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Chapter 1
Introduction

Abstract. An airline schedule represents the central planning element of each air-
line. In general, the objective of airline schedule optimization is to find the air-
line schedule that maximizes operating profit. This planning task is not only the
most important but also the most complex task an airline is confronted with. Until
now, this task is performed by dividing the overall planning problem into smaller
and less complex subproblems that are solved separately in a sequence. However,
this procedure is only of minor capability to deal with interdependencies between
the subproblems, resulting in less profitable schedules than those being possible
with an approach solving the airline schedule optimization problem in one step. In
this work, two planning approaches for integrated airline scheduling are presented.
One approach follows the traditional sequential approach: existing models from
literature for individual subproblems are implemented and enhanced in an overall
iterative routine allowing to construct airline schedules from scratch. The other plan-
ning appraoch represents a truly simultaneous airline scheduling: using metaheuris-
tics, airline schedules are processed and optimized at once without a seperation into
different optimization steps for its subproblems.

1.1 Overview

Airline operations are essential for economic development and growth. By offer-
ing both freight transportation and passenger travel, the airline industry supports an
economy that is based on principles of human cooperation and of distributed produc-
tion and consumption of goods and services in a competitive environment. In 2005,
for the first time the number of passengers of the world’s scheduled airlines ex-
ceeded two billions (ICAO, 2006). Between 1995 and 2005, the number of revenue
passenger kilometers (RPK) of scheduled airline traffic grew with an average an-
nual rate of 5.2% (see Fig. 1.1). According to the forecasts of the two major aircraft
manufacturers Airbus and Boeing, this trend is expected to continue with an aver-
age increase of 4.8% to 4.9% RPK per year until 2025 (ICAO, 2006; Airbus, 2006;
Boeing, 2006).

T. Grosche: Computational Intel. in Integrated Airline Scheduling, SCI 173, pp. 1–5.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1.1 Passenger traffic increase 1996-2005 (Source: ICAO (2006))

However, despite positive market trends, the airlines’ profit margin is consid-
erably small and shows the lowest performance of any of the individual sec-
tors in the air transport sector (Doganis, 2004). As the integral components of
an airline are personnel and aircraft, representing fixed and most expensive costs
(Butchers et al., 2001), the annual net profit or loss of the airlines mainly depend
on passenger demand. This demand is highly correlated with the overall economic
growth. As a consequence, the airlines’ profits usually follow a cyclical trend with
economic downturns and booms (see Fig. 1.2).1
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Fig. 1.2 Annual net profit or loss as a percentage of total revenue of ICAO member airlines,
1970-2000 (Source: Doganis (2004))

One reason for the airlines’ marginal profitability might be the increase of compe-
tition and rivalry after the liberalization of the airline markets in the USA in 1978 and
in Europe in 1993. The average revenue per seat kilometer has declined to 50% in the

1 In 2005, the worlds airlines had a combined operating profit of 1% of operating revenues
(ICAO, 2006).
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Fig. 1.3 Trend in unit revenues and operating costs, ICAO scheduled airlines, 1970-2000
(Source: Doganis (2004))

last 20 years (Costaguta & Resiak, 2002; ATA, 2003b). In addition, the emergence of
low-cost carriers (LCC) and improved information systems allow passengers to find
low air ticket prices more easily (Button, 2005), further putting weight on operating
yields. On the other hand, as Fig. 1.3 illustrates, airlines were able to compensate
the decreased yields by reducing operating costs. The main drivers for this reduc-
tion were and still are the introduction of more modern and efficient aircraft, lean
operating structures and the computerization in airline planning processes.

According to Doganis (2004), “there is no simple explanation of the apparent
contradiction between the airline industry’s rapid growth and its marginal and cycli-
cal profitability. But, for the individual airline, overcoming this contradiction means
matching supply and demand for its service in a way which is both efficient and prof-
itable. This is the essence of airline management and planning. It is about matching
the supply of air services, which management can largely control, with the demand
for such services, on which management has much less influence.” The result of this
planning task is the airline’s schedule: an optimal schedule represents the most effi-
cient and effective deployment of an airline’s resources while best satisfying poten-
tial passengers’ demand (Etschmaier & Mathaisel, 1985). Being the central element
within an airline’s corporate planning system, it affects almost every operational
decision and has the largest impact on profitability (Teodorovic, 1988; Suhl, 1995;
Barnhart & Talluri, 1997; Barnhart et al., 2003).

From a marketing-perspective, the airline schedule has to offer flights that pas-
sengers demand. From a production-perspective, a cost-minimizing allocation of
aircraft and crews has to be specified to operate the flights. These two perspec-
tives are reflected by the flight schedule and the resource assignment as the two
essential parts of an airline schedule. The flight schedule is presented to poten-
tial passengers and is the airline’s primary product, having the most influence on
a passenger’s choice of an airline (Gopalan & Talluri, 1998b). It determines the
flights and the route network of an airline. Nonstop flights as well as connec-
tion flights including their departure and arrival times at the airports and their
days of operation are published to the customers (see Fig. 1.4 for example). The
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Fig. 1.4 Lufthansa flight schedule - excerpt (Source: Lufthansa (2007))

passenger’s choice of a flight is also influenced by the air fare. In order to be able
to offer reasonable air fares and to minimize operating costs, it is necessary to dis-
tribute the airline’s resources (aircraft and crews) in an effective and efficient way.
Moreover, the airline schedule affects almost every operational decision, and on
average 75% of the overall costs of an airline are directly related to the sched-
ule. Thus, given an airline schedule, a significant portion of costs and revenues
is fixed (Etschmaier & Mathaisel, 1985; Suhl, 1995; Seristö & Vepsalainen, 1997;
Barnhart & Talluri, 1997; Langerman & Ehlers, 1997; ATA, 2002; ATA, 2003a).

In general, the objective of airline schedule optimization is to find the airline
schedule that maximizes operating profit. This planning task is not only the most
important but also the most complex task an airline is confronted with. Factors
such as demands in various markets, competition, and available resources have to be
considered simultaneously to achieve optimal solutions (Gopalan & Talluri, 1998a;
Taneja, 2002; Barnhart et al., 2003). Because of the complexity of this problem, an
airline schedule is usually constructed in several steps or stages emerging from a
decomposition of the overall airline scheduling problem into smaller subproblems.
The output of one subproblem represents the input for the next subproblem. Be-
cause of the reduced complexity, the subproblems can be solved more easily. In
addition, if a subproblem is well structured, it can be solved using automated rou-
tines and optimization algorithms. Much research has been carried out on different
models and algorithms for these subproblems. On the other hand, many decisions
are conducted manually by human experts. They are supported by decision support
systems (DSS) which help to assess the experts’ proposals, detect any violations of
restrictions or rules (Grandeau et al., 1998), or implement optimization algorithms
for the solution of selected subproblems. DSS are also necessary to administer the
complete scheduling process. Their support is necessary, because many feedback
loops and iterations between the subproblems have to be implemented in order to
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consider existing interdependencies between the subproblems and their variables to
complete the scheduling process.

1.2 Objective

Many sophisticated planning tools and optimization algorithms for the subproblems
have been developed. However, it remains questionable if the decomposition of the
overall airline scheduling problem reduces the quality of the resulting schedules
compared to schedules that would result from an integrated airline scheduling ap-
proach. All researchers agree that the integration of the subproblems would lead to
better schedules. In fact, as will be presented later, a trend towards publications of
integrated models can be observed. But on the other hand, an integrated model of
the complete airline scheduling problem is believed to be computational intractable
and even its formulation seems impossible.

The objective of this study is to fill a large portion of the gap between theory’s (or
researchers’) ultimate goal of a fully integrated airline scheduling approach and the
status quo of sequential airline schedule optimization. Two approaches to integrated
airline scheduling for scheduled passenger airlines are presented and evaluated. The
first approach implements an iterated sequential planning paradigm in an integrated
procedure, whereas the second approach represents a truly simultaneous optimiza-
tion approach without decomposition of the overall problem. Both approaches can
be used to construct and optimize airline schedules from scratch. Given some ba-
sic parameters and planning scenarios, each method produces a feasible schedule
that promises high operating profit. Compared to published contributions, airline
operations are represented at a higher level of detail, simplifying assumptions are
reduced, and additional practical restrictions are included.

1.3 Structure

This study is structured as follows. In the next chapter, an overview of the airline
scheduling process is given. It presents the decomposition of the overall problem,
the resulting subproblems, and optimization models to solve these subproblems.
In addition, approaches for the integration of selected subproblems are described.
Based on this literature review, future challenges are identified that motivate this
study. In Chapter 3, metaheuristics and their foundations are introduced, because
the simultaneous airline scheduling approach is based upon these optimization tech-
niques. Chapter 4 represents the main chapter of this study. Within this chapter,
Sect. 4.2 presents a schedule evaluation procedure that is used by the two integrated
scheduling approaches. The sequential airline scheduling approach is described in
Sect. 4.3, the simultaneous approach in Sect. 4.4. Both approaches are calibrated
and analyzed, before a comparison of both approaches is conducted in Sect. 4.5. Fi-
nally, Chapter 5 includes a summary, conclusion, and an outlook on future work. In
the appendix, a glossary is given containing aviation-specific terms used throughout
this study. Furthermore, it includes information on the aircraft data and scenarios of
the conducted experiments as well as their detailed results.



Chapter 2
Airline Scheduling Process

Abstract. In this chapter, the objectives, inputs, and constraints of the subproblems
of the airline scheduling problem are presented together with solution models from
existing literature to solve them. Because optimal solutions of the airline scheduling
problem can only be realized if all relevant variables, their interdependencies, and
restrictions are combined in one model of considerable detail, a trend towards an
integrated airline scheduling model can be recognized in recent publications. Ad-
vances in optimization theory and computer hardware also led to the consideration
of more realistic models, as a problem could be formulated in more detail with a
higher number of practical requirements, with less simplifications, and for more
realistic problem sizes. Although much effort has been undertaken and many so-
phisticated models for the airline scheduling problem have been developed, many
challenges still remain. In particular, stochastic elements should be incorporated in
the scheduling process to increase the robustness of the resulting schedules, opti-
mization methods should be used in a larger number of subproblems that are still
solved manually, airline operations have to be represented at a higher level of de-
tail (reducing simplifying assumptions and including practical restrictions), and, fi-
nally, boundaries between the subproblems in the planning process should be further
relaxed towards an overall integrated approach.

2.1 Introduction

2.1.1 Airline Scheduling

The airline schedule represents the central planning element of each airline. It is the
instrument to match the available resources to the given demand. The airline sched-
ule includes the flights of the airline including their departure and arrival airports
and times, their days of operation, and the assigned fleet types. In addition, from a
production perspective, it includes the assignment of specific aircraft and their re-
lated maintenance schedule and the assignment of cockpit and cabin crews. Every
operational decision depends on the airline schedule, thus, once an airline schedule

T. Grosche: Computational Intel. in Integrated Airline Scheduling, SCI 173, pp. 7–46.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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is constructed, a large portion of the airline’s costs is determined. In addition, be-
cause the schedule influences the number of passengers the airline will transport, it
also affects the revenues the airline will gain.

The goal of airline scheduling is to create an airline schedule that is optimal in
regard to a given objective, usually operating profit. This problem is usually solved
in a structured process in which all parts of the airline participate. There are two
perspectives on this process (Etschmaier & Mathaisel, 1985; Antes, 1998). One per-
spective focuses on the time axis: the planning process is divided into strategic,
tactical and operational planning. During the strategic planning phase, long-term
decisions are made and the framework for the subsequent decisions is constructed.
Tactical decisions focus on specific flights and create a plan of action for the air-
line’s operations. In this phase, most of the airline schedule’s elements are selected.
Finally, the operational phase includes adjustments of the schedule due to changes
in demand or supply or any unforeseeable disturbances. The other perspective on
airline scheduling focuses on the internal planning approach in an airline and its
planning department. It describes airline scheduling as an iterating cycle of sched-
ule construction and evaluation. The airline schedule or its elements are constantly
modified and optimized until a satisfactory schedule is found or the planning time
is over. Both perspectives describe the same planning process, they are not exclu-
sive but used in conjunction by the airlines. For example, to create the schedule in
the tactical phase, the planning departments of an airline usually propose different
schedule drafts and incrementally improve these variants and their elements through
cycling between evaluation and modification. Then, once the schedule is published,
continuous refinements and modifications take place until the day of operation to
encounter any disturbances or to include any changes or new and more detailed
information of demand or supply.

Although there are different perspectives on the airline scheduling process,
researchers agree that creating an airline schedule represents one of the most
complex challenges an airline has to face. This complexity derives from the
number of decision variables that have to be selected to create an airline schedule,
the given (internal and external) data and restrictions that have to be taken into ac-
count, and the heterogeneity, functional relationship and interdependencies between
all these factors (see Fig. 2.1). Optimal solutions to a given problem can only be
obtained if all these elements are taken into account simultaneously in considerable
detail in one optimization model and if exact algorithms are applied that guarantee
the optimal solution is found. Because of the complexity of the airline scheduling
problem, such a model has not been solved or even formulated (Langerman & Ehlers,
1997; Barnhart et al., 2003). With state-of-the-art solution algorithms and computer
hardware, a model that solves the complete airline scheduling problem in one step is
believed to be computational intractable (Hane et al., 1995; Suhl, 1995; Desaulniers
et al., 1997; Antes et al., 1998; Barnhart et al., 1998; Klabjan et al., 2002; Barnhart
et al., 2003; Lohatepanont & Barnhart, 2004).

The traditional approach to solve the airline scheduling problem is to decom-
pose this problem into subproblems and to solve these subproblems in a sequen-
tial order (Suhl, 1995; Mathaisel, 1997; Grandeau et al., 1998; Barnhart et al.,
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Fig. 2.1 Selection of input data for airline scheduling

2003). The subproblems are less complex and can be solved independently with
(advanced) optimization approaches, each with its individual objective functions
(Etschmaier & Mathaisel, 1985). In this process, the solution of one subprob-
lem serves as input for the succeeding subproblem. Some of the subproblems are
grouped together to build aggregate phases in the airline scheduling process. Nu-
merous suggestions of researchers and practitioners exist on how to decompose
the airline scheduling problem, how to aggregate subproblems, and how to order
the subproblems within the scheduling process.1 Although the decomposition of
the overall problem and the order of the subproblems may vary among different
solution approaches, each subproblem has to be solved to obtain an airline sched-
ule that is feasible and can be operated (Suhl, 1995). In the following Fig. 2.2 only
one example is given of a decomposition of the airline scheduling problem and an
aggregation to three phases.2

For almost each of these subproblems, decision support systems (DSS) were de-
veloped. The process of airline scheduling then consists of an extensive and detailed
interaction between human experts and DSS. The objective of these DSS is to sim-
plify decision making through graphical user interfaces, to assess current schedules
or elements, to check for feasibility and compliance with restrictions and regula-
tions, and to process information through databases among the different planning

1 For different approaches see for example Suhl (1995), Barnhart and Talluri (1997), Math-
aisel (1997), Rushmeier and Kontogiorgis (1997), Grandeau et al. (1998), Gopalan and Talluri
(1998b), Jarrah et al. (2000), Erdmann et al. (2001), Leibold (2001), Barnhart et al. (2003),
Lohatepanont and Barnhart (2004).

2 The proposed structure is inspired by various models and applications to the airline scheduling
problem and its subproblems from scientific publications. A more detailed decomposition of
the airline scheduling problem is presented by Antes (1998).
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Fig. 2.2 Airline scheduling process

steps (Etschmaier & Mathaisel, 1985; Franken, 1990; Suhl, 1993; Suhl, 1995; Math-
aisel, 1997; Rushmeier & Kontogiorgis, 1997; Grandeau et al., 1998; Kontogiorgis
& Acharya, 1999). Furthermore, one of the most important tasks of DSS is to au-
tomatically solve subproblems of the airline scheduling problem. Many different
optimization techniques from the field of operations research (OR) have found their
way into DSS; in fact, airlines already began to identify the potential of OR methods
to support their planning processes in the 1950s (Etschmaier & Mathaisel, 1985;
Andersson, 1989) and have been active participants in OR since then. Since that
time, a lot of different OR-models have been applied to various airline problems
and especially the airline scheduling problem (Richter, 1989; Ball, 2003; Barnhart
et al., 2003). Their implementation in DSS focuses on the subproblems that are well
structured and, thus, can be formulated as mathematical optimization models.

Because of their success concerning selected subproblems which was due to ad-
vanced OR techniques and increased computational performance, much effort was
and is undertaken to widen the scope of the methods of OR for airline scheduling.
The level of detail an optimization model can represent and the number of decision
variables solved in one step have constantly been increased. Furthermore, the field of
application of OR methods was extended from simple and very well structured prob-
lems towards less structured problems. Thus, the extent to which automatic routines
can be used in the scheduling process has constantly grown. As a result, the human
interaction with DSS has shifted from operational decision making towards strategic
planning and forecasting. However, since there is no single optimization model for
the complete airline scheduling problem, there effort is still necessary to administer
the complete airline scheduling process and to deal with interdependencies between
single planning steps. Thus, although the individual models have been improved and
extended, the airline scheduling process is still characterized by a sequential approach
in which subproblems are solved step by step and complex and time-consuming (and,
thus, expensive) feed-back loops and iterations are implemented to account for in-
terdependencies and to improve the overall solution quality.

2.1.2 Outline

In the remainder of this chapter, an overview of the subproblems of the air-
line scheduling problem is given. Their objectives, inputs, and constraints are
presented together with solution models from existing literature to solve them.3

3 Similar (but less extensive) overviews can be found for example in Etschmaier and Mathaisel
(1985), Teodorovic (1988), Suhl (1995), Barnhart and Talluri (1997), Rushmeier and Konto-
giorgis (1997), Antes (1998), Gopalan and Talluri (1998b), Grandeau et al. (1998), Jarrah et al.
(2000), Erdmann et al. (2001), Barnhart et al. (2003), Barth (2005).
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After focusing on single subproblems, a presentation of solution approaches follows
in Sect. 2.5 that integrate two or more subproblems to capture their interdependen-
cies and, thus, to achieve a higher solution quality.4

The focus of this overview is on models used to create and optimize an airline
schedule well ahead of the days of operation (tactical planning from the time-line
perspective). Because the data and information used for this planning task might
change until the day of operation, usually a continual refinement takes place. Thus,
the closer the day of operation of a flight, the more modifications to the original
schedule are necessary to improve the actual solution (Gopalan & Talluri, 1998b;
Grandeau et al., 1998). Depending on the planning steps involved, this problem is
referred to as re-scheduling or re-assignment.5 A second need for modifications to
a schedule is caused by irregular operations because of airport closures, weather
effects, or unscheduled maintenance (Grandeau et al., 1998). In such a case, the
problem is to keep the effect of these disturbances as low as possible and to return
to regular operations as soon as possible after an exception.6 Since the focus of this
study is on the airline scheduling process described above, these problems are not
considered in the remainder.

Furthermore, the focus is on contributions which are directly related to the
passenger airline domain.7 There are several publications regarding scheduling
problems within air cargo or freight transportation, especially dealing with network
design and flight scheduling problems. Although there are similarities between a
passenger and a cargo airline, some major differences exist. For example, passen-
gers are unwilling to make large detours on their journey caused by inconvenient
connection flights. In contrast, detours are not a problem for cargo airlines as long
as the shipment arrives on time (Chestler, 1985; O’Kelly, 1986). On the other hand,
a cargo airline has to make shipment flow decisions, because deliveries between
the same origin and destination can take different routes (Armacost et al., 2002;
Link, 2006). Whereas for competing passenger airlines the departure time of each
flight has a major impact on passenger demand, flight scheduling in cargo airlines
only needs to ensure the offered service (for example overnight delivery). As cargo
flights do not need a cabin crew, crew scheduling is less important in comparison to

4 All presented models and citations are published and accessible. However, contributions to the
airline scheduling problem were presented at annual conferences of the Airline Group of the
International Federation of OR Societies (AGIFORS). Since the proceedings of these meetings
are inaccessible for the public, those contributions could not be considered in this study. For the
same reason technical or internal company reports had to be excluded.

5 For solution models see for example Teodorovic (1985), Yau (1989), Berge and Hopperstad
(1993), Klincewicz and Rosenwein (1995), Teodorovic (1995), Talluri (1996), Stojkovic et al.
(1998), Kontogiorgis and Acharya (1999), Jarrah et al. (2000), Moudani and Mora-Camino
(2000), Stojkovic and Soumis (2001), Sriram and Haghani (2003).

6 Some problems and models regarding the exception handling can be found in Argüello et al.
(1997), Luo and Yu (1997), Wei et al. (1997), Yan and Tu (1997), Argüello et al. (1998), Clarke
(1998), Luo and Yu (1998a), Luo and Yu (1998b), Song et al. (1998), (Lettovsky et al., 2000),
Thengvall et al. (2000), Filar et al. (2001), Thengvall et al. (2001), Yu et al. (2003), Thengvall
et al. (2003), Rosenberger et al. (2003), Sherali et al. (2006).

7 For example, crew scheduling issues with similar properties arise in many different industries.
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passenger airlines. Because of the differences between cargo and passenger airlines,
the cargo domain is excluded in the remainder.8

Differences between a charter airline and an airline operating with a regular
schedule mainly concern the consideration of passenger demand that has a major
impact on airline schedule design decisions. In contrast to scheduled airlines, the
market for charter airlines is well-known. Large contingents of seats are booked
before the airline schedule generation process is terminated, which, in addition to
the historical data on customer behavior, gives a very accurate knowledge about the
market demand (Erdmann et al., 2001). Thus, the schedule of charter airlines usu-
ally does not represent its most important competitive marketing instrument, and
factors like departure times or travel times play only a minor role. Charter airlines
are considered in the papers of Desrosiers et al. (2000) and Erdmann et al. (2001).

Finally, some subproblems are related to or could be formulated as vehicle rout-
ing problems (VRP) or traveling salesman problems (TSP) and their extensions. A
large number of approaches exist to solve these generic models that are out of the
scope of this study.9

2.2 Flight Schedule Generation

2.2.1 Problem

The generation or construction of a flight schedule is the first phase in the airline
scheduling process. It is one of the most important steps in airline schedule plan-
ning because it affects every subsequent planning step and has the largest impact on
passenger demand (Barnhart & Talluri, 1997; Antes et al., 1998; Hsu & Wen, 2000;
Erdmann et al., 2001). The objective of this planning step is to develop a schedule
that is presented to the public and that includes exact information about the offered
flights (Grandeau et al., 1998):

• departure and arrival airports (stopover airports in case of a connecting flight),
• departure and arrival times (determining travel times),
• flight frequencies, and
• days of operations.

The flight schedule generation is conducted between twelve weeks and six months
prior to the actual operation of the schedule; the resulting schedule is usually fixed

8 Surveys and optimization models in air cargo scheduling can be found for example in Marsten
and Muller (1980), Chestler (1985), O’Kelly (1986), Crainic and Roy (1988), Hall (1989), Ver-
wijmeren and Tilanus (1993), Kuby and Gray (1993), Barnhart and Schneur (1996), Kasilingam
(1997a), Kasilingam (1997b), Mason (1997), Raguraman (1997), Antes et al. (1998), Kim et al.
(1999), Morrell and Pilon (1999), Büdenbender et al. (2000), Crainic (2000), Armacost et al.
(2002), Armacost et al. (2004), Link (2006).

9 Surveys and problem-related overviews can be found for example in Bodin et al. (1983), Golden
and Assad (1988), Solomon and Desrosiers (1988), Desrochers et al. (1990), Golden and Wong
(1992), Desrosiers et al. (1995), Freling et al. (1997), Kim and Barnhart (1997), Desaulniers
et al. (1998), Bard et al. (2002).
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for a period of time, typically three or six months (Gopalan & Talluri, 1998b; Butch-
ers et al., 2001; Taneja, 2002). However, in the construction phase airlines usually
consider a pattern schedule for a shorter time interval (a day or a week), so that the
cyclical extension of this schedule represents the flight schedule over the whole plan-
ning horizon (Feo & Bard, 1989; Grandeau et al., 1998; Mashford & Marksjo, 2001).
This procedure has the advantage of complexity reduction in scheduling operational
tasks and of increased simplicity for passengers.

The schedule is usually determined based on traffic forecasts, tactical and strate-
gic initiatives, and seasonal demand variations (Gopalan & Talluri, 1998b; Taneja,
2002). Major constraints in this planning step are the size and composition of the
aircraft fleet and other resources, and legal factors like traffic rights (Feo & Bard,
1989; Barnhart & Talluri, 1997; Grandeau et al., 1998; Antes et al., 1998). How-
ever, since the assignment of resources is conducted in later planning steps, these
restrictions can only be considered roughly.

Within the phase of flight schedule generation, three subproblems can be
identified:

1. network design,
2. frequency assignment, and
3. flight scheduling.

2.2.1.1 Network Design

The objective of the network design problem is to identify origin-destination city
pairs (O&Ds or markets) that the airline intends to serve. Once the markets are se-
lected, the airline has to decide about its route network. Each O&D can be carried out
either by a direct flight (single-leg flight) or by a connection flight (multi-leg flight).

Two well known route network structures are the hub-and-spoke network and the
point-to-point or direct-service network (see Fig. 2.3).

In a pure point-to-point network, nonstop flights exist between all cities, whereas
in hub-and-spoke networks only larger (hub) cities are connected directly and
cities with smaller demand (spokes) are connected only to a near hub. Passen-
gers not traveling between hub cities have to change planes at hubs. In this net-
work structure the airlines can consolidate passenger flows from several city-pair
routes and combine these individual routes on hub flights, reducing the amount
of variations in the number of passengers (Hsu & Wu, 1997; Lohatepanont &
Barnhart, 2004). Thus, economies of flow concentration can be realized and the
lowest possible operating costs can be achieved (Ghobrial & Kanafani, 1995a;
Hsu & Wen, 2000). In contrast to a point-to-point network, more markets can
be served with a higher frequency with the same number of aircraft (Lederer &
Nambimadom, 1998; Patty & Diamond, 1998). The drawback of a hub-and-spoke
system is the inconvenience for a traveler to have to use connection flights with in-
creased total travel time and possible congestion at traffic peaks at the hub airport.
However, the increased frequency can offset the passenger’s longer travel times
(Ghobrial & Kanafani, 1995a; Hsu & Wen, 2000).
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Fig. 2.3 Hub-and-spoke and direct-service network

The (two-stop) hub-and-spoke network became the most common network struc-
ture in the USA after the deregulation and typically consists of three to seven hubs
(Jaillet et al., 1996; Lederer & Nambimadom, 1998; Reynolds-Feighan, 2001; But-
ton, 2005). However, on average there are more direct connections today than before
1978 (Barnett et al., 1992). In addition, low-cost airlines usually have a point-to-
point network (Alderighi et al., 2005), thus, both systems are established in coex-
istence. In fact, even for a single airline it is recognized that a mixed system is
the most profitable network structure (Dobson & Lederer, 1993; Lederer & Nambi-
madom, 1998).

Airline networks are studied in several disciplines. Economics researchers, op-
erations researchers, and transportation engineers have all made contributions to
understand airline networks (Lederer & Nambimadom, 1998). Especially hub-and-
spoke networks (and in some cases point-to-point networks as comparison) have
attracted much attention.10 These studies mainly include empirical ex post analyses
of existing route networks and investigate simplified models with regard to their im-
pact on service quality in terms of frequency, air fares etc. The external perspective
in the studies reduces their applicability to the flight schedule generation problem.
However, the major findings that can be used as a suggestion when choosing a route
network might be summarized in one sentence: A point-to-point (hub-and-spoke)
network is advisable if distances between cities are very large (small), demand is
high (low), and there is a small (high) number of cities (Lederer & Nambimadom,
1998; Wojahn, 2002).

2.2.1.2 Frequency Assignment

The aim of this planning step is to assign a frequency (number of flights during
the planning horizon) to each O&D. Some studies identified the frequency and the
fare as the main driving forces for a passenger’s choice of a flight or carrier. Be-
cause the air fare is in most cases determined by the intensity of competition on the

10 See for example Oum and Tretheway (1990), Dennis (1994b), Dennis (1994a), Ghobrial and
Kanafani (1995a), Jaillet et al. (1996), Hsu and Wu (1997), Bania et al. (1998), Lederer and
Nambimadom (1998), Hsu and Wen (2000), Wei and Hansen (2006).
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market, many researchers denote the frequency as the only possibility for an airline
to differentiate from its competitors and to influence the demand for its flights.11

The influence of frequency on passenger demand can be explained by two factors:

• An airline that offers a high number of flights in a market is perceived more and,
thus, receives more attention from passengers and is more attractive for them.
Some studies examined this relation between the frequency of an airline and
its impacts and identified a disproportional relation between market share and
frequency share (Gelerman & de Neufville, 1973; Bouamrene & Flavell, 1980).

• One important factor when traveling is the total travel time. The total travel
time is the sum of the total flight time, time at a connection airport, access time
at the departure and arrival airport, and the difference between the desired and
the offered departure or arrival time. With an increasing frequency and, thus,
number of departures, the difference between desired and offered departure time
decreases, making each flight more attractive to passengers (Jorge-Calderón,
1997; Billette de Villemeur, 2004; Wei & Hansen, 2005).

2.2.1.3 Flight Scheduling

In the flight scheduling problem, exact departure times are determined. Some au-
thors include the designation of the arrival times. However, because different air-
craft types fly with different speeds and are assigned to the flights in a later planning
stage, only approximate arrival times can be specified (Subramanian et al., 1994;
Barnhart & Talluri, 1997). The choice of proper departure times depends mainly on
two factors:

• demand distribution: The demand for air travel is not distributed uniformly over
a given horizon (for example a week) but varies with the day of the week and
time of the day. Because business travelers need to travel at the beginning and
the end of regular business days and weeks, there is a higher demand at the
beginning and end of each week and in the morning and evening of each day
(Teodorovic & Krcmar-Nozic, 1989; Proussaloglou & Koppelman, 1999). The
demand distribution and its peaks can be described by time-of-week or time-
of-day curves.12 However, passengers that travel for pleasure mainly focus on
price when selecting a flight.

• connection possibilities: The main objective of the installation of hub-and-
spoke networks is to offer a large number of O&D-itineraries. This can be
accomplished by matching single flight legs to form connection flights. A min-
imum connection time has to be considered to allow a passenger to change air-
craft. On the other hand, a passenger wants to reduce his total travel time, thus,
stopovers should be as short as possible. These considerations have to be taken

11 See for example Gelerman and de Neufville (1973), Bouamrene and Flavell (1980), Morrison
and Winston (1985), Teodorovic and Krcmar-Nozic (1989), Ghobrial and Kanafani (1995a),
Jorge-Calderón (1997), Borenstein and Netz (1999).

12 See Fig. 4.12 on page 86 for examples of different time-of-day curves that were derived from
observed travel behavior.
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Fig. 2.4 Schedule structure of the Alitalia hub in Milan Malpensa (MXP) on 19th January
2005 (Source: Danesi (2006))

into account when selecting departure times for flight legs. The practice in hub-
and-spoke networks is to schedule waves: in a short time interval, a high number
of aircraft arrive or depart at the hub. Between two waves passengers can con-
nect between flights. As a relatively large number of aircraft is on ground at
the same time, many different connection flights can be offered (Dennis, 2000;
Patty & Diamond, 1998). Fig. 2.4 gives an example of this concept, presenting
the number of arriving and departing flights over the day at Milan Malpensa.
Periods of arriving flights followed by many departures are clearly visible.

2.2.2 Solution Models

General network design and scheduling problems have been intensively studied in
different disciplines. Many different algorithms and applications were developed.
For surveys, see for example Magnanti and Wong (1984), Minoux (1989), Jaillet
et al. (1996), Kim and Barnhart (1997), Gendron et al. (1999), Crainic (2000). How-
ever, since the flight schedule generation problem of airlines is far more complex,
the typical airline practice today is to build flight schedules manually, with limited
optimization. No airline uses an automated model that captures all the relevant fac-
tors and constructs a schedule from scratch (Barnhart & Talluri, 1997; Gopalan &
Talluri, 1998b; Erdmann et al., 2001; Smith et al., 2001; Taneja, 2002; Yan & Tseng,
2002; Barnhart et al., 2003). With recent research advances, optimization is getting
more attention also in the early planning stages (Barnhart et al., 2003). Simplified or
heuristic techniques can be used to support a manual decision process when creating
a schedule (Day & Ryan, 1997). In the following, a selection of models that can be
used to support the flight schedule generation phase is presented.
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2.2.2.1 Network Design

A lot of research on hub-and-spoke-networks has been conducted and models were
developed that assist in making routing decisions within this network structure. A
classical and frequently encountered problem is the single-hub location problem
(with non-hub routes prohibited). The objective is to find a hub location so that each
non-hub city is connected to the hub and total transportation costs are minimized.
Campbell (1994b) provides a survey of network hub location problems. O’Kelly
(1987) addresses this problem using a quadratic integer model with two heuristics.
Integer programming formulations for a variety of single-hub and multi-hub loca-
tion problems are presented by Campbell (1994a) and hub center and hub covering
problems are introduced. In the model of Aykin (1995) direct connections are al-
lowed. The author presents several integer programming models for single-hub and
multi-hub location problems including fixed costs for establishing hubs. The pro-
posed solution procedure includes enumeration algorithms and greedy-interchange
heuristics. Jaillet et al. (1996) observe that candidates for hub locations depend more
on their geographical position than on their own demand level.

Jeng (1988) studies the mix of hub and direct routing flights chosen by an airline,
and shows how network parameters such as demand level, geographical distance be-
tween cities, and number of cities served affect the routing choices. Lederer (1993)
and Marianov et al. (1999) consider competition when making routing decisions.
In the model of Lederer (1993), competition is modeled as a non-cooperative game
where airlines select network designs first and then prices for transportation between
any two nodes. A game-theoretical approach assuming two carriers is also used by
Alderighi et al. (2005); the authors identify conditions under which a hub-and-spoke
and a point-to-point network can coexist. Marianov et al. (1999) use a heuristic ap-
proach. Their one- or two-hub model allows an airline to capture customers if it can
provide a shorter distance (or time) from the origin to the destination.

2.2.2.2 Frequency Assignment

Hansen (1990) presents an n-player, non-cooperative game in which the airline’s
sole strategy set is frequency of service. The set of simplifying assumptions
include fixed air fares, adequate capacity, inelastic demand of price and ser-
vice level and consideration of nonstop and one-stop services only. Teodor-
ovic and Krcmar-Nozic (1989) use a two-step approach to determine flight
frequencies in an airline network under competitive conditions. The relation
between frequency and the number of passengers is estimated by simulation in the
first step. Then, the optimal frequency for each route is obtained by combining a
heuristic algorithm with a multi-variable non-linear integer problem.

2.2.2.3 Flight Scheduling

Trietsch (1993) faces the problem of scheduling connections at a hub facility where
arrivals and departures are subject to stochastic variation. Based on given optimal
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departure times, the scheduled ground time of each plane is adopted to minimize
the expected sum of the airline’s and passengers’ costs and delay penalties. Wu
and Caves (2002) work on a similar problem. Based on their earlier investigation
(Wu & Caves, 2000) on how the trade-off situation between the ground time of
a turnaround aircraft and schedule punctuality performance varies with the buffer
time allocated to the schedule, it is their objective to improve the reliability and
robustness of a flight schedule by implementing buffer time between two succeeding
flights and, thus, scheduling the departure times. The same problem is tackled by
Lan et al. (2006). Departure times are rescheduled within given time windows to
reduce passenger disruptions because of flight delays without requiring additional
aircraft to fly the schedule. Another approach to increase a schedule’s robustness
via rescheduling is presented by Lee et al. (2007). The problem is modeled as a
multi-objective programming problem and solved using a genetic algorithm (GA).
The use of a multi-objective genetic algorithm allows to choose different parameters
as a measure for robustness. To evaluate the flight schedules, a simulation model is
applied which simulates airline operations under operational irregularities.

In the approach of Patty and Diamond (1998), the flight scheduling problem for
a special case is considered. In a single-hub network flights to and from spoke cities
have to be assigned to waves at the hub airport. Each complex is specified by its
directionality (inbound or outbound), a time interval, and the number of possible
flights (which is restricted by the number of available gates or slots). The number
of desired frequencies between two cities is given and the objective is to find a
feasible assignment of flights to the complexes requiring the minimum number of
aircraft while providing the desired level of service. This problem is formulated as a
network model with side constraints and an enhanced primal partitioning approach
is used to obtain optimal solutions.

2.3 Aircraft Scheduling

2.3.1 Problem

While OR has had relatively little impact on the flight schedule generation phase,
the aircraft and crew scheduling phases have attracted more attention. A reason
for this observation might be that these phases build on a given flight schedule
whose construction already removed a large amount of uncertainty. Aircraft and
crew scheduling problems are better structured and, thus, can better and more reli-
ably be expressed in mathematical models.

The objective of the aircraft scheduling phase is to assign one aircraft to each
flight leg of a given flight schedule. Two subproblems have to be solved in this
phase: fleet assignment, and aircraft routing.

2.3.1.1 Fleet Assignment

The fleet assignment is usually solved several months before operating the flights,
its solution affects all later planning steps in the airline scheduling process
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(Barnhart & Talluri, 1997; Rexing et al., 2000). The objective of the fleet assign-
ment problem is to assign aircraft types to the flight legs so that profit is maximized.

Airlines usually possess aircraft of several types. Aircraft of the same type (fleet)
have some characteristics in common: cruising speed, fuel consumption, capac-
ity, noise restrictions, crew requirements, required ground equipment, maintenance
requirements, cost structures, and minimum turn times13 (Barnhart et al., 1998;
Gopalan & Talluri, 1998b; Wu & Caves, 2000). As a result, different fleets pro-
duce different revenues if assigned to the same flight segment, and, given a fleet
schedule, a large part of the airline cost estimates and total revenue is fixed (Gu
et al., 1994; Desaulniers et al., 1997).

In fleet assignment, profit is maximized by minimizing two types of costs: opera-
tional costs and spill costs (Subramanian et al., 1994; Barnhart et al., 1998; Barnhart
et al., 2002). Operational costs are the costs for flying the flight leg with the assigned
aircraft type and usually include such costs like fuel and landing fees. Spill costs rep-
resent opportunity costs that arise if passenger demand exceeds the aircraft capacity
and, thus, potential revenue is lost (Barnhart et al., 2003).

A fleet assignment has to satisfy many constraints. Major constraints include:

• aircraft count: The number of assigned aircraft of one fleet may not exceed the
number of available aircraft of this type.

• flight coverage: Each flight has to be covered by exactly one aircraft type.
• flow balance: The number of arrivals and the number of departures of each fleet

at one airport have to be the same. If the flow balance constraint is not satisfied,
flights without passengers are needed to reposition an aircraft (deadhead flights)
and the problem becomes more complicated (Gopalan & Talluri, 1998b).

• curfew restrictions: A fleet’s operational limitations at certain airports have to
be considered (e.g. noise limitations, runway lengths, gate sizes etc.).

In the basic fleet assignment model, maintenance and crew constraints are not con-
sidered. However, because major interdependencies between these problems exist,
a higher solution quality can be achieved by integrating maintenance and crew de-
cisions in the fleet assignment problem. Such models are presented in Sect. 2.5.

For domestic service, the fleet assignment model is usually formulated for a typ-
ical day. On international routes or for a less regular schedule, the airline has to
solve a more complicated weekly fleet assignment problem (Talluri, 1996; Barnhart
& Talluri, 1997; Andersson et al., 1998; Gopalan & Talluri, 1998b; Emden-Weinert
& Proksch, 1999; Jarrah et al., 2000). In a daily fleet assignment, modifications to the
fleet schedule for weekend flights have to be made in a separate step in order to cap-
ture the different demand structures for these flights (Subramanian et al., 1994; Tal-
luri, 1996; Gopalan & Talluri, 1998b; Kontogiorgis & Acharya, 1999; Jarrah et al.,
2000).

Whereas a variable or weekly fleet assignment promises improvements in rev-
enue, a daily fleet assignment makes operations easier (Barnhart & Talluri, 1997). It

13 The minimum turn time denotes the time that is necessary to prepare an aircraft after landing
for the next flight, operations during this time (usually 30-60 minutes) include (de-) boarding,
cleaning, refueling etc.
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is easier to schedule gates, crews and maintenance when the same equipment types
are assigned to fly the same flight legs every day. Gopalan and Talluri (1998b) state
that these benefits generally outweigh the additional revenue obtained by a variable
fleeting. Although passenger demand varies by the day of week, the variation is usu-
ally system-wide. The demand is uniformly high over the entire system on certain
days and uniformly low over the entire system on certain days. Therefore, it is not
clear how much more demand can be captured on the high demand days.

2.3.1.2 Aircraft Routing

In the fleet assignment problem, only one aircraft type is assigned to each flight leg.
Given this fleet schedule, the objective of the aircraft routing is to find a feasible
and profit-maximizing assignment of physical aircraft to the flight legs (Barnhart
et al., 1998). Because each individual aircraft can be identified by its registration or
tail number, this planning step is sometimes referred to as tail routing (Barnhart &
Talluri, 1997; Antes, 1998). The aircraft routing problem is usually conducted for
each fleet separately (Barnhart et al., 1998).

An aircraft routing consists of a number of flight legs that can be operated by the
same aircraft (thus, the departure time of a leg must be greater than the arrival and
turn time of the previous leg). A sequence of aircraft routings that starts and ends
at the same location and that can be flown by one aircraft is denoted as rotation. A
rotation can be flown by more than one aircraft (in parallel), and many airlines con-
struct one rotation per fleet (Gu et al., 1994; Clarke et al., 1997). Each aircraft then
is subject to identical flying conditions and maintenance requirements, resulting in
an equal utilization of the aircraft and easier operational planning.

In the aircraft routing problem two subproblems can be identified:

• through flight assignment, and
• maintenance routing.

Through Flight Assignment. Passengers are willing to pay a higher fare if they
do not need to change aircraft on connecting flights because they do not need to
transfer gates to make a connection and can avoid the possibility of irritations such
as misrouted baggage (Gopalan & Talluri, 1998b).14 This phenomenon is addressed
in the through flight assignment problem: the objective is to identify flight legs that
have the highest impact on profit when flown by the same (physical) aircraft. The
higher revenue of such a sequence of flight legs (through flights) is expressed by
through values associated with the routing.

Additionally, through flights are ranked above regular connection flights on the
screens of computer reservations systems (CRS). Research has shown that the order

14 The problem of assigning gates at airports to flights is related to this subject. In this problem,
usually the total distance that every connecting passenger has to walk to change aircraft is
minimized. Models and solution approaches for the gate assignment problem were developed
by Mangoubi and Mathaisel (1985), Vanderstraeten and Bergeron (1988), Bihr (1990), Gosling
(1990), Su and Srihari (1993), Cheng (1998), Haghani and Chen (1998), Yan and Chang (1998),
Bolat (1999), Gu and Chung (1999), Bolat (2000), Yan and Huo (2001), Yan and Tang (2007).



2.3 Aircraft Scheduling 21

Table 2.1 Maintenance system for a jet aircraft (hypothetical example) (Source: Wells
(1998))

Inspection Time between
Inspections

Labor Duration Work Performed

En-route
service

each stop 1 hour 0.5 hour walk-around – visual inspection to
ensure no obvious problems, such
as leaks, missing rivets, or cracks

Overnight 8 hours Varies Up to 8
hours

Ad-hoc repairs – Work varies

A-check 125 hours 60 hours 8 hours Primary examination – fuselage ex-
terior, power plant, and accessible
subsystems inspected

B-check 750 hours 200 hours Overnight Intermediate inspection – panels,
cowlings, oil filters, and airframe
examined

C-check 3,000 hours 2,000-12,000
hours

5 days Detailed inspection – engines and
components repaired, flight con-
trols calibrated, and major internal
mechanisms tested

D-check 20,000 hours 15,000-35,000
hours

15-30
days

Major reconditioning – cabin in-
teriors removed, flight controls
examined, fuel system probed, and
more

of appearance has a high impact on the passengers’ choice of a flight, thus, the
airlines try to position their flight as far above as possible (Copeland et al., 1995;
Suhl, 1995; Gopalan & Talluri, 1998b).15

Maintenance Routing. The aviation authorities of each country (for example the
FAA in the USA) require each aircraft to undergo regular maintenance checks. The
requirement of a maintenance check usually depends on a combination of flight
hours and landing and take-off cycles of each aircraft (Sriram & Haghani, 2003).
In general, four categories of maintenance checks can be identified: the A-, B-, C-,
and D-check. For example, the A-check has to be conducted every 65 flight hours or
about once a week and has a regular duration of about eight hours, whereas the heav-
ier C- or D-check occurs every one to four years taking the aircraft out of service
for up to a month (Sriram & Haghani, 2003). Table 2.1 presents an (hypothetical)
example for the required maintenance checks of a jet aircraft.

Because the latter checks generally reduce the total number of aircraft available
for schedule operations, in airline scheduling the main concern is to meet the A-
checks (Feo & Bard, 1989; Clarke et al., 1997; Gopalan & Talluri, 1998b). For that
reason airlines usually require each aircraft to undergo maintenance every three or
four days, depending on the aircraft age (Talluri, 1998). Unless exceptional circum-
stances occur, inspections and repairs take place at night, ensuring a high aircraft

15 For the problem of assigning flight numbers to the legs in the current schedule see for example
the contribution of Gopalan and Talluri (1998b).
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Fig. 2.5 Timeline network involving two airports (Source: Barnhart et al. (2003))

utilization (Feo & Bard, 1989; Subramanian et al., 1994; Barnhart & Talluri, 1997;
Gopalan & Talluri, 1998a; Sriram & Haghani, 2003).

2.3.2 Solution Models

Aircraft routing and scheduling models were the earliest OR-models of airline plan-
ning. First approaches were developed in the 1950s (Ferguson & Dantzig, 1956b;
Ferguson & Dantzig, 1956a) and 1960s (Dantzig, 1963; Miller, 1967). Most of these
models consider simplified flight schedules where the number of alternative routes is
small. The minimization of the fleet size necessary to fly the schedule was one com-
mon objective in those approaches (Pollack, 1974; Gertsbach & Gurevich, 1977).

2.3.2.1 Fleet Assignment

The complexity of the basic daily fleet assignment problem is studied by Gu et al.
(1994). The authors analyze the structure of the solution as a function of the number
of fleets; they observe that the complexity of the feasibility problem for two fleets is
unknown and for three fleets it is NP-complete.

Most models to solve the daily fleet assignment problem are formulated as large
multi-commodity flow problems with side constraints defined on a time-expanded
network (Abara, 1989; Hane et al., 1995; Clarke et al., 1996; Barnhart & Talluri,
1997; Kim & Barnhart, 1997). The network contains flight arcs corresponding to
flight legs, ground arcs corresponding to aircraft on the ground and overnight arcs
corresponding to overnighting aircraft, the aircraft correspond to the commodities,
a count line is used to determine the number of aircraft in use (see Fig. 2.5).

A typical mathematical formulation is given in the paper by Hane et al. (1995).
However, as the number of integer variables is large, it can be difficult and time-
consuming to find optimal integer solutions. These problems are often severely
degenerated, which leads to poor performances of standard integer linear program-
ming (LP) techniques. Hane et al. (1995) discuss various methods to decrease the
size of the problem, including variable aggregation, cost perturbations, dual sim-
plex with steepest-edge pricing, and intelligent branch-and-bound strategies. Most
approaches to the fleet assignment problem focus on different techniques to re-
duce complexity when solving the formulated model (Sriram & Haghani, 2003).
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For example, in one of the first models, Abara (1989) uses the simplex method,
fractional variables are then rounded to obtain an integer solution.

Daskin and Panayotopoulos (1989) present an integer program to solve the fleet
assignment problem for a hub-and-spoke network with a single hub. They propose a
Lagrangian relaxation of the problem and combine it with heuristics for converting
the Lagrangian solutions into primal feasible solutions.

Berge and Hopperstad (1993) address the re-fleeting problem. The mathemati-
cal programming formulation they describe is similar to the daily fleet assignment
formulation, except for the aircraft count constraint, which is no longer required
because the aircraft are positioned at the beginning of the planning horizon. The
number of aircraft of each type present at each station at the beginning of the plan-
ning horizon ist fixed. They present two heuristic solution approaches: one heuristic
solves a sequence of single-commodity flow problems, and the other begins with a
feasible assignment and performs multiple profit-improving aircraft swaps.

A weekly fleet assignment model is solved by Kliewer and Tschöke (2000). The
authors use a simulated annealing (SA) approach to deal with the higher complexity.
Kliewer (2000) combines this approach with a demand model: Once one tempera-
ture level is completed, the current fleeting is sent to the market model. The market
model then forecasts the number of passengers on each itinerary based on the given
fleet assignment, and the simulated annealing algorithm continues.

In most fleet assignment models spill costs are leg-based. Thus, it is assumed
that capacity is constrained only on the leg for which the estimate is being made
and unconstrained on every other flight leg. In consequence, estimates of recap-
tured revenue are achieved without knowledge of capacity or passenger flow on
the flight network. Barnhart et al. (2002) develop a fleet assignment model based
on O&D-itineraries using a a branch-and-price approach. This model is capable of
capturing network effects and more accurately estimating spill and recapture of pas-
sengers. Moreover, the authors include demand and fares for different fare classes in
their model. Theoretically branch-and-price offers the best chance of finding a so-
lution that is close to the optimum, but column generation requires the solution of a
constrained shortest path problem which can be both memory and time consuming.
Moreover, its application requires significant customization of the IP solver and best
reduced cost columns may improve the LP value but not the IP value (Klabjan et al.,
2001b). Relaxations, heuristic procedures or integration of domain-knowledge are
common practices to support or replace these decisions (Anbil et al., 1992; Chu
et al., 1997).

Further information on the fleet assignment problem including models and ap-
proaches is published by Sherali et al. (2006). In this paper, the authors present a
tutorial including basic and integrated fleet assignment models on a detailed level.

2.3.2.2 Aircraft Routing

A common formulation for the aircraft routing problem is a network circulation
problem with side constraints where exact and heuristic algorithms are applied
to find feasible subtours. Solutions are considered to be feasible if each aircraft
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overnights at an appropriately equipped maintenance station at least every three or
four days (Barnhart & Talluri, 1997). Thus, flight connections during the day are
fixed and only overnights are allowed as maintenance opportunities (Gopalan &
Talluri, 1998a). Because this may lead to aircraft rotations that are not able to fulfill
the three- or four-day maintenance requirement, swapping techniques for the flights
are necessary to unlock a rotation. Talluri (1998) develops a model for the four-day
aircraft maintenance routing problem. Several heuristics and one exact approach are
proposed to solve this problem. Furthermore, the mathematical complexity regard-
ing the four-day routing problem and the three-day routing problem is investigated.

Bard and Cunningham (1987) consider the single through flight assignment prob-
lem. When through values are not considered, the aircraft routing problem is usually
reduced to a feasibility problem (Cordeau et al., 2001; Klabjan et al., 2002). How-
ever, if through flight assignment and maintenance routing are solved separately,
the latter problem is constrained by the results of the first, making it more difficult
to find an optimal or even feasible solution (Gopalan & Talluri, 1998b). For exam-
ple, since the pair of flight legs that constitute the through flight must be flown by
the same aircraft, less freedom at the routing phase for the design of efficient rout-
ings that meet maintenance requirements is provided. Clarke et al. (1997) present an
aircraft routing problem under consideration of through revenues and maintenance
constraints. The objective is to build rotations that are profitable measured by the
sum of through values of routing flights through airports, operationally attractive
in terms of a single rotation for each fleet, and satisfy maintenance requirements
by allowing aircraft to visit maintenance stations regularly for a sufficient length of
time. In this approach, all connections between flights are used as options for main-
tenance (instead of using only overnight connections). Moreover, this approach can
handle different types of maintenance requirements. The problem is formulated as
an asymmetric traveling salesman problem with side constraints and is solved by
using Lagrangian relaxation and heuristics.

Generally, in aircraft routing models capacity constraints at maintenance sta-
tions are not considered because A-checks usually only require minor inspections.16

Some aircraft maintenance models consider the more intensive but less frequent
balance-check. In order to ease scheduling operations, this constraint is met by per-
forming the balance-check every n days whether there is one rotation of n aircraft
in the fleet (Barnhart & Talluri, 1997; Gopalan & Talluri, 1998a).

Feo and Bard (1989) consider the maintenance location problem which involves
finding the minimum number of maintenance stations required to meet the main-
tenance requirement for a proposed flight schedule. Stops during the day are not
considered as maintenance opportunities. This problem is formulated as a mini-
mum cost, multi-commodity network flow problem with integer restrictions on the
variables. Because the size of the formulation is too large to optimize, they give a
two-phase heuristic that begins by generating aircraft assignments to match flight
requirements. A probabilistically set covering heuristic is then used to locate the
maintenance stations.
16 Duffuaa and Andijani (1999) present an integrated simulation model for the planning of main-

tenance operations for a maintenance station.
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Lan et al. (2006) solve the aircraft maintenance routing problem to create robust
schedules. The objective is to find an aircraft routing that is less susceptible to flight
delays and does not propagate a single disruption through the following flights. The
problem is formulated as a mixed-integer programming problem with stochastically
generated inputs, the objective function is to minimize the expected total propagated
delay for the selected routings.

Sarac et al. (2006) solve an operational aircraft maintenance routing problem.
In this problem, a routing for individual aircraft to maintenance stations has to be
found on a daily basis. In contrast to traditional maintenance routing approaches,
this approach does not construct a regular maintenance schedule but focuses on
the operational excecution of maintenance, which might be affected by stochas-
tic events. In addition, maintenance resource availability constraints are taken into
account. Based on the remaining legal flying hours without violating maintenance
restrictions, the aircraft have to be rerouted to appropriate maintenance stations with
enough maintenance hours and maintenance slots. The problem is formulated as a
set-partitioning problem and solved using a branch-and-price approach.

2.4 Crew Scheduling

2.4.1 Problem

Crew costs represent the highest direct operating cost of an airline after aircraft-
related costs. Thus, significant cost reductions can be reached by solving the crew
scheduling problem optimally (Anbil et al., 1991; Graves et al., 1993; Desaulniers
et al., 1997; Andersson et al., 1998; Emden-Weinert & Proksch, 1999; Lucic &
Teodorovic, 1999; Barnhart et al., 2003). Although a large number of airline per-
sonnel is necessary to operate an airline schedule, in traditional crew scheduling
only aircraft crews are considered. An aircraft crew consists of the flight deck crew
(pilot, co-pilot, and flight engineer on older planes) and the cabin crew (purser and
flight attendants).

The objective of the crew scheduling problem is to find an optimal assignment
of crew members to the flights determined by the previous planning steps. The
quality of a solution is usually defined by a combination of crew costs and crew sat-
isfaction (Lucic & Teodorovic, 1999; Gamache et al., 1999; Butchers et al., 2001;
Sriram & Haghani, 2003). The crew scheduling represents a very complex opti-
mization problem because of many constraints defined by work-rules that are given
by legal regulations, union agreements, and company policies (Graves et al., 1993).
Usually, a crew schedule has a duration of one month and is constructed four weeks
to two months before operation (Anbil et al., 1991; Dillon & Kontogiorgis, 1999;
Butchers et al., 2001; Cordeau et al., 2001).

Because of the complex structure of work-rules and crew costs, the crew schedul-
ing problem is solved in a two-step process (Gamache & Soumis, 1998; Emden-
Weinert & Proksch, 1999; Dawid et al., 2001; Barnhart et al., 2003; Guo et al.,
2006):
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1. crew pairing, and
2. crew assignment.

2.4.1.1 Crew Pairing

Given a flight schedule and fleet assignment, sequences of flight legs that can be
flown by the same crew are generated (Vance et al., 1997; Cordeau et al., 2001; Yan
et al., 2002). A sequence of flight legs with short rest periods separating them and
brief and debrief times is called a duty period. The length of a duty period is usu-
ally one day. A sequence of duty periods with overnight rests between them forms
a crew pairing (see Fig. 2.6). Each pairing begins and ends at the same crew base
(cities where crews are stationed) and typically lasts between two and five days for
domestic flights and up to three weeks for long-haul flights (Anbil et al., 1991; Hoff-
man & Padberg, 1993; Jarrah & Diamond, 1997; Desaulniers et al., 1997; Emden-
Weinert & Proksch, 1999). However, in some cases a pairing includes flights that
the crew fly as passengers (deadhead flights). These flights are used to reposition a
crew to a city where it is needed to cover a flight, or to enable the crew to return to
its base at the end of a pairing (Vance et al., 1997). The situation in which a crew has
to stay outside its home base is referred to as lonely overnight. Although the costs
of deadhead-flights are very high, there are cases where this can be economically
feasible (Arabeyre et al., 1969). Especially in long-haul operations where relatively
few flights may be scheduled in and out of a particular location, deadheading is an
essential component (Barnhart & Shenoi, 1998). When allowing deadheading, the
crew pairing problem becomes more complicated (Gopalan & Talluri, 1998b).

The objective of the crew pairing problem is to find a set of feasible pairings that
minimizes crew costs and maximizes crew utilization (Jarrah & Diamond, 1997;
Day & Ryan, 1997; Desaulniers et al., 1997; Butchers et al., 2001; Yan et al., 2002).
In general, the planned pairings have to be feasible but are not allocated to individ-
ual crew members at this first stage (Day & Ryan, 1997; Butchers et al., 2001; Yan
et al., 2002). One major constraint is the permission for each crew member to work
only on certain aircraft types. A member of the flight deck crew usually is authorized

Fig. 2.6 Pairings in crew scheduling (Source: Suhl (1995))
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to fly only one aircraft type, whereas cabin crew members usually work on differ-
ent fleet types. In addition, the number of required pilots depends on the aircraft
type whereas the number of flight attendants is specified by the number of expected
passengers on a flight. Thus, the crew pairing problem is solved separately for the
flight deck and cabin crew (Barnhart & Talluri, 1997; Vance et al., 1997; Andersson
et al., 1998; Lucic & Teodorovic, 1999; Butchers et al., 2001; Sriram & Haghani,
2003). However, since the optimization problem remains the same, the two crew
types are not distinguished in the remainder. Further restrictions in the crew pairing
problem include (Arabeyre et al., 1969; Vance et al., 1997; Anbil et al., 1998; Lucic
& Teodorovic, 1999; Butchers et al., 2001; Taneja, 2002; Barnhart et al., 2003):

• limits on the maximum number of hours worked in a day,
• limits on the maximum flying hours,
• limits on the maximum number of hours worked over several days,
• the minimum and maximum number of hours of rest between duty periods,
• the maximum number of flight duties in one pairing,
• the minimum and maximum number of hours of rest between flight legs,
• the maximum time the crew may be away from their home base.

Sometimes contractual obligations also require that the total flying amount has to
be divided among the flight crews at different crew bases so that the total amount of
flying hours assigned to crews from a given base must be within a specific interval.
These restrictions ensure that crews at the various bases will all have the opportunity
to receive credit for approximately the same number of hours of work each month
(Vance et al., 1997). A further important feature of crew scheduling solutions from
the management point of view is their operational robustness or sensitivity to dis-
ruptions of the planned flight schedule (Butchers et al., 2001; Yen & Birge, 2006).
Often, operational robustness rules are sensible rules of thumb that minimize the
impacts of disruptions on the day of operation. For example, providing rest periods
slightly longer that the minimum legally required could allow crews to still have
their legal rest periods if their flight arrives late. In addition, a desirable feature of
a pairing may be that all crew members on a flight perform the same sequence of
flights for as much of their duty period as possible and stay with the same aircraft.
This greatly reduces the propagation of disruptions from one flight to other flights
on the day of operation (Anbil et al., 1991; Butchers et al., 2001).

Like the restrictions, the costs of a pairing depend on agreements within the air-
line and, thus, may differ from airline to airline (Yan et al., 2002). A general cost
structure may include the following variables (Barnhart & Talluri, 1997; Vance et al.,
1997; Cordeau et al., 2001; Barnhart et al., 2003):

• costs per flying hour,
• accommodation expenses such as transport, meals, and hotel rooms when

overnight connections take place outside the crew base,
• total elapsed work time,
• total time away from base,
• on-duty-time costs,
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• deadhead costs,
• minimum guarantee costs (per day, per flight etc.).

Airlines with a stable and regular flight schedule solve a standard daily or weekly
problem. Airlines with variable flight schedules must solve a fully dated problem,
and the crew pairings solutions can differ from day to day (Andersson et al., 1998;
Butchers et al., 2001).

2.4.1.2 Crew Assignment

In the previous step, only generic crew pairings are generated (Day & Ryan, 1997;
Butchers et al., 2001; Yan et al., 2002). Individual crew members are assigned to
the specified pairings in the crew assignment phase that is usually completed two
weeks before operation (Butchers et al., 2001). After this step, each crew member
has a personal flight schedule with the duties for the next planning horizon. Each
work schedule usually consists of four to five pairings and typically lasts up to a
month (Jones, 1989; Anbil et al., 1991; Dawid et al., 2001). As the pairings from
the previous step serve as input for planning this problem, the crew assignment can
usually be solved for each aircraft type and home base separately (Desaulniers et al.,
1997; Emden-Weinert & Proksch, 1999; Sriram & Haghani, 2003).

The objective of the crew assignment problem is to find efficient and equitable
assignments (Day & Ryan, 1997; Desaulniers et al., 1997; Gamache & Soumis,
1998; Gamache et al., 1999; Barnhart et al., 2003). This usually involves a con-
flict of management and crew objectives (Yan et al., 2002): management wishes to
minimize the number of crew members required, while crew members wish to max-
imize their satisfaction with the roster. Although the crew scheduling problem has
an obvious cost significance, the important issue of crew satisfaction also affects
the costs of operating crew schedules (Day & Ryan, 1997). Crew dissatisfaction can
indirectly lead to significant cost increases.

In crew assignment, two procedures can be identified:

• bidline generation, and
• rostering.

Bidline Generation. Bidline generation is the common practice of most US air-
lines. In this method, sequences of pairings that can be flown by one crew member
construct bidlines (Jarrah & Diamond, 1997; Dillon & Kontogiorgis, 1999). Each
bidline has to satisfy restrictions like minimum rest periods between each pairing,
etc. The objective of the bidline generation step is to maximize the utilization of
each crew member and some quality measure defined by the particular crew group
(Christou et al., 1999; Butchers et al., 2001).

After the bidline generation process, individual crew members bid for each
monthly work schedule according to their needs and desires. The bidding process is
based on seniority, thus, a crew member with a higher rank and longer time of em-
ployment at the airline is more likely to be assigned to a favorable schedule (Jarrah
& Diamond, 1997; Dillon & Kontogiorgis, 1999; Dawid et al., 2001).
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Sometimes bidlines or pairings remain unassigned (Dillon & Kontogiorgis, 1999;
Butchers et al., 2001). These flights, along with charters and unplanned flights are
carried out by reserve flight crews (Dillon & Kontogiorgis, 1999). Reserve crew
members do not select their flying in advance. Instead they bid for bidlines that
consist of days on call.17

Rostering. As in bidline generation, pairings are grouped together to form monthly
work schedules (rosters) for individual crew members. In contrast to bidline gen-
eration, rosters are assigned directly to the crew members. This problem is more
complex than the bidline generation because apart from legal restrictions like min-
imum rest times etc. the availability or pre-assigned activities of each crew mem-
ber have to be taken into account (Gamache & Soumis, 1998; Emden-Weinert &
Proksch, 1999; Gamache et al., 1999; Lucic & Teodorovic, 1999; Butchers et al.,
2001; Dawid et al., 2001; Yan et al., 2002):

• annual leave,
• training or observer flights,
• sick leave,
• visa regulations,
• transition activities that began in the preceding month and end at the beginning

of the current month,
• medical appointments,
• flights or rest periods granted to an employee at specific times during the month.

In a preferential bidding approach, personalized schedules are constructed as in
regular rostering, while also considering a set of crew members’ bids for single
flights (Gamache et al., 1998; Butchers et al., 2001). The aim is to maximize the
award of crew members’ preferences while respecting seniority.

The objective when building crew rosters is a fair and even distribution of the
work load and unfavorable flights among all crew members and the maximization of
the crew members’ aggregated satisfaction, measured by various agreed collective
quality measures (Gamache et al., 1999; Dawid et al., 2001; Butchers et al., 2001).

2.4.2 Solution Models

The crew scheduling problem is one of the most studied problems within the airline
scheduling process. Moreover, many models applied to crew scheduling problems
outside the airline domain can be transferred into airline scheduling. However, since
work-rules and crew cost structures differ from airline to airline and from country
to country, most solution approach models generalize crew scheduling problems.
Andersson et al. (1998) present an overview of some similarities and differences in
crew scheduling between Europe and North America.18 An overview of commercial

17 Dillon and Kontogiorgis (1999) and Sohoni et al. (2004) present an approach for the reserve
crew scheduling problem.

18 Surveys can be found in Arabeyre et al. (1969), Bodin et al. (1983), Ball and Roberts (1985),
Gershkoff (1989), Barutt and Hull (1990), Jarrah et al. (1994), Desaulniers et al. (1998), Butch-
ers et al. (2001), Barnhart et al. (2003).
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systems used by major airlines for crew scheduling is given by Graves et al. (1993)
and Desaulniers et al. (1997).

First solution approaches for airline crew scheduling problems were developed
in the 1950s and 1960s (Arabeyre et al., 1969; Barnhart et al., 2003). Initially,
heuristics were used because of the high complexity of crew scheduling problems
and the lack of computer power; exact algorithms could only be applied to re-
stricted problems (Arabeyre et al., 1969; Butchers et al., 2001; Barnhart et al., 2003).
Since the mid-80s, improvements in optimization techniques and increasing com-
puter power have resulted in the development of exact optimization methods for the
crew scheduling problem (Butchers et al., 2001; Barnhart et al., 2003). Since then,
researches have attempted both heuristic and exact approaches to solve the crew
scheduling problem (Jarrah & Diamond, 1997; Barnhart et al., 2003). However, the
crew scheduling process remains a very complex problem and even now many air-
lines still use either heuristic or manual methods to solve crew scheduling problems
(Kwok et al., 1995; Butchers et al., 2001).

Both subproblems of crew scheduling, crew pairing and crew assignment, are
usually formulated as set partitioning problems (SPP), set covering problems (SCP)
or network models (Desaulniers et al., 1997; Andersson et al., 1998; Dillon & Kon-
togiorgis, 1999; Ozdemir & Mohan, 2001; Yan & Tu, 2002; Barnhart et al., 2003).
As the number of combinations of trips is extremely large, researchers usually em-
ploy a branch-and-bound search tree in each problem (Dillon & Kontogiorgis, 1999;
Barnhart et al., 2003). Most of the research has been focused on the improvement of
these models and algorithms regarding branching and bounding decisions (Klabjan
et al., 2001b; Yan & Tu, 2002; Yan et al., 2002). Those enhancements include for
example constraint relaxation, heuristic procedures, decomposition approaches, in-
tegration of domain-knowledge, and column generation etc. (Barnhart et al., 1998;
Barnhart et al., 2003). Although these approaches could efficiently optimize crew
scheduling problems, when the problem size is increased or additional constraints
are included, traditional SPP or SCP become more complicated and more difficult
to solve (Yan & Tu, 2002)

2.4.2.1 Crew Pairing

In contrast to crew assignment, the crew pairing problem is computationally more
intensive. In addition, crew costs are affected much more by the quality of the pair-
ing than by the assignment (Anbil et al., 1991). Thus, the crew pairing problem has
received more attention from researches than the crew assignment problem (Butch-
ers et al., 2001; Dawid et al., 2001).

As stated, early attempts to solve this problem were based on heuristic proce-
dures. For example, Baker et al. (1979) and Ball and Roberts (1985) use (simple)
exchange procedures to iteratively improve a crew pairing solution. Barnhart et al.
(1995) use a heuristic to improve crew pairing solutions through the efficient selec-
tion and utilization of deadhead flights.

In general, the crew pairing problem consists of two major components (Hoffman
& Padberg, 1993): the generation as well as the optimization of feasible pairings.
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Gershkoff (1989), Anbil et al. (1991), and Graves et al. (1993) propose a heuristic
approach for the crew pairing problem consisting of these two steps: pairings are
generated and then followed by an SPP for randomly selecting manageable subsets
of the flight schedule by using an integer programming approach. Both steps are
iteratively repeated until there are no improvements in the cost function.

Most approaches to crew pairing optimization use an SPP as problem formula-
tion, in which the rows of a binary matrix correspond to the flight legs that have
to be assigned to pairings. The columns correspond to feasible pairings. The objec-
tive is to find a good subset of pairings that cover each flight leg exactly once. The
SPP is NP-hard and, thus, no efficient (polynomial) solution algorithm is available.
Even for small instances, the number of pairings cannot be enumerated in reason-
able time and for realistic problem sizes the set of possible pairings is innumerable
(Anbil et al., 1991; Andersson et al., 1998). For example, in an early attempt using
an SPP, the approach of Marsten and Shepardson (1981) is restricted to relatively
small problems where the set of feasible pairings can be generated a priori. Much
research has been conducted to overcome these difficulties. The majority of pub-
lications on the crew pairing problem mainly differ in the method of establishing
a smart enumeration technique (Andersson et al., 1998). For example, the column
generation approach proposed by Lavoie et al. (1988) is used in different variants
in many publications.19 A common practice is to combine randomness and domain
knowledge when generating columns (Anbil et al., 1992; Chu et al., 1997). Barn-
hart and Shenoi (1998) suggest an approach that solves first an approximate model
of the crew pairing problem. This near feasible advanced start solution then provides
good lower bounds that speed up a column generation technique. This approach is
designed for long-haul flight networks because they are relatively sparse and typi-
cally consist of a weekly schedule. Vance et al. (1997) solve the daily crew pairing
problem in a two step process. In a first step good duty periods are selected that
cover the flight schedule. A duty period represents a sequence of flight legs with
short rest periods. These duty periods are used as building blocks in the second step
where pairings are generated using a dynamic column generation approach. Klabjan
et al. (2001b) first solve the linear programming relaxation and then select columns
which best reduce the cost for the integer program. The number of columns is re-
duced by a heuristic based on linear programming. Finally an integer solution is
obtained with a commercial integer programming solver. The branching rule of the
solver is enhanced by combining strong branching and a specialized branching rule.
Desaulniers et al. (1997) present a column generation approach for a weekly pairing
problem that explicitly manages all rules and restrictions, including those related to
duties, during the construction of feasible pairings.

An alternative approach without column generation is proposed by Hoffman and
Padberg (1993). The authors present an exact branch-and-cut approach that is based
on a heuristic to obtain good integer-feasible solutions quickly and a cut generation
procedure to tighten the linear relaxation. In their approach, crew base constraints
were explicitly considered. Mingozzi et al. (1999) use a heuristic procedure to find

19 See for example Crainic and Rousseau (1987), Barnhart et al. (1994), Barnhart et al. (1998),
Andersson et al. (1998), Anbil et al. (1998), Yan and Chang (2002).
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lower bounds within a branch-and-bound approach to the SPP. Levine (1996) solves
the SPP using a steady-state genetic algorithm (GA) that is combined with a lo-
cal search heuristic. However, a traditional (specialized) branch-and-cut solution
approach for the investigated problem instances was significantly more successful
than the GA. A GA-approach is also used by Ozdemir and Mohan (2001). Instead of
solving an SPP, the authors apply the algorithm to a flight graph representation that
represents several problem-specific constraints. As input they use the flight schedule
rather than pre-processed columns.

Desaulniers et al. (1997) formulate the crew pairing problem as an integer, non-
linear multi-commodity network flow problem with additional resource variables.
A branch-and-bound algorithm based on an extension of the Dantzig-Wolfe decom-
position principle is used to solve this model. A network representation is also used
by Yan and Tu (2002).

In the approach of Lagerholm et al. (2000) a feedback artificial neural network
(ANN) is presented to solve the crew pairing problem. The objective is to minimize
the total crew waiting time. One constraint limits the maximum number of flight
legs in a pairing. A second constraint allows the crews only to follow rotations that
start and end at the home base.

Usually, a daily crew pairing problem is solved. Klabjan et al. (2001a) solve the
crew pairing problem for a weekly schedule. The authors extend the objective func-
tion of minimizing costs to capture the repetition or regularity of crew itineraries.
Regularity is important with respect to crew (and aircraft) schedules, since regular
solutions are much easier to implement and manage, and, if possible, crews prefer to
repeat itineraries. The authors present a solution algorithm that integrates a heuris-
tic in the consideration of subsets of columns with an optimization-based pricing
approach.

In general, crew pairing for domestic or regional flight operations is more com-
plicated than for international flights because domestic flights are shorter, and, thus,
more flights are conducted within a given time interval. Hence, the number of pos-
sible connections a crew can make and the number of possible pairings is much
larger than in international operations, especially when operating a hub-and-spoke
network (Vance et al., 1997; Desaulniers et al., 1997; Andersson et al., 1998; Chang,
2002).

2.4.2.2 Crew Assignment

In contrast to the crew pairing problem, less work has been reported on solution
methods for crew assignment (Butchers et al., 2001; Dawid et al., 2001). This step
is still performed manually or with simple heuristics in many airlines (Dillon &
Kontogiorgis, 1999; Gamache et al., 1999; Lucic & Teodorovic, 1999; Dawid et al.,
2001; Butchers et al., 2001). One reason for this might be the difficulty of integrating
crew satisfaction in a mathematical optimization model.

Bidline Generation. Jones (1989) presents a system for the monthly bidline gener-
ation problem. Using a heuristic technique, bidlines are generated that are deemed
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attractive by the crew members. To minimize the chances of missed flights due to
crew member error, the numbers of days on and off are evenly distributed. Christou
et al. (1999) address the bidline generation problem by using a genetic algorithm
together with a local improvement heuristic that swaps assignments. Campbell et al.
(1997) propose a simulated annealing approach. The objective is to minimize the
number of bidlines and of unassigned flights (that would have to be assigned in sub-
sequent steps). In a two-step process, first as many valid bidlines as possible are
generated using simulated annealing, and second a greedy heuristic forces as many
unassigned flights as possible onto additional valid bidlines.

Rostering. A simple heuristic for the crew rostering problem is presented by Nico-
letti (1975). For each day of the month, pairings are assigned to individuals selected
from a pool of available crew members. Thus, rosters are constructed day-by-day. In
this approach, potential difficulties on succeeding days are not taken into account.
Some pairings may not be assigned or uneven workloads are produced (Lucic &
Teodorovic, 1999).

Lucic and Teodorovic (1999) present a simulated annealing approach for the
rostering problem. Their approach attempts to solve the aircrew rostering problem
as a multi-objective optimization problem, thus constructing personalized monthly
schedules on the basis of several criteria.

Ryan (1992) and Gamache et al. (1999) formulate a basic model for the crew ros-
tering problem as generalized SPP with side constraints. In the approach of Ryan
(1992), a heuristic is first used to generate a priori a set of feasible rosters for each
employee. The rest of the problem is then solved by using specialized integer pro-
gramming. The objective of this approach is to minimize the number of crew mem-
bers and to maximize a function that attempts to measure crew preferences. In the
approach of Gamache et al. (1999) a heuristic is used to find a good integer solution.
At each node of the decision tree, a column generation technique is used to solve
the linear relaxation of the generalized SPP. The objective is to maximize the total
duration of pairings to be covered by the regular crew members during the month.

Gamache and Soumis (1998) present an approach to the two-week rostering prob-
lem that is based on column generation embedded in a branch-and-bound algorithm.
They showed that the assignment of skeleton activities during optimization is sub-
stantially more cost-effective than a pre-assignment.

In the approach of Day and Ryan (1997), first lines-of-work are constructed that
are consistent with the off-days for each crew member over a sub-roster period.
Then an SPP approach is used to determine an optimal feasible sub-roster. These
two steps are repeated for each subsequent sub-roster period until a full legal and
feasible roster is constructed for the complete roster period.

Dawid et al. (2001) solve the crew rostering problem by using an efficient adap-
tation of the branch-and-bound technique. The model incorporates several strategies
that exploit problem-specific knowledge and rostering-specific properties (e.g. vari-
able selection, branching strategy and cutting-planes) in order to solve even large
problems. This approach shortens the solution process and outperforms standard
techniques or general-purpose optimizers.
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Gamache et al. (1998) present a solution approach for the preferential bidding
rostering that uses a sequential method based on seniority order. For each crew
member a residual problem is solved. Given a crew member and a set of unassigned
pairings, the solution to an integer linear program determines the crew member’s
maximum-score schedule while taking into account all the remaining crew mem-
bers. The residual problem is solved by column generation embedded in a branch-
and-bound tree. Integer solutions are obtained by using cutting planes.

In general, the crew pairing problem is solved first to reduce the complexity of the
crew assignment problem. However, if problem size is small enough, crew schedul-
ing can be solved in one step. An intermediate approach is presented by Chang
(2002). In this approach, flight duties are assigned to individual crew members thus
bypassing the pairing generation. The approach aims at short-haul problems be-
cause in this case the limited time between flights prevents the crew from executing
duties in another aircraft. The assignment of duties is much easier than the assign-
ment of the rotations because the length of a duty is a day. The rotation, however,
varies from one day to several days. The duty-forming process creates the elemen-
tary duties according to the aircraft’s schedule and some rules such as the maxi-
mum sectors in a duty and crew numbers for duty execution. In order to enhance
the efficiency of crew dispatching, the duty assignment process considers all duty
connection rules such as minimum rest time and the limitation of flight hours while
assigning the duty. Since the assignment unit is a duty, a crew’s duty can be changed
very easily. Thus, this approach can be used for crew re-scheduling during irregular
operations.

2.5 Integrated Models

2.5.1 Overview

The reason for the decomposition of the airline scheduling problem is to reduce
complexity. Its subproblems are less complex and easier to solve than the overall
airline scheduling problem.

However, if a problem is decomposed, interdependencies between the subprob-
lems are not considered. In addition, in a sequential solution process solutions of
previous subproblems limit flexibility of later planning steps (Cordeau et al., 2001).
This may result in suboptimal or even infeasible solutions to the overall problem
(Barnhart et al., 1998; Cordeau et al., 2001; Mashford & Marksjo, 2001; Klabjan
et al., 2002; Barnhart et al., 2003). For example, the fleet assignment can lead to vi-
olations of maintenance requirements and increased crew costs, and in flight sched-
ule generation the availability of resources and their costs of assignment are usually
not considered (Clarke et al., 1996; Clarke et al., 1997; Langerman & Ehlers, 1997;
Barnhart et al., 1998; Kliewer, 2000; Mashford & Marksjo, 2001; Klabjan et al.,
2002; Yan & Tseng, 2002; Barnhart et al., 2003; Cohn & Barnhart, 2003).

To cope with these interdependencies, airlines have implemented feedback-loops
and iterations between the planning steps in their scheduling environment. Thus,
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decisions in later planning steps (e.g. crew or aircraft scheduling) are sent to pre-
vious steps (e.g. flight scheduling) where manual adjustments and slight modifica-
tions are performed (Grandeau et al., 1998; Rexing et al., 2000; Sriram & Haghani,
2003). These iterations are necessary to improve solution quality with this planning
paradigm but are at the same time costly and time-consuming.

With advances in optimization theory, algorithms, and computational hardware,
researchers were able to solve more complex problems and developed solution ap-
proaches to integrate subproblems that were solved separately before (Sherali et al.,
2006). In the remainder of this section such solution models are presented. The or-
der of presentation is chosen according to the number of subproblems combined
in each approach starting with the approaches that integrate two subproblems of
different airline scheduling phases.20

2.5.2 Models

Network Design and Frequency Assignment. Many contributions to the flight
schedule generation problem integrate the network design and frequency assignment
problem, focusing on different aspects such as the airline network structure or the
airline hubbing problem (Kanafani, 1981).

In the approach of Berechman and Shy (1996) the choice of a monopoly air-
line between a hub-and-spoke and a point-to-point network is determined. By intro-
ducing flight frequencies and travel time into the passengers’ utility function when
choosing an itinerary, they find that an airline will choose to operate a hub-and-
spoke network if higher flight frequencies can compensate for the inconvenience of
having to connect at the hub.

The analysis of Brueckner and Zhang (2001) determines optimal fares and flight
frequencies in a hub-and-spoke network and a point-to-point network. The model
uses a distribution of desired arrival times across passengers, along with a utility
function that depends negatively on schedule delay, which equals the difference
between the desired and actual arrival time. The result is that flight frequency is
higher in the hub-and-spoke network. Another result is that, despite lower costs per
passenger in the hub-and-spoke network, greater flight frequency allows the airline
to charge a higher fare to passengers. In this model, a monopoly airline and only
fixed flight costs are assumed.

In the model of Ghobrial et al. (1992) an O&D-demand matrix and a set of candi-
date routes is given. They solve the frequency planning where candidate routes may
yield a zero frequency, thus, this approach also partially solves the network design
problem.

In the study of Hsu and Wen (2000) a series of models to forecast airline city-
pair passenger traffic and to determine the shape of a carrier’s airline network and its

20 Sherali et al. (2006) present integrated fleet assignment models and solution approaches. Be-
cause this paper does not present a newly developed model, this paper is not included in the
following. However, because the authors conduct a thorough analysis of existing approaches,
this paper is recommended to get a detailed insight into research on the fleet assignment
problem.
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corresponding flight frequencies is presented. The exact number of passengers who
will connect to another flight at an intermediate airport and the total travel time of
individual routes are difficult to estimate because routing and scheduling decisions
are later planning steps. To resolve these difficulties, in this study grey clustering
to evaluate routes with uncertain and vague parameters is applied. Teodorovic et al.
(1994) address this problem using fuzzy logic and single-objective programming;
however, their model does not forecast passenger traffic on individual city-pairs.

Lederer and Nambimadom (1998) analyze the choice of a network design and
frequency assignment to its route. Their objective is to examine how network choice
and scheduling decisions affect airline costs and passenger service quality. The pa-
per demonstrates how structural parameters such as the distance between cities, the
demand rates and the number of cities served affect the optimal airline network.

Network Design and Aircraft Routing. Balakrishnan et al. (1990) solve the net-
work design and aircraft routing problem in one step. The objective is to find routes
for long-haul aircraft from a main base to one or more terminal bases in order to
maximize total profit with respect to given (inter-city) traffic estimates and revenues
for each origin-destination pair, aircraft operating costs, and aircraft capacities. The
routes of the aircraft then determine the network structure of the airline. The prob-
lem is formulated as a multi-commodity network flow problem and is solved using
a heuristic procedure based on Lagrangian relaxation. This procedure first finds a
feasible solution that is improved with a local search technique afterwards. Because
cities need to be indexed in this approach, this solution technique is suitable for car-
riers with a thin long-haul route network that covers very vast geographic areas in
which the distances between intermediate cities are relatively large.

Richardson (1976) optimizes the routing of aircraft of a long-haul international
carrier operating in a low density market. The solution to this problem determines
the network structure. A mixed integer linear programming approach is formulated
that is solved by using Benders’ decomposition algorithm. Given demand estimates
for each flight leg and operational data, the objective is to maximize profit derived
from each routing.

Frequency Assignment and Flight Scheduling. Dobson and Lederer (1993)
present a mathematical program to study the competitive choice of flight schedules
and route prices by airlines operating in a single-hub system. Assumptions in their
model include a single aircraft size, one class of customers, no traffic originating at
or destined to the hub airport, airline variable costs dependent on flying time alone
and zero variable passenger costs. An additional assumption requires that duopolists
serve the identical set of spoke cities using the same hub. The passengers’ demand
is modeled as a logit function depending on the service and the fare. The service
is measured in terms of total travel time and deviation between desired and actual
departure time. An airline’s total demand is calculated in an iterative two-phase pro-
cess. In the first phase, a heuristic develops a flight schedule including fares and
maximizing profit. In the second phase, competing airlines adjust their schedules
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and fares. A second heuristic builds an equilibrium regarding frequencies and fares.
Both phases are repeated in an iterative process.

Flight Scheduling and Fleet Assignment. Rexing et al. (2000) solve the daily ba-
sic fleet assignment problem given a flight schedule and departure time windows.
Within each time window the actual departure time may be changed to allow so-
lutions of higher quality. For this, the time windows are discretized into smaller
intervals. Because the time windows have a maximum of +/– 10 minutes width, the
authors assume that the demand does not vary. A time window of zero width can be
assigned to flights that are not allowed to be changed (e.g. for shuttle flights, slots,
waves). The problem is modeled as a time-space network. To reduce complexity, a
network preprocessing step is conducted.21

In the approach of Ioachim et al. (1999), based on a weekly flight schedule
with departure time windows, the fleet assignment and flight scheduling problem
is solved under consideration of schedule synchronization constraints over the dif-
ferent days of the week. All flights to be performed during a week are scheduled
simultaneously instead of solving a daily problem and repeating its solution. The
authors use a multi-commodity flow formulation for the fleet assignment problem
that includes this new type of constraint. The optimal solution approach is based on
the Dantzig-Wolfe decomposition. The problem of schedule synchronization occurs
in the long-range planning process of many airlines. When flights with the same
identifier are flown on different weekdays, the departure has to be scheduled at the
same time every day for marketing purposes. Other requirements, such as main-
tenance or restrictions on the aircraft types found together at a given base are not
included in the proposed problem formulation.

Bélanger et al. (2006) present a fleet assignment problem with time windows.
The objective is to schedule the flights within the given time windows so that the
flights do not compete with each other. To reduce the effects of competing flights,
penalties for flights in the same market departing close to each other and time-
dependent revenues are included in a non-linear integer multi-commodity network
flow structure which is solved using a branch-and-price strategy.

Flight Scheduling and Aircraft Routing. Levin (1971) proposes the first model
for the daily aircraft routing and scheduling problem with variable departure times.
Time windows are modeled by allowing departure times to occur at discrete intervals
within the time window. The problem is formulated as a network problem with side
constraints. To reduce the size of the resulting network, which is huge for wide flight
departure time windows, a node aggregation technique is proposed. The authors
use an integer linear program with bundle constraints and solve the problem with
branch-and-bound methods. Only one fleet is considered.

In the approach of Pollack (1974), departure time windows for each flight as well
as already assigned aircraft types are given. His objective is to minimize the fleet

21 This model is used in the integrated solution approach presented in this study in Sect. 4.3. It is
presented in detail on pages 100 ff.
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size that is necessary to carry out all flights by determining departure times within
the given intervals.

Fleet Assignment and Aircraft Routing. Barnhart et al. (1998) present a
combined fleet assignment and aircraft routing problem. In an enhanced fleet
assignment model, through values and maintenance constraints are considered. The
authors introduce flight strings that present sequences of flights that begin and end
at maintenance stations. These strings contain the operational costs as well as neg-
ative through revenues and opportunity costs for spilled passengers. To solve this
problem, the authors use a branch-and-price technique. However, this approach
is a slightly modified sequential approach because in the enhanced fleet assign-
ment model only pseudo-maintenance constraints for a sufficient number of aircraft
at maintenance stations are considered. Thus, an aircraft routing model has to be
solved in the second step to guarantee feasible solutions.

Sriram and Haghani (2003) face the maintenance routing problem including a
heterogeneous fleet of aircraft for a seven-day time horizon. The weekly scheduling
problem allows the inclusion of less frequent maintenance checks like the B-check.
Maintenance is performed at night and flight sequences during the day are supposed
to be fixed. In a multi-commodity network flow formulation, the authors suggest a
hybrid heuristic of random search and depth-first search to solve this problem.

Fleet Assignment and Crew Pairing. In the approach of Barnhart et al. (1998)
the fleet assignment and crew pairing problems are still solved sequentially, but the
fleet assignment model is enhanced to incorporate properties of the crew scheduling
problem. The relaxation of the crew pairing problem within the fleet assignment
model is based on a duty network and ensures that all flight legs are covered by
eligible crews. However, constraints on the maximum number of duties within a
pairing or the maximum time away from the crew base are not imposed. Because
only time-away-from-base is considered as a dominant crew cost, this model may
only be suitable for long-haul service where this assumption is reasonable.

Subramanian et al. (1994) formulate the daily fleet assignment problem as a
large-scale mixed integer linear program / time-space network in which a combi-
nation of operating and passenger spill costs is minimized. The authors propose two
different objective functions aiming at minimizing the number of aircraft needed or
to maximize profit. During optimization, crew properties are considered by mini-
mizing the number of lonely overnights.

Aircraft Routing and Crew Pairing. The crew pairing approach by Cohn and
Barnhart (2003) is extended by incorporating key maintenance routing decisions.
With their approach, they can guarantee a crew pairing solution that is also feasible
concerning the maintenance constraints.

Based on a given fleet assignment, Cordeau et al. (2001) present an integrated
approach with approximate crew costs, in which they link maintenance routing and
crew pairing models by a set of additional constraints. The solution process iterates
between a master problem that solves the aircraft routing problem, and a subproblem
that solves the crew pairing problem. The model incorporates aircraft maintenance
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constraints as well as the most important crew scheduling constraints. These con-
straints are in fact the basic ones that must be considered by most airlines and may
completely represent the work-rules of a small regional carrier or those of an airline
with a simple collective agreement. The authors present a a combination of Benders’
decomposition and branch-and-price approach.

Crew Pairing and Crew Assignment. Yan et al. (2002) present a crew pairing model
that includes factors such as multiple home bases and mixed aircraft types by building
so-called individual pairings (that can be assigned to more than one cabin crew mem-
ber). To minimize crew costs, the authors present eight models that are formulated as
integer linear programs solved by column-generation-based algorithms.

Zeghal and Minoux (2006) present a combined crew pairing and assignment
problem for pilots and officers for airlines conducting short and medium haul flights.
The problem is formulated as large scale integer linear program in which the deci-
sion variables relate to individual crew members (instead of generic crew pairings)
with new constraints that replace a large number of binary exclusion constraints.
The problem could be solved using standard linear programming technology,
however, the authors develop a heuristic that turns out to be more efficient for the
test problems.

In the approach of Guo et al. (2006), multiple home bases are included in a par-
tially integrated crew pairing and assignment problem. Before conducting the crew
assignment step, this approach first constructs chains of crew pairings taking weekly
rests and guaranteed individual pre-scheduled activities into account and including
crew base dependent costs and capacities. This problem is formulated as a time-
space flow network problem and solved using standard exact optimization tech-
niques. Because of this extension of the crew pairing problem, the following crew
assignment can better be solved without additional necessary modifications of the
pairing solution. Thus, by considering these elements, the second crew assignment
step can be easier solved.

Network Design, Frequency Assignment, and Fleet Assignment. Jaillet et al.
(1996) present a model for the problem of route selection, frequency assignment and
fleet assignment for hub-and-spoke networks. Because no a priori hub-and-spoke
structure is assumed, the proposed network structure is far from looking like a pure
hub-and-spoke system, although the design suggests the presence of strong connect-
ing hubs. The authors propose heuristic schemes based on mathematical program-
ming to obtain good solutions. The model is based on the assumption of a single
airline operating with a fixed share of market demand. The objective is to minimize
the total transportation costs. Inter-city passenger travel demand is estimated based
on a simple gravity model.

Wojahn (2002) studies the case of a monopoly airline that maximizes profit. A
hub-and-spoke and point-to-point network are compared to each other and a model
that allocates the frequency and aircraft capacity to each route is presented.

Adler (2001) attempts to evaluate the most profitable hub-and-spoke network for
an airline in a competitive environment. The author determines the airline’s routes
in a hub-and-spoke network, the frequency of service, aircraft sizes, and air fares.
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The competitive model can be defined as a multi-airline, non-cooperative, two-stage
game. In the first stage, all competing carriers select (one or two) hubs and con-
nections by using an integer linear programming model that either minimizes the
great circle distance between hubs and spokes or the total number of passengers
flying on more than one-leg journeys. Once connections are set, they cannot be
changed within the game. An airline can choose not to connect a spoke through
low frequency, but the spoke cannot be attached to a different hub once the first
stage has been completed. The second stage of the game pits competing carrier net-
works against each other based on frequency, aircraft sizes and air fares based on the
knowledge of all the airlines’ choices during the first stage. Decision variables are
computed using a multi-nomial logit market share model implanted in a nonlinear
mathematical program which computes airline profits (or losses).

Flight Scheduling, Fleet Assignment, and Aircraft Routing. Soumis et al. (1980)
describe a model that iteratively solves the aircraft routing problem of selecting the
flights that improve profits, and the problem of passenger assignment to these flights
to estimate revenues. The objective is in general to minimize the difference between
the utilization cost of the aircraft of different fleets and passenger revenue, taking
into account the loss of revenue associated with passenger dissatisfaction caused
by the quality of service. A partial heuristic optimizes the schedule by adding or
dropping flights if there is an improvement in the objective function. This model is
on a daily basis and does not provide recapture possibilities, thus if the demand is
larger than the capacity of one aircraft route, revenue is lost. It is also assumed that
the airline can specify a set of candidate flights probably including most of those in
operation.

Desaulniers et al. (1997) solve a daily aircraft routing and scheduling problem.
They provide a fleet type for each leg, the routing for each aircraft, and departure
times given different fleets (including their operational and cost data), flight legs over
a one-day horizon, and departure windows. As formulation for this problem, the au-
thors present two models. One is an SPP-type formulation and another one is a time
constrained multi-commodity network flow formulation. A column generation tech-
nique is used to solve the linear relaxation of the first model and a Dantzig-Wolfe
decomposition approach is used to solve the linear relaxation of the second model.

Flight Scheduling, Aircraft Routing, and Crew Pairing. Klabjan et al. (2002)
reverse the order in which they consider the maintenance routing and crew pair-
ing problems. To achieve feasible solutions of the aircraft routing problem, aircraft
count constraints are added to the crew scheduling model. However, this model does
not guarantee maintenance feasibility. In addition, this model allows the departure
time of each flight leg to be moved within a given time window to further reduce
crew costs. The flexibility in departure times should result in feasible pairings that
would have been infeasible based on the original schedule.

Fleet Assignment, Aircraft Routing, and Crew Pairing. Clarke et al. (1996)
solve the fleet assignment problem under consideration of maintenance and crew
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constraints. Thus, the fleet assignment model accounts some of the downstream
effects on later planning steps but does not include these elements as integral com-
ponent of the optimization. While retaining solvability, better crew connections are
constructed. Although crew costs are not explicitly considered, they can be reduced
by avoiding lonely overnights. Aggregate maintenance constraints are included that
require a minimum number of maintenance opportunities. These aggregate con-
straints are approximate because they do not guarantee that the maintenance op-
portunities are distributed equally among the individual aircraft. One aircraft may
have more maintenance opportunities than it needs whereas another may have none.
Thus, this approach still may not yield a feasible solution to the aircraft routing
problem because individual aircraft are not considered.

Rushmeier and Kontogiorgis (1997) solve the daily fleet assignment problem.
They use an enhanced multi-commodity flow network which represents connection
time rules in their full complexity. This allows the recognition and treatment of
connection possibilities to utilize aircraft most efficiently. To capture interrelations
with later planning steps, crew and maintenance considerations are integrated in the
objective function as soft constraints. The model does not consider the full aircraft
routing implications.

Network Design, Frequency Assignment, Flight Scheduling, and Aircraft
Routing. Erdmann et al. (2001) address a problem consisting of the flight sched-
ule generation and aircraft routing problem for a charter airline. The problem is a
special case of the schedule generation problem which particularly arises in charter
business. Based on a given fleet and a set of origin-destination pairs with associ-
ated passenger demands (evenly distributed), aircraft rotations for all aircraft of the
fleet are created that maximize profit. Departure and arrival times are introduced as
much as necessary to model the passengers’ switching of aircraft. The problem is
modeled as a capacitated network design problem and solved by a branch-and-cut
approach.

In the approach of Mashford and Marksjo (2001) a model to optimize generic air-
line routes using a simulated annealing approach (SA) is developed. Each solution
is represented as a flight graph. During a simulated annealing run, current solutions
are modified in two ways: The local substitution operator acts by randomly choosing
an aircraft, choosing a sub-tour of the tour of that aircraft and then substituting an
allowable sub-tour for the chosen sub-tour by either (randomly) changing flight legs
in an aircraft’s route or by changing departure times of flights. The timing adjust-
ment operator acts by randomly selecting a departure and then randomly changing
the departure time in such a way as to maintain feasibility. In the evaluation phase
necessary in each iteration of the SA, the current schedule is evaluated with regard
to operating profit. Two main components in this step are the connection builder
and the passenger assignment builder. Whereas the connection builder constructs
feasible and desirable O&D-itineraries, the latter model assigns passengers to these
itineraries using a calculated attractiveness by simulation. The reason for this is the
modeling of the actual behavior of an individual passenger and the interaction with
a reservation system. The actual behavior of a passenger leading to a reservation is
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a function of the reservation system state, thus, the reservation system state evolves
with time.

Network Design, Frequency Assignment, Flight Scheduling, and Fleet
Assignment. The model of Lohatepanont and Barnhart (2004) integrates the sched-
ule design and the fleet assignment. The schedule design part of the complete pro-
cedure selects flights to be included into the schedule from a given set of candidate
flights. Thus, this part includes the subproblems network design, frequency assign-
ment, and flight scheduling. The set of candidate flights consists of two groups of
flights: a mandatory flight list with flights that must be included into the schedule,
and an optional flight list that the algorithm may, but need not, include into the
schedule. The selection of flights from the complete set and the assignment of fleet
types to these flights is simultaneously optimized by extending the fleet assignment
model from Barnhart et al. (2002) with demand correction terms (see page 23).
These variables modify the input demand for the model as changes to the sched-
ule are made. Their calculation is based on a schedule evaluation procedure that
estimates the demand for each itinerary. As it would be necessary to perform an
exponential number of evaluation runs (one run for each possible set of flights) to
determine the correction terms, rough estimates are used and iteratively revised as
needed. Another approach that does not continuously adjust demand as the schedule
changes is an approximation of the interactions between demand and supply using
recapture rates which are iteratively revised.

Network Design, Frequency Assignment, Flight Scheduling, Fleet Assignment,
and Aircraft Routing. Yan and Tseng (2002) present an integrated model for the
flight schedule generation and aircraft scheduling problem. Neither draft timetable
nor preset operational flight leg information are utilized in the proposed model. In-
stead, more accurately given trip demands and all the supply constraints (e.g. aircraft
types, fleet size and airport slots, airport quotas) and related cost data serve directly
as the model’s basic input. The objective is to construct profit-maximizing (daily)
aircraft rotations. Maintenance or through flight considerations are not included in
the aircraft routing subproblem and departure intervals for flights are given. De-
mand for flights only depends on fares. The problem is formulated as an integer
multi-commodity network flow problem with side constraints. An algorithm based
on Lagrangian relaxation, a sub-gradient method, the network simplex method, the
least cost flow augmenting algorithm and the flow decomposition algorithm are
developed to solve the problem.

2.6 Summary, Conclusion, and Future Challenges

2.6.1 Summary

An airline schedule represents the central element within an airline’s corporate plan-
ning framework and consists of two elements:
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• the flight schedule that contains detailed information on the offered flights (like
departure and arrival times and airports) and that is presented to potential pas-
sengers, and

• the assignment of aircraft and crew resources to the flights.

The airline schedule is an airline’s primary marketing tool, having the largest in-
fluence on passenger demand. Furthermore, it affects every operational decision.
Given an airline schedule, a significant portion of revenues and costs is fixed. Conse-
quently, airline scheduling is one of the most important planning tasks in an airline.
However, because of the large number of factors that have to be taken into account
simultaneously when constructing or optimizing an airline schedule, this problem
also represents the most demanding challenge for the airline.

Because of its complexity, the consensus today is that a single model for the air-
line scheduling problem is computationally intractable and that this planning prob-
lem is best solved in a sequential process. The overall problem is decomposed into
subproblems of less complexity that are solved in a sequence. Subproblems are then
aggregated to phases in the airline scheduling process. One possible decomposi-
tion and solution process can be found on page 10, consisting of the phases flight
schedule generation, aircraft scheduling, and crew scheduling. The purpose of this
chapter was to introduce these subproblems including their objectives and major
constraints as well as presenting optimization models that were developed to solve
these subproblems.

Solution approaches to more than one subproblem were presented in Sect. 2.5.
Many researchers developed solution approaches that integrate two or more sub-
problems of the airline scheduling problem and reported (significant) improvements
in solution quality. In some models, a second subproblem is only approximated. For
example, if in a fleet assignment model maintenance considerations are included by
ensuring sufficient maintenance opportunities, the aircraft routing problem might
still be infeasible because the spacing of maintenance visits and individual aircraft
were not considered (Clarke et al., 1996; Clarke et al., 1997). One interesting result
of the previous section is that there is only little work integrating crew scheduling
problems to the flight schedule generation and aircraft scheduling phase. Although
there might be a high potential for increases in profits because of high crew costs,
in this study it is believed that the following three facts might be the main reasons
for this observation:

• Crew work-rules are highly affected by company policies and legal restrictions,
thus, these rules may differ from airline to airline and country to country, as
do many crew costs. Because of this, an optimization approach that solves a
generic crew scheduling problem might be of theoretical interest only.

• Because of the high number and variety of restrictions, the crew scheduling
problem is a very complex problem by itself, and, thus, it is even harder to
solve a combination of this problem and another airline scheduling problem.

• To solve the crew scheduling problem, human factors like team quality and
satisfaction have to be considered that are hard to quantify. Thus, many crew
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scheduling problems are still solved manually or using simple heuristics em-
bedded in systems that support key decisions of human schedulers.

2.6.2 Conclusion

Optimal solutions of the airline scheduling problem can only be realized if all rele-
vant variables, their interdependencies, and restrictions are combined in one model
of considerable detail, and a solution algorithm that guarantees to find the opti-
mal solution is applied. Optimal solutions to subproblems do not imply an optimal
overall solution. When decomposing a problem, interdependencies between sub-
problems cannot be considered. Solving subproblems in a sequence will result in
less freedom for later planning steps, because the solution of one planning step
serves as given input for the succeeding problem. Thus, solutions are unsatisfac-
tory or even infeasible (Barnhart et al., 1998; Cordeau et al., 2001; Mashford &
Marksjo, 2001; Yan & Tseng, 2002; Cohn & Barnhart, 2003; Barnhart et al., 2003;
Guo et al., 2006). To overcome these problems, airlines have to implement (costly
and time consuming) feedback-loops or iterations in their airline scheduling pro-
cess (Grandeau et al., 1998; Andersson et al., 1998). Information of later planning
steps are propagated to previous subproblems to alter their solutions. To relax the
boundaries between the individual solution steps, models have to be developed that
include decision variables of more subproblems. This trend towards an integrated
airline scheduling model can be recognized in recent publications.

In the beginning of modeling the airline scheduling problem, computational
power was limited and research was focused on single subproblems with simpli-
fying assumptions (Desaulniers et al., 1997; Sriram & Haghani, 2003). Advances in
optimization theory and computer hardware then led to (Yu, 1998; Barnhart et al.,
2003)

• the application of exact solution approaches and, thus, a higher solution quality
(Rushmeier & Kontogiorgis, 1997),

• more realistic models, as a problem could be formulated more detailed with a
higher number of practical requirements, with less simplifications, and for more
realistic problem sizes,

• the extension of the scope of problems by integrating different subproblems (or
elements) of the airline scheduling problem.

In general, each airline scheduling model represents a trade-off between these
three directions. If more complex problems are considered either by increasing the
level of detail or by extending the scope, usually heuristics or exact approaches
including heuristic elements are applied. For example, many heuristics are used to
solve crew scheduling problems or to enhance exact approaches in this scheduling
phase. Some problems are still solved manually with little optimization because
either no models exist or they contain major simplifications that lead to an unrealistic
problem formulation. For example, most of the presented models for flight schedule
generation do not consider relevant restrictions or costs of airline resources, and
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if so, they represent this information only on a very rough and unrealistic basis.
Thus, the flight schedule generation phase is still performed manually with much
subjective judgment and decision making. There is little optimization in managing
the interrelation between supply and demand directly, systematically, and accurately
(Yan & Tseng, 2002).

2.6.3 Future Challenges

The models presented in this study differ in the amount, variety and accuracy of
simplifying assumptions. One common characteristic to almost every model is the
postulation of deterministic data like fixed demand (or its distribution), flight times,
and turn times. However, in reality many of the inputs to the airline scheduling prob-
lem are of stochastic nature (Day & Ryan, 1997). The objective of minimizing costs
and maximizing revenue in deterministic models usually leads to a very tight sched-
ule with very short turn times (Langerman & Ehlers, 1997). In this case, stochastic
deviations in the planned times will result in system-wide schedule delays. Research
concerning the relationship between airline market shares and schedule punctuality
showed the significance of passengers switching between airlines, once they expe-
rience unsatisfactory services from an airline (Caulkins et al., 1993; Suzuki, 2000).
This has led to several approaches that aim at developing robust airline schedules
that are less susceptible to flight delays (Sherali et al., 2006). The proper choice of
schedule buffer time for turnarounds increases the reliability of flight connections at
airports (Wu & Caves, 2000; Wu, 2005; Lan et al., 2006). Thus, a quality measure
for airline schedules should include profit and its performance in operations.

Until now, the airline scheduling problem has been considered as an isolated
planning problem within the airline corporate planning system. This development is
supported by the schedule’s central role and its major effect on revenues and costs
of the airline. However, a second problem in airline planning that has attracted many
researchers is revenue and yield management. Its objective is to maximize revenue
by selling as many tickets as possible at the highest price possible.22 Since this
problem uses a given airline schedule as input, there is a potential for higher profits
if revenue management and scheduling issues are solved simultaneously (Jacobs
et al., 2000; Barnhart et al., 2003).

Until now, the flight schedule generation phase has attracted only little attention
for optimization models, mainly because of its large complexity. The models that
are built to support this phase usually do not consider the availability of resources
or the costs and implications of their assignment, and if so, the level of detail is
much too low (Yan & Tseng, 2002). Other optimization models incorporating flight
schedule generation issues mostly adjust departure times of flights within given time
windows. In addition and not limited to the flight schedule generation phase, many
solution models are rather simplified, disregarding many practical requirements, and

22 More details of this topic can be found for example in Belobaba (1987), Kimes (1989), Smith
et al. (1992), Vinod (1995), Weatherford (1998), McGill and Van Ryzin (1999), Subramanian
et al. (1999), Belobaba and Farkas (1999), Pak and Piersma (2002), Barnhart et al. (2003), Cote
et al. (2003), Pulugurtha and Nambisan (2003).
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include assumptions that do not represent reality (for example, a monopoly situa-
tion, uniformly distributed demand, only one fleet type, a pure (one) hub-and-spoke
network, no maintenance capacity constraints etc.). Thus, there is a need for opti-
mization models of sufficient detail and scope that capture the critical interactions
among the various resources of the airline, its competitors, and airports to support
this airline scheduling phase (Yan & Tseng, 2002; Barnhart et al., 2003).

The number of subproblems integrated in one model and the intensity of integra-
tion needs to be improved in order to achieve solutions of higher quality (Barnhart
et al., 2003; Sherali et al., 2006). Some researchers present integrated models that
incorporate some elements of a second problem (major costs or constraints), an iter-
ative approach, or an enhanced / advanced but still sequential procedure. Although
these models produce (far) better results, regardless of any enhancements, it is be-
lieved that no kind of sequential or decomposed solution approach will produce bet-
ter or equal solutions to an integrated approach. Only an integrated or simultaneous
approach including all subproblems could provide a feasible and optimal solution
to the airline scheduling problem (Barnhart & Talluri, 1997; Barnhart et al., 1998;
Cordeau et al., 2001; Klabjan et al., 2002; Barnhart et al., 2003; Cohn & Barnhart,
2003).

To summarize, according to the directions of research efforts, future challenges
in airline scheduling can be outlined according to the following objectives (Barnhart
et al., 2003):

• improvement of solution quality by reducing randomness in solution
approaches,

• incorporating stochastic and uncertain elements in the scheduling process to
increase the robustness of the resulting schedules,

• combination of the airline scheduling with revenue management,
• extending the applicability of optimization methods to a larger number of

subproblems of the complete airline scheduling problem (like flight schedule
generation),

• representing airline operations at a higher level of detail, thus, reducing simpli-
fying assumptions and including practical restrictions, and

• relaxing the boundaries between the subproblem in the planning process to-
wards an integrated approach.

All these challenges are of major importance to further improve the process of
airline scheduling and to obtain realistic schedules that are optimal regarding the air-
line’s overall success. However, the research presented in this study focuses on the
last three directions, with the last challenge representing one of the most formulated
objectives in airline scheduling research.



Chapter 3
Foundations of Metaheuristics

Abstract. Many real-world problems with practical importance are large and
complex, differing from standard problems. Often they belong to the class NP mak-
ing them computationally intractable using exact optimization algorithms. Meta-
heurstics are general-purpose improvement heuristics that are used to solve NP-hard
problems. Some problem-specific adaptions of the metaheuristic are necessary to
achieve an efficient search process. This problem customization focuses on four ba-
sic design elements that every metaheuristic incorporates and that are presented in
detail in this chapter: the combination of representation and search operators, the
fitness function, the initialization, and the search strategy. With respect to the search
strategy, in general the different variants of metaheuristics can be classified into two
groups: techniques based on local search and techniques using recombination-based
search operators. For each search concept, one metaheuristic was specified as a rep-
resentative example: threshold accepting as a local search routine and genetic algo-
rithms as a recombination-based search. They are the underlying techniques of the
simultaneous airline scheduling process presented in this work.

3.1 Introduction

To reach a certain pre-defined goal, a decision maker has to choose between different
decision alternatives. Planning describes this process of generating and comparing
different courses of action and then choosing one of them prior to action (Rothlauf,
2006a). As each alternative might have a different impact on the decision maker’s
objective, it is necessary to evaluate each given alternative with regard to reaching
the goal and to assign a quality value. Furthermore, restrictions and limitations have
to be taken into account that limit the freedom of action. One possible decision
alternative is denoted as the solution of the problem, the complete set of possible
solutions establishes the search space of the problem. In optimization problems,
the objective is to find the best solution: the decision alternative with the highest
contribution to the overall goal.

T. Grosche: Computational Intel. in Integrated Airline Scheduling, SCI 173, pp. 47–57.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



48 3 Foundations of Metaheuristics

Planning processes and the solution of optimization problems are the core disci-
pline of operations research (OR) (Taha, 2002; Hillier & Lieberman, 2002; Dom-
schke & Drexl, 2005). Its focus is on model construction and model solution:

• Model Construction: The objective of this step is to simplify the given real-
world problem to make it computationally tractable. The properties of the real-
world problem, its influencing factors, and relationships are represented as a
mathematical model consisting of a set of symbols and expressions. Decision
variables represent the properties of the different decision alternatives. The
quality of an alternative is calculated using an objective function. Any restric-
tions on the problem or its variables are expressed by a set of constraints.

• Model Solution: Given an optimization model, algorithms are applied to solve
the model. Because many different solution techniques were developed in the
past, this step is straightforward if an appropriate model was constructed, re-
quiring only the choice of one suitable solution method. In fact, OR focuses
on model construction which itself is demanding and requires the researcher’s
experience. Sometimes, model solution is considered only as a (simple) subse-
quent step (Ackhoff, 1973).

Many of the standard optimization algorithms developed by OR are exact techniques
that guarantee to find the optimal solution of the given problem. If their effort grows
polynomially with the problem size (P-problems), exact optimization algorithms
can be applied. However, many problems belong to the class NP. Problems of this
class are less structured than P-problems (for example, the objective function is not
differentiable, the objective function and constraints and variables are not linear and
continuous etc. (Rudolph & Schwefel, 1994)). Then, enumeration techniques are
the only exact algorithms that can be used to solve these problems. As the effort for
problem solution grows exponentially with problem size, these techniques can only
be applied if the problem size is low enough.

3.2 Metaheuristic Optimization

Many real-world problems with practical importance are large and complex, differ-
ing from standard problems. Often they belong to the class NP making them com-
putationally intractable using exact optimization algorithms. To solve these kinds of
problems, heuristic optimization techniques could be used. Heuristics often exploit
properties of the problem and use knowledge about high-quality solutions or rules of
thumb when searching for good solutions (Pearl, 1984). They often have lower com-
putation times than exact techniques allowing their application to complex problems
that are realistic and near to real-world problems. However, they do not guarantee to
find the optimal solution. In general, there are two kinds of heuristics: construction
heuristics develop a solution to a problem by iteratively adding elements to par-
tial solutions until a complete solution is achieved, whereas improvement heuris-
tics start with a complete solution and iteratively improve the solution by slight
modifications.
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Since heuristics are problem-specific, properties of the problem to be solved
need to be incorporated into the design of the heuristic. If the heuristic does not
fit the problem, its solution is likely to be not possible. Thus, the development of
heuristic optimization techniques is a difficult process that needs to be performed
very carefully. In contrast to heuristics, metaheuristic optimization techniques rep-
resent search strategies that are problem independent and, thus, widely applicable
(Glover, 1986). Often these techniques are inspired by search strategies from other
domains (e.g. biology, physics etc.) and a huge variety of different types of meta-
heuristics with slightly different properties and functionalities were developed (Bäck
et al., 1997; Glover & Kochenberger, 2003). In general, metaheuristics represent
extended variants of improvement heuristics (Reeves, 1993; Rayward-Smith et al.,
1996; Rayward-Smith, 1998; Michalewicz & Fogel, 2000; Rothlauf, 2006a).

In general, the application of a metaheuristic is straightforward, since only two
conditions must be fulfilled (Rothlauf, 2006a):

• solutions of the problem have to be represented as a set (or string) of variables
or symbols to allow its processing, and

• the quality of each solution must be quantifiable to allow pairwise fitness
comparisons.

Although the basic search strategy of a metaheuristic is independent of the
problem, leading to many different applications in various domains, there still
is a conflict between ease of application and effectiveness.1 The broader the
applicability of an optimization technique, the poorer are the results of these tech-
niques on individual problems. This relationship is expressed by the No-Free-
Lunch-Theorem (NFL) published by Wolpert and Macready (1997). In short, the
NFL states that no heuristic can outperform other optimization methods if they
do not inherit problem-specific knowledge. Thus, traditional heuristics exploiting
problem-specific information might outperform standard metaheuristics, and there
is a need to consider problem-specific knowledge in the design of metaheuristic op-
timization techniques to achieve superior performance (Droste & Wiesmann, 2002;
Puchta & Gottlieb, 2002; Bonissone et al., 2006; Rothlauf, 2006a).

3.3 Design Elements of Metaheuristics

In his research, Rothlauf (2006a) examines the design of metaheuristics, the influ-
ence of different design variants and the consideration of problem-specific knowl-
edge on their performance. Four basic design elements are identified that all
metaheuristics have in common and that characterize the different variants:

1. solution representation and variation operators,
2. fitness function,
3. initialization, and
4. search strategy.

1 For overviews see for example Biethahn and Nissen (1995), Osman and Laporte (1996), Bäck
et al. (1997), Alander (2000), Blum and Roli (2003).
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In the following, a short introduction to each element is given. Each element is
subject of research on metaheuristics and many studies are available that can be used
for further information.2

3.3.1 Solution Representation and Variation Operators

The objective of variation or search operators is to modify solutions of a problem
during an optimization procedure. For this purpose, it is necessary to encode any
given solution of a problem as a string that can be processed by these operators. The
solution of a problem is denoted as the phenotype, its representation as the genotype,
the mapping between the phenotype and the genotype is referred to as the represen-
tation of a metaheuristic (Rothlauf, 2006b). Because the search operators work on
the genotypes, the representation and the operators cannot be treated independently
but must be considered as a joint element of a metaheuristic.

Although not selective, direct and indirect representations can be distinguished.
When using a direct representation, an explicit mapping is not specified. Instead, so-
lutions are represented in their most natural search space and the variation operators
are applied directly to the solutions. This calls for individual variation operators,
since the solution representation is problem-specific. In contrast, an indirect rep-
resentation has an explicit mapping: problem solutions are represented as standard
data structures (for example binaries, integers etc.). This allows the application of
standard search operators to the genotypes. An additional advantage of using indi-
rect representations is that constraints or restrictions in the search space may be effi-
ciently modeled by a specific encoding (only feasible solutions can be processed) or
that an advantageous mapping might decrease problem difficulty (Rothlauf, 2006a).
However, finding a proper representation then is a challenge in metaheuristic design.

Search operators can be classified as local search operators and recombining
search operators. In the search space, a local search step moves from one solution to
a solution in its neighborhood. The concept of neighborhood aims at similarities be-
tween solutions. If there is a way to quantify the similarities or common elements, a
neighborhood of a solution can be defined that contains all solutions that are similar
to the current solution to a specific extent (distance). A high locality exists if this
distance corresponds to the distance between their objective values and the distance
of the genotypes. If the genotype encodes continuous values, the real difference
between the values can be used as distance. If there are discrete values (for exam-
ple discrete choices), the quantification becomes difficult. However, the number of
decision variables encoded and subject to variation allows a quantification of the
differences and, thus, allows the definition of a distance and the neighborhood. The
local search operator moves to a neighboring solution by modifying the current so-
lution, thus, in fact, the distance of the genotype is defined by the search operator:
each solution that can be obtained by a single search step is a neighboring solution.

2 See for example Holland (1975), Grefenstette (1985), Michalewicz and Fogel (1989), Goldberg
et al. (1989), Liepins and Vose (1990), Storer et al. (1995), Michalewicz and Schoenauer (1996),
Bäck et al. (1997), Goldberg (2002), Rothlauf (2006b), Rothlauf (2006a) etc.
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When using local search operators, it is assumed that the structure of the search
space can guide the search because good solutions are grouped together. Then, the
optimal solution can be obtained by applying only small changes to a solution and
the objective value of solutions considered earlier is used to guide the future search
process (Manderick et al., 1991). Local search operators can only yield optimal so-
lutions if the search steps are sufficiently small and if the global optimum can be
reached by neighboring steps. If multiple optima exist, there is the chance that a
local search operator only yields a local optimum instead of the global optimum.
In contrast to local search operators, recombination operators require at least two
solutions, because these operators recombine elements of solutions to construct one
or more new solutions. The original solutions are commonly referred to as parents,
the new solution as child or offspring. When applying recombination operators, it
is assumed that the problem under investigation is decomposable: subproblems can
be solved independently and the combination of the optimal partial solutions yields
an overall optimal solution. Recombination operators represent global search oper-
ators, because the resulting solution inherits properties of both parents and is not
limited to the neighborhood of one parent. General design principles for recombi-
nation search operators were formulated by Radcliffe (1991) and (1994).

When choosing a combination of representation and operators, the bias and
locality have to be taken into account. A bias exists if the choice of representation/op-
erators alone pushes the search of the metaheuristic into a specific direction (Caruana
& Schaffer, 1988). For example, the operators work not randomly but perform only
selected modifications to the solutions. High locality is necessary to allow a guided
search. If the locality is high, small changes to the genotype by a variation operator
result in small changes of the phenotype and its objective value (Lohmann, 1993;
Rothlauf, 2006b). Thus, with each application of the operator, a neighboring solution
in the search space is obtained. If the locality is low, the search process represents
a random walk through the search space.

3.3.2 Fitness Function

A fitness function assigns a fitness value to each solution, which is used by the
metaheuristic to compare the quality of solutions. In many cases, the fitness func-
tion corresponds to the objective function of the problem behind it. This objective
function expresses the quality of the current solution with respect to the goal that is
to be achieved. In general, this is the primary objective of the optimization process.
However, sometimes the fitness or objective value is modified by the metaheuristic
to improve the metaheuristic’s performance or to include additional characteristics
of the corresponding solution. One example for performance improvements is to
smooth or scale the fitness landscape for guided local search techniques. Beside any
additional objectives, a very important characteristic of a solution that can be incor-
porated in the fitness value is violations of given restrictions. A solution might be
infeasible but could inherit some favorable properties that should be kept in the op-
timization process. Thus, instead of removing the current solution from the search
process, its fitness value can be decreased by a penalty function.
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Metaheuristics represent iterative search procedures, and usually a large number
of fitness evaluations is necessary. Thus, their application is only possible if the
fitness calculation is not too complex and does not require too high an amount of
computational time and effort. On the other hand, metaheuristics can work only with
pairwise fitness comparisons, and especially in the beginning of the optimization
process, large differences in the fitness value of different solutions exist. Thus, if
necessary, fitness values can either be obtained by approximations (at the beginning
of the optimization process) or can focus only on the differences of similar solutions
(at the end of the optimization process).

3.3.3 Initialization

In the initialization step, a solution is presented to the metaheuristic and serves as an
initial solution from where the optimization process starts. If the metaheuristic uses
recombination operators, the initialization must provide a population of solutions to
allow recombination between different solutions. If some problem-specific knowl-
edge or information about high-quality solutions exists, the initial solutions can be
constructed using this knowledge to lead to a good starting point for the optimiza-
tion process. If there is no such knowledge, the initial solution has to be created
randomly. All possible solutions then have to have the same selection probability
and no specific solution or solution properties are favored. If a population needs to
be initialized, the diversity of this population should be high to ensure an effective
application of the recombination search operator.

3.3.4 Search Strategy

Decisions on the search strategy of a metaheuristic focus on the exploration and ex-
ploiting phases (Blum & Roli, 2003; Rothlauf, 2006a). In exploitation, the search
is focused on promising regions in the search space, whereas in exploration new
areas in the search space are investigated. In general, two basic search strategies
can be identified. They depend on the main search operator used during optimiza-
tion, leading to local search and recombination-based search strategies. The control
of exploitation and exploration, or intensification and diversification, is addressed
differently in each strategy, and variants exist each focusing on different mecha-
nisms for intensification and diversification (see Rothlauf (2006a) for a selection of
representative examples).

In local search strategies, a new solution is iteratively chosen from the neighbor-
hood of the current solution. The fitness of the solution is used to guide the search
process to regions of the search space with high-quality solutions (intensification).
To escape from local optima, diversification is necessary. This can be accomplished
by further varying the solution for example by changing the definition of a neigh-
borhood of a solution. An alternative would be to start multiple instances of the
optimization process, each with a different initial solution. A very common strategy
to allow diversification is not to restrict search steps to intensification (improve-
ment) steps but to allow inferior solutions during the search. Then such search steps
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without improvement are the result of random and larger steps or are based on in-
formation of the search space from previous steps.

In contrast to local search strategies, recombination-based strategies already in-
herit diversification because the initial population consists of different solutions with
different properties. During the application of recombination-based search opera-
tors and selection, which removes low-quality solutions from the population, new
solutions are created with similar properties to the existing solutions, thus, diver-
sification is reduced. To prevent the situation in which all diversity is lost and the
population has converged to a non-optimal solution (premature convergence), diver-
sification strategies have to be applied. Besides strategies from local search, these
strategies include the increase of the number of solutions in the population, the re-
duction of the selection pressure (thus, accepting inferior solutions), the limitation
of the number of similar solutions, or the processing of different sub-populations
simultaneously.

3.4 Selected Metaheuristic Optimization Techniques

In the following, two metaheuristic optimization techniques are presented, each
chosen as a simple and representative example for local and recombination-based
search. They are the underlying techniques of the simultaneous airline scheduling
process presented in Sect. 4.4.

3.4.1 Local Search: Threshold Accepting

Threshold Accepting (TA) was developed by Dueck and Scheuer (1990) and rep-
resents a formally very similar method to simulated annealing (SA) developed by
Kirkpatrick et al. (1983) and Cerny (1985). SA has become a popular general pur-
pose tool for a wide class of combinatorial optimization problems. However, Dueck
and Scheuer (1990) show that for many problems TA achieves at least the same
solution quality as SA while requiring considerably less effort.

TA represents an iterative local search that is capable of escaping from local
optima by accepting inferior solutions during optimization. This diversification ele-
ment is provided by a random walk. In each search step, a variation operator mod-
ifies the current solution s. The resulting neighboring solution s∗ is evaluated using
the fitness function f . If the fitness value f (s∗) of s∗ is higher than f (s), s∗ replaces
the old solution s. If f (s∗) is lower than f (s), the new solution is only accepted if
the fitness loss Δ f = f (s)− f (s∗) is less or equal to a given threshold T . This allows
an escape from local optima. T represents the strategy parameter of TA and is set to
a sufficiently high value to allow high diversification at the start of the optimization
process. During optimization, T is reduced until T = 0. Then, TA represents a local
search in which only better solutions are allowed to replace the current solution. At
this point, only intensification is existent, there is no further diversification in the
search process.

When applying TA to a problem, the researcher has to carefully select the ini-
tial threshold and the reduction schedule of the threshold. There is no standard
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procedure for this task and many different options exist to decide on the thresh-
old and its reduction. Often, the threshold is reduced by a certain value after a given
number of iterations. In the following algorithm 1, one example for the basic func-
tionality of TA is presented.

Algorithm 1. Threshold Accepting
1: choose initial threshold T > 0

2: choose threshold reduction step size r

3: choose maximum number imax of iterations between improvements

4: choose maximum number tmax of iterations between threshold reduction

5: create initial solution s with fitness value f (s)

6: t = 0

7: repeat

8: t = t +1

9: create neighboring solution s∗

10: calculate new fitness value f (s∗)

11: Δ f = f (s)− f (s∗)

12: if Δ f < T then

13: s = s∗

14: i = 0

15: else

16: i = i +1

17: end if

18: if i > imax or t > tmax then

19: T = T − r

20: i = 0

21: t = 0

22: end if

23: until termination

3.4.2 Recombination-Based Search: Genetic Algorithms

Genetic algorithms (GA) are recombination-based metaheuristics and belong to
the class of evolutionary algorithms (EA). EA were introduced by Holland (1975)
and Rechenberg (1973b) and have been applied to a variety of different problems
of different domains.3 These optimization techniques are inspired by evolutionary

3 Some applications of EA to airline-related problems can be found for example in Levine (1996),
Langerman and Ehlers (1997), Christou et al. (1999), Gu and Chung (1999), Ozdemir and
Mohan (1999), Ozdemir and Mohan (2001), Pulugurtha and Nambisan (2001b), Pulugurtha
and Nambisan (2001a), Chang (2002), Pulugurtha and Nambisan (2003), Caprı̀ and Ignaccolo
(2004), Lee et al. (2007).
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principles and imitate basic biological operators of the modern evolutionary synthe-
sis. This theory of evolution is based on the findings of Darwin (1859) and Mendel
(1866) and identifies selection, recombination, and mutation as the basic mecha-
nisms of nature to propagate advantageous properties of creatures throughout popu-
lations (survival of the fittest). In EA, these mechanisms are formulated at an abstract
level to solve optimization problems.

Many different variants of EA have been developed since its beginnings. They
differ in the design elements presented in Sect. 3.3 and the emphasis of certain
operators or their intended use (for example mathematical optimization vs. machine
learning). However, each technique relies on the basic evolutionary principles and
the differences between the different variants have become much less in more recent
algorithms, especially when applied to real-world problems. Besides GA, two major
kinds of EA can be identified and are subject to current research: evolution strategies
(ES) and genetic programming (GP). Basic information regarding these techniques
can be found for example in Rechenberg (1973a) and Rechenberg (1973b) for ES
and Koza (1992) for GP.

3.4.2.1 Simple Genetic Algorithm

The simple GA denotes a GA in a basic form and, thus, well describes the function-
ality of a GA (Goldberg, 1989). The algorithm uses a population S of n solutions s
during the search process. A solution is denoted as individual and usually consists
of a string of fixed length l incorporating the problem parameters. New solutions (a
new generation) are created by applying recombination-based operators (crossover
or recombination) to the existing solutions. Usually, a crossover operator creates a
new offspring of two parental solutions by exchanging substrings of the parents.
The crossover represents the main variation mechanism of the simple GA. In addi-
tion, a local search (mutation) is performed on individual solutions, that serves as
a background operator. This operator has the additional functionality to insert new
properties into the solution, that might not be existent in the current population. A
selection operator decides which solutions are removed from the population and are
no longer available to the search operators. The decision on the removal of solutions
might be controlled deterministically or stochastically. On average, low-quality so-
lutions have to be removed from the population to guide the search towards promis-
ing regions in the solution space. All operators are applied iteratively, each iteration
is denoted as generation.

The following algorithm 2 presents one example for the basic functionality of the
simple GA including its parameters.

Often, a maximum number of generations or the convergence of the population is
used as a criterion for termination. A convergence criterion could be the difference
between the fitness of the best solution in the population and the average fitness
of the population (or the worst solution in the population): the smaller this differ-
ence, the higher the convergence. Another option would be to stop the GA if the
effort for obtaining new solutions is more expensive than the possible fitness gain
(Wendt, 1995).
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Algorithm 2. Simple Genetic Algorithm
1: choose population size n

2: choose recombination probability pr and mutation probability pm

3: create initial population S with n solutions s = (s0, . . ., sl)

4: calculate fitness value f (s) for each s ∈ S

5: repeat

6: insert n solutions from S into a mating pool M using a selection scheme depending on fitness

values

7: S∗ = {}
8: while |S∗| < n do

9: if random(0,1) < pr then

10: create a new solution s∗ by recombination of two randomly chosen s ∈ M

11: include s∗ in S∗

12: else

13: copy one randomly chosen s ∈ M as s∗ in S∗

14: end if

15: end while

16: for all s ∈ S∗ do

17: for i = 0 to i = l do

18: if random(0,1) < pm then

19: mutate si

20: end if

21: end for

22: end for

23: calculate fitness values f (s) for all s ∈ S∗

24: S = S∗

25: until termination

3.4.2.2 Steady-State Genetic Algorithm

The simple GA represents a generational GA. A new generation of solutions is
created by applying genetic operators to the current generation until enough new
solutions are obtained. Thus, there is an explicit distinction between the parental
and offspring generation. One drawback of this approach is the risk that high-
quality solutions get lost if their offspring have a lower fitness value than them-
selves (Reeves & Rowe, 2003). To prevent these situations, concepts like elitism
and population overlaps were developed (De Jong, 1975). In elitism, the best
individual is not allowed to be replaced. Population overlaps describe the situation
when only a fraction (the generation gap) of the population is replaced by offspring.
Using this principle in a GA and replacing only one solution at a time per iteration
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leads to the steady-state GA (Whitley & Kauth, 1988; Syswerda, 1989; Davis, 1991;
Sarma & De Jong, 1997). In a steady-state GA a new solution is created by recombi-
nation or mutation and replaces the current worst solution in the population. In addi-
tion to incorporating elitism in this strategy, this also allows a more efficient search
because the current best solution is always kept in the population (Reeves & Rowe,
2003). The new offspring can immediately be used for the next search steps and there
is no need to wait for completing a whole generation (Levine, 1996). However, in
steady-state GAs the chance is higher that the population converges too early and that
the landscape is not sufficiently explored, especially when dealing with small pop-
ulation sizes (De Jong & Sarma, 1993; Sarma & De Jong, 1997). Thus in practice,
the population sizes of steady-state GAs are often very high.

3.5 Summary

In this section, some principles of metaheuristics were presented. Metaheurstics
are general-purpose improvement heuristics that could be used to solve NP-hard
problems to which exact optimization techniques can hardly be applied. Some
problem-specific adaptions of the metaheuristic are necessary to achieve an ef-
ficient search process. This problem customization focuses on four basic design
elements that every metaheuristic incorporates: the combination of representation
and search operators, the fitness function, the initialization, and the search strategy.
With respect to the search strategy, in general the different variants of metaheuris-
tics can be classified into two groups: techniques based on local search and tech-
niques using recombination-based search operators. For each search concept, one
metaheuristic was specified as a representative example: threshold accepting as a
local search routine and genetic algorithms as a recombination-based search. The
choice of the search concept depends on the problem and its structure, however,
real-world problems often have properties applicable to both search concepts, local
and recombination-based search. Thus, the researcher either has to do an exten-
sive study to make a final decision for one search strategy, or a metaheuristic using
both types of search operators could be applied. Although presented as an example
for recombination-based search, genetic algorithms also use a local-search operator
in the background, and, thus, represent a promising technique for those real-world
problems demanding both search concepts.



Chapter 4
Integrated Airline Scheduling

Abstract. Two approaches for integrated airline scheduling were presented and
evaluated. They integrate the subproblems network design, frequency assignment,
flight scheduling, fleet assignment, and aircraft routing. Furthermore, a schedule
evaluation procedure was developed and calibrated that is required by both air-
line scheduling approaches. Both planning approaches are able to represent air-
line operations and practical requirements on a higher level of detail compared to
many solution models presented so far. There are fewer simplifying assumptions
or restrictions to certain planning scenarios. Their only requirement is to receive a
quality measure for each schedule processed. The first airline scheduling approach
follows the traditional sequential planning paradigm. This stepwise approach is re-
alized in an iterative procedure consisting of solution models from literature. In
contrast, the second planning approach represents a truly simultaneous model. In
a self-adaptive metaheuristic, each processed solution represents a complete airline
schedule, thus including all former subproblems implicitly. A comparison in which
both approaches are applied to the same scenarios confirmed the postulated higher
performance of a simultaneous optimization since the simultaneous approach out-
performed the sequential approach with regard to the operating profit of the obtained
schedules and the required computational effort. The capability of the simultaneous
planning approach is further investigated by its application to scenarios that were
modified implying a certain structure of the optimal solutions. For all experiments,
the resulting schedules are in accordance with theoretical expectations.

4.1 Introduction

4.1.1 Motivation

The objective of airline scheduling is to create an airline schedule that is optimal
with regard to a given objective value, usually operating profit. Because of the large
number of variables and restrictions and their interdependencies that have to be

T. Grosche: Computational Intel. in Integrated Airline Scheduling, SCI 173, pp. 59–171.
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taken into account to solve this problem optimally, using exact OR techniques is
computationally intractable. Instead, the airline scheduling problem is solved in a
sequential planning process: the overall problem is decomposed into less complex
subproblems that are solved in a sequential order.

Since its beginnings in the 1950s, numerous OR models for airline schedul-
ing subproblems have been developed. With advances in optimization theory and
computational power, improved solution approaches have been developed. Solution
quality has increased and more realistic problems could be solved (in terms of level
of detail and problem size). Additionally, researchers have begun to integrate sub-
problems into single optimization models to capture interdependencies that cannot
be considered in a sequential solution approach.

However, there is still room for further improvements. Better solutions can be
achieved if boundaries between subproblems of the airline scheduling problem are
further relaxed. To obtain meaningful results, approaches must represent airline op-
erations in higher levels of detail and include more practical requirements. Fur-
thermore, optimization models must be capable of solving realistic-sized problem
instances in a flexible way and not be restricted to specific problems or solution
structures.

This study focuses on these challenges. Two solution approaches for integrated
airline scheduling are developed, each combining the complete flight schedule gen-
eration and aircraft scheduling steps (see Fig. 2.2) into one model.1 Both models do
not have any specific requirements regarding the problem structure, thus, they can
be used for any possible planning scenario and allow a flexible scheduling based
on the given setup. In addition, both approaches are capable of representing airline
operations on a high level of detail, allowing the inclusion of many practical re-
quirements. Because even selected subproblems of the airline scheduling problem
are NP-hard, the overall problem is NP-hard and cannot be solved in a single model
using exact optimization techniques. Therefore, the two approaches represent itera-
tive procedures incorporating heuristic elements. The first approach follows the tra-
ditional planning paradigm: in an iterative procedure, in each iteration subproblems
are solved in a sequence. In contrast, the second model represents a simultaneous
planning approach: complete airline schedules are optimized as a whole using meta-
heuristic optimization. The objective of both models is to maximize the operating
profit of a daily airline schedule. Because both approaches use the same input data,
a fair comparison with regard to the obtained solution quality and the computational
effort is possible.

One important element of each planning approach is the quantification of the op-
erating profit of a given airline schedule. Schedule evaluation itself represents a very
complex problem, and many different (commercial) applications for schedule eval-
uation exist (for example Sabre R© Airline Profitability Model, or United Airlines’
Profitability Forecasting Model (Lohatepanont & Barnhart, 2004)). Because these
tools use very sophisticated methods and take many parameters into account, their
computation times vary from minutes to many hours. Using these models in each

1 In Sect. 4.6.4 the possible integration of crew considerations is described.
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airline scheduling approach would lead to excessive overall computation times. In
addition, their acquisition costs, the lack of parameters and data required by those
tools, and the general difficulty in obtaining detailed information due to their pro-
prietary nature (Lohatepanont & Barnhart, 2004) make it impossible to use them for
this study. Thus, an additional focus of this study is the development and calibra-
tion of a schedule evaluation procedure that is used by both the integrated airline
scheduling approaches.

4.1.2 Structure

This introduction ends with an overview of the data necessary and used in all exper-
iments. Then, four main sections follow. First, the schedule evaluation procedure for
the airline schedule optimization methods is presented in Sect. 4.2. Then, sections
4.3 and 4.4 describe each planning approach in detail including the calibration of
their parameters and an analysis. A comparison of both models is presented in Sect.
4.5. This section also applies the integrated scheduling approach to systematically
modified scenarios to verify the obtained solutions and to demonstrate the capability
of the planning approach.

4.1.3 Data

The objective of the airline scheduling approaches of this study is not only to inte-
grate the subproblems of airline scheduling, but also to allow a flexible and general
planning without limitations to certain scenarios (for example only (one) hub-and-
spoke networks, one fleet type, etc.) on a detailed level. This is accomplished by
taking practical requirements into consideration and using real-world data for cali-
bration and testing. This section focuses on the latter requirement and presents an
overview of the data used in this study. If reasonable and necessary, precise data val-
ues are included in the appendix. Without losing generality, the focus of this study
is on the European airline system, thus, the data is limited to European figures.

Since airline scheduling includes a major portion of the overall operation of an
airline, a significant amount of data is necessary. However, in general, data regarding
airline operations represents highly classified information of airlines that is usually
not accessible from outside, at least not to the required extent. Thus, in this study,
some data represents real figures from airlines, some is obtained from industrial
organizations and offices, and some data has had to be estimated or aggregated based
on the fragmented information that was available. If all the necessary information
were directly available, it could be used immediately.

In general, the information required to construct an airline schedule can be di-
vided in general, demand, and supply data (see Fig. 4.1).

General data includes fundamentals that are unchangeable, for example the lo-
cation of airports, operating characteristics of aircraft etc. Demand data focuses on
the airline’s market. This information cannot be influenced by an individual airline
and includes passenger behavior and demand, competing airlines, etc. Supply data
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Fig. 4.1 Required data for airline scheduling

depends on the airline and its planning scenario, including for example the number
of aircraft and the fleet composition, some operational characteristics and economic
data like costs and revenues.

Before presenting the three different types of data in detail, two valuable sources
of information need to be introduced that were used in this study: data from Of-
ficial Airline Guide (OAG) and Market Information Data Tapes (MIDT). OAG is
a global travel and transport information company that provides database admin-
istration in the area of aviation, travel and hotels (OAG, 2007). Its airline sched-
ules database holds future and historical flight details for 1,000 airlines and more
than 3,500 airports. For this study, historical schedules from 2004 (January to Au-
gust) were available. After filtering and aggregating, this data set contains 3,274,756
different flight records, each with the following information:

• airline and flight number,
• origin and destination airport (city),
• aircraft and category (for example propeller, turbo-prop, jet),
• departure and arrival time,
• validity period,
• distance and elapsed time,
• number of seats (total, first, business, economy).

MIDT contain passenger bookings made via all the major global distribution
systems (GDS). In this study, MIDT data was given for seven months in 2004
(January-April, June-August) for airline travels between Germany and European
countries with non-stop or one-stop service. This data set consists of 1,365,497
records including a total of 7,808,041 bookings. The following information is part
of each record of MIDT:

• origin and destination,
• connection airport (if applicable),
• airline and flight number of the first flight leg,
• airline and flight number of the second flight leg (if applicable),
• departure and arrival date and time of the first flight leg,
• departure and arrival date and time of the second flight leg (if applicable),
• booking class of the first flight leg,
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• booking class of the second flight leg (if applicable),
• number of bookings.

4.1.3.1 General Data

The general information focuses on the environment the airline is in. This data is
fixed and the same for every airline, no airline is able to influence or change any
data. It is composed of characteristics of airports and aircraft.

Airport-Related Data. This study focuses on the European airline travel system.
From the OAG flight schedules, 320 different airports were identified as having
regularly scheduled airline services. Some of these airports are located at or near
the same city (multi-airport cities), thus, the number of cities is only 307. One of
the most important attributes of an airport is its location. The location is expressed
as latitude and longitude coordinates.2 The distance between any two airports is
calculated as great circle distance based on the coordinates of the airports. A great
circle divides a sphere into two hemispheres, thus, it has the same circumference as
the sphere. The shortest path between any two positions on the surface of the sphere
is part of a great circle. Given the coordinates lat and lon of two cities i and j, their
great circle distance can be calculated using the following formula with Δσi j as the
angular difference:

Δσi j = 2arcsin ·
√

sin2 lat j − lati
2

+ cos lati cos lat j sin2 Δ lon
2

. (4.1)

Besides their location, the second most important attributes of the airports for
airline scheduling are their operating restrictions. For example, the length of the
runway or layout of the apron might exclude certain aircraft types from service at
that airport. For this study, the length of the longest runway is used as a poten-
tial restriction, appropriate data was determined for every airport using the ICAO
World Airfield Catalogue (Woodside, 2000). Besides these operational limitations,
many airports apply operating curfews or movement restrictions to comply with
noise abatement procedures. The design of these curfew restrictions is manifold and
many different procedures exist depending on the aircraft type and its noise certifi-
cation. At most airports with curfew restrictions there is one period of time (usually
at night hours) when the airport effectively is closed. In this study, only one closing
period per airport is assumed, regardless of the aircraft type. Using multiple sources
(for example Hochfeld et al. (2003), ACI (2004), EC (2005)), the operating hours
of the 320 airports were investigated. Airports with no information available were
assumed to have no curfew restrictions. Average values were calculated for incon-
sistent information.

Aircraft-Related Data. Fleet types differ in their characteristics that have to be
taken into account when constructing an airline schedule (like seat capacity, fuel

2 For example, Frankfurt Airport is located at 50◦01’35.12”N 008◦32’35.25”E.
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consumption, cruising speed, range, minimum turn times etc.). Given the flight
schedules from OAG, a total of 189 different aircraft types were identified including
aircraft types of the same fleet family (like for example the Airbus A318/319/320/321
family). The total capacity of each aircraft type can be easily obtained using the
information from the OAG flight schedules. Capacities were averaged for inconsis-
tent information. A second characteristic of every aircraft type necessary in airline
scheduling are operational limitations. In this study, these limitations include the
range and the required landing distance. Without going into detail, many different
sources were used to determine the range and landing distance for each fleet type,
mainly online sources and internal reports. Because both values depend on many
factors (for example weather, weight of the aircraft, runway surface and slope, al-
titude etc.), averages are used in this study. Appropriate data can be obtained for
38 different aircraft types, thus, limiting the usable fleets for airline scheduling to
this number. Another important element for airline scheduling are block and turn
times. These values depend on the fleet type and the flight the aircraft is assigned
to. Given the OAG flight schedules, block times for different airport-pairs and fleet
types can be easily obtained. As not every combination of airport-pair and fleet type
were available, missing values were obtained by a regression model for each fleet
type calibrated with existing information and using the distance of a city pair as in-
dependent variable. Turn times were given for certain aircraft types from various
sources and can be used directly. Missing values were calculated using a regression
model with the aircraft type’s capacity as independent variable.3

The aircraft-related information is presented in Sect. A in the appendix.

4.1.3.2 Demand Data

In general, demand information includes airline demand in absolute passenger num-
bers, the passengers’ preferences and travel behavior based on the offered flight
schedules, and the competition between the airlines. The MIDT data represents a
valuable source of demand information. However, because this data is limited to
specific flights that took place in the past depending on the historical schedules
of the airlines, it cannot be used directly for non-restricted planning scenarios in
which different flights might take place. Instead, implicit information within the
MIDT data is used to produce estimates of demand figures. The absolute passenger
demand for airline travel is estimated using a gravity model (see Sect. 4.2.2), pas-
senger preferences and behavior is reproduced using the passenger demand models
in Sect. 4.2.4. OAG flight schedules provide information of competing flights. Be-
cause the focus of the integrated scheduling approaches of this study is on the daily
airline scheduling problem, (connecting) flights are assumed to compete if they take

3 The classification of turn times as general data should not hide the fact that airlines do have an
influence on turn times by modifying ground operations. In addition, in general turn times also
depend on the previous flight (for example, a long-haul flight requires longer refueling than
a short-haul flight). However, a large portion of the required turn time is determined just by
the fleet type. In addition, because only little information was available and the airline-specific
impact could not be modeled in this study, turn times are assumed to be given as fixed data.
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place on the same day in the same market. As competing flights, real flights from
the OAG schedules are used; on average, there are about 14,500 flights per day in
Europe that need to be considered as competing flights.

4.1.3.3 Supply Data

Supply information depends on the airline and its planning scenario. For example,
the airline has a given number of aircraft of different fleets. Since in this study airline
schedule optimization is not focused on a specific airline but might be applied to any
planning scenario, there is no limitation or orientation to specific supply data. For
each planning scenario, all 38 different fleet types and all 320 airports are available.
The airports represent departure or arrival candidates for an airline’s flights. In each
planning scenario the set of airports can be reduced to those airports that are allowed
as arrival or departure airports for the airline scheduling process.4 From this set of
airports, at least one airport per fleet type has to be selected as a maintenance station
at which aircraft undergo maintenance on a regular basis. Since no information of
maintenance facilities was availabe, airports are randomly selected as maintenance
stations for each fleet type in order to conduct the planning scenarios in this research.
It is assumed that one fleet type’s maintenance station is capable of conducting
maintenance for all fleet types of the airline with less seat capacity.

One important type of supply information is economic data. If the number of
passengers on each flight is known, the revenue has to be estimated. The revenue is
calculated by multiplying the number of passengers in each market with the average
yield per passenger in this market. In reality, the yield differs between markets and
airlines. Unfortunately, detailed information is not available to the public. In addi-
tion, airline fares are difficult to reliably forecast or aggregate, because they mainly
depend on route competition and on different restrictions of the fare classes (Jorge-
Calderón, 1997,Lee, 2003). AEA (2005) published an average amount of passenger
revenue received per revenue passenger kilometer (RPK) of 17.0 US cents for air-
line travel in Europe. In this study, this value was multiplied by the distance between
the cities of each market to produce yields per market. In addition to revenues, op-
erating costs need to be calculated. They include those costs directly related to the
airline schedule. Although cost assignment itself represents a complex topic and
many different cost classifications exist, in this study a rather simple but practi-
cal and reasonable approach to cost assignment is used. Operating costs depend on
many different factors but can be summarized to costs dependent on the aircraft
type, flight routing, and the number of passengers. Costs depending on the number
of passengers are excluded in this study because the yield per passenger already in-
corporates these costs. The remaining costs depend on the combination of aircraft
type and a flight’s airports (for example landing fees) and the combination of air-
craft type and flight time (for example fuel, proportional maintenance costs etc.).
Because there was no information of landing fees etc. available, these costs have

4 In Sect. B in the appendix five different planning scenarios are presented that are used for the
experiments of the airline scheduling approaches.
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to be neglected. The other type of costs – block costs – are estimated using data
from 2004 published by the Bureau of Transportation Statistics (BTS) of the US
Department of Transportation. This department collects and publishes financial re-
ports (BTS form 41) with financial information on large certified U.S. air carriers
(BTS table P-51) and large and medium regional air carriers (BTS table P-52). This
data includes detailed data of various cost categories for several US airlines on a
flight, route, or aircraft level (BTS, 2006). Any invalid entries or obvious inconsis-
tencies were removed manually. The overall operating expenses are given in most
cases on a fleet type level for the 38 different fleet types. Dividing these costs by
the total block hours reported for each type leads to block hour costs for each fleet
type. Using the block hour costs and the block time for every pair of airports and
fleet type, the total block costs can be calculated.

The block hour costs are presented in Sect. A in the appendix.

4.2 Schedule Evaluation

4.2.1 Overview

In airline scheduling, it is of utmost importance to assess schedule drafts with regard
to their operating profit. While it is easy to use observed passenger numbers or profit
shares of existing flights to decide about their quality, this information is of little use
when planning new flights that are not part of past schedules for which passenger
numbers are known. Thus, when optimizing an airline schedule, an evaluation model
is necessary to assess the quality of a proposed schedule.

Many different passenger estimation tools exist that airlines use to estimate pas-
senger numbers. These tools are provided by commercial suppliers (for example
Sabre R© Airline Profitability Model) or developed by airlines (for example United
Airlines’ Profitability Forecasting Model). Because these models try to reproduce
passenger behavior on a detailed level, many different factors are taken into ac-
count that influence passenger demand. However, it remains questionable if a high
number of parameters increases the level of accuracy of the predictions, because
the calibration of each parameter inherits uncertainty. In addition, a large model re-
quires high computation times, and the evaluation of a single airline schedule can
last from minutes to hours. Because the airline scheduling models presented in this
study primarily work iteratively with one or many schedule evaluations necessary in
each iteration, existing evaluation models or rather commercial software could not
be used, since this would lead to excessive computation times. In addition, due to
their proprietary nature, little detail on these models is published, and their access
is restricted to internal use. Thus, in this study, an airline schedule evaluation model
has been developed that is used for the integrated airline optimization methods pre-
sented in sections 4.3 and 4.4.

Decisions on an airline schedule and its flights depend on the quality of the sched-
ule and the individual contribution of every single flight to the overall quality. It is
assumed that an airline wants to maximize its profit, thus, the quality of an airline
schedule can be determined by its contribution to this overall goal. Although the
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Fig. 4.2 Schedule evaluation process

profit depends on many different properties of an airline schedule, usually the oper-
ating profit is used to determine a schedule’s quality. The operating profit is defined
as the profit directly related to and dependent on the flights in the schedule, or, to be
more specific, the yield of all passengers of all flights minus the costs for operating
the flights.

Given an airline schedule, the operating profit is estimated using the following
process:

1. Market Size Estimation: Estimation of the total number of airline passenger
demand between any two airports.

2. Itinerary Construction: Selection and construction of itineraries (direct and con-
necting flights) that are offered to passengers.

3. Itinerary Market Share Estimation: Calculation of market shares or attractions
of competing itineraries.

4. Passenger Allocation: Allocation of passengers to individual flights under con-
sideration of capacity constraints.

5. Profit Estimation: Estimation of revenue and costs of all flights.
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An overview of the process of airline schedule evaluation including the major
required data is presented in Fig. 4.2. In the following, each step is presented in
more detail.

4.2.2 Market Size Estimation

The objective of this step is to estimate airline passenger market sizes. A market
is characterized by a city-pair and time interval (for example one day). Then, the
market size denotes the total number of passengers (passenger volume) that intend
to travel by air in this market. Because there is no data for market sizes given for
this study, they have to be estimated using a forecasting model.

A variety of different forecasting techniques for market size estimation exists,
and no technique can actually guarantee the accuracy of its predictions (Doganis,
2004). Even similar methods may produce widely diverging forecasts. Therefore,
in practice an airline usually makes use of many forecasting models to increase the
level of accuracy and trust, or simply uses numbers of past passenger flows as travel
demand for airline scheduling. However, if this data is unreliable, not available,
changes in demand structures exist, or new markets are evaluated, airlines need to
estimate market sizes.

In this study, market sizes are estimated using a gravity model. Gravity models
were the earliest causal models developed for human spatial interaction and traffic
forecasting (Doganis, 2004). The use of a gravity model in this study is motivated
by the fact that in gravity models it is assumed that there is a specific functional
relationship between travel demand (as dependent variable) and the characteristics
of the market (as the attracting and deterring independent variables). Thus, once
calibrated, a gravity model can be used to estimate passenger flows for every mar-
ket with its characteristics known. If the set of independent variables is carefully
selected and the model properly calibrated, a gravity model can be used to estimate
passenger volumes independently of the characteristics of present or past flights
in the markets. This is a necessary prerequisite for passenger estimation the air-
line scheduling can rely on, because the flight characteristics are not given until the
schedule is constructed. The gravity model used in this study represents a reduced
variant of the gravity model developed by Grosche et al. (2007) which primarily
uses a set of independent variables that do not depend on characteristics of existing
or historic flight services.

In the following two sections, an overview and classification of forecasting tech-
niques and drivers of passenger demand are given that can be used for passenger
volume estimation. Then, in Sect. 4.2.2.3 gravity models are introduced study is
presented in Sect. 4.2.2.4.

4.2.2.1 Forecasting Techniques

In general, there are two groups of forecasting techniques: qualitative and quanti-
tative techniques (Doganis, 2004). Fig. 4.3 presents a classification of forecasting
techniques.
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Fig. 4.3 Classification of forecasting techniques

Qualitative Techniques. Qualitative techniques include rough estimations and lit-
eral annotations of expected trends. Important techniques are executive judgment,
market research, delphi techniques, and historic conclusion by analogy. One ma-
jor advantage of qualitative techniques is their applicability if historical data is not
available. On the other hand, techniques like market research, for example, might
be a time-consuming and expensive task, and executive judgment relies only on the
assessment of a few experts.

Quantitative Techniques. Quantitative models use mathematical models or rela-
tionships between independent and dependent variables. Formulating mathematical
models allows independent estimations of future developments. Depending on the
type of independent variables, two groups of techniques within quantitative models
can be identified: causal/econometric methods and time-series projections.

Time-Series Modeling. In time-series or trend projections, a mathematical model
is constructed with demand as a dependent and time as the only independent vari-
able. As time progresses, airline demand will progress. It is assumed that the de-
mand for air travel, the factors influencing demand, and their relationship remain
stable and allow reliable forecasts. However, the rapidly changing business environ-
ment of airlines might violate this assumption. In addition, these kinds of models
require accurate and sufficient historical data for model calibration for each route
under investigation. Thus, on routes that are under evaluation for a new airline
service, these models cannot be used because historical data is not available. The
most important time-series projections include methods of annual average growth,
exponential smoothing, linear trends, and linear trend on moving averages
(Weatherford et al., 2003, Doganis, 2004).
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Causal Modeling. Within causal methods, a functional relationship between air
travel demand and selected economic or social supply variables is constructed.
These models assume that airline travel demand can be derived from other fac-
tors and supports the realization of other targets like doing business or vacation
trips (O’Connor, 1982). If one supply variable changes, air travel demand will also
change. In econometric models, this relationship is measured, and by predicting
changes in any one of the independent variables the impact on air travel demand
can be forecasted (Doganis, 2004). In contrast to other forecasting techniques, in-
dividual independent variables and their influence on the dependent variable can be
analyzed. Thus, causal models can help to evaluate different strategies and to in-
vestigate passenger behavior on a more detailed level. There are different models
on how to construct the relationship between air travel demand and its influencing
factors. A commonly used model is a regression model, since it is easy to construct
and efficient calibration techniques are established. Due to their mathematical struc-
ture, gravity models can be considered as one variant of regression models. Causal
methods also include simulation techniques and artificial neural networks. However,
because the causal relationships cannot be extracted from these models, an explicit
interpretation and analysis of the (functional) relationship of individual variables is
difficult (see for example Weatherford et al. (2003)).

4.2.2.2 Drivers of Air Travel Demand

The first step in constructing a causal model is the identification of its variables.
The travel demand as the dependent variable is usually measured as passenger
volume describing the total number of passenger trips on city-pair routes dur-
ing a given period of time (Kanafani, 1983). Because the total demand includes
many individuals with different behavior characteristics, a higher level of accu-
racy can be achieved by forecasts for homogeneous groups of individuals. A com-
mon segmentation is by purpose of travel (business or leisure travel), since the
demand for travel is usually derived from the demand for activities at the desti-
nation (Bouamrene & Flavell, 1980, Kanafani, 1983). The factors that influence the
demand of both segments are assumed to be different in type and impact.

In general, factors that influence passenger volumes are included as indepen-
dent variables and can be categorized into two groups: geo-economic and service-
related factors (O’Connor, 1982, Kanafani, 1983, Rengaraju & Thamizh Arasan,
1992,Jorge-Calderón,1997). Geo-economic factors are factors that describe the eco-
nomic activity and geographical characteristics of the airports and cities of the route
under investigation. Service-related factors include characteristics of the air trans-
port system between two cities. In contrast to geo-economic factors, service-related
factors are under the control of the airlines.

Geo-Economic Factors. Geo-economic factors include activity-related factors that
describe the (economic) activity of a city or between a city-pair, and their geograph-
ical characteristics.

The most commonly used activity-related factors are income and population of
the metropolitan area served by an airport because these are useful approximations
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of activity factors (Kanafani, 1983). An even more aggregated measure of the eco-
nomic activity and income levels is the past total passenger volume at each airport
(Doganis, 1966). More detailed activity-related variables that have been used ear-
lier include income distribution, percentage of university degree holders, number of
full-time employees, type of city, employment composition, structure of the produc-
tion sector of one region, or economic, political and cultural relationships between
two countries (Kanafani, 1983, Russon & Riley, 1993, Jorge-Calderón, 1997).

Geographical factors are characteristics of the location or geographical proper-
ties of a city or city-pair. For example, an important factor for inter-city air travel
demand is the distance between cities. Two opposite effects of the distance of a
city-pair on its demand can be identified. First, with increasing distance less so-
cial and commercial interaction can be observed. Second, long distances increase
the competitiveness of air transportation over other transportation modes regarding
travel time, especially when there is no overland connection is available (O’Connor,
1982, Kanafani, 1983, Russon & Riley, 1993, Jorge-Calderón, 1997). The competi-
tion of airports in close proximity of one of the airports of the route under investiga-
tion is also considered as a geographical factor on demand (Russon & Riley, 1993).
For example, an airport with a better schedule in terms of frequency or destinations
is likely to offer more convenient departures and, thus, might attract more passen-
gers than an airport in close distance (Fotheringham & Webber, 1980,Fotheringham,
1983, Ubøe, 2004).

Service-Related factors. In general, the service of air travel is determined by its
quality and its price (Jorge-Calderón, 1997).

Existing studies show that there are many different factors that influence airline
service quality (Ippolito, 1981, Ghobrial & Kanafani, 1995b, Wojahn, 2002, Gard-
ner Jr., 2004, Gursoy et al., 2003, Park et al., 2004). An important factor is the total
travel time between two city pairs which is determined by the desired departure
time of a passenger and the actual arrival time. The overall travel time also depends
on the frequency of flights offered in a market (Kanafani, 1983, Jorge-Calderón,
1997, Proussaloglou & Koppelman, 1999). With increasing frequency passengers
are able to select a flight that departs closer to their preferred departure time mini-
mizing their total travel time. The average load factor also influences overall travel
time as it indicates the probability of free seats at the preferred departure time. As
flight delays increase the travel time of passengers, the overall on-time performance
of an airline is another factor. An airline’s reputation is also important for the ser-
vice quality, as well as the market presence, customer loyalty programs, and the
aircraft equipment (Kanafani, 1983, Jorge-Calderón, 1997, Proussaloglou & Kop-
pelman, 1999).

The relationship between price and demand has been studied in various pub-
lications. In general, the demand for air travel decreases with increasing fares.
Especially on short-haul routes airlines face competition by other transportation
modes that gain a relative advantage with increasing air fares (Russon & Riley,
1993, Jorge-Calderón, 1997). The results of a survey of German passengers showed
that 52% of all passengers would not have traveled at all if no low-priced flights
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(offered by a low-cost airline) had been available (Tacke & Schleusener, 2003). On
the other hand, some researchers reject the consideration of air fares in travel de-
mand forecasting models. Their reasons are manifold. In many cases, the air fare is
highly correlated with the distance or travel time and, thus, should not be considered
as an independent factor (Kanafani, 1983,Rengaraju & Thamizh Arasan, 1992). An-
other reason is that air fare is assumed to be an exogenous factor (Jorge-Calderón,
1997); an airline has only limited control over the prices it charges because it must
meet the same prices as potential competitors (O’Connor, 1982). In addition, it is
difficult for airlines to reliably forecast fares because the important determinants like
oil prices are highly volatile and hard to predict (Doganis, 2004). Finally, the use of
average fares in forecasting models is problematic because air fares mainly depend
on route density/competition and on different restrictions of the fare classes (Wells,
1998, Lee, 2003).5 For example, Jorge-Calderón (1997) showed that air travel de-
mand is price inelastic with respect to the unrestricted economy fare, and moderately
discounted restricted fares do not significantly generate additional air traffic. Even
though there exists inter-modal competition in short-haul routes, airline service is
usually used by passengers that are time-sensitive and price-insensitive.

4.2.2.3 Gravity Models for Air Traffic Forecasting

Introduction. Gravity models are inspired by the gravitational law of physics (New-
ton, 1687). The gravitational law states that the gravity between two objects is
directly proportional to their masses and inversely proportional to their squared
distances.

A simple formulation of a gravity model for human spatial interaction used for
the prediction of traffic flows between two cities i and j can be formulated as

Vi j = k
(AiA j)α

dγ
i j

, (4.2)

where Vi j is the passenger volume between i and j (i �= j), Ai and A j are attraction
factors of i and j, di j is the distance between both cities (or any other impeding
factor), and k is a constant. γ is a parameter that controls the influence of the distance
on travel demand and α controls the influence of the attraction factors.

Several extensions to this simple formulation exist. If Vi j is measured by passen-
ger volume originating from i and ending in j (instead of the total two-way traffic),
separate variables can be included representing travel production factors (push fac-
tor) Pi of the originating city and travel attraction factors (pull factor) A j of the
destination city and individual parameters α and β controlling their influence. This

5 In the USA, more than 30,000 fare changes per day are observable (McGill & Van Ryzin, 1999).
Thus, historic airline fares are of limited use at the time of airline scheduling requiring market
size estimation, since this planning task is conducted well ahead of the day of operation. The
closer the departure, the more important are airline fares. In fact, airline fares represent the
short-term instrument for capacity control, while the airline schedule serves as a medium or
long-term instrument.
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distinction is sometimes made only by allowing the variables to have different pa-
rameter values for the origin and destination city while using the same variables
for both (Kanafani, 1983). In some approaches, α and β are city-specific (denoted
as αi and β j). A gravity model can be constrained by production or attraction. In
attraction (production)-constrained models, the total travel demand attracted to one
city (produced at one city) has to be equal to the observed arriving (departing) pas-
sengers at this city. A double-constrained gravity model (constrained in production
and attraction) can be formulated as

Vi j =
Pαi

i A
β j
j

dγ
i j

· (4.3)

The production and attraction of each city is constrained:

n

∑
j

Vi j = Pi (4.4)

and n

∑
i

Vi j = A j. (4.5)

In this kind of model, it is assumed that the total demand or flow leaving a city is
known and this knowledge is used within model formulation and calibration. How-
ever, a constrained model cannot be used for demand prediction in new markets be-
cause calibrating the constraint model is not possible if no historical data is available.

Calibration. After defining the basic model formulation, the parameters of the
model have to be calibrated. The objective of calibration is to find model param-
eters that lead to an accurate prediction of the expected travel demand (the gap
between predicted travel demand and observed travel demand should be small).
The calibration can be conducted by using either time-series or cross-sectional
data (Kanafani, 1983,Rengaraju & Thamizh Arasan, 1992,Doganis, 2004). If time-
series data is used, a demand model is calibrated for a particular city-pair using
data for a number of different time periods. All variables in a time-series model
are expressed as functions of time polynomials. This permits the construction of a
demand function specific to each city-pair. In cross-sectional calibration, the same
model is assumed to hold for a number of different city-pairs. The data for these
city-pairs during one single time period is aggregated and used for parameter es-
timation (Moore & Soliman, 1981, Kanafani, 1983, Rengaraju & Thamizh Arasan,
1992).

In most cases, the calibration itself is conducted using the ordinary-least-squares
method. Taking the logarithm of a gravity model formulation leads to a multiple
linear regression expression to which standard techniques can be applied.

Previous Work. The variety of different independent factors allows the formulation
of a large number of different gravity models. The following Table 4.1 presents
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some gravity models from literature that were tested cross-sectionally with real-
world data and for which information on variables, number of observations (obs.),
and coefficient of determination (R2) as quality measure were published.

Table 4.1 Properties of selected gravity models from literature

Author (Year) Factors Obs. R2

Doganis (1966) Observed passenger number at airports, distance 22 0.740a

Brown and Watkins
(1968)

Income, sales competition, average fare per mile, journey time per
mile, number of stops, distance, phone calls, international passen-
gers on domestic flights, competition index

300 0.870

Verleger (1972) Income, price, phone calls, distance, flying time 441 0.720b

Moore and Soliman
(1981)

Population on city-level, income, economy fare 69 0.370

Population of airport catchment regions, income, airport catchment,
economy fare

58 0.810

Fotheringham (1983) Attractiveness/population, traffic outflow of origin, distance 9900 0.730;
0.760

Rengaraju and
Thamizh Arasan
(1992)

Population, percentage of employees, university degree holders,
big-city proximity factor, travel time ratio (travel time by rail di-
vided by travel time by air), distance, frequency of service

40 0.952

Russon and Riley
(1993)

Income, population, highway miles distance, number of jet/pro-
peller nonstop/connection flights, driving time minus connection
flight time, distance to competing airports, political state boundary

391 0.992

O’Kelly et al. (1995) Nodal attraction, distance 294 0.850c

Jorge-Calderón (1997) Population, income, proximity of hub airport, hub airport, distance,
existence of body of water between cities

339 0.371

Additional variables: tourism destination, frequency, aircraft size,
economy fare (not/moderately/highly discounted/restricted)

339 0.722

Shen (2004) Nodal attraction, impedance 600 0.568d

Doganis (2004) Scheduled passenger traffic at airports, economy fare, frequency 47 0.941
Grosche et al. (2007) Population, catchment, buying power index, gross domestic prod-

uct, distance, average travel time
956 0.761

Additional variables: number of competing airports, average dis-
tance to competing airports, number of competing airports weighted
by their distance

1228 0.730

a This value is the rank coefficient. The city-pairs are ranked according to the actual and estimated
passenger volumes and the correlation between the ranks yields the rank coefficient.

b The study is based on the model of Brown and Watkins (1968).
c The authors present different methods for a reverse calibration of the gravity model. The attrac-

tion of cities is estimated based on observed traffic flows. A multiple linear regression results
in R2 = 0.850, two different linear programming models result in R2 = 0.700 and R2 = 0.810.

d The focus is on an algebraic approach for reverse-fitting of the gravity model. Therefore, the
nodal attraction is estimated endogenously from exogenous spatial interaction and impedance.

4.2.2.4 Gravity Model Development

The gravity model by Grosche et al. (2007) is used as a basis from which the model
used in this study is derived. This model primarily uses geo-economic variables as
input and cross-sectional data for calibration, allowing an application to new mar-
kets for which historical data is not available.6 Statistical tests on the model show

6 This set of variables is extracted from the data also available for this study.
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satisfying results; in addition, the model was thoroughly validated with a formal
test and by analyzing the stability of the coefficient of determination R2 and the co-
efficients of the independent variables for different subsets of the total number of
observations.

One reason for the good performance of this gravity model is its application to ho-
mogeneous data, because only routes between Germany and other European coun-
tries were available for calibration. This assumption is confirmed when applying
the calibrated model to all city-pairs within Europe. Because some statistical offices
and industrial organizations (for example Eurostat, AEA, ICAO etc.) publish traffic
figures for some selected routes, their order with regard to passenger flows can be
compared with the order of the estimated passenger demand figures. A comparison
unveils an overestimation by the gravity model especially for long-haul routes. The
reason for this might be Germany’s central geographical position in Europe, leading
to calibration data with markets representing typical medium-haul flights.

These observations support the basic requirement to apply gravity models to ho-
mogeneous markets (Kanafani, 1983). For this study in which all city-pairs in Eu-
rope are considered, the next step would be to build a set of gravity models and to
calibrate them across the various markets within Europe, or to use European-wide
data for the calibration of a more robust gravity model that then could be applied to
all markets. In fact, the estimation of market sizes by airlines consists of the con-
struction and calibration of many different models for individual regions or routes.
Unfortunately, reliable data needed for such a calibration is not available for this
study. Thus, two strategies remain to obtain market sizes for further use:

1. Usage of observed passenger flows as market size between those city-pairs for
which this information is published.

2. Construction, calibration and application of a gravity model that has been re-
duced compared to the model of Grosche et al. (2007) to better reflect all mar-
kets in Europe.

The first strategy provides accurate data of realized passenger flows. However, these
flows represent constrained passenger demand, because they result from existing air-
line services with their characteristics. For example, if there is no airline service on
a market, the resulting passenger flow is zero even if demand exists. Or if capacities
are small for a city-pair, the passenger flows probably underestimate the real uncon-
strained demand. Also because of the lack of available data, using this strategy re-
sults in a zero matrix for the demand between city-pairs with only a few cells filled.
In contrast, a gravity model produces demand estimates with traffic between many
city-pairs. Thus, it better reflects the (unconstrained) demand structure, although
the individual passenger numbers estimated for the city-pairs will differ from the
real values and the overall model fit might be poor. The reason for this is that the
gravity model is applied to heterogeneous markets, although it was calibrated with
homogeneous data sets. Nevertheless, this strategy is applied to produce market size
estimates, because to assess different airline schedule construction techniques, the
accuracy of passenger forecasts on selected markets is less important than consider-
ing more realistic demand structures across all markets. It has to be emphasized that
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this reduction and the related drawbacks result from the lack of information on the
demand. If market sizes are available or could be obtained with any other estimation
technique, this data could be used immediately to replace the estimates used here
for schedule evaluation or to calibrate better fitting gravity models.

The gravity model used for market size estimation in this study is the basic model
presented by Grosche et al. (2007) without the independent variables travel time
and GDP. Airports of multi-airport cities were aggregated. The final model was
manually selected by ordering the markets according to their estimated market sizes
and comparing this order with the order of markets with real data available. It has
the following form:

Vi j = eε Pi j
πCχ

i jB
β
i jD

δ
i j, (4.6)

where Vi j is the total passenger volume between cities i and j, the exponents in
Greek letters are used to model the impact of the input factors and are subject to the
calibration process. The variables in capital letters are the independent factors influ-
encing the travel volume. Table 4.2 lists the variables and their aggregate functional
forms.

Table 4.2 Independent factors of the gravity model

Variable Functional Factor
Form

Pi j PiPj Population
Ci j CiCj Catchment
Bi j Bi +B j Buying power index
Di j Geographical distance

The following items briefly describe the independent variables used in the model.

• Population: The population of a city is determined based on various statistical
offices of the involved countries. In all cases the latest figures were considered.
The population refers only to the city of each airport, potential passengers from
an airport’s vicinity are included in the catchment data.

• Catchment: A catchment area of an airport covers the vicinity of an airport.
Usually, the catchment area includes only those areas that are within a certain
traveling distance to the airport. Consequently, the catchment area of an airport
is defined as the region that is within 60 minutes driving time. The number of
people living in this region are expected to use the airport for their travel pur-
poses and are thus included in the catchment. The catchment data is derived
from population data of the regions given on the NUTS3-level. NUTS (Nomen-
clature des unités territoriales statistiques) are classification levels of territo-
rial units of about the same population size that provide the basis for regional
statistics for the European Union (see Fig. 4.4 for an example). In this model,
catchment data from the year 2003 is considered.

• Buying power index: The average buying power index is constructed on the
basis of an airport’s catchment area. Like the catchment, the buying power index
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Fig. 4.4 NUTS3 on the northern coast of Germany

is given on the NUTS3-level with 100 as the European average. The index can
be interpreted as an indicator for the size of the travel budget of the population
within an airport’s catchment. The data used for calibration is from 2003.

• Geographical distance: The distance between two airports is calculated as the
great circle distance in kilometers between the airports’ coordinates.

The calibration of the gravity model is conducted using the ordinary least square
method. Table 4.3 presents the coefficients of the resulting model with t-statistics
and standardized beta coefficients. The t-statistics indicate that the null hypothesis

Table 4.3 Calibration results of the gravity model

Coefficients Pi j Ci j Bi j Di j

Values 0.357 0.203 1.722 -0.127
t-statistics 12.871 8.013 8.255 -2.047
Beta coefficients 0.350 0.229 0.222 -0.057

(the independent variables have no effect) can be rejected for each variable at the
5%-level. As discussed before, although the R2 is rather poor (R2 = 0.283), this
model is used to calculate market size, because it better reflects demand structures
across various markets in Europe.

4.2.3 Itinerary Construction

4.2.3.1 Overview

When constructing an airline schedule, the airline has to make the most efficient use
of its resources while best meeting the passengers’ demand. The
compromise of these conflicting goals is the schedule presented to the potential
passengers containing travel itineraries. An itinerary is a travel alternative between
two cities, which could be either a direct flight or a sequence of connecting flights
(Coldren et al., 2003). Fig. 4.5 presents an excerpt from a CRS screen as an example
of four different itineraries presented to passengers for a journey between Hamburg
(HAM) and New York (JFK).
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Fig. 4.5 Itineraries between Hamburg (HAM) and New York (JFK)

It contains four travel itineraries departing at 08:00 from HAM: one direct flight
and three connecting flights. By offering itineraries consisting of multiple flights, the
airline is able to offer many more city-pair connections than with the given number
of individual flights and, thus, can increase its passenger numbers. On one day, a city
pair might be served by many different itineraries and a single flight might serve as
a flight leg of many different itineraries. For example, in Fig. 4.5, the flight with
flight number 101 is a segment of two itineraries.

Because each flight is a direct itinerary but might also serve as a segment of
many different itineraries connecting different city pairs (markets), the estimation
of passenger numbers cannot be conducted on a flight level. In addition, airline
fares are given on a market level. Thus, for schedule evaluation, passenger flows
have to be estimated on the itinerary level. Therefore, it is necessary to construct
valid itineraries from the set of individual flights in the schedule. Because each
flight of the schedule itself represents a valid itinerary, the focus is on the con-
struction of connecting flights (or simply connections). In theory, the number of
possible connections grows exponentially with an increasing number of flights,
since all flights can be connected. Thus, the objective is to limit the number of
connections to those itineraries that are reasonable and are likely to be chosen by
passengers.

In practice, the itinerary construction process is conducted by CRS for passen-
ger marketing (Coldren et al., 2003) and by airlines for direct sales and schedule
evaluation. In these processes, many different algorithms or sets of rules are ap-
plied to remove infeasible, unrealistic or unreasonable itineraries. However, these
rules and their parameters represent confidential information and there is no de-
tailed information published that could be implemented for this study. However,
there are some few comments about the general attributes of a connection to be
considered as a valid itinerary (see for example Mathaisel (1997), Schmitz et al.
(1998)). Based on this information, a set of rules for connection building was devel-
oped for this study. This set is presented in the following. To find all valid connec-
tions based on a given flight schedule, all rules are applied. As the rules incorporate
some parameters, a calibration is necessary. A simple calibration was conducted
using historic booking data from connecting flights; its results are presented in
Sect. 4.2.3.3.
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4.2.3.2 Connection Building Rules and Parameters

In the following, the set of rules used in this study for connection building is pre-
sented including parameters that have to be calibrated. Each paragraph focuses
on one rule. To illustrate the functionality of each rule, the following Fig. 4.6 is
introduced.

Fig. 4.6 Connection build-
ing example

In this network, the arcs represent single flights, the solid bars represent airports
and their locations. For example, there is one flight scheduled between A and G,
and airport D is located approximately halfway between A and G. The bars also
represent a time-line (from left to right), allowing one to specify departure and ar-
rival times of flights at each airport. For example, when looking at airport E, the
first flight arriving departed from A, then a flight departs heading to G, a flight ar-
rives from D, and the last flight departs towards G. In the following, the connection
building rules are illustrated for connections between A and G.

Detour. In general, each connection itinerary represents a detour compared to the
direct route between two cities. A maximum detour factor dmax indicates to what ex-
tent the geographical distance of a connecting flight distcnx might exceed the direct
distance distdir between the origin and destination airport: distcnx ≤ dmax · distdir.
This factor can be interpreted as an elliptical envelope around the direct route be-
tween two cities in which a connecting airport has to be located (Mathaisel, 1997).
For example, in Fig. 4.7 routes via F between A and G exceed the maximum detour
factor compared to the direct route between A and G.

In contrast, for example itineraries following the route via B or E are valid with
regard to the detour factor.

Because it is based on geographical distance, the maximum detour factor re-
duces the number of possible connection itineraries independently of the flights in
the schedule. Using the factor leads to a preselection of possible routes that valid
itineraries have to follow. The separation of geographical routes and itineraries of
the schedule allows an efficient implementation: the route selection needs to be per-
formed only once with the complete set of available airports and is independent of
the schedule that has to be evaluated in each iteration of the optimization approach.
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Fig. 4.7 Maximum detour
factor dmax

Minimum Connection Time. To represent a feasible connection, the departure air-
port of a succeeding flight has to be the same as the arrival airport of its predecessor.
In addition, the second flight must not depart before the first one has arrived and a
minimum connection time tcnx

min has elapsed. The minimum connection time is nec-
essary for passengers to change the flights and to process their baggage between the
two aircraft. Usually, the airport specifies this time.

Fig. 4.8 illustrates the application of this rule. For example, there is no connection
flight A–D–G. In addition, although using the same airport, the first flight arriving at
E cannot be connected with the first flight departing from E, because the connection
time would exceed the minimum connection time tcnx

min.

Fig. 4.8 Minimum connec-
tion time tcnx

min

Number of Stops. In general, passengers want to minimize their travel time and to
increase the convenience of the journey. Thus, if there are too many stops within a
sequence of flights, this sequence is unlikely to be chosen by a passenger. A max-
imum number of stops smax is defined that excludes connection flights with more
intermediate stops than this number. If for example only one connecting airport is
allowed (smax = 1), in Fig. 4.9 there is no itinerary via D from A to G, since at least
three intermediate stops would be required (via B, D, E).

Time Delay. In general, the shorter the travel time of an itinerary compared to
competing itineraries, the more attractive it is to potential passengers. Thus, the
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Fig. 4.9 Maximum number
of stops smax

set of itineraries needs to be further reduced by removing itineraries with longer
travel times. A possible connection is excluded if its travel time tcnx exceeds the
travel time of the shortest itinerary tshortest in the market by a certain factor tdelay:
tcnx ≤ tdelay · tshortest . It is assumed that the time delay is perceived differently de-
pending on the type of the shortest itinerary (direct or connection), thus the factor
differentiates between both types. The time delay factor with regard to the shortest
connection itinerary is denoted as tcnx

delay, the one with regard to the shortest direct

flight – if one exists – as tdir
delay.

Fig. 4.10 presents the application of the described rule. There are two connections
via B from A to G. Depending on the time delay factor, the first flight between A
and B is likely to be removed from the connection building, since at least the second
connection itinerary promises a much faster connection.7

Fig. 4.10 Time delay factor
tdelay

Maximum Connection Time. In contrast to the minimum connection time tcnx
min, a

maximum connection time tcnx
max specifies the time a passenger is willing to wait for

the connecting flight. A connection is only constructed, if the departure time of the
second flight leg departs before tcnx

max has elapsed.
Fig. 4.11 illustrates the application of this rule. At airport E, the time between

the arrival from the flight arriving from A and the flight heading to G exceeds the
maximum connection time tcnx

max.

7 The factor must also take the connection flights via C and E into account. Furthermore, tdir
delay

has to be considered, since there is a direct flight between A and G. However, for simplicity
reasons, these considerations are neglected in this example.



82 4 Integrated Airline Scheduling

Fig. 4.11 Maximum con-
nection time tcnx

max

Interline Connections. Usually, airlines and CRS limit the number of connections
of flights conducted by different airlines. Flights of the same airline are allowed to be
connected without any restrictions (online connections). Flights of different airlines
(interline connections) are usually only connected if the airlines are members of the
same strategic alliance or have any other sort of interline or code-share agreement.
With 210 different airlines from the OAG schedules, investigating all interline agree-
ments would be beyond the scope of this work. Instead, in order to include interline
connections, a parameter ninterline is specified: if for any two airlines a number of in-
terline connections exceeding this parameter could be observed in the given MIDT
data, interline connections are allowed for these two airlines in future use.

4.2.3.3 Parameter Calibration

In the previous section, the parameters necessary for building connections were in-
troduced. Each parameter needs to be calibrated to obtain a complete connection
building procedure that reproduces the real travel behavior in the best way. This be-
havior can be observed using the given MIDT data, because each record represents
a chosen itinerary and the number of passengers that have chosen this itinerary.
Given all flights included in this data, the calibrated connection building sequence
should result in a set of connections that were chosen by the passengers in the past.
Because this number could easily be maximized by constructing all possible con-
nections (leading also to a vast number of non-chosen connections and to excessive
computation times), a second (conflicting) objective is to minimize the total number
of connections constructed.

This calibration process represents an optimization problem. In this study, a sim-
ple metaheuristic is used to accomplish this task. To apply a metaheuristic to a given
optimization problem, according to Rothlauf (2006a) the following four basic ele-
ments have to be adapted (see Sect. 3.2 on page 48):

1. solution representation and variation operators
The seven parameters described in the previous section are the decision vari-
ables of the calibration process.8 Thus, the genotype of a solution s consists of

8 The maximum number of stops is set to smax = 1 because only MIDT data with itineraries with
a maximum of one stopover was available.
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seven elements p each encoding one parameter as a continuous value. A local
search operator randomly changes one value per solution step. The element p
that is subject to the modification is selected randomly (following a uniform
distribution). Then, the modified parameter p∗ is calculated by multiplying p
with a random value selected according to a normal distribution N(1,0.5) with
mean μ = 1 and variance σ2 = 0.5. This procedure leads to a higher probabil-
ity for smaller changes. All parameters are protected against infeasible values
(for example, detour factor dmax < 1). Since the metaheuristic is solely based
on local search, recombination-based search operators were not implemented.

2. fitness function
The fitness function has to integrate two conflicting objectives: maximization of
the number of constructed connections that were chosen in the past and their pas-
sengers, and minimization of the total number of constructed connections. Let
cos denote the number of observed connections (index o) that were also selected
(index s) by the connection builder, pos the number of passengers traveling on
these connections, cot the total number (index t) of observed connections, pot

the total number of passengers, and ctotal the total number of connections con-
structed. The term cos

cot
expresses the number of connections constructed that were

chosen in the past and has to be maximized. pos
pot

is the corresponding number of

passengers. Then, the average values of both terms are calculated as
cos
cot

+ pos
pot

2 .
The objective to minimize the total number of constructed connections can be
expressed by cos

ctotal
. Using the parameters p1 and p2 to control the influence of

each objective value on the overall fitness value, the fitness function is as follows:

f (s) = p1 ·
cos
cot

+ pos
pot

2
+ p2 · cos

ctotal
. (4.7)

In this study, the two conflicting objectives are presumed to be equally impor-
tant, thus the corresponding parameters are set to equal values (p1 = p2 = 1).

3. initialization
As initial solution, the parameters are set to the following values:

dmax = 1.5,

tdir
delay = 1.5,

tcnx
delay = 1.5,

tcnx
max = 120 minutes,

tcnx
min = 45 minutes,

ninterline = 80.

4. search strategy
A simple hill climbing technique is used as a search strategy. Thus, only lo-
cal search steps are performed without accepting inferior solutions during the
search process. If the algorithm does not improve for 500 iterations, it is
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terminated. The use of this rather simple optimization algorithm can be justified
by preliminary tests, in which a threshold accepting algorithm did not result in
better solution quality but much higher computation time. Algorithm 3 specifies
the hill climbing technique used here.

Algorithm 3. Hill Climbing Algorithm for Parameter Calibration
1: create initial solution s with fitness value f (s)

2: iteration i = 0

3: repeat

4: i = i +1

5: create new solution s∗

6: calculate new fitness value f (s∗
o)

7: if f (s∗
o) > f (s) then

8: s = s∗

9: i = 0

10: end if

11: until i = 500

Table 4.4 Connection building calibration results

Parameter Value σ
dmax 1.265 0.415
tdir
delay 1.392 0.358

tcnx
delay 1.741 1.158

tcnx
max 113.099 44.767

tcnx
min 55.067 24.747

ninterline 81.257 11.270
Fitness f (s) 1.414 0.365

Because the airline scheduling in this study is on a daily basis, the parameter cal-
ibration is conducted for each day separately. The following Table 4.4 presents the
aggregated results for all days for which data was available (including the standard
deviations σ ). All parameters have reasonable values. For example, tcnx

delay is higher

than tdir
delay, since an additional time delay due to a connecting flight is more likely to

be accepted if the shortest itinerary in the market already represents a connection.
The values from Table 4.4 are used as final parameter setting when applying the
connection building routine.

4.2.4 Itinerary Market Share Estimation

4.2.4.1 Overview

The direct flights and connecting flights represent the set of itineraries a passenger
can choose from. The objective of itinerary market share estimation is to forecast
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the attraction of each itinerary for a single passenger. The attraction of an itinerary
depends on attributes such as convenience of travel, travel time, departure and ar-
rival time, average fare, aircraft type, and airline preferences. This attraction can
be interpreted as the market share of the itinerary, thus, if multiplying this value
with the market size estimated in Sect. 4.2.2, the total passenger demand for each
itinerary can be calculated.

Although there are a number of publications on forecasting techniques and stud-
ies of passenger demand forecasting (see Coldren and Koppelman (2005) for an
overview), few published models are available which are able to forecast itinerary
market shares. The most common model used for this type of estimation is the multi-
nomial logit (MNL) model and its variants; some examples are published in detail
including its variables (see for example Coldren and Koppelman (2005) and Bauer
(2004)). Because for this study the variables required and used in the published
models are not available, the models cannot be used. Instead, a new model has to be
developed and calibrated using the data available for this study.

One reason why MNL models are commonly used in forecasting is their well-
defined structure leading to easy calibration and fast computation times. However,
it remains unclear whether the basic structure of MNL models (like logistic func-
tion, linear-in-parameter utility) limits the forecasting accuracy in comparison to
other structures or less structured models. Thus, in addition to a traditional MNL
model, a custom model for the estimation of itinerary shares (EIS) is developed and
calibrated. As the same input data is used for both models, they can be compared
well and evaluated according to their forecasting quality. The model with the high-
est prediction quality is then used as an itinerary market share estimation model in
the overall schedule evaluation process.

The next section describes the basic setup including the variables and approach
used for calibration and evaluation of both models. Sections 4.2.4.3 and 4.2.4.4
present the MNL model and the EIS model. These sections also give details on the
calibration and evaluation of the models. In Sect. 4.2.4.5 the forecasting quality of
both models is compared.

4.2.4.2 Setup

The impact of attributes of itineraries on their attraction can be modeled either sep-
arately for each city pair, or aggregated for all city pairs. If modeled separately
for each city pair, model parameters are different between markets, whereas the
aggregated calibration – as conducted here – results in method parameters appli-
cable to all city pairs. Thus, the model can be used for estimation in new markets
which is important for flight schedule construction. In addition, this study does not
use different passenger segments or time periods resulting in group-specific or time-
specific coefficients. Instead, each model is calibrated using all available data.

The total demand in one market is calculated as the sum of all bookings over all
itineraries in the market. By dividing the number of passengers on one itinerary by
the total number of passengers in the market, the market share of this itinerary can
be calculated. By using the market share as the dependent variable, an aggregate
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Fig. 4.12 Different time
preference functions
aDT P(t)
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forecasting model for all city pairs can be built and the effects of different market
sizes are eliminated.

Data. In this study, the MIDT data described in Sect. 4.1.3 was used. This data mea-
sures the realized passenger demand for each itinerary in a market (thus, the market
share can be calculated) and provides the corresponding attributes of the itineraries.
A market consists of all itineraries available on one day between a pair of airports.
Only markets with at least two itineraries are considered in the study (if only one
itinerary exists no estimation of the market share is necessary). The resulting data
set contains 2,978 different city pairs with a total of 961,430 itineraries.

In principle, the number of attributes of an itinerary can be large depending on the
level of detail. Table 4.5 lists the attributes (independent variables) that are used for
this study to describe relevant properties of itineraries. It also presents a short de-
scription of each variable, its range, and if necessary, the functional form as used
in the different models. The different variables are modeled in such a way that
the impact of the variable on the attraction of an itinerary increases with higher
values.

The variable aDT P(t) requires further explanation. Passengers usually have pref-
erences for specific departure times, thus, time preferences do not stay constant dur-
ing the day. For example, standard business travelers are likely to prefer departure
times in the morning and in the afternoon/evening. aDT P(t) describes how the pref-
erence for a specific departure time changes throughout a day. In this study, three
different aDT P(t) functions are considered, that are plotted in Fig. 4.12.

• USA70: This function is derived from a survey of domestic airline traffic con-
ducted in 1969 by the US Department of Transportation (O’Connor, 1982).

• AXS: This function is used in a software used by an airline for schedule
evaluation.

• EU86: This function is derived from a study in 1986 on passenger volumes on
short-haul routes in Europe published by Biermann (1986).

Calibration and Evaluation. The goal of calibration is to adjust the parameters
of each forecasting model so that the model reproduces the calibration data in the
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Table 4.5 Description of explanatory (independent) variables representing relevant proper-
ties of itineraries

Variable Values Functional form Description

Travel time
ratio

[0,1] aT T R
i = max(2− t imei

timesh
,0) Ratio between total travel time timei

of itinerary i and travel time timesh of
shortest itinerary sh in the market.

Itinerary
type

{0,1} aTY P
i =

{
1 if i is direct flight

0 if i is connection
Discrete value indicating direct flight
or connection.

Shortest
itinerary
type

{0,1}
aSTY

i =

{
1 if sh is connection

0 if sh is direct flight

Discrete value indicating if shortest
itinerary sh in the market is direct
flight or connection.

Departure
time prefer-
ence

[0,1] aDT P(depi) Indicates the attraction of the depar-
ture time depi of itinerary i for a po-
tential passenger (see Fig. 4.12).

Airline
quality/
preference

[0,1] aQUA
i Describes the quality of the airline

operating itinerary i as published by
Skytrax (2006).

Airline
presence

[0,1] aPRS
i Indicates the total market share of the

airline operating itinerary i in the mar-
ket.

Closeness
(closest
itinerary)

[0,144] aCLO = 144−|depi −depcl | Time difference between departure
time depi of itinerary i and depar-
ture time depcl of the closest (with
respect to time) itinerary in the mar-
ket. Time is measured in 5-minute-
intervals (maximal time difference is
144 (12 hours)).

Travel
time ratio
(closest
itinerary)

[0,2] aT RC
i = 2− t imei

timecl
Ratio between total travel time timei

of itinerary i in comparison to travel
time timecl of the closest itinerary in
the market.

best way. In this study, the process of calibration and evaluation is the same for both
models. Out of the total number of observations, a set of randomly chosen itineraries
serves either as a calibration data set (CS) or as a validation data set (VS). The CS is
used to calibrate each model. Then, the calibrated model is evaluated by measuring
the forecasting quality using the data of the VS. The forecasting quality of each
model is evaluated using the mean squared error (MSE)

MSE = ∑k(pk − tk)2

|K| , (4.8)

where |K| is the number of elements in the total set K of itineraries, pk is the market
share predicted for itinerary k ∈ K, and tk is the observed market share.
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4.2.4.3 Multinomial Logit Model

In this section, a multinomial logit (MNL) model for itinerary market share forecast-
ing is formulated and tested. Multinomial logit models are commonly used methods
for Discrete Choice Problems in which a person has to choose one alternative from a
given set of alternatives. Although MNL models are common in market research and
airline planning, only a few publications of MNL models for itinerary market share
estimation are available (Coldren & Koppelman, 2005). For examples see Ashford
and Benchemam (1987), Alamdari and Black (1992), Coldren et al. (2003), and Hsu
and Wen (2003).

Formulation. In the following, a MNL model for the itinerary market share estima-
tion problem of this study is presented. See Train (2003), Ben-Akiva and Lerman
(1985), or Kanafani (1983) for more details.

In general, it is assumed that each passenger acts rationally and wants to maxi-
mize his utility (Ben-Akiva & Bierlaire, 1999). The utility or value Vk of a given
itinerary k ∈ K for a passenger n ∈ N depends on the attributes a ∈ A of the
itinerary. In MNL models, Vk is a linear combination of the attribute values Xk =
(xk1,xk2, . . . ,xka) and method parameters β = (β1,β2, . . . ,βa):

Vk = β T Xk (4.9)

= β1xk1 + β2xk2 + β3xk3 . . .βaxka. (4.10)

In this formulation, the value of one itinerary depends only on the characteristics
of this alternative. Attributes of individual passengers are not included in the model
and all passengers are grouped to one single entity with the same value perception.
Furthermore, one vector β is assumed for the total model without segmenting the
total number of observations to build individual parameters.

The probability pk (attraction) of an itinerary k to be chosen by one passenger
n ∈ N is defined by:

pk =
eVk

∑
k

eVk
. (4.11)

During calibration, the objective is to determine the vector β̂ that maximizes the

likelihood of the observation. ynk is defined as:

ynk =

{
1 if individual n chooses alternative k

0 otherwise.
(4.12)

Then, the probability of the choice of individual n is given by

∏
k

(pk)ynk . (4.13)
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Because ynk = 0 for all non-chosen alternatives, this term is simply the probability
pk of the chosen alternative k.

Since the individual choices are independent, the probability of the correct pre-
diction of all N individual choices is given by the likelihood function:

L(β ) =
N

∏
n=1

∏
k

(pk)ynk . (4.14)

The relative attraction Rk of an itinerary k is calculated using the number of passen-
gers Dk that choose alternative k and D as the total number of passengers:

Rk =
Dk

D
(4.15)

with

Dk =
N

∑
n=1

ynk (4.16)

and
D = ∑

k

Dk. (4.17)

Because the choices of different individuals are assumed to be independent and
identically distributed (Bernoulli trials), the joint probability is given by the multi-
nomial distribution. Therefore, the likelihood function can be calculated as:

L(β ) =
D!

D1!D2! . . .Dk! ∏
k

(pk)Dk . (4.18)

This likelihood function applies to a given set of competing itineraries. When con-
sidering different city pairs and days in model calibration, itineraries have to be sep-
arated into individual groups with competition within but not between each other.
By defining a market as the combination of a city pair and a day, M as a set of mar-
kets, m ∈ M as one market, and Km as the set of itineraries competing in one market
m, the likelihood function is given as:

L(β ) =
M

∏
m=1

Dm!

∏
k∈Km

Dk! ∏
k∈Km

(pk)Dk . (4.19)

The maximum likelihood estimator (MLE) is the value β̂ that maximizes this
function. Taking the logarithms simplifies maximization resulting in the log-
likelihood function:

LL(β ) =
M

∑
m=1

{
lnDm! − ∑

k∈Km

lnDk! + ∑
k∈Km

Dklnpk

}
. (4.20)
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LL(β ) is globally concave with respect to β simplifying the estimation of β̂ (Mc-
Fadden, 1974).

To test the overall model (structure), the log-likelihood ratio index ρ2 is com-
puted as:

ρ2 = 1 − LL(β̂ )
LL(0)

(4.21)

with LL(β̂ ) as the value of the log-likelihood function for the estimated value β̂
and LL(0) as the log-likelihood value for β = 0. Because additional independent
variables never reduce ρ2, the log-likelihood ratio is corrected by the number of
variables A:

ρ̄2 = 1 − LL(β̂ )− A
LL(0)

. (4.22)

Although having the same objective as the coefficient of determination R2 in classi-
cal linear regression, the interpretation of ρ̄2 is not exactly the same. Values of ρ̄2

between 0.2 and 0.4 are assumed to indicate an acceptable model fit (Urban, 1993).
To determine the significance of individual variables, standard t-tests can be used

(Train, 2003). For each βa the null hypothesis H0 is tested against the alternative
hypothesis Hα :

H0 : βa = 0 (4.23)

Hα : βa �= 0. (4.24)

Calibration and Validation. In model calibration, the objective is to find β̂ which
is conducted by Maximum-Likelihood-Estimation. All variables described in Ta-
ble 4.5 were included, however, there is a choice between the three different time
preference functions. In a set of experiments, the impact of the different time prefer-
ences is analyzed. Using each time preference function separately, an MNL model
is calibrated and validated in 10 experiments, each with a different set of 40,000 ran-
domly chosen itineraries as CS and VS. Fig. 4.13 shows the averages of the LL-ratio
and MSE (of the VS) for each time preference function. The consideration of the

Fig. 4.13 Results of time
preference function selec-
tion for the MNL model
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different time preference functions yields similar results, and the LL-ratios between
0.313 and 0.317 indicate an acceptable model fit. Because USA70 has the low-
est MSE, this time preference function should be used within this MNL model for
itinerary share estimation.

4.2.4.4 Custom Model

In this section, a custom model (denoted as EIS model) for the estimation of
itinerary market shares is presented. Analogous to the MNL model, the same data is
used to calibrate the EIS model and to compare its performance to the MNL model.

Model Description. The attraction Ak(t) of an itinerary k ∈ K at time t ∈ [tmin,tmax]
is estimated based on its attributes Xk(t) = (xk1,xk2 . . . ,xka−1,xka(t)) and the pa-
rameters β = (β1,β2 . . . ,βa). The attribute xka(t) depends on the time-dependent
departure time preference aDT P(t). Appropriate values for the parameters β are de-
termined in the calibration phase.

The attraction of an itinerary k is calculated by summing up the weighted
attributes:

Ak(t) = β T Xk(t) (4.25)

= β1xk1 + β2xk2 + β3xk3 . . .βa−1xka−1 + βaxka(t). (4.26)

The departure time preference aDT P(t) of an itinerary k is weighted by the difference
between the departure time depk of itinerary k and the preferred departure time t of
a passenger. With increasing difference |depk − t| between departure time depk and
preferred departure time t of a passenger, xk(t) follows a Gaussian function (Douglas
& Miller, 1974). The attraction of itinerary k is maximal for all passengers who want
to fly at time t = depk. It is calculated as

xk(t) = aDT P(t)exp(−(t − depk)2/λ ), (4.27)

where the different possibilities for aDT P(t) are shown in Fig. 4.12 and λ is a free
parameter that is adjusted during model calibration. The assumed distribution of
the preference might be different for each passenger (segment). Dobson and Led-
erer (1993) show that the preference function depends on the purpose of travel.
For example, business travellers need to arrive at the destination on time and, thus,
would accept earlier flights compared to later flights. If additional information on
this behavior was available, alternative preference functions could be tested and
implemented.

Sk(t) is defined as the absolute, normalized attraction (Sk(t) ∈ [0,1]) of itinerary
k for any time t ∈ {tmin,tmax}. It is calculated as

Sk(t) =
Ak(t)

maxi∈Km maxt∈{tmin,tmax}(Ai(t))
, (4.28)

where Km is the set of itineraries in the market m that itinerary k belongs to (k ∈ Km).
Therefore, the denominator finds the maximal attraction over the time horizon of all
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itineraries that belong to the same market Km as itinerary k. Sk(t) represents the
attraction of itinerary k independent of competing itineraries.

If there is more than one itinerary k in one market Km, a potential passenger
can choose between the competing itineraries. The relative attraction Rk(t) of an
itinerary k is given as

Rk(t) =
Sk(t)

max
(
∑i∈Km Si(t),1

) · (4.29)

It is assumed that time is discretized and t ∈ {tmin, tmax}.

Calibration and Validation. The goal of calibration is to find the parameters
(β1,β2 . . . ,βa) and λ that yield the highest forecasting quality (minimum MSE). For
this purpose a simple hill climbing metaheuristic is used. This procedure is equiv-
alent to algorithm 3 on page 84. A solution is encoded as a vector of parameters
(consisting of (β1,β2 . . . ,βa) and λ ). The quality of a solution is the MSE of the
calibration set. Thus, a higher MSE implicates a lower solution quality. The initial
solution is created randomly. A local search operator modifies a randomly chosen
parameter β towards β ∗ by adding a random value selected according to a normal
distribution N(0,0.25) with mean μ = 0 and variance σ2 = 0.25.

All variables from Table 4.5 are used for the EIS except aCLO and aTRC. These
variables are excluded because their effects are implicitly included in the model
structure in which the attraction is calculated for each point in time taking into
account the competing itineraries’ attractions.

Equation (4.25) calculates the attraction of an itinerary as the sum of its weighted
attributes. Two other, alternative, model formulations were tested. In the first alter-
native model formulation (MultAll), addition was replaced by multiplication. In the
second alternative model formulation (MultTime), the attraction of an itinerary k is
calculated as

Ak(t) = (β1xk1 + . . .+ βa−1xka−1)βaxka. (4.30)

Fig. 4.14 shows the resulting MSE over different time preference functions for the
three different model formulations. Ten experiments were performed with a different
set of 40,000 randomly chosen itineraries as CS and VS for each alternative. The
results indicate that the additive model (denoted as Add) described in (4.25) yields
the best results as for all three time preference functions the MSE is lower than for
the alternative models. The MSE is lowest when using EU86 as the time function.

4.2.4.5 Evaluation

Because both models examined in this study have the same objective and require
the same input data, a comparison between them is straightforward. In the previ-
ous sections, the best setting for each model was determined. This section compares
the resulting models in an identical experimental setup. In this setup, the CS con-
tains 50,000 randomly chosen itineraries. For validation, ten independent runs with
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Fig. 4.14 Results of time
preference function selec-
tion for different EIS models
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50,000 randomly chosen itineraries were performed. Each experiment is repeated
ten times with randomly chosen data sets.

Table 4.6 presents the parameter estimates and MSE for the MNL and EIS model.

Table 4.6 Comparison of the results of both itinerary market share models

Variable MNL EIS
aT T R 0.337 0.392
aTY P 1.996 1.550
aSTY -0.009 1.218
aDT P 0.125 0.827
aQUA 0.009 0.062
aPRS 0.720 0.502
aT RC 0.055
aCLO 0.003

λ 5.937

ρ̄2 0.333
MSE 0.0165 0.0156

The results of the MNL model show a high log-likelihood ratio index ρ̄2, indicat-
ing a valid model structure and good fit. All variables are significant on the 99.9%-
level in most experiments. In one experiment, aQUA is significant on the 90%-level,
aSTY is significant on the 75%-level in three experiments, and two other experiments
resulted in aSTY becoming insignificant.

t-tests on the parameters of the EIS model show significance on the 99.%-level
for all variables and experiments, except aQUA which is significant on the 95%-level
for one experiment.

Because of the different model specification, a direct comparison of the parame-
ter values between the MNL and EIS model is meaningless. However, when looking
at each model separately, the estimates of the different variables can be interpreted
with respect to their impact on an itinerary’s attraction or market share. In particular,
the estimates for the travel time ratio (aTT R) indicate a positive impact of a shorter
travel time on the attraction of an itinerary. A lower travel time (representing an
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increase of the variable) results in an increase of the attraction of an itinerary. The
same effect can be observed for the itinerary type (aTY P). Passengers prefer direct
flights and avoid connection flights due to the increased travel time, the inconve-
nience of switching planes, or higher probability of delays and lost baggage. This
has also been observed by Coldren et al. (2003). This effect is especially strong be-
cause the used data sets contain only short-haul routes (itineraries between Germany
and European countries). When applying the model to long-haul routes, the advan-
tage of direct flights is expected to be lower due to the reduced perceived disad-
vantage of connection flights in comparison to direct flights. A high positive impact
on attraction can also be observed for an airline’s presence in a market (aPRS). This
reflects the strong position of national air carriers on routes to or from their home
countries. Usually, a carrier with a high presence in a market can offer more flights
and get more acknowledgment from potential passengers. This was also observed
by Teodorovic and Krcmar-Nozic (1989). Furthermore, the results for aDT P indi-
cate that passengers prefer departure times following the time preference function
assumed. The impact of an airline’s quality is low (aQUA). This can be explained by
the low differences of service qualities between airlines offering air service in Eu-
rope. In addition, flights are short and quality is only an important factor for long-
haul flights. Finally, all variables representing the competition in a market (aSTY ,
aTRC, and aCLO) have a low impact on the attraction of an itinerary.

Comparing the MSE of the two different models indicates that the EIS model
outperforms the MNL. To confirm these observations, an unpaired t-test on the pre-
vious results is conducted. The null hypothesis H0 is that the observed differences
in the forecasting quality (EIS outperforms MNL) are random. Hα says that the dif-
ferences are a result of the model specification. The critical t-value for p = 0.999
is 3.6105. The t-value for a comparison between the results of the MNL and EIS
model is 18.9338, thus, H0 can be rejected on the 99.9%-level.

4.2.4.6 Final Model

Although the MNL is the standard model for market share estimation used by air-
lines, it is outperformed by the EIS model in this study. Therefore, this model (with
EU86 as time preference function) is used as the market share estimation step within
the overall schedule evaluation process. Applying the complete data set to this model
leads to the following final set of parameters used in the EIS for schedule evaluation:

aTT R = 0.287,

aTY P = 1.167,

aSTY = 0.937,

aDT P = 0.767,

aQUA = 0.049,

aPRS = 0.359,

λ = 5.763.
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4.2.5 Passenger Allocation

Given the market sizes and the relative share (attraction) of each itinerary in the mar-
ket, calculating the absolute passenger demand for each itinerary is straightforward.
This demand competes for the limited capacity of the aircraft of the single flights
the itinerary are constructed of. Because each flight might be a leg of a connecting
itinerary, this competition takes place between itineraries of different markets. The
objective of the passenger allocation step is to satisfy the passenger demand by pro-
viding an assignment of this demand to the itineraries (and its flights, respectively)
without violating capacity constraints (Mathaisel, 1997). This task is commonly re-
ferred to as spill & recapture.

Since this problem is of minor scientific interest, except for the model of Math-
aisel (1997) no applicable publication on this topic could be found. The model of
Mathaisel (1997) iteratively assigns fractions of the total demand to the available
flights of the demanded itineraries, imitating the booking behavior of passengers.
Each iteration can be interpreted as one day on which bookings take place. As an
aircraft is filled with passengers, the probability to get a place in an aircraft de-
creases or the fare increases, reducing the attraction of the corresponding itinerary.
Thus, after each simulated day of booking the attraction of each itinerary has to be
recalculated under consideration of available capacities, considerably increasing the
total computation time of this approach.9 Therefore, although the model of Math-
aisel (1997) better reflects the real passenger allocation process, in this study another
procedure is used. In general, it consists of three steps. In a first step, the total de-
mand is assigned to the itineraries regardless of their (limited) capacities. Then, if
the assigned passenger number exceeds the capacity of any flight, this exceeding
demand is spilled. In a final step, the spilled passenger demand is assigned to other
(less desirable) itineraries in the market with free capacities left.

In the following, the procedure of passenger allocation including spill and
recapture is presented in detail.

1. The absolute passenger demand Diti
k for each itinerary k is calculated as:

Diti
k = sm ·Rk (4.31)

with sm as the market size of market m, Rk as the relative attraction (see Eq.
4.29 on page 92) of itinerary k ∈ Km.

2. The passenger demand D f light
f for flight f ∈ F is calculated by summing up the

passenger demand Diti
k of all itineraries of all markets that use this flight (either

as direct flight or as leg of a connection):

D f light
f = ∑

∀ k using f

Diti
k (4.32)

3. For each flight f , the rate of the exceeding demand e f is calculated as:

9 In Fig. 4.15 computation times for the calculation of attractions (depending on the number of
flights or itineraries, resp.) are presented.
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e f = D f light
f /c f (4.33)

with c f as the capacity of the fleet type of f . c f could be multiplied by the ob-
served average seat load factor. Because of the effect of day-to-day statistical
variations in total demand, the average load factor never reaches 100% (Math-
aisel, 1997).

4. The rate of exceeding demand on the itinerary level ek depends on the highest
rate of its flights:

ek = max(e f ) ∀ f used by k (4.34)

5. Based on the given demand, the number of allocated passengers Piti
k to the

itinerary and P f light
f to the flight can be calculated as:

Piti
k = Diti

k /ek ∀ k with ek > 1 (4.35)

P f light
f = ∑

∀ k using f

Piti
k (4.36)

6. Passenger demand not allocated to itineraries and flights is spilled and given on
an itinerary level (sPiti

k ) and market level (sPmarket
m ):

sPiti
k = Diti

k − Piti
k (4.37)

sPmarket
m = ∑

k∈Km

sPiti
k (4.38)

7. The free capacity f c f light of flight f and f citi of itinerary k after passenger
allocation is:

f c f light
f = c f − sP f light

f (4.39)

f citi
k = min

(
f c f light

f

)
∀ f used by k (4.40)

8. Any itinerary with free capacities left might recapture spilled demand. The set
of itineraries with free capacities is denoted as J ⊆ K:

J = {k|k ∈ K, f citi
k > 0}. (4.41)

9. Relative attractions R∗ of all itineraries j ∈ J are recalculated and normalized:

R∗
j =

R j

max
(
∑ j R j,1

) · (4.42)

10. Finally, the passengers’ recapture is once calculated following steps 1-6 and
using J as set of itineraries, R∗ as the attraction of all j ∈ J, sPmarket

m as the
remaining market size of market m, and f c f light

f as remaining capacities of the
flights f ∈ F .
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4.2.6 Profit Estimation

Given the number of passengers on the itineraries, the calculation of the overall
profit of a flight schedule F is straightforward. Let cblock

f denote the block hour

costs of the aircraft type (see Sect. 4.1.3) assigned to flight f , tblock
f the block time

of flight f , ym the passenger yield in market m, and Pk the number of passengers on
itinerary k ∈ K. The operating profit πF of flight schedule F is calculated as:

πF = ∑
m

∑
k∈Km

Pk · ym − ∑
f∈F

cblock
f · tblock

f (4.43)

To calculate the profit π f of a single flight f , the passenger yield of itinerary
connections has to be distributed to the connecting flights. The portion of the profit
assigned to a single flight is proportional to its share of total block time tblock

k of the
connection:

π f = ∑
∀ k using f

Pk · ym ·
tblock

f

tblock
k

− cblock
f · tblock

f (4.44)

4.2.7 Summary

One important piece of information when creating and optimizing an airline sched-
ule is its quality. The integrated scheduling approaches presented in this study repre-
sent iterative search procedures in which one or multiple schedule evaluations have
to be conducted in each iteration. Airlines have access to sophisticated evaluation
tools that are able to predict passenger flows and a revenue and cost assignment on
a detailed level based on many different variables and factors. However, these tools
and the required data usually represent classified information not accessible for this
study. In addition, because of the high level of detail, tools used by airlines usually
have high computation times lasting from minutes to hours. Therefore, the devel-
opment of a schedule evaluation procedure is necessary that can be applied in the
integrated models presented in this study.

Each schedule is evaluated according to its operating profit following a five-step
process:

1. Market Size Estimation: The objective is to estimate the total number of air
passenger demand between any two airports. In this study, a gravity model
to accomplish this task was developed and calibrated using the ordinary-least-
squares method with the given data. This model uses geo-economic variables as
input to estimate passenger volumes, thus, it can be applied to markets in which
flight services have not existed yet.

2. Itinerary Construction: Every flight represents a direct travel itinerary between
the corresponding airports and might be a leg of a connecting itinerary. The ob-
jective of this step is to construct feasible and reasonable connecting itineraries.
A set of rules including parameters was defined. The parameters were calibrated
with the given data using a simple hill-climbing metaheuristic.
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3. Itinerary Market Share Estimation: In this step, the individual attraction and,
thus, market size of each itinerary is estimated. MNL models are an established
technique for this purpose, however, a custom model developed in this study
produced better estimates (a comparison using identical experimental setups
was conducted). The parameters of the custom model were calibrated using a
simple hill-climbing algorithm.

4. Passenger Allocation: Given the total demand for travel itineraries, the passen-
gers are allocated to the flights under consideration of capacity constraints of
the aircraft. In this study, first passengers are allocated regardless of capacities.
Then, the number of spilled passengers is calculated. In a final step, the spilled
passengers are recaptured by flights with capacities left.

5. Profit Estimation: In this step, the profit is estimated using the passenger num-
bers, the yield for each market, and operating costs.

The objective of the market size estimation is the prediction of the number of
passengers that want to travel with an airline between any two cities. Because this
number is independent of a current schedule, this step is only necessary once be-
fore the construction and optimization of an airline schedule is conducted. The
other evaluation steps depend on the schedule under investigation. The number of
travel alternatives then determine the complexity of the schedule evaluation (Be-
lobaba, 1987). As an example for the increasing complexity, Fig. 4.15 presents the
number of itineraries constructed depending on the number of flights in the sched-
ule. In addition, the corresponding computation times for the itinerary construction

Fig. 4.15 Schedule evalua-
tion computation times
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and market share estimation are plotted.10 An exponential growth of the number of
itineraries is clearly visible. In addition, since the effort to calculate market shares
directly depends on the number of itineraries, the required computation time also

10 The flights are chosen randomly; for each schedule size, ten evaluation runs are conducted (with
the completely calibrated evaluation procedure) on a workstation with an Intel R© Pentium R©

2.80 GHz processor and 1.00 GB RAM. The results are averaged over ten experiments. The
number of routes (see page 79) for the calibrated model and the given data is 4,452,584 for 320
airports.
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grows exponentially. Presenting the computation times also gives an impression of
the total effort to construct and optimize airline schedules, since the schedule eval-
uation represents the computationally intensive part of both solution approaches
presented in this study.11

The presented schedule evaluation procedure had to be developed due to the lack
of sufficient information of established evaluation techniques (or rather the avail-
ability of commercial applications) and the unavailability of data that could be used
directly. Because each single step presented in the previous section relies on the
information available for this study, there is room for further enhancements. In gen-
eral, if more historical data was available for different market segments, on a higher
level of detail, or for more time periods, the parameters of each step could be cali-
brated more specifically. For example, multiple gravity models for different markets
could be developed, replacing the aggregate model used in this study. Parameters
for the itinerary construction step could be defined specifically for each market. Ad-
ditional data could also help in constructing different model specifications for the
market size or itinerary market share estimation step with possibly better forecasts.

4.3 Sequential Approach

4.3.1 Overview

In this section, a sequential and iterative approach for the development of a complete
airline schedule is presented. It includes the flight schedule generation and aircraft
scheduling problems from Fig. 2.2. The objective is to develop an airline schedule
that is feasible and has a high operating profit. The approach represents an iterative
procedure in which in each iteration all subproblems are solved in a sequence until
the operating profit does not improve in further iterations, the then current schedule
is expected to have maximum profit. An overview of the sequential approach is
presented in Fig. 4.16.

Fig. 4.16 Sequential planning approach

The solution steps Fleet Assignment, Flight Scheduling, and Maintenance Rout-
ing are solved using models from literature, the last step Schedule Optimization
consists of three algorithms developed in this study. Each step has individual re-
strictions on its input data and might be unable to create feasible solutions for the

11 Thus, when presenting results of experiments of the airline scheduling approaches, only the
number of schedule evaluations necessary is presented instead of always presenting computa-
tion times.
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given input. To assist each step in finding a solution and to model the interdepen-
dencies between the steps, additional supportive functions are necessary and applied
between the individual steps.

In the following section, the solution steps are presented in more detail includ-
ing some modifications necessary for their application in the overall scheduling
approach. Then, in Sect. 4.3.3 these solution steps are put together including the
supportive functions yielding the entire integrated approach for airline scheduling.
As illustrated in Fig. 4.16, it is assumed that an initial schedule is given. Because the
initialization of a schedule as conducted in this approach builds on elements of the
solution steps and supportive functions, this process is described after the presen-
tation of the sequential optimization approach in Sect. 4.3.3.2. Sect. 4.3.4 presents
the application of the integrated approach to different planning scenarios. For this
purpose, some parameters have to be chosen. In Sect. 4.3.4.1 the calibration of the
parameters is described. Then, Sect. 4.3.4.2 presents an analysis of the search pro-
cess and the resulting solutions of the complete procedure. Finally, a summary is
given in Sect. 4.3.5.

4.3.2 Solution Steps

In this section, the main steps shown in Fig. 4.16 are presented. For the fleet as-
signment and flight scheduling problem, a model of Rexing et al. (2000) combining
these two problems is used. The maintenance routing problem is solved following
the model by Gopalan and Talluri (1998a). Both models are presented in the fol-
lowing, each followed by a description of some modifications and enhancements to
improve their application in the integrated airline scheduling process. Finally, the
schedule optimization step consisting of three different algorithms is presented.

4.3.2.1 Fleet Assignment and Flight Scheduling

Model. The fleet assignment and flight scheduling is conducted following the model
by Rexing et al. (2000). This model is based on the approach by Hane et al. (1995)
and integrates the daily fleet assignment with the flight scheduling into one single
model. Given a flight schedule, a time interval around the actual departure time of
each flight is specified. The model is then allowed to change the departure time in
the interval and assigns a fleet type. Within each time interval, demand is assumed
to be constant and independent of the actual departure time and fleet assigned. If
the time window size is small (for example 30 minutes), changes in the departure
time will be small, limiting demand variations. The objective is to minimize the
direct operating costs and opportunity costs. Opportunity costs exist if potential
passengers must be left behind because the demand for a flight is higher than the
assigned fleet’s capacity. The general constraints of the fleet assignment problem
presented on page 18 are included in this model.

The fleet assignment problem is represented as a network flow problem consist-
ing of nodes, ground arcs and flight arcs. Each fleet type is represented by a separate
network containing all airports in consideration. The nodes represent departures or
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arrivals at an airport at a specific time. The nodes at each airport are ordered by
their time, thus every node has a direct predecessor and a direct successor. A time
line is constructed by connecting these nodes by ground arcs, representing an air-
craft resting on the ground between its arrival and subsequent departure. Flights are
represented as flight arcs connecting the corresponding nodes. The arrival node of
each flight arc is placed at the ready time (block time + turn time) of the flight. To
guarantee flow balance in the daily fleet assignment, ground arcs connect the last
and the first node at every airport. The number of aircraft in use can be calculated
by summing up all flows on all (flight and ground) arcs at one point in time (count
time). Fig. 4.17 illustrates one example of a flight network with two airports.

Fig. 4.17 Two-airport flight
network (Source: Rexing
et al. (2000))

By introducing time windows for each flight, the flight scheduling problem can be
included into this representation of the problem. A time window specifies how much
the original departure time is allowed to vary. The additional flexibility in choosing
departure times is expected to result in a more efficient (less expensive) schedule.
For example, two flights are assigned to two different aircraft because the ready time
of the first flight is later than the departure time of the second flight. If the departure
time (and thus arrival/ready time) of the first flight can be shifted forward and the
departure time of the second flight can be delayed, it might become possible to
assign both flights to the same aircraft. In this model formulation, the time window
is split up in intervals (for example five-minute intervals) and copies of the original
flight (arc) are placed at every interval, representing alternative departure times (see
Fig. 4.18). The model is then allowed to choose only one copy of each set, fixing

Fig. 4.18 Two-airport flight
network with time win-
dows (Source: Rexing et al.
(2000))

the final departure time for each flight. Introducing time windows is quite simple,
however, the resulting model becomes computationally expensive. One parameter
to control the difficulty of the problem is the number of copies per flight and the
time window size. Because it is assumed that there is no variation of the demand
within each time window, the size of each window should be kept small to comply
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with this assumption, however, limiting the degree of freedom for flight scheduling
in this combined model.

After constructing the flight networks for each fleet, the fleet assignment problem
can be solved using the following formulation.

Minimize:

∑
k∈K

∑
i∈F

∑
n∈Nik

cikxnik (4.45)

Subject to:

∑
k∈K

∑
n∈Nik

xnik = 1 ∀i ∈ F (4.46)

∑
k∈K

∑
n∈Nik

b1lniknnik + ∑
g∈Gk

b2lgkygk = 0 ∀l ∈ Lk,∀k ∈ K (4.47)

∑
i∈F

∑
n∈Nik

d1nikxnik + ∑
g∈Gk

d2gkygk ≤ Sk ∀k ∈ K (4.48)

ygk ≥ 0 ∀g ∈ Gk,∀k ∈ K (4.49)

xnik ∈ {0,1} ∀i ∈ F,∀n ∈ Nik, (4.50)

∀k ∈ K

Parameters:

F = set of flights
K = set of fleets
Sk = number of aircraft of fleet k
Gk = set of ground arcs in fleet k’s network
Lk = set of nodes in fleet k’s network
Nik = set of arc copies of flight i in fleet k’s network
|Nik| = number of arc copies of flight i with fleet type k
cik = cost to fly flight i with fleet type k

b1lnik =

⎧⎪⎨
⎪⎩

1 if copy n of flight i begins at node l in fleet k’s network

−1 if copy n of flight i ends at node l in fleet k’s network

0 otherwise

b2lgk =

⎧⎪⎨
⎪⎩

1 if ground arc g begins at node l in fleet k’s network

−1 if ground arc g ends at node l in fleet k’s network

0 otherwise

d1nik =

{
1 if copy n of flight i crosses the count time in fleet k’s network

0 otherwise

d2gk =

{
1 if ground arc g crosses the count time in fleet k’s network

0 otherwise
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Decision Variables:

xnik =

{
1 if copy n of flight i is flown by fleet k

0 otherwise
ygk = number of aircraft on ground arc g in fleet k’s network

Equation 4.45 is the objective function minimizing the costs of assigning aircraft
types to the flight arcs (operating costs and opportunity costs). Constraint 4.46 re-
quires that each flight is covered by exactly one fleet by allowing only one copy
of flight arcs to be chosen. Constraint 4.47 ensures the flow balance at each node,
constraint 4.48 limits the number of the available aircraft.

Application. The model was implemented in the overall sequential planning ap-
proach as presented in the previous section. Network preprocessing steps suggested
by Rexing et al. (2000) to prune the problem before constructing and solving the
LP matrix were not implemented, because preliminary tests showed that these steps
are not necessary for the problem instances examined in this study (Barth, 2005). In
addition, the optimization steps of the integrated approach represent the computa-
tionally demanding part during application.

The fleet assignment problem cannot be solved if the number of available aircraft
is not sufficient to perform all flights given. Thus, it is necessary to remove flights
from the schedule. Therefore, an additional attribute optional is introduced and as-
signed to every flight that might be removed from the schedule. If a flight is optional,
constraint 4.46 is changed for this flight in order to allow that no copy of flight arcs
at all is covered, resulting in the deletion of the flight from the schedule. Because
the fleet assignment model tries to minimize the costs, usually an optional flight is
removed from the schedule if no other constraint (for example flow balance) is vi-
olated. Furthermore, to meet maintenance restrictions sometimes it is necessary to
assign certain flights to specific fleet types and to prevent the presented model from
changing this assignment. For example, one fleet type is assigned only to flights that
do not depart or arrive at a suitable maintenance station for this type. In such cases,
the attribute maintenance assigned to those flights indicates that copies of the flight
arc are allowed with the fleet type assigned in the previous planning cycle resulting
in a similar fleet assignment. Both attributes optional and maintenance are set out-
side of the presented flight scheduling and fleet assignment model by the supportive
functions presented later (see page 113).

Because Rexing et al. (2000) show that narrow departure times for all copies of
one flight cause an extreme increase in the problem size, often without the benefit
of providing a substantially better solution than broader departure times would, the
number of flight arc copies in this approach is limited to five. The time window size
in minutes is set by the parameter tw with all copies of flight arcs evenly distributed
within this interval. Flight arcs that violate airport operating hours or curfew restric-
tions are not included. Following the suggestion in the paper written by Rexing et al.
(2000), the count time is set to a time which is crossed usually only by wrap around
arcs and a few flight arcs. In this approach, 03:00 a.m. is used as count time.
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The costs of each flight (arc) consist of operating and opportunity costs. Operat-
ing costs include expenses directly related to the flight like costs for fuel, mainte-
nance, landing fees etc. and can be easily obtained. For this application, the block
hour costs multiplied by the block times are used (see page 66). Opportunity or spill
costs are calculated by multiplying the number of spilled passengers with the fare
they would have paid. This fare or yield is assumed to be given (see page 65). The
number of spilled passengers is calculated by subtracting the assigned fleet type’s
capacity from the unconstrained demand. In this application, the unconstrained de-
mand is calculated using the schedule evaluation model presented in Sect. 4.2 with-
out the spill and recapture step. Thus, the number of spilled passengers is the total
of passengers demanding the flight as nonstop itinerary and as part of a connecting
itinerary subtracting the capacity of the fleet type of the current flight arc. As a con-
sequence, the connectivity of the flight schedule is incorporated in the opportunity
costs.

4.3.2.2 Aircraft Maintenance Routing

Model. The objective of this step is to construct feasible routings for individual air-
craft based on an airline schedule and a fleet assignment. To be feasible, the resulting
schedule must allow each aircraft to undergo required maintenance at the necessary
intervals.

In this planning approach, the aircraft maintenance routing problem is solved
following the (infinite-horizon) model of Gopalan and Talluri (1998a). In their ap-
proach it is assumed that each aircraft has to undergo maintenance at least once
every three days, that maintenance is scheduled at night, and that each aircraft has
to undergo one balance check (a more complex maintenance check) during the plan-
ning cycle. Furthermore, each fleet type has only one rotation, thus, if n aircraft of
one type exist, each aircraft comes back to the starting airport of its rotation after n
days and undergoes the balance check every n days.

Because a valid fleet assignment is given by the previous step, the aircraft routing
problem can be conducted for each fleet type separately. The planning is performed
on the basis of each aircraft’s routing or lines-of-flying (LOF). An LOF contains all
flights of one aircraft during the day, it can be defined by the first departure airport
of the day, the last arrival airport, and the assigned fleet type. The last airport might
be a maintenance station at which the aircraft could be checked before starting the
LOF of the next day. LOFs are constructed by combining the single flights with
simple rules like last-in-first-out (LIFO) or first-in-first-out (FIFO). The number of
LOFs for one fleet type must equal the number of aircraft of this fleet available, and
all LOFs of one fleet type must contain all flights of this type. Because every aircraft
of one fleet has to be assigned to the same rotation, all LOFs of each type have to be
connected to a circle. Then, if at least every third airport of every LOF is a suitable
maintenance station, a valid maintenance routing is found.

The objective of this model is to find a valid routing. Different solutions to the
maintenance routing problem are considered to have the same solution quality, thus,
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Fig. 4.19 Splitting of nodes and distribution of arcs (Source: Gopalan and Talluri (1998a))

there is no optimization. Given the LOFs, the search for a valid solution repre-
sents a network flow problem. A directed graph G = (V,E) represents the stations
with aircraft staying at night (vertices V ) and the LOFs (arcs E). The number of
arcs equals the number of aircraft of that fleet type, one aircraft is assigned to
each LOF. V is partitioned into a set M of nodes representing maintenance sta-
tions and in a set N = V \ M representing non-maintenance stations. In this case,
a valid maintenance routing is an Euler tour that includes no more than two nodes
of N in succession. This Euler tour should be noted as three-day maintenance Eu-
ler tour (3-MET). Assuming that the LOFs are connected and that the number of
aircraft of one fleet type departing from one airport is equal to the number of ar-
rival airports (flow balance constraint of the fleet assignment model), G is Eule-
rian. Gopalan and Talluri (1998a) show that for all stations j ∈ N the number of
arcs mo

jM going out to maintenance stations has to be greater than or equal to the
number of arcs mi

jN coming in from non-maintenance stations to provide the exis-
tence of a 3-MET. Assuming that this is true for G, a 3-MET in G can be found
(if one exists) by searching for an Euler tour in a graph G′ derived from G. G is
transformed into G′ by splitting each node j ∈ N into two nodes j′ and j′′ and
distributing the incoming and outgoing arcs of j between j′ and j′′ as shown in
Fig. 4.19. A number of (mo

jM − mi
jN) additional artificial arcs from j′ to j′′ are

included. Gopalan and Talluri (1998a) show that the existence of an Euler tour in
G′ implies the extistence of a 3-MET in G. Thus, finding the Euler tour in G′ would
result in the solution of the maintenance routing problem. The Euler tour can be
found by a standard procedure (Bondy & Murty, 1978).

The described procedure represents a polynomial-time algorithm for finding a 3-
MET. The 3-MET can only be found if the rotation is connected and the set of LOFs
contains a 3-MET (mo

jM ≥ mi
jN). If the rotation is not connected or if mo

jM < mi
jN

two heuristic methods presented by Gopalan and Talluri (1998a) must be applied to
transform the LOFs (resp. G) to build a solvable problem. The Unlocker tries to con-
struct connected LOFs, whereas the M-N Improver modifies the LOFs to meet the
second condition. The use of heuristic methods to satisfy the maintenance require-
ments is necessary because this problem is NP-hard (Gopalan & Talluri, 1998a).

Unlocker. If the LOFs of one fleet type are not connected, the situation is called
a locked rotation. Each cycle of connected LOFs is denoted as component. In
Fig. 4.20 an example of a locked (two components) and an unlocked (one com-
ponent) rotation is given. The nodes represent the stations where the aircraft are
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(a) (b)

Fig. 4.20 Illustration of a locked (a) and an unlocked (b) rotation (Source: Gopalan and
Talluri (1998a))

overnighting, the arcs represent the LOFs. In this example, a and f should represent
the maintenance stations with a representing the balance check station, too. There
are six aircraft and every aircraft can undergo the maintenance after three days.
However, because the graph is locked in figure (a), the aircraft flying between d,
e and f will never visit the balance check station a making the routing invalid. In
figure (b) the rotation is unlocked fulfilling the maintenance requirements. A graph
can be unlocked by changing the flights within the LOFs, for example by swapping
the tail assignment between two flights that depart from the same airport at the same
time. For example, if the aircraft flying the LOF from b to c and the aircraft flying
from d to e are on the ground at some station at the same time (after the turn time
has elapsed), their assignment can be swapped leading to the unlocked rotation. In
the following, three swapping methods are presented to convert a locked rotation
into an unlocked rotation.12

1. In the first type of swap, tail numbers are switched between different LOFs
within each fleet type, thus, the fleet assignment itself remains unchanged. If
multiple components exist for one aircraft type, LOFs (one from each compo-
nent) have to be found that intersect at one airport at the same time. Then, the
flights of the LOFs following this intersection are changed between the LOFs,
resulting in modified LOFs unlocking the graph.

2. The first swap mechanism might not be able to unlock the graph because it
might be difficult to find an intersection possibility. Thus, the second mecha-
nism changes the fleet type of some flights to unlock the graph. With this swap,
only flights within an LOF might be changed, leaving the fleet composition
at the end of each LOF unchanged. By changing only these flights, the fleet
composition at overnight stations remains unchanged. In addition, changes are
rather small, because for each swap the LOFs directly affected are changed;
changes are not carried on into connected LOFs via the overnight stations.

3. In the third swapping type the equipment type composition of overnighting air-
craft might be changed, thus, increasing the total number of affected flights by
the fleet assignment change.

12 Examples for the swapping methods can be found in Gopalan and Talluri (1998a).
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If a rotation is locked, the three swap mechanisms are applied in the order presented.
Swaps are only allowed if they do not result in new locked rotations of the affected
fleets. Each swap has to be feasible. Especially when changing the fleet assignment,
different block times of different fleet and operational limitations have to be taken
into account. The objective of all three swap mechanisms is to unlock the graph
rather than to increase profit. Thus, unlocking the graph might result in less profit
because for example a small fleet type needed to be assigned to a high demand flight.

M-N Improver. If in a connected LOF-graph each node in N has fewer arcs coming
in from N nodes than arcs going out to M nodes, a 3-MET does not exist, because
there are at least three LOFs in succession that do not include maintenance stations
at the arriving nodes. The objective of the M-N improver is to fulfill this requirement
for each node in N by swapping pairs of edges. Assuming mo

jM < mi
jN for node j ∈ N

and that edge e comes into j from j1 ∈ N. Edge e will be swapped with an edge e′

originating at a node in M. If the terminating node k of e′ is a N node, it must satisfy
mo

kM − m j
kN ≥ 1 to fulfill the M-N constraint in k. Assuming that e is an edge going

out to a node j2 ∈ N, a swap of e and e′ is allowed if there is a path to all other nodes
from the origin nodes of e and e′, because then the swap does not create a locked
rotation.

Application. The model was implemented in the integrated planning approach as
presented in the previous section. For the construction of the LOFs the FIFO-rule
was used. However, several enhancements were included to better fit this model into
the overall planning process and to increase the chance of finding a feasible solution.
For example, the model assumes that the number of LOFs corresponds to the num-
ber of available aircraft. However, in this approach changes to the schedule are made
in the fleet assignment and optimization step, possibly leading to different numbers
of LOFs and aircraft. If aircraft of a fleet type remain unassigned after the construc-
tion of the LOFs, new flights for this fleet type are created and included into the
schedule. These flights are included in those markets that have the highest market
size after realizing all currently scheduled flights (including flights of competing
airlines). If these LOFs are not connected (more than one component), the flights
are chosen to connect the different components. If the number of LOFs exceeds the
number of aircraft of a fleet type, flights need to be removed from the schedule.
This task is accomplished by using the operator Flight Choice (presented on page
114) that assigns the attribute optional to the flights (see page 103) and by restarting
the fleet assignment. All three swap mechanisms presented by Gopalan and Talluri
(1998a) can only unlock a situation with multiple components of the same fleet type
if this is possible with the current flights, thus, the Unlocker does not modify the
flights except for the assigned fleet. Because this limits the probability of finding a
feasible solution, additional unlocking steps are included (Extended Unlocker) that
are applied when the Unlocker presented by Gopalan and Talluri (1998a) fails. The
objective is to increase the number of potential positions that allow the swap of air-
craft between different LOFs to connect them to one component (two aircraft of
two different components have to be on the ground at the same airport at the same
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time). This is accomplished by including new flights into the schedule. First, ad-
ditional flights are inserted to connect two components. If additional flights cannot
be included because there is not enough time left between the existing flights, the
available time is increased by deleting other flights. The number of flights deleted is
increased until sufficient connecting flights can be included (at maximum, all flights
of one LOF are deleted to allow the unlocking). Like the Unlocker of Gopalan and
Talluri (1998a), any modification is only allowed if all constraints are satisfied (cur-
few restrictions, airport operating hours, turn times, operational restrictions etc.).
Although this procedure might result in large changes to the schedule with reduced
profit, it has to be included to obtain feasible solutions.

The maintenance routing model assumes that each LOF begins with a flight de-
parting after 2 a.m. The routing for each fleet type then is constructed by connecting
these LOFs via the overnighting stations to a single circle. However, because the
maintenance routing algorithm only considers the origin and destination airport of
each LOF when connecting, it might be possible that an LOF starting at 2 a.m. is
attached to an LOF ending after 2 a.m., if for example the last flight of the first LOF
departs before and arrives after 2 a.m. Although not violating the constraints of the
maintenance routing algorithm, this situation would lead to an infeasible routing
sequence. In such cases, the routings have to be modified. If there is an LOF that
exceeds the departure time of the following LOF, the amount of time that has to
be saved to produce a feasible solution is removed from idle ground times between
the flights of the LOF. If there is not enough ground time available, two succeeding
flights (with the smallest market size) are replaced by one direct flight. To produce a
feasible solution, any constraints (curfew restrictions, airport operating hours, fleet
ranges, etc.) are taken into account when applying the changes.

4.3.2.3 Schedule Optimization

After the maintenance routing, a feasible airline schedule is given. The objective
of the optimization step is to improve this schedule in order to increase the oper-
ating profit. In practice, this step is usually performed by human experts supported
by DSS to help evaluate their decisions and check for feasibility. Because human
experts rely on their experience of many years and often decide by intuition when
trying to optimize a given schedule, their procedures are difficult to imitate in an
automated solution approach. As a trade-off between this limitation and the potential
of computational power, the optimization step in this approach is conducted very ex-
tensively, utilizing computational performance to do many incremental search steps
to increase a schedule’s profit. The development of this optimization step is moti-
vated by the fact that in literature no model could be identified that can be used for
schedule optimization and that fits into the gap of the integrated approach presented
here.

The optimization is conducted in five steps as presented in Fig. 4.21. The first
three steps (Slack Reduction, Airport Removal, and Airport Optimization) are the
main optimization algorithms, each representing an iterative greedy improvement
heuristic. In each iteration the current schedule is modified by either changing,
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Fig. 4.21 Schedule optimization steps

deleting or inserting flights while maintaining feasibility. A modification is kept if it
increases the operating profit. If there is no further increase in profit or a maximum
number of iterations ioptimize

max is achieved, the algorithm stops. ioptimize
max is determined

by a parameter poptimize and the number of flights |F| in the current schedule:

ioptimize
max = poptimize · |F|. (4.51)

The last two steps (Flight Choice and Flight Addition) do not directly change the
schedule but work in conjunction with the fleet assignment step in the next iteration
of the complete planning approach. Compared to the first three optimization steps,
these methods are of minor importance to the overall schedule optimization. In the
following, the first three optimization steps are presented including their details as
pseudo-code. Then, the last two optimization steps are described.

Slack Reduction. The objective of the step Slack Reduction is to minimize idle
ground time of aircraft by including new flights into the schedule. Every routing
of every aircraft is checked for sufficient ground time between any two succeeding
flights. If there is enough time available (the second flight might be shifted back-
wards), two round-trip flights are inserted at this position. All restrictions have to
remain fulfilled. The departure times of both new flights are evenly distributed over
the free time period, leading to ground times of the same lenghts between the af-
fected flights. The departure and arrival airport of the round-trip is given by the
surrounding flights. Candidates of the airports connecting both flights of the new
round-trip are selected by testing all possible airports. All possible round-trip candi-
dates are evaluated according to their contribution to the overall operating profit, the
one with the highest contribution is selected. The calculation of the profit contribu-
tion of a round-trip candidate requires the evaluation of the schedule including this
round-trip, because the connectivity of the flights is changed resulting in different
passenger flows. The complete specification of the Slack Reduction step is presented
as a pseudo-code in algorithm 4.

Airport Removal. The algorithm Airport Removal removes the connecting airport
of two succeeding flights and, thus, replaces the two flights by one direct flight.
This procedure allows the reduction of the number of less profitable flights and
creates more slack time that could be filled with new flights using the Slack Re-
duction procedure. Given all candidates of airports between two connecting flights,
the one resulting in a maximum increase in operating profit is removed. The com-
plete specification of the Slack Reduction step is presented as a pseudo-code in
algorithm 5.
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Algorithm 4. Slack Reduction
1: read schedule F

2: read available set of airports A

3: i = 0

4: repeat

5: i = i +1

6: Fm = F {Fm is working schedule}
7: Ft = F {Ft is temporary best schedule}
8: for all flights f of F do

9: e is direct predecessor of f

10: g is direct successor of f

11: calculate available ground time te f between e and f

12: calculate available ground time t f g between f and g

13: for all airports a of A do

14: create flights x and y connecting e and f via a

15: if x,y satisfy fleet restrictions

and x,y satisfy maintenance restrictions

and x,y satisfy curfew restrictions then

16: if te f + t f g long enough for x and y then

17: fm = f

18: if te f not long enough for x and y then

19: postpone fm until te f long enough for x and y

20: end if

21: if f ,x,y satisfy airport operating hours then

22: Fm = F

23: replace f by fm

24: include x and y between e and fm in Fm

25: if profit of Fm higher than profit Ft then

26: Ft = Fm

27: end if

28: end if

29: end if

30: end if

31: end for

32: end for

33: if profit of Ft higher than profit F then

34: F = Ft

35: end if

36: until profit of Ft lower than profit F

or i > ioptimize
max

37: return schedule F
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Algorithm 5. Airport Removal
1: read schedule F

2: read available set of airports A

3: i = 0

4: repeat

5: i = i +1

6: Fm = F {Fm is working schedule}
7: Ft = F {Ft is temporary best schedule}
8: for all flights f of F do

9: e is direct predecessor of f

10: g is direct successor of f

11: h is direct successor of g

12: create flight x connecting e and h

13: if x satisfies fleet restrictions

and x satisfies maintenance restrictions

and x satisfies curfew restrictions

and x satisfies airport operating hours then

14: Fm = F

15: include x, remove f and g from schedule Fm

16: if profit of Fm higher than profit Ft then

17: Ft = Fm

18: end if

19: end if

20: end for

21: if profit of Ft higher than profit F then

22: F = Ft

23: end if

24: until profit of Ft lower than profit F

or i > ioptimize
max

25: return schedule F

Airport Optimization. The Airport Optimization step changes airports of connect-
ing flights to improve the schedule. Each airport represents a departure airport and
arrival airport of two flights, thus, if the airport is changed, the two corresponding
flights are replaced. The new airport and the one to be replaced are selected accord-
ing to the highest increase of the operating profit by the two corresponding new
flights. The complete specification of the Airport Optimization step is presented as
a pseudo-code in algorithm 6.
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Algorithm 6. Airport Optimization
1: read schedule F

2: read available set of airports A

3: i = 0

4: repeat

5: i = i +1

6: Fm = F {Fm is working schedule}
7: Ft = F {Ft is temporary best schedule}
8: for all flights f of F do

9: e is direct predecessor of f

10: g is direct successor of f

11: h is direct successor of g

12: calculate available time teh between e and h

13: for all airports a of A do

14: create flights x and y connecting e and h via a

15: if x,y satisfy fleet restrictions

and x,y satisfy maintenance restrictions

and x,y satisfy curfew restrictions

and x,y satisfy airport operating hours

and teh long enough for x and y then

16: Fm = F

17: replace f and g by x and y in Fm

18: end if

19: end for

20: end for

21: if profit of Ft higher than profit F then

22: F = Ft

23: end if

24: until profit of Ft lower than profit F

or i > ioptimize
max

25: return schedule F

Flight Choice. The objective of this step is to remove non-beneficial flights from the
flight schedule. The number of flights being subject to removal is controlled as per-
centage popt ∈ [0,1] of the total number of flights in the schedule. Then, the flights
with the lowest profit contribution are chosen as candidates for deletion. Instead of
immediately removing the flights, this operator assigns the attribute optional to these
flights. The fleet assignment actually removes the flights if they are not necessary to
meet fleet assignment constraints.
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Flight Addition. In this step, new round-trip flights are created and included in
the schedule. The number of new flights is chosen according to a percentage
pnew ∈ [0,1] of the number of flights in the current schedule. The markets in which
new flights are added are chosen randomly according to the size of the remaining
demand in this market (high demand markets receive a higher selection probabil-
ity). The parameter twnew = 2 · tw controls the length of the time window for the
fleet assignment step (see page 103). The larger time window increases the flexi-
bility which is necessary to fit the new flights into the schedule. The probability of
assigning the attribute optional for the new flights is 1 − popt.

4.3.3 Solution Process

4.3.3.1 Supportive Functions

The planning and optimization steps presented in the previous section represent the
main tasks necessary for airline scheduling. Every task requires specific input data
to produce a feasible (or optimal) solution. Because not always every preceding
planning step fulfills these constraints, additional effort is necessary to support the
linkage between the single steps and to find feasible or optimal solutions in each
step. For example, the fleet assignment model requires flow balance at every air-
port for every fleet. If this constraint is not satisfied by the flight schedule given as
input, the fleet assignment cannot be solved, and the flight schedule has to be mod-
ified. Another example is the maintenance routing: if there is no flight to a main-
tenance station, new flights must be included or existing flights must be modified
to include overnighting aircraft at maintenance stations. In practice, manual inputs
and human interaction would be the linkage between the individual solution steps and
experienced experts would change given input if it resulted in infeasible subsolutions.
In the following, supportive functions are presented that are used in this sequential
planning approach between the solution steps if a subproblem cannot be solved.

Balance Aircraft Flow. To solve the fleet assignment problem, flow balance is re-
quired: for each fleet type and airport, the number of aircraft arriving has to equal the
number of departing aircraft. To prevent flow imbalance during schedule construc-
tion, the Balance Aircraft Flow algorithm modifies the flights of any given schedule
to meet this constraint. Because every flight has a departure and arrival airport, im-
balances always affect at least two airports. If one airport has more arriving flights
than departing flights, there is at least one airport with the reverse situation. The al-
gorithm tries to fix this problem by replacing the flight causing the imbalance with a
new one. If this cannot be performed (for example because the flight would be infea-
sible for the given aircraft type or curfew restrictions would be violated), additional
flights are changed until the flow is balanced at all airports. The probability of select-
ing a flight for modification follows the market size: the smaller the market size of
an unbalanced flight, the higher the chance that this flight is changed or removed.
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Flight Choice. The fleet assignment is infeasible if too many flights exist that have
to be assigned to all aircraft or aircraft of one fleet type. The Flight Choice step
changes the attribute optional of the flights indicating whether the fleet assignment
model might remove the flight from the schedule. This step corresponds to the Flight
Choice step presented on page 112.

Increase Connectivity. One goal of the maintenance routing is to construct one ro-
tation per fleet. Thus, it is necessary that all flights can be ordered in a sequence that
can be flown by one aircraft. In addition, the fleet assignment problem might be dif-
ficult to solve or even infeasible if there are a lot of flights spread over many different
airports. In this case, meeting the flow balance could be difficult to achieve for each
fleet type. The Increase Connectivity step assists in both the following cases, main-
tenance routing and fleet assignment. This algorithm changes, removes and inserts
flights that increase the connectivity within the airline’s flight network. The number
of flights being subject to modification is controlled as percentage pcnx ∈ [0,1] of the
total number of flights. The selection of flights to be changed follows the amount of
traffic at the airports: the more traffic at one airport according to the actual flights, the
higher the chance that this airport will get additional (departing and arriving) flights,
and vice versa. Any imbalances at the airports additionally increase the probability
of modifying related flights to reduce the imbalance. In addition, the Flight Choice
step is conducted, also simplifying the fleet assignment and the maintenance routing,
because there are fewer flights that need to be assigned to a fleet or rotation.

Insert Maintenance Flights. The maintenance routing problem can only be solved
if there are enough flights to a maintenance station at the end of each day. If there
is no flight to a maintenance station, the three-day maintenance routing is infeasible
and even the advanced mechanisms presented in Sect. 4.3.2.2 cannot produce a valid
routing. If there are no sufficient flights to or from the maintenance stations for each
fleet type, a flight departing from a maintenance station is created and included into
the schedule for each affected fleet type. The maintenance station and the arrival
airport are chosen randomly, the departure time is as early as possible. To prevent
flow imbalances, the Balance Schedule mechanism needs to follow each insertion
of a new maintenance flight. The new flight is necessary to comply with the main-
tenance constraints but might have a poor profit share. To prevent the removal of
this flight by the fleet assignment or assignment of another fleet to minimize costs,
this flight receives the attribute maintenance (see page 103) indicating that the flight
is fixed and may not be changed or removed by the fleet assignment algorithm.
However, the optimization steps might change this flight because these steps always
consider the three-day-maintenance routing constraint when applying changes to the
schedule. For example, a new maintenance flight with a poor profit share might be
modified regarding its destination airport or departure time. In addition, the depart-
ing maintenance station might be exchanged with another maintenance station for
this flight.
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Use Optimized Schedule. The sequential approach represents an iterative proce-
dure: after the optimization steps presented in Sect. 4.3.2.3 the complete process
starts again with the flight scheduling and fleet assignment step. Then, the fleet as-
signment might be infeasible due to the new additional flights that were inserted
with the last optimization step Flight Addition. The Use Optimized Schedule then
assigns the attribute optional (see page 103) to some new flights and removes this
attribute from old flights (that was set by the Flight Choice step), relaxing the fleet
assignment problem. More than one attempt might be necessary until the fleet as-
signment problem can be solved, in each attempt the number of affected flights is
increased. If this percentage reaches 100%, the Flight Choice and Flight Addition
steps are revoked and the schedule produced by the Airport Optimization represent-
ing the last feasible solution step is processed by the fleet assignment.

4.3.3.2 Schedule Initialization

By combining the solution steps and the supportive functions to the overall plan-
ning procedure, an airline schedule can be optimized following the sequential and
iterative planning paradigm. However, the presented mechanisms need an initial
schedule to start with. Because the maintenance routing algorithm and the optimiz-
ing steps Slack Reduction and Flight Addition iteratively insert new flights into the
schedule, an initialization method only needs to construct a very basic schedule
which will then be improved and extended using the procedures mentioned. For this
approach, this basic initial schedule is created by constructing one flight for each air-
craft available. These flights are created in those markets with the highest remaining
market size (passenger demand after subtracting passengers currently traveling on
the competitors’ flights and own flights already included in the schedule). Departure
times are the peak times of the demand distribution over the day (see Fig. 4.12). To
be solvable by the first fleet assignment step, the Balance Aircraft Flow function is
applied. Then, after the fleet assignment, the maintenance routing is likely to insert
additional flights because the number of LOFs should be smaller than the number of
aircraft and the LOFs might not be connected. After maintenance routing, the Slack
Reduction method will insert additional flights, because there is a lot of idle ground
time available since there is only one flight per aircraft in the schedule.

To summarize, schedule initialization does not consist of one single function cre-
ating an extensive and acceptable first schedule; instead, it provides a very basic
schedule that then is iteratively extended with new flights and improved using the
solution steps and supportive functions.

4.3.3.3 Integration

The main challenge in constructing a complete airline scheduling procedure based
on the described methods is to link the single steps so that each can solve its sub-
problem based on the given output of the preceding step and produce a feasible
solution. In addition, since the procedure should be able to construct schedules for
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any given setting, there should be no restrictions on the given input data. After an
initial schedule is created, the fleet assignment, maintenance routing, and schedule
optimization are conducted; then, these three steps are performed iteratively until
the optimizing steps cannot improve the schedule any more or until there was no
increase in profit after imax iterations.

Fig. 4.22 Sequential airline scheduling approach flowchart (part 1)
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In the following figures, an overview of the complete sequential approach is pre-
sented as a flowchart. Because of its complexity, the total procedure is split up into
two figures 4.22 and 4.23. Transitions between both figures are denoted as circles
with appropriate letters. The main solution and optimization steps can be identified
by the boxes with thick frames.

Fig. 4.23 Sequential airline scheduling approach flowchart (part 2)
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4.3.4 Experiments

In this section, results from implementing and applying the complete sequential
airline scheduling approach are presented. First, calibration results focusing on
the setting of the models parameters are presented in Sect. 4.3.4.1. Then, in Sect.
4.3.4.2, the obtained solutions and the search process of the calibrated model are
analyzed.

The sequential planning approach has been implemented in the C++ program-
ming language. One ILOG CPLEX 9.0 license was available for the fleet assign-
ment step, standard parameters were used. To allow an efficient use of this license,
a distributed implementation was developed that calculates the fleet assignment and
routing on the workstation with CPLEX and conducts the computationally intensive
optimization steps on different workstations with different processor and memory
specifications.

4.3.4.1 Calibration

The presented planning approach consists of individual solution steps and support-
ive steps that are controlled by parameters. The objective of the calibration process
presented in the following is to find a parameter setting that yields the best results
of the solution approach. The complete set of parameters that has to be calibrated
are as follows:

• number of iterations imax of the complete procedure without increase in profit
to determine the termination of the optimization (see page 116),

• time window size tw in minutes of the current flights in the combined flight
scheduling and fleet assignment step (see page 103),

• percentage pcnx to determine the number of flights to be modified by the In-
crease Connectivity step (see page 114),

• percentage popt to determine the number of flights set to the attribute optional
by the Flight Choice step (see page 112) ,

• percentage pnew to determine the number of new flights inserted by the Flight
Addition step (see page 113),

• percentage poptimize to determine the maximum number ioptimize
max of attempts con-

ducted by each optimization step Slack Reduction, Airport Removal, and Airport
Optimization (see page 109).

Different parameter settings are examined by applying the planning approach to
five different planning scenarios (see Appendix B), representing an airline’s possi-
ble starting point when facing the airline scheduling problem. The values for the
parameters are calibrated separately (ceteris paribus): one parameter is set to differ-
ent values while the other parameters remain constant. The values of the constant
parameters are chosen according to the following:
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imax = 5,

tw = 60,

pcnx = 0.3,

popt = 0.3,

pnew = 0.1,

poptimize = 0.1.

The results of the different parameter settings focus on two key figures:

1. the objective value, and
2. the number of fitness evaluations until the best solution was found, representing

a platform-independent quantification of the effort necessary to find the best
solution.

For each scenario and setting, five optimization runs are conducted. The results of
the different planning scenarios vary in their order of magnitude, because the sce-
narios consist of different numbers of aircraft and airports. Thus, to find a parameter
setting based on all scenarios, normalization and aggregation of the results are nec-
essary. In this study, for a given parameter setting and scenario the deviation of the
averaged results from the mean value of all parameter settings is used as an indi-
cation of the current setting’s quality. Let fp,s denote the average fitness value of
the five runs with parameter setting p ∈ P (P is the set of tested values for p) and
scenario s ∈ S, then the average fitness value f̄s for all settings for scenario s is
calculated as:

f̄s =
∑

p∈P
fp,s

|P| . (4.52)

The impact ip,s of setting p in scenario s is expressed as a relation with this average
fitness:

ip,s =
fp,s − f̄s

| f̄s|
. (4.53)

Finally, the aggregation of all scenarios yields the setting p’s average impact īp on
solution quality:

īp =
ip,s

∑
s∈S

ip,s
. (4.54)

The following figures present the results īp for different settings p for each pa-
rameter as smoothed curves. The results of the number of fitness evaluations are
calculated accordingly.13

Fig. 4.24 presents the calibration of the parameter imax. As was expected, an
increase of the solution quality can be observed for higher values of imax. A higher
imax gives the solution approach more time to find a better solution and to escape
from local optima. However, if imax is further increased, surprisingly solution quality

13 The individual results of the scenarios including the absolute values are presented in Sect. C.1.1
in the appendix.



120 4 Integrated Airline Scheduling

Fig. 4.24 Aggregated cali-
bration results for parameter
imax

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0  5  10  15  20  25  30
-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

P
ro

fit

N
o.

 o
f e

va
lu

at
io

ns

imax

Profit
No. of evaluations

decreases. In future work, this observation has to be further investigated including
additional experiments for confirmation.

Fig. 4.25 presents the calibration of the time window size tw. Increasing the
time window size leads to higher computation times, since there is more freedom in
planning. Solution quality reaches its maximum at approximately 30 minutes, fur-
ther increasing this parameter results in lower solution quality. An explanation for
this effect might be the assumption within the fleet assignment step of uniformly
distributed demand within each time window. If this time window is long, large
variations in the departure times will have an effect on passenger demand that is not
detected by the fleet assignment step.

Fig. 4.25 Aggregated cali-
bration results for parameter
tw
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Fig. 4.24 presents the calibration of the parameter pcnx. As can be observed, very
small and high pcnx results in lower solution quality, best solutions were obtained
with pcnx = 0.05. If pcnx is close to 0, the Increase Connectivity step only applies
very small changes to the schedule if it is infeasible. This might not be sufficient
to obtain a feasible solution, which then has to be constructed using more rigor-
ous operators that reduce solution quality. In contrast, if pcnx is set to high values,
in each step many modifications to a schedule are applied independently of profit
considerations and, thus, as a result solution quality is limited.
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Fig. 4.26 Aggregated cali-
bration results for parameter
pcnx
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Fig. 4.27 Aggregated cali-
bration results for parameter
popt
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Fig. 4.28 Aggregated cali-
bration results for parameter
pnew
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Figures 4.27 and 4.28 present the calibration of the parameters popt and pnew.
In general, the results are very similar. Parameter values around 0.25 yielded best
results. The closer each parameter is to 0, the less the effect of the function using
this parameter, and vice versa. Thus, the observed values for the best solution quality
are presumed to result in the best compromise of a too low and a too high impact of
each corresponding technique.
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Fig. 4.29 Aggregated cali-
bration results for parameter
poptimize
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Fig. 4.29 presents the calibration of the parameter poptimize from which the num-
ber ioptimize

max of applications of each optimization method is determined. Increasing
poptimize leads to more optimization steps in each iteration, thus, solution quality
increases. The decreasing computation time might be explained by the reduced in-
fluence of the other steps on the overall solution approach. The higher the number of
optimization steps in one iteration, the more the overall schedule is determined. The
degrees of freedom decrease (for example, there is less slack time), thus, there is
less room for other solution steps to guide the solution towards their objectives that
are not congruent with the operating profit and would increase computation time.

For each parameter, using the value at which the best fitness was achieved results
in the following final parameter setting, that is used for the subsequent experiments
and analyses:

imax = 20,

tw = 30,

pcnx = 0.05,

popt = 0.25,

pnew = 0.25,

poptimize = 1.5.

4.3.4.2 Analysis

In the following, the solutions obtained and the solution process are analyzed.
For this purpose, the calibrated planning approach is applied to the five planning
scenarios.

To analyze the solutions obtained by the sequential planning approach, the
following Table 4.7 presents some (average) key figures of the schedules (stan-
dard deviations in parentheses). Because of the high amount of information in each
schedule, presenting each schedule of every optimization run for each planning
scenario would be beyond the scope of this study. In addition, airline schedules
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Table 4.7 Key figures of airline schedules constructed with the sequential planning approach

scenario
Key Figure A B C D E
Profit 450,629 325,927 -60,166 51,849 97,774

(59,668) (16,536) (20,219) (20,835) (7,345)
SLF 0.300 0.369 0.172 0.387 0.267

(0.012) (0.021) (0.017) (0.023) (0.027)
No. of passengers 5,947 3,493 1,682 2,144 2,057

(616.36) (183.13) (65.06) (48.15) (270.72)
No. of flights 136 97 61 73 49

(10.55) (8.50) (3.19) (3.97) (4.90)
No. of fitness evaluations 212,886 36,772 154,618 32,265 48,621

(183,070) (11,386) (85,735) (12,894) (35,137)
Total no. of evaluations 369,150 112,090 260,428 50,335 83,369

(236,341) (25,747) (137,999) (10,100) (29,406)
No. of iterations 19 24 36 9 20

(12) (5) (17) (3) (5)

appearing to be different could include very similar flight programs (for example,
flights are assigned to a different fleet type or another rotation), limiting the expla-
nation of a very detailed presentation.14 In general, as the low standard deviations
indicate, the results are stable. Most variations exist in the duration of the complete
optimization run, which is measured by the last three rows of Table 4.7. Scenario
A resulted in the highest profit values, although the seat load factor was best for
scenario D. Scenario C even results in an operational loss (although it required the
most attempts to improve solution quality, since the number of iterations is highest).
Compared to the uncalibrated model (basic parameter setting), the obtained profit
values represent an average increase of 19.26%. The number of required fitness
evaluations is on average 38.39% higher than with the uncalibrated model. Differ-
ences in the order of magnitude between the number of iterations and the number of
fitness evaluations are the result of the different specifications of the scenarios: the
more aircraft and airports are available in a scenario, the more fitness evaluations
are necessary in each iteration. It has to be emphasized that a meaningful inter-
pretation of the absolute values of these indicators is not possible, since for each
scenario the competition and the set of airports were chosen randomly (and, thus,
can represent markets with low airline travel demand) and the market size estimates
represent only poor approximations of the real demand. In reality, airlines usually
have average SLF of about 75% ICAO (2006).15

The following figures focus on the solution process. They present results of ex-
periments on scenario A as a representative example for all scenarios.16 Because the

14 Individual results are presented in tables in Sect. C.2.1.1.
15 For example, when optimizing airline schedules for scenario D but using past passenger num-

bers for selected city pairs as market sizes instead of the estimates (see the discussion on 75), a
SLF of 0.630 was obtained.

16 The results of all scenarios are presented in Sect. C.2.1.2 in the appendix.
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Fig. 4.30 Trend of profits of
all five optimization runs of
scenario A
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Fig. 4.31 Trend of seat
load factors (SLF) of all
five optimization runs of
scenario A
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number of iterations is different between the individual runs for each scenario and
between the scenarios, a meaningful aggregation among the individual runs is not
possible.

Fig. 4.30 plots the profit for the five different runs of scenario A. As is clearly
visible, the number of iterations varies among the different runs, the shortest run
required less than five iterations until it terminated. However, it yielded the best
solution quality. Besides a general growth from start to end (except for one run), the
optimization progress shows a very unstable trend. There are large variations (peaks
and drops) in the profit even between succeeding iterations. As will be shown later
in Fig. 4.34, this is most likely the result of the maintenance routing steps and the
related supportive functions.

The following three figures show similar characteristics. They plot the SLF (Fig.
4.31), the number of flights (Fig. 4.32), and the number of passengers (Fig. 4.33)
as smoothed curves. The number of flights and the number of passengers have the
same trend. Thus, if there are more flights, more passengers are transported. Ex-
cept for one run, the number of flights increases in the beginning. This trend re-
sults from the basic initialization of the schedule, in which only a basic schedule
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Fig. 4.32 Trend of numbers
of flights of all five opti-
mization runs of scenario A
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Fig. 4.33 Trend of num-
bers of passengers of all
five optimization runs of
scenario A
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is created, which is then successively extended by the solution steps during the
iterations.

To investigate the contribution of the different solution steps of the sequential
planning approach, the following Fig. 4.34 plots the profit on a more detailed level
(for each solution step for each iteration). For clarity, the results of only one run
of scenario A are presented as a representative example.17 To better understand
the shape of the plot, Fig. 4.35 presents an excerpt of Fig. 4.34, focusing on iter-
ations 3-5. As this figure illustrates, the drops in operating profit result from the
application of the maintenance routing algorithm. Thus, the results from the pre-
ceding fleet assignment usually contain locked rotations and/or are infeasible with
respect to the three-day maintenance requirement. Because the repair mechanisms
of the maintenance rounting step do not consider the operating profit when modify-
ing the current schedule, the drops can easily be explained.18 A profit decrease in

17 Similar figures for the other runs and for the other scenarios are presented in Sect. C.2.1.2 in
the appendix.

18 However, the additional repair mechanisms developed in this study take market sizes into ac-
count when applying changes to the schedule. For example, if a flight needs to be inserted,
this is accomplished for the market with the highest passenger demand (under consideration of
demand already satisfied by existing flights).
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Fig. 4.34 Profit contribution
by individual solution steps
(scenario A, run3)
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Fig. 4.35 Profit contribution
by individual solution steps
between iteration 3 and 5
(scenario A, run3)
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the fleet assignment step (for example in iteration 5 in Fig. 4.35) can be explained
by the objective function of this step, which is to minimize costs (operating and spill
costs). Because revenues are not taken into account, minimizing operating costs can
contradict maximizing profit. For example, if no flights at all are conducted, operat-
ing costs are minimized without earning operating profit.

4.3.5 Summary and Conclusion

4.3.5.1 Summary

In this section, an integrated airline scheduling approach was presented that fol-
lows the traditional airline scheduling process consisting of separate planning steps
solved in a sequence. The procedure presented here has three major planning steps:
a combination of flight scheduling and fleet assignment, maintenance routing, and
schedule optimization. For the first steps, solution models from OR literature were
used. The optimization step consists of three greedy algorithms each using a dif-
ferent local search operator that iteratively modifies a schedule until no further
improvement of operating profit can be achieved. All models have special require-
ments with regard to their input data to produce feasible solutions. In practice, many
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manual inputs and feedback loops are necessary to apply the models to airline
scheduling; in the scheduling procedure presented here, these assisting decisions
are made by some modifications to the existing (original) models and by supportive
functions. Their objective is to better link the individual solution steps. If a feasible
solution cannot be obtained by one model, its input is modified in order to increase
the chance of finding a good solution.

Parameters that control the overall planning procedure were obtained by testing
various settings with regard to the operating profit for five different planning sce-
narios. The calibrated model was then applied to these scenarios for an analysis of
the obtained solutions and the search process. The solutions of the different runs are
stable with regard to the resulting operating profit, number of flights, number of pas-
sengers etc. However, differences exist in the effort of the optimization runs. There
are large variations in the number of fitness evaluations and in the number of solu-
tion iterations. One factor contributing to this observation is the unstable optimiza-
tion progress which is characterized by peaks and drops of the profit even between
succeeding iterations. A closer look at the profit contribution of each solution step
within an iteration unveils the fact that the application of the maintenance routing
step is most likely responsible for the drops, which are then again compensated by
the optimization steps. Since the fleet assignment preceding the maintenance rout-
ing might produce schedules that consist of locked rotations or do not fulfill the
maintenance requirements, the schedules have to be repaired, which is conducted
regardless of the profit.

4.3.5.2 Conclusion

Because of the stepwise approach, supportive functions had to be included that
assist each step to find a feasible solution and to integrate the individual solution
steps into one iterative procedure, leading to a rather complex planning procedure.
The (simplified) flowchart in figures 4.22 and 4.23 gives an impression of this
complexity. Consequently, different parameters had to be set to control the plan-
ning procedure.19 Their calibration was conducted ceteris paribus. Because inter-
dependencies between the parameters are likely to exist, an extensive calibration
process in which all possible parameter combinations are tested should be con-
ducted in future work. In addition, some alternative options within each solution
step could be tested to find out whether they would result in more profitable so-
lutions (for example the LIFO-rule instead of the FIFO-rule in maintenance rout-
ing or the number of flight arcs per flight in the fleet assignment model). Another
option is to change the order in which the three individual optimization steps are
conducted.

A major drawback of the presented approach is its sequential planning paradigm.
Each solution step has a different objective function which conflict to some extent.
For example, the objective of fleet assignment is to minimize costs (operating and

19 Many more additional, but less important parameters could be selected in some of the planning
approach’s functions. Since unlimited effort could be made to test all values for all parameters,
they were set by common sense.
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spill costs), not to maximize revenue. Thus, minimizing operating costs could be
realized by conducting only a small number of flights.20 In addition to conflicting
objectives, constraints of one solution step can often not be fulfilled based on the
given input from the preceding step. For example, the maintenance routing has to
find a routing that is feasible with regard to maintenance restrictions. For this pur-
pose, the flights and the fleet assignment might be changed, reducing the solution
quality. Although in this study these modifications take market sizes into account,
this effect is rather strong because sometimes it is difficult to find a feasible routing.
In such cases, many changes are applied to the schedule, often resulting in a much
lower solution quality. This effect can be observed in figures 4.34 and 4.35, in which
a decrease in solution quality follows the maintenance routing step.

In addition to some drawbacks resulting from the stepwise planning paradigm
and the inadequate linkage between the steps, the individual solution steps inhibit
some limitations. For example, the optimization steps are straightforward but not
exclusive. They represent local search operators, which could be further improved
by enlarging the neighborhood related to each modification or by changing the type
of modification (for example, changing the fleet assignment). A second example is
the maintenance routing step, representing a simplified model of the real mainte-
nance problem that does not take all practical requirements into account. There is
no capacity constraint for maintenance at the airports; in general, there could be
a solution with every aircraft undergoing maintenance at the same airport on the
same day, which would be unrealistic in practice. In addition, it is assumed that
maintenance always takes place at night after at least three days, there is no consid-
eration of the real flight hours conducted and the minimal time of duration required
by maintenance. In practice, maintenance is performed after a maximum number
of flight hours or landings and requires a specific amount of time, varying across
different fleet types and airports.

On the other hand, the separation of the different solution steps allows a straight-
forward improvement of the individual tasks. Necessary input and output data of
each step is known (and – if necessary – modified by the supportive functions), and
each individual procedure can be replaced by an improved version. These improve-
ments can also include an extension of the scope and further integration, reducing
the amount of supportive functions necessary. For example, if an improved fleet
assignment model including maintenance consideration could be implemented, the
destructive effects of the maintenance routing algorithm might be reduced possi-
bly leading to a much more progressive optimization process.21 Since many differ-
ent procedures are included in the overall planning approach (solutions steps and
supportive functions), there are many starting points for further improvements and
enhancements.

20 This applies to flights with the attribute optional, since all other flights have to be conducted
21 Of course, an extended model must include at least the capability of the previous model. In this

example, an improved fleet assignment model still has to decide on the flight scheduling.
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4.4 Simultaneous Approach

4.4.1 Overview

In this section, a simultaneous approach for airline scheduling is presented. Like the
sequential approach, the flight schedule generation and aircraft scheduling phases
from Fig. 2.2 are included. The objective of this approach is to overcome the arti-
ficial decomposition of the overall problem into smaller subproblems. Instead, the
complete airline scheduling problem is solved at once. Because even smaller sub-
problems are NP-hard, the complete problem is computationally intractable with
standard exact solution algorithms. Thus, to solve this problem without an improper
or unacceptable simplification and reduction of the problem, metaheuristics have to
be used.

Metaheuristics iteratively improve solutions to a given problem (see Sect. 3.2).
For the airline scheduling problem, a complete airline schedule is its solution,
which then has to be processed by a metaheuristic. This schedule implicitly in-
cludes all partial solutions of the traditional approach including their interdependen-
cies. Processing complete airline schedules results in a truly simultaneous planning
approach.

In the next section, the conceptual design of the simultaneous approach is pre-
sented. It focuses on the four basic design elements of metaheuristics that have to
be designed to match the given problem. Also in this section, three metaheuris-
tic techniques are presented as representative examples for different search strate-
gies: threshold accepting for local search, a selecto-recombinative genetic algorithm
for pure recombination-based search, and a genetic algorithm with both, local and
recombination-based search. Each metaheuristic is applied to the airline scheduling
problem in Sect. 4.4.3. Sect. 4.4.3.1 presents calibration results for the three differ-
ent solution techniques. In addition, based on results from the calibrated models,
one metaheuristic is selected for further analysis in Sect. 4.4.3.2 and is compared to
the sequential planning approach.

4.4.2 Conceptual Design

4.4.2.1 Overview

In Sect. 3.2, four basic elements were identified that need to be addressed when
applying a metaheuristic to a specific problem:

1. representation and variation operators,
2. fitness function,
3. initialization,
4. search strategy.

In the following, the design of these elements to simultaneously solve the airline
scheduling problem is presented.
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4.4.2.2 Representation and Variation Operators

A representation determines the mapping between a phenotype and a genotype. The
phenotype is the real solution of the given problem, the genotype represents this
solution within a metaheuristic and is subject to the heuristic’s variation operators.
Thus, the representation and the operators work together and cannot be developed
independently. An indirect representation for the airline scheduling problem is pro-
posed in the next section, followed by the introduction of proper operators. Finally,
although not elementary for metaheuristics in general, repair operators are presented
that are necessary to deal with infeasible solutions.

Representation. A complete airline schedule is a solution of the airline scheduling
problem. Thus, each genotype or individual22 has to encode decision variables that
– combined with given data – form a complete airline schedule. This schedule has to
include the set of flights that are carried out including the assignment of the available
resources.

One of the most important restrictions when scheduling a flight is the availability
of an aircraft of the desired fleet type at the planned departure time and departure
airport. The representation concept presented in the following has been designed to
incorporate these restrictions, it only allows the representation of flights that can be
carried out with the available aircraft. Thus, each encoded solution is feasible with
respect to the aircraft assignment and ensures the satisfaction of flight coverage,
flow balance, and aircraft count constraints.

Each genotype consists of a fixed number S of segments. This number corre-
sponds to the number of aircraft available, and each segment represents the LOF
of one day for one aircraft. The segments are ordered in succession according to
the fleet type, i.e. all segments of one fleet type are connected to each other. Each
segment contains a sequence of tuples. Let Ls denote the number of tuples in the
segment s and ls the position in the segment. Each tuple consists of an airport als
and a time tls , indicating the location and duration the aircraft is resting on ground.
Fig. 4.36 presents an overview of this representation concept with seven aircraft of
two different fleet types. The aircraft is required to fly between the encoded airports
in the indicated sequence, thus, there is an indirect encoding of the flights depending
on the ground activities. Using this indirect and aircraft-based representation avoids
infeasible aircraft assignments.23

The departure time of a flight depends on the departure times of the preceding
flights. The airport als at position ls is the departure airport of the flight fls con-
necting airports als and als+1. The encoded time interval tls at each position in the
segment indicates the amount of time that the aircraft is scheduled to remain on
the ground after the minimum turn time has elapsed and before conducting the next
flight. The departure time tdep

ls
of flight fls can be calculated recursively based on

22 The terms genotype and individual are used synonymously in the following.
23 The daily model can easily be extended in future work to a weekly problem by constructing

seven LOFs per aircraft. However, complexity will also significantly increase.
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Fig. 4.36 Representation concept

Fig. 4.37 Segment with flight information (genotype) for one aircraft

the departure time of the previous flight tdep
ls−1, its block-time tblock

als−1,als
, the minimum

required turn-time tturn
als−1

and the scheduled ground time tls :

tdep
ls

= tdep
ls−1 + tblock

als−1,als
+ tturn

als−1
+ tls . (4.55)

If a departure time is scheduled when night flying restrictions at the corresponding
airport are in effect, the first point in time flights are allowed is used as a point of
reference instead of the ready time of the previous flight. This is also the proce-
dure to calculate the first departure time tdep

1 of the segment, because this cannot
be calculated recursively. If on the other hand the airport allows flight operations
throughout the night, any point in time can be chosen as point of reference for the
departure time calculation of tdep

1 .
Using the decision parameters (a and t) and the given data (tblock, tturn, and night

flying restrictions), a flight schedule can be determined.
As an example, the segment from Fig. 4.37 (one aircraft) is decoded using the

following data:

• night flying restrictions at DUS from 23:00 to 06:00 (UTC),
• minimum turn times tturn = 30 minutes at all airports,
• block times of flights:

tblock
DUS,OSL = tblock

OSL,DUS = 110,

tblock
DUS,V IE = tblock

VIE,DUS = 80, and

tblock
DUS,ZRH = tblock

ZRH,DUS = 80.

In this example, the aircraft departs DUS at 06:10 (airport opens at 06:00, tground
1 =

10), arrives in OSL at 08:00 (tblock
DUS,OSL = 110), and departs for the second flight of

this segment heading to DUS at 08:40 (tturn
OSL = 30, tground

2 = 10) etc. Based on the
given individual from Fig. 4.37, the schedule in Fig. 4.38 can be determined.
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Fig. 4.38 Schedule for one aircraft (phenotype) represented by segment in Fig. 4.37

In this example, a single segment is considered, and the aircraft’s last flight is
heading back to the airport where the first flight of the segment departed. If more
than one aircraft of the same fleet type exist, their segments are joined together and
the last flight of each segment is heading towards the starting airport of the next
segment. This procedure leads to one single rotation per fleet type, and each aircraft
of the same fleet type accomplishes the identical routing consisting of a number
of days equal to the number of aircraft in the fleet. Although many airlines favor
having only one rotation per fleet because of evenly distributed use of the aircraft
and ease of scheduling (Gu et al., 1994,Clarke et al., 1997), some airlines consider
more than one rotation for each fleet. To represent these cases, a flag rs is introduced
to each segment s indicating the termination (rs = 1) or continuation (rs = 0) of the
rotation. If rs = 0, the last flight of segment s is heading towards the first airport of
the succeeding segment if this segment belongs to the same aircraft type. If rs = 1,
the last flight of s is heading towards the first airport of the segment that the actual
rotation was started with. Fig. 4.39 with four aircraft illustrates the concept of the
rotation flags. The individual represents two rotations with two aircraft and a length
of two days each. In the first rotation, the last flight of the first day is from DUS to
MAD. On the second day, the last flight is heading from ZRH towards NCE (instead
of FRA), because the rotation flag is set to r2 = 1. Fig. 4.40 presents the resulting
schedule.

Variation Operators. The variation or search operators are used by a metaheuristic
to produce new solutions. They work with the genotypes and can be divided into two
groups: operators that create new solutions by modifying a current solution (local
search operators) and operators that construct new solutions by recombining parts
of two or more solutions (recombination-based operators).

Local Search Operators. Local search operators construct a new solution by ap-
plying small changes to the current solution. Thus, a local search operator should
produce a solution that is in the original solution’s neighborhood in the search space,
keeping most of the original solution’s properties. Based on the given problem here
and the representation used, there are solution elements of a different scale in each

Fig. 4.39 Segment with flight information for four aircraft including rotation flags (geno-
type)
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Fig. 4.40 Schedule for four aircraft (phenotype) represented by individual in Fig. 4.39

Fig. 4.41 Deletion of ground time (local search operator locDelGT)

genotype (airports, times, aircraft assignments, etc.). A neighboring solution is ob-
tained by modifying one element of the genotype per search step. The search step
itself has to address the different elements of a solution accordingly, and even when
modifying the same type of element, there are various options to perform the mod-
ification. In this study, different operators are developed that can all be applied to
the genotypes and can be used complementary and exchangeable. To decide on a
final set of operators based on their quality and their impact on the search pro-
cess’s efficiency, additional experiments need to be conducted. Another approach
is to develop an adaptive implementation of the operators that automatically applies
those operators leading to the best solution quality. This approach is followed in this
study. The adaptive implementation is described when presenting the search strategy
on page 140.

In the following, the different local search operators developed for the simulta-
neous airline scheduling approach are presented, each introducing a different type
of neighborhood.

• Delete Ground Time (locDelGT)
A genotype encodes a sequence of airports and scheduled ground times at each
airport. This local search operator chooses a random segment s of the genotype
and a random position ls within this segment and sets the corresponding ground
time tls = 0. The resulting airline schedule then contains flights fms with ms >
ls with earlier departure and arrival times than the original solution. Fig. 4.41
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illustrates the operator on the genotype and the corresponding changes in the
phenotype.

• Insert Ground Time (locInsGT)
This operator works vice versa to locDelGT: The ground time tls of a random
position ls in a randomly chosen segment s is increased by a time parameter
tinit . All flights following the encoded position are displaced by tinit .

• Change Airport (locChgApt)
This operator randomly changes the airport als of a random position ls in a
randomly chosen segment s. The operator results in two different flights, since
als represents an arrival and a departure airport of two succeeding flights. In
addition, if the block time of the new flights is different to the preceding block
time, the flights following these new flights are shifted forward or backwards.
Fig. 4.42 illustrates the operator on the genotype and the corresponding changes
in the phenotype.

• Delete Airport (locDelApt)
The airport als and the ground time tls of a random position ls in a randomly
chosen segment s are removed from the genotype. This operator replaces the
two flights connected via als with one flight from als−1 to als+1. In addition, be-
cause the single new flight probably has a lower block time than the cumulated
block time of the two original flights, all flights following ls in the segment will
depart earlier. See Fig. 4.43 for an example of this operator.

• Insert Airport (locInsApt)
This operator works vice versa to locDelApt. It inserts a new airport als and
ground time tls at a random position ls in a randomly chosen segment s, replac-
ing one flight with two new flights connecting via als . The new ground time is
chosen randomly between 0 and the parameter tinit . The flights following the
position ls will probably depart later than in the original solution because of the
extended cumulated block time of the new flights.

• Change Rotation Flag (locChgRot)
This operator switches the flag rs of a randomly chosen segment of the geno-
type. This changes the routing of the affected aircraft and thus their utilization.

Fig. 4.42 Change of airport (local search operator locChgApt)
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Fig. 4.43 Deletion of airport (local search operator locDelApt)

Fig. 4.44 Change of fleet assignment (local search operator locChgFA)

In addition, because either two rotations are joined together or a single rotation
is split up, the flights at the connecting points are rerouted.

• Change Fleet Assignment (locChgFA)
This operator changes the order of the segments in the genotype. Because the
segments of one fleet type are grouped together, exchanging two segments s1

and s2 changes the fleet assignment if the two segments belong to different fleet
types. In addition to a different fleet assignment, the flights at the connecting
points between the segments might be changed if the segment is part of a multi-
segment rotation. Fig. 4.44 illustrates this operator.

• Change Airports with Similar Market Size (locChgAptMS)
The operator locChgApt randomly changes the airport at a random position ls
of a randomly chosen segment s. The choice among the different airports is
discrete, thus, a neighboring solution could contain any other airport at the
specified position. To increase the locality of the search space with this type
of operator, similarities between different airports have to be defined. The op-
erator locChgAptMS presented here uses the total market size of an airport as
a characteristic to measure similarity. The smaller the difference between two
market sizes of two airports, the higher their similarity. Given the market size
msod for every market of an originating airport o ∈ A and a destination airport
d ∈ A, the total market size msa of airport a ∈ A is calculated as:24

msa = ∑
d∈A

msad + ∑
o∈A

msoa. (4.56)

24 Market sizes are given by the market size estimation model presented in Sect. 4.2.2.
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The probability pab of an airport b to replace an airport a in the genotype by op-
erator locChgAptMS increases with decreasing difference in their market sizes
and is calculated as follows:25

pab =
(max(|msa − msb|,1))−1

∑
c∈A

(max(|msa − msc|,1))−1 . (4.57)

• Change Airports with Similar Distance (locChgAptDist)
This operator works in analogy to locChgAptMS, except it uses the geographical
distance distab as indication of similarity of airports a and b. The closer two
airports, the higher the probability that they are exchanged in the genotype. The
probability pab of an airport b to replace an airport a is calculated as:

pab =
(max(distab,1))−1

∑
c∈A

(max(distac,1))−1 . (4.58)

Recombination-based Operators. The purpose of recombination-based operators
is to create new solutions by combining meaningful elements of different solu-
tions. A population of solutions is necessary because each new solution (offspring)
emerges from at least two preceding solutions (parents). The recombination-based
or crossover operators work well on decomposable problems which contain sub-
problems that are quasi-independent and could be solved separately. Then, the so-
lution process consists of combining good partial solutions to construct an overall
good solution.

Different standard recombination operators were developed that work on string
genotypes. Examples are 1-point, n-point, or uniform crossover. However, although
string-type genotypes are used here, in contrast to the traditional string represen-
tation there is no fixed length of the genotype. The number of stops in a segment
depends on the block times of the flights and the scheduled ground times, and this
number changes during optimization. Thus, the length of a genotype (in terms of
encoded stops) is variable, even if the number of segments remains constant. Since
the standard operators work on fixed-length strings, they cannot be directly used
here but may be adapted to match the variable-length genotypes.

In the following, different recombination operators are presented. As for the local
search operators, there is an adaptive control of their application during the search
process, which is presented on page 140.

• 1-Point Recombination (rec1P)
The traditional 1-point crossover splits two genotype strings at a random po-
sition and exchanges the partial strings. For the representation used in this ap-
proach, using the absolute position l in a genotype could result in substrings
with a large time displacement. If for example one parental solution contains
many short flights and the second parent only long flights, the same absolute

25 The max-function is required to avoid the division by 0.
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Fig. 4.45 Recombination using an absolute crossover position

position would indicate a flight of the first parent departing much earlier than
the corresponding flight of the second parent. This example is illustrated in
Fig. 4.45. In this approach, instead of using the absolute position, a segment s
and a time tcross are used to indicate the crossover point. s and tcross are chosen
randomly. Then, the absolute position within the genotype is determined based
on s and tcross independently for each parent. This will ensure the extraction
of sub-strings of approximately the same time interval of two individuals and
reduce displacement of flights after the crossover position. The recombination
itself is conducted like a standard 1-point crossover. At the crossover point, a
flight is exchanged, since the arrival airport is changed. In addition, since a new
sequence of flights is introduced to a rotation, a second flight is changed to
ensure connectivity of the rotation.
In the following figure, a simple recombination operation is illustrated with an
example (tcross = 14:30).

Fig. 4.46 Recombination using a time-dependent crossover position (recombination operator
rec1P)
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Fig. 4.47 Recombination using two time-dependent crossover positions (recombination op-
erator rec2P)

Fig. 4.48 Recombination of substrings (recombinationoperator recString)

• 2-Point Recombination (rec2P):
The operator rec2P works similarly to rec1P besides randomly choosing an ad-
ditional time tcross2 defining a second crossover position (tcross + tcross2). Thus,
each genotype is divided into three substrings, and the inner string is exchanged
between the parents. An illustrative example is given in Fig. 4.47.

• String Recombination (recString)
With rec2P, elements of the genotype are exchanged between approximately
the same positions. The operator recString works similarly to rec2P, however,
the segment s1 at one parent where the substring of the other parent is inserted
does not need to correspond to this segment s2 (s1 �= s2). This operator allows the
change of the fleet assignment. The example in Fig. 4.48 illustrates the operator
recString.

Repair Operators. The representation chosen allows the encoding of only feasible
aircraft assignments: because of the aircraft-based relative encoding, each flight is
covered by exactly one aircraft, the number of aircraft per fleet is not exceeded, and
the flow balance is preserved. In addition, the search operators consider operational
restrictions of the fleets, for example they do not insert an airport in a segment that
the corresponding fleet type is not able to operate or that results in a flight being too
long for the aircraft’s endurance. However, other restrictions exist that might still be
violated when applying the search operators.

If there are too many stops in one segment, the last flights might be scheduled to
depart on the next day, which is encoded in the subsequent segment. If the search
operators include new stops or replace flights by flights with longer block times, the
subsequent flights are postponed because of the relative encoding of their departure
times. If the end of day is exceeded by a segment, its elements are checked for
scheduled ground time that can be minimized. If there is not sufficient ground time
available, randomly chosen stops are deleted until the resulting flight program can
be completed in one day.
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Any night flight restrictions are always met for the departure of a flight, since the
departure times are encoded in relation to either the ready time of the previous flight
or the time an airport allows flight operations. However, the arrival of a flight might
violate some restrictions, if for example a flight departed from an airport without
night restrictions heading to an airport with restrictions. If a flight arrives too early,
it is delayed by extending the scheduled ground times. If the flight arrives too late
in the evening, the scheduled ground times are minimized or - if minimizing is not
sufficient - stops are randomly deleted from the segment.

4.4.2.3 Fitness Function

An individual’s fitness corresponds to the quality of the encoded solution. The qual-
ity is quantified by the objective value of the solution. The objective of the airline
scheduling problem is to construct airline schedules with maximum operating profit,
thus, this measure is used for fitness evaluation. The operating profit is calculated
using the schedule evaluation procedure presented in Sect. 4.2. In contrast to the
objective function, the fitness function of a metaheuristic can contain additional
properties of a solution that are not expressed by the objective value. One example
is constraints of the problem and possible violations of the solution. Then, the fit-
ness value of the solution considers additional penalties that describe the existence
of constraint violations. If possible and practicable, the penalty costs should reflect
the extent of the violation to establish locality in the search space with respect to
the feasibility of the solution. Setting the amount of penalties represents a difficult
task, since there is a trade-off between a too restrictive search because of too high
penalty costs and the possibility of obtaining an infeasible solution at the end of the
optimization because of too low penalty costs.

The selected representation and operators (including the repair operators) result
in feasible solutions of the airline scheduling problem except for maintenance con-
siderations. Each aircraft is required to undergo maintenance checks at regular in-
tervals (for example every three days) at maintenance stations. In this study, the
maintenance restrictions are included as penalty function: if an aircraft is not sched-
uled for appropriate maintenance, penalty costs reduce the fitness value by a certain
amount controlled via a parameter. These costs increase with the number of aircraft
violating the maintenance restrictions and the delay of the required maintenance for
each aircraft. Quantifying the penalty costs is easy since a solution contains an air-
line schedule which can be easily checked for maintenance opportunities for every
aircraft and the time in-between. A maintenance opportunity is given if an aircraft
is on the ground at a maintenance airport for the required time necessary to perform
the maintenance checks and the maintenance station has enough capacities left for
this specific aircraft type.

4.4.2.4 Initialization

Because metaheuristics represent problem-specific improvement heuristics, a solu-
tion (or a population of solutions) has to be created at the start of the search process.
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If there is problem-specific information and knowledge of high-quality solutions,
the search could already focus on good regions of the search space by initializing
high-quality solutions. In this study it is assumed that there is not such knowledge.
In this case, every solution of the search space should have the same probability of
being selected as an initial solution. This is accomplished by randomly choosing
among the decision variables of the solution. Thus, when initializing a genotype,
a randomly chosen airport is included into each segment until the corresponding
LOF reaches the end of day. The ground times t assigned to each stop are chosen
uniformly between 0 and a parameter tinit .

4.4.2.5 Search Strategy

Two basic search strategies can be distinguished following the main search opera-
tors: local and recombination-based search. The choice between both strategies has
to be made specifically for each problem. Local search should be used if the locality
of the problem is high, because then the structure of the search space can guide the
search towards high-quality regions. In contrast, if the problem is decomposable,
recombination-based operators can be applied that solve subproblems of the given
problem independently and combine the good partial solutions to good overall so-
lutions. However, identifying locality or decomposability of a real-world problem
is often difficult, because most problems have both properties. Thus, either experi-
ments on the problem have to be conducted to identify the more relevant concept,
or a technique incorporating local search and recombination-based search has to be
used. In this study, both approaches are presented and three metaheuristic techniques
are implemented:

1. threshold accepting (TA) as a representative example of local search,
2. a selecto-recombinative steady-state genetic algorithm (rGA) as an example of

recombination-based search, and
3. a standard steady-state genetic algorithm (GA) as an example of metaheuristic

search with both, local and recombination-based search.

Even when focusing on a single search strategy (local or recombination-based),
an explicit control of the search operators is necessary, because for each type of
search operator different variants were designed. In each search step, one operator
has to be selected. This selection can follow a given rule, for example each operator
is used one after another. Another approach would be to select the operator in each
search step randomly. In this study, an adaptive control of the operators is developed
which applies those operators in each search step that were advantageous in the pre-
vious steps. This procedure not only reduces the number of decisions and parameters
required to be set manually, but also increases the efficiency of the search process.
The adaptive control used in this approach randomly selects one operator per search
step, the probability of each operator to be selected depends on its contribution to
the past search progress. If the application of the operator resulted in high-quality
solutions (compared to the results of other operators), its selection probability is
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increased. For each operator o ∈ O of the current search type, the progress of its
last N applications is monitored. Its progress is evaluated according to the change
in the fitness value f o

n = f (s∗
o)− f (s) between the original solution s and solution s∗

o
resulting from the nth application of the operator o. The relative fitness contribution
co of operator o is calculated as:

co =
max

(
∑

n∈N
f o
n ,0

)

∑
q∈O

max

(
∑

n∈N
f q
n ,0

) . (4.59)

Based on this fitness contribution, the selection probability po of operator o is cal-
culated as:

po =
co

∑
q∈O

cq
. (4.60)

To prevent diminishing operators, each operator has a minimum selection probabil-
ity of 0.05. The initial setting for the selection probability of each operator is deter-
mined by applying the operator N times to an initial solution without replacement
by the obtained new solution.

This adaptive procedure is also applied to the standard steady-state GA to choose
among local and recombination-based search. Thus, the GA uses a two-step adap-
tion: first, the type of operator (local or recombination-based) is chosen, then, the
operator itself is selected. The probability of selecting a recombination-based oper-
ator depends on the average progress contribution of all recombination-based search
operators. Let R denote the set of recombination-based operators and L the set of lo-
cal search operators (O = R∪L). The probability pR of using a recombination-based
search in the current search step is then calculated as:

pR =

∑
r∈R

cr

|R|
∑

r∈R
cr

|R| +
∑

l∈L
cl

|L|

. (4.61)

Algorithms 7, 8, and 9 present the final specifications of the TA, rGA, and GA
including their parameters.

4.4.3 Experiments

In this section, results from implementing and applying the simultaneous airline
scheduling approach are presented. First, calibration results focusing on the setting
of the parameters are presented. In addition, a second objective is to decide among
the three different solution strategies. Using the strategy resulting in the best solu-
tions, the search process and the obtained solutions are analyzed.
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Algorithm 7. Threshold Accepting
1: choose parameters:

2: initial threshold T ∈ [0,1]

3: threshold reduction step size r < T

4: maximum number of iterations idecrease between threshold reduction

5: maximum number of iterations imax > idecrease when T = 0

6: create initial solution s with fitness value f (s)

7: calculate po for all operators o ∈ O

8: iteration i = 0

9: repeat

10: i = i +1

11: select local search operator o ∈ O according to po

12: create neighboring solution s∗
o

13: calculate new fitness value f (s∗
o)

14: Δ f = f (s)− f (s∗
o)

15: if Δ f < (T · f (s)) then

16: s = s∗
o

17: update po for all operators o ∈ O

18: end if

19: if T > 0 and i > idecrease then

20: T = T − r

21: i = 0

22: end if

23: until i = imax

The metaheuristics have been implemented in C++. The experiments presented
here were conducted on different workstations with different processor and memory
specifications.

Because a major goal of this study is to compare the sequential and simultane-
ous airline scheduling approach, both approaches should have equal requirements
and capabilities. To allow a fair comparison, some slight modifications to the con-
ceptual design of the metaheuristic are applied. One modification aims at the rota-
tion encoding in each genotype. Because the sequential approach only allows one
rotation per fleet type, the rotation flags are set to rs = 0 for all S and the local search
operator locChgRot is not allowed to change the flags. Furthermore, the sequential
approach does not consider any capacity constraints at maintenance stations; in the-
ory, all aircraft can be scheduled to undergo maintenance on the same night. In
addition, there is no consideration of a minimum time necessary to perform the
maintenance. This less restrictive specification is applied to the calculation of main-
tenance penalty costs in the simultaneous approach. On the other hand, because the
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Algorithm 8. Selecto-Recombinative Steady-State Genetic Algorithm
1: choose parameters:

2: population size n

3: pconv to determine convergence of the population

4: create initial population S0 with n numbers of solutions s

5: calculate fitness value f (s) for each s ∈ S

6: calculate po for all operators o ∈ O

7: iteration i = 0

8: repeat

9: i = i +1

10: select recombination-based search operator o ∈ O according to po

11: choose two solutions s1 and s2 randomly

12: create solution s∗
o from s1 and s2

13: calculate new fitness value f (s∗
o)

14: replace the worst solution in S by s∗
o

15: update po for all operators o ∈ O

16: determine solution ŝ ∈ S with maximum fitness

17: calculate average fitness f̄ (S)of population

18: until f (ŝ)− f̄ (S) < pconv · f (ŝ)

sequential approach always fulfills the maintenance constraints, the metaheuristics
penalty costs are set to a high value (500,000) to de facto ensure meeting the three-
day maintenance requirements.26

4.4.3.1 Calibration

One advantage of the adaptive control of the search operators is the reduction of the
number of parameters to be set for each metaheuristic. However, each metaheuristic
presented previously is still controlled by some parameters that have to be calibrated.
In this section, experiments on different parameter settings are presented to find a final
calibration for each metaheuristic. Then, the solution quality of all three calibrated
models is compared to decide about the search strategy (TA, rGA, or GA) for further
analysis and comparison with the sequential airline scheduling approach.

The calibration process is conducted in analogy to the calibration of the sequen-
tial approach (see Sect. 4.3.4.1). Different parameter settings are examined by ap-
plying each metaheuristic to five different planning scenarios (see Appendix B). For
each parameter setting and scenario, five runs are conducted. The results presented
in the following thus represent averages of these five runs. In analogy to the results

26 Additional parameters are N = 5 for the adaptive control of the search parameters and t init = 25
for initialization and some search operators.
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Algorithm 9. Standard Steady-State Genetic Algorithm
1: choose parameters:

2: population size n

3: pconv to determine convergence of the population

4: create initial population S0 with n numbers of solutions s

5: calculate fitness value f (s) for each s ∈ S

6: calculate po for all operators o ∈ O

7: calculate pR and pL

8: iteration i = 0

9: repeat

10: i = i +1

11: if random(0,1) < pR then

12: select recombination-based search operator o ∈ R according to po

13: choose two solutions s1 and s2 randomly

14: create solution s∗
o from s1 and s2

15: else

16: select local search operator o ∈ L according to po

17: create neighboring solution s∗
o

18: end if

19: calculate new fitness value f (s∗
o)

20: replace the worst solution in S by s∗
o

21: update po for all operators o ∈ O

22: update pR and pL

23: determine solution ŝ ∈ S with maximum fitness

24: calculate average fitness f̄ (S)of population

25: until f (ŝ)− f̄ (S) < pconv · f (ŝ)

from the sequential approach, they include fitness values as a measure of solution
quality and the number of fitness evaluations until the best solution was found as
a platform-independent quantification of the effort to solve the problem. All values
are normalized to aggregate among all scenarios (see page 119).27

Threshold Accepting. The TA algorithm was implemented as presented in algo-
rithm 7. This specification uses four parameters to control the search process:

• the initial threshold T ∈ [0,1],
• the threshold reduction step size r < T ,
• the number of iterations idecrease between the threshold reductions, and

27 The individual results of the scenarios including the absolute values are presented in Sect. C.1.2
in the appendix.
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• the maximum number of iterations imax > idecrease at the end of the algorithm
when T = 0 (then the search process represents a local hill climbing algorithm
that does not accept inferior solutions).

The impact of the individual parameters is tested by solving the airline scheduling
problem with different parameter combinations. In each setting, one parameter is set
to different values while the others remain constant. For the constant parameters, the
following setting is chosen as the basic setting:

T = 0.2,

r = 0.005,

idecrease = 20,

imax = 500.

In the following, four diagrams are presented, each illustrating the results for the
experiments on one parameter.

Fig. 4.49 presents the calibration of the initial threshold T . The solution quality
decreases for low and high values of T , it is highest for values around 0.2 – 0.25.
Thus, these values seem to represent the best compromise between a random search
(high T ) and a hill-climbing technique that does not accept inferior solutions during
search (low T ).

Fig. 4.50 presents the calibration of the parameter r. The smaller r, the higher the
resulting solution quality. If r is low, the threshold is reduced very slowly, allowing
an explorative search. However, the computational effort also increases. Surpris-
ingly, for values of r very close to 0, a decrease in solution quality is observed,
which is confirmed by additional experiments on these values.

Fig. 4.51 presents the calibration of the parameter idecrease. In general, solution
quality increases with higher idecrease. The higher idecrease, the more search steps
are performed before the threshold is further reduced. This allows the exploration
of more solution space during optimization. As Fig. 4.51 clearly shows, the higher
solution quality is obtained at the cost of increased computational effort.

Fig. 4.49 Aggregated cali-
bration results for parameter
T
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Fig. 4.50 Aggregated cali-
bration results for parameter
r
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Fig. 4.51 Aggregated cali-
bration results for parameter
idecrease
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Fig. 4.52 Aggregated cali-
bration results for parameter
imax
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Fig. 4.52 presents the calibration of the parameter imax. This parameter comes
into play when the threshold is set to T = 0. Then, the TA represents a hill-climbing
technique that stops after imax iterations without increase of solution quality. In-
creasing imax leads to a higher solution quality, since the hill-climbing technique has
more attempts to escape from local optima.
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Fig. 4.53 Aggregated cal-
ibration results for param-
eter pconv of the selecto-
recombinative genetic algo-
rithm (rGA)
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For each parameter, the value at which the best fitness was achieved is used for the
subsequent experiments. Thus, the complete final parameter setting is as presented
in the following:

T = 0.25,

r = 0.005,

idecrease = 650,

imax = 1500.

Selecto-Recombinative Steady-State Genetic Algorithm. Algorithm 8 describes
the specification of the selecto-recombinative GA. This algorithm uses the following
two parameters:

• population size n,
• parameter pconv to determine the convergence of the population to terminate the

algorithm. pconv represents a percentage of the fitness value of the best solution,
if the difference between the fitness of the best solution and the average fitness
of the population is smaller than this value, the algorithm is terminated.

The following two figures 4.53 and 4.54 present the result on different settings for
these two parameters. The plotted values are the values of the best solution from
every population. The standard setting is chosen as in the following:

n = 50,

pconv = 0.01.

Fig. 4.53 presents the calibration of the parameter pconv. The smaller pconv, the
higher the required convergence of the population before the algorithm terminates.
To reach this convergence, many search steps are necessary, each possibly creating
a better solution. This results in overall better solution quality. On the other hand,
more search steps require more computational effort. Both effects can clearly be
observed in Fig. 4.53.
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Fig. 4.54 Aggregated cal-
ibration results for pa-
rameter n of the selecto-
recombinative genetic algo-
rithm (rGA)
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Fig. 4.55 Aggregated cali-
bration results for parameter
pconv of the standard genetic
algorithm (GA)
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Fig. 4.54 presents the calibration of the parameter n. Vice versa to pconv, increas-
ing n yields better solution quality, since more solutions are processed. The more
solutions, the higher the chance of the search steps to find a better solution. In ad-
dition, convergence is more difficult to achieve because more solutions enter the
calculation of the average fitness of the population. As Fig. 4.54 shows, for increas-
ing n the fitness value asymptotically approximates a maximum value, whereas the
required number of schedule evaluations constantly increases.

The final parameter setting used in the following for rGA is:

n = 200,

pconv = 0.00125.

Standard Steady-State Genetic Algorithm. The specification in algorithm 9 of the
standard GA corresponds to the algorithm 8 except for the incorporation of the local
search operator. Thus, the parameters are the same as in the selecto-recombinative
GA and the same basic setting is used. The following two figures 4.55 and 4.56
present the result for the standard GA on different settings for these two parameters.



4.4 Simultaneous Approach 149

Fig. 4.56 Aggregated cali-
bration results for parameter
n of the standard genetic
algorithm (GA)
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Fig. 4.57 Fitness values
for the different search
strategies
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The results for the standard GA are almost the same as for the selecto-
recombinative GA. The final parameter setting for the GA is:

n = 200,

pconv = 0.00125.

Strategy Selection. The parameter settings above should lead to high quality solu-
tions for each search strategy. To decide among these strategies, each strategy with
its calibrated parameters is applied to the different planning scenarios. The resulting
(average) fitness values and number of required fitness evaluations for each strategy
and scenario are presented in the following figures 4.57 and 4.58.28

For all scenarios, the GA yielded the highest solution quality. Except for scenar-
ios A and E, the selecto-recombinative GA produced better results than TA. Because
the GA and rGA use populations of solutions, they require significantly more fit-
ness evaluations than TA, which processes only one solution. These results indicate
that a combined local and recombination-based search outperforms search strategies

28 The individual results of the scenarios including the absolute values are presented in Sect.
C.1.2.4 in the appendix.
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Fig. 4.58 Number of re-
quired fitness evaluations
for the different search
strategies
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focusing only on one type of operators. This finding is not surprising, since most
problems of practical importance inherit properties applicable to both search con-
cepts, local and recombination-based search (Michalewicz & Fogel, 2000,Rothlauf,
2006a). To validate the results, an unpaired t-test is conducted.29 The null hypoth-
esis H0 is that the observed differences in the fitness values are random. Hα says
that the differences are a result of the model specification. The critical t-value for
p = 0.975 is 2.306. The results shown in Table 4.8 for the three models and five
scenarios show that the t-values always exceed the critical t-value of the level of
significance. Thus, H0 can be rejected on the 97.5%-level. The GA represents the
search strategy that works best using the presented airline scheduling approach.

Table 4.8 t-values for the validation of the search strategy comparison

Scenario
Models A B C D E

TA vs. rGA 6.405 20.136 13.222 13.637 3.277
TA vs. GA 7.057 79.604 16.775 16.127 2.400

rGA vs. GA 10.554 17.641 5.645 6.251 4.811

4.4.3.2 Analysis

In the following paragraphs, the obtained solutions and the solution process of the
GA are analyzed. The following Table 4.9 presents the key figures of the schedules
(averaged values, standard deviations in parentheses).30 Except for the number of
evaluations conducted during optimization, the results are very stable. The standard
deviations are very low for all key figures of the solutions indicating that the solu-
tions obtained by the different optimization runs for each scenario are similar. Since
a random initialization was conducted for each run with an equal selection prob-
ability for the decision variables, these results are very satisfactory with regard to

29 The required test of the results for normal distribution was conducted using a Kolmogorov-
Smirnov test.

30 Individual results are presented in tables in Sect. C.2.2.1 in the appendix.
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Table 4.9 Key figures of airline schedules constructed with the simultaneous planning
approach

Scenario
Key Figure A B C D E
Profit 571,812 485,775 130,384 165,556 125,880

(20,556) (3,086) (12,019) (9,894) (7,466)
SLF 0.344 0.501 0.219 0.495 0.316

(0.019) (0.008) (0.008) (0.018) (0.011)
No. of passengers 5,535 4,442 2,551 2,493 1,801

(113.33) (88.37) (68.13) (64.53) (224.69)
No. of flights 114 125 70 72 38

(2.88) (3.71) (2.61) (3.08) (3.77)
No. of fitness evaluations 69,832 46,909 69,550 43,569 36,580

(9,168) (3,196) (14,477) (9,626) (15,899)
Total no. of evaluations 70,723 47,857 71,249 44,721 38,682

(9,417) (2,682) (14,251) (9,120) (16,354)

Fig. 4.59 Trend of fitness
values of all five optimiza-
tion runs of scenario A
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the stability of the metaheuristic solution approach. Scenario A yielded the highest
fitness values, although the seat load factor was best for scenario B. Compared to
the uncalibrated genetic algorithm (using the basic parameter setting), the obtained
profit values represent an average increase of 52.67%. The number of required fit-
ness evaluations is on average 21.64% higher.

The following figures focus on the solution process. They present results of ex-
periments on scenario A as an representative example for all scenarios.31 Aggregat-
ing the results of the five runs of one scenario or even among the different scenarios
would result in meaningless diagrams, since each individual run requires a different
number of fitness evaluations leading to different plots of the progress subject to the
number of evaluations.

Fig. 4.59 plots the fitness of the best solution in each population. It shows the typ-
ical progress for a GA. The progress or improvement of the best solution is highest

31 The results of all scenarios are presented in Sect. C.2.2.2 in the appendix.



152 4 Integrated Airline Scheduling

Fig. 4.60 Trend of seat
load factors (SLF) of all
five optimization runs of
scenario A
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Fig. 4.61 Trend of numbers
of flights of all five opti-
mization runs of scenario A
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at the beginning of the GA and continuously decreases during optimization. There
are two reasons for this: first, as in every metaheuristic, the search operators have
much room for improvements, since the early solutions inherit random elements due
to the random initialization; second, the population converges during the GA run,
reducing the potential capability of the recombination-based operators with their
rather large modifications to solutions, and leaving only room for local (and, thus,
small) search steps.

Fig. 4.60 presents the SLF for the five runs of scenario A. It depends on the
results in figures 4.61 and 4.62, which plot the number of flights in the best schedule
of each population and the total number of passengers expected to travel on these
flights. Not surprisingly and as indicated by the progress of the fitness values, the
SLF increases during optimization. This increase is a result of an increase in the
number of passengers and a reduction of the number of total flights. Apparently, in
each GA run unprofitable flights are removed from the schedule.32 Since the number
of flights is higher in the beginning of each run and assuming that the average block
time of all flights remained constant, the final schedules must include some idle

32 Since the fitness function of the GA considers the connectivity of the schedules, the removal
of flights does not depend on their individual passenger demand but also takes their function as
legs of connecting itineraries into account.
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Fig. 4.62 Trend of num-
bers of passengers of all
five optimization runs of
scenario A
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Fig. 4.63 Application prob-
ability of recombination-
based operators for all
five optimization runs of
scenario A
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ground times. Thus, an additional increase in profit seems possible if the number
of airports available for planning is increased to allow the scheduling of additional
(profitable) routes. In scenario E this effect can be observed (see Fig. C.26). After
removing unprofitable flights, the number of flights in the schedule increases. Since
the number of passengers also increases, the SLF remains constant, however, the
overall fitness grows.

The GA represents a self-adaptive procedure, thus, another interesting observa-
tion is the extent of application of the different search operators during the opti-
mization run. Fig. 4.63 presents the (smoothed) share of the recombination-based
operators during the optimization. In general, the different runs show a similar
search behavior. The selection probability for recombination-based operators is at
its minimum at the start of the optimization. This could be a random result, since in
some runs from other scenarios (see Fig. C.28) the initial probability is at the max-
imum value. However, in all runs recombination becomes the main search operator
after the starting phase. Then, its application probability continuously decreases un-
til the end of the optimization. In the final phase of each run, larger variations in
the probability exist. The continuous shift from recombination-based to local search
can be explained by the different characteristics of the search concepts. Recom-
bination represents a global search operator which is useful for the exploration of
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Fig. 4.64 Application prob-
ability of the different vari-
ants of the recombination-
based search operators
(scenario A, run 3)
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Fig. 4.65 Application prob-
ability of the different vari-
ants of the local search
operators (scenario A,
run 3)
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the search space. The better the solutions of the population and the more the pop-
ulation converges, the more the search has to concentrate on good regions within
the search space (exploitation). This is accomplished by the local search operators.
Then, in the final phase when each operator reaches its limit with regard to solution
improvement, there is no clear advantage of one search concept, leading to the larger
variation of the number of applications of each operator type.

The same variation at the end of the optimization can be observed in Fig. 4.64,
which plots the application of the different variants of the recombination-based
search operators. For clarity, the results of the best run from scenario A are plot-
ted as a representative example.33 In general, after the initialization the application
probability stabilized at approximately the same value for each operator variant.
Thus, during the optimization each recombination operator is chosen with the same
probability.

Fig. 4.65 presents the application of the different variants of the local search
operator. There is no clear indication of an advantageous variant, since all operators
are used during the optimization to a different and fluctuating extent. However, on

33 Similar figures for the other runs and for the other scenarios are presented in Sect. C.2.2.2 in
the appendix.
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average there is a trend that three local search operators are of less priority during
search: locDelGT, locInsGT, and locInsApt.

4.4.4 Summary and Conclusion

4.4.4.1 Summary

In this section, a metaheuristic approach for the airline scheduling problem was pre-
sented. The four basic elements of a metaheuristic (representation/operators, fitness
function, initialization, search strategy) were adapted to solve the airline scheduling
problem simultaneously. By representing a complete airline schedule as genotype,
the traditional decomposition into smaller subproblems can be avoided. Based on a
representation for complete airline schedules, local and recombination-based search
operators were developed. As representative examples for different search strategies,
three metaheuristic techniques were implemented and calibrated: a TA algorithm as
a representative example of local search, a selecto-recombinative GA as an exam-
ple for recombination-based search, and a traditional GA that incorporates both,
local and recombination-based search. The application of the search operators in
each technique is controlled adaptively according to the profit contribution of each
parameter in past iterations.

Each metaheuristic requires some parameters to control the search process. Val-
ues for these parameters are obtained by testing different settings using five differ-
ent planning scenarios. The individual calibrated set of parameters then consists of
those values resulting in the highest solution quality obtained by each heuristic. In
a second step, the calibrated models were applied to the five scenarios to decide on
the solution strategy. Since the GA produced the solutions with the highest fitness
values, this technique was chosen as search strategy for the simultaneous scheduling
approach.

Applying the calibrated GA to the five different scenarios yielded very stable re-
sults. The standard deviation of some key figures of the obtained schedules among
five independent runs for each scenario is very low. Scenario A yielded the best fit-
ness values. The progress of the search process corresponds to theoretical expecta-
tions: the increase of fitness is highest at the beginning of the optimization and then
asymptotically approaches a maximum value. Because the population converges and
its average fitness continuously increases, it is becoming more difficult to find new
and better solutions. This trend is confirmed when looking at the extent of the appli-
cation of the different search concepts of local and recombination-based search. At
the beginning of each search, exploration dominates, requiring recombination. With
ongoing progress, the exploitation phase gets more and more important, thus, local
search operators are applied to a greater extent.

4.4.4.2 Conclusion

One of the major challenges in airline operations research is the integration of the
subproblems of the airline scheduling problem into one single model. This has been
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accomplished with the solution approach presented in this section. By processing
complete airline schedules at once, a truly simultaneous airline scheduling is pos-
sible. Thus, subproblems of the traditionally decomposed overall problem and their
interdependencies are implicitly included. All elements of the schedules are opti-
mized with respect to the overall objective.

In general, in metaheuristic optimization, local and recombination-based search
can be distinguished. As most problems of practical relevance include elements that
are suitable to both search concepts, those metaheuristics usually work best that use
both, local and recombination-based search. This hypothesis is confirmed in this
study, since a local search TA and a GA solely based on recombination were out-
performed by a GA with both search operators. To further increase the efficiency of
the search process, a procedure was developed that adaptively controls the applica-
tion of the single search operators based on their previous contribution to solution
quality. An analysis of their application probability during the optimization run con-
firms theoretical expectations of an increasing use of local search operators with
ongoing optimization progress.

One advantage of the adaptive control of the operators in each metaheuristic is
the reduction of parameters that have to be chosen. The remaining parameters were
calibrated by varying only one parameter while the others remained constant. A bet-
ter parameter set could be obtained by conducting the calibration of all parameters
simultaneously. Especially for the TA with four parameters, a more efficient search
should be the result. In addition to the parameters, alternative decisions within each
metaheuristic could be tested. For example, different threshold reduction schedules
exist that could replace the schedule used. Or for the GA, the number of solutions
to be replaced in one iteration could be increased. Another option is to change the
termination criteria for each technique.

In this approach, only three different metaheuristics were tested, each represent-
ing a standard or simple variant of its type. Especially for GA, there is much research
on the theory of metaheuristic optimization, which should be transfered into practi-
cal application. Thus, for this planning problem, the consideration of state-of-the-art
theory regarding the search strategy or the operators and parameters might increase
solution qualities and the search processes’ efficiency. Another approach towards
this direction would be to replace the search operators by operators that use problem-
specific knowledge to lead the search towards good regions within the search space.
For example, instead of randomly changing airports or departure times, remaining
market sizes could be taken into account. Furthermore, additional metaheuristics
might be easily applied. Instead of customizing one single search technique, in this
study the basic design elements of metaheuristics are specified. Since these elements
can constitute different (variants of) metaheuristics, the development of additional
techniques is straightforward.

4.5 Evaluation

The objective of this section is to assess and compare the two different airline
scheduling approaches presented in the previous two sections. For this purpose, each
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Fig. 4.66 Comparison of
profits
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calibrated approach is applied to the same set of planning scenarios. A comparison
assesses the quality of the different solutions obtained by each solution technique
and the efficiency of the search process. Then, using the method with the better per-
formance, schedules are optimized for systematically modified planning scenarios
to verify changes in the obtained solutions and the solution process.

4.5.1 Comparison

In sections 4.3.4.1 and 4.4.3.1, the best parameter setting for the sequential and
simultaneous approach was determined (and the best search strategy for the meta-
heuristic, respectively). In addition, each calibrated model was applied to the five
test scenarios (see Sect. B in the appendix). The results from these tests are pre-
sented in the following to compare both approaches.

Fig. 4.66 presents information on the profit34 obtained by each solution approach
for each scenario. On average, the simultaneous approach resulted in more profitable
schedules for all scenarios than the sequential approach. Even when looking at the
individual runs, the best schedule obtained by the sequential approach has a lower
profit than the worst schedule from the simultaneous approach.

The higher profit of the schedules from the simultaneous approach might be ex-
plained by their higher seat load factors (see Fig. 4.67). As for the profit, not a single
run of the sequential approach was able to obtain higher load factors than the worst
run of the simultaneous approach.

However, as figures 4.68 and 4.69 show, the seat load factors result from different
numbers of passengers and flights. For scenario B and C, the number of flights and
the number of passengers were higher for the simultaneous approach than for the
sequential approach. For scenarios A and E, the situation is vice versa, however,
resulting in the lower seat load factor of the sequential approach. In scenario D, the

34 Because of the high penalty costs in the simultaneous approach reducing the fitness value if
maintenance restrictions are violated, every solution obtained fulfills this restriction. Thus, the
fitness values of the solutions of the simultaneous approach match the profit.
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Fig. 4.67 Comparison of
seat load factors (SLF)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

A B C D E

S
LF

Scenario

S
eq

.

S
im

.

S
eq

.

S
im

.

S
eq

. S
im

.

S
eq

.

S
im

.

S
eq

. S
im

.

Maximum
Average

Minimum
Stand. deviation

Fig. 4.68 Comparison of
numbers of passengers

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

A B C D E

N
o.

 o
f p

as
se

ng
er

s

Scenario

S
eq

.

S
im

.

S
eq

.

S
im

.

S
eq

.

S
im

.

S
eq

. S
im

.

S
eq

.

S
im

.

Maximum
Average

Minimum
Stand. deviation

Fig. 4.69 Comparison of
numbers of flights
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number of flights was lower for the simultaneous approach. These flights must be
more attractive for passengers, because in contrast the total number of passengers is
higher than for the sequential approach with its higher number of flights.

Another interesting result when comparing the sequential and simultaneous ap-
proach is their standard deviation of the key figures presented (see Table 4.7) on
page 123 and Table 4.9 on page 151. In almost every experiment they were lower
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Fig. 4.70 Comparison of
number of necessary fitness
evaluations
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Fig. 4.71 Comparison of
profits of schedules con-
structed with the sequential
(regular and extended termi-
nation criteria) and simulta-
neous planning approach
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for the simultaneous approach. Because the initialization of the GA is conducted
randomly with every decision variable (airports and ground times) having the same
selection probability, the low standard deviations of the schedules obtained are very
encouraging. The – compared to the simultaneous approach – higher standard de-
viation of the sequential approach is most likely the result of the combination of
deterministic and stochastic search during optimization. The initialization is con-
ducted deterministically and the optimization steps perform a greedy – thus, rather
deterministic – search, which should result in similar solutions in the end. However,
because of the repair mechanisms and the maintenance routing steps, more signifi-
cant and stochastic changes are applied to the solutions in the different runs. Because
the deterministic search steps are then based on these modified solutions, the search
processes take different paths through the search space, resulting in higher standard
deviations of the final solutions.

In Fig. 4.70, the number of fitness evaluations that were necessary to obtain the
final solution are compared. The GA needs considerably less effort to obtain its
solution compared to the traditional approach. Especially for scenarios A and C the
GA required only a fraction of evaluations compared to the number of evaluations
the sequential approach needed. It has to be emphasized that when comparing both
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Table 4.10 t-values for the validation of the solution approach comparison

Scenario A B C D E
t-value 6.439 41.899 25.000 21.986 3.708

Fig. 4.72 Comparison of
number of necessary fitness
evaluations required by the
sequential (regular and ex-
tended termination criteria)
and simultaneous planning
approach
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solution approaches the number of iterations is an indicator for the computational
effort and complexity. To compare the efficiency of the search in terms of improve-
ment steps, the model specification has to be considered. For example, the sequential
approach performs a greedy search in each optimization step, thus, many fitness
evaluations are conducted before actually applying the optimization step (modi-
fication of the current schedule). In contrast, in the GA every fitness evaluation
might result in an increase of solution quality – if the randomly applied modification
was beneficial. However, these differences result from the underlying optimization
techniques and are only of theoretical interest. The number of fitness evaluations
necessary determines the effort of the techniques, resulting in the simultaneous ap-
proach being the technique that requires less computational effort and time.

To confirm the main results from the comparison – the simultaneous approach
generates more profitable solutions with less effort than the sequential approach –
a second optimization run is conducted for all scenarios using the sequential ap-
proach. To increase the probability of obtaining high quality solutions, its running
time is further increased. For each scenario, the optimization run that required the
most fitness evaluations is determined. Then, this number is doubled and used as
termination criteria for the scenario. For example, the longest run for scenario A re-
quired a total of 698,906 fitness evaluations (see Table C.12 in the appendix). Thus,
in the following experiments on scenario A the optimization is terminated if the
number of fitness evaluations reaches 2 · 698,906 ≈ 1,400,000, suspending imax as
termination criteria. For this second set of experiments with the extended termina-
tion criteria (ext. Seq.), results of the obtained schedule’s profit and the number of
fitness evaluations until the best solution was found are presented in the following
figures 4.71 and 4.72. As a comparison, they also include the results from the first
experiments of the sequential approach and from the simultaneous approach that
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were presented in figures 4.66 and 4.70.35 The results clearly indicate that the GA-
based simultaneous approach still outperforms the extended sequential approach,
although it produced more profitable schedules compared to its first application (at
the cost of significantly increased effort).

To validate the results, a standard Student’s t-test is conducted for the results on
the profit of both approaches.36 The null hypothesis H0 is that the observed differ-
ences in the profit values are random. Hα says that the differences are a result of
the solution approach. The critical t-value for p = 0.995 is 3.335, for p = 0.999 it
is 4.501. The results presented in Table 4.10 for the five scenarios show that the t-
values always exceed the critical t-value of the level of significance. Thus, H0 can be
rejected on the 99.9%-level for all experiments except for scenario D, for which H0

can be rejected on the 99.5%-level. As a consequence, the simultaneous approach
significantly produces more profitable schedules than the sequential approach while
requiring considerably less effort to obtain these schedules.

4.5.2 Experimental Verification

In the following, the simultaneous planning approach is used to solve airline
scheduling problems of specific scenarios. By systematically modifying scenarios,
the solution process and the obtained schedules are analyzed. These experiments
also demonstrate the capability of the planning approach, representing a flexible de-
cision support that is not limited to specific scenarios or assumptions regarding the
structure of the market environment. Thus, it can be used for the assessment of dif-
ferent scenarios or variants and to assist in making strategic decisions (for example
on the fleet sizes) in practice.

In each experiment, the calibrated GA is applied. Scenario D was chosen as a
basic scenario, which then is systematically altered to analyze its effect on the so-
lutions obtained. In the basic setting of scenario D, 50 airports can be selected for
scheduling. A total of 20 aircraft of two fleet types is available: 10 Boeing 737-800,
10 Canadair Regional Jet 700.

4.5.2.1 Market Structure

The following experiments illustrate how changes in the market structure affect the
schedule. A change in the market structure could for example be a shift of passenger
demand to new cities or regions, or an abrupt drop in demand after external shocks
or an economic downturn. To assess the capability of the solution approach to obtain
appropriate solutions for such cases, the market sizes of the passenger demand are
systematically changed so as to result in certain network structures of the airline
schedules. In a first set of experiments, the market sizes are modified to result in a

35 Individual results are presented in tables in Sect. C.3.
36 The required test of the results for normal distribution was conducted using a Kolmogorov-

Smirnov test.
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(a) (b) (c)

Fig. 4.73 Resulting hub-and-spoke network structure

hub-and-spoke network. Then, market sizes are chosen so that the resulting network
should reflect a triangular-shaped route network (three routes).

Hub-and-Spoke Structure. Three experiments on three different market structures
are conducted. In the first experiment (a), market sizes are zero for all city-pairs ex-
cept for routes to or from Dortmund (DTM), London Heathrow (LHR), and Madrid
Barajas (MAD). Thus, it should result in a hub-and-spoke network with DTM, LHR,
and MAD as hubs. In the second experiment (b), the demand for routes to and from
MAD is also set to zero (hub-and-spoke network with DTM and LHR as hubs);
and in the third experiment (c) only DTM generates demand with all other city-
pairs having no demand (single-hub network). The following figure 4.73 presents
the network structures of the optimal schedules obtained for each experiment. The
hub-and-spoke network structure is clearly visible for each experimental setup.

To illustrate the search process of the GA and its continuous modification of the
network structure towards the final network, the following Fig. 4.74 presents net-
works that were processed during the optimization. As an example, the single-hub
network is chosen. Based on one optimization run, the presented networks corre-
spond to the best schedule in the population after initialization, 2% iterations (com-
pared to the total number of evaluations needed for the complete run), 10%, 25%,
and 50% iterations. Because the initialization of the GA run is conducted randomly
with every decision variable having the same selection probability, the route net-
work is spread over all available airports at the beginning. Then, the network con-
tinuously shifts towards the single-hub network with DTM as hub representing the
optimal network structure for the given input data.

Routes. The following figures present the progress of the search process for the
scenario in which market sizes between only three airports are given (DTM, LHR,
MAD). Thus, a triangular-shaped route network should reflect the best network
structure. In Fig. 4.75, the development from a randomly initialized route network
towards the optimal solution is clearly visible.
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(a) initialization (b) 2% iterations (c) 10% iterations

(d) 25% iterations (e) 50% iterations (f) 100% iterations

Fig. 4.74 Illustration of the search process resulting in a single-hub network

(a) initialization (b) 2% iterations (c) 10% iterations

(d) 25% iterations (e) 50% iterations (f) 100% iterations

Fig. 4.75 Illustration of the search process resulting in a network consisting of three routes
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Fig. 4.76 Profit and number
of required fitness evalua-
tions for different numbers
of aircraft
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Fig. 4.77 Profit and number
of required fitness evalua-
tions for different sizes of
the airport set
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4.5.2.2 Number of Aircraft

The basic configuration of scenario D includes 20 aircraft of two different fleets of
equal size. In the following, results of experiments are presented that use different
numbers of aircraft. For example, if more aircraft are available, more passengers
can be carried, possibly resulting in higher profits. On the other hand, if there are
too many aircraft, their operational costs might exceed the revenues. Thus, finding
the optimal fleet size for a given scenario is not easy and represents an important
planning problem that can be supported by the simultaneous planning approach pre-
sented in this study.

The following Fig. 4.76 presents the operating profit and the number of required
fitness evaluations for different fleet sizes. Following the basic configuration of sce-
nario D, the distribution between both fleet types is kept at equal size. A peak in this
figure can be identified, indicating the optimal fleet size. This number represents the
best trade-off between too many aircraft causing high operational costs and too few
aircraft reducing the number of passengers that can be transported.
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4.5.2.3 Number of Airports

Every scenario considered in this study consists of a fleet composition and a set of
airports. The solution approach then is allowed to choose only those airports that are
included in this given set. This restriction should reflect the decision of some airlines
to exclude certain airports from their schedules. In the following Fig. 4.77, results
of experiments on different sizes of the airport set are presented. If the number
of airports is increased, solution quality is higher, since there is more freedom in
planning and more profitable flights can be selected. It is at its maximum if all
320 available airports can be selected for scheduling. However, the higher degree
of freedom in search also requires more effort to obtain the final solution, thus,
the number of fitness evaluations also grows with an increasing number of airports
available for scheduling.

4.5.2.4 Fleet Types

In the following, an example is given on how different fleet types affect operating
profit. Using the same number of aircraft, schedules are optimized with different
fleet types. For clarity, in these experiments, the total fleet of the scenario only con-
sists of the fleet type currently under investigation, thus, in each run 20 aircraft of the
same fleet type are given. Besides the two types already used in the preceding exper-
iments, four additional types from the 38 possible types (see Sect. A) are examined.
They are selected with respect to differences in their operational characteristics (seat
capacities). The total set of fleet types then consists of:37

• Fairchild Dornier 328JET (FRJ), seat capacity: 32
• Canadair Regional Jet 700 (CR7), seat capacity: 70
• Boeing 737-800 (738), seat capacity: 161
• Airbus A330-200 (332), seat capacity: 243
• McDonnell Douglas MD11 (M11), seat capacity: 279
• Boeing 747-400 (744), seat capacity: 373

Fig. 4.78 presents the profit for the different fleet types (seat capacities in paran-
theses). In general, for higher capacities of the fleet types, the profit decreases and
becomes negative. As Fig. 4.79 illustrates, this is most likely the result of the re-
duced seat load factor. For the given demand in the scenario, these fleet types are
oversized and the small number of passengers results in revenues too low to com-
pensate the higher operating costs. These results correspond to reality, since airlines
usually do not use large fleet types like the McDonnell Douglas MD11 or the Boe-
ing 747-400 for flight service within Europe. The smallest aircraft type (FRJ) has
the highest seat load factor, because it is easy to fill each aircraft with passengers.
However, the profit of this fleet type is lower than for larger aircraft, indicating that
the number of potential passengers is higher than the capacities offered.
37 Fleet codes are in parentheses.
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Fig. 4.78 Profit for different
fleet types
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Fig. 4.79 Seat load factor
(SLF) for different fleet
types
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4.5.3 Summary

This section consists of two parts: first, a comparison of the sequential and the simul-
taneous airline scheduling approach is conducted; then, the simultaneous approach
as a more profitable technique is applied to modified scenarios to check the solution
behavior and to demonstrate the capability of the planning approach.

The comparison of both approaches is conducted with respect to the operating
profit of the solutions obtained and the required computational effort. For this pur-
pose, both approaches are applied to five test scenarios. The simultaneous approach
outperforms the sequential approach with respect to both criteria. Even when dou-
bling the application duration of the sequential approach in order to increase solu-
tion quality, the GA-based planning approach yields better airline schedules while
requiring only a fraction of the computational effort of the sequential approach.
These results are confirmed by a standard Student’s t-test on the schedules’ profits.

Applying the simultaneous approach to different additional planning scenar-
ios resulted in very satisfying observations. The scenarios represent systematic
modifications of a basic scenario to investigate the solution behavior. Furthermore,
they demonstrate the capability of the approach as a general decision support sys-
tem that finds optimal schedules based on any given scenario. For example, if
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market sizes are modified so that demand only exists to and from one single air-
port, the GA is able to produce a final solution consisting of the optimal network
structure: a single-hub network. Another example is the number of airports available
for scheduling. If this number is increased, there is more freedom in scheduling and
more profitable routes can be selected. The experiments confirm this hypothesis,
their solution quality increased with an increasing number of airports and highest
if all airports are available. Of course, the computational effort also increased due
to more freedom in optimization. Finally, the experiments on the fleet composition
give an example on how the approach can support (strategic) decisions on fleet sizes
and types. For example, the impact on profit of different numbers of aircraft was
tested and an optimal fleet size could be obtained for the given scenario. This num-
ber then represents the best trade-off between a number of aircraft that is too low and
thus limits the number of passengers and too many aircraft causing high operational
costs that the revenue from additional passengers cannot compensate.

4.6 Summary, Conclusion, Limitations, and Future Work

4.6.1 Summary

In this section, two approaches for integrated airline scheduling were presented and
evaluated. They integrate the first two phases of airline scheduling with their sub-
problems network design, frequency assignment, flight scheduling, fleet assignment,
and aircraft routing. Furthermore, a schedule evaluation procedure was developed
and calibrated that is required by both airline scheduling approaches. The develop-
ment of this procedure was necessary because due to their proprietary nature com-
mercial applications or the required data and parameter sets were not available for
this study.

Besides integrating the airline scheduling problem, both planning approaches are
able to represent airline operations and practical requirements on a higher level of
detail compared to many solution models presented so far. In addition, there are
fewer simplifying assumptions or restrictions to certain planning scenarios (for ex-
ample uniformly distributed demand, monopoly airline, only one fleet type, (single)
hub-and-spoke network etc.).

The first approach follows the traditional planning paradigm of decomposing the
overall problem into less complex subproblems that are solved in a sequence. This
stepwise approach is realized in an iterative procedure consisting of solution mod-
els from literature. To assist each planning step in finding a feasible solution and
to improve the applicability of the complete planning procedure, many supportive
functions had to be implemented. As a result, this procedure is rather complex.
In contrast, the second planning approach represents a truly simultaneous model.
In a metaheuristic, each processed solution represents a complete airline schedule,
thus including all former subproblems implicitly. An adaptive search process was
developed that controls the application of the search operators based on their past
profit contribution. All parameters of both models were calibrated using (European)
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real-world data to lead to the best solution quality. For the metaheuristic approach,
a genetic algorithm (GA) was identified as the most effective search strategy.

An analysis of the solution quality and search process of the calibrated mod-
els produced satisfactory results. The results were very stable, thus, although both
models inherit heuristic elements, the resulting schedules of different optimization
runs for given planning scenarios yielded similar schedules. However, differences
exist in the progress of the search process. While the GA-based planning approach
shows a continuous improvement of solution quality that corresponds to theoretical
expectations (also with regard to the adaptive control of the search operators), the
optimization progress of the sequential planning approach is characterized by a very
unstable trend. Peaks and drops in profit can be observed even for succeeding itera-
tions. A closer examination unveils that this effect is most likely the result of the se-
quential planning paradigm with its insufficient consideration of interdependencies
between the subproblems. As a consequence, for example, the maintenance routing
has to apply many changes to a schedule given by the previous fleet assignment to
make it feasible with regard to maintenance restrictions. Since the objective of these
modifications is to create feasibility without considering economic implications, the
drops in profit during the total search process can be easily explained. Thus, in fu-
ture work, a better integration of the fleet assignment and the maintenance routing
should be the first starting point when improving the sequential planning approach
presented in this study.

A comparison of both airline scheduling approaches is straightforward since they
use the same set of input data. Applying both approaches to the same scenarios
results in the GA-based simultaneous approach being the more efficient planning
technique. Verified by a Student’s t-test, this approach resulted in more profitable
schedules for all scenarios while using only a fraction of the computational effort
compared to the sequential approach. The capability of the simultaneous planning
approach is further investigated by its application to scenarios that were modified
implying a certain structure of the optimal solutions. For all experiments, the re-
sulting schedules are in accordance with theoretical expectations. For example, if
market sizes are set to zero except for routes originating or departing at one spe-
cific airport, a schedule with a single-hub network was obtained as a final solution.
These kinds of experiments also give an example on how the approach can assist
in making (strategic) decisions in airline planing. Only the given planning scenario
consisting of available airports, the number of aircraft, and the fleet composition has
to be provided to the integrated approach; then, an airline schedule that best fits to
the given scenario is automatically constructed and optimized.

4.6.2 Conclusion

In general, researchers agree that integrating the subproblems of the airline schedul-
ing problem in one model should result in a higher solution quality. The com-
parison in this study of the sequential and the simultaneous airline scheduling
approach supports this statement, since the simultaneous approach constantly yields
higher operating profit of the optimized schedules. The general drawback of the
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sequential approach is the non-consideration of interdependencies between the in-
dividual subproblems. In each solution step, a different optimization problem is
solved, each with its own objective function. These objectives might be contradic-
tory and not congruent with the overall objective. As a consequence, the search for
the optimal schedule is not straightforward but characterized by many changes in
the direction of the search, limiting its overall success. In contrast, in the simulta-
neous approach there is a permanent orientation towards the overall objective and
every search step is conducted with respect to this goal.

Both approaches use the operating profit as optimization criterion. In the sequen-
tial approach, the optimization steps are conducted using a greedy search based on
the schedules’ profits. In the metaheuristic simultaneous approach, the operating
profit corresponds to the fitness values of the solutions processed. Thus, instead of
modeling a functional relationship between the decision variables and the objective
value, existing solutions have to be assessed (however, this still represents a com-
plex task). This allows the evaluation of schedules on a high level of detail and the
integration of additional quality features without necessarily having to know their
exact relationship to the decision variables. For example, factors like demand distri-
butions over the day or competition not limited to a single airline are considered in
the approaches presented here that have received little attention in past publications.
In addition, the schedules can be assessed with regard to any optimization goal or
additional (for example operational or managerial) restrictions can be taken into ac-
count as penalty costs. The optimization routines do not need to be changed for both
approaches. As a result, a very flexible scheduling can be conducted. However, this
flexibility shows its strengths best when using the simultaneous approach, because
– as explained in the previous paragraph – then the entire search is focused on the
given overall objective.

4.6.3 Limitations

Before presenting some possible directions for future work to overcome specific
limitations of the presented airline scheduling approaches, one general character-
istic of this study has to be emphasized. The findings of this study do not allow a
universally valid conclusion or an evidence of the superiority of the simultaneous
airline scheduling approach, because the sequential approach used as a benchmark
represents only one possible way to construct an airline schedule with the sequen-
tial planning paradigm. It does not represent an exact reproduction of the status-quo
of airline scheduling, since such a standard procedure that all airlines use or re-
searchers accept simply does not exist. As already addressed, because of the high
complexity of the problem there are multiple ways to approach the airline schedul-
ing problem. Each airline has its own course of action to construct an airline sched-
ule with its individual planning steps and responsibilities of experts. In addition, as
was presented in Sect. 2, multiple approaches were developed in airline schedul-
ing research, leading to a multitude of explicit procedures to construct an airline
schedule.
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To further validate the advantageousness of the simultaneous airline scheduling
approach, additional benchmark tests with airline scheduling models using the se-
quential planning paradigm have to be conducted. However, until now models inte-
grating the same subproblems as the simultaneous planning approach have not been
developed or published. Thus, much effort is still necessary to conduct additional
tests, especially when dealing with practices of human experts and within airlines.

4.6.4 Future Work

Future work should focus on two directions: minimizing some limitations of the air-
line scheduling approaches and their experiments presented in this study to further
verify the essential findings and extending and improving the integrated planning
approach for additional future applicability.

Some drawbacks and possible future enhancements of the schedule evaluation
procedure and the airline scheduling approaches were discussed in the correspond-
ing sections. To summarize, the basic restriction in schedule evaluation is the avail-
ability of data. If more data on a detailed level was available, it could replace the
estimates of the airline schedule evaluation procedure or be used to calibrate the
presented steps on a higher level of confidence. Then, for example, the estima-
tion models and their parameters can be different among markets, time periods, and
passenger segments (leisure and business). For the sequential scheduling approach,
especially the maintenance routing step has to be more smoothly integrated into
the overall planning, since this step is responsible for the unstable search progress
and the resulting lower solution quality. The conceptual design of the simultaneous
approach represents general design elements of a metaheuristic not limited to the
search strategies used. Thus, testing additional metaheuristic search concepts and
applying more sophisticated versions of the used techniques can be conducted to
further increase solution quality.

The flexibility of the solution approach described in the previous section enables
many starting points for further enhancements. Additional operational or managerial
objectives could be included in optimization. For example, factors like regularity of
the flights, the length of rotations per fleet, or economies of scale at hub airports
can be easily included in the objective function. A desirable feature might also be
to favor solutions that contain a large number of aircraft on the ground at the same
time to allow modifications of the rotations in the operational planning. If airport
slots need to be considered, penalty costs can be adjusted so that they represent the
expenses or efforts to acquire a slot. Penalty costs can also be used if an airline
wants to include specific flights in a schedule because of marketing or strategic
decisions (and these flights do not produce an innate profit). If an airline wants
to construct an airline schedule based on an existing schedule, (slightly modified)
copies of the old schedule can be included in the initial population if using the
GA-based solution approach or the old schedule is used as an initial solution in the
other planning approaches. If only a modified version of an old schedule should
be generated, deviations between the old schedule and the new schedule result in
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penalty costs. Thus, changes to flights are only allowed if their additional profit
outweighs the changes in the schedule.

One important element in airline scheduling that was excluded from the solution
approaches presented is crew scheduling. However, given an airline schedule, some
crew costs are fixed, too. Thus, when considering these crew costs in the fitness
function, better overall solutions can be achieved. For example, if an aircraft has to
overnight at an airport that is not a crew base, the additional costs for accommoda-
tion expenses (or for repositioning flights) for the crew members can be considered
as penalty costs. In addition, if the aircraft is scheduled to depart before the mini-
mum overnight crew rest has elapsed, penalty costs for the lonely overnight of the
crew are assigned.

Finally, the integrated airline scheduling is not limited to passenger airlines but
can also be used for cargo airlines that offer a scheduled service. However, most
freight is transported by combination carriers which carry cargo and passengers
on scheduled passenger flights (Doganis, 2004). For these airlines, Link (2006)
presents a model for a fair allocation of costs and revenues among passengers and
cargo and an efficient metaheuristic for multi dimensional optimization of package
flows. Because – compared to algorithms based on standard models for multi com-
modity flow problem – its solution time is significantly low, it could be integrated
in the objective function of the airline scheduling approaches. As a result, airline
schedules are optimized to represent the best trade-off of revenues gained by pas-
senger and freight transportation.



Chapter 5
Summary, Conclusions, and Future Work

Abstract. In this study, two airline scheduling approaches were developed that in-
tegrate the flight schedule generation and aircraft scheduling phase into a single
scheduling approach. One of the two approaches for airline schedule optimization
follows the traditional planning paradigm of iteratively and sequentially solving
subproblems of the overall airline scheduling problem. The other airline schedul-
ing approach is based on self-adaptive metaheuristic optimization in which com-
plete airline schedules are processed at once. Applying both approaches to the same
scenarios results in the simultaneous approach being the more efficient planning
technique. The capability of the simultaneous approach is further demonstrated by
verifying its results for systematically modified planning scenarios. The simultane-
ous planning approach of this study optimizes a large portion of the overall airline
scheduling problem in an integrated procedure while minimizing simplifying as-
sumptions. Thus, many of the requirements formulated in airline operations research
literature are fulfilled. However, further challenges exist that future work should fo-
cus on: incorporating the complete crew planning into this scheduling approach,
including stochastic elements in the schedule evaluation to minimize the effects
of disruptions, further increasing the level of detail in which airline operations are
represented and considerung more practical requirements, and finally – since this
study represents a theoretic framework – assessing the applicability of the integrated
approach in real-world airline scheduling.

5.1 Summary

Since its beginning as exclusive adventure airline travel has become a mass travel
system representing one of the most valuable assets for economic growth. In the past,
a constant increase of the total passenger kilometers of scheduled passenger airlines
could be observed that is expected to continue in future years. However, despite this
positive trend, the airlines profit margins are considerably small and strongly depend
on overall passenger demand. As a result, the airlines’ profitability is cyclical, fol-
lowing economic upturns and downturns. For each airline, the challenge is to match
its resources like personnel and aircraft to the demand given by the market. The in-
strument to accomplish this task is the airline’s schedule, containing all flights of

T. Grosche: Computational Intel. in Integrated Airline Scheduling, SCI 173, pp. 173–176.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009
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the airline and the assignment of the resources. Hence, an optimal schedule repre-
sents the most efficient and effective deployment of an airline’s resources while best
satisfying potential passenger demand. It is the central element within an airline’s
corporate planning system, because it affects almost every operational decision and
has the largest impact on profitability.

As a consequence, the construction of an airline schedule is one of the most impor-
tant but also most complex planning tasks of each airline. Many factors such as de-
mands in various markets, competition, and available resources have to be taken into
account. Unfortunately, a single optimization model for the complete airline schedul-
ing problem is intractable when using exact optimization techniques. Instead, this
problem is solved in a sequential approach. The overall problem is decomposed into
subproblems of less complexity; these subproblems are solved in a sequence, and the
solution of one problem serves as input for the next problem. Some subproblems are
grouped together to form airline scheduling phases. One possible decomposition of
the overall problem and aggregation of the subproblem to scheduling phases is pro-
posed on page 10. Many different solution approaches were developed for individual
planning steps. An extensive presentation of these models and the underlying prob-
lems including their objectives and constraints are given in Sect. 2. Since in general
a decomposition of a problem cuts interdependencies between decision variables,
and a solution sequence limits flexibility of later planning steps, only suboptimal or
even infeasible solutions of the problem can be achieved. To reduce these disadvan-
tages for the airline scheduling problem, airlines usually implement iterations in the
planning process where solutions or details of later planning steps are processed to
earlier steps. However, since it is impossible that a sequential solution approach can
achieve better or equal solutions than a simultaneous approach, research focuses on
the integration of different subproblems into a single optimization model. Models
that aim at integrating selected subproblems are presented in Sect. 2.5.

The objective of this study is to fill a large gap between the status quo in airline
scheduling and the optimal scheduling using a fully integrated optimization model
that includes all subproblems and represents airline operations on a sufficient level
of detail. For this purpose, two airline scheduling approaches were developed that
integrate the flight schedule generation and aircraft scheduling phase into a single
scheduling approach. Their only requirement is to receive a quality measure for each
schedule processed. As schedule evaluation applications used by airlines and their
required parameters and data are not available for this study, a custom evaluation
procedure was developed that estimates the operating profit for any given airline
schedule (Sect. 4.2). One of the two approaches for airline schedule optimization
(presented in Sect. 4.3) follows the traditional planning paradigm of iteratively and
sequentially solving subproblems of the overall airline scheduling problem. For the
individual solution steps, existing models from literature were used, which are then
integrated in a complete planning procedure. The other airline scheduling approach
(presented in Sect. 4.4) is based on self-adaptive metaheuristic optimization in which
complete airline schedules are processed at once. Because in each schedule the sub-
problems and interdependencies are included implicitly, the optimization results in
a truly simultaneous airline scheduling approach.
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A comparison in which both approaches are applied to the same scenarios con-
firmed the postulated higher performance of a simultaneous optimization since the
simultaneous approach outperformed the sequential approach with regard to the
operating profit of the obtained schedules and the required computational effort
(Sect. 4.5.1). The capability of the simultaneous approach is further demonstrated
by verifying its results for systematically modified planning scenarios (Sect. 4.5.2).

5.2 Conclusion

The simultaneous planning approach of this study optimizes a large portion of the
overall airline scheduling problem in an integrated procedure while minimizing sim-
plifying assumptions in comparison to existing solution models. It can be used for
decision support for flexible airline scheduling, because it only requires given exter-
nal data and the supply data from an airline. Furthermore, the objective of scheduling
is not limited to maximizing operating profit but can include any quantifiable goal.

Thus, many of the challenges or requirements formulated in state-of-the-art air-
line operations research literature are fulfilled. The main objective – further inte-
grating subproblems towards the ideal model of a fully integrated overall scheduling
approach – is achieved. Until now, an integrated model including the subproblems
network design, frequency assignment, flight scheduling, fleet assignment, and air-
craft routing has not been developed. All schedule elements that are assumed to
be given in other approaches (like the network structure, number of hubs, etc.) are
a result of optimization. Thus, this model represents the most integrative airline
scheduling approach at this time. Experiments on the simultaneous and sequential
approach were conducted that verify the postulated better performance of a simul-
taneous optimization for the test scenarios used in this study.

Compared to existing models, the planning approach of this study represents air-
line operations on a high level of detail without simplifying assumptions. For exam-
ple, existing models assume uniformly distributed passenger demand, a monopoly
situation, a single fleet, a given and static hub-and-spoke network structure etc.
In contrast, the simultaneous planning approach presented here optimizes airline
schedules for any given planning scenario. This allows a very flexible scheduling,
since only given external data and the supply data of the airline have to be provided;
a modification of the solution approach is not necessary. In addition, the ability to
easily change the objective function or to include restrictions or managerial con-
straints as penalty costs further increases the flexibility of the approach. Changes in
the input can be easily evaluated according to the given objective and operational
impacts. Furthermore, an airline can apply what-if scenarios to review future direc-
tions and to test different courses of action. Thus, the planning approach enables a
powerful decision support for airline scheduling.

5.3 Future Work

As described in the corresponding sections, many further enhancements to improve
scope and solution quality are possible. The simultaneous solution approach pro-
vides large flexibility and allows easy modifications of the optimization objective or
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general conditions. Sect. 4.6.4 presents how some basic elements of crew scheduling
can be included in the planning approach of this study. However, since crew costs
represent one of the highest expenses of an airline, additional effort is necessary to
incorporate the complete crew planning into this scheduling approach. If success-
fully accomplished, the resulting model should be close to the ideal model airline
operations research demands, since all subproblems currently tackled independently
could then be solved in one step.

Another challenge receiving much attention by researchers today is to increase the
robustness of airline schedules. Traditional solution models are based on determin-
istic data, although many influencing factors are of stochastic nature. Thus, often the
schedule is not executed as planned. For example, adverse weather or maintenance
issues cause irregular operations in the scheduled activities. To minimize the effect
of these disruptions, stochastic elements can be included in the schedule evaluation.
Then for example, a schedule is not only evaluated according to the operating profit
but also to the probability and the extent of possible delays caused by disruptions.
Although such an assessment of a schedule might represent a complex task itself, it
could be easily included as fitness function for the presented metaheuristic search.

Although the level of detail in which airline operations are represented is much
higher in this study than in previous contributions, there is still much room for fur-
ther enhancements regarding practical considerations. For example, the schedule
evaluation procedure does not yet distinguish between business and leisure travelers
and different seating configurations of the aircraft. Furthermore, curfew restrictions
only take required runway lengths and a single period of night-flying restrictions
per airport into consideration. In reality, these influences consist of many different
elements that should be modeled in the airline scheduling approaches. Another lim-
iting factor is airport slots. In Europe, the major airports usually have fewer slots
available than airlines demand. Taking into account the expected future growth in
airline traffic, slots will even more reduce the degree of freedom in airline schedul-
ing. As a consequence, the scheduling procedures presented in this study should be
further extended to include slot restrictions.

Until now, this study represents a theoretic framework; its applicability in real-
world airline scheduling still has to be assessed. Hence, the planning scenarios and
all input used in this study should be replaced by existing data from an airline. This
also should enable the use of planning scenarios from regions other than Europe,
to which this study was limited because of the availability of data. If possible and
applicable, using the same scenario and prerequisites for optimization which real
airline schedules were based on, the presented approach can be further evaluated
and compared to the corresponding real-world schedules. Additional enhancements
based on such practical experience would then advance the presented approach for
integrated airline scheduling to an important and valuable optimization technique
for both theory and practice.



Appendix A
Aircraft Data

The following table presents the aircraft-related information that is used in all
experiments.

Fleet Name Manufacturer IATA Capacity Block Turn Range Required
Code (Seats) Hour Costs Times (km) Runway

(US-Dollar) (min) Length (m)
328JET Fairchild Dornier FRJ 32 1,715 31 2,593 1,380
717 Boeing 717 113 3,776 44 3,180 2,131
737-200 Boeing 732 107 5,335 43 3,890 2,315
737-300 Boeing 733 128 3,362 45 3,612 2,530
737-400 Boeing 734 142 3,030 49 3,818 2,269
737-500 Boeing 735 106 3,034 45 2,658 2,496
737-700 Boeing 73W 44 2,673 33 3,585 2,393
737-800 Boeing 738 161 3,337 52 3,585 2,589
747-400 Boeing 744 373 8,434 87 12,846 3,027
757-200 Boeing 752 182 4,435 55 4,906 2,169
767-200 Boeing 762 199 4,439 58 6,495 2,325
767-300 Boeing 763 225 5,271 63 7,835 2,542
777 Boeing 777 313 6,440 105 12,011 2,706
A300 Airbus AB3 260 5,480 68 3,430 2,264
A300-600 Airbus AB6 256 8,050 65 5,285 2,284
A319 Airbus 319 116 2,555 46 3,396 2,097
A320-100/200 Airbus 320 149 2,532 51 4,022 2,454
A321-100/200 Airbus 321 183 2,636 53 4,276 2,256
A330-200 Airbus 332 243 5,928 66 11,675 2,448
ATR 42-300 / 320 Avions de Transport Régional AT4 46 2,554 33 4,480 1,088
ATR 72 Avions de Transport Régional AT7 65 2,851 36 2,665 2,013
BAe 146-300 British Aerospace 143 98 3,361 42 2,400 1,616
Canadair Regional Jet 100 Bombardier Aerospace CR1 49 1,421 34 1,833 1,818
Canadair Regional Jet 700 Bombardier Aerospace CR7 70 1,919 37 2,776 1,968
DC-9 Douglas DC9 106 3,633 43 2,880 2,330
DHC-8-100 Bombardier Aerospace DH1 37 1,269 32 1,780 1,115
DHC-8-400 Bombardier Aerospace DH4 67 2,132 36 2,400 1,403
EMB 120 Embraer EM2 30 1,235 30 1,224 1,563
Embraer 170 Embraer E70 71 2,223 37 3,334 1,955
ERJ 135 Embraer ER3 37 1,454 32 2,650 2,158
ERJ 145 Amazon Embraer ER4 49 1,650 34 2,648 2,091
F100 Fokker 100 100 2,477 42 2,505 1,824
Jetstream 41 British Aerospace J41 29 1,243 30 1,433 2,039
MD11 McDonnell Douglas M11 279 7,757 81 12,817 2,898
MD80 McDonnell Douglas M80 146 3,507 38 2,897 2,619
MD90 McDonnell Douglas M90 149 3,190 40 3,862 1,876
RJ85 Avro International Aerospace AR8 93 1,777 41 2,400 1,617
SF340A/B Saab Fairchild SF3 33 1,396 30 2,387 1,663
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Appendix B
Experimental Setups

Each scenario consists of airline-independent general data and the specific situation
of the airline. In this study, the data described in Sect. 4.1.3 and in the Appendix A
is used as general data, whereas the situation at the airline focuses on the following
two elements:

• number of aircraft available, fleet composition, and maintenance stations,
• set of airports or markets that the airline is willing to accept in its schedule.

For each scenario, these elements are chosen according to the tables in the next
section, which are selected to represent different possible scheduling problems. In
addition, because the objective is to construct a daily airline schedule, competing
flights from a random chosen day are included in the schedule evaluation process.1

The following Table B.1 presents an overview of the five different scenarios includ-
ing the day chosen for competing flights, the number of aircraft and fleets, and the
number of airports available to the optimization process.

Table B.1 Test scenarios

Scenario Day (in 2004) No. of Aircraft No. of Fleets No. of Airports
A March 19 30 4 62
B August 3 30 3 29
C July 27 28 4 55
D February 9 20 2 50
E June 5 10 1 90

1 The schedule evaluation represents the bottleneck in terms of computation time. The required
time depends on the number of flights and itineraries that have to be evaluated which in turn
depends on the number of competing flights. To be able to conduct a sufficient number of
experiments, the number of competing flights given by the OAG schedules is randomly reduced
to 10% of its original value. This reduction does not bias the fundamental results, because this
reduction is applied to all experiments and - to keep a realistic estimation of passenger demand
- the given market sizes are also reduced to 10% of their original value.
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B.1 Scenario A

Aircraft. 5 Airbus A319, 10 Airbus A320-100/200, 5 Airbus A321-100/200, 10
Boeing 737-800

Airports. AAL, AJA, AMS, ATH, BCN, BES, BMA, BOD, BRN, BRU, BSL,
CAG, CDG, CGN, CPH, DRS, DUB, ESB, FCO, FLR, FRA, GOT, HAM, HEL,
INN, IST, LEJ, LHR, LIS, LNZ, LUX, LYS, MAD, MAN, MMX, MUC, NAP,
NCE, NRK, NTE, NUE, OPO, ORK, OSL, OTP, PMO, PRG, RIX, SOF, SPU,
STR, SXB, SZG, THF, TKU, TLL, TLS, VCE, VNO, WAW, ZAG, ZRH

B.2 Scenario B

Aircraft. 10 Airbus A320-100/200, 10 Boeing 757-200, 10 Canadair Regional Jet
700

Airports. AMS, ARN, ATH, BRN, BRU, BUD, CDG, CIA, CPH, DUB, HEL, IST,
KEF, LHR, LIS, LJU, LUX, MAD, OSL, OTP, PRG, RIX, SOF, TLL, TXL, VIE,
VNO, WAW, ZAG

B.3 Scenario C

Aircraft. 8 Airbus A321-100/200, 8 Boeing 737-300, 4 Airbus A300-600, 8 Mc-
Donnell Douglas MD80

Airports. ACE, ALF, ASR, ATH, BCN, BHX, BIQ, BSH, BTS, CFR, CFU, DUB,
DUS, EFL, FRA, FSC, GCI, GDN, GNB, GVA, GWY, HUY, JTR, KEL, KLU, LCJ,
LCY, LGW, LPA, LPI, LPL, LUG, LYS, MJV, MMX, OLB, ORM, OSL, OUL,
OXF, PMI, RJL, SOF, SPU, STR, SUF, TFN, UME, VAR, VCE, VIE, VIT, ZAD,
ZAG, ZAZ

B.4 Scenario D

Aircraft. 10 Boeing 737-800, 10 Canadair Regional Jet 700

Airports. ADB, AGH, AGP, ALF, ANR, AVN, BGO, BIQ, BLQ, BOD, BRS, DTM,
DUB, EIN, ERZ, FRL, FSC, GOA, GRZ, GWY, HAM, HAU, HEL, INV, JKH,
KLU, KTT, LCG, LHR, LUG, LUX, LYS, MAD, NRK, NRN, OMR, ORK, PLQ,
PMO, POZ, PVK, TLL, TRF, TSF, TZX, UIP, UME, WAW, WRO, ZAD
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B.5 Scenario E

Aircraft. 10 Airbus A320-100/200 Airports. AAL, AAR, ACE, ADA, AGH, AHO,

ALF, ANR, AOK, AVN, AXD, BCN, BES, BGO, BIA, BIQ, BLE, BRN, BUD,
CDG, CFR, CPH, CWL, DNZ, DUB, DUS, EIN, ERC, ETZ, EXT, FLR, FMO,
FRL, FUE, GOA, GRZ, HAJ, HDB, HER, IAS, JCA, JKG, JOE, JYV, KGS, KID,
KOK, KRK, KRS, KUO, LBA, LCY, LDY, LEI, LGW, LIL, LIS, LLA, LPI, MJT,
MLA, MLX, MME, MUC, MXP, NRN, NUE, OPO, OTP, OVD, PAD, PLH, PLQ,
PMI, PNA, POZ, PVK, SKG, STN, TFS, TKU, TLN, TRD, TUF, VIT, VLL, WAW,
WRO, ZRH, ZTH



Appendix C
Experimental Results

In this section, results of all experiments conducted for this reserach are presented in
detail. Whereas Sects. 4.3 and 4.4 primarily contain aggregate figures of the five sce-
narios, in the following results and trends of individual calibration and optimization
runs are presented.

The following Sect. C.1 contains the calibration results of the parameters of the
sequential airline scheduling approach (Sect. C.1.1) and all three search strategies
(TA, rGA, and GA) of the simultaneous airline scheduling approach (Sect. C.1.2).
Individual results when applying the calibrated models to decide about the search
strategy of the simultaneous approach are presented in Sect. C.1.2.4. Then, Sect. C.2
focuses on the analysis of the sequential and simultaneous approach. Key figures of
the solution quality of the simultaneous approach are presented in Sect. C.2.1.1,
details of its solution process for the five scenarios in Sect. C.2.1.2. Similar results
are presented for the simultaneous approach in Sects. C.2.2.1 and C.2.2.2. Finally,
Sect. C.3 contains the key figures of the extended sequential approach.

T. Grosche: Computational Intel. in Integrated Airline Scheduling, SCI 173, pp. 183–229.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2009



184 C Experimental Results

C.1 Calibration

C.1.1 Sequential Approach
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C.1.2 Simultaneous Approach

C.1.2.1 Threshold Accepting
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C.1.2.2 Selecto-Recombinative Genetic Algorithm
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Fig. C.11 Calibration results for parameter pconv of the selecto-recombinative genetic algo-
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C.1 Calibration 195

-500000

-400000

-300000

-200000

-100000

 0

 100000

 200000

 300000

 400000

 500000

 0  50  100  150  200  250  300
-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

F
itn

es
s

N
o.

 o
f e

va
lu

at
io

ns

n

Scenario A

Fitness
No. of evaluations

-50000

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0  50  100  150  200  250  300
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

F
itn

es
s

N
o.

 o
f e

va
lu

at
io

ns

n

Scenario B

Fitness
No. of evaluations

-700000

-600000

-500000

-400000

-300000

-200000

-100000

 0

 100000

 200000

 0  50  100  150  200  250  300
 0

 10000

 20000

 30000

 40000

 50000

 60000

F
itn

es
s

N
o.

 o
f e

va
lu

at
io

ns

n

Scenario C

Fitness
No. of evaluations

-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000

 0  50  100  150  200  250  300
 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

F
itn

es
s

N
o.

 o
f e

va
lu

at
io

ns

n

Scenario D

Fitness
No. of evaluations

-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  50  100  150  200  250  300
 0

 5000

 10000

 15000

 20000

 25000

F
itn

es
s

N
o.

 o
f e

va
lu

at
io

ns

n

Scenario E

Fitness
No. of evaluations

Fig. C.12 Calibration results for parameter n of the selecto-recombinative genetic algorithm
(rGA)
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C.1.2.3 Standard Genetic Algorithm
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Fig. C.13 Calibration results for parameter pconv of the standard genetic algorithm (GA)
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Fig. C.14 Calibration results for parameter n of the standard genetic algorithm (GA)

C.1.2.4 Strategy Selection

Table C.1 Resulting fitness using threshold accepting (TA)

Scenario
Run A B C D E
1 489,465 328,156 63,590 103,849 111,929
2 516,468 320,000 60,927 94,525 120,079
3 483,236 332,933 69,712 108,726 117,354
4 521,768 323,468 63,246 110,793 125,325
5 527,743 319,994 64,205 108,187 120,771
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Table C.2 Required number of fitness evaluations using threshold accepting (TA)

Scenario
Run A B C D E
1 56,796 49,858 36,939 40,421 40,894
2 54,026 53,172 37,695 44,806 41,647
3 54,001 49,251 40,854 40,345 41,522
4 57,903 47,200 37,505 41,980 42,688
5 61,352 48,089 37,218 39,196 40,046

Table C.3 Resulting fitness using the selecto-recombinative genetic algorithm (rGA)

Scenario
Run A B C D E
1 347,812 398,837 114,085 139,631 119,946
2 435,642 421,190 107,070 147,816 104,347
3 459,327 402,376 100,477 134,438 101,620
4 421,799 413,799 90,472 144,163 109,115
5 384,980 429,133 106,613 148,210 114,292

Table C.4 Required number of fitness evaluations using the selecto-recombinative genetic
algorithm (rGA)

Scenario
Run A B C D E
1 21,052 23,481 28,793 22,206 19,318
2 37,647 25,137 29,444 35,411 13,957
3 33,913 20,309 26,949 18,746 16,287
4 34,622 23,886 36,193 33,509 15,421
5 23,044 28,970 30,216 34,656 16,715

Table C.5 Resulting fitness using the genetic algorithm (GA)

Scenario
Run A B C D E
1 558,384 488,774 139,998 171,750 113,665
2 549,128 482,493 127,728 152,367 125,594
3 600,414 486,785 110,686 163,462 132,223
4 584,197 488,329 138,894 161,929 126,265
5 566,935 482,492 134,616 178,271 131,651
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Table C.6 Required number of fitness evaluations using the genetic algorithm (GA)

Scenario
Run A B C D E
1 63,552 41,721 93,621 48,037 11,861
2 57,362 50,254 55,843 32,903 37,659
3 75,436 48,409 61,923 39,372 38,005
4 79,831 46,607 70,314 39,677 56,353
5 72,979 47,555 66,051 57,858 39,024

C.2 Analysis

C.2.1 Sequential Approach

C.2.1.1 Solution Quality

Table C.7 Profit of airline schedules constructed with the sequential planning approach

Scenario
Run A B C D E
1 348,903 330,092 -33,872 41,249 87,012
2 483,453 311,560 -52,610 34,716 103,510
3 457,167 328,166 -75,166 64,826 99,463
4 502,159 350,320 -54,032 82,175 94,027
5 461,464 309,495 -85,149 36,280 104,857
Average 450,629 325,927 -60,166 51,849 97,774
Stand. dev. 59,668 16,536 20,219 20,835 7,345

Table C.8 Seat load factors (SLF) of airline schedules constructed with the sequential plan-
ning approach

Scenario
Run A B C D E
1 0.282 0.373 0.154 0.382 0.293
2 0.310 0.378 0.175 0.386 0.246
3 0.307 0.332 0.196 0.394 0.231
4 0.306 0.388 0.176 0.353 0.282
5 0.294 0.374 0.158 0.419 0.285
Average 0.300 0.369 0.172 0.387 0.267
Stand. dev. 0.012 0.021 0.017 0.023 0.027
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Table C.9 Numbers of passengers of airline schedules constructed with the sequential plan-
ning approach

Scenario
Run A B C D E
1 5,208 3,542 1,720 2,158 2,270
2 6,276 3,416 1,647 2,144 1,832
3 5,384 3,255 1,718 2,096 1,717
4 6,240 3,756 1,740 2,217 2,134
5 6,627 3,495 1,584 2,106 2,332
Average 5,947 3,493 1,682 2,144 2,057
Stand. dev. 616 183 65 48 271

Table C.10 Numbers of flights of airline schedules constructed with the sequential planning
approach

Scenario
Run A B C D E
1 126 101 56 72 52
2 138 92 61 75 44
3 126 84 61 70 44
4 140 105 61 78 50
5 151 101 65 68 55
Average 136.20 96.60 60.80 72.60 49.00
Stand. dev. 10.55 8.50 3.19 3.97 4.90

Table C.11 Numbers of fitness evaluations required by the sequential planning approach

Scenario
Run A B C D E
1 118,490 27,455 247,118 46,919 91,260
2 493,759 28,496 63,574 37,720 25,815
3 70,099 38,160 128,822 20,719 12,644
4 79,425 55,600 242,930 16,790 80,939
5 302,656 34,150 90,645 39,175 32,448
Average 212,886 36,772 154,618 32,265 48,621
Stand. dev. 183,070 11,386 85,735 12,894 35,137
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Table C.12 Total numbers of fitness evaluations required by the sequential planning
approach

Scenario
Run A B C D E
1 255,291 104,883 414,296 50,558 98,806
2 499,332 117,453 137,323 41,298 109,869
3 307,674 124,912 132,350 40,023 75,588
4 84,546 140,852 399,100 55,591 96,906
5 698,906 72,351 219,072 64,203 35,676
Average 369,150 112,090 260,428 50,335 83,369
Stand. dev. 236,341 25,747 137,999 10,100 29,406

Table C.13 Numbers of iterations required by the sequential planning approach

Scenario
Run A B C D E
1 13 25 52 11 26
2 35 24 19 5 23
3 16 24 20 7 20
4 5 30 55 12 20
5 26 15 34 12 12
Average 19 24 36 9 20
Stand. dev. 12 5 17 3 5
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C.2.1.2 Solution Process
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Fig. C.19 Profit contribution by individual solution steps (scenario A)
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Fig. C.21 Profit contribution by individual solution steps (scenario C)
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Fig. C.22 Profit contribution by individual solution steps (scenario D)



210 C Experimental Results

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

 80000

 100000

 0  5  10  15  20  25  30

P
ro

fit

Iteration

Scenario E

(a) Run 1

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  5  10  15  20  25

P
ro

fit

Iteration

Scenario E

(b) Run 2

-100000
-80000
-60000
-40000
-20000

 0
 20000
 40000
 60000
 80000

 100000
 120000

 0  2  4  6  8  10  12  14  16  18  20

P
ro

fit

Iteration

Scenario E

(c) Run 3

-150000

-100000

-50000

 0

 50000

 100000

 0  2  4  6  8  10  12  14  16  18  20

P
ro

fit

Iteration

Scenario E

(d) Run 4

-60000

-40000

-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  2  4  6  8  10  12

P
ro

fit

Iteration

Scenario E

(e) Run 5
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C.2.2 Simultaneous Approach

C.2.2.1 Solution Quality

Table C.14 Fitness of airline schedules constructed with the simultaneous planning approach

Scenario
Run A B C D E
1 558,384 488,774 139,998 171,750 113,665
2 549,128 482,493 127,728 152,367 125,594
3 600,414 486,785 110,686 163,462 132,223
4 584,197 488,329 138,894 161,929 126,265
5 566,935 482,492 134,616 178,271 131,651
Average 571,812 485,775 130,384 165,556 125,880
Stand. dev. 20,556 3,086 12,019 9,894 7,466

Table C.15 Seat load factors (SLF) of airline schedules constructed with the simultaneous
planning approach

Scenario
Run A B C D E
1 0.336 0.500 0.216 0.497 0.306
2 0.335 0.512 0.210 0.478 0.303
3 0.376 0.490 0.231 0.482 0.327
4 0.326 0.502 0.222 0.494 0.316
5 0.346 0.498 0.217 0.523 0.327
Average 0.344 0.501 0.219 0.495 0.316
Stand. dev. 0.019 0.008 0.008 0.018 0.011

Table C.16 Numbers of passengers of airline schedules constructed with the simultaneous
planning approach

Scenario
Run A B C D E
1 5,465 4,551 2,529 2,575 1,459
2 5,480 4,304 2,665 2,410 1,759
3 5,531 4,448 2,485 2,532 2,047
4 5,732 4,449 2,524 2,492 1,787
5 5,467 4,457 2,553 2,454 1,951
Average 5,535 4,442 2,551 2,493 1,801
Stand. dev. 113 88 68 65 225
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Table C.17 Numbers of flights of airline schedules constructed with the simultaneous plan-
ning approach

Scenario
Run A B C D E
1 113 130 68 74 32
2 116 120 74 72 39
3 112 126 68 75 42
4 117 124 68 72 38
5 110 127 70 67 40
Average 113.60 125.40 69.60 72.00 38.20
Stand. dev. 2.88 3.71 2.61 3.08 3.77

Table C.18 Numbers of fitness evaluations required by the simultaneous planning approach

Scenario
Run A B C D E
1 63,552 41,721 93,621 48,037 11,861
2 57,362 50,254 55,843 32,903 37,659
3 75,436 48,409 61,923 39,372 38,005
4 79,831 46,607 70,314 39,677 56,353
5 72,979 47,555 66,051 57,858 39,024
Average 69,832 46,909 69,550 43,569 36,580
Stand. dev. 9,168 3,196 14,477 9,626 15,899

Table C.19 Total numbers of fitness evaluations required by the simultaneous planning
approach

Scenario
Run A B C D E
1 64,511 43,472 94,379 48,662 12,331
2 57,787 50,284 57,042 35,310 39,996
3 77,329 49,441 63,905 40,892 40,545
4 80,636 47,312 73,650 40,132 57,400
5 73,352 48,778 67,271 58,610 43,140
Average 70,723 47,857 71,249 44,721 38,682
Stand. dev. 9,417 2,682 14,251 9,120 16,354
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C.2.2.2 Solution Process
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Fig. C.24 Trend of fitness values
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Fig. C.29 Application probability of the different variants of the recombination-based search
operators (scenario A)
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Fig. C.30 Application probability of the different variants of the recombination-based search
operators (scenario B)
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Fig. C.31 Application probability of the different variants of the recombination-based search
operators (scenario C)
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Fig. C.32 Application probability of the different variants of the recombination-based search
operators (scenario D)
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Fig. C.33 Application probability of the different variants of the recombination-based search
operators (scenario E)
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Fig. C.34 Application probability of the different variants of the local search operators (sce-
nario A)
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Fig. C.35 Application probability of the different variants of the local search operators (sce-
nario B)
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Fig. C.36 Application probability of the different variants of the local search operators (sce-
nario C)
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Fig. C.37 Application probability of the different variants of the local search operators (sce-
nario D)
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Fig. C.38 Application probability of the different variants of the local search operators (sce-
nario E)
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C.3 Evaluation

Table C.20 Profit of airline schedules constructed with the extended sequential planning
approach

Scenario
Run A B C D E
1 519,882 342,255 -9,872 90,675 109,782
2 504,730 337,968 -46,941 92,407 106,372
3 522,984 323,417 -57,198 89,527 115,100
4 510,847 316,572 -45,669 83,895 125,336
5 456,986 339,030 -43,546 79,368 111,804
Average 503,086 331,848 -40,645 87,174 113,679
Stand. dev. 26,768 11,200 17,988 5,405 7,246

Table C.21 Seat load factors (SLF) of airline schedules constructed with the extended se-
quential planning approach

Scenario
Run A B C D E
1 0.224 0.401 0.188 0.409 0.290
2 0.292 0.400 0.183 0.428 0.299
3 0.298 0.366 0.195 0.392 0.278
4 0.309 0.365 0.194 0.374 0.298
5 0.293 0.400 0.190 0.391 0.282
Average 0.283 0.386 0.190 0.399 0.289
Stand. dev. 0.034 0.019 0.005 0.020 0.009

Table C.22 Numbers of passengers of airline schedules constructed with the extended se-
quential planning approach

Scenario
Run A B C D E
1 4,802 3,882 1,872 2,156 2,125
2 5,666 3,643 1,818 2,359 2,142
3 5,803 3,876 1,855 2,298 1,991
4 6,366 3,661 1,930 2,216 2,267
5 6,002 3,587 1,693 2,186 1,901
Average 5,728 3,730 1,834 2,243 2,085
Stand. dev. 581 139 88 84 142
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Table C.23 Numbers of flights of airline schedules constructed with the extended sequential
planning approach

Scenario
Run A B C D E
1 103 103 60 69 49
2 128 95 66 73 47
3 130 107 62 77 46
4 140 107 61 79 51
5 133 97 58 71 40
Average 126.80 101.80 61.40 73.80 46.60
Stand. dev. 14.06 5.59 2.97 4.15 4.16

Table C.24 Numbers of fitness evaluations required by the extended sequential planning
approach

Scenario
Run A B C D E
1 364,001 92,989 290,734 77,715 224,994
2 822,709 29,799 88,073 141,324 207,728
3 1,021,445 257,728 473,652 147,526 185,896
4 1,346,583 62,146 651,020 65,740 13,508
5 712,680 296,375 669,691 74,690 238,814
Average 853,484 147,807 434,634 101,399 174,188
Stand. dev. 364,597 120,855 247,189 39,584 91,975
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Glossary

airline schedule flight schedule including crew and fleet assignment and rout-
ing/rotation information

block time time period between departure from the gate (off blocks) at the depar-
ture airport until arrival (on blocks) at destination airport (block time = flight time +
taxi time)

connection sequence of two or more individual flights

crew pairing multi-day sequence of flight legs flown by the same crew

fleet type representative example of all aircraft with the same operating character-
istics

flight schedule set of flights with departure and arrival time and airport information
(timetable)

flight time duration of a flight from take-off to landing

ground time time an aircraft is idle on ground

hub airport with many connection possibilities

hub-and-spoke network (flight) network with non-stop flights from each lower
demand airport (spokes) only to one major airport (hub)

itinerary travel alternative between two airports (either a nonstop flight or a se-
quence of connecting flights)

maintenance routing routing that contains maintenance stations for the corre-
sponding fleet type to satisfy maintenance constraints

maintenance station airport at which the maintenance for a specific fleet type can
be conducted

market combination of time and origin & destination (O&D) where competition
takes place



250 Glossary

market size total number of passengers that want to travel by air in a given market

maximum connection time time a passenger is willing to wait for a connecting
flight

minimum connection time time necessary for passengers to change to a connect-
ing flight and to process their baggage between the two aircraft

multi-airport city city with more than one airport (for example Berlin: Schönefeld,
Tegel, Tempelhof)

origin & destination (O&D) departure and arrival airport of an itinerary

point-to-point network (flight) network with non-stop flights between all airports

ready time point in time at which an aircraft is ready to depart (ready time = arrival
time at gate + turn time)

rotation sequence of routings connected to a cycle

route (geographic) link between two or more airports

routing sequence of flights flown by a single aircraft in succession

seat load factor passenger kilometers flown as a percentage of seat kilometers
available

tail number distinct registration number assigned to individual aircraft

taxi time time necessary to taxi on ground (to/from gate/runway)

time-of-day curve distribution of passengers’ preferred departure (or arrival) times
over the day

turn time time that is necessary to prepare an aircraft after landing for the next
flight

wave shorter period in time in which many flights arrive or depart at a hub
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