


Airline Operations and Scheduling



Dedicated to my wonderful family,  
Soheila, Sina, Shiva, and Sarah  
and to the memory of my Mother



Airline Operations and 
Scheduling

Second Edition

Massoud Bazargan
Embry-Riddle Aeronautical University, USA



© Massoud Bazargan 2010

All rights reserved. No part of this publication may be reproduced, stored in a retrieval 
system or transmitted in any form or by any means, electronic, mechanical, photocopying, 
recording or otherwise without the prior permission of the publisher.

Massoud Bazargan has asserted his right under the Copyright, Designs and Patents Act, 
1988, to be identified as the author of this work.

Published by
Ashgate Publishing Limited			   Ashgate Publishing Company
Wey Court East				S    uite 420
Union Road				    101 Cherry Street
Farnham					     Burlington
Surrey, GU9 7PT				    VT 05401-4405
England					US     A

www.ashgate.com

British Library Cataloguing in Publication Data
 Bazargan, Massoud.  
   Airline operations and scheduling. -- 2nd ed.  
   1. Airlines--Management. 2. Aeronautics, Commercial.   
   3. Airlines--Reservation systems. 4. Operations research.   
   5. Airlines--Timetables. 6. Scheduling.
   I. Title 
   387.7'068-dc22

   ISBN: 978-0-7546-7900-4 (hbk)
	 978-0-7546-9772-5 (ebk)

Library of Congress Cataloging-in-Publication Data
Bazargan, Massoud.
  Airline operations and scheduling / by Massoud Bazargan.
       p. cm.
  Includes index.
  ISBN 978-0-7546-7900-4 (hardback : alk. paper) -- ISBN 978-0-7546-9772-5 (ebook)
1.  Airlines--Management. 2.  Aeronautics, Commercial. 3. Airlines--Reservation systems. 
4.  Operations research. 5. Airlines--Timetables.  I. Title. 
  TL552.B38 2010
  387.7068'5--dc22

2009049329

LillyC
Typewritten Text

LillyC
Typewritten Text
V

LillyC
Typewritten Text



Contents

List of Figures� vii
List of Tables� xi
Preface to Second Edition  �   xv

1	 Introduction  �   1

Part I	 Planning Optimization

2	 Network Flows and Integer Programming Models  �   7

3	 Flight Scheduling  �   31

4	 Fleet Assignment  �   41

5	 Aircraft Routing  �   61

6	 Crew Scheduling  �   83

7	 Manpower Planning  �   103

Part II	 Operations and Dispatch Optimization

8	 Revenue Management  �   113

9	 Fuel Management System  �   137

10	 Airline Irregular Operations  �   155

11	 Gate Assignment  �   171

12	 Aircraft Boarding Strategy  �   183

Part III	 Computational Complexities and  
Simulation

13	C omputational Complexity, Heuristics, and Software  �   205

14	 Start-up Airline Case Study  �   213



Airline Operations and Schedulingvi

15	 Manpower Maintenance Planning  �   221

16	 Aircraft Tow-tugs  �   237

17	 Runway Capacity Planning  �   249

18	 Small Aircraft Transportation System (SATS)  �   269

Index  �   281



List of Figures 

Figure 2.1	 Basic elements of a network  �   7
Figure 2.2	 Flow between two nodes  �   8
Figure 2.3	 Directed flow  �   8
Figure 2.4	 Undirected flow  �   8
Figure 2.5	S upply node  �   8
Figure 2.6	D emand node  �   9
Figure 2.7	T ransshipment node  �   9
Figure 2.8	 A network showing three paths from A to G  �   9
Figure 2.9	 A cycle  �   10
Figure 2.10	 Connected network  �   10
Figure 2.11	 Network with flight times between city pairs  �   11
Figure 2.12	G raphical solution for the Shortest Path Problem  �   12
Figure 2.13	 Network presentation for minimum cost flow  �   13
Figure 2.14	 Solution to minimum cost flow  �   14
Figure 2.15	 Network presentation from source to destination� 16
Figure 2.16	 Network presentation for multi-commodity problem  �   19
Figure 2.17	S olution to multi-commodity problem  �   20
Figure 2.18	S olution showing three disjoint sequences or sub-tours  �   27
Figure 2.19	 Solution showing two sub-tours after adding first breaking 

constraint  �   28
Figure 3.1	 A sample airline network with two hubs and nine spokes  �  33
Figure 3.2	T he hierarchy of airline planning  �   35
Figure 3.3	 Ultimate Air route network  �   36
Figure 4.1	 An example of a time-space network  �   45
Figure 4.2	D emand distribution and passenger spills  �   47
Figure 4.3	E xample of aircraft balance  �   51
Figure 4.4	 Time-space network for LAX  �   52
Figure 5.1	 B737-800 one-day routing  �   65
Figure 5.2	  B737-800 two-day routing  �   66
Figure 5.3	 B737-800 three-day routing  �   67
Figure 5.4	 B757-200 five-day routing with no opportunity for overnight 

maintenance at the JFK hub  �   68
Figure 6.1	 A typical pairing with duty periods, sits within duty periods, 

overnight rests, and sign-in and sign-out times  �   85
Figure 8.1	N ested and non-nested airline seat-allocations  �   115
Figure 8.2	N ormal probability distribution for demand with shaded area 

representing demand exceeding a certain level  �   116
Figure 8.3	E xpected marginal revenue for full-fare-paying passengers� 119



Airline Operations and Schedulingviii

Figure 8.4	 Seat protections and booking levels for three fare-classes  
under the nested seat allocation model  �   121

Figure 8.5	E MSR for the four-fare-class example  �   122
Figure 8.6	 A simple network representing passengers with different  

origin-destination itineraries  �   124
Figure 8.7	 Network diagram for the multi-leg example  �   126
Figure 9.1	 Annual average crude oil prices  �   138
Figure 9.2	 Average annual jet fuel prices  �   138
Figure 9.3	C rew and fuel cost as a percentage of total operating cost �  139
Figure 9.4	T otal fuel consumed by all US airlines, in millions of  

gallons  �   139
Figure 9.5	 Scatter plot of fuel consumption vs. flight time  �   149
Figure 10.1	 Time band network for the case study  �   157
Figure 10.2	 Time band approximation network  �   159
Figure 11.1	C  Concourse at SFO  �   172
Figure 11.2	 Assignment of gates to flights  �   175
Figure 11.3	 Assignment of gates to flights  �   180
Figure 12.1	 Sample of back-to-front and window-middle-aisle  

boarding process  �   185
Figure 12.2	S eat and aisle interferences  �   186
Figure 12.3	L ocation of seats within row i  �   187
Figure 12.4	S olution for boarding patterns based on 6 groups and  

different values of α  �   199
Figure 14.1	 Flight network for the start-up airline  �   214
Figure 14.2	 Arrival/departure of flights at each airport  �   219
Figure 14.3	 Airline’s network and aircraft routing  �   220
Figure 15.1	E quipment type  �   225
Figure 15.2	 Through flights on a typical day  �   225
Figure 15.3	 Maintenance cycle for through flights (narrow body,  

mid-body domestic, mid-body international and wide- 
body aircraft)  �   229

Figure 15.4	T otal technician requirements for each sub-shift in a day �  230
Figure 15.5	 Average percentage utilization of technicians in a day  �   231
Figure 15.6	 Total number of technicians with unfinished jobs in any  

shift  �   233
Figure 16.1	 Narrow body tow-tug (Expediter 160 – FMC Technologies)� 238
Figure 16.2	 Basic logic of the current and proposed models  �   239
Figure 16.3	L ocation of gates and the maintenance hangar at ATL  �   241
Figure 16.4	 Average weekly cost for aircraft taxis without tow-tugs  �  242
Figure 16.5	 Average weekly operating cost using the tow-tug  �   243
Figure 16.6	 Average utilization with multiple tow tugs  �   245
Figure 16.7	 Total weekly operating cost in a multi tug operation  �   246
Figure 16.8	 A tow tug towing AirTran’s 737-700 aircraft  �   247



List of Figures ix

Figure 17.1	N umber of weather and non-weather related delays from 
2003–2008  �   250

Figure 17.2	T otal weather and non-weather related delay in minutes  
from 2003–2008  �   251

Figure 17.3	 Practical capacity λP  �   254
Figure 17.4	E xample of practical capacity  �   254
Figure 17.5	 Saturation capacity λS  �   255
Figure 17.6	 Capacity measures λS1, λS2 and λSU  �   256
Figure 17.7	C urrent West-VFR operations at PHL  �   259
Figure 17.8	P arallel-1 West VFR operations  �   260
Figure 17.9	P arallel-2: West VFR operations  �   261
Figure 17.10	D iagonal-1: West VFR operations  �   262
Figure 17.11	D iagonal-2: West VFR operations  �   263
Figure 18.1	 Forecasts for number of operations (landings and take-offs)  

at KTLH  �   272
Figure 18.2	L ife-cycle forecast for SATS demand at KTLH  �   273
Figure 18.3	 Forecast for SATS, existing and total operations for KTLH 

using Total Airspace Airport Modeler (TAAM)  �   273
Figure 18.4	 KTLH runway, taxiway, and terminal layout  �   274
Figure 18.5	 Daily arriving, departing, and total flight operation for  

baseline scenario  �   275
Figure 18.6	D elay distribution for baseline scenario at KTLH  �   276
Figure 18.7	D issection of delays at KTLH  �   276
Figure 18.8	R unway usage at KTLH  �   277
Figure 18.9	 Change in peak hourly movements for 2002–2025 study  

time  �   278
Figure 18.10	 Changes in peak delay distribution time for 2002–2025  �  278
Figure 18.11	C hange in dissection of delay 2002–2025  �   279
Figure 18.12	C hange in runway utilization 2002–2025  �   279



This page has been left blank intentionally



List of Tables

Table 1.1	 Number of US certificated (DOT) airlines in the years  
1976–2007  �   2

Table 2.1	 Maximum number of flights per city-pair for Shuttle Hopper 
Airways  �   16

Table 2.2	D istance-matrix between cities  �   22
Table 2.3	 Binary-matrix showing cities covered by each hub  �   23
Table 2.4	 Sequence of flights to cities in cargo airline network  �   26
Table 2.5	 Final tour sequence of flights with distances  �   28
Table 3.1	 A sample flight schedule  �   32
Table 3.2	L oad factor and expected revenue  �   35
Table 3.3	 Flight schedule for Ultimate Air  �   37
Table 3.4	D estination in miles, demand means and standard deviations  

for Ultimate Air network  �   38
Table 4.1	 Fleet diversity for select airlines  �   42
Table 4.2	 2008 Domestic operations key performance indicators for  

major US carriers  �   43
Table 4.3	 US major carriers’ unit revenues and expenses by fleet-type  �  44
Table 4.4	 Arrival/departure flights for LAX  �   51
Table 4.5	 Optimal number of aircraft grounded overnight at each airport� 54
Table 4.6	 Fleet assignment for Ultimate Air  �   55
Table 4.6	 Fleet assignment for Ultimate Air  �   56
Table 4.7	T otal daily cost for various aircraft combinations  �   57
Table 5.1	 B737-800 Fleet Assignment  �   63
Table 5.2	 B757-200 Fleet Assignment  �   64
Table 5.3	 Sample three-day routing for B757-200 fleet  �   69
Table 5.4	 Sample three-day routing for B737-800 fleet  �   70
Table 5.5	 Routing candidates for flight 125  �   72
Table 5.6	 Feasible eight aircraft solution for the 757-200 fleet  �   74
Table 5.7	 Flights 105 and 125  �   74
Table 5.8	 Revised schedule for flight 105  �   75
Table 5.9	 One of the optimal solutions with six aircraft  �   75
Table 5.10	 Overnight stays at JFK for the optimal solution  �   76
Table 5.11	 Solution for aircraft routing of 737-800 fleet with 12 aircraft �  77
Table 5.12	 Flight schedule for B737-800 stranded flights  �   77
Table 5.13	 Revised flight schedule for B737-800 stranded flights  �   77
Table 5.14	 Aircraft routing solution for B737-800 with revised schedule �  78
Table 5.15	 B737-800 fleet schedule with major modifications  �   79
Table 5.16	 Aircraft routing for B737-800 with nine aircraft  �   80



Airline Operations and Schedulingxii

Table 6.1	C rew cost for US major carriers  �   83
Table 6.2	 All legal crew pairings for B757-200 fleet  �   88
Table 6.3	 Sample one-day crew pairing for B737-800 fleet  �   89
Table 6.4	 Sample two-day crew pairing for B737-800 fleet  �   89
Table 6.5	S olution to crew pairing for B757-200 Fleet  �   91
Table 6.6	 Solution to crew pairing for B737-800 fleet  �   92
Table 6.7	 Possible weekly crew roster combinations for Ultimate Air  �  95
Table 6.8	 Three sample rosters for B757-200 fleet  �   96
Table 6.9	 Solution to crew rosters for B757-200 fleet  �   98
Table 6.10	 Solution to crew rosters for B737-800 fleet  �   99
Table 7.1	 Check-in counter agents requirement at JFK for Ultimate Air� 104
Table 7.2	 Index for shifts (j)  �   104
Table 7.3	 Index for days of the week (i)  �   105
Table 7.4	S olution to manpower planning  �   107
Table 8.1	E xample of non-nested and nested airline seat allocations  �   115
Table 8.2	P robability and expected marginal revenue for each seat in  

the fare class  �   118
Table 8.3	 Fare classes, demand distributions and fare levels for a flight � 122
Table 8.4 	P rotected number of seats for each fare class over lower  

classes  �   123
Table 8.5	D emand and fare levels for the multi-leg example  �   126
Table 8.6	 Solution to the deterministic network seat allocation example� 128
Table 8.7	 Probabilistic demand for the network seat allocation example� 129
Table 8.8	 Expected marginal revenue for the probabilistic network seat 

allocation example  �   130
Table 8.9	 Solution to the probabilistic network seat allocation example � 131
Table 8.10	 Seat allocations on flight leg AH  �   132
Table 9.1	D aily futures contract transaction over a three day period  �   142
Table 9.2	 Price of jet fuel in different international markets during  

March 2009  �   144
Table 9.3	 Amount of fuel used and the price paid per gallon for  

different US airlines during March, 2009  �   145
Table 9.4	 Data from the last 20 flights flown by the Boeing 737-700 

aircraft  �   146
Table 9.5	L inear programming solution for the case study  �   152
Table 10.1	 Flight schedule and aircraft routing  �   156
Table 10.2	 Cancellation cost for flight legs  �   158
Table 10.3	N on-zero delay costs  �   160
Table 10.4	S olution for Scenario 1  �   164
Table 10.5	 Detailed and final solution for Scenario 1  �   165
Table 10.6	S olution for Scenario 2  �   166
Table 10.7	 Detailed and final solution for Scenario 2  �   167
Table 10.8	S olution for Scenario 3  �   168
Table 10.9	 Detailed and final solution for Scenario 3  �   168



List of Tables xiii

Table 11.1	 Passenger flow  �   172
Table 11.2	 Distance matrix (yards)  �   173
Table 11.3	 Traveling distances (yards)  �   174
Table 11.4	S olution to gate assignment  �   175
Table 11.5	 Revised assignments of gates to flights  �   176
Table 11.6	 Baggage flow from arriving flights to departing gates (units  

of baggage)  �   177
Table 11.7	 Baggage flow in number of trips for trailers from arriving  

flights to departing gates  �   178
Table 11.8	 Distance matrix for baggage trailers on the ramp (yards)  �   178
Table 11.9	 Baggage transport distances (yards)� 178
Table 11.10	S olution to gate assignment for both passenger and baggage 

transport  �   179
Table 12.1	E xamining aisle- and middle-seat interference  �   189
Table 12.2	S eat, aisle and total interferences for solution to 6-groups  

boarding process  �   200
Table 12.3	 Expected number of passengers and values of α for boarding  

based on varying inter-arrival times  �   201
Table 13.1	 Network and crew size for select airlines  �   206
Table 13.2	L ist of airline IT-solution providers offering crew scheduling 

solutions  �   209
Table 13.3	 List of major flight-operation solution-providers  �   210
Table 13.4	L ist of major revenue-management solution-providers  �   210
Table 13.5	 List of major ticket-distribution solution-providers  �   211
Table 14.1	L ist of airports and their codes for case study  �   214
Table 14.2	P roposed routes and their frequencies  �   215
Table 14.3	T hree sample routes  �   216
Table 14.4	S olution for the case  �   217
Table 14.5	 Flight schedule and aircraft routing for the case study  �   218
Table 15.1	P ercentage of maintenance expense in total operating expense  

for select US airlines  �   222
Table 15.2	P ercentage of labor expense in total maintenance expense for 

select US airlines  �   223
Table 15.3	 Number of through flights in a day  �   225
Table 15.4	 Total number of checks scheduled on each equipment type  

daily  �   226
Table 15.5	 Man-hours, ground-time, and technician requirements for day 

holds and remains overnights (RON)  �   227
Table 15.6	 Service-check (SVC) man-hours, ground–time, and technician 

requirements for through flights  �   227
Table 15.7	 Level 3 Service-check (SC3) man-hours, ground–time, and 

technician requirements for through flights  �   227
Table 15.8	 Shift and sub-shift schedules at Newark  �   228



Airline Operations and Schedulingxiv

Table 15.9	 Average number of aircraft serviced by each technician in  
each shift  �   231

Table 15.10	 Number of technicians with unfinished jobs at the end of  
each shift  �   232

Table 15.11	 Optimal shift schedule  �   233
Table 16.1	NP V for purchasing and operating the tow-tug for a period  

of 10 years  �   244
Table 16.2	 Payback period and NPV for multiple tow-tugs  �   246
Table 17.1	P ercentage of on-time arrivals at major airports in the US  

during 2008  �   249
Table 17.2	C ost of delay per minute for commercial airlines during 2007� 251
Table 17.3	S aturation capacities under varying constraint levels for each  

of the scenarios  �   264
Table 17.4	R atios comparing the different layouts  �   264



Preface to Second Edition

The airline industry has evolved and gone through many challenges since the first 
edition of this book in 2004. It was felt that the time was right for a new edition 
of the book addressing these challenges. Four new chapters have been added, and 
the chapters in the first edition have been revised. The new chapters present real-
world applications and projects that the author and his MBA students conducted 
for airlines and airports.

The book is divided into three major parts: planning, operation and dispatch 
optimization, and case studies. Two of the new chapters are in the area of operations 
and dispatch relating to fuel management systems and aircraft boarding strategy. 
A major challenge for the airlines is the significant rise in jet fuel price since the 
first edition was published. The chapter on fuel management systems explains how 
airlines purchase fuel and how they try to reduce cost by adopting fuel ferrying 
(tankering). The chapter on aircraft boarding strategy presents an interesting 
application of operations research to minimize delays in boarding passengers on 
to the aircraft.

The other two chapters are introduced in the case studies category. These 
cases relate to recent projects for airlines and airports. These two chapters are 
on aircraft tow tugs and airport runway-capacity planning. In both case studies, 
simulation modeling is utilized to identify economic and operational justification 
for purchasing aircraft tow tugs and to examine how capacity can be increased by 
changing airport runway layout configurations respectively.

The chapters in the first edition have been revised for typo errors and include 
more updated and recent references. In particular, Chapter 11 on gate assignment 
is revised to accommodate baggage handling in the mathematical model. Chapter 
13 on computational complexity and heuristics has a new section about software 
vendors who develop solution suites for the airline industry.

The first edition of this book was published in 2004 as a result of developing 
an MBA course on Airline Planning and Operations in the College of Business at 
Embry-Riddle Aeronautical University. The course was initiated based on feedback 
received from alumni, mostly working at airlines, as well as students undertaking 
the author’s operations research and operations management classes. The feedback 
indicated that a follow-up course, specifically focused on airline scheduling based 
on optimization methodologies, would be very appealing to them and to the aviation 
audience. The idea of developing such a course was additionally encouraged by 
the college’s airline industry advisers. The development of the course was long 
and time-consuming. Owing to its unique nature, there were limited suitable texts, 
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and related materials are very technical, thus beyond the scope of an MBA class. 
Some of the motivations for the first edition include:

Introducing the importance and complexity of planning and operations at 
the airlines.
Operations research techniques are extremely important tools for planning 
the operations in airlines. There are a large number of technical papers on 
airline optimization models. However, this literature is very advanced and 
therefore of interest only to a limited audience. This book attempts to fill 
this gap by simplifying the models and applying them to relatively simple 
examples, thus exposing them to a larger audience.
There has been a growing concern among the operations research 
community that the materials offered in operations research courses at 
MBA or senior undergraduate business classes are too abstract, outdated, 
and at times irrelevant to today’s fast and dynamic world. The book 
seeks to provide alternative and hopefully relevant materials for such 
courses.

Intended Audience

This book is intended to serve both as a textbook and as supporting material for 
graduate and undergraduate business, management, transportation, and engineering 
students. Currently, the airlines spend a long time training and acquainting new 
recruits with the planning and scheduling processes of various operations. This 
book can serve as an additional resource for such training. Other aviation audiences 
such as general aviation, flight schools, International Air Transport Association 
(IATA) and International Civil Aviation Organization (ICAO) training-course 
instructors, executive-jet and chartered-flight operators, air-cargo and package-
delivery companies, and airline consultants may find the material in this book 
relevant and useful.

Required Background

The main background requirement on the part of the reader for a major portion 
of this book is basic familiarity with linear and integer programming. Linear and 
integer programming topics are widely covered in many disciplines at colleges and 
universities at different levels. Chapters 4 and 8 require some basic understanding 
of statistics in general and normal distribution in particular.

•

•

•
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Adopting this Book as a Text

The author has offered the contents of this book in an MBA course as follows:
The students are grouped into teams, three students per team, each team 

representing operation managers of an airline company. As the course progresses, 
the teams are responsible for creating their own airlines, selecting routes, flight 
networks, fleet diversity, aircraft routings, maintenance locations, hub and spoke 
systems, air and ground crew scheduling, and gate assignments. The students 
need to conduct thorough research on passenger demand on city pairs, fleet cost, 
crew cost, determine ASM, CASM, RASM, yield, and so on, for their airlines. 
The teams should address how to determine their fares (revenue management) 
and how they accommodate unexpected interruptions in their flight schedule 
(irregular operations). If the teams are familiar with simulation software such as 
Arena (www.arenasimulation.com) then they enjoy simulating the operation of 
each airport within their network to assess the smooth operations such as adequate 
numbers of check-in counters, availability of gates, baggage handlers, and so on. 
The teams make a final presentation of their airlines and submit a comprehensive 
report detailing these operations.
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Chapter 1 

Introduction

Introduction

The United States Airline Deregulation Act of 1978 paved the way for major 
structural changes in the US airline industry. Airlines were allowed to select their 
network as well as their fares. This prompted a rush of new startup airlines to 
the market. After deregulation, the competition was not only between the pre-
deregulation airlines, but also from the new entrants. Airlines were no longer 
protected, and if they wanted to be profitable, they had to manage their operations 
more efficiently.

Airlines use numerous resources to provide transportation services for their 
passengers. It is the planning and efficient management of these resources that 
determines the survival or demise of an airline. The airline industry is an excellent 
example of the ‘survival of the fittest concept.’ Table 1.1 shows the number of 
certificated airlines from 1976–2007 in the United States. The table also presents the 
number of airlines that were closed or merged with other airlines, and the number 
of newly established airlines. As the table implies, the airline industry operates in a 
very dynamic and uncertain environment. Furthermore, low flexibility to respond 
to changes, tightly coupled resources and limiting FAA regulations make the airline 
industry a complex environment (Yu 1998). To handle the complexity, robust and 
efficient planning tools and techniques are required. Operations research tools and 
techniques have played an important role in handling such complexities.

Operations Research and Airlines

Airlines have been using operations research techniques since the 1950s (Barnhart 
and Talluri 1997). Operations research models have had a tremendous impact on 
planning and managing operations within the airlines. The advances in computer 
technology and optimization models have enabled airlines to tackle more complex 
problems and solve them in a much shorter span of time. The vast contribution of 
these models has led to the establishment of operations research departments in 
many airlines, which help save millions of dollars. These departments have helped 
create an important professional society within the field of operations research, the 
Airline Group of the International Federation of Operational Research Societies 
(AGIFORS). AGIFORS is a professional society that seeks to advance, promote, 
and apply operations research within the airline industry (see www.agifors.org). A 
brief look at their website shows that Operations Research techniques have been 
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successfully applied to many diverse problems such as revenue management, crew 
scheduling, aircraft routing, fleet planning, maintenance, and so on, within the 
airline industry. Barnhart (2008) discusses the accomplishment, opportunities and 
challenges of Operations Research in airline scheduling.

Table 1.1	 Number of US certificated (DOT) airlines in the years 1976–2007

Year Total Number of U.S. Airlines Closed or Merged Newly Established

2007 80 2 16

2006 66 11 10

2005 67 18 16

2004 69 14 18

2003 65 18 11

2002 72 3 12

2001 63 10    2

2000 71 13    9

1999 75 6    6

1998 75 12    8

1997 79 13    4

1996 88 6    9

1995 85 7    16

1994 76 8    14

1993 70 3    11

1992 62 4    12

1991 54 9     7

1990 56 7    4

1989 59 7   3

1988 63 4    5

1987 62 16   6

1986 72 15    17

1985 70 16    13

1984 73 16    21

1983 68 10    14

1982 64 28    14

1981 78 1    13

1980 66 1    13

1979 54 0    17

1978 37 10     5

1977 42 2    5

1976 39 4    1

Source: Bureau of Transportation Statistics.
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Outline of this Book

This book explores a variety of optimization models adopted by the airlines for 
scheduling and planning. The chapters discussing these models start with an 
example and then explain the process of developing a mathematical model. At the 
end of the chapter the general mathematical model is presented. The contents of 
this book are divided into three parts as follows:

Part 1 – Planning Optimization

Chapter 2 – Network Flows and Integer Programming Models: This chapter 
is intended as a review of the basic concepts in network flows and integer 
programming models. These models are adopted later on in the following 
chapters.
Chapter 3 – Flight Scheduling: Construction of flight schedules is the 
starting point for all other airline optimization problems. This chapter 
discusses the construction of flight schedules for a fictitious airline. This 
schedule is then used in the following chapters to address fleet assignment, 
aircraft routing, crew scheduling, and manpower planning.
Chapter 4 – Fleet Assignment: Airlines typically operate a number of 
different aircraft, each having different characteristics, seating capacity, 
landing weights, and crew and fuel costs. This chapter introduces the basic 
fleet assignment model and its application to the fictitious airline.
Chapter 5 – Aircraft Routing: This chapter presents the process of assigning 
individual aircraft to fly each flight segment assigned to the fleet. The chapter 
discusses mathematical models and their applications to the fictitious airline.
Chapter 6 – Crew Scheduling: This chapter discusses the process of 
assigning crew to flight segments in two phases. First, crew pairing is 
introduced to determine which flight segments should be paired. The 
second phase, crew rostering, discusses how these pairings are assigned to 
the crew incorporating various rules and regulations.
Chapter 7 – Manpower Planning: This chapter discusses manpower 
planning for ground crew through the fictitious airline case.

Part 2 – Operations and Dispatch Optimization

Chapter 8 – Revenue Management: This chapter introduces revenue 
management, probabilistic models, and case studies.
Chapter 9 – Fuel Management Systems: This chapter introduces jet fuel cost, 
hedging strategies, case study, and a mathematical model for fuel tankering.
Chapter 10 – Airline Irregular Operations: When faced with a lack of 
resources and/or disruptions caused by various internal and external factors, 
airlines often are not able to fly their published flight schedule. This chapter 
provides an introduction to irregular operations, delays, cancellations, a 
mathematical model for irregular operations, and a case study.

•

•

•

•

•

•

•

•

•
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Chapter 11 – Gate Assignment: This chapter introduces the gate assignment 
mathematical model through a case study.
Chapter 12 – Aircraft Boarding Strategy: This chapter explores various 
aircraft boarding strategies adopted by the airlines. It introduces a 
mathematical approach for an efficient aircraft boarding strategy applied 
to an Airbus A-320.

Part 3 – Computation Complexity and Simulation

Chapter 13 – Computational Complexity, Heuristics, and Software: This 
chapter discusses inherent computational complexity with the airline 
problems and how heuristics are implanted to solve large scale problems. 
It also highlights some of the software vendors who provide solution suites 
for different airline problems.
Chapters 14–18: These chapters introduce case studies on a start-up airline, 
and simulation modeling for airlines and airports. Simulation studies have 
become an alternative and/or integrated part of mathematical models when 
faced with complex problems.
Appendix: provides the full name of the airports presented as their three/
four letter codes in this book.

Software

Throughout this book references are made to software for solving linear/integer 
program models. Many of these models can be solved using student/trial versions 
of optimization software, which are typically available at colleges, universities, 
and airlines. There are many software vendors who provide these student/trial 
versions free to download on their websites (see, for example, www.lindo.com 
or www.maximal-usa.com). For larger problems, which exceed the student/trial 
version limits, we used full version of MPL software (www.maximal-usa.com) 
with CPLEX solver (www.ilog.com).
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Chapter 2 

Network Flows and Integer Programming 
Models

Introduction

A large part of the problems that airlines face can be translated into network and 
integer programming models. These models are mentioned and used throughout 
this book. This chapter attempts to provide a review of some of the optimization 
models discussed in this book. It should be noted that these topics only represent a 
small selection of models from the vast area of network and integer programming 
techniques. For a complete discussion of various network models, interested 
readers are referred to the list of books referenced in this chapter.

Networks

A network (also referred to as a graph) is defined as a collection of points and lines 
joining these points. There is normally some flow along these lines, going from 
one point to another. Figure 2.1 represents a network.

Network Terminology

Before explaining the models, some terminologies commonly used in network 
study are described.

Nodes and Arcs: In a network, the points (circles) are called nodes and the lines 
are referred to as arcs, links or arrows (see Figure 2.1).

Figure 2.1	 Basic elements of a network

Arcs, links or 
branches 

Nodes  
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Flow: The amount of goods, vehicles, flights, passengers and so on that move 
from one node to another (see Figure 2.2).

Directed Arc: If the flow through an arc is allowed only in one direction, then 
the arc is said to be a directed arc. Directed arcs are graphically represented with 
arrows in the direction of the flow (see Figure 2.3).

Undirected Arc: When the flow on an arc (between two nodes) can move in 
either direction, it is called an undirected arc. Undirected arcs are graphically 
represented by a single line (without arrows) connecting the two nodes (see Figure 
2.4).

Arc Capacity: The maximum amount of flow that can be sent through an arc. 
Examples include restrictions on the number of flights between two cities.

Supply Nodes: Nodes with the amount of flow coming to them greater than the 
amount of flow leaving them – or nodes with positive net flow (see Figure 2.5).

Demand Nodes: Nodes with negative net flow or outflow greater than inflow 
(see Figure 2.6). 

Figure 2.2	 Flow between two nodes

xi,j = 100 passengers

i j

Figure 2.3	 Directed flow

i j

Figure 2.4	 Undirected flow

i j

Figure 2.5	 Supply node

115 
 

i
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Transshipment Nodes: Nodes with the same amount of flow arriving and 
leaving – or nodes with zero net flow (see Figure 2.7).

Path: Sometimes two nodes are not connected by an arc, but could be connected 
by a sequence of arcs (see Figure 2.8). A path is a sequence of distinct arcs that 
connect two nodes in this fashion. Airliners utilize hubs to provide connections 
between city pairs in their network.

Source: Starting node in the path.
Destination: Last node in the path.
Cycle: A sequence of directed arcs that begins and ends at the same node 

(see Figure 2.9). Examples include aircraft that start from an airport which is a 
maintenance base and, after flying to several destinations, end up at the same 
airport from which they departed.

Connected Network: A network in which every two nodes are linked by at least 
one path (see Figure 2.10).

Figure 2.6	 Demand node

-50  
 

i
 

Figure 2.7	 Transshipment node

0  
 

i
 

Figure 2.8	 A network showing three paths from A to G
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Network Flow Models

In this section, select network models that are used in this book are discussed. It is 
assumed that the reader is familiar with basic linear and integer programming.

Shortest Path (Route) Problem

This problem attempts to identify a path, from source to destination, within the 
network, that results in minimum transport time/cost. This particular problem 
should be especially attractive to cargo handlers and origin/destination scenarios 
(see Figure 2.11). The problem consists of a connected network with known costs 
for each arc in the network. The objective is to identify the path with the minimum 
cost between two desired nodes.

Example

Consider the following network shown in Figure 2.11 (adapted from Winston and 
Albright 2001). The nodes represent the cities, and the arcs are the flights. The 
numbers on the arcs represent the flight time in minutes between the city pairs. We 
want to determine the best route that results in the shortest flying time from node 
1 (source) to node 10 (destination).

We assume the following binary (0–1) decision variable:

,

1 if arc ( , ) is part of the solution
0 otherwisei j

i j
x 

= 


Figure 2.9	 A cycle

1

4

2

3

Figure 2.10	 Connected network
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Then the objective function is to minimize the total flying cost (time) as 
follows:

1,2 1,3 1,4 70 63 56 .....Minimize x x x+ + +

We have three sets of constraints as follows:
Source node: The flow must originate from node 1. To make sure that the flow 

(in this case our starting flight) leaves the source we must have:

1,2 1,3 1,4 1x x x+ + =

Transshipment nodes: Every other node (except source and destination) is a 
transshipment node. That is the net flow in these nodes should be zero. As an 
example, node (2) in Figure 2.11 is a transshipment node. To address the constraint 
for this node we write:

1,2 4,2 3,2 2,3 2,4 2,5 2,6 2,7 0x x x x x x x x+ + − − − − − =

Similarly we write constraints for the other seven transshipment nodes.
Destination node: The flow must end up at the destination node (node 10). 

Therefore:

5,10 6,10 7,10 9,10 1x x x x+ + + =

Solving this problem using software, we find that the minimum cost is 198 
minutes (56 + 45 + 97). The solution (route) for this example is presented in Figure 
2.12.

The general mathematical model for the Shortest Path Problem (SPP) is 
represented by a binary (0–1) integer programming as follows:

Figure 2.11	 Network with flight times between city pairs
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Sets

M	 = Set of nodes

Index

i,j,k	 = Index for nodes

Parameters

ci,j	 = Cost of flow along the arc joining node i to node j
m	 = Destination node

Decision Variable

,

1 if arc ( , ) is part of the path
0 otherwisei j

i j
x 

= 


Objective Function

i j i j, ,
i M j M

Minimize      c x
∈ ∈
∑ ∑ 	 (2.1)

Subject to

		

1,

, ,

,

1 1

0 ( ) , 1

1

                                                                             (2.2)

                           (2.3)

                        

j M

j M k M

i M

j

i j k i

i m

x j

x x For all i i and i m

x

∈

∈ ∈

∈

= ≠

− = ∀ ≠ ≠

=

∑

∑ ∑

∑                                                             (2.4)

 

The objective function (2.1) attempts to minimize the total cost. Constraint 
(2.2) ensures that the flow is shipped from the source (supply) node. The set of 

Figure 2.12	 Graphical solution for the Shortest Path Problem
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constraints (2.3) impose that all other nodes (except the source and the destination 
node) are transshipment nodes. Finally, constraints (2.4) ensure that the flow is 
received at the destination (demand) node.

Minimum Cost Flow Problem

The minimum cost flow network problem seeks to satisfy the requirements of nodes 
at minimum cost. This is a generalized form of transportation, transshipment, and 
shortest path problems. This problem assumes that we know the cost per unit of 
flow and capacities associated with each arc.

Example

Consider the following network presented in Figure 2.13 (adapted from Anderson 
et al. 2003). An airline is tasked with transporting goods from nodes 1 and 2 to 
nodes 5, 6 and 7 (see Figure 2.13). The airline does not have direct flights from the 
source nodes to the destination nodes. Instead, they are connected through its hubs 
in nodes 3 and 4. The numbers next to the nodes represent the demand/supply in 
tons. The numbers on the arcs represent the unit cost of transportation per ton. We 
want to determine the best way to transport the goods from sources to destinations 
so that the total cost is minimized. The aircraft flying to and from node 4 can carry 
a maximum of 50 tons of cargo.

To formulate this problem, consider the following decision variable:

xi,j	 = Amount of flow from node i to node j

Figure 2.13	 Network presentation for minimum cost flow
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The objective function is then:

 1,3 1,4 2,3   5   8   7  ...Minimize x x x+ + +

We need to write one constraint for each node. For example, for node 1 we 
have:

1,3 1,4  75x x+ ≤

Similarly, we write constraints for the other six nodes. Note that the net flow 
for nodes 3 and 4 should be zero as these are transshipment nodes.

All the flights to and from node 4 can carry a maximum of 50 tons. Therefore, 
all the flow to and from this node must be limited to 50 as follows:

1,4

2,4

4,5

4,6

4,7

50

50

50

50

50

x

x

x

x

x

≤

≤

≤

≤

≤

Solving this problem using software generates a total minimum cost of $1,250. 
The solution for this problem is presented in Figure 2.14.

Figure 2.14	 Solution to minimum cost flow
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The general model is mathematically expressed as follows (Bazaraa et al. 
1990).

Sets

M	 = Set of nodes

Index

i,j,k	 = Index for nodes

Parameters

ci,j	 = Unit cost of flow from node i to the node j
 bi	  = Amount of supply/demand for node i.
Li,j	 = Lower bound on flow through arc (i,j)
Ui,j	 = Upper bound on flow through arc (i,j)

Decision Variable

xi,j	 = Amount of flow from node i to node j

Objective Function

, ,i j i jMinimize c x
i M j M
∑ ∑
∈ ∈

	 (2.5)

Subject to

               1, 2, ..,, ,x x b i Mi j k i ij M k M
− = ∀ =∑ ∑

∈ ∈
 	 (2.6)

, , ,i j i j i jL x U≤ ≤         	 (2.7)

The objective function (2.5) attempts to minimize the total cost of the network. 
Constraints (2.6) satisfy the requirements of each node by determining the amount 
of inflow and outflow from that node. The set of constraints (2.7) impose the lower 
and upper-bound restrictions along the arcs.

Maximum Flow Problem

The Maximum Flow problem is a special case of the Minimum Cost flow problem. 
It attempts to find the maximum amount of flow that can be sent from one node 



Airline Operations and Scheduling16

(source node) to another (destination node) when the network is capacitated, that 
is, the arcs in the network have a capacity restriction.

Example

This example is adapted from Winston and Venkataramanan (2003). An airline 
must determine the number of daily connecting flights that can be arranged between 
Daytona Beach (DAB), Florida, and Lafayette (LAF), Indiana. Connecting flights 
must stop in Atlanta (ATL), Georgia, and then make one more stop in either Chicago 
(ORD), Illinois, or Detroit (DTW), Michigan. Owing to its current policies with 
these airports, the airline has a maximum number of daily flights which it can 
operate between the city pairs shown in Table 2.1.

The airline wants to determine how to maximize the number of connecting 
flights daily from Daytona Beach, FL, to Lafayette, IN, respecting the current 
restrictions.

The following network represents this problem with arcs showing maximum 
daily flights along the city pairs.

Table 2.1	 Maximum number of flights per city-pair for Shuttle Hopper 
Airways

City-Pairs Maximum number of daily flights

DAB - ATL 3

ATL - ORD 2

ATL - DTW 3

ORD - LAF 1

DTW - LAF 2

Figure 2.15	 Network presentation from source to destination

5

3

1

2

3

4
1

2

2

3

Daytona Beach, FL

Atlanta, GA

Detroit, MI
Lafayette, IN

Chicago, IL



Network Flows and Integer Programming Models 17

To formulate the problem, let us assume the following decision variables:

xi,j	 = Number of flights (integer) from node i to node j
f	 = Number of daily flights from DAB to LAF

In this problem, the objective is to maximize the daily flights between DAB 
and LAF. Therefore:

Maximise f

Similar to the Shortest Path Problem, we have a set of constraints for source, 
transshipment and destination nodes:

Source node: DAB is our source node. f is the total flow leaving DAB, therefore:

x1,2 = f

Transshipment nodes: We write one constraint for each transshipment node. 
For example, for node 2 (ATL) we have:

1,2 2,3 2,4- - 0x x x =

Similarly we write transshipment constraints for other nodes 3 and 4.
Destination node: The same number of daily flights f departing from DAB 

should now arrive at destination node LAF.

4,5 3,5x x f+ =

Arc capacity: The last set of constraints address the capacity of arcs as 
follows:

1,2

2,3

2,4

3,5

4,5

3

2

3

1

2

x

x

x

x

x

≤

≤

≤

≤

≤

Solving this problem generates a maximum flow of three daily flights between 
DAB and LAF as follows:

1 flight assigned to the DAB-ATL-ORD-LAF route, and;
2 flights assigned to the DAB-ATL-DTW-LAF route.

•
•
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The general model is mathematically expressed as follows (Ahuja et al. 
1993):

Sets

M	 = Set of nodes

Index

i,j,k	 = Index for nodes

Parameters

Li,j	 = Lower bound on flow through arc (i,j)
Ui,j	 = Upper bound on flow through arc (i,j)
m 	 = Destination node

Decision Variables:

xi,j	 = Amount of flow from node i to node j
f	 = Amount of flow from source node to destination node

Objective Function

Maximize f 	 (2.8)

Subject to

1,

, ,

                               Origin Node                                      

   0         Transshipment nodes                             
i M

(2.9)j

i j j k

x f
j M

x x
k M

= ⇔∑
∈

− = ⇔∑ ∑
∈ ∈

,

, , ,

                               Destination node                                 

 (2.10)

(2.11)

(2.1

i m

i j i j i j

x f
i M

L x U

= ⇔∑
∈

≤ ≤ 2)

The objective function (2.8) attempts to maximize flow from the source node 
(node 1) to the destination node (node m). The set of constraints (2.9) and (2.11) 
impose the outflow and inflow restrictions on the source and destination nodes. 
All other nodes are transshipment nodes. The set of constraints (2.10) imposes this 
restriction. Finally, constraints (2.12) restrict the flow along the arcs based on the 
imposed capacity.
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Multi-Commodity Problem

All the network models explained so far assume that a single commodity or type 
of entity is sent through a network. Sometimes a network can transport different 
types of commodities. The multi-commodity problem seeks to minimize the 
total cost when different types of goods are sent through the same network. The 
commodities may either be differentiated by their physical characteristics, or 
simply by certain attributes. The multi-commodity problem is extensively used 
in transportation industry. In the airline industry, the multi-commodity model is 
adopted to formulate crew pairing and fleet assignment models.

Example

We modify the example that was presented for the Minimum Cost Flow problem 
discussed earlier to address the multi-commodity model formulation. Figure 2.16 
presents the modified example:

As we see in this figure the scenario is very similar to the earlier case. The only 
difference is that instead of having only one type of cargo, in this case we have two 
types (two commodities). The numbers next to each node represent the supply/
demand for each cargo at that node. As an example, node 1 supplies 40 and 35 tons 
of cargo 1 and 2 respectively. The transportation costs per ton are also similar. We 
want to determine how much from each cargo should be routed on each arc so that 
the total transportation cost is minimized.

To formulate this problem we assume the following decision variable:

xi,j,k	 = Amount of flow from node i to node j for commodity k

Figure 2.16	 Network presentation for multi-commodity problem
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In this decision variable the indices i and j represent the nodes (i,j = 1,.,7) and 
k represents the type of commodity (k = 1,2).

The objective function is therefore:

  1,3,1 1,3,2 1,4,1 1,4,2   5  5 8  8  ...Minimize x x x x+ + + +

We need to write one constraint for each node. For example, for node 1 we 
have:

1,3,1 1,4,1

1,3,2 1,4,2

  40

  35

x x

x x

+ ≤

+ ≤
 

We write similar constraint for the other six nodes.
Recall that all the flights to and from node 4 can carry a maximum of 50 tons. 

Therefore:

1,4,1 1,4,2

2,4,1 2,4,2

4,5,1 4,5,2

4,6,1 4,6,2

4,7,1 4,7,2

50

50

50

50

50

x x

x x

x x

x x

x x

+ ≤

+ ≤

+ ≤

+ ≤

+ ≤

Solving this problem using software generates a total minimum cost of $1,150. 
The solution for this problem is presented in Figure 2.17.

Figure 2.17	 Solution to multi-commodity problem
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The general model is mathematically expressed as follows (Ahuja et al. 
1993):

Sets

M	 = Set of nodes
K	 = Set of commodities

Indices

i,j	 = Index for nodes
k	 = Index for commodities

Parameters

ci,j,k	 = Unit cost of flow from node i to node j for commodity k,
bi,k	 = Amount of supply/demand at node i for commodity k
Ui,j	 = Flow capacity on arc (i,j)

Decision Variable

xi,j,k	 = Amount of flow from node i to node j for commodity k

Objective Function

, , , ,  
k K i M j M

i j k i j kMin c x
∈ ∈ ∈
∑∑ ∑ 	 (2.13)

Subject to

, , , , , For all                                                  (2.14)
t M t M

i t k t i k i kx x b i M and k K
∈ ∈

− = ∈ ∈∑ ∑  

,, , For all j                                          (2.15)                             
k K

i ji j kx u i M and M
∈

≤ ∈ ∈∑  

In this model, the objective function (2.13) seeks to minimize the total network 
cost over all nodes and all commodities. The set of constraints (2.14) and (2.15) 
satisfies the supply/demand of the node and imposes capacity constraints on the 
arc.

Integer Programming Models

Integer programming models relate to certain types of linear programming in 
which all of the decision variables are required to be non-negative integers. The 
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following represents a brief introduction to a small number of integer programming 
models adopted in the following chapters.

Set-Covering/Partitioning Problems

Set-covering problems relate to cases where each member of one set should be 
assigned/matched to member(s) of another set. Examples include the assignment 
of crew members to flights, aircraft to routes, and so on. The objective in a set-
covering problem is to minimize the total cost of this assignment.

Example

The following is an example of set-covering adapted and modified from Winston 
and Venkataramanan (2003).

An airline wants to design its ‘hub’ system (hub-and-spoke systems are 
discussed in Chapter 3). Each hub will be used for connecting flights to and from 
cities within 1,000 miles of the hub. The airline wants to serve the following cities: 
Atlanta, Boston, Chicago, Denver, Houston, Los Angeles, New Orleans, New 
York, Pittsburgh, Salt Lake City, San Francisco, and Seattle. The airline wants to 
determine the smallest number of hubs it will need in order to cover all of these 
cities. By cover, we mean each city should be within 1,000 miles of at least one 
hub. Table 2.2 lists the distances between the cities.

Table 2.2	 Distance-matrix between cities

1 2 3 4 5 6 7 8 9 10 11 12

A T BO CH DE HO LA NO NY PI SL SF SE

1 AT 0 1037 674 1398 789 2182 479 841 687 1878 2496 2618

2 BO 1037 0 1005 1949 1804 2979 1507 222 574 2343 3095 2976

3 CH 674 1005 0 1008 1067 2054 912 802 452 1390 2142 2013

4 DE 1398 1949 1008 0 1019 1059 1273 1771 1411 504 1235 1307

5 HO 789 1804 1067 1019 0 1538 356 1608 1313 1438 1912 2274

6 LA 2182 2979 2054 1059 1538 0 1883 2786 2426 715 379 1131

7 NO 479 1507 912 1273 356 1883 0 1311 1070 1738 2249 2574

8 NY 841 222 802 1771 1608 2786 1311 0 368 2182 2934 2815

9 PI 687 574 452 1411 1313 2426 1070 368 0 1826 2578 2465

10 SL 1878 2343 1390 504 1438 715 1738 2182 1826 0 752 836

11 SF 2496 3095 2142 1235 1912 379 2249 2934 2578 752 0 808

12 SE 2618 2976 2013 1307 2274 1131 2574 2815 2465 836 808 0
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We can now revise Table 2.2 above to identify which cities are covered by 
each hub. Simply replace all the distances in the above table by 1 if the distance 
is less than 1,000 miles (covered) and 0 otherwise. Table 2.3 presents the revised 
matrix.

To formulate this problem, we define the following binary decision variable:

1 if city  (1,2,..,12) is selected as a hub
 

0 otherwisej

j
x 
= 


We want to minimize the number of hubs, therefore the objective function is:

1 2 12 ...Minimize x x x+ + +

Each city must be covered by at least one hub. Atlanta (Index 1), for example, 
is covered by cities 1, 3, 5, 7, 8, and 9 (see Table 2.3). Therefore, the constraint 
for Atlanta is:

1 (Atlanta)5 71 3 8 9x + x + x + x + x + x ≥

Note that we use the greater than or equal-to sign because a city can be covered 
by more than one hub. Similarly for Boston (Index 2), we have:

2 8 9 1 (Boston)x x x+ + ≥

Hence, we can write similar constraints for all the other 10 cities.

Table 2.3	 Binary-matrix showing cities covered by each hub

 1 2 3 4 5 6 7 8 9 10 11 12
AT BO CH DE HO LA NO NY PI SL SF SE

1 AT 1 0 1 0 1 0 1 1 1 0 0 0
2 BO 0 1 0 0 0 0 0 1 1 0 0 0
3 CH 1 0 1 0 0 0 1 1 1 0 0 0
4 DE 0 0 0 1 0 0 0 0 0 1 0 0
5 HO 1 0 0 0 1 0 1 0 0 0 0 0
6 LA 0 0 0 0 0 1 0 0 0 1 1 0
7 NO 1 0 1 0 1 0 1 0 0 0 0 0
8 NY 1 1 1 0 0 0 0 1 1 0 0 0
9 PI 1 1 1 0 0 0 0 1 1 0 0 0
10 SL 0 0 0 1 0 1 0 0 0 1 1 1
11 SF 0 0 0 0 0 1 0 0 0 1 1 1
12 SE 0 0 0 0 0 0 0 0 0 1 1 1
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Solving this binary integer program using software generates three hubs as 
follows:

Atlanta covers Chicago, Houston, New Orleans, New York, and Pittsburgh;
Pittsburgh covers Atlanta, Chicago, Boston, and New York;
Salt Lake City covers Denver, Los Angeles, San Francisco, and Seattle.

We see that some cities are covered by more than one hub. As an example, 
Chicago is covered by both Atlanta and Pittsburgh hubs.

In the case where we want to cover each city by exactly one hub, all the 
inequalities in the above model become equal signs. This special case where each 
member of one set is covered exactly once is called set-partitioning.

If we run the above program with this restriction, that is, changing all greater 
than or equal to signs with strictly equal to signs, we find that the minimum number 
of hubs to cover all cities exactly once is also three. The hubs are:

Boston covers New York and Pittsburgh
New Orleans covers Atlanta, Chicago, and Houston
Salt Lake City covers Denver, Los Angeles, San Francisco, and Seattle

Therefore, as the name implies, set-partitioning attempts to make disjoint sets 
such that no member appears in two sets.

The general model for set-covering is as follows (Ignizio and Cavalier 1994):

Sets

M	 = Members of set 1
N	 = Members of set 2

Indices

i	 = Index for set 1
j	 = Index for set 2

Parameters

cj	 = Cost associated with selecting member j

,
1 if  member  covers member 
0 otherwisei j

j i
a 

= 


Decision Variable

1 if member  is selected
0 otherwisej

j
x 

= 

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The integer binary programming model is as follows:

Objective Function

                                                                                                                     (2.16)
j N

j jMin c x
∈
∑

Subject to

, 1  For all                                                       (2.17)
j N

i j ja x i M
∈

≥ ∈∑  

In this model, the objective function (2.16) seeks to minimize the total covering 
cost. The set of constraints (2.17) imposes that each member of set 1 is covered by 
at least one member of set 2.

The set-partitioning formulation of the above problem is similar, except that 
(2.17) is now rewritten with a strictly equal to sign as follows:

, =1      For all 
j N

i j ja x i M
∈

∈∑
Throughout this book both set-covering and set-partitioning models are used 

extensively. In these models references are made to matrices. By a set-covering or 
set-partitioning matrix, we mean a matrix of ai,j parameters where the members of 
one set (index i) are represented by rows and members of the other set (index j) 
are represented by columns as shown below. In this matrix a value of 1 means that 
the specific member in set 1 is covered by the specific member in set 2. A value of 
0 means that this coverage does not exist.

                      Members of set 2 indexed by   
 1   0  ...........

Members of
 0    0   .........

     set 1 indexed by     
........
  1   1    ..........

j

i

 
  
      

 

Traveling Salesman Problem

The Traveling Salesman problem is a classical problem in operations research, 
and has received considerable attention in the literature. It has vast applications 
in sequencing series of jobs or routes. The Traveling Salesman problem is as 
follows:

Starting from his hometown, a traveling salesman wants to visit a series of 
cities just once, and finally return to his hometown. The problem is to determine 
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the best sequence for visiting these cities so that the total cost (total distance or 
total time traveled) is minimized.

Despite the simplicity of the problem’s scope, the solution to this problem 
is very challenging and falls among one of the most computationally intensive 
combinatorial problems (discussed further in Chapter 13). To clarify this problem, 
consider the following example.

Example

A cargo airline based in Atlanta (ATL) wants to determine the sequence of flights 
to cities in its network such that the total distance flown in its cycle is minimized. 
A restriction to this operation is that the flight sequences must start and end in 
Atlanta. The cities in the airline’s network, and their distances are presented in 
Table 2.4.

This case can be formulated as the Traveling Salesman problem. We define the 
following binary decision variable:

,
1 if city j should immediately follow city i
0 otherwisei jx






=

The objective function is therefore to minimize the total distances flown:

1,2 1,3 702 454 ...Minimize x x+ +

The first set of constraints is to make sure that each city is visited only once. 
For example, for Atlanta we have:

1,1 2,1 3,1 4,1 5,1 6,1 7,1 1x x x x x x x+ + + + + + =

Table 2.4	 Sequence of flights to cities in cargo airline network

1 2 3 4 5 6 7

ATL ORD CVG HOU LAX MON JFK

1 ATL - 702 454 842 2396 1196 864

2 ORD - 324 1093 2136 764 845

3 CVG - 1137 2180 798 664

4 HOU - 1616 1857 1706

5 LAX - 2900 2844

6 MON - 396

7 JFK -
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We write similar constraints for the other six cities.
The second set of constraints must route the aircraft after visiting a city. Without 

these constraints, the aircraft will be stuck in one city. The constraint to route the 
aircraft after visiting Atlanta, for example, is as follows:

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1x x x x x x x+ + + + + + =

We write similar constraints for the other six cities as well.
Solving this problem generates the following solutions:

This solution shows three disjointed sequences. It does not offer the expected 
complete tour sequence among all of the seven cities. This is a common difficulty 
with the Traveling Salesman problem. Instead of one tour of all the cities, the 
solution generates sub-tours. To address this difficulty, the common approach is to 
prevent the formation of sub-tours. First, the problem is solved, and then we add 
additional constraints to break these sub-tours, if they are formed. As an example, 
we have the JFK-MON-JFK sub-tour in our solution. To break this sub-tour we 
add the following constraint in our model:

6,7 7,6 1x x+ ≤

Figure 2.18	 Solution showing three disjoint sequences or sub-tours

Route 3 
 

HOU LAX HOU 

Route 2  

JFK MON JFK 

ATL ORD CVG ATL 

Route 1 
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We solve the problem once again, adding this new constraint. The following 
solution is generated:

We now have two sub-tours. Hence, we add the following constraint to break 
the second sub-tour:

5,4 4,5 1x x+ ≤

Adding this constraint results in the following complete tour solution, presented 
in Table 2.5.

Figure 2.19	 Solution showing two sub-tours after adding first breaking 
constraint

ATL JFK MON 

Route 4 
 

ORD CVG ATL 

HOU LAX HOU 

Route 5 
 

Table 2.5	 Final tour sequence of flights with distances

Origin Destination Miles

ATL CVG 454

CVG JFK 664

JFK MON 396

MON ORD 764

ORD LAX 2136

LAX HOU 1616

HOU ATL 842

TOTAL 6872
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The general model for the Traveling Salesman Problem, adapted from Ignizio 
and Cavalier (1994), is as follows:

Sets

N	 = Number of cities

Index

i,j	 = Index for cities

Parameters

ci,j	 = Cost of traveling from city i to city j

Decision Variable

,
1 if city  follows city 
0 otherwisei j

j i
x 

= 


The integer programming model is as follows:

Objective Function

, ,                                                                                                              (2.18)
i N j N

i j i jMin c x
∈ ∈
∑∑  

Subject to

,

,

1 For all 1,..., N    

1 For all 1,..., N    

     =                                                                                       (2.19)

    =                                     
j N

i N

i j

i j

x i

x j
∈

∈

=

=

∑

∑

, 1  For , 2,3,..,

                                                  (2.20)

                                                      (2.21)i j i jt t Nx N i j N− + < − =

 

In this model, the objective function (2.18) seeks to minimize the total traveling 
cost. The set of constraints (2.19) ensure that each city i is followed by exactly one 
city j. Similarly, the set of constraints (2.20) ensures that each city j is visited 
exactly once. The set of constraints (2.21) imposes the restriction on the sub-tours. 
Variables ti and tj are arbitrary fixed numbers used for breaking the sub-tours.
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Chapter 3 

Flight Scheduling

Introduction

Flight scheduling is the starting point for all other airline planning and operations 
(Barnhart 2008, Yu and Thengvall 2002). The flight schedule is a timetable 
consisting of what cities to fly to and at what times. An airline’s decision to offer 
certain flights will mainly depend on market demand forecasts, available aircraft 
operating characteristics, available manpower, regulations, and the behavior of 
competing airlines. The number of airports and flight frequencies served by an 
airline usually expresses and measures the physical size of the airline network (Janic 
2000). For large air carriers, the flight-scheduling group and route development 
may contain more than 30 employees (Kuzminski 1999).

Table 3.1 shows a small portion of the daily flight schedule for Delta Air Lines. 
The level of detail in constructing the flight schedule varies among the airlines, but 
it will be a complete schedule for a full cycle (Grandeau et al. 1998). A cycle is 
normally one day for domestic and one week for international services.

The schedule construction phase begins with the route system. The cities in 
the airline network determine the route system. The economics of an air carrier 
are driven by its route system. All the short- and long-term costs attributed to fleet, 
avionics, labor contracts, and operations are tied to the route systems of an airline. 
The marketing department plays an important role in the construction of this 
schedule. Before the 1978 Airline Deregulation Act, airlines had to fly routes as 
assigned by the Civil Aeronautics Board (CAB) regardless of the demand for the 
service! During this period, most airlines emphasized long point-to-point routes. 
Since deregulation, airlines have gained the freedom to choose which markets to 
serve and how often to serve them. This change has led to a fundamental shift 
in most airlines’ routing strategies from point-to-point flights to hub-and-spoke 
oriented networks (Etschamaier and Mathaisel 1985).

The schedule construction phase is a rough first schedule, which requires 
extensive modification to be both operationally feasible and economically viable 
(Etschamaier and Mathaisel 1985).

Hub-and-Spoke

Most airlines adopt some variation of a hub-and-spoke system. Major carriers 
operate up to five hubs, while smaller ones typically have one hub located at the 
center of the region they serve. Each hub has a set of cities that it serves, normally 
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referred to as spokes. Figure 3.1 shows an airline network with Chicago O’Hare 
and Washington Dulles as hubs.

Air carriers normally assign large capacity non-stop flights between their hubs. 
Smaller airplanes are assigned to hub-and-spoke flights. Major advantages for the 
airlines adopting hub-and-spoke operations include higher revenues, higher efficiency, 
and lower number of aircraft needed as compared with point-to-point operations. 
Disadvantages of these operations include discomfort to the passengers, as they may 
require multiple connecting flights at different hubs, congestions and delays at hub 
airports, and higher personnel and operational costs for the airlines (Radnoti 2002).

Route Development and Flight-Scheduling Process

There are two types of route development activities: strategic and tactical. 
Strategic development focuses on future schedules which may range from a few 
months to ten years depending on the air carriers’ policies. Strategic developments 
respond to major changes in both business and operational environments. Tactical 
strategies, on the other hand, focus on short-term changes to the schedule and 

Table 3.1	 A sample flight schedule

Carrier Depart Arrive

Flight # Time Airport Time Airport

Delta 442 6:20 AM ATL 7:39 AM MCO

Delta 171 6:25 AM ATL 7:46 AM DFW

Delta 193 8:55 AM CVG 10:28 AM ATL

Delta 353 4:35 PM CVG 6:10 PM ATL

Delta 267 5:45 AM DFW 8:52 AM ATL

Delta 1264 7:45 PM DFW 10:53 PM ATL

Delta 1981 3:00 PM JFK 5:28 PM ATL

Delta 137 5:30 PM JFK 8:40 PM LAX

Delta 292 7:00 AM LAX 2:20 PM ATL

Delta 1886 3:15 PM LAX 10:28 PM ATL

Delta 929 7:35 AM MCO 9:13 AM ATL

Delta 622 10:05 AM MCO 11:35 AM ATL

Delta 2246 8:20 AM MIA 10:13 AM ATL

Delta 858 5:20 PM MIA 7:22 PM ATL

Source: www.delta.com
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routes, sometimes on a daily basis. This is done by constantly monitoring markets, 
competitors, and operations. The tactical strategy includes adding, dropping 
flights, and making changes to city-pair markets and their frequencies.

The following section briefly describes the phases of developing a flight 
schedule and the decisions made at each phase.

60+ months 36–12 months 12–3 months 4–1 months

Long range 
Planning

Market 
Evaluations

Schedule 
Optimization

Schedule issues

Long-Range Schedule Planning

Fleet diversity
Manpower planning
Protecting hubs
Adding or changing hubs
Adequate facilities at airports.

Market Evaluations

Frequency and time of service to each market
Adding new and dropping existing markets

•
•
•
•
•

•
•

Figure 3.1	 A sample airline network with two hubs and nine spokes
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Pricing policies
Predicting competitors’ behaviors
Code-sharing agreements and alliances.

Schedule Optimization

Developing initial schedule based on available fleet
Assigning aircraft to flights
Evaluating facilities and manpower capabilities.

Schedule Issues

Crew issues
Arrival departure times
Maintenance issues.

As described earlier, flight schedule construction is the basis for all other operations. 
It is therefore important to include detailed airline operations in the process of 
flight scheduling. This, however, creates a complex system with a large number 
of variables in the model (Grosche et al. 2001). Owing to its complexity it is 
almost impossible to formulate the complete scheduling construction problem as 
a mathematical model. As a result, the schedule construction process is performed 
through a structured planning process involving various parts of the airline. This 
planning process is decomposed into sub-problems with less complexity, which 
are solved sequentially. Chapters 4 to 6 present these sub-problems.

One of the major drawbacks of this approach is that an individual sub-problem’s 
solution might not be good for the overall airline operations (Papadakos 2009). 
To overcome this difficulty, the process of flight scheduling is performed on a 
feedback system. That is, if the solutions to some sub-problems are not desirable, 
the flight schedules are altered to see the impact of such changes. Figure 3.2 shows 
the process of flight schedule development and the hierarchy of various phases of 
airline planning. The chapters to follow show how this process is done.

Load Factor and Frequency

Average load-factor plays an important role in determining the frequency of flights 
between city pairs. Load factor is the average percentage of aircraft seats which 
are filled with passengers. The parameters affecting load factors include flight 
times, frequency, type of service and, of course, fare levels. It should be noted 
that a higher load-factor does not necessarily translate into higher revenues for 
the airlines. As an example, Table 3.2 shows the fares, expected demands and load 
factors for a 150-seat Airbus A-320. According to this table, an 85% load factor 
generates higher revenues of more than 100% for the airline! Demand and revenue 
management will be further discussed in Chapter 8.

•
•
•

•
•
•

•
•
•
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Figure 3.2	 The hierarchy of airline planning

Flight Schedule 
� Long Range Planning  
� Market Evaluations 
� Schedule Optimization 
� Schedule Issues 

Fleet Assignment/ 
Fleet Routing 

Aircraft Maintenance 

Crew Assignment 

Revenue Management 

Gate Assignment 

Irregular Operations 

Planning Phases 

Operational Phases 

Strategic 

Tactical 

Long Term 

Short Term 

 

Table 3.2	 Load factor and expected revenue

Average 
fare

Expected number 
of passengers

Load factor Expected 
revenue

$240 100 0.67 $24,000

$220 115 0.77 $25,300

$200 128 0.85 $25,600

$180 140 0.93 $25,200

$160 150 1.00 $24,000
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The load factor is utilized to determine the frequency between city pairs. Let 
the forecasted daily number of passengers between two cities be PAX and the 
airline’s policy on average load-factor be LF. Further, let us assume the average 
aircraft capacity is CAP. Then the frequency (FREQ) of flights between these two 
cities is determined by:

PAXFREQ
CAP LF

=
× 	

(3.1)

As implied by the above equation, the load factor and frequency have an inverse 
relationship. It is up to the marketing and scheduling departments to actually assign 
these frequencies between city pairs to different times of the day/week.

Case Study

In this section a fictitious airline is presented. We will use this airline in the following 
chapters to introduce the various phases of planning within the airlines.

Ultimate Air is a new airline that provides service to the most important 
domestic business destinations within the United States from its hub at JFK in 
New York. The cities serviced from JFK are Boston (BOS), Los Angeles (LAX), 
San Francisco (SFO), Miami (MIA), Atlanta (ATL), Washington D.C. (IAD), and 
Chicago (ORD). Figure 3.3 shows the airline’s network.

Based on forecasts, the airline’s load-factor policy, and marketing analysis, 
the airline has proposed providing three daily round-trip flights from JFK to each 

Figure 3.3	 Ultimate Air route network
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city in the network. It has also developed a first draft of its schedule for the next 
quarter. The complete flight schedule route, incorporating the 42 flights per day, is 
presented in Table 3.3. All the arrival and departure times are local times.

Table 3.3	 Flight schedule for Ultimate Air

Flight no. Origin Departure time Destination Arrival time Flight hours

101 LAX 05:00 JFK 13:30 5.5

104 SFO 05:05 JFK 13:35 5.5

116 BOS 06:15 JFK 07:45 1.5

140 JFK 06:20 IAD 07:20 1

125 JFK 07:25 SFO 09:55 5.5

107 ORD 07:30 JFK 10:30 2

122 JFK 07:35 LAX 10:05 5.5

137 JFK 07:40 BOS 09:10 1.5

110 ATL 08:10 JFK 10:40 2.5

119 IAD 08:15 JFK 09:15 1

113 MIA 09:10 JFK 12:10 3

131 JFK 09:30 ATL 12:00 2.5

102 LAX 09:45 JFK 18:15 5.5

105 SFO 09:50 JFK 18:20 5.5

117 BOS 10:00 JFK 11:30 1.5

128 JFK 10:05 ORD 11:05 2

134 JFK 10:35 MIA 13:35 3

141 JFK 12:00 IAD 13:00 1

108 ORD 12:20 JFK 15:20 2

138 JFK 12:30 BOS 14:00 1.5

111 ATL 13:10 JFK 15:40 2.5

120 IAD 14:25 JFK 15:25 1

114 MIA 14:30 JFK 17:30 3

132 JFK 14:35 ATL 17:35 2.5

118 BOS 15:00 JFK 16:30 1.5

129 JFK 15:05 ORD 16:05 2

135 JFK 15:10 MIA 18:10 3
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Flight no. Origin Departure time Destination Arrival time Flight hours

142 JFK 15:15 IAD 16:15 1

103 LAX 15:20 JFK 23:50 5.5

106 SFO 15:25 JFK 23:55 5.5

126 JFK 15:30 SFO 18:00 5.5

123 JFK 16:00 LAX 18:30 5.5

109 ORD 17:10 JFK 20:10 2

112 ATL 18:00 JFK 20:30 2.5

133 JFK 18:05 ATL 20:35 2.5

136 JFK 18:10 MIA 21:10 3

115 MIA 18:15 JFK 21:15 3

121 IAD 18:30 JFK 19:30 1

124 JFK 19:00 LAX 21:30 5.5

127 JFK 20:00 SFO 22:30 5.5

130 JFK 21:00 ORD 22:00 2

139 JFK 21:30 BOS 23:00 1.5

Table 3.3	 Concluded

Table 3.4 presents the demand distribution for each flight as well as distances 
between cities. It is assumed that demand for each flight is normally distributed 
with the given means and standard deviations.

Table 3.4	 Destination in miles, demand means and standard deviations 
for Ultimate Air network

Flight no. Origin Destination Distance
(miles) Demand Standard

deviation

101 LAX JFK 2475 175 35

102 LAX JFK 2475 182 36

103 LAX JFK 2475 145 29

104 SFO JFK 2586 178 35

105 SFO JFK 2586 195 39

106 SFO JFK 2586 162 32

107 ORD JFK 740 165 33
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Flight no. Origin Destination Distance
(miles) Demand Standard

deviation

108 ORD JFK 740 182 36

109 ORD JFK 740 170 34

110 ATL JFK 760 191 38

111 ATL JFK 760 171 34

112 ATL JFK 760 165 33

113 MIA JFK 1090 198 39

114 MIA JFK 1090 182 36

115 MIA JFK 1090 168 33

116 BOS JFK 187 115 23

117 BOS JFK 187 146 29

118 BOS JFK 187 120 24

119 IAD JFK 228 135 27

120 IAD JFK 228 109 21

121 IAD JFK 228 98 19

122 JFK LAX 2475 150 30

123 JFK LAX 2475 145 29

124 JFK LAX 2475 125 25

125 JFK SFO 2586 148 29

126 JFK SFO 2586 138 27

127 JFK SFO 2586 121 24

128 JFK ORD 740 132 26

129 JFK ORD 740 129 25

130 JFK ORD 740 117 23

131 JFK ATL 760 168 33

132 JFK ATL 760 160 32

133 JFK ATL 760 191 38

134 JFK MIA 1090 165 33

135 JFK MIA 1090 184 36

136 JFK MIA 1090 192 38

Table 3.4	 Continued
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Flight no. Origin Destination Distance
(miles) Demand Standard

deviation

137 JFK BOS 187 147 29

138 JFK BOS 187 135 27

139 JFK BOS 187 146 29

140 JFK IAD 228 105 21

141 JFK IAD 228 115 23

142 JFK IAD 228 118 23

Table 3.4	 Concluded

We will use the above flight schedule as a basis to derive the planning for the 
fleet assignment as well as aircraft routing in the following chapters.
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Chapter 4 

Fleet Assignment

Introduction

Following the construction of a flight schedule and its corresponding network, 
the next step is to assign the right fleet type to each flight in the schedule. The 
task of fleet assignment is to match each aircraft type in the fleet with a particular 
route in the schedule. It should be noted that this phase of planning concerns only 
fleet type and not a particular aircraft. The goal of fleet assignment is to assign as 
many flight segments as possible in a schedule to one or more fleet types, while 
optimizing some objective function and meeting various operational constraints 
(Abara 1989). Fleet assignment should not be confused with fleet planning (Clark 
2001). Fleet planning is a strategic decision normally undertaken when an airline 
is conceived, and concerns the number and type of aircraft needed for operation. It 
entails the process of acquiring the appropriate aircraft-types in order to serve the 
anticipated markets based on the airline’s strategic plan. Fleet planning addresses 
fleet size and fleet mix. In fleet assignment, however, we assume that the airline is 
operational with the existing aircraft in its fleet, and the problem is to assign a fleet 
type to each flight leg.

Airlines typically operate a number of different fleet types. Each fleet type 
has different characteristics and costs, such as seating capacity, landing weights, 
crew, maintenance, and fuel (Yu and Thengvall 1999). Table 4.1 presents the fleet 
diversity for select airlines. Maintenance cost is a major factor that persuades 
airlines to be less diverse when planning for their fleet. Fleet diversity requires the 
airlines to have skilled crew and personnel for each fleet type, plan for different 
maintenance checks, and have less flexibility in replacing an aircraft when a failure 
occurs. Sherali et al. (2006) provide an overview of fleet assignment models 
integrated with maintenance planning and crew scheduling.

Indicator Definitions

Before addressing the mathematical model for the fleet assignment problem, some 
terms commonly used in the airline industry are explained:

ASM (ASK): Available Seat Miles (Kilometers) represents the annual airline 
capacity, or supply of seats, and refers to the number of seats available for 
passengers during the year multiplied by the number of miles (kilometers) that 
those seats are flown.

RPM (RPK): Revenue Passenger Miles (Kilometers) represents the total 
number of paying passengers flown on all flight segments multiplied by the number 
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of miles (kilometers) that those passengers are flown. RPM (RPK) is considered to 
be demand. It should be noted that RPM (RPK) is typically less than ASM (ASK). 
This is because airlines will not have all the seats filled on all flight segments 
during the entire year.

Yield: Yield is how much an airline makes per revenue passenger mile 
(kilometer). In other words, yield is how much an airline makes per mile (kilometer) 
on each seat sold. Yield is obtained by dividing total operating revenue divided by 
RPM (RPK).

RASM (RASK): Revenue per Available Seat Mile (Kilometer), or ‘unit revenue’ 
represents how much an airline made across all the available seats that were 
supplied. RASM (RASK) is calculated by dividing the total operating revenue 
by available seat mile (kilometer) or ASM (ASK). Since ASM (ASK) is generally 
larger than RPM (RPK), yield has a higher value than RASM (RASK).

CASM (CASK): Cost per Available Seat Mile (Kilometer) or ‘unit cost’ is the 
average cost of flying one seat for a mile (kilometer). CASM (CASK) is calculated 
by dividing the total operating cost by ASM (ASK).

Table 4.2 presents the above measures for select US airlines differentiated by 
market segments.

The above figures are total measures across the various market segments and 
all fleets. Table 4.3 shows average ASM, RPM, and CASM by fleet type.

Table 4.2	 2008 domestic operations key performance indicators for major 
US carriers

Carrier

ASM RPM RASM CASM Yield

(million) (million) (cents) (cents) (cents)

Airtran 23,814.456 18,784.437 10.13 8.00 12.85

Alaska 21,815.762 16,742.678 10.80 7.76 14.07

American 101,855.071 83,313.426 10.89 8.22 13.32

Continental 52,987.792 44,215.689 10.95 7.79 13.12

Delta 128,976.090 105,697.565 10.73 7.17 13.10

JetBlue 32,435.674 26,069.180 9.45 6.69 11.76

Southwest 103,486.264 73,639.652 9.93 6.48 13.96

United 135,859.306 110,061.748 10.90 8.62 13.45

US Airways 74,148.295 60,567.144 10.77 8.51 13.18

Source: Form41 iNET.
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Table 4.3	 US major carriers’ unit revenues and expenses by fleet-type

Aircraft ASM (million) RPM (million) CASM*

A300-600 10,239.113 8,056.686 7.5

A319 28,714.442 23,080.522 7.2

A320 43,670.093 36,306.733 6.27

A321 7,785.539 6,582.864 5.26

A330 24,786.437 20,929.953 4.65

B717-200     12,841.303 9,581.749 7.58

B737-200 15.110 9.889 N/A

B737-300 53,346.328 39,261.932 7.45

B737-400 12,301.534 9,226.063 7.7

B737-500 14,931.963 11,715.791 8.2

B737-700 83,872.844 62,853.756 4.9

B737-800/900 71,276.880 57,523.046 5.46

B747-200 917.667 664.746 9.16

B747-400 40,405.191 33,848.281 5.61

B757-200 139,883.555 116,023.006 5.95

B757-300 14,372.536 12,175.073 5.11

B767-200 12,786.649 10,378.550 6.12

B767-300 78,611.122 64,333.916 5.79

B767-400 19,667.409 16,325.545 4.97

B777 77,297.169 63,606.785 6.3

DC-10-30 524.388 308.648 6.8

DC-9 10,417.344 8,007.598 10.2

EMB-190 333.023 250.417 9.70

L-1011-500 1,242.207 704.213 7.70

MD-80 71,094.571 57,170.452 7.31

* CASM = Total of type × aircraft operating cost / Total of type × aircraft ASM.
Source: The Airline Monitor, August 2008 & Back Aviation Solutions, Form41 iNET.
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Mathematical Model

A major concern in formulating the fleet assignment problem is keeping track 
of the fleet at different stations (airports) at any given point in time. Fortunately, 
researchers have developed an ingenious method of adopting a time-space network 
to formulate this problem. Figure 4.1 shows such a network for five cities.

This approach facilitates the process of modeling the fleet assignment problem. 
The above time-space network presents the airports as columns, and times of the day 
as rows. In this network, the arcs (arrows) are the flights, and nodes represent the 
arrival/departure of a flight segment at a specific airport, at a specific time of the day. 
A wrap-around arc is a ground arc which connects the last node to the first node in a 
given city. These arcs normally represent the aircraft that stay overnight in an airport, 
and connect the last arrival to the next day’s departure flight (see Figure 4.1).

Figure 4.1	 An example of a time-space network
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The fleet assignment problem is basically formulated as a multi-commodity 
network problem (see Chapter 2). Each node represents supply/demand, which 
can be satisfied through a diverse fleet. The model seeks to minimize the total cost 
or maximize the net profit by assigning the most appropriate fleet type to each 
flight leg. The constraints ensure that each flight is assigned to a particular fleet 
type, and that the number of aircraft for each fleet does not exceed the number of 
available aircraft. Other side-constraints may include curfew, range, noise, forced 
turns, maintenance, and user-specific restrictions.

In the mathematical model presented here, the objective function represents 
the total cost of the network, which we seek to minimize. These costs include two 
parts: operating costs and spill costs.

Operating Costs

The operating costs for a flight mainly depend on the type of the fleet assigned to 
that flight and are determined as follows:

Operating costs of a flight = CASM of the fleet distance number of seats on the aircraft ×    ×  

Let us return to the fleet diversity for Ultimate Air, in the case study we 
introduced in Chapter 3. We have two types of fleet, namely Boeing 737–800 
and Boeing 757–200. The seating capacities for these two fleet types are 162 and 
200 seats respectively. Furthermore, we have the following information for this 
airline:

Cost per available seat mile (CASM) for B737–800 and B757–200 are 
$0.042 (4.2 cents) and $0.044 (4.4 cents) respectively;
Revenue per available seat mile (RASM) is $0.15 (15 cents).

Using the above information we can determine the operating cost for each 
flight in the Ultimate Air schedule for the two fleet types. As an example, for flight 
122 (JFK-LAX), the distance between JFK and LAX is 2,475 miles (see Table 3.4, 
Chapter 3). Hence, the operating costs of this flight for the two fleet types are:

Operating cost for a B737–800 = $0.42 × 2,475 × 162 = $16,839
Operating cost for a B757–200 = $0.44 × 2,475 × 200 = $21,780

Passenger-Spill Costs

An important issue in assigning fleet types to flights is the passenger demand for 
each flight segment. Assigning large capacity aircraft to flights with low demand 
leads to low utilization and consequently low load-factor for the airline. On the 

•

•

•
•
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other hand, assigning small aircraft to flight legs with high demand leads to 
passenger spills. Spill is the degree of average demand, which exceeds the capacity 
offered. The spill cost is therefore the revenue of lost passengers due to insufficient 
aircraft capacity.

Let us once again consider flight 122 (JFK-LAX) in our Ultimate Air case 
study. Our historical data for flight 122 shows that the demand for this flight is 
normally distributed with a mean of 150 and a standard deviation of 30 passengers 
(see Table 3.4, Chapter 3). Figure 4.2 shows the demand distribution for this flight. 
The shaded areas show the probability of passenger spills for the two fleet types. 
The spill is basically the truncation of the demand distribution beyond the aircraft 
capacity.

The expected spill costs are determined as follows:

Expected spill cost for a fleet = expected number of passenger spill RASM distance× ×

The expected number of passenger spill is calculated as follows:

Expected number of passenger spill = ( ) ( )x c f x dx
c

∞
−∫

Figure 4.2	 Demand distribution and passenger spills
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In the above equation, c is the fleet capacity and f (x) is the probability 
distribution function of the demand. The above integral can be obtained using 
mathematical software (e.g., MAPLE) or some calculators. It is possible and 
perhaps easier to use a Microsoft Excel spreadsheet to approximate the above 
expected number of passenger spill using simulation. The following steps show 
the Excel functions used to determine the expected number of spilled passengers 
for a B737–800 fleet type with 162 seats:

Cell A1: NORMINV (RAND(),150,30)
Cell B1: IF (A1>162,A1–162,0)

Cell A1 randomly generates a demand from normal distribution with a mean of 
150 and a standard deviation of 30. Cell B1 checks to see if the demand in cell A1 
exceeds 162 seats. If it does, then cell B1 is assigned to their difference (i.e., passenger 
spill), otherwise passenger spill is zero. The above two cells are copied and pasted 
(downward) many times (we used 10,000 replications). The average of column B, 
denoted by AVERAGE(B:B), calculates the expected number of spilled passengers.

Using the above approximation method, the expected numbers of passenger 
spill (rounded to two decimal places) for the two fleet types are as follows:

Expected passenger spill for B737–800 with 162 seat capacity = 6.91
Expected passenger spill for B757–200 with 200 seat capacity = 0.60

The expected spill costs for the two fleet types are therefore calculated as:

Expected spill costs for B737–800 = 6.91×.15×2475=$2,565.33
Expected spill costs for B757–200 = .60×.15×2475=$222.75

It may seem that this model attempts to assign larger capacity fleet type to all 
flights since expected shortages are penalized, but excess capacity or surplus seats 
are not. It should be noted that the larger capacity fleet type was already penalized 
when we calculated the operating costs above.

Recapture Rate

A closely related topic to passenger spill is the recapture rate. The recapture 
rate represents the percentage of passengers that were spilled, but could be 
accommodated or recaptured on other flights by the same airline. That is, if a 
passenger cannot get a seat on a specific flight, the airline offers earlier or later 
flights (in some cases with bonuses) to the passenger for consideration. If the 
passenger accepts the offer for another flight, then this passenger is considered to 
be recaptured. The recapture rate among the major airlines is typically very high. 
This is due to high flight frequencies offered by these airlines as well as other 
marketing incentives such as frequent-flyer programs.

•
•

•
•

•
•
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Returning to our Ultimate Air case study, owing to low flight frequencies the 
recapture rate is low. Let us assume that this rate is 15% for this airline. This rate 
means that 85% of passengers who request a reservation for a flight on Ultimate 
Air and are denied such a request, are lost to other airlines. Therefore the expected 
spill costs for the two fleet types for flight 122 are:

Expected spill costs for B737–800 = $2,565.33 % .85 = $2,180.31
Expected spill costs for B757–200 = $222.75 % .85 = $189.34

Now we can determine the total cost of assigning a fleet type to a flight leg by 
adding the operating and spill costs. The total cost for each fleet when assigned to 
flight 122 is:

Total cost of assigning B737–800 to flight 122 = $16,839.90+$2,180.31  
= $19,020.21
Total cost of assigning B757–200 to flight 122 = $21,780.00+$189.34  
= $21,969.34

Similarly, we determine the total costs for all other flights.

Objective Function

To setup the objective function for Ultimate Air, we need to first select our decision 
variables in a way that addresses the assignment of the fleet type to the flight 
leg. The following decision variables are commonly adopted for fleet assignment 
models.

1 if flight  is assigned to fleet-type 
, 0 otherwise

 integer decision variable representing number of aircraft of fleet-type  on ground at node  ,

i j
xi j

G j kk j





=

=

In the binary decision variable xi,j index i represents the flight leg (42 flight 
legs for Ultimate Air), while index j represents the fleet type (for our case study 
we have two fleet types). For simplicity in our notation, we designate j to take 
the value 1 for B737–800, and the value 2 for B757–200 fleets. Based on this 
definition, x101,1 represents the binary decision variable for flight 101 assigned to 
a B737–800 fleet. Similarly, x101,2 represents the same flight, but assigned to fleet 
type 2 (i.e., B757–200) and so on. Decision variable Gk.j will be used to address 
the set of constraints for aircraft balance. This set of decision variables will be 
discussed later in the constraints section.

The objective function is basically to minimize the total cost by assigning the 
most appropriate fleet type to flights as follows:

 21485.26 22556 24222.37 23556 ... 1558.42 2006101,1 101,2 102,1 102,2 142,1 142,2Minimize x x x x x x+ + + + + +

•
•

•

•
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Constraints

There are three main sets of constraints in the fleet assignment model. They are 
discussed as follows:

Flight Cover

The first set of constraints is what is typically known as flight cover. Flight cover 
implies that each flight must be flown. To cover a flight, the sum of all the decision 
variables representing that flight must add up to 1. As an example, to cover flight 
101 in our Ultimate Air case study, we write:

1101,1 101, 2x x+ =

This constraint ensures that flight 101 is covered. Furthermore, the flight will 
be covered by only one type of fleet since the sum of binary decision variables 
adds up to 1. Only one of the two binary decision variables in this constraint will 
take a value of 1, forcing the other variable to be zero. We write similar constraints 
for all other 41 flights in our case study.

Aircraft Balance

The next set of constraints concerns the aircraft balance or equipment continuity 
within the fleets. This set of constraints ensures that an aircraft of the right fleet type 
will be available at the right place at the right time. Earlier, we introduced the concept 
of a time-space network. We adopt this concept to address this set of constraints. 
Referring to Figure 4.1, each node represents an arrival or departure. Recall that each 
node represents a specific time at a specific airport. So, the number of aircraft at any 
node changes with respect to an instant before that node. To clarify this, consider 
Figure 4.3 opposite. In this figure we have an arrival node. Just before this node, there 
were two aircraft (of the same fleet type) at the airport. After this arrival, we now have 
another aircraft (of the same fleet type again) added to those already at this airport.

Referring to Figure 4.3, the set of constraints for aircraft balance or equipment 
continuity states that:

Number of aircraft of a particular fleet type on the ground at a node = Number 
of aircraft in that fleet on the ground an instant before that node + arrival of 
aircraft of the same fleet type at that node – (minus) departures of aircraft of the 
same fleet type from that node.

For example, the balance constraint for the node in Figure 4.3 is:

Number of aircraft at this node = 2 (number of aircraft before this node)  
+ 1 (one arrival) – 0 (no departure from this node) = 3
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Adopting this approach, we can now write the constraints for balance for each 
airport in our Ultimate Air case study. Let us consider LAX. The flights in and out 
of LAX (extracted from our flight schedule in Chapter 3) are as shown in Table 
4.4.

Figure 4.4 presents this table as a time-space network, similar to Figure 4.3 
discussed earlier.

We have two types of fleet. We use the decision variable Gk,j to write the 
constraints for aircraft balance for each fleet type. Let us first consider the B737–
800 fleet type. Based on Figure 4.4, the first node at LAX is at L1. The number 
of B737–800 aircraft at this node, based on the rule for balance, is basically the 
number of aircraft carried over from the previous day (wrap-around arc from node 
L6) minus one departure (flight 101), so:

1,1 6,1 101,1G G xL L= −

At node L2 (see Figure 4.4), we have another departure (flight 102) so:

2,1 1,1 102,1G G xL L= −

Figure 4.3	 Example of aircraft balance

Node 

Before After Arrival 

Table 4.4	 Arrival/departure flights for LAX

Flight 
no. Origin Departure 

time Destination Arrival 
time

Duration of 
flight (hrs)

101 LAX 05:00 JFK 13:30 5.5

102 LAX 09:45 JFK 18:15 5.5

122 JFK 07:35 LAX 10:05 5.5

103 LAX 15:20 JFK 23:50 5.5

123 JFK 16:00 LAX 18:30 5.5

124 JFK 19:00 LAX 21:30 5.5
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At node L3, we have an arrival (flight 122), therefore:

3,1 2,1 122,1G G xL L= +

Similarly, we write the other three constraints for this fleet type as follows:

4,1 3,1 103,1

5,1 4,1 123,1

6,1 5,1 124,1

G G xL L

G G xL L

G G xL L

= −

= +

= +

Figure 4.4	 Time-space network for LAX
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The constraints for the B757–200 fleet are similar to the B737–800 as 
follows:

1,2 6,2 101,2

2,2 1,2 102,2

3,2 2,2 122,2

4,2 3,2 103,2

5,2 4,2 123,2

6,2 5,2 124,2

G G xL L

G G xL L

G G xL L

G G xL L

G G xL L

G G xL L

= −

= −

= +

= −

= +

= +

Similarly, we write the balance constraints for all other airports in the schedule. 
There are 42 flights in our Ultimate Air case study. Each flight has a departure and 
an arrival. We have two fleet types. Therefore, the total number of constraints for 
aircraft balance is 168 (42 × 2 × 2).

Fleet Size

This set of constraints is adopted to ensure that the number of aircraft within 
each fleet does not exceed the available fleet size. To address this, we must count 
the number of aircraft that are grounded overnight for that fleet type at different 
airports. Referring to Figure 4.4, the last node, L6 (originating node for wrap-
around arc), represents the total number of aircraft in LAX at the end of the day. 
For this airport, GL6,1 represents the total number of grounded B737–800 aircraft 
in LAX overnight. Similarly, the number of grounded B757–200 aircraft at the 
last node in LAX is GL6,2. The total number of B737–800 aircraft in our network 
is therefore:

6,1 6,1 6,1 6,1 6,1 6,1 6,1 42,1L S B O A I M JG G G G G G G G+ + + + + + +

In the above expression, the integer variables represent the number of aircraft 
at the last nodes at LAX, SFO, BOS, ORD, ATL, IAD, MIA, and JFK respectively. 
Note that at JFK, we have 42 daily flights arriving at or departing from this airport. 
Therefore, the last node is represented as J42. Similarly, the total number of B757–
200 aircraft in our network is:

6,2 6,2 6,2 6,2 6,2 6,2 6,2 42,2L S B O A I M JG G G G G G G G+ + + + + + +
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In our case study, Ultimate Air, assume that we have nine and six aircraft in 
our B737–800 and B757–200 fleets, respectively. We can now incorporate these 
constraints into our model as follows:

6,1 6,1 6,1 6,1 6,1 6,1 6,1 42,1 9L S B O A I M JG G G G G G G G+ + + + + + + ≤

G G G G G G G GL S B O A I M J6,2              6,2              6,2               6,2              6,2             6,2                6,2              42,2 6+ + + + + + + ≤  

Since there are only two fleet types, there are only two constraints in this set.

Solution to Fleet Assignment Problem

The linear integer program for fleet assignment for Ultimate Air has 252 (84 binary 
and 168 integer) variables and 212 constraints. Using an optimization software, 
the solution to this problem generates a minimum daily cost of fleet assignment of 
$410,612.57. The following table shows the number of aircraft for each fleet type 
staying overnight at each airport. These numbers represent the right number of 
aircraft for each fleet type at the right airport at the right time.

Table 4.6 presents the assignment of each flight to either one of the two fleet 
types.

Note that the above solution only shows the assignment of flights to fleet type. 
It does not show the assignment of flights to any specific aircraft within each fleet. 
This type of assignment is called aircraft routing, which will be discussed in the 
next chapter.

Table 4.5	 Optimal number of aircraft grounded overnight at each 
airport

Airports 737-800 Fleet 757-200 Fleet

Los Angeles (LAX) 2 aircraft 1 aircraft

San Francisco (SFO) 2 aircraft -

Boston (BOS) 1 aircraft -

New York (JFK) 3 aircraft 2 aircraft

Chicago (ORD) 1 aircraft -

Atlanta (ATL) - 1 aircraft

Washington DC (IAD) - -

Miami (MIA) - 2 aircraft
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Table 4.6	 Fleet assignment for Ultimate Air

Flight no. Origin Destination Fleet type

101 LAX JFK 737-800

104 SFO JFK 737-800

116 BOS JFK 737-800

140 JFK IAD 737-800

125 JFK SFO 757-200

107 ORD JFK 737-800

122 JFK LAX 737-800

137 JFK BOS 737-800

110 ATL JFK 757-200

119 IAD JFK 737-800

113 MIA JFK 757-200

131 JFK ATL 757-200

102 LAX JFK 737-800

105 SFO JFK 757-200

117 BOS JFK 737-800

128 JFK ORD 737-800

134 JFK MIA 737-800

141 JFK IAD 737-800

108 ORD JFK 737-800

138 JFK BOS 757-200

111 ATL JFK 757-200

120 IAD JFK 737-800

114 MIA JFK 757-200

132 JFK ATL 737-800

118 BOS JFK 757-200

129 JFK ORD 737-800

135 JFK MIA 757-200
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Scenario Analysis

In this section we address some questions pertaining to the number of aircraft and 
different fleet combinations.

Case 1

It may be of interest to us to see what is the minimum number of aircraft to cover 
all flights. In this case, the objective function is modified to minimize the total 
number of aircraft. Therefore, the fleet size constraints are deleted from the set of 
constraints and become the objective function as follows:

6,1 6,1 6,1 6,1 6,1 6,1 6,1 42,1

6,2 6,2 6,2 6,2 6,2 6,2 6,2 42,2

 
         

L S B O A I M J

L S B O A I M J

Min G G G G G G G G
G G G G G G G G

+ + + + + + + +

+ + + + + + +

Flight no. Origin Destination Fleet type

142 JFK IAD 737-800

103 LAX JFK 737-800

106 SFO JFK 737-800

126 JFK SFO 737-800

123 JFK LAX 737-800

109 ORD JFK 737-800

112 ATL JFK 737-800

133 JFK ATL 757-200

136 JFK MIA 757-200

115 MIA JFK 737-800

121 IAD JFK 737-800

124 JFK LAX 737-800

127 JFK SFO 737-800

130 JFK ORD 737-800

139 JFK BOS 737-800

Table 4.6	 Fleet assignment for Ultimate Air
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Running this integer/linear program results in 13 aircraft of which 9 are 737–
800 and 4 are 757–200. According to this result, the minimum number of aircraft 
that are needed to fly the published Ultimate Air flights is 13. However, as we will 
discuss in Chapter 5, the number of aircraft needed are more than 13.

Case 2

In this case, we evaluate various combinations of the two fleets. In our Ultimate 
Air example, we assumed that we have nine 737 and six 757 aircraft. We now 
change this combination to see its impact on total daily cost. Table 4.7 shows 
different costs associated with different number of aircraft combinations between 
the two fleet types.

Fleet Assignment Model (FAM)

We now formally present the general mathematical model for the fleet assignment 
problem. The following model, referred to as the basic fleet assignment model 
(FAM), is a simplified version of FAM proposed by Hane et al., 1995.

Sets

F	 = Set of flights
K	 = Set of fleet types
C	 = Set of last-nodes, representing all nodes with aircraft grounded overnight 

at an airport in the network
M	 = Number of nodes in the network

Index

i	 = Flight Index
j	 = Index for fleet
k	 = Index for nodes

Table 4.7	 Total daily cost for various aircraft combinations

Number of
B737-800 aircraft

Number of
B757-200 aircraft

Total daily cost

8 7 $411,890

6 9 $416,116

11 4 $409,362

15 0 $413,970

0 15 $446,364
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Parameters

Ci,j 	 = Cost of assigning fleet type j to flight i 
Nj 	 = Number of available aircraft in fleet type j. 

,
1 if flight i is an arrival at node k

-1 if flight i is a departure from node ki kS
+

= 


Decision Variables

,

,

1 if flight  is assigned to fleet-type 
0 otherwise
 integer decision variable representing number of aircraft of fleet-type  on ground at node  

i j

k j

i j
x

G j k


= 

=

The integer linear programming model is as follows:

                                                                                                        , ,

 

1                                   for all      ,

 (4.1)Min c xi j i jj K i F

Subject to

x i Fi jj K

∑ ∑
∈ ∈
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∈

                                                              

    for all  and                                                   1, , , ,

                   ,

 (4.2)

(4.3)G S x G k M j Kk j i k i j k ji F

G Nk j jk C

+ = ∈ ∈∑− ∈

≤∑
∈

{ }
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In the above model, the objective function in (4.1) seeks to minimize the 
total cost of assigning the various fleet types to all the flights in the schedule. 
Constraints (4.2) are the flight-cover constraints to ensure that each flight is flown 
by one type of fleet. Constraints (4.3) are the aircraft balance constraints. The 
number of aircraft for any fleet type at any node is the number of aircraft of that 
fleet type just before that node (represented in the model by Gk–1,j) plus the arrivals 
(represented by Si,k taking a value +1) minus the departures (represented by Si,k 
taking a value of -1).

Set of constraint (4.4) represents the fleet size. The number of aircraft in fleet 
type j, should not exceed the available number of aircraft in that fleet (Nj).

Constraints (4.5) and (4.6) represent the binary and integer status of the decision 
variables. Z+ is the set of positive integer numbers.
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For other mathematical approaches to fleet assignment models see, for example, 
Jarrah et al. (2000), Ioachim et al. (1999), Barnhart et al. (1998), and Subramanian 
et. al. (1994).
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Chapter 5 

Aircraft Routing

Introduction

The solution obtained from the fleet assignment in the previous chapter identifies 
the flow of fleet through the network. However, it does not identify which specific 
aircraft from that fleet is assigned to each flight leg. Aircraft routing is the process 
of assigning each individual aircraft (referred to as tail number) within each fleet 
to flight legs. The aircraft routing is also referred to as aircraft rotation, aircraft 
assignment or tail assignment. The major goal of this assignment problem is to 
maximize the revenue or minimize operating cost with the following considerations 
(Clarke et al. 1997, Gopalan and Talluri 1998, Papadakos 2009):

Flight coverage: each flight leg must be covered by only one aircraft.
Aircraft load balance: the aircraft must have balanced utilization loads.
Maintenance requirements: not all the airports that an airline flies to have 
the capability to perform maintenance checks on all fleet types. The airlines 
normally have maintenance bases, typically at their hubs, for different fleet 
types. The maintenance consideration is to ensure that the aircraft are flown 
through the network in a manner that allows them to receive the required 
maintenance checks at the right time and at the right base.

Aircraft Tail Number

Aircraft are normally distinguished by their tail registration numbers. A tail number 
is a unique serial number assigned to each aircraft for each airline in each country. 
The airlines choose to organize their tail suffix numbering system according to 
their convenience. In the US, aircraft tail numbers consist of a prefix ‘N’ and 
five alpha/numeric characters. These characters normally represent the fleet type, 
the sequence of aircraft in the fleet and the airline. As an example, in N723TZ, 
N is the country code for USA, 723 is used to designate the particular aircraft, 
and TZ is the airline code for ATA. For other countries, the tail number typically 
consists of two characters designating the country, followed by three alpha/
numeric characters. For example, a Boeing 747–4H6 for Malaysia Airlines may 
be assigned the tail number 9M-MPK, where 9M is the country code designator 
for Malaysia (Airliners.Net 2009).

•
•
•
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Maintenance Requirements

Maintenance activities are the backbone of a successful and profitable airline 
company. In the airline industry, the role of maintenance is to provide safe, 
airworthy, on-time aircraft every day. An airline generally has a diverse fleet of 
aircraft. Each fleet type has a predetermined maintenance program established 
by the aircraft manufacturer and the Federal Aviation Administration (FAA). 
Aircraft maintenance must be planned and performed according to the prescribed 
procedures and standards.

The FAA mandates that the airlines perform four types of aircraft maintenance, 
commonly referred to as A-, B-, C- and D-checks. These checks vary in scope, 
duration, and frequency. The most common maintenance check is the A-check, 
which involves a visual inspection of major systems. The FAA mandates that 
airlines perform the A-checks approximately every 60 flight hours. This is 
equivalent to four–eight operating days depending on aircraft utilization. If an 
aircraft does not receive the A-check within this period, it is grounded until such 
maintenance is performed. B-checks involve a thorough visual inspection and 
lubricating of all moving parts. This type of maintenance is performed every 300 
to 600 hours of flight. C- and D-checks involve taking the aircraft out of service, 
and are performed every one to four years.

The airline maintenance practices, however, are generally more stringent. They 
perform A-checks every three to four days. The time required to perform an A-
check on an aircraft is about 3 to 10 hours. The A-checks are normally performed 
between 10 p.m. and 8 a.m. while the aircraft is on the ground. Therefore, the 
aircraft-routing problem must ensure that the aircraft is at the right base at the 
right time for this maintenance. Most aircraft-routing models incorporate these A-
checks in their formulations since they are routine. Chapter 15 describes aircraft 
maintenance programs in more details.

Mathematical Approach

The fleet assignment problem for Ultimate Air, solved in Chapter 4, assigned 
various flight legs to our 737 and 757 fleet types. These flight legs are presented in 
Tables 5.1 and 5.2 for the 737-800 and 757-200 aircraft types, respectively. This 
section develops a mathematical model so as to assign specific aircraft within the 
two fleet-types to each of the flight legs.

There are several approaches to modeling aircraft routing (see for example 
Papadakos 2009, Sherali 2006, Talluri 1998, Arguello et al. 1997, Bard et al. 2001, 
Paoletti 1998, Desaulniers 1997, Bartholomew et al. 2003).

The mathematical approach adopted in this chapter is a modified model 
proposed by Kabbani and Patty (1992) as they applied it to American Airlines. 
This approach uses a set-partitioning formulation (see Chapter 2 for definition) to 
determine the daily routing for each aircraft. In this approach, all possible valid 
aircraft routings are generated. These routings are represented as rows, and the 
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Table 5.1	 B737-800 Fleet Assignment

Flight no. Origin Departure 
time Destination Arrival 

time (hrs) Fleet Type

101 LAX 5:00 JFK 13:30 5.5 737-800

104 SFO 5:05 JFK 13:35 5.5 737-800

116 BOS 6:15 JFK 7:45 1.5 737-800

140 JFK 6:20 IAD 7:20 1 737-800

107 ORD 7:30 JFK 10:30 2 737-800

122 JFK 7:35 LAX 10:05 5.5 737-800

137 JFK 7:40 BOS 9:10 1.5 737-800

119 IAD 8:15 JFK 9:15 1 737-800

102 LAX 9:45 JFK 18:15 5.5 737-800

117 BOS 10:00 JFK 11:30 1.5 737-800

128 JFK 10:05 ORD 11:05 2 737-800

134 JFK 10:35 MIA 13:35 3 737-800

141 JFK 12:00 IAD 13:00 1 737-800

108 ORD 12:20 JFK 15:20 2 737-800

120 IAD 14:25 JFK 15:25 1 737-800

132 JFK 14:35 ATL 17:35 2.5 737-800

129 JFK 15:05 ORD 16:05 2 737-800

142 JFK 15:15 IAD 16:15 1 737-800

103 LAX 15:20 JFK 23:50 5.5 737-800

106 SFO 15:25 JFK 23:55 5.5 737-800

126 JFK 15:30 SFO 18:00 5.5 737-800

123 JFK 16:00 LAX 18:30 5.5 737-800

109 ORD 17:10 JFK 20:10 2 737-800

112 ATL 18:00 JFK 20:30 2.5 737-800

115 MIA 18:15 JFK 21:15 3 737-800

121 IAD 18:30 JFK 19:30 1 737-800

124 JFK 19:00 LAX 21:30 5.5 737-800

127 JFK 20:00 SFO 22:30 5.5 737-800

130 JFK 21:00 ORD 22:00 2 737-800

139 JFK 21:30 BOS 23:00 1.5 737-800
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flights as columns in the set-partition matrix. We then seek to identify the best 
routes that cover all flights while meeting maintenance opportunities, turn-around 
time, routing cycles, and so on.

Maintenance Routing

The mathematical approaches to the aircraft-routing problem typically assume 
that the same schedule is repeated daily over a period of time. A similar approach 
is adopted for the weekends, when the frequency of flights is lower.

In our Ultimate Air example, we assume that we have the maintenance facilities 
for the two fleet types only at our hub, that is, JFK. Each aircraft must be routed so 
that it stays overnight at JFK, at most after three days of operation.

Valid Routings

For a routing to be valid, it needs to incorporate the turn-around time. Turn-
around time is the minimum time needed for an aircraft from the time it lands 
until it is ready to depart again. This time includes the taxi into the gate, unloading 
passengers and baggage, cleaning, inspections, boarding new passengers, loading 
new baggage, and so on. The turnaround time varies from 20 minutes to 1 hour 
among airlines.

Table 5.2	 B757-200 Fleet Assignment

Flight 
no. Origin Departure 

time Destination Arrival 
time (hrs) Fleet 

type

125 JFK 7:25 SFO 9:55 5.5 757-200

110 ATL 8:10 JFK 10:40 2.5 757-200

113 MIA 9:10 JFK 12:10 3 757-200

131 JFK 9:30 ATL 12:00 2.5 757-200

105 SFO 9:50 JFK 18:20 5.5 757-200

138 JFK 12:30 BOS 14:00 1.5 757-200

111 ATL 13:10 JFK 15:40 2.5 757-200

114 MIA 14:30 JFK 17:30 3 757-200

118 BOS 15:00 JFK 16:30 1.5 757-200

135 JFK 15:10 MIA 18:10 3 757-200

133 JFK 18:05 ATL 20:35 2.5 757-200

136 JFK 18:10 MIA 21:10 3 757-200
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In the Ultimate Air example, we assume that the turn-around time is 45 
minutes. According to this turn-around time, a valid routing cannot include flight 
113 followed by flight 138 in our 757 fleet. As we see in Table 5.2, flight 113 
arrives at JFK at 12:10, while flight 138 departs JFK at 12:30. The turn-around 
time is 20 minutes, which is less than our minimum of 45 minutes.

Routing Cycles

For Ultimate Air, we assume that only routes with three-day closed cycles are 
valid. A closed cycle is when an aircraft starts from a city, and at the end of the 
three-day cycle, ends up at that same city to start another cycle. This requirement 
is included to better present the process of aircraft routing by reducing the number 
of potential routings. It should be noted that closed cycles are not typically a 
requirement for airlines. The airlines usually develop monthly aircraft routing with 
no closed cycles. That is, an aircraft has the potential to have a totally different 
routing every day with no pattern or cycles as long as it receives the required 
maintenance checks.

Figure 5.1 presents a valid sample of a one-day routing. The aircraft stays 
at JFK every night and repeats the cycle every day. This routing provides a 
maintenance opportunity for the aircraft every night. It should be noted that each 
time an aircraft is at a maintenance station, it does not necessarily mean that 
maintenance is performed on the aircraft.

Figure 5.1	 B737-800 one-day routing

Flight No. Origin 
Departure 

Time 
Destination 

Arrival 

Time 
(Hrs.) Fleet Type 

DAY 1 

122 JFK 7:35 LAX 10:05 5.5 737-800 

103 LAX 15:20 JFK 23:50 5.5 737-800 

JFK JFK LAX 

DAY 1 

JFK CITY
 

Maintenance Base/ 
Hub 

Spoke KEY:
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Figure 5.2 presents a valid sample of a two-day routing. The aircraft starts-off 
at LAX, spends the first night at JFK, and on the second night is routed back to 
LAX.

Similarly, Figure 5.3 presents a valid sample of a three-day routing, where the 
aircraft is routed to JFK at the end of the second day for maintenance.

Figure 5.4 shows an invalid routing, as it does not provide a maintenance 
opportunity at JFK after three days of operations.

Note that in our Ultimate Air example, we only selected one, two and three-day 
routing cycles. The airlines may extend these routings to weekly routings, and so 
on with a maintenance opportunity every three days.

Route Generators

For the proposed set-portioning mathematical model, we begin by generating all 
possible valid aircraft routings. It may seem that generating these routes is a very 
difficult and tedious task. This is certainly the case if we want to enumerate all 
possible routes manually. Automated systems are used extensively to generate and 
filter these routes for the airlines in a relatively short time.

Figure 5.2	  B737-800 two-day routing

Flight No. Origin 
Departure 

Time 
Destination 

Arrival 

Time 
Flight Hrs Fleet Type 

DAY 1 

101 LAX 5:00 JFK 13:30 5.5 737-800 

129 JFK 15:05 ORD 16:05 2 737-800 

109 ORD 17:10 JFK 20:10 2 737-800 

DAY 2  

140 JFK 6:20 IAD 7:20 1 737-800 

120 IAD 14:25 JFK 15:25 1 737-800 

127 JFK 19:00 LAX 21:30 5.5 737-800 

LAX JFK ORD JFK IAD JFK LAX 

DAY 1 DAY 2 
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Recall that in our Ultimate Air example, we are only interested in three-day 
cycle aircraft routings. That is, after three days the aircraft ends up at the same 
airport from which it started out on the first day of its cycle, only to repeat another 
cycle. To provide the maintenance opportunity for the aircraft, the routing must 
include at least one overnight stay at JFK.

A computer program was developed to generate three-day-cycle aircraft routes. 
These aircraft are routed through a series of feasible flights. This route then selects 
at least one overnight stay in JFK at the end of the first and/or second day for 
maintenance. At the end of the third day, the aircraft is routed back to the airport 

Figure 5.3	 B737-800 three-day routing

Flight No. Origin 
Departure 

Time 
Destination 

Arrival 

Time 
Flight Hrs Fleet Type 

DAY 1 

107 ORD 7:30 JFK 10:30 2 737-800 

141 JFK 12:00 IAD 13:00 1 737-800 

120 IAD 14:25 JFK 15:25 1 737-800 

124 JFK 19:00 LAX 21:30 5.5 737-800 

 

DAY 2 

101 LAX 5:00 JFK 13:30 5.5 737-800 

129 JFK 15:05 ORD 16:05 2 737-800 

109 ORD 17:10 JFK 20:10 2 737-800 

DAY 3 

140 JFK 6:20 IAD 7:20 1 737-800 

119 IAD 8:15 JFK 9:15 1 737-800 

141 JFK 12:00 IAD 13:00 1 737-800 

120 IAD 14:25 JFK 15:25 1 737-800 

130 JFK 21:00 ORD 22:00 2 737-800 

ORD LAX JFK ORD 

DAY 1 DAY 2 DAY 3 
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Figure 5.4	 B757-200 five-day routing with no opportunity for overnight 
maintenance at the JFK hub

Flight No. Origin Departure Time Destination Arrival Time Flight Hrs  Fleet Type 

DAY 1 

116 BOS 6:15 JFK 7:45 1.5 757-200 

131 JFK 9:30 ATL 12:00 2.5 757-200 

111 ATL 13:10 JFK 15:40 2.5 757-200 

133 JFK 18:05 ATL 20:35 2.5 757-200 

DAY 2 

110 ATL 8:10 JFK 10:40 2.5 757-200 

138 JFK 12:30 BOS 14:00 1.5 757-200 

118 BOS 15:00 JFK 16:30 1.5 757-200 

139 JFK 21:30 BOS 23:00 1.5 757-200 

DAY 3 

116 BOS 6:15 JFK 7:45 1.5 757-200 

131 JFK 9:30 ATL 12:00 2.5 757-200 

111 ATL 13:10 JFK 15:40 2.5 757-200 

139 JFK 21:30 BOS 23:00 1.5 757-200 

DAY 4 

117 BOS 10:00 JFK 11:30 1.5 757-200 

138 JFK 12:30 BOS 14:00 1.5 757-200 

118 BOS 15:00 JFK 16:30 1.5 757-200 

133 JFK 18:05 ATL 20:35 2.5 757-200 

DAY 5 

110 ATL 8:10 JFK 10:40 2.5 757-200 

138 JFK 12:30 BOS 14:00 1.5 757-200 

118 BOS 15:00 JFK 16:30 1.5 757-200 

136 JFK 21:30 BOS 23:00 1.5 757-200 

BOS ATL BOS BOS 

DAY 
1

DAY 
2

ATL BOS 

DAY 
5

DAY 
3

DAY 
4
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where it started its three-day cycle. The steps or pseudo-code for this program are 
as follows:

Read the flight numbers, departure and arrival cities, as well as departure 
and arrival times for a set of flights assigned to a specific fleet (identified 
by fleet routing).
Create all possible valid one-day routings incorporating turn-around times 
– place in a file.
Attach each feasible one day routing of this file to all other one-day routings 
in this file. Do this step twice to create three-day routings – place in a file.
Examine each element of this three-day file according to the following 
criteria:
–	I t starts and ends at the same city.
–	 Each day, flights start at the city where the aircraft ended the day before.
–	 An overnight stay at JFK occurs at least once.
Add each element that satisfies all the above conditions to a file of potential 
valid three-day routing candidates.

This program also generates the mathematical model suitable for linear 
programming software. Running this program generated a total of 6,221 and 455 valid 
three-day routings for the 737-800 and 757-200 fleet types respectively! Tables 5.3 
and 5.4 show samples of five valid three-day routings for each fleet type respectively.

•

•

•

•

•

Table 5.3	 Sample three-day routing for B757-200 fleet

SAMPLE DAY 1 DAY 2 DAY 3 Utilization
(hrs)

High utilization

Routing 
sample #1 

FLT 
131

FLT 
111

FLT 
133

FLT 
110

FLT 
138

FLT 
118

FLT 
133

FLT 
110

FLT 
138

FLT 
118

21
City-pair 
routing

JFK-
ATL

ATL-
JFK

JFK-
ATL

ATL-
JFK

JFK-
BOS

BOS-
JFK

JFK-
ATL

ATL-
JFK

JFK-
BOS

BOS-
JFK

Routing 
sample #2

FLT 
110

FLT 
138

FLT 
118

FLT 
136

FLT 
113

FLT 
138

FLT 
118

FLT 
133

17
City-pair 
routing

ATL-
JFK

JFK-
BOS

BOS-
JFK

JFK-
MIA

MIA-
JFK

JFK-
BOS

BOS-
JFK

JFK-
ATL

Medium utilization
Routing 

sample #3
FLT 
136

FLT 
113

FLT 
133

FLT 
110

FLT 
138

FLT 
118

14
City-pair 
routing

JFK-
MIA

MIA-
JFK

JFK-
ATL

ATL-
JFK

JFK-
BOS

BOS-
JFK

Routing 
sample #4

FLT 
133

FLT 
111

FLT 
131

FLT 
111

10
City-pair 
routing

JFK-
ATL

ATL-
JFK

JFK-
ATL

ATL-
JFK

Low utilization
Routing 

sample #5
FLT 
138

FLT 
118

FLT 
138

FLT 
118

6
City-pair
routing

JFK-
BOS

BOS-
JFK

JFK-
BOS

BOS-
JFK
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Mathematical Model for 757-200 Fleet

Since the 757-200 fleet has a lower number of flights and routing candidates, we 
start by developing the mathematical model for this fleet. The mathematical model 
for the 737-700 fleet will follow later on in this chapter.

Decision Variable

The goal of the aircraft-routing problem is to assign routes to individual aircraft 
within a specific fleet type. In the previous section, we generated all possible 
valid routings. Each of these routings qualifies as a candidate to be assigned to 
an aircraft. Among all these candidates, we need to identify those routings that 
optimize the objective function and satisfy the constraints.

We define the following binary decision variable to find such routings for the 
757-200 fleet.

Let:
1 if route  is selected,   =1,2,..,455
0 otherwisej

j j
x 

= 


Table 5.4	 Sample three-day routing for B737-800 fleet

SAMPLE DAY 1 DAY 2 DAY 3 Utilization
(hrs)

High Utilization
Routing 

sample #1
FLT 
122

FLT 
103

FLT 
122

FLT 
103

FLT 
122

FLT 
103

33
City Pair
Routing

JFK-
LAX

LAX-
JFK

JFK-
LAX

LAX-
JFK

JFK-
LAX

LAX-
JFK

Routing 
sample #2

FLT 
137

FLT 
117

FLT 
123

FLT 
101

FLT 
129

FLT 
109

FLT 
139

FLT 
116

FLT 
134

FLT 
115

27City Pair
Routing

JFK-
BOS

BOS-
JFK

JFK-
LAX

LAX-
JFK

JFK-
ORD

ORD-
JFK

JFK-
BOS

BOS-
JFK

JFK-
MIA

MIA-
JFK

Medium Utilization

Routing 
sample #3

FLT 
109

FLT 
137

FLT 
117

FLT
124

FLT 
101

FLT 
142

FLT 
121

FLT 
130

20
City Pair 
Routing

ORD-
JFK

JFK-
BOS

BOS-
JFK

JFK-
LAX

LAX-
-JFK

JFK-
IAD

IAD-
JFK

JFK-
ORD

Routing 
sample #4

FLT 
101

FLT 
139

FLT 
116

FLT 
122

14
City Pair 
Routing

LAX-
JFK

JFK-
BOS

BOS-
JFK

JFK-
LAX

Low Utilization
Routing 

sample #5
FLT 
116

FLT 
141

FLT 
120

FLT 
139

FLT 
116

FLT 
137

8
City Pair 
Routing

BOS-
JFK

JFK-
IAD

IAD-
JFK

JFK-
BOS

BOS-
JFK

JFK-
BOS
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Objective Function

The available mathematical models use different measures for the objective 
function (see list of references). Some of these measures include:

Maximizing through values. Non-stop flights are the first choice for 
passengers. In the absence of such point-to-point flights, passengers must 
take connecting flights. A through flight is a type of connection that uses 
the same aircraft for the flights involved. This enables the passengers to 
remain onboard rather than deplaning, searching for and walking to their 
connecting flight-gate. Through flights are especially attractive in very busy 
airports. Accordingly, the airlines place higher values on those routes with 
favorable through flights (Jarrah and Strehler 2000, Clarke et al. 1997).
Minimizing cost. Airlines may assign pseudo-costs to penalize routings 
which they consider to be unfavorable. These unfavorable routes may 
include bad connection times and circular routings where aircraft are 
isolated by flying between a small number of spokes, and so on. (Armacost 
2002).
Maximizing maintenance opportunities. Those routings that provide multiple 
maintenance opportunities for the aircraft are given higher weights.

Assume that in our Ultimate Air case, the objective is to select those routings 
that maximize maintenance opportunities. To clarify this, let us return to the 
five sample routings for the 757-200 fleet presented in Table 5.3. The first three 
samples have only one overnight stay at JFK in their three-day cycles. Accordingly, 
the coefficients of these variables in the objective function are one. For sample 
routings four and five, this coefficient is two since they have two overnight stays 
at JFK in their three-day cycles. We determine these coefficients for every routing 
candidate for this fleet. Again, a simple computer program can easily generate these 
coefficients. Thus, the objective function for our 757-200 fleet is as follows:

455
Maximize 

1 j jm x
j
∑
=

where:
mj 	 = the number of maintenance opportunities for route j. The values that mj 

can take are 1, 2 and 3. 

Note that as we discussed earlier, we have 455 valid routings for the flights 
assigned to 757-200 fleet.

•

•

•
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Constraints for 757-200 Fleet

There are two sets of constraints for our aircraft-routing problem: Flight coverage 
and the number of available aircraft.

Flight Coverage

Each routing candidate covers a certain number of flights in its three-day cycle. 
Each flight must be covered everyday. For example, sample 1 routing candidate 
for the 757-200 fleet in Table 5.3 covers flights 131,111 and 133 in day one. In day 
two it covers flights 110,138, 118 and 133. This routing covers flight 131 in its first 
day but does not fly this flight in the other two days of its cycle. Accordingly, other 
routings with flight 131 in their second and third day of cycles must be selected to 
cover flight 131 in all three days. To cover all flights, we need one constraint for 
each flight for each day of the three-day cycle.

As an example, searching through all the 455 routing candidates, only six 
candidates actually cover flight 125 in different days as shown in Table 5.5.

According to the above variable notations, to cover flight 125 in day one, we 
write the following constraint:

1 2 1x x+ =

This is because flight 125 in day one only appears in x1 and x2. Similarly, to 
cover this flight in the second and third day of the cycle we write the following 
constraints:

3 4 1x x+ = 	 flight 125 in the second day of the cycle

Table 5.5	 Routing candidates for flight 125

Routing Candidate 
Variable Day 1 Day 2 Day 3

x1 125 105 131-111

x2 125 105 138-118

x3 131-111 125 105

x4 138-118 125 105

x5 105 131-111 125

x6 105 138-118 125
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5 6 1x x+ = 	 flight 125 in the third day of the cycle

Similarly, we write the constraints for the other 11 flights. The total number of 
constraints required to cover all daily flights for the 757-200 fleet is 36 (12 flights 
× 3-day cycles).

Number of Available Aircraft

Each routing candidate is a three-day cycle assigned to one aircraft. Accordingly, 
the number of selected routes should not exceed the available number of aircraft 
in the fleet. In Chapter 4, we assumed that we have six 757-200 aircraft. The 
following constraint ensures that the number of selected routes is limited to the 
number of aircraft.

1 2 455... 6x x x+ + + ≤

Solution for 757-200 Fleet

We used an optimization software to solve this problem. The program reported 
that there is no feasible solution to this problem! That is, with six aircraft, it is not 
possible to cover all the flights assigned to the 757-200 fleet. However, our fleet 
routing in Chapter 4 showed that these six aircraft are capable of flying all our 
757-200 flights through the network. So, why do we not get a feasible solution to 
our aircraft-routing problem? The answer is that the fleet-routing problem does not 
consider the following constraints that we have imposed on our aircraft routings.

A 45-minute turn-around time.
Three-day closed cycles, starting and ending at the same city. This 
requirement eliminates a large number of potential routes that are perfectly 
acceptable to the airlines. Note that we introduced this arbitrary requirement 
to reduce the problem size.
At least one overnight stay at JFK for maintenance in a three-day period.

These additional constraints in the aircraft-routing problem result in an 
infeasible solution for our problem.

To search for solutions, we eliminated the constraint on the number of 
available aircraft to see how many aircraft would be needed to fly the proposed 
daily schedule of flights assigned to the 757-200 fleet. We ran this model, and the 
feasible solution now required eight aircraft. The solution for this model with eight 
aircraft is presented in Table 5.6.

•
•

•
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It should be noted that the airlines frequently face this problem where the 
existing aircraft are not enough to fly the proposed schedule. The main reason is that 
the arriving and departing flights in the proposed schedule are not synchronized.

Let us look at our Ultimate Air schedule and set of constraints. We see that the 
two flights, 125 and 105, have only two routing candidates each day while other 
flights have many possibilities (see the constraints for flight 125 in the previous 
section). Table 5.7 examines these two flights more closely.

Looking at Table 5.7, we see that flight 125 arrives at SFO at 9:55. The aircraft 
flying this flight cannot fly flight 105 because it departs at 9:50. Therefore, the 
aircraft flying flight 125 to SFO is stranded for the entire day, as there are no other 
flights from SFO for it to connect with. So, one possibility that the operations 
team at Ultimate Air may consider is to synchronize these two flights. To do this, 
we need to delay the departure time for flight 105 (or fly flight 125 earlier). If we 
delay flight 105 by one hour to incorporate our 45-minute turn-around time, then 
these two flights can be paired. The revised schedule for these two flights is shown 
in Table 5.8.

With this revised schedule, the two flights, 125 and 105, can be paired. This 
change is incorporated into the route generator program and the revised three-day 

Table 5.6	 Feasible eight aircraft solution for the 757-200 fleet

Routing DAY 1 DAY 2 DAY 3

1 125 105 138-118

2 110 131-111 131-111-133

3 113-135 114 136

4 131-111-136 113-136 114

5 105 138-118 125

6 114 135 113-135

7 138-118 125 105

8 133 110-133 110

Table 5.7	 Flights 105 and 125

Flight 
no. Origin Departure 

time Destination Arrival 
time (hrs) Fleet type

125 JFK 7:25 SFO 9:55 5.5 757-200

105 SFO 9:50 JFK 18:20 5.5 757-200
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valid routes are generated. The process for developing the linear integer model is 
repeated, as described earlier. Solving the new model generates multiple optimal 
solutions with six available aircraft. Table 5.9 presents one of these solutions. As 
we see, the same routings are repeated every day of the three-day cycle, but in 
different sequences, which result in multiple optimum solutions.

As this process has shown, changing the departure time for one flight results 
in a solution with two less aircraft. Furthermore, examining this solution more 
closely, we notice that the aircraft flying flights 113, 114 and 135 are also stranded 
at their respective destinations, away from the JFK hub, at the end of the day. 
Despite the fact that we are covering all our flights with the available six aircraft 
of the 757-200 fleet type, it is possible to add more flights without needing more 
aircraft. Further synchronizing the arrival and departure times for these flights will 
further reduce number of aircraft needed.

The value of the objective function for this solution is nine. This represents the 
total number of aircraft grounded overnight at JFK over the three-day cycle. The 
check mark () in Table 5.10 shows the overnight aircraft stays at JFK for the 
above solution.

According to this solution, each night, three 757-200 aircraft stay at JFK for 
maintenance. Routes 1, 5, and 6 provide two maintenance opportunities each 
during their three-day cycles.

This process of changing arrival/departure times is very common among airlines. 
The initial schedule proposed by the marketing department and schedule-builders 

Table 5.8	 Revised schedule for flight 105

Flight 
no. Origin Departure 

time Destination Arrival 
time (hrs) Fleet 

type

125 JFK 07:25 SFO 09:55 5.5 757-200

105 SFO 10:50 JFK 19:20 5.5 757-200

Table 5.9	 One of the optimal solutions with six aircraft

Routing DAY 1 DAY 2 DAY 3

1 125-105 135 114

2 110-138-118-136 113 131-111-133

3 113 131-111-133 110-138-118-136

4 131-111-133 110-138-118-136 113

5 114 125-105 135

6 135 114 125-105
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(Chapter 3) is submitted to the operations team for feasibility. The operations team 
provides feedback to the schedule-builders on operational feasibility and possible 
changes to the schedule. This feedback process continues until all parties are 
satisfied with the schedule.

Once the airline finds its routings to be feasible and satisfactory, it then assigns 
each route to a particular aircraft tail number. Note that in the above aircraft-
routing process, we are indifferent to the method used for assigning tail numbers 
to the selected routes. If, however, there are such influencing factors as aircraft age 
within the fleet, then the airline may use some rule/criteria for assigning specific 
tail numbers to routes.

Solution for 737-800 Fleet

The same mathematical model approach as described earlier for the 757-200 fleet 
is adopted for aircraft routing of the 737-800 fleet. Recall that we have nine aircraft 
in this fleet. Again, there are no feasible solutions to this aircraft-routing problem 
with only nine aircraft. Relaxing this constraint, results in the solution presented 
in Table 5.11, which requires 12 aircraft.

Similarly, examining this solution, we notice that flights 102, 106, 126, 112 
and 123 are all stranded at their respective destinations at the end of the day. We 
need one aircraft each day just to fly these flights. Table 5.12 shows the detailed 
schedule for these five flights.

In an effort to pair the above flights, considering our 45-minute turn-around 
time, the revised schedule is presented in Table 5.13.

Incorporating these changes, and running the program with this revised 
schedule, still results in no feasible solution. That is, even with these changes, it 
is still not possible to fly all flights with nine aircraft in a three-day cyclic routing. 

Table 5.10	 Overnight stays at JFK for the optimal solution

Routing Night 1 Night 2 Night 3

1  

2 

3 

4 

5  

6  

Total 3 3 3
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Table 5.11	 Solution for aircraft routing of 737-800 fleet with 12 aircraft

Routing Day 1 Day 2 Day 3

1 101-142-121-139 116-134-115 140-119-128-108-124

2 116-134-115 126 104-142-121-139

3 104-126 106 126

4 140-119-128-108-127 104-132 112

5 102 122-103 123

6 107-141-120-124 102 137-117-129-109-130

7 132 112 122-103

8 106 137-117-142-121-130 107-141-120-127

9 122-103 123 102

10 123 101-129-109-139 116-134-115

11 137-117-129-109-130 107-141-120-127 106

12 112 140-119-128-108-124 101-132

Table 5.12	 Flight schedule for B737-800 stranded flights

Flight no. Origin Departure time Destination Arrival time (hrs)

102 LAX 09:45 JFK 18:15 5.5

106 SFO 15:25 JFK 23:55 5.5

126 JFK 15:30 SFO 18:00 5.5

123 JFK 16:00 LAX 18:30 5.5

112 ATL 18:00 JFK 20:30 2.5

Table 5.13	 Revised flight schedule for B737-800 stranded flights

Flight no. Origin Departure time Destination Arrival time (hrs)

102 LAX 07:45 JFK 16:15 5.5

106 SFO 10:25 JFK 18:55 5.5

126 JFK 18:30 SFO 21:00 5.5

123 JFK 19:00 LAX 21:30 5.5

112 ATL 19:00 JFK 21:30 2.5
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By relaxing the constraint on the number of aircraft, we see that the minimum 
number of aircraft required to fly the daily schedule of 737-800 flights is 10. The 
changes made to the flight schedule for the stranded flights (Table 5.13) reduced 
the number of aircraft needed from 12 to 10. Table 5.14 shows the routings for this 
10-aircraft solution.

Other minor changes to the flight schedule also failed to generate a solution 
that flies all the above flights with nine aircraft. Again, our routing problem here is 
more restricted than a typical airline-routing problem because of our closed-cycle 
requirement.

It is, of course, possible to manually make major changes to the schedule 
by pairing the flights such that a feasible solution is obtained with nine aircraft. 
Tables 5.15 (schedule) and 5.16 (routings) represent such a solution with a totally 
modified schedule. However, it is not clear if this operationally feasible solution is 
also attractive to the marketing department and passengers.

Mathematical Models

In this section, the above mathematical model as proposed by Kabbani and Patty 
(1992) is formally presented.

Sets

F	 = Set of flights
R	 = Set of feasible routings

Table 5.14	 Aircraft routing solution for B737-800 with revised schedule

Routing Day 1 Day 2 Day 3

1 101-126 104-142-121 141-120-123

2 104-132-112 140-119-128-108-124 102-126

3 116-134-115 129-109-130 107-129-109-139

4 140-119-128-108-127 106-139 116-134-115

5 107-142-121 137-117-127 104-142-121-130

6 122-103 122-103 122-103

7 137-117-129-109-130 107-141-120-126 106

8 102-123 101-132-112 140-119-128-108-124

9 141-120-124, 102-123 101-132-112

10 106-139 116-134-115 137-117-127
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Table 5.15	 B737-800 fleet schedule with major modifications

Flight no. Origin Departure time Destination Arrival time (hrs)

101 LAX 11:00 JFK 19:30 5.5

104 SFO 12:30 JFK 21:00 5.5

116 BOS 09:30 JFK 11:00 1.5

140 JFK 06:20 IAD 07:20 1

107 ORD 10:00 JFK 12:00 2

122 JFK 07:35 LAX 10:05 5.5

137 JFK 07:00 BOS 08:30 1.5

119 IAD 08:15 JFK 09:15 1

102 LAX 12:30 JFK 21:00 5.5

117 BOS 17:00 JFK 18:30 1.5

128 JFK 07:00 ORD 09:00 2

134 JFK 09:00 MIA 12:00 3

141 JFK 12:00 IAD 13:00 1

108 ORD 16:00 JFK 18:00 2

120 IAD 14:25 JFK 15:25 1

132 JFK 17:00 ATL 19:30 2.5

129 JFK 13:00 ORD 15:00 2

142 JFK 16:25 IAD 17:25 1

103 LAX 13:00 JFK 21:30 5.5

106 SFO 13:30 JFK 22:00 5.5

126 JFK 08:30 SFO 11:00 5.5

123 JFK 08:00 LAX 10:30 5.5

109 ORD 21:45 JFK 23:45 2

112 ATL 20:30 JFK 23:00 2.5

115 MIA 13:00 JFK 16:00 3

121 IAD 18:30 JFK 19:30 1

124 JFK 09:00 LAX 11:30 5.5

127 JFK 10:00 SFO 12:30 5.5

130 JFK 19:00 ORD 21:00 2

139 JFK 14:00 BOS 15:30 1.5
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Indices

j	 = Route index
i	 = Flight index

Parameters

cj	 = Cost of route j
ai,j	 = 1 if flight i is covered by route j, and 0 otherwise
N	 = Total number of aircraft in the fleet

Decision variable

1 if route  is selected
0 otherwisej

j
x 

= 


,

   

Subject to:
                  1 for all               

                                                              

(5.1)

j j

i j j

j

Minimize c x
j R

a x i F
j R

x N
j R

∑
∈

= ∈∑
∈

≤∑
∈

{ }                      0,1   for all   

(5.2)

jx j R∈ ∈

In the above integer linear program, the objective function seeks to minimize 
the total cost of selected routes. If other objectives, such as the ones presented 

Table 5.16	 Aircraft routing for B737-800 with nine aircraft

Routing Day 1 Day 2 Day 3

1 122-101 126-104 123-102

2 126-104 123-102 124-103

3 123-102 124-103 127-106

4 124-103 127-106 122-101

5 127-106 122-101 126-104

6 140-119-141-120-142-121 137-116-139-117 128-107-129-108-130-109

7 137-116-139-117 128-107-129-108-130-
109 134-115-132-112

8 128-107-129-108-130-109 134-115-132-112 140-119-141-120-142-121

9 134-115-132-112 140-119-141-120-142-121 137-116-139-117
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in this chapter, are sought, then the above objective function can accordingly be 
modified. Constraint (5.1) ensures that each flight is covered by one and only 
one route. Constraint (5.2) restricts the number of selected routes to the available 
number of aircraft within a particular fleet type.

Recent work attempts to solve the fleet assignment and aircraft-routing 
problems simultaneously (Papadakos 2009, Sherali 2006, Barnhart et al. 1996, 
Ioachim et al. 1999). Papadakos (2009) proposes several integrated models to 
solve fleet assignment, aircraft routing and crew scheduling (discussed in the next 
chapter) simultaneously. Sherali et al (2006) review models that integrate fleet 
assignment with aircraft routing. Barnhart et al. (1996) propose a model based on 
strings of flights as decision variables. These strings start and end at a maintenance 
station, with maintenance being performed after the last flight. The departure time 
of the string is the departure time of the first flight, and arrival time is the arrival 
time of the last flight in the sequence. Cordeau et al. (2001) propose a simultaneous 
approach to aircraft routing and crew scheduling. These methods result in a large 
number of decision variables.
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Chapter 6 

Crew Scheduling

Introduction

Crew scheduling involves the process of identifying sequences of flight legs and 
assigning both the cockpit and cabin crews to these sequences. Crew scheduling, 
like aircraft routing (Chapter 5), is normally performed after the fleet-assignment 
process.

Total crew cost, including salaries, benefits, and expenses, is the second largest 
cost figure, after the cost of fuel, for airlines. Table 6.1 presents the total number 
of crew, annual crew salaries and benefits, and flight-crew expenses for select US 
airlines.

The third column in this table represents regular flight-crew salaries and 
benefits. The fourth column, flight-crew expenses, includes per diems and other 
expenses incurred for hotels, parking, meals, taxi-cabs, among others, in order for 
an airline to maintain its crew at a city other than their home base. Note that this 
cost is in addition to the salaries and benefits that the airlines pay to their flight 
crew. The last column shows flight-crew expenses as a percentage of salaries and 
benefits (column 4 divided by column 3).

Table 6.1	 Crew cost for US major carriers

Carrier Number of
flight crew1

Flight crew
expenses2 (000)

 Crew expense/ 
operating expense2

(%)

Alaska 1,455 180,845,000 5.57%

AirTran 1,632 157,383,851 6.00%

American 11,166 1,152,808,000 4.48%

Continental 4,867 623,767,000 4.05%

Delta 12,299 802,811,000 3.84%

Southwest 5,915 965,329,000 9.13%

United 6,478 757,020,000 3.44%

US Airways 5,275 482,044,882 3.39%

Source: Airline Pilot Central1; BackAviation Form 41 iNET.2



Airline Operations and Scheduling84

Unlike the fuel cost, a large portion of flight-crew expenses are controllable 
(Anbil, 1991). As Table 6.1 suggests, even a small percentage of savings in flight-
crew expenses through better scheduling translates into millions of dollars, which 
ultimately can determine the survival or demise of an airline. Because of such 
large anticipated savings, the crew scheduling problem has received considerable 
attention from both academia and industry.

Crew scheduling is one of the most computationally intensive combinatorial 
problems (see Ryan 1992, Bixby et al. 1992, Gamache et al. 1998, Klabjan 2001, 
and Barnhart 2008). Computational complexity will be discussed in detail in 
Chapter 13. The crew scheduling problem is typically solved in two phases, crew 
pairing and crew rostering. This is mainly because the two problems are too large 
to address simultaneously.

Crew Pairing

The first phase in the crew scheduling is to develop crew pairing. Crew pairing is a 
sequence of flight legs, within the same fleet, that starts and ends at the same crew 
base. A crew base is the home station or city in which the crew actually lives. Large 
airlines typically have several crew bases. The sequence of crew pairing must 
satisfy many constraints such as union, government, and contractual regulations. 
A crew pairing sequence may typically span from one to five days, depending on 
the airline. The objective of crew pairing is to find a set of pairings that covers all 
flights and minimizes the total crew cost. The final crew pairing includes dates and 
times for each day. A typical assumption in crew pairing is that flight schedules are 
repeated daily. This assumption may be true for the week-day schedules, but for 
the weekends, the airlines normally have a lower frequency of flights. The adopted 
approach is normally to solve the crew pairing problem for a typical weekday, and 
then make modifications and adjustments for the weekends.

Note that in this phase of crew pairing, we generate pairings of flight legs 
that are feasible and satisfy the regulations. In this phase, we do not address 
individual crew members. This phase is also referred to as an impersonal phase. 
The assignment of each specific crew member to these pairings will be discussed 
in the second phase, that is, crew rostering, later in this chapter.

The following definitions are used in addressing the crew-pairing problem:

Duty: A working day of a crew may consist of several flight segments. The 
length of a duty is determined by Federal Aviation Regulations (FAR) in 
the United States, as well as by individual airline rules. Under the Federal 
law, airline pilots cannot fly more than 8 hours in a 24-hour period. They 
also must be able to rest for 8 hours in that same time span.
Sit connection: A connection during duty is called a sit connection. This 
involves the waiting times, on the part of the crew, for changing planes onto 
their next leg of duty. Normally, airlines impose minimum and maximum 
sit connection times, typically between 10 minutes and 3 hours.

•

•
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Rest: A connection between two duties is referred to as rest, overnight 
connection or layover.

Figure 6.1 illustrates a sample from Ultimate Air’s B757-200 fleet’s two-day 
crew pairing, showing duty periods, sits within duty periods, overnight rests, and 
sign-in and sign-out times, assuming the crew home-base is at JFK. Based on this 
figure, a crew pairing is a sequence of duties separated by rest periods.

As Figure 6.1 for our two-day pairing suggests, the crew is staying overnight, 
away from their home base, and therefore, the airline has to pay for their per 
diems, transportation, accommodation, food, and so on.

The objective of the crew pairing problem is to minimize the total cost of 
assigning crews to flight legs, such that every flight is covered, and making sure 
that union, government, and airline rules are satisfied. Furthermore, the constraints 
should also consider the number of available crews at each base. This problem 
usually seeks pairings that translate into a high utilization of crew flying time, and 
minimum sit connection times.

The airlines normally attempt to keep the crew with the same aircraft (tail 
number) on multiple flight legs as much as possible. This way, crew-related 
problems, such as delays and cancelled connecting flights, will be reduced. 

•

Figure 6.1	 A typical pairing with duty periods, sits within duty periods, 
overnight rests, and sign-in and sign-out times
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Delayed, cancelled connecting flights, or other difficulties in flight pairings result 
in deadheading. Deadheading happens when the crew is transported as non-
revenue passengers.

It should be noted that the solutions for the aircraft routing (Chapter 5) and 
crew pairing cannot be the same. First, crew members need more rest. An aircraft 
can be utilized for 14 hours in one day, but the crew can stay with the aircraft only 
8 hours. Second, crew pairing identifies flight legs that start and end at the same 
crew base (i.e., only JFK to JFK in our case). This is not a constraint for the aircraft 
routing problem (where, for example SFO to SFO is possible) as long as it stays at 
a maintenance station overnight every 3–5 days. Third, the crew pairing problem 
does not consider turn-around times as they may just land with one aircraft and 
takeoff with another in a very short time.

Similar to aircraft routing discussed in Chapter 5, the crew-pairing problem 
is typically formulated as a set-partitioning problem (see Chapters 2 and 5) with 
some side constraints. In this set-partitioning problem, the rows of the matrix 
represent feasible crew pairings and the columns are scheduled daily flights.

Pairings Generators

The pairings are generated based on rules and regulations. Note that at this stage, 
these pairings just show the sequence of flights assigned to crew members. It starts 
with a crew base and adds all the feasible flight legs according to the specified rules. 
It finally ends up at the same crew base from which it started. A pairing satisfying all 
the rules and regulations is called a legal pairing. The length of a pairing depends on 
the airline and union regulations. A pairing may span from one to five days. Some 
of the rules in generating the feasible pairings include the total daily flight time, 
and minimum and maximum sit-connection times. All possible feasible pairings are 
generated during this phase. For large airlines with many daily flights, the number of 
pairings generated becomes very large (billions of legal pairings!). This is especially 
very applicable to airlines with large hubs. Each flight leg at this hub can be 
potentially paired with many departing flights. This combination is compounded if 
the aircraft is rerouted to the hub several times in a day. In such cases, the generators 
are normally equipped with some extra rules and filters to identify and select good 
potential pairings. Barnhart (2008) and Klabjan (2003) provide an overview of these 
rules and filters to reduce the number of pairings.

The following represents the crew pairing requirements for Ultimate Air:

Each duty should not exceed 8 hours of flight time.
A maximum length of two days is allowed for a routing (i.e., two-day 
pairings).
The home base for the crew is JFK.
The minimum and maximum sit-connection times are 10 minutes and 3 
hours respectively.

•
•

•
•
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A similar program to route generators, in Chapter 5, was developed to generate 
the potential crew pairings. The steps for this program are as follows:

Read the flight numbers, along with their departure and arrival cities and 
times, for a set of flights assigned to a specific fleet type (as identified by 
fleet-routing module).
Create all possible one and two-day pairings – place in a file.
Examine each pairing in this file so that:

the pairing ends up at JFK over the routing cycle;
for two-day pairing, the first flight of the second day starts out at the city 
where it ended up the night before;
the duty does not exceed eight hours of flight time in any given day;
the sit-connection times are between the allowable minimum and 
maximum times.

If a pairing satisfies all of the above conditions, it is added to a file of 
potential valid pairing candidates.

This program generated a total of 28 and 314 legal pairings for the 757-200 and 
737-800 fleet types respectively. Note that the number of crew pairing candidates 
is much lower than potential aircraft routings (Chapter 5) for both fleet types. The 
main reason is that for crew pairing we generated only one- and two-day pairings 
as opposed to three-day routings in Chapter 5. Furthermore, other factors such as 
a maximum of eight-hour flight blocks per day, and a maximum three-hour sit-
connection times, contribute to the lower numbers of possible combinations. Table 
6.2, overleaf, presents all 28 legal pairings for the 757-200 fleet. In this table, if the 
pairings are one-day, then no flights appear in the day two column.

Since the number of combinations for the 737-800 fleet is large, five one-day 
and two-day pairing samples are presented in Tables 6.3 and 6.4 (see page 89).

Mathematical Model for B757-200 Fleet

Similar to Chapter 5, since the 757-200 fleet has a lower number of crew pairings, 
we first start developing the mathematical model for this fleet. The mathematical 
model for the 737-800 will follow later on in this chapter.

Decision Variable

Having generated potential valid crew pairings, the task of the mathematical model 
is to identify which candidates should be selected. We define the following binary 
decision variable:

1 if pairing   is selected,   =1,2,..,28
0 otherwise

j j
x j


= 


•

•
•

–
–

–
–

•
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Table 6.2	 All legal crew pairings for B757-200 fleet

Crew pairing index Day-one flights Day-two flights Flight hours

1 125 105 11

2 131 110 5

3 131 111 5

4 131 110-138-118 8

5 133 110 5

6 133 111 5

7 133 110-138-118 8

8 135 113 6

9 135 114 6

10 135 113-138-118 9

11 136 113 6

12 136 114 6

13 136 113-138-118 9

14 138 118 3

15 131-111 5

16 131-111-133 110 10

17 131-111-133 111 10

18 131-111-133 110-138-118 13

19 131-111-136 113 11

20 131-111-136 114 11

21 131-111-136 113-138-118 14

22 138-118 3

23 138-118-133 110 8

24 138-118-133 111 8

25 138-118-133 110-138-118 11

26 138-118-136 113 9

27 138-118-136 114 9

28 138-118-136 113-138-118 12
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Table 6.3	 Sample one-day crew pairing for B737-800 fleet

SAMPLE DAY 1 Crew utilization 
(hrs)

High utilization

Pairing #1 FLT 
140

FLT 
119

FLT 
128

FLT 
108

6City-pairs JFK-
IAD

IAD-
JFK

JFK-
ORD

ORD-
JFK

Dept-Arr 
times

6:20-
7:20

8:15-
9:15

10:05-
11:05

12:20-
15:20

Low utilization

Pairing #2 FLT 
140

FLT 
119

2City-pairs JFK-
IAD

IAD-
JFK

Dept-Arr 
times

6:20-
7:20

8:15-
9:15

Table 6.4	 Sample two-day crew pairing for B737-800 fleet

SAMPLE DAY 1 DAY 2 Crew 
utilization (hrs)

High utilization

Pairing #3 FLT 
142

FLT 
121

FLT 
127

FLT 
104

FLT 
142

FLT 
121

15City pairs JFK-
IAD

IAD-
JFK

JFK-
SFO

SFO-
JFK

JKF-
IAD

IAD-
JFK

Dept-Arr 
times

15:15-
16:15

18:30-
19:30

20:00-
22:30

5:05-
13:35

15:15-
16:15

18:30-
19:30

Medium utilization

Pairing #4 FLT 
132

FLT 
112

FLT 
130

FLT 
107

FLT 
141

FLT 
120

11City pairs JFK-
ATL

ATL-
JFK

JFK-
ORD

ORD-
JFK

JFK-
IAD

IAD-
JFK

Dept-Arr 
times

14:35-
17:35

18:00-
20:30

21:00-
22:00

7:30-
10:30

12:00-
13:00

14:25-
15:25

Low utilization

Pairing #5 FLT 
140

FLT 
119

2City pairs JFK-
IAD

IAD-
JFK

Dept-Arr 
times

6:20-
7:20

8:15-
9:15
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Objective Function

The determination of cost for crew pairings is a complex process (Barnhart 1997). 
It is based on the sum of all duty cost in the pairing, cost of time away from the base, 
and minimum guaranteed pay multiplied by the number of duties. The maximum 
of these three costs determines the above cost function for each pairing.

In our Ultimate Air example, we assume two-day pairings to be three times 
as costly as one-day pairings. This is because, in two-day pairings, the crew stays 
away from home base for one night, and hence the airline is responsible for the 
incurring costs. Therefore, according to Table 6.2, the cost coefficient is one for 
pairings 15 and 22, and three for all other pairings.

The objective functions for our 757-200 fleet, therefore, is as follows:

28
Minimize 

1
c xj jj

∑
=

where:
cj	 = the cost of pairing j. 

For our Ultimate Air, cj is designated the value 1 for one-day, and 3 for two-day 
pairings.

Flight-Coverage Constraints for B757 Fleet

Each pairing candidate covers a certain number of flights. We must ensure that the 
crew covers each flight exactly once. To write the coverage constraint for flight 
125, according to Table 6.2, we write:

11x =

This is because flight 125 only appears in crew pairing 1. Referring to Table 
6.2 again, flight 114 appears in crew pairings 9, 12, 20, and 27. Therefore to cover 
this flight we have:

19 12 20 27x x x x+ + + =

Similarly, referring to Table 6.2, we can write the flight coverage constraints 
for the other 10 flights with this fleet type.

Note that unlike the three-day aircraft routing in which we had a constraint for 
each flight for each day, in crew pairing we address each flight only once. This is 
because we are interested in knowing which flights should be paired rather than 
the actual assignment of flights to days. A two-day pairing requires two sets of 
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crews with a one-day lag. Each set of crew covers one duty of the pairing. Thus 
all flights are covered. We will discuss the assignment of pairings to days in the 
second phase, crew rostering.

Crew-Pairing Solution for B757-200 Fleet

We used an optimization software to solve the above integer linear program model. 
Four two-day pairings were selected. The objective function is therefore 12. Table 
6.5 presents the solution, showing pairings and flights, as well as departure and 
arrival times.

Table 6.5	 Solution to crew pairing for B757-200 Fleet

Solution DAY 1 DAY 2

Pairing #1 FLT 
125

FLT 
105

City pairs JFK-
SFO

SFO-
JFK

Dept-Arr 
times

7:25-
9:55

9:50-
18:20

Pairing #2 FLT 
131

FLT 
111

FLT 
136

FLT 
113

FLT 
138 FLT 118

City pairs JFK-
ATL

ATL-
JFK

JFK-
MIA

MIA-
JFK

JFK-
BOS

BOS-
JFK

Dept-Arr 
times

9:30-
12:00

13:10-
15:40

18:10-
21:10

9:10-
12:10

12:30-
14:00

15:00-
16:30

Pairing #3 FLT 
135

FLT 
114

City pairs JFK-
MIA

MIA-
JFK

Dept-Arr 
times

15:10-
18:10

14:30-
17:30

Pairing #4 FLT 
133

FLT 
110

City pairs JFK-
ATL

ATL-
JFK

Dept-Arr 
times

18:05-
20:35

8:10-
10:40
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Crew Pairing Solution for B737-800 Fleet

Similarly, we develop the mathematical model for crew pairing of the 737-800 
fleet. Solving this mathematical model generates the following solution, presented 
in Table 6.6, for this fleet.

Table 6.6	 Solution to crew pairing for B737-800 fleet

Solution DAY 1 DAY 2

Pairing #1 FLT 140 FLT 119 FLT 134 FLT 115

City pairs JFK-IAD IAD-JFK JFK-MIA MIA-JFK

Dept-Arr times 6:20-7:20 8:15-9:15 10:35-13:35 18:25-21:25

Pairing #2 FLT 122 FLT 103

City pairs JFK-LAX LAX-JFK

Dept-Arr times 7:35-10:05 15:20-23:50

Pairing #3 FLT 137 FLT 117

City pairs JFK-BOS BOS-JFK

Dept-Arr times 7:40-9:10 10:00-
11:30

Pairing #4 FLT 141 FLT 120 FLT 125 FLT 104 FLT 142 FLT 121

City pairs JFK-IAD IAD-JFK JFK-SFO SFO-JFK JFK-IAD IAD-JFK

Dept-Arr times 12:00-13:00 14:25-
15:25 7:25-9:55 5:05-13:35 15:15-

16:15
18:30-
19:30

Pairing #5 FLT 132 FLT 112 FLT 130 FLT 107

City pairs JFK-ATL ATL-JFK JFK-ORD ORD-JFK

Dept-Arr times 14:35-17:35 18:00-
20:30 21:00-22:00 7:30-10:30

Pairing #6 FLT 129 FLT 109 FLT 139 FLT 116 FLT 128 FLT 108

City pairs JFK-ORD ORD-JFK JFK-BOS BOS-JFK JFK-ORD ORD-JFK

Dept-Arr times 15:05-16:05 17:10-
20:10 21:30-23:00 6:15-7:45 10:05-

11:05
12:20-
15:20

Pairing #7 FLT 123 FLT 102

City pairs JFK-LAX LAX-JFK

Dept-Arr times 16:00-18:30 9:45-18:15

Pairing #8 FLT 124 FLT 101

City pairs JFK-LAX LAX-JFK

Dept-Arr times 19:00-21:30 5:00-13:30

Pairing #9 FLT 127 FLT 106

City pairs JFK-SFO SFO-JFK

Dept-Arr times 20:00-22:30 15:25-23:55
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Crew-Pairing Mathematical Model

In this section, the crew pairing model, as was adopted above, is formally presented.

Sets

F	 = Set of flights
P	 = Set of feasible pairings
K	 = Set of crew home-base cities

Indices

j	 = Pairing index
i	 = Flight index
k	 = Crew home-base index

Parameters

·	 = Cost of crew paring j

,

1 if flight  is covered by pairing  
0 otherwisei j

i j
a 

= 


1 if home base city (starting and ending flight) for pairing   is city 
 , 0 otherwise

         

j k
hk j


= 


 minimum number of crew to be used at home base city 

 maximum number of crew to be used at home base city 

b klowerk
b kupperk

≡

≡

Decision Variable

1 if pairing  is part of the solution
0 otherwise

j
x j


= 


The mathematical model is formulated as:

a x i F= ∈

   

Subject to:
1                               for all flight legs                               ,

   for,

(6.1)

(6.2)

c xj jj P

i j jj P

b h x blower k j j upperk kj P

∑
∈

∑
∈

≤ ≤∑
∈

 all home bases                              (6.3)k K∈

Min
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In this model, the objective function (6.1) attempts to minimize the total cost 
of flight pairings. Constraint (6.2) guarantees that each flight leg is covered only 
once. The side constraints (6.3) ensure that the selected flight pairings stay within 
the available number of crew members at each home base.

Some recent works (see Barnhart 2008 and Klabjan 2003) have attempted to 
integrate the two problems of crew pairing and aircraft routing. It should be noted 
that the difficulty in dealing with larger problems than those presented here will be 
compounded by integrating both these problems.

Crew Rostering

Once the crew pairing problem is solved, the second phase is crew rostering. Crew 
rostering is the process of assigning individual crew members to crew pairings, 
usually on a monthly basis.

Some airlines, mainly European, allow their crews to select a number of 
pairings as identified in the first phase, together with rest periods on specific days 
to construct their monthly personalized schedule (see Sarra 1998, Giafferri et 
al. 1982, Hjorring 2000, Konig and Strass 2000). The airline then attempts to 
grant these schedules if possible. Crew training days, seniority, and other internal 
regulations are some of the factors that influence the assignment of these schedules 
to crews.

US Airlines, however, develop their monthly crew schedules based on the 
solutions generated in the crew-pairing phase, independent of crew desires. This 
approach is then used to construct the monthly schedule by incorporating employee 
time off, training, union rules, and other contractual obligations. The airlines then 
assign crews to these schedules based on their in-house priority system. This 
method, where the employees bid for pre-constructed rosters, is referred to as a 
bid line procedure. In both rostering systems, the objective is to maximize crew 
utilization, evenly distributing individual crew workload and rest times.

Since the rules and regulations vary among the airlines, the crew rostering 
process, and the available literature on this topic, is also diverse. Some of these 
methods include (Gamache et al. 1999):

assigning high priority employees to high priority pairings;
developing monthly rosters for individual crew members based on their 
requests;
developing monthly rosters for each day of the month without considering 
the crew requests.

It should be noted that the processes of assigning cockpit-aircrew members 
(captain and first officer) and cabin-aircrew members (flight attendants) are 
typically different. The cockpit aircrew members usually have the required 
licenses/type ratings to fly only a specific fleet of aircraft, while cabin aircrew 
members can be assigned to multiple fleet types.

•
•

•
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Ultimate Air Rosters

As explained earlier, a roster is a series of crew pairings separated by rest periods 
and days off. For Ultimate Air, we attempt to develop anonymous rosters on which 
its employees can bid.

For presentation purposes, and in an effort to keep the rostering problem to a 
manageable size, we will develop the rosters on a weekly basis, instead of monthly 
rosters which are more common among airlines. The process of developing 
monthly rosters is basically the same as that of one done weekly.

The assumptions for the Ultimate Air crew rosters are as follows:

at least one day off between pairings;
two pairings per week;
balanced workload among all rosters – a work week of 20 flight hours is 
desirable.

Table 6.7 presents all possible combinations on the allocation of pairings to days 
of the week. This table incorporates the above rules on two pairings per week and at 
least one day off between pairings. Each () symbol represents a pairing. Note that 
each pairing spans a two-day period. Therefore, if a crew is assigned to a pairing on 
Monday, then this crew member will be flying both on Monday and Tuesday. Since 
we require at least one day rest between pairings, this crew member cannot fly on 
Wednesday, but can fly on Thursday, Friday, Saturday or Sunday.

•
•
•

Table 6.7	 Possible weekly crew roster combinations for Ultimate Air

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

 

 

 

 

 

 

 
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We assume that the assignment of crew to rosters, in each week, takes into 
consideration their previous week’s rosters. That is to say, if a crew member is 
assigned to a pairing which starts on Saturday of this week, this crew member 
cannot be assigned to a roster which starts on Monday, and so on.

Similar to the crew pairing mathematical model in the previous section, a 
series of set-partitioning approaches is adopted to assign rosters to individual 
crew members. We use a set-partitioning approach first to identify the anonymous 
rosters. In this approach, the rows of the set-partitioning matrix represent the valid 
roster combinations, and the columns are the daily pairings, which span the entire 
week.

Again, since the 757-200 fleet has a smaller problem size, we develop the crew 
rosters for this fleet first.

Crew Rosters for B757-200 Fleet

Table 6.5 presented the solution to our crew pairing phase for the 757-200 fleet. 
Four pairings were identified, which covered all the scheduled 757-200 flights 
in a day. Let us call these four pairings P1, P2, P3, and P4. Considering these 
pairing combinations, and assigning these pairings to days in Table 6.7, we get 
112 possible valid rosters. Table 6.8 presents three sample valid rosters with 
corresponding total weekly flight hours.

Decision Variable

Similar to crew pairing, the task of this mathematical model is to identify which 
rosters, among the 112 potential candidates, should be selected. We define the 
following decision variable:

1 if roster   is selected,   =1,2,..,112
0 otherwise

j j
x j


= 


Table 6.8	 Three sample rosters for B757-200 fleet

Sample 
Rosters Mon Tue Wed Thu Fri Sat Sun Flight hrs

1 P1 P2 25

2 P3 P1 17

3 P4 P2 19
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Objective Function

As explained earlier, a major goal of Ultimate Air is to create balanced rosters 
around 20 weekly flights hours. The objective function is therefore constructed in 
an attempt to minimize the total deviations of the rosters’ weekly flight hours from 
the target of 20 flight hours. The objective function is therefore represented as:

112
   20

1
Minimize h xj jj

− ⋅∑
=

where:
hj 	 = the total weekly flight hours for roster j. 

We use absolute values because the term hj – 20 may be positive, zero, or 
negative depending on the roster. In this manner, a negative deviation (low weekly 
flight hours) is treated as bad as a positive deviation (high weekly flight hours). 
Referring to our sample rosters in Table 6.8, the coefficient for the variable 
representing sample 1 is |25-20|=5. Similarly, the objective function coefficients 
for the other two samples are |17-20|=3 and |19-20|=1 respectively.

Pairing Coverage Constraints for B757-200 Fleet

Each roster candidate covers a certain number of pairings in each day. We must 
ensure that the rosters cover each pairing every day, exactly once. As an example, 
sample 1 in Table 6.8 covers pairings 1 and 2 on Monday and Thursday respectively. 
So this sample is a candidate to cover P1 on Monday and P2 on Thursday.

A simple program similar to Chapter 5 can search through our 112 candidates 
to identify which ones cover which pairings, and on what days. We have four 
pairings that need to fly every day of the week, which makes a total of (4 × 7) 28 
constraints as follows:

112
1         1, 2,.., 28,1

a x For all ii j jj
= =∑

=

In this set of constraints, index i represents a specific pairing in a given day. 
As an example, the number 1 represents P1 on Monday, while 2 stands for P2 on 
Monday,…, and 28 is P4 on Sunday. The parameter ai,j is defined as follows:

,

1 if roster  covers pairing 
0 otherwisei j

j i
a 

= 

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Rostering Solution for B757-200 Fleet

The above integer linear program with 112 binary decision variables and 28 
constraints was solved using optimization software. The solution for the objective 
function is 28 hours, which represents the sum of deviations of all rosters from our 
target of 20 flight hours. Table 6.9 presents the solution to these weekly rosters. 
There are 14 disjointed (non-overlapping) rosters, each covering two pairings per 
day. As we can see from the solution, each pairing is covered exactly once every 
day. In order to keep the flight hours more balanced, one approach is to rotate the 
rosters every week among the crew members. This rotation of weekly rosters not 
only provides a fair and balanced number of flight hours over the whole month for 
a particular crew member, but is also very desirable for the airlines and crew to 
stay current with their network of airports.

According to Table 6.9, we need at least 14 captains and 14 first officers for our 
757-200 fleet. The airlines normally have a number of reserve captains and first 
officers to accommodate unforeseen circumstances. As explained earlier, these are 
anonymous rosters and can be assigned to any crew member. Once these rosters 

Table 6.9	 Solution to crew rosters for B757-200 fleet

Rosters Mon Tue Wed Thu Fri Sat Sun Flight Hours

1 0 P1 0 0 P3 0 0 17

2 0 0 P1 0 0 P3 0 17

3 P1 0 0 P4 0 0 0 16

4 0 0 0 P2 0 0 P3 20

5 P2 0 0 0 P4 0 0 19

6 0 P2 0 0 0 P4 0 19

7 0 0 P2 0 0 0 P4 19

8 0 P3 0 0 P1 0 0 17

9 0 0 P3 0 0 0 P1 17

10 P3 0 0 0 P2 0 0 20

11 0 0 0 P3 0 0 P2 20

12 P4 0 0 P1 0 0 0 16

13 0 P4 0 0 0 P1 0 16

14 0 0 P4 0 0 P2 0 19
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are constructed, the airline, based on its rules and regulations, assigns them to each 
individual crew member.

Rostering Solution for B737-800 Fleet

A similar approach is adopted for deriving the solution for the 737-800 fleet. We 
have nine pairings for this fleet. There is a total of 567 roster candidates and 63 
(9 pairings × 7 days/week) constraints. Table 6.10 presents the solution for crew 
rostering for this fleet. This solution generates a total of 43 hours deviation for 32 
rosters.

Table 6.10	 Solution to crew rosters for B737-800 fleet

Rosters Mon Tue Wed Thu Fri Sat Sun Flight Hours

1 0 0 P1 0 0 0 P7 19

2 P1 0 0 0 P9 0 0 19

3 0 P1 0 0 0 P9 0 19

4 0 0 0 P1 0 0 P9 19

5 P2 0 0 P2 0 0 0 22

6 0 P2 0 0 0 P5 0 20

7 0 0 P2 0 0 0 P5 20

8 P3 0 0 P4 0 0 0 18

9 0 P3 0 0 P4 0 0 18

10 0 0 P3 0 0 P4 0 18

11 0 0 0 P3 0 0 P4 18

12 P4 0 0 0 P3 0 0 18

13 0 P4 0 0 0 P3 0 18

14 0 0 P4 0 0 0 P3 18

15 P5 0 0 0 P6 0 0 20

16 0 0 P5 0 0 0 P6 20

17 0 P5 0 0 0 P8 0 20

18 0 0 0 P5 0 0 P8 20

19 0 0 0 P6 0 0 P1 19
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Crew-Rostering Mathematical Model

The mathematical model for crew rostering depends on how we choose to construct 
the rosters, that is, either individualized or anonymous rosters. The approach 
that was presented in this chapter was based on developing anonymous rosters. 
Barnhart and Klabjan provide a review of various rostering problems.

Sets:

P	 = Set of all pairings over all days of the roster period
R	 = Set of valid rosters

Indices:

j	 = Roster index
i	 = Pairing index

Parameters:

cj	 = Deviation of roster j flight time from a target value

Rosters Mon Tue Wed Thu Fri Sat Sun Flight Hours

20 P6 0 0 P8 0 0 0 22

21 0 P6 0 0 P8 0 0 22

22 0 0 P6 0 0 0 P9 22

23 0 0 0 P7 0 0 P2 22

24 0 P7 0 0 0 P6 0 22

25 0 0 P7 0 0 P7 0 22

26 P7 0 0 P9 0 0 0 22

27 P8 0 0 0 P1 0 0 19

28 0 P8 0 0 P2 0 0 22

29 0 0 P8 0 0 P2 0 22

30 0 0 P9 0 0 P1 0 19

31 0 P9 0 0 P5 0 0 20

32 P9 0 0 0 P7 0 0 22

Table 6.10	 Concluded
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,

1 if pairing  is covered by roster 
0 otherwisei j

i j
a 

= 


Decision Variable:

1 if roster  is part of the solution
0 otherwise

j
x j


= 


The mathematical model is formulated as:

a x i P= ∈

          

Subject to:

1                               For all     ,

(6.4)

(6.5)

c xj jj R

i j jj R

∑
∈

∑
∈

Minimize

In this model, the objective function (6.4) attempts to minimize the total sum 
of deviations. Constraint (6.5) guarantees that each flight pairing in each day is 
covered only once.
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Chapter 7 

Manpower Planning

Introduction

An airline’s product is measured by its timeliness, accuracy, functionality, quality, 
and price (Yu 1998). The airline employees and equipment are the factors that 
determine such measures. Manpower planning for airlines represents one of the 
most important and challenging tasks, covering a wide range spanning from 
hiring, training, to scheduling of human resources (Yu and Thengvall 2002). The 
concepts of hiring and training are normally very much dependant on the airline 
strategic plans (Verbeek 1991). Manpower scheduling refers to the actual work 
plan including working, non-working days, times, shifts, locations, and leave 
periods. Scheduling the employees for an airline is an enormous task. There are 
pilots, flight attendants, ground crew, baggage handlers, reservationists, cooks, 
janitors, mechanics, administrators, and so on. 

The main purpose of manpower scheduling is to derive a cyclic (normally 
weekly) plan for each employee so that the total manpower costs are minimized, 
efficiency and utilization are maximized, subject to meeting the requirements and 
regulations (Brusco and Jacobs 1998).

Chapter 6, on crew scheduling, presented the process of assigning flight crews 
to flight legs while this chapter introduces mathematical models on manpower 
planning for ground crews. Simulation models are also used to plan for manpower 
planning (Chapter 15).

Mathematical Modeling Case Study

We begin the introduction to the mathematical model by applying it to our case study. 
Table 7.1 presents the weekly manpower requirements for ground operations (check-
in counters and baggage handlers) at JFK for our Ultimate Air airline example.

The weekly manpower requirements are normally different at different times 
of the day and different days of the week. The daily operations are divided into 
four time blocks with duration of four hours each. According to this table, for 
example, on Mondays from 6 a.m. – 10 a.m., we need eight employees, and so on. 
The following contractual issues and airline policies apply:

Each employee works for eight hours consecutively in a day.•
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There are currently three working shifts: shift 1 (6 a.m. – 2 p.m.), shift 2 (10 
a.m. – 6 p.m.) and shift 3 (2 p.m. – 10 p.m.).
Each employee works for five days consecutively followed by two days 
off.

The objective is to determine the minimum size for the workforce and their 
working schedules so that the above manpower requirements and regulations are 
met.

The mathematical approach discussed in this section is a modified version of 
the Personnel Scheduling model by Brusco et al. (1995). This method has been 
used in the development of the automated manpower planning system at United 
Airlines. For other mathematical approaches to manpower planning see Brusco 
and Jacobs (1998).

We adopt the following decision variable:

,  number of employees who begin their weekly work in day  adopting shift  i jx i j=

In this decision variable, index i, represents the day that an employee starts his/
her five-day work week. Index j, represents the shift that the employee is assigned 
to. Tables 7.2 and 7.3 show the indices used to represent shifts and days of the 
week respectively.

•

•

Table 7.1	 Check-in counter agents requirement at JFK for Ultimate Air

Shift/day Mon Tue Wed Thu Fri Sat Sun

6 a.m. – 10 a.m. 8 8 8 8 10 10 6

10 a.m. – 2 p.m. 12 10 12 10 16 16 8

2 p.m. – 6 p.m. 16 12 16 12 20 20 8

6 p.m. – 10 p.m. 9 8 9 8 12 12 4

Table 7.2	 Index for shifts (j)

8-hour shift Index (j) for shift

6 a.m. – 2 p.m. 1

10 a.m. – 6 p.m. 2

2 p.m. – 10 p.m. 3
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According to these tables, x1,1 represents the number of employees who should 
start their work week on Monday from 6 a.m. – 2 p.m. shift, and so on.

The objective function is to minimize the total workforce (headcount) as 
follows:

1,1 1,2 1,3 7,1 7,2 7,3 ...Minimize x x x x x x+ + + + +

Note that the employees in decision variables are disjoint, meaning no 
employee appears in two decision variables. As an example, those employees 
who start their working week on Monday from 6 a.m. – 2 p.m., represented by 
decision variable x1,1, are different from those who start on Monday from 10 a.m. 
– 6 p.m. represented by x1,2. So adding all the decision variables represents the 
total workforce for this case study, which we wish to minimize.

For the constraints, we should satisfy the manpower requirements for each 
time block of the day. We have seven days with four time blocks covering the 
three shifts in each day, resulting in a total of 28 constraints. We classify these 
constraints in their four respective time blocks.

Constraints

The constraints must cover the manpower requirements for every shift of every 
day. The following presents the constraints for each time block.

Time Block 6 a.m.  – 10 a.m.

The employees working in this time block include only those who start their shift 
at 6 a.m. (first shift). Those who start their shifts at 10 a.m. or 2 p.m. (second or 

Table 7.3	 Index for days of the week (i)

Starting day of the working week Index (i) for day

Mon 1

Tues 2

Wed 3

Thu 4

Fri 5

Sat 6

Sun 7
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third shifts) will not be present during this time block. To express this constraint 
for Monday, 6 a.m. – 10 p.m., we have the following constraint:

1,1 4,1 5,1 6,1 7,1 8x x x x x+ + + + ≥

The above constraint specifies that the total number of employees available for 
work on Monday from 6 a.m. to 10 a.m. includes those who start their working 
week on Monday (x1,1), plus those who start on Thursday (x4,1), Friday (x5,1), 
Saturday (x6,1), and Sunday (x7,1). We require eight employees on Monday in the 
first time block. This number appears as the right hand side for the constraint. Note 
that since each employee works five days consequently followed by two days off, 
those who start their working week on Tuesday or Wednesday will not be present 
for work on Monday. Similarly we write six more constraints for the first time 
block of other days within the week.

Constraints for Time Block 10 a.m. – 2 p.m.

Since each employee works for eight hours, then the employees working in this 
time block include those who start their shifts at 6 a.m. (first shift) and 10 a.m. 
(second shift). The constraint for this time block for Monday is as follows:

1,1 4,1 5,1 6,1 7,1 1,2 4,2 5,2 6,2 7,2 12x x x x x x x x x x+ + + + + + + + + ≥

The first five terms are the same as the constraint for Monday 6 a.m. – 10 a.m. 
time block. The second five terms represent those employees who start their shifts 
at 10 a.m. on different days. The right-hand side represents the number of required 
employees for Monday’s second time block. Similarly six more constraints are 
added for other days of the week representing this second time block.

Constraints for Time Block 2 p.m. – 6 p.m.

The employees working in this time block include those who start their shifts at 10 
a.m. (second shift) and 2 p.m. (third shift). The constraint for this time block for 
Monday is as follows:

1,2 4,2 5,2 6,2 7,2 1,3 4,3 5,3 6,3 7,3 16x x x x x x x x x x+ + + + + + + + + ≥

The first five terms are the same as the constraint for Monday 10 a.m. – 2 p.m. 
time block. The second five terms represent those employees who started their 
shifts at 2 p.m. on different days. The right hand side represents the number of 
required employees for Monday’s third time block. Similarly six more constraints 
are added for other days of the week.
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Constraints for Time Block 6 p.m. – 10 p.m.

The employees working in this time block include only those who start their shifts 
at 2 p.m. (third shift). Those who have started at 6 a.m. (first shift) or 10 a.m. 
(second shift) have already finished their 8-hour working day and are not present 
during this time block. The constraint for Monday’s time block is as follows:

1,3 4,3 5,3 6,3 7,3 9x x x x x+ + + + ≥

We see that only those employees with the third shift appear in this constraint. 
Similarly six more constraints are added for other days of the week.

Solution

The above linear integer programming model has 21 integer-decision variables 
and 28 constraints. Solving this model using a software generates the solution 
presented in Table 7.4. This table shows the required number of employees who 
start their working week in different shifts of the day. A total of 36 employees are 
required to meet the manpower requirement for this case study.

Mathematical Model

The mathematical model proposed by Brusco et al. (1995) addresses both part-time 
and full-time employees, their limits, numerous combinations of shifts, working 
days, and weekly rotations. This method has been used in the development of the 
automated manpower planning system at the United Airlines called Pegasys. This 
automated system aids the airline in determining the optimal manpower planning 

Table 7.4	 Solution to manpower planning

Day/shift Shift 1 (6 a.m.  
– 2 p.m.)

Shift 2 (10 a.m. 
– 6 p.m.)

Shift 3 (2 p.m. 
– 10 p.m.)

Mon 2 1 3

Tue 4 0 7

Wed 0 1 0

Thu 2 4 4

Fri 2 0 0

Sat 2 2 2

Sun 0 0 0
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system in their 119 domestic airports as well as many international locations. 
Pegasys uses flight schedules, passenger forecasts, baggage and cargo loads to 
compute labor requirements. The mathematical model for this automated system 
utilizes personnel tour scheduling which involves the determination of work and 
non-work days during the week as well as the associated daily shift starting and 
finishing times for each employee. The mathematical model is as follows:

Sets

D 	 = Set of days in the weekly planning
S 	 = Set of allowable shifts
T 	 = Set of all time-blocks in the weekly planning

Index

i 	 = Index for day in the weekly planning
J 	 = Index for shift
k 	 = Index for time block

Parameters

, ,
1 if time block  is work period in shift type  which begins in day  
0 otherwisei j k

k j ia




=

Rk	 Number of employees required to be present in time block k

Decision Variable

 Number of employees who begin work in day  adopting shift  ,x i ji j =

The integer linear program is as follows:

,
    

i j
Minimize x

i D j S
∑ ∑
∈ ∈

Subject to

, , ,
     

               ,   
,

i j k i j
a x R k T

ki D j S

x Z i D j S
i j

⋅ ≥ ∀ ∈∑ ∑
∈ ∈

+∈ ∀ ∈ ∀ ∈
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In this model, the objective function attempts to minimize the total work force 
subject to availability of manpower for each time block of the day. Z+ represents 
the set of positive integer numbers.
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Chapter 8 

Revenue Management

Introduction

Revenue or yield management represents an important part of daily airline 
operations. It is concerned with maximizing the revenue or yield. However, yield 
or revenue management is somewhat misleading. The concept is not to manage 
yield or revenue, but rather to optimize it through the use of tools and techniques 
that maximize total revenue.

The concept of yield management is appropriate for business environments 
offering a product (goods or services) with the following characteristics:

it is expensive or impossible to store excess inventory;
future demand is uncertain;
the firm can differentiate among customer segments (i.e., customers are 
willing to pay different prices for the same product);
the fixed cost for offering the product is high, while the marginal cost is 
low;
the capacity to offer the product is fixed.

The following industries are examples of business environments that have the 
above five characteristics:

car rentals
broadcasting
hotels
cruise lines
airlines
trains, buses.

In all these industries, if the product is not sold or rented today, the revenue is 
lost forever. In the airline industry, the product is the airline seat. If the seat is not 
sold, and the plane departs, the revenue that could have been generated by selling 
that seat is lost.

Thus, the main challenge in revenue management is to set the price based 
on current market conditions, with the question becoming: ‘Do we turn down an 
existing customer in anticipation of other, more profitable, customers?’

A variety of analytical tools that addresses this question falls under the revenue 
management topic. Since these tools are used by firms offering perishable products 

•
•
•

•

•

•
•
•
•
•
•
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(i.e., either expensive or impossible to store), they are also called perishable asset 
revenue management tools. See McGill and Van Ryzen (1999) for a review of 
revenue management models for non-airline service sectors.

Airline Revenue Management

The techniques of revenue management are relatively new. After deregulation in 
1978, airlines were free to set the price for their seats. This led to heavy competition 
and new opportunities for revenue management. American and Delta Air Lines 
credit revenue management techniques for an increase in revenue amounting to 
$500 million and $300 million per year respectively.

An airline typically offers seats for several origin-destination (OD) itineraries 
in various fare classes. The seat fares not only differ between the traditional first, 
business, and economy classes, but are also differentiated within the same class 
as well.

Considering that the seats offered, and their availability, are the source of 
revenue for the airline, the concept of revenue management thus primarily 
translates into a seat-inventory control problem. Accordingly, the airline seat-
inventory control system has received a lot of attention from both the airline 
industry and academia.

Seat-Inventory Control Problem

The seat-inventory control problem is to decide if a seat should be sold at a 
current booking request, or if it should be saved for a more profitable customer. 
The mathematical models described in this chapter attempt to determine seat 
allocations according to the demand pattern at the beginning of the booking 
periods, and are referred to as static seat-inventory control problems. See the list 
of references at the end of this chapter for an overview of dynamic seat-inventory 
control systems.

Nested and Non-Nested Allocations

Basically, there have been two approaches to the airline seat-allocation problem: 
nested and non-nested. In non-nested approaches, distinct numbers of seats called 
buckets are exclusively assigned to each fare class. The sum of these buckets 
adds up to the total aircraft seat capacity. In nested allocations, each fare class is 
assigned a booking limit, which is the total number of seats assigned to that fare 
class plus the sum of all seat allocations to its lower fare classes. To clarify this 
further, consider an Airbus 320 with 150 seats. The following table shows the seats 
allocated to each fare class under nested and non-nested assignments:
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As an example, for fare class B, under the non-nested approach, 50 seats are 
allocated, while under the nested approach there are 120 or (30 + 20 + 20 + 50) 
seats allocated to this class.

Earlier revenue management approaches considered non-nested allocations. 
However, a major difficulty with non-nested approaches is that if the limit for 
a fare class is reached, a booking request for that class is denied, while a lower 
fare bucket remains open. In a nested seat allocation, this booking denial does not 
happen as the inventories are shared among each fare class and its lower classes. 
Figure 8.1 shows a depiction of both non-nested and nested approaches for the 
airline seat-allocations example described in Table 8.1.

Table 8.1	 Example of non-nested and nested airline seat allocations

Fare class Non-nested allocation Nested allocation

Y 30 150

B 50 120

M 20 70

H 20 50

Q 30 30

Figure 8.1	 Nested and non-nested airline seat-allocations

Q=30
seats

Y = 30
seats

B = 50
seats

M = 20
seats

H = 20
seats

Q = 30
seats

Y = 150
seats

B = 120
seats
M = 70
seats

H = 50
seats

Non-Nested Nested
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Within both the nested and non-nested approaches, a further problem concerns 
the allocation of seats by either single or networked flight legs, referred to as 
the single-leg seat-inventory control problem and the network (multi-leg) seat-
inventory control problem, respectively. In the following sections, both the nested 
and non-nested single-leg, and the nested and non-nested networked-legs are 
discussed. Before addressing these problems, however, we should understand the 
concept of expected marginal revenue.

Expected Marginal Revenue

At the core of the seat inventory control system is the expected marginal revenue 
(EMR). The EMR of potentially selling a seat in a fare class is the probability of 
being able to fill that seat multiplied by the average fare of that class. The concept 
of probability is introduced here since the demands for different flight legs and 
fare classes vary (stochastic demand).

In order to sell S seats for fare class i, we should have at least S requests for this 
fare class. We present this number of seats in fare class i as Si.

Let ri be the random variable representing the number of requests, and pi(ri) be 
the probability distribution for ri for fare class i. Assuming a continuous probability 
distribution for ri, the probability of selling Si seats in fare class i is:

( )i i i i i i i
i

P r S p r S  dr
S

∞
 ≥ = ≥∫ 

	 (8.1)

As an example, if the probability distribution function is normal, then the 
above probability is represented by the shaded area in Figure 8.2.

Figure 8.2	 Normal probability distribution for demand with shaded area 
representing demand exceeding a certain level

F (S)  

S 

( ) ( )SFSP −= 1   
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Referring to Figure 8.2, the above probability (equation 8.1) can be rewritten as:

≥ = ≥ = −( ) ( )1i i i i i i i i i
i

P r S p r S  dr F S
S

∞
  ∫  	 (8.2)

where:
Fi(Si) is the cumulative distribution function of having Si or lower requests for fare 
class i. 

The literature on revenue management adopts the notation ( )P Si i  to represent 
the above probability (see Figure 8.2).
Therefore:

≥ = ≥ = − =( ) ( ) ( )1 ii i i i i i i i i i
i

P r S p r S  dr F S P S
S

∞
  ∫ 

	

(8.3)

Going back to the definition of expected marginal revenue, the EMR for the Sth 
seat in fare class i, is simply the above probability multiplied by the average fare 
level in the respective fare class, or:

( ) ( )ii i iEMR S f P S= ⋅
	

(8.4)

where:
EMR(Si) 	 = the expected marginal revenue for the Sth seat in fare class i, 
fi 	 = the average fare level for class i,
Pi(Si)	 = the probability of selling S or more seats in fare class i, as defined 

above.

To clarify this, let us consider the following example. Assume that the demand 
for class Y for a specific flight is normally distributed with a mean of 10 and a 
standard deviation of 2. The fare for this class is $400. The following table shows 
the EMR for each seat. According to this table, the EMR of selling the first seat 
in this fare class is $400. This is because for a normal probability distribution 
function, with a mean of 10 and a standard deviation of 2, the probability that a 
first seat is sold is almost 1. This probability reduces to 0.8413 for the 8th seat in 
this class, and so on. Note that table below can be easily set up using Microsoft 
EXCEL’s NORMDIST function.

Single-Leg Seat-Inventory Control Problem

In this problem, every flight leg is independent of other legs and is optimized 
separately. The problem is to determine how many seats should be allocated to 
each fare class in an attempt to maximize the total revenue.
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Non-Nested Model

Littlewood (1972) was the first to introduce a two-fare non-nested seat-inventory 
system. He proposed that as long as the expected marginal revenue from a seat for 
a higher fare passenger is larger than that of a lower fare passenger, then that seat 
should not be sold at a lower fare. In this model we have two fare levels: Full fare 
and discount fare. To express this mathematically, let:

f1 	 = Full fare level
f2 	 = Discount fare level
P(r1 ≥S1) = Probability that the demand for full fare seat (r1) is equal or exceeds 
S1

We want to determine Si, the number of seats protected for full-fare-paying 
passengers. Of course, subtracting this number from the total seat capacity 
determines the number of seats available for discount-fare-paying passengers. 
According to Littlewood, low-fare passengers should be accepted as long as:

2 1 1 1P( )f f r S≥ ≥
	

(8.5)

Table 8.2	 Probability and expected marginal revenue for each seat in the 
fare class

Seat (S) Pi(Si) EMR(Si)

1 1.0000 $400.00

2 1.0000 $400.00

3 0.9998 $399.91

4 0.9987 $399.46

5 0.9938 $397.52

6 0.9772 $390.90

7 0.9332 $373.28

8 0.8413 $336.54

9 0.6915 $276.58

10 0.5000 $200.00

Note: Probabilities are rounded to 4 decimal places.



Revenue Management 119

The smallest value of Si that satisfies the above condition is the protected 
number of seats for full-fare-paying passengers.

The following example explains how seat protections are determined using 
Littlewood’s model:

We want to determine the number of protected seats for full fare paying 
passengers on an Airbus 320 with 150 seats. The full and discount fares on a 
specific flight are $250 (f1) and $100 (f2) respectively. Historical data shows that 
the demand for a full-fare class is normally distributed with a mean of 100 and a 
standard deviation of 15 passengers

Figure 8.3 presents the EMR values for the full fare level ($250). The EMR 
values are determined similarly to the process described in Table 8.2. This figure 
shows EMR for different numbers of seats. According to this figure, the EMR 
starts declining from the 70th seat until it reaches around the 140th seat, which has 
almost zero value for EMR.

According to the inequality in (equation 8.5), the requests for discount fares 
are accepted if this fare exceeds the EMR for the full-fare level. The EMR for a 
full fare paying passenger for the 103rd seat is $105.19, and for the 104th seat is 
$98.72. Therefore the smallest value for S1 is 103. Thus, the airline should protect 
103 seats for full fare paying passengers, and the remaining 47 (150-103) seats for 
the discount-fare-paying passengers.

Figure 8.3	 Expected marginal revenue for full-fare-paying passengers
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Nested Model

Belobaba (1987) extended the above two-fare-class rule to multiple nested fare 
classes by introducing the term expected marginal seat revenue (EMSR). This 
method generates the nested protection level for different class fares. He proposed 
that in a nested seat allocation, the number of seats which should be protected for 
fare class i over fare class j is:

i j
i iEMSR S f P S fij j

   = ⋅ =   
    	

(8.6)

In this model, iS j  is the number of seats that should be protected for higher 
class i over class j, while fi and fj are the average fare levels for the two classes of 
i and j respectively.

Based on this model, the number of seats protected for the highest fare class 
(П1) is 1

2S satisfying:

( ) ( )1 2
1 112 2EMSR S f P S f= ⋅ =

	
(8.7)

To capture the nested seat allocation characteristic, the total protection level 
for the two highest fare classes (Π2) is the sum of the individual protection levels 

1
3S  and 2

3S  satisfying:

( ) ( )1 3
1 113 3EMSR S f P S f= ⋅ =

	
(8.8)

and

( ) ( )2 3
2 223 3EMSR S f P S f= ⋅ =

	
(8.9)

The total protection level for the highest two fares is therefore:

2
1 2
3 3S SΠ = +

	
(8.10)

Applying the same principle, the protected number of seats for the (n-1) fare 
class is determined by:

1

1

1n

n iSni−

−
Π = ∑

=
	 (8.11)

The booking limit or the number of seats available for each class i, represented 
by BLi, is determined by subtracting the number of seats protected for the higher 
fare class, Πi-1, from the total aircraft seat capacity, C. Therefore:

1i iBL C
−

= −Π
	

(8.12)
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It should be noted, that based on our definition for nested seat allocation, the 
booking limit for the highest fare class is:

1BL C=
	

(8.13)

BLi may also be negative (especially for lower-fare classes), in which case the 
above booking limit becomes:

1(0, )i iBL Max C
−

= −Π
	

(8.14)

The nested protection for fare class i is therefore the difference between the 
booking limits for that fare and its lower-fare class as follows:

1i i iNP BL BL
+

= − 	 (8.15)

where:
NPi 	 = the nested seat protection level for fare class i. 

Figure 8.4 shows the booking levels and seat protections as described by this 
model.

Figure 8.4	 Seat protections and booking levels for three fare-classes under 
the nested seat allocation model
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To clarify the above nested seat allocation model, consider an Airbus 320 with 
150 seats. The following table shows the distribution of demand for four classes, 
with the fare levels for each class on a specific flight. All demand for different 
fare classes follows normal distributions with indicated means and standard 
deviations. We want to adopt the above nested EMSR approach to determine the 
seat allocation and booking level for each fare class.

To determine the booking limits, an EXCEL spreadsheet may be useful. A 
table similar to Table 8.2 is constructed for every fare class. Figure 8.5 shows the 
EMSR for the four classes.

By comparing different EMSR within different fare classes, we can determine 
iS j . Table 8.4 shows the values of iS j  or the protected number of seats for each 

fare class over each of its lower classes. As an example, 1
2S  in this table is 20 

seats, which represents the number of protected seats for Y over the B fare class, 
and so on.

Table 8.3	 Fare classes, demand distributions and fare levels for a flight

Fare class Demand distribution Fare level

Y Mean = 25
SD = 5 $580

B Mean = 54
SD = 12 $480

M Mean = 84
SD = 23 $350

Q Mean = 130
SD = 20 $250

Figure 8.5	 EMSR for the four-fare-class example
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Using the above definitions, the protection level for each fare class and booking 
limit is as follows:

1
1 202SΠ = =

2
1 2 23 46 693 3S SΠ = + = + =

3
1 2 3 25 53 71 1494 4 4S S SΠ = + + = + + =

Therefore 20 seats should be protected for class Y; 69 seats for classes Y and 
B; and 149 seats for classes Y, B and M. We can therefore determine the booking 
limits as follows:

1 150BL C= =  

2 1 150 20 130BL C= −Π = − =  

3 2 150 69 81BL C= −Π = − =  

4 3 150 149 1BL C= −Π = − =  

1 1 2 150 130 20NP BL BL= − = − =  

2 2 3 130 81 49NP BL BL= − = − =  

3 3 4 81 1 80NP BL BL= − = − =  

4 1 2 3 150 20 49 80 1NP C NP NP NP= − − − = − − − =
 

Based on the above values for booking limits, 20 seats should be protected 
for fare class Y, 49 for class B, 80 for class M, and finally only 1 seat should be 
allocated to fare class Q. For a nested allocation, these protections result in 1 seat 

Table 8.4 	 Protected number of seats for each fare class over lower classes

Fare class/
fare class B (fare class 2) M (fare class 3) Q (fare class 4)

Y (fare class 1) 20 23 25

B (fare class 2) - 46 53

M (fare class 3) - - 71
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for fare class Q, 81 seats for class M, 130 seats for class B, and finally all 150 seats 
to class Y.

The above method is very popular owing to its simplicity and ease of 
implementation. It finds the optimal booking limits between each pair of fare 
classes. It does not, however, consider the fact that the fare classes are sequentially 
nested within each other and hence interrelated. In other words, this method 
does not consider the joint probability distribution among the fare classes. Other 
researchers (see Talluri and Van Ryzin, 2005, and McGill and Van Ryzin, 1999, 
for a list of references) have developed optimal booking levels by considering 
multiple (more than 2) nested fare classes.

Network (Multi-Leg) Seat-Inventory Control Problem

The seat-inventory policy that was described in the previous section considered 
the revenue generated only on one flight leg. It is very common, however, to see 
passengers on the same flight having different itineraries owing to the airline hub 
and spoke systems. We use the term Origin-Destination (OD) to represent the 
starting and ending points of an itinerary. Figure 8.6 shows a simplified network. 
Passengers flying from Orlando to Chicago or Los Angeles will be on the same 
flight (F1) departing Orlando for the Atlanta hub. At Atlanta these passengers 
change flights to their respective destinations.

In this simplified network, we have passengers with ODs: (Orlando–Atlanta), 
(Orlando–Los Angeles), (Orlando–Chicago), (Atlanta–Los Angeles) and (Atlanta–
Chicago). The network seat-inventory control system attempts to assign seats with 
different fare classes on each flight leg to different OD passengers so that the 
total revenue over the entire network is maximized. The following sections study 

Figure 8.6	 A simple network representing passengers with different origin-
destination itineraries

F1
Orlando Atlanta

Los Angeles

Chicago
F3

F2
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this network revenue management under deterministic and stochastic demand 
models.

Network Seat-Inventory Control Model with Deterministic Demand (Non-nested)

In this model we consider that the demand for each fare class and each OD is 
deterministic, and hence known in advance.

Let us define:

     = Number of protected seats on flight-leg OD (origin-destination) for fare class F.ODFx

  = Fare for class F on flight-leg OD.ODFf  

          = Aircraft capacity on flight-leg j.jC  

  = Deterministic demand for OD for fare class F.ODFD  

The deterministic approach seeks to determine xODF so that the total revenue 
generated, from allocating seats to fare classes on every flight leg, is maximized. 
The following mathematical model attempts to find these seat allocations:

 ODF ODFODF
Max f x⋅∑

Subject to:

    for all ODFs on flight-leg j, for all flight-legs j

      for all ODFs

                      integer for all ODFs 

x CODF jODF
x DODF ODF
xODF

≤∑

≤ 	 (8.16)

The first set of constraints limits the total number of bookings to aircraft 
capacity on each leg. The second set ensures that the allocated seats on each OD, 
and for each fare class F, do not exceed the demand. The solution to this integer 
linear programming model determines the number of each origin–destination, and 
each fare class, so that the total revenue over the entire network is maximized.

To demonstrate how this model works, let us consider the network presented 
in Figure 8.7. Node H represents the hub, and the other nodes are spokes. As the 
network suggests, passengers wishing to go from A to C will have one stop in H. 
Therefore, origin–destination A to C consists of two flight legs, A to H and H to C.

Table 8.5 presents the deterministic demand and fare level for all ODs in this 
network. For each flight, we have two fare classes, namely Y and B. All aircraft 
flying from A and B to H have a capacity of 90 seats, and all aircraft flying from H 
to C and D have a 142-seat capacity.
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To formulate this mathematical model, we adopt the following decision 
variable:

 Number of seats allocated to origin , destination , and fare class .ODF O D Fx =

The objective function is to maximize the total revenue generated in the 
network. Thus,

  354 181 .... 367 195AHY AHB HDY HDBMaximize x x x x+ + + +

Figure 8.7	 Network diagram for the multi-leg example

A

H

C

DB

Table 8.5	 Demand and fare levels for the multi-leg example

Flight-leg Fare class Y Fare class B

AH Demand: 38
Fare: 354

Demand: 52
Fare: 181

AC Demand: 26
Fare: 376

Demand: 43
Fare: 286

AD Demand: 24
Fare: 283

Demand: 40
Fare: 200

BH Demand: 25
Fare: 236

Demand: 35
Fare: 133

BC Demand: 28
Fare: 511

Demand: 38
Fare: 281

BD Demand: 22
Fare: 500

Demand: 45
Fare: 365

HC Demand: 35
Fare: 354

Demand: 43
Fare: 191

HD Demand: 28
Fare: 367

Demand: 40
Fare: 195
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The first set of constraints concerns the aircraft capacity on each leg.

90AHY AHB ACY ACB ADY ADBx x x x x x+ + + + + ≤  

90xBHY BHB BCY BCB BDY BDBx x x x x+ + + + + ≤  

142HCY HCB ACY ACB BCY BCBx x x x x x+ + + + + ≤  

142HDY HDB ADY ADB BDY BDBx x x x x x+ + + + + ≤  

As an example, in the first constraint we specify that the total number of 
passengers on flight leg AH, which includes passengers flying from A to H plus 
those who are flying from A to C plus passengers flying from A to D (in both fare 
classes), should not exceed the aircraft capacity.

The following set of constraints restricts the number of passengers on each 
origin–destination and fare class to the corresponding demand:

38

52

.....
28

40

AHY

AHB

HDY

HDB

x
x

x
x

≤

≤

≤

≤

This linear integer program has 16 variables and 20 constraints. Solving 
this model using an optimization software results in a total network revenue of 
$89,096. The solution to the seat allocations for each ODF is presented in Table 
8.6. According to this solution, no seat should be allocated to origin–destination 
BH. However, 28 seats are allocated to BC. This is because allocating the seat to 
a passenger with a multiple-leg itinerary (BH + HC), generates more revenue for 
the airline than a single-leg itinerary from B to H. This is one reason behind the 
familiar case of a reservations system showing no seats available on a specific 
flight, while another passenger with a multi-leg OD is successful in making a 
reservation on the same flight.

Network Seat-Inventory Control Model with Probabilistic Demand (Non-Nested)

A major difficulty with the previous deterministic network model is that the 
solution is based on certainty of demand. In many real-world cases, the demand is 
stochastic, and hence varies over time. To capture the variability of demand, the 
mathematical model in (equation 8.16) is revised to accommodate the probability 
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distribution of demand for different ODFs. In this model, we seek to maximize the 
expected revenue over the entire network.

Based on expected marginal revenue discussed earlier in this chapter, we 
have:

( ) ( )ODF ODF ODF ODFEMR S f P SODF= ⋅ 	 (8.17)

where:
EMRODF(SODF) 	 = Expected marginal revenue from the Sth seat in fare class F on 
OD.
fODF 	 = Average fare for class F on OD.
PODF (SODF) 	 = Probability of selling the Sth seat (i.e., demand ≥ S) in fare class 
F on OD.

To formulate this mathematical model, we define binary decision variables as 
follows:

th

,
1 if the  aircraft seat is assigned to fare class  on origin-destination  
0 otherwiseS ODF

S F ODx 
= 


Table 8.6	 Solution to the deterministic network seat allocation example

Flight-leg Protected seats for 
Y class

Protected seats for 
B class

AH Demand: 38
Allocation: 38

Demand: 52
Allocation:0

AC Demand: 26
Allocation: 26

Demand: 43
Allocation: 14

AD Demand: 24
Allocation: 12

Demand: 40
Allocation:0

BH Demand: 25
Allocation:0

Demand: 35
Allocation:0

BC Demand: 28
Allocation: 28

Demand: 38
Allocation:0

BD Demand: 22
Allocation: 22

Demand: 45
Allocation: 40

HC Demand: 35
Allocation: 35

Demand: 43
Allocation:0

HD Demand: 28
Allocation: 28

Demand: 40
Allocation: 40
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The objective function is to maximize the total expected revenue through the 
network.

( ) , 
1 ODF ODF S ODF

C j
Maximize EMR S x

ODF S
⋅∑ ∑

=

Subject to:

,          for all flight-legs j
1 S ODF j

C j
C

ODF S
x ≤∑ ∑

=

The above constraint states that the total number of allocated seats should not 
exceed the aircraft capacity on each flight leg.

Let us return to our example for deterministic demand. We assume that all 
the demand distributions are normal, with the same means as in the deterministic 
case. Table 8.7 provides the means and standard deviations of demand for each 
fare class and OD.

Table 8.7	 Probabilistic demand for the network seat allocation example

Flight-leg Fare class Y Fare class B

AH
Demand: 38
SD: 14
Fare: 354

Demand: 52
SD: 11
Fare: 181

AC
Demand: 26
SD: 6
Fare: 376

Demand: 43
SD: 9
Fare: 286

AD
Demand: 24
SD: 4
Fare: 283

Demand: 40
SD: 8
Fare: 200

BH
Demand: 25
SD: 8
Fare: 236

Demand: 35
SD: 4
Fare: 133

BC
Demand: 28
SD: 6
Fare: 511

Demand: 38
SD: 9
Fare: 281

BD
Demand: 22
SD: 4
Fare: 500

Demand: 45
SD: 8
Fare: 365

HC
Demand: 35
SD: 6
Fare: 354

Demand: 43
SD: 12
Fare: 191

HD
Demand: 28
SD: 6
Fare: 367

Demand: 40
SD: 8
Fare: 195
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To construct a mathematical model, we need to compute the EMR for each seat 
on each ODF. An EXCEL spreadsheet is helpful in generating these EMRs. As an 
example, Table 8.8 shows the EMR for the first ten seats for origin–destination 
AH for class Y.

The mathematical model for this case will be to:

1, 2,    352.54 352.21 ....AHY AHYMaximize x x+ +

Subject to:

1, 2, 90,.... 90AHY AHY ADBx x x+ + + ≤  

1, 2, 90,.... 90BHY BHY BDBx x x+ + + ≤  

1, 2, 90,.... 142HCY HCY BCBx x x+ + + ≤  

1, 2, 90,.... 142HDY HDY                    BDBx x x+ + + ≤  

This mathematical model has more than 1,200 binary decision variables and 
4 constraints. The four constraints represent the capacity on four flight legs. The 

Table 8.8	 Expected marginal revenue for the probabilistic network seat 
allocation example

Seat number Probability Fare EMR

1 0.995889 $354.00 $352.54

2 0.994936 $354.00 $352.21

3 0.99379 $354.00 $351.80

4 0.992421 $354.00 $351.32

5 0.990792 $354.00 $350.74

6 0.988865 $354.00 $350.06

7 0.986595 $354.00 $349.25

8 0.983938 $354.00 $348.31

9 0.980841 $354.00 $347.22

10 0.97725 $354.00 $345.95
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airlines have automated systems that generate the linear programming model, 
which it then solves either optimally or using heuristics (see Chapter 13).

Solving the above binary integer programming model results in a total network 
expected revenue of $100,298. The solution to the seat allocations for each ODF 
is presented in Table 8.9.

As we see in this table, for some ODs such as HC and HD, the number of 
allocated seats for the Y fare class is actually larger than the expected demand. 
This is due to the higher EMR generated from these seats.

Network Seat-Inventory Control Models (Nested)

There are several different methods for nested network seat-inventory control 
systems. The common approach for these methods is to cluster the seat allocations 
derived from non-nested into virtual nested allocations. There are many heuristics 
for such clustering. In this section, we briefly discuss one of these clustering 
methods, namely nesting by fare class. See McGill and Van Ryzin (1999) for an 
overview of other clustering methods.

Table 8.9	 Solution to the probabilistic network seat allocation example

Flight-leg Protected for class Y Protected for class B

AH Demand: 38
Allocations: 37

Demand: 52
Allocations:0

AC Demand: 26
Allocations: 21

Demand: 43
Allocations: 16

AD Demand: 24
Allocations: 16

Demand: 40
Allocations:0

BH Demand: 25
Allocations: 10

Demand: 35
Allocations:0

BC Demand: 28
Allocations: 25

Demand: 38
Allocations:0

BD Demand: 22
Allocations: 20

Demand: 45
Allocations: 35

HC Demand: 35
Allocations: 38

Demand: 43
Allocations: 42

HD Demand: 28
Allocations: 31

Demand: 40
Allocations: 40
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Nesting by Fare Class

In this method, for each fare class on a flight leg, the respective solutions for non-
nested ODF allocations from either deterministic or probabilistic networks are 
summed together (Williamson 1992). These total allocations are then used as the 
protection levels for each fare class. The booking limits for each fare class are 
determined by subtracting these protection levels from the capacity of the flight leg.

To clarify this, let us return to our non-nested example for the deterministic 
demand network. Consider the flight leg AH. We want to determine the booking 
limits for the two fare classes Y and B. Returning to Figure 8.7, the passengers 
on flight leg AH include those with origin-destinations: AH, AC, and AD. The 
solutions obtained from the non-nested network for these three OD passengers are 
shown in Table 8.10.

According to the virtual nesting method described above, we assign the total 
aircraft capacity to the highest fare class, in this case, fare class Y. The aircraft 
capacity is 90 seats. Therefore, the booking limit for class Y on flight leg AH is 
also 90 seats. For the lower-fare class B, the booking limit is simply the booking 
limit for fare class Y minus the number of seats assigned to fare class Y for all 
passengers with AH as part of their itinerary. So, the booking limit on flight leg AH 
for fare class B is 14 seats (90-38-26-24).

Overbooking

Airlines regularly face passengers who cancel their flight reservations at the last 
minute, or fail to show-up for flights (called no-shows). Certainly the seats allocated 
to such passengers will remain empty. To generate revenue from these anticipated 
empty seats, the airlines normally overbook their flights by selling more seats 
than the capacity on a given flight. This process of overbooking has been studied 
under revenue management techniques. A major issue in overbooking is to balance 
the anticipated revenue from selling extra seats versus the anticipated cost of not 
having enough capacity to accommodate all the passengers.

Table 8.10	 Seat allocations on flight leg AH

ODF Non-nested seat allocations

AHY 38

ACY 26

ADY 24
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A common approach to addressing this problem is the single-period inventory 
control model.

Let us define the following parameters:

C0 = Cost of overestimating the number of no-shows. It is the cost of 
accommodating a passenger with a confirmed reservation when there are no seats 
available on the flight. This cost is normally referred to as spillage cost, and it 
occurs when the airline sells too many seats, and one or more passengers are 
denied boarding (referred to as bumped passengers). This cost includes finding 
other arrangements, ticket upgrading, accommodation costs, goodwill costs, and 
so on.

CU = Cost of underestimating the number of no-shows. It represents the lost 
revenue owing to an empty seat. This cost, which is also referred to as cost of 
spoilage, occurs when the airline makes very few seat overbookings, and one or 
more seats end-up being empty for the flight.

r =  Number of overbooked seats.
P(no-shows) = Probability distribution for the number of no-shows. This is the 

probability distribution for the number of passengers who cancel their reservations 
at the last minute, or fail to show-up on a given flight. The airlines typically 
have historical data on no-shows for every flight, from which such probability 
distributions can be derived.

The optimum level for r, the number of overbooked seats, is when we have a 
balance between the expected spoilage and spillage costs as follows:

( ) [1 ( )]C P no shows r C P no shows ro u⋅ − ≤ = ⋅ − − ≤
	

(8.18)

We have:

( ) ( ) 1P no shows r P no shows r− ≤ + − > =

Therefore the equation (8.18) can be rewritten as:

( ) [1 ( )]C P no shows r C P no shows ro u⋅ − ≤ = ⋅ − − ≤

Rearranging this equation results in:

	 ( )
CuP no shows r

C Cu o
− ≤ =

+
 	 (8.19)

The solution to this problem is similar to the well-known newsvendor problem 
in operations research. According to this solution, the cumulative probability 
distribution that meets this threshold determines the optimal value of seats to be 
overbooked.
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Let us consider the following example. According to past data, the number of 
no-shows on a 150-seat aircraft follows a normal distribution with a mean of 7 
and a standard deviation of 2 passengers. The cost of bumping a passenger (Co) is 
$750, which includes provisions for accommodation on an alternate flight, board 
and lodging for an overnight stay, and gift vouchers usable for future flights. On 
the other hand, the cost of an empty seat (Cu) is $150. According to equation (8.19) 
we have:

( ) 150 .1667
150 750

P no shows r− ≤ = =
+

Using EXCEL’s Norminv function, or a normal distribution table, we find r 
=5.07. Rounding this number results in an optimal number of overbooking of 5 
seats. We notice that the optimal number of overbooking (r) is actually less than 
the expected number of no-shows (7). This is because the cost of spillage is larger 
than the cost of spoilage.
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Chapter 9 

Fuel Management System

Introduction

The recent surge in fuel prices continues to impose an enormous impact 
on airlines throughout the world. This impact has resulted in bankruptcies, 
significant reduction in number of flights, services, and operations among 
airlines globally.

Since the introduction of jet engines in the 1950s, aircraft manufacturing 
companies have gradually replaced piston engines with turbine jet engines. The 
major fuel used for jet engines, Jet A (US market) and Jet A-1 (international 
market), are kerosene- (oil-) based and are produced according to stringent US 
and international standards. When the refineries process crude oil, they produce 
three types of products which are commonly referred to as top, middle and bottom 
of the barrel by the energy traders (Carter et al. 2004). Lighter products are at the 
top of the barrel and boil at a much lower temperature. Automobile gasoline is an 
example of such a product. The middle of the barrel products have a higher boiling 
temperature and include products such as heating oil and jet fuel. The bottom of 
the barrel is residual fuel oil and includes products such as heavy oil, which is used 
as fuel in industries.

Since jet fuels are processed from crude oil, the prices of jet fuel and crude 
oil are highly correlated. The following figure presents the price of a barrel of 
crude oil in US dollars over the past four decades. These prices are adjusted for 
inflation to 2008 prices using the Consumer Price Index (CPI-U) as presented by 
the Bureau of Labor Statistics. As the figure suggests, crude oil has gone through 
extensive price fluctuations owing to the political and economic environments of 
the world in general and of the Middle East in particular.

As indicated before, the crude-oil price fluctuations impact the price of jet fuel 
directly. The following figure presents the price (inflation adjusted) of jet fuel per 
gallon over the same time horizon as Figure 9.1.

For the airlines, fuel and crew are the two major components and drivers of 
operating cost. Figure 9.3 presents the fuel and crew cost as a percentage of total 
operating cost for all US airlines.

As the figure suggests, fuel cost has been the primary and dominant driver of 
operating cost for US airlines over the last 30 years. As the price of fuel increases, 
so does the operating cost. As the figure implies, in 2008, on average, fuel cost was 
30% of total airline operating cost.
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Figure 9.4 presents the total volume of jet fuel consumed by all US airlines from 
1975 to 2008. The total fuel consumed in 2008 was more than 18 billion gallons. 
Therefore just a 1% increase in jet fuel consumption translates to an increase of 
more than 180 million gallons of fuel or $530 million for the US airline industry.

Figure 9.1	 Annual average crude oil prices

Figure 9.2	 Average annual jet fuel prices
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Fuel Hedging

Hedging is a strategy that typically sellers and/or buyers of commodities adopt in 
order to protect themselves against risk caused by fluctuations in price. Consider, 

Figure 9.3	 Crew and fuel cost as a percentage of total operating cost

Figure 9.4	 Total fuel consumed by all US airlines, in millions of gallons
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for example, an airline wishing to purchase 1,000,000 barrels of jet fuel next 
month. Assume that the current spot price of jet fuel is $50 per barrel. The airline 
anticipates that the jet fuel prices are likely to increase. Therefore, in an effort to 
protect against this price hike, the airline enters into an agreement with a seller to 
buy each barrel of fuel at a future price of $51 delivered next month. This strategy 
enables the airline to lock the price of jet fuel at $51/barrel for next month. If 
the airline’s forecast is correct and the jet fuel prices increase to more than $51/
barrel, then the airline is protected from such price increases and saves money by 
adopting this hedging strategy. On the other hand if the prices fall to less than $51/
barrel then the airline loses money, as it could get jet fuel at a cheaper spot price 
but adopted the wrong strategy and locked itself to buy at $51/barrel.

Airlines typically adopt fuel hedging to stabilize their major operating cost 
component (Morrell and Swan 2006). Other operating-cost components, such as 
crew and maintenance costs, are more predictable. Therefore by hedging fuel, 
airlines have the flexibility to predict their total cost, cash flows, and profits more 
accurately. Airlines typically hedge between one- and two-thirds of their fuel 
cost.

The hedging strategies adopted by airlines can be grouped into two major 
categories: over-the-counter and exchange-traded contracts. Over-the-counter 
agreements are contracts between an airline and another party such as an investment 
bank or a fuel supplier and are not regulated. These types of contracts are subject 
to risk of default on payment from either party if they go bankrupt. Exchange-
traded contracts, on the other hand, are set-up and traded through international 
exchanges and protect against counter-party risk. The main exchanges are the 
International Petroleum Exchange (IPE) in London and New York Mercantile 
Exchange (NYMEX).

The following are some of the most common type of fuel-hedging strategies 
used by the airlines (Carter et al. 2004 and Chance and Brooks 2009).

Plain-Vanilla Swap

A plain-vanilla energy swap is an over-the-counter agreement between two 
parties, whereby a future floating price is exchanged for a fixed price. It is called 
plain vanilla because it is much simpler than other instruments. In this type of an 
agreement there is no transfer of actual commodity (fuel) and the parties settle the 
contractual obligation with cash. A vanilla-swap contract specifies the volume of 
fuel, the duration, the fixed and the floating prices. The users of these contracts are 
typically financial institutions such as banks, and end users such as airlines. The 
following example shows how a plain-vanilla swap works.

Example: An airline wants to purchase 1,000,000 gallons of jet fuel per month 
for a period of one year and the current spot price of jet fuel is $1.30 per gallon. 
The airline anticipates that the price of jet fuel will rise. To minimize the risk of 
the anticipated price rise, the airline enters into a plain-vanilla price-swap contract 
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with an investment bank. The contract specifies 1,000,000 gallons of jet fuel per 
month at a fixed rate of $1.35 for the next 12 months.

At the end of the first month, the price of jet fuel has increased to $1.39 per 
gallon. At this point, the bank owes the airline the difference between the floating 
price ($1.39) and the fixed price ($1.35) for each gallon as follows:

($1.39 - $1.35) × 1,000,000 = $40,000

The bank pays $40,000 to the airline. However, the airline needs to buy the fuel 
at a current price of $1.39 per gallon from the suppliers. Therefore, the airline’s 
effective fuel cost for this month is as follows:

Actual fuel expenses	H edging gain 	E ffective fuel cost
$1.39 × 1,000,000	 =	 $1,390,000 – $40,000	 =	 $1,350,000

Therefore, the effective price for the airline is $1.35 ($1,350,000/1,000,000) 
per gallon, which is the fixed rate of the swap contract. Settlements are made in the 
same manner for each remaining month of the contract.

A major drawback of plain-vanilla swaps is that each party is faced with the 
risk of default on payment from the other party; since the settlement is not done 
through the exchanges. That is, if the airline or the investment bank goes bankrupt, 
then one party is faced with the risk of losing the settlement payment from the 
other party.

Futures Contract

A futures contract is an agreement to buy or sell a specified quantity and quality 
of commodity for a certain price at a designated time in the future. These types 
of contracts are executed through commodity exchanges and thereby eliminate 
the risk of a party defaulting on payment. The buyers take a long position, which 
means they will purchase the commodity at the agreed price at a designated time 
in the future. The sellers take a short position, meaning they agree to deliver the 
commodity at a designated time. Only a very small percentage of futures contracts 
result in actual delivery of the commodity. Instead, buyers and sellers of futures 
contracts make daily cash payments to each other to offset their positions. The 
exchanges require both buyers and sellers to post a margin which is a small 
percentage of the initial value of the contract. Losses are drawn from the margin 
until a maintenance margin is reached. Airlines require a large amount of cash 
on hand to engage in these futures contracts. It should also be noted that jet-fuel 
futures contracts do not exist in the United States, so futures on crude or heating 
oil are used to hedge jet-fuel purchases. The following example shows how a 
futures contract works.

Example: An airline purchases a long position in a 3-day future contract 
(standard contracts are much longer). The contract is for 50,000 barrels of crude 
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oil. The future price of crude oil is $45 per barrel. The exchange requires 20% for 
the initial margin and 10% for maintenance margin. The following table shows the 
daily transaction over the three-day period.

On day 0, considering the future price is $45/barrel and the contract involves 
50,000 barrels, then the total cost of the contract is $2,250,000 (50,000×$45). 
The airline needs to post at least a 20% initial margin to the exchange. Therefore, 
$450,000 (20% of the contract) is deposited with the exchange. On day 1, the price 
of crude oil has dropped to $43. This means the airline has to pay $2 per barrel 
to the seller of the contract (short position). Therefore, the airline loses $100,000 
on day 1. On day 2, the future price of crude oil falls again to $39, meaning the 
airline needs to pay the seller of the contract (short position) $4 per barrel for a 
total of $200,000. On this day the airline’s margin with the exchange falls to 8% 
($150,000/($39×50000)). At this stage, the airline needs to maintain a margin of 
10%. Therefore, the airline posts $45,000 with the exchange to keep the 10% 
maintenance margin. On day 3, the delivery date, the future price of crude oil 
increases to $41.50. Therefore, the seller of the contract (short position) needs to 
pay $1.50 to the airline for each barrel, for a total of $75,000. At the end of day 3, 
the airline has lost $225,000 as follows:

($100,000) + ($200,000) + $75,000 = ($225,000)

At the end of day 3, the airline purchases 50,000 barrels at $41.50 per barrel 
for a total of $2,075,000. The airline lost $225,000 for daily settlements, making 
the total cost of fuel $2,300,000. Therefore each barrel of oil is costing the airline 
$46 per barrel ($2,300,000/50,000).

Forward Contracts

A forward contract is an over–the-counter agreement between two parties which 
involves a future transaction. In this type of contact, both parties agree upon a price 
for a commodity that will be paid on a specific future date. Unlike futures contracts 
which are settled daily, forward contracts are settled at maturity date. These types 

Table 9.1	 Daily futures contract transaction over a three day period

Day Margin Margin Posted to 
margin

Future 
price

Gains/loss 
per barrel

Total Gains/
loss

0 20% $450,000 $0 $45 0 -

1 16% $350,000 $0 $43 ($2) ($100,000)

2 8% $150,000 $45,000 $39 ($4) ($200,000)

3 13% $270,000 $0 $41.50 $1.50 $75,000
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of contracts are very common in many of our daily transactions. Examples include 
paying contractors when they finish the job, buying airline tickets, paying utility 
bills at the end of the month or even ordering a pizza to be delivered in an hour 
at a specific price. These types of contracts typically involve the actual delivery 
of the commodity or service. The airlines enter into forward contracts with their 
fuel supplier to receive a certain quantity of jet fuel on a specific future date at 
a specific price agreed upon today. The following example demonstrates how 
forward contracts work.

An airline enters into a forward contract with its supplier for 1,000,000 gallons 
of jet fuel to be delivered to the airline in one month at a price of $1.40 per 
gallon. At the maturity time (one month) the airline pays the supplier $1,400,000  
($1.40 × 1,000,000). If at maturity the jet fuel price is more than $1.40 per gallon 
then the airline has made a saving through this price hedging. If, on the other hand, 
the price is lower than $1.40 in a month’s time, then the airline has lost money by 
engaging in this forward contact.

There are other types of more complicated hedging strategies that the airlines 
adopt in order to protect themselves against jet-fuel price fluctuations, including 
hedging against foreign currency rates, as crude oil is mainly traded in US dollar. 
Interested readers can refer to books on derivatives and risk management such as 
Chance and Brooks (2006).

Aircraft Fuel Supply

Airlines distribute and supply fuel to aircraft at different airports based on their 
network size, hubs, airport infrastructure, hedging strategies, and contracts with 
their suppliers. Some major airports provide underground piping systems which 
pipe fuel from tanks inside or outside the airport directly to hydrant systems 
located at each gate. This is the most convenient and efficient way to supply fuel 
to aircraft. This type of fuel supply distribution typically occurs in major hubs and 
airports. However, the most common way of supplying fuel to aircraft is through 
fuel tankers.

Mathematical Models for Fuel Management Systems

Airlines adopt fuel hedging as discussed before at the planning phase. During the 
operations phase, airlines can take advantage of other strategies to save on fuel 
cost. One of these strategies is referred to as fuel ferrying or tankering. In this 
strategy, airlines take advantage of different fuel prices at different airports. The 
aircraft may load (ferry or tanker) extra fuel at those airports with lower prices and 
thus save on overall cost of fuel over the next multiple flights, depending on the 
capacity and schedule of the aircraft. It should be noted that carrying extra fuel 
makes the aircraft heavier and thus burns additional fuel to carry this extra load. 
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Furthermore, carrying extra fuel exerts additional force on the aircraft’s landing 
gear, brakes and tires, thus increasing maintenance cost.

The price of aviation fuel differs at different airports depending on the country 
they are located in, federal and local regulations, proximity to refineries, piping 
access to the airport, and volume (Doganis 2001). The following table presents 
the price of jet fuel in different international markets. Surprisingly the price of jet 
fuel in the Middle East, a major producer of crude oil, is not much cheaper than 
the in rest of the world. This is because very few refineries in the world produce 
jet fuel.

Airlines typically purchase fuel for their aircraft from airport fuel suppliers. 
They negotiate and enter into contracts with the airport fuel-suppliers depending 
on the number of flights, length of contract, number of competing suppliers at 
the airport, and daily demand. Some governments may impose a fixed and non-
negotiable jet-fuel price for their airports.

In the United States, there are many small refineries supplying jet fuel to 
airports. Accordingly, many jet fuel suppliers compete at different US airports. 
Table 9.3 presents the amount of fuel used and the price paid per gallon for different 
US airlines during March, 2009.

It should be noted that fuel consumption varies significantly depending on 
type of aircraft, size, number and age of engines, route, and other meteorological 
conditions (Doganis 2001).

The study of fuel management system dates back to the 1970s, when the 
price of crude oil increased significantly and airlines started investigating more 
efficient ways to reduce their fuel cost. Some of these studies include Darnell 
and Loflin (1977), Stroup and Wollmer (1992), Irrgang (1999, 2005), Zouein 
et al. (2002) and Abdelghany et al. (2005). These models attempt to provide 
a strategy to minimize the total fuel cost by ferrying fuel at each airport, for a 

Table 9.2	 Price of jet fuel in different international markets during March 
2009

Share in 
world index Cents/gallon $/barrel

Jet fuel price 100% 139.2 58.5

Asia and Oceania 22% 138.1 58.0

Europe and CIS 28% 139.9 58.8

Middle East and Africa 7% 135.1 56.7

North America 39% 139.4 58.6

Latin and Central America 4% 145.4 61.1

Source: International Air Transport Association
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given aircraft route, subject to operational and safety constraints. These studies 
include both linear and non-linear programming models. The model discussed 
here is a modified version of the linear programming model proposed by Zouein 
et al. (2002).

Case study

The following case study pertains to an airline operating in the US. The airline 
requested to stay anonymous. The airline provided us with information on one 
of their Boeing 737-700 aircraft. The information pertains to 400 flights flown 
by the aircraft over several months and contains origin/destination, actual flight 
time, fuel consumed, fuel uplifts, and fuel prices at each airport. Table 9.4 presents 
data from the last 20 flights of the aircraft. We attempt to apply our mathematical 
model to these 20 flights to determine the fuel uplift at each airport and evaluate 
how the solution differs from the actual strategy that the airline implemented. The 
table presents the fuel price per gallon at each origin airport. Since all the units in 
this model are in pounds, the fuel prices are converted in pounds (1 gallon = 6.6 
pounds).

Table 9.3	 Amount of fuel used and the price paid per gallon for different 
US airlines during March, 2009

Airport 
identifier Airport Price per gallon

ATL Hartsfield-Jackson Atlanta International Airport $1.36

BOS Boston’s Logan International Airport $1.60

BWI Baltimore Washington International Airport $1.39

DEN Denver International Airport $1.51

DFW Dallas Fort Worth International Airport $1.31

LAS McCarran International Airport $1.45

LAX Los Angeles International Airport $1.65

LGA LaGuardia Airport $1.66

MCO Orlando International Airport $1.45

MDW Chicago Midway Airport $1.46

PHL Philadelphia International Airport $1.48

SFO San Francisco International Airport $1.45
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The mathematical model is explained as follows:

Decision Variables

The decision variables pertain to the amount of fuel to be loaded at each airport. 
We define these variables as:

Table 9.4	 Data from the last 20 flights flown by the Boeing 737-700 
aircraft

Origin Destination
Scheduled
 flight time

minutes

Price
$/gallon

Price
$/lb

Load factor
%

1 2 289 1.89 0.29 95%

2 3 126 1.76 0.27 39%

3 4 130 1.84 0.28 61%

4 5 63 1.76 0.27 100%

5 6 102 1.76 0.27 100%

6 7 117 2.08 0.31 95%

7 8 210 1.84 0.28 99%

8 9 214 1.87 0.28 100%

9 10 131 1.76 0.27 97%

10 11 134 2.08 0.31 100%

11 12 130 1.76 0.27 73%

12 13 124 1.84 0.28 63%

13 14 60 1.76 0.27 99%

14 15 111 1.82 0.28 100%

15 16 83 1.81 0.27 100%

16 17 93 1.76 0.27 100%

17 18 117 2.15 0.33 100%

18 19 76 1.76 0.27 79%

19 20 125 1.81 0.27 99%

20 21 91 1.82 0.28 67%
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xi = Amount of fuel loaded by the aircraft at airport i
yi = Amount of fuel remaining in the aircraft when the aircraft landed at airport i

Objective Function

In this model, we attempt to minimize the total fuel cost over the one week routing 
of the aircraft. Therefore:

1 2 20
1

Minimize  .29 .27 .28
n

i i
i

c x x x x
=

= + + +∑

where:
ci 	 = the cost of 1 pound of fuel at airport i and 
n 	 = the number of the flight in this model.

Constraints

There are some safety and operational constraints that need to be addressed as 
follows:

Aircraft Tank Capacity

The amounts of fuel remaining in the aircraft fuel tank and fuel loaded at each 
airport should not exceed the aircraft’s fuel tank capacity. According to Boeing, 
the aircraft manufacturer, the fuel tank capacity of a 737-700 is 46,063 pounds. 
Therefore:

xi + yi ≤ 46,063	 (9.1)

Maximum Takeoff Weight (MTW)

This set of constraints ensures that the weight of the aircraft, including the passengers, 
bags (payload weight), and fuel, does not exceed a maximum allowable takeoff 
weight (MTW), specified by the aircraft manufacturer. According to Boeing, the 
empty weight of a 737-700 aircraft, known as dead operating weight (DOW), is 
83,000 pounds and the maximum takeoff weight of the aircraft is 153,000 pounds. 
The maximum payload weight of the aircraft (that is, the total weight of passengers 
and bags) is 37,500 pounds. To forecast the payload for each upcoming flight, we 
used the load factor for that flight. Airlines typically know the load factor of their 
upcoming flights either based on actual reservation or historical data. We estimate 
the payload for each flight based on load factor as follows:

payloadi,i+1 = max_payload × load factori,i+1
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where:
payloadi,i+1 and load factori,i+1 represents the payload and load factor on flight from 
airport i to airport i+1 respectively.

As an example, the load factor for the first flight in Table 9.4 is 95% (see 
the load factor in Table 9.4 for flight 1). Therefore, the payload for this flight 
is:

payload1,2 = 37,500 × .95 = 35,625

Therefore, we can write the maximum takeoff weight constraints for each 
flight as follows:

DOW + payloadi,i+1 + xi + yi ≤ MTOW  	 (9.2)

where:
DOW and MTOW are dead operating weight and maximum takeoff weights of the 
aircraft respectively.

By including the weights of DOW and MTOW for our 737-700 as was explained 
earlier, we have:

83,000 + payloadi,i+1 + xi + yi ≤ 153,000	 (9.3)

or:

payloadi,i+1 + xi + yi ≤ 70,000	 (9.4)

As an example, for flight 1, we have:

35,625 + xi + yi ≤ 70,000 	 (9.5)

or:

xi + yi ≤ 34,375 	 (9.6)

Similarly we can write constraints for the other flights.

Maximum Landing Weight

For safe operations, aircraft manufactures specify a maximum landing weight for 
their aircraft. The total weight of an aircraft when landing is basically the weight 
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at departure minus the fuel burned during the flight. According to Boeing, the 
maximum landing weight for a 737-700 is 128,000 pounds.

The fuel consumption for each flight depends on the duration of the flight, 
weight of the aircraft, tail- and head-wind speeds, taxi in and out of the airport gates, 
and so on. To forecast the fuel consumption for future upcoming flights, we used a 
modified regression analysis similar to Zouein et al. (2002). As indicated earlier, we 
had access to information on 400 flights flown by this particular Boeing 737-700 
aircraft. We used data pertaining to the first 380 flights for the regression and applied 
the model to the last 20 flights, to evaluate its performance. Among the information 
for each flight, we had access to actual fuel consumed and scheduled flight times. 
Note that we are using the published scheduled flight times and not the actual flight 
times. Figure 9.5 presents fuel consumed in pounds against scheduled flight duration 
in minutes for the 380 flights. A linear regression model was found to be a good fit. 
According to the regression analysis, the following equation provides an estimate of 
fuel consumption in pounds based on scheduled flight duration in minutes:

F = 81.826t + 937.38

where:
F 	 = the fuel consumption in pounds and 
t 	 = the scheduled flight-time in minutes.

The correlation coefficient for this linear regression model is R = .9841 or  
R2 = .9685 as suggested by the figure, which indicates a good fit.

Figure 9.5	 Scatter plot of fuel consumption vs. flight time
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We use this equation to estimate the fuel consumption for each upcoming 
flight based on their published flight times. As an example, our forecast for fuel 
consumption for flight 1 with a scheduled 289 minutes of flight time is:

F = 81.826 × 289 + 937.38 = 24,585.1 pounds

Now returning to the constraint for maximum landing weight, we have:

Total weight of the aircraft at takeoff – fuel consumed during the flight ≤ 
maximum landing weight

or:

DOW + payloadi,i+1 + xi + yi - FBi,i+1 ≤ MLW 	 (9.7)

where the first four terms on the left hand side are the total weight of aircraft 
at takeoff at airport i as described in the previous section on maximum takeoff 
weight, FBi,i+1 is the fuel burned during the current flight and MLW is the maximum 
landing weight.

Replacing the values for DOW and MLW will results in

83,000 + payloadi,i+1 + xi + yi - FBi,i+1 ≤ 128,000 	 (9.8)

or:

payloadi,i+1 + xi + yi - FBi,i+1 ≤ 45,000	 (9.9)

As an example, for flight 1, where the fuel burn and payloads are estimated to 
be 24,585.1 and 35,625 pounds respectively, we have:

35,625 + xi + yi - 24,585.1 ≤ 45,000

or:

xi + yi ≤ 33,960.1

Similarly we can write the constraints for other flights.

Safety Fuel at Landing

Airlines are mandated to maintain a minimum level of fuel on the aircraft when 
landing. This safety fuel should be enough to allow the aircraft to stay in the 
air while waiting for its turn to land or to go to an alternative airport should the 
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destination airport be closed. Therefore the constraint for the amount of fuel left 
in the tank when landing is:

xi + yi - FBi,i+1 ≥ SFi,i+1  	 (9.10)

The first two terms on the left hand side represent the total fuel in the tank 
at takeoff. FB represents the fuel burned during the flight and SF is the safety 
fuel. Airlines employ different strategies to adopt their level of safety fuel. Some 
airlines consider an extra 5% fuel of the upcoming flight and some indicate 20-30 
minutes of flight time as their safety fuel level.

In this case, the airline’s policy on safety fuel level is to have at least 6,500 
pounds of fuel. Therefore:

 xi + yi - FBi,i+1 ≥ 6,500	 (9.11)

As an example, for flight 1, we have:

xi + yi - 24,585.1 ≥ 6,500

or:

xi + yi ≥ 31,085.1	

Fuel Balance

This set of constraints provides a balance between the fuel uploads and fuel 
consumption. Basically, the amount of fuel at take-off minus fuel burned during 
the flight should be equal to the fuel remaining in the tank at destination. 
Therefore:

xi + yi - FBi,i+1 = yi+1	 (9.12)

For example, for the first flight, we have the following constraint:

xi + yi - 24,585.1 = y2	 (9.13)

Solution

The above linear programming model has 40 decision variables (20 x and 20 y 
variables) and 100 constraints. Table 9.5 provides the solution generated by the 
software for the amount of fuel to be uplifted xi and the remaining fuel in the tank 
yi at every airport.
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This fuel uplift strategy results in a total cost of $62,917 for these 20 flights.
It is of interest to compare and contrast this strategy with the one that the 

airline adopted for the same 20 flights. We received the data for fuel uplift for 
the above 20 flights from each of the airports. The total cost associated with the 
airline’s strategy is $64,546. Comparing the optimum cost of $62,917 with this 
strategy represents a saving of $1,642 or 2.5% on fuel cost. This saving is only 
for 20 flights on a single aircraft. It can easily translate into large savings annually 
when this strategy is adopted to all aircraft on all flights. The following describes 
the general mathematical model adopted in this section.

Table 9.5	 Linear programming solution for the case study

xi Pounds of fuel uplift yi
Pounds of fuel 

remaining in the tank

x1 26,200.00 y1 7,760.10

x2 27,039.61 y2 9,375.01

x3 0 y3 25,167.16

x4 0 y4 13,592.40

x5 9,283.62 y5 7,499.98

x6 9,511.05 y6 7,499.97

x7 18,120.84 y7 6,500.00

x8 18,448.14 y8 6,500.00

x9 13,781.60 y9 6,500.00

x10 9,777.05 y10 8,625.01

x11 22,658.56 y11 6,500.00

x12 0 y12 17,583.80

x13 7,221.90 y13 6,500.00

x14 8,645.11 y14 7,874.96

x15 7,728.94 y15 6,500.00

x16 9,547.20 y16 6,500.00

x17 9,511.02 y17 7,500.00

x18 7,156.16 y18 6,500.00

x19 12,540.60 y19 6,500.00

x20 7,008.58 y20 7,874.97
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Fuel-tankering Mathematical Model

The general mathematical model proposed by Zouein et al. (2002) is discussed as 
follows:

Sets

N	  = Set of all aircraft in the fleet
n	  = Set of flights connecting airports in the predetermined horizon

Indices

i	  = airport index
j	  = aircraft index

Parameters

Ci 	 = Cost of fuel at airport i
DOW 	 = Dead operating weight of the aircraft
PLi	 = Payload weight at departure airport i
MTOW	 =Maximum allowed weight at takeoff
MLW 	 = Maximum allowed weight at landing
Tank 	 = Maximum tank capacity
FCi,i+1 	 = Amount of fuel consumption by the aircraft between airport i and i+1

SFi,i+1 	 = Amount of safety fuel when reaching airport i+1 coming from airport 
i

Decision Variables

xi 	 = Amount of fuel loaded by the aircraft at airport i
yi 	 = Amount of fuel remaining in the aircraft when it landed at airport i

1

    c
n

i i i
i

Minimize X x
=
∑  	 (9.14)

xi + yi ≤ Tank	 (9.15)

DOW + payloadi,i+1 + xi + yi ≤ MTOW	 (9.16)

DOW + payloadi,i+1 + xi + yi - FBi,i+1 ≤ MLW	 (9.17)

xi + yi - FBi,i+1 ≥ SFi,i+1 	 (9.18)

xi + yi - FBi,i+1 = yi+1 	 (9.19)
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In this model, the objective function in (9.14) attempts to minimize the total 
cost of fuel for a set of predetermined flights, for all aircraft in the fleet. The set 
of constraints in (9.15), (9.16), (9.17) and (9.18) impose operational and safety 
restrictions as discussed earlier. Equation (9.19) provides the balance between fuel 
uploads and fuel consumption.
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Chapter 10 

Airline Irregular Operations

Introduction

Aircraft mechanical problems, severe weather, crew sickness, airport curfews, 
and security are among the problems that force an airline to delay or even 
cancel their regular published flights. On an average day in the United States, 
approximately 15–20% of all flights experience significant delays (more than 15 
minutes) and approximately 1–3% of all flights are cancelled (Yu et al. 2003). The 
scheduling methodologies described in Chapters 6 and 7 provide an airline with a 
very efficient plan, high utilization of resources, and very tight aircraft and crew 
assignments. In many cases a small perturbation in this plan, such as unavailability 
of an aircraft or crew, results in major disruption to the scheduled flights. The 
airlines adopt a combination of tactics such as flight delays, flight cancellations, 
aircraft substitutions, ferry flights (flying an empty aircraft to a point of need), 
and aircraft diversions to return to their published scheduled flights as soon as 
possible. Since these activities are not pre-planned and occur only when there is a 
disruption in the schedule, they are called irregular operations. The recovery time 
can span from the time the disruption occurs up to the time the airline gets back to 
its original schedule.

In practice the two problems of aircraft recovery and crew reassignment are 
handled separately (Jarrah Yu 1993). The airlines that are faced with disruption 
first attempt to develop a feasible flight rerouting through some of the tactics 
mentioned above. This new rerouting schedule is checked for crew assignment 
feasibility. If a feasible crew assignment does not exist, a new rerouting schedule is 
developed. This process continues until a feasible rerouting and crew reassignment 
is found. This chapter examines the daily aircraft rerouting schedules for single 
fleet only. See the list of references for models that examine multi-fleet and crew 
reassignment. The aircraft-schedule recovery problem is basically defined as:

Given the position of planes at the time of a disruption, the original flight 
schedule, an estimated length of disruption time, and a time frame for recovery, 
find the ‘best’ assignment of aircraft to flights so that after the recovery time the 
airline is capable of operating its regular published flights. Some of the objectives 
for the ‘best’ assignment include minimizing total passenger delays, minimizing 
cancellations, honoring curfews and regulations, and minimizing the total cost to 
the airline.

The following sections provide the analysis for a case study and the development 
of the mathematical model.
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Case Study

We begin by examining a case study involving a break in the regular schedule. This 
case and the accompanying methodology discussed in this chapter are adapted 
from Argüello, et al. (1998) with minor modifications.

This case involves three aircraft, twelve flights, and four cities. Table 10.1 
presents the routing for each aircraft and the departure/arrival times. All times are 
eastern standard times. According to this table we have one aircraft available at 
DAB, ORF, and IAD to start their daily scheduled flights.

Now let us assume that one of the aircraft becomes unavailable owing to some 
mechanical problem at an airport. Our objective is to handle all the remaining 
flights in the network through a series of delays and/or cancellations so that the 
total cost to the airline is minimized. Thengvall et al. 2000 provides an overview 
of other objective functions considered by researchers.

Before we present the mathematical model, we need to define the underlying 
transformation of this problem into a time-band model as was proposed by Argüello 
et al. (1998). This transformation enables us to use the network structure similar 
to the time-space network employed in Chapter 4 to represent the mathematical 
model.

Table 10.1	 Flight schedule and aircraft routing

Aircraft ID Flight ID Origin Destination Departure Arrival

Aircraft 1 11 DAB ORF 1410 1520

12 ORF IAD 1605 1700

13 IAD ORF 1740 1840

14 ORF DAB 1920 2035

Aircraft 2 21 ORF DAB 1545 1700

22 DAB ORF 1740 1850

23 ORF IAD 1930 2030

24 IAD ORF 2115 2215

Aircraft 3 31 IAD ATL 1515 1620

32 ATL IAD 1730 1830

33 IAD ATL 1910 2020

34 ATL IAD 2100 2205
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Time-band Approximation Model

The network structure is similar to the time-space network discussed in Chapter 
4. The time-space representation of the above case study without any disruption is 
shown in Figure 10.1.

Figure 10.1	 Time band network for the case study
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In this figure the flight arcs are those that stretch from one airport to another 
(see for example flight 11). The flight numbers are shown on the flight arcs. The 
nodes represent an arrival and departure at a specific time. In this network, similar 
to Chapter 4, the cities and times are represented horizontally and vertically 
respectively.

In this model the time horizon is partitioned into time bands or discrete intervals 
of fixed length. Without loss of generality, in our case study as shown in Figure 
10.1, this time band is 30 minutes. By partitioning the time horizon into time 
bands, station activity is aggregated into that time-band node.

We also have the following assumptions for our case study:

each station requires a minimum of 40 minutes turnaround time;
midnight arrival/departure curfew (no arrival or departure after midnight);
each minute of delay on any flight costs the airline $20;
cancellation cost for each flight leg is as follows.

A major assumption and rule in this model is that during the recovery period, 
any flight arc from any airport (node) can be made available to other feasible 
airports (nodes).

Considering the time-band intervals, the flight paths, and the fact that flight 
from every node is available to every other feasible node, results in the following 
time-band network.

•
•
•
•

Table 10.2	 Cancellation cost for flight legs

Aircraft ID Flight ID Origin Destination Cancellation cost

Aircraft 1 11 DAB ORF $7,350

12 ORF IAD $10,231

13 IAD ORF $7,434

14 ORF DAB $14,191

Aircraft 2 21 ORF DAB $11,189

22 DAB ORF $12,985

23 ORF IAD $11,491

24 IAD ORF $9,581

Aircraft 3 31 IAD ATL $9,996

32 ATL IAD $15,180

33 IAD ATL $17,375

34 ATL IAD $15,624
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As the figure suggests, all 30-minute activities within an airport are aggregated in 
a single node. As an example, node 1 represents all activities from 1:30 p.m. through 
1:59 p.m. Argüello et al. (1998) classify the nodes in two groups: transshipment and 
sink nodes. Transshipment nodes, also referred to as station-time nodes, are those 
nodes that the aircraft arrives into and leaves. In Figure 10.2 these nodes include 1, 
2, 3, 4, 6, 7, and so on. Sink nodes, also referred to as station sink nodes, represent 
those nodes that the aircraft arrives into but does not leave until the end of recovery 
time. These nodes are similar to starting nodes for wrap-around arcs discussed in 
Chapter 4. In Figure 10.2, nodes 5, 11, 19, and 24 are station sink nodes.

Figure 10.2	 Time band approximation network
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In this figure we see that, for example, two arcs are drawn from node 2 to node 
7. These two arcs represent flights 11 and 22. For the arc representing flight 11, 
we have a delay of 210 minutes. This is because flight 11 was scheduled to leave 
DAB at 1410. If this flight occurs in node 2, we have the departure time of 1700. 
Considering the nodes are on 30-minute time-bands, this delay spans from 14:00 to 
17:30, a total of 210 minutes. Each minute of delay costs the airline $20. So, flight 
11 has a delay cost of $4,200 if it departs from node 2. The other arc connecting 
nodes 2 to 7 represents flight 22. By looking at the departure and arrival times of 
this flight, there is no delay (within a 30 minute time-band) for this flight. Table 
10.3 presents the non-zero delay costs for all flight arcs in Figure 10.2.

Scenario 1

Let us assume that aircraft 2 in airport ORF becomes grounded owing to some 
mechanical failure at 1400 and is unavailable for the rest of the day. The obvious 
solution without permitting any rerouting of other aircraft is to cancel flights 21, 22, 23, 
and 24 which are conducted by this grounded aircraft for the day. These cancellations 
cost the airline a total of $45,246 (the sum of all cancellation costs for these four 
cancelled flights). Let us see how this problem is solved through a series of aircraft 
rerouting and cancellations in an effort to minimize the total cost to the airline.

Table 10.3	 Non-zero delay costs

Flight number Origin node Destination node Delay cost

11 2 7 4,200

11 3 10 8,500

11 4 11 10,300

12 7 15 3,900

12 8 17 5,700

12 9 19 7,800

12 10 19 8,100

13 14 8 1,800

13 15 9 3,900

13 16 10 4,200

13 17 11 5,700

13 18 11 6,100

14 8 4 1,800

14 9 5 3,900

14 10 5 4,200
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Decision Variables

We define the following decision variables:

1 if flight  is conducted from station time node  to 
, 0 otherwise

k i jkxi j




=  

1 if flight k is cancelled
0 otherwise

yk




=  

Flight number Origin node Destination node Delay cost

21 7 3 4,300

21 8 4 6,100

21 9 5 8,200

21 10 5 8,500

22 3 10 4,300

22 4 11 6,100

23 8 17 1,600

23 9 19 3,700

23 10 19 4,000

24 17 11 1,400

24 18 11 1,800

31 13 21 2,900

31 14 22 4,700

31 15 23 6,800

31 16 23 7,100

31 17 24 8,600

31 18 24 9,000

32 21 15 2,300

32 22 17 4,100

32 23 19 6,200

33 15 23 2,100

33 16 23 2,400

33 17 24 3,900

33 18 24 4,300

34 23 19 2,000

Table 10.3	 Non-zero delay costs
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zi	 = Number of aircraft (integer) terminated at station node i (node i being 
a station sink node).

The binary Variable ,
kxi j  is used to identify which flights should be conducted 

along which routes. For example, 11
1,6x  represents the variable for flight number 11 

through nodes 1 to 6 (see Figure 10.2). The binary variable yk is adopted to identify 
which flight(s) should be cancelled. For example, y11 represents the decision 
variable for canceling flight number 11. A value of 1 for this variable means that 
the flight should be cancelled.

The integer variable zi is used to keep track of aircraft balance and to have 
aircraft available at the end of the day for the next day’s flight schedule. For 
example, referring to Figure 10.2, z1 is the number of aircraft in node 1 (DAB) 
which is not flown through the day and is carried to the station-sink 5.

Objective Function

The objective function consists of two terms, the delayed cost and the cancellation cost 
for each flight. Referring to Tables 10.2 and 10.3 we have the objective function as:

11 11 4200 8500 ..... 7350 10231 ... 156242,7 3,10 11 12 34Minimize x x y y y+ + + + + +

Constraints

For this mathematical model, we have three sets of constraints as follows:

Set 1 – Flight Coverage

Each flight must either be flown or be cancelled. As an example to express flight 
11’s coverage we have:

11 11 11 11 11,6 2,7 3,10 4,11 11x x x x y+ + + + =

The above equation specifies that for flight 11, out of four possible flights (see 
Table 10.3) and a cancellation, only one must be selected.

We write similar equations for every available flight in Table 10.1, a total of 12 
constraints for this set.

Set 2 – Station Time-Node Flow

For this set we need to write the flow of aircraft at each node. There are some nodes 
that have aircraft available (supply nodes) to start the flow within the network 
(such as nodes 1, 6, and 12). Most of the station-time nodes are transshipment 
nodes signifying that the net flow in these nodes is zero. The net flow for a node 
is determined as follows:
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The number of aircraft in a node = number of outgoing aircraft from the node 
– (minus) incoming aircraft into the node + (plus) the number of aircraft carried 
over from this node to sink node (same city) for the next day’s operation.

For example, for node 1 we have:

11 22 11,6 1,7 1x x z+ + =

Referring to Figure 10.2 and Tables 10.1 and 10.3, we have two outgoing 
flights from node 1. These are flights 11 represented by arc 1,6 and flight 22, 
represented by arc 1,7. There are no incoming flights to node 1. z1 represents the 
number of aircraft that are carried over to node 5 which is a sink station node. The 
purpose of z variables is to allow the flexibility to the model to save the aircraft at 
some specific cities for the next day’s operation. The right hand side of the above 
equation is 1. This is because at node 1, (DAB) we have one aircraft available to 
start the flights from DAB (see Table 10.1).

Similarly the flow balance for node 2 (transshipment node) is as follows:

11 22 21 02,7 2,7 6,2 2x x x z+ − + =

We have two outgoing (flights 11 and 22) and one incoming flow (flight 21) 
in this node. z2 is the number of aircraft that are grounded in DAB and are carried 
over to station-sink 5. The right hand side of this constraint is zero since node 2 
is a transshipment node. As the aircraft at node 6 is grounded and not available 
(scenario 1), the right hand side for this constraint is also zero.

In this case we have 20 station-time nodes resulting in 20 constraints for this set.

Set 3 – Station Sink-Node Flow

We include this set of constraints to ensure that there are aircraft available in the 
designated airports at the end of the day to fly the flights for the next day according 
to the published schedule. Basically the following rule applies for these sink nodes:

Required number of aircraft at any sink node = Total incoming flight 
terminating at this sink node + (plus) number of carried over aircraft from previous 
transshipment nodes at this airport.

In this case study, to be able to fly the published schedule for the next day, we must 
have one aircraft available in DAB, ORF, and IAD each. Therefore we must ensure that 
the net flow in station sink nodes for these cities is one. Without this set of constraints, 
the aircraft may end up at the wrong airports at the end of the day. The following 
constraint represents the net flow for DAB for station sink node 5 (see Figure 10.2).

14 21 14 21 19,5 9,5 10,5 10,5 1 2 3 4x x x x z z z z+ + + + + + + =

There are four arcs coming from other cities to node 5. The first four terms of the 
above equation represent these four arcs (flights). The other four terms represent 
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the number of aircraft from previous nodes in the same city (DAB) carried over 
to this sink node. It should be noted that for ORF, we assumed that the aircraft is 
grounded and not available for the rest of the day. It is assumed, however, that it 
will be available for the next day.

We have four sink nodes which will result in four constraints for this set.

Solution

The above case study has 64 flight arcs (x variables), 12 flight cancellation (y 
variables) and 20 termination nodes (z variables), a total of 96 binary/integer 
variables. It has 36 constraints. The solution to this model is as follows.

The minimum cost solution for this scenario is two cancellations and one 
delayed flight at a total cost of $21,865 ($4,200+$17,665). Compare this cost 
with the trivial solution of $45,246 resulting from canceling all flights operated 
by aircraft 2.

Note that this model was based on aggregating the activities within an airport 
in a 30-minute time-band into one single node. The above solution is utilized to 
fine-tune and determine the actual departure/ arrival times and the actual cost for 
each flight. The detailed solution for each flight with its revised arrival/departure 
times is presented in Table 10.5.

Table 10.4	 Solution for Scenario 1

Aircraft 
ID

Flight Origin Destination Origin 
node

Destination 
node

Delay 
cost

Cancellation 
cost

Aircraft 1 11 DAB ORF 1 6 - -

21 ORF DAB 6 2 - -

22 DAB ORF 2 7 - -

23 ORF IAD 7 16 - -

24 IAD ORF 16 10 - -

14 ORF DAB 10 5 4,200 -

Cancel 12 ORF IAD - - - 10,231

13 IAD ORF - - - 7,434

Aircraft 3 31 IAD ATL 12 20 - -

32 ATL IAD 20 14 - -

33 IAD ATL 14 22 - -

34 ATL IAD 22 18 - -

Total cost 4,200 17,665
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The above departure/arrival times accommodate for 40-minute aircraft 
turnaround times. Note that the cost for this schedule is higher than the solution 
presented in Table 10.4. This is because of the 30-minute aggregation in a single 
node. The actual total cost for the above feasible solution is $23,265, which is still 
significantly lower than the trivial cost.

Scenario 2

In scenario 1, we assumed that aircraft 2 was grounded. In scenario 2, we assume 
that both aircraft 1 and 2 are operational for the day but aircraft 3 is grounded in 
IAD at 14:00 and will be unavailable for the rest of the day. The trivial solution is 
to cancel all flights conducted by this aircraft, that is, flights 31, 32, 33, and 34 at 
a total cost of $58,175.

The mathematical model is basically very similar to scenario 1, with the 
following minor changes:

In set 2 of the constraints, for station-time node 6, the right-hand side 
becomes one since aircraft 2 is available in city ORF. The right-hand side for 
node 12, however, becomes zero because aircraft 3 is grounded in IAD and is 
unavailable.

Table 10.5	 Detailed and final solution for Scenario 1

Aircraft 
ID

Flight Origin Destination Departure 
time

Arrival 
time

Delay 
cost

Cancellation 
cost

Aircraft 1 11 DAB ORF 1410 1520 - -

21 ORF DAB 1600 1715 300 -

22 DAB ORF 1755 1905 300 -

23 ORF IAD 1945 2045 300 -

24 IAD ORF 2125 2225 200 -

14 ORF DAB 2305 0020 4,500 -

Cancel 12 ORF IAD - - - 10,231

13 IAD ORF - - - 7,434

Aircraft 3 31 IAD ATL 1515 1620 - -

32 ATL IAD 1730 1830 - -

33 IAD ATL 1910 2020 - -

34 ATL IAD 2100 2205 - -

Total cost 5,600 17,665
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Similarly, in set 3 of the constraints, the right-hand sides for nodes 11 and 19 
become one and zero respectively. The solution to this mathematical model is 
given in Table 10.6.

The total cost for this solution is $35,376. Table 10.7, overleaf, shows the 
conversion of this solution to actual departure and arrival times.

The total cost for this actual flight schedule is also $35,376 which is similar to 
the approximation time-node solution.

Scenario 3

In this scenario, we assume that aircraft 2 and 3 in cities ORF and IAD are 
operational all day. Aircraft 1 in DAB, however, must be grounded at 13:00 for four 
hours. That is, aircraft 1 is unavailable from 13:00 to 17:00. The trivial solution is 
to cancel flights 11 and 12 which are flown by aircraft 1 during 13:00 to 17:00. The 
total cost associated with these two cancelled flights is $17,581.

Again with minor modifications to the previous models we can formulate this 
scenario as shown in Table 10.7 opposite.

In set 2 of the constraints, for station-time node 6 and 12 the right hand side 
becomes one. The right hand side for node 1 becomes zero because aircraft 1 is 
grounded in DAB. This aircraft returns back to service after four hours at 17:00. 

Table 10.6	 Solution for Scenario 2

Aircraft 
ID

Flight Origin Destination Origin 
node

Destination 
node

Delay 
cost

Cancellation 
cost

Aircraft 1 11 DAB ORF 1 6 - -

12 ORF IAD 6 13 - -

33 IAD ATL 13 22 - -

34 ORF IAD 22 18 - -

24 IAD ORF 18 11 1,800 -

Aircraft 2 21 ORF DAB 6 2 - -

22 DAB ORF 2 7 - -

23 ORF IAD 7 16 - -

13 IAD ORF 16 10 4,200 -

14 ORF DAB 10 5 4,200

Cancel 31 IAD ATL - - - 9,996

32 ATL IAD - - - 15,180

Total cost 10,200 25,176
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Therefore, the right hand side value for node 2 (representing DAB at 17:00) 
becomes 1 (see figure 10.2). In set 3 of the constraints, since all the three aircraft 
are available to station sink nodes, we set the right-hand side values for nodes 5, 
11, and 19 equal to 1. The solution to this linear integer programming model is 
shown in Table 10.8 overleaf.

Based on the above solution no flight is cancelled and the total cost to the 
airline is $15,800. Table 10.9 shows the actual departure and arrival for each flight 
derived from Table 10.8.

The total actual cost for the above feasible schedule is $13,500.

Mathematical Model

This section formally introduces the integer linear programming model adapted for 
the case study. This approach is based on the Time-Band Approximation Model by 
Argüello et al. 1998.

Indices

i,j	 = node indices
k	 = flight index

Table 10.7	 Detailed and final solution for Scenario 2

Aircraft 
ID

Flight Origin Destination Departure 
time

Arrival 
time

Delay 
cost

Cancellation 
cost

Aircraft 1 11 DAB ORF 1410 1520 - -

12 ORF IAD 1605 1700 - -

33 IAD ATL 1910 2020 - -

34 ORF IAD 2100 2205 - -

24 IAD ORF 2245 2345 1,800 -

Aircraft 2 21 ORF DAB 1545 1700 - -

22 DAB ORF 1740 1850 - -

23 ORF IAD 1930 2030 - -

13 IAD ORF 2110 2210 4,200 -

14 ORF DAB 2250 0005 4,200

Cancel 31 IAD ATL - - - 9,996

32 ATL IAD - - - 15,180

Total cost 10,200 25,176
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Table 10.8	 Solution for Scenario 3

Aircraft 
ID

Flight Origin Destination Origin 
node

Destination 
node

Delay 
cost

Cancellation 
cost

Aircraft 1 11 DAB ORF 2 7 4,200 -

12 ORF IAD 7 15 3,900 -

33 IAD ATL 15 23 2,100 -

34 ATL IAD 23 19 2,000 -

Aircraft 2 21 ORF DAB 6 2 - -

22 DAB ORF 2 7 - -

23 ORF IAD 7 16 - -

24 IAD ORF 16 10 - -

Aircraft 3 31 IAD ATL 12 20 - -

32 ATL IAD 20 14 - -

13 IAD ORF 14 8 1800

14 ORF DAB 8 4 1800

Total cost 15,800 -

Table 10.9	 Detailed and final solution for Scenario 3

Aircraft 
ID

Flight Origin Destination Departure 
time

Arrival 
time

Actual 
Delay cost

Cancellation 
cost

Aircraft 1 11 DAB ORF 1700 1810 3,400 -

12 ORF IAD 1850 1955 3,300 -

33 IAD ATL 2035 2145 1,700 -

34 ATL IAD 2225 2330 1,700 -

Aircraft 2 21 ORF DAB 1545 1700 - -

22 DAB ORF 1740 1850 - -

23 ORF IAD 1930 2030 - -

24 IAD ORF 2115 2215 - -

Aircraft 3 31 IAD ATL 1515 1620 - -

32 ATL IAD 1730 1830 - -

13 IAD ORF 1910 2010 1,800

14 ORF DAB 2050 2205 1,600

Total cost 13,500 -
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Sets

F	 = set of flights
G(i)	 = set of flights originating at station-time node i
H(k,i)	 = set of destination nodes for flight k originating at station-node i
I	 = set of station-time nodes
J	 = set of station-sink nodes
L(i)	 = set of flights terminating at node i
M(k,i)	 = set of origination station-time nodes for flight k terminating at node i
P(k)	 = set of station-time nodes from which flight k originates
Q(i)	 = set of station-time nodes at airport containing station-sink i

Parameters

ai	 = Number of aircraft available at station-time node i
ck	 = Cost of canceling flight k

,
kd
i j

 	 = Delay cost of flight k from station-node i to node j
hi	 = Number of aircraft required to terminate at station-sink node j

Decision Variables

1 if flight  occurs through station time node  to 
, 0 otherwise

k i jkxi j




=  

1 if flight k is cancelled
0 otherwise

yk


= 


 

zi 	 = integer number of aircraft terminated at station time node i to station 
sink node at that airport

Mathematical Formulation

( )

                                               

flight cover                          1        ,( ) ( , )

       , ,( ) ( , )
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Chapter 11 

Gate Assignment

Introduction

The hub-and-spoke system has resulted in a large volume of baggage and 
passengers transferring between flights. Assigning arriving flights to airport gates 
is therefore an important issue in daily operations of an airline. Although the costs 
of these activities are generally small portions of the overall airline operation 
costs, they have a major impact on maintaining the efficiency of flight schedules 
and passenger satisfaction. Some of the factors that impact the assignment of gates 
to arriving flights include aircraft size, passenger walking distances, baggage 
transfer, ramp congestion, aircraft rotation, and aircraft service requirements (Gu 
and Chung 1999).

The problem of finding a suitable gate assignment is usually handled in three 
levels. In the first level, the ground controllers use the flight schedule to examine 
the capacity of gates to accommodate these flights. The second level involves the 
development of daily plans before the actual day of operation. In the third level, 
because of irregular conditions such as delays, bad weather, mechanical failure 
and maintenance requirements, these daily plans are updated and revised on the 
same hour/day of the operation (Bolat 2000).

The problem of gate assignment is well studied in operations research. A 
common approach in formulating this problem is from the passenger’s perspective 
in a way that the total passenger-walking distance is minimized. The gate 
assignment problem (GAP) is defined as follows:

Given a set of available gates and flights, the distance matrix between the gates, 
the passenger transfer matrix between the flights, we seek to assign these flights to 
the gates so that the total passenger-walking distances are minimized.

The researchers have adopted a variety of problem formulation and solution 
methods to address the various issues in GAP (see Bolat 2000, Haghani 1998, Gu 
and Chung 1999, Jo et al. 1997). The model described in this chapter is an integer 
linear programming model proposed by Bihr 1990.

Mathematical Model for a Case Study

The following case study (not related to Ultimate Air!) involves the assignment 
of flights to gates. Figure 11.1 shows the C Concourse at San Francisco (SFO) 
Airport, which has 19 gates (C1-C19). There are already 12 aircraft at the gates 
(as shown) getting ready for their departures. Within the next 15 minutes seven 
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flights will be arriving in this concourse that should be assigned to the remaining 
gates. These flights are referred to as F1, F2, F3, F4, F5, F6, and F7. In these 
seven flights, there are passengers who will connect to other departing flights. 
Without loss of generality, we assume that any of these arriving flights can be 
accommodated in any of the seven available gates.

Table 11.1 shows the number of passengers in these flights who will connect to 
other departing gates. As an example, five passengers from flight F1 should walk 
to gate 1, and so on. Note that in this model it is assumed that the departing flights 
are initially, or tentatively have been, designated to gates (Bihr 1990).

Figure 11.1	 C Concourse at SFO
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Table 11.1	 Passenger flow

Flight Departing gates

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

F1 5 5 10 8 15 8 2 10 8 20 5 4 0 9 3 4 1 2 1

F2 5 2 1 4 19 9 4 2 3 2 27 3 8 4 0 2 1 7 2

F3 10 0 4 9 13 4 4 4 3 5 5 8 4 9 11 7 9 4 4

F4 4 8 5 4 10 4 1 0 0 2 4 19 1 2 4 5 5 8 2

F5 4 11 9 9 6 3 1 4 4 2 1 0 3 5 1 2 2 3 4

F6 1 2 42 5 2 7 6 2 4 7 2 3 6 4 10 2 1 0 0

F7 3 3 2 5 9 13 11 2 2 3 7 22 4 0 1 1 2 2 9
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The distances in yards between the gates are presented in Table 11.2. Note that 
in this matrix, only the distances between the candidate arrival gates and other 
gates are shown.

Through this model we seek to assign the arriving flights to candidate gates so 
that the total passengers’ walking distance is minimized.

Using the above two tables (Tables 11.1 and 11.2) we can find the total walking 
distances of passengers on flight i if this flight is assigned to arrival gate j. The 
walking distance is calculated as follows:

Walking distance = number of passengers × distance∑

For example, if flight F1 is assigned to the candidate arrival gate 3, then the 
total walking distance for all passengers on this flight assigned to this gate is 
calculated as follows:

Total walking distance = 5 × 10 + 5 × 40 + 10 × 0 + 8 × 30 + 15 × 10 + 8 × 40 
+ 2 × 20 + 10 × 50 + 8 × 30 + 20 × 60 + 5 × 40 + 4 × 70 + 0 × 50 + 9 × 80 + 3 × 
60 + 4 × 90 + 1 × 70 + 2 × 90 + 1 × 80 = 5010 yards

In other words, by assigning flight F1 to gate 3, five passengers on this flight 
must walk a distance of 10 yards each to gate 1, five passengers must walk 40 yards 
each to gate 2; and 10 passengers will depart from the same gate as they arrived 
and therefore not having to walk. We repeat the above calculations for every flight 
assigned to every candidate gate. Table 11.3 shows the total walking distances for 
passengers aboard each flight by assigning them to every possible gate.

We define the following binary decision variable:

1 if flight  is assigned to candidate gate 
, 0 otherwise

i j
xi j





=

Table 11.2	 Distance matrix (yards)

Gates Departing Gates

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

3 10 40 - 30 10 40 20 50 30 60 40 70 50 80 60 90 70 90 80

4 40 10 30 - 40 10 50 20 60 30 70 40 80 50 90 60 90 70 80

10 70 40 60 30 50 20 40 10 30 - 40 10 50 40 60 30 70 40 50

11 50 80 40 70 30 60 20 50 10 40 - 30 10 40 20 50 30 50 40

14 90 60 80 50 70 40 60 30 50 20 40 10 30 - 40 10 50 20 30

15 70 100 60 90 50 80 40 70 30 60 20 50 10 40 - 30 10 30 20

17 80 100 70 90 60 80 50 70 40 60 30 50 20 40 10 30 - 20 10
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The objective function is therefore:

1,3 1,4 7,17  5010 4390 .... 5220F F FMinimize x x x+ + +

For constraints, we should ensure that every flight is assigned to a gate. We 
have seven gates (3, 4, 10,11,14,15, and 17) available. The constraint for flight 
F1 is:

1,3 1,4 1,10 1,11 1,14 1,15 1,17 1F F F F F F Fx x x x x x x+ + + + + + =

The above constraints ensure that flight F1 is assigned to one and only one gate 
among the seven available gates. Similarly we write the other six constraints for 
other flights.

If we run this integer linear program with the above constraints we see that one 
gate is assigned to two or more flights at the same time; rendering it not feasible. 
So we must ensure that each gate is also assigned to one flight (aircraft) only. The 
following additional set of constraints imposes this restriction for gate 3.

1,3 2,3 3,3 4,3 5,3 6,3 7,3 1F F F F F F Fx x x x x x x+ + + + + + =

Similarly we write the constraints for other the six gates.
The above integer linear programming model has 49 binary decision variables 

and 14 constraints. Solving this problem using an optimization software generates 
the following matching flights to gates solution. The total walking distance for this 
optimal solution among all passengers is 26,000 yards.

Figure 11.2 shows the allocation of these gates to flights.
Now, we can relax the assumption that any gate can accommodate any aircraft. 

Let us assume that gates 10 and 14 cannot be used for the aircraft in flight F1. To 

Table 11.3	 Traveling distances (yards)

Flight/gate 3 4 10 11 14 15 17

F1 5,010 4,390 3,820 4,870 5,060 6,650 7,090

F2 4,240 5,290 4,190 3,020 4,650 4,400 4,970

F3 5,610 5,950 4,930 4,270 4,910 4,950 5,320

F4 4,500 3,990 3,280 3,580 3,460 4,320 4,460

F5 2,950 2,720 3,060 ,3490 3,620 4,330 4,530

F6 3,060 4,310 4,740 3,900 5,760 5,300 6,020

F7 4,680 4,380 3,290 3,620 3,970 4,960 5,220
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address this, simply add the following constraints to restrict the assignment of 
gates 10 and 14 to flight F1.

1,10
0

F
x =  

1,14
0

F
x =  

Running the model with these new constraints generates the following solution 
with a total walking distance of 26,700 yards.

Table 11.4	 Solution to gate assignment

Flight Gate assigned to

F1 10

F2 11

F3 15

F4 17

F5 4

F6 3

F7 14

Figure 11.2	 Assignment of gates to flights
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Baggage Handling

The above model considers only the flow and movement of passengers. The 
introduction of hub and spoke concept has represented the airlines with challenging 
and demanding task of baggage handling for transit passengers. Unlike the 
passengers who can typically walk from one gate to another, the bags actually 
need to be transported from one gate to another for these transit passengers. The 
transportation of baggage poses many challenges to airlines, including scheduling 
the number of baggage handlers, baggage trailers, delays, lost baggage, and missed 
connections. In fact for major airlines baggage handling for transit passengers 
seems to be the dominant factor in gate assignment in their major hubs. The airlines 
normally assign their baggage handlers and trailers according to the ascending 
order of departure time (Green and Scalise 2007).

The concept of baggage handling has been studied under different scopes. 
Some of these studies focus on baggage handling for security purposes and 
detection of explosives. These studies include McLay et al. 2006 and Jacobson et 
al. 2005. Others study the baggage handling system under gate assignment (see, 
for example, Haghani and Chen 1998 and Lam, et al. 2002). The new trend of 
research on baggage handling involves adopting Radio Frequency Identification 
(RFID) devices to track baggage at airports (see, for example, Maike 2008).

Mathematical Model for Baggage Handling

The mathematical approach presented earlier in this chapter for gate assignment 
is revised to incorporate baggage handling distances too. In this revised model the 
objective is to assign gates to arriving flights so that the total traveling distance for 
transit passengers and bags is minimized.

Referring to the above case study for passenger flow, Tables 11.6 presents 
the amount of transit bags, mail, and cargo from each of the arriving aircraft to 

Table 11.5	 Revised assignments of gates to flights

Flight Gate assigned to

F1 4

F2 11

F3 15

F4 14

F5 17

F6 3

F7 10
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departing gates. Again in this model it is assumed that the departing flights are 
initially, or tentatively have been, designated to gates (Bihr 1990).

The baggage is normally transported by baggage trailers from gates to gates on 
the ramp. We assume that the capacity of the trailer is 5 bags per trailer. Therefore 
we can convert the number of baggage flow in Table 11.6 to the number of trips 
that the trailers need to make in order to distribute the baggage among the gates. 
Table 11.7 presents this baggage flow in numbers of trips for trailers. These figures 
have been all rounded up. As an example, in Table 11.6 we have 19 baggage units 
to be transported from flight F1 to gate 1. The capacity of the trailer is 5 bags. 
Therefore, the number of trips that the trailer needs to make to move these bags 
is given by:

19 4
5

  =  

where
[•]	 = the rounded-up integer for •.

The distances in yards between the gates on the airport ramp are presented in 
Table 11.8. Similar to Table 11.2, in this matrix, only the distances between the 
candidate arrival gates and other gates are shown.

Similar to the process described for calculating the passenger walking distance, 
we can calculate the distance traveled by trailers to transport baggage from arriving 
flights to departing gates, as follows:

Baggage transport distance = ∑ number of trips × distance.

The following table presents the total baggage transport distances in yards for 
each of the arriving flights to each of the candidate gates.

Table 11.6	 Baggage flow from arriving flights to departing gates (units of 
baggage)

Flight Departing gates

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

F1 19 28 11 8 30 25 33 5 49 14 38 38 14 23 17 4 20 44 8

F2 43 40 22 29 4 49 8 6 20 21 17 5 27 29 29 40 42 34 25

F3 22 17 36 45 22 28 17 23 18 44 12 8 41 48 25 11 27 47 28

F4 47 11 4 26 16 21 24 8 45 22 45 20 14 22 32 32 9 39 7

F5 3 24 46 38 48 7 24 33 29 43 7 21 45 47 28 11 17 3 23

F6 9 47 18 3 44 14 4 27 34 38 17 26 2 3 28 40 11 8 46

F7 46 34 48 42 26 12 40 49 18 36 24 6 18 9 2 10 14 47 9
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We can now revise our objective function to accommodate for both passenger 
and baggage traveling and transport distances. The total distance can be represented 
as:

Total distance = w1(passenger traveling distances) + w2(baggage transport 
distances)

Table 11.7	 Baggage flow in number of trips for trailers from arriving flights 
to departing gates

Flight Gate

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

F1 4 6 3 2 6 5 7 1 10 3 8 8 3 5 4 1 4 9 2

F2 9 8 5 6 1 10 2 2 4 5 4 1 6 6 6 8 9 7 5

F3 5 4 8 9 5 6 4 5 4 9 3 2 9 10 5 3 6 10 6

F4 10 3 1 6 4 5 5 2 9 5 9 4 3 5 7 7 2 8 2

F5 1 5 10 8 10 2 5 7 6 9 2 5 9 10 6 3 4 1 5

F6 2 10 4 1 9 3 1 6 7 8 4 6 1 1 6 8 3 2 10

F7 10 7 10 9 6 3 8 10 4 8 5 2 4 2 1 2 3 10 2

Table 11.8	 Distance matrix for baggage trailers on the ramp (yards)

Gate Departing Gates

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

3 15 60 - 45 15 60 30 75 45 90 60 105 75 120 90 135 105 135 120

4 68 17 51 - 68 17 85 34 102 51 119 68 136 85 153 102 153 119 136

10 112 64 96 48 80 32 64 16 48 - 64 16 80 64 96 48 112 64 80

11 65 104 52 91 39 78 26 65 13 52 - 39 13 52 26 65 39 65 52

14 135 90 120 75 105 60 90 45 75 30 60 15 45 - 60 15 75 30 45

15 98 140 84 126 70 112 56 98 42 84 28 70 14 56 - 42 14 42 28

17 112 140 98 126 84 112 70 98 56 84 42 70 28 56 14 42 - 28 14

Table 11.9	 Baggage transport distances (yards)

Flight

Gate

3 4 10 11 14 15 17

F1 6,420 7,820 5,616 4,004 5,685 5,516 5,936

F2 7,965 8,636 6,992 5,707 6,525 6,762 6,986

F3 8,460 9,197 7,136 5,824 6,690 7,224 7,518

F4 7,005 8,296 6,064 4,537 6,015 5,922 6,426

F5 7,320 8,398 6,560 5,174 6,600 7,000 7,546

F6 6,975 7,480 5,328 4,719 5,565 5,978 6,244

F7 6,450 ,7327 6,528 5,772 7,590 8,008 8,470
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In this revised total distance, we assign weights w1 for passenger traveling and 
w2 to baggage transportation distances respectively.

As indicated earlier, the airlines probably assign a higher weight to transport of 
baggage than to passenger traveling distances. For this case study, we assume the 
weights to be w1 = 1 and w2 = 3 respectively. Therefore the objective function is:

  1(5010 4390 .... 5220 ) 3(6420 7820 .... 8470 )1,3 1,4 7,17 1,3 1,4 7,17Minimize x x x x x xF F F F F F+ + + + + + +

The constraints discussed earlier for passenger traveling distances remain the 
same.

Solving this problem using an optimization software generates the following 
matching flights to gates solution presented in Table 11.10. The total traveling and 
transport distances for this optimal solution with corresponding weights among 
all passengers is 161,871 yards. Figure 11.3 overleaf presents the new and revised 
gate assignment layout.

As we see in Figure 11.3, this gate assignment is different from the case where 
only passenger movement was the sole objective.

Mathematical Model

The modified mathematical model for the above case study proposed by Bihr 
(1990) can formally be presented as:

Indices

i	 = index for arriving flights
j,k	 = index for gates

Table 11.10	 Solution to gate assignment for both passenger and baggage 
transport

Flight Gate assigned to

F1 11

F2 17

F3 14

F4 15

F5 3

F6 10

F7 4
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Sets

F	 = set of arriving flights
G	 = set of available gates for arriving flights
K	 = set of departing gates

Parameters

pi,k	 = number of passengers arriving on flight i and departing from gate k
dpk,j	 = distance units (in yards, meters, feet, etc) for passengers from gate k to 

gate j
TPi,j 	 = Total walking distance for all passengers on flight i assigned to arrival 

gate j
ti,k	 = number of trips to transport baggage from flight i to departing gate k
dbk,j	 = distance units (in yards, meters, feet, etc.) to transport baggage on ramp 

from departing gate k to arriving gate j
TBi,j 	 = Total transport distance for all baggage on flight i assigned to arrival gate j
w1, w2	 = Weights assigned to total passenger walking and baggage transport 

distances respectively

TPi,j and TBi,j are calculated as follows:

Figure 11.3	 Assignment of gates to flights
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Decision Variable

1 if flight  is assigned to gate 
, 0 otherwise

i j
xi j





=

Objective Function

x i j         0,1                       for al

)1 2

          

    

          Minimize  (
, , , ,

1                  for all              
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+∑ ∑
∈ ∈

=∑
∈

{ }

      1                  for all              
,

l  and ,

(11.2)x j
i ji F

i j

=∑
∈

∈

Constraints 11.1 and 11.2 ensure that each flight is assigned to only one gate 
and each gate is assigned to exactly one flight.

Special Cases

If there are more gates than arriving flights, then constraint 11.2 becomes:

1                        for all  
,

x j
i ji F

≤∑
∈

The above inequality denotes that an arriving gate can be assigned to a flight 
by taking a value of 1 or will not be assigned to any flight at all by taking a value 
of zero.

If, on the other hand, there are more flights than arriving gates then 
mathematically we can write an inequality for constraint 11.1 similar to the 
previous special case. However, it will not be realistic. Each flight must land and 
be accommodated at a gate. If there are no gates available for an arriving flight, as 
sometimes is experienced in busy airports, then the aircraft has to wait on the ramp 
or taxiway until a gate becomes available.
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Chapter 12 

Aircraft Boarding Strategy

Introduction

The airlines are currently undergoing difficult financial times. The increase in 
fuel prices, competition from low cost carriers, and operational inefficiencies 
have resulted in bankruptcies and major losses for airlines around the world. It 
is therefore extremely important for the airlines to be efficient in areas that they 
have control over. Airlines generate revenue by utilizing and flying their aircraft; 
they do not generate any revenue while their aircraft are on the ground. As a 
result, turnaround time is a major metric for an airline’s operations (Van den 
Briel et al. 2005). The time from the arrival of the aircraft until its next departure 
constitutes turnaround time. To have high utilization of their aircraft, airlines 
attempt to minimize the turnaround time. The components in turnaround time 
include taxi-in and taxi-out, passenger/baggage deplaning, maintenance checks, 
fueling and passenger/baggage boarding. The typical aircraft turn-around time 
for short-haul flights is approximately 30–60 minutes (see, for example, Van 
Landeghem and Beuselink 2002). A major component of turnaround time is the 
passenger boarding time. Horstmeier and Haan (2001) provide detailed analyses 
of all the components in an aircraft turn-around time including passenger 
deplaning, refueling, cleaning, catering, maintenance, and boarding. Because 
of safety and operational constraints, passenger boarding is the last task in 
this timeline. Any time saved through efficient boarding directly reduces the 
turnaround time.

This chapter provides an overview of the strategies adopted by the airlines for 
their boarding process and examines how optimization models can be implemented 
to reduce aircraft boarding time.

Common Strategies for Aircraft Boarding Process

Airlines seem to adopt different aircraft boarding strategies based on airline culture 
and service level. Some airlines do not impose any strategy and let the passengers 
board randomly. Others arrange passengers into groups, zones or call-offs based 
on specific boarding strategy adopted by the airline. Each of these groups is then 
called to board the aircraft in sequence. The following represents some of the 
popular boarding strategies adopted by many of the airlines:
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Back-to-Front

Back-to-front (BF) boarding strategy is widely adopted by many airlines for both 
narrow and wide-body aircraft. In this strategy, first class, business class, and 
special-need passengers are boarded first. Then, as the name implies, passengers 
start filling up the aircraft from back to front. Passengers are called to board the 
aircraft based either on their seat row numbers or by groups or zones. Each group 
is then called in sequence to board the aircraft. Figure 12.1 presents a back-to-
front boarding strategy where all the passengers on this aircraft are divided into 
six groups. Group 1 (first class, business class and special need) passengers board 
first. Then passengers in groups 2 to 6 are called to board the aircraft as shown in 
Figure 12.1.

Window-Middle-Aisle

Window-middle-aisle boarding strategy (or sometimes called out-in), as the 
names implies, boards the passengers in window seats, middle seats and finally 
in the aisle seats. Figure 12.1 presents a window-middle-aisle boarding process. 
Passengers are usually divided into four groups to follow this boarding strategy. 
First, business class and special need passengers are assigned to group 1 and board 
first. Then all the economy class passengers in window, middle, and aisle seats are 
assigned to groups 2, 3, and 4 respectively and board the aircraft according to their 
assigned groups as Figure 12.1 suggests. A major disadvantage of this boarding 
strategy is that the passengers in parties of two or more seated next to each other 
board the aircraft separately and at different times. This boarding process may not 
appeal to either passengers and/or airlines.

Random

In random boarding strategy, no specific strategy is used and all passengers board 
the aircraft in one zone randomly.

Rotating Zone

In rotating zone, passengers are grouped into zones and board the aircraft first in 
the front, then in the back, then front again, then back in a rotating manner. In this 
boarding strategy, passengers sitting in the middle of the aircraft are seated last.

Mathematical Model

Most of the studies on aircraft boarding strategies focus on modeling the problem 
using computer-based simulations (see, for example, Ferrari et al. 2004, Ferrari 
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2005 and Van Landeghem and Beuselink 2002). While these methods provide 
a good understanding of existing boarding strategies and enable us to evaluate 
various known strategies and conduct what-if scenarios, they do not help us find 
the best and other possible unknown alternatives (Van den Briel et al. 2005). 
Analytical approaches can help achieve these alternatives. Some of the existing 
analytical models include:

Van den Briel et al. (2005) proposed a non-linear assignment model with 
quadratic and cubic terms. The model attempts to minimize the total seat 
and aisle interferences among passengers (discussed later);
Bachmat et al. (2006) derived a family of back-to-front boarding policies 
using stochastic geometry under the assumption of passengers being 
infinitely thin. The application of this model to a specific aircraft or airline 
has not been reported.
Bazargan (2007) adopted a binary/integer linear program to minimize the 
total seat and aisle interferences.

•

•

•

Figure 12.1	 Sample of back-to-front and window-middle-aisle boarding 
process

A B C D E F
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 6 6 6 6 6 6
5 6 6 6 6 6 6
6 6 6 6 6 6 6
7 6 6 6 6 6 6
8 5 5 5 5 5 5
9 5 5 5 5 5 5
10 5 5 5 5 5 5
11 5 5 5 5 5 5
12 5 5 5 5 5 5
13 4 4 4 4 4 4
14 4 4 4 4 4 4
15 4 4 4 4 4 4
16 4 4 4 4 4 4
17 3 3 3 3 3 3
18 3 3 3 3 3 3
19 3 3 3 3 3 3
20 3 3 3 3 3 3
21 3 3 3 3 3 3
22 2 2 2 2 2 2
23 2 2 2 2 2 2
24 2 2 2 2 2 2
25 2 2 2 2 2 2
26 2 2 2 2 2 2                           

A B C D E F
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 2 3 4 4 3 2
5 2 3 4 4 3 2
6 2 3 4 4 3 2
7 2 3 4 4 3 2
8 2 3 4 4 3 2
9 2 3 4 4 3 2
10 2 3 4 4 3 2
11 2 3 4 4 3 2
12 2 3 4 4 3 2
13 2 3 4 4 3 2
14 2 3 4 4 3 2
15 2 3 4 4 3 2
16 2 3 4 4 3 2
17 2 3 4 4 3 2
18 2 3 4 4 3 2
19 2 3 4 4 3 2
20 2 3 4 4 3 2
21 2 3 4 4 3 2
22 2 3 4 4 3 2
23 2 3 4 4 3 2
24 2 3 4 4 3 2
25 2 3 4 4 3 2
26 2 3 4 4 3 2  
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The analytical model discussed in this chapter is based on a binary/integer 
linear program introduced by Bazargan (2007). The proposed mathematical model 
attempts to minimize the total interferences among the passengers, which is a 
major causes for boarding delays, subject to operational and side constraints.

Interferences

Boarding interferences occur when a passenger blocks another passenger from 
proceeding to his or her seat. Two types of interferences, seat interferences and 
aisle interferences, may occur. Seat interferences occur when a passenger blocks 
another passenger assigned to the same row. Figure 12.2 shows seat interferences 
for passengers in rows 16, 19, and 22. In all these cases, the blocking passenger(s) 
need to exit, for the passengers assigned to the middle or window seats to be 
seated.

Aisle interferences occur when a lower row passenger is in front of the higher 
row passengers while boarding the aircraft. In this case, the passenger in the lower 
row will block all the passengers behind him or her to stow baggage in the overhead 
bin (if any) and be seated (see Figure 12.2). The following sections describe the 
mathematical models for each type of interference.

Figure 12.2	 Seat and aisle interferences
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Model Description

Our focus in this section is to develop a mathematical model which captures 
the behavior of passengers boarding the aircraft. The objective of this model 
is to minimize the total number of interferences subject to operational and side 
constraints. Note that the model assumes a single aisle or narrow-body aircraft 
such as an Airbus A-320 or Boeing 737 and all passengers board through a single 
aircraft door.

We assume that each seat in this aircraft is represented by (i,j) where i (i=1,.,N) 
is the row and j (j=A,B,.,F) is the location of the seat within row i as shown in 
Figure 12.3.

In this model we attempt to assign each seat to a group. Each passenger in seat 
(i,j) is assigned to a group k (k=1,.,G). Each group is then called in sequence to 
board the aircraft.

The following binary decision variable is adopted for our integer linear 
programming model:

{, ,
1 if  seat  in row  is assigned to group 
0 otherwisei j k

j  i kx =

Our objective is to assign seats (i,j) to groups (k ∈ G) so that the total number 
of interferences with penalties attached to them (as described later) is minimized.

Seat Interferences

There are two types of seat interferences: between-groups and within-groups 
described as follows:

Between-Groups Seat Interferences

This type of seat interference occurs when a passenger from an earlier group blocks 
another passenger in a later group. For example, in Figure 12.2 if the passenger in 
seat 16C (aisle seat) boarded in group 2 and passenger in seat 16B (middle seat) 
boarded in a later group, then the passenger in seat 16C is blocking the passenger 
in seat 16B. In this case, the passenger in seat 16C needs to exit, to allow the 
passenger in seat 16B to be seated, thus blocking the flow of passengers in the 
aisle. More seat interferences occur if the passenger in seat 16A (window seat) 
boards after passengers are seated in seats 16B and 16C.

Figure 12.3	 Location of seats within row i
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Considering all the possible combinations, four types of seat interferences 
between different groups can occur as follows.

aisle-seat passenger blocking the middle-seat passenger;
aisle-seat passenger blocking the window-seat passenger;
middle-seat passenger blocking the window-seat passenger;
aisle- and middle-seat passengers blocking the window-seat passenger;

We examine the mathematical model for each case separately.

Aisle-Seat Passenger Blocking Middle-Seat Passenger

First we develop the seat interferences model for seats B and C on the left hand 
side of the aisle (see figure 12.3) for seats B and C. We define SBi,BC,k as a binary 
variable representing number of seat interference between the seat C (aisle seat) 
and seat B (middle seat) in row i, who boarded in group k. SBi,BC,k, takes a value of 
1 if an interference occurs or 0 otherwise.

Mathematically, SBi,BC,k can be expressed as the following constraint in our 
mathematical model:

1
1      ,  and 1, , , , , ,1

k
SB x x i ki BC k i B k i C ll

−
≥ + − ∀ >∑

=
	 (12.1)

On the right hand side of the constraint, we have xi,B,k, which represents if the 
passenger in the middle seat (seat B) boards in group k and

1
, ,1

k
xi C ll

−
∑
=

 

indicates if the passenger sitting in the aisle seat (seat C) has boarded in any of 
the earlier groups (before k). The term (-1) in the above constraint is added to set 
the value of SBi,BC,k equal to 1 if there is an interference or 0 otherwise. Table 12.1 
clarifies this further and examines the value of SBi,BC,k for different scenarios on a 
given row i.

Note that in constraint (12.1) we use greater or equal sign (≥). This ensures that 
SBi,BC,k takes a value of 0 for the last case in the above table if both terms on the 
right hand side are 0. Similarly we can write the constraints for aisle and middle 
seat interferences (seats E and D) on the right hand side of the aisle

1
1      ,  and 1, , , , , ,1

k
SB x x i ki ED k i E k i D ll

−
≥ + − ∀ >∑

=
	 (12.2)

•
•
•
•
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Aisle-Seat Passenger Blocking Window-Seat Passenger

We adopt a similar approach as aisle- and middle-seat interference to expresses the 
number of seat interferences and its corresponding constraints between aisle- and 
window-seats among different groups for both sides of the aisle as follows:

1
1      ,  and 1, , , , , ,1

k
SB x x i ki AC k i A k i C ll

−
≥ + − ∀ >∑

=
	 (12.3)

1
1      ,  and 1, , , , , ,1

k
SB x x i ki FD k i F k i D ll

−
≥ + − ∀ >∑

=
	 (12.4)

Middle-Seat Passenger Blocking Window-Seat Passenger

The number of seat interference and constraint between window- and middle-seats 
among different groups for both sides of the aircraft are as follows:

1
1      ,  and 1, , , , , ,1

k
SB x x i ki AB k i A k i B ll

−
≥ + − ∀ >∑

=
	 (12.5)

Table 12.1	 Examining aisle- and middle-seat interference

xi,B,kSB x xi AC k i A k i C l
1

, , , , , ,1

k

l

−
∑
=

SBi,BC,k Comments

1
(The passenger in 
middle seat B is in 
group k )

1
(The passenger in aisle 
seat C has already
boarded in an earlier 
group)

1 Interference occurs

0
(The passenger in 
middle seat B is not 
in group k)

1
(The passenger in aisle 
seat C has already 
boarded in an earlier 
group)

0 No interference

1
(The passenger in 
middle seat B is in 
group k )

0
(The passenger in seat 
C has not boarded 
in any of the earlier 
groups)

0 No interference

0
(The passenger in 
middle seat B is not 
in group k)

0
(The passenger in the 
aisle seat C has not 
boarded in any of the 
earlier groups)

-1 No interference
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1
1      ,  and 1, , , , , ,1

k
SB x x i ki FE k i F k i E ll

−
≥ + − ∀ >∑

=
	 (12.6)

Aisle-  and Middle-Seat Passengers Blocking Window-Seat Passenger

Having established the above seat interferences, we do not need to express a specific 
set of constraints for a window-seat passenger when both middle- and aisle-seat 
passengers have already been seated. This type of interference has already been 
addressed in the form of two separate constraints (interferences) discussed above. 
These two interferences are window with middle and window with aisle seats. 
For example, consider a case when a passenger in seat A boards just after both 
passengers in seats B and C. In this case, according to constraints (12.3 and 12.5) 
above both SBi,AC,k and SBi,AB,k will take a value of 1 implying that the passenger 
sitting in seat A (window) will have a total of 2 seat interferences with aisle and 
middle seats.

Total Seat Interferences among Different Groups

We can now express the total number of seat interferences between different 
groups by adding all the seat interferences discussed above. Let TSB represent the 
total seat interferences between groups, then:

( ), , , , , , , , , , , ,1 2

N G
TSB SB SB SB SB SB SBi BC k i ED k i AC k i FD k i AB k i FE ki k

= + + + + +∑ ∑
= =

	 (12.7)

Within-Groups Seat interferences

This type of interference occurs among passengers boarding in the same group. 
We assume the sequence in which the passengers within a group board the aircraft 
is random. For example, passengers in seats 16A and 16B are boarding in the same 
group (see Figure 12.2). When their group is called, passenger 16A may board 
first and be in front of 16B in the respective group or vice versa. In the former 
case when the passenger in seat 16A boards before 16B, no interference occurs. 
However, in the latter case when the passenger in 16B boards before 16A, there 
will be a seat interference.

Adopting the same argument as between groups seat interference, we denote 
the binary variable SWi,BC,k to represent the seat interference between the aisle 
(seat C) and middle seat (seat B), who board in the same group. We can write the 
following constraint for this variable:

1      ,, , , , , ,SW x x i ki BC k i B k i C k≥ + − ∀ 	 (12.8)
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Similar to the section on aisle and middle seat interferences, SWi,BC,k can take a 
value of 1 or 0 depending on values of xi,B,k and xi,C,k. If passengers in seats B and 
C in a row i are boarding in the same group k, then the constraint (12.8) returns 
a value of 1 for SWi,BC,k, otherwise it will be 0. However, as indicated before the 
order of these two passengers is random. Therefore the expected number of seat 
interferences between passengers in seats B and C within the same group is:

1
, ,2

SWi BC k 	 (12.9)

Similarly, we can express the constraints for other seat interferences within the 
same group as follows:

1      ,, , , , , ,SW x x i ki AC k i A k i C k≥ + − ∀ 	 (12.10)

1      ,, , , , , ,SW x x i ki AB k i A k i B k≥ + − ∀ 	 (12.11)

1      ,, , , , , ,SW x x i ki ED k i E k i D k≥ + − ∀ 	 (12.12)

1      ,, , , , , ,SW x x i ki FD k i F k i D k≥ + − ∀ 	 (12.13)

1      ,, , , , , ,SW x x i ki FE k i F k i E k≥ + − ∀ 	 (12.14)

Similar to the expression in (12.9), the expected number of seat interferences 
within each group is ½ each of the above SW. Again we do not need to add a 
new constraint for the case when all three neighboring passengers are in the same 
group.

The total of seat interferences within the same groups (TSW) is therefore 
obtained by:

( )1
, , , , , , , , , , , ,2 1 1

N G
TSW SW SW SW SW SW SWi BC k i ED k i AC k i FD k i AB k i FE ki k

= + + + + +∑ ∑
= =

	 (12.15)

Aisle Interferences

In this section, we formulate the aisle interferences. Similar to seat interferences, 
there are two types of aisle interferences, within groups and between groups.
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Within-Groups Aisle Interferences

This common type of aisle interference relates to cases where passengers assigned 
to the same group block each other. This occurs when a passenger in a lower row 
blocks other passengers behind him or her in order to be seated. The problem 
becomes compounded when the passenger has multiple bags to store in the overhead 
bin (Van Landeghem and Beuselink 2002). We further break down these within-
group aisle interferences into interferences with lower rows and interferences with 
same rows.

Within-Groups Aisle Interferences With Lower Rows

Let the integer variable AW1i,j,k represent the (maximum) number of aisle 
interferences for the passenger in seat (i,j) assigned to group k with lower row 
passengers in the same group. Similar to the previous section, we can write the 
constraint for AW1i,j,k as follows:

1 6
1 6( 1) 6( 1)     1, ,  , , , , , ,1 1

i
AW i x x i i j ki j k i j k u v ku v

−
≥ − + − − ∀ >∑ ∑

= =
	 (12.16)

On the right-hand side of this constraint, the first term takes a value of 6(i-1) 
if the passenger in seat (i,j) is assigned to group k, or zero otherwise. The second 
term  adds up all the passengers in the same group k, who have a lower row seat-
assignment than i. The third term on the right-hand side is adopted to provide the 
correct count on aisle interferences for AW1i,j,k.

Note that to determine AW1i,j,k we add up all the passengers in rows lower than 
row i. This implies the worst case where the passenger in seat (i,j) boards after all 
passengers in the lower rows in the same group. Therefore, AW1i,j,k represents the 
maximum number of aisle interferences for the passenger in seat (i,j) assigned to 
group k.

The lowest number of aisle interferences for the passenger in seat (i,j) assigned 
to group k occurs if the passenger boards before all the passengers in lower rows 
of that group. In this case since the passenger moves all the way down the aisle to 
his or her designated row without being blocked by anyone within this group, then 
there are no within-group aisle interferences. Therefore the expected number of 
aisle interferences for passenger in seat (i,j) assigned to group k is:

0 1min+max 1, , 1 , ,2 2 2

AW i j k AW i j k

+
= = 	 (12.17)
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The total expected number of aisle interferences for all passengers with their 
lower row passengers presented by AWL  is therefore determined by:

61 1 , ,2 2 1 1

N G
AWL AW i j ki j k

= ∑ ∑ ∑
= = =

	 (12.18)

Within-Groups Aisle Interferences in the Same Row

In the section within-groups aisle interferences with lower rows above, we did not 
consider possible aisle interferences among passengers in the same row and same 
group. This section addresses the expected number of aisle interferences for those 
passengers. We define integer variable AW2i,j,k to represent the (maximum) number 
of aisle interferences between the passenger in seat (i,j) and all other passengers 
in the same row i, boarding in group k. We write the following constraint for 
AW2i,j,k.

6
2 5 5     , ,  , , , , , ,1,

AW x x i j ki j k i j k i u ku u j
≥ + − ∀∑

= ≠
	 (12.19)

The first term on the right hand side takes a value of 5 or zero depending on 
whether the passenger in seat (i,j) is in group k or not. The second term adds up 
the number of passengers in row i and number of passengers in group k, except 
for the passenger sitting in (i,j). The third term is used to provide the right number 
of counts for aisle interferences. Similar to the previous section, the minimum 
number of interferences for passenger in seat (i,j) boarding in group k is 0 and the 
maximum is AW2i,j,k. Therefore the expected number of aisle interferences in the 
same row within the same group for this passenger is 1/2 AW2i,j,k.

We define AWS to represent the total expected number of same-row aisle 
interferences for all passengers given by:

61 2 , ,2 1 1 1

N G
AWS AW i j ki j k

= ∑ ∑ ∑
= = =

	 (12.20)

Between-Groups Aisle Interferences

This type of aisle interference, as many of us have experienced, occurs when a group 
of passengers are called to board the aircraft while some or all of the passengers in 
the previous group are still in the jet-way (staircase) or aircraft door waiting to be 
seated. These interferences occur and get worse as the time between boarding the 
passengers and groups decreases. We define the integer variable  ABi,j,k to represent 
the maximum number of aisle interferences for passenger in seat (i,j) who boards 
in group k (k>1) with all the passengers in the previous group (k-1).



Airline Operations and Scheduling194

We write the following constraint for ABi,j,k:

6
6( ) 6( )     , , 1 , , , , , , 11 1

i
AB i x x i i j ki j k i j k i u ki u

≥ + − ∀ >∑ ∑ −= =
	 (12.21)

The first term on the right hand side of this constraint takes a value of 6i if 
the passenger in seat (i,j) is assigned to group k, or 0 otherwise. The second term 
adds up all the passengers who boarded in group (k-1) and the third term is used 
to provide the correct count.

The constraint for ABi,j,k assumes that none of the passengers from the earlier 
group is seated when the passenger in seat (i,j) assigned to group k boards the 
aircraft. Of course, the expected number of aisle interferences for this passenger 
depends on how quickly each group of passengers is called to board the aircraft. 
We will assume that for any passenger in group k (k>1) boarding the aircraft, there 
are a fraction of passengers from the previous group (k-1) still in the jet-way trying 
to reach to their seats. We call this fraction α (0≤α≤1). Therefore the expected 
number of aisle interferences between the passenger in seat (i,j) assigned to group 
k with passengers in group (k-1) is αABi,j,k.

When α is 0, no aisle interferences occur between groups. This occurs when 
a new group of passengers is called to board the aircraft when all the passengers 
from the earlier group are fully seated. On the other extreme, when α is equal 
to 1, the time between calling groups to board is so short that the passengers in 
each group line up behind the previous group in the aisle or jet-way. In our later 
analyses, we examine various values for α and its impact on boarding pattern and 
strategy.

Let ABG represent the total aisle interferences between groups for all passengers 
boarding in group k (k>1). ABG is therefore determined by:

6
, ,1 1 2

N G
ABG ABi j ki j k

α= ∑ ∑ ∑
= = =

	 (12.22)

To keep the model simple and without loss of generality, we only include 
aisle interferences between passengers in group k (k>1) with passengers in group 
(k-1). It is, of course, possible to mathematically include the aisle interferences 
between passengers in group k and groups (k-2, for k>2) or (k-3 for k>3), and so 
on. Our simulation study, discussed later, also confirmed that for realistic times 
between passengers to board the aircraft, these second or third level interferences 
are relatively very low compared to the first level that is considered in the model.

Mathematical Model

In this mathematical model, we attempt to minimize all the seat and aisle 
interferences that were examined in section 4 as follows:
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 1 2 3 4 5Minimize p TSB p TSW p AWL p AWS p ABG+ + + + 	 (12.23)

Subject to:

1
1      ,  and 1, , , , , ,1

k
SB x x i ki BC k i B k i C ll

−
≥ + − ∀ >∑

=
	 (12.24)

1
1      ,  and 1, , , , , ,1

k
SB x x i ki ED k i E k i D ll

−
≥ + − ∀ >∑

=
	 (12.25)

1
1      ,  and 1, , , , , ,1

k
SB x x i ki AC k i A k i C ll

−
≥ + − ∀ >∑

=
	 (12.26)

1
1      ,  and 1, , , , , ,1

k
SB x x i ki FD k i F k i D ll

−
≥ + − ∀ >∑

=
	 (12.27)

1
1      ,  and 1, , , , , ,1

k
SB x x i ki AB k i A k i B ll

−
≥ + − ∀ >∑

=
	 (12.28)

1
1      ,  and 1, , , , , ,1

k
SB x x i ki FE k i F k i E ll

−
≥ + − ∀ >∑

=
	 (12.29)

1      ,, , , , , ,SW x x i ki BC k i B k i C k≥ + − ∀ 	 (12.30)

1      ,, , , , , ,SW x x i ki AC k i A k i C k≥ + − ∀ 	 (12.31)

1      ,, , , , , ,SW x x i ki AB k i A k i B k≥ + − ∀ 	 (12.32)

1      ,, , , , , ,SW x x i ki ED k i E k i D k≥ + − ∀ 	 (12.33)
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1      ,, , , , , ,SW x x i ki FD k i F k i D k≥ + − ∀ 	 (12.34)

1      ,, , , , , ,SW x x i ki FE k i F k i E k≥ + − ∀ 	 (12.35)

1 6
1 6( 1) 6( 1)     1, ,  , , , , , ,1 1

i
AW i x x i i j ki j k i j k u v ku v

−
≥ − + − − ∀ >∑ ∑

= =
	 (12.36)

6
2 5 5     , ,  , , , , , ,1,

AW x x i j ki j k i j k i u ku u j
≥ + − ∀∑

= ≠
	 (12.37)

6
6( ) 6( )     , , 1 , , , , , , 11 1

i
AB i x x i i j ki j k i j k i u ki u

≥ + − ∀ >∑ ∑ −= =
	 (12.38)

( ), , , , , , , , , , , ,1 2

N G
TSB SB SB SB SB SB SBi BC k i ED k i AC k i FD k i AB k i FE ki k

= + + + + +∑ ∑
= =

	 (12.39)

( )1
, , , , , , , , , , , ,2 1 1

N G
TSW SW SW SW SW SW SWi BC k i ED k i AC k i FD k i AB k i FE ki k

= + + + + +∑ ∑
= =

	 (12.40)

61 2 , ,2 1 1 1

N G
AWS AW i j ki j k

= ∑ ∑ ∑
= = =

	 (12.41)

61 1 , ,2 2 1 1

N G
AWL AW i j ki j k

= ∑ ∑ ∑
= = =

	 (12.42)

6
, ,1 1 2

N G
ABG ABi j ki j k

α= ∑ ∑ ∑
= = =

	 (12.43)

1     ,, ,1

G
x i ji j kk

= ∀∑
=

	 (12.44)

6
min_      , ,1 1

N
x pax ki j ki j

≥ ∀∑ ∑
= =

	 (12.45)
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6
max_      , ,1 1

N
x pax ki j ki j

≤ ∀∑ ∑
= =

	 (12.46)

{ }0,1      , ,, ,x i j ki j k ∈ ∀ 	 (12.47)

The objective function (12.23) attempts to minimize the total expected number 
of seat and aisle interferences. p1, p2,...,p5 represent the penalties assigned to 
different types of interferences. The value of these penalties will be discussed 
later. Expressions (12.24) to (12.43) were explained in the previous section. The 
set of constraints in (12.44) ensures that each seat in the aircraft is assigned to one 
and only one group. Typically the airlines favor a balanced number of passengers 
among different groups. The two sets of constraints (12.45) and (12.46) ensure 
that the number of passengers assigned to each group is not less than min_pax 
and not more than max_pax. Finally, expression (12.47) indicates that the decision 
variables are binary.

Model Parameters

As indicated before, p1, p2,...,p5 are adopted to assign weights to different seat 
and aisle interferences. The literature adopting simulation models for boarding 
strategies mainly uses triangular distributions (Kelton, et al. 2009) to model the 
times for seat and aisle interferences. Van Landeghem and Beuselink (2002) use 
triangular distributions (3, 3.6, 4.2) and (1.8, 2.4, 3) seconds in their models for 
seat and aisle interferences respectively. Similar time parameters are used in the 
simulation study by Ferrari and Nagel (2004). We adopted the mean of these 
distributions to represent the penalties in this model. These distributions have a 
mean of 3.6 for seat interference and 2.4 for aisle interferences. Without loss of 
generality, we assign the same weight to seat (TSB and TSW) and same weight to 
aisle (AWL, AWS, ABG) interferences as follows:

p1 = p2 = 3.6

p3 = p4 = p5 = 2.4

In the between-groups aisle interference section, we assumed that for passengers 
in group k (k>1) boarding the aircraft, there is a fraction of passengers from the 
previous group (k-1) still in the jet-way trying to reach their seats. We called this 
fraction α (0≤α≤1). The two extreme cases, when α is 0 or 1 represent situations 
when there is 0% or 100% between group interferences, were discussed earlier. To 
identify the impact of α on boarding strategy, we considered various values for this 
parameter. We solved the above mathematical model for the following values of α:

{ }0,.1,.3,.5,.7,.9,1α ∈
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Airlines typically assign 4, 5, or 6 groups to board their passengers on a 
single-aisle aircraft (Van der Briel et al. 2005). To provide a better understanding 
of boarding strategy as the number of groups change, we solved our integer 
programming model with 4, 5, and 6 groups, that is:

G ∈ {4,5,6}

In our model, we set min_pax and max_pax, to allow a maximum of 20% 
fluctuations around the mean as follows:

min_ .8

max_ 1.2

Npax
G
Npax
G

 = ×  
 = ×  

where
[•] denotes the integer value of •. N represents the number of rows.

To evaluate the performance of the model, we applied it to an Airbus A-320 
aircraft with 26 rows. The first three rows (with 4 seats in each row) are assigned to 
first and business class passengers (group 1), who always board first. In our model 
we study all other passengers who are assigned to the other 23 rows (N=23), with 
six seats in each row, who must be allocated to different groups.

Computation and Implementation

Considering the range of possible parameters, we have 21 integer linear 
programming models (3 groups (G) and 7 values of α for each group). The 4, 5, 
and 6 group linear integer models have 414, 552 and 690 binary decision variables 
and 2,131, and 2,886, and 3,641 constraints respectively. These models were 
solved using a software.

Figure 12.4 presents a sample solution for 6 groups (G=6) based on different 
values of α. The solutions for different groups and their performances compared 
with other models are presented in Bazargan (2007). It is of interest to see how 
various values of α impact the boarding pattern. As the figure implies, the patterns 
shift from window-middle-aisle to back-to-front (BF) as α increases. Specifically, 
we see that for α≥.5 the pattern rapidly starts to converge to back-to-front strategy. 
This occurs when the time between boarding different groups of passengers is 
so short that each group lines up behind 50% of passengers from the previous 
group.

Table 12.2 presents the solution for the above 6-group boarding process (see 
Figure 12.4) and the number of seat and aisle interferences for different values of 
α.
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Figure 12.4	 Solution for boarding patterns based on 6 groups and different 
values of α

A B C D E F
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 4 5 6 6 5 4
5 4 5 6 6 5 4
6 4 5 6 6 5 4
7 4 5 6 6 5 4
8 3 4 6 6 4 3
9 3 4 6 6 4 3
10 3 4 6 6 4 3
11 3 4 6 6 4 3
12 3 4 6 6 4 3
13 2 4 6 6 4 2
14 2 4 6 6 4 2
15 2 4 6 6 4 2
16 2 4 6 6 4 2
17 2 4 5 5 4 2
18 2 3 5 5 3 2
19 2 3 5 5 3 2
20 2 3 5 5 3 2
21 2 3 5 5 3 2
22 2 3 5 5 3 2
23 2 3 5 5 3 2
24 2 3 5 5 3 2
25 2 3 5 5 3 2
26 2 3 5 5 3 2

A B C D E F
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 4 5 6 6 5 4
5 4 5 6 6 5 4
6 4 5 6 6 5 4
7 4 5 6 6 5 4
8 4 4 6 6 4 4
9 3 4 6 6 4 3
10 3 4 6 6 4 3
11 3 4 6 6 4 3
12 3 4 6 6 4 3
13 3 4 6 6 4 3
14 3 4 6 6 4 3
15 3 4 6 6 4 3
16 2 3 6 6 3 2
17 2 3 6 6 3 2
18 2 3 5 5 3 2
19 2 3 5 5 3 2
20 2 3 5 5 3 2
21 2 3 5 5 3 2
22 2 3 5 5 3 2
23 2 3 5 5 3 2
24 2 2 5 5 2 2
25 2 2 5 5 2 2
26 2 2 5 5 2 2

A B C D E F
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 6 6 6 6 6 6
5 6 6 6 6 6 6
6 6 6 6 6 6 6
7 6 6 6 6 6 6
8 5 6 6 6 6 5
9 5 5 6 6 5 5
10 5 5 5 5 5 5
11 5 5 5 5 5 5
12 4 5 5 5 5 4
13 4 5 5 5 5 4
14 4 4 5 5 4 4
15 4 4 4 4 4 4
16 4 4 4 4 4 4
17 3 4 4 4 4 3
18 3 3 4 4 3 3
19 3 3 4 4 3 3
20 3 3 3 3 3 3
21 2 3 3 3 3 2
22 2 3 3 3 3 2
23 2 2 3 3 2 2
24 2 2 2 2 2 2
25 2 2 2 2 2 2
26 2 2 2 2 2 2

A B C D E F
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 6 6 6 6 6 6
5 6 6 6 6 6 6
6 6 6 6 6 6 6
7 6 6 6 6 6 6
8 5 5 6 6 5 5
9 5 5 5 5 5 5
10 5 5 5 5 5 5
11 5 5 5 5 5 5
12 5 5 5 5 5 5
13 4 4 5 5 4 4
14 4 4 4 4 4 4
15 4 4 4 4 4 4
16 4 4 4 4 4 4
17 3 4 4 4 4 3
18 3 3 4 4 3 3
19 3 3 3 3 3 3
20 3 3 3 3 3 3
21 3 3 3 3 3 3
22 2 2 3 3 2 2
23 2 2 2 2 2 2
24 2 2 2 2 2 2
25 2 2 2 2 2 2
26 2 2 2 2 2 2

A B C D E F
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 6 6 6 6 6 6
5 6 6 6 6 6 6
6 6 6 6 6 6 6
7 6 6 6 6 6 6
8 5 5 6 6 5 5
9 5 5 5 5 5 5
10 5 5 5 5 5 5
11 5 5 5 5 5 5
12 5 5 5 5 5 5
13 4 4 4 4 4 4
14 4 4 4 4 4 4
15 4 4 4 4 4 4
16 4 4 4 4 4 4
17 3 4 4 4 4 3
18 3 3 3 3 3 3
19 3 3 3 3 3 3
20 3 3 3 3 3 3
21 3 3 3 3 3 3
22 2 2 3 3 2 2
23 2 2 2 2 2 2
24 2 2 2 2 2 2
25 2 2 2 2 2 2
26 2 2 2 2 2 2

A B C D E F
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 6 6 6 6 6 6
5 6 6 6 6 6 6
6 6 6 6 6 6 6
7 6 6 6 6 6 6
8 5 5 6 6 5 5
9 5 5 5 5 5 5
10 5 5 5 5 5 5
11 5 5 5 5 5 5
12 5 5 5 5 5 5
13 4 4 4 4 4 4
14 4 4 4 4 4 4
15 4 4 4 4 4 4
16 4 4 4 4 4 4
17 3 3 4 4 3 3
18 3 3 3 3 3 3
19 3 3 3 3 3 3
20 3 3 3 3 3 3
21 3 3 3 3 3 3
22 2 2 2 2 2 2
23 2 2 2 2 2 2
24 2 2 2 2 2 2
25 2 2 2 2 2 2
26 2 2 2 2 2 2

A B C D E F
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 6 6 6 6 6 6
5 6 6 6 6 6 6
6 6 6 6 6 6 6
7 6 6 6 6 6 6
8 5 5 5 5 5 5
9 5 5 5 5 5 5
10 5 5 5 5 5 5
11 5 5 5 5 5 5
12 5 5 5 5 5 5
13 4 4 4 4 4 4
14 4 4 4 4 4 4
15 4 4 4 4 4 4
16 4 4 4 4 4 4
17 3 3 3 3 3 3
18 3 3 3 3 3 3
19 3 3 3 3 3 3
20 3 3 3 3 3 3
21 3 3 3 3 3 3
22 2 2 2 2 2 2
23 2 2 2 2 2 2
24 2 2 2 2 2 2
25 2 2 2 2 2 2
26 2 2 2 2 2 2

 α = 0 α = 0.1 α = 0.3 α = 0.5 

α = 0.7 α = 0.9 α = 1 
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Simulation Model

In order to study and determine the values of α for different boarding times, a 
simulation model in Arena Simulation Modeling Software was developed (Kelton 
et al. 2009). The main focus of this simulation study was to identify the number 
of passengers from an earlier group who will be in front of a latter group, thus 
providing some guideline for realistic values of α.

The simulation model is similar to those reported by Van Landeghem and 
Beuselink (2002) and Ferrari and Nagel (2004). Similar aircraft load-factor and 
time distributions for aisle and seat interferences were adopted. The details of 

Table 12.2	 Seat, aisle and total interferences for solution to 6-groups 
boarding process

α Interference Solution Sum Solution

0

TSB 0 Total seat 
interferences 0

TSW 0

AWL 884
Total aisle 
interferences 953AWS 69

ABG 0

Obj. Function 2287.2 Total 
interferences 953

0.1

TSB 0 Total seat 
interferences 4

TSW 4

AWL 878
Total aisle 
interferences 1059.4AWS 85

ABG 96.4

Obj. Function 2556.96 Total 
interferences 1063.4

0.3

TSB 0 Total seat 
interferences 47

TSW 47

AWL 792
Total aisle 
interferences 1091AWS 257

ABG 42

Obj. Function 2787.6 Total 
interferences 1138
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these simulation models are not duplicated here and refer the interested readers to 
these papers.

We ran the simulation models with inter-arrival times of passengers for 
boarding changing from 3 seconds to 10 seconds or 20 to 6 passengers per minute. 
Our main task of measuring performance in this study was to identify the number 
of passengers at the door, when new passengers will line up behind them for 
different times between passengers boarding. Table 12.3 presents the result of the 
simulation model for 6 groups. The table shows the number of passengers at the 
aircraft door (#pax) for passenger inter-arrival times ranging from 3 to 10 seconds. 
The table also presents values of α based on the number of passengers at the door 
(#pax). On average, for an Airbus A-320 with 6 groups, there are 28 passengers 
per each economy group. Therefore α is determined by dividing #pax by 28.

For average passenger arrival times, Van den Briel et al (2005) considered 7 
seconds with 1 gate agent and 5 seconds with 2 gate agents (rounded to the nearest 
second) and Van Landeghem and Beuslinck (2002) considered 6–7 seconds in 
their simulation models. These times are based on actual observations of passenger 
boarding times at different airlines and at different airports. Using these inter-
arrival times and based on Table 12.3, the realistic values for α range from 0.3 
for 5 seconds to 0.1 for 7 seconds inter-arrival times. Therefore the solutions 
presented in Figure 12.4 for α taking values 0.1 and 0.3 seem to be appropriate for 
boarding strategies depending on 1 or 2 gate agents. These solutions indicate that 
back-to-front boarding strategy, as adopted by many airlines, is not necessarily an 
efficient process.

Conclusion

This chapter introduced an integer linear program to minimize the total number of 
passenger interferences, which causes delay in aircraft boarding. The operational 
and side constraints for this mathematical model were examined. The model was 
applied to an Airbus A-320 aircraft which is commonly used by many airlines. 
Alternative efficient solutions were generated, based on the speed of boarding 
the passengers. A simulation model was adopted to identify appropriate boarding 
patterns as the speed of boarding the passengers changes.

Table 12.3	 Expected number of passengers and values of α for boarding 
based on varying inter-arrival times

Time between arrivals (sec) 3 4 5 6 7 8 9 10

6 groups
# Pax 25.9 15.8 9 5.7 3.2 0 0 0

α 0.9 0.6 0.3 0.2 0.1 0.0 0.0 0.0
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Chapter 13 

Computational Complexity, Heuristics, and 
Software

Introduction

The case studies and examples presented in the previous chapters where integer 
linear programming models were adopted could be easily solved using optimization 
software. This was mainly due to a relatively small number of decision variables 
and/or constraints. The objective of the previous cases and examples was to 
introduce the development of mathematical models rather than solve the problems. 
We assumed that once the problem is formulated, we could use a software to 
obtain the optimal solution. Unfortunately, the problems that many airlines face 
involve millions or even billions of decision variables. These huge models cannot 
be solved using the standard software package. Consider the following example.

A cargo airline serves 30 cities within its network with a single fleet-type 
aircraft. Each route on average consists of 7 flights per day. Referring to Chapter 
5 (Aircraft Routing), in order to find the optimum solution we need to list all 
possible routes. The total number of possible routes will be determined by the 
following permutation formula:

( )
30!30 10,260,432,0007 30 7 !P = =
−

In Chapters 5 and 6 we imposed many restrictions to keep the number of 
decision variables small. Even for the small Ultimate Air case we had more than 
6,000 decision variables for aircraft routing for the 737-800 fleet!

Now compare and contrast our small size Ultimate Air case study with Table 
13.1 representing actual crew, equipment sizes, and daily number of flights for a 
select number of airlines.

Complexity Theory

Since the emergence of real-world problems and their solution methodologies, 
there has been a constant need to classify and compare them on the basis of the 
computational tractability. Specifically, we are interested in knowing how the 
computational times increase as the size of the problem grows. As an example, if 
it takes 5 seconds to solve a linear program with 100 variables and 50 constraints 
using a specific software package, how long would it take to solve a similar model 
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with 1,000 variables and 500 constraints on the same computer and using the 
same software? Will it take ten times as much time to solve the problem or more? 
We should note that the computational times are very dependent on the computer 
processor and programming language adopted.

Therefore, instead of making computational time dependent on the computer, 
we would like to use other algorithms that present a general overview of the 
complexity of the problem, as the size of the problem grows. Researchers in the 
past have focused on number of steps. That is, for a given algorithm how the 
number of steps to solve a problem increases as the size of the problem increases. 
Consider the following example adapted from Winston and Venkataramanan 
(2003). Assume that you have a sequence of n numbers to sort from smallest to 
largest. One method (algorithm) for sorting is by comparing two neighboring 
numbers. If they are in the wrong order, they are reordered small to large. This 
process is repeated until all the numbers are in sequence. This method is called 
bubble sort. The best scenario is that all the numbers are already in the right order 
(of course, we do not know this in advance!). In this case after n comparisons 
(steps) the algorithm tells us that the numbers are in order. In the worst possible 
scenario (again not knowing in advance), where all numbers are sorted from 
largest to smallest, we have to repeat this comparison n2 times since every number 
is in the wrong order. We are normally interested in the worst-case scenario since 
it will serve as the upper bound for the number of steps to generate the solution. 
According to this example the bubble sort has a complexity of order of n2. It is 
shown as O(n2 ) where O stands for the order of time. According to this complexity, 
if the size of the problem (in this example the numbers to be sorted) is doubled 
then the number of steps (comparisons) is bounded by four times the number of 
steps of the original problem. This order of complexity provides some guidelines 
on how the computational complexity will increase for large-scale problems, as 
compared with lower-scale ones.

Table 13.1	 Network and crew size for select airlines

Airline
Daily 
flights Pilots1 Destinations

Number of 
aircraft in service

American Airlines 3,400 8,306 250 646

Continental 
Airlines 2,663 4,578 265 357

Delta /Northwest 5,940 10,736 567 765

Southwest 3,300 5,588 67 533

United Airlines 3,300 6,366 200 444

US Airways 3,096 4,234 210 358

Source: Form41 iNet and Airline Pilot Central1
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During the 1970s, many researchers in computer science and operations 
research studied various algorithms in terms of their computational complexity 
(Daskin 1995). They classified the algorithms based on their computation 
tractability into two groups, polynomial (P) and non-deterministic polynomial (NP) 
time algorithms. For polynomial time algorithms, the solution times are bounded 
by a polynomial order. As an example, our bubble sort algorithm is classified 
as a polynomial time of order of n2. Polynomial time algorithms are typically 
considered ‘good’. This is because these algorithms can solve large instances of 
the problem in reasonable steps and time. For non-deterministic polynomial (NP) 
time algorithms on the other hand, as the name implies, the number of steps to 
solve the problem grows exponentially with the problem size. As an example, 
consider that an algorithm is classified as non-deterministic polynomial O(2n) 
order. If the problem size doubles, then the steps (times) that it takes to solve this 
problem will be the number of steps for the original problem to power two or  
O(22n) = O(2n)2. These algorithms are considered ‘bad’ in the sense that as 
the problem size increases, the computational times grows very large. Many 
algorithms that are adopted to solve the combinatorial-type problems such as the 
traveling salesman (see Chapter 2) have an order of complexity of O(n!). These 
problems represent the most challenging in terms of computational complexity. 
As the order of time implies, in these algorithms the computational complexity 
grows exponentially with the size of the problem. For more technical details on 
polynomial and non-polynomial time algorithms, the interested reader is referred 
to the list of books referenced in this chapter.

Unfortunately the algorithms and methodologies that are adopted to solve 
integer linear programming models discussed in the previous chapters all belong 
to this class of NP. For this reason, it is almost impossible for the airlines cited in 
Table 13.1 to get the optimal solutions for their crew scheduling or aircraft routing 
in a reasonable computational time.

Note that the computational complexity lies with the solution algorithms, that 
is, the way the problems are solved, and not the mathematical models or the way 
they have been formulated.

Heuristic Procedures

Not being able to obtain the optimum solutions in a timely fashion for NP type 
algorithms  prompted the researchers to develop other alternatives. These alternative 
solution methods are generally classified as heuristic methods. Heuristic methods 
are techniques that do not guarantee or promise the optimum solutions but attempt 
to provide a ‘good’ and sometimes ‘near optimum’ solution in a minimal amount 
of time.

There are many technical papers in the operations research literature that 
describe different heuristics and their applications to the airline industry. These 
heuristics and their technical descriptions are, however, beyond the scope of 
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this book and we refer interested readers to the papers referenced in previous 
chapters.

As for the airlines, they either develop their in-house customized heuristics 
to solve their mathematical models in their operations research departments or 
outsource the service.

Airline Information Technology (IT) Solutions

Airlines that do not develop their in-house customized software outsource their IT 
needs to Airline IT solutions providers such as Sabre, SITA, Lufthansa Systems, 
Jeppesen, and EDS. According to Lufthansa, the global market for airline IT was 
estimated to have a volume of $11.47 billion during 2008, and around 40% of this 
volume is outsourced to airline IT-solution providers. Some of the main software 
solutions offered by the airline IT companies are in the areas of crew scheduling, 
fleet operations, revenue management, ticket distribution, and aircraft maintenance 
as follows.

Crew Scheduling

Companies like Sabre, Jeppesen, Lufthansa Systems, and SITA offer crew 
scheduling softwares that are suitable for large airlines. Most solutions are provided 
on a modular basis and some are customized to integrate with the airlines in-house 
software. Some of the main features provided in crew scheduling solutions are 
planning, monitoring, pairing optimizer, and crew access. Planning modules help 
managers generate long-term crew requirements for up to two years; taking into 
account factors such as reserve needs, training, and vacation. Monitoring modules 
help managers with the daily operations and allow tracking of crew and flight 
operations on a real-time operational basis. Input to generate the crew roster is 
obtained from the crew through the crew access module. The crew access module 
also gives crew the ability to directly access their roster through the internet and 
swap or trade duty shifts. The input from the crew is then optimized using the 
crew pairing optimizer taking into consideration the flight schedule, cost, and 
crew needs. Table 13.2 opposite provides a list of major crew-scheduling solutions 
providers and their website.

Flight Operations

Flight-operation solution contains a range of modules that assist from flight 
planning to daily tracking and managing of flight operations. Flight-operation 
solutions typically contain modules that assist with flight planning, flight dispatch, 
operations monitoring, fleet optimization, load planning, and critical decision 
support. Lufthansa’s NetLine/Plan Route Optimizer, for instance, allows managers 
to create the optimal flight routing based on simulation of new connections, 
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forecast passenger flows, costs, revenues, and identified strengths and weaknesses 
of the network. The optimized flight routing is then used to assign the available 
aircraft to achieve maximum overall profitability. Day-to-day operations and 
flight monitoring are achieved through the operations monitoring module. SITA’s 
FleetWatch, for instance, provides managers with pertinent information about 
current operations, maintenance events, and helps to evaluate problems and 
determine the most cost-effective solution. Critical-decision support tools are also 
provided and integrated with flight-operations solution to help plan for disruption 
events and create optimized recovery solutions.

Table 13.3, overleaf, provides a list of major flight-operation solution providers 
and their website.

Revenue Management

Revenue-management tools help airlines increase profitability though better yield 
and better price structure. The revenue-management solutions contain modules 
that help managers forecast demand, allocate seats, calculate optimal ticket price, 
distribute fares to Global Distribution System (GDS), monitor competitor price, 
manage over-bookings, and cancel multiple bookings. Revenue management 
tools utilize historical and current data to forecast booking activities and make 
informed revenue-management decisions. Revenue-management solutions have 
been continually evolving and one of the recent changes in revenue-management 
solution is the migration from leg-based revenue-management system to Passenger 
Name Record (PNR) based Origin and Destination (O&D) revenue-management 
system. PNR based O&D revenue management system allows managers to tap 

Table 13.2	 List of airline IT-solution providers offering crew scheduling 
solutions

Company Product Website

AOS Integrated Crew Planning System www.aos.us

Jeppesen Carmen Crew Management System www.jeppesen.com

Lufthansa 
Systems

NetLine/Crew www.lhsystems.com

Navitaire Geneva Operations Control & 
Management Suite

www.navitaire.com

Ortec Integrated aircraft and Crew planning www.ortec.com

Sabre AirCentre Crew www.
sabreairlinesolutions.
com

SITA CrewWatch www.sita.aero
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into a vast amount of information, develop better forecasts and have a better 
insight into true traffic flow within the network. Table 13.4 provides a list of major 
revenue-management solution providers and their websites.

Ticket Distribution

Distribution and ticket sales is another area where airline solution providers play a 
major role. Owing to the rapid growth of the internet, airlines have begun phasing 
out travel agents and have led to the growth of computer reservation systems (CRS) 
and global distribution systems (GDS). Airlines employ ticket-distribution modules 
to seamlessly transfer fares from their system to the GDS. Table 13.5 provides a 

Table 13.3	 List of major flight-operation solution-providers

Company Product Website

Jeppesen Carmen Integrated Operations 
Control

www.jeppesen.com

Lufthansa 
Systems

Integated Operations Control 
Center

www.lhsystems.com

Navitaire Geneva Operations Control & 
Management Suite

www.navitaire.com

Ortec Integrated aircraft and Crew 
planning

www.ortec.com

Sabre AirCentre Flight www.sabreairlinesolutions.com

SITA FleetWatch, FleetPlan, Flight 
Planning

www.sita.aero

Table 13.4	 List of major revenue-management solution-providers

Company Product Website

Amadeus Altéa Revenue Management www.amadeus.com

Lufthansa 
Systems

ProfitLine www.lhsystems.com

Navitaire RMS Host Revenue Management 
System

www.navitaire.com

PROS PROS O&B, PROS NPRS www.prospricing.com

Sabre AirMax Suite www.sabreairlinesolutions.com

SITA Airfare Price www.sita.aero
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list of ticket-distribution solution providers. Ticket-distribution solutions providers 
sell solutions that include booking engines, business process management, channel 
distribution, customer relationship management, reservations, customer data, and 
analysis and ticketing. These systems work together to maximize revenue through 
maximum distribution of tickets through all available channels.

Supplementary Airline IT Solutions

In addition to the above solutions, airline IT providers develop other IT solutions 
to improve efficiency and effectiveness in areas such as maintenance, repair and 
overhaul, air-cargo handling, administration, finance, flight navigation, flight 
planning, gate assignment, aircraft load management, ground handling integration, 
check-in systems, and so on. For more information please refer to the IT solution 
provider websites listed above.
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Chapter 14 

Start-up Airline Case Study

Introduction

It was explained in Chapter 1 that this book is the result of developing a course 
on airline operation and scheduling. The following case is a real-world case study 
referred to our class by an entrepreneur to determine the viability of operations so 
that a business plan can be developed.

A start-up airline plans to operate a fleet of amphibian (capable of landing 
both on ground and water) aircraft which would be used to fly leisure passengers 
between the United States and the Caribbean. The aircraft is the Russian-made 
Beriev Be-200. It has a capacity of 72 passengers, requires 2 pilots and 2 service 
personnel, and has a range of 1,200 miles.

The airline plans to start up its operations initially with 4 amphibian aircraft. 
The proposed flight network for this airline is presented in Figure 14.1. According 
to this figure the airline flies to 11 cities as presented in Table 14.1.

The requirements for this airline are as follows:

Only use four airplanes.
An average load-factor of 65% should be assumed for all flights.
Each aircraft can be utilized for at most 16 hours per day.
Aircraft turn-around time is 43 minutes for all flights.
At the end of each operation day, the aircraft are to be parked in Miami or 
Nassau for maintenance.

Table 14.2 provides information on the airline’s network routes as follows:

Columns 1 and 2 represent the sequence and the proposed routes.
Columns 3 and 4 show the distance (miles) and flight blocks (minutes) 
between city pairs.
Column 5 shows the total time. This time is obtained by adding the flight 
block + aircraft turn-around time (43 minutes).
Column 6 presents the frequency of flights between city pairs. These 
frequencies are determined by daily forecasted demand and the required 
load factor as explained in Chapter 3.
Columns 7 and 8 show average one-way fare and total expected revenue on 
each flight. Column 8 is calculated by multiplying column 7 × 72 (aircraft 
capacity) × .65 (load factor).

•
•
•
•
•

•
•

•

•

•



Airline Operations and Scheduling214

Table 14.1	 List of airports and their codes for case study

Airport Code

Atlanta International Airport ATL

Nassau International Airport NAS

Orlando International Airport MCO

Tampa International Airport TPA

Palm Beach International Airport PBI

Fort Lauderdale/Hollywood International Airport FLL

Miami International Airport MIA

Key West International Airport EYW

Providenciales International Airport PLS

Norman Manley International Airport KIN

Claremore Regional Airport GCM

Figure 14.1	 Flight network for the start-up airline
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The airline realizes that it cannot fly all the flight frequencies in Table 14.2 
with its four aircraft in its initial operations. The objective of this case is then to 
identify and determine valid daily routes for four aircraft so that the total revenue 
generated through these flights is maximized. Note that in this case we do not have 
the complete flight schedule (arrival and departure times) as we do not know which 
flights will be selected, and which frequency they will have. Once these flights are 
identified, appropriate departure and arrival times will be assigned to them.

Table 14.2	 Proposed routes and their frequencies

Sequence Route Distance 
(miles)

Block 
time 

(mins)

Total 
time 

(mins)

Daily 
flights

Average 
fare

Revenue 
per flight

1 ATL-NAS 725 159 202 2 $436 $20,561

2 MCO-NAS 333 87 130 2 $217 $10,233

3 TPA-NAS 373 95 138 1 $186 $8,771

4 PBI-NAS 199 63 106 1 $121 $5,706

5 FLL-NAS 182 60 108 4 $154 $7,262

6 MIA-NAS 183 60 103 7 $149 $7,026

7 MIA-EYW 109 35 78 1 $222 $10,469

8 MIA-PLS 578 122 165 1 $348 $16,411

9 MIA-KIN 585 123 166 3 $342 $16,128

10 MIA-GCM 452 112 155 2 $236 $11,129

11 NAS-ATL 725 159 202 1 $416 $19,618

12 NAS-MCO 333 87 130 2 $218 $10,280

13 NAS-TPA 373 95 138 1 $169 $7,970

14 NAS-PBI 199 63 106 1 $111 $5,234

15 NAS-FLL 182 60 108 6 $167 $7,875

16 NAS-MIA 183 60 103 12 $153 $7,215

17 NAS-PLS 400 98 141 1 $328 $15,468

18 EYW-MIA 109 35 78 1 $214 $10,092

19 EYW-GCM 363 92 135 1 $369 $17,402

20 PLS-MIA 578 122 165 1 $329 $15,515

21 PLS-NAS 400 98 141 1 $309 $14,572

22 KIN-MIA 585 123 166 5 $367 $17,307

23 GCM-MIA 452 112 155 2 $229 $10,799

24 GCM-EYW 363 92 135 0 $339 $15,987
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Solution Approach

A modified set-partitioning approach (Chapter 2) with side constraint as discussed 
in Chapters 5 and 6 is adopted to determine the efficient aircraft routings. The 
following binary decision variable is used to formulate the problem.

1 if route  is selected
0 otherwise

iRi




=

By route we mean complete daily aircraft routing. A route-generator program 
(similar to the one in Chapter 5) was developed to generate daily routes with the 
following characteristics:

maximum daily aircraft utilization of 16 hours (16* 60=960 minutes);
an overnight stay in Miami or Nassau for maintenance checks;
since all aircraft stay overnight at Miami or Nassau, they should start and 
end their daily routings from these two locations.

The program not only generates valid routes but also determines its total flight 
times and revenue generated over all flights in that route. This program generated 
more than 1,200 routes. Table 14.3 presents three sample valid routes.

Objective Function

In the proposed set-partition model, the routes are represented as rows, and 
columns are the daily flights. The mathematical model attempts to maximize the 
total revenue subject to flight cover and number of available aircraft. The objective 
function (considering the above routes to be R1, R2 and R3) is as follows:

 69462 74839 87241 ...1 2 3Maximize R R R+ + +

There are two sets of constraints in this problem: flight frequency and aircraft 
availability.

•
•
•

Table 14.3	 Three sample routes

Route 
#

Routing Total time 
(min)

Revenue

R1 NAS-PLS-NAS-MIA-NAS-PBI-NAS-MIA-
NAS

906 $69,462

R2 MIA-EYW-GCM-MIA-NAS-MIA-GCM-MIA 884 $74,839

R3 MIA-EYW-MIA-NAS-MCO-NAS-MIA-PLS-
MIA

952 $87,241
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Flight Frequency Cover

The frequency for each flight must not exceed the daily required frequency of flights 
(see Table 14.2). As an example we should have at most seven daily flights between 
MIA and NAS. By looking at the above three sample routes we see MIA-NAS is 
repeated twice in R1, once in R2 and once in R3. To automate the search for flights, a 
simple program can identify how many times each flight is repeated in each route. 
When we have all the frequencies on each route then we can write the constraint for 
that flight leg. As an example, to address the frequency on MIA-NAS we write:

2 ... 71 2 3R R R+ + + ≤

In general if a flight leg has fi frequency, then the constraint to cover at most N 
of these frequencies is as follows:

f R Ni ii
≤∑

where:
fi	 = the number of times that the specific flight leg is repeated in route i and
Ri 	 = the ith route as explained above.

Aircraft Availability

We have a total of four aircraft. Therefore the total number of routes assigned to 
these aircraft must equal four. Therefore:

...... 41 2 3R R R+ + + =

Solution

We used an optimization software to solve this problem. The solution for this problem 
with four aircraft is presented in Table 14.4. The total daily revenue is $336,706.

Table 14.4	 Solution for the case

Aircraft Routing Total flight 
time (mins)

Daily 
revenue

1 NAS-MCO-NAS-ATL-NAS-TPA-NAS 940 $77,433

2 MIA-KIN-MIA-PLS-NAS-FLL-NAS-MIA 957 $86,770

3 NAS-MIA-GCM-EYW-GCM-MIA-EYW-
MIA-NAS

942 $90,119

4 MIA-NAS-PBI-NAS-PLS-MIA-KIN-MIA 953 $82,384
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Table 14.5	 Flight schedule and aircraft routing for the case study

Aircraft no. Flight-leg Flight no. Route Departure 
time

Arrival time Block time

1 1 172 NAS-MCO 7:00 AM 8:27 AM 1:27

1 2 127 MCO-NAS 9:10 AM 10:37 AM 1:27

1 3 171 NAS-ATL 11:20 AM 1:59 PM 2:39

1 4 117 ATL-NAS 2:42 PM 5:21 PM 2:39

1 5 173 NAS-TPA 6:04 PM 7:39 PM 1:35

1 6 137 TPA-NAS 8:22 PM 9:57 PM 1:35

2 1 2610 MIA-KIN 7:00 AM 9:03 AM 2:03

2 2 2106 KIN-MIA 9:46 AM 11:49 AM 2:03

2 3 269 MIA-PLS 12:32 PM 2:34 PM 2:02

2 4 297 PLS-NAS 3:17 PM 4:55 PM 1:38

2 5 275 NAS-FLL 5:38 PM 6:38 PM 1:00

2 6 257 FLL-NAS 7:21 PM 8:21 PM 1:00

2 7 276 NAS-MIA 9:04 PM 10:04 PM 1:00

3 1 376 NAS-MIA 8:00 AM 9:00 AM 1:00

3 2 3611 MIA-GCM 9:43 AM 11:35 AM 1:52

3 3 3118 GCM-EYW 12:18 PM 1:50 PM 1:32

3 4 3811 EYW-GCM 2:33 PM 4:05 PM 1:32

3 5 3116 GCM-MIA 4:48 PM 6:40 PM 1:52

3 6 368 MIA-EYW 7:23 PM 7:58 PM 0:35

3 7 386 EYW-MIA 8:41 PM 9:16 PM 0:35

3 8 367 MIA-NAS 9:59 PM 10:59 PM 1:00

4 1 467 MIA-NAS 8:00 AM 9:00 AM 1:00

4 2 474 NAS-PBI 9:43 AM 10:46 AM 1:03

4 3 447 PBI-NAS 11:29 AM 12:32 PM 1:03

4 4 479 NAS-PLS 1:15 PM 2:53 PM 1:38

4 5 496 PLS-MIA 3:36 PM 5:38 PM 2:02

4 6 4610 MIA-KIN 6:21 PM 8:24 PM 2:03

4 7 4106 KIN-MIA 9:07 PM 11:10 PM 2:03

Table 14.5 presents the complete schedule with departure and arrival times 
incorporating turn-around times derived from the above solution.

Figures 14.2 and 14.3 show the time-space network at each airport and 
frequency of flights between city pairs respectively.



Figure 14.2	 Arrival/departure of flights at each airport



Figure 14.3	 Airline’s network and aircraft routing



Chapter 15 

Manpower Maintenance Planning

Introduction

Manufacturing, transport, financial, health, and distribution systems are frequently 
in need of an upgrade or improvement. How would the upgraded or improved 
system perform? What are the unforeseen problems that could occur in the new 
system? Would the performance of the projected improvement justify the expense? 
What resources should be purchased and how should they be used, so that the new 
system would generate the expected benefits?

We can answer the above questions and study the performance of the 
organization under the new regime, in advance, through simulation modeling 
without actually investing in the new changes.

Simulation Modeling

Simulation modeling is a process by which the basic features of a system are 
analyzed and simulated by the computer. The simulation model is then used to view 
the ways in which the new system would operate, typically through animations. It 
is possible to experiment with simulation models to see what might happen under 
various conditions the new system might operate.

Simulation study is proving to be an integrated part and an alternative way to 
mathematical modeling, where the governing parameters are very complex and 
dynamic. It allows the user to perform what-if analysis under different scenarios.

This chapter and Chapters 16–18 present simulation case studies for airlines 
and airports. The objective of these chapters is not to introduce the concept of 
simulation but to introduce how they can be utilized in planning for the aviation 
industry. For readers not familiar with simulation modeling, Law and Kelton 
(2000) and Kelton et al. (2003) provide comprehensive descriptions of simulation 
modeling and its application to various industries.

Simulation in Airlines

The AGIFOR’s website (www.AGIFORS.org) and Winter Simulation Conferences 
website (www.wintersim.org) show that a growing number of airlines are adopting 
simulation study as an important tool for their planning process. Simulation has 
been applied to manpower planning, fleet assignment, gate assignment, flight 
scheduling, traffic flow, and so on. Simulation modeling is becoming much more 
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popular as the software used for these models are becoming easier to use, and more 
powerful. The recent integration of meta-heuristics in this simulation software has 
enabled them to optimize the parameters within the models. This feature is another 
important factor for the growing popularity of simulation software.

The case study in this chapter relates to manpower planning for maintenance 
at Continental Airlines (Bazargan et al. 2003). For maintenance capacity planning, 
simulation provides the capability of changing many variables simultaneously.

Manpower Planning for Continental Airlines

This case study describes the development of an aircraft line-maintenance 
simulation model for Continental Airlines to be used at their hub in Newark airport 
(EWR). The simulation model is developed to support the management of the 
line-maintenance department in solving various capacity-planning issues related 
to manpower requirement and scheduling.

Line maintenance (commonly referred to as short routine maintenance) includes 
the regular short-haul inspection of aircraft between their arrival and departure.

Line maintenance is driven by the flight schedule. Once the flight schedule is 
finalized, a maintenance schedule is assigned to each maintenance station. The 
maintenance schedule takes into consideration the fleet/equipment type flying to 
that station, type of maintenance programs to be carried out, the capabilities of the 
specific station, task standards for each of these maintenance programs, aircraft 
ground time availability, and other resources such as tooling, hangar, weather, and 
events that would conflict with one another.

Aircraft maintenance is a major cost component for the airlines. The following 
table presents maintenance cost as a percentage of their total operating cost for 
select US airlines.

Table 15.1	 Percentage of maintenance expense in total operating expense 
for select US airlines

Airline Maintenance expense/total operating expense

American 8.49%

Continental 6.52%

Delta 5.02%

Frontier 6.66%

JetBlue 6.76%

Southwest 9.80%

United 8.30%

US Airways 7.90%

Source: OAG Form41 iNET
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A major challenge for maintenance stations is the availability of mechanics at 
different times of the day. The stochastic nature of aircraft failure and the time it 
takes to rectify the failures make manpower planning a challenge for maintenance 
stations. Labor on average represents 13% of maintenance cost. The following 
table represents the percentage of labor cost in total maintenance cost:

Mathematical modeling techniques have been used for maintenance planning, 
and are sometimes integrated with other scheduling models. Dijkstra et al. (1991), 
Clarke et al. (1996), Hane et al. (1995), Rushmeier and Kontogiorgis (1997), 
Barnhart et al. (1998), Talluri (1998), Sachon, Pate-Cornell (2000), Sarac (2006), 
Sandu (2007) and Kozanidis (2009), are some of the researchers who have 
developed mathematical modeling for aircraft-maintenance planning. In most of 
these mathematical models, maintenance requirements are included as constraints 
in the problem formulation than as the primary goal of the study.

Over the past few years it has become apparent that better decision-support 
tools, such as simulation modeling, are needed in the maintenance department. 
Duffuaa and Andijani (1999) consider that the application of computer simulation to 
maintenance functions provides a better and more viable alternative to mathematical 
modeling and analysis. This is due to the difficulty of the mathematical models in 
capturing the complexities of maintenance operations, uncertainty of parameters 
in arrivals, sequencing, job contents, and availability of resources.

Simulation studies applied to airline maintenance operations and planning dates 
back to 1961 (see, for example, Defosse and Bindler 1961, or Stanhel 1961) who 
applied Monte Carlo simulation models to study engine rates and costs. Other 
simulation approaches include manpower planning (Kamiko 1978, Bazargan 2003, 
Bazargan 2005), engine maintenance and overhaul (Getland et al. 1997, Duffuaa 

Table 15.2	 Percentage of labor expense in total maintenance expense for 
select US airlines

Airline  Labor maintenance expense/total maintenance expense

American 14.09%

Continental 13.31%

Delta 11.47%

Frontier 17.36%

JetBlue 12.48%

Southwest 8.74%

United 8.66%

US Airways 19.43%

Source: Form41 iNET
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and Andijani 1999, Painter et al. 2006). Agifors.org and wintersim.org provide more 
application areas of simulation to maintenance planning and operations. These studies 
indicate that the application of computer simulation to maintenance functions provides 
a better and more viable alternative to mathematical modeling and analysis.

Line Maintenance Department

This simulation study aims at duplicating the maintenance operations for 
Continental Airlines at their major maintenance station at Newark (EWR). 
AutoMod Simulation Software (Banks 2000) has been used as the developmental 
platform for the study. The focus of this study is to analyze and recommend 
efficient manpower-staffing models.

Continental Airlines, based in Houston, Texas, is the seventh largest airline in 
the United States in term of revenue passengers carried during 2008. Continental 
Airlines serves over 260 domestic and international destinations from its Newark, 
Houston Cleveland, and Guam hubs with a total of 2,663 daily departures.

Equipment/Fleet Type

The aircraft equipment/fleet types operating through Newark, at the time of this 
study, are presented in Figure 15.1. The abbreviated three-letter number coding 
system represents the respective aircraft type under each size/range classification 
(e.g., the 733 under narrow-body is a Boeing 737-300, while the 735 represents a 
Boeing 737-500, etc.).

Maintenance Schedules: Line maintenance includes the regular short-haul 
inspections of aircraft between the arrival and the consecutive departure from the 
airport. An aircraft flying into a station can be classified as a through, day hold or 
remains overnight flight.

Through Flight: In a through flight, the aircraft would be in transit through the 
station with minimal ground time. Every through flight goes through a departure 
check while it is on the ground. The total number of narrow-body, mid-body 
(domestic), mid-body (International), and wide-body aircraft flying into Newark 
is presented in Table 15.3. Figure 15.2 shows the workload of through flights on a 
typical day at the time of the study.

Day Hold: In day hold, the aircraft is scheduled for one of the routine checks, 
held during the daytime, before its subsequent departure.

Remains Overnight (RON): In remains overnight, the aircraft remains overnight 
for one of the routine checks before its subsequent departure.

Maintenance Programs

The maintenance program that an aircraft goes through is as follows:
Service Check (SVC): A walk-around service and systems check applicable to 

all fleets, generally done on an overnight basis. Wide-body aircraft get this check 
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Figure 15.1	 Equipment type

Equipment
Type

Narrow
Body
(NB)

Mid Body
International

(M/B-Int'l)

Mid Body
Domestic

(M/B-Dom)

Wide Body
(W/B)

733,735,
738,73G,
73W,7W5,
M80,M81,

M8L

757, 75L 762,  75B 764, 777

Table 15.3	 Number of through flights in a day

Equipment type Number of through flights in a day

Narrow body 145

Mid body – domestic 15

Mid body – international 16

Wide body 7

Figure 15.2	 Through flights on a typical day
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done on day hold as well as on remains overnight. If an aircraft remains overnight at 
a station with sufficient ground time, a service check will be performed, regardless 
of the number of days it has been since its last service check. If a higher-level 
check has instead been performed, it supersedes or signs-off the service check.

Level 3 Service Check (SC3): Level 3 service check is a more in-depth service 
check applicable to all fleet types. This check is also done on an overnight basis. 
It generally takes between 8 to 10 hours to complete this check for a narrow-body 
aircraft and 12 or more hours for a wide-body aircraft. A level 3 service check is 
a higher level of check than a service check, so a service check is not performed 
if a SC3 check is due.

Line Package Visit (LPV): A scheduled check applicable to all narrow-body 
aircraft, generally done on an overnight basis. LPV requires 75 man-hours, and 
generally just one LPV is scheduled at the Newark maintenance station in a night. 
LPV are handled by the night-shift technicians.

Table 15.4 presents the daily demand for various checks for the different fleet 
type classifications.

Standard Maintenance Timings

Table 15.5 gives the standard man-hours (M/H), ground time (in hours), and 
technician requirements for each maintenance program for day holds and remains 
overnights for all fleet types at Newark.

Tables 15.6 and 15.7 show the standard man-hours (M/H), ground time (hours), 
variability (+/-) and technician requirements for through flights for all fleet types 
at Newark.

Shift Schedule

There are three working shifts in 24-hour, day, swing (afternoon) and night shifts. 
Each shift is divided into sub-shifts. Table 15.8 projects the shift and sub-shifts 
schedules at Newark.

Table 15.4	 Total number of checks scheduled on each equipment type 
daily

Equipment type
Total number of checks

SVC SC3 LPV

Narrow body 35 7 1

Mid body – domestic 4 1 0

Mid body – international 5 1 0

Wide body 9 1 0
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Table 15.5	 Man-hours, ground-time, and technician requirements for day 
holds and remains overnights (RON)

Fleet type Ground time Number of technicians

N/B
<0.75 hrs 2

≥0.75 hrs 1

M/B-Dom
<0.75 hrs 2

≥0.75 hrs 1

M/B-Int’l
<1.5 hrs 3

≥1.5 hrs 2

W/B
<1.5 hrs 3

≥1.5 hrs 2

Table 15.6	 Service-check (SVC) man-hours, ground–time, and technician 
requirements for through flights

Fleet type
SVC

M/H Ground-time (hrs) +/- (hrs) Number of technicians

N/B 6 6 0.25 1

M/B-Dom 8 8 0.25 1

M/B-Intl 10 5 0.25 2

W/B 25 6.25 0.25 4

Table 15.7	 Level 3 Service-check (SC3) man-hours, ground–time, and 
technician requirements for through flights

Fleet type
SC3

M/H Ground-time (hrs) +/- (hrs) Number of technicians

N/B 16 8 0.25 2

M/B-Dom 18 9 0.25 2

M/B-Intl 30 7.5 0.25 4

W/B 75 18.75 0.5 4
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Manpower Challenge

The challenge faced by the maintenance department was determining the number 
of technicians required and their shift schedules based on the flight schedule and 
the maintenance programs to be carried out.

Continental Airlines was using basic quantitative models to compute the shift 
schedules, but these models were incapable of capturing the peaks and troughs in 
the arrivals and departures of flights.

A simulation approach therefore seemed promising in capturing the complexity 
of operations at the maintenance department.

Assumptions of the Simulation Model

The proposed simulation model incorporated the following assumptions:

The daily flight schedule at Newark was used for the arrival process.
There are three technician pools – day, swing ,and night shifts, each divided 
into several sub-shifts.
The model extracts the technicians from a requisite pool whenever there is 
a requirement.
A technician already assigned to a job cannot be utilized for another job 
until he/she finishes the job which he/she began.
A technician becomes available to work on a new job immediately after 
finishing a previous job.

•
•

•

•

•

Table 15.8	 Shift and sub-shift schedules at Newark

Shifts Sub-shifts Start time End time

Day

1 05:30 14:00

2 06:00 14:30

3 06:00 16:30

4 11:00 21:30

Swing

1 13:00 21:30

2 13:30 22:00

3 14:00 22:30

4 14:30 23:00

Night 1 20:30 07:00

2 21:30 08:00
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Every technician is qualified to work on any job. There is no distinction 
between the technicians who works on through flights and routine checks 
(i.e., day holds and remains overnights).

Process Logic

The flowchart in Figure 15.3 presents a sample logic behind the development of 
the simulation model for through flights.

Analysis (Base Scenario)

In the base scenario, the focus was to developing a simulation model representing 
the existing maintenance practices. The validity of the results of the simulation 
model was confirmed through meetings with the airline personnel and feedback 
received from the maintenance department. The following are the results of the 
existing practices at the time of the study, which is referred to as base scenario 
in this case study. AutoStat analysis tool (Banks 2000) was used to derive the 
various performance measures for the system. The model simulates an entire day 
of operations. Multiple replications were made for each scenario to increase the 
reliability of the output.

•

Figure 15.3	 Maintenance cycle for through flights (narrow body, mid-body 
domestic, mid-body international and wide-body aircraft)
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The airline was interested in identifying three performance measures for 
maintenance technicians, namely number of aircraft serviced, utilization, and 
unfinished jobs. The following section describes these performance measures 
under the base and proposed scenarios.

Total Technician Requirement

Figure 15.4 presents the output of the simulation model for the total technician 
requirement during each sub-shift of the base scenario. As the figure suggests, 
there is more demand for technicians during the night shift than during the day 
and swing shifts.

Total Number of Aircraft Serviced by each Technician

Table 15.9 summarizes the average workload in terms of number of aircraft 
serviced by a technician in each shift.

The number of aircraft serviced by day and swing shift technicians increases 
with the major workload of through flights during the day and swing shifts, as 
through flights require less time to service. However, the major workload during 
the night shift consists of routine checks that require comparatively more ground 
time to complete, thus decreasing the total number of aircraft serviced by night-
shift technicians.

Utilization of Technicians

The utilization of each technician is calculated by adding the total amount of time 
a technician works on each job divided by the total shift time (calculated as a 
percentage). A technician working near his/her maximum capacity represents a 

Figure 15.4	 Total technician requirements for each sub-shift in a day
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bottleneck, and a technician with a low percentage of utilization is considered 
underutilized. Figure 15.5 summarizes the average percentage utilization of 
technicians in each shift. The day-shift technician utilization is comparatively 
less than the other shifts. This can be attributed to the nature of the workload 
for through flights, experienced by day-shift technicians. The policy requiring a 
technician to be available to greet an aircraft upon arrival generates underutilized 
technicians. In reality, these utilization percentages are higher as the technicians 
can also be utilized elsewhere as needed to work on other unscheduled jobs. The 
introduction of part-time technicians could improve the utilization of day-shift 
technicians.

Number of Technicians with Unfinished Jobs

A technician will only take up a job if it arrives between his/her shift start and 
end-times. If a technician is still busy on a job after the shift end time, the job 
is transferred to a technician in the next shift. The management considers that 
a lower number of jobs transferred to the next shift will improve the spread of 
workload across all shifts. Thus, a required performance measure in evaluating the 

Table 15.9	 Average number of aircraft serviced by each technician in each 
shift

Shift Average workload for a technician

Day 2.5 aircraft

Swing 3.5 aircraft

Night 1.7 aircraft

Figure 15.5	 Average percentage utilization of technicians in a day
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efficiency of the existing shift schedule was to determine the number of unfinished 
jobs in each shift.

The total number of technicians with unfinished jobs after their shift end-times 
for each shift is shown in Table 15.10. The number of technicians with unfinished 
jobs for all other shifts is zero. As it can be observed, the later swing shift and 
especially the night shifts need to be better scheduled for a more uniform spread 
of workload.

Sensitivity Analysis

Various analyses and changes were made to the model in order to answer questions 
raised by the airline on how the system would perform under different scenarios. 
These scenarios included changes to daily flight schedules, the number of 
technicians, the start/end of sub-shifts, and so on. Reports detailing the impact of 
such changes to the operation of line maintenance were submitted to the airline. 
In this section, a proposed schedule is presented that improves the performance 
measures.

An interesting feature of recent simulation software is optimization. Through 
this feature, the model makes changes to a set of parameters within specified 
boundaries in an effort to optimize some objective function. The optimization 
algorithm of the AutoMod simulation software automates the process of changing 
the necessary parameters. It uses meta-heuristics (Banks 2000) to determine the 
optimum set of parameters.

In this study we adopted the optimal scenario, to determine the start/end of 
sub-shifts. The optimal scenario corresponds to the situation in which the system 
uses its resources to achieve the highest point of efficiency. Here, the management 
was interested to see how the number of unfinished jobs (aircraft) carried from one 
shift to another could be reduced.

Optimal Shift Schedule

Our study showed that the day, swing and night-shift schedules (starting/ending 
times) have a major impact on the spread of workload and carrying unfinished jobs 
to another shift. The software was allowed to make changes to these schedules in 

Table 15.10	 Number of technicians with unfinished jobs at the end of each 
shift

Shift Number of technicians with unfinished jobs

Swing shift 4 4

Night shift 1 8

Night shift 2 34
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an effort to minimize the unfinished jobs. Utilizing the optimization feature of the 
software generated the results in Table 15.11, which presents the best start/end 
time for each shift/sub-shift based on the optimization module of the software.

Figure 15.6 presents a comparison of the total number of technicians with 
unfinished jobs at their shift end-times for the base and the optimal scenarios.

Table 15.11	 Optimal shift schedule

Shifts Sub-shifts Start time End time

Day

Shift 1 05:30 14:00

Shift 2 06:00 14:30

Shift 3 08:00 16:30

Shift 4 11:00 19:30

Swing

Shift 1 13:00 21:30

Shift 2 13:30 22:00

Shift 3 14:00 22:30

Shift 4 15:00 23:30

Night Shift 1 22:00 06:30

Shift 2 24:00 08:30

Figure 15.6	 Total number of technicians with unfinished jobs in any shift
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As the figure shows, the optimal scenario offers a better spread of workload 
across the shifts by reducing the workload passed on to the next shift.

Conclusions

The simulation model captures the daily operations of the line maintenance 
facility at Newark. Various system parameters were evaluated, and their validity 
confirmed by comparison with the airline’s existing figures. Some of the benefits 
of this simulation study include:

Effective estimation of technician requirement on a sub-shift basis. The 
model results closely matched actual numbers.
Simulation analysis generated performance measures, like technician 
utilization and work overflow, which could not be estimated earlier.
Low utilization of technicians, which brings forth the idea of using part-
time technicians especially during the day shifts.
Optimization studies, which show that changing of the shift schedule can 
greatly enhance the efficiency of the existing system by spreading the 
workload more uniformly across shifts.
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Chapter 16 

Aircraft Tow-tugs

Introduction

As indicated in chapter 9, fuel cost is a major component of operating cost within 
the airlines. The increasing cost of crude oil and subsequently jet fuel continues to 
motivate airlines to seek more efficient ways of operations. One of these strategies 
relates to adopting and utilizing tow-tugs for aircraft ground-movements. This 
chapter presents an economic and operational feasibility study of using tow-tugs 
to move aircrafts at airports. Specifically, this simulation study pertains to using 
aircraft tow-tugs at AirTran Airways at their hub in Atlanta-Hartsfield Jackson 
International Airport (ATL). These vehicles were intended to tow aircraft to and 
from the airport terminals (concourses C and D) to the airline’s maintenance 
hangar, located about 3 miles from the terminals.

Background

AirTran Airways, a leading low-cost carrier operating in the United States, 
initiated this study to investigate potential cost reductions through saving jet fuel 
by purchasing and utilizing aircraft tow-tugs. The airline’s maintenance hangar 
is about 3 miles from C and D terminals at their hub in Atlanta International 
Airport (see Figure 16.3). At the time of this study in 2005, aircraft that remained 
overnight (RON) at ATL and were scheduled for maintenance taxied from these 
terminals to the maintenance hangar on their own power. The airline basically 
has two types of fleet: Boeing 717-200 and Boeing 737-700. Two mechanics are 
needed to taxi an aircraft within each fleet. The taxiing of the aircraft scheduled for 
maintenance at the hangar was typically performed between 6 p.m. and 4 a.m. the 
next day. Considering that some major airlines have been using aircraft tow-tugs, 
AirTran Airways was interested in identifying potential benefits from purchasing 
and utilizing them at their ATL hub. In particular:

Considering the high purchasing cost of the tow-tugs, is there any economic 
justification for purchasing them? If so, what is the payback period of the 
investment?
How many of these tow-tugs, if economically justified, are needed for the 
airline’s taxi operations at ATL?
What is the utilization rate for each tow-tug?

•

•

•
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Aircraft Tow-tugs

The tow-tug considered by AirTran (see Figure 16.1) is designed for narrow-body 
aircraft and is capable of towing both types of aircraft within the AirTran fleet. 
The attachment of the tow-tug to the aircraft is through two low-level arms. These 
arms when engaged secure the aircraft’s retractable nose gear from either side 
and raise it slightly off the ground. The aircraft is then moved using the tow-
tug’s power. Features typically built into the tow-tug include automatic aircraft 
pick-up sequence, jack-knifing prevention system, emergency aircraft release, and 
emergency steering system.

Simulation Model

Owing to the stochastic nature of arrival/departure times, taxi times, maintenance 
service times, and jet fuel prices, a simulation modeling approach to study the 
problem seemed to be appropriate. Chapter 15 presented the benefits of simulation 
modeling and its applications to airline industry.

Several visits to AirTran Atlanta hub were made to observe aircraft taxiing to 
and from the maintenance hangar. Two simulation models, current and proposed, 
were developed based on our visits using Arena Simulation Modeling (Rockwell 
Software).The first model, current scenario, is based on the current operations 
where aircraft taxi to and from the maintenance hangar on their own power 
using jet fuel. The second model, proposed scenario, is based on purchasing and 
utilizing tow-tugs to relocate the aircraft to and from the maintenance hangar. 
Figure 16.2 presents the basic logic for both models, and a description of each 
module follows.

Figure 16.1	 Narrow body tow-tug (Expediter 160 – FMC Technologies)
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Simulation Modules

Aircraft Arrival

The airline’s weekly flights schedule was used to generate the arrival and departure 
of aircraft to and from ATL airport. Stochastic variations based on past historical 
data were also incorporated into the arrival/departure times.

Taxi to Gate

The arriving aircraft are routed to the vacant gates. The stochastic taxi times to 
gate are determined based on historical data.

Gate Operations

The aircraft arriving at ATL are either through flights or remain overnight (RON). 
The remain-overnight (RON) aircraft stay at ATL until the next morning. The 
stochastic unloading, loading, and maintenance times are determined based on 
historical airline data for both through flight and remain-overnight aircraft.

Remain-Overnight Aircraft

Any aircraft that remain overnight will receive some type of maintenance service. 
The maintenance hangar has the capacity and space to accommodate six aircraft 
at any time. Accordingly, six aircraft that are scheduled for heavy maintenance are 
taxied to the hangar and the rest are serviced at the gates.

Figure 16.2	 Basic logic of the current and proposed models
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Relocate to Maintenance Hangar

This module routes the aircraft that have been identified for heavy maintenance 
from the gates to the maintenance hangar. The module will request resources 
(mechanics and tow-tugs if used) for such relocation. The stochastic times for 
such relocation with or without the tow-tugs are provided in the module based on 
historical data or tow-tug manufacturer’s specification. The tow-tug speed without 
aircraft being attached to it is 12–15 miles/hr and with the aircraft attached is 
10–12 miles/hr.

RON Maintenance Services

Each aircraft entering the hangar is assigned a maintenance program according 
to the historical frequency tables. The stochastic types and duration of each 
maintenance operation performed at the hangar on each aircraft are generated 
from the probability distributions within this module.

Relocate to Gates

When the maintenance program on the aircraft is finished at the maintenance 
hangar, it is ready to return to a gate at the terminal. The module checks for 
resources (mechanics, available gates, tow-tugs if used) and if all conditions are 
satisfied the aircraft is returned to a gate (not necessarily the same gate that the 
aircraft was moved from) according to a predefined probability distribution for the 
duration of this transfer.

Taxi to Runway and Depart

All the through-flight and remain-overnight flight that have completed their 
maintenance program enter this module according to their departure times.

Simulation Analyses

The key performance measures for the two simulation models included cost 
comparison, operations feasibility and tow-tug utilization. The simulation models 
were run for a week of airline operations. Each model was run with enough 
replications to reduce the half-width confidence intervals to 5% of the means.

Current Scenario

As explained earlier, this model pertains to aircraft taxiing on their own powers 
to/from the hangar. Figure 16.3 presents a rough layout of terminals C and D and 
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the maintenance hangar at ATL. The distance from these terminals to the hangar 
is about 3 miles.

 In order to determine the cost under the current scenario, we needed to 
identify the breakdown of each of the cost components involved. The primary cost 
components under the current scenario are jet fuel, labor, and overheads.

The simulation software enables users to utilize cost module while running the 
model. This module requires cost/minute of the aircraft operations during the taxi 
to and from the hangar. Historical logbook data on jet fuel and labor were analyzed 
to estimate the average cost of taxiing aircraft per minute as follows:

Jet fuel consumption: The airline’s logbook showed that on average 30 
pounds of fuel were burned per minute for an empty aircraft to taxi between 
the terminals and the hangar. The jet fuel price was $1.90 per gallon at ATL 
at the time of this study. Considering 1gallon = 6.6 pounds, the fuel cost 
per minute is $8.64.
Labor: Two mechanics are needed to taxi the aircraft. Each mechanic was 
paid $20/hour. Therefore, on average the labor cost (for two mechanics) 
per minute is $0.67.
Overheads: The logbooks did not have any data on overhead costs such as 
wear and tear or other costs of aircraft taxiing on their powers. We could not 
identify a reliable figure to represent this cost from other sources either.

Therefore the cost per minute of $9.31 for the base scenario comprises fuel 
cost and labor cost.

As indicated above, the model was run to simulate one week of aircraft transfer 
between the terminals and the maintenance hangar. The performance measures 
based on this simulation model are average weekly costs of $16,805 and average 
taxi time per trip of 21.5 minutes. Note that this weekly cost is based on $1.90/

•

•

•

Figure 16.3	 Location of gates and the maintenance hangar at ATL
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gallon of jet fuel. A major interest for this study was to determine the impact of the 
growing cost of jet fuel. Accordingly, the simulation model was run with different 
jet-fuel prices. Figure 16.4 presents the total weekly operation cost with jet-fuel 
price fluctuating from $1.50 to $2.50/gallon.

Proposed Scenario

Another simulation model was developed to incorporate the utilization of aircraft 
tow-tugs. In this scenario, the aircraft is towed using the tow-tug’s power. Two 
mechanics are needed to operate the tow-tug and safely transfer the aircraft to the 
maintenance hangar. The variable costs of using tow-tug per minute are as follows. 
The following cost figures are based on the airlines’ estimates:

Fuel: The tow-tug runs on diesel and fuel cost is estimated to be $0.50/
minute.
Labor: Similar to the current scenario, two mechanics are needed to operate 
the tow-tug. Each mechanic will be paid $20/hour. Therefore the labor cost 
per minute is $0.67
Overheads: Overheads are estimated to be $2.90 per minute. This relatively 
high cost was suggested by the airline to protect against the unanticipated 
operating cost of the tow-tug.

Therefore, the total operating cost of the tow-tug is $4.06/ minute. It should 
be noted that it takes longer to move the aircraft using the tow-tug than using the 
aircraft’s own power. Based on the tow-tug manufacturer’s recommendation and 
other airlines’ experiences, the estimated time to attach/detach the aircraft to a 
tow-tug is 4–6 minutes.

•

•

•

Figure 16.4	 Average weekly cost for aircraft taxis without tow-tugs
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The model was run with one operational tow-tug, incorporating the attach/
detach times and slower tow speeds. Performance measures of the proposed model 
are an average weekly cost of $11,058, average taxi time with aircraft attached per 
trip of 42 minutes, average tow-tug taxi time without aircraft attached per trip of 
23 minutes, average tow-tug utilization of 30% and average waiting time for the 
tow-tug of 30 minutes.

The reason for the low utilization of the tow-tug is that the aircraft are 
moved between the terminals and the maintenance hangar between 6 p.m. and 
4 a.m. only. The tow-tug is idle at other times. Also on average it takes about 40 
minutes longer to use the tow-tug to move the aircraft than to taxi the aircraft 
on its own power for a round trip. Most of this extra time is spent attaching/
detaching the tow-tug to the aircraft. The average waiting time represents the 
time in minutes that an aircraft needs to wait until the tow-tug arrives for its 
transfer. The tow-tug is typically parked outside the maintenance hangar while 
it is idle.

Similar to the base scenario, it was of interest to evaluate the impact of 
changes in the weekly operating cost of the tow-tug. Accordingly, we ran the 
model with tow-tug operating cost fluctuating from $3.50 to $4.50 per minute. 
The following figure presents the total weekly operating cost as the operating 
cost per minute varies.

It should be noted that the aircraft tow-tug manufacturer considers the $2.90/min 
overhead cost suggested by the airline to be excessive. The tow-tug manufacturer 
instead recommends an overhead cost of $1.00/min.

Figure 16.5	 Average weekly operating cost using the tow-tug



Airline Operations and Scheduling244

Investment Analysis

To get an estimate for annual savings, the costs above were multiplied by 52. Thus 
the annual cost without tow-tug is $873,860 and the annual cost with tow-tug is 
$575,016, representing an annual saving of $298,844.

The purchasing price of the proposed aircraft tow-tug vehicle is $250,000. 
We can now determine the payback period of the tow-tug as below. The payback 
period provides an indication of the time (in years) that it takes to recover the 
initial investment.

Initial investmentPayback period = 
Net annual cash flow 

$250,000Payback period = 
$298,844  

= 0.84

It is interesting to see that the tow-tug will be paid off in 10 months. The net 
present value (NPV) to purchase and operate the tow-tug for 10 years, based on 
the above annual cash flows and 15% discount rate (suggested by the airline) is 
as follows:

As the table implies the net present value (NPV) of purchasing and operating 
the tow-tug for 10 years is more than $1,200,000. Analysis using payback period 
and NPV suggests that the purchase and operation of the proposed tow-tug is 
highly beneficial and financially rewarding, even with low utilization of the tow-
tug. This justification is mainly due to the high cost of jet fuel.

It is of interest to identify the jet-fuel prices that would provide the same 
operating cost under both scenarios (break-even point for jet-fuel prices). So the 
weekly current scenario model with different cost/min values was run with the 
objective of achieving total cost to be around $11,058/week, which is the total 

Table 16.1	 NPV for purchasing and operating the tow-tug for a period of 
10 years

Year Present value of future cash 
flow

Year Present value of future cash 
flow

0 -$250,000 6  $129,198 

1 $259,864 7  $112,346 

2  $225,969 8  $97,692 

3  $196,494 9  $84,950 

4  $170,865 10  $73,869 

5  $148,578 NPV $1,249,829
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cost under the proposed scenario. The cost/minute for the aircraft to taxi on its 
own power was found to be around $4.30. Considering that $0.67 is attributed to 
labor, the price of jet fuel consumed per minute should be $3.63 ($4.30 – $.067). 
This cost relates to 30 pounds of jet fuel. Accordingly, the cost per gallon of jet 
fuel should be less than $0.80 to justify the current scenario over the proposed 
scenario.

Multiple tow-tugs

As explained earlier, the aircraft are primarily moved between the terminals and 
the maintenance hangar between 6 p.m. and 4 a.m. the next day. Owing to limited 
space availability at the hangar, only six aircraft can be accommodated at any 
time. These two restrictions probably explain for the low 30% utilization of the 
single tow-tug.

All the performance measures and the analyses for operating a single 
tow-tug were shared with the airline. The airline was interested in further 
investigating the impact of purchasing multiple tow-tugs and their economic 
justifications.

The simulation model was run with multiple tow-tugs. Figure 16.6 presents 
the average utilization of each tow-tug when multiple tow-tugs are used. As it 
was described earlier, the average utilization for a single tow-tug is 30%. This 
utilization drops to about 5% when five tow-tugs are used.

Figure 16.6	 Average utilization with multiple tow tugs
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The following figure represents the weekly total cost of operating multiple 
tow-tugs.

It should be noted that even though the operating costs of multi tow-tugs are 
comparable to a single one, their high purchasing prices and initial investment 
need to be addressed for any long-term financial analyses. The following table 
presents the payback period and NPV, when including the initial investment as the 
number of tow-tugs increases.

The only advantage of having multiple tow-tugs is reduced waiting times at 
the gates for the aircraft to be moved to the maintenance hangar. Currently the 
wait time for a tow-tug is around 30 minutes, based on the airline’s flight arrivals 
to ATL. Considering the only feasible parking space for the tow-tugs is outside 
the maintenance hangar (see Figure 16.1), this waiting time can be reduced to 
23 minutes, which is the taxi time of the tow-tug from the hangar to the gates. 

Figure 16.7	 Total weekly operating cost in a multi tug operation

Table 16.2	 Payback period and NPV for multiple tow-tugs

Number of tow-tugs Payback period (years) NPV

1 0.84 $1,249,829

2 1.87 $839,409

3 2.84 $573,148

4 3.82 $314,320

5 4.80 $56,185
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Therefore on average the waiting time is reduced by 7 minutes when using multiple 
tow-tugs. It should be noted that the aircraft needing the tow-tugs are to remain 
overnight at ATL. Therefore the minor saving in wait time by purchasing extra 
tow-tugs could not be economically justified.

Recommendation and Conclusion

The simulation analyses on single and multi tow-tugs identified potential financial 
incentives for utilizing them. Considering the low utilization for tow-tugs and their 
high initial investment, purchase of a single tow-tug was recommended to AirTran 
Airways. Multiple tow-tug operations are justified if:

there are more than six available spaces for aircraft at the maintenance 
hangar;
more aircraft remain over night at the airport;
parking space for tow-tugs is available closer to the terminals;
the tow-tugs can be used for more operations such as taking an empty 
aircraft to a parking space or relocating empty aircraft from gates.

Apart from economic incentives, utilizing the tow-tugs is more environmentally 
friendly than aircraft moving on their own powers for taxiing. On average an 
aircraft burns jet fuel at a rate of 4.55 gallons/minute when taxiing on its own 
powers. In comparison, a tow-tug burns diesel at a rate of .25 gallons/minute when 
towing an aircraft.

Following the study, AirTran purchased one tow-tug in 2006. Figure 16.8 
shows the tow-tug in action.

•

•
•
•

Figure 16.8	 A tow tug towing AirTran’s 737-700 aircraft
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Chapter 17 

Runway Capacity Planning

Introduction

Airports play a key role in the commercial aviation system by allowing airlines 
and their customers to converge. However, since the early 1970s, the peaking of 
traffic at airports has been a problem of increasing concern to airport operators 
around the world. Though the systems put in place by airports today are extensive 
and highly developed, the busiest airports still face the problems of congestion and 
delay. Facilities at most airports are not adequate enough to accommodate demand 
at all times and in all conditions of weather and visibility. The resulting delays lead 
to inefficiency and increased expenses to airlines, inconvenience and opportunity 
costs for passengers, and increased workload for the FAA air traffic control system. 
In fact, a lack of airport capacity has been forecast by the FAA to be one of the 
most serious constraints to the growth of commercial and private aviation (Wells 
2000). Table 17.1 shows the percentage of on-time arrivals at major airports in the 
United States during 2008.

Table 17.1	 Percentage of on-time arrivals at major airports in the US 
during 2008

Airport 
identifier Airport On-time 

arrival

ATL Hartsfield-Jackson Atlanta International 
Airport

75.52%

BOS Boston’s Logan International Airport 73.36%

BWI Baltimore Washington International Airport 80.31%

DEN Denver International Airport 78.34%

DFW Dallas Fort Worth International Airport 76.16%

LAS McCarran International Airport 77.76%

LAX Los Angeles International Airport 76.89%

LGA LaGuardia Airport 62.80%

MCO Orlando International Airport 77.81%

MDW Chicago Midway Airport 80.68%

Source: Federal Aviation Administration.
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According to the US Department of Transportation, in 2007 more than 166,000 
commercial flights were delayed with a total of 100 million delayed minutes at a 
total cost of more than $40 billion to the airline industry and passengers. Non-
weather related delays and specifically airport-related delays account for more 
than 54% of all delay costs reported. Figures 17.1 and 17.2 present the number 
of delayed flights and total minutes of delay respectively for both weather and 
non-weather-related delays from 2004 to 2008 as reported by the Department 
of Transportation (US Department of Transportation). These figures suggest an 
upward trend in both weather and non-weather delays. Airport-related delays 
represent a major contributor towards non-weather delays. As the figures suggest, 
the non-weather-related delays are growing at a faster and more alarming rate 
than weather-related delays. The average cost of delay per minute for commercial 
airlines in 2007 was $342.4 and is calculated in Table 17.2.

One main reason for the lack of capacity and delay is that airport development 
projects are enormously capital-intensive and probably some of the largest 
infrastructure development projects that are undertaken. For example, the 
construction of a new runway at Lambert St. Louis International Airport involved 
costs of $1.1 billion, acquisition of more than 1,500 acres of land, reconfiguration 
of seven major roads and displacement of many homes, a school, and some 
airport-support operations (Cohen and Coughlin 2003). Hence it is a challenging 
task for airports to keep pace with the rapidly growing demand for air transport 

Figure 17.1	 Number of weather and non-weather related delays from 2003–
2008
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(Dempsey 2000). This fact also accentuates the importance of thorough analysis of 
the various options and their outcomes in the planning stage.

Therefore demand-capacity analysis, a vital component of the airport-planning 
process, is crucial in defining the physical requirement of airport facilities to meet 
future demand.

Airport facilities broadly include the airfield (runway, taxiway, gates), 
the terminal building, and airport access/parking facilities (Mumayiz 1999). 
Approaches to improving these facilities, thereby expanding airport capacity, may 
be categorized as:

techniques to increase runway operation rate and hence augment airside 
capacity or mitigate aircraft delay;

•

Figure 17.2	 Total weather and non-weather related delay in minutes from 
2003–2008

Table 17.2	 Cost of delay per minute for commercial airlines during 2007

Cost item Cost/minute

Airline operating costs $160.7

Value of passengers time $101

Spill over costs to economy $80.7

Total $342.4

Source: US Bureau of Transportation.
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techniques to move the aircraft from the runway to the passenger-loading 
gates and back again as quickly as possible to shorten the taxi-in and taxi-
out components of delay;
techniques to aid in the transit of passengers through the terminal building 
and the flow of vehicles on airport circulation and access roads (Wells 
2000).

A prerequisite to an airport-planning process is an evaluation of the existing 
operational environment. The next step would be to estimate the effect of 
proposed developments on the airport’s performance. This is then compared with 
the performance of the existing system to justify the proposed developments. This 
chapter deals with runway capacity planning and the following sections describe, 
assess, and evaluate various runway layouts.

Airport Layouts in General

Most airport layouts and runway layouts are customized to represent the most 
useful configuration, given the airport environment. The airport’s environment is 
characterized by (Wells 2000):

Airfield characteristics: Basic determinants of the airfield’s ability to 
accommodate different types of aircraft and the handling rate. These 
include the physical layout of the runways, taxiways, aprons, and so on.
Airspace characteristics: The situational relationship of the airfield to other 
airports and to natural and manmade obstacles and the navigable airspace 
hence developed.
Air traffic control: ATC rules and procedures.
Meteorological conditions: Visual Meteorological Conditions (VMC), 
atmospheric conditions, which allow pilots to land and take-off visually 
and Instrument Meteorological Conditions (IMC), atmospheric conditions, 
which do not allow visual reference and require ATC rules and procedures 
for safe conduct of operations.
Demand characteristics: The number of aircraft seeking service, their 
performance characteristics and their usage of the airport.

As a result, airport operations, including runway dependencies, airspace 
procedures and limitations, and other characteristics, are usually unique to 
every airport. A more generic description of runway configurations and their 
corresponding dependencies has been laid out by the FAA. These configurations 
include the following:

single runway;
close parallels (distance between runway centerlines less than 2,500 feet);

•

•

•

•

•
•

•

•
•



Runway Capacity Planning 253

intermediate parallels (distance between runway centerlines 2,500 – 4,300 
feet);
far parallels (distance between runway centerlines greater than 4,300 
feet);
dual lane (two pairs of close parallel runways separated by more than 4,300 
feet).

Under instrument flight conditions, simultaneous independent approaches 
are permissible on far parallels. Intermediate parallels can employ simultaneous 
dependent approaches, requiring a diagonal separation between approaching 
aircraft. Close parallels are treated as a single runway and simultaneous operations 
are not permitted (Burnham, Hallock, and Greene 2001). 	 Airport layouts 
may correspond with one of the above configurations or may be a combination of 
two or more of them.

Runway System Capacity

The Airports Council International (ACI) and International Air Transport 
Association (IATA) guidelines for airport capacity/demand management (1996) 
defines the most significant aspect of an airport’s capacity, Runway System 
Capacity, as the hourly rate of aircraft operations which may be reasonably 
expected to be accommodated by a single runway or a combination of runways 
under given local conditions.

The Runway System Capacity is primarily dependent on the runway occupancy 
times of, and separation standards applied to, successive aircraft in the traffic mix. 
Other key items affecting runway capacity include availability of exit taxiways, 
especially that of high-speed exits that help minimize runway occupancy times of 
arriving aircraft; aircraft type/performance; traffic mix; Air Traffic Control (ATC) 
and wake vortex constraints on approach separation; weather conditions [Visual 
Meteorological Conditions (VMC)/Instrument Meteorological Conditions (IMC)]; 
spacing between parallel runways; intersecting point of intersecting runways; and 
whether the mode of operation is segregated or mixed.

To better explain the capacity measures introduced here, we may begin with 
the concepts of practical capacity λP. Practical capacity λP is defined as the number 
of operations that can be accommodated in a given time period, considering all 
constraints incumbent on the airport, and with no more than a given amount of 
delay (Wells 2000). On a typical delay curve, this may be depicted as in Figure 
17.3 (Raguraman 1999). The key here is that capacity is determined at a given level 
of delay. This capacity level does not necessarily reflect the maximum throughput 
capacity of the runway configuration.

As an illustration of practical capacity, we may consider the following example. 
Let us assume that capacity at 10 minutes of delay is 100 movements per hour and 
that at 20 minutes of delay is 125 movements per hour. On a typical delay curve, 

•

•

•
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this could be represented as in Figure 17.4. From the figure, it may be observed 
that, at 20 minutes of delay, the airport has almost reached its maximum capacity. 
However, capacity at 10 minutes of delay does not represent the maximum 
throughput capacity of the airport.

Expanding on the concept of practical capacity, if we were to disregard delay, 
the airport’s capacity would only increase until a certain maximum level. In the 
above example, this would be about 125 movements per hour. Every movement 
above this level in the same hour would contribute more to delay than to the 
airport’s capacity. This level may be regarded as the point of negative returns, 
beyond which every additional movement would only contribute to the overall 
delay without improving capacity; this concept is called the maximum throughput 

Figure 17.3	 Practical capacity λP
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capacity or saturation capacity λS. It can be measured as the number of operations 
that can be accomplished in a given period of time disregarding any delay that 
aircraft might experience and assuming that the aircraft will always be present, 
waiting to land or take-off (Wells 2000, Ashford and Wright 1992). This concept 
is depicted as in Figure 17.5. Put simply, this is the capacity level where the layout 
gets saturated.

Saturation capacity λS is the key concept for this study and it is used for three 
different measures of capacity for each proposed runway configuration. The 
capacity measures differ in the sense that each one represents a capacity that has a 
separate set of constraints associated with it. Each of these is discussed below:

λS1 Fully Constrained Capacity

Fully constrained capacity λS1 takes into account all constraints that exist in an 
airport environment. These include both layout/ground factors as well as airspace 
factors. Ground constraints include the location of runway exits and taxiway and 
apron capacity. Airspace constraints arise from factors such as increased controller 
workloads owing to the absence of sufficient procedural and technological support. 
This measure of capacity is similar to what is described by Reynolds-Feighan and 
Button (1999) as ultimate capacity.

λS2 Semi-Constrained Capacity

The second measure of capacity (λS2), which may also be called semi-constrained 
capacity, assumes that technological and procedural improvements are in place. 
These improvements aid in maintaining separation standards more precisely, 

Figure 17.5	 Saturation capacity λS
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thereby increasing runway throughput. However, the airport layout constraints 
discussed above are still considered in determining this measure of capacity.

λSU: Unconstrained Capacity

Finally, unconstrained capacity λSU, assumes away all constraints except those 
posed by safety requirements. These would broadly include separation standards 
established in order to allow for wake turbulence and runway occupancy rules. 
The concept of unconstrained capacity has been advanced by IATA and represents 
the maximum possible capacity of a given runway configuration (Pitfield and 
Jerrard, 1999).

These three concepts may be represented diagrammatically as in Figure 17.6. 
Again, note that each of these is essentially a saturation capacity. They fall on 
different curves because each one represents a different level of constraints on the 
system and is hence a separate scenario. As the constraints on the system decrease, 
capacity increases and the curve moves in the positive-x direction.

For example, for a particular layout, the fully constrained saturation capacity 
λS1, may be 110 movements per hour. For the same scenario, the semi-constrained 
capacity λS2, could be 130 movements per hour and the unconstrained capacity λSU, 
could be 160 movements per hour.

Capacity Estimation Models

Analytical and/or simulation models are mainly used to estimate capacities at an 
airport. Analytical models are mathematical representations of the airport, airspace 
characteristics and operations, and tend to have low levels of detail. Analytical 

Figure 17.6	 Capacity measures λS1, λS2 and λSU
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models are mainly used for policy analysis, strategy development, and cost-benefit 
evaluation (Odoni et al. 1997). Some of the analytical models include Harris 
(1972), Odoni et al. (1997), Inniss (2000) and Janic (2009).

Simulation of the airport environment has been increasingly used recently 
to obtain more realistic estimates of capacity by randomizing the various input 
parameters. Fishburn and Stouppe (1997) have suggested that simulation modeling 
and analysis be integrated into the airport planning process rather than being 
simply used for final evaluations. Some of the simulation models used for capacity 
estimation include Pitfield and Jerrard (1999), Khoury, Kamat and Ioannou (2006) 
and Kageyama (2006).

The case study in this chapter (discussed later) employs a 3-D (dimensional) 
microscopic simulation model that is designed to simulate the traffic flows through 
the airport and airspace with regards to actual constraints and uncertainties.

Airport Layout Evaluation

To begin with, the three saturation capacity measures λi described in the earlier 
section are determined for each of the layouts.

λS1/λSU Efficiency

λS1/λSU indicates the runway system utilization owing to all constraints incumbent 
at an airport. This would show where the layout stands, in capacity terms, in 
light of its maximum potential. Hence, [(λSU-λS1) / λS1] indicates the potential for 
maximum runway system utilization and is an index of the efficiency in terms of 
design functionality.

λS1/λS2 Sensitivity to Changes

λS1/λS2 provides an estimate of the utilization as a result of airspace constraints. 
Therefore, the sensitivity of the layout to technological and procedural changes 
that improve the traffic flow in and out of the airport is indicated by [(λS2-λS1) / 
λS1].

λS2/λSU Overall Utilization of Capacity

λS2/λSU indicates the utilization constrained by the airport layout design factors 
affecting taxiing, gate usage, and so on, thus throwing light on the layout’s 
functionality or what may be called its design efficiency. Here again, [(λSU-λS2) 
/ λS2] shows the potential for runway system utilization by improving airport 
design.
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Total Airspace and Airport Modeler (TAAM)

TAAM is a leading simulation package for modeling entire air traffic systems 
offered by Jeppesen, a subsidiary of The Boeing Company. The model is a four-
dimensional flight-path simulator and allows greater realism than mesh-based 
simulations such as SIMMOD (Odoni et al. 1997). A number of factors may 
be randomized in the simulation to reflect day-to-day fluctuations. A versatile 
simulation model, TAAM has been used in a wide variety of applications 
including airport capacity estimation (gate, taxiway, runway capacity), planning 
airport improvements, extensions, de-icing, noise impact, effect of severe weather, 
design of terminal area procedures (SIDs/STARs) and terminal area ATC sectors, 
controller workload assessment, impact of new ATC rules, system wide delays and 
cost/benefit studies.

Being a large scale simulation of an air traffic system, TAAM requires 
comprehensive input data files describing the entire Air Traffic system. The 
level of detail, however, is variable and can be adapted to suit individual project 
needs. Typical inputs include the airport layout, air traffic schedule, environment 
description, aircraft flight-plans and air-traffic control rules. These are used to 
investigate the usage of the airport and airspace, conflict-detection and resolution, 
and to compute aggregate metrics using TAAM’s internal algorithms and user-
specified rules (Odoni et al. 1997). These aggregated metrics include system delay 
and its distribution; costs; fuel, non-fuel, and total; airport movements; operations 
on taxiways and runways; runway occupancy and airspace-operation metrics such 
as usage of routes, sectors, fixes and coordination.

TAAM has been verified by many users on many different scenarios. TAAM 
simulation outputs have been compared with some FAA studies on aspects of new 
ATM concepts and have shown comparable results. In fact, the four-dimensional 
movement of aircraft can be simulated in TAAM to get within 3–4% of the actual 
aircraft profiles. Airport movement rates and other characteristics can be modeled 
with similar accuracy (Odoni et al. 1997).

Runway Capacity Planning at Philadelphia Airport

The FAA Capacity Benchmark Report (2001) estimated the current capacity 
benchmark at Philadelphia International Airport (PHL) to be 100–110 flights per 
hour in good weather (VFR conditions) and 91–96 flights (or fewer) per hour in 
adverse weather conditions (IFR conditions), which could include poor visibility 
or low cloud base. Figure 17.7 represents a westerly usage of the runways in VFR 
conditions. In this figure, the callouts provide the runway names. The arrows show 
the usage of the runways. An arrow toward a runway represents arrivals to that 
runway while an arrow away from the runway represents departures from it.

One of the current problems faced at PHL is that of significant delays. For 
example, in 2000, over 4% of all flights at Philadelphia experienced significant 
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delay (defined by the FAA as more than 15 minutes of delay). Under adverse 
weather conditions, capacity is exceeded for about 31/2 hours of the day resulting 
in about 14% of the flights experiencing significant delay. Moreover, traffic at PHL 
is expected to increase by 23% over the next decade, which will further increase 
delays. The capacity estimates in the FAA report assume that the short runways 
17/35 and 8/26 provide for 25% of airport traffic operations. The airport’s capacity 
stands to decrease if this percentage declines (Federal Aviation Administration 
2001).

Because of these current capacity problems, a number of enhancement 
initiatives are being undertaken by the airport authorities. Technological and 
procedural improvements to be implemented include:

Automatic Dependent Surveillance-Broadcast/Cockpit Display of Traffic 
Information to help pilots maintain desired separations more precisely;
Flight Management System/Area Navigation (FMS/RNAV) Routes to 
enable a more consistent flow of aircraft to the runway;
Land and Hold Short Operations (LAHSO) allowing independent arrivals 
for specific aircraft types on intersecting runways;
Precision Runway Monitor (PRM), a sophisticated radar system that allows 
simultaneous instrument approaches to parallel runways as close as 3,000 
feet apart (Federal Aviation Administration 2001).

According to the Capacity Benchmark Report, these changes will improve 
Philadelphia’s capacity in good weather by 17% (to 117–127 flights per hour) over 
the next 10 years, while capacity under adverse weather is expected to increase by 
11% (to 101–106 flights per hour).

•

•

•

•

Figure 17.7	 Current West-VFR operations at PHL
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Besides these, major expansions involving the construction of new and/or 
expansion of existing runways and taxiways, improved and/or new terminal area 
and cargo handling facilities are being planned. These expansion plans may be 
categorized under two broad concepts: the parallel concept and the diagonal 
concept. The parallel concept is an extension of the current layout, and the 
diagonal concept involves a complete change of the layout including new runway 
orientations, new terminal area design, new apron and taxiway designs.

Under each of these concepts, two proposed layouts were chosen for the 
purpose of this case study. Therefore, in total, five layouts will be examined in 
this chapter – the baseline or the airport layout, as it exists, two parallel concept 
layouts and two diagonal concept layouts.

Parallel Concept: Full-Build Parallel Layout with Crosswind Runway (parallel-1)

As Figure 17.8 depicts, parallel-1 concept involves:

shifting runway 09L/27R to the south and west to provide more taxiways 
closer to the apron area just above the runway;
extending runways 17/35 and 08/26 to enable turboprops and jets other 
than wide-bodies to use these runways;
constructing a new runway, 09R/27L, south of the airfield to be used as a 
departure runway;
extending the existing southerly runway, 09R/27L, which would then be 
called 09C/27C. This would be the primary arrival runway.

•

•

•

•

Figure 17.8	 Parallel-1 West VFR operations
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Parallel Concept: Baseline Layout with 4th Parallel Runway (parallel-2)

As Figure 17.9 depicts, this configuration is essentially the same as the parallel-1 
except that:

The crosswind runway, 17/35, would be converted to a taxiway in order to 
provide for easier taxiing to and from the northern aprons. Other advantages 
from avoiding the use of this runway would include the removal of the 
dependencies associated with it.
27R/09L would be as in the baseline scenario and not shifted south and 
west as in parallel-1.
Runway 08/26 would not be built to the full length as in parallel-1 and 
would hence be unavailable for use by jets.

Diagonal Concept: Full-Build Diagonal Layout with 4 Runways (diagonal-1)

As Figure 17.10 represents, diagonal-1 concept involves:

two new pairs of close parallel runways separated by more than 4,300 
feet;
the new runways that would be oriented 30 degrees clockwise from 
09C/27C;

•

•

•

•

•

Figure 17.9	 Parallel-2: West VFR operations
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the terminal area in this concept which would also be redesigned to a more 
symmetric one allowing more structured taxi patterns;
the two inner runways, 11R/29L and 12L/30R, being used as departure 
runways;
11L/29R and 12R/30L, the two outer runways, being used as arrival 
runways.

Diagonal Concept: Full-Build Diagonal Layout with 3 Runways (diagonal-2)

As Figure 17.11 depicts:

This configuration is the same as the diagonal-1 with the exception of the 
northernmost runway;
Runway usage is similar to that of diagonal-1 with runway 11R/29L being 
used as a dual-use runway. Dual usage of a runway means the runway 
is used for arrivals as well as for departures. Departures are normally 
interleaved between arrivals.

Inputs

The inputs, common to all the scenarios evaluated, were the routes, airports, 
waypoints, and the traffic schedule. The routes, airports, and waypoints are files 
in TAAM format that represent those in the current National Airspace System 
(NAS).

•

•

•

•

•

Figure 17.10	Diagonal-1: West VFR operations



Runway Capacity Planning 263

To satisfy the assumption of an ever-present traffic flow the traffic schedule 
was restricted to a one-hour time frame with a total of 364 flights – equal arrivals 
and departures. The following represent the basis on which the schedule was 
generated:

The traffic mix representing the forecast for the year 2020 for PHL was 
used.
The arrivals, departures, and different types of aircraft were evenly 
distributed through the one-hour time period.
The year 2020 was chosen, as this is the expected date of completion of the 
full-build layouts in either concept.

Inputs that were unique to each scenario included the airport layout, and rules 
governing the airport usage such as Air Traffic Control (ATC) and sequencing 
rules and taxiway, gate and runway-usage rules. Instrument Departure Procedure 
(DP)/Standard Terminal Arrival (STAR) were input to guide aircraft to and from 
the departure and arrival runways.

Simulation Results

Table 17.3 summarizes the saturation capacities under varying constraint levels 
for each of the scenarios evaluated.

The ratios computed from Table 17.3 are presented in Table 17.4.

•

•

•

Figure 17.11	 Diagonal-2: West VFR operations
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Comparisons and Conclusion

When the diagonal concepts are compared (diagonal-1 vs. diagonal-2), both 
layouts are largely similar with respect to the parameters evaluated. But diagonal-
1 is marginally better than diagonal-2 with respect to runway-system capacity-
utilization and efficiency in terms of taxiing and gate usage.

Between the parallel concepts (parallel-1 vs. parallel-2), parallel-2 is better 
than parallel-1 with respect to runway-system capacity-utilization and efficiency 
in terms of taxiing and gate usage. Probable reasons as observed from the 
simulation include the absence of the crosswind runway in parallel-2 and hence 
the elimination of related dependencies, and the use of the crosswind runway as 
taxiway, which provides for more efficient taxiing.

Table 17.3	 Saturation capacities under varying constraint levels for each of 
the scenarios

λS1 λS2 λSU

Arrs Deps All Arrs Deps All Arrs Deps All

Baseline 56 61 117 69 61 130 69 67 136

Diagonal-1 77 86 163 84 88 172 84 90 174

Diagonal-2 75 62 137 78 65 143 78 69 147

Parallel-1 76 69 145 82 73 155 81 95 176

Parallel-2 77 69 146 80 70 150 80 82 162

Table 17.4	 Ratios comparing the different layouts

λS1 vs. λSU λS1 vs. λS2 λS2 vs. λSU

λS1/λSU
[(λSU-λS1) 

/λS1]
λS1/λS2

[(λS2-λS1) / 
λS1]

λS2/λSU
[(λSU-λS2) 

/λS2]

Baseline 86% 16.2% 90% 11.1% 95.6% 4.6%

Diagonal-1 93.7% 6.7% 94.8% 5.5% 98.9% 1.2%

Diagonal-2 93.2% 7.3% 95.8% 4.4% 97.3% 2.8%

Parallel-1 82.4% 21.4% 93.5% 6.9% 88.1% 13.5%

Parallel-2 90.1% 11.0% 97.3% 2.7% 92.6% 8%
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When the baseline is compared with the two proposed concepts (diagonal 
vs. parallel), the diagonal concept layouts were found to be better than either the 
baseline or the parallel concept layouts. Diagonal concept layouts were better in 
terms of runway system capacity utilization and efficiency in terms of taxiing 
and gate usage. This may be due to a more structured and symmetric taxiway and 
terminal design in the diagonal concept, which facilitates more structured flow 
of traffic on the ground. Besides, the fact that no runway crossing is required 
for departures ensures a continuous feed to the departure runways, which is not 
influenced by the arrival flow

Also, the baseline is better than either parallel concept layout with respect 
to design factors affecting taxiing and gate usage. This could be as a result of 
the constraints posed by the number of runways that departures have to cross in 
either parallel concept layout. For example, departures on 27L have to cross the 
departure runway 27R, as well as the arrival runway 27. In the event of continuous 
arrival and departure flows on these runways, the feed to 27L is greatly constrained. 
The solution to this would involve holding the departures on 27R and arrivals on 
27 periodically in order to let aircraft cross these runways. However, this would 
negatively affect the overall runway system throughput.

Finally, parallel-1 and baseline are more sensitive to technological and procedural 
improvements. This is primarily caused by the use of the crosswind runway 17/35 
in both these configurations. Using this runway imposes dependencies on arrivals 
and departures, which are eliminated in the other configurations.
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Chapter 18 

Small Aircraft Transportation System 
(SATS)

Introduction

Similar to Chapter 17, this case study presents simulation study of an airport. The 
main objective of this case is to study the impact of additional aviation traffic flow 
on airport infrastructure. The following represents some recent and new trends that 
will affect the transportation industry in general and airlines in particular.

Small Aircraft Transportation System (SATS) – SATS was originally 
proposed by the National Aeronautics and Space Administration (NASA). 
SATS represented an innovative program intended to provide travelers with 
a safe and affordable traveling alternative to current transportation systems. 
SATS will be discussed in more details later in this chapter.
Fractional Ownership Programs – because of growing security issues 
with the airlines and airports, besides the presence of problems and 
delays caused by these security concerns, some companies have moved 
to Fractional Ownership Programs. In this program, companies with many 
business travelers jointly purchase and maintain small jet(s). Based on their 
contribution to this program (fraction), these companies will use the aircraft 
for their business travels. According to the FAA’s definition, the fractional 
ownership program is possible when an individual or corporation purchases 
at least 1/16 share of an airplane. The aircraft is then placed in a ‘pool’ to 
share with other owners of aircraft. The pooled aircraft are managed by a 
company that provides aviation management services with the necessary 
expertise for the owners.
Air Taxis – Because of the growth in the demand of small jet aircraft, we 
have witnessed an increase in the number of their manufacturers. These 
companies utilizing advances in aircraft manufacturing, avionics, and 
falling component prices have been able to offer small jets (4–8 seaters) 
at very reasonable prices. A large number of entrepreneurs have placed 
orders for these aircraft to start up air-taxis in various parts of the nation. 
These start-up companies use regional airports and provide full service to 
their passengers. Some of these air-taxis promise a one-hour advance call 
for the service. Once the passenger(s) calls, the air taxi sends a car to pick-
up the customer(s) from their home or work place. The car then drives the 
passenger(s) to the nearest regional airport. The waiting jet will fly the 

•

•

•
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passenger(s) to their destination (in most of the cases, another quiet regional 
airport). At the destination, the process repeats again, with a waiting car 
taking passenger(s) to their homes or businesses. All this at the price of a 
first-class airline ticket! It is anticipated that with increased competition, 
increased demand, and falling aircraft prices, this service will be offered at 
the current airline’s economy fares.

Considering these trends, an important question is: can the existing airports and 
airspace accommodate such increased flow of aircraft? Will there be congestions 
and delays? The study presented in this chapter, primarily sponsored by the Florida 
Department of Transportation (FDOT), uses simulation to address the introduction 
of SATS and its integration with the current traffic for the Tallahassee Regional 
Airport for the years 2002–2025.

Small Aircraft Transportation System (SATS)

An efficient and reliable transportation system is the backbone of every 
successful economy (Ashford 1992, Wells 2000, Dempsey 2000). The demand 
for transportation continues to grow, while current highways and hub-and-spoke 
systems become more congested. Increasing congestion and delays continue in 
the current infrastructure, while national investments to reduce these issues are 
reaching a point of diminishing effectiveness. If these concerns are not addressed, 
delays in the hub–and-spoke system will limit economic activity to the few well-
connected regions and communities. With 98% of the US population living within 
a 30-minute drive of over 5,000 public-use landing facilities, this infrastructure is 
an untapped national resource of mobility.

Introduction and commitment to the hub-and-spoke system of routing 
has focused the development of airports to major cities, increasing air traffic 
congestion to these specific regions (Reynolds-Feighan et al. 1999, Pitfield et al. 
1999). Conversely, many rural airports and their communities have been suffering 
a lack of essential air service owing to the fact that it has not been financially 
viable for air carriers to serve these airports. As a result, many major city airports 
are heavily congested, operating at or above capacity and many rural city airports 
are increasingly underutilized. This trend has been apparent for some time and is 
becoming increasingly more significant.

The Small Aircraft Transportation System (SATS) was introduced as a solution 
to improve this imbalance by decreasing the congestion at major city airports, and 
improving rural airport utilization. With such vision, NASA, the US Department 
of Transportation (DOT), the Federal Aviation Administration (FAA), industry 
stakeholders, and academia joined forces to pursue the SATS viability. Its goal 
was to utilize next-generation technology, to improve travel between remote 
communities and urban transportation centers, and by using general aviation 
airports. Principled on a new generation of fully automated and affordable small 
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aircraft, SATS would operate in a fully distributed system of small airports serving 
thousands of suburban, rural, and remote communities.

The small aircraft transportation vision was intended as a safe travel alternative, 
freeing people and products from transportation-system delays by creating access 
to more communities (for more information see http://sats.erau.edu).

The following represent some of the anticipated benefits of SATS:

reduction of intercity travel cost on the order of half in many markets, while 
increasing the number of communities served by air transportation by more 
than ten-fold in the longer term;
distribution of transportation capabilities;
an alternative to delays imposed by grid-lock, hub-lock, and urban sprawl;
the potential to ease some of the environmental impacts of the ever-
expanding transportation consumption in the nation;
an increase in the radius of action of daily life by ten-fold, the first increase 
of such magnitude since the cars replaced horses for intercity travel.

It is not known whether the current infrastructure of small rural airports is capable 
of accommodating SATS concept without encountering significant operational 
difficulties. The primary objective of this study is to analyze the operations of the 
integrated system, identify and evaluate the potential congestion points of airports, 
runways and terminals, and develop solutions to these problems.

Project Focus

The state of Florida was identified as one of the pioneer states to implement the 
SATS concept. Seven rural and regional airports including the Tallahassee regional 
airport in Florida were identified as potential and suitable airports for the SATS 
program. The Florida Department of Transportation (FDOT) showed their interest 
and sponsored a study to examine the integration of SATS with existing traffic to 
its regional airport at Tallahassee, the state capital. The study was not focused on 
the technological or economic feasibility of SATS, but on the operation side of it.� 
More specifically, the study should focus on the following for 2002–2025:

How would the new integrated system perform? What are the unforeseen 
bottlenecks/problems that could occur?
What is the impact of SATS on congestions at the airport?
What facilities, if any, should be expanded or created in order to streamline 
the integration of SATS?
How adversely will the existing air traffic be affected due to sudden and 
unanticipated SATS growth and expansion rates?

� T his study was conducted in 2000, and accordingly all data relate to that time frame.

•

•
•
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In order to conduct this study, our first attempt was to estimate the future flow 
(growth) of existing traffic as well as SATS.

Future Traffic Flow Forecast for KTLH

Three independent aviation forecasts have been prepared for Tallahassee regional 
airport (KTLH). These forecasts do not consider SATS airplanes. These three 
forecasts are made by the FAA, an independent consulting group, and KTLH 
Management respectively. Figure 18.1 shows the growth of annual operations 
(without SATS) from 2000–2025 based on these three forecasts. These operations 
show the number of landings and departures per year. They include commercial, 
general, and military operations. Further research, meetings, and interviews 
prompted us to believe that the forecast made by the consulting group is more 
realistic.

SATS Traffic Flow Forecast

Currently, the scheduled implementation date of the first set of SATS flights is set 
for the year 2005. Based on NASA’s analysis and forecasts, it is estimated that 
the total SATS operations at KTLH will be around 3,000 in year 2005. It is also 
anticipated that it will grow to maturity to 80,000 SATS operations in year 2025.

All new products and services typically follow a life-cycle graph (see Figure 
18.2). With any new technology, in the beginning the demand is relatively low 
and grows at a slow rate; later on, the demand picks up and grows at a faster rate, 
until it reaches maturity where the demand either levels off or declines (Tidd et 
al. 2001). The SATS program was envisioned to follow this same cycle over the 
twenty-year projection 2005–2025. A life-cycle curve was fitted to the beginning 

Figure 18.1	 Forecasts for number of operations (landings and take-offs) at 
KTLH
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(2005) and ending (2025) years of this program at KTLH. Figure 18.2 shows the 
forecast SATS operations over this 20-year time horizon.

Figure 18.3 presents the SATS operations, existing traffic and total future 
operation forecasts for KTLH from 2005–2025 (on a five-year basis).

The simulation modeling TAAM (Total Airspace and Airport Modeler) as was 
explained in Chapter 17, was adopted for this study.

Tallahassee Regional Airport (KTLH)

The Tallahassee market contains a total population of more than 1.4 million 
people. This includes Tallahassee, eleven neighboring Florida counties and twelve 

Figure 18.2	 Life-cycle forecast for SATS demand at KTLH

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

2005 2010 2015 2020 2025

Year

N
um

be
r o

f O
pe

ra
tio

ns

Figure 18.3	 Forecast for SATS, existing and total operations for KTLH 
using Total Airspace Airport Modeler (TAAM)
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southern Georgia counties. The Tallahassee Regional Airport (KTLH) has two 
runways; runway 27 and runway 36. Figure 18.4 presents the layout of the runways 
and terminal for this airport.

Preliminary activities consisted of gathering all initial data and information about 
Tallahassee Regional Airport (KTLH) from the airport officials. A baseline layout 
was produced from drawings provided by KTLH. Gate allocation information was 
also gathered to develop accurate aircraft terminal parking rules. Information from 
the KTLH tower was used to design reasonable rule assumptions about accurate 
runway usage. These assumptions included gate and apron rules.

Performance Measures

Similar to many other simulation software, TAAM also generates large amounts of 
output and reports. We were specifically interested in the following performance 
measures (Fishburn and Stouppe 1997):

System Delays – arrival, departure, airspace, and total flight delays;
Dissection of Delay on a per-aircraft basis;
Peak Movement Rates – Peaks in arrival, departure and total flights;
Runway Utilization Percentages by aircraft type and market segment.

•
•
•
•

Figure 18.4	 KTLH runway, taxiway, and terminal layout
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Baseline Scenario

To capture the logic and to verify the accuracy of the model, initially a simulation 
model for a typical day in the year of 2002 (the year of this study) was developed. 
This model did not include any SATS operations. The intention was to check the 
validity of the model with the actual figures for KTLH. On a typical day in year 
2002, there are around 300 daily operations. These operations include commercial, 
general, and military activities. Figure 18.5 presents the TAAM output report for 
the spread of these 300 operations over different times of the day. As the figure 
suggests the peak operation time at KTLH occurs between 15:00 and 16:00 with 
a total of 33 operations.

Figure 18.6 presents the TAAM report for the delay distribution over the 
time of the day. This figure shows the total delay in minutes that the arrival and 
departure flights experience. Note that these delays also consider and include 
airspace congestion around KTLH. This covers an area within a 20-nautical mile 
radius of the airfield. According to this figure the peak delay happens between 
15:00 and 16:00. The total delay time for all arrivals and departures during this 
peak hour is 25 minutes. Returning to Figure 14.5 we have 33 operations during 
this peak hour. This means that during the peak hour, the flights experience on 
average a delay of less than one minute (25 minute/33 operations).

Figure 18.7 presents the dissection of delays at KTLH. This figure shows how 
many aircraft experience delays and by how much. According to this figure 250 
out of 300 daily operations do not experience any delays at all. Fifty operations 
experience 0–3 minutes of delay and fewer than 10 operations experience 3–6 
minute delays.

Figure 18.5	 Daily arriving, departing, and total flight operation for baseline 
scenario
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Figure 18.8 presents the TAAM report for the number of arriving and departing 
flights using each of the two runways at the KTLH.

These results and figures were compared and verified with the actual data. 
As the figures suggest, KTLH is a quiet airport with no significant flight delays. 
The FAA defines a significant delay to be those arriving or departure flights that 
experience more than 15 minutes delay.

Figure 18.6	 Delay distribution for baseline scenario at KTLH
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Figure 18.7	 Dissection of delays at KTLH
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Simulation Analysis for 2002–2025

Since the TAAM simulation model provided valid results for the baseline scenario, 
the simulation model was applied to airport operations in the future years. Forecast 
flow for the SATS and non-SATS traffic at KTLH as described earlier in this 
chapter and the same parameters such as air-traffic-control rules for arriving and 
departing flights were used in the future operations simulation. The only change 
to the model for the future years was the increased flow. Guidelines provided by 
the KTLH were used to disperse the increased daily flow over different times of 
the day. Similar performance measures were used to compare the results between 
the baseline scenario and future operations. The following presents the simulation 
reports for future operations.

Figure 18.9 presents the peak airport operations from 2002–2025. As was 
described earlier, the peak number for operations in 2002 is 33. This figure 
will double by 2025 when the current flow is increased and SATS is fully 
operational.

Figure 18.10 presents the total delay times in minutes during the peak hour 
for 2002–2025. According to this figure the peak total time delay in a typical day 
in 2025 is 150 minutes. This time represents a total delay for 63 flight operations 
(see Figure 18.9). This total delay translates into an average of less than 3 minutes 
during the peak time.

Figure 18.11 shows the dissection of delays. As the figure suggests there are 
no significant delays, or they are very minimal (less than two operations in 2025). 
More than half of the flights do not experience any delays. Again these delays 
incorporate both ground and airspace congestions.

Figure 18.8	 Runway usage at KTLH
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Finally Figure 18.12 shows the number of times each runway is used for the 
future operations.

As suggested by the above results of the simulation runs, the current infrastructure 
at Tallahassee Regional Airport is capable of successfully handling the increased 
traffic demands placed by the forecast increase in activity, as well as allowing for 
the smooth integration of the SATS program with existing commercial, general, 
cargo, and military operations.

Figure 18.9	 Change in peak hourly movements for 2002–2025 study time
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Figure 18.10	Changes in peak delay distribution time for 2002–2025
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Sensitivity Analysis

In an effort to study the KTLH operations under extreme and unanticipated 
conditions, we increased the flow of SATS flights in 2025 at peak hour by 40%. 
Even with these increased flows the flights that experienced significant delays 
(more than 15 minutes) at peak times remained as less than 2% of all flights. This 

Figure 18.11	 Change in dissection of delay 2002–2025
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Figure 18.12	Change in runway utilization 2002–2025
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confirms that the existing infrastructure at KTLH is able to handle unanticipated 
growth in SATS operations without major bottlenecks or significant delays.
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