand curve, the price
would be expected to fall. That is why Ofek and Richardson used two popular
explanations for this possible result: price pressure (i.e., temporarily downward
sloping demand curve) versus long-term demand effects. The evidence supports
the significance of long-term demand effects, but not entirely, as some results are
inconsistent with implications from long-term downward sloping demand curves.

Markets seem to have a low demand for a newly listed stock in the years
following its IPO. This low demand can only be explained by the unability of the
investors to include pertinent information in the price of the share. This hypothesis
holds for early stock disposal. Inside traders know more, and thus sell before the
stock falls in value. It also holds for the short-term effect. Corporate owners sell
their additional shares on the lockup expiration date. It also holds for a price drift
due to the inability of market agents to incorporate accurate information into the
price. Yet, it does not hold for a 10-year period.

Professionals and researchers have reached a consensus about the undervaluation
of IPO prices and the momentum exploitation. The momentum effect has a long
persistence as illustrated in the former section about industry portfolio momentum.
But how does it affect IPO lockups?

3.10.4 Persistence

Stock momentum and the slow subsequent price drift are long-lasting phenomena.
In the case of IPO lockups, however, the time span seems to be exceptionally long,
namely more than 10 years.?** Protection against the price fall on lockup expiration
is, unfortunately, nearly impossible. Since arbitrageurs should know in advance
about the expected price drop, short selling is the consequence. According to Ofek
and Richardson’s report, the magnitude of the price drop is related to the stock’s
underlying volatility. Further research in this direction might bear fruit.

To sum up, newly introduce