

Keshav P. Dahal, Kay Chen Tan, Peter I. Cowling (Eds.)

Evolutionary Scheduling

Studies in Computational Intelligence, Volume 49

Editor-in-chief
Prof. Janusz Kacprzyk

Systems Research Institute

Polish Academy of Sciences

ul. Newelska 6

01-447 Warsaw

Poland

E-mail: kacprzyk@ibspan.waw.pl

Further volumes of this series

can be found on our homepage:

springer.com

Vol. 31. Ajith Abraham, Crina Grosan, Vitorino

Ramos (Eds.)

Stigmergic Optimization, 2006

ISBN 978-3-540-34689-0

Vol. 32. Akira Hirose

Complex-Valued Neural Networks, 2006

ISBN 978-3-540-33456-9

Vol. 33. Martin Pelikan, Kumara Sastry, Erick

Cantú-Paz (Eds.)

Scalable Optimization via Probabilistic

Modeling, 2006

ISBN 978-3-540-34953-2

Vol. 34. Ajith Abraham, Crina Grosan, Vitorino

Ramos (Eds.)

Swarm Intelligence in Data Mining, 2006

ISBN 978-3-540-34955-6

Vol. 35. Ke Chen, Lipo Wang (Eds.)

Trends in Neural Computation, 2007

ISBN 978-3-540-36121-3

Vol. 36. Ildar Batyrshin, Janusz Kacprzyk, Leonid

Sheremetor, Lotfi A. Zadeh (Eds.)

Preception-based Data Mining and Decision Making

in Economics and Finance, 2006

ISBN 978-3-540-36244-9

Vol. 37. Jie Lu, Da Ruan, Guangquan Zhang (Eds.)

E-Service Intelligence, 2007

ISBN 978-3-540-37015-4

Vol. 38. Art Lew, Holger Mauch

Dynamic Programming, 2007

ISBN 978-3-540-37013-0

Vol. 39. Gregory Levitin (Ed.)

Computational Intelligence in Reliability

Engineering, 2007

ISBN 978-3-540-37367-4

Vol. 40. Gregory Levitin (Ed.)

Computational Intelligence in Reliability

Engineering, 2007

ISBN 978-3-540-37371-1

Vol. 41. Mukesh Khare, S.M. Shiva Nagendra (Eds.)

Artificial Neural Networks in Vehicular Pollution

Modelling, 2007

ISBN 978-3-540-37417-6

Vol. 42. Bernd J. Krämer, Wolfgang A. Halang (Eds.)

Contributions to Ubiquitous Computing, 2007

ISBN 978-3-540-44909-6

Vol. 43. Fabrice Guillet, Howard J. Hamilton (Eds.)

Quality Measures in Data Mining, 2007

ISBN 978-3-540-44911-9

Vol. 44. Nadia Nedjah, Luiza de Macedo

Mourelle, Mario Neto Borges,

Nival Nunes de Almeida (Eds.)

Intelligent Educational Machines, 2007

ISBN 978-3-540-44920-1

Vol. 45. Vladimir G. Ivancevic, Tijana T. Ivancevic

Neuro-Fuzzy Associative Machinery for

Comprehensive Brain and Cognition Modeling, 2007

ISBN 978-3-540-47463-0

Vol. 46. Valentina Zharkova, Lakhmi C. Jain

Artificial Intelligence in Recognition and

Classification of Astrophysical and Medical Images,

2007

ISBN 978-3-540-47511-8

Vol. 47. S. Sumathi, S. Esakkirajan

Fundamentals of Relational Database Management

Systems, 2007

ISBN 978-3-540-48397-7

Vol. 48. H. Yoshida (Ed.)

Advanced Computational Intelligence Paradigms

in Healthcare, 2007

ISBN 978-3-540-47523-1

Vol. 49. Keshav P. Dahal, Kay Chen Tan,

Peter I. Cowling (Eds.)

Evolutionary Scheduling, 2007

ISBN 978-3-540-48582-7

Keshav P. Dahal
Kay Chen Tan
Peter I. Cowling
(Eds.)

Evolutionary Scheduling

123

With 198 Figures and 120 Tables

Dr. Keshav P. Dahal
Modeling Optimisation Scheduling

And Intelligent Control (MOSAIC)

Research Centre

Department of Computing

University of Bradford

Bradford, West Yorkshire, BD7 1DP

The United Kingdom

E-mail: K.P.Dahal@Bradford.ac.uk

Professor Peter I. Cowling
Modeling Optimisation Scheduling

And Intelligent Control (MOSAIC)

Research Centre

Department of Computing

University of Bradford

Bradford, West Yorkshire, BD7 1DP

The United Kingdom

E-mail: P.I.Cowling@Bradford.ac.uk

Dr. Kay Chen Tan
Department of Electrical

and Computer Engineering

National University of Singapore

4 Engineering Drive 3

Singapore 117576

Republic of Singapore

E-mail: eletankc@nus.edu.sg

Library of Congress Control Number: 2006936973

ISSN print edition: 1860-949X

ISSN electronic edition: 1860-9503

ISBN-10 3-540-48582-1 Springer Berlin Heidelberg New York

ISBN-13 978-3-540-48582-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material

is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-

casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of

this publication or parts thereof is permitted only under the provisions of the German Copyright Law

of September 9, 1965, in its current version, and permission for use must always be obtained from

Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

c© Springer-Verlag Berlin Heidelberg 2007

The use of general descriptive names, registered names, trademarks, etc. in this publication does not

imply, even in the absence of a specific statement, that such names are exempt from the relevant

protective laws and regulations and therefore free for general use.

Cover design: deblik, Berlin

Typesetting by the editors

Printed on acid-free paper SPIN: 11508199 89/SPi 5 4 3 2 1 0

Preface

Evolutionary scheduling

two important sciences - artificial intelligence and operational research.

Scheduling in its wide variety of forms is a critical problem in today’s pro-

ductivity-oriented world having significant economic and social conse-

quences. Scheduling problems encompass a wide range of combinatorial

optimization problems where the primary objective is to temporally or spa-

tially accommodate a set of entities such as events, activities, people, and

vehicles so that the available, and usually scarce, resources are most effi-

ciently utilized while satisfying a set of constraints that define the feasibil-

ity of the schedule. The benefits of proper scheduling may be tangible in

the form of monetary profits or reduced environmental impact or intangi-

ble in the form of higher satisfaction for individuals such as customers and

employees. It is for these reasons that much effort has been expended over

the years to develop algorithms for automated scheduling.

Real-world scheduling problems are generally complex, large scale,

constrained, and multi-objective in nature, and classical operational re-

search techniques are often inadequate at solving them effectively. With

the advent of computation intelligence, there is renewed interest in solving

scheduling problems using evolutionary computational techniques. These

techniques, which include genetic algorithms, genetic programming, evo-

lutionary strategies, memetic algorithms, particle swarm optimization, ant

colony systems, etc, are derived from biologically inspired concepts and

are well-suited to solve scheduling problems since they are highly scalable

and flexible in terms of handling constraints and multiple objectives. They

are particularly effective compared to other search algorithms on the large

search spaces typical of real-world scheduling.

The purpose of this edited book is to demonstrate the applicability of

evolutionary computational techniques to solve scheduling problems, not

Evolutionary scheduling is a vital research domain at the interface of

only to small-scale test problems, but also fully-fledged real-world optimi-

zation problems. The intended readers of this book are engineers, re-

searchers, senior undergraduates, and graduate students who are interested

in the field of evolutionary scheduling. The assumed background for the

book is some basic knowledge of evolutionary computation. As well as its

obvious value to researchers, the book should be particularly useful to

practitioners and those with an operational research background looking to

broaden their range of available techniques.

This book is divided into seven parts. Part I provides readers with an

insight into the methodological issues of evolutionary scheduling. The

opening chapter, “Memetic algorithms in planning, scheduling, and time-

tabling” by Cotta and Fernandez, examines the application of evolutionary

computation techniques, memetic algorithms in particular, to scheduling

problems and presents some guidelines to the design of a successful me-

metic algorithm. The other chapter, “Landscapes, embedded paths and

evolutionary scheduling” by Reeves, discusses the form of the search

space when heuristic search methods such as evolutionary algorithms are

applied to scheduling problems.

The remaining chapters are grouped into six parts based on the type of

scheduling problems they tackle. Part II focuses on classical and non-

classical models of production scheduling. The first chapter in this part,

“Scheduling of flow-shop, job-shop, and combined scheduling problems

using MOEAs with fixed and variable length chromosomes” by Kleeman

and Lamont, combines the generic flow shop and job shop problems into a

novel multi-component scheduling problem and solves it using a multi-

objective evolutionary algorithm. The next chapter, “Designing dispatch-

ing rules to minimize total tardiness” by Tay and Ho, presents a genetic

programming approach to discover composite dispatching rules for ap-

proximating optimal solutions to the flexible job shop problem. “A robust

meta-hyper-heuristic approach to hybrid flow-shop scheduling” by

Rodríguez and Salhi, presents the use of a hyperheuristic to generate in-

formation to assist a metaheuristic to solve the hybrid flow shop problem.

The chapter, “Hybrid particle swarm optimizers in the single machine

scheduling problem: an experimental study” by Cagnina et al, discusses

and compares three particle swarm optimizers that have been designed to

solve the single machine total weighted tardiness problem. The final chap-

ter in this part, “An evolutionary approach for solving the multi-objective

rithm is shown to be capable of finding a set of diverse solutions, provid-

ing the decision maker with a wide range of choices.

VI Preface

genetic algorithm to solve the multi-objective job shop problem. The algo-

job-shop scheduling problem” by Ripon et al, presents a jumping gene

Part III is concerned with timetabling problems. Two real university

class timetabling problems are solved with great success using a multi-

objective evolutionary algorithm in “Multi-objective evolutionary algo-

rithm for university class timetabling problem” by Datta et al. The same

problem is considered in “Metaheuristics for university course time-

tabling” by Lewis et al, where an example algorithm is shown to be able to

perform well across a range of benchmark problems.

Energy-related applications are considered in Part IV. In “Optimum oil

production planning using an evolutionary approach” by Ray and Sarker, a

practical oil production planning problem, where the objective is to iden-

tify the optimal amount of gas that needs to be injected into each oil well

to maximize the amount of oil extracted, is discussed and solved using an

evolutionary algorithm. The following chapter, “A hybrid evolutionary al-

gorithm for service restoration in power distribution systems” by Wata-

nabe et al, describes a hybrid evolutionary algorithm for addressing service

restoration problems in power distribution systems. The chapter, “Particle

swarm optimization for operational planning: unit commitment and eco-

nomic dispatch” by Sriyanyong et al, proposes the application of a particle

swarm optimization algorithm to unit commitment and economic dispatch

problems in the operational planning of a power system. The last chapter

of this part, “Evolutionary generator maintenance scheduling in power sys-

tems” by Dahal and Galloway, considers the development of metaheuristic

and evolutionary-based methodologies to solve the generator maintenance

scheduling problem of a centralized electrical power system.

Part V covers network-related applications. “Evolvable fuzzy schedul-

considers the application of evolutionary fuzzy systems for cell scheduling

in ATM networks, while the channel routing problem, which is derived

from the detailed routing model in VLSI design, is considered in “A multi-

Transportation problems are the focus of part VI. The chapter, “Simul-

taneous planning and scheduling for multi-autonomous vehicles” by Liu

and Kulatunga, addresses concurrently the task allocation, path planning,

and collision avoidance problems in an automated container terminal. The

scheduling of production and distribution activities of a network of plants

supplying rapidly perishable materials using genetic algorithms and a few

fast schedule construction heuristics is considered in “Scheduling produc-

tion and distribution of rapidly perishable materials with hybrid GA’s” by

Naso et al. The discussions on transportation issues in this part are com-

pleted by the chapter, “A scenario-based evolutionary scheduling approach

for assessing future supply chain fleet capabilities” by Baker et al, which

Preface VII

et al.

objective evolutionary algorithm for channel routing problems” by Goh

ing scheme for a multiple-channel packet switching network” by Li et al,

introduces the problem of optimizing vehicle fleet mixes in a military de-

ployment.

Part VII tackles scheduling problems encountered in business man-

agement. The first chapter, “Evolutionary optimization of business process

designs” by Tiwari et al, demonstrates how a business process design

problem can be modeled as a multi-objective optimization problem and

solved using existing evolutionary techniques. The next chapter, “Using a

large set of low level heuristics in a hyperheuristic approach to personnel

scheduling” by Cowling and Chakhlevitch, addresses the low level heuris-

tic selection issues for hyperheuristics using a trainer scheduling problem.

The third chapter in this part, “A genetic-algorithm-based reconfigurable

scheduler” by Montana et al, presents a reconfigurable scheduler that is

able to handle a wide variety of scheduling problems with different types

of constraints and criteria. Finally, the chapter, “Evolutionary algorithm

for an inventory location problem” by Chew et al, completes the book. It

deals with minimizing the cost in a joint location-inventory model with a

single supplier supplying to multiple capacitated distribution centers.

has made the publication of this edited book possible. We are very grateful

to all contributors, who are authorities in the field of evolutionary compu-

tation, for their expert contributions. We would also like to thank the many

reviewers for their time and cooperation. We have aimed to produce a

book which gives an overview of many of the current developments in the

large and growing field of evolutionary scheduling. We hope the book will

be of use to the research and practitioner communities for many years to

come. We leave it to you, the reader, to judge whether we have succeeded

in this ambitious aim.

September 2006 Keshav P. Dahal

Kay Chen Tan

Peter I. Cowling

PrefaceVIII

At this point, we would like to express our appreciation to everyone who

Contents

I. Methodology

1. Memetic Algorithms in Planning, Scheduling, and Timetabling

2. Landscapes, Embedded Paths and Evolutionary Scheduling

II. Classical and Non-Classical Models of Production Scheduling

3. Scheduling of Flow-Shop, Job-Shop, and Combined Scheduling

Problems using MOEAs with Fixed and Variable Length

Chromosomes

4. Designing Dispatching Rules to Minimize Total Tardiness

5. A Robust Meta-Hyper-Heuristic Approach to Hybrid Flow-Shop

Scheduling

6. Hybrid Particle Swarm Optimizers in the Single Machine

Scheduling Problem: An Experimental Study

7. An Evolutionary Approach for Solving the Multi-Objective

Job-Shop Scheduling Problem

Kazi Shah Nawaz Ripon, Chi-Ho Tsang and

Preface...V

Carlos Cotta and Antonio J. Fernàndez ...1

Colin R. Reeves ...31

Mark P. Kleeman and Gary B. Lamont ..49

Joc Cing Tay and Nhu Binh Ho ..101

José Antonio Vàzquez Rodríguez and Abdellah Salhi.................125

Sam Kwong165

Leticia Cagnina, Susana Esquivel and Carlos A. Coello Coello... 143

III. Timetabling

8. Multi-Objective Evolutionary Algorithm for University Class

Timetabling Problem

9. Metaheuristics for University Course Timetabling

IV. Energy Applications

10. Optimum Oil Production Planning using an Evolutionary

Approach

11. A Hybrid Evolutionary Algorithm for Service Restoration in

Power Distribution Systems

12. Particle Swarm Optimisation for Operational Planning: Unit

Commitment and Economic Dispatch

13. Evolutionary Generator Maintenance Scheduling in Power

Systems

V. Networks

Packet Switching Network

15. A Multi-Objective Evolutionary Algorithm for Channel Routing

Problems

Chi Keong Goh, Wei Ling Lim, Yong Han Chew

X Contents

Dilip Datta, Kalyanmoy Deb and Carlos M. Fonseca................197

Rhydian Lewis, Ben Paechter and Olivia Rossi-Doria237

Tapabrata Ray and Ruhul Sarker ...273

Isamu Watanabe, Ikuo Kurihara and Yoshiki Nakachi...............293

P. Sriyanyong, Y.H. Song and P.J. Turner..................................313

Keshav P. Dahal and Stuart J. Galloway349

Ju Hui Li, Meng Hiot Lim, Yew Soon Ong and Qi Cao383

and Kay Chen Tan...405

14. Evolvable Fuzzy Scheduling Scheme for Multiple-Channel

VI. Transport

16. Simultaneous Planning and Scheduling for Multi-Autonomous

Vehicles

17. Scheduling Production and Distribution of Rapidly Perishable

Materials with Hybrid GA’s

18. A Scenario-based Evolutionary Scheduling Approach

for Assessing Future Supply Chain Fleet Capabilities

Stephen Baker, Axel Bender, Hussein Abbass

VII. Business

19. Evolutionary Optimization of Business Process Designs

in a Hyperheuristic Approach to Personnel Scheduling

21. A Genetic-Algorithm-Based Reconfigurable Scheduler

22. Evolutionary Algorithm for an Inventory Location Problem

Contents XI

20. Using a Large Set of Low Level Heuristics

D.K. Liu and A.K. Kulatunga ..437

David Naso, Michele Surico and Biagio Turchiano465

and Ruhul Sarker ..485

Ashutosh Tiwari, Kostas Vergidis and Rajkumar Roy513

Peter Cowling and Konstantin Chakhlevitch543

David Montana, Talib Hussain and Gordon Vidaver577

Ek Peng Chew, Loo Hay Lee and Kanshukan Rajaratnam.........613

Memetic Algorithms in Planning, Scheduling,

and Timetabling

Carlos Cotta and Antonio J. Fernández

Dept. Lenguajes y Ciencias de la Computación, ETSI Informática,
University of Málaga, Campus de Teatinos, 29071 - Málaga, Spain.

{ccottap,afdez}@lcc.uma.es

Abstract. Memetic algorithms (MAs) constitute a metaheuristic op-
timization paradigm based on the systematic exploitation of knowledge
about the problem being solved, and the synergistic combination of ideas
taken from other population-based and trajectory-based metaheuristics.
They have been successfully deployed on a plethora of hard combina-
torial optimization problems, amongst which scheduling, planning and
timetabling are distinguished examples due to their practical interest.
This work examines the application of MAs to problems in these do-
mains. We describe the basic architecture of a MA, and present some
guidelines to the design of a successful MA for these applications. An
overview of the existing literature on the topic is also provided. We
conclude with some reflections on the lessons learned, and the future
directions that research could take in this area.

1 Introduction

Back in the late 1960s and early 1970s, it began to be evident that there existed
many practical problems for which neither the exact resolution nor approximate
approaches with realistic performance guarantees were acceptable in practice.
Motivated by this fact, several researchers laid the foundations of what we now
know as evolutionary algorithms [1–4] (EAs). Despite some voices claiming that
such approaches constituted “an admission of defeat”, these techniques have
steadily grown in usage and understanding to become what they nowadays rep-
resent: the cutting-edge approach to real-world optimization. Certainly, this has
also been the case for other related techniques, such as simulated annealing [5]
(SA), tabu search [6] (TS), etc. The term metaheuristics has been coined to
denote them.

The development of metaheuristics in general, and EAs in particular, reached
a critical point in the mid 1990s, when the need of exploiting problem knowl-
edge was clearly exposed. The formulation of the No Free Lunch Theorem (NFL)
by Wolpert and Macready [7] made it definitely clear that a search algorithm
performs in strict accordance with the amount and quality of the problem knowl-
edge they incorporate. Quite interestingly, this line of thinking had already been
advocated by several researchers in the late 1980s and early 1990s, e.g., Hart and

C. Cotta and A.J. Fernández: Memetic Algorithms in Planning, Scheduling, and Timetabling, Studies in

Computational Intelligence (SCI) 49, 1–30 (2007)
www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

Belew [8], Davis [9], and Moscato [10]. It was precisely in the work of Moscato
where the paradigm of memetic algorithms [11–13] (MAs) started.

MAs are a family of metaheuristics that try to blend several concepts from
tightly separated –in their origins– families such as EAs and SA. The adjective
‘memetic’ comes from the term ‘meme’, coined by R. Dawkins [14] to denote
an entity that is analogous to the gene in the context of cultural evolution.
The purpose of the analogy (sometimes over-stressed in the literature) is to
emphasize the departure from biologically-inspired mechanisms of evolution, to
more general processes where actual information is manipulated, learned, and
transmitted. Due to the way in which this can be implemented, it is often the
case that MAs are used under a different name (e.g., ‘hybrid EAs’, ‘Lamarckian
EAs’, etc.), and sometimes with a very restrictive meaning. At any rate, we
can say that a MA is a search strategy in which a population of optimizing
agents synergistically cooperate and compete [10]. These agents are explicitly
concerned with using knowledge from the problem being solved, as suggested by
both theory and practice [15]. A more detailed description of the algorithmic
pattern of MAs is given in Sect. 2.

As mentioned above, the raison d’être of metaheuristics is the fact that
many problems are very difficult to solve using classical approaches. This is
precisely the case for many problems in the area of industrial planning, schedul-
ing, timetabling, etc. All these problems have something in common: a set of
entities have to be arranged in a time-like fashion, subject to some particular
constraints (based on, e.g., precedence, resource consumption, etc.), and usually
with some cost figure associated (to be optimized). Not surprisingly, MAs have
been extensively used to solve this kind of problems. In this work, we shall ana-
lyze the deployment of MAs on this domain. To this end, we shall provide some
general design guidelines in Sect. 3, and an overview of the relevant applications
of MAs in Sect. 4, trying to highlight the successful strategies. This chapter will
end with a summary of lessons learned, and some current and emerging research
trends in MAs for scheduling, planning, and timetabling.

2 Memetic Algorithms

MAs are population-based metaheuristics. This means that the algorithm main-
tain a population of candidate solutions for the problem at hand, i.e., a pool
comprising several tentative solutions. In the EA terminology, each of these can-
didate solutions is called individual. However, the nature of MAs suggests agent
as a more appropriate term here. In essence, this is due to the fact that ‘individ-
ual’ denotes a passive entity, subject to some evolutionary rules, whereas ‘agent’
implies the existence of an active behavior, purposefully directed to solving the
optimization problem at hand. This active behavior is reflected in several typ-
ical components of the algorithm such as (but not exclusively as) local search
add-ons. We shall return to this point later in this section.

A general sketch of a MA is shown in Fig. 1. As in EAs, the population of
agents is subject to processes of competition and mutual cooperation. Competi-

2 C. Cotta and A.J. Fernández

Memetic Algorithm

Input: An instance I of problem P .
Output: A solution sol.

// Generate Initial Population

1 : for j ← 1:popsize do
2 : let ind ← GenerateHeuristicSolution(I)
3 : let pop[j] ← LocalImprover (ind, I)
4 : endfor
5 : repeat // Basic Generational Loop

// Selection

6 : let breeders ← SelectFromPopulation(pop)
// Pipelined reproduction

7 : let auxpop[0] ← pop
8 : for j ← 1:#op do
9 : let auxpop[j] ← ApplyOperator (op[j], auxpop[j − 1], I)

10 : endfor
11 : let newpop ← auxpop[#op]

// Replacement

12 : let pop ← UpdatePopulation (pop, newpop)
// Check Population Convergence

13 : if Converged(pop) then
14 : let pop ← RestartPopulation(pop, I)
15 : endif
16 : until MA-TerminationCriterion(pop, I)
17 : return Best (pop, I)

Fig. 1. The general template of a memetic algorithm

tion is achieved via the standard procedures of selection (line 6) and replacement
(line 12): using the information provided by an ad hoc guiding function (fitness
function in the EA terminology), the goodness of agents in pop is evaluated;
subsequently, a sample of them is selected for reproduction according to this
goodness measure. This information is later used to determine which agents will
be removed from the population in order to make room for the newly created
ones. In both cases– selection and replacement –any of the well-known strategies
used in EAs can be utilized, e.g., tournament, ranking, or fitness-proportionate
selection, plus or comma replacement, etc. In addition to these, there are other
strategies that could be used here, and that have been proved successful in sev-
eral scheduling domains (see Sect. 4).

As to cooperation, it is accomplished through reproduction. At this stage,
new agents are created by using the existing ones. This is done by utilizing a
number of reproductive operators. Many different such operators can be used in
a MA, as illustrated in the general pseudocode shown in Fig. 1, lines 7–11. As it
can be seen, an array op of operators can be in general assumed. These operators

3Memetic Algorithms in Planning, Scheduling, and Timetabling

(whose number is denoted by #op) are sequentially applied to the population in
a pipeline fashion, thus resulting in several intermediate populations auxpop[i],
0 � i � #op, where auxpop[0] is initialized to pop, and auxpop[#op] is the final
offspring. In practice, the most typical situation involves utilizing just three
operators: recombination, mutation, and local improvement. Notice that in line
9 of the pseudocode, these operators receive not only the solutions they must
act on, but also the problem instance I. This illustrates the fact that in MAs
these operators are problem-aware, and base their functioning on their knowledge
about the problem being solved. This is an important difference with respect to
classical EAs.

Recombination is the process that best encapsulates mutual cooperation
among several agents (typically two of them, but a higher number is possible
[16]). This is done by constructing new solutions using the relevant information
contained in a number of selected parents. By “relevant”, it is implied that the
information pieces manipulated bear some important information in order to de-
termine the goodness (or badness) of the solutions. This is an interesting notion
that departs from the classical manipulation of symbols for a certain syntax of
candidate solutions, typical of plain EAs. We shall return to this in next section.

The other classical operator – mutation – plays the role of keeping the pot
boiling, continuously injecting new material in the population, but at a low rate
(otherwise the search would degrade to a random walk in the solution space).
This interpretation of mutation reflects the classical view, dominant in the ge-
netic algorithm arena [17]. Certainly, evolutionary programming practitioners [1]
would disagree with this characterization, claiming the crucial role for mutation.
According to this latter view, recombination is generally regarded as a macro-
mutation process. While this is something that could be accepted to some extent
in many EA applications in which recombination is a mere random-shuffler of
information, the situation is quite different for MAs. Indeed, recombination is
usually performed in a smart way as anticipated before, and hence it provides a
central contribution to the search.

Lastly, one of the most distinctive components of MAs is the use of local
improvers. To understand their philosophy, let us consider the following abstract
formulation: first of all, assume a graph whose vertices are solutions, and whose
edges connect pairs of vertices such that the corresponding solutions differ in
some (typically small) amount of relevant information. Now, a local improver is a
process that starts at a certain vertex, and moves to an adjacent vertex, provided
that the neighboring solution is better than the current solution. Thus, the local
improver tries to find an “uphill” (in terms of improving the value provided by
the guiding function) path in the graph whose definition was sketched before
(formally termed fitness landscape [18]). Notice that this description is very
simplistic, and that many variations may exist in the way in which the neighbor
is selected, the precise criterion under which it is accepted or rejected, and the
termination condition for the local improvement.

As anticipated before, the utilization of local improvers (notice that several
different ones could be used in different points of the algorithm) is one of the

4 C. Cotta and A.J. Fernández

most characteristic features of MAs. It is mainly because of the use of this
mechanism for improving solutions on a local (and even autonomous) basis that
the term ‘agent’ is deserved. Thus, the MA can be viewed as a collection of
agents performing an autonomous exploration of the search space, cooperating
some times via recombination, and competing for computational resources due
to the use of selection/replacement mechanisms.

There is another interesting element in the pseudocode shown in Fig. 1,
namely the RestartPopulation process (lines 13–15). This process is very im-
portant in order to make an appropriate use of the computational resources:
should the population reach a state in which all agents were very similar to each
other, the generation of new improved solutions would be very unlikely. This
phenomenon is known as convergence, and can be identified using measures such
as Shannon’s entropy [19]. If this measure falls below a predefined threshold, the
population is considered at a degenerate state. This threshold depends upon the
representation of the problem being used, and must therefore be determined in
an ad hoc fashion.

It must be noted that while most MA applications can be dissected using the
general template presented here, it is obviously possible to conceive algorithms
somehow departing from it, that could nevertheless be catalogued as MAs. This
fact notwithstanding, the general principles depicted in this section should still
be applicable to these MAs.

3 Design Principles for Effective MAs

In order to solve a particular optimization problem in the area of planning and
scheduling, the general template of MAs depicted in Sect. 2 must be instantiated
with precise problem-aware components. No general approach for the design of
effective MAs exists in a well-defined sense, and hence this design phase must be
addressed from a heuristic point of view as well. Let us consider in the following
the main decisions that have to be taken.

3.1 Representation

The first element that one has to decide is the representation of solutions. This
notion must be understood not as the way solutions are encoded (something
that is subject to considerations of memory consumption, manipulation com-
plexity, etc.), but as the abstract formulation of solutions, as regarded by the
reproductive operators [20]. In this sense, recall the notion of “relevant” infor-
mation introduced in Sect. 2: given a certain representation of solutions, these
are expressed via some information units; if the operators used for manipulat-
ing solutions are problem-aware, these information units they identify must be
important to determine whether a solution is good or not. The evolutionary dy-
namics of the system would then drive the population to retain those positive
information units, making negative units disappear. This is better illustrated
with an example: consider a problem whose solution space is composed of all

5Memetic Algorithms in Planning, Scheduling, and Timetabling

permutations of n elements; there are several types of information units in such
solutions [21], e.g.,

– positional, i.e., element e appears in position j.
– precedence, i.e., element e appears before/after element e′.
– adjacency, i.e., element e appears next to element e′.

The relevance of each type of information unit will obviously depend on the
problem being solved. For example, adjacency information is important for the
Travelling Salesman Problem (TSP), but positional information is less so. On
the other hand, it seems that positional information is relevant when minimizing
makespan in a permutation flowshop problem [22], and adjacency information
is more irrelevant in this case. Therefore, an edge-manipulation operator such
as edge-recombination [23] (ER) will perform better than position-based opera-
tors such as partially-mapped crossover [24] (PMX) or uniform cycle crossover
[22] (UCX) on the TSP, but the latter will be better on permutation flowshop
problems.

There have been several attempts for quantifying how good a certain set of in-
formation units is for representing solutions for a specific problems. Among these
we can cite epistasis (non-additive influence on the guiding function of combin-
ing several information units) [25, 26], fitness variance of formae (variance of
the values returned by the guiding function, measured across a representative
subset of solutions carrying this information unit) [27], and fitness correlation
(correlation in the values of the guiding function for parents and offspring) [28,
29]. Notice that in addition to using a quality metric of representations to pre-
dict the performance of a certain pre-existing operator (i.e., inverse analysis),
new ad hoc operators can be defined to manipulate the best representation (di-
rect analysis) [13]. This is for example done in [22] for permutation flowshop
scheduling, once the positional representation is revealed as the most promising.

It is also important to note that whatever the metric used to quantify the
goodness of a particular representation is, there are other considerations that
can play a central role, namely, the presence of constraints. Typically, these are
handled in three ways: (1) by using penalty functions that guide the search to
the feasible region, (2) by using repairing mechanisms that take infeasible solu-
tions back to the feasible region, and (3) by defining reproductive operators that
always remain in the feasible region. In the first two cases, the complexity of
the representation and the operators can be kept at a lower level1. In the latter
case, responsibility has to be taken either by representation or by operators to
ensure feasibility, and this comes at the cost of an increased complexity. Focusing
on representations, the use of decoders is a common option to ensure feasibility.
The basic idea is to use a complex genotype-to-phenotype mapping that not only
produces feasible solutions, but can also provide additional problem knowledge
and hence solutions of better quality. For example, a greedy permutational de-
coder is used in [30] for a nurse scheduling problem. A related approach is used
in [31–33] in the context of job shop scheduling.

1 At least from the functional point of view; from the practical point of view, more
sophisticated strategies can obviously result in improved performance.

6 C. Cotta and A.J. Fernández

3.2 Reproductive Operators

The generation of new solutions during the reproductive stage is done by ma-
nipulating the relevant pieces of information identified. To do so, the user could
resort to any of the generic templates defined for that purpose, e.g., random
respectful recombination, random assorting recombination, and random trans-
mitting recombination among others [34]. These are generic templates, in the
sense that they blindly process abstract information units. However, in order to
ensure top performance, reproductive operators must not only manipulate the
relevant information, but must do so in a sensible way, that is, using problem
knowledge.

There are many ways to achieve this inclusion of problem knowledge. From
a rather general stand-point, there are two major aspects into which problem
knowledge can be injected: the selection of the parental features that will be
transmitted to the descendant, and the selection of non-parental features that
will be added to it. Regarding the former issue, there exists evidence that trans-
mission of common features is beneficial for some problems (e.g., [23, 35]). After
this initial transmission, the offspring can be completed in several ways. For
example, Radcliffe and Surry [27] have proposed the use of local improvers or
implicit enumeration schemes. These implicit enumeration schemes can also be
used to find the best combination of the information units present in the parents
[36] (in this case, the resulting solution would not necessarily respect common
features, unless forced to do so). This operation is monotonic in the sense that
any child generated is at least as good as the best parent. Ibaraki [37] uses
dynamic programming for this purpose, in a single-machine scheduling problem.

To some extent, the above discussion is also applicable to mutation oper-
ators, although these exhibit a clearly different role: they must introduce new
information as indicated in Sect. 2. The typical procedure is removing some
information units from a single solution, and either complete it at random, or
use any of the completion procedures described before. Several considerations
must be made here though. The first one is the lower relevance that mutation
may have in some memetic contexts. Indeed, mutation is sometimes not used in
MAs, and instead it is embedded into the local search component, e.g., see [38,
39] in job shop scheduling, and [40] in single machine scheduling, among others.
The reason is the widespread usage in MAs of re-starting procedures for refresh-
ing the population when a stagnation point is reached (see Sect. 3.4). In some
applications, it may be better to achieve faster convergence and then re-start,
than diversifying continuously the search using mutation in pursuit of steady
(yet slower) progress.

In other applications, re-start strategies are not used and mutation is thus
more important. In these cases, it is not unusual to use several mutation op-
erators, either by considering different basic neighborhoods (e.g., [41] in open
shop scheduling, and [42] in single machine scheduling), or by defining light and
heavy mutations that introduce different amounts of new information (e.g., [43,
44] in timetabling, and [45] in flowshop scheduling). Note that according to the

7Memetic Algorithms in Planning, Scheduling, and Timetabling

operator-based view of representations presented in Sect. 3.1, the use of multiple

different stages of the reproductive phase. This feature of MAs is also exhibited
by other metaheuristics such as variable neighborhood search [46] (VNS).

Problem-knowledge can also be attained by using of constructive heuristics.
These can be used for instance to create the initial population, as depicted in
Fig. 1, line 2. For example, Yeh [47] uses a greedy heuristic for this purpose in
a flowshop scheduling problem. Other examples of heuristic initialization can be
found in [48, 31, 49] for job shop scheduling, and in [43, 50, 51] for timetabling.

3.3 Local Search

The presence of a local search (LS) component is usually regarded as the dis-
tinctive feature of MAs with respect to plain evolutionary algorithms. To some
extent, it is true that most MAs incorporate LS; this said, the näıve equa-
tion MA = EA + LS is an oversimplification that should be avoided [11–13].
Indeed, there are metaheuristic approaches whose philosophy is strongly con-
nected to that of MAs, but that cannot be called “evolutionary” unless a very
broad meaning of the term (i.e., practically encompassing every population-
based metaheuristic) were assumed. The scatter search metaheuristic [52] is a
good example of this situation. On the other hand, there are MA that rely heav-
ily on the use of knowledge-augmented recombination operators, rather than on
LS operators, e.g., [36, 53]. Be that as it may, this is not an obstacle to state
that LS is commonly used in MAs (i.e., EA + LS ⊂ MA), and usually has a
determining influence on the final performance.

As sketched in Sect. 2, LS can be typically modelled as a trajectory in the
search space, that is, an ordered sequence of solutions such that neighboring
solutions in this sequence differ in some small amount of information. Of course,
some implementations can depart from this idealized description. As an example,
we can consider MA applications in which the LS component is implemented via
TS (tabu search, Sect. 1), such as [54, 55] in flowshop scheduling, [41] in open-
shop scheduling [56–60] in timetabling, or [61, 62] in maintenance scheduling,
among others. Some implementations of TS are endowed with intensification
strategies that resume the search from previous elite solutions (hence, rather
than a linear sequence, the path traversed by TS can be regarded as a branching
trajectory). Additionally, a feature of the utilization of TS – which is shared
with MAs that use other LS components as SA (simulated annealing, Sect. 1),
e.g., [39, 63] in flowshop scheduling, and also [44, 61] in maintenance scheduling–
is the fact that the quality of solutions in the trajectory is not monotonically
increasing, but can eventually decrease in order to escape from a local optimum.
Obviously, at the end of the process the best solution found (rather than the
last one in the trajectory) is kept.

Several issues must be considered when implementing the LS component.
One of them is the termination criterion for the search. In classical hill climbing
(HC) techniques, it makes sense to stop the search whenever a local optimum
is found. However, this is not directly applicable to LS techniques with global
optimization capabilities such as TS or SA. In these cases (and indeed in the

8 C. Cotta and A.J. Fernández

operators may imply the consideration of different solution representations at

case of plain HC) it is customary to define a maximum computational effort
to be devoted to each LS invocation. On one hand, this means that the final
solution need not be a local optimum, as some incorrect characterizations of
MAs as EAs in the space of local optima would suggest. On the other hand, it is
necessary to define an appropriate balance between the effort of LS and that of
the underlying population-based search. This issue has been also acknowledged in
other domains, e.g., [64], and the use of partial Lamarckism has been suggested,
i.e., not using LS on every new solution computed, but only on some of them,
selected at random with some probability or on the basis of quality, or only in
every k−th generation; see [65] for an analysis of these strategies in a multi-
objective permutation flowshop problem.

Similarly to the remaining reproductive operators, the selection of a particu-
lar LS scheme can be done in light of quality metrics computed on the resulting
fitness landscape. Fitness distance correlation [66, 67] (FDC) has been proposed
as a hardness measure. In essence, FDC is the correlation between the quality of
local optima and their closeness to the global optimum. If this FDC coefficient is
high (that is, quality tends to be larger for increasing closeness to the optimum),
the natural dynamics of the MA (i.e., get closer to local optima by virtue of the
LS component) would also lead it close to the global optimum. This a priori
analysis can be helpful to estimate the potential effectiveness of a particular LS
scheme. Its usefulness as a tool for dynamically acquiring information on the fit-
ness landscape is much more questionable, since some general theoretical results
indicate that information is conserved during optimization (i.e., information that
is apparently gained during the run is in fact a result of a priori knowledge) [68].

Another important issue that must be considered during landscape analysis
is its global topology, and more precisely, whether it is regular or not, and in the
latter case whether the irregularity is in some sense connected to quality or not.
This issue has been analyzed by Bierwirth et al. [69] for a job-shop scheduling
problem. They found that high quality solutions are also highly connected, and
hence there is a beneficial drift force that makes that random walks tend to
land closer to high quality solutions than to low quality solutions. Of course,
the contrary might be true for a certain problem, and this could hinder good
performance of the LS algorithm. At any rate, the same consideration regarding
the use of multiple mutation operators done in Sect. 3.2 is applicable here, and
multiple LS schemes can be used within a MA, see e.g., [65, 51].

3.4 Managing Diversity

As mentioned in Sect. 3.2, there are different views on how to manage the di-
versity of information in the population. In essence, we can make a distinction
between methods for preserving diversity, and methods for restoring diversity.
Clearly, the use of mutation operators falls within the first class. This does not
exhaust the possibilities though. For example, the strategy of injecting in the
population “random immigrants” [70]– i.e., completely new solutions– could be
used. This has been done in [71] for task allocation on multiprocessors. A much
more widespread option is the utilization of structured populations [72]: rather

9Memetic Algorithms in Planning, Scheduling, and Timetabling

than maintaining a panmictic pool of agents in which any two of them can mate,
or in which a new solution can potentially replace any existing solution, the pop-
ulation is endowed with a precise topology; both mating and replacement are
confined to neighboring agents. This causes a slowdown in the propagation of
information across the population, and hence hinders the apparition of super-
agents that might quickly take the population over and destroy diversity.

Different population topologies are reported in the literature, i.e., unidirec-
tional/bidirectional rings, grids, hypercubes, etc. In the context of MAs and
scheduling, the ternary tree topology has been particularly successful, see e.g.,
[73–80, 45]. MAs endowed with this topology usually combine it with the use of
a quality-based mechanism for placing solutions. More precisely, each internal
node of the tree is forced to have a better solution than that of its immediate
descendants in the tree. If at a certain point of the run an agent bears a better
solution than that of its parent’s, they exchange their solutions. This way, there
is a continuous upwards flow of better solutions that also guarantees that when
recombination is attempted, the intervening solutions are of similar quality.

The alternative (or better, the complement) to these diversity preservation
mechanisms is the use of diversity restoration procedures. These are triggered
whenever it is detected that the population has stagnated, or is close to a such
a dead-end state. This situation can be detected by monitoring the population
composition as mentioned in Sect. 2, or by analyzing the population dynamics
[81]. In either case, a re-starting procedure is activated. These procedures can
be implemented in different ways. A possibility is the utilization of triggered
hypermutation [82] (cf. heavy mutation, see Sect. 3.2), as it is done in [45] for
a flowshop scheduling problem with sequence dependent family setups. Alter-
natively, the population can be refreshed by using the previously mentioned
random-immigrant strategy, i.e., keeping a fraction of the existing agents (typi-
cally some percentage of the best ones), and renewing the rest of the population
with random (or heuristically constructed solutions).

We would like to close this section by emphasizing again the heuristic nature
of the design principles described in this and previous sections. There is still much
room for research in methodological aspects of MAs (e.g., see [83]), and the open-
minded philosophy of MAs make them suitable for incorporating mechanisms
from other optimization techniques.

4 Applications in Planning, Scheduling, and Timetabling

Scheduling problems can take many forms, and adopt many variants, so we
have opted for considering four major subclasses, namely machine scheduling,
timetabling, manpower scheduling, and industrial planning. Note that this clas-
sification aims to provide a general view of MA applications in this field, rather
than a conclusive taxonomy.

10 C. Cotta and A.J. Fernández

4.1 Machine Scheduling

In a broad sense, machine scheduling amounts to organizing in a time-like fash-
ion a set of jobs that have to be processed in a collection of machines. This
general definition admits numerous variants in terms of (1) the number of ma-
chines onto which the schedule must be arranged (e.g., one or many), (2) the
precise constraints involved in the arrangement (e.g., precedence constraints,
setup times, etc.), and (3) the quality measure being optimized (e.g., makespan,
total tardiness, number of tardy jobs, etc.). The reader may be convinced of the
competence of MAs by noting that almost every conceivable instantiation of this
generic problem family has been tackled with MAs in the literature.

One of the most well-studied problems in this area is single machine schedul-
ing (SMS), i.e., the scheduling of n jobs on a single processor, subject to different
constraints and/or cost functions. Many different SMS problems have been solved
with MAs. For example, França et al. [74, 78] and Mendes et al. [79] tackle the
SMS problem with sequence-dependent setup times and due dates, aiming to
minimizing the total tardiness of the schedule (i.e., the sum of the tardiness of
each job). This is done with a structured MA (with ternary tree topology, as de-
scribed in Sect. 3.4) using two different schemes for both local search (insertion
and swaps) and mutation (light and heavy, cf. Sect. 3.2). Sevaux and Dauzère-
Pérès [42] also tackle the SMS problem with MAs, considering the weighted
number of late jobs as quality measure. They use a low-cost local search scheme
whose complexity is O(n2), n being the number of jobs, and compare different
decoding functions for computing a feasible schedule from a plain permutation
of the jobs. The same SMS problem with the added requirement of robustness
(that is, high quality solutions remaining good when some changes take place
in the input data) is tackled by Sevaux and Sörensen in [84]. Maheswaran et al.
[40] consider a related objective function, namely the minimization of the total
weighted tardiness. They use a simple local search scheme based on swaps, which
is terminated as soon as the first fitness improvement is achieved.

Parallel machine scheduling (PMS) is the natural generalization of the SMS
to multiple processors. Cheng and Gen’s work [85] is one of the first memetic
approaches to PMS. They consider a MA with a sophisticated decoding mecha-
nism based on heuristics for the SMS. França et al. [73], Mendes et al. [75, 77],
and Moscato et al. [80] tackle successfully the PMS using the same structured
MA described before for the SMS. This approach is also used by these authors in
flowshop scheduling [76, 45], see below. Also, Bonfim and Yamakami [86] present
an interesting proposal in which a simple MA (using a plain hill-climber for local
search) is endowed with a neural network in order to evaluate solutions.

Flowshop scheduling (FSS) is another conspicuous problem variant, in which
the jobs have to be processed on m machines in the same order. Yamada and
Reeves [87, 88, 54] consider a MA that uses with path relinking [89] (PR) for
recombination. PR is a method that explores a sequence of solutions defined by
two endpoints: given initial solution s and a final solution s′, relevant attributes
of the former are successively dropped, and substituted by attributes from the
latter. Along this path, a local search procedure can be eventually triggered. Yeh

11Memetic Algorithms in Planning, Scheduling, and Timetabling

[47] tackles the problem with a MA that incorporates a greedy method to inject
a single high-quality solution in the population, and a local search scheme based
in two neighborhoods (swaps and insertions).

Several authors have also considered hybrid flowshop scheduling (HFSS) prob-
lems, in which jobs have to be sequenced through k stages, being a number of
identical machines available for each stage (this number being in general differ-
ent for each stage). Sevaux et al. [90, 91] have tackled this problem combining
MAs with constraint programming (CP) (see Sect. 5.1). In this case, the CP
method (actually a branch-and-bound algorithm) is used as local search mech-
anism. Žďánský and Poživil [55] also deal with the HFSS. The main feature of
their MA is the use of TS as an embedded method for performing local search.

FSS problems can be generalized to job-shop scheduling (JSS) problems, in
which each job follows its own technological processing sequence on the set of
machines, and further to open-shop scheduling (OSS) problems, in which no
processing sequence is imposed for jobs (i.e., a job requires being processed in
some subset of machines, and this can be done in any order). The JSS prob-
lem has been dealt by Yamada and Nakano [38, 92, 93] using the PR approach
mentioned before for recombination. Also for the JSS, Wang and Zheng [94, 39]
consider a MA that incorporates simulated annealing as local search mechanism.
Quite interestingly, they name their approach GASA or “modified GA” rather
than MA. As to the OSS problem, MAs have been used by Liaw [41]. In this
case, the MA features tabu search as local search mechanism, and uses two ad
hoc heuristics for initializing the population.

4.2 Timetabling

Timetabling consists basically of allocating a number of events to a finite number
of time periods (also called slots) in such a way that a certain set of constraints
is satisfied. Two types of constraints are usually considered, the so called hard
constrains, that is, those constraints that have to be fulfilled under all circum-
stances, and soft constraints, that is, those constraints that should be fulfilled
if possible. In some cases, it is not possible to fully satisfy all the constraints,
and the aim turns to be finding good solutions subject to certain quality criteria
(e.g., minimizing the number of violated constraints, or alternatively maximiz-
ing the number of satisfied hard constraints, whilst the number of violated soft
constraints is minimized).

Timetabling arises in many different forms that differ mainly in the kind of
event (e.g., exams, lectures, courses, etc.) to be scheduled. By the mid 1990s,
it was already suggested that incorporating some amount of local search within
evolutionary algorithms might enhance the quality of final solutions [95, 96], and
experiments with directed and targeted mutation were addressed [97]. From then
on, MAs have been shown to be specially useful to tackle timetabling in each of
its modalities as shown in the following.

The university exam timetabling (i.e., scheduling a number of exams in a
given set of sessions avoiding clashes, e.g., no student has two exams at the

12 C. Cotta and A.J. Fernández

same time) is one of the instances that have attracted more interest for evo-
lutionary techniques. For example, Burke et al. [43] propose a MA that uses a
combination of mutation and local search. The local search component consists
of a hill climber applied after the mutation process (two operators are proposed).
In general, this algorithm does not perform well in highly constrained problems,
and the reason seems to be that the local search operator is less effective. A
similar idea taking into account recombination operators instead of mutation
operators is investigated by Burke and Newall [98] with unproductive results.
They also describe in [99] a multi-stage memetic algorithm that decomposes
larger problems into smaller components, and then applies to each of the sub-
problems a similar MA to that in [43]. The basic idea is to decompose the set of
events in k subsets phases (k = 3 in the paper) and then schedule the original set
of events in k phases. To avoid non-schedulable subsets, an idea from heuristic
sequencing methods is applied, choosing subsets according to a smart ordering.
This proposals follows the maxima of divide and conquer with the aim of re-
ducing the complexity of the problem. Indeed, this idea improves both the time
to find a solution, and the quality of solutions with respect to the original MA
applied over the whole original problem. Batenburg and Palenstijn [60] describe
an alternative multi-stage algorithm constructed from the replacement of the
MA used in [99] by TS.

Several authors have also suggested memetic solutions to tackle the problem
of producing a periodical (usually weekly) timetable to allocate a set of lecturers
and/or students in a certain number of time slots and rooms, with varying
facilities and student capacities (i.e., the university course timetabling problem).
For instance, Alkan and Özcan [100] use a set of violation directed mutation
operators, and a violation direct hill climbing operator in their MAs. Rossi-Doria
and Paechter [51] describe a different proposal where local search consists of a
stochastic process that transforms infeasible timetables into feasible ones. Local
search is applied initially on each solution in the initial population, and from
then on, on each child generated between generations. Wilke et al. [101] consider
a variant of the problem in the context of high schools. Their MA incorporates
a mechanism for self-adapting the parameters that control the application of
local search. Additional information on memetic approaches to course and exam
timetabling problems can be found in [102, 50, 103, 104].

Public transportation scheduling is another timetabling problem that is at-
tracting increasing interest, specially in the railway area. For instance, Greistor-
fer [57, 58] is concerned with the problem of finding a schedule of train arrivals in
a railway station with a number of different lines passing through it. To obtain
such a schedule, a MA incorporating tabu search is used. Semet and Schoenauer
[105] deal with the problem of minimizing the resulting delays in train timeta-
bles in case of small perturbations of the traffic. To do so, they consider an
indirect approach based on permutations representing train ordering, and com-
bine it with ILOG CPLEX, a mathematical programming tool. The cooperation
is performed in an autonomous way: initially the EA computes a good solution
that is then provided as input to CPLEX.

13Memetic Algorithms in Planning, Scheduling, and Timetabling

The automatic timetabling of sport leagues is another variant that has also
been solved successfully by MAs. Costa [56] describes an evolutionary tabu
search (ETS) algorithm that combines the mechanisms of GAs and tabu search.
The basic idea is replacing the mutation step in the GA by a search in the space
of feasible solutions commanded by the tabu search. This choice of TS for per-
forming LS is dictated by the reported superiority of this approach over other
LS techniques such as SA in the domain of graph coloring [106, 107]. The ETS is
applied to construct schedules on the National Hockey League of North America.
Schönberger et al. [108] propose a MA to schedule a regional table-tennis league
in Germany. Here, constraint programming (see Sect. 5.1) is used to experiment
with the order in which the decision variables are instantiated in the heuristic.

4.3 Manpower Scheduling

Manpower scheduling (also called rostering or human scheduling) is concerned
with the arrangement of employee timetables in an institution. To solve the prob-
lem, a set of constraints or preferences (involving the employees, the employers,
and even the customers) must be considered. The goal is to find the best shifts
and resource assignments that satisfy these constraints.

One of the most popular instances is nurse scheduling, i.e., allocating the
shifts (day and night shifts, holidays, etc.) for nurses under various constraints.
Traditionally, this problem has been tackled via an integer programming formu-
lation, although it has also attracted the attention of the evolutionary commu-
nity and many proposals of MAs have been done. For instance, Aickelin [109]
analyzes the effect of a family of GAs applied to nurse rostering. He concludes
that basic GAs cannot solve the problem, and that the results can be improved
via specialized operators and local searches. To do so, De Causmaecker and van
den Berghe [110] propose the use of tabu search as a local heuristic in a MA.

Burke et al. [59] present a number of MAs which use a steepest descent
improvement heuristic. These MAs only consider locally optimal solutions. The
MAs are compared to previously published TS results and, later, hybridized with
this TS algorithm (either as local improvement or as an improved method to be
applied over the best solution found by the MA; in both cases this combination
produces the best overall results in terms of quality of the solutions). Gröbner
and Wilke [111] describe a MA that incorporates reparing operators, applied at
an adaptive rate (cf. [101] for timetabling). Burke et al. [112] discuss a set of
MAs that apply local search on every solution in the population. The range of
these MAs varies from those already presented in [59] to new ones that consider
random selection in different stages of the algorithm (e.g., in the local search
step, in the parent selection, etc.). Özcan [113] has also tackled the nurse roster-
ing problem via a memetic approach based on the same setting proposed in [100]
for timetabling. Basically, Özcan proposes a self-adaptive violation-directed hi-
erarchical hill climbing (VDHC) method as a part of the MA; VDHC provides
a framework for the cooperation of a set of hill climbers targeted to specific
constraint types. The idea is very similar to the VNS approach.

14 C. Cotta and A.J. Fernández

A different problem – driver scheduling – is tackled by Li and Kwan [114].
They present a GA with fuzzy evaluation (GAFE) that can be catalogued as a
MA. The basic idea is similar to that of the GRASP metaheuristic [115] in the
sense that GAFE also applies a greedy heuristic to obtain feasible solutions and
performs searches based on multiple solutions to improve the local optimum. In
GAFE, fuzzy set theory is applied in the evaluation of potential shifts based
on fuzzified criteria represented by fuzzy membership functions. These functions
are weighted and the GA is precisely employed to tune these weights. This same
approach is extended in [116] by a self-adjusting approach that can be viewed
as a particular hybrid of population-based search and local search.

4.4 Industrial Planning

Industrial planning comprises those activities directed to the development, op-
timization, and maintenance of industrial processes. Roughly speaking, this
amounts to producing a list of activities (a plan) to achieve some pre-defined
goal. In some contexts, planning can be considered a prior stage to schedul-
ing, the latter being responsible for arranging in time those planned activities.
However, this distinction is not always clear. An example of this can be found
in maintenance scheduling, that is, organizing the activities required to keep a
certain set of facilities at a functioning level. Typically, this involves fulfilling sev-
eral constraints related to the external demands the system has to serve (e.g., an
electricity transmission system must keep supplying the demanded energy even
if some station is down due to maintenance reasons). Additionally, maintenance
costs must be kept low, thus introducing an optimality criterion.

Several maintenance scheduling problems have been attacked with MAs.
Burke and Smith [117, 118] consider the maintenance of thermal generators. A
rolling maintenance plan is sought, such that capacity and output constraints
are not violated, and such that the total combined cost of production and main-
tenance is minimized. They compared MAs incorporating either HC, SA, or TS.
It was shown that the MA with TS performed slightly better than the HC-
based and SA-based variants. The influence of local search was determinant in
the performance, to the point that heuristic initialization of the populations
seems to exert a negligible effect. Digalakis and Margaritis [61] further studied
this problem from the point of view of parallel multi-population MAs. In their
experiments, a MA with multiple populations using different local search tech-
niques produces better results than homogeneous multi-population MAs, using
just one kind of local improver.

Burke and Smith [44, 62] also address the maintenance problem of a British
regional electricity grid. As before, MAs with HC, SA, and TS are compared. In
order to alleviate the cost of local search, it is limited to a small number of iter-
ations after the first local optimum is found. In this case, the HC-based and the
TS-based MAs perform similarly, providing the best results and outperforming
the SA-based MA. This result was consistent with previous work by the authors
[119] indicating that TS was better than SA in terms of solution quality. TS was
also slightly better than HC, but at the cost of a higher running time.

15Memetic Algorithms in Planning, Scheduling, and Timetabling

There have been other attempts to deploy MAs on industrial planning prob-
lems. Not related with maintenance scheduling, but sharing several important
features, Evans and Fletcher [120] have considered the boiler scheduling problem.
The goal is scheduling the operation of boilers in a power plant, so as to opti-
mize the production of pressurized steam. The problem exhibits some production
constraints that are considered by an ad hoc heuristic in order to produce an
initial population of feasible solutions. Local search is implemented as a simple
hill-climbing step, i.e., a solution is modified, and the change is kept only if it
results in a quality improvement. Notice that this problem is also strongly re-
lated to the area of power scheduling, one of whose most conspicuous members
is the unit commitment problem. Although MAs have been applied here as well,
e.g., [121], an overview of these applications is beyond the scope of this work.

5 Directions for Future Developments

Unlike other optimization techniques, MAs were explicitly conceived as a eclectic
paradigm, open to the integration of other techniques (metaheuristic or not).
Ultimately, this ability to synergistically combine with diverse methods is one of
the major reasons of their success. The availability of numerous alternative (and
certainly complementary) optimization trends, tools, and methods thus offers a
huge potential for future developments. We shall provide an overview of these
possibilities in this section.

5.1 Hybridization with Constraint Programming

Most scheduling problems can be naturally formulated as constraint satisfaction
problems (CSPs) involving a high number of constraints. In evolutionary ap-
proaches, constraint handling represents a difficult task that can be managed in
different ways as mentioned in Sect. 3.1, e.g., using a suitable encoding in the
space of feasible solutions, or integrating constraints in the evaluation process
in form of penalty functions, among other approaches. In any case, dealing with
constraints is essential for solving scheduling problems.

A natural way to manage constraints and CSPs is constraint programming
[122–126] (CP). CP is a sound programming paradigm based on strong theoret-
ical foundations [127] that represents a heterogeneous field of research ranging
from theoretical topics in mathematical logic to practical applications in indus-
try. As a consequence, CP is attracting also widespread commercial interest since
it is suitable for modelling a wide variety of optimizations problems, particularly,
problems involving heterogeneous constraints and combinatorial search.

Optimization in CP is usually based on a form of branch and bound (although
other alternative models are also proposed, e.g. [128]), that is, as soon as a
solution is found, a further constraint is added, so that from that point on, the
value of the optimizing criterion must be better than the value just found. This
causes the system to backtrack until a better solution is found. When no further
solutions can be found the optimum value is known. CP techniques are complete

16 C. Cotta and A.J. Fernández

methods, and thus always guarantee in optimization problems that (1) if there
exist at least a solution, the solution found is optimal, and (2) if a solution is not
found, it is guaranteed that no solution exist. CP techniques have already been
applied to a wide range of scheduling and resource allocation problems (e.g.,
[129–132]), and there exist many successful applications (e.g., [133–135]).

Compared to evolutionary algorithms, CP systems present some advantages.
For instance, one could argue that these systems do not require excessive tuning
to fit the problem, and thus are usually easier to modify and maintain; they
can also handle certain classes of constraints better than MAs, e.g., preferences
[136, 137] since, these can be directly modelled as soft constraints, and one has
the possibility of controlling which of them are relaxed (whereas, in general, in
evolutionary techniques constraints are simply part of the evaluation function, or
are present in the representation of solutions). However, the nature of complete-
search techniques of CP is also its main drawback since the time needed to find
the optimal solution can be prohibitive for large problems. Hence, stochastic
techniques (e.g., MAs) may be better when the search space is huge.

In fact, we can say that CP and MAs are two complementary worlds that
clearly can profit one from the other. The hybridization of both approaches opens
very interesting lines of research. In this sense, some appealing hybrid proposals
to scheduling problems have recently appeared. We have already mentioned some
of these, i.e., [108, 90, 91]. Further in this line, Backer et al. [138] describe a
method for using local search techniques within a CP framework, and apply this
technique to vehicle routing problems. To avoid the search getting trapped in
local minima, they investigate the use of several meta-heuristics (from a simple
TS method to guided local search). Also, Yun and Gen [139] use CP techniques
for dealing with the preemptive and non-preemptive case in a single machine
job-shop scheduling problem. They consider constraints of different types (e.g.,
temporal constraints, resource constraints, etc.) and use them for generating the
initial population. Merlot et al. [140] propose a three-phase hybrid algorithm
to deal with timetabling problems. In the first phase, CP is applied with the
aim of obtaining a feasible solution (if any): a specialized constraint propagation
algorithm is firstly applied to reduce the domain of the constrained variables and
then, when no further reduction is possible, enumeration strategies are applied
to reactivate the propagation. Moreover, with the aim of improving quality, the
solution obtained by the CP method is used as starting point of a simulated
annealing-based phase and, in a third phase a hill climber is also used.

In general, we argue that MAs can help CP to tackle larger problems and
CP can help MAs to reduce drastically the search space by removing infeasible
regions what would allow to focus the evolution in the promising regions. Some
initial steps have already been done in this exciting line of researching [141].

5.2 Emergent Technologies

It is clear that our world is getting increasingly complex at an accelerated rate,
at least from a technological point of view (famous Moore’s Law being just an
example of this trend). In order to cope with the optimization problems to come,

17Memetic Algorithms in Planning, Scheduling, and Timetabling

in particular those from the areas of planning and scheduling, optimization tools
have to adapt to this complexity. This means that traditional, one-dimensional,
sequential approaches must move aside to make room for the next generation of
optimization techniques. Focusing in MAs, some of the topics that will become
increasingly important in the next years are multi-objective optimization, self-
adaptation, and autonomous functioning.

Starting with multi-objective optimization (MOO), it is clear that the exis-
tence of many different cost functions for a single problem (e.g., machine schedul-
ing, cf. Sect. 4.1) is an indication of (1) the richness of these problems, and (2)
the inappropriateness of single-objective optimization to grasp many of their
practical implications. Although MOO is hardly an emerging paradigm (in the
sense of having been extensively studied in the last decades), the development
of multi-objective MAs for scheduling and planning is still a developing field.
Several proposals have been made, e.g., [63, 65, 142], but clearly, there is still a
long way to go in exploring new strategies for adapting MAs to MOO.

Another crucial feature of MAs that deserves further exploration is self-
adaptation. As anticipated in [11], future MAs will work in at least two levels
and two time scales: in the short-time scale, a set of agents would explore the
search space associated to the problem; in the long-time scale the MA would
adapt the heuristics associated with the agents. This idea is at the core of the
memeplexes suggested by Krasnogor and Smith [143]. Some work has already
been done in this area [116]. Very related ideas are also currently being developed
in hyperheuristics, see e.g. [144, 145]. A hyperheuristic is a high-level heuristic
which adaptively controls the combination of several low-level heuristics. Hyper-
heuristics have been successfully applied to scheduling problems [146–150], and
offer interesting prospects for their combination with MAs.

Finally, autonomous functioning is another feature that has to be boosted
in near-future MAs. Recall the use of the term “agent” in the description of the
functional pattern of MAs (see Sect. 3). Indeed, the original conception of MAs
envisioned the search as a rather decoupled process, that is, with inter-agent
communication being less frequent than individual improvement. This fits very
well with the behavior of multi-agent systems, which have been also applied
to planning and scheduling with satisfactory results [151–153]. Enhancing the
autonomous component of MA agents would redound in new possibilities for
their efficient parallelization in distributed systems, as well as open a plethora
of research lines such as, e.g., the use of epistemic logic systems for modelling
the distributed belief of the agents on the optimal solution [154].

5.3 Other Interesting Scheduling Problems

There exist several scheduling problems that have not been treated– to the best
of our knowledge –by MAs. These do not just provide challenging optimization
tasks, but can also open new scenarios for further research on MAs for scheduling.

The scheduling of social tournaments (SST) has attracted significant atten-
tion in recent years since they arise in many practical applications, and induce

18 C. Cotta and A.J. Fernández

highly combinatorial problems. SST problems may be considered either as in-
stances of timetabling problems (e.g., timetabling of sport leagues) or rostering
problems (e.g., judge assignments). One of the most popular SST instances is
that known as the social golfer problem (problem #10 in the CSPLib2): it con-
sists of trying to schedule g × s golfers into g groups of s players over w weeks,
such that no golfer plays in the same group with any other golfer more than
once. The problem can be regarded as an optimization problem if for two given
numbers g and s we ask for the maximum number of weeks the golfers can play
together. An instance to the problem is characterized by a triple w − g − s. The
initial question consisted of scheduling 32 golfers in a local golf club (i.e., g = 8
and s = 4). The optimal solution for this instance is not yet known, and the
current best known solution is a 9 week schedule (i.e., w = 9). There also exist
interesting instances and variants for this problem as the Kirkman’s schoolgirl
problem [155], the debating tournament problem and the judge assignment [156].

Pattern sequencing problems have also important applications, especially in
the field of production planning (for instance, in talent scheduling [157, 158]).
Those problems generally consist of finding a permutation of predetermined
production patterns (groupings of some elementary order types) with respect
to different objectives. These objectives may represent, e.g., handling costs or
stock capacity restrictions, which usually leads to NP-hard problems. In these
problems, the use of heuristics to construct near-optimal pattern sequences is
generally assumed to be appropriate [159].

6 Concluding Remarks

One of the main conclusions that can be drawn from the extensive literature
on MAs for planning, scheduling, and timetabling is they constitute a versa-
tile and effective optimization paradigm. Indeed, MAs are one of the primary
weapons in our arsenal for dealing with problems in this area. They provide an
appropriate framework to seamlessly integrate successful heuristics into a single
search engine. In this sense, MAs should not be regarded as competitors, but
as integrators. Whenever non-hybrid metaheuristics start to reach their limits,
MAs are the next natural step.

There is an important empirical component in the design of MAs. How-
ever, this does not imply that MAs are just a plug-and-play approach. The user
can benefit from the methodological corpus available for both population-based
and trajectory-based search techniques. Design by analogy is another powerful
strategy in this area: although very diverse at first sight, scheduling problems
have strong underlying connections; hence, knowledge transfer from one subarea
to another one is not just feasible, but also likely to be useful. The selection
of reproductive operators and/or local-search strategies is at any rate an open
problem in methodological terms. Some guidelines for LS design in specific appli-
cations are available as shown in Sect. 4, but these are very specific, and hard to

2 http://www.csplib.org

19Memetic Algorithms in Planning, Scheduling, and Timetabling

generalize. For this reason, computational considerations, such as the affordable
running time, remain one of the governing factors in taking decisions with this
regard. For example, more sophisticated LS techniques can provide better results
regarding solution quality than plain HC, but the improvement is likely to take
place after longer run times. This must be taken into account when dealing with
complex scheduling problems in which evaluating local moves is computationally
expensive, or in which the size of neighborhoods is huge.

New computational challenges will rise in the years to come. Scheduling prob-
lems will not just become a matter of large-scale optimization, but will also be-
come richer and more complex. Consider for example the situation in machine
scheduling, where technological developments in manufacturing processes and
production strategies will result in new (multiple) objectives to optimize, ad-
ditional constraints to be considered, etc. New methods will start to play an
essential role, e.g., safe kernelization techniques, commonly used in the realm
of parameterized complexity [160]. Metaheuristics will have to adapt to this
new scenario, and eclecticism appears to be essential for this. The future looks
promising for MAs.

Acknowledgments

This work was partially supported by Spanish MCyT under contracts TIN2004-
7943-C04-01 and TIN2005-08818-C04-01. Thanks are also due to the reviewers
for their useful comments.

References

1. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence through Simulated
Evolution. John Wiley & Sons, New York (1966)

2. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan
Press (1975)

3. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973)

4. Schwefel, H.P.: Kybernetische Evolution als Strategie der experimentellen
Forschung in der Strömungstechnik. Diplomarbeit, Technische Universität Berlin,
Hermann Föttinger–Institut für Strömungstechnik (1965)

5. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated an-
nealing. Science 220 (1983) 671–680

6. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston, MA
(1997)

7. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1) (1997) 67–82

8. Hart, W.E., Belew, R.K.: Optimizing an arbitrary function is hard for the genetic
algorithm. In Belew, R.K., Booker, L.B., eds.: Proceedings of the 4th International
Conference on Genetic Algorithms, San Mateo CA, Morgan Kaufmann (1991)
190–195

9. Davis, L.D.: Handbook of Genetic Algorithms. Van Nostrand Reinhold Computer
Library, New York (1991)

20 C. Cotta and A.J. Fernández

10. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Mar-
tial Arts: Towards Memetic Algorithms. Technical Report Caltech Concurrent
Computation Program, Report. 826, California Institute of Technology, Pasadena,
California, USA (1989)

11. Moscato, P.: Memetic algorithms: A short introduction. In Corne, D., Dorigo,
M., Glover, F., eds.: New Ideas in Optimization. McGraw-Hill, Maidenhead,
Berkshire, England, UK (1999) 219–234

12. Moscato, P., Cotta, C.: A gentle introduction to memetic algorithms. In Glover,
F., Kochenberger, G., eds.: Handbook of Metaheuristics. Kluwer Academic Pub-
lishers, Boston MA (2003) 105–144

13. Moscato, P., Cotta, C., Mendes, A.S.: Memetic algorithms. In Onwubolu, G.C.,
Babu, B.V., eds.: New Optimization Techniques in Engineering. Springer-Verlag,
Berlin Heidelberg (2004) 53–85

14. Dawkins, R.: The Selfish Gene. Clarendon Press, Oxford (1976)
15. Culberson, J.: On the futility of blind search: An algorithmic view of “No Free

Lunch”. Evolutionary Computation 6 (1998) 109–127
16. Eiben, A.E., Raue, P.E., Ruttkay, Z.: Genetic algorithms with multi-parent re-

combination. In Davidor, Y., Schwefel, H.P., Männer, R., eds.: Parallel Problem
Solving From Nature III. Volume 866 of Lecture Notes in Computer Science.
Springer-Verlag (1994) 78–87

17. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading, MA (1989)

18. Jones, T.C.: Evolutionary Algorithms, Fitness Landscapes and Search. PhD
thesis, University of New Mexico (1995)

19. Davidor, Y., Ben-Kiki, O.: The interplay among the genetic algorithm opera-
tors: Information theory tools used in a holistic way. In Männer, R., Manderick,
B., eds.: Parallel Problem Solving From Nature II, Amsterdam, Elsevier Science
Publishers B.V. (1992) 75–84

20. Radcliffe, N.J.: Non-linear genetic representations. In Männer, R., Manderick,
B., eds.: Parallel Problem Solving From Nature II, Amsterdam, Elsevier Science
Publishers B.V. (1992) 259–268

21. Fox, B.R., McMahon, M.B.: Genetic operators for sequencing problems. In Rawl-
ins, G.J.E., ed.: Foundations of Genetic Algorithms I, San Mateo, CA, Morgan
Kaufmann (1991) 284–300

22. Cotta, C., Troya, J.M.: Genetic forma recombination in permutation flowshop
problems. Evolutionary Computation 6 (1998) 25–44

23. Mathias, K., Whitley, L.D.: Genetic operators, the fitness landscape and the
traveling salesman problem. In Männer, R., Manderick, B., eds.: Parallel Problem
Solving From Nature II, Amsterdam, Elsevier Science Publishers B.V. (1992) 221–
230

24. Goldberg, D.E., Lingle Jr., R.: Alleles, loci and the traveling salesman problem. In
Grefenstette, J.J., ed.: Proceedings of the 1st International Conference on Genetic
Algorithms, Hillsdale NJ, Lawrence Erlbaum Associates (1985) 154–159

25. Davidor, Y.: Epistasis Variance: Suitability of a Representation to Genetic Algo-
rithms. Complex Systems 4 (1990) 369–383

26. Davidor, Y.: Epistasis variance: A viewpoint on GA-hardness. In Rawlins, G.J.E.,
ed.: Foundations of Genetic Algorithms I, San Mateo, CA, Morgan Kaufmann
(1991) 23–35

27. Radcliffe, N.J., Surry, P.D.: Fitness Variance of Formae and Performance Predic-
tion. In Whitley, L.D., Vose, M.D., eds.: Foundations of Genetic Algorithms III,
San Francisco, CA, Morgan Kaufmann (1994) 51–72

21Memetic Algorithms in Planning, Scheduling, and Timetabling

28. Manderick, B., de Weger, M., Spiessens, P.: The Genetic Algorithm and the Struc-
ture of the Fitness Landscape. In Belew, R.K., Booker, L.B., eds.: Proceedings of
the 4th International Conference on Genetic Algorithms, San Mateo, CA, Morgan
Kaufmann (1991) 143–150

29. Dzubera, J., Whitley, L.D.: Advanced Correlation Analysis of Operators for the
Traveling Salesman Problem. In Schwefel, H.P., Männer, R., eds.: Parallel Prob-
lem Solving from Nature III. Volume 866 of Lecture Notes in Computer Science.,
Dortmund, Germany, Springer-Verlag, Berlin, Germany (1994) 68–77

30. Aickelin, U., Dowsland, K.: Exploiting problem structure in a genetic algorithm
approach to a nurse rostering problem. Journal of Scheduling 3 (2000) 139–153

31. Puente, J., Vela, C.R., Prieto, C., Varela, R.: Hybridizing a genetic algorithm
with local search and heuristic seeding. In Mira, J., Álvarez, J.R., eds.: Arti-
ficial Neural Nets Problem Solving Methods. Volume 2687 of Lecture Notes in
Computer Science., Berlin Heidelberg, Springer-Verlag (2003) 329–336

32. Varela, R., Serrano, D., Sierra, M.: New codification schemas for scheduling with
genetic algorithms. In Mira, J., Álvarez, J.R., eds.: Artificial Intelligence and
Knowledge Engineering Applications: a Bioinspired Approach. Volume 3562 of
Lecture Notes in Computer Science., Berlin Heidelberg, Springer-Verlag (2005)
11–20

33. Varela, R., Puente, J., Vela, C.R.: Some issues in chromosome codification for
scheduling with genetic algorithms. In Castillo, L., Borrajo, D., Salido, M.A.,
Oddi, A., eds.: Planning, Scheduling and Constraint Satisfaction: From Theory
to Practice. Volume 117 of Frontiers in Artificial Intelligence and Applications.
IOS Press (2005) 1–10

34. Radcliffe, N.J.: The algebra of genetic algorithms. Annals of Mathematics and
Artificial Intelligence 10 (1994) 339–384

35. Oğuz, C., Ercan, M.F.: A genetic algorithm for hybrid flow-shop scheduling with
multiprocessor tasks. Journal of Scheduling 8 (2005) 323–351

36. Cotta, C., Troya, J.M.: Embedding branch and bound within evolutionary algo-
rithms. Applied Intelligence 18 (2003) 137–153

37. Ibaraki, T.: Combination with dynamic programming. In Bäck, T., Fogel, D.,
Michalewicz, Z., eds.: Handbook of Evolutionary Computation. Oxford University
Press, New York NY (1997) D3.4:1–2

38. Yamada, T., Nakano, R.: A genetic algorithm with multi-step crossover for job-
shop scheduling problems. In: Proceedings of the 1st International Conference
on Genetic Algorithms in Engineering Systems: Innovations and Applications,
Sheffield, UK, Institution of Electrical Engineers (1995) 146–151

39. Wang, L., Zheng, D.Z.: A modified genetic algorithm for job-shop scheduling.
International Journal of Advanced Manufacturing Technology 20 (2002) 72–76

40. Maheswaran, R., Ponnambalam, S.G., Aranvidan, C.: A meta-heuristic approach
to single machine scheduling problems. International Journal of Advanced Man-
ufacturing Technology 25 (2005) 772–776

41. Liaw, C.F.: A hybrid genetic algorithm for the open shop scheduling problem.
European Journal of Operational Research 124 (2000) 28–42

42. Sevaux, M., Dauzère-Pérès, S.: Genetic algorithms to minimize the weighted num-
ber of late jobs on a single machine. European Journal of Operational Research
151 (2003) 296–306

43. Burke, E.K., Newall, J., Weare, R.: A memetic algorithm for university exam
timetabling. In Burke, E.K., Ross, P., eds.: Practice and Theory of Automated
Timetabling. Volume 1153 of Lecture Notes in Computer Science., Berlin Heidel-
berg, Springer-Verlag (1996)

22 C. Cotta and A.J. Fernández

44. Burke, E.K., Smith, A.J.: A memetic algorithm to schedule planned grid main-
tenance. In Mohammadian, M., ed.: Computational Intelligence for Modelling,
Control and Automation, IOS Press (1999) 12–127

45. França, P.M., Gupta, J.N.D., Mendes, A.S., Moscato, P., Veltnik, K.J.: Evolu-
tionary algorithms for scheduling a flowshop manufacturing cell with sequence
dependent family setups. Computers and Industrial Engineering 48 (2005) 491–
506

46. Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and appli-
cations. European Journal of Operational Research 130 (2001) 449–467

47. Yeh, W.C.: A memetic algorithm fo the n/2/Flowshop/αF+ βCmax scheduling
problem. International Journal of Advanced Manufacturing Technology 20 (2002)
464–473

48. Varela, R., Gómez, A., Vela, C.R., Puente, J., Alonso, C.: Heuristic generation of
the initial population in solving job shop problems by evolutionary strategies. In
Mira, J., Sánchez-Andrés, J.V., eds.: Foundations and Tools for Neural Modeling.
Volume 1606 of Lecture Notes in Computer Science., Berlin Heidelberg, Springer-
Verlag (1999) 690–699

49. Varela, R., Puente, J., Vela, C.R., Gómez, A.: A knowledge-based evolutionary
strategy for scheduling problems with bottlenecks. European Journal of Opera-
tional Research 145 (2003) 57–71

50. Burke, E.K., Petrovic, S.: Recent research directions in automated timetabling.
European Journal of Operational Research 140 (2002) 266–280

51. Rossi-Doria, O., Paechter, B.: A memetic algorithm for university course
timetabling. In: Combinatorial Optimisation 2004 Book of Abstracts, Lancaster,
UK, Lancaster University (2004) 56

52. Laguna, M., Mart́ı, R.: Scatter Search. Methodology and Implementations in C.
Kluwer Academic Publishers, Boston MA (2003)

53. Nagata, Y., Kobayashi, S.: Edge assembly crossover: A high-power genetic algo-
rithm for the traveling salesman problem. In Bäck, T., ed.: Proceedings of the
Seventh International Conference on Genetic Algorithms, East Lansing, EE.UU.,
San Mateo, CA, Morgan Kaufmann (1997) 450–457

54. Yamada, T., Reeves, C.R.: Solving the Csum permutation flowshop scheduling
problem by genetic local search. In: 1998 IEEE International Conference on
Evolutionary Computation, Piscataway, NJ, IEEE Press (1998) 230–234

55. Žďánský, M., Poživil, J.: Combination genetic/tabu search algorithm for hybrid
flowshops optimization. In: Proceedings of ALGORITMY 2002 – Conference on
Scientific Computing, Vysoke Tatry, Podbanske, Slovakia (2002) 230–236

56. Costa, D.: An evolutionary tabu search algorithm and the NHL scheduling prob-
lem. INFOR 33 (1995) 161–178

57. Greistorfer, P.: Hybrid genetic tabu search for a cyclic scheduling problem. In Voß,
S., Martello, S., Osman, I.H., Roucairol, C., eds.: Meta-Heuristics: Advances and
Trends in Local Search Paradigms for Optimization. Kluwer Academic Publishers,
Boston, MA (1998) 213–229

58. Greistorfer, P.: Genetic tabu search extensions for the solving of the cyclic reg-
ular max-min scheduling problem. In: International Conference on Operations
Research (OR98), Zürich, Schwitzerland (1998)

59. Burke, E.K., Cowling, P.I., De Causmaecker, P., van den Berghe, G.: A memetic
approach to the nurse rostering problem. Applied Intelligence 15 (2001) 199–214

60. Batenburg, K.J., Palenstijn, W.J.: A new exam timetabling algorithm. In Hes-
kes, T., Lucas, P., Vuurpijl, L., Wiegerinck, W., eds.: Proceedings of the 15th

23Memetic Algorithms in Planning, Scheduling, and Timetabling

Belgian-Dutch Conference on Artificial Intelligence BNAIC’03, Nijmegen, The
Netherlands (2003) 19–26

61. Digalakis, J., Margaritis, K.: A multipopulation memetic model for the mainte-
nance scheduling problem. In: Proceedings of the 5th Hellenic European Confer-
ence on Computer Mathematics and its Applications, Athens, Greece, LEA Press
(2001) 318–323

62. Burke, E.K., Smith, A.J.: A memetic algorithm to schedule planned maintenance
for the national grid. Journal of Experimental Algorithmics 4 (1999) 1–13

63. Ponnambalam, S.G., Mohan Reddy, M.: A GA-SA multiobjective hybrid search
algorithm for integrating lot sizing and sequencing in flow-line scheduling. Inter-
national Journal of Advanced Manufacturing Technology 21 (2003) 126–137

64. Houck, C., Joines, J.A., Kay, M.G., Wilson, J.R.: Empirical investigation of the
benefits of partial lamarckianism. Evolutionary Computation 5 (1997) 31–60

65. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local
search in memetic algorithms for multiobjective permutation flowshop scheduling.
IEEE Transactions on Evolutionary Computation 7 (2003) 204–223

66. Jones, T.C., Forrest, S.: Fitness distance correlation as a measure of problem
difficulty for genetic algorithms. In Eshelman, L.J., ed.: Proceedings of the 6th

International Conference on Genetic Algorithms, Morgan Kaufmann (1995) 184–
192

67. Merz, P., Freisleben, B.: Fitness landscapes and memetic algorithm design. In
Corne, D., Dorigo, M., Glover, F., eds.: New Ideas in Optimization. McGraw-Hill,
Maidenhead, Berkshire, England, UK (1999) 245–260

68. English, T.M.: Evaluation of evolutionary and genetic optimizers: No free lunch.
In Fogel, L.J., Angeline, P.J., Bäck, T., eds.: Evolutionary Programming V, Cam-
bridge, MA, MIT Press (1996) 163–169

69. Bierwirth, C., Mattfeld, D.C., Watson, J.P.: Landscape regularity and random
walks for the job shop scheduling problem. In Gottlieb, J., Raidl, G.R., eds.: Evo-
lutionary Computation in Combinatorial Optimization. Volume 3004 of Lecture
Notes in Computer Science., Berlin, Springer-Verlag (2004) 21–30

70. Grefenstette, J.J.: Genetic algorithms for changing environments. In Männer,
R., Manderick, B., eds.: Parallel Problem Solving from Nature II, Amsterdam,
North-Holland Elsevier (1992) 137–144

71. Hadj-Alouane, A.B., Bean, J.C., Murty, K.G.: A hybrid genetic/optimization
algorithm for a task allocation problem. Journal of Scheduling 2 (1999) 181–201

72. Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution
in Space and Time. Springer-Verlag (2005)

73. França, P.M., Mendes, A.S., Müller, F., Moscato, P.: Memetic algorithms ap-
plied to the single machine and parallel machine scheduling problems. In: Anais
da Primeira Oficina de Planejamento e Controle da Produção em Sistemas de
Manufatura, Campinas, SP, Brazil (1999)

74. França, P.M., Mendes, A.S., Moscato, P.: Memetic algorithms to minimize tar-
diness on a single machine with sequence-dependent setup times. In Despotis,
D.K., Zopounidis, C., eds.: Proceedings of the 5th International Conference of the
Decision Sciences Institute, Athens, Greece (1999) 1708–1710

75. Mendes, A.S., Müller, F., França, P.M., Moscato, P.: Comparing meta-heuristic
approaches for parallel machine scheduling problems with sequence-dependent
setup times. In: Procedings of the 15th International Conference on CAD/CAM
Robotics and Factories of the Future, Águas de Lindóia, SP, Brazil (1999) 1–6

24 C. Cotta and A.J. Fernández

76. França, P.M., Gupta, J.N.D., Mendes, A.S., Moscato, P., Veltnik, K.J.: Meta-
heuristic approaches for the pure flowshop manufacturing cell problem. In: Pro-
ceedings of the 7th International Workshop on Project Management and Schedul-
ing, Osnabrück, Germany (2000) 128–130

77. Mendes, A.S., França, P.M., Moscato, P.: Fuzzy-evolutionary algorithms applied
to scheduling problems. In: Proceedings of the 1st World Conference on Produc-
tion and Operations Management, Seville, Spain (2000) 1–10

78. França, P.M., Mendes, A.S., Moscato, P.: A memetic algorithm for the total
tardiness single machine scheduling problem. European Journal of Operational
Research 132 (2001) 224–242

79. Mendes, A.S., França, P.M., Moscato, P.: Fitness landscapes for the total tardiness
single machine scheduling problem. Neural Network World 2 (2002) 165–180

80. Moscato, P., Mendes, A., Cotta, C.: Scheduling and production & control. In
Onwubolu, G.C., Babu, B.V., eds.: New Optimization Techniques in Engineering.
Springer-Verlag, Berlin Heidelberg (2004) 655–680

81. Cotta, C., Alba, E., Troya, J.M.: Stochastic reverse hillclimbing and iterated
local search. In: Proceedings of the 1999 Congress on Evolutionary Computation,
Washington D.C., IEEE Neural Network Council - Evolutionary Programming
Society - Institution of Electrical Engineers (1999) 1558–1565

82. Cobb, H.G.: An investigation into the use of hypermutation as an adaptive oper-
ator in genetic algorithms having continuous, time-dependent nonstationary envi-
ronments. Technical Report AIC-90-001, Naval Research Laboratory, Washington
DC (1990)

83. Krasnogor, N.: Studies on the Theory and Design Space of Memetic Algorithms.
PhD thesis, Faculty of Engineering, Computer Science and Mathematics. Univer-
sity of the West of England. Bristol, United Kingdom (2002)

84. Sevaux, M., Sörensen, K.: A genetic algorithm for robust schedules. In: Proceed-
ings of the 8th International Workshop on Project Management and Scheduling.
(2002) 330–333

85. Cheng, R., Gen, M.: Parallel machine scheduling problems using memetic algo-
rithms. Computers and Industrial Engineering 33 (1997) 761–764

86. Bonfim, T.R., Yamakami, A.: Neural network applied to the coevolution of the
memetic algorithm for solving the makespan minimization problem in parallel
machine scheduling. In Ludermir, T.B., de Souto, M.C.P., eds.: Proceedings of
the 7th Brazilian Symposium on Neural Networks (SBRN 2002), Recife, Brazil,
IEEE Computer Society (2002) 197–199

87. Yamada, T., Reeves, C.R.: Permutation flowshop scheduling by genetic local
search. In: Proceedings of the 2nd International Conference on Genetic Algorithms
in Engineering Systems: Innovations and Applications, London, UK, Institution
of Electrical Engineers (1997) 232–238

88. Reeves, C.R., Yamada, T.: Genetic algorithms, path relinking and the flowshop
sequencing problem. Evolutionary Computation 6 (1998) 230–234

89. Glover, F.: Scatter search and path relinking. In Corne, D., Dorigo, M., Glover,
F., eds.: New Methods in Optimization. McGraw-Hill, London (1999) 291–316

90. Sevaux, M., Jouglet, A., Oğuz, C.: MLS+CP for the hybrid flowshop scheduling
problem. In: Workshop on the Combination of metaheuristic and local search
with Constraint Programming techniques, Nantes, France (2005)

91. Sevaux, M., Jouglet, A., Oğuz, C.: Combining constraint programming and
memetic algorithm for the hybrid flowshop scheduling problem. In: ORBEL 19th

annual conference of the SOGESCI-BVWB, Louvain-la-Neuve, Belgium (2005)

25Memetic Algorithms in Planning, Scheduling, and Timetabling

92. Yamada, T., Nakano, R.: A fusion of crossover and local search. In: IEEE In-
ternational Conference on Industrial Technology ICIT’96, Shangai, China, IEEE
Press (1996) 426–430

93. Yamada, T., Nakano, R.: Scheduling by genetic local search with multi-step
crossover. In Voigt, H.M., Ebeling, W., Rechenberg, I., Schwefel, H.P., eds.: Par-
allel Problem Solving From Nature IV. Volume 1141 of Lecture Notes in Computer
Science., Berlin Heidelberg, Springer-Verlag (1996) 960–969

94. Wang, L., Zheng, D.Z.: An effective hybrid optimization strategy for job-shop
scheduling problems. Computers & Operations Research 28 (2001) 585–596

95. Paechter, B., Cumming, A., Luchian, H.: The use of local search suggestion lists
for improving the solution of timetable problems with evolutionary algorithms.
In Fogarty, T.C., ed.: AISB Workshop on evolutionary computing. Volume 993 of
Lecture Notes in Computer Science., Berlin Heidelberg, Springer-Verlag (1995)
86–93

96. Rankin, B.: Memetic timetabling in practice. In Burke, E.K., Ross, P., eds.:
Proceedings of the 1st International Conference on the Practice and Theory of
Automated Timetabling. Volume 1153 of Lecture Notes in Computer Science.,
Berlin Heidelberg, Springer-Verlag (1996) 266–279

97. Paechter, B., Cumming, A., Norman, M.G., Luchian, H.: Extensions to a memetic
timetabling system. In Burke, E.K., Ross, P., eds.: Proceedings of the 1st Interna-
tional Conference on the Practice and Theory of Automated Timetabling. Volume
1153 of Lecture Notes in Computer Science., Berlin Heidelberg, Springer-Verlag
(1996) 251–265

98. Burke, E.K., Newall, J.P.: Investigating the benefits of utilising problem specific
heuristics within a memetic timetabling algorithm. Workin Paper NOTTCS-TR-
97-6, dept. of Computer Science, University of Nottingham, UK (1997)

99. Burke, E.K., Newall, J.: A multi-stage evolutionary algorithm for the timetable
problem. IEEE Transactions on Evolutionary Computation 3 (1999) 63–74

100. Alkan, A., Özcan, E.: Memetic algorithms for timetabling. In: Proceedings of the
2003 IEEE Congress on Evolutionary Computation, Canberra, Australia, IEEE
Press (2003) 1796–1802

101. Wilke, P., Gröbner, M., Oster, N.: A hybrid genetic algorithm for school
timetabling. In McKay, B., Slaney, J., eds.: AI 2002: Advances in Artificial Intelli-
gence, 15th Australian Joint Conference on Artificial Intelligence. Volume 2557 of
Lecture Notes in Computer Science., Canberra, Australia, Springer (2002) 455–
464

102. Burke, E.K., Jackson, K., Kingston, J.H., Weare, R.F.: Automated university
timetabling: The state of the art. The Computer Journal 40 (1997) 565–571

103. Burke, E.K., Landa Silva, J.D.: The design of memetic algorithms for scheduling
and timetabling problems. In Krasnogor, N., Hart, W., Smith, J., eds.: Recent
Advances in Memetic Algorithms. Volume 166 of Studies in Fuzziness and Soft
Computing. Springer-Verlag (2004) 289–312

104. Petrovic, S., Burke, E.K.: University timetabling. In Leung, J., ed.: Handbook of
Scheduling: Algorithms, Models, and Performance Analysis. Chapman Hall/CRC
Press (2004)

105. Semet, Y., Schoenauer, M.: An efficient memetic, permutation-based evolutionary
algorithm for real-world train timetabling. In: Proceedings of the 2005 Congress
on Evolutionary Computation, Edinburgh, UK, IEEE Press (2005) 2752–2759

106. Hertz, A., de Werra, D.: Using tabu search techniques for graph coloring. Com-
puting 39 (1987) 345–351

26 C. Cotta and A.J. Fernández

107. Costa, D.: On the use of some known methods for T-colorings of graphs. Annals
of Operations Research 41 (1993) 343–358

108. Schönberger, J., Mattfeld, D.C., Kopfer, H.: Memetic algorithm timetabling for
non-commercial sport leagues. European Journal of Operational Research 153
(2004) 102–116

109. Aickelin, U.: Nurse rostering with genetic algorithms. In: Proceedings of young
operational research conference 1998, Guildford, UK (1998)

110. De Causmaecker, P., van den Berghe, G.: Using tabu search as a local heuristic
in a memetic algorithm for the nurse rostering problem. In: Proceedings of the
13th Conference on Quantitative Methods for Decision Making (ORBEL XIII),
Brussels (1999)

111. Gröbner, M., Wilke, P.: Optimizing employee schedules by a hybrid genetic al-
gorithm. In Boers, E.J.W., et al., eds.: Applications of Evolutionary Computing
2001. Volume 2037 of Lecture Notes in Computer Science., Berlin Heidelberg,
Springer-Verlag (2001) 463–472

112. Burke, E.K., De Causmaecker, P., van den Berghe, G.: Novel metaheuristic ap-
proaches to nurse rostering problems in belgian hospitals. In Leung, J., ed.: Hand-
book of Scheduling: Algorithms, Models, and Performance Analysis. Chapman
Hall/CRC Press (2004) 44.1–44.18

113. Özcan, E.: Memetic algorithms for nurse rostering. In Yolum, P., Güngör, T.,
Gürgen, F.S., Özturan, C.C., eds.: Computer and Information Sciences - ISCIS
2005, 20th International Symposium (ISCIS). Volume 3733 of Lecture Notes in
Computer Science., Berlin Heidelberg, Springer-Verlag (2005) 482–492

114. Li, J., Kwan, R.S.K.: A fuzzy genetic algorithm for driver scheduling. European
Journal of Operational Research 147 (2003) 334–344

115. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures.
Journal of Global Optimization 6 (1995) 109–133

116. Li, J., Kwan, R.S.K.: A self adjusting algorithm for driver scheduling. Journal of
Heuristics 11 (2005) 351–367

117. Burke, E.K., Smith, A.J.: Hybrid evolutionary techniques for the maintenance
scheduling problem. IEEE Transactions on Power Systems 15 (2000) 122–128

118. Burke, E.K., Smith, A.J.: A memetic algorithm for the maintenance scheduling
problem. In: Proceedings of the 4th International Conference on Neural Infor-
mation Processing ICONIP’97, Dunedin, New Zealand, Springer-Verlag (1997)
469–474

119. Burke, E., Clark, J., Smith, J.: Four methods for maintenance scheduling. In
Smith, G., Steele, N., Albrecht, R., eds.: Artificial Neural Nets and Genetic Al-
gorithms 3, Wien New York, Springer-Verlag (1998) 264–269

120. Evans, S., Fletcher, I.: A variation on a memetic algorithm for boiler scheduling.
In Hotz, L., Krebs, T., eds.: Proceedings Workshop Planen und Konfigurieren
(PuK-2003), Hamburg, Germany (2003)

121. Valenzuela, J., Smith, A.: A seeded memetic algorithm for large unit commitment
problems. Journal of Heuristics 8 (2002) 173–195

122. Marriot, K., Stuckey, P.J.: Programming with constraints. The MIT Press, Cam-
bridge, Massachusetts (1998)

123. Smith, B.M.: A tutorial on constraint programming. Research Report 95.14,
University of Leeds, School of Computer Studies, England (1995)

124. Dechter, R.: Constraint processing. Morgan Kaufmann (2003)
125. Apt, K.R.: Principles of constraint programming. Cambridge University Press

(2003)

27Memetic Algorithms in Planning, Scheduling, and Timetabling

126. Frühwirth, T., Abdennadher, S.: Essentials of constraint programming. Cognitive
Technologies Series. Springer-Verlag (2003)

127. Tsang, E.: Foundations of constraint satisfaction. Academic Press, London and
San Diego (1993)

128. Larrosa, J., Morancho, E., Niso, D.: On the practical use of variable elimination in
constraint optimization problems: ‘still life’ as a case study. Journal of Artificial
Intelligence Research 23 (2005) 421–440

129. Baptiste, P., Le Pape, C.: Constraint propagation and decomposition techniques
for highly disjunctive and highly cumulative project scheduling problems. Con-
straints 5 (2000) 119–139

130. Barták, R.: Constraint satisfaction for planning and scheduling. In Vlahavas, I.,
Vrakas, D., eds.: Intelligent Techniques for Planning. Idea Group, Hershey, PA,
USA (2005)

131. Le Pape, C.: Constraint-based scheduling: A tutorial. Proceedings of the 1st

International Summer School on Constraint Programming (2005)

132. Kilby, P., Prosser, P., Shaw, P.: A comparison of traditional and constraint-based
heuristic methods on vehicle routing problems with side constraints. Constraints
5 (2000) 389–414

133. Oliveira, E., Smith, B.M.: A combined constraint-based search method for single-
track railway scheduling problem. In Brazdil, P., Jorge, A., eds.: Proceedings
of the 10th Portuguese Conference on Artificial Intelligence on Progress in Arti-
ficial Intelligence, Knowledge Extraction, Multi-agent Systems, Logic Program-
ming and Constraint Solving. Volume 2258 of Lecture Notes in Computer Science.,
Berlin Heidelberg, Springer-Verlag (2001) 371–378

134. Wallace, R.J., Freuder, E.C.: Supporting dispatchability in schedules with con-
sumable resources. Journal of Scheduling 8 (2005) 7–23

135. Khemmoudj, M.O.I., Porcheron, M., Bennaceur, H.: Using constraint program-
ming and local search for scheduling of electricité de france nuclear power plant
outages. In: Proceedings of the Workshop on the Combination of Metaheuris-
tic and Local Search with Constraint Programming techniques, Nantes, France
(2005)

136. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. Volume
2962 of Lecture Notes in Computer Science. Springer-Verlag, Berlin Heidelberg
(2004)

137. Rossi, F.: Preference reasoning. In van Beek, P., ed.: Proceedings of the 11th

International Conference on Principles and Practice of Constraint Programming.
Volume 3709 of Lecture Notes in Computer Science., Berlin Heidelberg, Springer-
Verlag (2005) 9–12

138. Backer, B.D., Furnon, V., Shaw, P., Kilby, P., Prosser, P.: Solving vehicle routing
problems using constraint programming and metaheuristics. Journal of Heuristics
6 (2000) 501–523

139. Yun, Y.S., Gen, M.: Advanced scheduling problem using constraint programming
techniques in SCM environment. Computers & Industrial Engineering 43 (2002)
213–229

140. Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A hybrid algorithm for
the examination timetabling problem. In Burke, E.K., Causmaecker, P.D., eds.:
Proceedings of the 4th International Conference on the Practice and Theory of
Automated Timetabling. Volume 2740 of Lecture Notes in Computer Science.,
Berlin Heidelberg, Springer-Verlag (2003) 207–231

28 C. Cotta and A.J. Fernández

141. Terashima, H.: Combinations of GAs and CSP strategies for solving examination
timetabling problems. PhD thesis, Instituto Tecnológico y de Estudios Superiores
de Monterrey (1998)

142. Landa Silva, J.D., Burke, E.K., Petrovic, S.: An introduction to multiobjective
metaheuristics for scheduling and timetabling. In X., G., M., S., Sörensen K. and,
T.V., eds.: Metaheuristic for Multiobjective Optimisation. Volume 535 of Lecture
Notes in Economics and Mathematical Systems. Springer (2004) 91–129

143. Krasnogor, N., Smith, J.E.: Emergence of profitable search strategies based on a
simple inheritance mechanism. In Spector, L., et al., eds.: Proceedings of the 2001
Genetic and Evolutionary Computation Conference, Morgan Kaufmann (2001)
432–439

144. Kendall, G., Soubeiga, E., Cowling, P.I.: Choice function and random hyperheuris-
tics. In: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution
and Learning (SEAL’02). (2002) 667–671

145. Burke, E.K., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hy-
perheuristics: an emerging direction in modern search technology. In Glover, F.,
Kochenberger, G., eds.: Handbook of Metaheuristics. Kluwer Academic Publish-
ers, Boston MA (2003) 457–474

146. Cowling, P.I., Kendall, G., Soubeiga, E.: A hyperheuristic approach to schedul-
ing a sales summit. In Burke, E., Erben, W., eds.: Selected Papers of the 3rd

PATAT conference. Volume 2079 of Lecture Notes in Computer Science., Berlin
Heidelberg, Springer-Verlag (2000) 176–190

147. Cowling, P.I., Kendall, G., Soubeiga, E.: Hyperheuristics: A tool for rapid proto-
typing in scheduling and optimisation. In Cagnoni, S., et al., eds.: Applications
of Evolutionary Computing. Volume 2279 of Lecture Notes in Computer Science.,
Berlin Heidelberg, Springer-Verlag (2002) 1–10

148. Cowling, P.I., Kendall, G., Soubeiga, E.: Hyperheuristics: A robust optimisation
method applied to nurse scheduling. In Merelo, J.J., et al., eds.: Parallel Problem
Solving from Nature VII. Volume 2439 of Lecture Notes in Computer Science.,
Berlin Heidelberg, Springer-Verlag (2002) 851–860

149. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for
timetabling and rostering. Journal of Heuristics 9 (2003) 451–470

150. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based
hyper-heuristic for educational timetabling problems. European Journal of Op-
erational Research (2006) In press.

151. Cowling, P.I., Ouelhadj, D., Petrovic, S.: Dynamic scheduling of steel casting and
milling using multi-agents. Production Planning and Control 15 (2002) 1–11

152. Cowling, P.I., Ouelhadj, D., Petrovic, S.: A multi-agent architecture for dynamic
scheduling of steel hot rolling. Journal of Intelligent Manufacturing 14 (2002)
457–470

153. Ouelhadj, D., Petrovic, S., Cowling, P.I., Meisels, A.: Inter-agent cooperation and
communication for agent-based robust dynamic scheduling in steel production.
Advanced Engineering and Informatics 18 (2005) 161–172

154. Cotta, C., Moscato, P.: Evolutionary computation: Challenges and duties. In
Menon, A., ed.: Frontiers of Evolutionary Computation. Kluwer Academic Pub-
lishers, Boston MA (2004) 53–72

155. Barnier, N., Brisset, P.: Solving Kirkman’s schoolgirl problem in a few seconds.
Constraints 10 (2005) 7–21

156. Dotú, I., del Val, A., van Hentenryck, P.: Scheduling social tournaments. In van
Beek, P., ed.: Proceedings of the 11th International Conference on Principles and

29Memetic Algorithms in Planning, Scheduling, and Timetabling

Practice of Constraint Programming. Volume 3709 of Lecture Notes in Computer
Science., Berlin Heidelberg, Springer-Verlag (2005) 845

157. Cheng, T.C.E., Diamond, J.: Optimal scheduling in film production to minimize
talent hold cost. Journal of Optimization Theory and Applications 79 (1993)
197–206

158. Smith, B.M.: Constraint programming in practice: scheduling a rehearsal. Re-
search Report APES-67-2003, APES group (2003)

159. Fink, A., Voß, S.: Applications of modern heuristic search methods to pattern
sequencing problems. Computers & Operations Research 26 (1999) 17–34

160. Downey, R., Fellows, M.: Parameterized Complexity. Springer-Verlag (1998)

30 C. Cotta and A.J. Fernández

Landscapes, Embedded Paths

Colin R. Reeves

Applied Mathematics Research Centre
Department of Mathematical Sciences
Coventry University
Coventry, UK
Email: C.Reeves@coventry.ac.uk

Summary.
been applied to scheduling problems. Whenever we apply such an algorithm, we
implicitly construct a landscape over which the search traverses. The nature of this
landscape is not an invariant of the problem instance, but depends on a number of
algorithmic choices—most obviously, the type of neighbourhood operator used as a
means of exploring the search space.

In this chapter, after discussing the basic ideas of a landscape, we show how this
variation in the landscape of a particular instance manifests itself in terms of an
important property—the number of local optima—and discuss ways in which local
optima can be avoided. We then review evidence for a particular conformation of
local optima in a variety of scheduling and other combinatorial problems—the ‘big
valley’ property.

We then turn to the question of how we can exploit such effects in terms of a
fruitful search strategy—embedded path tracing—for flowshop scheduling problems.
While many approaches could be taken, the one described here embeds the path
tracing strategy within a genetic algorithm, and experimental evidence is presented
that shows this approach to be capable of generating very high-quality solutions to
different versions of the permutation flowshop scheduling problem.

Finally, some recent research is reported into the use of data from the search
trace that provides some clues as to the quality of the results found. In particular,
it is possible to use data on the re-occurrence of previous local optima to estimate
the total number of optima and, indirectly, to quantify the probability that a global
optimum has been reached.

1 Introduction

Evolutionary algorithms (EAs) have become increasingly popular for finding
near-optimal solutions to large combinatorial optimization problems (COPs)
such as scheduling and timetabling. At the same time other techniques (some-
time called ‘metaheuristics’—simulated annealing (SA) and tabu search (TS),

Heuristic search methods such as evolutionary algorithms have often

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

C.R. Reeves: Landscapes, Embedded Paths and Evolutionary Scheduling, Studies in Computational

Intelligence (SCI) 49, 31–48 (2007)

and Evolutionary Scheduling

for example) have also been found to perform very well, and some attempts
have been made to combine them. For a review of some of these techniques
see [1, 2, 3, 4].

Central to most heuristic search techniques is the concept of neighbour-
hood search (NS). Evolutionary algoritms are sometimes thought to be an
exception, but in fact there are some similarities that can be put to profitable
use, as we shall see later. If we assume that a solution is specified by a vector
x, that the set of all (feasible) solutions is denoted by X , which we shall also
call the search space, then every solution x ∈ X has an associated set of neigh-
bours, N(x) ⊂ X , called the neighbourhood of x. Each solution x′ ∈ N(x)
can be reached directly from x by an operation called a move. Many different
types of move are possible in any particular case, and we can view a move as
being generated by the application of an operator ω. For example, if X is the
binary hypercube ZZ

l
2, a simple operator is the bit flip φ(k), given by

φ(k) : ZZ
l
2 → ZZ

l
2

{

z′k = 1 − zk

z′i = zi if k �= i

where z is a binary vector of length l. In other words, the neighbours of a
given solution that are generated by applying this operator are all those at
Hamming distance 1 from it.

A more relevant example for readers of this book is the backward shift
operator for the case where X is Πn—the space of permutations π of length
n. The operator BSH(i, j) (where we assume i < j) is given by

BSH(i, j) : Πn → Πn

⎧

⎨

⎩

π′
k+1 = πk if i ≤ k < j

π′
i = πj

π′
k = πk otherwise

Thus if we applied BSH(2, 5) to the permutation

π = (1, 2, 3, 4, 5, 6)

the result would be
π′ = (1, 5, 2, 3, 4, 6)

In general, there are
(

n
2

)

neighbours of a given permutation. An analogous
forward shift operator FSH(i, j) can similarly be described, the composite of
BSH and FSH being denoted by SH. Another alternative for such problems is
an exchange operator EX(i, j) which simply exchanges the elements in the ith
and jth positions.

A typical NS heuristic operates by generating neighbours in an iterative
process where a move to a new solution is made whenever certain criteria
are fulfilled. There are many ways in which candidate moves can be chosen
for consideration, and in defining criteria for accepting candidate moves, but
most need an evaluation of the cost of solution x. Perhaps the most common
case is that of ascent, in which the only moves accepted are to neighbours

32 Colin R. Reeves

that improve the current solution, i.e., reduce its cost. Steepest or best im-
proving ascent corresponds to the case where all neighbours are evaluated
before a move is made—that move being the best improvement available.
First improving ascent is similar, but the candidates are examined in some
pre-defined sequence, and the first that improves the current solution is ac-
cepted, without necessarily examining the complete neighbourhood. Normally,
the search terminates when no moves can be accepted. The trouble with NS is
that at the point of termination, the solution generated is usually only a local
optimum—a vector none of whose neighbours offer an improved solution.

2 Landscapes

As is implicit in the description of the previous section, the idea of a local
optimum only has meaning with respect to a particular neighbourhood. Other
associated concepts are those of ‘landscapes’, ‘valleys’, ‘ridges’, and ‘basins of
attraction’ of a particular local optimum. However, these may alter in subtle
ways, depending on the neighbourhood used, and the strategy employed for
searching it. Formally, we can describe a landscape as follows. We have the
search space X , and a function

f : X �→ IR.

where the problem is to find
arg max

x∈X
f.

for the objective function f . The necessary changes for the case of minimiza-
tion are always obvious. In the case of scheduling, we have a variety of differ-
ent possibilities for f : makespan, mean flowtime, average tardiness etc. For a
comprehensive discussion see, for example, [5].

The final piece of the jigsaw is a distance measure that enables us to relate
different points in X topologically. Thus the landscape L = (X , f, d) is defined
by imposing on the search space a distance measure d : X ×X → IR+ ∪ {∞}
for which it is required that

d(u,v) ≥ 0;
d(u,v) = 0 ⇔ u = v;
d(u,w) ≤ d(u,v) + d(v,w);

⎫

⎬

⎭

∀u,v,w ∈ X .

Stadler [6] has shown that it is possible to decompose L into a superposition
of ‘elementary landscapes’, which are related to non-linearities in the function
f . For a simplified introduction to this topic, see [7, 8].

The obvious question in any concrete algorithm concerns the nature of d.
In the case of methods based on neighbourhood search, the distance measure
is generally induced by applying an operator ω. This may be thought of as a

33Landscapes, Embedded Paths and Evolutionary Scheduling

function ω : X × K �→ X , where K defines a parameter set. By varying the
parameters across their whole range, we generate a set of neighbours

N(x) =
⋃

k∈ K

ω(x, k)

The induced ‘canonical’ distance measure dω can be constructed from

dω(u,v) = 1 ⇔ v ∈ N(u),

the distance between non-neighbours being defined as the length of the
shortest path between them.1 Thus, under the BSH operator described ear-
lier, the neighbourhood of (1, 2, 3, 4) is generated by the pairs of numbers
(i, j) = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, forming the set

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(2, 1, 3, 4)
(3, 1, 2, 4)
(4, 1, 2, 3)
(1, 3, 2, 4)
(1, 4, 2, 3)
(1, 2, 4, 3)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

These are all 1 unit distant from (1, 2, 3, 4), whereas a permutation such as
(2, 4, 1, 3), being one of the neighbours of (2, 1, 3, 4), is 2 units distant from
(1, 2, 3, 4).

A local search procedure uses an operator ω and a selection strategy S
to generate a sequence of points x0,x1, . . . ,xn, terminating at a local opti-
mum. Even in the case of simple local search there are different strategies. For
example, a best improving strategy finds xi+1 such that

xi+1 = arg max
y∈N(xi)

f(y) and f(xi+1) > f(xi),

stopping when the second condition cannot be met. In contrast, a first im-
proving strategy searches N(xi) in some order until it finds

f(y) > f(xi),

upon which it sets xi+1 = y, or stops if no such y can be found after searching
the whole neighbourhood. Such a search can be thought of as a function

µ : X �→ X

where if x is the initial point, xo = µ(x) is the local optimum that it reaches.
Each optimum xo

1, . . . ,x
o
ν (where ν is the total number of optima) then has a

basin of attraction whose normalized size is
1 There is generally at least one path between any pair of points for standard

operators—but we have allowed the possibility of an infinite distance in our for-
malization

34 Colin R. Reeves

pi =
|{x : µ(x) = xo

i }|

|X |

While these quantities are well defined for the case of best improvement,
using other strategies may affect the effective basin sizes, although they do
not change the number of optima.

It should be clear that, in using NS to solve COPs, the choice of N (or ω)
and S may have a significant effect on the quality of solution obtained. It would
be useful if it could be arranged that these decisions would lead to a landscape
in which the total number of was small, and in which the global
optimum had a large basin. Unfortunately, in the current state of knowledge
concerning landscapes, it is not generally possible to make such choices. There
are, however, some methods that can be employed to improve the chances of
finding high-quality solutions, and some of these will be addressed in the
remainder of this chapter.

3 Avoiding Local Optima

In recent years many strategies have been suggested for the avoidance of local
optima. For completeness, we refer here briefly to some of the most popular
techniques.

At the most basic level, we could use iterative restarts of NS from many
different initial points in what we hope are different basins, thus generating a
collection of local optima from which the best can be selected.

Simulated annealing uses a controlled randomization strategy—inferior
moves are accepted probabilistically, the chance of such acceptance decreasing
slowly over the course of a search. By relaxing the acceptance criterion in this
way, it becomes possible to move out of the basin of attraction of one local
optimum into that of another.

Tabu search adopts a deterministic approach, whereby a ‘memory’ is im-
plemented by the recording of previously-seen solutions. This record could be
explicit, but is often an implicit one, making use of simple but effective data
structures. These can be thought of as a ‘tabu list’ of moves which have been
made in the recent past of the search, and which are ‘tabu’ or forbidden for a
certain number of iterations. This prevents cycling, allows escape from basins
that are not too wide, and also helps to promote a diversified coverage of the
search space.

Perturbation methods improve the restart strategy: instead of retreating
to an unrelated and randomly chosen initial solution, the current local op-
timum is perturbed in some way and the heuristic restarted from the new
solution. Perhaps the most widely-known of such techniques is the ‘iterated
Lin-Kernighan’ (ILK) method introduced by Johnson [9] for the travelling
salesman problem.

There are other possibilities besides a random perturbation of the popula-
tion. Glover and Laguna [10] mentioned an idea called ‘path relinking’, which

optima

35Landscapes, Embedded Paths and Evolutionary Scheduling

suggests an alternative means for exploring the landscape. The terminology
does not describe exactly what is meant in the context of this paper: it is
points that are being linked, not paths; nor are the points being re-linked. For
this reason we have simply called it ‘path tracing’ [11].

Evolutionary algorithms (EAs) differ in using a population of solutions
rather than moving from one point to the next. Furthermore, new solutions
are generated from two (or, rarely) more solutions by applying a ‘crossover’
operator. Comments are often made to the effect that genetic or evolutionary
algorithms can ‘avoid local optima’. As an example of this, we quote none
other than John Holland himself—the ‘father of genetic algorithms’:

[A genetic algorithm] is all but immune to some of the difficulties—
false peaks, discontinuities, high dimensionality, etc.—that commonly
attend complex problems. [12]

Sadly, this is untrue. In practice, the points to which an evolutionary popu-
lation converge are often not local optima at all, in a well-defined sense, as
is shown by the many papers on EA applications where it is recommended
that a local search operator is applied to the ‘final’ population in order to
improve it. Recent theoretical work [13] has also shown that at least in the
case of binary strings, the ‘attractors’ of a GA (i.e., the points to which GAs
converge) even in the best case of an infinite population are merely local op-
tima of the associated Hamming landscape. For real, finite populations, the
attractors may have nothing to do with the concept of a local optimum.

EAs do not really have any inherent advantage over NS techniques, but
they can be encompassed within the NS framework, especially if we take the
path tracing analogy, as we shall discuss later in this chapter.

4 ‘Big Valleys’

Recent empirical analyses [14, 15, 16] have shown that, for many instances
of (minimization) COPs, the landscapes induced by some commonly-used op-
erators have a ‘big valley’ structure, where the local optima occur relatively
close to each other, and to a global optimum. This obviously suggests that in
developing algorithms, we should try to exploit this structure.

There is as yet no well-defined mathematical description of what it means
for a landscape to possess a ‘big valley’. The idea is a fairly informal one, based
on the observation that in many combinatorial optimization problems local
optima are indeed not distributed uniformly throughout the landscape. In the
context of landscapes defined on binary strings, Kauffman has been the pio-
neer of such experiments, from which he suggested several descriptors of a big
valley landscape [17]. (Because he was dealing with fitness maximization, he
used the term ‘central massif’, but it is clear that it is the same phenomenon.)

In the context of scheduling problems, Reeves [15] addressed the question
of the structure of the permutation flowshop scheduling problem (PFSP). This

36 Colin R. Reeves

problem can be defined as follows:
if we have processing times p(i, j) for job i on machine j, and a job permu-
tation π = {π1, π2, · · · , πn}, where there are n jobs and m machines, then we
calculate the completion times C(πi, j) as follows:

C(π1, 1) = p(π1, 1)

C(πi, 1) = C(πi−1, 1) + p(πi, 1) for i = 2, . . . , n

C(π1, j) = C(π1, j − 1) + p(π1, j) for j = 2, . . . , m

C(πi, j) = max{C(πi−1, j), C(πi, j − 1)} + p(πi, j)

for i = 2, . . . , n; j = 2, . . . , m

We define the makespan as

Cmax(π) = C(πn,m).

The makespan version of the PFSP is then to find a permutation π
∗ that

minimizes this value. While it is the problem with the makespan objective
that has received most attention, other objectives can also be defined. For
example, we could seek to minimize the mean flow-time (the time a job spends
in process), or the mean tardiness (assuming some deadline for each job). If
the release dates of all jobs are zero (i.e., all jobs are available at the outset),
the mean flow-time objective reduces to minimizing

Csum(π) =

n
∑

i=1

C(πi,m).

We call this the flowsum version of the PFSP. Methods of solving this problem
and many others are comprehensively described in [5].

The research reported in [15] showed that for the well-known benchmark
problem instances complied by Taillard [18] this big valley structure was in-
deed evident2. As the idea of the big valley is not mathematically well-defined,
a set of statistical methods is generally used for establishing its existence. By
repeatedly sampling from different start points, it is possible to draw some
conclusions. The methodology used assumes we can measure the distance
between points—in particular, the distance of a given point from the global
optimum. This raises two questions: firstly, we may not know where the global
optimum is; secondly, although the landscape formulation is posed in terms
of a distance measure d, the practical instantiation of a given algorithm is
in terms of a neighbourhood operator ω. Of course, this implies a distance

2 Taillard’s benchmarks are widely used. They were obtained by generating a large
number of instances for selected values of n and m, using independently and
identically distributed processing times pij—the distribution being U(1, 99). The
benchmarks were then the 10 instances for each (n, m) that proved hardest to
solve using a state-of-the-art TS method.

37Landscapes, Embedded Paths and Evolutionary Scheduling

measure dω, but we need to calculate a shortest path in terms of the number
of applications of ω, whereas we would like a simple formula. This is especially
the case in the context of scheduling and permutation operators.

4.1 Practical distance measures

In [15] four easily calculated distance measures were investigated between two
solutions, represented by the permutations π and π

′. Of these, the following
two measures seemed to provide sensible results:

• The precedence-based measure counts the number of times job j is
preceded by job i in both π and π

′; to obtain a ‘distance’, this quantity is
subtracted from n(n − 1)/2.

• The position-based measure compares the actual positions in the se-
quence of job j in each of π and π

′. For a sequence π its inverse per-
mutation σ gives the position of job πi (i.e, σπi

= i). The position-based
measure is then just

n
∑

k=1

|σk − σ′
k|.

While these measures are simple to calculate, they are independent of the
operator ω, and the question remains as to whether they express the features
of the landscape appropriately. Recently, Schiavinotto and Stützle [19] have
given algorithms for the efficient calculation of operator-dependent distances.
They further show that the precedence-based and position-based measures are
not necessarily well-aligned with these ‘true’ distances measured in terms of ω,
which they therefore recommend. However, whether that is actually relevant
is still a moot point. In unpublished work by Yamada and Reeves, prior to the
research reported in [20], an intensive examination of the local optima of one
PFSP instance (Taillard’s problem #11) was carried out. It was found that
the distribution of the best local optima relative to different distance measures
was much more highly correlated with the two operator-independent measures
described above. In other words, the big valley was less visible if we insisted
on measuring distances in terms of ω—in this case EX. Table 1 presents these
data as a table in order to emphasize this point.

The distances in this table have been normalized by dividing by the maxi-
mum value of the respective distance measure. As can readily be seen, many—
in fact, most—of the very good local optima are quite far away from the global
optimum: 9.44% are in fact almost as far as it is possible to be. In contrast,
using dprec ensures that more than 99% of the local optima are within 40% of
the maximum distance from the global optimum. Admittedly, this is based on
a single instance, but it demonstrates that making assumptions about land-
scapes carries a certain risk!

38 Colin R. Reeves

distance x-distance

measure 0 < x < 0.2 0.2 < x < 0.4 0.4 < x < 0.6 0.6 < x < 0.8 0.8 < x < 1

dprec 38.16 61.12 0.72

dEX 0.72 3.48 22.96 63.40 9.44

Table 1. Contingency table for the distribution of the best local optima in the
landscape (defined as those within 20% of the value of the global optimum). The x-

distance here is (normalized) dprec and dEX respectively, measured from the global
optimum. The table entries are the percentages of the total number of local optima
falling in each cell.

4.2 Experimental results

A series of experiments was carried out in [15] in order to establish the ex-
istence of a big valley, at least in an intuitive sense. Correlation coefficients
between distance (in the sense of the position or precedence measures) and
quality (measured as distance from the global optimum) were calculated from
50 independent local searches in 50 problem instances of varying size [18]. The
significance of these correlations was assessed by means of a randomization
test; in nearly all cases they were adjudged to be very different from zero. This
supports the conjecture that local optima cluster in the search space relatively
close to the global optimum (or to a global optimum—the possibility of there
being several global optima was also considered).

5 Path Tracing for the PFSP

Similar results concerning the existence of big valleys have been reported
for scheduling—and indeed, for other COPs—by several different research
teams [14, 16, 21, 22]. The point of analyses such as these is not just their
intrinsic interest, but also the fact that they stimulate ideas for algorithmic
development.

In the context of evolutionary algorithms, the notion of crossover is well-
positioned for the exploitation of big valley structures. It can readily be seen
that for most crossover operators, the children constructed are ‘between’ their
parents, in the sense that as we trace a path from one parent to the other one,
the set of points through which we pass are the potential children from that
operation. Thus genetic crossover can be embedded in a local search frame-
work. In the initial stages, the search concentrates on finding a population
of diverse but high-quality (probably locally-optimal) points. One of these is
selected as a parent for ‘seeding’ a short-term local search, in which another
is the ‘goal’. The search proceeds by tracing a path that approaches the goal,
using an operator-independent measure of distance. A diagrammatic repre-
sentation of this approach is displayed in Figure 1. If a promising region is

39Landscapes, Embedded Paths and Evolutionary Scheduling

encountered along the path—as might be expected if a ‘big valley’ exists—
there is the opportunity to find better solutions than those already in the
population.

Parent1 Parent2

Offspring

OP

Fig. 1. Path tracing and local search: The search traces a path from the initial
parent towards the target using a neighbourhood operator ‘OP’. In the ‘middle’ of
the search, good solutions may be found somewhere between the parents. A local
search can then exploit this new starting point by climbing towards the top of a hill
(or the bottom of a valley, if it is a minimization problem)—a new local optimum.

The algorithm described in [20] made use of this interpretation of crossover
(and a similar one for mutation), and produced very high-quality results for
the makespan version of the PFSP. As these are readily available in the liter-
ature, and have in any case since been superseded by the work of Grabowski
and Wodecki [23]3, we will not repeat them here.

However, the results for the corresponding flowsum problem instances may
be less well-known.

5.1 The flowsum case

The flowsum version of the PFSP has not been subject to the same intensity
of investigation as the makespan version. Optimal solutions for the Taillard
benchmarks are not known for this case. The problems are more difficult to op-
timize, mainly because the calculation of the objective function is more time
consuming, good lower bounds are hard to generate, and problem specific
knowledge such as critical blocks cannot be used. Some constructive algo-
rithms based on heuristic rules have been suggested [24], and improved [25],

3 This algorithm is a highly tailored tabu search method based on the idea of
‘critical blocks’ to focus the search more efficiently

40 Colin R. Reeves

but better quality solutions can be generated by the approach described in
this paper.

Basically, the approach to the flowsum problem was the same as the one
tested on the makespan version. Some differences were inevitable—for exam-
ple, in the makespan case, we could exploit the idea of critical blocks to speed
up the computation, but this is not relevant to the flowsum case.

Also, it was found that the search could cycle, revisiting points using a
standard pattern of moves. This is classic tabu search (TS) territory, and
this implementation enables us to make use of TS ideas of adaptive memory
[10], which would be less convenient in a more traditional EA. More extensive
details of the algorithm are available in [26]; here we just display an updated
version of some of the results.

Quite consistent results were obtained, i.e. 6 runs were made, and almost
all of them converged to the same job sequence in a short time (from a few
seconds to a few minutes). The best results (and they are also the average re-
sults in most cases) are reported in Table 2 together with the results obtained
by a more recent constructive method (LR) as reported by Liu and Reeves
[25].

20 × 5 20 × 10 20 × 20
prob best LR prob best LR prob best LR

1 14033 14226 11 20911 21207 21 33623 34119

2 15151 15446 12 22440 22927 22 31587 31918

3 13301 13676 13 19833 20072 23 33920 34552

4 15447 15750 14 18710 18857 24 31661 32159

5 13529 13633 15 18641 18939 25 34557 34990

6 13123 13265 16 19245 19608 26 32564 32734

7 13548 13774 17 18363 18723 27 32922 33449

8 13948 13968 18 20241 20504 28 32412 32611

9 14295 14456 19 20330 20561 29 33600 34084

10 12943 13036 20 21320 21506 30 32262 32537

Table 2. Taillard’s benchmark results (20 jobs) compared with best values found
by the Liu-Reeves (LR) constructive algorithm.

The next group of problems (50× 5 and 50× 10) are much more difficult.
In each run the best results were different. Ten runs were carried out for each
problem with different random seeds. A population size of 30 was used; other
parameters are stated in [26]. It takes 45 minutes per run for 50× 5 instances
and 90 minutes for 50 × 10.

It is not certain how good these solutions are. Certainly, they improve
on the constructive method by a useful margin, but the lower bounds are
some way off (on average around 30%—but they are probably not very good
bounds). Even for the easier problems in Table 2, there is no guarantee that

41Landscapes, Embedded Paths and Evolutionary Scheduling

50 × 5 50 × 10
prob best mean LR prob best mean LR

31 64860 64934.8 65663 41 87430 87561.4 88770

32 68134 68247.2 68664 42 83157 83305.8 85600

33 63304 63523.2 64378 43 79996 80303.4 82456

34 68259 68502.7 69795 44 86725 86822.4 89356

35 69491 69619.6 70841 45 86448 86703.7 88482

36 67006 67127.6 68084 46 86651 86888.0 89602

37 66311 66450.0 67186 47 89042 89220.7 91422

38 64412 64550.1 65582 48 86924 87180.5 89549

39 63156 63223.8 63968 49 85674 85924.3 88230

40 68994 69137.4 70273 50 88215 88438.6 90787

Table 3. Taillard’s benchmark results (50 jobs) compared with the best values
found by the Liu-Reeves (LR) constructive algorithm.

the best solutions obtained so far are optimal, although they are closer to their
lower bounds. For the problems in Table 3, the best results could probably
still be improved by increasing the amount of computation. For example, a
solution to problem 31 was found with Csum = 64803 by an overnight run.

5.2 Constructive heuristics and the big valley

If available computational effort is limited, there may be advantages in adopt-
ing a constructive approach. We have already mentioned the method of Wang
et al. [24], which produces reasonably good solutions to the flowsum prob-
lem rather cheaply. In [25] this method was further improved using several

above), they were obtained extremely quickly.
However, the interesting feature of these results was that the quality of

the different constructive heuristics was also related to the big valley. For
each of the Taillard 20-machine problems (30 instances in all), the solutions
found by the different heuristics were stored, and their average distance from
a set of 50 distinct local optima (obtained by restarts) was calculated. For
comparison, the distance of a random permutation from the same set of local
optima was also calculated. The distance measures used were the ‘precedence’
and ‘position’ based measures already defined, and the results showed that the
sequences generated by the new heuristics were much closer to the local optima
than those generated by the older ones, and very much closer than a random
permutation. On other words, good constructive heuristics also tend to find
solutions near a big valley. Thus, an initial sequence generated by these new
heuristics would provide a closer (and thus probably better) starting point for
a subsequent local search than a random permutation. Not only will the search
then take fewer steps, but by starting nearer the big valley, it also increases

42 Colin R. Reeves

2-3% worse than those obtained by path tracing (as quoted in Tables 2 and 3
different modifications; although the results obtained were still typically

the chance of converging to a ‘good’ local optimum rather than to a poor one.
Thus the better performance of the new heuristics could be attributed to their
ability to locate the ‘big valley’ better than the older ones, even though no
reference to notions of a landscape was made in constructing them.

5.3 Instances without big valleys

Although the big valley seems a constant feature of almost all randomly gen-
erated instances of a diverse set of problems, it should not be assumed that
such a structure necessarily exists in any COP. At least in the case of schedul-
ing problems, we have some evidence to identify the factors that influence
whether or not a big valley exists.

Watson et al. [22] carried out extensive experimental investigations into
this question for the PFSP. Rinnooy Kan [27] seems to have been the first to
note that the existence of structural relationships in the processing times of
jobs may have an important effect on algorithm performance. He highlighted
two aspects of non-random structure: processing times with a gradient of times
across machines, and a correlation of times within jobs. Later Reeves [28] also
noticed that problem instances generated to have these characteristics were
relatively easy to solve—especially those with time gradients, and speculated
that

the topography of the solution space for such cases is fairly smooth, so
that getting stuck in a deep local minimum is unlikely.

Watson et al. set out to examine this conjecture by generating a large number
of PFSP instances with differing degrees of both job-related and machine-
related correlation, as well as a group of problem instances exhibiting degrees
of both types of correlation. They discovered that the big valley (as measured
by fitness-distance correlations amongst local optima) became less and less
evident as the amount of non-random structure in the generating mechanism
was increased. Partly this seemed to be associated with the emergence of
‘plateaux’ in the landscape—regions where neighbouring search points had
identical fitness values. Some of the plateaux were very extensive, making the
search for ‘exits’ to regions of lower value quite time-consuming. It might be
conjectured that algorithms such as tabu search and path tracing should have
an advantage in such cases, in that they encourage wide exploration. How-
ever, Watson et al. found that, as the big valley faded away, the instances
became generally easier to solve, in the sense that finding a ‘good’ solution
(one very close to a lower bound) could be achieved quite quickly by an un-
sophisticated local search without the extra complexity associated with GAs,
tabu search or path tracing. It would appear that structure of the type they
investigated encourages the development of a smooth and shallow landscape
with relatively little difference between good and bad solutions. The only fit-
ness objective considered in these experiments was makespan, so it is not clear
whether landscapes associated with other objectives would behave similarly.

43Landscapes, Embedded Paths and Evolutionary Scheduling

The makespan objective, for example, might be much more likely to give rise
to the occurrence of plateaux than the flowsum.

6 Estimating the Number of Optima

A common theme in all heuristic methods for scheduling is the occurrence
of local optima. Evolutionary methods, despite optimistic statements to the
contrary by some very eminent people4, do not avoid this problem. In fact,
on their own, EAs may not even converge on a local optimum. It is for this
reason that many authors have advocated the use of local search operators
within an EA framework, either as a final refinement mechanism, or as an
integral part of the algorithm. These ideas have become so widely advocated
that there is now a sub-branch of EAs wholly devoted to such methods, which
usually go under the name of ‘memetic algorithms’5.

Among the properties that make a problem instance difficult, it is rea-
sonable to suppose that the number of local optima is one, although not the
only one. It is important to emphasize again that optima are not independent
properties of the problem instance, as the landscape being searched is in part
determined by the actual operators and search strategy used. That some op-
erators are more effective than others is borne out by those (e.g. Weinberger
[30] and Stadler [6]) who have advocated the use of autocorrelation measures
to compare the landscapes that they induce. However, this approach is in-
direct; counting the number of optima (the parameter ν of section 2) in the
landscape induced by different operators would provide an objective way of
comparing operators. The problem is, of course, that counting them all means
visiting every point in the search space.

It is possible, however, to obtain some statistical estimates, both of the
total number of optima, and of the probability of having found all the optima
during a less-than-exhaustive search. A recent review of these methods can be
found in [31]; this chapter will treat them briefly in the context of scheduling.

It is assumed that a heuristic search method can be restarted many times
using different initial solutions. Given the landscape framework we have dis-
cussed above, by randomly generating initial solutions, we will sample many
basins of attraction. Suppose that after r restarts we obtain a set of local
optima {xo

1, . . . ,x
o
k}, i.e. the number of distinct optima is k. We would like to

4 The remark of Holland, quoted in section 3, is one example, but many others can
be found in the literature without too much searching. Numerous authors, for
instance, blithely describe EAs as a global rather than a local search method.

5 The terminology arises from the word ‘meme’ invented by Richard Dawkins. The
notion of a meme is controversial, being described by some as hilariously simplistic

this is not the place for a philosophical debate. The term ‘memetic’ is at least a
useful one to identify this particular area of EAs.

44 Colin R. Reeves

and even totally vacuous. There is a lot more to be said about memes [29], but

use these data to estimate the actual number of optima ν. Various statistical
models may be used.

6.1 Waiting-time model

We can formulate the distribution of the waiting-time to find all optima. If r
exceeds k substantially, we can use this fact to estimate the probability that
all optima have been found. This would also imply, a fortiori, that a global
optimum had been found, and thus provides us with an objective confidence
level concerning the quality of the best solution obtained.

6.2 Counting model

In the event, unfortunately common, that k is not much smaller than r, it is
unlikely that we have seen many of the optima. However, a counting model
can be used to estimate the value of ν, in a similar way to those models used
by ecologists to estimate the size of an unknown animal population. This can
be quite illuminating in showing the differences between landscapes generated
by different neighbourhood operators.

The approach was applied to solve the flowsum version of the PFSP for
some of the Taillard benchmarks. This showed that the estimated number of
optima induced by the 5 different operators defined in [15] varied substantially.
Estimates for a few representative problem instances are shown in Table 4.6

Problem INV FSH EX BSH SH composite

ta01 335535 220753 26715 13210 2033 1259

ta02 † 2000333 † 2000333 99274 399457 73264 8015

ta03 † 2000333 † 2000333 124276 79510 8755 2913

ta04 † 2000333 † 2000333 82646 28292 5486 4530

ta05 671080 10192 6026 3871 675 442

ta06 399457 986749 9077 5960 1114 622

ta07 671080 987240 29177 220753 33222 2860

ta08 986749 987746 42799 54828 4090 1834

ta09 987240 † 2000333 284360 58252 11229 5076

ta10 † 2000333 † 2000333 36392 110376 9631 2842

Table 4. Estimated numbers of optima for the 20-job, 5-machine instances devised
by Taillard [18], designated ta01-ta10 respectively. The estimates were based on 2000
independent restarts. Far from finding all optima, in several cases, marked as †, all
2000 optima found were distinct, so no estimate was possible at all. The values for
these cases are therefore merely estimated lower bounds for ν.

6 While these results have been reported verbally at a conference, they have not
formally been published before.

45Landscapes, Embedded Paths and Evolutionary Scheduling

As these benchmarks have 20! ≈ 2.4 × 1018 solutions, it is impossible
in any reasonable computing time to verify the accuracy of these estimates.
However, for some 10-job problems it was possible to enumerate the search
space and check the total number of optima: the estimates tended to be neg-
atively biased—i.e., the estimate of ν was consistently smaller than the true
value. However, the effect was fairly uniform across all operators, so the rank
ordering was not affected.

There is clearly a considerable, and perhaps unexpected, difference be-
tween the landscapes induced by different operators in Taillard’s first 10
benchmarks. Those associated with INV and FSH clearly have an extremely
large number of optima, and while, taken overall, BSH is roughly comparable
with EX, FSH is clearly inferior. Yet the size of all the neighbourhoods gener-
ated by these operators is of the same order [15], although SH, being composed
of two other neighbourhoods, is roughly twice as large as all the others. How-
ever, although FSH on its own appears rather feeble, when combined with
BSH (in the form of SH) the estimated number of optima reduces signifi-
cantly. Finally, using a composite of all 5 neighbourhoods is very worthwhile;
as observed in [15], the sets of local optima found by the different operators
are fairly disjoint. The complexity of searching the composite neighbourhood
is not increased (although of course the actual run time is), yet the landscape
induced seems considerably less rugged.

6.3 Non-parametric estimates

Fairly restrictive assumptions are needed in order to obtain tractable statis-
tical models of landscapes, and as indicated above, the evidence suggests this
results in a negative bias. Removing the assumptions by creating more pow-
erful parametric models leads to theoretical and numerical difficulties, but
non-parametric approaches are possible, and have been found to provide im-
proved estimates of ν, although the problem of negative bias remains [31].
Different sampling methods may also improve performance, as suggested (in
a different context) by [32].

Further work is necessary in this area, but as well as providing a clear basis
for discriminating between operators, there is the prospect of more principled
techniques for assessing the quality of heuristic solutions, and for formulating
termination criteria.

It is also true that the work reported here relates more strictly to local
search than to evolutionary algorithms. However, as pointed out earlier, EAs
have ‘attractors’, and they appear to be closely linked to the concept of a local
optimum in a related landscape [13]. It is therefore entirely plausible to apply
the same methods to the problem of estimating the number of attractors in
an EA ‘landscape’.

46 Colin R. Reeves

7 Conclusions

Evolutionary scheduling is a fast-moving field, with many different aspects
seeing significant progress. This chapter has reviewed the application of
landscape-related concepts, and some ways in which they can help in the de-
velopment of new algorithms. In particular, the notion of an embedded path
seems a rather fruitful way to understand and enhance the idea of crossover.
Secondly, the number of local optima in the landscape can be estimated in
order to improve (or possibly, to provide for the first time) quality assurance
for the results of heuristic search methods.

Further theoretical work is needed: it would be helpful if we could provide
a formal definition of what it means for a ‘big valley’ structure to exist, and
how it could be related to mathematical constructs associated with neigh-
bourhood structures. Can we more rigorously characterise classes of problems
and neighbourhood structures for which it does not occur, as suggested by
Watson et al. [22]?

More generally, it is clear that crude correlation measures are a very rough
guide to the nature of a landscape instance, and we need to find better ways
of characterising landscapes from empirical measurements. Extension of the
idea of a ‘barrier tree’ [33] to scheduling problems may be of assistance here.

References

1. Reeves CR (ed) (1993) Modern Heuristic Techniques for Combinatorial Prob-
lems. Blackwell Scientific Publications, Oxford, UK (Re-issued by McGraw-Hill,
London, UK (1995).)

2. Aarts E, Lenstra JK (eds) (1997) Local Search in Combinatorial Optimization.
John Wiley & Sons, Chichester

3. Glover F, Kochenberger GA (eds) (2002) Handbook of Metaheuristics, Kluwer
Academic Publishers, Norwell, MA

4. Burke EK, Kendall G (eds) (2005) Search Methodologies: Introductory Tutori-
als in Optimization and Decision Support Methodologies. Springer, New York

5. Morton TE, Pentico DW (1993) Heuristic Scheduling Systems, Wiley, NY
6. Stadler PF (1995) Towards a theory of landscapes. In: Lopéz-Peña R, Capovilla

R, Garćıa-Pelayo R, Waelbroeck H, Zertuche F (eds) Complex Systems and
Binary Networks. Springer, Berlin

7. Reeves CR, Rowe JE (2002) Genetic Algorithms - Principles and Perspectives.
Kluwer Academic Publishers, Norwell, MA

8. Reeves CR (2005) Fitness Landscapes In: Burke EK, Kendall G (eds) (2005)
Search Methodologies: Introductory Tutorials in Optimization and Decision
Support Methodologies. Springer, New York

9. Johnson DS (1990) Local optimization and the traveling salesman problem. In:
Goos G, Hartmanis J (eds) (1990) Automata, Languages and Programming,
Lecture Notes in Computer Science 443. Springer, Berlin

10. Glover F, Laguna M (1993) Tabu Search. In: Reeves CR (ed) (1993) Modern
Heuristic Techniques for Combinatorial Problems. Blackwell Scientific Publica-
tions, Oxford, UK

47Landscapes, Embedded Paths and Evolutionary Scheduling

11. Reeves CR, Yamada T (1999) Goal-Oriented path tracing methods. In: Corne
DA, Dorigo M, Glover F (eds) (1999) New Methods in Optimization, McGraw-
Hill, London

12. Holland JH (1986) Escaping brittleness: The possibilities of general-purpose
learning algorithms applied to parallel rule-based systems. In: Michalski RS,
Carbonell JG, Mitchell TM (1986) Machine Learning II. Morgan Kaufmann,
Los Altos, CA

13. Reeves CR (2003) The ‘crossover landscape’ and the Hamming landscape for
binary search spaces. In: De Jong KA, Poli R, Rowe JE (eds.) Foundations of
Genetic Algorithms 7. Morgan Kaufmann, San Francisco, CA

14. Boese KD, Kahng AB, Muddu S (1994) Operations Research Letters 16:101-113
15. Reeves CR (1999) Annals of Operational Research 86:473-490
16. Merz P, Freisleben B (1998) Memetic algorithms and the fitness landscape of the

graph bi-partitioning problem. In: Eiben AE, Bäck T, Schoenauer M, Schwe-
fel H-P (eds) (1998) Parallel Problem-Solving from Nature—PPSN. Springer,
Berlin

17. Kauffman S (1993) The Origins of Order: Self-Organisation and Selection in
Evolution. Oxford University Press, Oxford

18. Taillard E (1993) European J Operational Research 64:278-285
19. Schiavinotto T, Stützle T (2006) To appear in: Computers and Operations

Research. (Available online at doi:10.1016/j.cor.2005.11.022)
20. Reeves CR, Yamada T (1998) Evolutionary Computation 6:45-60
21. Levenhagen J, Bortfeldt A, Gehring H (2001) Path tracing in genetic algorithms

Applications of Evolutionary Computing. Springer, Berlin
22. Watson J-P, Barbulescu L, Whitley LD, Howe AE (2002) INFORMS J Com-

puting 14: 98-123
23. Grabowski J, Wodecki, M (2004) Computers and Operations Research 31:1891-

1909
24. Wang C, Chu C, Proth J (1997) European J Operational Research 96:636-644
25. Liu J, Reeves CR (2001) European J Operational Research 132:439-452
26. Yamada T, Reeves CR (1998) Solving the Csum permutation flowshop schedul-

ing problem by genetic local search. In: Proc. of 1998 International Conference

27. Rinnooy Kan AHG (1976) Machine Scheduling Problems: Classification, Com-
plexity and Computations. Martinus Nijhoff, The Hague, NL

28. Reeves CR (1995) Computers & Operations Research 22:5-13
29. McGrath A (2005) Dawkins’ God: Genes, Memes and the Meaning of Life.

Blackwell, Oxford, UK.
30. Weinberger ED (1990) Biological Cybernetics 63:325-336
31. Reeves CR, Eremeev AV (2004) J Operational Research Society 55:687-693
32. Reeves CR, Aupetit-Bélaidouni MM (2004) Estimating the number of solutions

Nature—PPSN VIII, LNCS3242. Springer, Berlin
33. Reidys CM, Stadler PF (2002) SIAM Review 44:3-54

48 Colin R. Reeves

applied to the multiconstrained knapsack problem. In: Boers EJW et al. (eds)

for SAT problems. In Yao X et al. (eds.) (2004) Parallel Problem-Solving from

on Evolutionary Computation, 230 –234. IEEE Press

Scheduling of Flow-Shop, Job-Shop, and

Combined Scheduling Problems using MOEAs

with Fixed and Variable Length Chromosomes

Mark P. Kleeman and Gary B. Lamont

Department of Electrical and Computer Engineering
Graduate School of Engineering

Air Force Institute of Technology, Wright-Patterson AFB, Dayton, OH 45433, USA,
mark.kleeman@afit.edu, gary.lamont@afit.edu ⋆

Abstract. This chapter introduces the novel multi-component schedul-
ing problem, which is a combination of the generic flow-shop and job-shop
(or open-shop) problems. This chapter first presents an overview of five
common scheduling models and examples of how they are solved. A de-
scription of some of the most common chromosome representations and
genetic operators is also presented. The chapter also discusses some of
the real-world problems that can be modelled using the proposed multi-
component scheduling model. In particular, the multi-component engine
maintenance scheduling problem is presented and solved using a multi-
objective evolutionary algorithm (MOEA) called GENMOP. A variable
length chromosome is used by the MOEA in order to address problem
specific and generic characteristics. The experimental results compare
favorably to baseline values, indicating that GENMOP can effectively
solve multi-component scheduling problems. Overall, this chapter intro-
duces a new category of scheduling problems that is quite common in
real world problems and presents an example of the problem. By intro-
ducing this new category, which can have peculiarities that differ from

other scheduling categories, researchers can build upon work done by
others in this field.

1 Introduction

Scheduling problems are quite common in the evolutionary algorithm (EA) lit-
erature. The focus of much of the literature is on solving a particular type of
scheduling problem, such as a flow-shop or job-shop problem. While many prob-
lems can be modelled as a single type of scheduling problem, there are real-
world problems that require a combination of scheduling descriptions in order to
model the problem domain. These types of problems are typically NP-Complete.
Thus, stochastic methods are typically used. For scheduling problems that have

⋆ The views expressed in this article are those of the authors and do not reflect the
official policy of the United States Air Force, Department of Defense, or the United
States Government.

M.P. Kleeman and G.B. Lamont: Scheduling of Flow-Shop, Job-Shop, and Combined Scheduling
Problems using MOEAs with Fixed and Variable Length Chromosomes, Studies in Computational

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007
Intelligence (SCI) 49, 49–99 (2007)

“ ”

multiple objectives, a multi-objective EA (MOEA) is suggested. In this chapter,
generic scheduling models (flow-shop, flexible flow-shop, job-shop, flexible job-
shop, and open-shop) are discussed from which the multi-component scheduling
problem is derived.

Section 2 elaborates various scheduling problems and introduces the multi-
component scheduling model. Section 3 discusses various chromosome represen-
tations and operators that researchers have applied to scheduling problems. Sec-
tion 4 provides examples of how some researchers have approached these schedul-
ing problems. Section 5 lists several examples of where the multi-component
scheduling model would be useful in the real-world. It also explains why MOEAs
are useful for solving the multi-component scheduling problem, and a specific
algorithm is selected. Additionally, a description of a specific real-world multi-
component scheduling problem that is solved is presented. Of particular interest
is a variable length chromosome structure and an associated repair function.
Section 6 discusses the design of the experiments, and provides an analysis of
the experimental results. The experiments are based on the scheduling of five
and ten aircraft engines for maintenance. Section 7 presents an analysis of the
results and future work.

2 Scheduling Problems

In this section, several of the most common scheduling problems are defined.
In particular, five different scheduling models (flow-shop, flexible flow-shop, job-
shop, flexible job-shop, and open-shop) are presented [1]. Each of these models
are used to find the best schedule based on the particular objective functions the
researcher chooses to optimize. Common objectives are finding the schedule with
the minimum completion time for the last job (makespan), the total amount of
time each job is processed (total flow time), and the sum of the weighted com-
pletion times of all the jobs (total weighted flow time) [2]. The evolution of the
new multi-component scheduling problem, as derived from these models, is re-
flective of a more realistic scheduling paradigm. This is because in the real world,
many problems are actually a mix of two (or more) models. In this section, a
graphical depiction of each model is presented, with a reference to mathematical
models. Since different authors describe the same models in a variety of ways,
multiple references are provided for the detailed description of the models. Also
note that a scheduler typically takes input data, such as a chromosome, or some
set of dispatching rules, and determines the order in which jobs are processed
on machines. State information may or may not be used in order to determine
what jobs to schedule next.

2.1 Flow-Shop

The flow-shop scheduling problem consists of m machines and n jobs. The sched-
uler’s objective is to find an optimal ordering of m machines for the n jobs. All m
machines are situated in a defined series. All n jobs have to be processed on each

50 M.P. Kleeman and G.B. Lamont

machine. Therefore, each job has to go through m operations. All the jobs must
follow the same routing along the series of machines. Once a job is completed
on one machine, it is placed into the queue of the next machine in the series.
Normally, jobs are removed from the queue on a first-in, first-out (FIFO) basis,
but this can be modified to fit the needs of the problem, such as higher priority
jobs could be bumped to the front of the queue.

An example of a flow-shop problem is an assembly line. A factory may want
to produce 1000 identical cars. To do this, a scheduler starts the 1000 jobs
at a machine and once the operation is complete, the car is sent to the next
station. This process continues until the car has been to every station. Detailed
descriptions of this problem can be found in [1, 3]. Figure 1 is an example of the
flow-shop example where each job flows in an orderly fashion from one machine to
the next. In the example, there are j number of jobs and m number of machines,
where J1 is the first job and M1 is the first machine.

The search landscape for this problem is generally very smooth, where small
permutations typically lead toward better solutions. For small problem sizes,
deterministic approaches, such as branch and bound algorithms [4] are used.
But for larger instances, stochastic methods, such Tabu search [5], ant colony
optimization [6], and EAs [7] are used. Since the landscape for most problems
is relatively smooth, algorithms with local search techniques typically have the
best results.

2.2 Flexible flow-shop

The flexible flow-shop problem is an extension of the flow-shop problem. This
model includes the use of parallel machines in combination with the flow-shop
problem. So instead of there being m machines in series, there is a series of m
stages, with each stage having one or more machines. The scheduler’s objective is

51Multi-Component Scheduling

Fig. 1. Diagram of the generalized flow-shop problem.

M1 M2 Mm -1 MmJ1J2Jj -1Jj
…

m Machines

…

j Jobs

Each job is processed through a series

of m machines in a set order

to find an optimal ordering through m stages for the n jobs, by taking advantage
of the multiple machines in one or more stages. All the jobs still have to be
processed by one machine in each stage, but by having multiple machines doing
the same job, bottlenecks can be alleviated. Detailed descriptions of this problem
can be found in [1, 8]. Figure 2 shows an example of the flexible flow-shop problem
where multiple machines can do the operation in order to limit bottlenecks in
the process. The machines has a label, Mx−y where the x signifies the stage the
machine belongs to and the y is the machine number in that stage. So M1−h

is the h machine in stage 1. Note that the stages may have a differing number
of machines. This is why different variables are used for the y values of the last
machine in each stage.

Flexible flow-shop problems are very similar to flow shop problems. This is
due in part to the search landscapes being similar to one another. As such, the
algorithms that are effective for solving flow-shop problems, are typically also
effective on flexible flow-shop problems.

2.3 Open-shop

The open-shop scheduling problem consists of m machines and n jobs. Each of
the n jobs has to be processed on each of the m machines. But this requirement
is not steadfast, as the processing time for some jobs can be zero on certain
machines. There is no set order for routing the jobs through the machines. The

52 M.P. Kleeman and G.B. Lamont

Fig. 2. Diagram of the generalized flexible flow-shop problem.

M1-1 M2-1 Mm-1

J1J2Jj -1Jj

…

m stages

…

j Jobs

Each job is processed through a series of

m stages in a set order. A job is processed

on only one machine per stage

Stage

1

Stage

2

Stage

m

M1-h

…

M2-i

… …

Mm-j

scheduler is determining the order each job is processed by the machines. This
allows for different jobs to have different routes. Detailed descriptions of this
problem can be found in [1, 9, 10]. Some examples of applications of the open-

The open-shop problem is decidedly different than the job-shop problem.
Some jobs can skip machines and they can be scheduled in any order. Note that
the open-shop problem has no constraints, so all tasks are independent of each
other. See Figure 3 for an example of the open-shop problem, where each job
can be processed through the machines in no particular order.

Like the flow-shop problem, exact methods, such as branch and bound algo-
rithms [14], are typically used to solve small instances of this problem. Similarly,
Tabu search [15] and hybrid EAs [10] are commonly used to find solutions to
larger problems. But unlike the previous two problems, the search landscape
for the open shop problem is a little more rugged, with more peaks and val-
leys. This is largely due to the number of combinations that the machines can
be traversed. The problem domain also plays a big part in the smoothness of
the search space. If the problem domain creates few conflicts between the jobs,
then the search space will typically be smoother than a problem that has many
conflicting possibilities.

2.4 Job-shop

For the job-shop problem model, unlike the flow-shop problem, each job has its
own route to follow. The scheduler’s objective is to find an optimal ordering of all
the jobs with respect to their varied routing requirements through the machines.

53Multi-Component Scheduling

shop problem can be found in [9, 11–13].

Fig. 3. Diagram of the generalized open-shop problem.

M1

M2

Mm -1

Mm

J1J2Jj -1Jj

…

m Machines

…

j Jobs

Each job is processed through m

machines in no particular order

Jobs initially
assigned to any

machine

With job-shop problems, they can be modelled by having jobs visit any machine
at most one time, or they can be created to allow for multiple visits to machines
[1].

The job-shop is more applicable to real-world problems than the open-shop,
since each job follows its own predetermined route. This model takes into con-
sideration any dependencies a task may have with respect to another task. An
example of this would be an assembly line that processes multiple products at
the same time. Not all products may need to be processed by the same ma-
chines, therefore their routes would be different based on the needs of the job.
This problem has received considerable attention in the literature [1]. Detailed
descriptions of this problem can be found in [1, 3]. Figure 4 shows an example of
the job-shop problem, where each job follows its own path through the various
machines. The machines in the example are labelled as Mx,y where the x repre-
sents the job number and y represents the location of the machine with respect
to the other machines. So machine M1,3 be used for job 1 before M1,4, since
it is the third machine in the route and M1,4 is the fourth machine. Note that
not all jobs require the same number of machines. In order to show that each
route may have a different number of machines, each route ends with a different
variable for y. Also note that there are m total machines. Each row in the figure

54 M.P. Kleeman and G.B. Lamont

represents the ordering of a job with respect to the same m machines.

Fig. 4. Diagram of the generalized job-shop problem.

M1,1 M1,2 M1,u-1 M1,uJ1

J2

Jj -1

Jj

…

m Machines

…

j Jobs

Each job follows its own route through

the machines. Not all m machines may

be visited by a job.

M2,1 M2,2 M2, v-1 M2, v
…

Mj-1,1 Mj-1,2 Mj-1,w-1 Mj-1,w
…

Mj,1 Mj,2 Mj,x-1 Mj,x
…

… … …… …

The search landscape for the job shop problem is typically more rugged than
the flow shop problem due to the number of machine combinations, but it is
usually not as rough as the open shop problem. Deterministic methods [16]
are typically used for solving small instances of the flow-shop problem. Larger
instances use stochastic methods such as EAs [17]. A good taxonomy of how
job-shop problems are represented in EAs is presented in [18].

2.5 Flexible job-shop

The flexible job-shop problem is an extension of the job-shop problem. This
model, like the flexible flow-shop, uses parallel machines in combination with
the job-shop problem, which has a total of m possible stages (or workcenters
[19]). Each stage consists of a set of mi,j ⊆ m machines of which one machine
is chosen to perform the task (operation) [1]. The scheduler’s objective is to
find an optimal ordering of the machines for the jobs, given the fact that some
machines are parallel with others and some jobs have different routes to follow.
Kacem et al. [20], present a mathematical formulation of this model. This model
is particularly useful when it is employed to overcome bottlenecks by adding
machines in parallel where slow downs occur in the process. Figure 5 shows a
diagram of the flexible job-shop where stages of parallel machines are used in
an effort to overcome bottlenecks. The machines are labelled as Mx,y1−y2

where
x represents the job number, y1 represents the stage number, and y2 represents
the number of machines in a particular stage. So machine M4,3−5 represents the
fifth machine in third stage of the route for job 4. Note that not only can each
stage have a varying number of machines, but each route can have a varying
number of machines. And since each job can follow a different route than the
other jobs, stage 1 of J1 may have a different number of machines that stage 1
of job J4. This is why Figure 5 has so many variables.

Flexible job-shop problems have many of the same characteristics as the job-
shop problem. The search landscape is similar, but may be a little smoother
since parallel machines may help prevent bottlenecks. As such, the algorithms
that are best for the job-shop problem usually work well for the flexible job-shop
problem.

2.6 Multi-component scheduling

This new model is a hybrid of the approaches described in the previous subsec-
tions. This problem model embeds one scheduling paradigm into another. This
combined approach is called the multi-component scheduling problem. Note that
the literature does not reflect any research that deals with this scheduling model.
Yet, the real-world has several areas where this type of problem model would
be more perfect fit over the other problem models. Section 5 lists some real-
world examples where the multi-component scheduling problem would be useful
to employ.

55Multi-Component Scheduling

Our definition of a multi-component scheduling problem is any scheduling
problem that consists of jobs which are being scheduled based on the require-
ments of smaller subcomponents. While each job can be modelled as a flow-shop
or a flexible flow-shop problem, the underlying components of each job do not
follow the same order. Each subcomponent can be modelled as either a job-shop,
flexible job-shop, or possibly an open-shop problem. But after the subcompo-
nent is returned to the job for scheduling, it follows the flow-shop pattern of the
assigned job.

This new model can be viewed as a type of meta scheduling problem where
the main component follows a flow-shop model, while its underlying compo-
nents follow a job-shop model. Figure 6 shows a diagram of a multi-component
scheduling problem. In this diagram, a flow-shop problem is combined with a
job-shop problem. The machines in the flow-shop portion of the problem are
referred to as stages, where each job must flow through each stage in order. The
machines in the flow-shop portion of the problem are labelled as FMi, where
FM signifies that the machine is in the flow-shop portion of the problem and the
i is the machine order. So a value of FM4 signifies the fourth machine (stage) in
the flow-shop. Some stages of the flow-shop may not have a job-shop associated
with them, while others may have a large job-shop that needs to be completed
before the job is ready for the next stage of the flow-shop.

56 M.P. Kleeman and G.B. Lamont

Fig. 5. Diagram of the generalized flexible job-shop problem.

J1

Jj

m stages

…

j Jobs

Each job follows its own route through

the stages.

M1,1-1 M1,2-1 M1,p-1

…

Stage 1 Stage 2 Stage p

M1,1-h

…

M1,2-i M1,p-k

… …

Mj,1-1 Mj,2-1 Mj,q-1

…

Stage 1 Stage 2 Stage q

Mj,1-s

…

Mj,2-t Mj,q-u

… …

The job-shop machines are labelled as JMx,y where the JM signifies the
machine is part of the job-shop portion of the problem, x represents the job
number and y represents the machine number. So JM3,5 is the fifth machine of
the third job in the job-shop problem. A particular machine may be specified as
FMi −JMx,y. So FM4 −JM2,3 signifies the third machine for the second job in
the job-shop that is embedded in the fourth stage of the flow-shop. Reviewing
the real-world examples in Section 5 may help in the understanding of how this
problem flows.

Fig. 6. Diagram of the generalized multi-component scheduling problem with a flow-
shop and a job-shop combined.

Figure 7 shows another variation. In this variation, a main flow-shop model is
combined with an open-shop problem. The example uses the same labelling for
the flow-shop machines, and uses OM to reference machines in the open-shop
portion of the problem. In both instances of the multi-component scheduling
problem, the flow-shop problem is the top level scheduling problem. This is
typical of real world scenarios, where a job has a definitive repair process, but
the subcomponent repair routes can vary with each job.

There are many examples of this type of scheduling problem in the real world.
They are mostly associated with repair scheduling. For example, a television
repair shop has multiple television jobs, each job follows the same basic flow,

57Multi-Component Scheduling

FM1 FM2 FMm -1 FMmJ1J2Jj -1Jj
…

m stages

…

j Jobs

Each job is processed through a series

of m stages in a set order. Each

subcomponent of a job follows its own

route through the machines

Multi-component scheduling Diagram

(Flow shop + job shop)

JM1,1
JM1,2 JM1,u-1 JM1,uJi,1 ……

JMn,1 JMn,2 JMn,v-1 JMn,vJi,n …

n

subcomponents

of job i

Fig. 7. Diagram of the generalized multi-component scheduling problem with a flow-
shop and an open-shop combined.

troubleshoot, repair or replace, and test. But the repair and replace stage can
have various subcomponents being tested/repaired on different machines and
in different orders. This layer of the problem can be modelled as a job-shop
or an open-shop, depending on the independence that each subcomponent has
with respect to the machines. For example, a subcomponent that has to follow
a certain machine order for repair uses a job-shop. While a subcomponent that
has no particular machine order uses an open-shop.

The multi-component scheduling problem can be used to model numerous
other real world problems, such as automobile repair, electronic system repair
(compact disk player, computer, etc.), or the aircraft engine maintenance exam-
ple presented in this chapter. In general, this model can represent any multi-
component system that requires the processing of multiple subcomponents on
different machines, but the overall system itself follows a predefined flow.

3 Scheduling Problems and Evolutionary Algorithms

With the exception of the newly introduced multi-component scheduling prob-
lem, many researchers use EAs and MOEAs to solve the afore mentioned schedul-
ing problems. The key elements to EAs and MOEAs are the type of chromosome

58 M.P. Kleeman and G.B. Lamont

FM1 FM2 FMm -1 FMmJ1J2Jj -1Jj
…

m stages

…

j Jobs

Each job is processed through a series of

m stages in a set order. Each

subcomponent of a job is processed

through m machines in no particular order

Multi-component scheduling Diagram

(Flow shop + Open shop)

n

subcomponents

of job i

Ji,1Ji, n
… OM1

OM2

OMm -1

OMm

…
Jobs initially

assigned to
any machine

representation that is used, the type of crossover and mutation operators used,
the selection method, and the use of elitism in the algorithm. This section briefly
discusses some of the chromosome representations that researchers use and also
provides an overview of the mutation and crossover operators employed.

3.1 Chromosome Representations

Chromosome representation can be extremely important when trying to find
solutions to a problem. The data structures, such as the chromosome, plus the
algorithm combine to make efficient programs. A bad chromosome representation
can increase the size of the search space or slow down the algorithm if too many
repair operators are needed to ensure the chromosome is valid. For the majority
of scheduling problems, a fixed length chromosome is appropriate. But in some
instances a variable length chromosome may be the best fit. For example, suppose
sending a job through a machine multiple times creates a better product, but at
the same time, slows down the completion time. A variable length chromosome
can allow for multiple loops in the system and create a more diverse solution
set.

Cheng et al. [18] introduced a taxonomy of how EAs represent job-shop prob-
lems. While his list focused on only job-shop problems, many of these representa-
tions have been used in other scheduling problems as well. These representations
can be classified as either directly encoded approaches or indirectly coded ap-
proaches. With a direct approach, a schedule is encoded into the chromosome.
The EA then operates on these schedules in an effort to find the best schedule.
For direct approaches, there are five different ways the EA can be encoded [18]:

– Operation-based
– Job-based
– Job pair relation-based
– Completion time-based
– Random keys

For operation-based representations, the chromosome encoding is a schedule
based on a sequence of operations. For example, Figure 8 shows how a three-job,
three-operation job-shop chromosome may be encoded. The encoding is based
on the job and the operations are ordered. So the second 2 in the chromosome
is interpreted as the second operation of job J2. The operations are scheduled in
the order they are listed in the chromosome. The chromosome length is n × m,
where n is the number of jobs and m is the number of machines. All permutations
of the chromosome yield a valid schedule.

Job-based representations merely encode the chromosome according to the
job sequence. Figure 9 shows an encoding example for a three-job, three-operation
job-shop chromosome. In this example all operations of the third job are sched-
uled first while the first job’s operations are scheduled second, followed by the
second job.

The job pair relation-based representation uses a binary matrix to encode a
schedule [3, 18]. The values of the matrix are determined as follows:

59Multi-Component Scheduling

Fig. 8. Example of an operation-based chromosome representation for a three-job,
three-operation job-shop.

Fig. 9. Example of a job-based chromosome representation for a three-job, three-
operation job-shop.

xijm =

⎧

⎨

⎩

1 :
if job i is processed

before job j on machine m
0 : otherwise

A matrix for a 3-job, 3-machine problem can be designed as follows [18]:

⎛

⎝

x121 x122 x123

x131 x132 x133

x231 x233 x232

⎞

⎠ =

⎛

⎝

0 1 0
1 0 1
1 1 0

⎞

⎠

where the sequence of the variable xijm in the matrix is kept consistent with
the sequence of operations of the first job of the job pair. This is why the last
line of the matrix, representing job pair (j2, j3) is different. It is assumed in this
example that the sequence of operations in the second job is different than the
first job.

This representation can be codified into a chromosome as shown in Figure 10,
where each chromosome is a job pair and the sub-chromosome is the processing
order of the two jobs on each machine. This representation is complex and re-
dundant. Additionally, many chromosomes produced via population generation
or through the genetic operators, are illegal [18]. As such, a repair function or a
penalty function need to be implemented.

The completion time-based representation encodes the chromosome with an
ordered list of completion times of the operations [21]. These times can be
obtained through the generation of an active schedule by using the Giffler &

60 M.P. Kleeman and G.B. Lamont

Fig. 10. Example of a job pair relation-based chromosome representation for a three-
job, three-operation job-shop.

Thompson algorithm [22]. Figure 11 shows an example of a chromosome repre-
sentation of a three-job, 3-machine job-shop problem [18]. Note that each chro-
mosome is represented by a a completion time, cjom, where j is the job number,
o is the operation of job j, and m is the machine that accomplishes the opera-
tion. In [21], each individual represents an active schedule using the completion
times, cjom, as elements.

Fig. 11. Example of a completion time-based chromosome representation for a three-
job, three-operation job-shop.

The random key chromosome representation [23] encodes each allele with a
random number. The values are then sorted in order to determine determine the
actual operation sequence. Typically, a random key is composed of two parts.
The first part is an integer depicting which machine is assigned for that job.
The second part is a random number between (0, 1). The smallest number for a
machine is the first one scheduled. Figure 12 depicts a three-job, four machine
example of the representation. The top drawing in the figure represents the
encoded chromosome while the bottom part of the figure represents the order of
precedence.

Indirect approaches are chromosome representations that do not directly en-
code the schedule into the chromosome. There are four indirect approaches used
in EAs [18]:

– Preference list-based
– Priority rule-based

61Multi-Component Scheduling

Fig. 12. Example of a random key chromosome representation for a three-job, four-
operation job-shop.

– Disjunctive graph-based

– Machine-based

The preference list-based representation consists of a chromosome of size m
where m is the number of machines. Each allele of the chromosome is a sub-
chromosome, which lists the preference that each machine has for certain jobs.
Figure 13 shows an example of a three-job, four-machine job-shop encoding. The
chromosome has four allele values, one for each machine (operation). Each allele
contains a sub-chromosome that shows the precedence order of the jobs in the
machine. Note that this can be easily represented by a matrix.

Fig. 13. Example of a preference list-based chromosome representation for a three-job,
four-operation job-shop.

62 M.P. Kleeman and G.B. Lamont

Chromosome representation

The priority rule-based representation encodes a chromosome as a sequence
of dispatching rules. The job schedule is created using a heuristic based on the
dispatching rules sequence. Priority dispatching rules, proposed by Giffler and
Thompson [22], are a commonly used heuristic because of their ease of use [18].
The EA searches the best rules to deconflict scheduling problems when using
the Giffler and Thompson algorithm. As mentioned earlier, the chromosome
is made up of dispatching rules. The chromosome’s length is n × m where n
is the number of jobs and m is the number of machines. The ith position of
each allele in the chromosome corresponds to the rule in the ith iteration of the
Giffler and Thompson algorithm. So the rule in that position is used to deconflict
any scheduling problems that occur during ith iteration. The rules are typically
represented via a table. See [18, 24] for more information.

The disjunctive graph-based representation encodes the chromosome as a bi-
nary string that corresponds to an order list of disjunctive arcs connecting the
different operations to be processed by the same machine [3]. The disjunctive
graph can be defined as G = (N , A, E), where N is the set of nodes which
represent each operation, A is the set of arcs that connect the sequence of op-
erations of the same job, and E is the set of disjunctive arcs, which connect
the operations that are to be processed by the same machine. Figure 14 shows
an example of a disjunctive graph for a three-job, three-machine problem. Note
that the set of nodes are the circles, the set of arcs are the solid lines, and the
disjunctive arcs are the dashed lines. In this example, operations 1, 5, and 9 are
all processed on the same machine.

Fig. 14. Example of a disjunctive graph for a three-job, three-operation job-shop.

The chromosome is a binary string that determines which operation has
precedence on a machine based on the disjunctive arcs. Each disjunctive arc
is an allele in the chromosome. A disjunctive arc is represented as eij where i
and j are the nodes (operations) connected with a disjunctive arc. The allele
that represents eij contains a 1 if operation i goes before operation j. The allele
contains a 0 if operation j goes before operation i. Figure 15 shows an example

63Multi-Component Scheduling

0

1 2 3

10

7

4

8

5

9

6

of a chromosome. Note that the chromosome does not represent a schedule, but
is only used as a decision preference. A critical path based procedure is typically
used to create the schedule. The chromosome is only used to deconflict machine
precedence when there is a possibility of two operations occurring on the same
machine [18],

Fig. 15. Example of a disjunctive graph-based chromosome representation for a three-
job, three-operation job-shop.

The machine-based representation encodes the chromosome as a sequence of
machines. A shifting bottleneck heuristic [25] constructs a schedule based on the
machine order. The shifting bottleneck heuristic initially takes the sequenced set
of machines and identifies a bottleneck machine and sequences it optimally based
on the time it takes to process all operations. The next step is to reoptimize
the sequence of each critical machine in order, while keeping the rest of the
sequences fixed. If all the machines have been sequenced, then the heuristic
is done, if not, the heuristic goes back to the initial step and identifies the
next bottleneck machine. See [18, 25] for more details on this heuristic. Figure
16 shows an example of a machine-based three-job, three-machine chromosome
encoding where each allele represents a machine. Note that this encoding is
similar to the job-based chromosome shown in Figure 9. The difference between
the two is what each allele represents. In the job-based chromosome, the numbers
represent the priority of the jobs. The numbers in the machine-based chromosome
represent the sequence of the machines.

Fig. 16. Example of a machine-based chromosome representation for a three-job, three-
operation job-shop.

While the chromosome representation is important, the operators used in the
algorithm are equally important. The next section discusses some of the common
crossover and mutation operators used for scheduling problems.

64 M.P. Kleeman and G.B. Lamont

disjunctive arc order list

Chromosome

3.2 Common Operators

Several researchers have developed EA operators for use with scheduling prob-
lems. These operators are based upon the representations previously discussed.
Cheng et al. [26] provide a good summary of the operators used in job-shop prob-
lems. The use of these operators is not limited to the job-shop alone, since they
have been applied to other types of scheduling problems as well. A discussion of
these operators is presented in this section.

Crossover operators The following is a list of crossover operators that have
been used in scheduling problems:

– Partial-mapped crossover (PMX)
– Order crossover (OX)
– Position-based crossover
– Order-based crossover
– Cycle crossover (CX)
– Linear order crossover (LOX)
– Subsequence exchange crossover(SXX)
– Job-based order crossover (JOX)
– Partial schedule exchange crossover

Partially-mapped crossover was developed to tackle a blind travelling sales-
man problem [27]. This problem is similar to the travelling salesman problem
(TSP) with the added constraint that the distance the salesman travels is not
known until a tour is completed. Since both problems operate on permutations, a
typical one-point crossover method can be highly destructive. The PMX method
aligns two strings based on their location in the chromosome. Then two crossing
sites are picked at random over the two strings. The two points are used to define
a matching section [27]. In that matching section, the numbers that match rep-
resent which numbers are swapped in each parent chromosome. Figure 17 shows
an example of the PMX operator. In this example, the matching section of par-
ents A and B link the following values for exchange: 5 ↔ 3, 4 ↔ 8, 6 ↔ 9, and
2 ↔ 2. The parents swap each of these numbers in the chromosome to create the
two children. Note that no repair operator is needed with this type of crossover,
whereas a more common crossover operator may invalidate a permutation based
chromosome and require repair.

Order crossover [28] is similar to the PMX operator. The OX operator selects
two parents and then randomly picks a set of positions. The positions can be a
consecutive group of alleles, as suggested in [27], or they can be picked randomly
throughout the chromosome as in [28]. In fact there are multiple variations of the
OX operator [29]. Figure 18 shows an example of the OX operator similar to the
PMX operator. In the example, two random cutpoints are chosen. The alleles
in between the cutpoints are swapped between the parents. Then, starting at
the last cutpoint, the allele values are filled in a manner to preserve the relative
ordering of the parent. This is done by filling in all the unused allele values from

65Multi-Component Scheduling

Fig. 17. Example of the partially mapped crossover operator.

the parent based on their previous order, starting at the cutpoint. This considers
the sequence as a ring, and as such can cause more disruption than desired [29].
So in our example, the first child is created by starting after the swap values, 3-
8-9-2. The first number in the parent after the cutpoint is a 7. Since this number
is not one of the swapped values, it is inserted into the chromosome. The same
goes for 1. But the next value in the parent is 8. This value is one of the values
that was swapped, and since it cannot be duplicated, the algorithm cycles back
to the first value, 3, which is also one of the swapped values. It continues until it
finds a value in the parent that hasn’t been used, in this example, that value is 5.
After 5 is placed the chromosome still needs the first two positions filled, so the
algorithm pulls the number after 5 in Parent A and compares it to the swapped
values. Since this value, 4, hasn’t been used, it is placed in the chromosome. The
last value, 6, is placed in a similar manner. Child B is created the same way.

To prevent some of this disruption, Davis [28] introduced a variant. It pro-
ceeds the same as the original version, but instead of maintaining the relative
ordering from the second cutpoint, the start of the chromosome is used. Figure
19 shows an example this variant of the OX operator. According to Cotta et al.

[29] this variant is better than the one shown in Figure 18.

Position-based crossover is a variation of the uniform crossover operator for
permutations [26]. For this operator, two parents are chosen and a random mask
is generated to determine which alleles to swap between them. After the swap
occurs, the remaining allele values fill the rest of the positions in a manner that
maintains their relative order. Figure 20 shows an example of this crossover
method. In the example, Child 1 starts with only the swap values in the chro-
mosome. Starting from the first location in the chromosome, the child pulls the
first values from Parent 1 and verifies it is not one of the swap values. Since 3 is
not, it is placed in the first location. The child then goes to the next open loca-
tion in the chromosome, which is the third spot in our example. The algorithm
then pulls the 9 from Parent A and since it is not one of the swapped values,

66 M.P. Kleeman and G.B. Lamont

3 9 5 4 6 2 7 1 8

7 4 3 8 9 2 1 5 6

Before PMX

After PMX

Parent A

Parent B

3 95 46 2 7 18Child A

Child B 7 4 38 92 15 6

Fig. 18. Example of the order crossover operator.

Fig. 19. Example of a variant of the order crossover operator. The relative ordering of
the parent is referenced to the start of the chromosome.

it is placed in the chromosome. If the child encounters a value that has already
been placed, it proceeds to the next value in the parent. The algorithm does this
until all the chromosome values of the child have been filled. This operator has
been found to be similar to a variant of order crossover.

Order-based crossover [28] is a variation of the position based crossover. The
method uses a binary template where a zero represents swaps for one parent and
a one represents swaps for the other parent. After the swaps are accomplished,
the the missing values fill the empty child chromosome positions in the order
they were found in the parent. Figure 21 shows an example of this operator.
In this example, a 0 indicates a swap for Child B and a 1 indicates a swap
for Child A. This means that after the swap, Child A contains only the values
from Parent B that were indicated by a 1 from the crossover template. Likewise
Child B has only values from Parent A that were swapped using the crossover

67Multi-Component Scheduling

3 9 5 4 6 2 7 1 8

7 4 3 8 9 2 1 5 6

Pick two random cutpoints

Parent A

Parent B

3 9

5 4 6 2

7 1 8

7 4

3 8 9 2

1 5 6

Swap alleles between cutpoints

4 6

5 4 6 2

7 1 5

8 9

3 8 9 2

1 7 3

Preserve relative ordering of parents

starting from the second cutpoint

Child A

Child B

3 9 5 4 6 2 7 1 8

7 4 3 8 9 2 1 5 6

Pick two random cutpoints

Parent A

Parent B

3 9

5 4 6 2

7 1 8

7 4

3 8 9 2

1 5 6

Swap alleles between cutpoints

5 4

5 4 6 2

6 7 1

7 3

3 8 9 2

8 9 1

Preserve relative ordering of parents

starting from the first allele

Child A

Child B

Fig. 20. Example of the position-based crossover operator.

template. The remaining chromosome locations of the children are then filled in
the same manner used by the previous two crossover methods.

Fig. 21. Example of the order-based crossover operator.

Cycle crossover (CX) [27] creates the children in cyclic fashion. The operator
starts by placing the first allele value of the first parent into the first child. The
first allele value in the second chromosome determines the next value to pull
from the first parent and put into the child. In the example shown in Figure 22,
7 is the value found in Parent B. This value is placed into the child in the same
position as it was in the parent. In the example, the cycle continues with the
values 1 and 5 being placed into the child. A cycle ends when the allele value in
the second parent has a value already placed in the child. One a cycle ends, a
new cycle begins with the second parent copying the first unused allele value into

68 M.P. Kleeman and G.B. Lamont

3 9 5 4 6 2 7 1 8

7 4 3 8 9 2 1 5 6

Parent A

Parent B

Crossover points

3 4 9 8 5 2 1 6 7

3 9 8 4 1 2 7 5 6

Child A

Child B

Crossover points

3 9 5 4 6 2 7 1 8

7 4 3 8 9 2 1 5 6

Parent A

Parent B

Crossover template 0 1 1 0 0 1 0 1 1

- 4 3 - - 2 - 5 6

3 - - 4 6 - 7 - -

Child A

Child B

After Swap After fill-in

9 4 3 7 1 2 8 5 6

3 8 9 4 6 2 7 1 5

Child A

Child B

the corresponding position of the child. So for our example, after 5 is placed in
the chromosome, the value 3 is to be placed. But since it was already placed, the
cycle ends and first unused value from Parent B is placed in the chromosome. In
the example, this value is 4. During this cycle, the first parent’s corresponding
allele values determine which value to copy next. So after 4 is placed in the
example, the next value is 9, followed by 6 then 8. The operator continues until
the child chromosome is fully instantiated. The second child is done in a similar
manner, but this time, the second parent supplies the first allele value. Note that
the numbers near the dashed lines indicate the order in which the children are
filled.

Fig. 22. Example of the cycle crossover operator. The dashed lines show which parent
fills the child and the number next to the dashed line indicates the order the child is
filled.

Linear order crossover (LOX) [30] is a modified version of the order crossover
operator. Recall that the order crossover operator treats the chromosome as a
circular string, in which it wraps around from the end of the chromosome back
to the beginning. This circular assumption may not play a big role in the TSP,
but for job shop problems, it can have a larger impact [26]. As such, the LOX
operator treats the chromosome as a linear entity. For this operator, the swap
occurs in the same fashion as it occurs in the OX operator, but when sliding the
parent values around to fit in the remaining open slots of the child chromosome,
they are allowed to slide to the left or right. This allows the chromosome to
maintain its relative ordering and at the same time preserve the beginning and
ending values. Figure 23 shows an example of this operator. In the example, after
the values are swapped, there are two open spaces in the front of the chromosome
and three open spaces at the end. The algorithm then goes through Parent A
and finds the first two values that were not part of the swap, in this example
they are 5 and 4. These values are shifted left to fill the first two chromosome
locations. The final three locations are filled in a similar manner.

Note that this operator produces the same results as those produced with the
second variant of OX, and shown in Figure 19. This is because the second variant
of OX starts filling in the chromosome from the beginning rather than from

69Multi-Component Scheduling

3 9 5 4 6 2 7 1 8

7 4 3 8 9 2 1 5 6

Parent A

Parent B

3 4 5 8 9 2 7 1 6Child A

1 2 34

5 6 78

9

3 9 5 4 6 2 7 1 8

7 4 3 8 9 2 1 5 6

Parent A

Parent B

7 9 3 4 6 2 1 5 8Child B

1 2 34

5 6 78 9

Fig. 23. Example of the linear order crossover operator.

the second cutpoint. By filling in the values from the beginning, the operator
preserves the linear characteristics of the LOX operator.

The subsequence exchange crossover (SXX) [31] operator was designed for
job shop problems that use the job sequence matrix as a way to represent their
solutions. The job sequence matrix is an n×m matrix where n is the number of
jobs and m is the number of machines. Each row of the matrix specifies the job
sequence for each machine. Subsequences are defined as a set of jobs that both
parents process in a consecutive manner, but can be in a different order. When
subsequences are found, the children are created by swapping the subsequences
of the two parents. Figure 24 shows an example of the operator with a 4-job,
4-machine matrix representation. Note how the largest possible subsequences are
chosen in each row. So the first three rows can create subsequences that contain
three of the four values, while the last row has no subsequences that can be
exchanged. According to [31], the computational complexity of this operator is
O(mn2), where m is the number of machines, and n is the number of jobs.

Job-based order crossover (JOX) [32] is a variation of the SXX operator.
The operator starts by randomly picking which jobs should preserve their locus
in the chromosome. These jobs are copied from the parent directly into the
same position in the child. The remaining chromosome positions of the first
child are filled according to their order in the second parent. Figure 25 shows
an example of the JOX operator with a 4-job, 4-machine matrix representation.
In this example, values from Parent A are passed on to Child A. So the first
row keeps the location of values 3 and 4 from Parent A, the second row keeps
values 4 and 3 and so on. The values not kept in each row are filled in based
on their order in Parent B. Since 2 comes before 1 in the first row of Parent B,
the 2 fills the first open location in Child A, with 1 filling the remaining slot.
This continues until all the rows have been filled. Child B is filled in a similar
manner.

70 M.P. Kleeman and G.B. Lamont

3 9 5 4 6 2 7 1 8

7 4 3 8 9 2 1 5 6

Pick two random cutpoints

Parent A

Parent B

3 9

5 4 6 2

7 1 8

7 4

3 8 9 2

1 5 6

Swap alleles between cutpoints

5 4

5 4 6 2

6 7 1

7 3

3 8 9 2

8 9 1

Preserve relative ordering of parents

while preserving the beginning and

end of the chromosome

Child A

Child B

Fig. 24. Example of the exchange crossover for a 4-job,

The partial schedule exchange crossover [33] operator has been applied to
chromosomes with the operation-based encoding. Figure 8 shows an example
of an operation-based encoded chromosome. Figure 26 shows an example of
this operator for a 3-job, 3-machine problem. The operator starts by randomly
selecting a partial schedule in the parents. In the example, the partial schedule
for Parent A is 1-3-1 and the partial schedule for Parent B is 1-1. The partial
schedules must have the same job in the first and last position. The partial
schedules of the two parents typically differ in length. These partial schedules
are then swapped to create two children. These children may have lengths that
are too big or too small, and they may also have too many operations for one
job and too few for another. So a repair procedure is used to fix the children and
attempt to keep the operation order as similar to the parents as possible. In our
example, after the swap Child A needs an operation for job 3 and Child B needs
to delete an operation from job 3. The repair mechanism employed can vary, but
in the example the missing value is inserted into the chromosome in a location
that is nearest to where the value was located in the parent. In Child A, the 3
was placed just before the swap so it was only one location off its location in the
parent. Likewise, the value that is deleted is the one that maintains most of the
original ordering of the parent. In the example, the second 3 is removed from
Child B. This type of repair operator is less destructive than ones that don’t
take into account the relative ordering of the parent.

Crossover operators are used as a means to combine good building blocks
from the parents. The crossover operators discussed in this section, typically try
to limit the amount of repair that is needed for the permutation. The next set
of operators, the mutation operators, are used to add more variability to the
search.

71Multi-Component Scheduling

4-machine example.
operatorsubsequence

1 3 2 4

1 4 3 2

3 2 1 4

2 4 3 1

2 3 4 1

1 3 2 4

3 4 1 2

4 1 2 3

Parent A Parent B

1 3 2 4

1 4 3 2

3 2 1 4

2 4 3 1

2 3 4 1

13 2 4

34 1 2

4 1 2 3

Child A Child B

Fig. 25. Example of the job-based order crossover operator for a 4-job, 4-machine
example.

Mutation Operators The following is a list of mutation operators used for
permutation representations:

– Inversion mutation
– Insertion mutation
– Displacement mutation
– Reciprocal exchange mutation (swap mutation)
– Shift mutation

The inversion mutation operator [27] randomly selects two points in the chro-
mosome. The allele values that are in between these two points are then inverted
to form a new chromosome. Figure 27 shows an example of this mutation.

The insertion mutation operator selects a gene at random and then inserts
it at a random position. Figure 28 shows an example of this type of mutation.

72 M.P. Kleeman and G.B. Lamont

3-machine example.
Fig. 26. Example of the partial schedule exchange crossover operator for a 3-job,

1 3 2 4

1 4 3 2

3 2 1 4

2 4 3 1

2 3 4 1

1 3 2 4

3 4 1 2

4 1 2 3

Parent A Parent B

Child A Child B

2 3 1 4

1 4 3 2

3 1 2 4

1 4 3 2

1 3 4 2

1 3 2 4

3 4 2 1

4 2 1 3

2 3 2 1 1 3 1 3 2Parent A

Child A

3 1 2 2 3 2 1 1 3Parent B

2 3 2 1

1 3 1

3 2

3 1 2 2 3 2

1 1

3

2 3 2 1

1 3 1

3 2

3 1 2 2 2

1 1

3

3

Child B

Swap partial schedules
Add and delete operations to create

two valid chromosome representations

Fig. 27. Example of inversion mutation for a 9-job, job-based chromosome.

Fig. 28. Example of insertion mutation for a 9-job, job-based chromosome.

The displacement mutation operator randomly selects two points in a chro-
mosome and then moves the substring to another randomly selected location
in the chromosome. This mutation operator is similar to the insertion operator,
but instead of moving only one allele, a substring is moved. Figure 29 shows an
example of the displacement mutation operator.

Fig. 29. Example of displacement mutation for a 9-job, job-based chromosome.

The reciprocal exchange mutation operator (also known as swap mutation)
selects two alleles at random and then swaps them. Figure 30 shows an example
of this type of mutation.

73Multi-Component Scheduling

3 9 5 4 6 2 7 1 8

3 9 2 6 4 5 7 1 8

Before mutation

After mutation

3 9 5 4 6 2 7 1 8Before mutation

After mutation

Randomly
selected gene

Randomly
selected location

3 9 54 6 2 7 1 8

3 9 5 4 6 2 7 1 8Before mutation

After mutation

Randomly
selected
substring

Randomly
selected
location

3 9 5 4 62 7 1 8

Fig. 30. Example of reciprocal mutation for a 9-job, job-based chromosome.

The shift mutation operator selects a gene at random and then shifts the
gene a random number of positions to the right or left of its present spot. Figure
31 shows an example of this mutation.

Fig. 31. Example of shift mutation for a 9-job, job-based chromosome.

Note that no repair is needed with these mutations when they are applied to a
job-based encoded chromosome. But other chromosome encodings may require
a repair operator when a mutation creates an invalid chromosome. The next
section provides a few examples for each type of scheduling algorithm that has
been discussed thus far.

4 Applications of Scheduling Algorithms

Scheduling problems are found in many real world problems. This is why many
researchers work to produce better scheduling algorithms. In this section, some
of the problems presented in literature are discussed. Specifically, the problems
described in Section 2 are presented. While different methods of solving these
problems are addressed, the primary focus is on EA and MOEA techniques.
These examples give a small sample of attempted methods applied and the
results of these methods.

74 M.P. Kleeman and G.B. Lamont

3 9 5 4 6 2 7 1 8Before mutation

After mutation 3 9 54 6 27 1 8

3 9 5 4 6 2 7 1 8Before mutation

After mutation 3 9 546 2 7 1 8

Shift = 5

4.1 Flow-shop Examples

Researchers use various methods to attack the flow-shop problem. Some re-
searchers use ant colony optimization methods [6, 34]. The results from these
experiments are promising.

Murata et al. [35] presented a performance evaluation of GAs with flow-
shop scheduling problems. They looked at some of the common crossover and
mutation operators used in flow-shop problems. They compared these various
operators and found a version of two-point crossover worked the best for their
100 randomly generated problems. The shift change mutation was found to be
the best mutation operator. They compared the GA with a local search, a tabu
search, and a simulated annealing algorithm. They found that the simulated
annealing and tabu search algorithms performed the best. Using these results,
they developed a hybrid algorithm that combined a GA with a local search
and another GA with a simulated annealing algorithm. They found their hybrid
algorithms performed well with the flow-shop problem.

Ishibuchi et al. [36] combined local search techniques with an MOEA. They
found that the hybridization algorithm improved convergence toward the Pareto
front. But they found that their computation time was increased. In order to
balance efficiency with effectiveness, they modified the algorithm so there was
a good balance of genetic search and local search. The authors use two-point
crossover and insertion (shift) mutation. They choose these operators based on
the good results reported by Murata et al. [37] in their flow-shop research. This
work appears to be an extension of previous work done by the authors [38].

Ishibuchi et al. [39] have also discussed how EAs and MOEAs can be applied
to the flow-shop problem. They compare various permutation-based crossover
and mutation operators and provide an analysis as to which ones work best
for the group of test problems they selected. A version of one-point crossover
performed the best when minimizing makespan was the single objective. But
when minimizing maximum tardiness was the objective, there was no clear cut
best operator for all the test problems. But the insertion mutation operator was
found to be the best mutation operator in all instances of the single objective
problem. In the MOEA realm, the Non-dominated Sorting Genetic Algorithm
- II (NSGA-II) was compared to the results of single objective GAs, weighted
single objective GAs, and a weighted single objective local search algorithm. The
results were mixed, the highly exploitive single objective versions typically found
better solutions in certain regions of the Pareto front, but the never found as
many points or covered a greater region than the MOEA.

4.2 Flexible Flow-shop Example

Rodriguez et al. [8] tests four variants of the Single Stage Representation Ge-
netic Algorithm (SSRGA) against the flexible flow-shop problem. In addition to
the four variants of SSRGA, four dispatching rules (first-in first-out, shortest
processing times, longest processing times, and shortest due dates) along with
the shifting bottleneck procedure (SBP) are also applied to randomly generated

75Multi-Component Scheduling

instances of the flexible flow-shop problem. The SSRGA uses a random key rep-
resentation, such as the one depicted in in Figure 12. The crossover operator
selects two parents at random and then generates a random number between 0
and 1 for each allele position. If the value is below 0.7, then the value from the
first parent is copied into the child. If the value is 0.7 or above, the value from
the second parent is copied to the child. The authors do not explain why they
chose a value of 0.7 as the cutoff point. While the SSRGA variants performed
better than the dispatching rules and SBP, this was not the main goal of the
research. The main goal was to show that a GA, which is easy to implement, is
robust and simpler than SBP, and its computation time is reasonable [8].

4.3 Open-shop Examples

Dorndorf et al. [9] proposed a branch-and-bound method for solving the open-
shop problem. Their approach focused on reducing the size of the search space
through the use of constraint propagation based methods. Their shaving” tech-
nique can be time consuming, but they found that the amount of search space
reduced greatly offset this time. The results show that their new algorithm is
able to solve many problem instances to optimality in a relatively short amount
of time.

Liaw [10] developed a hybrid genetic algorithm to solve the open-shop prob-
lem. His algorithm combined a basic genetic algorithm with a local search pro-
cedure based on tabu search. The chromosome representation was an operation-
based representation, similar to the one in Figure 8. After testing several crossover
methods (PMX, OX, CX, order-based, and position-based), he found linear order
crossover (LOX) worked best for the problem being considered. Figure 23 shows
an example of the LOX operator. For mutation, he chose to use two mutation
methods, insertion mutation and swap mutation (also known as reciprocal ex-
change mutation). His algorithm selected one of the two mutation operators with
equal probability. The algorithm was compared to four other algorithms and it
performed very well. It was able to find optimal solutions for benchmark prob-
lems that had never been solved to optimality before. The algorithm performed
much better than existing methods with respect to solution quality.

4.4 Job-shop Examples

Many researchers have studied the job-shop problem. Jain et al. [40] provides an
extensive list of methods by which the job-shop problem has been approached.
Branch and bound techniques, priority dispatch rules, bottleneck based heuris-
tics, AI techniques (constraint satisfaction and neural networks), threshold algo-
rithms, simulated annealing, genetic algorithms, and tabu search are all discussed
and compared. The conclusion is made that meta-heuristic techniques appear to
work best for the job-shop problem. The EAs reviewed performed poorly, which
seems to support the hypothesis that EAs are not well suited for fine tuning
structures that are very close to optimal solutions” [24, 40, 41]. But adding a
local search element to the algorithm appears to improve the results.

76 M.P. Kleeman and G.B. Lamont

“

“

Jensen [17] is concerned with robust scheduling with EAs . He highlights a
number of EAs and special operators that have been applied to the job shop prob-
lem. He also performs experiments with coevolutionary algorithms and neighbor-
hood based robustness. The results show that the neighborhood based robust-
ness approach improves the robustness and flexibility for problems that factor
machine breakdowns into the equation. The coevolutionary algorithm created
schedules that guaranteed a set level of worst case makespan performance.

After reviewing these papers, it appears that EAs typically work best in this
problem domain when they are used in conjunction with a local search algo-
rithm. The memetic EAs provide enhanced local search techniques that enables
the algorithm to more effectively search the neighborhoods surrounding good
solutions.

4.5 Flexible Job-shop Examples

Researchers use many varying methods to solve the flexible job-shop problem.

problem. The agents are job agents and machine agents. Each of the agents
has its own goals, knowledge base, functional component, and control unit. The
knowledge base is simply domain knowledge and/or data. The functional com-
ponent has the mathematical procedures the agent needs for decision making.
While the control unit contains the protocols that allow the agents to communi-
cate with one another. The job agents are created when a job is released to the
shop. They communicate with the machine agents in order to select machines
for each operation. The machine agents are responsible for sequencing the jobs.
Routing and sequencing are determined by the functional components of each
agent. The algorithm outperformed the other baseline methods and it performed
fast enough to make it a viable option for real-world problems [19].

problem. They used a combination of fuzzy logic and an EA as their hybrid
method. The goal is to exploit the representation capabilities of fuzzy logic and
the adaptive abilities of EAs. The algorithm is composed of two stages: a fuzzy
multi-objective evaluation stage and an evolutionary multi-objective optimiza-
tion stage. The fuzzy stage computes the different weights for each objective
function and measures the quality of each solution. The evolutionary stage has
two sub-stages: approach by localization (AL) and the controlled genetic algo-
rithm (CGA). The AL stage generates individuals that are in the most inter-
esting” zones of the search space. These individuals become the population of
the CGA. The CGA is an EA that utilizes crossover and mutation operators.
No mention is made in the experiments about how many generations are run for
each problem. The algorithm appears to be effective in converging toward the
lower bound of each objective function.

Mastrolilli et al. [42] used local search techniques (tabu search) and two
neighborhood functions to solve the flexible job-shop problem. Neighbors are
obtained by moving and inserting an operation in an allowed machine sequence.

77Multi-Component Scheduling

For example, Wu

Kacem et al. [20] used a hybrid method to solve the the flexible job-shop

[19] uses a multiagent scheduling method to solve theet al.

“

The local search algorithm starts with an initial solution and travels from neigh-
bor to neighbor in an effort to find the best solution. Tabu search is an effective
method of escaping local minima, so it was picked as the local search algorithm.
For this problem, one neighborhood function was found to perform faster and as
effectively as the other neighborhood function, so it’s results were presented in
the article. The results of the experiments were compared to three other Tabu
search algorithms. The new algorithm with the addition of the neighborhood
function, performed better than the other versions of Tabu search on four dif-
ferent instances.

4.6 Automated Planning Systems

For completeness, automated planning systems need to be addressed. This is
because scheduling problems are closely related to planning problems. While
scheduling problems are typically interested in metrics such as makespan, plan-
ning problems are generally more broad in scope. Planning systems are designed
to generate a plan or policy to achieve some set of user defined goals or objectives.
Automated planning systems can be classified as follows [43]:

– Domain-independent planners – Only input into the planner is the de-
scription of the planning problem to solve.

–
tuners, but can be tuned for better results.

– Domain-configurable planners – Input into the planner includes domain
specific control knowledge to aid the planner in developing solutions in the
particular domain.

– Domain-specific planners – Planner is designed for a given domain and
would require major modifications to work in other domains.

Of particular note are hierarchical task network (HTN) or AI planners, which
are considered domain-configurable planners. Examples of these types of plan-
ners include the Open Planning Architecture (O-Plan2) [44], the System for
Interactive Planning and Execution (SIPE-2) [45], and the Simple Hierarchical
Ordered Planner (SHOP2) [46]. In HTN planners, the system formulates a plan
by decomposing tasks into smaller subtasks until it reaches a level that the plan
executer can perform. Researchers use this type of system to solve many different
types of planning problems. Some examples include [43]: evacuation planning,
evaluating terrorist threats, fighting forest fires, controlling multiple UAVs, and
distributed planning. This type of system could also be applied to many types of
scheduling problems. Unfortunately, some of the planning systems, such as the
SHOP2, do not explicitly represent time and concurrency, which are essential
items for determining makespan and implementing concurrent actions. These
items must be aggregated into their code [43].

78 M.P. Kleeman and G.B. Lamont

Tunable domain-independent planners – Similar to domain-independent

5 Real-world Multi-component Scheduling Problems

This work introduces the multi-component scheduling problem. While the exist-
ing scheduling models work well for some applications, they may provide only
a limited view of the overall problem for other applications. By introducing
this model, researchers can compare their work with others in the field and
build upon the advances of one another. This is important because the multi-
component scheduling problem is a common one in society, particularly in the
field of electronics repair. For example, a computer repair shop would be best
served using the multi-component scheduling problem versus a standard flow-
shop or job-shop problem. Because the computers themselves would follow a
flow-shop paradigm, where they would first be put through a series of diagnostic
tests, then any problems that were found would be fixed, and then the computers
would be tested again to ensure the repair actually fixed the problem. But, the
actual repair step in the flow shop can be decomposed into a job-shop, based on
the particular repairs that need to be done for each computer. Some comput-
ers may require new processors, others new memory, while some may need new
hard drives. These multiple repair paths cannot be modelled in the flow-shop
problem. So this step of the problem needs to be modelled with an open-shop
or job-shop problem.

But electronic repair isn’t the only real world example. Auto repair is another
example of where this scheduling paradigm comes into play. Like the computers,
the problem with the car must first be diagnosed, then the problem must be fixed,
and then the car needs to be checked out to make sure it is working properly. And
like the computer example, there are multiple paths that the repair operation
can take. The car may need new brakes, a new battery, or possibly some engine
work. So the multi-component scheduling problem would work well for this type
of problem.

Another example is a distribution model that is similar to the TSP. Suppose
a shipping agency, such as Federal Express has to get many packages to various
destinations. The packages start in many drop-off locations throughout all major
cities in the country. The packages are then gathered up by trucks and brought
to a processing center. The packages are then sent to other processing centers
throughout the country via truck and plane. Once the packages arrive at the
new processing center, they are then sent out to the delivery address.

A flow-shop problem could be used to model an aircraft starting with the
packages at one processing center and then going across the United States to
deliver the packages. But this does not provide the necessary detail, since the
packages haven’t reached their destination yet. A multi-component model can
take into account the embedded scheduling (or TSP) that is necessary to get the
packages from their drop off points to their final destinations.

One final example could be an employee work schedule. For example, an
employee may have the flow of their day planned, to include meetings, lunch,
projects, etc. But in actuality, some of the events in the flow of the day are better
scheduled using a job-shop or open-shop model. By using the embedded model,
a work schedule could be designed in a more efficient manner.

79Multi-Component Scheduling

5.1 Why MOEAs are Appropriate for Multi-Component Scheduling
Problems

EAs and MOEAs have been applied to scheduling problems with much success.
An advantage the MOEAs have over EAs is that they can generate solutions
that allow the decision maker to decide which trade-offs he is willing to make.
For example, suppose two important issues at hand are getting everything out
as fast as possible and ensuring high priority items are done within certain time
constraints. The decision maker must decide either a priori or after optimization
what balance is best for the situation. He may decide that his number one concern
is getting the high priority items out as quickly as possible. But more probably, he
may want to find a balance between where the high priority items are completed
by their allotted time and all the items are finished as fast as possible. Using an
EA won’t give a decision maker the necessary detail that an MOEA can.

5.2 MOEA Algorithm Selection

The general multi-component scheduling problem is an NP complete problem
since it embeds other NP complete scheduling problems. These scheduling prob-
lems can sometimes have rough search terrains that are hard to traverse using
only a local search algorithm. Thus a multi-objective evolutionary algorithm
(MOEA) is selected to solve this problem due to the generic combinatorics
[47] and search landscape. While many MOEAs, such as the NSGA-II [48],
the Strength Pareto Evolutionary Algorithm - 2 (SPEA2) [49], or the Multi-
Objective Genetic Algorithm (MOGA) [50] would be good to use, the General
Multi-objective Parallel Genetic Algorithm (GENMOP)[51–54] algorithm is ap-
plied to this problem. GENMOP was originally designed as a real-valued, paral-
lel MOEA. A parallel algorithm can improve efficiency for problems with large
search landscapes, so GENMOP was chosen over the rest.

GENMOP is an implicit building block MOEA that attempts to find good
solutions with a balance of exploration and exploitation. It is a Pareto-based
algorithm that utilizes real values for crossover and mutation operators. The
MOEA is an extension of the single objective Genetic Algorithm for Numerical
Optimization Problems (GENOCOP) [55, 56]. Constraint processing is added to
enable the software to handle the multi-component scheduling problem.

GENMOP has been used to solve a variety of problems. It was initially used
to optimize flow rate, well spacing, concentration of injected electron donors, and
injection schedule for bioremediation research [51, 57]. Specifically, it was used
to maximize perchlorate destruction in contaminated groundwater and minimize
the cost of treatment. The algorithm is also used to optimize quantum cascade
laser parameters in a successful attempt to find viable solutions for a laser that
operates in the terahertz frequency range [54, 58].

GENMOP is now able to handle permutations, which are common in most
scheduling problems. Since chromosomes are generated randomly, a repair mech-

80 M.P. Kleeman and G.B. Lamont

anism or penalty function must be used in order to elicit a valid permutation.

tations are compared. While a penalty function allows for invalid permutations
to be compared, but a penalty (cost) is added to the fitness of the invalid per-
mutation. For this implementation, a repair operator was chosen.

The algorithm flow is similar to most MOEAs. First, the input is read from
a file. Next, the initial population is created and each chromosome is evaluated.
The population is then ranked based on the Pareto-ranking of the individuals.
Then a mating pool is created and only the most fit individuals are chosen to
be in the mating pool. Crossover and mutation are performed on the members
of the mating pool. The children created are then evaluated and saved. These
children are then combined with the rest of the population. This is known as
a (µ + λ) type of genetic algorithm, where the child population λ is combined
with the parent population µ. There is another type of algorithm that replaces
the parents with their children. This type of algorithm is referred to as a (µ, λ)
algorithm.

After the children are combined with the parents, the population is then put
into Pareto-rank order. The program then checks to see if the program has run
through its allotted amount of generations. If it has, the program exits. If it
has not, the program creates another mating pool and goes through the process
again. Figure 32 shows the flow of the GENMOP algorithm.

81Multi-Component Scheduling

Fig. 32. Flow diagram for the GENMOP algorithm.

A repair operator immediately repairs invalid permutations, so only valid permu-

There are other considerations that also must be addressed, but most of
these are problem specific. In the following section, a specific multi-component
scheduling problem is described and specific GENMOP parameters are presented
along with problem specific elements, including a repair operator.

5.3 Aircraft Engine Maintenance Scheduling Problem

An example of the multi-component scheduling problem is the aircraft engine
maintenance scheduling problem. This problem deals with aircraft engine main-
tenance at a depot level. The engines are received based on contractual schedules
from various organizations. They follow the multi-component scheduling model
in that the engines follow a higher level flow-shop through what is called the
assembly shops: where the engine is broken down for repair and pieced back
together and tested. The components are then repaired in the backshops, where
they follow more of a job-shop model, until they are reattached to the engine
[52]. For our problem, a list of engines is read in, with each engine listing its
arrival time, due time, priority (weight), and mean time before failure1(MTBF)
for each of its components.

Maintenance Flow of the Engines When an engine comes into a logistics
workcenter for repair, it is first logged into the system. Aircraft engines are com-
monly divided into smaller subcomponents which can be worked on individually
and then recombined. For this problem, the engine is divided into five logical
subcomponents: fan, core, turbine, augmenter, and nozzle. It is assumed that
the maintenance shop has one specific work area, or backshop, for each of the
components. In reality, an engine component may visit several backshops. For
simplicity, it is assumed that they only visit one but varying times for repair
are added to take the other backshop visits into account. This is an example of
the job-shop problem, but with a twist. After all maintenance is completed on
an engine, each engine component’s MTBF is compared with other components
on the engine. If there is a large disparity among the MTBFs then a component
swap may be initiated with another engine in an effort to ensure the MTBFs
of the components of a particular engine are similar. This is done so that the
engine can have more time on wing” (TOW) and less time in the shop.

Once the swaps are done, the engine is reassembled and tested as a whole
to ensure functionality. This represents a flow-shop problem in that each engine
has to have maintenance done first, followed by swapping and then testing. So
the problem is a representation of the multi-component scheduling problem.

Figure 33 shows an example of the flow for two engines. Note how the engines
flow from one stage to the next and the subcomponents are repaired in a job-shop
paradigm.

1 The MTBF is the mean value of the lengths of time between consecutive failures,
under stated conditions, for a stated period in the life of a functional unit. A more
simplified MTBF definition for Reliability Predictions can be stated as the average
time (usually expressed in hours) that a component works without failure.

82 M.P. Kleeman and G.B. Lamont

“

Fig. 33. Example of maintenance flow for two engines. The first number in each block
is the engine number and the second number is the component number. So 2-4 refers
to the fourth component on engine 2.

Key Objectives of the Problem There are two main optimality objectives.
The first objective is to find the schedule that results in repairing the engines
in the quickest manner. This is called the makespan. The makespan, which is
to be minimized, determines which schedule has a faster process. Our second
objective is to attempt to keep the MTBF values within a predetermined range
for all engines. This may require a number of component swaps from multiple
engines. Consequently, these two objectives conflict. The first objective is to try
to get the engines out as quickly as possible, while the second objective slows
down the process by swapping components [52].

Ultimately, a solution that takes into account both objectives is needed.
A solution can be obtained through a number of different methods. The first
method is the weighting method, where each objective is given a predetermined
weight, based on it’s importance to the decision maker. Another common method
is to create a Pareto Front of all the non-dominated solutions and allow the
decision makers to pick which solution they deem the best. The first method is
an a priori weighting method, where the decision maker has no idea concerning
the distribution of answers. The second method is a posterior weighting method,
where the decision maker can see the distribution of possible solutions, and

83Multi-Component Scheduling

can make a decision based the solutions provided. The Pareto Front method
is chosen for reporting solutions. By reporting answers via a Pareto Front, a
vector of solutions can be presented. Thus other researchers can compare their
results to ours in a straightforward manner. One can also compare various runs
and generations to determine how well our algorithm explores and exploits the
search space.

GENMOP Particulars The algorithm makes use of four different crossover
operators and three different mutation operators. The operators are selected
based upon an adaptive probability distribution. If more fit individuals are gen-
erated from a certain operator, the algorithm increases the probability of its
selection in future generations. This adaptive process is built into the algorithm
in an effort to self-tune the algorithm and provide a more hands-off approach.

Operator Selection There are many types of crossover and mutation operators
available. For this problem the following crossover operators were chosen:

1) Whole Arithmetical Crossover : All genes of xi and xr are linearly com-
bined to form chromosomes x1 and x2. GenMOP retains x1 and discards x2.

2) Simple Crossover : One gene is chosen in both xi and xr and swapped
to form chromosomes x1 and x2. GenMOP retains x1 and discards x2.

3) Heuristic Crossover : Individuals xi and xr are combined to form one
individual ∋ x1 = R · (xr - xi) + xr, where R is a uniform random number
between zero and one and the rank of xr ≤ xi.

4) Pool Crossover : Randomly chooses genes from individuals in the mating
pool and combines them to create x1.
Note that xi and xr are parent chromosomes and x1 and x2 are the offspring
(children) of the parents.

These operators were chosen for two reasons. First, our chromosome is made
up of two different entities, a permutation and a swap section. As such, we
couldn’t use a permutation based operator on our chromosome unless it were
decomposed into two parts, and two separate crossover operators were applied
to the problem. It was determined that non-permutation based operators would
work better for this problem. The second reason for using these crossover opera-
tors is because they have been used in previous experiments, with much success,
when dealing with large search landscapes. Since our problem has a very large
search space, these operators should provide the exploration and exploitation
needed.

The three mutation operators are:
1) Uniform Mutation: Chooses a gene existing in the chromosome to reset

to a random value within its specified ranges.
2) Boundary Mutation: Chooses a gene existing in the chromosome to reset

to either its maximum or minimum value.
3) Non-uniform Mutation: Chooses a gene to modify by some random

value decreases probabilistically, until it equals zero, as the generation number
approaches the maximum generations.

84 M.P. Kleeman and G.B. Lamont

These were chosen because they allow varying methods of mutation that
should provide for better exploration of the search space.

Chromosome Representation The chromosome representation for this prob-
lem encompasses more than just the schedule. Our chromosome represents both
the engine precedence listing and the component swaps that should be accom-
plished. In our initial attempt at this problem, a pseudo-variable chromosome
was created. While the chromosome was a constant length, the number of swaps
could vary, depending on if a component swap was labelled a zero or not [52].
While this functioned well, a truly variable chromosome is preferred for two rea-
sons. First, it would decrease our search space. Second, it would allow for the
dynamic removal and insertion of swaps. The main reason for wanting a variable
length chromosome is the uncertainty of how many component swaps each sched-
ule would require in order find the best solutions. Genetic programming (GP)
uses variable length chromosomes. In general, GP is more flexible in the number
of solutions that it can generate compared to a fixed length chromosome. Since
we have no idea of how many swaps each schedule might need, or how many
swaps would be needed as the number of engines scheduled is increased, having
a variable number of swaps appears to be the best solution.

A fixed number of swaps can be detrimental in two ways. First, if too few
swaps were implemented for the problem, then the algorithm would never be
able to find all the solutions on the true Pareto Front. Conversely, if we the
algorithm implements way too many swap possibilities, then the search space
becomes much larger than it needs to be, and the probability of finding the true
Pareto Front decreases. The variable length chromosome allows the algorithm to
vary the chromosome size and converge on the chromosome length that results
in the best results.

The chromosome representation consists of two parts, the schedule and the
swaps. As mentioned in Section 3.1, the schedule can be encoded using one of
two approaches, direct approach and indirect approach [3, 18].

The first portion of the chromosome representation used in this research is
a direct approach that is based on the job-based GA representation [3, 18, 59].
Figure 9 shows an example of this type of representation. This means that order
of precedence for scheduling the engines is explicitly listed in which each allele in
the first part of the chromosome represents an engine. The first allele listed has
precedence over all other engines for component repairs. So if three components
need repair, they are scheduled first in the respective backshops. It follows that
the last engine listed has its components repaired last. So if engine 3 is listed
before engine 5, then engine 3 has priority before engine 5 in all repair operation
in both the assembly shops and backshops.

The second portion of the chromosome determines the precedence of the
component swaps, the number of swaps, the components to be swapped, and
the engines that the components are to come from. Each swap is represented by
three alleles. The first two alleles are the two engines to be swapped. These two
engine numbers are different from one another. A constraint was added so that

85Multi-Component Scheduling

the first engine number must always be smaller then the second. This was done
in an attempt to keep the search space down. If the smallest engine number
can be in either location, then this effectively doubles the number of eligible
swaps. The third allele of a swap represents the component to be swapped.
Previously, this was set from zero to five to allow for no swap[52]. Since a variable
length chromosome is used now, the algorithm only needs to choose between
components one to five. This change also reduces our search space. Note that
the initial values are all set at random using a uniform distribution. All engines
and component swaps are assumed to have similar priorities. If we assumed that
earlier engine numbers had a higher priority than later engine numbers, then
a different probability distribution, such as an exponential distribution, would
be more effective. Figure 34 show a representation of a chromosome for four
engines. Note that the first four alleles are for the engine scheduling precedence,
while the rest of the alleles represent the swaps.

The most difficult part with the swap portion of the chromosome is deter-
mining how many swaps to allow, which is why the variable length is used. An
example of why a fixed length chromosome can be bad can be explained using
three engines. Suppose that it would take four swaps in order to get the best
answer. If you allow for 20 swaps, the search space is increased drastically by
the additional 16 swaps that are unnecessary. Conversely, if you only allow for
4 swaps and you need 10, then there is no way that you can ever achieve the
best answer because you do not allow for enough swaps. As mentioned earlier,
the variable length chromosome overcomes this issue.

One phenomena that has occurred in genetic programming that should be
avoided is the tendency of getting very large representations as the number of

86 M.P. Kleeman and G.B. Lamont

Fig. 34. Example of chromosome representation for four engines.

generations increases [60]. To avoid exceedingly large chromosomes, the problem
was constrained to a maximum chromosome size. The size was arbitrarily set
based on the number of engines scheduled. The formula for determining the
maximum possible chromosome length is found in Equation 1.

LMax
Chromo = Ne + 3Ne + 15 = 4Ne + 15 (1)

where LMax
Chromo is the maximum possible length of a chromosome, and Ne

symbolizes the number of engines to be scheduled. Essentially, five swaps are
always allowed, represented by the 15, and for every engine scheduled, another
swap is added to the total. For example, a schedule consisting of ten engines
would have a maximum chromosome length of 55 alleles (10 for the schedule, 45
for the swaps).

Figure 35 shows what a small portion of the population might look like with
the variable chromosomes. The size of each chromosome is maintained in data
array that also maintains the fitness function values for each chromosome.

Repair function for the Chromosome The GENMOP algorithm is a real-
valued algorithm. As such, the chromosome values were represented as real-
values. In order to create the schedule permutation, a repair function is needed
in order to effectively compare one allele to another. To do this, the algorithm
uses the ceiling function where all real values are rounded up to their nearest
integer value. Therefore, a value of 1.234 would be converted to ⌈1.234⌉ = 2.
The algorithm then ensures that the permutation lists every engine only once.
If it comes across a duplicate engine, the second engine found is discarded and
another random engine is generated. This new engine must be different from all
the engines previously listed.

87Multi-Component Scheduling

Fig. 35. Examples of possible chromosome representations.

For the swaps, the smallest engine value should be listed in the first allele of
each swap. If the circumstance occurs where the first engine listed is larger than
the second, the two engines are swapped. If the both engines were identical, the
algorithm randomly generates another engine.

On occasion, one of the mutation or crossover operators may cause the values
to go beyond the predefined bounds, such as a number larger than the number
of engines or a component number of zero, etc. For these occasions, the num-
bers that exceeded our maximum bounds are replaced with the maximum value
allowed. Conversely, numbers that are below the minimum bound are replaced
with the minimum value. This was deemed to be a better method instead of
randomly creating a new value. This way, the intentions of the initial operation
are followed.

One possible problem is using this repair function with the operators pro-
vided. The original operators are all real-valued and they weren’t developed
with permutations in mind. As such, our operators and repair function tend to
be more destructive with respect to the permutation. For example, if the first
chromosome value is mutated, the change could have an effect on all other values
of the permutation. So instead of mutating just one allele of the chromosome,
the algorithm could end up mutating many values of the chromosome.

Problem Complexity This problem is much more difficult to solve than a
similar sized travelling salesman problem (TSP). The TSP is an NP-complete
problem, that has n! possible solutions, where n is the number of cities. For
this problem instance, the first part of the chromosome (the engine schedule)
is identical to a TSP, but the second part of the chromosome (the engine swap
portion) adds a considerable amount of complexity and greatly increases the
search space. As a result the complexity of this problem can be calculated as
follows:

n! ∗
(

n−1
∑

i=1

(i)

)

(5) (n + 5)

where n is the number of engines to be scheduled. The
∑n−1

i=1 (i) is the total
number of combinations that two separate engines can be paired. The 5 is the
number of components that can be swapped between two paired engines. The n+
5 are the maximum number of possible swaps that can occur for the problem. The
problem can be simplified further by making some mathematical substitutions
and approximations.

Replacing the summation:

n!

(

(n)(n − 1)

2

)

(5) (n + 5)

Substituting Stirling’s approximation for n!:

(

nne−n
√

2πn
)

(

(n)(n − 1)

2

)

(5) (n + 5)

88 M.P. Kleeman and G.B. Lamont

So if all the terms are combined in n, the problem is bounded by nn+3.

If the complexities between this problem and an equally sized TSP are com-
pared, the difference can be illustrated numerically. For example, for a 5 city TSP,
there are only 120 possibilities, but for a 5 engine problem, there are 60,000 pos-
sibilities. Likewise, for a 10 city TSP, the possibilities increase to 3,628,800, and
the 10 engine problem increases to 12,247,200,000. So finding a solution for even
a small 10 engine problem can be extremely difficult given the large number of
possible solutions.

6 Design of Experiments, Testing and Analysis

An objective of this research is to compare the results of a fixed chromosome with
the results from our current algorithmic research which incorporates a variable
length chromosome. To compare the two approaches, the results of the two fitness
functions and the average chromosome length were compared. The new variable
chromosome was implemented in such a way that it reduced the search space
size and allowed for more swaps than the previous version.

Five engines and ten engines are input in the scheduling process. A variety
of initial population sizes, from 10 to 1000 individuals, are tested with a variety
of generations, from 10 to 1000. These instances are used in order to compare
our results with baseline results, as shown in Tables 1 and 2.

6.1 Analysis of Experiments

One of the goals of this experiment is to determine if our new variable chro-
mosome improves our algorithm execution or if it hinders it. The results of our
experiments are compared with those from [52], which used the same algorithm
but had a different approach with respect to the chromosome sizing and initial-
ization. The results from [52] are considered the baseline results for the variable
length chromosome experiments.

Tables 1 and 2 list the results from our five engine and ten engine experiments.
The items in bold are the best mean values for the fitness functions. Note that
the variable chromosome always has the lowest makespan while the aggregate
swap count results are varied. The most interesting result is the average number
of component swaps. In every instance, the new variable chromosome yielded
higher chromosome lengths than the baseline representation. This result was
probably due to a higher upper bound being set on the number of swaps allowed.
Since the initial population is determined in a random fashion, using a uniform
distribution to determine the chromosome size, we can calculate the expected
value and variance of the number of swaps of the initial population. Equations 2
and 3 show the expected value and variance calculations for a given number of
engines to schedule. Note that Ne represents the number of engines the require
repair and NFixed Swaps is the number of component swaps an engine requires
when using a fixed length chromosome.

89Multi-Component Scheduling

T
a
b
le

1
.
T
e
st

in
g

R
e
su

lt
s

fo
r

5
E
n
g
in

e
s

N
u
m

b
er

o
f
G

en
er

a
ti

o
n

P
o
p
u
la

ti
o
n

A
v
g
/
S
td

D
ev

o
f

A
v
g
/
S
td

D
ev

o
f

A
v
g
/
S
td

D
ev

en
g
in

es
si

ze
S
iz

e
C

o
m

p
o
n
en

t
S
w

a
p
s

A
g
g
.
S
w

a
p

C
o
u
n
t

M
a
k
es

p
a
n

B
a
se

li
n
e

V
a
ri

a
b
le

B
a
se

li
n
e

V
a
ri

a
b
le

B
a
se

li
n
e

V
a
ri

a
b
le

R
es

u
lt

s
C

h
ro

m
o
so

m
e

R
es

u
lt

s
C

h
ro

m
o
so

m
e

R
es

u
lt

s
C

h
ro

m
o
so

m
e

5
1
0

1
0

2
.0

4
/

0
.9

3
5
.3

3
/

3
.3

9
2
6
.2

3
/

2
.0

1
2
5
.2

/
1
.1

0
9
7
1
.5

/
3
9
.4

9
4
7
.8

/
5
6
.1

5
1
0

1
0
0

3
.4

3
/

0
.9

3
5
.2

5
/

3
.7

7
2
7
.6

/
2
.6

8
2
7
.8

/
2
.8

7
9
4
1
.5

/
7
8
.2

8
6
9
.5

/
5
3
.7

5
1
0

1
0
0
0

3
.6

1
/

1
.1

0
5
.4

0
/

2
.8

8
2
5
.4

/
2
.0

1
2
6
.2

/
3
.4

2
9
2
1
.0

/
8
8
.3

8
5
9
.6

/
3
4
.0

5
2
5

2
5

2
.2

8
/

1
.0

4
4
.7

5
/

2
.9

2
2
5
.7

/
1
.6

4
2
6
.5

/
3
.2

9
9
3
2
.8

/
7
1
.5

9
1
6
.8

/
6
5
.8

5
1
0
0

1
0

1
.5

7
/

0
.8

5
1
0
.0

/
0
.0

0
2
6
.6

/
1
.2

9
2
4
.0

/
2
.6

7
9
4
4
.6

/
7
7
.2

8
3
3
.0

/
2
2
.5

5
1
0
0

1
0
0

2
.8

0
/

1
.1

6
7
.4

0
/

2
.2

7
2
5
.6

/
1
.4

2
2
5
.4

/
3
.1

7
9
0
4
.3

/
7
9
.3

8
4
6
.5

/
3
0
.0

5
1
0
0

5
0
0

3
.1

2
/

0
.8

0
8
.0

0
/

0
.0

0
2
5
.7

/
1
.9

5
2
5
.0

/
2
.6

5
8
8
5
.9

/
6
6
.6

8
2
0
.0

/
2
6
.5

5
1
0
0

1
0
0
0

3
.5

4
/

0
.9

2
1
0
.0

/
0
.0

0
2
5
.1

/
2
.0

4
2
2
.0

/
0
.0

0
8
8
9
.5

/
6
7
.5

8
5
0
.0

/
0
.0

0

5
5
0
0

1
0
0
0

3
.3

6
/

1
.0

3
6
.2

1
/

1
.6

9
2
4
.8

/
1
.6

4
2
3
.4

/
1
.5

6
9
1
8
.0

/
7
6
.1

8
5
8
.5

/
4
9
.6

5
1
0
0
0

1
0
0
0

2
.9

4
/

0
.7

5
2
5
.5

8
/

1
.5

2
8
8
6
.5

/
6
8
.7

4

90 M.P. Kleeman and G.B. Lamont

T
a
b
le

2
.
T
e
st

in
g

R
e
su

lt
s

fo
r

1
0

E
n
g
in

e
s

N
u
m

b
er

o
f
G

en
er

a
ti

o
n

P
o
p
u
la

ti
o
n

A
v
g
/
S
td

D
ev

o
f

A
v
g
/
S
td

D
ev

o
f

A
v
g
/
S
td

D
ev

en
g
in

es
si

ze
S
iz

e
C

o
m

p
o
n
en

t
S
w

a
p
s

A
g
g
.
S
w

a
p

C
o
u
n
t

M
a
k
es

p
a
n

B
a
se

li
n
e

V
a
ri

a
b
le

B
a
se

li
n
e

V
a
ri

a
b
le

B
a
se

li
n
e

V
a
ri

a
b
le

R
es

u
lt
s

C
h
ro

m
o
so

m
e

R
es

u
lt

s
C

h
ro

m
o
so

m
e

R
es

u
lt

s
C

h
ro

m
o
so

m
e

1
0

1
0

1
0

3
.5

1
/

2
.5

7
1
1
.6

/
2
.0

1
2
7
.5

/
2
.1

7
2
8
.9

/
2
.7

1
2
1
6
5
.5

/
8
3
.1

2
0
8
6
.4

/
8
2
.8

1
0

1
0

1
0
0

5
.6

/
2
.7

2
9
.4

2
/

4
.4

2
2
7
.0

/
2
.4

0
2
9
.7

/
5
.0

5
2
1
4
8
.1

/
5
0
.2

2
0
2
3
.4

/
1
3
6
.3

1
0

1
0

1
0
0
0

7
.3

2
/

1
.7

4
1
2
.3

/
1
.5

3
2
5
.6

/
1
.2

9
2
8
.3

/
3
.7

9
2
1
4
4
.9

/
5
6
.4

1
9
7
9
.7

/
8
5
.9

1
0

2
5

2
5

3
.5

5
/

2
.0

0
1
1
.0

/
1
.7

3
2
6
.4

/
1
.5

7
2
8
.8

/
3
.4

2
2
1
4
2
.2

/
4
3
.5

1
9
3
7
.6

/
7
9
.2

1
0

1
0
0

1
0

3
.7

2
/

1
.7

9
1
1
.4

/
2
.1

9
2
5
.7

/
1
.2

3
2
4
.3

/
2
.6

9
2
1
3
9
.0

/
2
9
.1

1
8
3
2
.4

/
5
0
.5

1
0

1
0
0

1
0
0

4
.0

1
/

1
.9

7
1
3
.9

/
0
.4

9
2
6
.5

/
1
.6

3
2
3
.1

/
0
.6

7
2
1
1
9
.1

/
3
2
.7

1
8
9
3
.4

/
0
.6

7

1
0

1
0
0

5
0
0

4
.0

3
/

2
.3

0
9
.4

9
/
2
.8

9
2
5
.4

/
1
.1

6
2
3
.8

/
0
.8

7
2
1
2
8
.8

/
3
6
.0

1
9
2
5
.9

/
2
2
2
.4

1
0

1
0
0

1
0
0
0

4
.4

5
/

1
.9

8
1
3
.5

/
1
.1

2
2
4
.7

/
0
.9

1
2
4
.8

/
0
.4

3
2
1
3
3
.8

/
5
3
.5

1
6
7
8
.3

/
1
0
6
.3

1
0

1
0
0
0

1
0
0
0

4
.1

6
/

2
.0

8
1
3
.9

/
0
.6

5
2
4
.8

/
0
.6

4
2
3
.7

/
0
.5

5
2
1
0
5
.5

/
4
.5

3
1
6
3
8
.5

/
5
4
.3

91Multi-Component Scheduling

E[NFixed Swaps] =
(Ne + 5)

2
(2)

V ar[NFixed Swaps] =
(Ne + 5)2

12
(3)

In the baseline model, every chromosome is set to have one swap per engine
scheduled, but a swap could be turned off by placing a zero in for the component
number. The component numbers for the initial population are generated using
a uniform distribution. Essentially, the number of swaps for in a chromosome is
determined via a binomial distribution, with each swap having a p = 5/6 prob-
ability of occurring. The expected number of swaps for the original chromosome
can be found in Equation 4 and the variance is found in Equation 5. Note that
NV ar Swaps is the number of component swaps an engine requires when using a
variable length chromosome.

E[NV ar Swaps] = (Ne)

(

5

6

)

(4)

V ar[NV ar Swaps] = (Ne)

(

5

6

)(

1

6

)

(5)

Table 3 shows the expected values and variances of the number of swaps, in
the initial population, from the two representations. It’s interesting to note that
in the 10 engine instance, the baseline chromosome population is initially seeded
with more swaps, but after all the generations are run, the average chromosome
length shrinks, while the variable length chromosome average size increases.

Table 3. Comparison of the number of swaps in the initial population

Baseline Variable
Chromosome Chromosome

Number of Expected Expected
engines Value Variance Value Variance

5 Engines 5.0 0.69 4.17 8.33

10 Engines 7.5 1.39 8.33 18.75

Another way to highlight the results is to compare each of the methods
using Pareto Front analysis. Figure 36 compares the results of the algorithm
implementations using 5 engines and 25 for both the initial population and
number of generations. Figure 37 shows the results for the same number of
population and generations as listed above, but it show the results with respect
to 10 engines. Notice how there is little difference in the 5 engine case, while
there is a vast difference between the implementations in the ten engine case.
This result is common with all the other instances as well. The trend appears to

92 M.P. Kleeman and G.B. Lamont

show that the new GENMOP design is more capable of finding better solutions,
especially with respect to the makespan, than the old one. This is most probably
caused by our efforts to reduce the search space of the algorithm, through the use
of a variable length chromosome and reducing the number of allowable swaps.
Figure 38 shows a comparison with more realistic population and generation
sizing. Notice how once again our new implementation is much improved over
the previous results.

Using an MOEA for the multi-component problem has many advantages,
particularly if there is more than one objective a researcher is interested in. For
multiple objectives, Pareto front methods are a good way to show the decision
maker his options. MOEAs do a good job of finding points along Pareto fronts
that are not only concave or convex, but also do well with non-uniform and
deceptive problems as well. But MOEAs are only as good as their representation
and operators. The key is to balance exploration and exploitation. A proper mix
of the two can ensure that the algorithm is capable of finding solutions in both
smooth and rugged search landscapes. The MOEA used in this research has
proven to be effective in a variety of environments because it is able to provide
that good balance.

7 Conclusions

In this chapter five scheduling problems were discussed. These problems led up
to the discussion of a new scheduling paradigm, the multi-component scheduling

93Multi-Component Scheduling

Fig. 36. Comparison of the Pareto front members for the 5 engine instance.

850 900 950 1000 1050
24

25

26

27

28

29

30

31

32

Makespan

A
g

g
re

g
a

te
 S

w
a

p
 C

o
u

n
t

Comparison of 5 engines, population size = 25, and 25 generations

New Known Pareto Front points = 10
Baseline Known Pareto Front points = 60

problem. Some specific examples of how EAs have been used with scheduling
problems were discussed. Specifically, chromosome representations and various
crossover and mutation operators were presented. Then, some examples of the
multi-component scheduling problem were given and one of these examples, the
engine maintenance scheduling problem, was solved. The GENMOP MOEA is
used to optimize the problem. A variable length chromosome is devised in an
effort to reduce the search space. The new design performed much better than
the baseline when the search space was large, specifically the ten engine instance.

There are several other avenues that can be investigated, given our validated
model and MOEA. The one area of research that may increase effectiveness is
analyzing the operators currently built into GENMOP and adding various per-
mutation operators that are geared more toward scheduling problems. GENMOP
was run with all of its operators available, but some operators may be more use-
ful than others. Also, by adding operators that have been shown to be effective
in other scheduling problems, the effectiveness or efficiency of the algorithm may
be increased. Analyzing our repair function is another area of research that could
pay off big dividends. The current repair method is fairly simple, but it can be
rather disruptive. We would like to apply one or two different repair operations
and compare how well each one performs. In addition, evaluation of appropriate
MOEA quality metrics is to be addressed.

Additionally, incorporating automatic systems into the multi-

94 M.P. Kleeman and G.B. Lamont

component scheduling problem, is a worthwhile research task. By incorporating
that model, it can create another tool that may be useful in solving an addi-
tional set of scheduling problems.

planning

Fig. 37. Comparison of the Pareto front members for the 10 engine instance.

1900 1950 2000 2050 2100 2150
24

25

26

27

28

29

30

31

32

33

34

Makespan

A
g

g
re

g
a

te
 S

w
a

p
 C

o
u

n
t

Comparison of 10 engines, population size = 25, and 25 generations

New Known Pareto Front points = 5
Baseline Known Pareto Front points = 21

Finally, the search landscapes of the various scheduling algorithms should be
studied more in depth. Not much work has been done in this field. By knowing
the search landscapes, a researcher can decide what algorithm is best to apply
to a particular problem.

References

1. Michael Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall,
Englewood Clifs, New Jersey, 1995.

2. Peter Brucker. Scheduling Algorithms. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1998.

3. Tapan P. Bagchi. Multiobjective Scheduling by Genetic Algorithms. Kluwer, Boston,
MA, 1999.

4. Vincent T’kindt, Jatinder N.D. Gupta, and Jean-Charles Billaut. Two-machine
flowshop scheduling with a secondary criterion. Comput. Oper. Res., 30(4):505–
526, 2003.

5. Józef Grabowski and Mieczyslaw Wodecki. A very fast tabu search algorithm for
the permutation flow shop problem with makespan criterion. Comput. Oper. Res.,
31(11):1891–1909, 2004.

6. Kuo-Ching Ying and Ching-Jong Liao. An ant colony system for permutation
flow-shop sequencing. Computers and Operations Research, 31(5):791–801, 2004.

7. El-Ghazali Talbi, Malek Rahoual, Mohamed Hakim Mabed, and Clarisse Dhae-
nens. A hybrid evolutionary approach for multicriteria optimization problems:
Application to the flow shop.
Conference on Evolutionary Multi-Criterion Optimization, pages 416–428, London,
UK, 2001. Springer-Verlag.

95Multi-Component Scheduling

In EMO’01: Proceedings of the First International

Fig. 38. Comparison of the Pareto front members for the 10 engine instance.

1700 1800 1900 2000 2100 2200 2300
23

23.2

23.4

23.6

23.8

24

24.2

24.4

24.6

24.8

25

Makespan

A
g

g
re

g
a

te
 S

w
a

p
 C

o
u

n
t

Comparison of 10 engines, population size = 100, and 1000 generations

New Known Pareto Front points = 67
Baseline Known Pareto Front points = 26

8. Jose Antonio Vazquez Rodriguez and Abdellah Salhi. Performance of single stage
representation genetic algorithms in scheduling flexible flow shops. In Congress on
Evolutionary Computation (CEC’2005), volume 2, pages 1364–1371, Piscataway,
New Jersey, September 2005. IEEE Service Center.

9. Ulrich Dorndorf, Erwin Pesch, and Toà Phan-Huy. Solving the Open Shop Schedul-
ing Problem. Journal of Scheduling, 4:157–174, 2001.

10. Ching-Fang Liaw. A hybrid genetic algorithm for the open shop scheduling prob-
lem. European Journal of Oprational Research, 124(1):28–42, 2000.

11. Jesus J. Aguirre-Solis. Tabu Search Algorithm for the Open Shop Scheduling Prob-
lem with Sequence Dependent Setup Times. In Advanced Simulation Technologies
Conference, volume 1. The Society for Modeling and Simulation International,
April 2003.

12. Jacek Blażewicz, Erwin Pesch, Malgorzata Sterna, and Frank Werner. Open Shop
Scheduling Problems with Late Work Criteria. Discrete Applied Math, 134(1-3):1–
24, January 2004.

13. C. T. Ng, T. C. E. Cheng, and J. J. Yuan. Concurrent open shop scheduling to
minimize the weighted number of tardy jobs. J. of Scheduling, 6(4):405–412, 2003.

14. Peter Brucker, Johann Hurink, Bernd Jurisch, and Birgit Wöstmann. A
branch & bound algorithm for the open-shop problem. In GO-II Meeting: Pro-
ceedings of the second international colloquium on Graphs and optimization, pages
43–59, Amsterdam, The Netherlands, The Netherlands, 1997. Elsevier Science Pub-
lishers B. V.

15. Ching-Fang Liaw. A tabu search algorithm for the open shop scheduling problem.
Computers and Operations Research, 26(2):109–126, 1999.

16. Walter H. Kohler and Kenneth Steiglitz. Exact, approximate, and guaranteed
accuracy algorithms for the flow-shop problem n/2/f/ f. Journal of the ACM,
22(1):106–114, 1975.

17. Mikkel T. Jensen. Robust and Flexible Scheduling with Evolutionary Computa-
tion. PhD thesis, Department of Computer Science. University of Aarhus, Aarhus,
Denmark, October 2001.

18. Runwei Cheng, Mitsuo Gen, and Yasuhiro Tsujimura. A tutorial survey of job-
shop scheduling problems using genetic algorithms i: Representation. Computers
& Industrial Engineering, 30(4):983–997, 1996.

19. Zuobao Wu and M. X. Weng. Multiagent scheduling method with earliness and
tardiness objectives in flexible job shops. IEEE Transactions on Systems, Man,
and Cybernetics, Part B, 35(2):293–301, 2005.

20. Imed Kacem, Slim Hammadi, and Pierre Borne. Pareto-optimality approach for
flexible job-shop scheduling problems: Hybridization of evolutionary algorithms
and fuzzy logic. Mathematics and Computers in Simulation, 60(3-5):245–276, 2002.

21. Takeshi Yamada and Ryohei Nakano. A genetic algorithm applicable to large-scale
job-shop problems. In Reinhard Männer and Bernard Manderick, editors, PPSN,
pages 283–292. Elsevier, 1992.

22. Robert H. Storer, S. David Wu, and Renzo Vaccari. New search spaces for se-
quencing problems with application to job shop scheduling. Management Science,
38(10):1495–1509, 1992.

23. Bryan A. Norman and James C. Bean. A genetic algorithm methodology for
complex scheduling problems. Naval Research Logistics, 46(2):199–211, 1999.

24. Ulrich Dorndorf and Erwin Pesch. Evolution based learning in a job shop schedul-
ing environment. Computers and Operations Research, 22(1):25–40, January 1995.

25. Joseph Adams, Egon Balas, and Daniel Zawack. The shifting bottleneck procedure
for job shop scheduling. Manage. Sci., 34(3):391–401, 1988.

96 M.P. Kleeman and G.B. Lamont

26. R. Cheng, M. Gen, and Y. Tsujimura. A tutorial survey of job-shop scheduling
problems using genetic algorithms. ii. hybrid genetic search strategies. Computers
& Industrial Engineering, 37(1-2):51–55, 1999.

27. David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Company, Reading, Massachusetts, 1989.

28. Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold,
New York, New York, 1991.

29. Carlos Cotta and José M. Troya. Genetic forma recombination in permutation
flowshop problems. Evolutionary Computation, 6(1):25–44, 1998.

30. E. Falkenauer and S. Bouffouix. A genetic algorithm for the job shop. In 1991
IEEE International Conference on Robotics and Automation, pages 824–829, 1991.

31. Shigenobu Kobayashi, Isao Ono, and Masayuki Yamamura. An efficient genetic
algorithm for job shop scheduling problems. In Larry J. Eshelman, editor, ICGA,
pages 506–511. Morgan Kaufmann, 1995.

32. Isao Ono, Masayuki Yamamura, and Shigenobu Kobayashi. A genetic algorithm

for job-shop scheduling problems using job-based order crossover. In International
Conference on Evolutionary Computation, pages 547–552, 1996.

33. Mitsuo Gen, Yasuhiro Tsujimura, and Erika Kubota. Solving job-shop scheduling
problems by genetic algorithm. In Proceedings of the 1994 IEEE International
Conference on Systems, Man, and Cybernetics, volume 2, pages 1577–1582, 1994.

34. Thomas Stützle. An ant approach to the flow shop problem. In 6th European

35. Tadahiko Murata and Hisao Ishibuchi. Performance evaluation of genetic algo-
rithms for flowshop scheduling problems. In International Conference on Evolu-
tionary Computation, pages 812–817, 1994.

36. Hisao Ishibuchi, Tadashi Yoshida, and Tadahiko Murata. Balance between genetic
search and local search in memetic algorithms for multiobjective permutation flow-
shop scheduling. IEEE Trans. Evolutionary Computation, 7(2):204–223, 2003.

37. Tadahiko Murata, Hisao Ishibuchi, and H. Tanaka.
Computers and Industrial

Engineering, 30(4):957–968, September 1996.
38. Hisao Ishibuchi and Tadahiko Murata. Multi-Objective Genetic Local Search Algo-

rithm and Its Application to Flowshop Scheduling. IEEE Transactions on Systems,
Man and Cybernetics, 28(3):392–403, August 1998.

39. Hisao Ishibuchi and Youhei Shibata. Single-Objective and Multi-Objective Evo-
lutionary Flowshop Scheduling. In Carlos A. Coello Coello and Gary B. Lamont,
editors, Applications of Multi-Objective Evolutionary Algorithms, pages 529–554.
World Scientific, Singapore, 2004.

40. Anant Singh Jain and Sheik Meeran. A state-of-the-art review of job-shop schedul-
ing techniques. Technical report, Department of Applied Physics, Electronic and
Mechanical Engineering, University of Dundee, Dundee, Scotland, 1998.

41. Christian Bierwirth. A generalized permutation approach to job shop scheduling
with genetic algorithms. OR Spektrum, 17:87–92, 1995.

42. Monaldo Mastrolilli and Luca Maria Gambardella. Effective neighborhood func-
tions for the flexible job shop problem. Journal of Scheduling, 3:3–20, 2000.

43. Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, Héctor Muñoz-Avila,
J. William Murdock, Dan Wu, and Fusun Yaman. Applications of shop and shop2.
IEEE Intelligent Systems, 20(2):34–41, 2005.

44. Austin Tate, Brian Drabble, and Richard Kirby. O-plan2: An architecture for com-
mand, planning and control. In Mark Fox and Monte Zweben, editors, Intelligent
Scheduling. Morgan-Kaufmann Publishing, 1994.

97Multi-Component Scheduling

Congress on Intelligent Techniques and Soft Computing, pages 1560–1564, 1998.

Multi-Objective Genetic Alg-
orithm and Its Application to Flowshop Scheduling.

45. David E. Wilkins. Can ai planners solve practical problems? Comput. Intell.,
6(4):232–246, 1990.

46. Dana S. Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock,
Dan Wu, and Fusun Yaman. Shop2: An htn planning system. J. Artif. Intell. Res.
(JAIR), 20:379–404, 2003.

47. Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evolution-
ary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,
New York, May 2002. ISBN 0-3064-6762-3.

48. Kalyanmoy Deb, Samir Agrawal, Amrit Pratab, and T. Meyarivan. A Fast Eli-
tist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization:
NSGA-II. In Marc Schoenauer, Kalyanmoy Deb, Günter Rudolph, Xin Yao, Eve-
lyne Lutton, Juan Julian Merelo, and Hans-Paul Schwefel, editors, Proceedings of
the Parallel Problem Solving from Nature VI Conference, pages 849–858, Paris,
France, 2000. Springer. Lecture Notes in Computer Science No. 1917.

49. Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the
Strength Pareto Evolutionary Algorithm. In K. Giannakoglou, D. Tsahalis, J. Peri-
aux, P. Papailou, and T. Fogarty, editors, EUROGEN 2001. Evolutionary Methods
for Design, Optimization and Control with Applications to Industrial Problems,
Athens, Greece, September 2001.

50. Carlos M. Fonseca and Peter J. Fleming. An Overview of Evolutionary Al-
gorithms in Multiobjective Optimization. Evolutionary Computation, 3(1):1–16,
Spring 1995.

51. Mark R. Knarr, Mark N. Goltz, Gary B. Lamont, and Junqi Huang. In Situ Biore-
mediation of Perchlorate-Contaminated Groundwater using a Multi-Objective
Parallel Evolutionary Algorithm. In Congress on Evolutionary Computation
(CEC’2003), volume 1, pages 1604–1611, Piscataway, New Jersey, December 2003.
IEEE Service Center.

52. Mark P. Kleeman and Gary B. Lamont. Solving the Aircraft Engine Maintenance
Scheduling Problem Using a Multi-objective Evolutionary Algorithm. In Evolu-
tionary Multi-Criterion Optimization 2005, volume 1, pages 782–796, March 2005.

53. Mark P. Kleeman and Gary B. Lamont. Solving the aircraft engine maintenance
scheduling problem using a multi-objective evolutionary algorithm. In GECCO
’05: Proceedings of the 2005 workshops on Genetic and evolutionary computation,
pages 196–198, New York, NY, USA, 2005. ACM Press.

54. Traci A. Keller. Optimization of a Quantum Cascade Laser Operating in the Ter-
ahertz Frequency Range Using a Multiobjective Evolutionary Algorithm. Master’s
thesis, Air Force Institute of Technology, Wright-Patterson AFB, OH, June 2004.

55. Zbigniew Michalewicz and Cezary Z. Janikow. Genocop: a genetic algorithm

for numerical optimization problems with linear constraints. Commun. ACM,
39(12es):223–240, 1996.

56. Zbigniew Michalewicz. Evolutionary computation techniques for nonlinear pro-
gramming problems. International Transactions in Operational Research, 1(2):175,
1994.

57. Mark R. Knarr. Optimizing an In Situ Bioremediation Technology to Manage
Perchlorate-Contaminated Groundwater. Master’s thesis, Air Force Institute of
Technology, Wright-Patterson AFB, OH, March 2003.

58. Traci A. Keller and Gary B. Lamont. Optimization of a Quantum Cascade Laser
Operating in the Terahertz Frequency Range Using a Multiobjective Evolutionary
Algorithm. In 17th International Conference on Multiple Criteria Decision Making
(MCDM 2004), volume 1, December 2004.

98 M.P. Kleeman and G.B. Lamont

59. Clyde W. Holsapple, Varghese S. Jacob, Ramakrishnan Pakath, and Jigish S. Za-
veri. A Genetics-based Hybrid Scheduler for Generating Static Schedules in Flexi-
ble Manufacturing Contexts. IEEE Transactions on Systems, Man and Cybernet-
ics, 23:953–972, July-Aug 1993.

60. Jr. Kenneth E. Kinnear. Derivative Methods in Genetic Programming. In T. Bäck,

99Multi-Component Scheduling

Algorithms and Operators, pages 103–113. Institute of Physics Publishing, 2000.
D. B. Fogel, and Z. Michalewicz, editors, Evolutionary Computation 1: Basic

Designing Dispatching Rules to Minimize Total

Tardiness

Joc Cing Tay and Nhu Binh Ho

Evolutionary and Complex Systems Program (EvoCom)
Nanyang Technological University, School of Computer Engineering,
Blk N4 #2a-32 Nanyang Avenue, Singapore 639798

Summary. We approximate optimal solutions to the Flexible Job-Shop
Problem by using dispatching rules discovered through Genetic Program-
ming. While Simple Priority Rules have been widely applied in practice,
their efficacy remains poor due to lack of a global view. Composite Dis-
patching Rules have been shown to be more effective as they are con-
structed through human experience. In this work, we employ suitable pa-
rameter and operator spaces for evolving Composite Dispatching Rules
using Genetic Programming, with an aim towards greater scalability and
flexibility. Experimental results show that Composite Dispatching Rules
generated by our Genetic Programming framework outperforms the Single
and Composite Dispatching Rules selected from literature over large valida-
tion sets with respect to total tardiness. Further results on sensitivity to
changes (in coefficient values and terminals) among the evolved rules indi-
cate that their designs are optimal.

1 Introduction

In today’s highly competitive marketplace, a high level of delivery per-
formance has become necessary to satisfy customers. Due to market
trends, product orders of low volume, high variety types have been in-
creasing in demand. Hoitomt et al. [1] mentions that these products com-
prise between 50 to 75 % of all manufactured components, thereby making
schedule optimization an indispensable step in the overall manufacturing
process.

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

J.C. Tay and N.B. Ho: Designing Dispatching Rules to Minimize Total Tardiness, Studies in

Computational Intelligence (SCI) 49, 101–124 (2007)

The Job-Shop Scheduling Problem (JSP) is one of the most popular
manufacturing optimization models used in practice [2]. It has attracted
many researchers due to its wide applicability and inherent difficulty [3-6].
It is also well known that the JSP is NP-hard [7], hence general, determi-
nistic methods of search are inefficient as the problem size grows larger.
The n x m classical JSP involves n jobs and m machines. Each job is to be
processed on each machine in a pre-defined sequence, and each machine
processes only one job at a time. In practice, the shop-floor setup typically
consists of multiple copies of the most critical machines so that bottlenecks
due to long operations or busy machines can be reduced. As such, an op-
eration may be processed on more than one machine having the same func-

operations on each machine. In addition, for complex manufacturing sys-
tems, a job can typically visit a machine more than once (known as recir-
culation). These three features of the FJSP significantly increase the com-
plexity of finding even approximately optimal solutions [8].

search methods, such as Simulated Annealing [4], Tabu Search [5, 9, 10]
and Genetic Algorithms [11-14]. The reported results of applying them
show that good approximations of optimality can be found, albeit at the
expense of a huge computational cost, particularly when the problem size
is large. In practice, dispatching rules have been applied to avoid these
costs [15-17]. Although the quality of solutions produced by dispatching
rules are no better than the local search methods, they are the more fre-
quently applied technique due to their ease of implementation and their
low time complexity. Whenever a machine is available, a priority-based
dispatching rule inspects the waiting jobs and selects the job with the high-
est priority to be processed next. Recently, the introduction of composite
dispatching rules (CDR) have been increasingly investigated by the some
researchers [18, 19], but typically only for classical JSPs. These rules are
the heuristic combination of single dispatching rules that aim to inherit the
advantages of the former. The results show that, with careful combination,
the composite dispatching rules will perform better than the single ones
with regards to the quality of schedules.

In this paper, we investigate the potential use of GP for evolving effec-
tive composite dispatching rules for solving the FJSP, with the objective of
minimizing total tardiness. The purpose of this research is to find efficient
composite dispatching rules that perform better than the dispatching rules
presented in literature for solving the same problem. By using a wide train-
ing data set, we believe that the evolved CDRs can be applied directed in

102 J.C. Tay and N.B. Ho

assignment of an operation to an appropriate machine and sequencing the
Job Shop Scheduling Problem (FJSP). The extension involves two tasks;

The classical JSP and FJSP have been solved by many stochastic local

tion. This leads to a more complex problem known as the Flexible

practice without any modifications. Furthermore, the results of these CDRs
could be used as the input to other local search methods in solving FJSP
problems, such as Genetic Algorithms [13, 14].

The remainder of this paper is organized as follows. Section 2 gives the
formal definition of the FJSP. Section 3 reviews recent related works for
solving the JSP and FJSP using dispatching rules and a overview of GP.
Section 4 describes our proposed GP framework for evolving CDRs while
Section 5 analyzes the performance results of the CDRs obtained with GP.
Finally, Section 6 gives some concluding remarks and directions for future
work.

2 Problem definition

Similar to the classical JSP, solving the FJSP requires the optimal assign-
ment of each operation of each job to a machine with known starting and
ending times. However, the task is more challenging than the classical one
because it requires a proper selection of a machine from a set of machines
to process each operation of each job. Furthermore, if a job is allowed to
recirculate, this will significantly increase the complexity of the system
[20]. The FJSP is formulated as follows:

 Let J = {Ji}1 i n, indexed i, be a set of n jobs to be scheduled.
 Each job Ji consists of a predetermined sequence of operations. Let Oi,j be

operation j of Ji.
 Let M = {Mk}1 k m, indexed k, be a set of m machines.
 Each machine can process only one operation at a time.
 Each operation Oi,j can be processed without interruption on one of a set

of machines Mk in a given set i,j M with pi,j,k time units.
 Let Ci and di be the completion time and due date of job Ji respectively.

The tardiness of this job is calculated by the following formula:
max 0,i i iT C d

 The objective function T of this problem is to find a schedule that mini-
mizes the sum of tardiness of all jobs (total tardiness problem):

n

i

ii

n

i

i dCTT
11

},0max{minmin

Total tardiness is one of the major objectives in production scheduling. A job
that is late may penalize the company’s reputation and reduce customer
satisfaction. Hence, keeping the due dates of jobs under control is one of the most
important tasks faced by companies [19].

Designing Dispatching Rules to Minimize Total Tardiness 103

The FJSP can also be considered to be a Multi Purpose Machine (MPM) job-
shop [21]. Using the | | notation of [22], the problem we wish to solve can be
denoted by

J MPM | prec
jr jd | jj

T

where J denotes job-shop problem, MPM denotes multi purpose machine, prec
represents a set of independent chains while rj and dj represents release date and

due date given to each job respectively; finally, jj
T represents total tardiness.

In this paper, we shall assume the following:
 All machines are available at time 0.

 Preemption of operations is not allowed.

 Each job has its own release date and due date.

The order of operations for each job is predefined and cannot modified.

3 Previous works

Dispatching rules have received much attention from researchers over the
past decades [15-17]. In general, whenever a machine is freed, a job with
the highest priority in the queue is selected to be processed on a machine
or work center. A comprehensive survey on dispatching rules is by Pan-
walkar and Wafik [15] and Blackstone et al. [16]. Depending on the speci-
fication of each rule, it can be classified [15] into:

 Simple Priority Rules
 CDRs
 Weighted Priority Indexes
 Heuristic Scheduling Rules

Simple Priority Rules (SPR) are usually based on a single objective

function. They usually involve only one model parameter, such as process-
ing time, due date, number of operations or arrival time. The Shortest
Processing Time (SPT) rule is an example of a SPR. It orders the jobs on
the queue in the order of increasing processing times. When a machine is
freed, the next job with the shortest time in the queue will be removed for
processing. SPT has been found to be the best rule for minimizing the
mean flow time and number of tardy jobs [17]. The Earliest Due Date
(EDD) rule is another example of a SPR where the next job to be proc-
essed is the one with the earliest due date. Unfortunately, no SPR performs
well across every performance measure such as tardiness or flow time

104 J.C. Tay and N.B. Ho

[23]. To overcome this limitation, CDRs have been studied to combine
good features from such SPRs.

There are two kinds of CDRs presented in literature; the first type in-
volves deploying a select number of SPRs at different machines or work
centers. Each machine or work center employs a single rule. When a job
enters a specific machine or work center, it is processed by the SPR that is
preselected for that machine or work center. For instance, Barman [23] ap-
plied three different SPRs to solve the flow shop problem corresponding to
three work centers. Experimental results show that it obtains better results
than a single SPR that is common to all three machines. However, this ap-
proach may not be suitable for a shop floor with large number of machines
or work centers; and the best independent distribution of single SPRs is
difficult to predetermine. Furthermore, it still has the limitation of a local-
ized view. The second type involves applying the composition of several
SPRs (otherwise known as a CDR) to evaluate the priorities of jobs on the
queue [17]. The latter type is executed similarly to SPRs; when a machine
is free, this CDR evaluates the queue and then selects the job with the
highest priority. For example, Oliver and Chandrasekharan [17] present
five CDRs for solving the JSP. Their results indicate that CDRs are more
effective compared to individual SPRs. CDRs inherit the simplicity of
SPRs while achieving some scalability as the number of machines in-
crease. Moreover, if well designed, CDRs can solve realistic problems
with multiple objectives [8]. However, the challenge is to find a good
combination of SPRs to apply to all machines or work centers.

Weighted priority index rules are the linear combination of SPRs with
computed weights [18, 19]. Depending on specific business domains, the
importance of a job determines it’s weight. For instance, consider n jobs
with different weights w, each job Ji is assigned weight wi. The sum of the
weighted tardiness as the objective function is given as follows:

n

i

iii

n

i

ii dCwTwT
11

},0max{minmin

In this paper, weighted priority rules are not considered as they are a
generalization of our current formulation of total tardiness where we have
assumed instead that all jobs have unit weights (or all jobs are equally im-
portant) (see Section 2).

Heuristic rules are rules that depend on the configuration of the system.
These rules are usually used together with previous rules, such as SPRs,
CDRs or weighted priority index rules. For instance, the heuristic rules
may use the expertise of human experience, such as inserting an operation
of a job into an idle time slot by visual inspection of a schedule [15].

Designing Dispatching Rules to Minimize Total Tardiness 105

The results from recent researchers [17, 23] show that CDRs outperform
individual SPRs in improving the efficiency of the shop floor. In this work,
we focus our attention on finding a computational method to build effec-
tive CDRs; one that is based on the composition of fundamental measures
rather than on the algebraic combination of SPRs. However, this may be
difficult to enumerate manually due to the large parameter and operator
space, hence we employ a GP framework.

Genetic programming (GP) [24] belongs to a family of evolutionary
computation methods. It is based on the Darwinian principle of reproduc-
tion and survival of the fittest. Given a set of functions and terminals and
an initial population of randomly generated syntax trees (representing pro-
grams), the programs are evolved through genetic recombination and natu-
ral selection. GP has been applied to many different problems; from classi-
cal tasks, such as function fitting or pattern recognition, to non-trivial tasks
that are competitive with significant human endeavours such as designing
electrical circuits [25] or antennas [26].

The most important feature that makes GP different from the canonical
GA is it’s ability to vary the logical structure and size of evolved computer
programs dynamically. It can therefore solve more challenging problems
that have eluded the canonical GA due to the latter’s requirement of a
fixed-length chromosome. However, GP has rarely been applied to manu-
facturing optimization [27]; this is due to the direct permutation property
of scheduling where jobs and/or machines can be simply reordered (in the
case of JSP) to improve optimality. For instance, the chromosomes pre-
sented in [10-14] have fixed lengths, which can be evolved easily by direct
permutation. On the other hand, GP uses a tree-based encoding with dy-
namic length; making it difficult to encode the JSP (for that matter, a
FJSP) into a tree-based chromosome. Unlike previous approaches [17-19,
23] where a predefined set of SPRs were combined in advance by human
experience, we apply GP to find superior constructions of CDRs which are
composed of fundamental terminals (see Table 1). These discovered rules
are then used to solve the FJSP directly; the advantage being that the ob-
tained CDRs can solve the FJSPs in shorter computational time as com-
pared to genetic algorithms [10-14].

4 Design of the GP framework

In GP, an individual (ie, computer program) is composed of terminals and
functions. Therefore, when applying GP to solve a specific problem, they
should be well designed to satisfy the requirements of the current problem.

106 J.C. Tay and N.B. Ho

After evaluating many parameters related to the FJSP, the terminal set and
the function set that are used in our algorithm are described as follows.

4.1 Terminal set

In job-shop scheduling, there are many parameters that can effect the qual-
ity of results; potentially, all of them can be considered to comprise a dis-
patching rule. However, in order to create a short and meaningful dispatch-
ing rule, only a small and sufficient number of parameters should be
evaluated properly. They also help to reduce the search space and improve
the efficiency of the algorithm. Based upon the dispatching rules involving
due dates in [15-17] and our experimental works, the terminal set proposed
in this study is given in Table 1.

Table 1. Terminal Set

Terminal Meaning
ReleaseDate Release date of a job (RD)
DueDate Due date of a job (DD)

ProcessingTime Processing time of each operation (PT)
CurrentTime Current time (CT)
RemainingTime Remaining processing time of each job (RT)
numOfOperations Number of operations of each job (nOps)
avgTotalProcTime Average total processing time of each job

(aTPT)

In Table 1, CurrentTime represents the time when a particular machine

is free and starts to select a job to process on its queue. RemainingTime
corresponds to the elapsed time for the current job to finish. Some previous
dispatching rules use total processing time of each job as one of their pa-
rameters. However, in FJSP, as an operation of each job can be processed
on a set of machines, we normalize the average processing time of each
operation with the following formula:

,

, ,
()

,
,()

i j

i j k

n

i j

i j

p

p
n

where pi,j,k stands for processing time of operation Oi,j on machine Mk and
n(i,j) represents the number of machines that can process Oi,j.

Designing Dispatching Rules to Minimize Total Tardiness 107

4.2 Function set

Similar to other applications of GP [24-26] for solving optimization prob-
lems, we use four basic operators: addition, subtraction, multiplication, and
division for creating a CDR. Furthermore, we employ a well-known
Automatically Defined Function (ADF) (proposed by Koza [28]). The
ADF is sub-tree which can be used as a function in the main tree. The size
of the ADF is varied in the same manner as the main tree. It enables GP to
define useful and reusable subroutines dynamically during its run. The re-
sults from [28] indicate that GP using ADF outperforms GP without ADF
in solving the same optimization problem. The more parameters are used
in ADF, the more changes will be needed for GP to evolve good subrou-
tines. However, it can lead to a higher number of generations. We limit the
ADF used in our approach to two parameters. The operators used in the
ADF are also the four basic operators mentioned above. The operators of
the function set in our approach are given in Table 2.

Table 2. Terminal Set

Function Meaning
+ Addition
- Subtraction

* Multiplication
/ Division

ADF(x1, x2) Automatically Defined
Function

4.3 Encoding a CDR using a GP chromosome

The obtained results from each generation of GP are a set of computer
programs represented as trees. As mentioned in Section 2, the objective in
our study is to minimize the total tardiness of the FJSPs. Therefore, we
propose a method to form a CDR from the tree-based result of GP. This
CDR is then combined with the least waiting time assignment [13] to
evaluate the total tardiness of the FJSPs. These two processes are de-
scribed in detail as follows.

To find a suitable machine to process an operation Oi,j, we apply the
least waiting time assignment on the set of setting machines that can proc-
ess Oi,j. This rule is intended to reduce the workloads of the machines by
balancing operations to be assigned. It is calculated by summing all the
subsequent operations in the waiting list plus the remaining processing
time on each machine and the processing time of Oi,j. Therefore, it depends

108 J.C. Tay and N.B. Ho

on the total time this operation has to wait to be processed in the worst
case, not relying only on its own processing time.

Fig. 1. Example of a GP tree with defined functions and terminals

In determining the proper order of operations on the queue of a particu-
lar machine, we use the CDR generated by GP. When a machine is freed,
the generated rule is applied directly to the set of operations that are wait-
ing in the queue of the machine. The operation with the highest priority is
then selected to be processed on the machine. Figure 1 above gives an ex-
ample of a dispatching rule tree generated by GP. It shows the overall
structure of the generated tree that gives a possible CDR. The left child of
progn shows the function-defining branch (containing the defun). In this
case, the ADF function is defined by: ADF(x1,x2)=x1 x2. The right child
gives the result-producing branch. This CDR therefore represents the fol-
lowing formula:

(,)

DD CR

DD RD ADF PT nOps

Since ADF(x1,x2)=x1 x2, we obtain:

DD CR

DD RD PT nOps

Any tree in the genomic population of GP that contains our defined
functions and terminals can be interpreted as a CDR in the same way. The
obtained CDR is then applied to solve a FJSP problem to evaluate its total
tardiness.

values

defun

ADF x1 x2

x1 x2

prog

values

DD

+

nOp

CR ADF

DD RD PT

Designing Dispatching Rules to Minimize Total Tardiness 109

4.4 GP parameter settings

Through experimentation, the set of parameters used in our GP framework
is listed in Table 3.

Table 3. Choice of parameter values

Parameters Value
Population Size 100
Number of Generations 200

Creation Type Ramped half and
half

Maximum depth for creation 7
Maximum depth for crossover 17
Crossover Probability 100%
Swap Mutation Probability 3%
Shrink Mutation Probability 3%
Number of best rules copy to new generation 5

We implemented Ramped half and half to generate the initial population

of GP. This method was proposed by Koza [24] and it has been widely
used by previous researchers. It divides the initial population into two
parts; half of which contains the random generated trees with maximum
depth (in this experiment, this value is 7) and the remaining half contains
the random generated trees with depth values ranging from one to the
maximum depth. In order to keep the best trees that may be destroyed by
GP’s operators, we sort the current population and copy five of them to the
next generation.

5 Experimental results

This section reports and analyses the results of our computational experi-
ments. The system was implemented using C++, running on a 2 GHz PC
with 512 MB RAM. We will describe how to generate the test cases that
are used to evolve CDRs for minimizing total tardiness objective of FJSP
problems. The performance results of the evolved dispatching rules will be
compared to some commonly used dispatching rules in literature. Finally,
the evolved dispatching rules’ sensitive parameters will be discussed.

110 J.C. Tay and N.B. Ho

5.1 Test case generation

Various experiments were conducted to evaluate the efficiency of our pro-
posed algorithms. We categorized these experiments into three classes:
FJSP with 100% flexible (FJSP-100), FJSP with 50% of flexibility (FJSP-
50), and FJSP with 20% of flexibility (FJSP-20). The FJSP with c% of
flexibility means that less than or equal c% of total machines are selected
to process an operation. The processing times of each operation was drawn

fers to a uniform distribution. In practice, an operation can be processed on
any of a group of machines that constitute a work center. The variance of
these processing times is ideally zero or usually small. Therefore, in our
test cases, we set the maximum difference between two operations to be 5
unit times. The release date of each job depends on the number of jobs in a
particular test case. If the number of jobs is larger than 50, the release date
is drawn out of U[0,40], else it is taken from U[0,20]. Baker [29] proposed
a formula to estimate the due date of a job using the TWK-method:

1

in

i i ij

j

d r c p

where ri and di denote release and due dates of job i respectively. pij pre-
sents the processing time of operation Oij, and c denotes the tightness fac-
tor of the due date. The higher the value of c, the looser is the job’s due
date. We adapt this formula to generate due dates of jobs by replacing the
parameter iqp with iqp .

Depending on the tightness of the due date, we separate the samples of
each class FJSP-100, FJSP-50, or FJSP-20 into tight, moderate, or loose
due dates corresponding to values of c = 1.2, 1.5, and 2. We also generate
mixed samples where each sample contains 34% jobs with tight due dates,
33% of jobs with moderate due dates, and the remaining ones with loose
due dates. Specifically, the class FJSP-100 holds 9 samples of tight due
date, 9 samples of moderate due date, 9 samples of loose due date, and 9
samples of mix due date. Similarly for FJSP-50 and FJSP-20, with 36 sam-
ples each. Each training set contains three classes of 108 FJSP problems
with different number of jobs, machines and different tightness of jobs.
Another five validation sets (with 108x5 FJSP problems) of similar com-
positions were generated.

In order to understand how our GP framework can adapt to the different
conditions of the shop floors for evolving efficient dispatching rules, we
divide the experiments into two test samples:

 Test sample 1: varying both the number of jobs and number of machines.
Number of jobs and number of machines range from 10 to 200 and 5 to 15,

Designing Dispatching Rules to Minimize Total Tardiness 111

out of U((number of machines)/2, (number of machines) 2), where U re-

respectively. This test sample contains 108 training FJSP problems and
108x5 validating FJSP problems.

 Test sample 2: varying the number of jobs and fixing the number of ma-
chines. Number of jobs ranges from 20 to 200 and number of machines is
fixed at 10. This test sample contains 108 training FJSP problems and
108x5 validating FJSP problems.

The evolved dispatching rules obtained from the test sample 1 are aimed
to solve the FJSP problems in the general case of a varying number of jobs
and machines while the results of test sample 2 are aimed to solve FJSP
problems where the number of machines is unchanged. After training the
GP framework with the training set, five best rules were reported. The
mean total tardiness of these evolved rules after 500 runs on the validation
sets are then reported.

In order to compare the effectiveness of the evolved rules to the human-
made rules presented in literature, five frequently used single and compos-
ite dispatching rules were selected as benchmarks:

 FIFO (First In First Out): select the job with the earliest coming. This rule
is often used in practice since it is simple and easy to implement [16].

 SPT (Shortest Processing Time): select the job with the shortest processing
time. This rule is commonly used as a benchmark for minimizing mean
flow time and percent of tardy jobs [30].

 EDD (Earliest Due Date): select the job with the earliest due date. This rule
is the most popular due date based rule. It is known to be used as a bench-
mark for reducing maximum tardiness and variance of tardiness [30].

 MDD (Modified Due Date) (= max{CT+PTi, DDi}): process the jobs in
non-decreasing order of MDD. This rule is aimed to minimize total tardi-
ness of jobs [18].

 SL (Slack Time) (= DDi – CT – RTi): select the job with the minimum
slack time. This rule is also used to reduce total tardiness of jobs [17].

Blackstone et al. [16] mentions that the study of job shops by analytic
techniques, such as queuing theory, becomes extremely complex even for
small problems. Therefore, the use of simulation for analyzing dispatching
rules is unavoidable. Due to the same difficulty in examining the dispatch-
ing rules for solving FJSPs, we also rely on simulation to study the rules’
effectiveness. For comparative studies of algorithms in constrained prob-
lems, we adopt the approach of [31] in using a one way Analysis of Vari-
ances (ANOVA) [32]. The function of ANOVA is based on the ratio of
variations. It tests the differences between the means of two or more
groups. In this paper, it is used to compare the sample mean of a particular
objective for a evolved rule with other sample means (for other rules) that
overlap with the former’s confidence interval (CI). If an overlap exists, this

112 J.C. Tay and N.B. Ho

implies some uncertainty concerning the existance of a performance

5.2 Test sample 1

The best five dispatching rules that were selected from 5 runs times of GP
on the training set of test sample 1 are given in Table 4; where possible,
they were simplified algebraically.

Table 4. GP generated dispatching rules for test sample 1

Rule Expression
Rule_1 aTPT (CT +RD + PT 3)+ (CT PT + RD + nOps)

 (nOps PT + 2PT+CT+1)
Rule_2 (PT+ CT+ RD + 2) (RT+ PT + aTPT)

Rule_3 CT aTPT + 5nOps + 3RD
Rule_4 DD (RD + aTPT + RT + PT)
Rule_5 (aTPT + PT) (CT + RD) + (DD - RD)

Figure 2 below compares the results of the evolved rules in Table 4 and

the five selected dispatching rules for solving different FJSPs. The x-axis
represents the dispatching rules while the y-axis represents the average to-
tal tardiness of each rule after 500 runs on the five validation test sets.

Fig. 2. Performance of dispatching rules on validation test sets in test sample 1

Results from Figure 2 show that the FIFO rule performs poorly in com-
parison to the others. This is because the due date of jobs are ignored by

Designing Dispatching Rules to Minimize Total Tardiness 113

differential. The values of 99% CI for each sample mean are calculated
and presented.

0

10000

20000

30000

40000

50000

60000

70000

FIFO SL SPT MDD EDD Rule_1 Rule_2 Rule_3 Rule_4 Rule_5

Dispatching Rules

T
o

ta
l
T

a
rd

in
e
s

s

FIFO, and therefore the rule does not focus on minimizing total tardiness.
The composite dispatching rule SL can obtain slightly better results than
FIFO but is still poor in comparison to the remaining rules. Figure 2 indi-
cates that MDD outperforms SL. From the definition of MDD and SL de-
scribed in Section 5.1, we observe that although these two composite rules
contain similar parameters (DD and CT), the gap between the results of the
two rules are quite large due to different algebraic combinations of the pa-
rameters. This emphasizes that the functions that combine the rules can
significantly affect the results. EDD is the best among five rules selected
from literature (FIFO, SPT, EDD, MDD, SL) for solving FJSP problems.
This could be explained by the presence of the parameter DD in its for-
mula. If the job on the queue is selected by EDD, it has more likely to fin-
ish on time since the job with the earliest due date will be selected. There-
fore, the total tardiness can be minimized. Although the other rules such as
SL or MDD also contain the parameter - due date (DD), EDD obtains al-
most 50% better results than these rules. This again demonstrates that if an
ineffective composite dispatching rule is applied to specific problems, it
may achieve worse results than the single ones.

We now compare the GP generated rules against the most effective rule
(EDD). Figure 3 gives box-plots of the data distribution of EDD and the
five GP evolved dispatching rules after 500 runs. For each rule in Figure 3,
the box represents the interquartile range which contains the 50% of val-
ues. A line across each box denotes the median. Two lines that extend
from the box gives the highest and lowest values while the circles denote
outliers.

114 J.C. Tay and N.B. Ho

Fig. 3. Data distribution of EDD and Rule_1 to Rule_5 after 500 runs

500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1EDD

T
o

ta
l
T

a
rd

in
e

s
s

32000

31900

31800

31700

31600

31500

31400

31300

31200

170265

30997147

8140

86309178

336

48711611

52
394

46154

35525

Figure 4 shows in detail the mean total tardiness with 99% CI for each
rule. For each rule, the small square in the middle denotes the mean value
while two leaves in two sides denote the CI values. It indicates that the re-
sults of all evolved rules are much better than by the most effective hu-

Rule_2 ((PT+ CT+ RD + 2) (RT+ PT + aTPT)). This is statistically true since
its CI does not overlap with the others. It can be considered as the best rule
among them to solve total tardiness objective. Although the mean value of
total tardiness of Rule_4 (31432.42) is smaller than the one of Rule_1
(31442.20), we cannot conclude that Rule_4 is more effective than Rule_1
as their CIs are overlapping. In order to verify if Rule_4 is really better
than Rule_1 (or not), we apply ANOVA to analyze the data obtained by
these rules. Since F ratio = 75.26 is greater than Fcritical = 3.85, we reject
the null hypothesis that the samples are similar. Therefore, the difference
between Rule_4 and Rule_1 is statistically significant. Jayamohan and Ra-
jendran [30] mentions that the use of both due date information and proc-
essing time can lead to good results in minimizing total tardiness. Our five
evolved rules present evidence for this conclusion as their formulation
contains these parameters. Furthermore, we find that some parameters,
such as the total number of operations (nOps) and total processing time of
job (aTPT), are ignored or considered insignificant by previous researchers
but according to our results, they do contribute to reducing mean tardiness.
For example, the formula of Rule_3 suggests that jobs with fewer number
of operations have higher priority. In conclusion, the results from this test
sample show that the evolved dispatching rules which are formed by the
GP framework are very promising in solving the FJSP in general case.

Designing Dispatching Rules to Minimize Total Tardiness 115

man-made rule EDD. The best performing rule is the generated rule-

5.3 Test sample 2

Table 5 below represents the best five dispatching rules that were selected
from 5 runs times of GP on the training set of test sample 2; where possi-
ble, they were simplified algebraically.

Table 5. GP generated dispatching rules for test sample 2

Rule Expression
Rule_6 3aTPT + (PT/aTPT + 1) * (RD+RT)
Rule_7 6nOps + PT+ CT*(PT+aTPT)
Rule_8 nOps + 9aTPT + 4PT
Rule_9 4aTPT - 2nOps + 3DD + 2PT
Rule_10 DD/aTPT + 2aTPT + PT + DD + RD

Similar to Section 5.2, we compare these evolved rules in Table 5 to

five selected rules from literature. The bars on the x-axis from left to right
denote FIFO, SL, SPT, MDD, EDD, SL, and Rule_6 to Rule_10 while the
y-axis represents total mean total tardiness after 500 runs. A visual inspec-
tion on Figure 5 again demonstrates that when the number of machines is
fixed (to 10), FIFO obtains the worst results while EDD obtains the best.
In this special case of FJSP customized for a particular shop floor with 10
machines, the order of the rules’ performances selected from literature

116 J.C. Tay and N.B. Ho

after 500 runs
Fig. 4. Mean total tardiness with 99% confidence interval of EDD and Rule_1 to Rule_5

500500500500500500N =

Rule_5Rule_4Rule_3Rule_2Rule_1EDD

9
9

%
 C

I
T

o
ta

l
T

a
rd

in
e

s
s

31900

31800

31700

31600

31500

31400

31300

31200

does not change (similar to the results in Figure 2). We conjecture that
even with larger validation sets of the types described in Test sample 1 and
Test sample 2, the performances of the rules selected from literature are
the same regardless of varying number of machines in FJSP problems.

Fig. 5. Performance of dispatching rules on validation test sets in test sample 2

The total tardiness values of the evolved dispatching rules fare better than
EDD. Figure 6 and Figure 7 gives the data distribution and the mean total
tardiness with 99% CI of EDD and five evolved dispatching rules in Table
5 after 500 runs respectively. The results in these two figures show that the
evolved dispatching rules outperform the most effective rule (EDD) among
the selected rules from literature. In Figure 7, since the CIs of all the rules
do not overlap, we can conclude that Rule_6 is the most effective rule. The
order of the evolved rules’ performances decreases from Rule_6 to
Rule_10. Similar to the CDRs represented in Table 4, the CDRs in Table 5
are also combined with the same parameters (RD, DD, PT, CT, RT, aTPT,
and nOps). The use of both due date information and processing time in
their formulas could lead to the effectiveness of the rules [30]. Especially,
we believe that the parameters nOps and aTPT contribute to the success of
the CDRs as well.

Designing Dispatching Rules to Minimize Total Tardiness 117

0

20000

40000

60000

80000

100000

120000

140000

FIF
O

SL
SP

T
M

D
D

ED
D

R
ul

e_
6

R
ul

e_
7

R
ul

e_
8

R
ul

e_
9

R
ul

e_
10

T
o

ta
l
T

a
rd

in
e
s
s

Fig. 6. Data distribution of EDD and Rule_6 to Rule_10 after 500 runs

Fig. 7. Mean total tardiness with 99% confidence interval of EDD and Rule_6 to Rule_10
after 500 runs

118 J.C. Tay and N.B. Ho

500500500500500500N =

Rule_10Rule_9Rule_8Rule_7Rule_6EDD

T
o

ta
l
T

a
rd

in
e

s
s

75400

75200

75000

74800

74600

74400

74200

74000

73800

309
335

424

6899

266

380

129362397

162
72

413370346

424

2225082

369216

500500500500500500N =

Rule_10Rule_9Rule_8Rule_7Rule_6EDD

9
9
%

 C
I
T

o
ta

l
T

a
rd

in
e
s
s

75400

75200

75000

74800

74600

74400

74200

74000

73800

5.4 Sensitivity of parameters

In order to understand why these evolved rules are effective in minimiz-
ing total tardiness, we now take a closer look at the combination of their
parameters. While single rules consider only one parameter of the shop,
the evolved rules employ almost all the important parameters. However,
the combination of these parameters plays an essential role to the success
of the rule. For instance, the composite rules SL and MDD combine the
parameter DD with other parameters CT, PT, and RT but they fail to get
better results than the EDD with just one parameter DD (see Figure 2). The
parameters aTPT and RD could also be important for solving the problem.
They are present in all the rules and contribute mainly to change the prior-
ity of one operation to be selected in a queue. For example, Rule_2 ((PT+

CT+ RD + 2) (RT+ PT + aTPT)) in Table 4 was constructed with these two
terms. The first term operates in favor of release date RD and processing
time PT while the second term runs in favor of average total processing
time aTPT and remaining time RT. When the release date of a job is small,
this means that the job is released early, the first term produces small re-
sults. Similarly, when the processing time of the operation is small, the
second term produces a small result. Both parameters help to decrease the
value of the ratio and assign a high priority to the job. Another example. It
is well known that the SPT rule is effective in minimizing the number of
tardy jobs [17]. Two terms of this rule also contains PT and aTPT that are
in favor of the SPT. Therefore, they also contribute to improve the efficacy
of the rule.

For evaluating how good dispatching rules are evolved under the GP

Table 5. Modified Dispatching Rules from Rule_2

Rule Expression Modification(s) from
Rule_2

Rule_2 (PT+ CT+ RD + 2) (RT+ PT + aTPT) Original Version
Rule_2_1 (PT+ RD+ 2)*(RT+ PT + aTPT) Removed CT
Rule_2_2 (PT+ CT+ RD + 2)*(PT + aTPT) Removed RT
Rule_2_3 (PT+ CT+ 20*RD + 2)*(RT+ PT + aTPT) Changed RD’s coefficient from 1

to 20
Rule_2_4 (PT+ CT+ RD + 2)*(RT+ PT + 20*aTPT) Changed aTPT’s coefficient from

1 to 20

Designing Dispatching Rules to Minimize Total Tardiness 119

co-efficients of some parameters. The modifications are listed in Table 5
below.

framework, we modify Rule_2 by eliminating or changing slightly the

In Table 5, Rule_2_1 and Rule_2_2 are obtained from Rule_2 by eliminat-
ing CT and RT respectively. By changing the coefficient of RD in Rule_2
from 1 to 20, we produce Rule_2_3. Similarly, Rule_2_4 is constructed by
changing the coefficient of aTPT in Rule_2 from 1 to 20. They are then
applied to solve the FJSP problems in test sample 1. Figure 8 below com-
pares their mean total tardiness with 99% CIs to Rule_2’s results after 500
runs.

Figure 8 indicates that although we made small modifications to a small
number of parameters of an evolved rule, the results from the obtained
rules are much worse than the original one. This implies that the evolved
dispatching rules from the GP framework are well designed. It also vali-
dates the importance of selecting proper parameters and of the proper al-
gebraic combination of these parameters to construct efficient CDRs. Any
changes on the evolved rules could lead to poorer results.

Fig. 8. Mean total tardiness with 99% confidence interval of Rule_2 and its modified dis-
patching rules after 500 runs

Generally, the overall experimental results indicate that the evolved rules
from our GP framework are more effective than the frequently used dis-
patching rules in literature. Furthermore, two parameters aTPT and nOps
that have received limited study from previous research were found to con-
tribute to the success of evolved CDRs. However, while the importance of
selecting proper parameters is one factor to consider when trying to design
effective CDRs. We have also proven experimentally that the way to com-
bine these parameters is also crucial. By investigating the potential use of

120 J.C. Tay and N.B. Ho

500500500500500N =

Rule_2_4Rule_2_3Rule_2_2Rule_2_1Rule_2

9
9

%
 C

I
T

o
ta

l
T

a
rd

in
e

s
s

34000

33000

32000

31000

GP for evolving effective CDRs, both parameters and their combination
have been explored.

6 Conclusions

In this paper, a GP-based approach for designing effective composite dis-
patching rules that minimizes total tardiness in the Flexible Job-Shop
model has been presented and analyzed.

CDRs have been studied widely by previous researchers [15-17]. How-
ever, all of them were constructed based on the experience of a human
scheduler. We employ a GP-framework to generate a CDR based on fun-
damental terminals that can effectively solve the FJSP (together with a
machine assignment rule) by minimizing total tardiness. Two large test
samples for training (under our GP framework) and validation were gener-
ated. Five evolved rules from each test sample that were most effective
were selected to be tested on the validation sets. These rules are based on
the combination of parameters such as processing time, release date, due
date, current time, number of operations, and average total processing time
of each job using basic arithmetical operators for combination. Five other
popular rules selected from literature were used as performance bench-
marks.

We observed that two composite dispatching rules MDD and SL contain
similar parameters (DD and CT), but the performance differential between
the results of the two rules were quite large due to use of different alge-
braic combinations of the parameters. Also, the single dispatching rule
EDD contains only one parameter (EDD) but was significantly better than
the other rules from literature. This implies that the way to combine the
rules can significantly affect the optimality of the schedules; ineffective
composite dispatching rules may achieve worse results than the single

mental results show that our evolved dispatching rules outperforms the
most effective human-made rule EDD. In particular, two parameters aTPT
and nOps that have received limited study from previous research was
found to contribute significantly to the effectiveness of evolved CDRs.
We have also proven statistically that our evolved CDRs are sufficiently
well-designed through the use of ANOVA (which analyzed the sensitivity
to changes in the coefficient values and terminal parameters). Finally, by
using a large training data set, we believe that our evolved CDRs can be
applied directed in practice without further modifications.

Designing Dispatching Rules to Minimize Total Tardiness 121

ones and hence the need for an automated design approach. The experi-

Several possible extensions of this study can be developed. Similar to
other applications of GP where the parameters are sensitive, denser termi-
nal sets and more varied ADRs should be investigated to improve the gen-
erated rules. The approach of this study can be applied to find the efficient
composite dispatching rules for other similar problems, such as a flow
shop or the classical job shop. The rules evolved from this GP framework
are still quite complex in structure. Therefore, an algebraic simplification
tool could be used to make the formula more meaningful. Consideration
could even be given to including the number of parameters used as a
measure for minimization.

Acknowledgements

This research was funded in part by Nanyang Technological University
and CEI Contract Manufacturing Limited Company, Singapore.

References

[1] Hoitomt, D.J., Luh, P.B., Pattipati, K.R.: A Practical Approach to Job-Shop
Scheduling Problems. Ieee T Robotic Autom 9 (1993) 1-13

[2] Jain, A.S., Meeran, S.: Deterministic job-shop scheduling: Past, present and
future. Eur J Oper Res 113 (1999) 390-434

[3] Carlier, J., Pinson, E.: An Algorithm for Solving the Job-Shop Problem.
Manage Sci 35 (1989) 164-176

[4] Kolonko, M.: Some new results on simulated annealing applied to the job
shop scheduling problem. Eur J Oper Res 113 (1999) 123-136

[5] Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop
problem. Manage Sci 42 (1996) 797-813

[6] Yamada, T., Nakano, R.: A fusion of crossover and local search. Proceed-
ings of The IEEE International Conference on Industrial Technology
(1996) 426-430

[7] Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of flow shop and
job-shop scheduling. Mathematics of Operations Research 1 (1976) 117-
129

[8] Pinedo, M., Chao, X.: Operations scheduling with applications in manufac-
turing and services. MCGraw- Hill chapter 3 (1999)

[9] Brandimarte, P.: Routing and scheduling in a flexible job shop by tabu
search. Annals of Operations Research (Historical Archive) 41 (1993) 157-
183

[10] Mastrolilli, M., Gambardella, L.M.: Effective Neighborhood Functions for
the Flexible Job Shop Problem. J Sched 3 (2000) 3-20

122 J.C. Tay and N.B. Ho

[11] Kacem, I., Hammadi, S., Borne, P.: Approach by localization and multiob-
jective evolutionary optimization for flexible job-shop scheduling prob-
lems. Ieee T Syst Man Cy C 32 (2002) 1-13

[12] Kacem, I., Hammadi, S., Borne, P.: Pareto-optimality approach for flexible
job-shop scheduling problems: hybridization of evolutionary algorithms
and fuzzy logic. Math Comput Simulat (2002) 245-276

[13] Ho, N.B., Tay, J.C.: GENACE: an efficient cultural algorithm for solving
the flexible job-shop problem. Proceedings of Congress on Evolutionary
Computation, Vol. 2 (2004) 1759-1766

[14] Tay, J.C., Wibowo, D.: An effective chromosome representation for evolv-
ing flexible job shop schedules. Proceedings of Genetic and Evolutionary
Computation (2004) 210-221

[15] Panwalkar, S.S., Iskander, W.: A Survey of Scheduling Rules. Oper Res
(1977) 45-61

[16] Blackstone, J.H., Phillips, D.T., Hogg, G.L.: A state-of-the-art survey of
dispatching rules for manufacturing job shop operations. Int J Prod Res
(1982) 27-45

[17] Holthaus, O., Rajendran, C.: Efficient dispatching rules for scheduling in a
job shop. Int J Prod Econ (1997) 87-105

[18] John, J.K., Xiaoming, L.: A Weighted Modified Due Date Rule for Se-

[19] Jayamohan, M.S., Rajendran, C.: Development and analysis of cost-based
dispatching rules for job shop scheduling. European Journal of Operational

[20] Pinedo, M.: Scheduling theory, algorithms, and system. Prentice Hall sec-
ond edition, chapter 2 (2002)

[21] Brucker, P., Jurisch, B., Krämer, A.: Complexity of scheduling problems
with multi-purpose machines. Ann Oper Res (1997) 57-73

[22] Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R.: Optimization
and approximation in deterministic sequencing and scheduling: A survey.
Annals of Discrete Mathematics (1979) 287-236

[23] Barman, S.: Simple Priority Rule Combinations: An Approach To Improve
Both Flow Time And Tardiness. Int J Prod Res (1997) 2857-2870

[24] Koza, J.: Genetic Programming: on the programming of computers by
means of natural selection. MIT Press, Cambrige, MA (1992)

[25] Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A., Dunlap, F.: Automated
Synthesis of Analog Electrical Circuits by Means of Genetic Programming.
Ieee T Evolut Comput (1997) 109-128

[26] Lohn, J.D., Hornby, G.S., Linden, D.S.: An Evolved Antenna for Deploy-
ment on NASA s Space Technology 5 Mission. Proceedings of Genetic
Programming Theory Practice (2004)

[27] Dimopoulos, C., Zalzala, A.M.S.: Investigating the use of genetic pro-
gramming for a classic one-machine scheduling problem. Advances in En-
gineering Software (2001) 489-498

[28] Koza, J.: Genetic Programming II, Automatic Discovery of Resuable Pro-
grams, Chapter 4. MIT Press (1994)

Designing Dispatching Rules to Minimize Total Tardiness 123

quencing to Minimize Weighted Tardiness. J Sched (2004) 261-276

Research (2004) 307-321

’

[29] Baker, K.R.: Sequencing Rules and Due-Date Assignments in a Job Shop.
Manage Sci (1984) 1093-1104

[30] Jayamohan, M.S., Rajendran, C.: New dispatching rules for shop schedul-
ing: a step forward. Int J Prod Res (2000) 563-586

[31] Quek, H.C., Tay, J.C.: Issues in the Performance Measurement of Con-
straint Satisfaction Techniques. Artificial Intelligence in Engineering
(2000) 281-294

[32] Johnson, R.A.: Statistics: Principles and Methods. John Wiley (2001)

124 J.C. Tay and N.B. Ho

A Robust Meta-Hyper-Heuristic Approach

José Antonio Vázquez Rodŕıguez and Abdellah Salhi

Mathematical Sciences Department, University of Essex, Wivenhoe Park,
Colchester, U. K. {javazq@gmail.com, as@essex.ac.uk}

Summary. Combining meta-heuristics and specialised methods is a common strat-
egy to generate effective heuristics. The inconvenience of this practice, however, is
that, often, the resulting hybrids are ineffective on related problems. Moreover, fre-
quently, a high cost must be paid to develop such methods. To overcome these
limitations, the idea of using a hyper-heuristic to generate information to assist a
meta-heuristic, is explored. The devised approach is tested on the Hybrid Flow Shop
(HFS) scheduling problem in 8 different forms, each with a different objective func-
tion. Computational results suggest that this approach is effective on all 8 problems
considered. Its performance is also comparable to that of specialised methods for
HFS with a particular objective function.

1 Introduction

Hybrid Flow Shops (HFS) are manufacturing environments in which a set of
jobs must be processed in a series of stages with multiple parallel machines
[2]. Given the NP-hard nature, [16], [21], of this problem, to be effective,
generic methods rely on the information provided by specialised ones. Often,
this information is decided by the objective being optimised. Consequently,
the resulting hybrids are not as effective on problems with other objectives.
This is a serious shortcoming since, in practice, it is desirable to have solution
tools that are reliable on problems with different objectives.

Successful algorithms for HFS use meta-heuristics to schedule the first
stage of the shop and a simple constructive procedure to schedule the rest,
[29], [28], [34], [15], [26]. Genetic Algorithms (GA) have been used successfully
in exploiting this idea. In [23] and [22], for instance, a Random Keys Genetic
Algorithm (RKGA) performed well against many specialised heuristics and
meta-heuristics such as the problem space-based search method, [24], on HFS
problems with sequence dependent setup times. In [15], a GA with a permu-
tation representation of the individuals, and many variants of the crossover
operator, also performed well against several heuristics such as ant colonies,
tabu search, simulated annealing, other GA’s and deterministic methods on

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007
Scheduling, Studies in Computational Intelligence (SCI) 49, 125–142 (2007)

J.A.V. Rodríguez and A. Salhi: A Robust Meta-Hyper-Heuristic Approach to Hybrid Flow-Shop

to Hybrid Flow-Shop Scheduling

HFS with sequence dependent setup times and machine eligibility. Note that,
most of these methods and the ones reviewed in [33], [25] and [32], consider
problems with makespan as the optimisation criterion, mainly.

A more recent investigation, [28], studied the performance of the generic
combination GA and a constructive procedure. The constructive procedure is
one of four. Each of these combinations, called Single Stage Representation
Genetic Algorithm (SSRGA), was applied to 4 variants of the HFS problem,
each in turn having a different objective function. Although the SSRGA vari-
ants performed well, there is some variance between the performances. This
means that it is not easy to tell which SSRGA will be most suitable for a
given problem before carrying out the actual solution.

In this chapter the idea of SSRGA was extended by allowing GA to evolve
the heuristic or combination of heuristics to be used to schedule the stages
posterior to the first one. The proposed approach uses GA to generate part of
the solution to the original problem and also searches the space of heuristics
for a combination of some or all of them to generate the remaining components
of the solution. In this way, the problem of deciding which SSRGA to use on
a specific problem is removed. Moreover, by allowing different heuristics to
be used at different stages, the number of usable SSRGA’s increases given
the different possible combinations of heuristics that can arise, each leading
to a different SSRGA variant. The main virtue of the proposed approach is
that specialisation occurs during the solution process and not before it. In
other words, the specialisation is a function of the instance of the problem in
hand rather than the general form of it. Moreover, this allows a high level of
portability between related problems.

Heuristics that combine other heuristics are referred to as hyper-Heuristics
(HH), [10]. A HH can be seen as a black box that takes as input a set of low level
heuristics and a problem, [30]. At each decision point, the black box selects
a low level heuristic and applies it. Note that in HH the high level heuristic
acts, exclusively, on the space of low level heuristics, while the latter, are the
ones that solve the original problem; see left part of Figure 1.

Hyper-heuristics are becoming popular because they are adaptable, effec-
tive on different problems of the same class, and yet relatively easy to imple-
ment. This is because most of the effort in implementing them goes into the
low level heuristics which themselves are usually easy to implement. Because
HH’s are adaptable, they have been successfully applied to many problems
including personnel scheduling problems such as the sales summit schedul-
ing problem, [10], [11], the project presentation scheduling problem, [13], the
nurse scheduling problem, [12], and others, [8], [7]. They have also been ap-
plied in manufacturing environments such as job shop, [20], and open shop,
[14], scheduling problems and in industrial cutting stock problems, [31]. Meta-
heuristics have been adopted as the basis (high level heuristic) of HH. Tabu
search was used in [3] and [6]; ant colonies in [4], [5]; and GA’s in [14], [20],
[9], [19], [17], [18] and [31].

126 J.A.V. Rodríguez and A. Salhi

Hyper-Heuristic Meta-Hyper-Heuristic

Hyper-Heuristic

Black Box

Select and apply

appropriate

heuristics at each

decision point

Input problem

part of problem part of problem

(Meta-)Heuristic

Act on the solution

to the original

problem

Input problem

Hyper-Heuristic

Black Box

Select and apply

appropriate

heuristics at each

decision point

Input low-level

heuristics

part of solution(s) part of solution(s)

Output solution(s) to

the problem

Output solution(s) to

the problem

Fig. 1. Left, hyper-heuristics as a black-box model, [30]; right, meta-hyper-heuristic
as proposed here

Given that the proposed approach uses an evolutionary method to generate
part of the solution to the original problem and also evolves the combination
of heuristics to generate the rest, it is a hybrid approach which is both a
meta-heuristic and a HH; see right part of Figure 1. From now on we refer to
it as the Meta-Hyper-Heuristic-Scheduler (MHHS). MHHS and many variants
of the SSRGA are tested on several instances of 8 HFS scheduling problems.
Each one of them considers a different objective function. The reported results
show that MHHS is superior. The achievements of MHHS compared with
those of SSRGA, the latter being a representative of the state-of-the-art in
HFS scheduling, suggest that it is a highly competitive solution approach to
HFS problems on a wide range of objective functions.

The rest of the chapter is organised as follows. Section 2 presents a formal
description of the HFS scheduling problem and the objectives to consider. In
Section 3, the low level heuristics, MHHS and SSRGA are explained. Section
4 describes the computational experiments and results. Section 5 discusses the
difficulty of predicting the interactions between low level heuristics. Section 6
concludes the chapter.

2 Problem Definition

2.1 Assumptions

A HFS is a manufacturing environment in which a set of n jobs are to be
processed in m different stages. All jobs must follow the same processing

127A Meta-Hyper-Heuristic Scheduler

direction: stage 1 through stage m, with the possibility of skipping one or
more stages. At least one of the stages has two or more identical machines
in parallel. Any machine can process at most one job at a time and any job
is processed on at most one machine at a time. Furthermore, every job is
processed on at most one machine in any stage. Preemptions are not allowed,
i.e. once the processing of a job has started, it cannot be stopped until it is
finished. Using the triplet notation α |β| γ, see [27], the problem is denoted
as FFc |rj1| f , where f is the cost function to optimise and rj1 is the release
time of job j at the first stage of the shop. The following notation is used
through the rest of the paper.

2.2 Notation

• n = number of jobs;
• m = number of stages in the shop;
• j = job index;
• k = stage index;
• ojk = operation of job j to be processed on stage k;
• Ok =

⋃

j

ojk;

• pjk = processing time of operation ojk;
• wj = weight of job j;
• rjk = release time of operation ojk; these are calculated while constructing

the schedule. Note that rj1, for all j are given as part of the problem;
• dj = due date of job j;
• sjk = starting time of operation ojk;

• vjk =
m
∑

a=k

pja, work remaining for job j at stage k.

2.3 Problem formulation

The following formulation is appropriate when searching in the set of semi-
active schedules, i.e., schedules for which an operation can not start earlier
without changing the order of processing in any one of the machines, [27].
Let Akl be a set of operations ojk assigned for processing to machine l in
stage k. Let Skl be a sequence of the elements in Akl representing the order in
which they are to be processed. Let Sk = ∪mk

l=1S
kl where mk is the number of

machines at stage k, and S = ∪m
k=1S

k. Because Sk is the set of the sequences
to be followed by the jobs when processed at stage k, S represents a schedule.
For S to be feasible the following must hold:

mk
⋃

l=1

Akl = Ok ∀k (1)

128 J.A.V. Rodríguez and A. Salhi

Table 1. Objectives to be considered

function description where

f1 maxj Cj Cj = completion time of j.
f2

∑

j

wjTj Tj = max(0, Cj − dj)

f3 maxj Tj −
f4

∑

j

Cj −

f5

∑

j

wjUj Uj =

{

1 if Cj − dj > 0
0 otherwise

f6

∑

j

wjWj Wj = Cj − sj1

f7 maxk

{

maxcmax
t=0

{

∑

j

wjxjkt

}} xjkt =

{

1 if rjk ≤ t and cjk > t
0 otherwise

cmax = maxj Cj

cjk = completion time of operation ojk

f8

∑

j

wjTj +
∑

j

w′
jEj Ej = max(0, dj − Cj)

mk
⋂

l=1

Akl = ∅ ∀k (2)

Let ∗ be a problem instance of the type FFc |rj1| fi and Ω∗, be the set of
all its feasible schedules. The objective is to find S ∈ Ω∗ such that its incurred
cost fi(S) is minimum, more formally

min
S∈Ω∗

fi(S) (3)

fi can be any of the cost functions described in Table 1.

2.4 Objective functions

The first two functions (f1 and f2) of Table 1 are the most common in the lit-
erature of HFS. This is because f1, or maximum completion time, optimises
the use of machines in the shop. On the other hand, f2, or total weighted
tardiness, is a good metric of the service quality provided. Both of these func-
tions are regular performance measures, i.e., functions that are nondecreasing
in C1, . . . , Cn, see [27]. The next 3 functions, maximum tardiness (f3), sum

of completion times (f4), and weighted sum of tardy jobs (f5), are also reg-
ular functions. Functions f3 and f5, are concerned with the quality of the
service to the client, whereas f4 with how fast jobs are completed. The sum

of weighted waiting times (f6) measures the total time that the jobs spend
in the shop floor, from the moment they start processing in the first stage,
until their completion time. Function f7 is the maximum weighted number
of jobs that are in a stage waiting for processing at the same time. Func-
tions f6 and f7 can be associated with the cost of inventory of products in

129A Meta-Hyper-Heuristic Scheduler

start

printing 1

printing 2

cutting 1

cutting 2

cutting 3

end

folding and

gluing 2

folding and

gluing 1

Fig. 2. A cardboard boxes manufacturing process as an example of a HFS

process. Their importance stems from the increasing interest of modern man-
ufacturers in keeping low levels of inventory in process (lean manufacturing).
Both of these functions are non-regular. In order to reduce the search to a
set of schedules with interesting completion times, MHHS and any of the SS-
RGA variants, generate schedules which are semi-active for the first stage of
the shop and non-delay for the rest, see definitions in [27]. Function f8, the
weighted earliness and tardiness, is also non-regular. This function is relevant
in Just In Time manufacturing systems where delays to meet with the clients’
demands in time, and inventories of all sorts, are penalised. Although f8 has
been considered in other contexts, [1], no one has yet considered it in HFS.

2.5 Example of a HFS

As an example of HFS, we consider a production shop that manufactures card-
board boxes. Several kinds are produced, all following the same production
flow: printing, cutting, and gluing and folding. First, the sheets are printed
with the publicity and information to the client. In the second process, the
sheets are cut into the required shape. Finally, the boxes are folded and glued
to give them their final form. Figure 2 shows a typical production floor con-
figuration of this kind. As can be seen, there are multiple machines per stage.
All products follow the same flow, but, they may skip the processes of printing
or folding and gluing.

3 A Meta-Hyper-Heuristic Scheduler and Single Stage

Representation Genetic Algorithms

MHHS implements the idea of using GA to schedule the first stage of the
shop and the rest through a constructive heuristic. Moreover, it extends this
framework by allowing the individuals to encode which heuristic, from a set,
to use to schedule stages 2, 3, . . . , m. Therefore, in the same solution process,
different heuristics may be used to schedule different stages.

130 J.A.V. Rodríguez and A. Salhi

Many variants of SSRGA (13), as described in [28], were also implemented.
Each of them uses GA and one of the 13 heuristics described next. The same
heuristics are in the heuristics repository of MHHS. The rest of this section
explains these simple heuristics and provides details of the implementation of
MHHS and SSRGA.

3.1 Simple heuristics

Let O′

k ⊆ Ok be a set of operations that: (1) have not been assigned yet
and, (2) are ready to be processed at stage k (having been released from the
previous stage). Whenever a machine becomes idle, an operation ojk ∈ O′

k is
chosen according to one of the following criteria.

name description

h1: select ojk ∈ O′

k with the smallest rjk value;
h2: select ojk ∈ O′

k with the smallest pjk value;
h3: select ojk ∈ O′

k with the largest pjk value;
h4: select ojk ∈ O′

k with the smallest vjk − dj value;
h5: select ojk ∈ O′

k with the largest vjk − dj value;
h6: select ojk ∈ O′

k with the smallest vjk value;
h7: select ojk ∈ O′

k with the largest vjk value;
h8: select ojk ∈ O′

k with the smallest wjpjk value;
h9: select ojk ∈ O′

k with the largest wjpjk value;
h10: select ojk ∈ O′

k with the smallest wj(vjk − dj) value;
h11: select ojk ∈ O′

k with the largest wj(vjk − dj) value;
h12: select ojk ∈ O′

k with the smallest wjvjk value;
h13: select ojk ∈ O′

k with the largest wjvjk value.

When O′

k = ∅, ojk is the operation with the smallest release time. Oper-
ation ojk is assigned after the last operation assigned to the machine l that
allows it the earliest completion time. In all cases ties are broken by preferring
smallest job (j) or machine (l) indexes. Hereafter, let us denote as hbga the SS-
RGA variant resulting from the combination of GA and hb, b ∈ {1, 2, . . . , 13}.

3.2 Representation and evaluation of solutions

For the SSRGA, the adopted representation is a permutation Π = (π(1), π(2),
. . . , π(n)) where π(i) is a job index, and represents the order in which oper-
ations are assigned for processing at stage 1. Given an individual Π, it is
decoded by assigning the operations oj1 ∈ O1, in the order π(1), π(2), . . . ,
π(n), to the machine l in stage 1 that allows them the earliest completion
time. The procedure to translate Π into a schedule for stage 1 is as described
in Procedure 1.

131A Meta-Hyper-Heuristic Scheduler

S1l ← ∅, l = 1, . . . , m1

for i ← 1, . . . , |Π| do
∣

∣

∣

∣

∣

l ← machine that allows oπ(i)1 the
fastest completion time

S1l ← π(i)
endfor
return S1

Procedure 1: CP (Π)

S ← ∅
S1 ← CP (Π)
S ← S ∪ S1

for k ← 2, . . . , m do
∣

∣

∣

∣

generate Sk according to hb

S ← S ∪ Sk

endfor
return S

Procedure 2: CPSSRGA(Π,hb)

The rest of the schedule is build using one of the heuristics (hb) described
in Section 3.1. The evaluation of individuals in SSRGA is as in Procedure 2.

In MHHS, the representation of solutions consists in a permutation Π to
schedule the first stage of the shop (as above) and an ordered set, HR, of
heuristics to schedule the rest. For instance, an individual (Π ′,HR′) where
Π ′ = (2, 3, 4, 5, 1) and HR′ = (h1, h1, h6, h7), encodes the solution for a 5 job
5 stage shop. The jobs are assigned to the first stage in the order 2, 3, 4, 5, 1;
in stages 2 and 3 according to h1 and in stages 4 and 5 according to h6 and
h7, respectively. The procedure CPMHHS(Π,HR) to evaluate individuals in
MHHS is as described in Procedure 3.

S ← ∅
S1 ← CP (Π)
S ← S ∪ S1

for k ← 2, . . . , m do
∣

∣

∣

∣

generate Sk according to HRk−1

S = S ∪ Sk

endfor
return S

Procedure 3: CPMHHS(Π,HR)

132 J.A.V. Rodríguez and A. Salhi

Fig. 3. 2-Point Crossover assuming that parent 1 is fitter than parent 2.

3.3 Operators

A 2-Point Crossover, as shown in the left part of Figure 3, was used to re-
combine Π; two crossover points are randomly selected from parent 1 and
the elements between them copied in the same positions in the offspring. The
missing jobs are copied from the second parent starting from the beginning
of the permutation. In the case of MHHS, each allele in HR is copied with a
0.7 probability from the fittest parent and 0.3 from the other (see the right
part of Figure 3).

As in [15], to mutate an individual, an element in Π is randomly chosen
and moved into a new position, the rest of the elements are moved to fill the
released spaces as needed. In the case of MHHS, HR remains unchanged.

3.4 General framework

Both MHHS and SSRGA keep a population of individuals, PopMHHS = {(Π1,

HR1), . . . , (ΠN , HRN)} and PopSSRGA = {Π1, ldots,ΠN}, respectively.
At the initialisation the elements in Pop (for both methods) are generated
randomly. In MHHS, each element of the heuristics repository HRi of every
individual i is selected randomly from the set of heuristics presented in Section
3.1. At every generation a new population Pop′ of N individuals is created
through the crossover operators explained in the previous section. The best
individual, S∗, found so far is kept. This is repeated until the stoping condition
is met. In algorithmic form the MHHS procedure is as in Procedure 4.

In the case of SSRGA,CP (Πi,HRi) is replaced withCPSSRGA i b

3.5 Parameter Setting

In order to tune the GA implemented in SSRGA and MHHS, the feasible
combinations of the following parameter values were evaluated.

133

MHHS (Π ,h).

A Meta-Hyper-Heuristic Scheduler

3 6 8 4 9 1 5 2 7

6 3 2 4 9 1 5 8 7

6 3 2 1 5 8 7 9 4

h9 h6 h3 h1

h2 h6 h3 h2

h2 h4 h8 h2

crossing points

parent 1

parent 2

new individual

random numbers 0.25 0.83 0.92 0.12

Pop ← {(Π1, HR1), . . . , (ΠN , HRN)} // random population
CPMHHS(Πi, HRi)

N
i=1

S∗ ← best individual found so far
while (stoping condition not met) do
∣

∣

∣

∣

∣

Pop′ ← {(Π ′
1, HR′

1), . . . , (Π
′
N , HR′

N)} // new population
CPMHHS(Π ′

i, HR′
i)

N
i=1

S∗ ← best individual found so far
endwhile
return S∗

Procedure 4: MHHS(FFc|rj1|fi)

• crossover probability: 0.6,0.7,0.8,0.9,0.95;
• mutation probability: 0.0, 0.01, 0.05, 0.1, 0.15;
• selection method: tournament selection, fitness proportionate selection;
• number of participants in the tournament selection: 2, 3, 4;
• population size: 25, 50, 75, 100;
• keeping best individual: true, false.
• fitness function: fi(S), where S is the schedule represented by the individ-

ual and fi, the ith objective function (see Section 2.4).

The stopping condition was set to 10,000 solution evaluations. The best
performing combination, shown in bold, was kept for the succeeding experi-
mentation.

4 Computational Results

The SSRGA variants and MHHS were compared on a set of randomly gen-
erated instances minimising the objectives described in Section 2.3. All ex-
periments were run on a 3.0 MHz processor with 1.0 Gb of RAM running
Windows XP. All implementations were in Java 2 S.E. 5.0.

4.1 Instance generation

1024 instances were generated randomly in a similar fashion as in [15] and
[23]. Each of these is a combination of the following variable values.

• n ∈ {20, 40, 60, 80}, number of jobs;
• m ∈ {2, 4, 6, 8}, number of stages;
• mk ∈ {U˜[2, 3], U˜[2, 6]}, number of machines per stage;
• pjk ∈ {U˜[50, 70], U˜[10, 100]}, processing times;
• rj = U˜(0, E (

∑

k pjk)), release times;
• dj ∈ {U˜[0.9D, 1.1D], U˜[D, 1.5D]} , where D = 1.5E (

∑

k pjk), due dates;
• wj = {U˜[2, 8]}, weights;
• f ∈ {f1, . . . , f8}, objective function.

134 J.A.V. Rodríguez and A. Salhi

There are 4× 4× 2× 2× 1× 2× 1× 8 = 1024 possible combinations, each
a different instance. The number of jobs and stages, which define the size
of an instance, are known to have an important impact on the performance
of algorithms. Because of this, 4 levels were studied. Different numbers of
machines per stage produce instances with different bottleneck criticalities.
The release and due dates were generated in proportion to the total expected
processing times. This is to avoid to some degree extreme cases where, for
instance, the due dates are too easy to meet, or the release times of jobs at
the first stage are so expanded that at every iteration there is a single job
available, making the instance trivial. D represents the expected processing
time plus the expected release time of any job. The due dates were generated
in ranges between 0.9 and 1.1 times D for tight instances, and between 1
and 1.5 for extended ones. The objective function of each instance is one of
the 8 described in 2.3; therefore, there are 128 instances which consider each
function.

Five runs were carried out with each algorithm on every problem instance.
The best solution was kept.

4.2 Comparison metrics

The first comparison metric considered, is the average value of the solutions
for each of the algorithms on each group of instances (grouped according to
the objective they consider; there are 8 different groups with 128 instances
in each group). This measure, may be argued, has the limitation of being
sensitive to the problem sizes and ranges in which the processing times were
generated. Also, it does not distinguish well between the performances of
different algorithms, i.e. these average performance values are often close to
each other. To remedy this, a second metric is adopted. The latter is a re-
scaling of the values obtained by the algorithms to the range 0 to 1, where 0
corresponds to the best value found for a given instance and 1 to that of the
worst, as follows:

metrici =
xi − xmin

xmax − xmin
, (4)

where xmin and xmax are, respectively, the best and worst solutions found.
Given an algorithm i and its returned objective value xi for a given instance,
if this objective value is close enough to the best one overall, i.e., metrici is
close to 0, then this particular algorithm is deemed to be “doing well”, and
“not so well” otherwise. The only problem is that we need to quantify the idea
of “close enough”. To this end we choose the value 0.1 to specify just that.
This value is based on our observations. It means that when metrici ≤ 0.1,
algorithm i is “doing well” or its performance is satisfactory.

135A Meta-Hyper-Heuristic Scheduler

Table 2. Mean best value of each heuristic on the 128 instances that consider the
objective function in the corresponding column

f1 f2 f3 f4 f5 f6 f7 f8

h1ga 1544.8 105976.1 1021.0 49290.3 173.2 92846.3 22.9 111191.7
h2ga 1553.1 109597.0 1042.0 49171.5 172.9 92712.5 25.1 115013.5
h3ga 1555.0 112917.1 1046.6 50376.5 173.8 95644.6 27.8 118900.3
h4ga 1560.4 110841.1 1086.7 49685.0 173.5 93923.9 26.6 116081.3
h5ga 1547.0 111537.3 1014.5 49668.5 174.0 94242.0 26.3 116950.5
h6ga 1564.4 109704.3 1048.5 49256.4 172.9 92893.8 25.2 114909.1
h7ga 1543.9 112695.0 1035.4 50151.6 174.0 94964.5 27.8 118366.0
h8ga 1552.5 116430.7 1042.5 49363.2 173.7 101582.9 32.7 122254.2
h9ga 1553.8 107754.2 1047.4 50040.5 173.4 89430.2 23.3 113474.7
h10ga 1555.2 105858.5 1060.3 49635.4 172.7 88277.3 21.8 111231.5
h11ga 1549.4 118295.6 1027.3 49669.9 174.2 102873.8 34.0 124131.5
h12ga 1560.0 117288.3 1048.0 49471.1 174.0 102093.7 33.6 122813.9
h13ga 1548.8 106895.6 1041.0 49865.4 173.3 88889.0 22.4 112197.8
MHHS 1544.4 105825.6 1014.5 49169.2 172.6 88440.8 21.8 111081.5

4.3 Results

Given the amount of information generated in the described experiments, the
results are separated by the objective function and the solution method. These
are summarised in Tables 2, 3, 4 and 5. Table 2 is the mean value achieved
by each algorithm on the groups of instances corresponding to each function.
Table 3 presents the mean value obtained by each method on the metric value
while Table 4 presents the standard deviations from it. Table 5 displays the
number of satisfactory solutions, i.e., metric value ≤ 0.1, as defined in Section
4.2, for each algorithm on each function.

Tables 2, 3 and 5 show that the most effective method, overall, is MHHS.
According to the results, MHHS is very competitive when compared with the
best of the SSRGA variants on each function. MHHS achieved the best mean
value on 6 out of 8 functions (Table 2), the ones on which it did not do well
being f1 and f6; on these it came second. It obtained the best results according
to the metric value (Equation 4), overall, and on 4 of the functions (Table 3).
On the other 4, it was second best. Similarly, it obtained the largest or second
largest number of successes, as defined in Section 4.2, per function (Table
5) and overall, it obtained a satisfactory solution for more than half of the
problems. MHHS also seems to be stable, since it has the smallest standard
deviation on the metric value (Table 4).

The solution obtained by each algorithm, for every instance, was compared
with the one obtained by the rest. The number of times that a given algorithm

outperformed, or was outperformed by any of the others, was recorded. The
summary of this information is displayed in Figure 4. The bar chart on the
left shows the number of times that the algorithm on the x-axis was worse
than its competitor. The one on the right, shows the frequency with which

136 J.A.V. Rodríguez and A. Salhi

Table 3. Mean metric value of each heuristic on the 128 instances that consider
the objective function in the corresponding column

f1 f2 f3 f4 f5 f6 f7 f8 Total

h1ga 0.199 0.212 0.222 0.279 0.393 0.294 0.274 0.230 0.263
h2ga 0.473 0.320 0.378 0.186 0.361 0.271 0.295 0.343 0.328
h3ga 0.385 0.578 0.371 0.728 0.450 0.433 0.442 0.579 0.496
h4ga 0.490 0.431 0.757 0.448 0.435 0.329 0.371 0.487 0.468
h5ga 0.281 0.421 0.141 0.473 0.451 0.332 0.355 0.415 0.359
h6ga 0.683 0.304 0.441 0.227 0.374 0.284 0.302 0.359 0.372
h7ga 0.194 0.524 0.298 0.650 0.465 0.383 0.397 0.547 0.432
h8ga 0.411 0.620 0.362 0.304 0.416 0.565 0.537 0.634 0.481
h9ga 0.349 0.335 0.391 0.565 0.410 0.222 0.261 0.388 0.365
h10ga 0.428 0.233 0.477 0.432 0.361 0.135 0.180 0.235 0.310
h11ga 0.359 0.721 0.276 0.452 0.484 0.696 0.611 0.730 0.541
h12ga 0.536 0.670 0.405 0.360 0.465 0.628 0.595 0.679 0.542
h13ga 0.270 0.301 0.333 0.512 0.426 0.213 0.237 0.318 0.326
MHHS 0.174 0.195 0.161 0.217 0.317 0.166 0.194 0.175 0.200

Table 4. Standard deviation of the metric values of each heuristic on the 128
instances that consider the objective function in the corresponding column

f1 f2 f3 f4 f5 f6 f7 f8 Total

h1ga 0.297 0.267 0.291 0.253 0.362 0.217 0.339 0.286 0.297
h2ga 0.338 0.254 0.298 0.268 0.345 0.246 0.311 0.269 0.303
h3ga 0.354 0.308 0.267 0.348 0.337 0.324 0.360 0.316 0.346
h4ga 0.372 0.254 0.366 0.262 0.365 0.258 0.335 0.265 0.335
h5ga 0.295 0.264 0.260 0.255 0.403 0.257 0.327 0.228 0.307
h6ga 0.373 0.226 0.304 0.260 0.359 0.239 0.308 0.270 0.324
h7ga 0.305 0.306 0.255 0.306 0.369 0.292 0.345 0.305 0.340
h8ga 0.342 0.298 0.276 0.253 0.356 0.373 0.404 0.305 0.348
h9ga 0.325 0.316 0.299 0.282 0.384 0.282 0.349 0.330 0.336
h10ga 0.343 0.277 0.302 0.256 0.343 0.231 0.322 0.291 0.321
h11ga 0.325 0.320 0.278 0.236 0.386 0.402 0.435 0.319 0.379
h12ga 0.365 0.312 0.267 0.263 0.366 0.390 0.425 0.285 0.356
h13ga 0.306 0.287 0.267 0.255 0.371 0.295 0.337 0.316 0.319
MHHS 0.261 0.250 0.288 0.303 0.350 0.286 0.313 0.246 0.292

the algorithm in the x-axis showed a better result. These bar charts show that
MHHS is, overall, superior.

Even though h1 is the simplest of the heuristics, on the whole, the second
best algorithm is h1ga. This is, perhaps, because h1 allows GA to have a higher
impact on the solution than the rest of the heuristics; given that it schedules
the jobs in stages k > 1, by considering their release times only. On the other
hand, heuristics hb for b > 1, reduce the influence of GA by prioritising the
jobs in stages k > 1 by different criteria than their release times. However,

137A Meta-Hyper-Heuristic Scheduler

Table 5. Number of times that each heuristic obtained a metric value ≤ 0.1 on the
128 instances that consider the objective function in the corresponding column

f1 f2 f3 f4 f5 f6 f7 f8 Total

h1ga 78 68 66 43 44 31 58 63 451
h2ga 25 28 28 76 45 40 45 26 313
h3ga 41 11 26 13 29 29 37 11 197
h4ga 34 10 16 10 38 36 41 5 190
h5ga 46 17 92 12 40 31 40 10 288
h6ga 17 25 21 56 46 36 46 19 266
h7ga 84 16 36 7 37 32 43 12 267
h8ga 34 11 26 23 41 28 40 5 208
h9ga 44 44 27 11 43 70 72 42 353
h10ga 32 64 19 14 44 89 94 63 419
h11ga 34 8 42 9 38 26 40 10 207
h12ga 27 10 22 21 38 28 38 5 189
h13ga 58 44 29 10 39 69 75 48 372
MHHS 82 70 90 73 56 88 88 75 622

Fig. 4. Frequency on which the algorithm in the horizontal was outperformed (left)

the evidence presented suggests that MHHS finds situations in which using
these other criteria is convenient.

Note that, in all the studied algorithms, the sorting of operations at stages
posterior to the first one, dominates the complexity of the evaluation of in-
dividuals. The evaluation of a solution, then, has a theoretical run-time of
O(mn log n). All the algorithms required from 0.3 seconds, for the smallest
instances, to 6.1 seconds, for the largest ones, without significant differences
between the heuristics.

138 J.A.V. Rodríguez and A. Salhi

or outperformed (right) other algorithms.

higa, i=1,2,...,13 MHHS
0

2000

4000

6000

8000

10000

higa, i=1,2,...,13 MHHS
0

2000

4000

6000

8000

10000

Table 6. f1 value (makespan) obtained by each of the algorithms in the first column
for the corresponding instance

instance 1 instance 2 instance 3 instance 4 instance 5

h1ga 1549 1636 2265 1493 2437
h7ga 1534 1654 2269 1494 2437
h4ga 1542 1650 2326 1514 2496
h6ga 1550 1663 2319 1531 2458
MHHS{h1,h7} 1532 1651 2265 1496 2471
MHHS{h4,h6} 1532 1641 2307 1512 2529
MHHS{h1,h4} 1538 1691 2269 1495 2486
MHHS{h1,h6} 1541 1652 2274 1493 2467
MHHS{h7,h4} 1532 1647 2265 1495 2469
MHHS{h7,h6} 1533 1638 2265 1494 2444
MHHS{h1,h4,h7} 1544 1645 2269 1498 2430
MHHS{h1,h6,h7} 1535 1681 2265 1493 2460
MHHS{h1,h4,h6} 1542 1679 2265 1494 2454
MHHS{h4,h6,h7} 1550 1649 2270 1495 2434
MHHS{h1,h4,h6,h7} 1532 1631 2265 1493 2423

5 Discussion

The results of the previous section provide evidence to support the hypothesis
that a HH framework such as MHHS can provide useful support to a generic
algorithm such as GA. But, as already mentioned, some of the algorithms per-
formed poorly and it seems reasonable to exclude their corresponding heuristic
from MHHS, leaving just those that are good. However, often, it is not easy
to predict how beneficial the interactions between heuristics would be. Some-
times, individually poor heuristics perform well when combined, and good
ones, do not. To illustrate this, the following experiment was carried out. The
simple heuristics in the best two SSRGA variants (h1ga and h7ga) and in the
worst two (h4ga and h6ga) on solving f1, were used to form different variants
of MHHS. They are denoted MHHS{.,.,. . . }, for instance, MHHS{h4,h1} is
one that combines h4 and h1. All the possible variants (11 of them) were run
5 times on 5 randomly selected instances from the ones explained in Section
4.1. Table 6 presents the best result of the 5 runs for each heuristic.

In most cases the combinations are successful, although not always. Per-
haps the most interesting case is the one of instance 2. In this case, the com-
bination of the two worst heuristics, h4 and h6, obtained better results than
the combination of the best two, h1 and h7. This is made even more striking
by the fact that h1ga and h4ga are the best two SSRGA’s for this instance,
i.e. instance 2, and MHHS{h1, h4} obtained the worst result. Surprisingly,
MHHS{h6, h7} did relatively well. The difference in performance between the
MHHS with two heuristics and with three is not clear. However, without any
doubt, the best results were obtained by MHHS{h1, h4, h6, h7} which con-
stantly obtained the best results and discovered two new upper bounds for

139A Meta-Hyper-Heuristic Scheduler

instance 2 and instance 5. Even though these observations are not conclusive,
it is clear that the problem of how to select heuristics and their combinations
in a HH framework is not a trivial one. Note that a systematic exploration
of combinations of heuristics is not practical since their number increases
exponentially with the number of heuristics and stages in the shop. The evo-
lutionary approach is, therefore, appropriate.

6 Conclusion

We have presented a meta-hyper-heuristic method for the solution of Hybrid
Flow Shop (HFS) scheduling problems. Its performance is overall superior to
that of many variants of the Single Stage Representation Genetic Algorithm

(SSRGA) on many instances of the HFS problem in 8 forms, each with a
different objective function. This superiority is importantly concerned with
the fact that MHHS works equally well on the HFS when different objectives
are considered, contrary to the SSRGA variants which may perform well on
some objective functions but not on others. It is important to state that the
present study shows that MHHS is on the whole superior to the state-of-the-
art SSRGA for the problem of interest.

Even though hyper-heuristics are effective by themselves, our findings sug-
gest that they can be hybridised with meta-heuristics to lead to even more
effective methods, such as MHHS. Although this method has been tested on
HFS only, it is generic and may prove to be efficient on other intractable
optimisation problems.

The discussion of Section 5 is far from over. Further work is being carried
out on several issues, in particular, the interaction of heuristics in hyper-
heuristic frameworks.

Acknowledgements: This work is supported by CONACYT grant 178473.

References

1. K. R. Baker and G. D. Scudder. Sequencing with earliness and tardiness penal-
ties: A review. Operations Research, 38:22–36, 1990.

2. Shaukat A. Brah. Scheduling in a Flow Shop with Multiple Processors. PhD
thesis, University of Houston, 1988.

3. E. Burke and E. Soubeiga. Scheduling nurses using a tabu-search hyperheuristic.
In 1st Multidisciplinary International Conference on Scheduling: Theory and
Applications (MISTA 2003), 2003.

4. Edmund Burke, Graham Kendall, Ross O‘Brien, D. Redrup, and E. Soubeiga.
An ant algorithm hyper-heuristic. In Proceedings of The Fifth Metaheuristics
International Conference (MIC 2003), 2003.

140 J.A.V. Rodríguez and A. Salhi

5. Edmund Burke, Graham Kendall, Dario Landa Silva, Ross O‘Brien, and Eric
Soubeiga. An ant algorithm hyperheuristic for the project presentation schedul-
ing problem. In Proceedings of the Congress on Evolutionary Computation (CEC
2005), pages 2263–2270. IEEE press, 2005.

6. Edmund K. Burke, Graham Kendall, and Eric Soubeiga. A tabu-search hyper-
heuristic for timetabling and rostering. Journal of Heuristics, 9:451–470, 2003.

7. Konstantin Chakhlevitch and Peter Cowling. Choosing the fittest subset of
low level heuristics in a hyper-heuristic framework. In G.R. Raidl and J. Got-
tlieb, editors, EvoCOP 2005, LNCS 3448, pages 23–33, Berlin Heidelbergh, 2005.
Springer-Verlag.

8. Peter Cowling and Konstantin Chakhlevitch. Hyperheuristics for managing a
large collection of low level heuristics to schedule personnel. In Proceedings of
Congress on Evolutionary Computation (CEC2003), pages 1214–1221. IEEE,
2003.

9. Peter Cowling, Graham Kendall, and Limin Han. An investigation of a hyper-
heuristic genetic algorithm applied to a trainer scheduling problem. In Proceed-
ings of Congress on Evolutionary Computation (CEC2002), pages 1185–1190.
IEEE, 2002.

10. Peter Cowling, Graham Kendall, and Eric Soubeiga. A hyperheuristic approach
to scheduling a sales summit. In E. K. Burke and W. Erben, editors, LNCS
2079, Practice and Theory of Automated Timetabling III : Third International
Conference, PATAT 2000, pages 176–190. Springer-Verlag, 2000.

11. Peter Cowling, Graham Kendall, and Eric Soubeiga. A parameter-free hyper-
heuristic for scheduling a sales summit. In Proceedings of 4th Metahuristics
International Conference (MIC 2001), pages 127–131, 2001.

12. Peter Cowling, Graham Kendall, and Eric Soubeiga. Hyperheuristics: A robust
optimisation method applied to nurse scheduling. In Proceedings of Parallel
Problem Solving from Nature Conference, 7th International Conference, LNCS
2439, pages 851–860. Springer-Verlag, 2002.

13. Peter Cowling, Graham Kendall, and Eric Soubeiga. Hyperheuristics: A tool
for rapid prototyping in scheduling and optimisation. In S. Cagoni, J. Gottlieb,
E. Hart, M. Middendorf, and R. Günther, editors, LNCS 2279, Applications
of Evolutionary Computing : Proceedings of Evo Workshops 2002, pages 1–10.
Springer-Verlag, 2002.

14. Hsiao-Lan Fang, Peter Ross, and Dave Corne. A promising hybrid GA/Heuristic
approach for open-shop scheduling prblems. In A. Cohn, editor, 11th European
Conference on Artificial Intelligence (ECAI 94), pages 590–594. John Wiley &
Sons, Ltd., 1994.

15. Rubén Rúız Garćıa and Concepción Maroto. A genetic algorithm for hybrid flow
shops with sequence dependent setup times and machine elegibility. European
Journal of Operational Research, 169:781–800, 2006.

16. J. N. D. Gupta. Two-stage hybrid flow shop scheduling problem. Operational
Research Society, 39:359–364, 1988.

17. Limin Han and Graham Kendall. Guided operators for hyper-heuristic genetic
algorithm. In Proceedings of The 16th Australian Conference on Artificial In-
telligence (AI’03), LNAI 2903, pages 807–820. Springer-Verlag, 2003.

18. Limin Han and Graham Kendall. An investigation of a tabu assisted hyper-
heuristic genetic algorithm. In Proceedings of Congress on Evolutionary Com-
putation (CEC2003), pages 2230–2237. IEEE, 2003.

141A Meta-Hyper-Heuristic Scheduler

19. Limin Han, Graham Kendall, and Peter Cowling. An adaptive length chromo-
some hyperheuristic genetic algorithm for a trainer scheduling problem. In Pro-
ceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning
(SEAL’02), pages 267–271, 2002.

20. Emma Hart and Peter Ross. A heuristic combination method for solving job-
shop scheduling problems. In Lecture Notes in Computer Sciences (1498), pages
845–854. Springer-Verlag, 1998.

21. J. A. Hoogeveen, J. K. Lenstra, and B. Veltman. Preemptive scheduling in a
two-stage multiprocessor flow shop is NP-hard. European Journal of Operational
Research, 89:172–175, 1996.

22. M. E. Kurz, M. Runkle, and S. Pehlivan. Comparing problem-based-search
and random keys genetic algorithms for the SDST FFL makespan scheduling
problem. working paper, 2005.

23. Mary E. Kurz and Ronald G. Askin. Scheduling flexible flow lines with sequence
dependent set-up times. European Journal of Operational Research, 159:66–82,
2003.

24. V. Jorge Leon and Balakrishnan Ramamoorthy. An adaptable problem space
based search method for flexible flow line scheduling. IIE Transactions, 29:115–
125, 1997.

25. Richard Linn and Wei Zhang. Hybrid flow shop scheduling: A survey. Computers
& Industrial Engineering, 37:57–61, 1999.

26. Ceyda Oguz and M. Fikret Ercan. A genetic algorithm for hybrid flow shop
scheduling with multiprocessor tasks. Journal of Scheduling, 8:323–351, 2005.

27. Michael Pinedo. Scheduling Theory, Algorithms and Systems. Prentice Hall,
2002.

28. José Antonio Vázquez Rodŕıguez and Abdellah Salhi. Performance of single
stage representation genetic algorithms in scheduling flexible flow shops. In
Congress on Evolutionary Computation (CEC2005), pages 1364–1371. IEEE
Press, 2005.

29. Funda Sivrikaya Serifoglu and Gunduz Ulusoy. Multiprocessor task scheduling
in multistage hybrid flow shops: A genetic algorithm approach. Journal of the
Operational Research Society, 55:504–512, 2004.

30. Eric Soubeiga. Development and Application of Hyperheuristics to Personnel
Scheduling. PhD thesis, School of Computer Science and Information Technol-
ogy, The University of Nottingham, 2003.

31. Hugo Terashima-Maŕın, Armando Morán-Saavedra, and Peter Ross. Forming
hyper-heuristics with GAs when solving 2d-regular cutting stock problems. In
Proceedings of Congress on Evolutionary Computation CEC(2005), pages 1104–
1110. IEEE Press, 2005.

32. A. Vignier, J. C. Billaut, and C. Proust. Les problèmes d’ordonnancement de
type flow-shop hybride: état de l’art. Operations Research, 33:117–183, 1999.

33. Hong Wang. Flexible flow shop scheduling: Optimum, heuristics and artifical
intelligence solutions. Expert Systems, 22:78–85, 2005.

34. Bagas Wardono and Yahya Fathi. A tabu search algorithm for the multi-stage
parallel machines problem with limited buffer capacities. European Journal of
Operational Research, 155:380–401, 2004.

142 J.A.V. Rodríguez and A. Salhi

Hybrid Particle Swarm Optimizers in the

Single Machine Scheduling Problem:

Leticia Cagnina1, Susana Esquivel1 and Carlos A. Coello Coello2

1

Universidad Nacional de San Luis
Ejército de los Andes 950 - 5700 - San Luis - Argentina

2 CINVESTAV-IPN (Evolutionary Computation Group)
Departamento de Ingenieŕıa Eléctrica, Sección Computación
Av. IPN No. 2508, Col. San Pedro Zacatenco, México D.F. 07360, México

Summary. Although Particle Swarm Optimizers (PSO) have been successfully
used in a wide variety of continuous optimization problems, their use has not
been as widespread in discrete optimization problems, particularly when adopt-
ing non-binary encodings. In this chapter, we discuss three PSO variants (which
are applied on a specific scheduling problem: the Single Machine Total Weighted
Tardiness): a Hybrid PSO (HPSO), a Hybrid PSO with a simple neighborhood
topology (HPSOneigh) and a new version that adds problem-specific knowledge to
HPSOneigh (HPSOkn). The last approach is used to guide the blind search that
PSO usually does and reduces its computational cost (measured in terms of the
objective function evaluations performed). It is also shown that HPSOkn obtains
good results with a lower computational cost, when comparing it against the other
PSO versions analyzed, and with respect to a classical PSO approach and to a mul-
tirecombined evolutionary algorithm (MCMP-SRI-IN), which contains specialized
operators to tackle single machine total weighted tardiness problems.

1 Introduction

Particle Swarm Optimization (PSO) is a bio-inspired heuristic that was pro-
posed by James Kennedy and Russell Eberhart [16]. PSO is a population-
based stochastic heuristic that simulates the flight of a flock of birds. In PSO,
each particle in the swarm (i.e., the population) is a possible solution within
the multidimensional search space. Such a particle has some properties such
as a position (within the search space), a velocity of exploration which is con-
stantly updated, and a record of its past behavior. Each particle evaluates

PCyT (National Agency to Promote Science and Technology).

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

L. Cagnina et al.: Hybrid Particle Swarm Optimizers in the Single Machine Scheduling Problem:

An Experimental Study, Studies in Computational Intelligence (SCI) 49, 143–164 (2007)

An Experimental Study

Lab. de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)**

** The LIDIC is supported by the Universidad Nacional de San Luis and the AN-

its relative position with respect to a goal (fitness) at every iteration and it
adjusts its own velocity using the best position that it has found so far and the
best position reached by any particle in its neighborhood (or in the swarm, if
no neighborhood topology is adopted). Then, the velocity is used to update
the position of each particle. The update is done using the following equations:

velij = w ∗ velij + c1 ∗ r1 ∗ (pij − partij) + c2 ∗ r2 ∗ (pgj − partij) (1)

partij = partij + velij (2)

where velij is the velocity of the particle i in the dimension j, w is the inertia
factor [15] whose goal is to balance global exploration and local exploitation,
c1 and c2 are the personal and social learning factors, r1 and r2 are two random
numbers in the range (0,1), pij is the best position reached by the particle i
and pgj is the best position reached by any particle in the neighborhood (or
swarm).

PSO was originally designed to work in continuos search spaces, and the
specialized literature reports a significant amount of research that makes evi-
dent the great search capabilities of PSO in such type of search spaces. How-
ever, the use of PSO in discrete search spaces is relatively scarce, particularly
when non-binary encodings (e.g., permutations) are adopted (see for example
[24, 31, 12, 22]).

The authors recently proposed a hybrid PSO approach, which was called
HPSO [8]. HPSO incorporates a random keys representation [4] for the par-
ticles and a dynamic mutation operator similar to the one used in evolutionary
algorithms. The use of the random keys encoding allows to represent permu-
tations using real numbers. This, in turn, allows us to use PSO with real
numbers instead of having to rely on more complex encodings to represent
a permutation of integers. In further work by the authors, HPSOneigh was
introduced [7]. This approach adds to HPSO a local neighborhood (known
as circle topology [25]) to each particle.

In this chapter, we propose a new PSO variant, which we call HPSOkn.
This algorithm is an extended version of HPSOneigh, which incorporates
problem-specific knowledge to guide the search.

The three previously indicated PSO approaches are used to solve a hard
combinatorial optimization problem called Total Weighted Tardiness Schedul-
ing (TWT). To the authors’ best knowledge, this chapter constitutes only the
third reported attempt to use PSO in scheduling (the two other attempts are
reported in [38] and [8]).

The main goal of this chapter is to show the performance of our proposed
HPSOkn using some instances of the TWT problem in single machine envi-
ronments. We also aim to compare the results produced by the new algorithm

against those obtained with the classical PSO, the HPSO, the HPSOneigh,
and a multirecombined evolutionary algorithm (MCMP-SRI-IN) [14] that was

144 L. Cagnina et al.

specially designed for dealing with the problem of our interest. Such an ap-
proach also adopts the knowlegde insertion concept (adopted in this chapter)
that consists of incorporating in the population three seeds generated with
other traditional heuristics.

The remainder of the chapter is organized as follows. In Section 2, the
scheduling problem of our interest is properly defined. In Section 3, we briefly
review the previous related work. Section 4 describes the PSO algorithms
adopted for our experimental study, including our new proposed approach.
Section 5 contains a description of our experimental design, including the pa-
rameters settings adopted. Our results are shown and discussed in Section 6.
Finally, our conclusions and some possible paths for future research are pro-
vided in Section 7.

2 Single Machine Total Weighted Tardiness Problem

The single machine scheduling model is the simplest of all possible machine
environments and it is a special case of more complicated machine environ-
ments. This model was selected because the results obtained for it provide the
basis to develop heuristics for more complex machine environments. In this
work only the deterministic model is analyzed.

The term machine is used to specify any resource that will process an
assignment. In the single machine system just one resource is available; thus,
only one job can be processed by the machine at any time. Each job or task
consists of one or more operations (sub-tasks).

The objective function or criterion selected to evaluate the quality of the
schedule was the Total Weighted Tardiness (TWT) because it is important in
a wide range of production activities. In this problem, the jobs or assignments
that have to be processed are characterized by several elements:

• Processing time (p), the amount of time the job needs the resource to
complete its task. It includes a setup and a knock-down time;

• Weight (w), a value indicating the importance of the job with respect to
the other jobs in the system. It represents a factor of priority, that is, what
job should be chosen (among all the available jobs) to be processed next;

• Due date (d), in which the job should finish and free the resource. It
denotes the date the job is promised to be delivered to the customer.

Assuming the deterministic model and that the system consists of a set of
n jobs (j = 1, . . . , n) to be processed without preemption in a single machine,
each job j has its own pj (processing time), wj (weight) and dj (due date).
For a given processing order of all jobs, the earliest completion time Cj can
be defined like the time the job j uses from the moment in which it enters
the system and until it leaves the system. Also, for each job j the tardiness
Tj is defined like the maximum value among zero and the completion time
minus the due date: Tj = max{0, Cj − dj}. Then, the TWT problem consists

 Hybrid PSOs in the Single Machine Scheduling Problem 145

of finding an appropriate processing order of the jobs with the purpose of
minimizing the number of weighted tardy jobs, that is, to minimize the Total
Weighted Tardiness:

n
∑

j=1

wjTj

over the n jobs in the system.

3 Previous Related Work

The single machine total weighted tardiness problem is an NP-hard [27]
scheduling problem. The TWT problem has been tackled by a number of ex-
act methods such as Branch and Bound [37, 21, 33], where some schedules are
discarded because they exceed the objective function value set as a bound.
A competitive technique in this context is dynamic programming [37, 23],
which constructs all possible sets of jobs and recursively obtains a solution.
The problem with these two approaches (branch & bound and dynamic pro-
gramming) is the exponential growth and the considerable computer resources
(computational time and memory requirements) that they require as the size
of the problem grows.

Several enumerative methods have also been proposed, such as those that
use dominance rules to restrict the search for the optimal solution [23] and
those that characterize adjacent jobs in the optimal sequence [36]. An exper-
imental study of these methods might be found in [37].

Some schedule construction heuristics have also been proposed to tackle
this problem. These heuristics generate good, but not necessarily optimal so-
lutions. For example, some authors have proposed dispatching rules to build
a solution by fixing a job in a position in the sequence at each step of the
process. There are a lot of rules widely used for the TWT problem. Com-
parisons between weighted shorted processing time (WSPT), earliest due date
(EDD), modified cost over time (MCOVERT) and apparent urgency (AU)
might be found in [34]. Additionally, an experimental study of this sort of
heuristic may be found in [2]. The apparent tardiness cost (ATC) was pro-
posed and tested in [40]. Then, in [10], the same rule was tested with other
dispatching rules in job and flow shops, showing its effectiveness in minimizing
the average tardiness.

A dominance rule for the most general case of total weighted tardiness
problem is presented in [1], showing the sufficient condition for local optimal-
ity and how it generates schedules that cannot be improved by adjacent job
interchanges.

There are other useful methods, such as the method of interchanges. Such
interchanges require an initial sequence over which the change will take place.
If the changed solution is better than the non-changed one, the method keeps
it; otherwise, the changed solution is discarded. When the solution cannot be

146 L. Cagnina et al.

improved, the interchanges stop and the process returns the sequence solution.
Comparisons among several heuristics (including interchanges) might be found
in [34]. Some results indicate that the pairwise interchange methods are very
good for this problem.

There exist several local search algorithms that propose to solve the TWT
problem using insertion and swap movements to find a good schedule. These
heuristics compute the neighborhood of a solution through movements of jobs
in the sequence. For example, an exponentially sized “dynasearch” that swaps
positions within the neighborhood in polynomial time is described in [35],
where every swap is a single movement. The authors of that paper showed
that their results were the best known so far in terms of both solution qual-
ity and computational time. In [13], the common swap neighborhood is ex-
tended with generalized pairwise interchanges, showing how effective are the
neighborhoods for some scheduling problems. An enhanced dynasearch swap
neighborhood was developed in [20], precisely by adding generalized pairwise
interchanges. A fast and efficient algorithm is presented in [17], which com-
bines the insertion, swap and twist neighborhoods; its searching process takes
O(n2) time.

Metaheuristics offer a good compromise between computational effort and
solution quality. In the case of TWT, a number of metaheuristics have been
applied to its solution, including simulated annealing, tabu search, genetic
algorithms, ant colony optimization and, more recently, particle swarm opti-
mization.

SA and TS are advanced local search techniques. SA uses a parameter
named temperature for changing the probability of moving from one point
within search space to another one [26]. This technique is based on a ther-
modynamic analogy: “start heating a row of materials to a fusing state for
growing a crystal. Then reduce the temperature T until the crystal structure
is frozen. But if the cooling is done quickly, bad things might occur (irregu-
larities in the crystal structure, for instance, and the level of energy trapped
is higher than a perfect crystal structured)”. The state can be looked as a
feasible solution, ground state as an optimal solution, temperature control
parameter T , and the energy as the evaluation function. In the process, the
T parameter used to influence the search of a better value, is updated peri-
odically. Usually T starts with a high value (doing the procedure similar to a
purely random search) and gradually decreases its value. In each iteration the
best value is updated. The process is executed until some external condition
is reached. SA approaches for the TWT problem are stated in [29, 34, 21].

TS, instead has a memory, which forces the algorithm to explore new areas
without visiting previous ones [19]. The solutions examined recently become
“tabu” (forbidden) points to select as a new solution and are stored in a list
H. The process is structurally similar to that of SA. It returns an accepted
solution which needs not be better. The acceptance is based on the previous
history of the search H. The process makes a new movement in the search

 Hybrid PSOs in the Single Machine Scheduling Problem 147

space only when the search is stuck in a local optimum, although SA does not
have this condition. In [21], TS was applied to solve the TWT problem.

Genetic Algorithms (GAs) are a particular type of Evolutionary Algorithm

(EA) which normally adopt a binary encoding for their individuals. GAs are
based in the “survival of the fittest” principle from Darwin’s evolutionary the-
ory. GAs choose the fittest individuals to recombine, aiming to increase the
fitness of all the population over time. GAs use operators such as selection,
mutation and crossover to create a new population. Comparisons of methods
that include GAs might be found in [14]. In that work, the authors pre-
sented a competitive GA to solve the TWT. This GA uses problem-specific
knowledge which is inserted with the aim of removing some of the “blind-
ness” at the search traditionally performed by a GA. This GA outperformed
other evolutionary algorithms in the TWT, which showed the efficacy of using
problem-specific knowledge.

The Ant Colony Optimization (ACO) is a paradigm inspired by the trail
following behavior observed in colonies of real ants. ACO was applied to TWT
in [30], in which a pheromone summation evaluation was adopted for the
probability of transition, and a specific heuristic was tailored for the TWT.
Better results were presented in [28] and [6]. The latter introduced local search
which is combined with the constructive phase obtaining an algorithm that
uses heterogeneous colonies of ants.

Particle Swarm Optimizer (PSO) is a population-based stochastic heuris-
tic which is inspired in the flight patterns of a flock of birds, in which a
group (called the “swarm”) follows a leader. As indicated before, PSO has
been scarcely applied to scheduling problems. In [38], there is a comparative
study between PSO, ACO and Iterative Local Search algorithm in the TWT
problem. In [8], the authors proposed to adopt the random keys encoding for
the individuals combined with a dynamic mutation operator. In [8], results
are compared with respect to conventional heuristics and with respect to an
evolutionary algorithm [14] that was fairly competitive at that time. In both
cases, results indicated that PSO is a promising heuristic to tackle the TWT
problem.

4 Improved Hybrid PSO Algorithms for the TWT

Problem

In this section, the three PSO variants adopted in this chapter (i.e., HPSO,
HPSOneigh, and HPSOkn) are described. However, we first present the
pseudocode of the classical PSO algorithm (see Figure 1), because it will
serve as the basis for all the other algorithms.

As can be seen in Figure 1, once the swarm, the velocities of each par-
ticle and the particle best memory are initialized (lines 2 to 4), the swarm
is evaluated and the leader (the best particle of the swarm or the best in
the neighboorhod, if appropriate) is selected (line 5). Then, at each iteration,

148 L. Cagnina et al.

1. InitializeSwarm(Part)
2. InitializeVelocities(v)
3. Copy(Part, PartBests)
4. EvaluateParticles(Part, ObjectiveFunction)
5. Remember Leader of Swarm
6. do
7. UpdateVelocities(v)
8. UpdatePositionParticles(Part)
9. EvaluateParticles(Part, ObjectiveFunction)
10. UpdateParticleMemory(PartBests) if appropriate
11. SelectNewLeader
12. while (¬termination)

Fig. 1. General outline of the classical PSO Algorithm

the velocities and positions of the particles are updated using equations (1)
and (2) defined in Section 1 (lines 7 and 8). After the update process takes
place, each particle is evaluated at its new position (line 9). If the new par-
ticle is better than its personal best position (line 10), then this last one is
accordingly updated, i.e. PartBesti is set to Parti.

4.1 HPSO Algorithm Description

As indicated before, there is sufficient evidence of the good performance of
the PSO algorithm in continuous search spaces. The main motivation for the
development of the HPSO algorithm was to preserve such efficiency when
dealing with discrete optimization problems. Thus, we decided to adopt the
random keys encoding proposed in [4] so that we could preserve a real-numbers
encoding when dealing with permutations. The main idea of the random keys
encoding is to adopt a set of randomly generated real numbers, which are
then sorted and decoded in such a way that their position in the sequence is
interpreted as a permutation position. In the scheduling problem studied, each
particle is an n-dimensional vector and each dimension (a real number with
two digits of precision) corresponds to a job. The components are randomly
generated when the algorithm starts within the range (0, 1). Then, the particle
is transformed into a schedule by sorting those values in ascending order. Let’s
illustrate this with an example: for a nine-job problem, let’s assume that we
have the particle vector <0.23, 0.08, 0.97, 0.96, 0.32, 0.55, 0.18, 0.87, 0.99>.
If we sort this list of real numbers in ascending order, we have the following
sequence: <0.08, 0.18, 0.23, 0.32, 0.55, 0.87, 0.96, 0.97, 0.99>. Now, from
this sorted list, we extract the mapping that we need: the first value (0.08)
corresponds the the integer 1, the second value (0.18), corresponds to the
integer 2, and so on. Going back to the original (unsorted) list of real numbers,
the permutation that it encodes can be obtained by replacing the integers that

 Hybrid PSOs in the Single Machine Scheduling Problem 149

1. InitializeSwarm(Part)
2. InitializeVelocities(v)
3. Copy(Part, PartBests)
4. EvaluateParticles(Part, ObjectiveFunction)
5. Remeber Best Leader of Swarm
6. do
7. CalculateProbability Mutation(pmut)
8. UpdateVelocities(v)
9. UpdatePositionParticle(Part)
10. EvaluateParticles(Part, ObjectiveFunction)
11. UpdateParticleMemory(PartBests) if appropriate
12. MutateSwarm(Part)
13. EvaluateParticles(Part, ObjectiveFunction)
14. UpdateParticleMemory(PartBests) if appropriate
15. SelectNewLeader
16. while (¬termination)

Fig. 2. General outline of the HPSO Algorithm

we produced from the sorted list. So, we have the following schedule: <3 1 8 7
4 5 2 6 9>. This is thus the permutation evaluated to determine the objective
function value of this particle. It is worth noting, however, that due to the
redundancy of the representation, many random key vectors may result in the
same schedule. So, with the aim of maintaining diversity in the population,
we adopted a dynamic mutation operator.

The mutation operator is applied to change the value of a component of a
particle, with a probability pm varying between max pm and min pm, which
depends on the total number of cycles max cycles and the current cycle.

pm = max pm −
max pm − min pm

max cycle
× current cycle (3)

where max pm and min pm are the maximum and minimum values that pm
can take, max cycle is the total number of cycles that the algorithm will
iterate, and current cycle is the current cycle in the iterative process. In
this way, mutation is more frequently applied at the beginning of the search
process and its application decreases as the number of iterations increases. The
particle is updated only if the objective function value of the new particle is
better than the objective function value prior to applying mutation. Figure 2
displays the pseudocode for the HPSO approach.

The differences between HPSO and the PSO algorithm are described in
Figures 1 and 2, and are expressed in lines 7, 12, 13, and 14, where the HPSO
algorithm includes the mutation operator and the re-evaluation of the swarm
to see if each mutated particle is better than its ancestor; if this is the case,
then the best position memory is updated.

150 L. Cagnina et al.

4.2 HPSOneigh Algorithm Description

As was observed in [8], HPSO converges to a local optimum in some difficult
instances of the TWT, which causes stagnation in the search. In order to avoid
this problem, HPSO was improved through the use of a neighborhood circle
topology (see Figure 3). In this topology, each particle is influenced both by
the best value found by the particle itself and by the best value found in the
neighborhood so far (neighborhood leader).

1 2 3 4 5 6 ...Particle:

 Best particle within the neighborhood

Neighborhood (size: 4)

Fig. 3. Graphical illustration of the circle topology adopted by the HPSOneigh

algorithm

For example, if we have a swarm with 6 particles and the neighborhood
size is 4, then the following neighborhoods are considered: 0 1 2 3, 1 2 3 4,
2 3 4 5, 3 4 5 0, 4 5 0 1, and 5 0 1 2 (the numbers indicating the particle
index). Then, each particle is influenced by the performance of the leader of a
smaller group instead of being influenced by the performance of the best global
leader (i.e., of the complete swarm). Figure 4 presents the pseudocode of the
HPSOneigh algorithm. In line 7 the neighborhood of any parti is composed
by the particles whose index are in the interval [i, i + neighborhood size − 1]
if i + neighborhood size − 1 < number particles. Otherwise, the neighbor-
hood of any parti consisting of particles whose index are in the interval
[i, neighborhood size − 2] (∀i = 1, . . . , number particles).

Besides the inclusion of the neighborhood handler it is important to note
that HPSOneigh differs from HPSO in that the former does the particle
processing asynchronously, whereas the last one does such processing syn-
chronously. In the asynchronous update, the neighbors on one side of the
particle to be adjusted have been updated, while the neighbors on the other
side have not. In the synchronous update, the leader is the same for all the
particles; therefore, they can be updated in parallel [9].

The algorithms presented in this work were implemented following these
criteria since there is prior empirical evidence of the efficiency of these types
of processing [18, 9].

 Hybrid PSOs in the Single Machine Scheduling Problem 151

1. InitializeSwarm(Part)
2. InitializeVelocities(v)
3. Copy(Part, PartBests)
4. do
5. for i = 1 to number particles do
6. CalculateProbabilityMutation(pmut)
7. Search the leader in the neighborhood of parti

8. UpdateVelocity(vi)
9. UpdateParticle(parti)
10. EvaluateParticle(parti, ObjectiveFunction)
11. UpdateParticleMemory(parti, PartBesti) if appropriate
12. MutateParticle(parti)
13. EvaluateParticle(parti)
14. UpdateParticleMemory(parti, PartBestsi) if appropriate
15. end
16. while (¬termination)

Fig. 4. General outline of the HPSOneigh Algorithm

4.3 HPSOkn Algorithm Description

To improve the previous approach (HPSOneigh), we inserted problem-specific
knowledge through three seeds generated by three good heuristics: Racha-
madagu and Morton Heuristic (R&M), Covert and Montagne Heuristic [32]
whose principal property is not only the quality of the results, but also to give
an ordering of the jobs (schedule) close to the optimal sequence.

The Rachamadagu and Morton Heuristic, provides a schedule according
to the following expression:

πj = (wj/pj)[exp{−(Sj)
+/kpav}] (4)

where Sj = [dj −(pj +Ch)] is the slack of job j at time Ch and Ch is the total
processing time of the jobs already scheduled, k is a parameter of the method
(usually k = 2.0) and pav is the average processing time of the jobs competing
for top priority. In this heuristic, jobs are scheduled one at a time and every
time a machine becomes free, a ranking index is computed for the remaining
ones. The job with the hightest ranking index is selected to be processed.

The Covert Heuristic, works in a similar way to R&M in cases of a single
resource (our case), but applies instead the expression:

πj = (wj/pj){1 − (Sj)
+/kpj} (5)

The Montagne Heuristic, for its part, uses the following equation:

152 L. Cagnina et al.

πj = (wj/pj)[1 − (dj)

n
∑

i=1

pi] (6)

This equation does not consider the slack factor, but the due date of every
job (dj) and the sum of all the processing time (pi).

Several other heuristics previously proposed for the TWT problem in the
specialized literature were also tested (using the PARSIFAL package [32]),
but we found the three above heuristics to be the most effective and therefore
our choice. Needless to say, all of these heuristics are representative of the
state-of-the-art in this problem.

As the seed values for each of these three heuristics are very close from

each other (in most cases, the Euclidean distance among them is less than
one unit in objective function value), we hypothesized that if we put them
together, they would influence each other and, slowly, they would also influ-
ence the other solutions. That was the reason why we decided to introduce
the three seeds within the initial population of particles. Note however, that
different positions of the population were adopted for the insertion in each
case (see Figure 5). The R&M seed is inserted randomly within the first third
of the population, the Montagne seed in the second third, and Covert in the
last third of the population (this was done considering the positions of the
particles within the storage structure). In that way, each particle is forced to
be influenced by some of these good permutations. In some cases, the particles
located in the limit of each range might be influenced by two seeds. However,
the final value will be the result of the influence of the best of them. Figure 6
shows the pseudocode for our HPSO kn algorithm.

1 2 n/3 n/3+1 2n/3 2n/3+1 n

Initial population

n/3 particles n/3 particles n/3 particles

R&M seed

Montagne seed

Covert seed

Fig. 5. Graphical illustration of the way in which the three types of seeds (produced
by the three heuristics adopted) are inserted in the population

Finally, we will proceed to briefly describe the evolutionary algorithm used
to compare our results. The MCMP-SRI-IN [14] approach considers the mat-
ing of an evolved individual (the stud) with both random and seed immi-
grants. The process for creating offspring is the following. From the old pop-
ulation, the stud is selected by means of proportional selection and inserted
into the mating pool. A number of n1 parents in the mating pool is completed

 Hybrid PSOs in the Single Machine Scheduling Problem 153

1. InitializeSwarm(Part)
2. InitializeVelocities(v)
3. Copy(Part, PartBests)
4. // Seeds Insertion
5. s = rnd(0, number particles/3)
6. CopySeed(seedR&M , parts)
7. s = rnd(number particles/3 + 1, 2 ∗ number particles/3)
8. CopySeed(seedCovert, parts)
9. s = rnd(2 ∗ number particles/3 + 1, number particles)
10. CopySeed(seedMontagne, parts)
11. do
12. for i = 1 to number particles do
13. CalculateProbabilityMutation(pmut)
14. Search the leader in the neighborhood of parti

15. UpdateVelocity(vi)
16. UpdateParticle(parti)
17. EvaluateParticle(parti, ObjectiveFunction)
18. UpdateParticleMemory(parti, PartBesti) if appropriate
18. MutateParticle(parti)
19. EvaluateParticle(parti)
20. UpdateParticleMemory(parti, PartBestsi) if appropriate
21. end
22. while (¬termination)

Fig. 6. General outline of the HPSOkn Algorithm

both with randomly created individuals (the “random immigrants”) and with
“seed immigrants”. The stud mates every other parent. The couples undergo
crossover (partial mapped crossover) and 2×(n2−1) offspring are created. The
best of these offspring is stored in a temporary children pool. The crossover
operation is repeated n1 times, for different cut points each time, until the
children pool is full. Finally, the best offspring created from n2 parents and
n1 crossover operations is inserted into the new population. Figure 7 displays
this process.

5 Experimental Design

As indicated before, the goal of the work reported here was to determine the
performance of different PSO optimizers when used to solve the total weighted
tardiness problem in single machine environments. As indicated before, even
with this relatively simple formulation, this model leads to an optimizacion
problem that is NP-hard.

The algorithms were tested on twenty instances of 40 and 50 jobs, which
were extracted from the OR-Library [5]. The numbering of the problems are

154 L. Cagnina et al.

Fig. 7. General outline of MCMP − SRI − IN approach

not consecutive because each one was randomly selected from different groups.
The tardiness factor, which is an instance parameter that controls the number
of tardy jobs, is harder for those with a higher identifier number. That means
that a higher identifier number of instances involves a greater number of tardy
jobs.

As it is well-known for researchers working with metaheuristics, the para-
meters setting of the technique is a very important issue that deserves special
attention. Thus, we conducted some preliminary experiments in order to de-
termine the most suitable values for the PSO approaches considered in our
study. The values of w (inertia factor), c1 and c2 (personal and social learn-
ing factors, respectively) were defined following the suggestions from van den
Bergh [39]. Analogously, the neighborhood size was fixed between the 8% and
10% of the total swarm size. The values adopted for these parameters in all
the experiments conducted are shown in Table 1. The swarm size was set
proportional to the permutation length, as suggested by Clerc [11]. 30 inde-
pendent runs were performed in each experiment. The maximum number of
iterations was fixed as follows: HPSO 6000 (40 jobs) and 9000 (50 jobs);
HPSOneigh and HPSOkn 50000 (40 jobs) and 65000 (50 jobs). These values
were empirically derived after an exhaustive series of experiments. Initially,
HPSO ran for the same number of cycles as the other approaches, but its
performance did not improve. Thus, as a consequence, we decided to reduce
its total number of iterations.

For HPSOneigh and HPSOkn, it was neccesary to determinate the val-
ues for the mutation probability (pm). This parameter depends of two values:

 Hybrid PSOs in the Single Machine Scheduling Problem 155

Table 1. Parameter settings for the PSO algorithms considered

Parameters HPSO HPSOneigh HPSOkn

Inertia 0.3 0.5 0.5
factor

Learning 1.3 1.5 1.5
factors

Neighbor- - 4 4
hood size

min pm and max pm which, in our case, were fixed to 0.1 and 0.4, respec-
tively.

Additionally, the parameter settings for MCMP − SRI − IN were taken
from [14] and are the following: the evolutionary algorithm ran for 200 gen-
erations with a population size of 100 individuals. The crossover probability
was 0.65 and the mutation probability was 0.05. The algorithm performed 14
crossover operations on each pair of parents and it used 16 parents to recom-
bine. The number of seed was 3 (generated with R&M, Covert, and Modified
R&M heuristics).

5.1 Performance Metrics

To compare the algorithms, the following performance metrics were chosen:

• Best: It indicates the best value found by an algorithm.
• µBest: It is the mean objective value obtained from the best found parti-

cles throughout all runs.
• σBest: It is the standard deviation of the objective values corresponding

to the best found particles throughout all runs with respect to µBest.
• (σ/µ)Best: This coefficient of variation is calculated as the σBest and

µBest ratio. It represents the desviation as a percentage of the µBest
value. The closer this value is to zero, the higher the robustness of the
results obtained by an algorithm.

• Mean Evaluations (ME): It is the mean number of evaluations neces-
sary to obtain the best value of the objective function found throughout
the runs performed.

• Hit Ratio (HR): It is the percentage of runs where the algorithm reaches
the best known values for each test function.

6 Analysis of Results

In this section, we present the results obtained for the algorithms compared
as well as a brief discussion of them. First, we present the results obtained
by the classical PSO, which are displayed in Tables 2 and 3 for instances of

156 L. Cagnina et al.

40 and 50 jobs, respectively, where IN denotes the problem instance number
and the Best Known Values, were taken from the OR-Library [5].

Table 2. PSO performance for problem instances of 40 jobs

IN Best Known Value Best σ/µ ME HR

1 913 913 0.4631 320 0.03

6 6955 8708 0.1363 3220 0.00

11 17465 20652 0.1324 120002 0.00

19 77122 81184 0.0501 85233 0.00

21 77774 81057 0.0583 125512 0.00

26 108 108 0.8715 240 0.03

31 6575 9832 0.1789 135522 0.00

41 57640 63311 0.0643 2445 0.00

46 64451 67088 0.0570 289874 0.00

51 0 661 0.5225 47877 0.00

56 2099 2779 0.2827 586588 0.00

66 65386 75419 0.0617 298854 0.00

71 90486 93072 0.0510 147455 0.00

76 0 0 1.8088 200954 0.70

91 47683 57484 0.0706 568852 0.00

96 126048 130657 0.0333 75665 0.00

101 0 0 0.0000 1552 1.00

106 0 0 0.0000 2544 1.00

116 46770 56139 0.0872 185587 0.00

121 122266 128107 0.0581 299847 0.00

From the results shown in Tables 2 and 3, it can be seen that the classical
PSO is unable to reach the best known values in almost all the instances. This
is indicated by the zero values for the HR metric, except for instances 101 and
106 in the case of 40 jobs. This is the reason by which in the remainder of this
section, only the results for HPSO, HPSOneigh, HPSOkn and MCMP −
SRI − IN are discussed.

Tables 4 and 5 summarize the best objective function values found by the
PSO variants and by the evolutionary algorithm for problem instances with
40 jobs and 50 jobs, repectively. Observing these values in both tables, we can
see that the HPSO algorithm has, for some instances, the worst performance
(marked with boldface). This is due to the fact that each particle in the
swarm is attracted towards the position of the global best particle, which
leads to a stagnation of the algorithm in a local optimum. In the case of 40
jobs, HPSOneigh and HPSOkn converge to the same best values, and both
algorithms outperform to MCMP −SRI−IN in instance 21. The results for
the 50 jobs problems (Table 5) show that in instance 6, HPSOkn obtains the
worst best value (but yet it is closer to the best known value). For instances

 Hybrid PSOs in the Single Machine Scheduling Problem 157

Table 3. PSO performance for problem instances of 50 jobs

IM Best Known Value Best σ/µ ME HR

1 2134 2259 0.22623 98558 0.00

6 26276 29241 0.08538 568856 0.00

11 51785 53844 0.08870 866585 0.00

19 89299 99698 0.06118 248898 0.00

21 214546 221119 0.03595 25442 0.00

26 2 10 1.11608 17452 0.00

31 9934 14426 0.16843 34252 0.00

41 123893 124855 0.02765 27784 0.00

46 157505 167009 0.46806 89552 0.00

51 0 0 0.7619 131905 0.03

56 1258 1258 0.19776 57884 0.10

66 76878 76991 0.01623 25995 0.00

71 150580 151322 0.02495 69899 0.00

76 0 0 1.0000 27741 0.20

91 9298 39787 0.02778 98778 0.00

96 77909 187222 0.00991 33541 0.00

101 0 0 0.9935 37787 0.50

106 0 0 0.9000 47785 0.35

116 35727 38544 0.03077 78448 0.00

121 8315 79884 0.02304 35884 0.00

Table 4. Best metric values for TWT 40 jobs problem size

IN Best Known Value HPSO HPSOneigh MCMP − SRI − In HPSOkn

1 913 913 913 913 913
6 6955 6955 6955 6955 6955
11 17465 17465 17465 17465 17465
19 77122 77122 77122 77122 77122
21 77774 77774 77774 77774 77774
26 108 108 108 108 108
31 6575 6575 6575 6575 6575
41 57640 57640 57640 57876 57640
46 64451 64459 64451 64451 64451
51 0 0 0 0 0
56 2099 2099 2099 2099 2099
66 65386 65402 65386 65386 65386
71 90486 90523 90486 90486 90486
76 0 0 0 0 0
91 47683 47683 47683 47683 47683
96 126048 126048 126048 126048 126048
101 0 0 0 0 0
106 0 0 0 0 0
116 46770 46771 46770 46770 46770
121 122266 122304 122266 122266 122266

158 L. Cagnina et al.

Table 5. Best metric values for TWT 50 jobs problem size

IN Best Known Value HPSO HPSOneigh MCMP − SRI − In HPSOkn

1 2134 2134 2134 2134 2134
6 26276 26276 26276 26276 26281

11 51785 51785 51785 51785 51785
19 89299 89308 89308 89299 89299
21 214546 214585 214744 214555 214555

26 2 2 2 2 2
31 9934 9934 9934 9934 9934
44 123893 124261 123893 123893 123893
46 157505 157536 157505 157505 157505
51 0 0 0 0 0
56 1258 1258 1258 1258 1258
66 76878 76948 76878 76878 76878
71 150580 150667 150580 150580 150580
76 0 0 0 0 0
91 89298 89543 89323 89448 89474

96 177909 178007 177909 177909 177909
101 0 0 0 0 0
106 0 0 0 0 0
116 35727 35830 35728 35727 35727
121 78315 78396 78315 78315 78315

19, 21, 91, and 116, HPSOkn is the algorithm with the best performance,
and specially in instance 21 where none of the algorithms reaches the best
know values, HPSOkn obtains the same value than MCMP − SRI − IN .
As a conclusion, we can say that except for some instances (marked with
boldface), all the algorithms find the best known values. In fact, even when
these values are not reached, HPSOkn and MCMP −SRI − IN converge to
very similar values.

Nevertheless, it is important to analyze these results in more details, by
using other performance metrics such as Hit Ratio and the mean number of
evaluations that each algorithm has to perform to find the best value.

Figure 8 shows the analysis of the Hit Ratio metric. In this case, we can
see that HPSOneigh finds the best known values approximately 70% of the
time for the case of 40 jobs and around 50% of the time for the case of 50
jobs. In contrast, HPSOkn reaches the best known values in approximately
the 80% and 70% of the runs for the 40 and 50 jobs instances, respectively.
Also, we can observe that the results obtained with MCMP −SRI − IN are
slighly better than those found by HPSOkn, although none of the algorithms
finds the best known values for all the instances in all the runs. With the
previous observations in mind, we can conclude that HPSOkn is superior to
HPSOneigh and its results are comparable to those obtained by MCMP −
SRI − IN (which can be seen as an evolutionary algorithm that has been
carefully tailored for the problem being solved in this study).

Figure 9 shows the cost measured as the mean number of evaluations that
an algorithm performs to reach the best known values. In this case, HPSOkn

performs, on average, a lower number of evaluations when compared with
HPSOneigh and MCMP −SRI − IN , a difference that becomes even higher

 Hybrid PSOs in the Single Machine Scheduling Problem 159

Fig. 8. Performance evaluation with respect to the Hit Ratio metric

Fig. 9. Performance evaluation with respect to the Mean Evaluation metric

when the problem size is increased. This difference was somehow expected
(with respect to HPSOneigh) due to the guided search that the HPSOkn

performs. The idea of including knowledge about the problem in the algo-
rithm is not new, since it has been successfully applied in the past in several
evolutionary algorithms [3].

Table 6. (σ/µ)Best mean values obtained by the PSO variants compared

Problem Size HPSO HPSO neigh HPSO kn

40 0.003825 0.002880 0.001950

50 0.003320 0.001565 0.000100

160 L. Cagnina et al.

In Table 6, we show the mean values over all the coefficients of variation of
the best values calculated for all the instances, for the different PSO variants
for the two instances studied (40 jobs and 50 jobs). These values are grouped
around the mean. Although not all the coefficient values were equal to zero,
they are very close, which suggests robustness of the algorithms with respect
to the results that they found.

7 Conclusions and Future Work

In this chapter, three improved PSO variants were presented to deal with per-
mutation problems. To determine the performance of the algorithms studied,
the weighted tardiness scheduling on the single machine environments problem
was selected as a case of study. HPSO is a hybridized PSO in the sense that
a suitable representation and a dynamic mutation operator were adopted to
make it more competitive in sequencing problems. However, we saw that this
approach in which the global leader is always followed, is prone to converge
to a local optimum, causing a premature convergence of the algorithm.

As a way of dealing with this drawback, we proposed an approach called
HPSOneigh, which incorporates a simple neighborhood topology, so that each
particle is only influenced by the best local particle in its neighborhood. This
modification allowed that the algorithm could find all the best known values
for the 40 jobs problem size and increased the number of instances in which the
algorithm found the best known values for the instances of 50 jobs (instances
19, 21, 44, 46, 66 and 71). A further modification was introduced, which
consisted of the incorporation of specific domain knowledge by means of the
inclusion of seeds (generated with another heuristic) in the swarm. This new
version was named HPSOkn. All these algorithms were compared among
themselves and with respect to MCMP −SRI−IN , which is an evolutionary
algorithm specially tailored for the problem of interest and which also uses
the inclusion of knowledge through seeds. Although HPSOneigh, HPSOkn

and MCMP −SRI − IN found objective values which are similar, HPSOkn

and MCMP − SRI − IN exceeded widely to HPSOneigh in the number of
runs in which they reached the best known values as was shown with the Hit
Ratio values. In spite of that, the cost (measured in the number of evaluations
performed to reach the best known values) of HPSOkn is fairly smaller than
the one required by MCMP−SRI−IN and also (as expected) is about a 50%
lower than the cost of HPSOneigh. We believe that these preliminary results
are good enough to consider HPSO variants as a promising approach for
scheduling problems. Thus, we are convinced that this topic deserves further
study.

As part of our future work, we are considering different possibilities. The
first one is to minimize the redundancy of the encoding currently adopted
by exploring alternative encodings. Second, we aim to study the effect of
incorporating and adapting other operators which have been typically used

 Hybrid PSOs in the Single Machine Scheduling Problem 161

with evolutionary algorithms to solve permutations problems. Finally, it is of
great relevance for us the study of the behavior of our proposed approach in
much larger instances of this problem (between 100 and 200 jobs).

Acknowledgments

The third author gratefully acknowledges support from CONACyT project
number 45683-Y.

References

1. M. S. Akturk and M. B. Yildirim. A New Dominance Rule for the Total
Weighted Tardiness Problem. Production Planning and Control, 10(2):138–149,
1999.

2. B. Alidaee and K. R. Ramakrishnan. A computational experiment of covert au
class of rules for single machine tardiness scheduling problem. Computers and
Industrial Engineering, 30(2):201–209, 1996.

3. Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz. Handbook of Evolu-
tionary Computation. IOP Publishing LTD and Oxford University Press, 1997.

4. James C. Bean. Genetics and random keys for sequencing and optimization.
ORSA Journal on Computing, 6(2):154–160, 1994.

5. J. E. Beasley. Library, Scheduling: Weighted

6. M. Den Besten, T. Stutzle, and M. Dorigo. Ant colony optimization for the
total weighted tardiness problem. In Proc. of PPSN-VI: Sixth International
Conference on Parallel Problem Solving from Nature, volume LNCS 1917, pages
611–620, 2000.

7. L. Cagnina and S. Esquivel. Particle swarm optimization para un problema
de optimización combinatoria. In Memorias del X Congreso Argentino de
Ciencias de la Computación, pages 1847–1855, La Matanza, Buenos Aires,
Argentina (in Spanish), 2004. http://www.lidic.unsl.edu.ar/publicaciones/in-
fo publicacion.php?id publicacion=199.

8. L. Cagnina, S. Esquivel, and R. Gallard. Particle swarm optimization for se-
quencing problems: a case study. In Proceedings of the 2004 IEEE Congress
on Evolutionary Computation (CEC’2004), pages 536–541, Portland, Oregon,
USA, 2004.

9. A. Carlisle. Applying The Particle Swarm Optimization to Non-Stationary En-
vironments. PhD thesis, Auburn University, USA, December 2002.

10. K. Caskey and R. L. Storch. Heterogeneous dispatching rules in job and flow
shops. Production Planning and Control, 7:351–361, 1996.

11. M. Clerc. Discrete particle swarm optimization illustred by the traveling sales-
man problem, 2000. http://www.mauriceclerc.net.

12. Carlos A. Coello Coello, Erika Hernández Luna, and Arturo Hernández Aguirre.
Use of particle swarm optimization to design combinational logic circuits. In

162 L. Cagnina et al.

OR Tardiness. http://people.
brunel.ac.uk/˜mastjjb/jeb/info.html.

Andy M. Tyrell, Pauline C. Haddow, and Jim Torresen, editors, Evolvable Sys-
tems: From Biology to Hardware. Proceedings of the 5th International Confer-
ence, ICES 2003, pages 398–409, Trondheim, Norway, 2003. Springer, Lecture
Notes in Computer Science Vol. 2606.

13. F. Della Croce. Generalized pairwise interchanges and machine scheduling.
European Journal Operations Research, 83:310–319, 1995.

14. M. De San Pedro, D. Pandolfi, A. Villagra, M. Lasso, G. Vilanova, and
R. Gallard. Adding problem-specific knowledge in evolutionary algorithms
to solve wt scheduling problems. In Memorias del VIII Congreso Argentino
de Ciencias de la Computación, pages 343–353, Buenos Aires, Argentina
(in Spanish), 2002. http://www.lidic.unsl.edu.ar/publicaciones/info publi-
cacion.php?id publicacion=198.

15. R. Eberhart and Y. Shi. A modified particle swarm optimizer. In International
Conference on Evolutionary Computation, IEEE Service Center, Anchorage,
AK, Piscataway, NJ, 1998.

16. R. C. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In
6th International Symposium on Micro Machine and Human Science (Nagoya,
Japan), pages 39–43, Piscataway, NJ., 1995. IEEE Service Center.

17. O. Ergun and J. B. Orlin. A fast algorithm for searching insertion, swap, and
twist neighborhoods for the single machine total weighted tardiness problem. In
Working Paper, Operations Research Center, MIT, 2004.

18. Susana C. Esquivel and Carlos A. Coello Coello. On the Use of Particle Swarm
Optimization with Multimodal Functions. In Proceedings of 2003 Congress on
Evolutionary Computation (CEC’2003), volume 2, pages 1130–1136, Piscataway,
NJ., December 2003. IEEE Press.

19. Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers,
Boston, Massachusetts, 1997.

20. A. Grosso, F. Della Croce, and R.Tadei. An enhanced dynasearch neighborhood
for the single-machine total weighted tardiness scheduling problem. Operations
Research Letters, 32:68–72, 2004.

21. C. N. Potts H. A. J. Crauwels and L. N. Van Wassenhove. Local search heuris-
tics for the single machine total weighted tardiness scheduling problem. In
INFORMS Journal on Computing, volume 10(3), pages 341–350, 1998.

22. X. Hu and R. Eberhart. Swarm intelligence for permutation optimization: a
case study on n-queens problem. In Proceeding of the IEEE Swarm Intelligence
Symposium, pages 243–246, Indianapolis, Indiana, USA, 2003.

23. A. H. G. Rinnooy Kan, B. J. Lageweg, and J. K. Lenstra. Minimizing total
costs in one-machine scheduling. Operations Research, 23(3):908–927, 1975.

24. J. Kennedy and R. Eberhart. A discrete binary version of particle swarm algo-
rithm. In Proceedings of the World Multiconference on Systemics, Cybernetics
and Informatics, pages 4104–4109, Piscataway, NJ, 1997.

25. James Kennedy and Russell Eberhart. Swarm Intelligence. Morgan Kaufmann
Publishers, 2001.

26.

27. J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine
scheduling problem. In P. L. Hammer, E. L. Johnson, B. H. Korte, and G. L.
Nemhauser, editors, Studies in Integer Programming, volume I of Annals of
Discrete Mathematics, pages 343–362. North-Holland, The Netherlands, 1977.

 Hybrid PSOs in the Single Machine Scheduling Problem 163

Annealing. Science, 220(4598):671–680, 1983.
S. Kirkpatrick, C. D. Gellatt, and M. P. Vecchi. Optimization by Simulated

28. Y. C. Liang. Ant colony optimization approach to combinatorial problems. PhD
thesis, Department of Industrial and Systems Engineering, Auburn University,
2001.

29. T. E. Matsuo, C. J. Suh, and R. S. Sullivan. A controlled search simulated
annealing method for the single machine weighted tardiness problem. Annals of
Operations Research, 21:95–108, 1989.

30. D. Merkle and M. Middendorf. An ant algorithm with a new pheronome eval-
uation rule for total tardiness problem. In Proc. of EvoWorkshops 2000: Real-
World Applications of Evolutionary Computing, volume LNCS 1803, pages 287–
296, 2000.

31. C. Mohan and B. Al-Kazemi. Discrete particle swarm optimization. In Proceed-
ing of the Workshop on Particle Swarm Optimization, Indianapolis, IN, 2001.

32. T. Morton and D. Pentico. Heuristic Scheduling Systems. Wiley series in Engi-
neering and Technology management, John Wiley and Sons, 1993.

33. C. N. Potts and L. N. Van Wassenhove. A branch and bound algorithm for the
total weighted tardiness scheduling problem. In Operations Research, volume
33 number 2, pages 363–377, 1985.

34. C. N. Potts and L. N. Van Wassenhove. Single machine tardiness sequencing
heuristics. IIE Transactions, 23(4):346–354, 1991.

35. C. N. Potts R. K. Congram and S. Van de Velde. An iterated dynasearch
algorithm for the single-machine total weighted tardiness scheduling problem.
INFORMS Journal on Computing, 14:52–67, 2002.

36. R. M. V. Rachamadugu. A note on weighted tardiness problem. Operations
Research, 35:450–452, 1987.

37. C. N. Potts T. S. Abdul-Razaq and L. N. Van Wassenhove. A survey of algo-
rithms for the single machine total weighted tardiness scheduling problem. In
Discrete Applied Mathematics, volume 26, pages 235–253, 1990.

38. M. Fatih Tasgetiren, Mehmet Sevkli, Yun-Chia Liang, and Gunes Gencyilmaz.
Particle Swarm Optimization Algorithm For Single Machine Total Weighted
Tardiness Problem. In Proceedings of the 2004 IEEE Congress on Evolutionary
Computation (CEC’2004), pages 1412–1419, Portland, Oregon, USA, 2004.

39. Frans van den Bergh. An Analysis of Particle Swarm Optimization. PhD thesis,
Faculty of Natural and Agricultural Science, University of Petroria, Pretoria,
South Africa, November 2002.

40. A. P. J. Vepsalainem and T. E. Morton. Priority rules for job shops with
weighted tardiness costs. Management Science, 33:1035–1047, 1987.

164 L. Cagnina et al.

An Evolutionary Approach for Solving the

1 2

Department of Computer Science, City University of Hong Kong
83 Tat Chee Avenue, Kowloon, Hong Kong
1{ripon, wilson}@cs.cityu.edu.hk 2cssamk@cityu.edu.hk

solving the multi-objective Job-Shop Scheduling Problem (JSSP) using the
Jumping Genes Genetic Algorithm (JGGA). The jumping gene operations
introduced in JGGA enable the local search process to exploit scheduling
solutions around chromosomes, while the conventional genetic operators
globally explore solutions from the population. During recent decades,
various evolutionary approaches have been tried in efforts to solve JSSP,
but most of them have been limited to a single objective, which is not
suitable for real-world, multiple objective scheduling problems. The
proposed JGGA-based scheduling algorithm heuristically searches for near-
optimal schedules that optimize multiple criteria simultaneously.
Experimental results using various benchmark test problems demonstrate
that our proposed approach can search for the near-optimal and non-
dominated solutions by optimizing the makespan and mean flow time. The
proposed JGGA based approach is compared with another well established
multi-objective evolutionary algorithm (MOEA) based JSSP approach and
much better performance of the proposed approach is observed. Simulation
results also reveal that this approach can find a diverse set of scheduling
solutions that provide a wide range of choice for the decision makers.

1 Introduction

The objective of scheduling is to allocate resources efficiently, such that a number
of tasks can be completed economically within given hard or soft constraints. In
essence, scheduling can be considered as a searching or optimization problem,
where the goal is to find the best possible schedule. Among all of the scheduling

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007
Scheduling Problem, Studies in Computational Intelligence (SCI) 49, 165–195 (2007)

Multi-Objective Job-Shop Scheduling Problem

K.S. Nawaz Ripon et al.: An Evolutionary Approach for Solving the Multi-Objective Job-Shop

1Kazi Shah Nawaz Ripon , Chi-Ho Tsang , and Sam Kwong

Summary. In this chapter, we present an evolutionary approach for

problems, the JSSP is one of most challenging one. It is widely found in industry,
and it is often considered to include many general scheduling problems that exist
in practice. The complexity of JSSP increases with the number of constraints
imposed and the size of search space employed. Except for some highly restricted
special cases, the JSSP is an NP-hard problem, and it has also been considered as
the worst of the worst among combinatorial problems [1]. These days, many real-
world JSSPs include a larger number of jobs and machines as well as additional
constraints and flexibilities, all of which in turn further increases the complexity
of JSSP. Exact methods, such as the branch-and-bound method or dynamic
programming, are always computationally expensive to use when searching for an
optimum scheduling solution with a large search space. To overcome this
difficulty, it is more reasonable to achieve near-optimal solutions instead.
Stochastic search techniques such as Evolutionary Algorithms (EAs) can be
efficiently used to find such solutions. The EAs differ from other conventional
optimization algorithms in that they search among and evolve from a population
of solutions, rather than a single solution. EAs have proved very powerful and
robust for solving many significant single or multiple objective problems.

Various classes of scheduling problems have been investigated over the years,
and many different methods have been developed for solving them. Yet, most of
the research conducted in the field of scheduling has concerned a single objective,
and principally the optimization of makespan. By contrast, real-life scheduling
problems are multi-objective by nature and they require the decision maker to
consider a number of criteria before arriving at any conclusion. A solution that is
optimal with respect to a certain given criterion might be a poor candidate for
where another is paramount. Hence, the trade-offs involved in considering several
different criteria provide useful insights for the decision maker. Surprisingly,
however, research that takes multiple criteria into account has been scarce,
particularly when compared to the research in the area of single criterion
scheduling. There have been only a few attempts to tackle the multi-objective
JSSP [2,3,4]. The goal of multi-objective job-shop scheduling is to find as many
different potential schedules as possible, each of which is near-optimal and is not
dominated by consideration of a particular objective. Some performance measures
used frequently in this field include makespan, mean flow time, and mean
tardiness. The makespan is defined as the maximum completion time of all jobs,
mean flow time is the average of the flow times of all jobs, and the mean tardiness
is defined as the average of tardiness of all jobs. In an attempt to address multiple
objectives simultaneously in this work, we apply makespan and mean flow time as
the objectives of our scheduling algorithm.

The Jumping Genes Genetic Algorithm (JGGA) [5,6] is a very recent MOEA.
It imitates a jumping gene phenomenon that was discovered by Nobel Laureate
McClintock in her work on the corn plants. In this work, an extended JGGA is
proposed to search for the Pareto-optimal schedules in static JSSP. The jumping
gene operations proposed in JGGA exploit scheduling solutions around the
chromosomes, while the general genetic operators explore solutions from the
population globally using multiple objective functions. The central idea behind the
jumping operations is to provide a local search capability that will make it

166 K.S. Nawaz Ripon et al.

possible to fine-tune the scheduling solutions during evolution. In previous
research [5,6], the JGGA has performed robustly in searching the non-dominated
solutions, taking into consideration both convergence and diversity. This is
significant because it is very important to obtain both converged and diverse
scheduling solutions in the Pareto-optimal set. Converged solutions guarantee that
the most near-optimal schedules that consider multiple criteria will be found. The
diverse solutions, in particular the extreme solutions, are useful when selecting the
best compromise schedule from among the non-dominated solutions, according to
the specific objectives required in different production orders or customer
demands. To justify our approach, we also compared our proposed approach with
another well established MOEA (NSGAII [7]) based approach, and found that the
JGGA-based scheduling approach is able to produce more non-dominated and
near-optimal solutions that provide the decision makers with enough alternatives
to find out suitable solution.

This chapter is organized as follows. Section 2 describes the scheduling and
the JSSP. The literature review of various scheduling approaches, in particular the
multi-objective genetic algorithms for JSSP, are presented in Section 3. The
advantages of applying JGGA in JSSP are highlighted at the end of Section 3.
Section 4 briefly describes the overview of the original JGGA. Detailed
description of the proposed extended JGGA in solving JSSP is discussed in
Section 5. To demonstrate the performance of JGGA, experimental results are
presented and analyzed in Section 6, followed by the conclusions in the final
section.

2 Description of Scheduling and Job-Shop Scheduling
Problem

2.1 Scheduling Problem

Scheduling can loosely be described as the allocation of shared resources
(machines, people etc) efficiently over time to competing activities (jobs, tasks,
etc) such that a certain number of goals can be achieved economically and a set of
given constraints can be satisfied. In general, the construction of a schedule is an
optimization problem of arranging time, space and (often limited) resources
simultaneously [8]. The constraints can be classified as hard and soft. Hard
constraint must not be violated under any circumstances. The solutions that satisfy
such constraints can be called feasible. For the soft constraint, it is desirable to
satisfy as many soft constraints as possible, but if one of them is violated, a
penalty is applied and the solution is still considered to be feasible. In practice,
scheduling can be considered as a search problem where it is required to search for
any feasible schedule or as an optimization problem where it is desirable to search
for the best feasible schedule. In practical problems, it is not easy to express the
conditions that make a schedule more preferable than another and to incorporate
this information in an automated system. Furthermore, the combinatorial nature of

167The Multi-Objective Job-Shop Scheduling Problem

these problems leads to explore huge search spaces and for that human
involvement is often inevitable to guide the search towards promising regions.

The shop scheduling is one of the most challenging scheduling problems. It
can be classified into four main categories: (i) single-machine scheduling, (ii)
flow-shop scheduling, (iii) job-shop scheduling, and (iv) open-shop scheduling.
Single-machine scheduling is the simplest shop scheduling problem, in which
there is only one machine available and arriving jobs require services from this
machine. In flow-shop scheduling, jobs are processed on multiple machines in an
identical sequence. Job-shop scheduling is a general case of flow-shop scheduling
in that the sequencing of each job through the machines is not necessarily
identical. An open-shop scheduling is similar to a job-shop scheduling except that
a job may be processed on the machines in any sequence the job needs. In other
words, there is no operationally dependent sequence that a job must follow.

This chapter focuses on solving the JSSP since it is widely found in the
industry and is often considered to be representative of many general scheduling
problems in practice.

2.2 Job-Shop Scheduling Problem (JSSP)

The JSSP is commonly found in many real-world applications such as industrial
production and multi-processor computer systems. A job-shop scheduling
involves processing of the jobs on several machines without any “series” routing
structure. The challenge here is to determine the optimum sequence in which the
jobs should be processed in a way that one or more performance measure, such as
the total time to complete all the jobs, the average mean flow time, or the mean
tardiness of jobs from their committed dates, is minimized. A classical n job, m
machine JSSP consists of a finite set {Jj}1 j n of n independent jobs or tasks that
must be processed in a finite set {Mk}1 k m of m machines. The problem can be
characterized as follows:

 the processing of job Jj on machine Mk is called the operation Ojk;
 operation Ojk requires the exclusive use of machine Mk for an

uninterrupted duration tjk, its processing time;
 each job consists of an operating sequence of xj operations

(technological sequence of each job);
 Ojk can be processed by only one machine k at a time (disjunctive

constraint);

 each operation, which has started, runs to completion (non-preemption
condition);

 each machine performs operations one after another (resource/capacity
constraint);

168 K.S. Nawaz Ripon et al.

 each job j J must be processed by every machine k M ;

Table 1 shows an example of 6x6 job-shop scheduling benchmark problem
[9]. In this example, the Job-1 is processed by Machine-3 for 1 time unit, and it is
also processed by Machine-1 for 3 time units, and so forth.

Table 1. A 6x6 job-shop scheduling benchmark problem [9]

Job-n (k,t) (k,t) (k,t) (k,t) (k,t) (k,t)
Job-1 3,1 1,3 2,6 4,7 6,3 5,6
Job-2 2,8 3,5 5,10 6,10 1,10 4,4
Job-3 3,5 4,4 6,8 1,9 2,1 5,7
Job-4 2,5 1,5 3,5 4,3 5,8 6,9
Job-5 3,9 2,3 5,5 6,4 1,3 4,1
Job-6 2,3 4,3 6,9 1,10 5,4 3,1

The JSSP is often considered as nxm minimum-makespan optimization

problem, due to the fact that minimum-makespan is the simplest criterion which
directly corresponds to a good schedule. However, it is almost impossible to
optimize all the above mentioned criteria, because they are often conflicting.

2.3 Complexity of JSSP

The complexity of JSSP increases with the number of constraints imposed and the
size of search space employed. Except for some highly restricted special cases, the
JSSP is an NP-hard problem and finding an exact solution is computationally
intractable. For example, a small 10x10 (10 jobs, 10 machines and 100 operations)
scheduling problem proposed by Muth and Thompson [9] in 1963 remained
unsolved until two decades later. In addition, the JSSP has also been considered as
a hard combinatorial optimization problem, which is also one of the worst
members in that class [1]. Even a simple version of the standard job-shop
scheduling is NP-hard if the performance measure is the makespan and m > 2. For
the standard JSSP, the size of search space is (n!)m, and for this reason, it is
computationally infeasible to try every possible solution. This is because the
required computation time increases exponentially with the problem size. In
practice, many real-world JSSPs have a larger number of jobs and machines as
well as additional constraints and flexibilities, which further increase its
complexity.

3 Related Works

3.1 Traditional and Heuristic Approaches for JSSP

The JSSP has been extensively studied over the past forty years. A wide variety of
approaches have been proposed in many diverse areas, such as operations
research, production management and computer engineering. Traditionally, the

169The Multi-Objective Job-Shop Scheduling Problem

exact methods such as the branch-and-bound algorithm [10], the time orientation
approach [11] and the Lagrangian relaxation with dynamic programming [12]
have been successfully applied to solve small JSSPs. However, for today’s large
JSSPs with complex search spaces, it is computationally intractable for them to
obtain an exact optimal schedule within a reasonable time. Because obtaining the
exact optimal solution for large JSSPs is non-trivial, it is desirable to obtain as
many as near-optimal or possibly optimal solutions in polynomial time, which can
be later judged by human experts. Many meta-heuristic techniques have been
proposed in the literature to search for near-optimal scheduling solutions in a
reasonable amount of processing time. The meta-heuristic approaches include the
Simulated Annealing (SA) [13], the Tabu Search (TS) [14], the Genetic
Algorithms (GA) [15,16], a hybrid of SA and GA [17], the Ant Colony
Optimization (ACO) algorithm [18], the Particle Swarm Optimization (PSO)
algorithm [19], and the like. Recently, hybrid heuristics have been a vital topic in
the fields of both computer science and operations research, and it is often the case
that local search is incorporated into evolutionary approaches in order to improve
the results obtained with these methods. Such methods are sometimes called
memetic algorithms. These approaches include the local search [20], the shifting
bottleneck approach [21], the guided local search with shifting bottleneck
approach [22], constraint propagation algorithm [23], parallel greedy randomized
adaptive search procedure (GRASP) [24], and the like. Comprehensive surveys of
the general JSSPs are found in [25,26].

3.2 Evolutionary Algorithms for JSSP

EAs are the stochastic search algorithms inspired by the natural selection and
survival of the elitist in the biological world. The goal of EAs is to search for
global near-optimal solutions from the fitness functions using exploration and
exploitation methods. These methods include biologically inspired mating,
mutation and selection operations. EAs differ from other conventional
optimization algorithms in that EAs evolve and search from a population of
solutions rather than a single solution. They have proved to be very powerful and
robust for solving manynontrivial single or multiple objective problems.
Furthermore, they often allow objectives and constraints to be easily modified.
The work related to the GA in JSSPs is focused and discussed in this chapter. An
in-depth survey of the application of the GA in JSSPs is found in [27].

The GA, proposed by Holland [28] in the 1970s has been successfully applied
to solve many combinatorial optimization problems, including scheduling. Unlike
many heuristic approaches, the GA is more general and abstract for different
independent problem domains. And, this superiority of GA comes from its
structural formulation. For example, the GA simultaneously finds the best solution
from many points of the search domain rather than analyzing one domain point at
a time, and thus avoiding getting stuck in local optima. To evaluate solutions, GA
uses the objective function rather than auxiliary knowledge such as derivative
functions. In addition, the GA is not only effective in performing global searches,

170 K.S. Nawaz Ripon et al.

but it is also flexible enough to hybridize with other domain-dependent heuristics
or local search techniques to solve specific problems. Because exact methods
typically take exponential time and because many heuristic approaches can only
find suboptimal solutions for large JSSPs, the EAs, in particular the GA, becomes
a more popular approach for solving JSSPs. The application of the GA in JSSPs
was introduced by Davis [29] in 1985; since then, many GA-based job-shop
scheduling approaches have been proposed. The literature already shows that GA-
based approaches can often achieve more robust and better performance than
many traditional and heuristic approaches applied in JSSP [30].

3.3 Importance of Multi-Objective Job-Shop Scheduling

In many real-world JSSPs, it is often necessary to optimize several criteria, such
as the length of a schedule or the utilization of different resources simultaneously.
In general, minimization of makespan is often used as the optimization criterion in
single objective JSSP. However, the minimizations of lateness, tardiness, flow
time, machine idle time, and such others are also the important criteria in JSSP. As
discussed in [31], makespan may not be the only commercial interest in
scheduling, since it is unusual to have a scheduling problem that has a fixed pre-
determined ending, which doesn’t change unexpectedly and in which all details
are known at the beginning. Some other objectives, such as mean flow time or
tardiness are also important like the makespan. It is desirable to generate many
near-optimal schedules considering multiple objectives according to the
requirements of the production order or customer demand. Then, the production
manager can selectively choose the most demanding schedule from among all of
the generated solutions for specific order or customer. On the other hand, if
multiple objectives conflict with each other, then the production manager does not
need to omit any required objective before the assistance of multi-objective
scheduler. For the explanation of the correlations of different objective functions
used in scheduling, the reader may refer to [32] for details. Based on the principle
of multi-objective optimization, obtaining an optimal scheduling solution that
satisfies all of the objective functions is almost impossible, due to the conflicting
nature of objective functions where improving one objective may only be
achieved when worsening another objective. However, it is desirable to obtain as
many different Pareto-optimal scheduling solutions as possible, which should be
non-dominated, converged to, and diverse along the Pareto-optimal front with
respect to these multiple criteria. The description of the Pareto-optimal
optimization and the application of multi-objective GA in JSSP are discussed as
follows.

3.4 Multi-Objective Genetic Algorithms for JSSP

Multi-objective optimization has been studied by many researchers and industrial
practitioners in various areas due to the multi-objective nature of many real-world

171The Multi-Objective Job-Shop Scheduling Problem

problems. In general, many practical problems have no optimal solution satisfying
all the objectives simultaneously, as the objectives may conflict with each other.
However, there exists a set of equally efficient, non-dominated, admissible, or
non-inferior solutions, known as the Pareto-optimal set [33]. The goal of multi-
objective optimization is to search a set of Pareto-optimal solutions. Without the
loss of generality, an unconstrained multi-objective optimization problem can be
formally formulated as follows. The goal is to minimize z = f(x) where f(x) =
(f1(x), f2(x), …, fk(x)) and 2k is the number of objective functions

Rf n
i : , subject to Xx . A solution Xx* is called Pareto optimal if

there is no Xx such that f(x) < f(x*). If x* is Pareto optimal, z* = f(x*) is called
(globally) non-dominated. The set of all Pareto optima is called the Pareto optimal
set, and the set of all non-dominated objective vectors is called the Pareto front.
Searching an approximation to either the Pareto optimal set or the Pareto front is
called the Pareto optimization. From the results of Pareto optimization, the human
decision makers can choose the suitable compromise solutions. In general, multi-
objective optimization approaches can be broadly classified into three categories
as shown below. Note that for these optimization approaches, applying weighting
coefficients, priorities, goal values and dominance of solutions are the commonly
used methods to formalize the preference articulation.

(i) A priori articulation of preferences: The decisions are made before
searching, and the individual distinct objectives are combined as a single
objective prior to optimization. An example of its application in multi-
objective scheduling can be found in [34].

(ii) A posteriori articulation of preferences: The search is made before
making decisions, and decision makers choose the trade-off solution from
Pareto-optimal set by inspection. An example of its application in multi-
objective scheduling can be found in [2].

(iii) Progressive articulation of preferences: Both the search and
decisions making are integrated at interactive steps. Decision makers
provide partial preference information to the optimization algorithm such
that the algorithm generates better solutions according to the received
information. An example of its application in multi-objective scheduling
can be found in [35].

Since population-based EAs are capable of generating and evolving multiple

elements of the Pareto-optimal set simultaneously in a single run and are less
susceptible to the shape and continuity of the Pareto front, the EAs have been
extensively developed for multi-objective optimization. In this work, we consider
solving JSSP using multi-objective EA, in particular multi-objective GA.
Although the advantages and good performance of multiobjective GA in many
combinatorial optimization problems have been demonstrated in the literature
[36], their applications on JSSP are still considered limited and mostly dominated

172 K.S. Nawaz Ripon et al.

by the unrealistic single objective GA. In fact, the impact of scheduling research
on real-world problems is limited due to the single objective nature of many
proposed scheduling algorithms. A significant work on multi-objective
evolutionary scheduling can be found in [2], and an early example of a practical
application of multiobjective GA in scheduling is available in [29]. It should be
noted that many proposed multi-objective optimization approaches for JSSP are
based on a priori articulation of preferences, in which multiple objectives are
combined into a single scalar objective using weighted coefficients [37]. As the
relative weights of the objectives are not exactly known and cannot be pre-
determined by users, the objective function that has the largest variance value may
dominate the multi-objective evaluation, which in turn produces inferior non-
dominated solutions as well as poor diversity of the solutions. Therefore, as the
weighting of objective functions cannot be determined, it is essential to apply a
posteriori articulation of preferences and to present all of the Pareto-optimal
scheduling solutions to the decision makers in advance. Then, the decision makers
can choose the most compromising schedule from the Pareto-optimal set. These
trade-off solutions, considering more than one criterion, are particularly useful for
decision makers since improving one of the multiple criteria may unexpectedly
worsen the other criterion. In the literature, there are only a few GA based multi-
objective scheduling approach utilizing posteriori articulation of preferences are
available [4,38], but they mainly focused on flow-shop scheduling.

3.5 Advantages of JGGA for JSSP

In this work, an extended JGGA [6] is proposed to search for Pareto-optimal
schedules in static JSSP. The JGGA, which is developed based on NSGAII [7],
optimizes multiple objectives using a posteriori articulation of preference based
approach. The detailed methodology proposed in JGGA is discussed in Sections 4
and 5. The main reasons to advocate for using JGGA to solve JSSP are
summarized as follows.

It is well known that GA is not very effective for fine-turning the
solutions that are already close to the optimal solution, as the crossover operator
may not be sufficient enough to generate feasible schedules. Hence it is necessary
to integrate some local search strategies in GA for enhancing the Pareto-optimal
solutions. Such hybridization is often called Genetic Local Search (GLS). The
rationale behind the hybridization is that GA is used to perform global exploration
among the population, while local search strategies are used to perform local
exploitation around the chromosomes. As discussed in several papers [20,39,40],
the hybridization of local search strategies and GA always provides better
performance than that obtained by GA alone. In addition, it should be noted that as
the length of the chromosome increases with the problem size of JSSP, the multi-
objective GA might suffer from premature convergence, due to the long
chromosomes in a large search space. This is due to the fact that the genes cannot
be excited consistently during the entire evolutionary process, despite the
assistance of crossover and mutation [6]. To remedy this drawback, the jumping

173The Multi-Objective Job-Shop Scheduling Problem

gene operations proposed in JGGA offer a local search capability in order to
exploit solutions around the chromosomes, while the usual genetic operators
globally explore solutions from the population using multiple objective functions.
Since the genes in JGGA can jump from one position to another either within their
own or to another chromosome under multiple stresses, the central idea to
incorporate the jumping operations in this approach is to provide a local search
capability to fine-tune the scheduling solutions during evolution. The following
section contains a detailed discussion of this issue in relation to the JGGA.

As discussed in the previous section, the applications of multi-objective GA
in JSSP are still considered to be limited, and the solutions to JSSP are still
dominated by the unrealistic single-objective GA. For these reasons, the JGGA is
proposed in order to optimize multiple objectives simultaneously, such as the
makespan and the mean flow time, during the evolution. In previous work [6], the
JGGA has performed robustly in searching non-dominated solutions that take into
consideration both convergence and diversity. Obtaining converged and diverse
scheduling solutions in the Pareto-optimal set is very important, for the reasons
discussed above.

4 Jumping Genes Genetic Algorithm (JGGA)

In this section, the initial implementation of JGGA that was proposed for multi-
objective evolutionary optimization is discussed. Detailed description of JGGA
can be found in [5,6]. JGGA is a relatively new MOEA that imitates a jumping
gene phenomenon discovered by Nobel Laureate McClintock during her work on
the corn plants. The main feature of JGGA is that it only has a simple operation in
which a transposition of gene(s) is induced within the same or another
chromosome in the GA framework.

4.1 Overview of JGGA

The jumping genes (also called transposons) effect was discovered by Noble
Laureate McClintock [41]. She observed that not all chromosomes, but one of
them (number 9) tended to be broken from generation to generation and the place
of fracture is always the same. She also discovered that there are non-autonomous
transposable elements called Dissociation (Ds), which can transpose (jump) from
one position to another within the same or to a different chromosome under the
presence of autonomous transposable elements called Activator (Ac). Ds itself
cannot jump unless Ac activates it. However, Ac can jump by itself. According to
the experimental observation, jumping genes can move around the genome in two
ways, cut and paste and copy and paste. The former means a piece of DNA is cut
and pasted somewhere else. The later means the genes remain at the same location
while the message in the DNA is copied into RNA and then copied back into
DNA at another place in the genome. Whichever the process of transposition, the

174 K.S. Nawaz Ripon et al.

jumping genes in one place can affect the genetic behavior at other places in the
genome. The transposition phenomenon applied in JGGA is discussed below.

4.2 Computational Jumping Gene Paradigm

As nature tends to be opportunistic rather than deterministic, the jumping process
is neither streamlined nor can it be planned in advance. Therefore, the behavior of
jumping genes is similar to many other genetic operations that operate on the basis
of opportunity. To incorporate the jumping genes paradigm into an EA
framework, a new operation jumping gene transposition is introduced after the
selection process (before the crossover process). The non-dominated sorting
strategy, crowding-distance mechanism and elitism strategy used in JGGA are the
same as used in NSGAII.

Fig. 1. Cut and paste transposition: (a) same chromosome; (b) different chromosome

Fig. 2. Copy and paste transposition: (a) same chromosome; (b) different chromosome

The implementation of JGGA is such that each chromosome has some
consecutive genes which are selected as a transposon. The number of transposons
in a chromosome can be greater than one and the length of each transposon can be
more than one unit (e.g. one bit for binary code, one integer for integer code, etc).
The locations of the transposons are assigned randomly, but their contents can be

175The Multi-Objective Job-Shop Scheduling Problem

transferred within the same or even to different chromosomes in the population
pool. The actual implementation of the cut and paste operation is that the element
is cut from the original site and pasted into a new site (Fig. 1). In the case of copy
and paste, the element replicates itself, with one copy of it inserted into a new site,
while the original one remains unchanged at the same site (Fig. 2). The jumping
operators are chosen randomly on the basis of opportunity like other genetic
operations. Also, the transpositions made within the same chromosome or to a
different chromosome are chosen randomly and there is no restriction to the
chromosome choice. The flowchart of a complete evolutionary cycle of JGGA is
shown in Fig. 3.

Fig. 3. Flowchart of JGGA

4.3 Consequence of Jumping Genes on Multi-Objective
Functions

Every conventional genetic operator employs only vertical transmission of genes
from generation to generation (i.e. from parent to children). However, the jumping
operators introduce a kind of horizontal transmission. This type of gene
transmission is a lateral movement of genes within a chromosome or even to other
individuals. The effects of the two jumping operators are described below.

The cut and paste operator opens a path through the landscape of a larger
number of possible chromosome changes. It is a more efficient strategy for
creating and trying out new genes [41]. Furthermore, in the context of cut and
paste transposons and host interaction; the environment that natural selection must
be concerned with consists of not only the physical environment and other species,
but also the microenvironment of the chromosome itself [5]. In the case of a copy
and paste operation, a transposon can not only jump, but will also carry
information for shaping the genome. These movements create places in the
genome where stretches of DNA can pair and exchange information, and genes

176 K.S. Nawaz Ripon et al.

with similar sequences of the family do recombine. These repetitive sequences
that are present throughout the genome may enable the exchange of information
between unrelated genes by recombination [41]. Hence, a copy and paste operator
eventually benefits the phenotypic shaping of chromosomes. Moreover, an
increased probability of recombination at repeat sequences provides a more
focused strategy for genetic exploration rather than wandering the vast landscape
with random change.

It is well-known that the genes which can jump in a genome are largely
dependent upon the environmental conditions particularly under stress. When the
genome senses the stress, genes jump [41]. This is a better way of exploration and
exploitation than only the use of Pareto-optimal solutions themselves. The JGGA
makes the best use of this phenomenon when multiple stresses are induced. In the
evolutionary process, selection plays an important role in the exploration versus
exploitation issue. A strong selective pressure can lead to premature convergence
and weak selective pressure can make the search ineffective. The JGGA is capable
of exerting appropriate selection pressure on the chromosomes because the new
genetic operators can perform a horizontal transformation, particularly when
multiple stresses are induced. As a result, it creates more chances to achieve better
convergence and diversity, as well as avoiding premature convergence. The
success and performance of JGGA as an MOEA have been discussed in [5,6].

5 Multi-Objective Evolutionary Job-Shop Scheduling
using JGGA

5.1 Chromosome Representation and Population Initialization

Chromosome formulation is a key issue in designing efficient GAs for heavily
constrained JSSPs because different methods for representing parameters (genes)
in scheduling solutions (chromosomes) create different search spaces and different

representation and indirect representation. In indirect representation, the
chromosome encodes a sequence of preferences. These decision preferences can
be heuristic rules or simple ordering of jobs in a machine. After that a schedule
builder is required to decode the chromosome into a schedule. In a direct
representation, the schedule itself is directly encoded onto the chromosome and
thereby eliminating the need for a complex schedule builder. At the same time,
applying simple genetic operators on direct representation string often results in
infeasible schedule solutions. For this reason, domain-specific genetic operators
are required. Representation schemes in these two major approaches are critically
reviewed in [27] for ease of implementation in GA, choices of crossover and
mutation operators, and their advantages and disadvantages.

In our work, indirect representation incorporated with a schedule builder is
applied. The JGGA is implemented with an un-partitioned operation based

177The Multi-Objective Job-Shop Scheduling Problem

difficulties for genetic optimization operators. In [27], the authors classify all
the chromosome formulation methods into two major approaches: direct

representation where each job integer is repeated m times (m is the number of
machines). This representation was employed by Bierwirth [42] and
mathematically known as “permutation with repetition”. By scanning the
permutation from left to right, the k-th occurrence of a job number refers to the k-
th operation in the technological sequence of this job as depicted in Fig. 4. In this
representation, it is possible to avoid the schedule operations whose technological
predecessors have not been scheduled yet. Therefore, any individual can be
decoded to a feasible schedule. However, two or more different individuals may
be decoded to an identical schedule.

 Fig. 4. Permutation with repetition approach for a 3x3 JSSP

The advantage of such a scheme is that it requires a very simple schedule
builder because all the generated schedules are legal. And the number of
possibilities explored by genotype is measured as [42]:

n

m

MMMM

MMMM

!........!!!

..........

321

321
(1)

where M1, M2, …Mm denote the number of machines the jobs 1, 2 and 3 would
visit in the entire schedule.

5.2 Schedule Builder

In indirect representation, the chromosome contains an encoded schedule and a
scheduler builder is used to transform the chromosomes into a feasible schedule.
The schedule builder is a module of the evaluation procedure and should be
chosen with respect to the performance-measure of optimization. It is well-
established that the minimization of makespan plays the major role in converting
the chromosomes into a feasible schedule [40]. Computational experiments
discussed in [43] show that the genetic minimum-makespan in JSSP improves by
the use of a powerful schedule builder.

A schedule is called semi-active when no operation can be started earlier
without altering the operation sequences of any machine. The makespan of a semi-
active schedule may often be reduced by shifting an operation to the left without
delaying other jobs, which is called the permissible left shift. When no such
shifting can be applied to a schedule, it can be called an active schedule. The third
type of schedule is called non-delay schedule, in which no machine is idle, if an
operation is ready to be processed. The set of non-delay schedules is a subset of

178 K.S. Nawaz Ripon et al.

active schedules, which is the subset of semi-active schedule. For regular
performance measures, it can be shown that for any problem an optimal active
schedule exists [40]. However it has also been demonstrated that some problems
have no optimal non-delay schedule. For this reason, when solving scheduling
problems involving regular performance measures, usually only the set of active
schedules are searched. Since searching for active schedules brings a huge
reduction of the search space while still ensuring that an optimal schedule can be
found, it is safe and efficient to limit the search space to the set of all active
schedules. In fact, an active schedule builder performs a kind of local-search,
which can be used to introduce heuristic-improvement into genetic search.

One of the efficient approaches to generate an active schedule builder is the
Giffler & Thompson algorithm [44]. In this work, we employed a variant of
hybrid Giffler & Thompson Algorithm proposed by Varela et al [45]. We made
slight modification to this algorithm in order to fit with the representation of
chromosome and to produce active schedules only. This algorithm is given below
(Algorithm 1) where S is the schedule being constructed. The set A is used to hold
the set of schedulable operations, where an operations o is said to be schedulable
if it has not been scheduled yet.

Algorithm 1. Hybrid Giffler and Thompson

1. Set S = { };
2. Let A = {oj1 1 j N};
while A Ø do

3. Aoi let st(oi) be the lowest starting time of i , if scheduled now;

4. Let ok A such that st(ok) + du(ok) st(o) + du(o), Ao ; where du(o) is
the processing time for operation o. (if two or more operations are tied, pick
the leftmost operation in the chromosome);

5. Set M* is the machine that is to process ok ;

6. Let B = { o A it is to process on machine M* and st(o) < st(ok) +
du(ok)};

7. Let ot B such that st(ot) st(o), Bo ;

8. Select o* B such that o* is the leftmost operation in the chromosome and
add o * to S with starting time st(o *);

9. Let A = A\{o*} {SUC(o*

end while

179The Multi-Objective Job-Shop Scheduling Problem

)}; where SUC(o) is the next operation to in o
its job if any exists;

5.3 Jumping Operations

The chromosome representation in this extended JSSP is different from that of
conventional JGGA. Hence, the direct application of the original jumping
operators may create illegal schedule. This problem gets more serious in the case
of copy and paste, which copies some number of consecutive genes from one
place to another while remaining in the original positions. As in the original
chromosome representation, the number of jobs must be equal to the number of
machines on which it will be processed; the resulting chromosome will produce
infeasible solution. As a result, some problem specific jumping operators are
required. In this extended JSSP, we classify the jumping operators based on the
number of participating parent chromosomes. If it is applied with one
chromosome, the concept is relative easy. Two gene positions are selected
randomly. Then the same number (random) of consecutive genes is selected and
they change their positions. This procedure is described in Fig. 5:

 Selected Schedule 1 Selected Schedule 2

p1 [3 2 1 2 3 4 1 2 4 4 1 3 4 1 2 3]

o1 [3 2 3 4 1 2 1 2 4 4 1 1 2 3 4 3]

Fig. 5. Jumping operation within single chromosome

We follow the concept of “partial schedule exchange crossover” [46] to
implement jumping operations between two different chromosomes. At first,
partial schedules from both chromosomes are selected randomly. A partial
schedule is identified with the same job in the first and last positions of the
selected portion. The following steps describe this operation in case of a 4x4
JSSP.

Step 1: Randomly pick one partial schedule (a substring of random
length) in the first parent. Let it be the job 4 located at position 6
as shown in Fig. 6.

Step 2: Find the next-nearest job 4 in the same parent P1, which is in
position 9 and the partial schedule 1 is (4 1 2 4).

 Selected Schedule 1

p1 [3 2 1 2 3 4 1 2 4 4 1 3 4 1 2 3]

o1 [4 1 3 1 1 3 4 1 2 3 4 2 2 2 3 4]

 Selected Schedule 2

Fig. 6. Selecting partial schedule

180 K.S. Nawaz Ripon et al.

Step 3: Identify the partial schedule 2 in parent P2 in the same way like
partial schedule 1, provided that the first gene must be job 4. Thus
the second partial schedule is (4 1 3 1 3 4), as shown in Fig. 6.

Step 4: Exchange these two partial schedules to produce offspring o1 and
o2, as shown in Fig. 7.

 Selected Schedule 2

p1 [3 2 1 2 3 4 1 3 1 1 3 4 4 1 3 4 1 2 3]

o1 [4 1 2 4 1 2 3 4 2 2 2 3 4]

 Selected Schedule 1

Fig. 7. Exchange of partial schedules

Usually, the partial schedules being exchanged contain a different number of
genes, and the offspring may not include or may have operations in excess of
those required for each job. So, the offspring may be illegal. As shown in Fig. 8,
offspring o1 gains extra genes 3, 1, 1 and 3, while it lost gene 2; on the other
hand o2 lost 3, 1, 1, 3; and gained 2. The following steps are required to perform
repair works to convert the chromosomes into a legal schedule.

Partial
Schedule1

4 1 2 4

Replaced
in p1 by

4 1 3 1 1 3 4

Partial
Schedule2

4 1 3 1 1 3 4

Replaced in
p2 by

4 1 2 4

Step 5: In offspring o1, the extra genes (3, 1, 1 and 3) are deleted
without disturbing the inserted partial schedule, and the missing
gene(s) (here 2) are to be inserted in the position immediately
after the newly acquired partial schedule, as shown in Fig. 9.

o1 [3 2 1 2 3 4 1 3 1 1 3 4 4 1 3 4 1 2 3]

o1 [2 2 4 1 3 1 1 3 4 4 3 4 1 2 3]

(a) Deletion

181The Multi-Objective Job-Shop Scheduling Problem

Fig. 8. Missed/exceeded genes after exchange

o1 [2 2 4 1 3 1 1 3 4 2 4 3 4 1 2 3]

(b) Insertion

Fig. 9. Repair work for o1

Step 6: The same procedure is repeated for insertion and deletion in case
of o2.

5.4 Crossover Operation

One of the unique and important techniques involved in GA is crossover, which is
regarded as the backbone of GA. It intends to inherit nearly half of the information
of the two parent solutions to one or more offspring solutions. Provided that the
parents keep different aspects of high quality solutions, crossover induces a good
chance to find the better offspring. The permutation with repetition chromosome
representation allows each job to be repeated exactly the number of times equal to
machine on which it will be processed and the crossover operator has to respect
this repetition-structure of a certain permutation. Since it is difficult for the simple
one-point or two-point crossover to maintain this constraint, these types of
crossover cannot be used in this representation. A large number of crossover
operators have been proposed in the literature, due to the need for designing
specialist crossover operations to use with permutation representations. The details
of crossover operators specifically designed for ordering applications can be found
in [47].

In this approach, we applied the Generalized Order Crossover (GOX)
operator [48] for performing the crossover. In GOX, the donor parent contributes a
substring of length normally in the range of one third to half of the length of the
chromosome string. The idea behind choosing such a length of substring is that the
offspring will inherit almost the same amount of information from both the
parents. And this choice is important because implanting a crossover-string into
the receiver chromosome requires a preparation which usually causes some loss of
information [42]. The operations in the receiver that correspond to the substring
are located and deleted, and the child is created by making a cut in the receiver at
the position where the first operation of the substring used to be and inserting the
donator substring there. This has been exemplified in Fig. 10 for a 3x3 problem.
The chosen substring has been underlined in the donator and the child, while the
operations deleted in the receiver have been marked by bold-face.

donator 3 1 2 1 2 3 2 3 1
receiver 3 2 1 2 1 1 3 3 2

 child 3 2 1 2 3 1 1 3 2

Fig. 10. GOX crossover (the substring does not wrap around the end-points)

182 K.S. Nawaz Ripon et al.

When the donator substring wraps around the boundary points of the donator
chromosome, a different and simplified procedure is followed. The operations in
the receiver that correspond to the operations in the donor substring are still
deleted, and the donor substring is inserted in the receiver in the same positions, it
occupies in the donor (at the ends). The procedure is exemplified in Fig. 11.

donator 3 2 2 1 1 3 2 3 1
receiver 2 3 1 3 1 1 3 2 2

 child 3 2 1 3 1 2 2 3 1

Fig. 11. GOX crossover (the substring wraps around the boundary)

5.5 Mutation Operation

Mutation is the second main transformation operators in an EA. It is the principal
source of variability in evolution and it provides and maintains diversity in a
population. Normally, after crossover, each child produced by the crossover
undergoes mutation with a low probability. Here, we followed the ‘job-pair
exchange mutation operator’ [46]. In our approach, two non-identical jobs are
picked randomly and then they exchange their positions as shown in Fig. 12. As a
result, all of the resulting schedules are legal and no repair is necessary.

P1 [3 2 1 2 3 4 1 2 4 4 1 3 4 1 2 3]

O1 [3 2 1 4 3 4 1 2 4 4 1 3 2 1 2 3]

Fig. 12. The job-pair exchange mutation

In this approach, both mutation and jumping operators (in the case of within a
single chromosome) seem to be doing nearly the same tasks. This might create
some confusion about using an additional mutation operator. Basically, the
distinction among these operators lies in the extent of genes allowed on each
operator. If only one gene is used, it should be called a mutation operation. The
basic idea behind using an additional mutation operator is to make use of multiple
crossover/mutation operations to increase the population diversity by introducing
some sort of adaptation mechanisms. In most cases, this concept seems to be
better than classical GAs for optimization problems, particularly in optimization
of hard unimodal and multimodal problems [49].

Fig. 13 presents the complete evolutionary cycle of the proposed multi-
objective JSSP algorithm.

183The Multi-Objective Job-Shop Scheduling Problem

Fig. 13. Complete evolutionary cycle for multiobjective JSSP

6 Experimental Results

6.1 Benchmark Problems

Computational experiments are carried out to investigate the performance of our
proposed multi-objective evolutionary job-shop scheduling algorithm based on
JGGA. To evaluate how JGGA performs with respect to solution quality, we run
the algorithm on various benchmark data. The first three well-known benchmark
problems, known as mt06, mt10 and mt20, formulated by Muth and Thompson [9]
are commonly used as test beds to measure the effectiveness of a certain method.
The mt10 and mt20 problems have been the good computational challenges for a
long time. However, it is no longer a computational challenge now. Indeed, the
mt10 problem has been referred as “notorious”, because it remained unsolved for
over 20 years. The mt20 problem has also been considered as quite difficult.
Applegate and Cook proposed a set of benchmark problems called the “ten tough
problems” as a more difficult computational challenge than the mt10 problem, by
collecting difficult problems from literature, some of which still remain unsolved
[50]. The ‘ten tough problems’ consist of abz7, abz8, abz9, la21, la24, la25, la27,

la29, la38, and la40. The abz problems are proposed by Adams in [21]. The la

problems are parts of 40 problems la01-la40 originated from [51]. Table 2 shows
the problem size, best lower bound of these problems, and whether an optimal
solution is known or not. The problem data and the lower bounds information are
taken from the OR-library [52].

184 K.S. Nawaz Ripon et al.

Table 2. Benchmark Problems

Instance Data Number
of Jobs

Number
of Machines

Lower Bound Optimal
Solution

mt06 6 6 55 known

mt10 10 10 930 known

mt20 20 5 1165 known

abz7 20 15 654 known

abz8 20 15 635 known

abz9 20 15 656 known

la21 15 10 1040 unknown

la24 15 10 935 known

la25 15 10 977 known

la27 20 10 1235 unknown

la29 20 10 1120 unknown

la38 15 15 1184 unknown

la40 15 15 1222 known

6.2 Experimental Evaluation and Discussions

Till now, almost all of the evolutionary JSSP algorithms try to optimize single
criterion only. In this work, the makespan is considered as the first objective. The
mean flow time, as the second objective, continues to be very important since it
assists to select the appropriate one when many algorithms proposed in the
literature have reached the same makespan for many instances. To evaluate our
proposed algorithm, first we perform the experiments in a single objective
(makespan) context to justify its capability in optimizing makespan. The
experiments are conducted using 100 chromosomes and run for 100 generations.
After that, we showed its performance as a multi-objective evolutionary JSSP
approach by optimizing makespan and mean flow time, which are to be
simultaneously minimized.

(1) Makespan = max[Ci] where Ci is the completion time of job i.

(2) Mean flow time =
n

i
iC

n 1

1
 where Ci is the completion time of job i.

We also compare our proposed algorithm with another well-known MOEA
(NSGAII) based JSSP algorithm to justify the proposed one. For both of these two
algorithms, the experiments were conducted using 100 chromosomes and 150
generations. The probabilities of crossover and mutation were 0.9 and 0.3
respectively. For JGGA, the probability of jumping operations was 0.6. Using the

185The Multi-Objective Job-Shop Scheduling Problem

same setting, each benchmark problem was tested for thirty times with different
seeds. Then all the final generations were combined and a non-dominated sorting
[7] was performed to constitute the final non-dominated solutions.

6.2.1 Single Objective Context. The values provided in Table 3 show the
makespan of the best schedules obtained in case of mt problems by some GA-
based scheduling algorithms. The column labeled sGA is based on the GA using
the simple mutation that swaps two positions of two random jobs [53], where as
SGA is based on simple GA proposed by Nakano and Yamada [30]. LSGA and
GTGA indicate the GA-based job-shop scheduling algorithm incorporating local
search [53] and the GA based on GT crossover [15], respectively. From this Table,
it can be easily found that the proposed JGGA-based scheduling algorithm is
capable of producing near-optimal schedules in most of the problems. For mt06
and mt10 problems it achieves the lower bound. In case of mt20, JGGA cannot
obtain the lower bound, however it outperforms the other contested algorithms;
although some other heuristically based scheduling algorithms may achieve these
lower bounds.

Table 3. Comparison with some GA based algorithms

Instance Data L.B sGA GTGA LSGA SGA JGGA

mt06 55 55 55 55 55 55

mt10 930 994 930 976 965 930

mt20 1165 1247 1184 1209 1215 1180

We also perform experiments to compare our proposed JSSP algorithm with

some heuristic evolutionary scheduling approaches. Table 4 summarizes the
makespan performance in comparison with these methods for the ten tough
problems. The column headings Nowi indicates the best performance of the Tabu
search proposed in [14], CBSA+SB indicates the Critical Block Simulated
Annealing with shifting bottleneck heuristics [43]. Aart, Kopf and Appl indicate
the Simulated Annealing results proposed in [54], GA performance in [55] and
[50], respectively. The MSFX is based on GA using Multi-Step Crossover Fusion
[43]. The LSGA and sGA are the same as above. Note that, this Table is partially
cited from [43] and the parameter settings for the proposed JGGA based JSSP
algorithm is the same as above. The comparative results indicate that our proposed
algorithm finds the near-optimal solutions in case of five out of ten problems and
optimal solutions can be found in three of them. However other algorithms can
also find the same makespan like the proposed one in some problems, but not in
large numbers like the proposed one. An exception is the performance of
CBSA+SB, which performs very well. In fact, it achieves the best results in seven
test problems. Despite that it should be mentioned that CBSA+SB is designed for
single objective only, and the main goal of our proposed algorithm is to find the

186 K.S. Nawaz Ripon et al.

trade-off solutions for multi-objective JSSP, which is very rare in literature. While
considering this, the overall performance of JGGA is very promising for all the
problems. Moreover, for those cases where the proposed algorithm fails to achieve
the known best results, it performs consistently and achieves very close to the
near-optimal solutions.

Table 4. Comparison of the makespan obtained by various evolutionary and heuristic
methods

Instance
data

L.B Nowi sGA CBSA
+SB

LSGA Aarts Kopf Appl MSFX JGGA

abz7 654 - - 665 - 668 672 668 678 665

abz8 635 - - 675 - 670 683 687 686 685

abz9 656 - - 686 - 691 703 707 697 694

la21 1040 1047 1180 1046 1114 1053 1053 1053 1046 1046

la24 935 939 1077 935 1032 935 938 935 935 935

la25 977 977 1116 977 1047 983 977 977 977 977

la27 1235 1236 1469 1235 1350 1249 1236 1269 1235 1235

la29 1120 1160 1195 1154 1311 1185 1184 1195 1166 1156

la38 1184 1196 1435 1198 1362 1208 1201 1209 1196 1199

la40 1222 1229 1492 1228 1323 1225 1228 1222 1224 1225

6.2.2 Multi-Objective Context. Multi-objective optimization differs from
single objective optimization in many ways [33]. For two or more objectives, each
objective corresponds to a different optimal solution, but none of these trade-off
solutions is optimal with respect to all objectives. Thus, multi-objective
optimization does not try to find one optimal solution but all trade-off solutions.
Apart from having multiple objectives, another fundamental difference is that
multi-objective optimization deals with two goals. The first goal is to find a set of
solutions as close as possible to the Pareto-optimal front. The second goal is to
find a set of solutions as diverse as possible.

 Table 5 shows the performance statistics of the evolutionary JSSP algorithms
based on JGGA and NSGAII in the context of makespan and mean flow time. The
parameter settings are the same as in the single objective context. The results
shown in the Table indicate that both JGGA and NSGAII based algorithms
perform well in achieving near-optimal solutions. However, the JGGA based
approach clearly outperforms the other in terms of mt10, abz7, abz8, la21, la24,
la25, la27, and la29. Only in the case of mt06, NSGAII outperforms JGGA. In
other cases, the solutions produced by both algorithms are non-dominated to each
other.

187The Multi-Objective Job-Shop Scheduling Problem

Table 5. Results of test problems

Makespan M-Flow Time
Instance

Best Average Best Average

Spread
(S)

JGGA 55 59.1538 47 48.7692 0.00216
mt06

NSGAII 55 59.0952 46 48.8571 0.19162

JGGA 930 1009.067 796 844.833 0.71937
mt10

NSGAII 930 1022.6 805 842 1.69952

JGGA 1180 1347.533 819 906.2 1.84535
mt20

NSGAII 1184 1270.25 815 873.25 0.7

JGGA 665 716.222 598 617.667 0.74684
abz7

NSGAII 667 729.428 606 620.143 0.46291

JGGA 685 735.833 600 640.333 0.53124
abz8

NSGAII 686 736 606 638.667 1.16451

JGGA 694 718.8 574 599.6 0.65145
abz9

NSGAII 690 736.857 585 595.166 0.67679

JGGA 1046 1120.273 885 908.7 1.663
la21

NSGAII 1046 1090.75 892 904 3.91265

JGGA 935 989.111 792 829.556 1.31383
la24

NSGAII 935 966.5 811 823.333 0.2357

JGGA 977 1024.667 784 809.555 1.0633
la25

NSGAII 977 1009.667 793 800.5 2.03214

JGGA 1235 1333.714 1072 1096.83 1.13665
la27

NSGAII 1235 1330.444 1073 1093.37 1.20253

JGGA 1156 1210.1 952 1032.6 0.48968
la29

NSGAII 1160 1214.11 959 991.444 0.97182

JGGA 1199 1250.917 964 1028.33 3.75653
la38

NSGAII 1196 1267.333 1005 1011.5 4.13693

JGGA 1225 1316.182 1076 1144.09 2.03899
la40

NSGAII 1228 1299.25 1073 1107 4.13927

To illustrate the convergence and diversity of the solutions, non-dominated
solutions of the final generation produced by JGGA and NSGAII for the test
problems mt10, abz8, la29 and la40 are presented in Fig. 14. From these Figures,
it can be observed that the final solutions are well spread and converged. In
particular, the solutions produced by the proposed approach are more spread than
that of NSGAII and for this reason it is capable of finding extreme solutions. It
can be further justified by the values of Space (S) metric [56] given in Table 5. An

188 K.S. Nawaz Ripon et al.

algorithm having a smaller S is better in terms of diversity. It can be easily
inferred from the Table that JGGA is able to find more diverse solutions than
NSGAII. However, the ability of producing diverse solution has some side effects,
which can be well described in conjunction with Table 5. From this Table, it can
be found that, in most cases, the gap between the average and best values of the
solutions produced by JGGA is more than that of the solutions produce by
NSGAII. This, in turn, indicates that NSGAII produces solutions that are
relatively stable. However, certainly our proposed approach produces more near-
optimal and trade-off solutions to fulfill the main goals of multi-objective
scheduling implementation.

930 960 990 1020 1050 1080 1110

800

820

840

860

880

m
-f

lo
w

 t
im

e

makespan

 JGGA

 NSGAII

680 700 720 740 760 780 800 820

600

610

620

630

640

650

660

m
-f

lo
w

 t
im

e

makespan

 JGGA

 NSGAII

 (a) mt10 (b) abz8

1166 1188 1210 1232 1254 1276 1298

960

980

1000

1020

1040

1060

1080

m
-f

lo
w

 t
im

e

makespan

 JGGA

 NSGAII

1240 1280 1320 1360 1400 1440 1480

1080

1100

1120

1140

1160

1180

1200

m
-f

lo
w

 t
im

e

makespan

 JGGA

 NSGAII

 (c) la29 (d) la40

Fig. 14. Final Pareto-optimal front

In general, the proposed JGGA-based multi-objective JSSP algorithm is able
to achieve consistent near-optimal scheduling solutions which are both well spread
and converged. As compared to NSGAII, the JGGA produced much more non-
dominated solutions for most of the test problems. The plots of the obtained non-
dominated solutions per generations in a single run for the test problems mt20,
abz7, la21 and la25 presented in Fig. 15 justify this. Apart from mt20 and la27,

189The Multi-Objective Job-Shop Scheduling Problem

JGGA finds more non-dominated solutions than NSGAII for all the problems. To
summarize the result, the proposed algorithm is capable of producing near-optimal
and non-dominated solutions, which are also the lower bounds in many cases. The
simulation results clearly show that our proposed approach is able to find a set of
diverse solutions, which are also close to the Pareto-optimal front.

The properties exhibited by the solutions act upon the basic properties of
jumping gene operations. Jumping gene adaptation is used to enhance the
exploitation by incorporating local search in GA. Hence it can find a set of well
diverse solutions along the Pareto front of a converged population. From the
experimental results presented in [5,6], it can be grasped that the main strength of
the jumping gene operators is its ability to produce diverse solutions. It should be
noted that jumping gene operations are beneficial to the convergence also. As a
result, it is able to find extreme solutions. However, this phenomenon in turn
causes some deficient affects. In some rare cases, the solutions are too diverse.
Hence, it achieves the extreme solutions but the number of non-dominated
solutions per generation is not satisfactory enough. This problem can be tackled
by applying some hybrid jumping gene approach that can balance between the
diversity and convergence. In future, we wish to employ hybrid approach to
observe the results.

0 20 40 60 80 100 120 140 160 180 200

4

6

8

10

12

14

16

n
o
n
-d

o
m

in
at

ed
 s

o
lu

ti
o
n
s

generations

 JGGA

 NSGAII

0 20 40 60 80 100 120 140 160 180 200

5

6

7

8

9

10

11

n
o

n
-d

o
m

in
at

ed
 s

o
lu

ti
o

n
s

generations

 JGGA

 NSGAII

 (a) mt20 (b) abz7

0 20 40 60 80 100 120 140 160 180 200

5

6

7

8

9

10

n
o

n
-d

o
m

in
at

ed
 s

o
lu

ti
o

n
s

generations

 JGGA

 NSGAII

0 20 40 60 80 100 120 140 160 180 200

3

4

5

6

7

8

9

10

n
o

n
-d

o
m

in
at

ed
 s

o
lu

ti
o

n
s

generations

 JGGA

 NSGAII

 (c) la21 (d) la25

Fig. 15. Non-dominated solutions per generations (only for a single run)

190 K.S. Nawaz Ripon et al.

7 Conclusions

the increasing number of jobs and machines involved, as well as additional
objectives, constraints, and flexibilities, there is a growing demand for a robust
and intelligent job-shop scheduler. Drawing inspiration from the jumping gene
phenomenon discovered by Nobel Laureate McClintock, the JGGA is a very
recent MOEA that has been demonstrated to perform robustly in solving
combinational optimization problems. In this work, we have presented a JGGA-
based evolutionary scheduling approach for solving the multi-objective JSSP. The
JGGA searches for the Pareto-optimal schedules in the static JSSP. The jumping
gene operations proposed in JGGA exploit scheduling solutions around the
chromosomes while the general genetic operators in JGGA globally explore
solutions from the population, in which makespan and mean flow time are applied
as the multiple objectives.

The experimental results demonstrate that, as compared to other existing
heuristically based evolutionary scheduling approaches, the JGGA can produce an
overall strong performance for all of the applied benchmark problems related to
the makespan in the context of single-objective optimization. For the multi-
objective optimization, the results show that the JGGA is capable of finding a set
of solutions that are both diverse and close to the Pareto-optimal front. In
particular, the near-optimal solutions are also the lower bound found in many
cases. The comparative results with another well established MOEA-based
scheduling algorithm reveal that the main strength of JGGA is its ability to
produce diverse solutions, in particular the extreme solutions, while maintaining
the consistency and convergence of the trade-off non-dominated solutions. In
general, the JGGA fulfills the goals of multi-objective scheduling optimization by
taking into consideration convergence and diversity, as well as the local search
strategy.

References

1. Garey, M., Johnson, D., Sethi, R.: The Complexity Of Flow Shop And Job
Shop Scheduling. Maths Ops Res., Vol. 1 (1976) 117-129

2. Bagchi, T.P.: Multiobjective Scheduling by Genetic Algorithms, Kluwer
Academic Publishers, Boston/Dordrecht/London (1999)

3. Garen, J.: A Genetic Algorithm for Tackling Multiobjective Job-Shop

V. (eds): Metaheuristics for Multiobjective Optimisation. Lecture Notes in
Economics and Mathematical Systems, Springer, Berlin, Vol. 535 (2004) 201-
219

4. Bagchi, T.P.: Pareto-optimal Solutions for Multi-objective Production
Scheduling Problems. In: Int. Conf. on Evolutionary Multi-Criteria
Optimization, LNCS 1993 (2001) 458-471

191The Multi-Objective Job-Shop Scheduling Problem

As the job-shop scheduling problem becomes ever more sophisticated, due to

Scheduling Problems. In: Gandibleux X., Sevaux, M., Sörensen, K., T’kindt,

5. Chan, T.M., Man, K.F., Tang, K.S., Kwong, S.: A Jumping Gene Algorithm
for Multiobjective Resource Management in Wideband CDMA Systems.
Computer Journal, Vol. 48, No. 6. (2005) 749-768

6. Man, K.F., Chan T.M., Tang, K.S., Kwong, S.: Jumping Genes in
Evolutionary Computing. In: Thirtieth Annual Conf. of the IEEE Industrial
Electronics Society, Busan, Korean (2004) 1268-1272

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evolutionary
Computation, Vol. 6, No. 2. (2002) 182-197

8. Landa Silva, J.D., Burke, E.K., Petrovic S.: An Introduction to Multiobjective
Metaheuristics for Scheduling and Timetabling. In: Gandibleux X., Sevaux,

Optimisation. Lecture Notes in Economics and Mathematical Systems,
Springer, Berlin, Vol. 535 (2004) 91-129

9. Muth, J.F., Thompson, G.L.: Industrial Scheduling. Prentice-Hall, Englewood
Cliffs, N.J. (1963)

10. Bucker, P., Jurish B., Sievers, B.: A Branch and Bound Algorithm for the Job-
shop Scheduling Problem. Discrete Applied Mathematics, Vol. 49. (1994)
105-127

11. Martin, P.D.: A Time-Oriented Approach to Computing Optimal Schedules
for the Job-Shop Scheduling Problem. Ph.D. Thesis, School of Operations
Research and Industrial Engineering, Cornell University, NY, USA. (1996)

12. Chen, H., Chu, C., Proth, J.M.: A More Efficient Lagrangian Relaxation
Approach to Job-shop Scheduling Problems, In: IEEE Int. Conf. on Robotics
and Automation. (1995) 496-501

13. Steinhöfel, K., Albrecht, A., Wong, C.K.: Fast Parallel Heuristics for the Job
Shop Scheduling Problem. Computers & Operations Research, Vol. 29.
(2002) 151-169

14. Nowicki E., Smutnicki, C.: A Fast Taboo Search Algorithm for the Job Shop

15. Yamada T., Nakano, R.: A Genetic Algorithm Applicable to Large-scale Job
Shop Problems. In: Second Int. Conf. on Parallel Problem Solving from
Nature (PPSN-II), North-Holland, Amsterdam. (1992) 281-290

16. Pérez, E., Herrera F., Hernández, C.: Finding Multiple Solutions in Job Shop
Scheduling by Niching Genetic Algorithm. J. Intelligent Manufacturing. Vol.
14. (2003) 323-339

17. Wang L., Zheng, D.Z.: An Effective Hybrid Optimization Strategy for Job-
shop Scheduling Problems. Computers & Operations Research. Vol. 28.
(2001) 585-596

18. Blum, C., Sampels, M.: An Ant Colony Optimization Algorithm for Shop
Scheduling Problems. J. Mathematical Modelling and Algorithms, Vol. 3.
(2004) 285-308

19. Ge., H.W., Liang, Y.C., Zhou, Y., Guo, X.C.: A Particle Swarm
Optimization-based Algorithm for Job-shop Scheduling Problems. Int. J.
Computational Methods, Vol. 2, No. 3. (2005) 419-430

192 K.S. Nawaz Ripon et al.

M., Metaheuristics for Multiobjective Sörensen, K., T’kindt, V. (eds):

Scheduling Problem. Management Science. Vol. 42. (1996) 797-813

20. Vaessens, R.J.M., Aarts E.H.L., Lenstra, J.K.: Job Shop Scheduling by Local
Search. INFORMS J. Computing, Vol. 8. (1996) 302-317

Shop Scheduling. Management Science, Vol. 34. (1988) 391-401

Job Shop Scheduling. Management Science, Vol. 44. (1998) 262-275
23. Brinkkötter W., Brucker, P.: Solving Open Benchmark Problems for the Job

Shop Problem. J. Scheduling, Vol. 4. (2001) 53-64
24. Aiex, R.M., Binato S., Resende, M.G.C.: Parallel GRASP with Path-relinking

for Job Shop Scheduling. Parallel Computing, Vol. 29. (2003) 393-430
25. Blazewicz, J., Domschke, W., Pesch, E.: The Job Shop Scheduling Problem:

Conventional and New Solution Techniques, European J. Operations
Research, Vol. 93. (1996) 1-33

26. Jain, A., Meeran, S.: Deterministic Job-shop Scheduling: Past, Present and
Future. European J. Operations Research, Vol. 113. (1999) 390-434

27. Cheng, R., Gen, M., Tsujimura, Y.: A Tutorial Survey of Job-shop Scheduling
Problems using Genetic Algorithms – I: Representation. Computers and
Industrial Engineering, Vol. 30, No. 4. (1996) 983-997

28. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor. (1975)

29. Davis, L.: Job-shop Scheduling with Genetic Algorithm. In: First Int. Conf. on
Genetic Algorithms and Their Applications, Pittsburgh, PA, USA, Lawrence
Erlbaum. (1985) 136-140

30. Nakano, R., Yamada, T.: Conventional Genetic Algorithm for Job-shop
Problem. In: Fourth Int. Conf. on Genetic Algorithms, San Diego, CA,
Morgan Kaufmann, San Mateo, CA. (1991) 474-479

31. Hart, E., Ross P., Corne, D.: Evolutionary Scheduling: A Review. Genetic
Programming and Evolvable Machines, Vol. 6. (2005) 191-220

32. Hapke, M., Jaszkiewicz, A., Kurowski, K.: Multi-objective Genetic Local
Search Methods for the Flowshop Problem. In: Advances in Nature-Inspired
Computation: The PPSN IV Workshops, PEDAL, University of Reading, UK.
(2002) 22-23

33. Deb, K.: Multi-objective Optimization using Evolutionary Algorithms. John
Wiley & Sons. (2001)

34. Allahverdi, A.: The Two- and M-machine Flowshop Scheduling Problem with
Bicriteria of Makespan and Mean Flowtime. European J. of Operational
Research, Vol. 147. (2003) 373-396

35. Hapke, M., Jaszkiewicz A., S owi ski, R.: Interactive Analysis of Multiple-
criteria Project Scheduling Problems. European J. of Operational Research,
Vol. 107. (1998) 315-324

36. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization. In: Forrest, S.
(ed): Fifth Int. Conf. on Genetic Algorithms, San Mateo, California, UIUC,
Morgan Kaufmann Publishers. (1993) 416-423

37. T’kindt V., Billaut, J.C.: Multicriteria Scheduling: Theory, Models and
Algorithms. Springer. (2006)

193The Multi-Objective Job-Shop Scheduling Problem

22. Balas, E., Vazacopoulos, A.: Guided Local Search with Shifting Bottleneck for

21. Adams, J., Balas, E., Zawack, D.: The Shifting Bottleneck Procedure for Job

38. Murata, T., Ishibuchi, H., Tanaka, H.: Multi-objective GA and Its
Applications to Flowshop Scheduling. Computers and Industrial Engineering,
Vol. 30, No. 4. (1996) 957-968

39. Jain, A., Meeran, S.: A State-of-the-art Review of Job-shop Scheduling
Techniques. Technical Report, University of Dundee. (1998)

40. Yamada, T., Nakano, R.: Scheduling by Genetic Local Search with Multi-step
Crossover. In: Voigt, H.-M., Ebeling, W., Rechenberg I., Schwefel, H.-P.
(eds): Parallel Problem Solving from Nature – PPSN IV, LNCS 1141,
Springer. (1996) 960-969

41. Caporale, L.H.: Jumping Genes. In: Darwin in the Genome: Molecular
Strategies in Biological Evolution. McGraw-Hill, New York. (2003) 145-153

42. Bierwirth, C.: A Generalized Permutation Approach to Job Shop Scheduling
with Genetic Algorithms, OR Spektrum. (1995) 87-92

43. Yamada, T.: Studies on Meta Heuristics for Jobshop and Flowshop
Scheduling Problems. PhD. Thesis, Kyoto University, Japan. (2003)

44. Giffler, B., Thompson, G.: Algorithms for Solving Production Scheduling
Problems. Operations Research, Vol 8, No 4. (1960) 487-503

45. Varela, R., Serrano, D., Sierra, M.: New Codification Schemas for Scheduling
with Genetic Algorithms. In: Mira J., Álvarez, J.R. (eds): IWINAC 2005,
LNCS 3562 (ISBN: 3-540-26319-5), Springer-Verlag. (2005) 11–20

Using Genetic Algorithms, In: Sixteenth Int. Conf. on Computers and
Industrial Engineering. (1994) 576-579

47. Poon P., Carter, N.: Genetic Algorithm Crossover Operators for Ordering
Applications. Computers and Operations Research, Vol. 22. (1995) 135–147

48. Bierwirth, C., Matfield, D.C., Kopfer, H.: On Permutation Representation for
Scheduling Problems. In: Parallel Problem Solving from Nature, Vol. 4.
(1996) 310-318

49. Spirov, A.V., Kazansky, A.B.: Jumping Genes-Mutators Can Rise Efficacy of
Evolutionary Search. In: Genetic and Evolutionary Computation Conference,
New York, USA. (2002) 561 568

50. Applegate, D., Cook, W.: A Computational Study of the Job-shop Scheduling
Problem. ORSA J. Computing, Vol. 3, No. 2. (1991) 149–156

51. Lawrence, S.: Resource Constrained Project Scheduling: An Experimental
Investigation of Heuristic Scheduling Techniques (Supplement). Technical
report, Graduate School of Industrial Administration, Carnegie Mellon
University. (1984)

52. OR Library. URL: http://mscmga.ms.ic.ac.uk
53. Ombuki, B., Ventresca, M.: Local Search Genetic Algorithms for Job Shop

Scheduling Problem. Technical Report No. CS-02-22, Brock University,
Canada. (2002)

54. Aarts, E.H.L., Van Laarhoven, P.J.M., Lenstra, J.K., Ulder, N.L.J.: A
Computational Study of Local Search Algorithms for Job Shop Scheduling.
ORSA J. Computing, Vol. 6, No. 2. (1994) 118–125

194 K.S. Nawaz Ripon et al.

46. Gen, M., Tsujimura, Y., Kubota, E.: Solving Job-Shop Scheduling Problem

55. Mattfeld, D.C., Kopfer, H., Bierwirth, C.: Control of Parallel Population
Dynamics by Social-like Behavior of GA-individuals. In: Parallel Problem
Solving from Nature, Vol. 866 (1994) 16-25

56. Schott, J.R.: Fault Tolerant Design Using Single and Multi-Criteria Genetic
Algorithms. Master’s Thesis, Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology, Boston, MA. (1995)

195The Multi-Objective Job-Shop Scheduling Problem

Multi-Objective Evolutionary Algorithm for

University Class Timetabling Problem

Dilip Datta1, Kalyanmoy Deb1, and Carlos M. Fonseca2

1 Indian Institute of Technology Kanpur, Kanpur - 208 016, India,
{ddatta,deb}@iitk.ac.in

2 Universidade do Algarve, Campus de Gambelas, 8000-117 Faro, Portugal,
cmfonsec@ualg.pt

Abstract. After their successful application to a wider range of prob-
lems, in recent years evolutionary algorithms (EAs) have also been found
applicable to many challenging problems, like complex and highly con-
strained scheduling problems. The inadequacy of classical methods to
handle discrete search space, huge number of integer and/or real vari-
ables and constraints, and multiple objectives, involved in scheduling,
have drawn the attention of EAs to those problems. Academic class
timetabling problem, one of such scheduling problems, is being studied
for last four decades, and a general solution technique for it is yet to be
formulated. Despite multiple criteria to be met simultaneously, the prob-
lem is generally tackled as single-objective optimization problem. More-
over, most of the earlier works were concentrated on school timetabling,
and only a few on university class timetabling. On the other hand, in
many cases, the problem was over-simplified by skipping many complex
class-structures. The authors have studied the problem, considering dif-
ferent types of class-structures and constraints that are common to most
of the variants of the problem. NSGA-II-UCTO, a version of NSGA-II
(an EA-based multi-objective optimizer) with specially designed repre-
sentation and EA operators, has been developed to handle the problem.
Though emphasis has been put on university class timetabling, it can
also be applied to school timetabling with a little modification. The suc-
cess of NSGA-II-UCTO has been presented through its application to
two real problems from a technical institute in India.

1 Introduction to Class Timetabling Problem

Preparation of an academic class timetable is a typical real-world scheduling
problem that appears to be a tedious job in every academic institute once or twice
a year. The problem involves the arrangement of classes (lectures), students,
teachers and rooms at a fixed number of time-slots, respecting certain restrictions
- for example, no class, student, teacher or room can be engaged more than once
at a time, and many more. An effective timetable is crucial for the satisfaction
of educational requirements, and the efficient utilization of human and space
resources. In case of a school, the students are generally grouped in fixed classes,
and rooms are also fixed for conducting the classes, which make the problem

in Computational Intelligence (SCI) 49, 197–236 (2007)

D. Datta et al.: Multi-Objective Evolutionary Algorithm for University Class Timetabling Problem, Studies

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

somewhat simpler. The only task left is to schedule the classes at suitable time-
slots. However, a university usually offers a range of optional courses, for which
the number of students in a class is not known in advance. Hence, the classes
are to be scheduled to suitable rooms and time-slots only after the enrollment of
students. Moreover, the existence of compound classes, such as multi-slot, split
or combined, makes the problem more complicated. Traditionally, the scheduling
of a class timetable is made through manual processes, involving the labour of
several days of several persons. Such a process is based on trial and hit only,
and hence, a valid solution is not guaranteed. Even if a valid solution is found,
it is likely to miss far better solutions. These uncertainties motivated for the
scientific study of the problem, and to develop an automated solution technique
for it. Based on various such studies, the problem can be categorized as below:

1. The class timetabling problem belongs to the class of combinatorial opti-
mization problem3 (Papadimitriou and Steiglitz 1982; Melicio et al. 2004).

2. It is also a variant of general resource allocation problem4 (Papadimitriou
and Steiglitz 1982).

1995).

The timetabling problem is important not only because every institute faces it
once or twice a year, but also because it is just one of the many existing schedul-
ing problems. An effective solution technique to the problem could be applied to
other scheduling problems (Abramson 1991). The problem drew the attention of
the researchers in the early 60’s with the study of Gotlieb (1962), who formulated
a class-teacher timetabling problem by considering that each lecture contained
one group of students, one teacher, and any number of time-slots which could be
chosen freely. Schaerf (1996, 1999) surveyed that most of the early techniques for
automated timetabling were based on successive augmentation, where a partial
timetable was filled in lecture by lecture until either all lectures were scheduled
or no further lecture could be scheduled without violating constraints. In another
survey, Abramson (1991) reported the general techniques applied to the problem
in the past, such as network flow analysis (Greko 1965), random number genera-
tor (Fujino 1965), integer programming (Lawrie 1969; Tripathy 1984), and linear
algorithm (Akkoyunlu 1973). In addition to these, worth mentioning methods
are exact method-based heuristic algorithm (de Werra 1971), and graph coloring

theory (Neufeld and Tartar 1974). However, the classical techniques are not fully
capable to handle the large number of integer and/or real variables and con-
straints, involved in the huge discrete search space of the timetabling problem.
These inadequacy of classical techniques have drawn the attention of the re-
searchers towards the non-classical techniques. Worth mentioning non-classical

3 In a combinatorial optimization problem, the search space is discrete and finite, and
the quality of a solution is measured by arbitrary functions.

4 A resource allocation problem means the execution of a given set of tasks, utilizing
available resources, subject to certain constraints - such as priority of a task over
another, deadlines, and so on.

198 D. Datta et al.

worst case complexity is NP-complete (Even et al. 1976; Cooper and Kingston
3. Most of its variants are highly constrained optimization problems, and their

techniques, that were/are being used to the problem, are genetic algorithms
(Colorni et al. 1990, 1992; Abramson and Abela 1992), neural network (Looi
1992), and tabu search algorithm (Costa 1994). However, compared to other
non-classical methods, the widely used are the genetic/evolutionary algorithms
(GAs/EAs). The reason might be their successful implementation in a wider
range of applications. Once the objectives and constraints are defined, GAs ap-
pear to offer the ultimate free lunch scenario of good solutions by evolving with-
out a problem solving strategy (Al-Attar 1994). In the GA, used by Abramson
and Abela (1992) to school timetabling problem, a solution is likely to loose or
duplicate a class under crossover operator. A repairing mechanism, in the form of
a mutation operator, was used by them to fix up such lost or duplicated classes.
Piola (1994) applied three evolutive algorithms to school timetabling problem,
and showed their capability to tackle highly constrained combinatorial prob-
lems, such as timetabling problem. Lima et al. (2001) used a GA to university
class timetabling problem with the objective to facilitate the conciliation of the
students’ class hours with their work time. Srinivasan et al. (2002) applied an
EA to university class timetabling problem. However, they over-simplified the
problem by considering only a single batch of the university, and infinite num-
ber of rooms for scheduling classes. Blum et al. (2002) studied university class
timetabling problem using a GA, where attempt is made to reduce the complex-

istic heuristic-based timetable builder is used for generating feasible solutions.
The EA, used by Rossi-Doria and Paechter (2003) to university class timetabling
problem, evolves the choice of the heuristics for generating a feasible solution.

2 Aim of the Present Study

The class timetabling problem involves several criteria that must be satisfied
simultaneously, such as compliance with regulations, proper utilization of re-
sources, and satisfaction of people’s preferences (Silva et al. 2004). However, the
problem is generally tackled as single-objective optimization problem by com-
bining multiple criteria into a single scalar value. In most of the cases, cited in
Sect.1, minimization of weighted sum of constraint violation was used as the
only objective function. Only in recent years, a few multi-objective optimization
techniques have been proposed to tackle the problem. Carrasco and Pato (2001)
used a bi-objective GA to school timetabling problem for minimizing violation of
soft constraints from two competitive perspective of teachers and classes. Filho
and Lorena (2001) also tackled the school timetabling problem using bi-objective
model of constructive EA, which uses the well-known schemata theory (Gold-
berg (1989). They modelled the problem as clustering of teachers and classes,
and minimized their conflicts. Desef et al. (2004) used another bi-objective tabu
search to German primary schools. They chose minimization of weighted sum
of idle time-slots and the extents to which the daily classes were finished, where
higher priority was given to the earlier one in one objective function, and the

199University Class Timetabling Problem

ity by initializing a solution through a set of sequential heuristic rules. Bufé
et al. (2001) used a hybrid EA to school timetabling problem, where a determin-

latter in the other objective function. However, the total number of techniques
for handling the class timetabling problem, whether single or multi-objective, is
still relatively scarce. Moreover, most of the earlier works were concentrated on
school timetabling, and only a few on university class timetabling. On the other
hand, a timetabling problem, particularly in universities and in many higher
secondary schools, may contain different types of classes, such as multi-slot,
split, combined, grouped, etc., which make the problem more complex and con-
strained. However, only a limited number of researchers considered one or more
such class-structures (Abramson 1991; Melicio et al. 2004; Piola 1994; Rudová
and Murry 2002; Carrasco and Pato 2001).

The above mentioned shortfalls depict the fact that a lot of research is still re-
quired to obtain some improved general solution techniques for class timetabling
problem. A general technique should not be over-simplified by leaving different
aspects to users. Instead of that, it should include all possible aspects which can
easily be simplified as per the requirement of individual user. Owing to such
requirements, the current authors felt the necessity for studying the problem,
considering different types of class-structures and constraints that are common to
most of the variants of the problem. In this regard, NSGA-II-UCTO, a heuristic-
based multi-objective evolutionary optimization technique, has also been devel-
oped to handle the problem. It employs NSGA-II (Deb 2001; Deb et al. 2002),
an EA-based multi-objective optimizer, with specially designed representation
and EA operators for class timetabling problem. Though emphasis was put on
universities, NSGA-II-UCTO can also be applied to schools with a little modi-
fication. It was applied by the authors to two highly constrained real problems
from NIT-Silchar, a technical institute in India. The problems were considered
under different cases of EA operators and parameters, and NSGA-II-UCTO was
found successful in every instance.

3 Types of Academic Courses

In a class timetabling problem, classes5 of a course6 are events, to which resources
(rooms and time-slots) are to be assigned in such a way that all the events are
scheduled using the available resources. Before assigning the resources effectively
to the events, we need to know the types and natures of the events. Throughout
the academic career, generally one has to pass through three types of courses,
namely Simple Course, Compound Course and Open Course.

1. Simple Course: A simple course is one which is offered to a particular
batch7 only, and compulsory to all the students of the batch. In other words,

5 A class is a meeting of students and teacher in a room for a lecture.
6 A course is a subject to be studied, for example, Theory of Optimization or Intro-

duction to Numerical Methods.
7 A batch means, for example, first year BSc in Physics, or third semester of Electronics

Engineering.

200 D. Datta et al.

the allocation of students to a class is fixed, and the classes are disjoint, i.e.,
no two classes at a time have any common student. Moreover, such a class
is scheduled at a single time-slot only (single-slot class). A school timetable
is generally composed of simple courses only.

2. Compound Course: It is also compulsory to all the students of a batch.
The class-structure of a compound course may be multi-slot, split or com-

bined. The usual duration of a time-slot is around 30-60 minutes, which is
not sufficient for many classes, for example, laboratory classes. Hence, such
a class is generally spanned over two or more consecutive time-slots, and
known as a multi-slot class. Sometimes the students of a class are split into
two or more groups for better teacher-students interaction, or due to the
limited resources required for conducting the class, for example tutorial and
laboratory classes. Such a class is known as a split class. When one group of
students of a batch attends a split class of one course, the other groups of
students of the batch may attend the split classes of other courses, if any. On

offered to different batches. If the students of two or more batches can be
accommodated in a single room, classes of such courses may be combined
to teach together. These three class-structures of compound courses com-
plicate the scheduling of a class timetable. Without these class-structures,
a compound course reduces to a simple course. The compound courses are
found in universities, and also in many higher secondary schools. However,
only a limited number of authors have reported about one or more such

classes.
3. Open Course: As the name implies, an open course is a flexible/optional

course. Unlike a simple or compound course, an open course is offered to more
than one batch. A student can randomly opt his/her required number of open
courses from a given set of such courses, offered by different departments.
This flexibility restricts the scheduling of open courses to be done only after
the students’ course registration, so that no two classes, to be attended by a
student, are scheduled at the same time. It also complicates the scheduling
of classes as the availability of suitable time-slots and rooms is drastically
reduced with increasing number of students and courses. Open courses are
generally offered only in universities and higher secondary schools. When
offered to a single batch, an open course reduces to a compound or simple
course according to its class-structure. A special case of open courses is
the group courses, which are generally known as elective courses. A batch
may have some sets of elective courses, and a student has to opt any one
course from a given set. For example, a student can choose any one course
on computer programming from three available choices of Programming in

C, Programming in C++ and Programming in Java. That is, the students
of the batch are divided in the classes of those courses, and the classes are
scheduled in different rooms, but at the same time. It is to be noted that

201University Class Timetabling Problem

class-structures. Abramson (1991) considered multi-slot classes. Melicio et al.
(2004), Piola (1994), and Rudová and Murry (2002) discussed about combined
classes. Carrasco and (2001) considered multi-slot and combinedPato

the other hand, sometimes a single course, or a few similar courses is (are)

group classes are not the split classes. In group classes, a student has to
attend the classes of one course only, whereas in split classes, a student has
to attend the classes of all courses in rotation.

4 University Class Timetable as a Multi-Objective

Optimization Problem

As stated earlier, a class timetabling problem involves the arrangement of classes,
students, teachers and rooms at a fixed number of time-slots, respecting certain
constraints. Constraints in a class timetabling problem can be classified as hard

constraints and soft constraints. Hard constraints must be satisfied by a solution
of the problem, whereas soft constraints are desired to be satisfied, but not es-
sential. A solution is feasible/valid if it satisfies all the hard constraints, and a
feasible solution is the best one if it satisfies all the soft constraints also (Silva
et al. 2004). However, it is very tough, or may even impossible to satisfy all the
soft constraints. This complexity requires the scheduling of a class timetable to
be treated as a solution over hard constraints, and optimization over soft con-
straints (Rudová and Murry 2002). However, since the large number of variants
of the problem differ from each other, based on the types of universities, and
their distinct class-structures and constraints, it is very difficult to formulate a
general problem that will serve the requirements of all universities. Many re-
searchers attempted to generalize it by considering only simple class-structures.
However, a general technique should not be over-simplified by leaving different
aspects to users. Instead of that, it should include all possible aspects which
can easily be simplified as per the requirements of individual users. Since the
numbers and types of constraints also vary from university to university, they
should be classified very carefully in order to generalize the problem. Instead of
considering the case of a particular university, only those constraints, that must
be satisfied in most of the universities, should be brought under the category
of hard constraints. All other constraints can be categorized as soft constraints,
which should be expressed explicitly. That is, soft constraints should not be
made an integral part of the problem, so that the addition or deletion of any
such constraints does not affect the formulation, or solution of the main problem.
Based on these assumptions, a model university class timetabling problem has
been designed by the current authors, the definition and formulation of which
are described in the following sub-sections.

4.1 Common Hard Constraints

Only the following six types of hard constraints were identified by the authors,
that are common to most of the variants of the class timetabling problem, and
must be satisfied by a solution to accept it as a valid one:

1. A student should have only one class at a time.
2. A teacher should have only one class at a time.

202 D. Datta et al.

3. A room should be booked only for one class at a time (a set of combined
classes may be treated as a single class).

4. Only one class of a course should be scheduled on a day.
5. A class should be scheduled only in a specific room, if required, otherwise in

any room which has sufficient sitting capacity for the students of the class.
Due to the requirement of some extra facilities, such as laboratory apparatus,
many classes may need to be scheduled only in specific rooms.

6. A class should be scheduled only at a specific time-slot, if required. Due to
many reasons, such as non-availability of part-time teachers in peak hours
of the day, or involvement of senior teachers in administrative works, some
classes may need to be scheduled only at specific time-slots.

4.2 Common Soft Constraints

Soft constraints do not represent any physical conflict, but preferences, which
are encouraged to be fulfilled whenever possible (Melicio et al. 2004; Bufé et al.
2001; Carrasco and Pato 2004). A solution is valid even if it does not satisfy
the soft constraints, but not so good as one satisfying them. The quality of
a solution is inversely proportional to the amount of violated soft constraints
(Piola 1994). Though the imposition of excess soft constraints would produce a
greater preferred timetable, but it will increase the computational complexity of
a problem. Hence, the number of such constraints should be as less as possible.
The authors considered only the following three types of soft constraints which
are imposed in many universities:

1. A student should not have any free time-slot between two classes on a day.
2. A teacher should not be booked at consecutive time-slots on a day (except

in multi-slot classes).
3. A smaller class should not be scheduled in a room which can be used for a

bigger class.

The soft constraint (1) implies a compact timetable, whereas the constraint (2)
conflicts with it, and seeks a well-spread timetable. The constraint (3) takes
care of proper utilization of rooms. As already assumed that the soft constraints
should be defined explicitly in a problem, more such constraints can be imposed
without any loss of generality of the problem. However, the imposition of a
constraint will force a solution to respect it, and hence, the solution may get
altered by the imposition of each soft constraint. A few other soft constraints,
considered in different universities, are: (i) preferences of teachers on time-slots
or class rooms, if any, should be respected (Melicio et al. 2004), (ii) in case of
an institute with multiple campuses, a teacher should not be engaged in more
than one campus on a day, (iii) classes to be attended by a student should be
well distributed over the week (Bufé et al. 2001), (iv) classes to be attended
by a student should be in the same room, or in rooms of shorter distances to

203University Class Timetabling Problem

et al. 2004), (v) a timetable should be compact enough for having long-spanned
avoid him/her from running long distances to attend the classes (Daskalaki

free hours, or one or two free days for both teachers and students (Bufé et al.
2001; Gaspero and Schaerf 2002), (vi) free time-slots, if any, should be grouped
at the beginning or end of the day (Piola 1994), and so on.

4.3 Common Objective Functions

Once the class timetabling problem has been identified as an optimization prob-
lem, we need one or more objectives to optimize. However, an objective function
in this problem is just an arbitrary measure of the quality of a solution (Abram-
son and Abela 1992). Hence, the choice of objectives varies from university to
university. Most of the researchers treated the problem as a single-objective op-
timization problem, and took the minimization of total constraints violation as
the only objective function (Abramson and Abela 1992; Blum et al. 2002; Lima
et al. 2001; Piola 1994). However, various choices of objectives, such as a compact
timetable, minimum number of consecutive classes of teachers and so on, lead
the scheduling of a class timetable to a multi-objective optimization problem.
However, a very limited number of researchers considered multiple objectives in
the problem (Paquete and Fonseca 2001; Silva et al. 2004). Carrasco and Pato
(2001) used a bi-objective model to school timetabling problem for minimiz-
ing violation of soft constraints from two competitive perspective of teachers
and classes. Filho and Lorena (2001) also tackled the school timetabling prob-
lem using bi-objective model where teachers and classes are clustered, and their
conflicts are minimized. Desef et al. (2004) used another bi-objective model to
German primary schools. Both of their objective functions are the minimization
of weighted sum of idle time-slots and the extents to which the daily classes
are finished, where higher priority is given to the earlier one in one objective
function, and the latter in the other objective function. The current authors also
considered a bi-objective model. The two conflicting soft constraints, constraints
(1) and (2) as mentioned in Sect.4.2, were taken as the two objective functions
for minimizing during the optimization process, i.e,. the objective functions are:

1. Minimize the average number of weekly free time-slots between two classes
of a student.

2. Minimize the average number of weekly consecutive classes of a teacher.

In these objective functions, classes only of the same day, not of different days,
are considered in finding the free time-slots of a student, or consecutive classes
of a teacher. Objectives in a class timetabling problem are nothing but functions
of the soft constraints imposed on it. Hence, without any loss of generality of
the problem, different objectives can be incorporated by imposing different soft
constraints on the problem.

4.4 Mathematical Formulation

After defining the objective and constraint functions, the scheduling of university
class timetable, as a multi-objective optimization problem, can now be expressed
mathematically as below:

204 D. Datta et al.

Let, D Number of days/week.
T Number of time-slots/day.
R Number of rooms.
S Number of students.
M Number of teachers.
C Number of courses.
E Number of events (classes).

de,i = 1 if the event e is scheduled on day i, else 0.
te,j = 1 if the event e is scheduled at time-slot j, else 0.
re,k = 1 if the event e is scheduled in room k, else 0.
pe,s = 1 if the event e is attended by student s, else 0.
µe,m = 1 if the event e is taught by teacher m, else 0.
le,c = 1 if the event e belongs to course c, else 0.

– Objective functions:
1. Minimize the average number of weekly free time-slots between two

classes of a student:

f1 ≡
1

S

S
∑

s=1

D
∑

i=1

tes,i
∑

j=to
s,i

I

(

E
∑

e=1

de,i.te,j .pe,s = 0

)

, (1)

where tos,i and tes,i are, respectively, the first and last time-slots of classes

of student s on day i. The indicator function8 I shows 0 engagement of
student s at time-slot j on day i, i.e., a free time-slot for the student.

2. Minimize the average number of weekly consecutive classes of a teacher:

f2 ≡
1

M

M
∑

m=1

D
∑

i=1

T
∑

j=1

I1(A1 > 0).I2(A2 > 0).I3(A3 = 0), (2)

where A1 =
∑E

e=1 de,i.te,j−1.µe,m, A2 =
∑E

e=1 de,i.te,j .µe,m and A3 =
∑E

e=1 de,i.te,j−1.te,j .µe,m. The indicator functions I1 and I2 confirm the
engagement of teacher m at both of time-slots (j-1) and j on day i. The
third indicator function I3 shows the engagement of the teacher at those
time-slots for different events. It (I3) has been used just to assure that
multi-slot classes are not taken as consecutive classes.

8 Indicator Function: A function which returns either 1 or 0, respectively, depending
on whether its argument is true or false. Suppose Ω is a set with typical element ω,
and let A be a subset of Ω. Then the indicator function of A, denoted by IA(·), is
defined by (Murison 2000)

IA(ω) =

j

1 if ω ∈ A
0 if ω /∈ A.

205University Class Timetabling Problem

– Subject to hard constraints:
1. Number of classes to be attended by a student at a time:

g(s−1)TD+(i−1)T+j ≡

E
∑

e=1

de,i.te,j .pe,s ≤ 1, (3)

s = 1, ..,S; i = 1, ..,D; and j = 1, ..,T ,

Total number of constraints in this category is STD.
2. Number of classes to be taught by a teacher at a time:

gSTD+(m−1)TD+(i−1)T+j ≡

E
∑

e=1

de,i.te,j .µe,m ≤ 1, (4)

m = 1, ..,M; i = 1, ..,D; and j = 1, ..,T ,

It is to be noted that a set of combined classes, to be taught together
by a teacher, has been taken as a single class (event). Total number of
constraints in this category is MTD.

3. Number of classes in a room at a time:

g(S+M)TD+(k−1)TD+(i−1)T+j ≡

E
∑

e=1

de,i.te,j .re,k ≤ 1, (5)

i = 1, ..,D; j = 1, ..,T; and k = 1, ..,R ,

Total number of constraints in this category is RTD.
4. Number of classes of a course on a day:

g(S+M+R)TD+(c−1)D+i ≡
E

∑

e=1

de,i.le,c ≤ 1, (6)

c = 1, ..,C; and i = 1, ..,D,

Total number of constraints in this category is CD.
5. Room where a class is to be scheduled:

(a) Type of the room:

g(S+M+R)TD+CD+2e−1 ≡
R

∑

k=1

re,k.I(k ∈ ρe) = 1, e = 1, ..,E , (7)

where ρe is the set of specific rooms for event e. The indicator func-
tion I confirms the allotment of an event in a room from its set of
specific rooms. When no room is specified for an event, any general
room becomes specific for that event.

(b) Capacity of the room:

g(S+M+R)TD+CD+2e ≡

S
∑

s=1

pe,s ≤

R
∑

k=1

re,k.hk, e = 1, ..,E , (8)

where hk is the sitting capacity of room k.

206 D. Datta et al.

Total number of constraints in this category is 2E.
6. Time-slot at which a class is to be scheduled:

g(S+M+R)TD+CD+2E+e ≡

T
∑

j=1

te,j .I(j ∈ τe) = 1, e = 1, ..,E , (9)

where τe is the set of specific time-slots for event e. The indicator func-
tion I confirms the allotment of an event at a time-slot from its set of
specific time-slots. Total number of constraints in this category is E.

– Soft constraints:
1. Total number of weekly free time-slots between two classes of students:

sc1 ≡
S

∑

s=1

D
∑

i=1

tes,i
∑

j=to
s,i

I

(

E
∑

e=1

de,i.te,j .pe,s = 0

)

= 0 , (10)

where notations are the same as in (1).
2. Total number of weekly consecutive classes teachers:

sc2 ≡

M
∑

m=1

D
∑

i=1

T
∑

j=1

I1(A1 > 0).I2(A2 > 0).I3(A3 = 0) = 0, (11)

where notations are the same as in (2).
3. Capacity of a class, and that of the room where the class is scheduled:

sc2+
P

(E−e)+e′ ≡

S
∑

s=1

pe′,s >

R
∑

k=1

re,k.hk, if

S
∑

s=1

pe′,s >

S
∑

s=1

pe,s , (12)

where e = 1, ..,E and e′ = e + 1, ..,E. Maximum number of constraints

in this category is E(E−1)
2 . This constraint is invalid if the capacity of

any available room is greater than the number of students of any event
(class) which is yet to be scheduled.

From the above formulation, it is seen that the considered university class
timetabling problem is composed of (S+M+R)TD+CD+3E hard constraints

and 2+E(E−1)
2 soft constraints, where S, M, R, T, D, C and E represent, respec-

tively, the total numbers of students, teachers, rooms, time-slots/day, days/week,
courses, and classes (events). These constraints cause classical optimization meth-
ods difficult to be applied on this problem. Since the soft constraints of (10) and
(11) have already been taken into account by the objective functions, the main
optimization problem can be defined by the objective functions and hard con-
straints only, i.e., by (1)-(9). The last soft constraint, given by (12), will be

class timetable without any open course, (1), (3) and (10) can also be expressed
in terms of batches, instead of students. Since a batch doesn’t have any open

207University Class Timetabling Problem

taken into account by the heuristic approach addressed in Sect.5. In case of a

course, the batch is free/engaged at a time-slot means all the students of the
batch are also free/engaged at that time-slot. Hence, computational time can be
reduced by expressing these quantities in terms of batches, because the number
of batches in a timetabling problem is always less than the number of students.

5 Heuristic Approach to University Class Timetabling

Problem

Any numerical optimization process starts with an initial guess to the desired
solution. The process becomes computationally less expensive, as well as faster,
if the initial guess is feasible, or near feasible. In many cases, better solutions can
be expected with such an initial guess than with an arbitrary one. For a class
timetabling problem, however, it is very difficult to obtain an initial feasible so-
lution, or may even impossible to accomplish it (Melicio et al. 2004). The job
may be an easy one with simple classes, such as single-slot classes without any
restriction on the assigned rooms and time-slots. The size of the search space
is the same for all classes, and hence, they can be scheduled randomly in any
rooms and time-slots. For example, in case of a timetable with 5 days per week,
7 time-slots per day, and 10 rooms per time-slot, there are total of 350 possible
slots9 (= 5days× 7 time-slots× 10 rooms), and a class can be scheduled in any
one of them. However, any restriction, imposed on a class, will reduce the size of
the search space for that class. Say, the Physics Laboratory class is to be sched-
uled only in Physics Laboratory. Then the size of the search space for this class
would be 35 (= 5×7×1). If it happens to be a 2-slot class, it cannot be scheduled
at the last time-slot of a day, and the size of the search space will be reduced
to 30 (= 5×6×1). Again, if it is to be taught by a part-time teacher, who will
not be available before 6-th time-slot, the size of the search space will further be
reduced to 5 (= 5×1×1). As a result, this class may not be possible to schedule
without violating any constraint, if it comes at the last during the scheduling.
This is because, the 6-th time-slot of all the days, only where this class can be
scheduled, might have already been assigned to some other classes. Hence, in
order to get a feasible or near feasible solution, random scheduling of classes
may not work. Rather classes should be scheduled in some order - based on the
size of the search space, and/or other complexities of a class. The developers
of EAs also cannot expect an EA to generate initial feasible, or near feasible,
solutions from nothing, i.e., without being armed with any primitive guideline.
Such expectations may require hours or days to evolve solutions, which even may
not be of acceptable quality. Hence, at least, in case of large and complex prob-
lems, like class timetabling problem, an EA needs be guided by some Heuristic

Approach10 (HA in short) to generate initial solutions (Al-Attar 1994). Many

9 A slot does not mean a time-slot, but a location under a time-slot where a class can
be scheduled. For example, if there are 10 rooms, there will be 10 slots under a single
time-slot.

10 An approach without a formal guarantee of performance is known as Heuristic Ap-
proach. It relates or uses a problem-solving technique, in which the most appropriate

208 D. Datta et al.

authors have suggested, and also presented many such HAs for class timetabling
problem (Bufé et al. 2001; Carrasco and Pato 2001; Lewis and Paechter 2004).
Howover, the detail behind the development of such an approach is hardly re-
ported in literature. Hence, it is required to study different types of problems,
and see how such an approach can be developed. In this regard, an experiment
on three virtual problems was performed by the authors, considering different
types of classes, as addressed in Sect.3, and/or imposing restrictions on the ran-
dom use of rooms and time-slots. Both random and some ordered searches were
performed under different conditions. Due to space limit, the detail of the ex-
periment could not be reported here. It was found from the experiment that a
class with specific time-slots is the most complex one. The next complex one is
a multi-slot class. However, classes with specific rooms, group classes and split
classes do not follow any common pattern of complexity. This might be due to
their comparatively lower complexities, which, even in many cases, are compa-
rable with those of simple single-slot classes. It was also observed, in most of the
cases, that the ordered search can reduce the complexities of the problems by
using less resources than the random search does. Hence, the experiment clearly
depicts the need of using an ordered search for obtaining a feasible or near feasi-
ble solution with optimum use of resources. Therefore, based on the experiment,
and the size of the search space for a class, a sequential heuristic approach (HA)
has been developed that has the capacity to produce an acceptable timetable. It
is economic in terms of resources, and also computationally inexpensive. In this
approach, the events are first sorted in descending order of their complexities,
and then resources are assigned to them in order. The detail of the approach is
as below:

1. All classes are first sorted in the following order:

(a) Ascending order of number of specific time-slots. If not mentioned, this
number for a class is the number of total available time-slots.

(b) If numbers of specific time-slots are equal, descending order of number
of time-slots per class.

(c) If numbers of specific time-slots as well as numbers of time-slots/class
are equal, ascending order of number of specific rooms. If not mentioned,
this number for a class is the number of total available rooms.

(d) If numbers of specific time-slots, numbers of time-slots/class as well as
numbers of specific rooms are equal, preference to group classes over
other classes.

(e) If numbers of specific time-slots, numbers of time-slots/class as well as
numbers of specific rooms are equal, preference to split classes over other
classes (group classes are not supposed to be split).

(f) Since sitting capacity of a room also plays an important role, similar
classes, under each of the above five steps, may be sorted in descending
order of number of students in each class.

one, out of several solutions found by alternative methods, is selected for successive
problems.

209University Class Timetabling Problem

2. Once the sorting of classes is over, they may be considered in order to assign
resources to them, respecting as many hard constraints as possible. If classes
were not sorted in Step (1f) as per the numbers of students in them, a class
may be scheduled in an arbitrary capable room, and then an exhaustive
search may be performed among the remaining rooms for finding a suitable
smaller one. This will avoid the possibility of occupation of an over-size room
by a smaller class which, as per the sorting under the Steps (1a) to (1e), may
come before a bigger class. This will also satisfy the soft constraint (3) of
Sect.4.2.

In the above HA, classes with specific time-slots, and multi-slot classes have
been ordered as per the results of the conducted experiment. This ordering is
also obvious from the sizes of the search spaces for those classes. Because, the
number of specific time-slots for a class, in general, would be much smaller
than the number of possible time-slots for a multi-slot class. Hence, the size of
the search space for a class with specific time-slots is smaller than that for a
multi-slot class. Since no fixed pattern was found in case of classes with specific
rooms, group classes, and split classes, those have been ordered only on the basis
of increasing sizes of their search spaces. Although the sizes of the search spaces
for a split single-slot class and a simple single-slot class are equal, the former
one has been preferred because of its relatively complex nature over the latter
one.

5.1 Few Characteristics of Class Timetabling Problem

As the available resources for any problem is limited, based on the above ex-
periment, the following characteristics of class timetabling problem have been
observed:

1. Random scheduling of events may lead to the improper use of resources,
and as a result, many later events may be left unscheduled due to the non-
availability of proper resources,

2. Even if the events are scheduled in order, many resources may be required
to leave unused, i.e., sufficient events may not be available to use all the
resources, and

3. Amount of unused resources increases with the increasing complexities of
the events.

6 Evolutionary Chromosome and Operators for

University Class Timetabling Problem

Since the decision variables (classes) of class timetabling problem seek only pos-
itive integer values of different parameters of the problem, such as the serial
numbers of time-slots and rooms where classes are to be scheduled, or the se-
rial numbers of teachers and students to whom the classes are assigned, the
scheduling of class timetable becomes a pure integer programming problem. It

210 D. Datta et al.

also belongs to the class of combinatorial optimization problems (Melicio et al.
2004). Moreover, as seen in Sect.4, it is a multi-objective optimization problem.
Though there exists a number of classical algorithms for handling such prob-
lems (Rao 1996), most of them suffer from computational complexity, and/or
multiple objective functions. Among non-classical algorithms, an evolutionary
algorithm (EA) is one which can successfully handle integer variables, multiple
objective functions, as well as combinatorial optimization problems (Deb 2001).
Moreover, in the literature also, EAs are found as the widely used non-classical
methods to the class timetabling problem. The current authors also used a spe-
cially designed multi-objective EA to this problem. The developed EA, known
as NSGA-II-UCTO, along with chromosome representation and EA operators
(crossover and mutation), are addressed in detail in the following subsections.

6.1 Chromosome Representation

The performance of an EA, or the quality of a solution from an EA, is greatly
influenced by the chromosome representation. Hence, this representation should
be as simple and intuitive as possible. In case of class timetabling problem,
a chromosome represents a class timetable, and each of its genes describes a
component of the timetable. In spite of the matrix-pattern of representation of
an actual class timetable, as shown in Table 1, different authors use different
types of direct or indirect chromosome representations to suit their algorithms.

09-10 10-11 11-12

R1 Phy-I Math-I Chem-I

R2 Math-II Chem-II Phy-II

R3 Chem-III Phy-III Math-III

...

The direct chromosome representation
usually encodes an actual timetable as a
vector of classes to which time-slots and
rooms are to be assigned, or as a vector of
time-slots at which classes and rooms are
to be scheduled. The indirect representa-
tion, on the other hand, encodes a set of
instructions, and then a timetable builder

is used to produce a timetable from those
instructions (Burke et al. 1995). Fang
(1994) used a direct representation where the length of a chromosome is equal
to the number of classes times the number of parameters to be assigned to a
class. The position of a gene, in each set of genes equal to the number of classes,
represents the serial number of a class, and the value of the gene represents a
parameter, such as a time-slot, a room or a teacher. One of the main reasons
for using such representations is to apply directly the standard EA operators
to the chromosomes. However, the major disadvantage of this type of direct
representation is that the EA operators are likely to produce infeasible solu-
tions which are required to be repaired by some repair operator (Bufé et al.
2001; Rossi-Doria and Paechter 2003). Bufé et al. (2001), and Rossi-Doria and
Paechter (2003) used indirect chromosome representation, and preserved the fea-
sibility of solutions under the action of EA operators. Bufé et al. (2001) used
parametric chromosome representation, containing a permutation of events, and
then a deterministic heuristic-based timetable builder was used to generate a

211University Class Timetabling Problem

Table 1. Example of a class timetable.

feasible solution from the permutation. A chromosome, used by Rossi-Doria and
Paechter (2003), is composed of two rows, each of length equal to the number of
events, representing different heuristics to choose feasible events and resources,
respectively. In another indirect representation, Abramson and Abela (1992) rep-
resented a chromosome by time-slots, where a time-slot is composed of number
of tuples. Each tuple is identified by its label, and the fields of a tuple contain
a valid class, teacher and room. The drawback of this representation is that the
crossover operator may not be able to give correct set of tuples to the offspring
(new solutions), which they termed as label replacement problem, and proposed a
label replacement algorithm, in the form of a mutation operator, to correct such
problems.

A direct chromosome representation, which looks like the representation of an
actual class timetable (as shown in Table 1), was used by the current authors. A
chromosome is a two-dimensional matrix, and represents a class timetable. Each
column of the matrix represents a time-slot, and a row represents a room. That
is, the chromosome is a vector of time-slots, and a time-slot, which represents
a gene of the chromosome, is a vector of rooms. Then, the value of each cell
of the matrix represents the event(s), scheduled in the corresponding room and
time-slot. Hence, mathematically a chromosome can simply be expressed as:

T = (T1, T2,..., Tj, ..., Tt),
and Tj = (R1, R2,..., Rk,.., Rr)

T,
where,

Tj = j-th time-slot (gene),
Rk = k-th room,
t = total number of time-slots, and
r = total number of rooms.

The proposed chromosome representation is also shown in tabular form in

Table 2. Chromosome representation.

R/T T1 T2 T3 .. Tj .. Tt

R1 C20 C11 C39 ... C05 ... C16

R2 C33 C21 C15 ... C40 ... C12

R3 C01 C35 ... C07 ... C08

.. C27

Rk C13 C02 C14 ... C22 ... C38

.. C18

Rr C06 C04
C17

... C28 ... C31
C36

tage of this representation is obvious. This is one of the best chromosome rep-
resentations for any topology optimization of structures (Datta and Deb 2005),

212 D. Datta et al.

Table 2. Since the chromosome directly represents an actual timetable, the advan-

or circuits synthesis (Mesquita et al. 2002). Two major advantages of this rep-
resentation are:

1. It is very easy to control the possibility of scheduling, at a particular time-
slot, more than one class in a room, or to a teacher, student or batch. To check
any such possibility, it is not required to go through the entire timetable,
but only the column of the matrix, representing that time-slot, is sufficient.

2. Compound and group classes can easily be scheduled and checked. For exam-
ple, Table 2 shows the scheduling of 2-slot class C35 in room R3 at time-slots
T2 and T3, and combined classes C17 and C36 in room Rr at time-slot T3.

Carrasco and Pato (2001) used a similar representation. However, they handled
only combined and multi-slot classes. Lewis and Paechter (2004) also used a sim-
ilar representation in examination timetabling problem. Instead of the columns,
they took each cell of the matrix as a gene of the chromosome, which is similar
with the vector representation of events.

6.2 Crossover Operator (XVRA)

A crossover operator trades sets of genes between two chromosomes, allowing the
to exploit particularly beneficial portions of a search space.

1 2 3

2 3 1

1 3 1

2 2 3

Parent−1

Parent−2

Offspring−1

Offspring−2

Fig. 1. Traditional 1-point crossover.

An example of a traditional single-point

crossover operator on two chromosomes
(Parent-1 and Parent-2) is shown in Fig.1.
This crossover operator may produce
very useful offspring in many optimiza-
tion problems, including the scheduling in
unrestricted/ less-restricted search space
(Corne et al. 1994; Fang 1994). However, a
complex scheduling, like class timetabling
problem in highly restricted search space,
may even fail under such a crossover op-
erator. The reason behind it is clear from Fig.1. If the positions and values of
the genes were to represent, respectively, classes and time-slots (or rooms), the
offspring are not acceptable as two classes have been scheduled to the same
time-slot (or room). On the other hand, if the positions and values of the genes
were to represent, respectively, the time-slots (or rooms) and classes, then also
the offspring are not acceptable as the same class is scheduled at two different
time-slots (or rooms), and some classes are left unscheduled. As mentioned in
Sect.6.1, these are the reasons why researchers fail to prevent the feasibility of
offspring generated by the standard crossover operator, and need some kind of
repair operator, or specially designed mutation operator, to repair an infeasible
offspring (Abramson and Abela 1992; Lewis and Paechter 2004). Due to high
complexity of class timetabling problem, it is very difficult to get a feasible so-
lution for it, perhaps even impossible to accomplish it. Hence, it was suggested
by Melicio et al. (2004), and Lewis and Paechter (2004) that the main objective

213University Class Timetabling Problem

sets

for this kind of problems should be to solve over hard constraints, and optimize
over soft constraints, remaining in feasible search space only. For preserving
the feasibility of solutions under crossover operators, Lewis and Paechter (2004)
proposed four specialized and problem specific crossover operators for university
class timetabling problem, namely sector-based crossover, day-based crossover,
student-based crossover, and conflicts-based crossover operators. Earlier Burke
et al. (1995) used a hybrid crossover operator, which they called heuristic hybrid

recombination operator, for producing feasible offspring. However, they handled
examination timetabling problems, for which they could use unlimited number
of time-slots with the aim of reducing it by incorporating it into their objective
function. They also proposed eight different selection heuristics for generating
feasible offspring under crossover operator.

Since the traditional crossover operator, in scheduling problems, is likely to pro-
duce infeasible offspring, these problems need some computationally expensive
repair operator to regain the feasibility. To eliminate such expensive repair op-
erator, research has been aimed at designing suitable crossover operators that
should be able to produce feasible offspring directly. Such a crossover operator,
known as Crossover for Valid Resource Allocation (XVRA), has been developed
by the current authors to allow valid (feasible) resources to events. It is similar
with the sector-based or day-based crossover operator, proposed by Lewis and
Paechter (2004). In XVRA, the first offspring is generated from the first parent
assisted by the second parent. Similarly, the second offspring is generated from
the second parent assisted by the first parent. A similar model was used by Ok-
abe et al. (2005) also. Unlike in traditional crossover operator, where a complete
offspring is generated from two parents, a portion of an offspring in XVRA is gen-
erated by the parents, and the remaining portion is completed by the heuristic

the parents, get reduced, the size of the search space for introducing the remain-
ing information by the HA is increased. In class timetabling problem, this reduces
the possibility of getting stuck in scheduling complex classes, if any, where more
than one room at a time-slot (for group classes), a room for consecutive time-slots
(for multi-slot classes), or a specific time-slot/room may be required. In generat-
ing the first offspring using XVRA, few genes, {Ti}, are randomly selected from
the first parent, and transferred the information in them to the corresponding
genes of the offspring. Then few more genes, {Tj | Tj �= Ti, ∀i, j}, are randomly
selected from the second parent, and transferred the information in them, which
are still required by the offspring, to the corresponding genes of the offspring.
Finally, the HA is used to introduce the remaining information required by the
offspring. Generation of the first offspring, using XVRA, is also shown in Fig.2
with the help of a small example. 10 classes (C1-C10) are to be scheduled at 10
time-slots (T1-T10) in 5 days with 2 time-slots per day, and 3 rooms (R1-R3)
per time-slot. Time-slots T1-T2 and T5-T6 have been chosen randomly from
the first parent, and classes at them have been transferred directly to the first
offspring. Similarly, T3-T4 and T9-T10 have been chosen randomly from the sec-

214 D. Datta et al.

approach (HA) of Sect.5. Though the sizes of the search spaces, exploited from

by heuristic approach
First offspring completed

First parent

R1

R2

R3

T1

C1

T2 T3 T4 T5 T6 T7 T8 T9 T10

TUE WED THU FRI

C5 C9

C4 C7 C2 C6

C8C10

MON

C3

Second parent

MON TUE WED THU FRI

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

R1

R2

R3

C2 C7 C1 C9

C4C3C5C8C6

C10

MON TUE WED THU FRI

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

R1

R2

R3

C1 C7 C5 C9

C3C6C4C8

C10 C2

with the help of second parent
First offspring created from first parent

TUE WED FRITHUMON

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

C1 C7 C5 C9

C8 C4

C10

R1

R2

R3

Fig. 2. Generation of the first offspring using XVRA.

ond parent. Since C7 and C8 of T3-T4 are still required by the offspring, they
have also been transferred directly. Classes at T9-T10 are C4 and C9. Since C4
has already been scheduled at T6 of the offspring, only C9 has been transferred.
C2, C3 and C6 could not be transferred from any of the parents. Hence, the HA
has been applied to schedule those classes to the offspring. This completes the
generation of the first offspring. Similarly, the second offspring can be generated
from the second parent, assisted by the first parent. It is to be noted that no
attempt has been made in any parent of Fig.2 to transfer the classes of T7-T8 to
the offspring. As mentioned above, this has been done deliberately to increase
the size of the search space for successfully scheduling the remaining classes by
the HA. Though XVRA has been developed for generating feasible offspring,
provision has been kept to accept infeasible offspring also, so that the opera-
tor would not require excessive guidance to generate an offspring. In that case,
during transferring information from the parents to the offspring, or scheduling
remaining classes by the HA, one or more hard constraints may be relaxed.

6.3 Mutation Operators (MFRA, MIRA, MRRA & MSIS)

In binary representation of chromosomes, the mutation operator simply alters
the value of a randomly chosen gene from 0 to 1, or from 1 to 0. However, this
technique is not applicable in any other form of chromosome representation, and
some specific functions are required for such mutation operators. The most suit-
able function in case of class timetabling problem is to swap the classes of two
slots, and/or to shift a class to an empty slot. Since it is tough to obtain fea-
sible solutions for class timetabling problem, and crossover operators are likely
to lose their feasibility, researchers generally put more attention in designing
different mutation operators. The current authors also designed three mutation
operators, namely MFRA, MIRA and MRRA, for mutating a solution. MFRA
and MIRA are objective-specific, and perform, respectively, exploration and ex-
ploitation of a search space. While MRRA is for both exploring and exploiting
a search space. Based on a problem in hand, these mutation operators can be
tested to find which one would perform better in case of a particular objective
function. Then the selected objective-specific operators can be applied simul-
taneously for optimizing all the objective functions together. Besides MFRA,

215University Class Timetabling Problem

MIRA and MRRA, the authors designed one more mutation operator, namely
MSIS. When any constraint is relaxed, MSIS is used for steering an infeasible
solution towards the feasible region.

1. Mutation for Fresh Resource Allocation (MFRA): It explores a search
space by assigning fresh resources to events. That is, only shifting of a class to
a free slot is allowed in class timetabling problem. Preliminary observation
reveals that it should work in reducing the number of free time-slots of a
student (objective function f1, given by (1)). A similar mutation operator
was used by Carrasco and Pato (2001). However, MFRA may not work well,
or even fail, in a problem where the number of overall free slots is very
limited.

2. Mutation for Interchanging Resource Allocation (MIRA): It ex-
ploits a search space by interchanging the resources allotted to events. In
case of class timetabling problem, it only swaps classes between two slots.
MIRA is expected to reduce the number of consecutive classes of teachers
(objective function f2, given by (2)).

3. Mutation for Reshuffling Resource Allocation (MRRA): MRRA is
just a combination of MFRA and MIRA, i.e., allotment of resources to events
are reshuffled, where an event may be re-allotted new resources, or inter-
changed with that of another event. In case of class timetabling problem, it
may swap classes at two slots, or shift a class to an empty slot. However,
since the HA of Sect.5 schedules a class in a minimally suitable room, it is
worthless to attempt here again to change the room of a class. Hence, MRRA
may be allowed to change only the time-slot of a class. Since the operator
is allowed to both exploring and exploiting a search space, it cannot be pre-
dicted if it gets biased to any specific objective function. In MRRA, two
time-slots are first chosen randomly, and then the classes in each room at
those time-slots are swapped one by one, provided no non-relaxed constraint
is violated. If any multi-slot class appears in any room, the range of time-
slots are expanded accordingly. Similarly, number of rooms to be handled
at a time is expanded if any group class appears in any room. If the classes
of any room cannot be swapped due to the violation of any non-relaxed
constraint, attempt may be made for that room by considering another ran-
dom pair of time-slots. The working procedure of MRRA is also shown in
Fig.3 with an example. The problem contains the scheduling of 10 courses
(C1-C10). C8 has one 2-slot class per week. C1 and C2 are group courses,
each having one single-slot class. All other courses have 2 single-slot classes
in each. The randomly chosen time-slots are T3 and T9. Classes in room
R1 at those time-slots are C7 and C10, respectively (Fig.3(a)), which have
been swapped without violating any constraint (Fig.3(b)). Since the class
in R2 at T3 is C8, which is a 2-slot class, the range of T3 and T9 have
been expanded to T4 and T10, respectively, and then the classes have been
swapped. Because of the violation of the constraint under (6) (same class
more than once a day), which would happen with C3 on Tuesday if it were
shifted from T9 to T3 in R3, another pair of time-slots, T1 and T8, have

216 D. Datta et al.

MON WEDTUE THU FRI

Time−slot=T3 Time−slot=T9

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

R1

R2

R3

R4

R5

C10

C4

C5

C7

C8

C1

C2

C8

C3

C7

C9

C6 C10

C3

C5

C9

C6

C4

(a) Before mutation

MON TUE WED THU FRI

Time−slot=T3 Time−slot=T9

R2

R3

R4

R5

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

C7C6C10 C10R1

C6 C7 C8C8

C3C4C3

C5 C9 C1 C4

C2C9C5

(b) After mutation

Fig. 3. Mutation for Reshuffling Resource Allocation (MRRA).

been chosen randomly. Then C4 has been shifted from T1 to T8, at which
R3 was empty. Since the group classes of C1 and C2 apprear at T3 in R4 and
R5, respectively, R4 and R5 have been considered together. Then the classes
of those rooms at T3 and T9 have been swapped. MRRA has been designed
in such a way that it can preserve the feasibility of a solution during muta-
tion. However, like in the case of XVRA, provision has been kept here also to
accept an infeasible offspring by relaxing one or more hard constraints. Since
MRRA changes the time-slots of classes, it is likely to work in taking care of
student and/or teacher-clash constraints, given by (3) and (4), respectively,
if these were relaxed. MRRA can be simplified easily to obtain the working
procedure of the other two mutation operators, MFRA and MIRA.

4. Mutation for Steering Infeasible Solution (MSIS): MSIS has been
designed to take care of violation of the relaxed constraints, if any. It is used
only when there is some constraint violation, with an expectation of steering
an infeasible solution towards the feasible region. MSIS is not explicitly a
repairing mechanism, but mutation is performed only in those slots, for the
classes of which any constraint is violated. Such a slot is first identified by an
exhaustive search, and then the class(es) of the slot is(are) interchanged with
that of another slot chosen randomly, provided no non-relaxed constraint is
violated. An example of the working procedure of MSIS is shown in Fig.4.
As shown in Fig.4(a), class C1 was scheduled twice on Monday at time-slots

MON TUE WED FRITHU

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

C2C5C7C1R1

R2 C8 C4 C6 C8

C9C1R3

(a) Before mutation

MON TUE WED THU FRI

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

C1C5C7C2R1

R2 C8 C8 C4 C6

C9C1R3

(b) After mutation

Fig. 4. Steering infeasible solution towards feasible region using MSIS.

T1 and T2 in rooms R1 and R3, respectively, which violated the constraint
under (6) (same class more than once a day). Hence, T7 has been chosen
randomly where C2 was scheduled in R1. Then C1 and C2 of R1 have been
swapped (Fig.4(b)). Again, if both C8 and C9, scheduled at T9 in R2 and
R3, respectively, were to be attended by the same students, student-clash

217University Class Timetabling Problem

constraint under (3) would be violated. Hence, T5 has been chosen randomly
where R2 was empty. Then C8 has been shifted in R2 at T5 (Fig.4(b)).

7 NSGA-II-UCTO: NSGA-II as University Class

Timetable Optimizer

Once the chromosome representation, and EA operators have been designed, an
EA is required where these can be incorporated for optimizing a problem. Since
multiple objectives are to be achieved in class timetabling problem, a multi-
objective EA is required to tackle the problem. A number of such EAs, differing
in one or more aspects from each other, have been developed, and implemented in
different types of problems. Widely accepted among those are MOGA (Fonseca
and Fleming 1993), NPGA (Horn et al. 1994), NSGA (Srinivas and Deb 1994),
SPEA (Zitzler and Thiele 1999), and NSGA-II (Deb 2001; Deb et al. 2002).
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) has been selected by
the current authors for optimizing university class timetabling problem, and it
has been named as NSGA-II-UCTO (NSGA-II as University Class Timetable

Optimizer). The reason for selecting NSGA-II among its counterparts is its suc-
cessful implementation in a wider range of problems, which lead it to be crowned
as the fast breaking paper in engineering in February, 2004 (THOMSON 2004).
The salient features of NSGA-II-UCTO are as given below:

1. The chromosome representation, addressed in Sect.6.1, is used to form an
EA population of N solutions.

2. The heuristic approach, addressed in Sect.5, is used to initialize the solutions
of the population.

3. Crowded Tournament Selection Operator (Deb 2001) is used to form a mating

pool (Deb 1995) of N solutions from the population. It is done by randomly
selecting two solutions from the population, and sending a copy of the best
one, based on ranks and crowding distances (Deb 2001), to the mating pool.
The process is continued until the mating pool is filled up with N solutions.
The mating pool is later used by EA operators for generating offspring.

4. The crossover operator XVRA, addressed in Sect.6.2, is used for generating
a new population of N offspring.

5. One or more mutation operator(s) from MFRA, MIRA and MRRA, ad-
dressed in Sect.6.3, is(are) used for mutating the offspring of the new popu-
lation.

6. Next, if any constraint violation is allowed, the mutation operator MSIS, ad-
dressed in Sect.6.3, is used for steering an infeasible offspring, if any, towards
the feasible region.

7. Both the populations, obtained so far, are combined to form a combined
population of 2N solutions.

8. Based on ranks and crowding distances, the best N solutions from the com-
bined population are picked up to form a single population.

9. Steps (3)-(8) are repeated for required number of generations.
10. Result obtained after the required number of generations is accepted as the

optimum result.

218 D. Datta et al.

7.1 Capabilities of NSGA-II-UCTO

All the noticeable features of university class timetabling problem have been
incorporated in NSGA-II-UCTO. It can be applied to any institute, particularly
in India, with slight modification in objective and constraint functions, and/or
input data files. The included provisions are:

1. The provisions, that can be availed through input data files only, are:
(a) Compound courses, having multi-slot, combined and split classes. If not

present, the number of any such course can simply be made zero.
(b) Open courses, including group courses. Identities of students in a batch

are not required, if no open course is offered to that batch.
(c) Choices for specific rooms and time-slots for conducting classes.
(d) Status of constraint functions, whether violation will be allowed or not.

2. Addition/deletion of any constraint can be made through subroutines, coded
in C programming language.

3. It can also be applied to school timetabling problem with slight modification.
Since the major requirements in this problem are to start classes from the
very first time-slot of a day, and no free time-slots between two classes on a
day, objective function f1, given by (1), can be used as a hard constraint for
the latter case. In addition to that, one more hard constraint can be defined
to look after the starting of classes from the very first time-slot of a day.
Then it can be handled as a single-objective (f2) optimization problem, or
one or more new objective function(s) can also be defined.

8 Application of NSGA-II-UCTO

NSGA-II-UCTO was tested on a number of virtual and real problems, and it
was found successful in every case. Its application to two real problems from
National Institute of Technology - Silchar (NIT-Silchar), a technical institute in
India, will be addressed in detail in this section. Moreover, different features of
EAs, such as attainment and summary attainment surfaces, and tuning of EA
operators and parameters, will be presented through these problems.

In addition to Masters and PhD programmes, NIT-Silchar offers five under-
graduate degree programmes in the disciplines (batches) of Civil, Mechanical,
Electrical, Electronics and Computer Engineering. These under-graduate pro-
grammes are of four-year (eight-semester) duration, and the annual intake ca-
pacities are 50, 60, 45, 30 and 30, respectively. There are two sessions in a year:
odd semester and even semester. Odd semester covers the classes of first, third,
fifth and seventh semesters, while even-semester covers those of second, fourth,
sixth and eighth semesters. To allow for change of discipline at the end of first
year, the first and second semesters consist of common compulsory courses. Since
the numbers of students in Electronics and Computer Engineering are compar-
atively less, these two disciplines are treated as one in these two semesters. The
scheduling problems of odd and even semesters, for those five disciplines, were

219University Class Timetabling Problem

considered by the current authors to study using NSGA-II-UCTO. The prob-
lems have been named, in short, as NITS1 and NITS2, respectively. The reasons
behind the selection of these two problems are their complex class-structure and
high requirements. Moreover, as discussed in Section 4.4, NITS1 can be tackled
by expressing (1) and (3) in terms of batches, instead of students. It will be
shown shortly how drastically the number of constraints can be reduced from
such replacement of students by batches. Both NITS1 and NITS2 contain all
types of courses, addressed in Sect.3. Laboratory classes span over two to four
consecutive time-slots. Most of the tutorial and laboratory classes are split into
two sections. Moreover, many classes are either combined or grouped. Even many
classes are to be taught by multiple teachers. On the other hand, many batches
are fully packed over the week, and students of such batches hardly get 6 or 7
free time-slots in a week of total 35 time-slots. Moreover, there are very limited
numbers of rooms and teachers for conducting the classes. In terms of the num-
ber of time-slots, weekly engagement of teachers varies from 3 to 18 in a week.
There are total 522 classes in NITS1, and these span over 583 time-slots. Simi-
larly, the number of classes in NITS2 is 506, spanning over 559 time-slots. Detail
of classes in both of NITS1 and NITS2 are given, respectively, in Tables 3 and
4 (NITS 2005), where Smp, Splt, Cmb and Opn denote simple, split, combined
and open classes, respectively. These classes are required to be scheduled in 5

Table 3. Classes in NITS1.

Classes
Number of Classes # of
Smp Splt Cmb Opn Slots

1-Slot 254 98 36 62 432

2-Slot 15 50 – – 130

3-Slot 05 02 – – 21

Total 274 150 36 62 583

Table 4. Classes in NITS2.

Classes
Number of Classes # of
Smp Splt Cmb Opn Slots

1-Slot 238 98 42 66 423

2-Slot 06 46 – – 104

3-Slot – 08 – – 24

4-Slot – 02 – – 08

Total 244 154 42 66 559

days/week, where each day has 7 time-slots with a recess after the 4-th time-
slot. Available resources (teachers and class-rooms) were modified slightly, from
the actual one, to show the scheduling using optimum resources. The considered
number of rooms (including laboratories) in NITS1 is 37, and that in NITS2 is
35. The numbers of teachers in NITS1 and NITS2 are 89 and 63, respectively.
Hence, as per the formulation of Sect.4.4, the numbers of hard constraints in
the problems are given in Table 5, where S, M, R, T, D, C and E represent the
numbers of students, teachers, rooms, time-slots/day, days/week, courses, and
classes, respectively. There are limited number of open courses in NITS1: only
one or two set(s) of departmental elective courses in seventh semester. Classes of
these courses are again grouped, and a student has to attend only one class of a
set. Hence, by treating a set of group courses as a single course, the problem can
be tackled as one without any open course. Hence, as mentioned in Sect.4, com-
putational time for NITS1 can be reduced by expressing (1) and (3) in terms of

220 D. Datta et al.

Table 5. Numbers of hard constraints in NITS1 and NITS2.

Problem S M R T D C E
No. of Constraints

(S+M+R)TD+CD+3E

NITS1 860 89 37 7 5 154 522 36,846

NITS2 860 63 35 7 5 143 506 35,763

batches, instead of students. In that case, replacing 860 students by 19 batches
in Table 5, the number of hard constraints in NITS1 is reduced from 36,846 to
7,411. For the ease of computer programming, an original course with lecture,
tutorial and laboratory classes, was divided into applicable sub-courses, for ex-
ample, Physics lecture course, Physics tutorial course and Physics laboratory
course. This was done because the structures of those classes vary from each
other. In NSGA-II-UCTO, the HA needs two large numbers as the maximum
numbers of attempts for two searches: one for finding suitable time-slot and room
for a class, and the other for completing the initialization of a solution. These
numbers are arbitrary. Based on the execution of a number of computational
tests, the former one was taken equal to the total number available slots, and
the latter one as 1000. If the HA fails to initialize a solution in those maximum
numbers of attempts, the solution is replaced by already initialized one. In the
crossover operator, initially attempt was made to transfer 40% of genes (ran-
domly selected) from each parent to an offspring. In that case, when feasibility
of a solution was required to be preserved, the HA frequently failed to complete
offspring in the specified maximum number of attempts. Hence, only 20% of
genes from each parent was transferred to an offspring. If the HA fails to com-
plete an offspring in the specified maximum number of attempts, it is replaced
by one of the best solutions from the previous population. Each mutation oper-
ator also needs a large number as the maximum number of attempts for finding
a pair of time-slots, at which the classes of a room are to be swapped/shifted.
This number was taken arbitrarily as the number of the total time-slots in a week.

When applied, NSGA-II-UCTO was found successful in every considered case
of NITS1 and NITS2. The obtained results are presented here through one or
more of the following plot(s):

1. Final non-dominated trade-off solutions (Pareto Front),
2. Computational times,
3. Comparison of results obtained from the use of different combinations of EA

operators, and/or parameters,
4. Comparison of results obtained from single and multi-objective cases,
5. Attainment and summary attainment surfaces of Pareto fronts, etc.

8.1 Selection of Mutation Operators

As discussed in Sect.6.3, before going to solve a problem, it is required to find
objective-specific mutation operator(s) which would best suit to the problem in

221University Class Timetabling Problem

hand. Then the selected operator(s) can be applied simultaneously in NSGA-
II-UCTO for optimizing all the objective functions together. In this regard, the
three mutation operators, MFRA, MIRA and MRRA, were applied to NITS2
as the only operator for generating new solutions. Each operator was applied,
separately to each objective function, under single-objective optimization for
different values of mutation probability (pm) and random seed11 (rs). Three
values of pm and ten values of rs were considered in the range of (0,1). Then
each value of pm, separately under all the ten values of rs, was used to each
of the three mutation operators. Single-objective optimization problems were
solved using NSGA-II-UCTO only by keeping all objective functions, other than
the required one, constant at zero. In each case, NSGA-II-UCTO was executed
for 1000 generations with a population of 50 solutions, and then the means and
standard deviations of the objective functions, f1 and f2, were computed. The
obtained results for f1 and f2 are shown in Tables 6 and 7, respectively. f1

Table 6. Performance of MFRA, MIRA and MRRA on f1 of NITS2.

Random MFRA MIRA MRRA
Seed 0.01 0.45 0.90 0.01 0.45 0.90 0.01 0.45 0.90

0.010 3.931 3.846 3.280 5.137 5.074 5.043 4.060 3.634 3.502
0.050 4.520 3.971 3.003 5.095 5.134 5.127 4.260 3.683 3.737
0.125 4.681 4.135 3.673 5.178 5.178 5.178 4.751 3.667 3.270
0.232 4.500 3.806 3.613 5.310 5.137 5.110 4.796 3.700 3.663
0.345 4.538 3.752 3.822 4.592 4.370 4.463 4.371 3.696 3.663
0.463 4.091 3.606 3.462 4.844 4.844 4.758 4.380 3.398 3.560
0.587 3.880 3.328 2.857 5.123 4.928 5.074 4.594 3.456 2.972
0.712 4.620 3.920 3.317 5.320 5.241 5.206 4.186 3.308 2.836
0.852 4.150 3.934 3.862 5.271 5.076 5.033 4.465 4.043 3.494
0.999 4.733 3.945 3.499 5.251 5.230 4.902 4.720 3.776 3.145

Mean f1 4.364 3.824 3.439 5.112 5.021 4.989 4.458 3.636 3.384

Std. Dev. 0.303 0.213 0.313 0.218 0.247 0.216 0.239 0.198 0.296

and f2, along with their means, under each case are also shown in Fig.5(a) and
Fig.5(b), respectively. Means are shown in the figures by filled-circles. Though
it was expected that MFRA would perform better on f1, and MIRA on f2, the
obtained results revealed that the improvement of both f1 and f2 were much
better under MRRA only. Hence, MRRA was accepted as the best one among
all the three mutation operators. The performance of MIRA was the worst, while
that of MFRA was comparable with that of MRRA in many cases. Moreover,
MFRA slightly outperformed MRRA in case of f1 under pm = 0.01. The best
performance of MRRA might be due to the fact that it explores, as well as

11 A random seed is a user-specified random number in the range of (0,1). In NSGA-II-
UCTO, it is used for generating random integers as the serial numbers of class-rooms
and time-slots where classes are to be scheduled.

222 D. Datta et al.

Table 7. Performance of MFRA, MIRA and MRRA on f2 of NITS2.

Random MFRA MIRA MRRA
Seed 0.01 0.45 0.90 0.01 0.45 0.90 0.01 0.45 0.90

0.010 0.905 0.825 0.778 1.095 1.048 1.032 0.825 0.714 0.762
0.050 0.873 0.651 0.730 0.936 0.952 0.905 0.841 0.635 0.667
0.125 0.952 0.825 0.778 1.048 1.048 0.984 0.873 0.778 0.714
0.232 1.000 0.873 0.794 1.048 1.032 0.921 0.921 0.809 0.746
0.345 0.968 0.921 0.841 1.143 0.984 0.984 0.936 0.809 0.746
0.463 0.857 0.603 0.667 0.984 0.936 0.968 0.905 0.651 0.603
0.587 0.809 0.794 0.730 1.095 0.984 0.952 0.809 0.682 0.746
0.712 0.905 0.794 0.714 1.016 1.000 0.968 0.825 0.651 0.651
0.852 0.921 0.794 0.682 1.032 1.063 1.032 0.825 0.746 0.762
0.999 0.889 0.841 0.714 1.079 1.016 1.000 0.952 0.809 0.682

Mean f2 0.908 0.792 0.743 1.048 1.006 0.975 0.871 0.729 0.708

Std. Dev. 0.053 0.091 0.051 0.057 0.040 0.040 0.050 0.067 0.052

Fig. 5. Performance of MFRA, MIRA and MRRA on f1 and f2 of NITS2.

exploits, the search space, whereas other two operators perform either of these

1. NSGA-II-UCTO depends on user-defined mutation probabilities. This is
clear from any row of Tables 6 and 7, which shows the objective functions
for different mutation probabilities under the same random seed.

2. NSGA-II-UCTO also depends on random seeds (in other words, initial solu-
tions). This can be observed from any column of Tables 6 and 7, which shows
the objective functions for different random seeds under the same mutation
probability.

To overcome the dependency of NSGA-II-UCTO on user-defined pm, evolving
or self-adapting pm (Anastasoff 1999; Smith and Fogarty 1996) can be adopted.
This is well acceptable as wide evidence of the evolution of mutation rates is
found in nature also (Lund 1994). In uncertain and changing environments, the
evolved mutation rates must be able to adapt to new situations. In EA problems,
therefore, it is not required to fix pm for the whole evolution process, but can
be left free to evolve itself. In NSGA-II-UCTO, evolving pm have been encoded
genotypically in the chromosomes. Each chromosome contains an additional gene

223University Class Timetabling Problem

two searches. Two more important observations from this experiment are that

as its pm. Initially, pm is assigned a random number in the range of (0,1), and
thereafter, allowed to evolve to p′m. pm is evolved to p′m using polynomial mu-

tation of real number (Deb 2001) with 100% probability. If a chromosome gets
mutated at p′m, then p′m is stored as pm in the chromosome. Since NSGA-II-
UCTO is also dependent on initial solutions, a problem may be tested under
different values of rs, and then the best solution can be accepted from the mul-
tiple alternatives.

8.2 NITS1 and NITS2 with Relaxed Hard Constraints

As the first case, NITS1 and NITS2 were considered with relaxed batch/student
and teacher-clash constraints, given by (3) and (4), respectively. The crossover
probability (pc), mutation probability (pm) and random seed (rs) were chosen as
0.90, 0.01 and 0.125, respectively. Then NSGA-II-UCTO was executed with 50
solutions in the population. In case of NITS1, though all the initial solutions were
infeasible, the population was filled by feasible solutions just in 285 generations.
However, the whole population at that stage was filled by the copies of a single
solution with f1 =8.015 and f2 = 0.640. After that, NSGA-II-UCTO was unable
to generate any new solution till 2000 generations. Hence, the execution was
stopped. The solutions, obtained so far, are shown in Fig.6(a). In case of NITS2

Only feasible solution

time−slots between two classes of a batch (f_1)

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 5.5 6 6.5 7 7.5 8.5 9 9.5 10 8cu
ti

v
e

cl
as

se
s

o
f

a
te

ac
h
er

 (
f_

2
)

A
v
er

ag
e

n
u
m

b
er

 o
f

w
ee

k
ly

 c
o
n
se

−

Average number of weekly free

(a) NITS1 (only one feasible solution)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 5 5.5 6 6.5 7.5 8 8.5 9 7

Average number of weekly freeA
v

er
ag

e
n

u
m

b
er

 o
f

w
ee

k
ly

 c
o

n
se

−

time−slots between two classes of a student (f_1)

 1.7

cu
ti

v
e

cl
as

se
s

o
f

a
te

ac
h

er
 (

f_
2

)

(b) NITS2 (no feasible solution)

Fig. 6. NITS1 and NITS2 with relaxed student/batch and teacher-clash constraints
(pc = 0.90, pm = 0.01 and rs =0.125).

also, the HA could not initialize any feasible solution. NSGA-II-UCTO was also
unable to produce even a single feasible solution in 5000 generations. However,
some improvements in student and teacher-clash constraints were noticed during
the optimization process. Hence, the possibility of obtaining feasible solutions
can not be denied if the execution was continued for more generations. How-
ever, execution of NSGA-II-UCTO up to 5000 generations itself was very huge
(which took 40 hours 47minutes 7 seconds in Linux environment in a Pentium IV
machine with 1.0GB RAM and 2.933GHz processor). Hence, its execution over
that, without any guarantee, would be computationally uneconomic. The solu-
tions, obtained till 5000 generations, are shown in Fig.6(b).

224 D. Datta et al.

8.3 NITS1 and NITS2 Maintaining Feasibility of Solutions

Being not succeeded by relaxing constraints, NITS1 and NITS2 were solved
again maintaining the feasibility of solutions. The EA parameters were kept
the same as in Sect.8.2, i.e., pc = 0.90, pm =0.01 and rs = 0.125. The attempt
was successfull at this time. The obtained results of NITS1, after 5000 gener-
ations, are shown in Fig.7. Though the attempt was successful, it is observed

Pareto Front
 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 4 4.5 5 5.5 6 6.5 7 7.5

time−slots between two classes of a batch (f_1)

Average number of weekly freeA
v

er
ag

e
n

u
m

b
er

 o
f

w
ee

k
ly

 c
o

n
se

−
cu

ti
v

e
cl

as
se

s
o

f
a

te
ac

h
er

 (
f_

2
)

(a) Final solutions

 0

 200

 400

 600

 800

 1000

 1200

 0 1000 2000 3000 4000 5000

Generation Number

T
im

e
re

q
u

ir
ed

 f
o

r
cr

o
ss

o
v

er
 (

se
c)

(b) Time for crossover

Fig. 7. Optimized solutions of NITS1 (pc =0.90, pm =0.01 and rs = 0.125).

from Fig.7(b) that the success was obtained at the cost of huge computational
time, required by the crossover operator. Total execution time was 136hours
52minutes 42 seconds. The HA took 6 minutes 53 seconds to initialize the 50 so-
lutions of the population. Each function evaluation took only around 1 second.
One mutation was completed in less than 1 second. Total data printing time was
7minutes 15 seconds. Rest of the computational time was required in crossover,
most of which was exhausted by the HA in completing the offspring. The same
situation was arisen in case of NITS2 also, results of which are shown in Fig.8.
Total execution time was 19 hours 59minutes 36 seconds. As shown in Fig.8(b),

Pareto Front
 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
Average number of weekly free

time−slots between two classes of a student (f_1)

A
v

er
ag

e
n

u
m

b
er

 o
f

w
ee

k
ly

 c
o

n
se

−
cu

ti
v

e
cl

as
se

s
o

f
a

te
ac

h
er

 (
f_

2
)

(a) Final solutions

 0

 100

 200

 300

 400

 500

 600

 0 1000 2000 3000 4000 5000

Generation Number

T
im

e
re

q
u

ir
ed

 i
n

 c
ro

ss
o

v
er

 (
se

c)

(b) Time for crossover

Fig. 8. Optimized solutions of NITS2 (pc =0.90, pm =0.01 and rs = 0.125).

here also most of the execution time was required by the crossover operator.

225University Class Timetabling Problem

Initially it took huge time, 11-588 seconds per crossover till 49 generations, and
thereafter, it was stable at 9-34 seconds till the completion of the execution. The
reason of taking excess time till 49 generations was that the HA frequently failed
to complete the offspring, and hence, it was required to make the specified max-
imum number of attempts before replacing an incomplete offspring by one of the
best solutions from the previous generation.

8.4 NITS1 and NITS2 Using Only Mutation Operator (MRRA)

Since the crossover operator (XVRA) was found too expensive in terms of compu-
tational time, an experiment was made using only mutation operator (MRRA).
Since the whole responsibility for generating new solutions was imposed on
MRRA only, pm was set very high at 0.90. rs was kept the same, i.e., rs = 0.125.
The obtained results of NITS1 are shown in Fig.9. Interesting enough, the total

Pareto Front
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

Average number of weekly free
time−slots between two classes of a batch (f_1)

cu
ti

v
e

cl
as

se
s

o
f

a
te

ac
h
er

 (
f_

2
)

A
v
er

ag
e

n
u
m

b
er

 o
f

w
ee

k
ly

 c
o
n
se

−

(a) Final solutions

 0

 0.2

 0.4

 0.8

 1.2

 0 1000 2000 3000 4000 5000

Generation Number

 0.6

 1

T
im

e
re

q
u

ir
ed

 f
o

r
m

u
ta

ti
o

n
 (

se
c)

(b) Time for mutation

Fig. 9. Optimized solutions of NITS1 using only MRRA (pm =0.90 and rs =0.125).

execution time in this case came down to 1 hour 19minutes 17 seconds only. The
number of search points was also increased from 284 to 926. Moreover, much bet-
ter result was obtained than that in the previous case, shown in Fig.7, i.e., only
MRRA performed better than that of combined XVRA and MRRA. This was
a very good outcome, which needed further confirmation whether it is a general
case or just for the particular case in hand. Since it was revealed in Sect.8.1 that
NSGA-II-UCTO depends on both user-defined pm and rs, multiple runs under
different pm and rs were required for this confirmation. However, instead of tak-
ing few selective pm, which would again depend on the choice of an individual
user, the test was performed under evolving pm. In the experiment in hand, the
polynomial probability distribution index (Deb 2001) for mutating the evolving
pm was set at 30. Then NITS1 was solved again under nine different values of
rs, and the use of only MRRA was found outperforming the use of combined
XVRA and MRRA in all the nine cases. The compared Pareto fronts are shown
in Fig.10. Hence, it can be concluded that the mutation operator (MRRA) alone
performs well on NITS1 than that of the combined crossover (XVRA) and mu-
tation (MRRA) operators.

226 D. Datta et al.

a

b

r_s = 0.125

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 3.5 4 4.5 5 5.5 6 6.5 7
f 1

f_
2

a

b

r_s = 0.189

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 4 4.5 5 5.5 6 6.5 7 7.5
f 1

f_
2

a

b

r_s = 0.232

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 4 4.5 5 5.5 6 6.5 7 7.5
f 1

f_
2

a

b

r_s = 0.345

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 4 4.5 5 5.5 6 6.5 7
f 1

f_
2 a

b

r_s = 0.463

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 4 4.5 5 5.5 6 6.5 7 7.5
f 1

f_
2 a

b

r_s = 0.587

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 4 4.5 5 5.5 6 6.5 7 7.5
f 1

f_
2

a

b

r_s = 0.712

 0.05

 0.15

 0.25

 0.35

 0.45

 0.55

 4 4.5 5 5.5 6 6.5 7 7.5
f 1

f_
2

a

b

r_s = 0.852

 0.05

 0.15

 0.25

 0.35

 0.45

 0.55

 3.5 4 4.5 5 5.5 6 6.5 7
f 1

f_
2

a

b

r_s = 0.999

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 3.5 4 4.5 5 5.5 6 6.5 7 7.5
f 1

f_
2

Fig. 10. Comparison of Pareto fronts of NITS1, obtained under different initial solu-
tions (rs) and evolving pm. Curve (a): combined XVRA (pc =0.90) and MRRA, and
curve (b): only MRRA.

The results of NITS2, when solved using only MRRA, are shown in Fig.11.
The total execution time in this case was only 14 hours 23minutes 30 seconds,

Pareto Front

 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8

 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

Average number of weekly free
time−slots between two classes of a student (f_1)

A
v

er
ag

e
n

u
m

b
er

 o
f

w
ee

k
ly

 c
o

n
se

−

cu
ti

v
e

cl
as

se
s

o
f

a
te

ac
h

er
 (

f_
2

)

(a) Final solutions

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 1000 2000 3000 4000 5000

T
im

e
re

q
u

ir
ed

 i
n

 m
u

ta
ti

o
n

 (
se

c)

Generation Number

(b) Time for mutation

Fig. 11. Optimized solutions of NITS2 using only MRRA (pm = 0.90 and rs =0.125).

out of which each mutation took 8-18 seconds. That is, in NITS2 also, the time
required by the use of only MRRA is less than that required by the use of
combined XVRA and MRRA (Fig.8). The number of search points was also in-
creased from 357 to 1228. However, unlike in the case of NITS1, the solution
quality of NITS2 was better under the combined XVRA and MRRA. Before

227University Class Timetabling Problem

making any conclusion on this outcome, here also multiple runs were required to
check whether it is a general case or just a particular one. In this regard, NITS2
was also solved nine times with evolving pm under different values of rs. The
compared Pareto fronts are shown in Fig.12. It is observed in Fig.12 that the

f1

f 2

Random seed = 0.05
Pm = evolving

b

a

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 2.5 3 3.5 4 4.5 5

(a) Both crossover & mutation
(b) Only mutation

f1

f 2 Random seed = 0.125
Pm = evolvingb

a

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 2.5 3 3.5 4 4.5 5 5.5 6

(a) Both crossover & mutation
(b) Only mutation

f1

f 2

Random seed = 0.189
Pm = evolving

a

b

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 3 3.5 4 4.5 5 5.5

(a) Both crossover & mutation
(b) Only mutation

f1

f 2

Random seed = 0.345
Pm = evolving

a

b

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

(a) Both crossover & mutation
(b) Only mutation

f1

f 2

Random seed = 0.463
Pm = evolving

b
a

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 2.5 3 3.5 4 4.5 5

(a) Both crossover & mutation
(b) Only mutation

f1
f 2

Random seed = 0.587
Pm = evolving

a

b

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 2.5 3 3.5 4 4.5 5 5.5 6

(a) Both crossover & mutation
(b) Only mutation

f 2

f1

Random seed = 0.712
Pm = evolving

a

b

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8

(a) Both crossover & mutation
(b) Only mutation

f1

f 2

Random seed = 0.852
Pm = evolving

b

a

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 2.5 3 3.5 4 4.5 5 5.5

(a) Both crossover & mutation
(b) Only mutation

f1

f 2

Pm = evolving
Random seed = 0.999

a

b

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

(a) Both crossover & mutation
(b) Only mutation

Fig. 12. Comparison of Pareto fronts of NITS2, obtained under different initial solu-
tions (rs) and evolving pm. Curve (a): combined XVRA (pc =0.90) and MRRA, and
curve (b): only MRRA.

performance of only MRRA was comparable with that of combined XVRA and
MRRA. However, the overall performance of the latter was much better than
the former one. Hence, it can be concluded that, unlike in the case of NITS1,
the combined crossover (XVRA) and mutation (MRRA) operators perform well
on NITS2 than that of the mutation operator (MRRA) alone.

8.5 Attainment and Summary Attainment Surfaces (AS & SAS)

When evaluating the performance of a stochastic optimizer, it is sometimes de-
sirable to express the performance in terms of the quality attained in a certain
number of sample runs. In multi-objective evolutionary optimization, the out-
come of a run is measured as an attainment surface (AS) in k-dimensional space,
where k is the number of objective functions. A surface formed by joining the
points, representing the non-dominated solutions, is known as an attainment
surface (e.g., the Pareto front of Fig.7(a)). It divides the objective space into
two regions: one is dominated, and the other is not dominated by the obtained

228 D. Datta et al.

solutions (Fonseca and Fleming 1996; Knowles 2005). Multiple attainment sur-
faces, obtained from multiple runs of an optimizer, can be superimposed, and
interpreted probabilistically for visualizing the performance of a run of the op-
timizer. For this, the region, bounded by all the attainment surfaces, is divided
by equal number of non-crossing surfaces, known as summary attainment sur-

faces (SAS) (Knowles 2005). SAS are denoted in percentage, and indicate the
performance-level of a solution. For example, the 50% SAS identifies the region
of objective space, which is dominated by half of the given SAS. Similarly, the
0% SAS identifies the region not dominated by any given SAS, whereas the 100%
SAS identifies the region dominated by every given SAS. Thus, the 0% SAS vi-
sualizes the best-case performance, while the 100% SAS visualizes the worst-case
performance. An experiment was performed on NITS1 and NITS2 for obtaining
such AS and SAS. Since NSGA-II-UCTO performed well on NITS1 using only
MRRA, the AS and SAS for the problem were also obtained using only MRRA.
Similarly, the AS and SAS for NITS2 were obtained using the combined XVRA
and MRRA, since they showed better performance on the problem than that
of MRRA alone. It can be observed from the plots, shown in Sect.8.2 to 8.4,
that the ranges of the objective functions (f1 and f2) are different, for which the
progress of one objective function is incomparable with the other one. Hence,
these were normalized in [0,1] in AS and SAS, using the following relations:

f̄1,i =
f1,i − fmin

1

fmax
1 − fmin

1

and f̄2,i =
f2,i − fmin

2

fmax
2 − fmin

2

, (13)

where fmin
j and fmax

j (j = 1, 2) are, respectively, the minimum and maximum
values of fj in the combined solutions of Pareto fronts, whose AS and SAS are
required. f̄1,i and f̄2,i are, respectively, normalized values of f1,i and f2,i in those
solutions.

NITS1 was solved separately with pm = 0.90 and evolving pm, under eleven dif-
ferent values of rs in each case. The obtained AS and SAS for both the cases are
shown in Fig.13 and Fig.14, respectively. It is observed from the AS of Fig.13(a)
and Fig.14(a) that the Pareto fronts followed a common pattern in all the cases.
Theoretically, all fronts had to be identical. However, the slight variation on the
actual fronts depicts the dependency of NSGA-II-UCTO on various EA parame-
ters, such as pm or rs. This is clear from the AS and SAS of Fig.14 with evolving
pm, which are more uniform than those with fixed pm, shown in Fig.13. The
comparison of 0%, 50% and 100% SAS from both the cases are also shown in
Fig.14(c). Another important observation from these comparison of SAS is that
solutions with evolving pm are more diverged than those with fixed pm.

Two cases were considered for obtaining the AS and SAS for NITS2 also: one
with pc = 0.90 and pm =0.010, and the other with pc =0.90 and evolving pm.
In each case, the problem was solved under nine different values of rs. The ob-
tained results for both the cases are shown in Fig.15 and Fig.16, respectively.
The comparison of 0%, 50% and 100% SAS from both the cases are also shown

229University Class Timetabling Problem

r = 0.010s
0.050
0.125
0.189
0.232
0.349
0.463
0.587
0.712
0.842
0.999

f 2

f
1

mp = 0.90

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(a) AS

f 2

f
1

50% SAS

100% SAS

0% SAS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(b) SAS

Fig. 13. Attainment and Summary Attainment Surfaces for NITS1 using only MRRA
with pm =0.90.

f 2

f
1

0.050

0.125

0.189

0.232

0.345

0.463

0.587

0.722

0.852

0.999

r = 0.010s

p = evolving
m

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(a) AS

f 2

f
1

50% SAS

100% SAS

0% SAS
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(b) SAS

f 2

f
1

50% SAS

100% SAS

Pm = Evolving
Pm = 0.90

0% SAS
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(c) Comparison SAS

Fig. 14. Attainment and Summary Attainment Surfaces for NITS1 using only MRRA
with evolving pm, and comparison of SAS with those shown in Fig.13.

in Fig.16(c), where it is observed that significant improvements in SAS were ob-
tained from the use of evolving pm. However, the solutions were more diverged
under fixed pm.

8.6 Comparison of Results of NITS1 from Single and
Multi-Objective Optimization

Presently timetables of NITS1 and NITS2 are prepared manually by trial and hit

method, where a feasible solution is never achieved. As a result, a few teacher-
clash is always allowed in the timetables, and then it becomes the responsibility
of a teacher to run to others to adjust his/her clashed-classes. Hence, the multi-
objective results, produced by NSGA-II-UCTO, could not be compared with
any existing solution. Therefore, it was tested how much the multi-objective re-
sults of NITS1 could be supported by those of single-objective optimization. It
is seen in literature that most of the earlier works on class timetabling prob-
lem were based on single-objective optimization. Hence, the results of single-
objective optimization of NITS1 were chosen in the present work to compare
its results of multi-objective optimization. The comparison was made by con-
sidering two cases of NITS1: one with pm =0.90 and rs =0.125, and the other

230 D. Datta et al.

0.189

0.232

0.345

0.463

0.587

0.712

0.852

0.999

r = 0.010s

f 2

f
1

c mp = 0.90 & p = 0.01

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(a) AS

f
1

f 2 50% SAS

100% SAS

0% SAS
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(b) SAS

Fig. 15. Attainment and Summary Attainment Surfaces for NITS2 using combined
XVRA and MRRA with pc = 0.90 and pm = 0.010.

c mp = 0.90 & p = Evolving

0.125

0.189

0.345

0.469

0.589

0.650

0.852

0.999

sr = 0.010

f
1

f 2

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

(a) AS

f
1

f 2

50% SAS

100% SAS

0% SAS
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(b) SAS

f 2

f
1

0% SAS

50% SAS

100% SAS

Pc = 0.90 & Pm = Evolving
Pc = 0.90 & Pm = 0.01

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

(c) Comparison SAS

Fig. 16. Attainment and Summary Attainment Surfaces for NITS2 using XVRA and
MRRA with pc =0.90 and evolving pm, and comparison of SAS with those shown in
Fig.15.

with evolving pm and rs = 0.125. In each case, NITS1 was solved thrice, under
single-objective optimization, for three different objective functions of f1, f2 and
(f1 + f2). As mentioned in Sect. 8.1, single-objective problems were solved using
NSGA-II-UCTO only by keeping all objective functions, other than the required
one, constant at zero. The obtained results are shown in Figure 17. Points A, B

and C, respectively, represent the independently minimized f1, f2 and (f1 + f2)
with fixed pm = 0.90, and A′, B′ and C′ represent those with evolving pm.
Curve D is the Pareto front obtained from multi-objective optimization with
fixed pm =0.90, and curve D′ is that with evolving pm. As seen in the figure,
in case of the fixed pm, point A was marginally better than any point on the
curve D, while point B was dominated by the curve. Point C, which indirectly
optimized both f1 and f2, was also dominated by the curve D. Since point C

was obtained by weighted-sum method (Deb 2001) with equal weightage to both
f1 and f2, possibly it could be improved by properly tuning the weightages of
the objectives. On the other hand, the results of single-objective optimization,
under evolving pm, were quite different. A′ and C′ were deteriorated from their
earlier values (A and C, respectively), while some improvement was noticed in
B′. However, no significant change was observed in the curve D′, obtained from

231University Class Timetabling Problem

f
1

f 2

f
1

f
2

f
1

f
2

f
2

f
1

D

D’

A C

A’

C’

B’

B

A’, B’, C’, D’

A, B, C, D

D, D’

C, C’

B, B’

A, A’

: With Pm = evolving

: With Pm = 0.90

: Minimization of both and

: Minimization of (+)

: Minimization of

: Minimization of

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

Fig. 17. Optimized solutions of NITS1 under single-objective optimization (Points A,
B and C, and A′, B′ and C′), and multi-objective optimization (Curves D and D′).
A, B, C and D are with pm =0.90 and rs =0.125, and A′, B′, C′ and D′ are with
evolving pm under rs = 0.125.

multi-objective optimization under evolving pm. Combining all the results, it is
seen that only point A, under single-objective optimization with fixed pm, was
slightly better than any point of multi-objective optimization. The value of f1

at A was 3.789, whereas its minimum value in both of D and D′ was equal to
3.842.
It can be concluded from this experiment that, in case of class timetabling prob-
lem, better results can be obtained from multi-objective optimization over any
single-objective optimization.

9 Conclusion

Though the academic class timetabling problem is being studied for more than
four decades, a general solution technique for it, considering different aspects of
its variants, is yet to be formulated. Despite multiple criteria to be met simultane-
ously, the problem is generally tackled as single-objective optimization problem.
Moreover, most of the earlier works were concentrated on school timetabling, and
only a few on university class timetabling. On the other hand, in many cases, the
problem was over-simplified by skipping many complex class-structures. Hence,
NSGA-II-UCTO has been developed by the current authors, as an attempt to
overcome those shortfalls, with the following salient features:

1. It is a multi-objective optimizer,
2. It is directly applicable to university class timetabling problem. It can also

be applied to school timetabling with a little modification,
3. Different types of classes can be handled through input datafiles only,
4. Choices for rooms and time-slots for conducting classes, and status of con-

straint handling, can also be made through input datafiles only, and
5. Addition/deletion of any constraint can be made through subroutines, coded

in C programming language.

NSGA-II-UCTO has been applied to two highly constrained real problems from
a technical institute in India, and it has been found successful under different

232 D. Datta et al.

combinations of EA operators and parameters. However, it has been observed
that NSGA-II-UCTO is dependent on user-defined mutation probabilities, as
well as on initial solutions.

1. Dependency of NSGA-II-UCTO on user-defined mutation probabilities could
be sorted out to some extent by using evolving/self-adapted mutation prob-
abilities.

2. Since it depends on initial solutions also, multiple runs may be performed
with different initial solutions, and then the best solution can be captured
from the multiple alternatives.

On the other hand, out of the considered two problems, NSGA-II-UCTO has
been found performing well on one with mutation operator alone, while on the
other with combined crossover and mutation operators. Hence, though the use
of crossover operator has been found to be expensive in terms of computational
time, a problem may be tested under both the cases, if time is not a big factor.

Acknowledgement: This work was partially supported by an Indo-Portuguese
scientific and technical cooperation grant from DST, India, and GRICES,

References

Abramson, D.: Constructing school timetables using simulated annealing: sequential
and parallel algorithms. Management Science 37(1) (1991) 98–113

Abramson, D., Abela, J.: A parallel genetic algorithm for solving the school timetabling
problem. In Proceedings of 15 Australian Computer Science Conference, Hobart,
(1992) 1–11

Akkoyunlu, E. A.: A linear algorithm for computing the optimum university timetable.
The Computer Journal 16(4) (1973) 347–350

Al-Attar, A.: White Paper: A hybrid GA-heuristic search strategy. AI Expert, USA
(1994)

Anastasoff, S. J.: Evolving mutation rates for the self-optimisation of genetic algo-
rithms. Lecture Notes in Computer Science, Springer-Verlag, London 1674 (1999)
74–78

Blum, C., Correia, S., Dorigo, M., Paechter, B., Rossi-Doria, O., Snoek, M.: A GA
evolving instructions for a timetable builder. In Proceedings of the Practice and
Theory of Automated Timetabling (PATAT) (2002) 120–123

Bufé, M., Fischer, T., Gubbels, H., Häcker, C., Hasprich, O., Scheibel, C., Weicker, K.,
Weiker, N., Wenig, M., Wolfangel, C.: Automated solution of a highly constrained
school timetabling problem - preliminary results. EvoWorkshops-2001, Como, Italy
(2001) 431–440

Burke, E., Elliman, D., Weare, R.: Specialised recombinative operators for timetabling
problems. In Proceedings of the AISB (AI and Simulated Behaviour) Workshop on
Evolutionary Computing (1995) 75–85

Carrasco, M. P., Pato, M. V.: A multiobjective genetic algorithm for the class/teacher
timetabling problem. In Proceedings of the Practice and Theory of Automated
Timetabling (PATAT-2000), Lecture Notes In Computer Science, Springer 2079
(2001) 3–17

233University Class Timetabling Problem

Portugal.

Carrasco, M. P., Pato, M. V.: A comparison of discrete and continuous neural network
approaches to solve the class/teacher timetabling problem. European Journal of
Operational Research 153(1) (2004) 65–79

Colorni, A., Dorigo, M., Maniezzo, V.: Genetic algorithms and highly constrained prob-
lems: The time-table case. In Proceedings of the first International Workshop on
Parallel Problem Solving from Nature (PPSN-1, 1990), Lecture Notes in Computer
Science (1991), Springer 496 (1990) 55–59

Colorni, A., Dorigo, M., Maniezzo, V.: A genetic algorithm to solve the timetable
problem. Tech. rep. 90-060 revised, Politecnico di Milano, Italy (1992)

Cooper, T. B., Kingston, J. H.: The complexity of timetable construction problems.
In Proceedings of Practice and Theory of Automated Timetabling (PATAT-95),
Lecture Notes in Computer Science (1996), Springer-Verlag 1153 (1995) 283–295

Corne, D., Ross, P., Fang, H-L.: Fast practical evolutionary timetabling. Lecture Notes
in Computer Science 865, Springer-Verlag (Evolutionary Computing AISB Work-
shop, Leeds, UK) (1994) 251–263

Costa, D.: A tabu search algorithm for computing an operational timetable. European
Journal of Operational Research 76(1) (1994) 98–110

Daskalaki, S., Birbas, T., Housos, E.: An integer programming formulation for a case
study in university timetabling. European Journal of Operational Research, 153
(2004) 117–135

Datta, D., Deb, K.: Design of optimum cross-sections for load-carrying members using
multi-objective evolutionary algorithms. In Proceedings of International Conference
on Systemics, Cybernetics and Informatics (ICSCI), Hyderabad, India 1 (2005)
571–577

de Werra, D.: Construction of school timetables by flow methods. INFOR - Canadian
Journal of Operations Research and Information Processing 9 (1971) 12–22

Deb, K.: Optimization for Engineering Design-Algorithms and Examples. Prentice-Hall
of India Pvt. Ltd., New Delhi, India (1995)

Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley &
Sons Ltd, Chichester, England (2001)

Deb, K., Agarwal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective ge-
netic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2)
(2002) 182–197

Desef, T., Bortfeldt, A., Gehring, H.: A tabu search algorithm for solving the
timetabling problem for German primary schools (Abstract). In Proceedings of
the Practice and Theory of Automated Timetabling (PATAT) (2004) 465–469

Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity
flow problems. SIAM Journal of Computation 5(4) (1976) 691–703

Fang, H-L.: Genetic algorithms in timetabling and scheduling. PhD Thesis, Department
of Artificial Intelligence, University of Edinburgh (1994)

Filho, G. R., Lorena, L. A. N.: A constructive evolutionary approach to school
timetabling. In Proceedings of First European Workshop on Evolutionary Com-
putation in Combinatorial Optimization (EvoCOP-2001) (2001) 130–139

Fonseca, C. M., Fleming, P. J.: Genetic Algorithms for Multiobjective Optimisation:
Formulation, discussion and generalization. In Proceedings of the fifth International
Conference on Genetic Algorithms. S. Forrest, ed. Morgan Kaufmann, San Mateo
(1993) 416–423

Fonseca, C. M., Fleming, P. J.: On the performance assessment and comparison of
stochastic multiobjective optimizers. In Proceedings of 4th International Confer-
ence on Parallel Problem Solving from Nature (PPSN)-IV, Lecture Notes in Com-
puter Science, Springer-Verlag (1996) 584–593

234 D. Datta et al.

Fujino, K.: A preparation for the timetable using random number. Information pro-
cessing in Japan 5 (1965) 8–15

Gaspero, L. D., Schaerf, A.: Multi-neighbourhood local search for course timetabling.
In Proceedings of the Practice and Theory of Automated Timetabling (PATAT)
(2002) 128–132

Goldberg, D. E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley (1989)

Gotlieb, C. C.: The construction of class-teacher timetables. In Proceedings of IFIP
Congress, North-Holland Pub. Co., Amsterdam (1962) 73–77

Greko, B.: School scheduling through capacitated network flow analysis. Swed. Off.
Org. Man., Stockholm (1965)

Horn, J., Nafpliotis, N., Goldberg, D. E.: A Niched Pareto Genetic Algorithm for
Multiobjective Optimization. In Zbigniew Michalewicz (ed.): Proceedings of the
first IEEE Conference on Evolutionary Computation 1 (1994) 82–87

Knowles, J.: A summary-attainment-surface plotting method for visualizing the per-
formance of stochastic multiobjective optimizers. IEEE Intelligent Systems Design
and Applications (ISDA-2005) (2005) 552–557

Lawrie, N.: An integer programming model of a school timetabling problem. The Com-
puter Journal 12 (1969) 307–316

Lewis, R., Paechter, B.: New crossover operators for timetabling with evolutionary
algorithms. In A. Lofti (Ed.) 5th International Conference on Recent Advances in
Soft Computing (RASC) 5 (2004) 189–195

Lima, M. D., de Noronha, M. F., Pacheco, M. A. C., Vellasco, M. M. R.: Class schedul-
ing through genetic algorithms. IV Workshop do Sistema Brasileiro de Technologia
de Informação (SIBRATI), Poli/USP-Säo Paulo (2001)

Looi, C.: Neural network methods in combinatorial optimization. Computers and

Lund, H. H.: Adaptive approaches towards better GA performance in dynamic fitness
landscapes. Technical Report, Aarhus University, Daimi, Denmark (1994)

Melicio, F., Caldeira, J. P., Rosa, A.: Two neighbourhood approaches to the timetabling
problem. In Proceedings of the Practice and Theory of Automated Timetabling
(PATAT) (2004) 267–282

Mesquita, A., Salazar, F. A., Canazio, P. P.: Chromosome representation through
adjacency matrix in evolutionary circuits synthesis. In Proceedings of the 2002
NASA/DOD Conference on Evolvable Hardware (EH’02) (2002) 102–109

Murison, B.: Indicator Functions. http://mcs.une.edu.au/ stat354/notes/node16.html
(October, 2000)

Neufeld, G. A., Tartar, J.: Graph coloring conditions for the existence of solutions to
the timetable problem. Communications of the ACM 17(8) (1974) 450–453

NITS: National Institute of Technology - Silchar. http://www.nits.ac.in (2005)
Okabe, T., Jin, Y., Sendhoff, B.: A new approach to dynamics analysis of genetic algo-

rithms without selection. In Proceedings of Congress on Evolutionary Computation,
Edinburgh (2005) 374–381

Papadimitriou, C. H., Steiglitz, K.: Combinatorial Optimization - Algorithms and Com-
plexity. Prentice-Hall of India Private Limited, New Delhi (1982)

Paquete, L. F., Fonseca, C. M.: A study of examination timetabling with multiobjec-
tive evolutionary algorithms. In 4th Metaheuristics International Conference (MIC-
2001), Porto (2001) 149–154

Piola, R.: Evolutionary solutions to a highly constrained combinatorial problem. In Pro-
ceedings of IEEE Conference on Evolutionary Computation (First World Congress
on Computational Intelligence), Orlando, Florida 1 (1994) 446–450

235University Class Timetabling Problem

Operations Research 19(3/4) (1992) 191–208

Rao, S. S.: Engineering Optimization-Theory and Practice. New Age International (P)
Ltd, India (1996)

Rossi-Doria, O., Blum, C., Knowles, J., Sampels, M., Socha, K., Paechter, B.: A local
search for the timetabling problem (Abstract). In Proceedings of the Practice and
Theory of Automated Timetabling (PATAT) (2002) 124 -127

Rossi-Doria, O., Paechter, B.: An hyperheuristic approach to course timetabling prob-
lem using an evolutionary algorithm. The first Multidisciplinary International Con-
ference on Scheduling: Theory and Applications (MISTA) (2003)

Rudová, H., Murry, K.: University course timetabling with soft constraints. In Pro-
ceedings of the Practice and Theory of Automated Timetabling (PATAT) (2002)
73–89

Schaerf, A.: Tabu search techniques for large high-school timetabling problems. In
Proceedings of thirteenth National Conference of the American Association for
Artificial Intelligence (AAAI-1996), AAAI Press/MIT Press (1996) 363–368

Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13(2)
(1999) 87–127

Silva, J. D. L., Burke, E. K., Petrovic, S.: An introduction to multiobjective metaheuris-
tics for scheduling and timetabling. Metaheuristic for Multiobjective Optimisation,
Lecture in Economics and Mathematical 535 (2004)
91–129

Smith, J., Fogarty, T. C.: Self adaptation of mutation rates in a steady state genetic
algorithm. In Proceedings of the third IEEE Conference on Evolutionary Compu-
tation, IEEE Press, Piscataway, NJ (1996) 318–323

Srinivasan, D., Seow, T. H., Xu, J. X.: Automated time table generation using multiple
context reasoning for university modules. In Proceedings of IEEE International
Conference on Evolutionary Computation (CEC) (2002) 1751–1756

THOMSON: ISI Essential Science Indicators: Special Topics - Fast Breaking Papers.
http://www.esi-topics.com/fbp/fbp-february2004.html (2004)

Tripathy, A.: School timetabling - A case in large binary integer linear programming.
Management Science 30(12) (1984) 1473–1489

Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithm: A comparative case study
and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computa-
tion 3(4) (1999) 257–271

236 D. Datta et al.

Genetic Algorithms. Journal of Evolutionary Computation 2(3) (1994) 221–248
Srinivas, N., Deb, K.: Multiobjective optimization using Nondominated Sorting in

Systems-SpringerNotes

Metaheuristics for University Course Timetabling

Rhydian Lewis1, Ben Paechter1, Olivia Rossi-Doria2

1Centre for Emergent Computing,
Napier University, Edinburgh EH10 5DT, Scotland.
2Dipartimento di Matematica Pura ed Applicata,
Univesita’ degli Studi di Padova, via G. Belzoni 7, 35131 Padua, Italy.

Summary. In this chapter we consider the NP-complete problem of univer-
sity course timetabling. We note that it is often difficult to gain a deep un-
derstanding of these sorts of problems due to the fact that so many different
types of constraints can ultimately be considered for inclusion in any par-
ticular application. Consequently we conduct a detailed analysis of a
benchmark problem version that is slightly simplified, but also contains
many of the features that make these sorts of problems “hard”. We review a
number of the algorithms that have been proposed for this particular prob-
lem, and also present a detailed description and analysis of an example al-
gorithm that we show is able to perform well across a range of benchmark
instances.

1 Introduction to Timetabling

Timetables are ubiquitous in many areas of daily life such as work, educa-
tion, transport, and entertainment: it is, indeed, quite difficult to imagine an
organized and modern society coping without them. Yet in many real-
world cases, particularly where resources (such as people, space, or time)

timetable construction is certainly a problem that we should try to solve as
best we can. Additionally, given that timetables will often need to be up-
dated or completely remade (e.g. school timetables will often be redes-

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007
Intelligence (SCI) 49, 237–272 (2007)

R. Lewis et al.: Metaheuristics for University Course Timetabling, Studies in Computational

ten have large effects on the day-to-day lives of the people who use them,
experienced timetable designer. However, given that these timetables can of-
attractive timetables can often be a very challenging one, even for the
are not overly in abundance, the problem of constructing workable and

igned at the beginning of each academic year; bus timetables will need to
be modified to cope with new road layouts and bus stops, etc.), their con-

1.1 Timetabling at Universities

In this chapter we will be concerning ourselves with the problem of con-
structing timetables for universities. The generic university-timetabling
problem may be summarised as the task of assigning events (lectures, ex-
ams, etc.) to a limited set of timeslots, whilst also trying to satisfy some
constraints.

Probably the most universally encountered constraint for these problems
is the event-clash constraint: if one or more persons are required to attend a
pair of events, then these events must not be assigned to the same timeslot.
However, beyond this simple example, university timetabling problems, in
general, are notorious for having a plethora of different problem defini-
tions in which any number of different constraints can be imposed. These
constraints can involve factors such as room facilities and capacities,
teacher and student preferences, physical distances between venues, the
ordering of events, the timetabling policies of the individual institution,
plus many more. (Some good surveys on constraints can be found in [9,
12, 22, 41].) Some problem definitions may even directly oppose others in
their criteria for what makes a good timetable. For example, some might
specify that we want timetables where each member of staff is given one
day free of teaching per week (e.g. [20]). Others, however, might discour-
age or disallow this. Obviously, which constraints are imposed, as well as
the relative importance that each one has, depends very much on each in-
dividual university’s preference. This, on the whole, makes it difficult to
formulate meaningful and universal generalisations about timetabling in
general.

One important feature that we do know, however, is that timetable con-
struction is NP-complete in almost all variants [46]. Cooper and Kingston
[21], for example, have shown a number of proofs to demonstrate that NP-
completeness exists for a number of different problem interpretations that
can often arise in practice. This, they achieve, by providing transforma-
tions from various well-known NP-complete problems (such as graph-
colouring, bin-packing, and three-dimensional matching) to a number of
different timetabling problem variants. Even, Itai, and Shamir [28] have
also shown a method of transforming the NP-complete 3-SAT problem
into a timetabling problem.

238 R. Lewis et al.

basis.
struction is also a problem that we will have to face on a fairly regular

Of course, this general NP-completeness implies that whether we will
be able to obtain anything that might be considered a workable timetable
in any sort of reasonable time will depend very much on the nature of the
problem instance being tackled. Some universities, for example, may have
timetabling requirements that are fairly loose: perhaps there is an abun-
dance of rooms or some extra teaching staff. In these cases, maybe there
are many good timetables within the total search space, of which one or
more can be found quite easily. On the other hand, some university’s re-
quirements might be much more demanding, and maybe only a small
number of workable timetables – or perhaps none – may exist. (It should
also be noted that in practice, the combination of constraints that are im-
posed by timetabling administrators could often result in problems that are
impossible to solve unless some of the constraints are relaxed.) Thus, in
cases where “harder” problems are encountered, there is an implicit need
for powerful and robust heuristic search methods. Some excellent surveys
of these can be found in [9, 11, 14, 15, 17, 41].

When looking at the timetabling problem from an operations research
point-of-view, the constraints that are imposed on a particular problem
tend usually to be classified as either hard or soft.1 Hard constraints have a
higher priority than soft, and are usually mandatory in their satisfaction.
Indeed, timetables are usually only considered feasible if all of the hard
constraints have been satisfied. Soft constraints, on the other hand, are
those that we want to obey only if possible, and more often than not will
describe what it is for a timetable to be good (with regards to the time-
tabling policies of the university, as well as the experiences of the people
who will have to use it). As can be imagined, most real-world timetabling
problems will have their own particular idiosyncrasies, and while this has
resulted in a rich abundance of different timetabling algorithms, it also
makes it very difficult to compare and contrast them. However, as Schaerf
[46] points out, this situation is perfectly understandable given that many
people will often be more interested in solving the timetabling problems of

It is widely accepted, however, that timetabling problems within univer-
sities can be loosely arranged into two main categories: exam timetabling
problems and course timetabling problems. In reality, and depending on
the university involved, both types of problem might often exhibit similar
characteristics (both are usually likely to require a satisfaction of the event-
clash constraint, for example), but one common and generally acknowl-

1 A good review of the many different sorts of constraints that can be encoun-

tered in real-world timetabling problems can be found in [22].

239Metaheuristics for University Course Timetabling

others.
their own university rather than spending time comparing results with

edged difference is that in exam timetabling, multiple events can be sched-
uled into the same room at the same time (providing seating-capacity con-
straints are not exceeded), whilst in course timetabling, we are generally
only allowed one event per room, per timeslot. A second common differ-
ence between the two can also sometimes concern issues with the time-
slots: course timetabling problems will generally involve assigning events
to a fixed set of timeslots (e.g. those occurring in exactly one week) whilst
exam-timetabling problems may sometimes allow some flexibility in the
number of timeslots being used (see for example [8, 10, 23, 27]).

1.2 Chapter Overview

In this chapter we will primarily concern ourselves with university course
timetabling. We will, however, also refer to exam timetabling research
when and where it is useful to do so. (Readers more interested in the latter
are invited to consult some good texts presented by Burke et al. [12, 13],
Thompson and Dowsland [49], Cowling et al. [24], and Carter [14-16].)

The remainder of this chapter is set out as follows: in the next section
we will review some of the most common forms of timetabling algorithm
apparent in the literature, and will discuss some possible advantages and
disadvantages of each. Next, in section 3, we will give a definition and his-
tory of the particular timetabling problem that we will be studying here,
and will include a survey of some of the best works proposed for it. In sec-
tion 4, we will then describe an example algorithm for this problem and
will provide a short experimental analysis. Finally, section 5 will conclude
the chapter.

2 Dealing with Constraints

When attempting to design an algorithm for university timetabling, one of
the most important issues that needs to be addressed is the question of how
the algorithm proposes to deal effectively with both the hard constraints
and the soft constraints. A survey of the literature indicates that most
metaheuristic timetabling algorithms (of which there are many) will gener-
ally fall into one of three categories:

1. One-Stage Optimisation Algorithms: where a satisfaction of both
the hard and soft constraints is attempted simultaneously (e.g. [20, 22,
26, 45]).

240 R. Lewis et al.

2. Two-Stage Optimisation Algorithms: where a satisfaction of the
soft constraints is only attempted once a feasible timetable has been
found (e.g. [5, 18, 19, 31, 32, 49]).

3. Algorithms that allow Relaxations: Violations of the hard con-
straints are disallowed from the outset by relaxing some other feature
of the problem. Attempts are then made to try and satisfy soft con-
straints whilst also giving consideration to the task of eliminating
these relaxations (e.g. [8, 10, 27, 37]).

Looking at category (1) first, algorithms of this type generally allow the
violation of both hard and soft constraints within the timetable, and the aim
is to then search for a timetable that has an adequate satisfaction of both.
Typically, the algorithm will attempt this by using some sort of weighted
sum function, with violations of the hard constraint usually being given
much higher weightings than the soft constraints. For example, in [22]
Corne, Ross, and Fang use the following evaluation function: given a prob-
lem with k types of constraint, where the penalty weighting associated with
constraint i is wi, and where vi (tt) represents the number of constraint vio-
lations of type i in a timetable tt, quality can be calculated using the for-
mula:

1

() 1/ 1 ()
k

i ii
f tt w v tt (1)

In [22], the authors use this evaluation method in conjunction with an
evolutionary algorithm, although, one large advantage of this method is
that it can, of course, be used with any reasonable optimisation technique
(see [26] and [45], for example). Another immediate advantage of this ap-
proach is its flexibility: any sensible constraint can be incorporated into the
algorithm provided that an appropriate penalty weighting is stipulated in
advance (thus indicating its relative importance compared to others).

However, this sort of approach also has some disadvantages. Some au-
thors (e.g. Richardson et al. [38]) have argued that this sort of evaluation
method does not work well in problems that are sparse (i.e. where only a
few solutions exist in the search space). Also, even though the choice of
weights in the evaluation function will often critically influence the algo-
rithm’s navigation of the search space (and therefore its timing implica-
tions and solution quality), there does not seem to be any obvious method-
ology for choosing the best ones. Some authors (e.g. Salwach [44]) have
also noted that a weighted sum function can be problematic, because it can
cause a discontinuous fitness landscape, where small changes to a candi-
date solution can actually result in overly large changes to its fitness.

241Metaheuristics for University Course Timetabling

With regards to timetabling problems, however, it is worth noting that
some researchers have tried to circumvent some of these problems by al-
lowing penalty weightings to be altered dynamically during the search. For
example, in order to penalise hard constraint violations in his tabu search
algorithm for school timetabling, Schaerf [45] defines a weighting value w,
which is initially set to 20. However, at certain points during the search,
the algorithm is able to increase w when it is felt that the search is drifting
into search-space regions that are deemed too infeasible. Similarly, w can

The operational characteristics of two-stage optimisation algorithm for
timetabling (category (2)) may be summarised as follows: in stage-one, the
soft constraints are generally disregarded and only the hard constraints are
considered for optimisation (i.e. only a feasible timetable is sought). Next,
assuming feasibility has been found, attempts are then made to try and
minimise the number of the soft constraint violations, using techniques that
only allow feasible areas of the search space to be navigated2.

Obviously, one immediate benefit of this technique is that it is no longer
necessary to define weightings in order to distinguish between hard and
soft constraints (we no longer need to directly compare feasible and infea-
sible timetables), meaning that a number of the problems inherent in the
use of penalty weightings no longer apply. In practical situations, such a
technique might also be very appropriate where finding feasibility is the
primary objective, and where we only wish to make allowances towards
the soft constraints if this feasibility is definitely not compromised. (In-
deed, use of a one-stage optimisation algorithm in this situation could be
inappropriate in many cases because, whilst searching for feasibility, the
weighted sum evaluation function would always be taking the soft con-
straints into account. Thus, by making concessions for the soft constraints,
the search could suffer the adverse effect of actually being led away from
attractive (i.e. 100% feasible) regions of the search space.)

One of the major requirements for the two-stage timetabling algorithm
to be effective, however, is that a reasonable amount of movement in the
feasible-only search space must be achievable. If the feasible search space
of the problem is convex and constitutes a reasonable part of the entire
search space, then this may be so. However, if we are presented with a

2 This could be achieved using neighbourhood operators that always preserve

feasibility (c.f. [49]); by using some sort of repair mechanism to convert infeasible
individuals into feasible ones (e.g. [32]); or by immediately rejecting any infeasi-
ble candidate solutions that crop up during the search. (In evolutionary computa-
tion, the latter is sometimes known as the “death penalty” heuristic [36].)

242 R. Lewis et al.

regions.
also be reduced when the search consistently finds itself in feasible

non-convex feasible search space, then searches of this kind could turn out
to be extremely inefficient because it might simply be too difficult for the
algorithm to explore the search space in any sort of useful way. (In these
cases, perhaps a method that allows the search to take “shortcuts” across
infeasible parts of the search space might be more promising.)

Lastly, whether this technique will be appropriate in a practical sense
also depends largely on the users’ requirements. If, for example, we are
presented with a problem instance where feasibility is very difficult or
seemingly impossible to achieve, then an algorithm of this form will never
end up paying any consideration to the soft constraints. In this case, users
may prefer to be given a solution timetable in which a suitable compro-
mise between the number of hard and soft constraint violations has been
achieved (suggesting that, perhaps one of the other two types of algorithm
might be more appropriate).

Looking now at category (3), some authors have shown that good time-
tabling algorithms can also be achieved through the use of more special-
ised methodologies whereby various constraints of the problem are relaxed
in order to try and facilitate better overall searches. For example, in their
evolution-based algorithm for exam timetabling, Burke, Elliman, and
Weare [8, 10] do not allow the direct violation of any of the problem’s
hard constraints; instead, they choose to open up new timeslots for events
that cannot be feasibly placed into any existing timeslot. The number of
timeslots being used by a candidate timetable then forms part of the
evaluation criteria. In addition to this, the authors also define an opposing
soft constraint that specifies that exams for individual students must be
spread out (in order to avoid situations where students are required to sit
exams in consecutive timeslots). Because a reasonable satisfaction of this
type of constraint will usually rely on there first being an adequate number
of timeslots available, the overall aim of the algorithm is to find a suitable
compromise between the two objectives.

A second example of this type of approach is provided by Paechter et al.
in [37]. Here, the authors describe a memetic approach for course time-
tabling in which an evolutionary algorithm is supplemented by a local-
search routine that aims to improve each timetable. In this approach, a
constructive scheme is also used and, rather than break any hard con-
straints, events that cannot be feasibly assigned are left to one side un-
placed. Soft constraint violations are also penalised through the use of
weightings that can be adjusted by the user during the search.

One interesting aspect of this approach is the authors’ use of sequential
evaluation: when comparing two candidate timetables, the algorithm
deems the one with the least number of unplaced events as the fitter. How-
ever, ties are broken by looking at the penalties caused by each of the time-

243Metaheuristics for University Course Timetabling

table’s soft constraint violations. Thus many of the problems encountered
when judging a timetable’s quality through a single numerical value alone
(as is the case with category (1)) can be avoided. Note, however, that this
method of evaluation is only useful for algorithms where it is sufficient to
know the ordering of a set of candidate solutions, rather than a quality
score for each (in this case, the authors use binary tournament selection
with their evolutionary algorithm); it is thus perhaps less well suited to
other types of optimisation methods.

Concluding this section, it should be clear to the reader that the question
of how to deal with both the hard and soft constraints in a timetabling
problem is not always easily answerable, yet it is certainly something that
we have to effectively address if automated timetabling is to be considered
a worthwhile endeavour. As we have noted at various points, the issue of
meeting the user’s timetabling requirements (whatever these might be) of-
ten constitutes an important part in this decision. Indeed, it would seem
reasonable to assume that perhaps this is the most important issue, consid-
ering that solutions to practical problems will inevitably have to be used by
real people. However, it is, of course, also desirable for the algorithm to be
fast, reliable and robust whenever possible.

3 The UCTP and the International Timetabling
Competition

In the previous two sections, we mentioned that a difficulty often experi-
enced in automated timetabling is that it is not always easy to compare and
contrast the performance of different timetabling algorithms. Indeed, many
authors often only report results from experiments with their own univer-
sity’s timetabling problem and fail to provide comparisons to others. (In
many of these situations we also, of course, have no way of determining if
the problem instances used in the experiments were actually “hard” or not,
although what actually constitutes a “hard” timetabling instance is still not
completely understood). These difficulties in making algorithm compari-
sons are in contrast to many other problems faced in operations research
(such as the travelling salesperson problem and the bin-packing problem)
where we often have standardised problem definitions, together with an
abundance of different problem instance libraries available for benchmark-
ing algorithms3.

3 See, for example, http://www.research.att.com/~dsj/chtsp/index.html or
http://www.wiwi.uni-jena.de/Entscheidung/binpp/index.htm for libraries of TSP
and bin packing problems respectively.

244 R. Lewis et al.

However, over the past few years a small number of instance sets have
become publicly available. In 1996 for example, Carter [16] published a
set of exam-timetabling problem instances taken from twelve separate
educational establishments from various parts of the world4. A number of
different studies have now used these in their experimental analyses [8, 16,
23, 48, 49]. More recently, a number of problem instances for course time-
tabling have also been made publicly available [1, 2]. It will be these par-
ticular collections of problem instances that we will focus our studies upon
in this chapter.

3.1 Origins of this Problem Version

The so-called University Course Timetabling Problem (UCTP) was origi-
nally used by the Metaheuristics Network5 – a European Commission
funded research project – in 2001-2, but was also subsequently used for the
International Timetabling Competition in 2002 [1], of which further details
will be given later. The problem, which was formulated by the authors, is
closely based on real-world problems, but is also simplified slightly. Al-
though, from the outset, we were not entirely happy about using a simpli-
fied problem, we had a number of reasons for doing this. Firstly the prob-
lem was intended for research purposes, particularly with regards to
analysing what actually happens in algorithms that are designed to solve
the problem. (Real problems are often too complicated and messy to allow
researchers to properly study these processes.) Secondly, the large number
of hard and soft constraints usually found in real-world problems often
makes the process of writing code (or updating existing programs to be
suitable) a long and arduous process for timetabling researchers. Thirdly,
many of the constraints of real-world problems are idiosyncratic and will
often only relate to specific institutions, and so their inclusion in a problem
will not always be instructive when trying to learn about timetabling in
general.

The UCTP therefore offers a compromise: a variety of real world as-
pects of timetabling are included, yet for ease of scientific investigation,

4 Download at http://www.or.ms.unimelb.edu.au/timetabling/atdata/carterea.tar
5 http://www.metaheuristics.org/

245Metaheuristics for University Course Timetabling

removed.
many of the messy fine-details found in practical problems have been

3.2 UCTP Problem Description

A problem instance for the UCTP consists of a set E of n events to be
scheduled into a set of timeslots T and a set of m rooms R, each that has an
associated seating capacity. We are also given a set of students S each at-
tending some subset of E. Pairs of events are said to conflict when one or
more students are required to attend them both. Finally, we are given a set
of features6 F. These are satisfied by rooms and required by events. In or-
der for a timetable to be feasible, every event e E must be assigned to a
room r R and timeslot t T (where | T | 45, to be interpreted as five
days of nine timeslots), such that the following hard constraints are satis-
fied:

H1. No student is required to attend more than one event at any one time
(or, in other words, conflicting events should not be assigned to the
same timeslot);

H2. All of the features required by an event are satisfied by its room, which
must also have an adequate seating capacity;

H3. Only one event is put in any room in any timeslot (i.e. no double book-
ing of rooms).

Note that the presence of H1 above makes the task of finding a feasible
timetable similar to the well-known NP-hard graph colouring problem. In
order to convert one problem to the other, each individual event is consid-
ered a node, and edges are then added between any pair of nodes that rep-
resent conflicting events. In very basic timetabling problem formulations
(e.g. [40]), the task is to then simply colour the graph with as many colours
as there are available timeslots. (Indeed, graph colouring heuristics are of-
ten used in timetabling algorithms [13, 16, 35, 49]).

However, as we demonstrate in fig. 1, in the case of this UCTP, the
presence of H2 and H3 add extra complications because we must now also
ensure that for any given timeslot (i.e. colour class) there are adequate and
appropriate rooms available. From a pure graph colouring perspective, this
means that many feasible colourings might still represent infeasible time-
tables7.

6 In the real world, these features might be things such as audio equipment,
computing facilities, wheelchair access, etc.

7 Note that the presence of the rooming constraints provides us with a lower
bound to the underlying graph colouring problem, because a feasible solution can
never use less than /n m colours (timeslots).

246 R. Lewis et al.

case of our timetabling problem, if only 2 rooms were available per timeslot then
the left graph could never represent a feasible timetable because one of the time-
slots would have 3 events assigned to it. The right solution, on the other hand,
might represent a feasible timetable, providing that each event can also be granted
the rooming features and seating capacity that they require.

In addition to the hard constraints outlined above, in this problem there
are also three soft constraints. These are as follows:

S1. No student should be required to attend an event in the last timeslot of
a day;

S2. No student should sit more than two events in a row;

S3. No student should have a single event in a day.

Note that each soft constraint is slightly different (indeed, this was done
deliberately): violations of S1 can be checked with no knowledge of the
rest of the timetable, violations of S2 can be checked when building the
timetable, and, lastly, violations of S3 can only be checked once all events
have been assigned to the timetable.

Formally, we work out the number of soft constraint violations in the
following way. For S1, if a student has a class on the last timeslot of the
day, we count this as one penalty point. Naturally, if there are s students in
this class, we consider this as s penalty points. For S2, if one student has
three events in a row we give one penalty point. If a student has four
events in a row we count this as two, and so on. Note that adjacent events
occurring over two separate days are not counted as a violation. Finally,
each time we encounter a student with a single event on a day, we count
this as one penalty point (two for two days with single events etc.). Our
soft constraint evaluation function is simply the total of these three values.

We consider a timetable to be perfect if it is feasible (i.e. has no hard
constraint violations) and if it contains no soft constraint violations.

3.3 Initial Work and the International Timetabling Competition

Rossi-Doria et al. conducted one of the first studies using this timetabling
problem in 2002 [43]. Here, the authors used five different metaheuristic
techniques (namely, evolutionary algorithms, ant colony optimisation, iter-

247Metaheuristics for University Course Timetabling

Fig. 1. In this example, both graphs have been coloured optimally. However, in the

ated local search, simulated annealing, and tabu search) to produce five
separate algorithms for the UCTP. In order to facilitate a fair comparison
of these algorithms (the main objective of their study), all used the same
solution representation and search landscape. In some cases satisfaction of
both the hard and soft constraints was attempted simultaneously (in the
case of the evolutionary algorithm, for example, a weighted sum function
was used to give higher penalties for hard constraint violations). Others,
such as the iterated local search and simulated annealing algorithms, used
a two-stage approach. Upon completing a comparison of these five meta-

 “The performance of a metaheuristic, with respect to satisfying hard
constraints and soft constraints may be different;”

 “Our results suggest that a hybrid algorithm consisting of at least two
phases, one for taking care of feasibility, the other taking care of mini-
mising the number of soft constraint violations, is a promising direc-
tion.”

Following this work, the International Timetabling Competition [1] was
organised and run in 2002-3. The idea of this competition was for partici-
pants to design algorithms for this timetabling problem, which could then
be compared against each other using a common set of benchmark in-
stances and a fixed execution time limit8. Upon the close of the competi-
tion, the participant whose algorithm was deemed to perform best across
these instances (and checked against a number of unseen instances only
available to the organisers) was awarded a prize. The exact criteria for
choosing the winner can be found on the competition web site [1].

The twenty problem instances used for the competition consisted of be-
tween 200 and 300 students, 350 to 440 events, and 10 or 11 rooms. As
usual, the number of timeslots was fixed at 45. Additionally, in 13 of the
20 instances the number of events n was equal to the number of rooms
multiplied by 40. This means that, because all instances were ensured to
have at least one perfect solution9, optimal solutions to these instances had

8 The execution time limit was calculated for a participant’s computer by a pro-

gram that measured various characteristics of that computer during execution. The
effectiveness of this benchmarking program was later verified by running the best
competition entries on a single standard machine.

9 In fact, we actually know that there are at least 5! = 120 perfect timetables,
because we note that the soft constraints do not actually span across different days.
Thus, we can permute the days of a perfect timetable, and it will still have no soft
constraint violations.

248 R. Lewis et al.

authors:
heuristic algorithms, two interesting conclusions were offered by the

to have 40 timeslots completely filled with events (as, obviously, perfect
solutions would not have any events assigned to the five end-of-day time-
slots.)

Another important aspect of the competition was the way in which time-
tables were chosen to be evaluated. The official rules of the competition
stated that timetable quality would only be measured by looking at the
number of soft constraint violations: if a timetable contained any hard con-
straint violations, used any extra timeslots, or had any unplaced events,
then it would immediately be considered worthless. Participants were then
only allowed to submit an entry to the competition if their algorithms
could find feasibility on all twenty instances. Given this rule, and also tak-
ing into consideration the conclusions of Rossi-Doria et al. [43] quoted
above, it is perhaps, unsurprising that many of the entrants to this competi-
tion therefore elected to use the two-stage timetabling approach mentioned
in section 2. Another consequence of the evaluation scheme was that the
problem instances were chosen so that feasibility was relatively easy to
find.

The competition, which ended in March 2003, eventually saw a total of
21 official entries, plus 3 unofficial entries (the latter were not permitted to
enter the competition because they were existing members of the Metaheu-
ristics Network). The submitted algorithms used a variety of techniques in-
cluding simulated annealing, tabu search, iterated local search, ant colony
optimisation, some hybrid algorithms, and heuristic construction with
backtracking. The winning algorithm was a two-stage, simulated anneal-
ing-based algorithm by Philipp Kostuch of Oxford University. Details of
this, plus many of the others mentioned above can be found at the official
competition web page [1].

3.4 Review of Relevant Research

Since the running of the competition, quite a few good papers have been
published regarding this particular timetabling problem. Some of these de-
scribe modifications to algorithms that were official competition entries
and claim excellent results. Some have gone on to look at other aspects of
the problem. In this subsection we now review some of the most notable
and relevant works in this problem area.

In [5], Arntzen and Løkketangen describe a two-stage tabu search algo-
rithm for the problem. In the first stage, the algorithm uses a constructive
procedure to build an initial feasible timetable, which operates by taking
events one by one, and assigning them to feasible places in the timetable,

249Metaheuristics for University Course Timetabling

according to some specialised heuristics that also take into account the

cause. The order in which events are inserted is determined dynamically,
and decisions are based upon the state of the current partial timetable. The
authors report that these heuristics successfully build feasible timetables in
over 90% of runs with the competition instances. Next, with feasibility
having been found, Arntzen and Løkketangen opt to use tabu search in
conjunction with simple neighbourhood operators in order to optimise the
soft constraints. In the latter stage, feasibility is always maintained.

Cordeau, Jaumard, and Morales (available at [1]) also use tabu search to
try and satisfy the soft constraints in their timetabling algorithm. However,
this method is slightly different to Arntzen and Løkketangen above, be-
cause, when dealing with the soft constraints, the algorithm also allows a
small number of hard constraints to be broken from time to time. The au-
thors achieve this by introducing a partially stochastic parameter that is
then used in the following evaluation function:

 () () ()f tt h tt s tt (2)

where h(tt) indicates the number of hard constraint violations in timeta-
ble tt, and s(tt) the number of soft constraint violations. During the search,
the parameter helps to control the level of infeasibility in the timetable
because if the number of hard constraint violations in tt increases, then is
also increased. Thus, as the number of infeasibilities rises, it also becomes
increasingly unlikely that a search space move causing additional infeasi-
bilities will be accepted. The authors claim that such a scheme allows freer
movement about the search space.

Socha, Knowles, and Sampels have also suggested ways of applying the
ant colony optimisation metaheuristic to this problem. In [47], the authors
present two ant-based algorithms – an Ant Colony System and a MAX-
MIN system – and provide a qualitative comparison between them. At
each step of both algorithms, every ant first constructs a complete assign-
ment of events to timeslots using heuristics and pheromone information,
due to previous iterations of the algorithm. Timetables then undergo fur-
ther improvements via a local search procedure, outlined in [42]. Indeed,
the only major differences between the two approaches are in the way that
heuristic and pheromone information is interpreted, and in the methodolo-
gies for updating the pheromone matrix. However, tests using a range of
problem instances indicate that the MAX-MIN system generally achieves
better results. A description of the latter algorithm – which was actually
entered unofficially to the timetabling competition – can also be found at
[1], where good results are reported.

250 R. Lewis et al.

potential number of soft constraint violations that such an assignment might

different heuristics and metaheuristics for the UCTP. After experimenting
with a number of different approaches and also parameter settings (much

ally uses a variety of different search methods. In the first stage, construc-
tive heuristics are initially employed in order to try and find a feasible
timetable, although, as the authors note, these are usually unable to find
complete feasibility unaided. Consequently, local search and tabu search
schemes are also included to try and help eliminate any remaining hard
constraint violations. Feasibility having been achieved, the algorithm then
concentrates on satisfying the soft constraints and conducts its search only
in feasible areas of the search space. It does this first by using variable
neighbourhood search and then with simulated annealing. The annealing

mented (this operates by resetting the temperature to its initial starting
value when it is felt that the search is starting to stagnate). Extensive use of
delta evaluation [39] is also made in an attempt to try and speed up the al-
gorithm and, according to the authors, the final algorithm achieves results
that are significantly better than the official competition winner.

Kostuch also uses simulated annealing as the main construct of his time-
tabling algorithm, described in [31]. Based upon his winning entry to the
competition, this algorithm works by first gaining feasibility via simple
graph colouring heuristics (plus a series of improvement steps if the heu-

ping events between timeslots. One of the interesting aspects of Kostuch’s
approach is that when a feasible timetable is being constructed, efforts are
made in order to try and schedule the events into just forty of the available
forty-five timeslots. As the author notes, five of the available timeslots will
automatically have penalties attached to them (due to the soft constraint
S1) and so it could be a good idea to try and eliminate them from the
search from the outset. Indeed, the author only allows the extra five time-
slots to be opened if feasibility using forty timeslots cannot be achieved in
reasonable time. (In reported experiments, the events in nine of the twenty
instances were always scheduled into forty timeslots.) Of course, if an as-
signment to just forty timeslots is achieved, then it is possible to keep the
five end-of-day timeslots closed and simply conduct the soft constraint sat-
isfaction phase on the remaining forty timeslots. This is essentially what

251Metaheuristics for University Course Timetabling

petition entry, the authors present a broad study and comparison of various

Another good study looking at this problem is offered by Chiarandini
et al. in [19]. In this research paper, which also outlines an unofficial com-

et al. [6]), their favoured method is a two-stage, hybrid algorithm that actu-
of which was done automatically using the F-Race method of Birattari

total algorithm, and a simple reheat function for this phase is also imple-
phase is reported to use more than 90% of the available run time of the

satisfy the soft constraints by first ordering the timeslots, and then by swap-
ristics prove inadequate) and then uses simulated annealing to try and

Kostuch’s algorithm does and, indeed, excellent results are claimed in
[31].

Finally, in [35] Lewis and Paechter have proposed a “grouping genetic
algorithm” (GGA) that is used exclusively for finding feasible timetables
in this UCTP (i.e. the algorithm does not consider soft constraints). The ra-
tionale for this approach is that the objective of this (sub)problem may be
viewed as the task of “grouping” events into an appropriate number of
timeslots, such that all of the hard constraints are met. Furthermore, be-
cause, in this case, it is the timeslots that define the underlying building
blocks of the problem (and not, say, the individual events themselves) the
algorithm makes use of specialised genetic operators that try to allow these
groups to be propagated during evolution10. Experiments in [35] show that
performance of this algorithm can sometimes also be improved through the
use of specialist fitness functions and additional heuristic search operators.
One negative feature of this algorithm, however, is that whilst seeming to
perform well with smaller instances (200 events), it seems less successful
when dealing with larger instances (1000 events). This is mainly due to
the fact that the larger groups encountered in the latter cases tend to pre-
sent much more difficulty with regards to their propagation during evolu-

algorithm (population, recombination etc.) are removed altogether, thus al-
lowing the heuristic-search operator to work unaided. (This heuristic
search-based algorithm forms a part of the algorithm that will be described
in section 4.3 later.)

4 A Robust, Two-Stage Algorithm for the UCTP

Having reviewed a number of published works that have looked at this
standardised version of the UCTP, in this section we will now describe an
example two-stage algorithm that, in our experiences, has performed very
well with many available benchmark instances for this problem. The feasi-
bility-finding stage (sections 4.2 and 4.3) is particularly successful; with
the twenty competition instances, for example, we will see that it is often
able to achieve its goal in very small amounts of time. We will also see
that it is able to cope very well with a large number of specially made

10 The resultant “grouping” genetic operators follow the methodologies used in

similar algorithms for other “grouping problems” such as bin packing [29] and
graph colouring [25, 27].

252 R. Lewis et al.

“harder” instances of various sizes. Meanwhile, the second stage of our

better results can actually be gained when the evolutionary features of the
tion. Indeed, experiments in [35] show that in most cases, significantly

attempted using two separate phases of simulated annealing that will be
described in section 4.5.

4.1 Achieving Feasibility: Pre-compilation and
Representational Issues

Before attempting to construct a feasible timetable, in our approach we
first carry out some useful pre-compilation by constructing two matrices
that are then used throughout the algorithm. We call these the event-room
matrix and the conflicts matrix. Remembering that n represents the number
of events and m the number of rooms, the Boolean (n × m) event-room ma-
trix is used to indicate which rooms are suitable for which events. This can
be easily calculated for an event i by identifying which rooms satisfy both
the seating capacity and the features required by i. Thus if, room j is
deemed suitable, then element (i, j) in the matrix is marked as true, other-
wise it is marked as false.

The (n × n) conflicts matrix, meanwhile, can be considered very much
like the standard adjacency matrix used for representing graphs. For our
purposes, the matrix indicates which pairs of events can and cannot be
scheduled into the same timeslot. Thus, if event i and event j have one of
more common student, then elements (i, j) and (j, i) in the matrix are
marked as true, otherwise false. As a final step, and following the sugges-
tions of Carter [14], we are also able to add some further information to the
matrix. Note that, in this problem, if we have two events, k and l, that do
not conflict but can both only be placed into the same single room, then
there can exist no feasible timetable in which k and l are assigned to the
same timeslot. Thus, we may also mark elements (k, l) and (l, k) as true in
the conflicts matrix.

With regards to the way in which an actual timetable will be represented
in this algorithm, similarly to works such as [19, 32, 35, 47], we choose to
use a two-dimensional matrix where rows represent rooms, and columns
represent timeslots. We also choose to place the restriction that each cell in
the matrix (i.e. each place11 in the timetable) can be blank, or can contain
at most one event. Note that this latter detail therefore actually encodes the
third hard constraint into the representation, meaning that it is now impos-
sible to double book a room.

11 For the remainder of this chapter, when referring to a timetable, a place may be

considered a timeslot/room pair. More formally, the set of all places P = T × R.

253Metaheuristics for University Course Timetabling

algorithm is concerned with the satisfaction of the soft constraints, which is

4.2 Achieving Feasibility - The Construction Stage

An initial assignment of events to places (cells in the matrix) is achieved
following the steps outlined in the procedure CONSTRUCT in fig. 2. This
procedure is also used for completing partial timetables that can occur as a
result of the heuristic search procedure, explained in the next subsection.
Starting with an empty or partial timetable tt and a list of unplaced events
U (in the first case U = E), this procedure first opens up a collection of
timeslots, and then utilises the procedure INSERT-EVENTS that takes events
one-by-one from U and inserts them into feasible places in the timetable tt.
(The heuristics governing these choices are described in Table 1.) The en-
tire construction procedure is completed when all events have been as-
signed to the timetable (and therefore U =).

Of course, during this process, there is no guarantee that every event
will have a feasible place into which it can be inserted. In order to deal
with these, we therefore relax the requirement regarding the number of
timeslots being used, and open up extra timeslots as and when necessary.
Obviously, once all of the events have been assigned, if the number of
timeslots being used | T | is larger than the actual target amount, then the
timetable may not actually be considered feasible (in the strict sense), and
efforts will, of course, need to be made to try and rectify the situation.
Methods for achieving this will be described in section 4.3.

With regards to the heuristics that are used in this construction process
(Table 1), it is worth noting that those used for determining the order in
which events are inserted are somewhat akin to the rules for selecting
which node to colour next in the classical Dsatur algorithm for graph col-
ouring [7]. However, in this case we observe that h1 also takes the issue of
room allocation into account. Heuristic h1 therefore selects events based on
the state of the current partial timetable, prioritising those with the least
remaining feasible options. Ties are then broken by h2, which chooses the
event with the highest conflicts degree (which could well be the most
problematic of these events). Once an event has been chosen, further heu-
ristics are then employed for selecting a suitable place. Heuristic h4 at-
tempts to choose the place that will have the least effect on the future place
options of the remaining unplaced events [5]. Heuristic rule h5, meanwhile,
is used to encourage putting events into the fuller timeslots, thereby hope-
fully packing the events into as few timeslots as possible. Finally, h3 and h6
add some randomisation to the process and, in our case, allow different
runs to achieve different timetables.

254 R. Lewis et al.

CONSTRUCT (tt, U) .
1. if (len(tt) < max_timeslots)
2. Open (max_timeslots – len(tt)) new timeslots;
3. INSERT-EVENTS (tt, U, 1, max_timeslots);

INSERT-EVENTS (tt, U, l, r) .
1. while (e U with feasible places between timeslots l and r in tt)
2. Choose an event e U with feasible places in tt using h1, breaking ties
 with h2, and further ties with h3;
3. Pick a feasible place p for e using heuristic h4, breaking ties with h5 and
 further ties with h6;
4. Move e to p;
5. if (U =) end;
6. else

7. Open | | /U m new timeslots;
8. INSERT-EVENTS (tt, U, r, len(tt));

rent partial timetable and U is a set of unplaced events of cardinality | U |. Addi-
tionally, len(tt) represents a function that returns the number of timeslots currently
being used by tt; max_timeslots represents the maximum number of timeslots that
a timetable can use for it to be considered feasible (i.e. 45), and, as before, m

Table 1. Description of the various event and place selection heuristics used
within the procedure INSERT-EVENTS.

Name Description

h1 Choose the event with the smallest number of feasible places to which it can
be assigned in the current timetable

h2 Choose the event which conflicts with the largest number of other events
h3 Choose an event randomly
h4 Choose the place that the least number of other unplaced events could be fea-

sibly assigned to in the current timetable
h5 Choose the place in the timeslot with the most events in
h6 Choose a place randomly

4.3 Reducing the Number of Timeslots with a Heuristic Search
Procedure

Although no hard constraints will be violated in any timetable produced by
the construction procedure described above, it is, of course, still possible
that more than the required number of timeslots will be used, thus render-
ing it infeasible. We therefore supplement the construction procedure with

255Metaheuristics for University Course Timetabling

represents the cardinality of the room set.

Fig. 2. The procedures CONSTRUCT and INSERT-EVENTS: Here, tt represents the cur-

a heuristic search procedure (originally described in [35]) that operates as
follows (see also fig. 3):

(2) If there are no unplaced events

(i.e. U =) then end; else try to
insert the unplaced events into the
blank cells in the partial timetable

(3a) Randomly choose a blank and non-

blank cell in tt and swap; Add 1 to i.
(3b) If tt’s feasibility is maintained then

go back to step (2), else reset the swap.

(3c) If i the iteration limit then end,

else go back to step (3a).

Unplaced

(1) Randomly select some

timeslots in tt, and remove
them. Set i = 0.

Fig. 3. Pictorial description of the heuristic search procedure used for attempting

Given a timetable tt, a small number of randomly selected timeslots are
first removed (defined by a parameter rm, such that between one and rm
timeslots are chosen randomly). The events contained within these are then
put into the list of unplaced events U. Steps (2) and (3) of fig. 3 are then
applied repeatedly until either U is empty, or an iteration limit is reached.
If, as in the latter case, upon termination U still contains some events, then
CONSTRUCT is used to create new places for these. Now, if the resultant
timetable is using the required number of timeslots, then the process can be
halted (a completely feasible timetable has been found), otherwise further
timeslots are selected for removal, and the whole process is repeated.

4.4 Experimental Analysis

As it turned out, the construction procedure described in section 4.2 was
actually able to cope quite easily with the twenty problem instances used
for the International Timetabling Competition. Indeed, in our experiments
feasible timetables using a maximum of 45 timeslots were found straight
away in over 98% of trials without any need for opening up additional
timeslots or invoking the heuristic search procedure. (Even in cases where
the heuristic search procedure was needed, feasibility was still always
achieved in less than 0.25 seconds of CPU time12.) We also observed that
the construction procedure was often actually able to pack the events into
less than the available forty-five timeslots. For example, competition in-
stance-15 required only 41.9 timeslots (averaged across twenty runs), and

12 These trials, like all experiments described in this chapter, were conducted on

a PC under Linux, using 1GB RAM, and a Pentium IV 2.66Ghz processor.

256 R. Lewis et al.

to reduce the number of timeslots used by a timetable.

instance-3 required just 41.8. Others, such as competition instances 6 to 9,
on the other hand, always required the full forty-five timeslots.

However, although these observations seem to highlight the strengths of
our constructive heuristics in these cases, they do not really provide us
with much information on the operational characteristics of the heuristic
search procedure. For this reason, we therefore conducted a second analy-
sis using an additional set of UCTP instances [2] that have been used in
other studies [33-35] and which are deliberately intended to be “hard” with
regards to achieving feasibility. These sixty instances are separated into
three classes: small, medium, and large (containing approximately 200

ness” can be found at [2] and [33]. Note, however, that each of these in-
stances is known to have at least one feasible solution, and that for some of
them there is also a known perfect solution. For the remaining instances,
meanwhile, some are known to definitely not have perfect solutions13,
whilst, for others, this is still undetermined. See Table 2 below for further
information.

In this second set of experiments, we conducted 20 trials per instance,
using CPU time limits of 30, 200, and 800 seconds for the small, medium
and large instances respectively (these match the time limits used in [35]).
We also used parameters rm = 1, and an iteration limit of 10000n. Note
that our use of the number of events n in defining the latter parameter al-
lows the procedure to scale with instance size.

Table 2 summarises the results of these experiments and entries that are
highlighted indicate problem instances where feasibility was found in
every individual trial. Here we can see that in many instances, particularly
in the small and medium sets, when timetables using 45 timeslots were not
achieved by the construction procedure, the heuristic search operator has
successfully managed to remedy the situation within the imposed time lim-
its. Additionally, even with problem instances where solutions using 45
timeslots were not always achieved, we see that the number of timeslots
being used generally drops a noteworthy amount within the time limit.

Indeed, our use of the heuristic search procedure is further justified
when we compare these results to those achieved by the GGA presented in

13 We were able to determine that an instance had no perfect solution when the

number of events was greater than 40m (where m represents the number of
rooms). In these instances we know that at least (40)n m events will always have
to be assigned to the end-of-day timeslots, thus causing violations of soft con-

257Metaheuristics for University Course Timetabling

[35]. From the above table we can see that, with this algorithm, we are

straint S1.

instances, including information on how we attempted to ensure their “hard-
events, 400 events and 1000 events respectively). Further details of the

compares favourably with the work described in [35], where solutions to
only eleven, six, and two problem instances were always found. It is also
worth pointing out that the results in [35] were also gained after perform-
ing considerable parameter tuning with each instance set. Here, on the
other hand, the results in Table 2 were gained with very little tuning (be-
yond our own intuitions), hinting that this algorithm might also be more
robust with regard to what instances it is able to effectively deal with.

Table 2. Performance of the Heuristic Search Procedure with the Sixty “Harder”
Instances. This table shows, for each instance, the mean and standard deviations of
the number of timeslots being used (a) after the initial assignment by the construc-
tion procedure (Av. slots. init. ±), and (b) at the time limit (Av. Slots. end ±).
Also shown is the number of timeslots used in the most successful runs (Best). All
results are taken from 20 runs per instance and are rounded to one decimal place.
Lastly, in column P we also provide some supplementary information about the
instances: a “Y” indicates that we know there to be at least one perfect solution
obtainable from the instance, an “N” indicates that we know that there definitely
isn’t a perfect solution, and “?” indicates neither.

 Small (30 seconds) Medium (200 seconds) Large (800 seconds)

P
Av. slots.
init. ±

Av. slots
end ±

Best P
Av. slots.
init. ±

Av. slots
end ±

Best P
Av. slots.
init. ±

Av. slots
end ±

Best

1 Y 45.8 ± 0.9 44.7 ± 0.5 44 Y 45.8 ± 0.8 44.8 ± 0.4 44 Y 43.9 ± 0.7 43.9 ± 0.7 43
2 Y 45.0 ± 0.0 45.0 ± 0.0 45 Y 47.9 ± 1.4 44.6 ± 0.5 44 Y 49.2 ± 1.6 44.8 ± 0.4 44
3 ? 50.0 ± 0.0 44.8 ± 0.4 44 ? 47.1 ± 1.4 44.9 ± 0.3 44 Y 46.9 ± 0.8 44.9 ± 0.3 44
4 Y 50.5 ± 1.8 44.4 ± 0.5 44 N 50.4 ± 1.3 44.7 ± 0.5 44 N 52.1 ± 0.9 45.2 ± 0.4 45
5 ? 57.6 ± 1.3 45.0 ± 0.0 45 N 51.0 ± 1.5 45.0 ± 0.2 44 N 54.1 ± 1.5 46.0 ± 0.0 46
6 Y 43.3 ± 1.6 43.3 ± 1.6 41 Y 56.8 ± 1.8 45.0 ± 0.2 44 N 59.8 ± 1.7 48.7 ± 0.5 48
7 ? 53.0 ± 0.0 44.9 ± 0.3 44 ? 62.2 ± 1.6 48.1 ± 0.6 47 N 67.1 ± 1.8 54.0 ± 0.6 52
8 N 55.7 ± 1.2 46.0 ± 0.4 45 Y 58.8 ± 1.4 44.9 ± 0.3 44 N 53.6 ± 1.7 45.0 ± 0.0 45
9 N 64.0 ± 0.0 45.5 ± 0.5 45 ? 67.1 ± 1.8 47.8 ± 0.6 47 N 51.1 ± 1.0 45.1 ± 0.3 45

10 N 46.0 ± 0.0 45.0 ± 0.0 45 Y 46.0 ± 1.3 44.7 ± 0.5 44 N 51.7 ± 1.1 46.0 ± 0.0 46
11 Y 44.9 ± 0.4 44.9 ± 0.4 43 Y 60.3 ± 1.7 45.0 ± 0.2 44 N 53.3 ± 1.0 46.0 ± 0.0 46
12 N 45.0 ± 0.0 45.0 ± 0.0 45 ? 51.2 ± 1.3 45.0 ± 0.2 44 Y 48.7 ± 1.0 45.0 ± 0.2 44
13 N 60.8 ± 0.9 45.1 ± 0.3 45 Y 63.7 ± 1.6 45.2 ± 0.5 44 Y 51.6 ± 0.7 45.0 ± 0.0 45
14 N 64.1 ± 0.8 46.7 ± 0.9 45 Y 55.4 ± 1.0 44.8 ± 0.4 44 Y 49.1 ± 0.9 45.0 ± 0.0 45
15 Y 45.0 ± 0.0 45.0 ± 0.0 45 N 59.8 ± 1.9 45.0 ± 0.0 45 Y 65.4 ± 1.2 45.6 ± 0.7 45
16 Y 60.9 ± 2.3 44.8 ± 0.4 44 ? 75.1 ± 1.5 46.9 ± 0.7 46 Y 63.0 ± 1.3 45.9 ± 0.7 45
17 ? 59.0 ± 0.0 45.0 ± 0.0 45 Y 65.6 ± 1.4 44.7 ± 0.5 44 ? 88.9 ± 1.4 56.0 ± 1.2 54
18 N 53.2 ± 0.8 45.3 ± 0.5 45 ? 89.6 ± 0.5 45.6 ± 0.6 45 ? 77.0 ± 1.6 56.3 ± 1.1 54
19 N 73.6 ± 2.8 45.0 ± 0.0 45 N 92.4 ± 1.5 46.0 ± 0.5 45 ? 81.7 ± 1.4 61.1 ± 0.8 60
20 N 46.0 ± 0.0 45.0 ± 0.0 45 N 77.7 ± 2.3 46.3 ± 0.6 45 ? 76.1 ± 2.3 55.0 ± 0.7 54

258 R. Lewis et al.

always able to achieve feasible timetables for fifteen, thirteen, and seven
instances of the small, medium, and large instance sets respectively. This

4.5 Satisfying the Soft Constraints

Having now reviewed a seemingly effective and robust algorithm for
achieving timetable feasibility, in this section we will now move on to the
task of satisfying the soft constraints of the UCTP. Similarly to the ideas of
White and Chan [51] and also Kostuch [31], our algorithm will attempt to
do this in two phases: firstly, by seeking a suitable ordering of the time-
slots (using neighbourhood operator N1 – see fig. 4), and secondly by shuf-
fling events around the timetable (using neighbourhood operator N2). In
both phases we will use simulated annealing (SA) for this task and, as we
will see, the second SA phase will generally constitute the lengthiest part
of this process. In this algorithm we also make extensive use of delta-
evaluation [39], and the algorithm will halt when a perfect solution has
been found or, failing this, when a predefined time limit is reached (in the
latter case, the best solution found during the whole run will be returned).

rooms

N1: Randomly choose two

timeslots in the timetable and swap
their contents.

N2: Randomly choose two cells (places) in the
timetable (ensuring that at least one cell is not

blank), and swap their contents.

timeslots

Fig. 4. The two neighbourhood operators used with the simulated annealing algo-
rithm.

In both phases, SA will be used in the following way: starting at an ini-
tial temperature t0, during the run the temperature t will be slowly reduced.
At each value for t, a number of neighbourhood moves will then be at-
tempted. Any move that increases the cost of the timetable (i.e. the number
of soft constraint violations) will then be accepted with probability defined
by the equation exp(– /t), where represents the change in cost. Moves
that reduce or leave unchanged the cost, meanwhile, will be accepted
automatically.

In the next four subsections we will outline the particular characteristics
of these two SA phases. We will then present an experimental analysis in
section 4.5.5-6.

4.5.1 SA Phase-1 - Search Space Issues

This phase of SA is concerned with the exploration of the search space de-
fined by neighbourhood operator N1 (see fig. 4). Note that due to the struc-
ture of this timetabling problem (in particular, that there are no hard con-

259Metaheuristics for University Course Timetabling

straints that depend on the ordering of events), a movement in N1 will al-
ways preserve feasibility.

It is also worth mentioning, however, that often there may be many fea-
sible timetables that are not achievable through the use of N1 alone. For
example, the size of the search space offered by N1 is | T |! (i.e. the number
of possible permutations of the timeslots). However, given that a feasible
timetable must always have | T | 45, this means that the number of possi-
ble solutions achievable with this operator will not actually grow with in-
stance size. Also, if we were to start this optimisation phase with a timeta-
ble in which two events – say, i and j – were assigned to the same timeslot,
then N1 would never actually be able to change this fact. Indeed, if the op-
timal solution to this problem instance required that i and j were in differ-

ent timeslots, then an exploration with N1 would never actually be able to
achieve the optimal solution in this case.

Given these issues, it was therefore decided that this phase of SA would
only be used as a preliminary step for making quick-and-easy improve-
ments to the timetable. Indeed, this also showed to be the most appropriate
response in practice.

4.5.2 SA Phase-1 - Cooling Schedule

For this phase, an initial temperature t0 is determined automatically by cal-
culating the standard deviation in the cost for a small sample of
neighbourhood moves. (We used sample size 100). This scheme of calcu-
lating t0 is based upon the physical processes of annealing, which are be-
yond the scope of this chapter, but of which more details can be found in
[50]. However, it is worth noting that in general SA practice, it is impor-
tant that a correct value for t0 is determined: a value that is too high will
invariably waste run time, because it will mean that the vast majority of
movements will be accepted, providing us with nothing more than a ran-
dom walk about the search space. On the other hand, an initial temperature
that is too low could also be detrimental, as it might cause the algorithm to
be too greedy from the outset and make it more susceptible to getting stuck
at local optima. In practice, our described method of calculating t0 tended
to allow approximately 75-85% of moves to be accepted, which is widely
accepted as an appropriate amount in SA literature.

With regards to other features of the cooling schedule, because we only
view this phase as a preliminary, during execution we choose to limit the
number of temperatures that we will anneal at to a fixed value M. In order
to have an effective cooling, this also implies a need for a cooling schedule
that will decrement the temperature from t0 to a value close to zero, in ex-
actly M steps. We use the following cooling scheme:

260 R. Lewis et al.

0

0

1

1 1

1

i i M
t

i i i M
t t

Here, represents a parameter that, at each step, helps determine a value
for . This -value is then used for influencing the amount of concavity or
convexity present in the cooling schedule. Fig. 5 shows these effects in
more detail.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90

te
m

p
e
ra

tu
re

 t

iterations

β = -0.99
β = 0.00
β = 0.99

Fig. 5. The effects of the parameter with the cooling scheme defined in eq. (3).
For this example, t0 = 10.0 and M = 100.

In our experiments, for this phase we set M = 100 and, in order to allow
more of the run to operate at lower temperatures, we set = –0.99. The
number of neighbourhood moves to be attempted at each temperature was
set at | T |2, thus keeping it proportional to the total size of the neighbour-
hood (a strategy used in many SA implementations [3, 19, 31]).

4.5.3 SA Phase-2 - Search Space Issues

In this second and final round of simulated annealing, taking the best solu-
tion found in the previous SA phase, an exploration of the search space de-
fined by neighbourhood operator N2 is conducted (see fig. 4). However,
note that, unlike neighbourhood operator N1, moves in N2 might cause a
violation of one or more of the hard constraints. In our approach we deal
with this fact by immediately rejecting and resetting any move that causes
such an infeasibility to occur.

Before looking at how we will tie this operator in with the SA approach,
it is first worth considering the large amount of flexibility that N2 can offer
the search. Suppose, for the sake of argument, that in a single application
of the operator we elect to swap cells p and q:

261Metaheuristics for University Course Timetabling

 (3)

 If p is blank and cell q contains an event e, then this will have the effect
of moving e to a new place p in the timetable;

Additionally,

 If p and q are in the same column, only the rooms of the affected events
will change;

 If p and q are in the same row, only the timeslots of the affected events
will change;

 If p and q are in different rows and different columns, then both the
rooms and timeslots of the affected events will be changed.

As can be seen, N2 therefore has the potential to alter a timetable in a va-
riety of ways. In addition, we also note that the number of new solutions
(feasible and infeasible) that are obtainable via any single application of N2
is exactly:

 1
2

(1) 1n n nx (4)

(where x defines the number of blank cells in the timetable). Thus,
unlike N1, the size of the neighbourhood is directly related to the number
of events n, and therefore the size of the problem. This suggests that for
anything beyond very small instances, more time will generally be re-
quired for a thorough exploration of N2’s solution space.

4.5.4 SA Phase-2 - Cooling Schedule

For this phase, an initial temperature t0 is calculated in a very similar fash-
ion to SA phase-1. However, before starting this second SA phase we also
choose to reduce the result of this calculation by a factor (c2/c1), where c1
represents the cost of the timetable before SA phase-1, and c2 the cost after
SA phase-1. Our reason for doing this is that during our experiments, we
observed that an unreduced value for t0 was often so high, that the im-
provements achieved during the SA phase-1 were regularly undone at the
beginning of the second. Reducing t0 in this way, however, seemed to al-
low the second phase of SA to build upon the progress of SA phase-1, thus
giving a more efficient run.

In order to determine when the temperature t should be decremented we
choose to follow the methodologies used by Kirkpatrick et al. [30] and
Abramson et al. [3] and define two values. The first of these specifies the

262 R. Lewis et al.

have the effect of swapping the places of events e and g in the timetable.
 If p contains an event e and cell q contains an event g, then this will

maximum number of feasible moves that can be attempted at any value for
t and, in our case, we calculate this with the formula: maxn (where max is a
parameter that we will need to tune14). However, in this scheme t is also
updated when a certain number of feasible moves have been accepted at
the current temperature. This value is calculated with the formula

min(maxn), where min is in the range (0, 1] and must also be tuned.
To decrease the temperature, we choose to use the traditional geometric

scheme [30] where, at the end of each cycle, the current temperature ti is
modified to a new temperature ti+1 using the formula ti+1 = ti, where is a
control parameter known as the cooling rate.

Finally, because this phase of SA will operate until a perfect solution
has been found, or until we reach the imposed time limit, we also make use
of a reheating function that is invoked when no improvement in cost is
achieved for successive values of t (and so the search has presumably
become stuck at a local optimum). In order to calculate a suitable tempera-
ture to reheat to, we choose to use a method known as “reheating as a
function of cost”, which was originally proposed by Abramson, Krish-
namoorthy, and Dang in [4]. In essence, this scheme determines a reheat
temperature by considering the current state of the search; thus, if the best
solution found so far has a high cost, then a relatively high reheat tempera-
ture will be calculated (as it is probably favourable to move the search to a
new region of the search space). On the other hand, if the best solution
found so far is low in cost, then a lower reheat temperature will be calcu-
lated, as it is probably the case that only small adjustments need to be
made. In studies such as [4] and [26] (where further details can also be
found) this has shown to be an effective method of reheating with this sort
of problem.

4.5.5 Algorithm Analysis – 45 or 40 Timeslots?

For our experimental analysis of this SA algorithm, we performed two
separate sets of trials on the 20 competition instances, using a time limit
specified by the competition-benchmarking program15. For the first set, we
simply used our construction and heuristic search procedures (section 4.2
and 4.3) to make any feasible timetable where a maximum of 45 timeslots
was being used. The SA algorithm would then take this timetable and op-
erate in the usual way. For our second set, however, we chose to make a
slight modification to our algorithm and allowed the heuristic search pro-

14 Note that our use of the number of events n in this formula keeps the result of

this calculation proportional to instance size.
15 This equated to 270 seconds of CPU time on our computers

263Metaheuristics for University Course Timetabling

cedure to run a little longer in order to try and schedule all of the events
into a maximum of just 40 timeslots (we chose to allow a maximum of 5%
of the total runtime in order to achieve this). Our reasons for making this
modification were as follows:

When we were designing and testing our SA algorithm, one characteris-
tic that we sometimes noticed was the difficulty that N2 seemed to have
when attempting to deal with violations of soft constraint S1: often, when
trying to rid a timetable of a violation of S2 or S3, N2 would do so by mak-
ing use of an end-of-day timeslot. Or in other words, in trying to eliminate
one constraint violation, the algorithm would often inadvertently cause an-
other one. The reasons why such behaviour might occur start to become
more evident if we look back at the descriptions of the three soft con-
straints in section 3.2. Note that S2 and S3 stand out as being slightly dif-
ferent to S1, because if an event e is involved in a violation of either S2 or
S3, then this will not simply be down to the position of e in the timetable,
it will also be due to the relative positions of the other events that have
common students with e. By contrast, if e is causing a violation of S1, then
this will be due to it being assigned to one of the five end-of-day timeslots,
and has nothing to do with the relative positions of other events with com-
mon students to e. Thus, given that a satisfaction of S1 depends solely on
not assigning events to the five end-of-day timeslots, a seemingly intuitive
idea might therefore be to simply remove these five timeslots (and there-
fore constraint S1) from the search altogether. In turn, the SA algorithm
will then only need to consider the remaining 40 (unpenalised) timeslots
and only try to satisfy the two remaining soft constraints.

In our case, it turned out that our strategy of allowing the heuristic
search procedure to run a little longer worked quite well: using the same
experimental set-up as described in section 4.4, with the 20 competition in-
stances the procedure was able to schedule all events into 40 timeslots in
over 94% of cases. In the remaining cases (which, incidentally, never actu-
ally required more than 41 timeslots) the extra timeslots were labelled as
end-of-day timeslots. However, in order to still lend special attention to the
task of eliminating S1 violations, we used a slightly modified version of N2
that would automatically reject any move that caused the number of events
assigned to these end-of-day timeslots to increase, but would also elimi-
nate these timeslots if they were ever to become empty during the SA
process. In our case, this strategy would always eliminate the remaining
end-of-day timeslots within the first minute-or-so of the run.

264 R. Lewis et al.

4.5.6 Results

Table 3 provides a comparison of these two sets of trials using 50 runs on
each of the 20 instances. In both cases we used a cooling rate of = 0.995
and = 30. Suitable values for min and max (the two parameters that we
witnessed to be the most influential regarding algorithm performance), on
the other hand, were determined empirically by running the algorithm at
11 different settings for max (between 1 and 41, incrementing in steps of 4)
and 10 different values for min (0.1 to 1.0, in steps of 0.1). At each setting
for min and max we then performed 20 separate runs on each of the 20
competition problem instances, thus giving a total of 400 runs per setting.
The best performing values for min and max in both cases (i.e. the settings
that gave the lowest average cost of the 400 runs when using 40 and 45
timeslots) were then used for our comparison.

It can be seen in Table 3 that when using just 40 timeslots the SA-
algorithm is able to produce better average results in the majority of cases
(17 out of the 20 instances). Additionally, the best results (from 50 runs)
are also produced in 16 of the 20 instances, with ties occurring on a further
2. A Wilcoxon signed-rank test also reveals the differences in results pro-
duced in each set of trials to be significant (with a probability greater than
95%). The results gained when using 40 timeslots also compare well to
other approaches. For example, had the best results in the Table 3 been
submitted to the timetabling competition, then according to the judging cri-
teria, this algorithm would have been placed second (although note that
according to a Wilcoxon signed-rank test, there is actually no significant
difference between these results and the competition winner, which, inci-
dentally, also reported results that were the best found in 50 runs).

The reasons why we believe the use of just 40 timeslots to be advanta-
geous have already been outlined in the previous subsection. However, it is
also worth noting that although the entire search space will be smaller
when we are using only 40 timeslots (because there will be 5m fewer
places to which events can be assigned to) the removal of the end-of-day
timeslots will also have the effect of reducing the number of blanks that
are present in the timetable matrix. Indeed, considering that moves in N2
that involve blanks (and therefore just one event) are, in general, more
likely to retain feasibility than those involving two, this means that further
restrictions will actually be added to a search space where movements are
already somewhat inhibited. Considering that that one of the major re-
quirements for the two-stage timetabling approach is for practical amounts
of movements in feasible areas of the search space to be achievable (see
section 2), there is thus a slight element of risk in reducing the number of

265Metaheuristics for University Course Timetabling

timeslots in this way. For these instances, however, the strategy seems to
be beneficial.

Table 3. Comparison of the two trial-sets using the 20 competition instances. In
each case the average cost, standard deviation, and best cost (parenthesised) from
50 runs on each instance is reported.

Instance # 1 2 3 4 5 6 7 8 9 10

Using 45 slots
with max = 9 and

min = 0.1

85.9
± 10.9.

(68)

68.5
± 8.2.
(49)

86.9
± 12.7.

(63)

260.1
± 23.4.
(207)

190.1
± 25.7.
(133)

31.5
± 8.8.
(12)

42.3
± 17.0.

(19)

28.3
± 7.2.
(14)

52.2
± 9.6.
(31)

84.9
± 8.0.
(68)

Using 40 slots
with max = 5 and

min = 0.9

86.9
± 17.6.

(62)

53.5
± 10.2.

(39)

95.6
± 18.8.

(69)

231.8
± 39.5.
(176)

147.7
± 29.5.
(106)

22.8
± 8.4.
(11)

23.7
± 13.3.

(5)

22.2
± 8.6.
(10)

41.4
± 13.7.

(22)

91.7
± 15.3.

(70)

Instance # 11 12 13 14 15 16 17 18 19 20 Av.

Using 45 slots
with max = 9 and

min = 0.1

61.6
± 9.7.
(43)

147.5
± 16.3.
(109)

130
± 14.1.
(101)

107
± 33.4.

(55)

41.5
± 8.5.
(22)

47.2
± 7.9.
(29)

169.3
± 26.5.
(119)

45.9
± 7.8.
(27)

85.5
± 14.7.

(62)

9.5
± 4.5.

(1)

88.8

(61.6)

Using 40 slots
with max = 5 and

min = 0.9

60.6
± 16.0.

(38)

133.8
± 28.1.

(94)

128.2
± 19.2.
(101)

66.3
± 20.7.

(37)

33.2
± 13.6.

(14)

35.8
± 12.6.

(18)

129.4
± 25.0.

(94)

40.8
± 9.7.
(27)

84.9
± 21.2.

(55)

8.6
± 6.1.

(0)

77

(52.4)

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250

c
o

s
t

time (seconds)

(b)

(a)

(a)

45 slots, ηmax = 9 and ηmin = 0.1
40 slots, ηmax = 5 and ηmin = 0.9

Fig. 6. Two example runs of the SA algorithm on competition instance-20. Points
(a) indicate where the algorithm has switched from SA phase-1 to SA phase-2.
Points (b) indicate where a reheating has occurred.

Finally, in fig. 6 we show two example runs of the SA algorithm using
the parameters defined in Table 3. Here we can observe the contributions

266 R. Lewis et al.

that both phases of SA lend to the overall search, and also the general

invoked too late to have a positive effect). Additionally, we can see that
the second line (using 40 timeslots) actually starts at a markedly lower cost
than the first, because the elimination of all S1 violations in this case, has
actually resulted in a better quality initial solution. However, note that this
line also indicates a slower progression through the search space during the
first half of the run, which could well be due to the greater restrictions on
movement within the search space that occur as a result of this condition.

5 Conclusions and Discussion

University timetabling in the real world is an important problem that can
often be difficult to solve adequately, and sometimes impossible (without
relaxing some of the imposed constraints). In this chapter we have men-
tioned that one of the most important issues for designers of timetabling
algorithms is the question of how to deal effectively with both the hard
constraints and the soft constraints, and have noted that when using meta-
heuristics, this is usually attempted in one of three ways: by using one-
stage optimisation algorithms; by using two-stage optimisation algorithms;
or by using algorithms that allow relaxations of some feature of the prob-
lem.

In this chapter we have given a detailed analysis of the so-called UCTP
and have reviewed many of the existing works concerning it. In section 4
we have also provided a description and analysis of our own particular al-
gorithm for this problem. As we have noted, the UCTP was used as the
benchmark problem for the International Timetabling Competition in
2002-3. By formulating this problem and then encouraging researchers to
write algorithms for it, we have attempted to avoid many of the difficulties
that are often caused by the idiosyncratic nature of timetabling, and have
provided a means by which researchers can test and compare their algo-
rithms against each other in a meaningful and helpful way.

However, it should be noted that when conducting research in this way
we must always be cautious about extrapolating strong scientific conclu-
sions from the results. For example, whilst one timetabling algorithm may
appear to be superior to another, these differences could be due to mun-
dane reasons such as programming/compiler issues, or the parameters
and/or seeds that are used. Superior performance might also simply occur
because some algorithms are more suited to the particular constraints of
this problem.

267Metaheuristics for University Course Timetabling

effects of the reheating function (although in one case we can see that it is

It is also worth bearing in mind that whilst the use of benchmark in-
stances may facilitate analysis and comparison of algorithms, ultimately
they do not necessarily allow insight into how these algorithms might fare
with other kinds of problem instance. For example, in this chapter we have
seen that many of the algorithms that have gained good results to the 20
competition instances – including our own – have done so using a two-
stage optimisation approach. However, this apparent success could, in part,
be due to the competition criteria for judging timetable quality (section
3.3), and also the fact that the instances are fairly easy to solve with regard
to finding feasibility. This might therefore lend favour to the two-stage op-
timisation approach. Indeed, in cases where different judging criteria or
different problem instances are used, perhaps some other sort of time-
tabling strategy would show more value.

In conclusion, when designing algorithms for timetabling, it is always
worth remembering that in the real world many different sorts of con-
straints, problem instances, and even political factors might be encoun-
tered. The idiosyncratic nature of real-world timetabling indicates an ad-
vantage to those algorithms that are robust with respect to problem-class
changes or to those that can easily be adapted to take account of the needs
of particular institutions.

References

[1] http://www.idsia.ch/Files/ttcomp2002/
[2] http://www.emergentcomputing.org/timetabling/harderinstances
[3] D. Abramson, Constructing School Timetables using Simulated Annealing:

Sequential and Parallel Algorithms, Management Science, vol. 37, pp. 98-
113, 1991.

[4] D. Abramson, H. Krishnamoorthy, and H. Dang, Simulated Annealing Cool-
ing Schedules for the School Timetabling Problem, Asia-Pacific Journal of

Operational Research, vol. 16, pp. 1-22, 1996.
[5] H. Arntzen and A. Løkketangen, A Tabu Search Heuristic for a University

Timetabling Problem, in Metaheuristics: Progress as Real Problem Solvers,

[6] M. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, A Racing Algorithm
for Configuring Metaheuristics, presented at The Genetic and Evolutionary
Computation Conference (GECCO) 2002, New York, 2002.

[7] D. Brelaz, New methods to color the vertices of a graph, Commun. ACM,
vol. 22, pp. 251-256, 1979.

[8] E. Burke, D. Elliman, and R. Weare, Specialised Recombinative Operators

268 R. Lewis et al.

“

“

”

“

“

“

“

”

”

”

”

for Timetabling Problems,” in The Artificial Intelligence and Simulated

M. Yagiura, Eds. Berlin: Springer-Verlag, 2005, pp. 65-86.
vol. 32, Computer Science Interfaces Series, T Ikabaki, K. Nonobe, and

[9] E. Burke, D. Elliman, and R. Weare, The Automation of the Timetabling
Process in Higher Education, Journal of Education Technology Systems, vol.
23, pp. 257-266, 1995.

[10] E. Burke, D. Elliman, and R. Weare, A Hybrid Genetic Algorithm for
Highly Constrained Timetabling Problems., presented at Genetic Algo-

[11] E. Burke and M. Petrovic, Recent Research Directions in Automated Time-
tabling, European Journal of Operational Research, vol. 140, pp. 266-280,
2002.

[12] E. K. Burke, D. G. Elliman, P. H. Ford, and R. Weare, Examination Time-
tabling in British Universities: A Survey, in Practice and Theory of Auto-

mated Timetabling (PATAT) I, vol. 1153, Lecture Notes in Computer Science,
E. Burke and P. Ross, Eds. Berlin: Springer-Verlag, 1996, pp. 76-92.

[13] E. K. Burke and J. P. Newall, A Multi-Stage Evolutionary Algorithm for the
Timetable Problem, IEEE Transactions on Evolutionary Computation, vol.
3, pp. 63-74, 1999.

[14] M. Carter, A Survey of Practical Applications of Examination Timetabling
Algorithms, Operations Research, vol. 34, pp. 193-202, 1986.

[15] M. Carter and G. Laporte, Recent Developments in Practical Examination
Timetabling, in Practice and Theory of Automated Timetabling (PATAT) I,

[16] M. Carter, G. Laporte, and S. Y. Lee, Examination Timetabling: Algorithmic
Strategies and Applications, Journal of the Operational Research Society,
vol. 47, pp. 373-383, 1996.

[17] M. Carter and G. Laporte, Recent Developments in Practical Course Time-
tabling, in Practice and Theory of Automated Timetabling (PATAT) II, vol.
1408, Lecture Notes in Computer Science, E. Burke and M. Carter, Eds. Ber-
lin: Springer-Verlag, 1998, pp. 3-19.

[18] S. Casey and J. Thompson, GRASPing the Examination Scheduling Prob-
lem, in Practice and Theory of Automated Timetabling (PATAT) IV, vol.
2740, Lecture Notes in Computer Science, E. Burke and P. De Causmaecker,
Eds. Berlin: Springer-Verlag, 2002, pp. 233-244.

[19] M. Chiarandini, K. Socha, M. Birattari, and O. Rossi-Doria, An Effective
Hybrid Approach for the University Course Timetabling Problem, Technical

Report AIDA-2003-05, FG Intellektik, FB Informatik, TU Darmstadt, Ger-

many, 2003.
[20] A. Colorni, M. Dorigo, and V. Maniezzo, Metaheuristics for high-school

298, 1997.
[21] T. Cooper and J. Kingston, The Complexity of Timetable Construction

Problems, in Practice and Theory of Automated Timetabling (PATAT) I,
vol. 1153, Lecture Notes in Computer Science, E. Burke and P. Ross, Eds.
Berlin: Springer-Verlag, 1996, pp. 283-295.

269Metaheuristics for University Course Timetabling

3-21.
vol. 1153, E. Burke and P. Ross, Eds. Berlin: Springer-Verlag, 1996, pp.

timetabling, Computational Optimization and Applications, vol. 9, pp. 277-

“

“

“

“

“

“

“

“

“

“

“

“

“

”

”

”

”

”

”

”

”

”

”

”

”

”

Computer Science. Berlin: Springer-Verlag, 1995, pp. 75-85.

rithms: Proceedings of the Sixth International Conference (ICGA95), 1995.

Behaviour Workshop on Evolutionary Computing, vol. 993, Lecture Notes in

[22] D. Corne, P. Ross, and H. Fang, Evolving Timetables, in The Practical

Handbook of Genetic Algorithms, vol. 1, L. C. Chambers, Ed.: CRC Press,
1995, pp. 219-276.

[23] P. Cote, T. Wong, and R. Sabourin, Application of a Hybrid Multi-Objective
Evolutionary Algorithm to the Uncapacitated Exam Proximity Problem, in
Practice and Theory of Automated Timetabling (PATAT) V, vol. 3616, Lec-

ture Notes in Computer Science, E. Burke and M. Trick, Eds. Berlin:
Springer-Verlag, 2005, pp. 294-312.

[24] P. Cowling, S. Ahmadi, P. Cheng, and R. Barone, Combining Human and
Machine Intelligence to Produce Effective Examination Timetables, pre-
sented at The Forth Asia-Pacific Conference on Simulated Evolution and
Learning (SEAL2002), Singapore, 2002.

[25] A. E. Eiben, J. K. van der Hauw, and J. I. van Hemert, Graph Coloring with
Adaptive Evolutionary Algorithms, Journal of Heuristics, vol. 4, pp. 25-46,
1998.

[26] S. Elmohamed, G. Fox, and P. Coddington, A Comparison of Annealing
Techniques for Academic Course Scheduling, in Practice and Theory of

Automated Timetabling (PATAT) II, vol. 1408, Lecture Notes in Computer

[27] E. Erben, A Grouping Genetic Algorithm for Graph Colouring and Exam
Timetabling, in Practice and Theory of Automated Timetabling (PATAT) III,
vol. 2079, Lecture Notes in Computer Science, E. Burke and W. Erben, Eds.
Berlin: Springer-Verlag, 2001, pp. 132-158.

[28] S. Even, A. Itai, and A. Shamir, On the complexity of Timetable and Multi-

703, 1976.
[29] E. Falkenauer, Genetic Algorithms and Grouping Problems: John Wiley and

Sons, 1998.
[30] S. Kirkpatrick, C. Gelatt, and M. Vecchi, Optimization by Simulated An-

nealing, Science, pp. 671-680, 1983.
[31] P. Kostuch, The University Course Timetabling Problem with a 3-Phase

Approach, in Practice and Theory of Automated Timetabling (PATAT) V,
vol. 3616, Lecture Notes in Computer Science, E. Burke and M. Trick, Eds.
Berlin: Springer-Verlag, 2005, pp. 109-125.

[32] R. Lewis and B. Paechter, New Crossover Operators for Timetabling with
Evolutionary Algorithms, presented at The Fifth International Conference on
Recent Advances in Soft Computing RASC2004, Nottingham, England,
2004.

[33] R. Lewis and B. Paechter, Application of the Grouping Genetic Algorithm to
University Course Timetabling, in Evolutionary Computation in Combinato-

rial Optimization (EvoCop), vol. 3448, Lecture Notes in Computer Science,
G. Raidl and J. Gottlieb, Eds. Berlin: Springer-Verlag, 2005, pp. 144-153.

[34] R. Lewis and B. Paechter, An Empirical Analysis of the Grouping Genetic
Algorithm: The Timetabling Case, presented at the IEEE Congress on Evo-
lutionary Computation (IEEE CEC) 2005, Edinburgh, Scotland, 2005.

270 R. Lewis et al.

commodity Flow Problems, SIAM Journal of Computing, vol. 5, pp. 691-

“

“

“

“

“

“

“

“

“

“

“

“

”

”

”

”

”

”

”

”

”

”

”

”

pp. 146-166.
Science, E. Burke and M. Carter, Eds. Berlin: Springer-Verlag, 1998,

[35] R. Lewis and B. Paechter, Finding Feasible Timetables using Group Based
Operators, (Forthcoming) Accepted for publication in the IEEE Trans. Evo-

lutionary Computation, 2006.
[36] Z. Michalewicz, The Significance of the Evaluation Function in Evolution-

[37] B. Paechter, R. Rankin, A. Cumming, and T. Fogarty, Timetabling the
Classes of an Entire University with an Evolutionary Algorithm, in Parallel

Problem Solving from Nature (PPSN) V, vol. 1498, Lecture Notes in Com-

puter Science, T. Baeck, A. Eiben, M. Schoenauer, and H. Schwefel, Eds.
Berlin: Springer-Verlag, 1998, pp. 865-874.

[38] J. T. Richardson, M. R. Palmer, G. Liepins, and M. Hilliard, Some Guide-
lines for Genetic Algorithms with Penalty Functions., in the Third Interna-

tional Conference on Genetic Algorithms, J. D. Schaffer, Ed. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc, 1989, pp. 191-197.

[39] P. Ross, D. Corne, and H.-L. Fang, Improving Evolutionary Timetabling
with Delta Evaluation and Directed Mutation, in Parallel Problem Solving

from Nature (PPSN) III, vol. 866, Lecture Notes in Computer Science, Y.
Davidor, H. Schwefel, and M. Reinhard, Eds. Berlin: Springer-Verlag, 1994,
pp. 556-565.

[40] P. Ross, D. Corne, and H. Terashima-Marin, The Phase-Transition Niche for
Evolutionary Algorithms in Timetabling, in Practice and Theory of Auto-

mated Timetabling (PATAT) I, vol. 1153, Lecture Notes in Computer Science,
E. Burke and P. Ross, Eds. Berlin: Springer-Verlag, 1996, pp. 309-325.

[41] P. Ross, E. Hart, and D. Corne, Genetic Algorithms and Timetabling, in
Advances in Evolutionary Computing: Theory and Applications, A. Ghosh
and K. Tsutsui, Eds.: Springer-Verlag, New York., 2003, pp. 755- 771.

[42] O. Rossi-Doria, J. Knowles, M. Sampels, K. Socha, and B. Paechter, A Lo-
cal Search for the Timetabling Problem, presented at Practice And Theory of
Automated Timetabling (PATAT) IV, Gent, Belgium, 2002.

[43] O. Rossi-Doria, M. Samples, M. Birattari, M. Chiarandini, J. Knowles, M.
Manfrin, M. Mastrolilli, L. Paquete, B. Paechter, and T. Stützle, A Compari-
son of the Performance of Different Metaheuristics on the Timetabling Prob-
lem, in Practice and Theory of Automated Timetabling (PATAT) IV, vol.
2740, Lecture Notes in Computer Science, E. Burke and P. De Causmaecker,
Eds. Berlin: Springer-Verlag, 2002, pp. 329-351.

[44] W. Salwach, Genetic Algorithms in Solving Constraint Satisfaction Prob-
lems: The Timetabling Case, Badania Operacyjne i Decyzje, 1997.

[45] A. Schaerf, Tabu Search Techniques for Large High-School Timetabling
Problems, in Proceedings of the Thirteenth National Conference on Artifi-

cial Intelligence. Portland (OR): AAAI Press/ MIT Press, 1996, pp. 363-368.

tabling Problem with Regard to the State-of-the-Art, in Evolutionary Com-

271Metaheuristics for University Course Timetabling

“

“

“

“

“

“

“

“

“

“

“

”

”

”

”

”

”

”

”

”

”

”

Institute for Mathematics and Its Applications, University of Minnesota,
Minneapolis, Minnesota, 1998.

ary Algorithms,” presented at The Workshop on Evolutionary Algorithms,

[47] K. Socha and M. Samples, “Ant Algorithms for the University Course Time-
Review, vol. 13, pp. 87-127, 1999.

[46] A. Schaerf, “A Survey of Automated Timetabling,” Artificial Intelligence

putation in Combinatorial Optimization (EvoCOP 2003), vol. 2611, Lecture

Notes in Computer Science. Berlin: Springer-Verlag, 2003, pp. 334-345.
[48] H. Terashima-Marin, P. Ross, and M. Valenzuela-Rendon, Evolution of

Constraint Satisfaction Strategies in Examination Timetabling, presented at
The Genetic and Evolutionary Computation Conference (GECCO), 2000.

[49] J. M. Thompson and K. A. Dowsland, A Robust Simulated Annealing based
Examination Timetabling System, Computers and Operations Research, vol.
25, pp. 637-648, 1998.

[50] P. van Laarhoven and E. Aarts, Simulated Annealing: Theory and Applica-

tions. Reidel, The Netherlands: Kluwer Academic Publishers, 1987.
[51] G. White and W. Chan, Towards the Construction of Optimal Examination

Schedules, INFOR, vol. 17, pp. 219-229, 1979.

272 R. Lewis et al.

“

“

“

”

”

”

Tapabrata Ray1 and Ruhul Sarker2

1School of Aerospace, Civil and Mechanical Engineering
2School of Information Technology and Electrical Engineering
University of New South Wales at the Australian Defence Force Academy,
Northcott Drive, Canberra 2600, Australia
Email: {t.ray, r.sarker}@adfa.edu.au

Summary. In this chapter, we discuss a practical oil production planning
problem from a petroleum field. A field typically consists of a number of oil
wells and to extract oil from these wells, gas is usually injected which is re-
ferred as gas-lift. The total gas used for oil extraction is constrained by daily
availability limits. The oil extracted from each well is known to be a
nonlinear function of the gas injected into the well and varies between
wells. The problem is to identify the optimal amount of gas that needs to be
injected into each well to maximize the amount of oil extracted subject to
the constraint posed by the daily gas availability. The problem has long
been of practical interest to all major oil exploration companies as it has a
potential of deriving large financial benefits. Considering the complexity of
the problem, we have used an evolutionary algorithm to solve various forms
of the production planning problem. The multiobjective formulation is at-
tractive as it eliminates the need to solve such problems on a daily basis
while maintaining the quality of solutions. Our results show significant im-
provement over existing practices. We have also introduced a methodology
to deliver robust solutions to the above problem and illustrated it using the
six-well problem. Furthermore, we have also proposed a methodology to
create and use a surrogate model within the framework of evolutionary op-
timization to realistically deal with such problems where oil extracted from
a well is a nonlinear function of gas injection and a piecewise linear model
may not be appropriate.

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007
Studies in Computational Intelligence (SCI) 49, 273–292 (2007)

T. Ray and R. Sarker: Optimum Oil Production Planning using an Evolutionary Approach,

an Evolutionary Approach

Optimum Oil Production Planning using

1 Introduction

oil reservoir and the reservoir has a number of wells. There are two basic

naturally flowing and (ii) gas lift. In the first one, the oil is able to flow
naturally to surface, while the second requires injection of high pressure
gas to facilitate oil extraction. The gas lift is considered as the most eco-
nomic method for artificial lifting of oil (Aaytollahi et al, 2004 and Cam-
ponogara and Nakashima, 2005).

In this study, we consider gas lift extraction method. As it will be dis-
cussed later, for a given well, the oil production per day can be expressed
as a nonlinear function of gas injected into the well in that day. The oil
production per day increases with the increase of gas used to a certain level
and then decreases. That means an excessive use of gas may increase the
gas cost, as well as production cost, without providing any benefit in terms
of oil production volume. For a given amount of gas used, the amount of
oil extraction significantly varies from well to well. That means the
nonlinear function of gas usage versus oil extracted varies from well to
well. As a result, an inappropriate gas allocation to different wells, under
limited gas availability, will reduce the overall production and hence prof-
itability from the entire reservoir. So the single objective gas lift optimiza-
tion problem is to allocate a limited amount of gas to a number wells in a
reservoir while maximizing the total oil production in a day. However, the
amount gas may vary from day to day. That means, the management has to
re-solve the problem if the amount of gas is different. In such situations, it
is appropriate to solve the problem as bi-objective problem where the ob-
jectives would be:

 Maximize oil production and
 Minimize gas used.

Prior research in gas-lift optimization only devoted to single objective
optimization problem using either a single well model (Fang and Lo, 1996)
or multiple wells model (Dutta-Roy and Kattapuram, 1997). A range of
methodologies was used in solving this problem such as equal-slope
method (Nishikiori et al., 1989), linear programming (Fang and Lo, 1996),
mixed integer linear programming (Kosmidis et al., 2005) quadratic pro-
gramming (Dutta-Roy and Kattapuram, 1997), dynamic programming
(Camponogara and Nakashima, 2005) and others. In this research, we con-

274 T. Ray and R. Sarker

Petroleum, either oil or gas, is a finite and scare resource upon which modern
society is heavily dependent on. Hence, mankind is forced to rationalize
and optimize its production and consumption. In this chapter, we consider
a crude oil production system. In the system, there is a underground

methods of extracting oil from such reservoirs (Kosmidis et al., 2005): (i)

sider a six well and a fifty six well problem. We define the problem as a
single and a multiobjective problem and use evolutionary algorithm to
solve the mathematical models. Evolutionary algorithms have been used to
solve a number of multiobjective optimization problems from the domain

prehensive review of evolutionary multiobjective optimization appears in

This chapter is organized as follows. Following introduction, we present
a mathematical model of the problem. The following section presents the
algorithm used for solving the problem. The last two sections discuss
about results and conclusions.

2 Mathematical Model

As mentioned earlier, the oil production per day from a given well is a
function of the gas injected into int. However, there is no standard function
which can be used to determine the production level for all the wells. The
practice is to collect production data i.e. amount of gas injected versus
amount of oil extracted at a number of discrete points for each well and
then generate an approximate function. Using these discrete data points,
the researchers construct a function either as piece-wise linear [1] or as a
quadratic function [3]. Although both functions have drawbacks in esti-
mating the production level accurately, we would use piece-wise linear
function as this method is widely used and easy to model.
 The mathematical model of the problem is formulated as follows:

Parameters:

N the number of wells
In the number of line segments (gas used axis – x) in the function in well n
Gni slope of the function (oil produced per unit of gas used) at the line segment

i in well n
GL limit of gas usage in all wells per day
Uni upper limit of gas usage rate at the individual line segment i in well n

Variables:
Xn is the gas used in well n
xni is the gas usage in segment i in well n

nini

nini

ni
Ux if

Ux if
S

1

0

Oil Production Planning using an Evolutionary Approach 275

Coello (1999).

of operations research in recent years (Sarker et al., 2002). Excellent com-

The relationships between Xn and xni are as follows:

n xX
i

nin

Where
i,n Ux nini0

In addition, for a given value of Xn (which is in segment i in well n), all

xn(i+1) will be equal to zero and all xn(i-1) will be at the upper bound. How-
ever, the value of xni will be greater than zero and less than or equal to the
upper bound.

xN2xN1

xN3

xN4

Gas Injected in Well -N

O
il

 E
xt

ra
ct

ed

GN2*xN2

Fig. 1. Schematic Diagram of Solution Representation

2.1 Single Objective Model

We first present a single objective model for the above problem. The ob-
jective of the problem is to maximize the total daily production.

Maximize
n i

nini xGZ

Constraints:

(i) Calculating the gas usage level in each well
n xX

i

nin

276 T. Ray and R. Sarker

(ii) To make the constraint (i) meaningful for a piece wise linear curve, the
following condition must hold.

)1(innininini SUxSU in,

Here

0nS = 1 and nnIS = 0. This constraint will basically set xn4 and all other

xni (i>=4) =0 as in Fig. 1.

(iii) Gas limitation: The total use of gas in all wells in a given day must be
less than or equal to the available gas.

GLX
n

n

(iv) Nonnegativity constraints

i,n), ,(S,X ,x ninni 1000

In a later section, we will use the model to solve the 30 day planning prob-
lem where the daily oil production and the gas use is represented by

n i

nitnit xG and
n

ntX (t = 1 to 30) respectively.

2.2 Multiobjective Model

In reality we want to maximize the oil production using minimum possible
gas. So the problem can be defined as a bi-objective problem where the
objectives are:

 Maximization of oil production and
 Minimization of gas use

The corresponding objective functions are as follows:

Maximize
n i

nini xGZ1

Minimize
n

nXZ 2

Subject to the above constraints

2.3 Solution Approach

We have developed an evolutionary algorithm to solve the above problem.
This algorithm is a variant of NSGA-II [8 and 9] and has a major differ-

Oil Production Planning using an Evolutionary Approach 277

ence in the process of population reduction. In the process of population
reduction from a size of 2M to M, the method insists on maintaining not
only the end points of the objective space but also maximum and minimum
values of the variables. The process is certainly more computationally ex-
pensive than NSGA-II and can be thought as a diversity maintaining
mechanism which might be useful for problems where the diversity in the
variable space is important. Before introducing the algorithm, it is neces-
sary to introduce the notion of Pareto optimal design and nondominated
design. A design F*x is termed Pareto optimal if there does not exist
another Fx , such that)(f)(f ii

*xx for all ,...,k1i objectives and
)(f)(f jj

*
xx for at least one j. Here, F denotes the feasible space (i.e.,

regions where the constraints are satisfied) and)(f j x denotes the jth objec-
tive corresponding to the design x . If the design space is limited to M solu-
tions instead of the entire F, the set of solutions are termed as nondomi-
nated solutions. Since in practice, all the solutions in F cannot be evaluated
exhaustively, the goal of multiobjective optimization is to arrive at the set
nondominated solutions with a hope that it is sufficiently close to the set of
Pareto solutions. Diversity among these set of solutions is also a desirable
feature as it means making a selection from a wider set of design alterna-
tives.

The pseudo-code of the Multi-objective Constrained Algorithm (MCA) is pro-
vided below.

(a) 0t
(b) }I,,I, M21

 uniformly in the parametric space.

(c) Evaluate each individual: Compute their objectives and constraints
i.e.,)(Ic and)(If ijik ; for M,1,2,i individuals, O,1,k ob-

jectives and S,1,j constraints.

(d) Select two parents P1 and P2. (The procedure for selection is described be-
low).

(e) Create two children C1 and C2 via crossover and mutation of P1 and P2.
(f) Repeat steps (d) and (e) until M children are created.
(g) Evaluate M children.
(h) Merge M parents and M Children to form a population of size 2M.
(i) Retain better performing M solutions from the above 2M solutions.
(j) 1tt
(k) If maxTt then repeat steps (d) through (j) Else Stop. maxwhereT denotes

the maximum number of generations.

278 T. Ray and R. Sarker

Generate M individuals representing a population: Pop(t) {I

The procedure for selecting a parent P1 is described below and the same
applies to selecting P2.

(a) Select two individuals (S1 and S2) from the population of M solutions us-

ing a uniform random selection.
(b) If S1 is feasible and S2 is infeasible: S1 is selected as the parent and vice

versa.
(c) If both S1 and S2 are infeasible: One which has the minimum value of the

maximum violated constraint is selected as the parent. Compute
S)1,i(x);max(g i for S1 and S2 and choose the one which has the

minimum value. ((x)g i denotes the constraints).

(d) If both S1 and S2 are feasible and S1 dominates S2: S1 is selected as parent
and vice versa.

(e) If both S1 and S2 are feasible and none dominates each other: The parent is
a random choice between S1 and S2.

We have used simulated binary crossover (SBX) and the polynomial

mutation for the real variables as adapted in NSGA-II to create two chil-
dren from a pair of parents.

The procedure to retain M solutions from a set of 2M solutions is pre-

sented below:
(a) Rank the set of 2M solutions. (The procedure for ranking is described be-

low).
(b) If the number of rank=1 solutions (i.e. non-dominated solutions) is less

than M, select top M solutions based on their rank and copy them to the
new population.

(c) If the number of rank=1 solutions is more than M, follow the following
steps:
i. Select the solutions which have a minimum value (assuming mini-

mization in both objectives) in any of the objectives and copy them
to the new population.

ii. For every variable, copy two solutions to the new population which
has its minimum and the maximum value if they have not been cop-
ied yet (including step i). If the number of solutions copied is more
than M/2, than M/2 randomly selected solutions are allowed to stay
in the population.

iii. For the remaining rank=1 solutions, the sequence of who goes in
first to the new population is decided as follows:
1. Compute the score by inserting the solution into the new popu-

lation one at a time. The score is the minimum Euclidean dis-
tance computed between the solution attempting to enter with
all other existing solutions in the new population based on the
objective function space. Scaled values are used for the score

Oil Production Planning using an Evolutionary Approach 279

computation i.e. the objective space is scaled using the maxi-
mum and minimum values in each dimension based on the set
of rank=1 solutions.

2. The solution with the highest score is allowed to go into the
new population unless it has been copied earlier in which case
the solution with the next score goes in.

3. The steps (1) and (2) are repeated until the new population has
a size of M.

The procedure for rank computation is as follows:
(a) Separate the set of 2M solutions to a set of feasible and a set of infeasi-

ble solutions.
(b) Perform a non-dominated sorting to assign ranks to the solutions in the

feasible set.
(c) Rank the solutions in the infeasible set based on their maximum value

of the violated constraint.
(d) Update the ranks of the solutions in the infeasible set by adding the rank

of the worst feasible solution to each.

The assumptions behind the procedures in the algorithm are:
(a) A feasible solution is always preferred over an infeasible solution. This

is a commonly adopted practice, although one might argue that it’s bet-
ter to retain a marginally infeasible solution rather than a bad feasible
solution.

(b) Step (i) in the above procedure ensures that the endpoints in the objec-
tive space are inserted into the new population and the extent of the
non-dominated front is preserved.

(c) Step (ii) is a means to maintain variable diversity i.e. to include a possi-
bility of retaining variable values which might be useful.

3 Results and Discussion

In this research, we have used representative data for the six wells problem
and the fifty six well problem from Buitrago et al (1996). The data for each
well represent a relationship between oil extraction and gas usage for a
number of discrete points. For modelling purposes, we consider a linear in-
terpolation between any two consecutive data points. That means we use a
piece wise linear function. The functions for sample data for a six-well
problem are shown in Appendix-A. The gas-lift optimization model for-
mulated above was solved using the algorithm presented in an earlier sec-

280 T. Ray and R. Sarker

Pentium 4, 2.8GHz, 1GB RAM). Source Codes were complied using
Visual C++ Version 6.0, Enterprise Edition.

tion. The runs were conducted on a Desktop (IBM ThinkCentre: Intel

3.1 Six Well Problem: Single Objective Formulation

The problem is to maximize the total oil that can be extracted from six
wells subject to a constraint which limits the maximum gas injection vol-
ume of 6000 thousand standard cubic feet(MSCF) into each well. The
problem was solved with the following set of parameters (a) population
size of 100; (b) generations of 100 and 200 (c) probability of crossover of
0.7 and 0.9 (d) probability of mutation of 0.1 and 0.2 (e) distribution index
for crossover as 10 and 20 (f) distribution index of mutation as 10 and 20

The best result obtained from the above set of trials corresponds to an
oil production of 3663.99 barrels per day(BPD) whereas Buitrago et al
(1996) reported a value of 3629.0 BPD. This corresponds to a benefit of 35

1199.584681, 0.212049) respectively. The gas injection into each well was
allowed to vary between 0 and 6000 and treated as a real variable. The av-
erage CPU time for an optimization run with a population size of 100 and
a generation of 100 is around 3.04 seconds.

Table 1. Summary of Results for the Six Well Problem

Best 3663.99
Worst 3653.90
Average 3660.20
Median 3660.77

3.2 Six Well Problem: Multiobjective Formulation

We have also solved the multiobjective formulation of the six well prob-
lem. The first objective is to maximize the total oil extracted from the
wells and second objective minimizes the total volume of gas injected into
the wells. The nondominated set of solutions obtained using a population
size of 100, generation of 200, probability of crossover as 0.9, probability
of mutation as 0.1, distribution index of crossover as 10 and distribution
index of mutation of 20 and random seed of 0.2 is presented in Figure 2.

Oil Production Planning using an Evolutionary Approach 281

parameters relate to 96 independent runs. The results are summarized in
Table 1.

and finally (g) with random seeds of 0.2, 0.4 and 0.6. The above set of

six wells are (475.524996, 743.445098, 1350.921920, 827.749079,
BPD which is significant. The gas (MSCF) to be injected in each of the

Fig. 2. Nondominated Set of Solutions for the Multiobjective Problem

One can observe a well spread set of solutions with different oil extrac-
tion values and corresponding gas usage. If there are requirements that
state a minimum oil extraction volume has to be achieved, a constraint can
easily be added into the model to take that into consideration.

3.3 Six Well Problem: Robust Formulation

Often in reality, there is a need to ensure that the gas allocation plan is ro-
bust i.e. the performance of the solution (oil extracted) should not largely
vary upon marginal variations in the amount of gas injected to the wells.
Such a solution is termed as a robust solution and it should also ensure that
the solution does not violate constraints during the course of marginal
variation. We define a 1% of the variable range i.e. 60 units of variation in
the amount of gas injected to each well around the operating point and a
randomly sampled neighborhood of 50 points to assess the robustness of a
solution. The problem is then solved as a multiobjective optimization prob-
lem where the first objective is the maximization of the oil extracted while
the second relates to minimizing the standard deviation of the oil extracted
based on the neighborhood samples as defined above. The first constraint
remains the same, i.e the amount of gas usage in any well should be less
than 6000 MSCF and the second additional constraint ensures no viola-
tions among the neighborhood samples.

The results of the problem are presented in Figure 3.

282 T. Ray and R. Sarker

0 500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Oil Extraction

G
a
s
 U

s
e
d

Fig. 3. Results of the Robust Formulation

It is interesting to observe that there are distinct bands of solutions. A
typical solution from the rightmost band with objective function values of
(3628.231005, 7.499015) has the gas injection volumes (MSCF) as
(517.191202, 832.566250, 1032.058910, 722.134616, 1184.509518,
129.363873). The solution corresponding to the performance maximized
design in the earlier section has objective values of (3663.99, 8.33384) and
the gas injection volumes are (475.524996, 743.445098, 1350.921920,
827.749079, 1199.584681, 0.212049). It is also interesting to observe that
the performance maximized solution (result of the earlier section) violates
constraint 2 of the robust formulation by 1807 units. This indicates that the
solution of the performance maximized plan is likely to violate the
neighborhood constraint. It is expected that the robust solution with an ob-
jective value of 3628.231005 will have a performance less than the per-

3.4 Six Well Problem: Single Objective Formulation with
Surrogate Assistance

One of the important issues that we have not addressed so far relates to the
process of generating approximating functions i.e. oil extracted as a func-
tion of the gas injected into each well. In this study, we have used a piece-

Oil Production Planning using an Evolutionary Approach 283

robust solution is 7.499015 which is lower than 8.33384.
formance maximized solution which is 3663.99 as the variance of the

1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

8

Objective 1

O
b
je

c
ti
v
e
 2

wise linear function simply because that was used by an earlier study. In
order to deal effectively with such classes of problems, we have incorpo-
rated a function approximation module that is able to generate approximat-
ing functions based on piecewise linear, quadratic functions, multilayer
perceptrons, radial basis function networks and kriging.

Using a quadratic response surface model for each well, we could obtain

(489.646790, 715.501427, 1069.667052, 1088.063162, 1194.282731 and
17.523259). The results are fairly close to that of the piecewise linear
model as the functions can be reasonably well approximated using a quad-
ratic function.

3.5 Fifty-Six Well Problem: Single Objective Formulation

In order to demonstrate that our methodology is suitable even for larger
problems, we took up the fifty six well problem. The problem is to maxi-
mize the total oil that can be extracted from fifty six wells subject to a con-
straint which limits the maximum injection volume of 6000 (MSCF) into
each well. The problem was solved with the following set of parameters
(a) population size of 100; (b) generations of 100 and 200 (c) probability
of crossover of 0.7 and 0.9 (d) probability of mutation of 0.1 and 0.2 (e)
distribution index for crossover as 10 and 20 (f) distribution index of muta-
tion as 10 and 20 and finally (g) with random seeds of 0.2, 0.4 and 0.6. The
above set of parameters relate to 96 independent runs. The results are
summarized in Table 2.

Table 2. Summary of Results for the Fifty Six Well Problem

Best 22033.4
Worst 21222.4
Average 21622.3
Median 21651.2

The best result obtained from the above set of trials corresponds to an

oil production of 22033.4 barrels per day(BPD) whereas Buitrago et al
(1996) reported a value of 21789.9 BPD. This corresponds to an increase
of 243 BPD. The gas injected (MSCF) in each well is (812.344738,
447.222418, 150.800916, 25.725667, 2.681695, 428.400480, 443.113410,
550.422412, 1431.407125, 9.943476, 1186.702945, 1797.354002,
0.292891, 381.387919, 855.172364, 966.752560, 572.051953,
835.340977, 53.061313, 1417.768635, 674.159487, 260.742450,

284 T. Ray and R. Sarker

optimal solutions to the single objective optimization problem with an
objective value of 3659.139691 and the gas injection volumes as

0.062342, 738.513865, 142.199457, 3.961657, 1.579943, 180.758969,
25.616667, 2.859420, 2.491896, 175.831471, 500.263909, 1.078196,
211.798944, 0.031785, 1.727461, 242.665409, 313.904987, 13.693065,
329.857509, 0.099835, 1199.252135, 34.839834, 59.724609,
2.538431,1.812014, 2572.130336, 0.075651, 0.044171, 0.371710,
5.910134, 11.686541, 16.888570, 5.103219, 2274.166799) respectively.
The average CPU time for a run with a population size of 100 and a gen-
eration of 100 is around 4.03 seconds. A typical progress plot from a run
for the fifty six well problem is presented in Figure 4.

Fig. 4. Progress plot for a typical run of the fifty six well problem

3.6 Fifty-Six Well Problem: Multiobjective Formulation

We have also solved the multiobjective formulation of the fifty-six well
problem. The first objective is to maximize the total oil extracted from the
wells and second objective minimizes the total volume of gas injected into
the wells. The nondominated set of solutions obtained using a population
size of 100, generation of 200, probability of crossover as 0.9, probability
of mutation as 0.1, distribution index of crossover as 10 and distribution
index of mutation of 20 and random seed of 0.2 is presented in Figure 5.

Once again, one can notice the spread of solutions along the front. For
both the single objective optimization problems, our algorithm reported
better results than what was reported in literature (Buitrago et al (1996).
We have also solved the multiojective versions of the problem as such an

Oil Production Planning using an Evolutionary Approach 285

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2
x 10

4

Function Evaluations

B
e
s
t

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

approach gives an overview of how many BPD can be produced given an
amount of gas on a daily basis instead of resolving the problem everyday.

Fig. 5. Nondominated Set of Solutions for the Multiobjective Problem

Fig. 6. Daily Gas Availability and Oil Extracted over a 30 day period

3.7 Thirty-Day Reservoir Optimization Problem:

In reality, the problems listed needs to be solved on a regular basis. We
have assumed a daily gas availability variation of 4600 +/- 460 for a period

286 T. Ray and R. Sarker

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2
x 10

4

Function Evaluations

B
e
s
t

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2
x 10

4

Function Evaluations

B
e
s
t

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 V

a
lu

e

of 30 days. The problem was solved daily and the results are presented in
Figure 6 and Figure 7.

From Figure 6, one can observe that an increase in gas availability, re-
sults in an increase in oil extraction. This behavior is consistent i.e. ups
and downs in the gas availability curve correspond to ups and downs in the
oil extracted curve when solving optimally.

Fig. 7. Daily Gas Injection to the Wells over a 30 day period

The part of the curve presented in Figure 8 is actually a segment of the
nondominated curve presented in Figure 2. To further analyze and validate
our findings, we solved a MO problem with additional constraints of gas
availability lying between 4600 /- 460 so that we obtain the segment of the
nondominated front that is of interest to us. The plot of the nondominated
solitions of the above MO problem and the solutions listed in Figure 8 are
plotted on the same scale in Figure 9. It is interesting to observe that the
solutions to the MO problem are effectively of the same quality as the so-
lutions obtained by solving single objective formulations on a daily basis.
This means it is possible to generate the whole range of solutions using a
MO formulation and use it as required on a daily basis instead of re-
solving the problem on a daily basis.

Oil Production Planning using an Evolutionary Approach 287

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

Days

G
a
s
 I

n
je

c
te

d

Well 1

Well 2

Well 3

Well 4

Well 5

Well 6

Fig. 8. Variation of Volume of Oil Extracted with Gas Availability

Fig. 9. Comparison of the Quality of Solutions between a MO approach and an approach
that relies on SO optimization on a daily basis.

If there are constraints on daily gas availability and also on the amount
of oil extraction, the same set of results of the MO problem can be directly
used without the need to resolve the problem. As an example, if we assume
that the forecasted daily gas availability and amount of oil extracted for a
period if 30 days is provided to us(Fig. 10), a plot of them over the solu-
tions of the MO problem will appear as Fig. 11. It is clear from Fig. 11,

288 T. Ray and R. Sarker

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

Days

G
a
s
 I

n
je

c
te

d

Well 1

Well 2

Well 3

Well 4

Well 5

Well 6

3620 3630 3640 3650 3660 3670 3680 3690 3700 3710
4100

4200

4300

4400

4500

4600

4700

4800

4900

5000

5100

Oil Extraction

G
a
s
 U

s
e
d

Solutions of the MO problem

Solutions based on daily gas availability

that the points below the MO line is not feasible to achieve and the addi-
tional amount of gas required or the reduced oil extraction limits can be
obtained from the solutions of the MO problem.

Fig. 10. Projected Oil Extraction and Gas Availability for 30 days

Fig. 11. Solutions to the MO problem and the projected 30day requirements

4 Conclusions

In this chapter, we have introduced a practical gas-lift optimization prob-
lem and solved the single and multiobjective versions of the problem using

Oil Production Planning using an Evolutionary Approach 289

0 5 10 15 20 25 30
3600

3800

4000

4200

4400

4600

4800

5000

Days

V
a
lu

e

Daily Gas Availability

Daily Oil Extraction Target

3620 3630 3640 3650 3660 3670 3680 3690 3700 3710
4100

4200

4300

4400

4500

4600

4700

4800

4900

5000

5100

Oil Extracted

G
a
s
 U

s
e
d

Projected Requirement

Solutions to the MO problem

our multiobjective evolutionary algorithm. For both the six well and the
fifty six well problem, our method reported better results than that of pre-
vious reports. For the six well problem, we reported a solution with 35
BPD (12775 barrels improvement on a yearly basis) more and for the fifty
six well problem our solution provides 243 BPD (88695 barrels improve-
ment on a yearly basis) more than the results reported by Buitrago et al
(1996). We have also extended our study to include the results of multiob-
jective formulations of the problem to highlight some of the additional
benefits that can be derived using our multiobjective evolutionary algo-
rithm. The consistency and the efficiency of the algorithm have been dem-
onstrated through multiple runs.

We have also solved the six well problem to yield robust solution and
compared the solution with the performance maximized design. Further-
more, to deal with realistic problems from the field, we have introduced a
surrogate modeling framework that allows creation and use of approximat-
ing functions to capture the behavior of gas injection versus oil extracted
functions which are often nonlinear and a piecewise linear approach may
not be sufficiently accurate.

Our MO approach is attractive as it eliminates the need to solve gas lift
optimization problems on a daily basis. Since, our method does not rely on
functional or slope continuity of the objective or constraint functions, the

the oil extraction versus gas usage is known to be a nonlinear function that
varies across wells, we are currently exploring the possibility of automati-
cally creating surrogate models based on data and then using them within
the optimization framework to derive optimal gas allocation in each well
for the maximum oil extraction from the field.

References

1. Coello Coello, C. A.: A Comprehensive Survey of Evolutionary-Based Mul-
tiobjective Optimization Techniques, Knowledge and Information Systems:
An International Journal, (1999) 269-308

2. Camponogara, E., Nakashima, P.: Solving a Gas Lift Optimization Problem
using Dynamic Programming, European Journal of Operational Research,
(2005) Article in Press (Available on-line)

3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multi-
objective Genetic Algorithm: NSGAII. IEEE Transaction on Evolutionary
Computation, (2002) 181-197

290 T. Ray and R. Sarker

method can be easily coupled with functional approximation models/
surrogate models of oil extraction versus gas usage for each well. Since

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast Elitist Non-
dominated Sorting Genetic Algorithm for Multi-objective Optimization:
NSGAII, Proceedings of the Parallel Problem Solving from Nature VI Con-
ference, Paris, France, (2000) 849-858

5. Dutta-Roy, K., Kattapuram, J.: A New Approach to Gas Lift Allocation Op-
timization, SPE Western Regional Meeting, SPE 38333 (1997)

6. Nishikiori, N., Render, R. A., Doty, D. R., Schmidt, Z.: An Improved Method
for Gas Lift Allocation Optimization, 64th Annual Technical Conference and
Exhibition of SPE, SPE18711 (1989)

7. Sarker, R., Liang, K., Newton, C.: A New Evolutionary Algorithm for Mul-
tiobjective Optimization, European Journal of Operational Research, (2002)
12-23

8. Aaytollahi, S., Narimani, M., Moshfeghian, M.: Intermittent Gas Lift in
Aghajari Oil Field, a Mathematical Study, Journal of Petroleum Science and
Engineering, (2004) 245-255

9. S. Buitrago, S., Rodriguez, E., Espin, D.: Global Optimization Techniques in
Gas Allocation for Continuous Flow Gas Lift Systems, SPE Gas Technology
Conference, Calgary, Canada, April 28 – May 1, 1996, SPE35616, (1996)
375-383.

10. Kosmidis, V., Perkins, J., Pistikopoulos, E.: A Mixed Integer Optimization
Formulation for the Well Scheduling Problem on Petroleum Fields, Com-
puters and Chemical Engineering, (2005) 1523-1541

11. Fang, W. Y., Lo, K. K.: A Generalized Well-Management Scheme for Reser-
voir Simulation, SPE Reservoir Engineering, (1996) 116-120

Oil Production Planning using an Evolutionary Approach 291

Appendix A

Production vs gas usage for six wells

292 T. Ray and R. Sarker

100

200

300

400

0 350 700 1050 1400

Gas used

O
i l

 e
x

t r
a

c
t i

o
n

Well-1

400

500

600

700

800

0 500 1000 1500 2000

Gas used

O
il

 e
x

tr
a

c
ti

o
n

Well-2

500

675

850

1025

1200

0 500 1000 1500 2000 2500 3000

Gas used

O
i l

 e
x

t r
a

c
t i

o
n

Well-3

300

400

500

600

700

0 500 1000 1500 2000

Gas used

O
il

 e
x

tr
a

c
ti

o
n

Well-4

100

300

500

700

900

0 2000 4000 6000

Gas used

O
il

 e
x

t r
a

c
t i

o
n

Well-5

0

100

200

300

400

500 1500 2500 3500 4500 5500

Gas used

O
il

 e
x

tr
a

c
ti

o
n

Well-6

A Hybrid Evolutionary Algorithm for Service

Restoration in Power Distribution Systems

Isamu Watanabe1, Ikuo Kurihara1, and Yoshiki Nakachi2

1 System Engineering Research Laboratory,
Central Research Institute of Electric Power Industry (CRIEPI),

2-11-1, Iwado Kita, Komae-shi, Tokyo 201-8511, Japan
{isamu,kurihara}@criepi.denken.or.jp,

2 Chubu Electric Power Co., Inc.,
20-1, Kitasekiyama, Ohdaka-cho, Midori-ku, Nagoya 459-8522, Japan

Nakachi.Yoshiki@chuden.co.jp

Abstract. This paper proposes a hybrid evolutionary algorithm for ad-
dressing service restoration problems in power distribution systems. The
authors have already proposed an optimization algorithm based on a ge-
netic algorithm (GA), called the two-stage GA, and this algorithm has
been shown to perform well for small systems. However, it is difficult
to apply to large-scale systems from the viewpoint of computation time.
To improve the time performance of the algorithm, the authors intro-
duce three kinds of speed-up strategy: a local search procedure, greedy
algorithm, and efficient maximum flow algorithm. Computational results
with several test systems show that the proposed hybrid algorithm can
dramatically reduce the computation time compared with the two-stage
GA, and can be applied to real-scale systems.

1 Introduction

Power distribution systems are usually operated in a radial configuration, but
possess a kind of meshed structure that allows for several operating configura-
tions. This means that in large distribution systems, normally open (disconnect-
ing) lines between neighboring parts of the network are generally provided. When
a fault occurs, in order to restore as many loads as possible, the areas isolated by
the fault should be supplied by transferring loads in the out-of-service areas to
other distribution feeders via network reconfigurations. This procedure is called
service restoration. Figure 1 shows a simple example of service restoration. To
restore the isolated area by the fault on switch S12, the network is reconfigured
by altering the status of switches S11, S13, and S16. By reconfiguring the net-
work, the isolated area can be supplied from other power sources. Finding a new
network configuration is not the only concern in service restoration. It is also
important to find the optimal sequence of switching operations. In order not
to interrupt loads while changing configurations, the switching operations must
be performed sequentially. Hence, the task of reaching a particular configuration
can be regarded as scheduling of switching operations, that is, finding a sequence
of connections and disconnections of line sections (closing and opening switches).

I. Watanabe et al.: A Hybrid Evolutionary Algorithm for Service Restoration in Power Distribution

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007
Systems, Studies in Computational Intelligence (SCI) 49, 293–311 (2007)

S1

S2

S3

S4

S5

S6

S9

S7 S14

S8

S10

S12

S13

S16 S15

S1

S2

S3

S4

S5

S6

S9

S7

S11

S14

S8

S10 S13

S16 S15

S12fault

Out-of-service area

S11

Power source node

Closed switch (branch)

Load node

Open switch (branch)

Fig. 1. A simple example of service restoration

Because an effective service restoration strategy plays a key role in improving
system reliability, there has been considerable research focused on this problem.
The problem has been addressed with methods such as integer programming [1,
2], knowledge-based expert systems [3, 4], artificial neural networks [5], fuzzy rea-
soning [6–8], and heuristic search [8–10]. Although these approaches can solve
the problem with rather less computational burden, the results are only approx-
imations and local optima. In addition, it is difficult to find a global optimum in
a real-scale system that would have a large number of switches. In recent years,
some meta-heuristic approaches have been used for service restoration in power
distribution systems: simulated annealing [11–13], tabu search [14, 15], ant colony
optimization [16], and genetic algorithm [17–19]. Moreover, a comparative study
of meta-heuristic approaches to service restoration has also been reported [20].
However, as far as the authors know, many studies with these meta-heuristic
techniques have been conducted on the network reconfiguration and loss min-
imization problems, but the application of these techniques to the scheduling
of switching operations is limited. Although a multiobjective service restoration
problem including the minimization of the number of necessary switching opera-
tions has also been proposed (e.g., [15, 21]), it is insufficient from the standpoint
of optimizing the whole restoration process. To ensure minimal reduction in sys-
tem reliability, not only should the number of switching operations be minimized,
but also energy not supplied (ENS).

To tackle the ENS minimization problem, the authors have proposed an opti-
mization algorithm based on a genetic algorithm (GA), called two-stage GA [22].
This algorithm uses a GA as an optimization procedure in each stage. The first
stage creates radial network configurations, and the second stage searches for an
optimal sequence of switching operations that minimizes ENS for each configu-
ration. The second stage is embedded in the first stage and calculates the fitness
of the whole. Although this algorithm performs well for small systems, it is dif-
ficult to apply to large systems from the viewpoint of computation time. In this

294 I. Watanabe et al.

problem. To improve the time performance of the algorithm, the authors intro-
duce three kinds of speed-up strategy: a local search procedure, greedy algorithm

for scheduling of switching operations, and efficient maximum flow algorithm.
The remainder of this paper is organized as follows. The following section

describes a formulation of the service restoration problem. Section 3 reviews the
existing GA-based algorithm [22]. In Section 4, the hybrid evolutionary algorithm

is proposed and Section 5 presents several numerical results to demonstrate the
effectiveness of the proposed algorithm. Finally conclusions are drawn.

2 Problem Formulation

Service restoration in power distribution systems involves operating the switches
to restore as many loads as possible for the out-of-service area following a fault.
As mentioned above, not only the final network configuration but also the se-
quence of switching operations is important in service restoration, because the
sequence of operations has a considerable influence on system reliability. More-
over, the switching operations must be performed sequentially, due to technical
limitations.

In this section, we formulate the service restoration problem to minimize
ENS under network operating constraints.

2.1 Constraints

Not every configuration is a feasible solution to the service restoration problem.
Thus, it is necessary to specify which configurations are feasible, and which are
not. The constraints that should be considered in this problem are as follows:

(a) Radial network constraint
Network configuration must retain radial topology even during the restora-
tion process.

(b) Power source constraint
The total loads of each sub-system must not exceed the capacity of the
corresponding power source.

(c) Line capacity constraint
The line currents (power flows) must not exceed the maximum values related
to the line sections.

In addition to the constraints listed above, the following additional require-
ments should be satisfied in the problem. If these requirements cannot be met,
a certain value will be added to the objective function as a penalty.

(d) Power not supplied (PNS) should decrease monotonically.
(e) All de-energized loads should be restored after completing restoration.

The relationship between PNS and ENS is shown in Fig. 2.

paper, a hybrid evolutionary algorithm is proposed for the ENS minimization

295A Hybrid Evolutionary Algorithm for Service Restoration

Fig. 2. An example of the service restoration process

2.2 Objective Function

Let hk be PNS after the k-th switching operation, and tk be the time interval
needed for the (k + 1)-th operation. ENS to be minimized in this problem is
defined as

ENS =

K−1
∑

k=0

(hk × tk) , (1)

where K is the number of switching operations. For convenience, the fault oc-
currence is defined as the 0-th switching operation. PNS just after a fault is h0

and the time needed for the first switching operation is t0. PNS after the first
operation is h1 and the time needed for the second operation is t1, and so on.
The penalty to be added to the objective function is also defined as

P = w1

K
∑

k=1

max{hk − hk−1, 0} + w2hK , (2)

where w1 and w2 are the weighting factors related to the additional requirements
(d) and (e), respectively. Therefore, the objective function z to be minimized is
as follows;

z = ENS + P . (3)

3 Two-stage Genetic Algorithm

For the ENS minimization problem defined in the previous section, the authors
have proposed an optimization algorithm based on a genetic algorithm, called the
two-stage GA [22]. A GA is a method for search and optimization that imitates
the process of natural selection and evolution. Due to their ability to find global
optimal solutions for large-scale combinatorial optimization problems, GAs have

296 I. Watanabe et al.

START

END

Create an initial population

YES

NO

Fitness

1st stage GA

2nd stage GA

Create an initial population
(switching sequence from initial

to final configuration)

Evaluation

Termination
condition

Selection

Crossover

Mutation

NO

Termination
condition

Selection

Crossover

Mutation

YES

Candidates for the final configuration

Fig. 3. Two-stage genetic algorithm for service restoration

been found to be an efficient method for solving power system problems, in-
cluding the service restoration problem [18, 19]. This algorithm uses a GA as an
optimization procedure in each stage. The candidates for the final configuration
are created in the first stage and passed to the second stage. Then the second
stage evaluates them by finding an optimal sequence of switching operations,
and returns their fitness to the first stage. The flowchart of the two-stage GA is
shown in Fig. 3.

One of the most important factors which affect a GA’s performance is the
interaction of its coding of candidate solutions with the operators it applies
to them. In particular, all chromosomes should represent feasible solutions. To
improve the performance of the two-stage GA, we adopt the edge-set represen-
tation [23] for a radial network and the random keys representation [24] for a
sequence of switching operations. By using these representations, all chromo-
somes generated by initialization, crossover and mutation can represent feasible
solutions. The details of chromosome representations adopted in each stage are
described in the followings.

3.1 Optimization of Network Configuration

In the first stage, radial network configurations are created as the candidates
for the final configuration. As the fitness of each configuration is evaluated in
the second stage, the first stage GA only searches for optimal radial network
configurations. Hence, the problem dealt with in the first stage is regarded as a
conventional network reconfiguration problem.

297A Hybrid Evolutionary Algorithm for Service Restoration

T1

T2
T1 U T2

T1 T2

U

assigning "0" costs
(always included in offspring)

assigning random costs

MST
algorithm

Fig. 4. Crossover operation in the first stage GA

Representing Radial Network. The radial network configuration can be
roughly modeled as an undirected graph, where

– the edges (branches) represent line switches, and
– the nodes represent collections of power system equipment containing feeder

segments and power sources.

The network reconfiguration problem is therefore regarded as finding an optimal
spanning tree that satisfies the constraints on the corresponding graph. Much
work has been done on representing spanning trees for evolutionary search (e.g.,
[25, 26]). Recent studies have indicated the general usefulness of representing
spanning trees directly as lists of their edges and applying operators that always
yield feasible trees [23, 27]. The first stage GA uses the edge-set representation
and unique operators based on minimum spanning tree (MST) algorithms.

Initialization. Kruskal’s algorithm builds an MST on a weighted graph G by
examining G’s edges in order of increasing weight [28]. If the algorithm instead
examines G’s edges in random order, it returns a random spanning tree on
G. This algorithm is called KruskalRST [23]. In the two-stage GA, the initial
population is produced by the random spanning tree algorithm, KruskalRST.

Crossover. In GA, offspring should represent solutions that combine substruc-
tures of their parental solutions. To provide this heritability, a crossover op-
erator must build a spanning tree that consists mostly of edges found in the
parents. It is also beneficial to favor edges that are common to both parents
[23]. This can be done by applying the random spanning tree algorithm to the
graph G′ = (V, T1 ∪T2), where T1 and T2 are the edge sets of the parental trees.
Figure 4 illustrates an example of this crossover operation.

Mutation. A mutated chromosome should usually represent a solution similar
to that of its parent. To provide this locality, a mutation operator must make
a small change in a parent solution. This means that a mutated chromosome

298 I. Watanabe et al.

deleting a random edge adding a random new edge
that reconnects the tree

Fig. 5. Mutation operation in the first stage GA

should represent a tree that consists mostly of edges also found in its parent.
This can be done by deleting a random edge from T and replacing it with a
random new edge that reconnects the tree. Figure 5 shows this operation.

3.2 Scheduling of Switching Operations

The second stage GA searches for an optimal sequence of switching operations
that minimizes ENS for each configuration created in the first stage. The best
values obtained in this stage are regarded as the fitness values of configurations.

Determination of Operation Switches. In this problem, each switch is as-
sumed to be operated only once at most. Under this assumption, the switches
to be operated can be determined as the ones whose state changes from open to
closed, and vice versa. Let T0 and TK be the edge set of the initial and the can-
didate for the final configuration, respectively. The edge set Ed corresponding
to the switches to be operated is determined as the symmetric difference of the
two sets T0 and TK ,

Ed = (T0 ∪ TK) \ (T0 ∩ TK) . (4)

Representing Sequence of Switching Operations. The solution for service
restoration is a sequence of operations that specify which switches need to change
their state. Such a sequence is represented as a string of the switch number,
where the first element of the string is interpreted as the switch that needs to be
closed, the next element is taken as representing the switch to be open, and so
on. Therefore, a sequence of switching operations is represented as a permutation
of only the edges whose state changes.

The second stage GA uses random keys [24] to represent a sequence of switch-
ing operations. This representation encodes a permutation with (0, 1] random

numbers. These values are used as the sort keys to decode the permutation. An
example of the random keys encoding for permutation is shown below.

(0.46, 0.91, 0.33, 0.75, 0.51) .

As shown in Fig. 6, by sorting in ascending order, we get the sequence,

3 → 1 → 5 → 4 → 2 .

299A Hybrid Evolutionary Algorithm for Service Restoration

(0.46, 0.91, 0.33, 0.75, 0.51)

(0.33, 0.46, 0.51, 0.75, 0.91)

sort in ascending order

random keys representation

1 2 3 4 5 index

3 1 5 4 2(3, 1, 5, 4, 2)

sort key

permutation

Fig. 6. A simple example of random keys representation

Random keys representation can use every traditional crossover operator.
The two-stage GA uses a one-point crossover in the second stage. The mutation
operator replaces the value of a gene by a uniform (0, 1] random number.

3.3 Fitness Evaluation

PNS can be calculated as the difference between the sum of loads and the max-
imum flow. The maximum flow for a distribution system is defined as the sum

of power flows from each power source. Let ℓi be the capacity (demand) of the
load node i, L be the number of load nodes, and fmax

k maximum flow after the
k-th switching operation. PNS after the k-th operation is calculated using the
following equation:

hk =

L
∑

i=1

ℓi − fmax
k , ∀k = 1, 2, . . . , K . (5)

From the equations (1) and (5), we can obtain ENS for a candidate for the
final configuration. In this ENS minimization problem, the fitness function is
defined as the inverse of the objective function.

4 Hybrid Evolutionary Algorithm

As described in the previous section, the authors have already proposed the two-
stage GA as an optimization method for the service restoration problem [22].
The two-stage GA performs well for small-scale systems, but it is difficult to
apply the algorithm to large-scale systems from the viewpoint of computation
time. To improve the time performance of the two-stage GA, the authors propose
here a hybrid evolutionary algorithm combined with the following three speed-up
strategies:

– Local search procedure
– Greedy algorithm for scheduling of switching operations
– Efficient maximum flow algorithm

300 I. Watanabe et al.

START

END

Create an initial population

Fitness

NO

Termination
condition

Selection

Crossover

Mutation

YES Greedy algorithm

Max-flow algorithm
(BFS*-based method)

Local search
(Branch exchange)

Candidates for the final configuration

Locally minimizes PNS
after completing restoration

*BFS: the breadth-first search

Sequentially selects
the combination of branches
with the largest decrease in PNS

Efficiently calculates the max-flow
only for a radial network structure

Fig. 7. A hybrid evolutionary algorithm for service restoration

The flowchart of the proposed algorithm is shown in Fig. 7, and the details
of each speed-up strategy are described below. The test system used in this sec-
tion includes three power source (transformer) nodes, 241 load nodes, and 347
branches. All the following experiments were performed on an AMD Athlon64
processor 3200+ 2.2GHz. The algorithm was coded in C and the code was com-
piled with gcc 3.3.2 -O3.

4.1 Local Search Procedure

To find promising final radial configurations earlier in the first stage of the two-
stage GA, all the candidates for final configuration obtained by GA are applied
with a local search procedure to minimize PNS after completing restoration. In
this study, the branch exchange method [29] is used as a local search procedure.

The branch exchange method is known as one of the most effective local
search procedures for addressing the service restoration problem, and the ba-
sic concept of the method can be explained as follows. From the initial radial
configuration (in this study, the candidate for final configuration obtained by
GA), a loop is constructed by adding one branch, and then by removing another
branch, the network configuration is brought back to radial. Here, it is not real-
istic to consider all possible combinations of adding and removing branches; the
branch for removal is therefore selected from among branches adjacent to the
added branch. This procedure is iteratively repeated until the objective function
cannot be reduced by any branch exchange operation.

301A Hybrid Evolutionary Algorithm for Service Restoration

Table 1. Effectiveness of Branch Exchange Method

Branch Exchange Method Not Applied Applied

Average PNS† (kW) 1201.7 13.8

of Full Restoration (100 trials) 0 66
†Power Not Supplied

To verify the effectiveness of the branch exchange method, the result of com-
paring the network configuration before and after applying the branch exchange
is presented. The results obtained by applying only the branch exchange method
to randomly generated 100 radial networks are shown in Table 1. In this prelimi-
nary experiment, the greedy algorithm was not applied because we are interested
only in the final network configurations, not in the switching operations. Table 1
shows that PNS after completing restoration can be reduced dramatically by
using the branch exchange method. In addition, the final radial configuration
completely restored can be obtained 66 times in 100 trials.

4.2 Greedy Algorithm for Scheduling of Switching Operations

In the second stage of the two-stage GA, it is necessary to calculate the maxi-
mum flow repeatedly to search for the optimal switching sequence. However, this
is a very time-consuming task. To improve the time performance of the proposed
algorithm, not only should the maximum flow be calculated efficiently, the cal-
culation frequency of the maximum flow should also be decreased. In this study,
instead of the second stage GA, a greedy algorithm that sequentially selects the
combination of branches with the largest decrease in PNS is used to reduce the
calculation frequency of the maximum flow as much as possible.

Figure 8 shows how the proposed greedy algorithm works. Let us consider
the set of six branches from A to F that should be operated. First we select the
combination of branches with the largest decrease in PNS (i.e. branches A and
B) from among all nine feasible combinations, and schedule this combination as
the first switching operation. Next, after recalculating PNS for all four feasible
combinations without branches A and B, select and schedule the combination
with the largest decrease in PNS (i.e. branches C and D) as the second switching
operation. Finally, schedule the combination of branches E and F as the final
switching operation.

The switching sequence obtained by the greedy algorithm might not satisfy
the first additional requirement. Should this be the case, a penalty defined in
(2) will be added to the objective function.

4.3 Efficient Maximum Flow Algorithm

As mentioned above, PNS after the k-th operation can be calculated by sub-
tracting the maximum flow from the total load in the system. Because the total

302 I. Watanabe et al.

Fig. 8. Greedy algorithm for scheduling of switching operations

load is assumed to be constant in this problem, the PNS calculation time might
be able to be reduced by efficiently calculating the maximum flow, and to speed
up the algorithm. Many maximum flow algorithms have been proposed so far,
but the two-stage GA uses the Ford-Fulkerson algorithm [28] that is one of the
most traditional algorithms. The effect when the Ford-Fulkerson algorithm was
replaced with a more efficient one was investigated here.

The results of a comparative study of the following three kinds of algorithms
are presented.

– Ford-Fulkerson algorithm [28]
– Maximum flow algorithm using maximum adjacency (MA) ordering [30]
– Proposed algorithm based on the breadth-first search

3 is known as one of the
most efficient maximum flow algorithms today. The first two algorithms are
designed for a general network structure, but what this problem needs is an
algorithm only for a radial network configuration. Speed-up of the maximum

flow calculation can be expected by assuming the network configuration to be
radial. The proposed algorithm based on the breadth-first search (BFS) is an
efficient algorithm intended for a radial network configuration. The proposed
algorithm begins at the power source node and explores all the neighboring
nodes. It sends as much flow as possible from the source node to the nearest

3 Let an undirected graph be given, which has n vertices. An ordering
of vertices is called an MA ordering if an arbitrary vertex is chosen as v1, and after

303A Hybrid Evolutionary Algorithm for Service Restoration

The maximum flow algorithm using MA ordering

v1, v2, . . . , vn

choosing the first i vertices v1, . . . , vi, the (i + 1)-th vertex vi+1 is chosen from the
vertices u that have the largest number of edges between {v1, . . . , vi} and u [31].

Table 2. Time Performance of Max-Flow Algorithms

Max-Flow Algorithm Total Running Time (s)

Ford-Fulkerson 62.26

MA Ordering [30] 1.05

BFS-based Method† 0.10
†Proposed algorithm based on the breadth-first search

nodes. Then for each of those nodes, it explores their unexplored neighboring
nodes, and so on.

The total running time of applying the three algorithms listed above to ran-
domly generated 1000 radial networks are shown in Table 2. By replacing the
Ford-Fulkerson algorithm with the algorithm using MA ordering, the maximum

flow calculation can be sped up by about 60 times. Moreover, using the proposed
algorithm may be expected to make the calculation about ten times faster than
using MA ordering.

5 Numerical Experiments

In order to verify the effectiveness of the proposed algorithm, computational
results with several test distribution systems are reported here.

5.1 Computational Results with Small Test System

To perform a comparison between the two-stage GA and the proposed algorithm,
experiments were conducted using a small test system. The small test system
used in the experiments includes three power source nodes, 27 load nodes and 40
branches. Figure 9 illustrates the network structure of the system. The number
in a circle shows the load capacity (demand). The number next to a branch
and the number in parentheses show the branch number and the capacity of the
branch, respectively. The sum of the load capacity is 137 kW.

The following two simulation cases were investigated.

– CASE-1: A fault occurs on branch #12.
– CASE-2: A fault occurs on branch #0.

CASE-2 is a more serious fault case than CASE-1 because branch #0 is an
important one that directly connects the power source to the network. If branch
#0 has a fault, the whole load needs to be supplied with only the remaining two
power sources.

In the experiments, the two-stage GA and the proposed algorithm used a
kind of steady state genetic algorithm (SSGA) for creating candidates for final
network configurations. Initially, a certain number (pop) of parent individuals

304 I. Watanabe et al.

0 (100) 1 (100)

2 (100)

6

5

4

5 6 5 6

7 5 6

6

3

6

6

4 4

8

5

7 4

6

310

10

3

(30)

6

(20)

7

(25)

9

(25)

10

(30)

35

(20)

36

(40)

37 (20) 38

(16)

39

(12)

27

(15)

29 (15)

30

(23)

21

(15)

16

(20)

5 (25) 8 (12)

15

(25) 17

(15)

19 (20)

18 (30)

11 (6)

12

(30)

24

(20)

25 (15)

33 (16)

31 (20)
32 (20)

22

(20)

20 (15)

23 (15)

13

(25)

26

(10)

34

(10)

4

(20)

14

(16)

28

(12)

0 0

0

Power source node Load node (Load capacity)6

Normally closed line Normally open line

35 (20) Branch number (and capacity)

Fig. 9. Small test system (3 power source nodes, 27 load nodes and 40 branches)

Table 3. Parameter Settings for Each Algorithm

Two-stage GA Proposed

1st stage 2nd stage algorithm

population size (pop) 20 8 10

crossover rate (pc) 0.8 0.8 0.8

mutation rate (pm) 0.06 0.10 0.06

max. generation (gmax) 50 5 10

are set up in the population, and the same number of offspring are created from

the parents. Then, the pop best individuals are selected as the new population
from the union of parents and offspring. Roulette and tournament selections
were used in the two-stage GA and the proposed algorithm, respectively. A set
of GA-related parameters used is listed in Table 3. The time interval tk was set
to 1.0 for all k, and the weighting factors w1, w2 were set to 10.

The computational results are presented in Table 4. All the experiments were
performed using 100 different random seeds. In this table, each column of each
algorithm shows the average values of the objective function, average computa-
tion time and success rate, respectively. The average computation time is defined
as the average time required to find an optimal solution or perform the algorithm

until the maximum generation. The second column of the table shows the opti-
mal values obtained by an exact method based on dynamic programming [32].

305A Hybrid Evolutionary Algorithm for Service Restoration

Table 4. Computational Results with Small Test System (100 trials)

Optimal Two-stage GA Proposed Algorithm

(kW-min) Average Time (s) %Success Average Time (s) %Success

CASE-1 46 46.2 17.30 82% 46.0 <0.01 100%

CASE-2 86 90.1 28.73 40% 86.0 0.10 100%

Fig. 10. Optimal restoration process (Left: CASE-1, Right: CASE-2)

The results show that the proposed algorithm can find the optimal solution
within 0.1 seconds for each fault case. Compared with the two-stage GA, the
proposed algorithm can dramatically reduce the computation time. Figure 10
shows the optimal restoration process, and the details of switching operations
for each fault case are presented in Fig. 11 and 12.

5.2 Computational Results with Large Test System

In order to assess the scalability of the proposed algorithm, the algorithm was
applied to a large test system. The large test system used in the experiments
includes three power source nodes, 241 load nodes and 347 branches. Two fault
cases (CASE-3 and CASE-4) were investigated. The parameter settings used in
the algorithm are the same ones as shown in Table 3.

The computational results are presented in Table 5. All the experiments were
performed using 100 different random seeds. The optimal values obtained by an
exact method based on dynamic programming [32] are also presented. Due to
computation time, the two-stage GA is inapplicable to this problem. Table 5
shows that the proposed algorithm can find good solutions in a considerably
shorter time for each case. Figure 13 depicts the best sequence of switching
operations obtained. For each case, PNS decreases monotonically and all de-
energized loads are finally restored.

The above results indicate that the proposed algorithm is a promising one
for addressing the service restoration problem.

306 I. Watanabe et al.

1) Just after a fault:
(PNS = 23kW)

2) 1st switching operation
(PNS = 13kW)

3) 2nd switching operation
(PNS = 7kW)

4) 3rd switching operation
(PNS = 3kW)

5) Final configuration
(PNS = 0kW)

23

12
1819

17

21

26

34

Fig. 11. Optimal sequence of switching operations (CASE-1)

1) Just after a fault:
(PNS = 45kW)

2) 1st switching operation
(PNS = 26kW)

3) 2nd switching operation
(PNS = 11kW)

4) 3rd switching operation
(PNS = 4kW)

5) Final configuration
(PNS = 0kW)

7

0

29

4

15

22 2531

Fig. 12. Optimal sequence of switching operations (CASE-2)

307A Hybrid Evolutionary Algorithm for Service Restoration

Table 5. Computational Results with Large Test System (100 trials)

Optimal Proposed Algorithm

(kW-min) Best (kW-min) Avg. (kW-min) Stdev. (kW-min) Time (s)

CASE-3 4214.6 4219.7 4232.4 2.53 4.32

CASE-4 5113.2 5137.3 5142.9 18.56 7.85

6 Conclusions

In this paper, a hybrid evolutionary algorithm is proposed for service restoration
in power distribution systems. To improve the time performance of the two-stage
GA, the authors introduced three kinds of speed-up strategy: a local search
procedure, greedy algorithm, and efficient maximum flow algorithm on radial
networks. The computational results with the small test system show that the
proposed algorithm can dramatically reduce the computation time compared
with the two-stage GA. Moreover, the results with the large test system show
that the algorithm can be applied to real-scale systems.

From the viewpoint of minimizing ENS during the restoration process, it
might not be the best strategy to minimize PNS after completing restoration
by the local search procedure. However, to obtain the optimal solution within
a limited computation time, it is very important to limit the search area only
to promising radial configurations. In that sense, a local search by the branch
exchange method may be effective.

The search by greedy algorithm essentially means that only one switching
sequence is evaluated for each final radial configuration. That is, if the final
radial configuration is fixed, then the switching sequence is indirectly fixed, too.
In this study, a deterministic method by greedy algorithm was used to speed
up the algorithm at the expense of optimality. The development of a fast and
flexible optimization algorithm for scheduling of switching operations remains a
task for the future.

References

1. Aoki, K., Kuwabara, H., Satoh, T., Kanezashi, M.: Outage state optimal load
allocation by automatic sectionalizing switches operation in distribution systems.
IEEE Trans. on Power Delivery 2(4) (1987) 1177–1185

2. Aoki, K., Nara, K., Itoh, M., Satoh, T., Kuwabara, H.: A new algorithm for service
restoration in distribution systems. IEEE Trans. on Power Delivery 4(3) (1989)
1832–1839

3. Liu, C.C., Lee, S.J., Venkata, S.S.: An expert system operational aid for restoration
and loss reduction of distribution systems. IEEE Trans. on Power Systems 3(2)
(1988) 619–626

4. Lee, H.J., Park, Y.M.: A restoration aid expert system for distribution substations.
IEEE Trans. on Power Delivery 11(4) (1996) 1765–1770

308 I. Watanabe et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1 2 3 4 5 6 7 8 9 10 11 12

P
o

w
e

r
n

o
t
su

p
p

lie
d

 (
kW

)

of switching operations

Branch exchange
Proposed algorithm

PNS just after a fault

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1 2 3 4 5 6 7 8 9 10 11 12

P
o
w

e
r

n
o
t
su

p
p
lie

d
 (

kW
)

of switching operations

Branch exchange
Proposed algorithmPNS just after a fault

Fig. 13. Best switching sequence obtained by the proposed algorithm (Upper: CASE-3,
Lower: CASE-4)

5. Bretas, A.S., Phadke, A.G.: Artificial neural networks in power system restoration.
IEEE Trans. on Power Delivery 18(4) (2003) 1181–1186

6. Hsu, Y.Y., Kuo, H.C.: A heuristic based fuzzy reasoning approach for distribution
system service restoration. IEEE Trans. on Power Delivery 9(2) (1994) 948–953

7. Lin, W.M., Chin, H.C.: Preventive and corrective switching for feeder contingencies
in distribution systems with fuzzy set algorithm. IEEE Trans. on Power Delivery
12(4) (1997) 1711–1716

8. Zhou, Q., Shirmohammadi, D., Liu, W.H.E.: Distribution feeder reconfiguration
for service restoration and load balancing. IEEE Trans. on Power Systems 12(2)
(1997) 724–729

9. Morelato, A.L., Monticelli, A.: Heuristic search approach to distribution system
restoration. IEEE Trans. on Power Delivery 4(4) (1989) 2235–2241

10. Shirmohammadi, D.: Service restoration in distribution networks via network re-
configuration. IEEE Trans. on Power Delivery 7(2) (1992) 952–958

11. Chiang, H.D., Jean-Jumeau, R.: Optimal network reconfigurations in distribution
systems: Part 1: A new formulation and a solution methodology. IEEE Trans. on

309A Hybrid Evolutionary Algorithm for Service Restoration

Power Delivery 5(4) (1990) 1902–1909

12. Chiang, H.D., Jean-Jumeau, R.: Optimal network reconfigurations in distribution
systems: Part 2: Solution algorithms and numerical results. IEEE Trans. on Power
Delivery 5(3) (1990) 1568–1574

13. Jeon, Y.J., Kim, J.C., Kim, J.O., Shin, J.R., Lee, K.Y.: An efficient simulated
annealing algorithm for network reconfiguration in large-scale distribution systems.
IEEE Trans. on Power Delivery 17(4) (2002) 1070–1078

14. Toune, S., Fudo, H., Genji, T., Fukuyama, Y., Nakanishi, Y.: A reactive tabu
search for service restoration in electric power distribution systems. In: Procs. of
the 1998 IEEE International Conference on Evolutionary Computation, Anchorage,
AK (1998) 763–768

15. Genji, T., Oomori, T., Miyazato, K., Hayashi, N., Fukuyama, Y.: Service restora-
tion in distribution systems aiming higher utilization rate of feeders. In: The Fifth
Metaheuristcis International Conference (MIC2003), Kyoto, Japan (2003)

16. Watanabe, I.: An ACO algorithm for service restoration in power distribution
systems. In: Procs. of the 2005 IEEE Congress on Evolutionary Computation,
Edinburgh, UK, IEEE Press (2005) 2864–2871

17. Fukuyama, Y., Chiang, H.D.: A parallel genetic algorithm for service restoration
in electric power distribution systems. In: Procs. of the 1995 IEEE International
Conference on Fuzzy Systems. Volume 1., Yokohama, Japan (1995) 275–282

18. Chavali, S., Pahwa, A., Das, S.: A genetic algorithm approach for optimal dis-
tribution feeder restoration during cold load pickup. In: Procs. of the 2002 IEEE
Congress on Evolutionary Computation, Honolulu, HI (2002) 1816–1819

19. Luan, W.P., Irving, M.R., Daniel, J.S.: Genetic algorithm for supply restoration
and optimal load shedding in power system distribution networks. Procs. of IEE
Generation Transmission and Distribution 149(2) (2002) 145–151

20. Toune, S., Fudo, H., Genji, T., Fukuyama, Y., Nakanishi, Y.: Comparative study
of modern heuristic algorithms to service restoration in distribution systems. IEEE
Trans. on Power Delivery 17(1) (2002) 173–181

21. Matos, M.A., Melo, P.: Multiobjective reconfiguration for loss reduction and service
restoration using simulated annealing. In: Procs. of IEEE Budapest Power Tech’99,
Budapest, Hungary (1999)

22. Watanabe, I., Nodu, M.: A genetic algorithm for optimizing switching sequence of
service restoration in distribution systems. In: Procs. of the 2004 IEEE Congress
on Evolutionary Computation, Portland, OR, IEEE Press (2004) 1683–1690

23. Raidl, G.R., Julstrom, B.A.: Edge sets: An effective evolutionary coding of span-
ning trees. IEEE Trans. on Evolutionary Computation 7(3) (2003) 225–239

24. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal on Computing 6(2) (1994) 154–160

25. Palmer, C.C., Kershenbaum, A.: Representing trees in genetic algorithms. In:
Procs. of the First IEEE Conference on Evolutionary Computation, Piscataway,
NJ, IEEE Press (1994) 379–384

26. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Springer-
Verlag (2006)

27. Julstrom, B.A., Raidl, G.R.: Initialization is robust in evolutionary algorithms that
encode spanning trees as sets of edges. In: Procs. of the 2002 ACM Symposium on
Applied Computing, ACM Press (2002) 547–552

28. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall (1993)

310 I. Watanabe et al.

29. Aoki, K., Nara, K., Satoh, T., Kitagawa, M., Yamanaka, K.: New approximate
optimization method for distribution system planning. IEEE Trans. on Power
Systems 5(1) (1990) 126–132

30. Fujishige, S.: A maximum flow algorithm using MA ordering. Operations Research
Letters 31(3) (2003) 176–178

31. Nagamochi, H., Ibaraki, T.: Graph connectivity and its augmentation: applications
of MA orderings. Discrete Applied Mathematics 123 (2002) 447–472

32. Carvalho, P., Ferreira, L., Rojao, T.: Dynamic programming for optimal sequencing
of operations in distribution networks. In: Proc. of the 15th Power Systems for
Computation Conference. (2005)

311A Hybrid Evolutionary Algorithm for Service Restoration

Particle Swarm Optimisation for Operational

Planning: Unit Commitment and Economic Dispatch

P. Sriyanyong, Y.H. Song and P.J. Turner

School of Engineering and Design,
Brunel University, Uxbridge, UB8 3PH, UK.

Summary. This chapter proposes the application of a Particle Swarm Optimi-
sation (PSO) algorithm to Unit Commitment (UC) and Economic Dispatch
(ED) problems, which occur in the operational planning of a power system. To
solve the UC problem, PSO is applied to update the Lagrange multipliers and is
also incorporated into the Lagrange Relaxation method to improve its perform-
ance. For the ED problem, PSO is integrated into a modified heuristic search to
enhance the searching efficiency. The research shows that the proposed meth-
ods can provide solutions with good quality and stable convergence characteris-
tics whilst their implementation is simple and their computation time is reason-
able.

1 Introduction

Unit Commitment (UC) is a problem in power system operation that de-
termines the schedule of generating units to meet electricity demand and
operating constraints over a time horizon. Basically, Economic Dispatch
(ED), as a sub-problem of UC, determines the optimal scheduling of gen-
eration for a particular time that minimises the total production cost and
satisfies equality and inequality constraints. Recently, a number of compu-
tation techniques such as Simulated Annealing (SA), Genetic Algorithm
(GA), Evolutionary Programming (EP), Tabu Search (TS) and Particle
Swarm Optimisation (PSO) have been applied to solve these problems.
Compared to other methods, PSO can solve the problems quickly with

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

P. Sriyanyong et al.: Particle Swarm Optimisation for Operational Planning: Unit Commitment

and Economic Dispatch, Studies in Computational Intelligence (SCI) 49, 313–347 (2007)

high quality solutions and stable convergence characteristics and it is eas-
ily implemented.

In this chapter, the methodology to apply PSO to solve the UC problem
is proposed, where PSO is used to update Lagrange multipliers and is also
incorporated into the Lagrange Relaxation method (LR) to improve its per-
formance. Moreover, PSO is integrated into a modified heuristic search to
solve the ED problem. The simulation results from these applications show
that the proposed methods can solve the UC and ED problems efficiently
and effectively with high quality solutions. The organization of this chap-
ter is as follows: section 2 introduces evolutionary computation techniques
in power systems, in section 3, the overview of PSO is presented. Section
4 shows the applications of PSO to the UC and ED problems and finally,
conclusions are drawn in section 5.

2 Evolutionary Computation Techniques in Power Systems

Security of supply is a critical issue in the operational planning of a mod-
ern power system as electricity is a basic need to every sector in the econ-
omy. While electricity demand changes instantaneously during the course
of a day, each generating unit itself has operating limits and at the same
time is uneconomic to store electricity. Thus, it is a crucial role of electric
utilities to maintain the reliability and continuity of electricity supply
whilst providing least cost of operation. To meet these contradictory objec-
tives, the operation of a power system must deal with a number of dynamic
issues. In the case of hourly generation planning, Economic Dispatch (ED)
schedules the outputs of all committed generating units, which are previ-
ously identified by the Unit Commitment (UC) problem.

Nowadays the modern power system is more dynamic and contains a
number of constraints. Thus, the accurate solutions to the ED and UC
problems are essential in order to operate the power system in an economic
and efficient manner. Therefore a number of computation techniques have
progressively been proposed to solve these critical issues. Overviews of
some of these computation methodologies are presented below.

In the Iron Age, blacksmiths discovered that the formation of crystals in
a solid is dependent on its cooling time; the slower the cooling, the more
perfect the crystals form [1]. Simulated Annealing (SA) applies this idea in
its computational algorithm. The basic principle of SA is that the parame-
ter of the objective function is analogous to the “Temperature” of the metal
in an annealing process. A change in the parameter of the objective func-
tion or the “Temperature” is then basically measured throughout an itera-

314 P. Sriyanyong et al.

tion when the change in “Temperature” is positive will also be accepted
however if the rate of change of such “Temperature” remains within the
Boltzmann based probability distribution. In this case, the additional pro-
cedure called “Cooling Schedule” is required to lower the “Temperature”
and the computation will continue iteratively until it reaches the “Freezing
Temperature”, a condition where no further change in the “Temperature”
occurs [1],[2]. Generally, the SA algorithm is able to deal with arbitrary
systems. It is based on a local search technique and is regarded as a power-
ful method in terms of its ability to find a near global optimal solution.
When combined with a probabilistic approach, SA is also able to find a so-
lution outside a local optimum [3],[4]. Setting the parameters for SA is dif-
ficult however and the computation speed will be slow when the method is
applied to complicated power systems [4].

The Genetic Algorithm (GA) technique is based on a stochastic global
search method which mimics some of the processes of natural evolution
and selection [3]. The principal idea of this algorithm comes from the natu-
ral world where each species is required to adapt to a complicated chang-
ing environment so that it can maximise the likelihood of its survival. The
knowledge that each species gains is encoded in its chromosomes, which
continually transform when reproduction occurs. Over a period of time, the
changes in these chromosomes give rise to species that are more likely to
survive, and so have a greater chance of passing their improved character-
istic onto future generations [1] . The GA is analogous to the idea of chro-
mosomes in nature where the computation method identifies candidate so-
lutions which are encoded by a finite bit string [3]. Each chromosome
exchanges information through a naturally random process so that solu-
tions can evolve to be close to the optimum. The sequence of calculations
will continue and repeat until termination conditions are satisfied. The
strength of a GA is that it only requires information of the objective func-
tion. Thus, a GA can deal with a non-smoothing, discontinuous and non-
differentiable function [3]. Since the computation of GA requires encoding
and decoding schemes however, it takes a longer time to reach an optimal
solution. Sometimes, it is found that a GA has a problem with its computa-
tion efficiency and convergence [1].

The fundamental concept of Evolutionary Programming (EP) is on a
similar basis to GAs in that it maintains populations of potential solutions
and uses a mechanism to select the optimum from a set of those popula-
tions [5]. Rather than using generic specific operators as observed in na-
ture as a GA does however, EP sets its control parameter from real values

315Particle Swarm Optimisation for Operational Planning

accepted if the change in “Temperature” is negative. The transition at itera-
tive computation. The transition at each iteration will automatically be

of the problem that will be investigated. In addition, EP primarily bases its
algorithm on mutation and selection while GAs traditionally use crossover
[6].

Particle Swarm Optimisation (PSO) is developed from a similar basis as
the previous methods. It applies a simplified social model, which for in-
stance zoologists might use to explain the movement of individuals within
a group [7], to solve an optimisation problem. PSO is one of the modern
algorithms used to solve global optimisation problems [8]. In its algorithm,
PSO initialises a population of random solutions each of which is defined

namically corresponding to the flying experiences of itself and its col-
leagues [4],[5]. The PSO computation will repeat until it finds a global op-
timal solution. The PSO is simple to implement compared to other
methods and it can quickly solve a problem to give high quality solutions
and stable convergence characteristics [5],[9]. In addition, PSO is robust in
solving continuous non-linear optimisation problems and unlike other
techniques, it has a flexible and well-balanced mechanism to enhance and
adapt the global and local exploration abilities [10]. PSO does have a
drawback however in that the algorithm seems sensitive to the tuning of
some of its weights or parameters. Therefore there is much research into
the potential of PSO to solve complex power system problems [9].

This chapter proposes the application of Particle Swarm Optimisation
(PSO) to solve the Unit Commitment (UC) and Economic Dispatch (ED)
problems and the simulation results from both show that the proposed
methods can efficiently and effectively provide quality solutions and stable
convergence characteristic with a simple implementation process.

3 Overview of Particle Swarm Optimisation

In 1995, Kennedy and Eberhart introduced a new evolutionary computa-
tion technique called Particle Swarm Optimisation (PSO) [11]. Similar to
other evolutionary computation techniques, PSO employs the principle of
a random initialised population and the concept of evaluation and modifi-
cation of a population to find the optimal solution. In contrast however,
PSO does not utilise the operators during the modification step (e.g. muta-
tion and crossover) as a GA does since it can update itself [12],[13].
Mathematically, the fundamental model of PSO can be expressed by the
following [14].

316 P. Sriyanyong et al.

a random velocity. Thereafter, each particle adjusts its travelling speed dy-
as a “particle”. Initially, every particle flies into a problem hyperspace at

Let a swarm have n particles in a d-dimensional search space. At the tth
iteration, 1 2(, , ,)t t t t

i i i id
x x x x expresses the position of the ith particle

and 1 2(, , ,)t t t t

i i i id
pbest pbest pbest pbest shows the best previous posi-

tion of the ith particle. In addition, the best position among all the particles
is represented by 1 2(, , ,)t t t t

d d
gbest gbest gbest gbest . The velocity of the

ith particle can be represented by 1 2(, , ,)t t t t

i i i id
v v v v . Each of the popula-

tion, called a particle or agent, can be updated or changed to the new posi-
tion according to the current velocity, the difference between the current
position and the best value itself (pbest) and its group (gbest) [15]. To up-
date the velocity of the ith particle, there are a number of algorithms as dis-
cussed below [13]:

1) Original PSO algorithm (OPSO)
The modified velocity can be calculated from:

v
i d

t 1
v

i d

t
c

1
r a n d

1
(p b e s t

i d
x

i d

t
) c

2
r a n d

2
(g b e s t

d
x

i d

t
) (1)

where the values of both c1 and c2 are just 2 and both rand1 and rand2 are
random numbers between 0 and 1.

2) Basic PSO algorithm (BPSO)
As the OPSO does not adapt the velocity step size, it may lead to a poor
searching ability. Consequently, BPSO utilises an inertia weight (w) in
order to balance the global and the local searches. The updated velocity in
the BPSO is calculated by:

v
i d

t 1
w v

i d

t

c
1

r a n d
1

(p b e s t
i d

x
i d

t

) c
2

r a n d
2

(g b e s t
d

x
i d

t

) (2)

where w is 0.9 at the first iteration and linearly decreases to 0.4 at the final
iteration [14].

3) Constriction factor PSO algorithm (CPSO)
CPSO has been proposed by Clerc [16-18] so as to ensure convergence of
the PSO algorithm. The updated velocity in the CPSO can be expressed
by:

v
i d

t 1
k [v

i d

t

c
1

r a n d
1

(p b e s t
i d

x
i d

t

) c
2

r a n d
2

(g b e s t
d

x
i d

t

)] (3)

317Particle Swarm Optimisation for Operational Planning

k
2

2
2

4

, c
1

c
2

, 4 (4)

 where is generally set to 4.1, both c
1
and c

2
 are set to 2.05 and k is

0.729 as presented in [18].

4) Original PSO including inertia weight and constriction factor (CBPSO)
In this algorithm, both the inertia weight and constriction factor are incor-
porated into the Original PSO, as presented in [19]. The modified velocity
of each particle can be calculated as follows:

1

1 1 2 2[() ()].t t t t

id id id id d id
v k w v c rand pbest x c rand gbest x (5)

Subsequently, the modified position of each particle can be calculated as
shown in the following equations:

x
i d

t 1
x

i d

t

v
i d

t 1 (6)

where

v
i d

t : velocity of particle i at iteration t in d-dimensional space;

 V
d , m i n

v
i d

t

V
d , m a x

; i 1 , 2 , . . . , n , d 1 , 2 , . . . , m ,

x
i d

t : current position of particle i at iteration t,

w : inertia weight factor,
t : number of iterations,
n : number of particles in a group,
m : number of members in a particle,
k : constriction factor,
c

1
, c

2
 : acceleration constant,

r a n d
1

, r a n d
2
 : uniformly distributed random number between 0 and 1.

318 P. Sriyanyong et al.

4 Particle Swarm Optimisation with Applications in Power

Systems

4.1 Application of PSO in Unit Commitment

4.1.1 Introduction

Unit Commitment (UC) is a problem in power system operation that de-
termines the schedule of generating units to meet electricity demand and
operating constraints over a time horizon [20],[21].

4.1.2 Problem formulation

The objective of the UC problem is to minimise the sum of generation cost
and start-up cost over a short term period where the objective function can
be mathematically formulated by the following equation [20],[21]:

M i n i m i s e : T C F
i
(P

i t
) S T

i
(1 U

i (t 1)
)

i 1

N

t 1

T

U
i t

 (7)

Subject to the following constraints:

a) Power balance

P
i t
U

i t
P

D t

i 1

N

 (8)

b) Spinning reserve

P
i , m a x

U
i t

P
D t

S R
t

0

i 1

N

 (9)

c) Operating limit

P
i , m i n

U
i t

P
i t

P
i , m a x

U
i t

 (10)

d) Minimum up/down time

319Particle Swarm Optimisation for Operational Planning

U
i t

1 f o r U
i h

T
i , u p

h t T
i , u p

t 1

U
i t

0 f o r (1 U
i h

) T
i , d o w n

h t T
i , d o w n

t 1
 (11)

In this study, the start-up cost is calculated as follows [22]:

S T
i

H S C
i
, i f T

i , o f f
T

i , d o w n
C S H

i
,

C S C
i
, o t h e r w i s e .

 (12)

List of symbols

T C : total production cost ,
F

i
(P

i t
) : fuel cost of generator i given by a quadratic function

 F
i
(P

i t
) a

i
P

i t

2
b

i
P

i t
c

i
 ,

S T
i
 : start-up cost of unit i,

U
i t

 : the on/off status of unit i at hour t,

P
i t

 : the generation output of unit i at hour t,

P
D t

 : load demand at hour t,

S R
t
 : spinning reserve at hour t,

P
i , m i n

 : minimum power output of unit i,

P
i , m a x

 : maximum power output of unit i,

T
i , u p

 : minimum up time of unit i,

T
i , d o w n

 : minimum down time of unit i,

N : total number of generators,
T : total number of hours ,
T

i , o f f
 : the unit’s off time,

H S C
i

 : the unit’s hot start-up cost,

C S C
i
 : the unit’s cold start-up cost, and

C S H
i
 : the cold start hour.

320 P. Sriyanyong et al.

4.1.3 Methodology

Lagrange Relaxation (LR) is an optimization approach to solve the UC
problem. Although the computation of LR is fast, it has the problems with
numerical convergence and poor quality of solution [21],[23]. To over-
come these, it is proposed to incorporate the PSO algorithm into the LR
method so as to improve its performance. The implementation processes of
the proposed method are explained below:

A. Lagrange Relaxation (LR)

The basic concept of the LR procedure is to relax or ignore the coupling
constraints of the UC problem (e.g. power balance and spinning reserve
constraints). In addition, it decomposes the main problem into sub-
problems which are easier to solve. In the LR method, Lagrange multipli-
ers (

t
and

t
are integrated into the main problem in order to create the

penalty terms [20],[24],[25]. Therefore, the Lagrange function can be
formed as follows [20],[24]:

L (P , U , ,) T C (P
i t

, U
i t

)
t

t 1

T

(P
D t

P
i t
U

i t
)

i 1

N

t
(P

D t
S R

t
P

i , m a x
U

i t

i 1

N

)

t 1

T

.

 (13)

From the concept of dual optimisation, we can obtain the values of the La-
grange multipliers by maximising the Lagrange function (L) with respect
to the Lagrange multipliers

t
 and

t
, whilst minimising with respect to

P
i t

 andU
i t

, that is

q
*

(,) m a x
t

,
t

q (,) (14)

where

q (,) m i n
P

i t
,U

i t

L (P , U , ,) (15)

and

m i n q (,) m i n [F
i
(P

i t
) S T

i
(1 U

i (t 1)
)

t 1

T

i 1

N

t
P

i t t
P

i , m a x
]U

i t
(16)

321Particle Swarm Optimisation for Operational Planning

constraints. Generally, two-state dynamic programming is applied to solve
this problem. The main idea of applying two-state dynamic programming
is to find the path that offers minimum total cost, which consists of the
summation of the fuel cost and start-up cost, up to the current hour. So in
each hour, there are two possible states for a generator (i.e. “1” = on and

ing the minimum cost in that path. Moreover, minimum up/down time

ter, the minimum cost and its path from the previous hour will be stored
and the same processes carried out as in the earlier step until the final hour
[23].

B. Incorporation of PSO into LR for UC

Conventionally, LR uses a gradient method to update the Lagrange multi-
pliers. It has a limitation however in that sometimes the solution is trapped
in a local optimum causing a convergence problem [26]. In this section, a
new hybrid method (LR-PSO) is proposed to solve the UC problem. PSO
is applied to update the Lagrange multipliers and is also incorporated into
the LR method to improve its performance. The flow chart describing the
procedures of the proposed method is shown in Fig. 1.

Initialisation of Lagrange multipliers

(
t

,
t

) and PSO parameters

Maximisation of Lagrange function by up-
dating Lagrange multipliers using PSO

Minimisation of Lagrange function by
two-state dynamic programming

Calculation of the dual value, the primal
value and the duality gap

Are termination

criteria satisfied?

Final UC solution

Yes

No

Elimination of excessive spinning reserve
by the Unit decommitment

322 P. Sriyanyong et al.

constraints will also be taken into account as illustrated in Fig. 3. Thereaf-

Fig. 1. The basic flow chart of the proposed method

subject to the operating limit constraints and minimum up/down time

“0”= off), and their total costs are compared to make a decision for choos-

below.

Step 1: Initialisation of Lagrange multipliers and PSO parameters

 Generate an initial population of particles (
t

and
t

). Normally,
each particle is generated randomly within an allowable range.
The members of the population are stored in a matrix form which
defines the Lagrange multipliers as shown in Fig. 2.

 Subsequently, initialise the parameters of the PSO algorithm (e.g.
population size, initial/final inertia weight, velocity of particle, ac-
celeration constant, constriction factor, the maximum generation
and the duality gap).

Fig. 2. Population in the form of a matrix

 Define each particle as pbest and the best position of all particles
as gbest.

Step 2: Maximisation of Lagrange function by updating Lagrange

multipliers using PSO

 Calculate the evaluation value or dual value (q) of each individual
(

t
,

t
) as follows.

(1)

1 1

,max
1 1 1

(,) [() (1)]

 () + ()

N T

i it i i t it

i t

N T T

t it t i it t Dt t Dt t

i t t

q F P ST U U

P P U P P SR

(17)

1 1 1 1 1 1 1 1
1 2 1 1 2 1
2 2 2 2 2 2 2 2

1 2 1 1 2 1

 1 2 T 1 2 T

1

2

N

T T T T

T T T T

Hour

1 1 1 1 1 1 1 1
1 2 1 1 2 1

1 2 1 1 2 1

N N N N N N N N

T T T T

N N N N N N N N

T T T T

In
d
iv

id
u
a
l

N
o
.

323Particle Swarm Optimisation for Operational Planning

The steps of the computation method as presented in Fig. 1 are discussed

 Compare each evaluation value with the previous pbest. If the cur-
rent value is more, let it be pbest. Similarly, if the best value in
pbest’s group is more than gbest, let the value be gbest.

 Update the member velocity (v) of each individual (
i
,

i
) by Eq.

(5).

 If v
i d

(t 1)
V

d , m a x
, then v

i d

(t 1)
V

d , m a x
 or if v

i d

(t 1)
V

d , m a x
, then

v
i d

(t 1)
V

d , m a x
. The maximum velocity can be calculated as fol-

lows [10]:

V
d , m a x

(x
i d , m a x

x
i d , m i n

)

N

 (18)

 where N is a chosen number of intervals.

 Update the member position of each individual (
i
,

i
) from Eq.

(6).

Step 3: Minimisation of Lagrange function by two-state dynamic pro-

gramming

 Minimise the Lagrange function using two-state dynamic pro-
gramming for P

i t
 and U

i t
, where i = 1...N, and t =1...T.

 Use the forward dynamic programming (FDP) to solve the dual

cept of two-state dynamic programming [21].

Fig. 3. Two-state dynamic programming

t t+1 t+Ti,down-1

Uit = 1

Uit = 0

t+Ti,down

t+Ti,down+1

t+Ti,down+Ti,up-1

STi

324 P. Sriyanyong et al.

problem. The objective is to minimise q. Fig. 3 illustrates the con-

Step 4: Calculation of the dual value, the primal value, and the duality

gap

i t i t
 obtained

from step 3.

 To solve the economic dispatch problem, use U

i t
 from step 3 to

obtain P
i t

* , and then calculate primal value (J) .

J [F
i
(P

i t

*
) S T

i
(1 U

i (t 1)
)]U

i t

i 1

N

t 1

T

 (19)

 The difference between the primal and dual problem, called the
duality gap (), is used as a terminating criterion. The duality gap
can be calculated from

J q

q

. (20)

Step 5: If either the predefined maximum number of generations is
reached, or the duality gap is less than a setting threshold, then stop. The
latest P

i t

* is the optimal solution. Otherwise, return to Step 2.

cessive spinning reserve requirement that will result in high total produc-
tion cost. Accordingly, the elimination of excessive spinning reserve is
necessary to apply for this case. To deal with this problem, a heuristic
search method called the Unit decommitment is adopted, as proposed by

325Particle Swarm Optimisation for Operational Planning

Determine the dual value from Eq. (17) using P and U

[23]. The procedures of the Unit decommitment are shown in Fig. 4.

According to [23], over committed units in some hours may lead to an ex-
decommitment

Step 6: Elimination of excessive spinning reserve by the Unit

t = t -1

Calculate the average production cost of committed units

in hour t * * *

,
() () /

i avg it i it it it
F P F P P U

 Solve ED problem to get P*
it(new)

 Calculate the new total production cost

Start

Yes

No

End

 Set the [Uit] be the starting point
 Set t = T (i.e. T = 24)

Create index array of committed unit in descending order
of *

, ()i avg itF P (i.e. t = 15, index = [6 5 3 4 2 1])

Set k = index (1)

Calculate the excessive spinning reserve (ESRt)

, max

1

N

t i it Dt t

i

ESR P U P SR

Is
ESRt Pk, max?

minimum up time

Set
ktU = 0 (i.e. 0= “off”)

Yes

 Update [Uit]
 Delete index(1)

 Set Ukt = 1
 Update [Uit]
 Delete index(1)

Yes

No

Is
t =1?No

Yes

Is

No

Is

satisfied?

index array empty?

326 P. Sriyanyong et al.

reserve
Fig. 4. Flow chart of the Unit decommitment for eliminating excessive spinning

4.1.4 Experimental Results

In this section, the proposed LR-PSO method is applied to solve the UC
problem. In order to illustrate its effectiveness, the method is applied to
two different systems, namely a 3-unit 4-hour system and a 10-unit 24-
hour system. The data used in both cases are adopted from [20] and [27]
and the details are in Appendix A. The simulations are carried out using
Matlab. The parameters of the PSO used in all simulations are: initial iner-
tia weight (wmax) = 0.9; final inertia weight (wmin) = 0.4; acceleration con-
stants (c1, c2) = 2.05 and constriction factor (k) = 0.729.

Case A: 3-unit, 4-hour system
In this case, the set parameters of the proposed method are population size
= 40, number of runs = 30, maximum number of generations = 18, and du-
ality gap = 0.02. For the LR method [20], the parameters for simulation are

1 = 0.01 and 2 = 0.002. Furthermore, spinning reserve is not considered;
therefore the elimination of excessive spinning reserve section will be ne-
glected. To examine the effectiveness of the proposed method, the simula-
tion results are compared with the results obtained from the LR method,
which is re-implemented. The optimal solution is $20162.75 as reported in
[21]. From the simulation results, the proposed method reaches the optimal
solution ($20162.75) in every run. Table 1 presents the optimal solution
obtained from the proposed method. Furthermore, the comparison of the
average convergence curves between the proposed method and the LR
method are demonstrated in Fig. 5. It can be observed that the LR method
has a numerical convergence problem. In the 10th iteration, the duality gap
of the proposed method is 0.02 which satisfies the stopping criterion while
for the LR method, the stopping criterion is satisfied in the 18th iteration.
From the comparison of the two methods, it is clearly shown that the pro-
posed method is more effective than the LR method in terms of overcom-
ing the convergence problem and reaching the duality gap.

Table 1. The optimal solution obtained from the proposed method

Unit Number Hour Load

(MW) 1 2 3
Fuel cost

($)
1 170 0 0 170 1264.50
2 520 0 320 200 4616.00
3 1100 500 400 200 11400.00
4 330 0 130 200 2882.25

Total 20162.75

327Particle Swarm Optimisation for Operational Planning

0 2 4 6 8 10 12 14 16 18
1

1.5

2

2.5

3

3.5

4
x 10

4

Number of generations

P
ri
m

a
l C

o
st

 (
$

),
 D

u
a

l C
o

st
 (

$
)

Primal Cost (Proposed Method)

Dual Cost (Proposed Method)

Primal Cost (LR Method)

Dual Cost (LR Method)

1 = 0.02ε

 2 = 0.0348ε

Fig. 5. Comparison of convergence curves between the proposed method and the
LR method (1 - Duality gap of the proposed method and 2 - Duality gap of the
LR method)

Case B: 10-unit, 24-hour system
For this case, the set parameters of the proposed method is population size
= 100. Since the spinning reserve will be taken into account, it is assumed
to be 10% of the load demand. To investigate the effect of excessive spin-
ning reserve, two versions of the LR-PSO method, one including and one
without the Unit decommitment are simulated. Tables 2, 3 and 4 illustrate
the best solution obtained from the LR method, the proposed LR-PSO
method without the Unit decommitment, and the proposed LR-PSO
method, respectively. The total cost of the LR method is $565823 while
the total cost of the proposed method without applying the Unit decom-
mitment is $565275 which is $548 less than the LR method. In addition,
the total cost obtained from the proposed method is $455 cheaper than the
total cost obtained from the proposed LR-PSO method without applying
the Unit decommitment. The saving in total cost is a consequence of
elimination of excessive spinning reserve in the 15th hour of the LR-PSO
method without the Unit de-commitment, the detail of which is presented
in Table 3. Table 5 compares the result of the proposed method with those
of other research studies. From the simulation results, it can therefore be
concluded that the performance of the proposed LR-PSO method is better
than other methods in terms of total production cost. Since the simulations

328 P. Sriyanyong et al.

were carried out on different types of computers, the computation time will
not be compared here.

Table 2. The best solution obtained from the LR method

Table 3. The best solution obtained from the proposed LR-PSO method without
the Unit decommitment

329Particle Swarm Optimisation for Operational Planning

Table 4. The best solution obtained from the proposed LR-PSO method

Table 5. Comparison of simulation results

Method
Total production costs

($)
LR [27] 565,825
GA [27] 565,825
HPSO [28] 574,153
LR* 565,823
LR-PSO** 565,275
LR-PSO 564,820

 * Re-implemented the LR method
 ** The proposed LR-PSO method without unit decommitment

4.1.5 Summary of application of PSO in Unit Commitment

This section presents a new methodology, called LR-PSO or Particle
Swarm Optimisation (PSO) combined with Lagrange Relaxation method
(LR), to solve the UC problem. Applying the LR-PSO method improves
the performance of the LR method since PSO is used to update the La-
grange multipliers. To illustrate its performance, the proposed method is
tested on 3-Unit 4-Hr system and 10-Unit 24-Hr system. Compared with
the LR, Genetic Algorithm (GA) and Hybrid Particle Swarm Optimisation
(HPSO) methods, the proposed LR-PSO method has provided a satisfac-

330 P. Sriyanyong et al.

tory performance in terms of solution quality. Furthermore, it could be

problem under the competitive environment of power systems.

4.2 Application of PSO in Economic Dispatch

4.2.1 Introduction

Economic Dispatch (ED) is a sub-problem of the general UC problem. In
essence, the ED problem is to determine the optimum scheduling of gen-
eration at a particular time that minimises the total production cost while
satisfying an equality constraint and inequality constraints i.e. power bal-
ance constraint and operating limits [29]. For the sake of simplicity, the
cost function of the standard ED problem is generally a single quadratic
function; however, in practical ED problems, valve-point loadings have
been included. Taking the valve-point loadings into account will increase
multiple local minimum points in the cost function and make the problem
more difficult [6].

4.2.2 Problem formulation

In general, the mathematical model of the ED problem is as follows [20]:

M i n i m i s e : T C F
i
(P

i
)

i 1

N

 (21)

Subject to:

a) Power balance constraint

P
i

P
D

i 1

N

 (22)

b) Operating limit constraints

P
i , m i n

P
i

P
i , m a x

 (23)

For the standard ED problem (smooth cost functions), the generator’s
fuel cost function can be represented by:

F
i
(P

i
) a

i
P

i

2
b

i
P

i
c

i
 (24)

331Particle Swarm Optimisation for Operational Planning

extended to solve a large-scale system and a profit-based unit commitment

whilst in the ED problem with non-smooth cost functions, the fuel cost
function with valve-point loadings can be expressed as [30] :

F
i
(P

i
) a

i
P

i

2
b

i
P

i
c

i
e

i
s i n (f

i
(P

i , m i n
P

i
)) . (25)

Examples of smooth and non-smooth cost functions are shown in Fig.
6(a) and 6(b), respectively.

Fig. 6(a). An example of input-output curve with smooth cost function

Fig. 6(b). An example of input-output curve with valve point loadings

332 P. Sriyanyong et al.

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

Power(MW)

F
u
e
l
C

o
s
t(

$
/h

r)

Unit1

Unit2

Unit3

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

Power(MW)

F
u
e
l
C

o
s
t(

$
/h

r)

Unit1

Unit2

Unit3

List of symbols

T C : total production cost,
F

i
(P

i
) : fuel cost of ith generator; generator’s fuel cost can be

 calculated from Eq. (24) or Eq. (25),
 where ai, bi and ci are coefficients of the fuel cost function
 ei and fi are coefficients from the valve-point loading of
 the ith generator,

P
i
 : power output of ith generator,

P
D

 : power demand,

P
i , m i n

 : minimum power output of ith generator,

P
i , m a x

 : maximum power out put of ith generator,

N : number of generators.

4.2.3 Implementation of PSO approach in ED problem

The major steps of the proposed PSO approach in the ED problem are
summarised below:

1) Initialisation of experimental parameters: the positions of the par-
ticles, 1 2, , ,

i i i id
x P P P and the velocities of the particles,

1 2, , ,
i i i id

v v v v .

2) Updating the velocities and positions.
3) Modification of the particles using a heuristic method.
4) Evaluation of the particles in the population.
5) Updating of pbest (best position found by the ith particle) and gbest

(best position found by the group)
6) If the termination criteria are satisfied, then stop. Otherwise, return

to step 2.

The process can be expressed in details as follow:

 Initialise the experimental parameters, which are population size,
initial inertia weight (wmax), final inertia weight (wmin), acceleration
constants (c1,c2), the maximum generation, generation limit, fuel
cost coefficients and power demand.

 Generate initial population randomly by using the modified heuris-
tic search the main concept of which is to initialise the particles,

333Particle Swarm Optimisation for Operational Planning

and velocities of particles

Step 1: Initialisation of experimental parameters, the positions,

subject to power balance and operating limit constraints. The heu-
ristic search is modified from [7] in order to enhance its perform-
ance. The modified search procedures are therefore given in Fig. 7.

 Initialise the velocities of particles.
 Calculate the fitness values (TC) of each particle using Eq. (21).
 Let each fitness value be pbest.
 Search for the best position (the least cost) of all particles (the

pbest values) and let this value be gbest.

Step 2: Updating of the velocities and positions
 Update the velocity and position of each particle by Eq. (2) and

Eq. (6), respectively.

 If x
i d

(t 1)
P

i , m a x
, then x

i d

(t 1)
P

i , m a x
 or if x

i d

(t 1)
P

i , m i n
,

then x
i d

(t 1)
P

i , m i n
. Otherwise, set x

i d

(t 1)
x

i d

(t 1) .

Step 3: Modification of the particles

Computation continues on the basic idea described in step 1, except the
procedure for finding the final value (P

i 1
), which is illustrated in sections 1

P
i L

) can be randomly calcu-

lated instead of calculating only the first element of each particle as shown
in Fig. 7 because of a lack of diversity in the values. To carry this out, the
updated swarm in step 2 is used as the starting point. Fig. 8 shows the pro-
cedures for this heuristic modification.

Step 4: Evaluation of the particles

 Calculate each fitness value using the fitness function as shown in
Eq. (21).

Step 5: Updating of pbest and gbest

 If the current fitness value is less than the previous pbest, let it be
pbest. Correspondingly, let the best value pbest be gbest if it is less
than gbest.

Step 6: If the current iteration is more than the maximum number of itera-
tions, then stop and take the latest gbest to be the final solution. Otherwise,
return to Step 2.

334 P. Sriyanyong et al.

and 2 of Fig. 8. The final value in this step (

Fig. 7. Flow chart of the modified heuristic search for initialisation

335Particle Swarm Optimisation for Operational Planning

i=1

Is

Pi1 out the range?

Calculate Pi1 from 1

2

n

i D ij

j

P P P
=

= −∑

Adjust the value within its range

(i.e.
,min 1 ,maxi i iP P P≤ ≤)

k=1

k = k+1

Calculate Pik from

1

n

ik D ij

j
j k

P P P
=
≠

= −∑

Yes

No

Start

Yes

No

Yes
No

End

i = i+1

Initialise randomly of the swarm within the

operating range (i.e.
,min ,maxi ij i

P P P≤ ≤)

11 12 1

21 22 2

1 2

w

where : i = population size,

 j = total number of generators.

j

j

i i ij

P P P

P P P
s arm

P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥=⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M M M

L

Is k ≤ Dimension?

Is

Pik out the range?

Adjust the value within its range

Yes

No

Is

i = Population size?

Fig. 8. Flow chart of the modified heuristic search for particles’ modification

336 P. Sriyanyong et al.

k=1

Is

PiL out the range?

Set L = index (k), (i.e., index (1) = 3)

Calculate PiL from

 1

()

iL D ij

n

j

j index k

P P P

=
≠

= − ∑

Adjust the value within its range

(i.e.
,min ,maxi iL iP P P≤ ≤)

k= k+1

Set L = index (k), (i.e., index (2) = 2)

Calculate PiL from

 1

()

iL D ij

n

j

j index k

P P P

=
≠

= − ∑

Yes

No

Yes

No

Yes

No

End

i= i+1

11 12 1

21 22 2()

1 2

w .

j

jOld

i i ij

P P P

P P P
s arm

P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L

L

M M M M

L

Is k ≤ Dimension?

Is

PiL out the range?

Adjust the value within its range

Yes

No

Is

i = Population size?

Start

Create index array of particle i randomly

(i.e., 4-unit, index = [3 2 1 4])

i=1
i.e., particle(i) = [300 400 200 750]

 normal_index = [(1) (2) (3) (4)]

Section 1

Section 2

4.2.4 Experimental Results

To investigate the efficiency of the proposed method, three different sys-
tems have been considered. The first two systems consist of the standard 3-
unit system with smooth and non-smooth cost functions given in [20] and
[30], respectively. The last system is a 40-unit system with non-smooth
cost functions as shown in [6]. The data for each system are shown in Ap-
pendix B. The simulations are implemented in Matlab and executed on a
Pentium IV, 3GHz personal computer with 512 MB RAM, where parame-
ters of PSO in all case studies are initial inertia weight (wmax) = 0.9, final
inertia weight (wmin) = 0.4, and acceleration constants (c1, c2) = 2.

Case A: 3-generator system
In this case, the population size and the maximum number of generations
are set to 10 and 300 respectively, and the power demand is set to 850
MW. From the previous work, the global solution is $8194.35612 as pre-
sented in [20]. Table 6 compares the simulation results of the proposed
method with the modified Hopfield neural network (MHNN) [29], the im-
proved evolutionary programming (IEP) [31], the numerical method (NM)
[20] and the modified PSO (MPSO) [7]. From the simulation of this case,
the computation time is 0.42 seconds and the results show that the method

Table 6. Comparison of total costs with different methods for case A

Generating Unit Method
P1 P2 P3

Total Power
(MW)

Total cost ($)

MHNN [29] 393.800 333.100 122.300 849.2 8187.00000
IEP [31] 393.170 334.603 122.227 850 8194.35614
NM [20] 393.170 334.604 122.226 850 8194.35612
MPSO [7] 393.170 334.604 122.226 850 8194.35612

Proposed Method 393.170 334.604 122.226 850 8194.35612

337Particle Swarm Optimisation for Operational Planning

initial positions.
characteristic to the optimal solution but also the effect of the different
can achieve a global solution. Fig. 9 illustrates not only the convergence

Fig. 9. Convergence characteristics of the proposed method with different initial
conditions in case A

Case B: 3-generator system with valve-point loadings

In this case, the population number is 20 while the maximum number of
generations and the power demand remain the same as Case A. As re-
ported in [32], the optimal solution is $8234.07. Table 7 illustrates the
comparison of simulation results with various methods (i.e. the genetic al-
gorithm (GA) [30], the IEP [31], the evolutionary programming (EP) [33],
the Taguchi method (TM) [34] and the MPSO [7]). In this case study, it is
observed that the proposed method also provides the optimal solution
($8234.07) and its computation time is 0.5 seconds. Similarly, the conver-
gence curves with different initial conditions are illustrated in Fig. 10.

Table 7. Comparison of total costs with different methods for case B

Generating Unit Method
P1 P2 P3

Total Power
(MW)

Total cost ($)

GA [30] 300.00 400 150 850 8237.60
IEP [31] 300.23 400.00 149.77 850 8234.09
EP [33] 300.26 400 149.74 850 8234.07
TM[34] 300.27 400 149.73 850 8234.07

MPSO [7] 300.27 400 149.73 850 8234.07
Proposed method 300.27 400 149.73 850 8234.07

338 P. Sriyanyong et al.

Fig. 10. Convergence characteristics of the proposed method with different initial
conditions in case B

Case C: 40- generator system with valve-point loadings

The setting parameters of Case C are population size = 60, maximum
number of generations = 1500, and power demand = 10500MW. Table 8
summarises the mean cost, the minimum cost and the mean computation
time of the proposed method compared with the classical evolutionary
programming (CEP) [6], the fast EP (FEP) [6], the modified fast EP
(MFEP) [6], the improved FEP(IFEP) [6], the TM [34], and the MPSO [7]
methods respectively.

over 20 different initial runs. The results show that the mean cost and the
minimum cost of the proposed method are the cheapest. The proposed
method is better than the others in terms of the quality of its solution. The
best solution obtained from the proposed method is shown in Table 9 and

compare the computation time of this proposed method to any other re-
search as basically the simulations are carried out by different types of
computers.

339Particle Swarm Optimisation for Operational Planning

the plot of the best cost is illustrated in Fig. 11. However, it is difficult to

In this case, the mean cost of the proposed method represents an average

Table 8. Comparison of simulation results among various methods for case C

Method
Mean cost

($)
Min. cost

($)
Mean Computation

time (s)
CEP*[6] 124,793.48 123,488.29 1956.93
FEP*[6] 124,119.37 122,679.71 1039.16
MFEP*[6] 123,489.74 122,647.57 2196.10
IFEP*[6] 123,382.00 122,624.35 1167.35
TM [34] 123,078.21 122,477.78 94.28
MPSO [7] - 122,252.26 -
Proposed method** 122,304.70 122,190.63 14.56

* Simulations were executed on Pentium II, 350 MHz, 128-MB RAM
** Simulations were executed on Pentium IV, 3 GHz, 512-MB RAM

Table 9. The best simulation result obtained from the proposed method for case C

Unit
Power
(MW)

Cost
($)

Unit
Power
(MW)

Cost
($)

1 114.0000 978.1563 21 550.0000 5575.3293
2 113.9992 978.1432 22 550.0000 5575.3293
3 120.0000 1544.6534 23 550.0000 5558.0493
4 180.2295 2153.9843 24 524.3592 5078.9631
5 97.0000 853.1776 25 523.8558 5286.9053
6 140.0000 1596.4643 26 550.0000 5785.6643
7 300.0000 3216.4240 27 10.0104 1140.7632
8 299.9700 3051.8101 28 10.0107 1140.7701
9 300.0000 3071.9895 29 10.0000 1140.5240
10 130.0035 2502.1451 30 96.9997 853.1732
11 94.0000 1893.3054 31 190.0000 1643.9913
12 94.0000 1908.1668 32 190.0000 1643.9913
13 125.0000 2541.6813 33 190.0000 1643.9913
14 394.2939 6415.2276 34 200.0000 2101.0170
15 304.5691 5172.3846 35 200.0000 2043.7270
16 304.5581 5172.1210 36 199.9984 2043.7119
17 489.3338 5297.8828 37 110.0000 1220.1661
18 489.2954 5289.1100 38 110.0000 1220.1661
19 511.4847 5545.3790 39 110.0000 1220.1661
20 511.4307 5544.1887 40 511.5979 5547.8322

Total Power(MW) and Total Cost($) 10,500.000 122,190.626

340 P. Sriyanyong et al.

4.2.5 Summary of application of PSO in Economic Dispatch

In this section, PSO is integrated into a modified heuristic search to solve
the ED problem with both smooth and non-smooth cost functions. In a
computation process, PSO searches for a global solution while a modified
heuristic handles equality and inequality constraints. To illustrate its effi-
ciency and effectiveness, the proposed method is applied to 3 different
case studies. For the first two cases, a 3-unit system with smooth and non-
smooth cost functions, the simulation results show that the proposed
method succeeds in reaching the global solution and has a reasonable
computation time. The result from the last case, which is a 40-unit system
with non-smooth cost functions, clearly confirms that the proposed method
is more powerful than other methods.

5 Conclusions

This chapter presents the applications of PSO to both the UC and ED prob-
lem. To solve the UC problem, PSO is applied to update the Lagrange
multipliers and is also incorporated into the LR method to improve its per-
formance. For the ED problem, PSO is integrated into a modified heuristic
search to enhance its searching efficiency. Even though PSO is very sim-
ple to implement with high quality solutions and stable convergence char-
acteristics, it has a shortcoming in that there can be a lack of diversity.

341Particle Swarm Optimisation for Operational Planning

Fig. 11. Convergence characteristic of the proposed method for case C

Therefore, it is easy for the method to get trapped into a local optimum. To
overcome this, the PSO would require further study.

Acknowledgement

The first author of this chapter gratefully acknowledges financial support
from the Royal Thai Government and King Mongkut’s Institute of Tech-
nology North Bangkok, Thailand.

Appendix

Appendix A: Unit Commitment

Table 10. Unit data for the 3-unit system [20]

Table 11. Load demand for 4-hour

Hour 1 2 3 4
Load (MW) 170 520 1100 330

Table 12. Unit data for the 10-unit system [27]

 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5
Pmax (MW) 455 455 130 130 162
Pmin (MW) 150 150 20 20 25
a ($/MW2 h) 0.00048 0.00031 0.002 0.00211 0.00398
b ($/MW h) 16.19 17.26 16.60 16.50 19.70
c ($/h) 1000 970 700 680 450
min up (h) 8 8 5 5 6
min down (h) 8 8 5 5 6
hot start cost ($) 4500 5000 550 560 900
Cold start cost ($) 9000 10000 1100 1120 1800
Cold start hrs (h) 5 5 4 4 4
Initial status (h) 8 8 -5 -5 -6

 Unit 1 Unit 2 Unit 3
Pmax (MW) 600 400 200
Pmin (MW) 100 100 50
a ($/MW2 h) 0.002 0.0025 0.005
b ($/MW h) 10 8 6
c ($/h) 500 300 100

342 P. Sriyanyong et al.

Table 13. Load demand for 24-hour

Hour Load (MW) Hour Load (MW)
1 700 13 1400
2 750 14 1300
3 850 15 1200
4 950 16 1050
5 1000 17 1000
6 1100 18 1100
7 1150 19 1200
8 1200 20 1400
9 1300 21 1300

10 1400 22 1100
11 1450 23 900
12 1500 24 800

Appendix B: Economic Dispatch

Table 14. Unit data for test case A (3-generator system with smooth cost func-
tions) where a, b, c are cost coefficients in the production cost function [20]

Generator Pmin(MW) Pmax(MW) a b c
1 150 600 0.001562 7.92 561
2 100 400 0.001940 7.85 310
3 50 200 0.004820 7.97 78

Table 15. Unit data for test case B (3-generator system with non-smooth cost
functions) where a, b, c, e and f are cost coefficients in the production cost func-
tion [30]

Generator Pmin(MW) Pmax(MW) a b c e f
1 100 600 0.001562 7.92 561 300 0.0315
2 100 400 0.001940 7.85 310 200 0.042
3 50 200 0.004820 7.97 78 150 0.063

 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10
Pmax (MW) 80 85 55 55 55
Pmin (MW) 20 25 10 10 10
a ($/MW2 h) 0.00712 0.00079 0.00413 0.00222 0.00173
b ($/MW h) 22.26 27.74 25.92 27.27 27.79
c ($/h) 370 480 660 665 670
min up (h) 3 3 1 1 1
min down (h) 3 3 1 1 1
hot start cost ($) 170 260 30 30 30
Cold start cost ($) 340 520 60 60 60
Cold start hrs (h) 2 2 0 0 0
Initial status (h) -3 -3 -1 -1 -1

343Particle Swarm Optimisation for Operational Planning

Table 16. Units data for test case C (40-generator system with non-smooth cost
functions) [6]

Generator Pmin(MW) Pmax(MW) a b c e f
1 36 114 0.00690 6.73 94.705 100 0.084
2 36 114 0.00690 6.73 94.705 100 0.084
3 60 120 0.02028 7.07 309.54 100 0.084
4 80 190 0.00942 8.18 369.03 150 0.063
5 47 97 0.0114 5.35 148.89 120 0.077
6 68 140 0.01142 8.05 222.33 100 0.084
7 110 300 0.00357 8.03 287.71 200 0.042
8 135 300 0.00492 6.99 391.98 200 0.042
9 135 300 0.00573 6.60 455.76 200 0.042
10 130 300 0.00605 12.9 722.82 200 0.042
11 94 375 0.00515 12.9 635.20 200 0.042
12 94 375 0.00569 12.8 654.69 200 0.042
13 125 500 0.00421 12.5 913.40 300 0.035
14 125 500 0.00752 8.84 1760.4 300 0.035
15 125 500 0.00708 9.15 1728.3 300 0.035
16 125 500 0.00708 9.15 1728.3 300 0.035
17 220 500 0.00313 7.97 647.85 300 0.035
18 220 500 0.00313 7.95 649.69 300 0.035
19 242 550 0.00313 7.97 647.83 300 0.035
20 242 550 0.00313 7.97 647.81 300 0.035
21 254 550 0.00298 6.63 785.96 300 0.035
22 254 550 0.00298 6.63 785.96 300 0.035
23 254 550 0.00284 6.66 794.53 300 0.035
24 254 550 0.00284 6.66 794.53 300 0.035
25 254 550 0.00277 7.10 801.32 300 0.035
26 254 550 0.00277 7.10 801.32 300 0.035
27 10 150 0.52124 3.33 1055.1 120 0.077
28 10 150 0.52124 3.33 1055.1 120 0.077
29 10 150 0.52124 3.33 1055.1 120 0.077
30 47 97 0.01140 5.35 148.89 120 0.077
31 60 190 0.00160 6.43 222.92 150 0.063
32 60 190 0.00160 6.43 222.92 150 0.063
33 60 190 0.00160 6.43 222.92 150 0.063
34 90 200 0.0001 8.95 107.87 200 0.042
35 90 200 0.0001 8.62 116.58 200 0.042
36 90 200 0.0001 8.62 116.58 200 0.042
37 25 110 0.0161 5.88 307.45 80 0.098
38 25 110 0.0161 5.88 307.45 80 0.098
39 25 110 0.0161 5.88 307.45 80 0.098
40 242 550 0.00313 7.97 647.83 300 0.035

344 P. Sriyanyong et al.

References

[1]

[2] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines:
John Wiley & Sons, 1989.

[3] P. Attaviriyanupap, H. Kita, E. Tanaka, and J. Hasegawa, A hybrid EP
and SQP for dynamic economic dispatch with nonsmooth fuel cost func-

[4] T. A. A. Victoire and A. E. Jeyakumar, Hybrid PSO-SQP for economic
dispatch with valve-point effect, Electric Power Systems Research, vol.
71, pp. 51-59, 2004.

[5] K. Y. Lee and M. A. El-Sharkawa, A Tutorial Course on Evolutionary

Computation Techniques for Power System Optimization. Seoul, Korea:
IFAC Symposium on Power Plants and Power, Sep. 2003.

[6] N. Sinha, R. Chakrabarti, and P. K. Chattopadhyay, Evolutionary pro-
gramming techniques for economic load dispatch, IEEE Trans. Evol.

[7] J.-B. Park, K.-S. Lee, J.-R. Shin, and Kwang Y. Lee, A particle swarm
optimization for economic dispatch with nonsmooth cost functions,

[8] B. Zhao, C. X. Guo, and Y. J. Cao, A multiagent-based particle swarm
optimization approach for optimal reactive power dispatch, IEEE Trans.

[9] Z.-L. Gaing, Discrete particle swarm optimization algorithm for unit
commitment, IEEE Power Eng. Soc. General Meeting, vol. 1, pp. 418-

[10] M. A. Abido, Optimal power flow using particle swarm optimization,

[11] J. Kennedy and R. Eberhart, Particle swarm optimization, in Proc.

IEEE Int. Conf. Neural Networks, vol. 4, pp. 1942 - 1948, Nov. 1995.
[12] X. Hu, R. C. Eberhart, and Y. Shi, Engineering optimization with parti-

[13] R. C. Eberhart and Y. Shi, Particle swarm optimization: developments,

[14] Y. Shi and R. C. Eberhart, Empirical study of particle swarm optimiza-

345Particle Swarm Optimisation for Operational Planning

Y.-H. Song, “Introduction” in Modern Optimisation Techniques in

“

“

“

“

“

“

“

“

“

“

“

”

”

”

”

”

”

”

tion,” IEEE Trans. Power Syst., vol. 17, pp. 411-416, May 2002.

Comput., vol. 7, pp. 83-94, Feb. 2003.

applications and resources,” in Proc. Congr. Evol. Comput., vol. 1, pp.

tion,” in Proc. Congr. Evol. Compt., vol. 3, pp. 1945-1950, Jul. 1999.

’

pp. 1-13.
Power Ststems, Y.-H. Song, Ed.: Kluwer Academic Publishers, 1999,

IEEE Trans. Power Syst, vol. 20, pp. 34-42, Feb. 2005.

Power Syst, vol. 20, pp. 1070-1078, May 2005.

pp. 563-571, 2002.
International Journal of Electrical Power & Energy Systems, vol. 24,

424, Jul. 2003.

81-86, May 2001.

pp. 53-57, Apr. 2003.
cle swarm,” in Proc. IEEE Swarm Intelligence Symposium(SIS 03),

[15] Y. Fukuyama, Particle Swarm Optimization Techniques with applica-
tions in Power System, in Evolutionary Computation Techniques for

Power System Optimization, K. Y. Lee and M. A. El-Sharkawa, Eds.
Seoul, Korea: Tutorial given at The IFAC Symposium on Power Plants
and Power, Sep. 2003, pp. 45-62.

[16] M. Clerc and J. Kennedy, The particle swarm-explosion, stability, and
convergence in a multidimensional complex space, IEEE Trans. on Evo-

lutionary Computation, vol. 6, no. 1, pp. 58-73, February 2002.
[17] M. Clerc, The swarm and the queen: towards a deterministic and adap-

tive particle swarm optimization, in Proc. Congr. Evol. Compt., vol. 3,

[18] R. C. Eberhart and Y. Shi, Comparing inertia weights and constriction
factors in particle swarm optimization, in Proc. Congr. Evol. Compt.,
vol. 1, pp. 84 - 88, Jul. 2000.

[19] N. Higashi and H. Iba, Particle swarm optimization with Gaussian muta-

[20] A. J.Wood and B. F. Wollenberq, Power Generation, Operation & Con-

trol, 2 ed. New York: John Wiley, 1984.
[21] C.-P. Cheng, C.-W. Liu, and C.-C. Liu, Unit commitment by Lagrangian

[22] K. A. Juste, H. Kita, E. Tunaka, and J. Hasegawa, An evolutionary pro-
gramming solution to the unit commitment problem, IEEE Trans. Power

[23] W. Ongsakul and N. Petcharaks, Unit commitment by enhanced adap-

628, Feb. 2004.
[24] S. O. Orero and M. R. Irving, A combination of the genetic algorithm

and lagrangian relaxation decomposition techniques for the generation
unit commitment problem, Electric Power Systems Research, vol. 43,
pp. 149-156, 1997.

[25] S. Sen and D. P. Kothari, Optimal thermal generating unit commitment:
a review, International Journal of Electrical Power & Energy Systems,
vol. 20, pp. 443-451, 1998.

[26] P. Attaviriyanupap, H. Kita, E. Tanaka, and J. Hasegawa, A hybrid LR-
EP for solving new profit-based UC problem under competitive envi-

[27] S. A. Kazarlis, A. G. Bakirtzis, and V. Petridis, A genetic algorithm so-
lution to the unit commitment problem, IEEE Trans. Power Syst, vol.
11, pp. 83-92, Feb. 1996.

[28] T.-O. Ting, M. V. C. Rao, C. K. Loo, and S. S. Ngu, Solving Unitcom-
mitment Problem Using Hybrid Particle Swarm Optimization, Journal

of Heuristics, vol. 9, pp. 507-520, 2003.
[29] J.H.Park, Y.S.Kim, I.K.Eom, and K.Y.Lee, Economic load dispatch for

piecewise quadratic cost function using Hopfield neural network, IEEE

346 P. Sriyanyong et al.

“

“

“

“

“

“

“

“

“

“

“

“

“

“

”

”

”

”

”

”

”

”

”

”

tive Lagrangian relaxation,” IEEE Trans. Power Syst, vol. 19, pp. 620-

pp. 1951-1957, Jul. 1999.

Apr, 2003.
tion,” in Proc. IEEE Swarm Intelligence Symposium (SIS’03), pp. 72-79

relaxation and genetic algorithms,” vol. 15, pp. 707-714, May 2000.

Syst, vol. 14, pp. 1452-1459 Nov. 1999.

ronment,” IEEE Trans. Power Syst, vol. 18, pp. 229-237 Feb. 2003.

Trans. Power Syst, vol. 8, pp. 1030-1038, Aug. 1993.

[30] D. C. Walters and G. B. Sheble, Genetic algorithm solution of economic
dispatch with valve point loading, IEEE Trans. Power Syst, vol. 8, pp.
1325 - 1332, Aug. 1993.

[31] Y.-M. Park, J. R. Won, and J. B. Park, A new approach to economic
load dispatch based on improved evolutionary programming, Eng. Intell.

Syst. Elect. Eng. Commu., vol. 6, pp. 103-110, Jun. 1998.
[32] W.-M. Lin, F.-S. Cheng, and M.-T. Tsay, An improved tabu search for

economic dispatch with multiple minima, IEEE Trans. Power Syst, vol.
17, pp. 108 - 112, Feb. 2002

[33] H.-T. Yang, P.-C. Yang, and C.-L. Huang, Evolutionary programming
based economic dispatch for units with non-smooth fuel cost functions,
IEEE Trans. Power Syst, vol. 11, pp. 112-118, Feb. 1996

[34] D. Liu and Y. Cai, Taguchi method for solving the economic dispatch
problem with nonsmooth cost functions, IEEE Trans. Power Syst, vol.
20, pp. 2006-2014, Nov. 2005.

347Particle Swarm Optimisation for Operational Planning

“

“

“

“

“

”

”

”

”

”

Evolutionary Generator Maintenance Scheduling

in Power Systems

Keshav P. Dahal1 and Stuart J. Galloway2

1School of Informatics, University of Bradford, Bradford, UK.
2Institute of Energy and Environment, University of Strathclyde, Glasgow,
UK.

Summary. This chapter considers the development of metaheuristic and
evolutionary-based solution methodologies to solve the generator mainte-
nance scheduling (GMS) problem of a centralized electrical power system.
The effective maintenance scheduling of power system generators is very
important to power utilities for the economical and reliable operation of the
power system. To demonstrate the application and capabilities of the pro-
posed algorithms a GMS test problem is formulated as an integer program-
ming problem using a reliability based objective function and typical prob-
lem constraints. The implementation of a genetic algorithm (GA) and a
simulated annealing (SA) heuristic and the effect of varying the GA and SA
parameters on the performance of these approaches are presented. The ap-
plication of a GA/SA hybrid approach is also investigated. This approach
uses the probabilistic acceptance criterion of SA within the GA framework.
The implementation and performance of the proposed solution techniques
are discussed. The application of an inoculated initial population with some
heuristically developed solutions are also demonstrated. Results contained
in this chapter demonstrate that the GA/SA hybrid technique is more effec-
tive than approaches based solely on GA or solely on SA, offering an effec-
tive alternative for solving the GMS problems within a realistic timeframe.

1. Introduction

A centralized electrical power system can comprise of a large number of
different power generators with different running costs. This system oper-
ates under fluctuations of consumer demand. In order to maintain power

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

K.P. Dahal and S.J. Galloway: Evolutionary Generator Maintenance Scheduling in Power

Systems, Studies in Computational Intelligence (SCI) 49, 349–382 (2007)

quality and reliability as well as to maximize profits a power system opera-
tor requires scheduling for the operation and maintenance of power gen-

This problem is fundamental to existing system operation and there have
been a number of management strategies proposed. Indeed, the increase in
complexity of these strategies can be seen as a measure of the important
role that the scheduling plays in reducing the overall cost and maximizing
the reliability [3, 5, 11, 14]. Generator maintenance scheduling (GMS) is
one of the main decision-making problems in power generation manage-
ment.

In modern power systems the demand for electricity has greatly in-
creased with the related expansion in power system size. This has resulted
in higher numbers of generators being connected to the power system and
lower generation reserve margins, making the GMS problems more com-
plicated. The reserve margin is the amount of generation capacity that

trical energy, the limited capacity of the transmission network, the need for
an adequate amount of reserve capacity, and the impact of parallel opera-
tion of inter-connected power systems upon the necessary level of reserve
for each member of a power pool [26, 35].

The GMS is a sub-problem of an integral long-term operational plan-
ning problem. It is vital for a power generating utility to determine when
its generators should be taken off-line for preventive maintenance. This is
primarily because other short-term and long-term planning activities such
as unit commitment, generation dispatch, import/export of power and gen-
eration expansion planning are directly affected by such decisions [3, 5,
32, 33, 35].

GMS plays a very important role in the economical and reliable opera-
tion of a power system. The traditional approaches for dealing with the
maintenance problem are that the preventive maintenance is periodically
scheduled and repair work is carried out after a fault has occurred [33, 38].
The purpose of these activities is to keep a healthy operating condition of
equipment, to reduce the frequency of equipment faults, to extend life time
and to increase reliability and economic benefits. The annual costs for
electric utilities to carry out this work are significant. Along with the large
direct costs for maintenance there are a lot of hidden costs, such as the cost
of undelivered energy during maintenance time, the increase in cost due to
the replacement of efficient generating equipment with less efficient plant,
the maintenance cost of equipment for added reserve capacity to maintain

K.P. Dahal and S.J. Galloway350

must be maintained on standby in case of shortages at times of high de-

following power system features: infeasibility of storing the generated elec-
mand. The peculiarities of these problems are as a consequence of the

providing better scheduling of the generators for operation and maintenance.
erators. The overall generation cost to the system can be reduced by

reliability etc. Therefore, even a small improvement on maintenance
scheduling can lead to savings of significant value [9].

The high order of dimensionality, the non-linearity and the stochastic
nature of a power system forces the development of new optimization
methods for GMS problems. Researchers have focused much attention to
new theoretical approaches to these scheduling problems from a power
system planning, design and operational management point of view [11,
19]. Recently there has been an upsurge in the use of methods that mimic
natural processes to solve complex problems [17, 27, 33]. This chapter in-
vestigates the formulation of the generator scheduling problem in a cen-
tralized power system and the development of metaheuristic-based solu-
tion methods to solve it.

The chapter is organized as follows. The following section gives a
background to the formulation of a general GMS problem and reviews so-
lution techniques. Section 3 provides the mathematical formulation for the
test problem developed for this work. This formulation uses a reliability
based objective with general unit and system constraints. Section 4 intro-
duces the metaheuristic approaches and their implementation for the test
GMS problem. The applications of GA, SA and GA-based hybrid ap-
proaches for the test problem and the effects of technique parameters on
the performance are detailed in Section 5. This section also compares the
performances of all proposed solution methods. The final section summa-
rizes the chapter.

2. GMS problem formulations and solution methods

2.1 Problem formulations

The goal of GMS is to calculate a maintenance timetable for generators in
order to maintain a high level of system reliability, reduce total operating
cost, extend generator life time and relax any pressure for new installation.
This is to be achieved while satisfying constraints on the individual gen-
erators and the power system. The maintenance schedule of each generat-

racy to be sought, and the chosen methodology for solving the problem.
[19, 38].

Evolutionary Generator Maintenance Scheduling in Power Systems 351

on the particular needs of a given GMS problem, the data available, the accu-
series of constraints. The selection of objectives and constraints depends
ing unit should be optimized in terms of the objective function under a

Objective functions

In [11], [19], [29] and [38] the essential features of the GMS problem are
analyzed, including various objectives and imposed constraints for solving
the GMS problem. There are generally two categories of objectives in
GMS, based on economic cost [2, 4, 9, 18, 37, 38] and reliability [1, 2, 3,
14, 37, 38].

The most common objective based on economic cost is to minimize the
total operating cost over the operational planning period [4, 38]. The oper-
ating cost includes two components: the production cost and the mainte-
nance cost. The production cost is mainly the cost of fuel needed for units
to produce a certain amount of electrical energy [19]. The maintenance
cost of units may include costs associated with the maintenance activities
and also with the down time of units. The production cost alone could also
be chosen as the objective function [18, 38]. Production cost minimization
however, often requires many approximations or computationally intensive
simulation to yield a solution. It was reported in the literature that mini-
mizing production cost (which is the main part of the operating cost for
thermal plants) is an insensitive objective for GMS [34, 37].

A number of reliability definitions such as expected lack of reserve, ex-
pected energy not supplied (EENS) and loss of load probability (LOLP),
which are based on power system measures can be used as reliability crite-
ria for the formulation of objective functions for GMS [3, 38].

The levelizing of the reserve is the most common reliability criterion
[10, 14]. The reserve of the system during any period t is the sum of capac-
ity of all installed generators, minus the peak load forecast for that period
and the sum of capacity of the generators that are in pre-scheduled mainte-
nance. The levelizing of the reserve generation over the entire operational
planning period can be realized by maximizing the minimum reserve of the
system during any time period [10]. This usually leads to a levelizing of
reserves unless there is one interval with an extremely low reserve, either
due to a large predicted load or a lot of pre-scheduled maintenance. In the
case of a large variation of reserve, minimizing the sum of squares of the
reserves can be an effective approach [14]. Minimizing the sum of the in-
dividual loss of load probabilities (LOLP) for each interval can also form
an objective based on a reliability criterion under the condition of load un-
certainty and the random forced outage of units [38].

In view of the relatively small difference in costs corresponding to the
most expensive and least expensive feasible maintenance schedule, it is of-
ten better to use reliability indices rather than the production costs in for-
mulating an objective function [14, 19, 37, 38].

K.P. Dahal and S.J. Galloway352

Constraints of the GMS problem

Any maintenance timetable should satisfy a given set of constraints. The

requirement of satisfying constraints, it is possible to make a distinction
between constraints which must not be violated, known as hard con-
straints, and constraints which could be relaxed, known as soft constraints.

The following constraints are related to generators:

 Maintenance window constraint - defines the possible times and the
duration of maintenance, and the limitation on the earliest and latest
times for the maintenance of each generator.

 Exclusion constraint - prevents the simultaneous maintenance of a set
of generators.

 Sequence constraint - restricts the initiation of maintenance on some
generators after a period of maintenance of some other generators.

The following constraints result from power system operation:

 Load constraints - considers the demand and minimum reserve on
the power system for each time interval.

 Reliability constraint - considers the risk level associated with a
given maintenance schedule, which can be expressed via a number
of reliability indices, such as minimum reserve margin and
acceptable level of EENS or LOLP.

 Transmission capacity constraint - specify the limit of transmission
capacity in an interconnected power system.

 Geographical constraint - limits the number of generators under
maintenance in a region.

The following constraints are related to the resource availability for
maintenance:

 Crew constraints - considers the manpower availability for
maintenance work for the given period.

 Material resource constraint - specifies the limits on the resources
needed for maintenance during each period, including spare parts,
special tools etc.

Evolutionary Generator Maintenance Scheduling in Power Systems 353

the power system itself and available resources [11, 18, 19, 26]. Regarding the
general constraints for GMS problems are related to generating units,

These constraints can be divided into hard and soft constraints. The first
and second groups of the constraints described above are usually the hard
constraints, which represent physical limits and strict operational rules of
the power system. The third group of constraints are not rigid.

2.2 Review of GMS solution techniques

The GMS problem has been tackled using a range of discrete optimization
methods with varying degrees of success. The effective solution tech-
niques perform systematic searches through the solution space so that the
great number of unfeasible or inferior solutions are eliminated. Kralj and
Petrovic [19] review the development of different mathematical program-
ming, heuristic and expert system approaches for solving GMS problems.
Conventionally these approaches have been used for solving GMS as a
discrete optimization problem over a number of time steps

Mathematical programming methods for GMS are mainly based on in-
teger programming (IP), branch and bound (BAB) and dynamic program-
ming (DP). The IP formulation of the GMS problem has been presented in
a number of works, from the relatively simple linear model of Dopazo and
Merrill [9] to the complex model of Mukerji et al. [29]. Egan et al. [10]
treat GMS as an IP problem, successively applying the BAB technique to
solve a small sized problem. DP has been applied for solving GMS prob-
lems [37, 35]. In this case the method is a compromise between sequential
and simultaneous maintenance scheduling. Together with its numerical ef-
ficiency, the important features of DP include the ability to incorporate
maintenance carried out in several phases during the scheduling period.
The dimension barrier (computational requirement) problem, as recog-
nized by [35, 37], limits the practical application of this method. Many
power utilities are using heuristic-based techniques and knowledge based
expert systems to overcome the limitations of mathematical programming
methods for their maintenance scheduling [19].

The goal programming approach for GMS with multiple objectives has
been proposed in [20, 28]. The approach uses two sequential optimization
stages, first minimizing system operating cost, and then levelizing reserve
margin by introducing an upper bound on the system operating cost. This
approach has been applied effectively to a medium sized thermal system
[20] and to a hydro-thermal system in [28]. Decomposition and hierarchi-
cal approaches have been proposed in [24, 25] to tackle the complexity of
the problem iteratively. These methods decompose the complex multi-area
problem into one master and several sub-problems that are related to the
original. The sub-problems being more straight forward to solve.

K.P. Dahal and S.J. Galloway354

Fustar and Hsieh [16] have developed an expert system for monitoring
the generator maintenance schedule and assisting with necessary revisions
of the schedules. Knowledge of the GMS domain is represented as a num-
ber of heuristic rules to find a solution with minimum deviations from an
existing yearly schedule. The method is problem specific and approximate.
Lin et al. [23] presented an expert system for GMS. As the objective func-
tion varies for different operating conditions, an operation index is identi-
fied to determine an appropriate strategy for the decision making process.
The rules are obtained from domain experts and embedded in the knowl-
edge base. The approach is applied to a simplified model of a realistic
power system and the authors find improvements in the results compared
with the existing operational practice. Heuristic approaches are usually
problem specific and require significant information from operator, which
can be tedious [37].

In order to overcome some of these limitations a number of metaheuris-
tic and soft computing based approaches for maintenance have been stud-
ied. These include genetic algorithm (GA) [1, 2, 35], simulated annealing
(SA) [31], ant colony optimization [15], evolutionary programming [13],
fuzzy logic [12], agent technology [36] and evolutionary-based hybrids [4,
12, 21, 22]. The applications of evolutionary-based techniques to power
systems are reviewed in [27]. Our previously published work [6-8] pre-
sented GA and SA-based approaches for the GMS problem. This chapter
details the development of a variety of improved GA-based approaches in
order to more quickly obtain the optimum or near optimum solution for a
GMS case study. Three solution encodings are investigated, and the effect
of GA and SA parameters in the performance is analyzed. Five different
population pools are created from heuristic schedule for the initialization
of the GA-based approaches to achieve better performances.

3. GMS Test Problem and Implementation

3.1 Test problem description

Here a test problem of scheduling the maintenance of 21 units over a plan-
ning period of 52 weeks is considered. This test problem is derived from
the example presented in [37] with some simplifications and additional
constraints, and has been previously studied in [6-8, 15].

Table 1 gives the capacities, allowed periods (maintenance windows)
and required duration of maintenance outages for each unit. Thirteen units

Evolutionary Generator Maintenance Scheduling in Power Systems 355

are to be maintained in the first half of the year, i.e. week 1-26, and the
remaining eight in the second half of the year. The last column of Table 1
indicates the manpower required for each week of maintenance outage.
The power system peak load is 4739 MW, and there are 20 technical staff
available for maintenance work in each week.

Table 1. Data for the Test GMS problem.

Unit Capacity
(MW)

Allowed
period

Outage
(weeks)

Manpower required for each
week

1 555 1-26 7 10+10+5+5+5+5+3
2 555 27-52 5 10+10+10+5+5
3 180 1-26 2 15+15
4 180 1-26 1 20
5 640 27-52 5 10+10+10+10+10
6 640 1-26 3 15+15+15
7 640 1-26 3 15+15+15
8 555 27-52 6 10+10+10+5+5+5
9 276 1-26 10 3+2+2+2+2+2+2+2+2+3
10 140 1-26 4 10+10+5+5
11 90 1-26 1 20
12 76 27-52 3 10+15+15
13 76 1-26 2 15+15
14 94 1-26 4 10+10+10+10
15 39 1-26 2 15+15
16 188 1-26 2 15+15
17 58 27-52 1 20
18 48 27-52 2 15+15
19 137 27-52 1 15
20 469 27-52 4 10+10+10+10
21 52 1-26 3 10+10+10

The problem formulation uses the reliability criteria of minimising the
sum of squares of the reserves in each week as an objective. Each unit
must be maintained (without interruption) for a given duration within an
allowed period, and the available manpower is limited. The allowed period
of each generator is the time intervals within which its maintenance activ-
ity is to be scheduled. This information is the result of technical assess-

peak load season. In the test problem the system peak load is taken to be
constant throughout the year - although this is not the norm for genuine
GMS problems, it will not limit the validity of the presented approaches.
Due to its complexity the exact optimum solution for this problem is un-
known.

K.P. Dahal and S.J. Galloway356

adequate maintenance frequency and thereby avoiding outages during the
ment and the experience of the maintenance personnel in ensuring

3.2 Mathematical model

Mathematically, the GMS test problem can be formulated as an integer
programming problem by using integer variables associated with answers
to “When does maintenance start?” or alternatively by using conventional
binary variables associated with answers to “When does maintenance oc-
cur?” [9]. However, a formulation using the variables associated with the
first question takes care of the constraints on the periods and duration of
maintenance and hence, the number of unknowns is reduced. The answer
to the first question also automatically provides the answer to the second.
The variables are bounded by the maintenance window constraints. How-
ever, for clarity the problem is first formulated using binary variables that
indicate the start of maintenance of each unit at each time. The following
notation is introduced:

i index of generating units
I set of generating unit indices
N total number of generating units
t index of periods
T set of indices of periods in planning horizon
ei earliest period for maintenance of unit i to begin
li latest period for maintenance of unit i to end

 di duration of maintenance for unit i
Pit generating capacity of unit i in period t
Lt anticipated load demand for period t
Mit manpower needed by unit i at period t
AMt available manpower at period t

Suppose Ti T is the set of periods when maintenance of unit i may
start, so Ti={t T: ei t li-di+1} for each i. The maintenance start indica-
tor is defined as

otherwise 0

 periodin emaintenanc starts unit if 1 ti
X it

 ,

for unit i I in period t Ti. It is convenient to introduce two further sets.
Firstly let Sit be the set of start time periods such that if the maintenance of
unit i starts at period k that unit will be in maintenance at period t, so
Sit={k Ti: t-di+1 k t}. Secondly, let It be the set of units which are al-
lowed to be in maintenance in period t, so It={i: t Ti}. Then the problem
can be formulated as a quadratic 0-1 programming problem as below. A
reliability criterion will be used as the objective function in the formulation
of the test GMS problem. The leveling of the reserve generation over the
planning period can be used as a reliability criterion. The net reserve of the
system during any period t is the total installed capacity minus the peak

Evolutionary Generator Maintenance Scheduling in Power Systems 357

load forecast for that period (Lt) and the reserve loss due to the pre-
scheduled outages. The reserve can be levelized by maximizing the mini-
mum net reserve of the system during any time period [38]. In the case of a
large variation of reserve, minimizing the sum of squares of the reserves
can be an effective approach. In this application this is used as an objective
function. Hence the objective is to minimize the sum of squares of the re-
serve generation,

2

Tt

t

Ii Ii Sk

ikikit
X

LPXP Min
t it

it

 (1)

subject to the maintenance window constraint,

 1
iTt

itX for all i I, (2)

the manpower constraint,

tik

Sk

ik

Ii

AMMX
itt

 for all t T, (3)

and the load constraint,

Ii

tik

Sk

ik

Ii

it LPXP
itt

for all t T. (4)

Equations (1)-(4) define a general mathematical model for a general
GMS problem formulated as a quadratic 0-1 programming problem. Fur-
ther constraints may be posed involving the reliability, transmission capac-
ity and maintenance in local areas of the power system.

The classical way to tackle such problems is by using Integer program-
ming or Dynamic programming and heuristic methods. However, although
effective there are often problems concerning the applicability of these
techniques to problem of this size as discussed in section 2.2. Instead, the
work reported here considers the use of metaheuristic techniques for the
solution of the general mathematical model of the GMS problem.

The sum of squares of the reserves, i.e. the objective value given by (1),
measures the reliability of the power system. The lower the values of the
objective, the more uniformly the reserve margin is distributed, and the
higher the reliability. The average reserve level (471.4 MW) gives the
lower bound of the objective value (115.56 105) for the test GMS prob-
lem, which is a theoretical value that gives an uniform reserve margin over
the scheduling period (not considering the discrete value of units capacity,
the maintenance window or crew constraints).

K.P. Dahal and S.J. Galloway358

3.3 Heuristic solutions

As described above the optimum schedule for the test GMS problem is un-
known due to its complexity. In order to compare the schedules obtained
from the metaheuristic based approaches, two heuristic schedules have
been developed. These heuristic schedules will also be used to initialise the
metaheuristic-based approaches.

 Heuristic schedule 1: This schedule has been developed by ranking
the generating units in order of decreasing capacity to maintain a
level reserve generation margin while considering maintenance
window constraints and load constraints. The resulting solution
respects all constraints imposed in the problem except the manpower
constraint, which is violated in three periods. The objective value of
the solution, which is the sum of the squares of the reserves (SSR)
throughout the planning period given by (1) is 134.61 105. The
amount of manpower constraints violation (TMV) given by (3) is 22.

 Heuristic schedule 2: This schedule has been developed by ranking
the generating units in order of decreasing weekly manpower
requirements for maintenance work to maintain a level manpower
utilization throughout the scheduling period while considering
maintenance window constraints. The resulting solution is infeasible
as the load constraint is violated in four time periods and the
manpower constraint is violated in one time period. The objective
value of the solution (SSR) is 149.7 105. The amount of manpower
constraint violation (TMV) given by (3) is 3 and the amount of load
violation (TLV) given by (4) is 161.

4. Metaheuristic techniques

4.1 Introduction

Computer-based metaheuristic techniques such as genetic algorithms
(GAs) and simulated annealing (SA) are completely distinct from classical
mathematical programming and trial-and-error heuristic methods [17].
These two search techniques originate from different metaphors of natural
behaviour.

GAs replicate the principles of the theory of evolution, i.e. selection and

Evolutionary Generator Maintenance Scheduling in Power Systems 359

inheritance [17, 27, 33]. They are based on natural genetic and evolutionary

candidate solutions is maintained by the GA throughout the solution proc-
ess. Initially this population of solutions is generated randomly or by other
means. During each iteration step, a selection operator is used to choose
two solutions from the current population. The selection is based upon the
measured goodness of the solutions in the population - this is being quanti-
fied by an evaluation function. The selected solutions are then subjected to
crossover. The crossover operator exchanges sections between these two
selected solutions with a defined crossover probability (CP). One of the re-
sulting solutions is then chosen for application of a mutation operator,
whereby the value at each position in the solution is changed with a de-
fined mutation probability (MP). The algorithm is terminated, when a de-
fined stopping criterion is reached. The reader is referred to [17] for a
more theoretical and mathematical description of the GA technique.

SA is drawn from an analogy between thermodynamics and combinato-
rial problems. In recent years these techniques have attracted the attention
of many researchers attempting to solve complex scheduling problems.
They have been applied widely to solve different types of scheduling and
optimisation problems [17, 31, 33]. The SA method is based on the anal-
ogy between the physical annealing process of a solid and the problem of
finding the minimum or maximum of a given function depending on many
parameters, as encountered in combinatorial optimisation problems [17,
33]. SA is an iterative search process that maintains a single point in the
search space and repeatedly makes trial moves from the current point. First
an initial solution and an initial temperature (T0) are selected. As the algo-
rithm progresses a new trial solution is generated by introducing some
changes to the current solution and the temperature is reduced according to
a specified cooling schedule. The goodness of the new solution is meas-
ured using an evaluation function. If the new solution is an improvement,
it is accepted unconditionally, otherwise it is accepted with a probability
given by

P(E)=exp(- E)/Ts), (5)

where E is the improvement in the solution and Ts is the temperature at
stage s. The process takes place in a series of stages. Progression through
successive stages leads to a gradual reduction in the probability of accept-
ing non-improved trial solutions. The algorithm is terminated, when a de-
fined stopping criterion is reached. Again, the reader is referred to [17] for
a more theoretical and mathematical description of the SA technique.

A number of decisions must be made in order to implement the SA and
GA methods for solving an optimisation problem. Firstly, there are prob-
lem specific decisions which are concerned with the search space (and thus

K.P. Dahal and S.J. Galloway360

mechanisms that operate on populations of solutions. A population of

the representation) of feasible solutions, the form of the evaluation func-
tion, and the operators used to generate new trial solutions. The second
class of decisions are generic and involve the parameters of the techniques
themselves. The following two sub-sections describe the representation
and evaluation of candidate solutions for the test GMS problem. These two
issues are common for the implementation of both of these techniques.

4.2 Problem encoding

The encoding of the problem using an appropriate representation is a cru-
cial aspect of the implementation of a metaheuristic approach for solving
an optimization problem. Different types of candidate solutions may be
used to encode the set of parameters for the evaluation function. GMS
problems can be solved using three types of representations:

 binary representation

 binary for integer representation

 integer representation

In the binary representation the GMS problem (1) - (4) is encoded by
using a one-dimensional binary array as follows.

[X1,e1, X1,(e1+1), ... , X1,(l1-d1+1), X2,e2, X2,(e2+1),...

 ... , X2,(l2-d2+1), ... , XN,eN, XN,(eN+1), ... XN,(lN-dN+1)]

This binary string (chromosome) consists of sub-strings which each
contain the variables over the whole scheduling period for a particular unit.
The size of the GA search space for this type of representation is

N

i
i

e
i

d
i

l

1
)2(

2 .
For each unit i=1,2,...,N, the maintenance window constraint (2) forces

exactly one variable in {Xit: t Ti} to be one and the rest to be zero. The
solution of this problem thus amounts to finding the correct choice of posi-
tive variable from each variable set {Xit:t Ti}, for i=1,2,...,N. The index t
of this positive variable indicates the period when maintenance for unit i
starts. In order to reduce the number of variables the indices of the positive
variables from {Xit:t Ti}, for i=1,2,...,N, can be taken as new variables.
The advantage of this approach is the possibility of using an integer encod-
ing for these new variables in a genetic structure consisting of a string of
integers, each one of which represents the maintenance start period of a
unit. For this representation the string length is equal to the number of

Evolutionary Generator Maintenance Scheduling in Power Systems 361

units (N) and the string is t
1
,t

2
,...,t

i
,...,t

N
, where ti is an integer, ei ti li-

di+1, for each i=1,2,...,N, which indicates the maintenance start period for
unit i. This type of representation automatically considers the maintenance
window constraint (2) and greatly reduces the size of the GA search space

to
N

i

iii)ed(l
1

2 .

The integer formulation of the problem can also be encoded by using
binary (or Gray) code to represent the integer variables in the GA struc-
tures. For example, with ti defined as above, suppose the number of possi-
ble values of ti is li-di-ei+2=32, then a 5 bit binary pattern may be used to
represent the possible variable values. This representation is called binary
for integer . In this case if the number of variable values is not a power of
2, some of the binary values will be redundant. To overcome this problem,
some integer values are represented by two or more bit patterns. The string

1 2 N and the GA search space is

N

i
ib

1 ,
where bi is the number of the binary bits used to represent the integer vari-
able values for unit i and equals the least positive integer greater than or
equal to log

2
(li-di-ei+2). This redundancy increases the size of the search

space since
N

i

iii

)+-e-d(lb

)ed(l

N

i

iii
N

i
i

1

2log

222 1
2

1 .

The GMS test problem has been encoded using each of the three repre-
sentations described above and the performance of the GA investigated in
section 5.1.

4.3 Evaluation function

An evaluation function is used to calculate the merit of a candidate. The
evaluation function, E, formulated for the GMS test problem considered in
this work is a weighted sum of the objective and penalty functions for vio-
lations of the constraints. The penalty value for each constraint violation is
proportional to the amount by which the constraint is violated, hence

E =
O SSR +

W
WCV +

M TMV +
L

TLV, (6)

where SSR is the sum of squares of reserves as in equation (1), WCV is the
window constraints violation of equation (2), TMV is the total manpower
violation of equation (3) and TLV is the total load violation of equation (4).

K.P. Dahal and S.J. Galloway362

‘
’

length in this situation is b +b +...+b 2

The weighting coefficients O,
W

,
M

 and
L
 are chosen such that the

penalty values for the constraint violations dominate over the objective
function, and the violation of the relatively hard window and load con-
straints (equations (2) and (4)) give a greater penalty value than for the
relatively soft crew constraint. This balance is set because a maintenance
window feasible solution with a high reliability but requiring more man-

available manpower may be hired. In general the penalty value for the con-
straint violations dominates over the objective function. Feasible solutions
with low evaluation measures have high fitness values while unfeasible so-
lutions with high evaluation measures take low fitness values. After a se-
ries of experimentations the weighting coefficients O,

W
,

M
 and

L
 are

fixed to 10-5, 1000, 4 and 2 respectively for the test problem considered.
One thing to note here is that the ‘binary for integer’ and ‘integer’ repre-

sentations mentioned previously automatically satisfy the maintenance
window constraints (2) and therefore, the WCV component in evaluation
function (6) is always zero. Therefore for the ‘binary for integer’ and ‘in-
teger’ the evaluation function is given by,

E =
O SSR +

M TMV +
L

TLV. (7)

It is equation (7), the reduced form of equation (6), that will be used as
part of the metaheuristic solution techniques considered in this work while
using the ‘binary for integer’ and ‘integer’ representations.

5. Implementation and experimental results

This section presents the implementation of the GA, SA and their hybrid
approaches to the GMS test problem. The performance of the different al-
gorithms will be analysed in this section. The design of these approaches
to give the best performance in terms of finding good solutions to the test
GMS problem has been established after extensive experimentation. The
adopted experimentation approach involved conducting 10 runs with par-
ticular selections of parameters and identifying the best solution (lowest
evaluation value). The average of the best solutions from each of the 10
experiments is also determined. These methods have been implemented
using the Reproductive Plan Language, RPL2 [30] and run on a Sun
Sparcstation 1000.

Evolutionary Generator Maintenance Scheduling in Power Systems 363

power may well be considered acceptable for a power utility, as the un-

5.1 GA application

Scope and GA experimentation

The test GMS problem has been encoded using each of the three represen-
tations described previously. GA performance is generally dependent on
the GA operators and parameters used. A detailed analysis of the perform-
ance of the algorithm with the different approaches, operators and parame-
ters for this test problem is presented here. Comparisons were made with
the performance of GAs using steady state (SS) and generational (GN)
population updating approaches [17], varying key GA parameters and em-
ploying different GA operators. The GA parameters which were varied in-
clude the crossover and mutation probabilities.

The total number of trials (iterations) for each run was fixed to 30,000
and the population size (PS) was fixed at 100. These parameters were de-
fined by analysis of the convergence of the GA technique after a number
of experiments. The elitism operator has been applied in all cases. As sug-
gested in [30], the stochastic universal sampling (SUS) selection method
has been used for the GN GA and the tournament selection method has
been applied for SS GA to choose parents from the population pool for ge-
netic manipulation. The two-point crossover and random mutation opera-
tors were used for all experiments. The crossover operator chooses two
points at which to break each of the two selected parent strings, and then
swaps the middle parts of solution strings. The mutation operator randomly
alters a numeric value within the allowed range at each position in the so-
lution string with a given mutation probability. The crossover probability
(CP) and mutation probability (MP) were varied over the range of [0.6,
1.0] and [0.001, 0.1] respectively.

Results for the test GMS problem for a total of 900 runs of the genetic
algorithm using these different scenarios are summarized in Table 2. The
table shows the average evaluation measure of the best solutions of 10 GA
runs, each using a different random initial population.

Effect of GA representations and operators

Table 2 presents the results obtained from the generational GA (left block
labeled as ‘GN GA’) and the steady state GA (right block labeled as ‘SS
GA’). The results show that both the GN and SS GAs are sensitive to
variation of the crossover and mutation probabilities, particularly for the
‘binary’ representation. It can be seen that both of the GAs are generally
more sensitive to variations of MP than that of CP. For most of the cases

K.P. Dahal and S.J. Galloway364

with the ‘binary’ representation both GAs gave the best performance at
smaller mutation probabilities. With the ‘binary for integer’ representation
the GN GA generally performed better with MP in the range of [0.001,
0.01] whereas the SS GA gave better performance with MP in the range of
[0.005, 0.05]. With the ‘integer’ representation the SS GA gave the best
performance at higher crossover and mutation probabilities than the GN
GA.

For the ‘binary’ and ‘binary for integer’ representations, the crossover
points may be within a gene (a sub-string of a genetic structure which
represents one particular unit). Hence the crossover operator may split
genes and introduce changes within them. Theoretically, the splitting of
genes by the crossover operator seems undesirable. In the case of integer
representation, this sub-string splitting does not occur and the individual
variable values are preserved in crossover. In this case only the mutation
operator is responsible for creating a new integer value for a gene.

Table 2. Summary of GA performance results.

 GN GA SS GA
 MP MP
Type .001 .005 0.01 0.05 0.1 .001 .005 0.01 0.05 0.1

0.6 588 616 1.2e5 7.6e6 6.1e6 840 809 2.1e4 4.6e6 6.5e6

0.8 368 488 6420 7.0e6 6.6e6 831 818 826 5.1e6 7.6e6

Binary

1.0 663 583 8.9e4 3.1e6 7.2e6 3937 2138 1.3e5 6.3e6 9.4e6
0.6 229 355 278 495 853 400 397 406 354 389
0.8 209 474 194 392 502 384 382 371 363 362

Binary
for
integer 1.0 303 197 181 403 746 211 172 185 174 264

0.6 174 161 155 176 229 171 156 153 150 161
0.8 197 158 156 178 253 175 152 152 151 170

Inte-
ger

C
P

1.0 184 159 164 180 260 172 160 157 147 162

Using a binary representation for the test problem, only 21 out of 496

bits in the string are ‘1’ and the rests are ‘0’. A high mutation probability
increases the chance of changing these ‘0’s into ‘1’s, dragging the solution
into the maintenance window unfeasible region. Hence the search space is
very large and most of it represents unfeasible solutions. Therefore, a high
mutation probability has the potential to disrupt and degrade the search
process using the binary representation of the GMS problem. With higher
mutation probabilities the GA could not find a maintenance window feasi-
ble solution even after 30,000 trials. However, with lower mutation prob-
abilities the GA found maintenance feasible solutions but converged pre-
maturely.

Evolutionary Generator Maintenance Scheduling in Power Systems 365

The ‘binary for integer’ and ‘integer’ encodings of the GMS problem
result in every candidate solution being maintenance window feasible,
which causes a great reduction in the size of the search space. The GA
search is thus limited within the maintenance feasible region. In this case a
higher mutation probability increases the exploration for the global minima
within this limited region, reducing the chance of premature convergence.
However, a very high mutation probability causes more randomness in the
GA search, reducing the exploitation of the solutions previously found.

One point to be noted for the ‘binary for integer’ representation is that
the actual mutation probability for changing integer values is much greater
than the prescribed mutation probability. As explained previously, in the
‘binary for integer’ representation the variable states (integers) are denoted
by a binary (or Gray) code with a number of binary bits in a string, for ex-
ample 5 bit strings are used for each unit for our test problem. The muta-
tion operator takes each bit and decides whether or not to change that bit
with the given mutation probability. In particular, the given mutation prob-
ability is the probability of mutating each binary bit. However, a change in
at least one of these 5 bits by the mutation operator results in a change in
the corresponding integer value. The actual mutation probability ma of
changing the integer value for a given binary mutation probability m can
be calculated as ma=1-(1-m)bi, where bi is the number of bits used to rep-
resent the integer variable for unit i. For example, if the given mutation
rate m=0.05 and a 5 bit representation is used, the actual mutation prob-
ability is ma=0.23. In order to have the actual mutation probability
ma=0.05, the mutation probability m should be taken as about 0.01. How-
ever, the distribution of the new integer values following mutation is not
uniform in this case.

In the integer encoding of a GMS problem each gene is an integer,
which represents the number of the time period in which maintenance
work begins for a unit. The mutation operator takes each integer and with
the given mutation probability changes the value within the allowed inte-
ger interval. The distribution of the new integer value within the interval is
approximately uniform during mutation.

During a run of a GA the optimum value of the mutation probability
may vary. An adaptive mutation operator has also been considered for the
GMS problem, which dynamically varies the mutation probability depend-
ing on the Hamming distance between parents selected for crossover. The
actual mutation probability is always less than or equal to the initially pre-
scribed value. GA runs were carried out for the integer representation with
three prescribed mutation values of 0.005, 0.01 and 0.05. The results show
little difference between the performance with the traditional mutation op-
erator and adaptive mutation operator for this representation.

K.P. Dahal and S.J. Galloway366

Performance comparison

Table 3. Comparison of the best performing GAs for different problem encodings.

 Binary Binary for integer Integer
GA approach to give
best results

GN SS SS

CP to give best results 0.8 1.0 1.0
MP to give best results 0.001 0.005 0.05
average evaluation value
(over 10 runs)

368 172 146.71

best evaluation value
(over 10 runs)

209 145 137.91

CPU time (one run) 45s 32s 34s
Size of GA search space 2496=2.05x10149 2105 = 4.06x1031 6.23 x 1028

Table 3 presents a performance comparison for the different representa-
tions. The values of the GA parameters which resulted in the best average
evaluation value for each representation from Table 2, were taken for this
comparison. It is apparent from the Table 2 and Table 3 that the integer
representation is the best choice for GMS problems. The GA with the inte-
ger representation found a solution with an evaluation value of 137.91 for
the test GMS problem, which is better than the solution found by the GA
with the binary for integer representation (145), and significantly better
still than that of the GA with binary representation (209). Moreover, the
computational time taken for 30,000 trials by the GA with the integer rep-
resentation is significantly shorter than that for the binary representation
and slightly greater than that for the ‘binary for integer’ representation.
The computational time is very much dependent on the string length as the
mutation operator checks each locus of the string. The higher the MP used
the greater the computational time. The size of GA search space for each
representation is also presented in Table 3. The great advantage of the ‘in-
teger’ representation for a GMS problem is that it greatly reduces the
search space for the GA. As the SS GA with the integer representation is
found to be the most effective for solving GMS problems in terms quality
of the solution, further analysis will be concentrated on this GA design
alone.

5.2 GA with Inoculation

A simple GA generates candidate solutions to fill its initial population pool
by sampling the search space at random. This is by no means the only ap-
proach available. The GA search process may be started from an initial

Evolutionary Generator Maintenance Scheduling in Power Systems 367

population that contains one or more meaningful individuals, instead of
randomly generated individuals. A simple way of producing a hybrid
method is to generate the initial population by using some form of pre-
processing heuristic before a genetic algorithm is invoked. In this case at-
tempts are made to improve solutions encountered by the GA. If a stochas-
tic method for generating reasonable solutions is known, this can be an ef-
fective way of accelerating, and sometimes improving the absolute
performance of the genetic algorithm [17]. The practice of including
known good solutions in the initial population is often known as inocula-
tion [30]. Here a GA approach with this type of augmentation is referred to
as an inoculated GA.

The performance of a simple steady state GA is investigated by seeding
one or more heuristically developed solutions in the initial population pool
for the test GMS problem. The following five different ways of creating an
initial population have been considered.

Case 1: All individuals in the initial population pool are generated ran-
domly (same as simple steady state GA).

Case 2: The initial population pool is seeded with Heuristic schedule 1.
The rest of the individuals in the pool are generated randomly.

Case 3: The initial population pool is seeded with Heuristic schedule 2.
The rest of the individuals in the pool are generated randomly.

Case 4: The initial population pool is seeded with both Heuristic schedule

1 and Heuristic schedule 2. The rest of the individuals in the pool
are generated randomly.

Case 5: The initial population contains Heuristic schedule 1, Heuristic

schedule 2, 33 individuals derived (through mutation) from Heu-

ristic schedule 1 and 33 individuals derived from Heuristic

schedule 2. The rest of the population are filled with randomly
generated solutions.

The design of the simple steady state GA to give the best performance
in terms of finding good solutions to the test GMS problem has been estab-
lished in Table 3. This identified SS GA with the integer representation, a
crossover probability (CP) =1.0, mutation probability (MP) =0.05 and
population size (PS) =100 as the best performing, this form of the SSGA is
used for the inoculated GA studies.

For each case 10 GA runs were carried out with different initial popula-
tions but generated in the same way. The average evaluation value of ini-
tial solutions, the average evaluation values of the best solutions and the

K.P. Dahal and S.J. Galloway368

evaluation value of the best solution over 10 GA runs for each case are
shown in Table 4.

Table 4. Average results of 10 GA runs seeded with different initial populations.

Initial pool

Average evaluation value
of initial individuals

Average evaluation
value of best indi-
viduals

Evaluation value
of the best indi-
vidual

Case 1 5782.63 146.71 137.91
Case 2 5732.15 155.44 139.53
Case 3 5734.76 142.67 139.96
Case 4 5668.15 148.38 139.77
Case 5 3326.20 146.56 140.11

It can be observed from Table 4 that the cases where Heuristic schedule

1 was seeded (case 2, case 4 and case 5), the average evaluation values of
the best solutions over 10 GA runs were worse than that obtained with
Heuristic schedule 2 seeded (case 3). The GA with the random initial
population pool (case 1) even performed better than those used in case 2
and case 4. Further investigation showed that out of 10 GA runs, five runs
in case 2, two runs in case 4 and one run in case 5 were trapped into a so-
lution whose evaluation value was 163.62. This point in the search space
may be a local minimum in the neighbourhood of the seeded Heuristic

schedule 1, to which the GA converged. However, seeding with one indi-
vidual representing Heuristic schedule 2 (case 3), whose evaluation value
is much greater than that of Heuristic schedule 1, significantly improved
the average performance of the GA. It would appear that Heuristic sched-

ule 2 has some building blocks of good solutions which are spread to other
individuals during the GA search process through the action of the cross-
over operator. The results obtained show that the inclusion of a superfit so-
lution in initial population pool may not always enhance the performance
of these methods. Some care must be taken to ensure sufficient diversity is
present in the population during the search process for the methods to pro-
ceed effectively.

5.3 SA application

Like in the GA implementation, a number of problem specific and tech-
nique specific decisions must be made in order to implement the SA
method. The problem specific decisions include the encoding of feasible
solutions, the form of the evaluation function, and the move operator used
to generate new trial solutions in neighborhood structures. The technique

Evolutionary Generator Maintenance Scheduling in Power Systems 369

specific decisions involve the parameters of the SA technique, such as the
initial temperature, the cooling schemes and stopping conditions.

The integer representation, which was found to be the most effective for
GMS problems, is used in this work. The same evaluation function repre-
sented by equation (7) is used to assign a figure of merit, which represents
the quality of that solution.

The move operator specifies the algorithm for generating a new trial so-
lution from the current solution. The move operator employed in this work
randomly selects one variable (i.e. one unit’s maintenance start time) from
the integer strings to be changed. The selected variable is then changed to
a random value in the allowed range.

The criterion for stopping the algorithm can be expressed either in terms
of a minimum value of the temperature, or in terms of the ‘freezing’ of the
system at the current solution. ‘Freezing’ may be identified by the number
of iterations (or ‘temperatures’) that have passed without a move being ac-
cepted or by the number of accepted moves in a stage dropping below a
given value. However, the simplest rule of all is to fix the total number of
iterations and this is done in the reported work. The number of iterations
needs to be carefully tuned with other parameters to ensure that it corre-
sponds to a sufficiently low temperature to ensure convergence.

Initialisation

The initialisation of the SA method involves the selection of an initial
temperature (T0) and an initial solution in the search. The initial solution
may be generated at random or by using a simple heuristic method. Here
the SA method has been tested with both random and heuristically devel-
oped initial solutions.

If the final solution is to be independent of the starting solution, the ini-
tial temperature T0 must be high enough to allow an almost free exchange
of neighbouring solutions. Generally the value of T0 is chosen in such way
that it is greater than the maximum possible difference between the evalua-
tion values of two solutions [17].

Here a number of SA runs were made to observe the effect of initialisa-
tion. Fig. 1 illustrates the final solutions after 30,000 iterations obtained
from 10 SA runs, each with a different random initial solution, for five dif-
ferent initial temperatures (T0) values in the range 10-2 to 106.

When T0 is very low, the SA algorithm performs as a downhill method,
accepting few uphill moves, and hence tends to find a local optimal solu-
tion in the neighbourhood of the initial solution. In this case the evaluation
value of the final solution is dependent on the starting point in the search
space - this is demonstrated by the wide spread of data points in Fig. 1.

K.P. Dahal and S.J. Galloway370

When T0 is very high, almost all of the generated solutions are accepted
and therefore, the solutions move more randomly through the domain in
the early stages of the cooling process. Hence with a high T0 value the final
solution is less dependent on the initial solution.

Two further tests were conducted using a consistent T0 of 10,000 with
Heuristic schedule1 and Heuristic schedule 2 as initial trial solutions re-
spectively. The final solutions averaged over 10 SA runs for these cases do
not differ much from the average solution obtained with a random initial
solution for T0=10,000.

130

140

150

160

170

180

190

0 .0001 0 .01 1 100 10000 1000000

T em perature

E
va

lu
at

io
n

va
lu

e

Fig. 1. Effect of initialisation on the performance of the SA method.

Cooling schedule

In SA the temperature is reduced as the algorithm progresses according
to a cooling schedule. The cooling schedule may be adapted by using a
large number of iterations at a small number of temperatures or a small
number of iterations (or just one iteration) at a large number of tempera-
tures. The number of iterations at each temperature and the rate at which
the temperature is reduced are important factors in controlling the per-
formance of the SA method. The following two cooling schedules, which
occur most widely in practice, have been employed for the test GMS prob-
lem.

 (a) Cooling Schedule A - executes just one iteration at each tempera-
ture, but reduces the temperature geometrically according to the relation,

Ti= Ti-1, where Ti is the temperature at iteration i and is the cooling pa-
rameter, 0< <1.

Evolutionary Generator Maintenance Scheduling in Power Systems 371

temperature before reducing the temperature according to the relation,
(b) Cooling Schedule B - executes a number of iterations at each

Ts-1 and is=is-1+1, where Ts is the temperature at stage s, and is is the
number of iterations at stage s.

In SA the number of iterations increases with successive temperatures
since it is important to spend more time searching at lower temperatures to
ensure that the neighbourhood of a local optimum has been fully explored.

A number of experiments were conducted to investigate the best value
of the cooling parameter for cooling schedules (a) and (b). Cooling
schedule (a) has been tested for three values of : 0.9990, 0.9995 and
0.9999. Likewise, cooling schedule (b) has been tested with : 0.835,

.
Table 5 compares the average evaluation value of the final solutions ob-

tained from 10 SA runs, the number of iterations until convergence (rec-
ognised by no subsequent improvement in the solution) and the associated
computational time for these cases.

Table 5. Average results of 10 SA runs for cooling schedules (a) and (b) with different
values of .

 Cooling schedule (a) Cooling schedule (b)
 0.9990 0.9995 0.9999 0.835 0.910 0.968

Average evalua-
tion of final solu-
tions

147.16 146.06 143.88 148.99 146.02 142.98

No. of iterations
for convergence

29,000 30,000 141,000 18,000 28,000 105,000

Computational
time for conver-
gence (s)

25 26 122 23 26 102

The results in Table 5 show that if the value of is sufficiently close to
unity, it is reasonable to expect that a good solution can be found. How-
ever, the convergence of the method with a very high value of is very
slow, since it takes longer for the temperature to decrease sufficiently as
the cooling parameter increases towards unity. Therefore there is a trade-
off between the quality of the solution, and the time taken for the method
to converge, this depends on the value of . The available computational
time (defining the total number of SA iterations) must be considered dur-
ing the selection of a value of in order to make the SA method efficient
in finding a good solution. For example, with 30,000 iterations cooling
schedule (a) with =0.9995 (cooling schedule (b) with =0.91) gives the
best performance of the method for the test GMS problem. Of course, if a

K.P. Dahal and S.J. Galloway372

(a) corresponds to that of cooling schedule (b) with their respective values
of

0.910 and 0.968. The temperature reduction profile of cooling schedule

Ts=

large computational time can be allowed, then should be set to a larger
value in order to obtain a better solution as seen in Table 5. Experimental
results suggest that the type of cooling schedule does not have a great ef-
fect on the performance of the method if the overall temperature profile is
approximately the same over the total number of trials.

The experimental results show that the SA with the initial temperature
T0 = 10,000, and the stage-wise cooling schedule (b), with number of
stages s = 300 and =0.91, gives the best performance for 30,000 fitness
evaluations per run. With this SA design 10 SA runs were made. The aver-
age evaluation value of the best solutions obtained over 10 SA runs was
146.06 and the best solution had evaluation value of 140.49.

5.4 GA/SA hybrid technique

GA/SA Architecture

It has been demonstrated that the performance of a GA approach can be
improved by combining it with other techniques. A GMS problem is con-
sidered using a GA combined with SA in [21]. In [22] a Tabu Search tech-
nique was coupled with a GA/SA hybrid method. Local search methods
were combined with the evolutionary approach to tackle the GMS problem
in [4]. In each case hybridization improved the convergence of the algo-
rithms. Most of these applications formulated the problems using the eco-
nomic objective with typical problem constraints, and a binary string rep-
resentation to encode a candidate solution.

The work reported here proposes a GA/SA hybrid method using an in-
teger representation to encode candidate solutions combining the GA and
SA approaches. The mechanism of this hybrid GA/SA approach for a
minimization problem is shown in Fig. 2. The hybrid approach maintains a
population of candidate solutions throughout the solution process using a
steady state population updating approach, which directly inserts a new so-
lution into the population pool replacing a less fit solution. First an initial
population of candidate solutions is generated randomly (or by other
means) and an initial temperature is selected. The initial temperature
should be large enough to allow the free movement of a trial solution in
the search space during the early stages of the search process.

In each iteration the GA/SA hybrid approach selects two solutions from
the population pool and applies a crossover operator. One of the “crossov-
ered” solutions is randomly selected to undergo mutation. The resulting so-
lution replaces an existing member of the population pool. This solution is

Evolutionary Generator Maintenance Scheduling in Power Systems 373

inserted in a controlled manner, by taking account of its evaluation value
and the stage reached in the search process. To implement this, the prob-
abilistic acceptance approach of the simple SA, as expressed by equation
(1), is incorporated into the GA algorithm to decide whether the new solu-
tion should be included in the population. The evaluation value of a newly
created solution (Enew) is compared with the evaluation value of the best
amongst its parents (Ecurrent) to calculate the increase in evaluation value
(E= Enew - Ecurrent). The new solution is then accepted with probability
given by P(E)=exp(- E/T), where T is the temperature which defines the
stage in the process. An acceptance of a new solution replaces the worst
solution of the population pool.

Perform crossover and mutation operation

Start

Encode candidate solution

 Initialise population pool and temperature (T)

Select two parent solutions from the population pool

Stop

yes

no

Calculate increase of evaluation value (E) in
new solution compared to best parent solution

Replace the worst solution by
the new solution in the population
pool with probability exp(- E/T)

 E<0

Replace the worst solution
by the new solution in the

population pool

Decrease T

no

More iteration
at T?

More
 temperature stages?

no

yes

yes

Fig. 2. The algorithm of the proposed GA/SA hybrid method.

K.P. Dahal and S.J. Galloway374

The features for the GA and SA adapted in the hybrid approach have
been borrowed from the results described in the previous section. In sum-
mary these are: integer representation, evaluation function expressed by
equation (7), a steady state approach, tournament selection, two-point
crossover, random mutation, a population size=100, a tournament pool
size=10, an initial temperature=10,000 and a stage-wise cooling schedule.
A specific temperature value defines a stage of the GA/SA process. The
stage-wise cooling schedule executes a number of genetic operations (it-
erations) at a temperature (i.e. at one stage) before reducing the tempera-
ture according to equation, Ts= Ts-1, where Ts is the temperature at stage s
and is the cooling parameter. In the reported experimentation the genetic
operations have been performed 100 times for each temperature. The num-
ber of temperature alterations (or stages) was fixed to 300, giving 30,000
fitness evaluations per run of the algorithm.

GA/SA sensitivity analysis

Table 6. GA/SA performance with different values of cooling parameter.

 Average evaluation value
0.92 148.03
0.95 145.78
0.98 352.24

In order to determine the best value of the cooling parameter () for the
proposed hybrid method, a number of experiments have been performed
and the results obtained are summarized in Table 6. Three values of cov-
ering a relatively wide range have been selected for the experiments based
on previous experience with the SA method. With =0.92, the temperature
decrease is very rapid and the algorithm lacks in exploration, concentrating
more on exploitation in the neighborhood of a solution in the population
pool. With =0.98, the temperature does not drop sufficiently far within
30,000 iterations and the method works as a simple GA technique. The
cooling schedule with =0.95 provides a good compromise between the
exploitation and exploration during the search process and this is sup-
ported by observing the best performance of the algorithm for 30,000 itera-
tions. This cooling parameter value is used for further investigation of the
GA/SA method.

The sensitivities of the method to variation of crossover probability (CP)
and mutation probability (MP) have also been established. Results were
obtained for varying CP in the range [0.6, 1.0] and MP in the range [0.001,
0.1]. For each value of CP and MP 10 independent experiments were per-

Evolutionary Generator Maintenance Scheduling in Power Systems 375

formed using the same collection of 10 random initial populations. The
sensitivity of the GA/SA approach to variation of CP and MP is depicted
in Fig. 3. For comparison, the sensitivity of the simple GA to variation of
CP and MP is also depicted in Fig. 3. It can be observed that the perform-
ance of the GA/SA is generally less sensitive than that of the simple GA
for the given range of crossover probability. The performance of the
GA/SA and the simple GA method does not differ much for MP=0.001.
However, for higher MP values the GA/SA method is more robust than the
simple GA method alone in terms of consistently finding better results. Al-
though mutation can introduce new information to solutions, it can also
destroy useful information. In the simple GA the mutation operator be-
comes disruptive as MP increases as seen in the climbing evaluation value
of the graph. In the GA/SA hybrid method, the SA probabilistic acceptance
test tends to preserve the positive effects and counter the adverse effects of
the mutation operator. That is, new solutions, even those whose evaluation
function values are lower than those of current solutions, are fully accepted
at the beginning of the search, thus introducing more diversity amongst the
candidate solutions. However, at later stages of the search process, the
chance of mutated solutions of lesser fitness being accepted will be low.

Fig. 3. Sensitivity of the steady state GA and GA/SA to variation of CP and MP.

The best average performance of the GA/SA hybrid is found with
CP=1.0 and MP=0.05. These CP and MP values match the optimum values
identified for the simple steady state GA. The average evaluation value of
the best solutions obtained over 10 GA/SA runs with these parameters is
145.78 and the best solution has evaluation value of 138.12.

5.5 Inoculated GA/SA

Previously it was found that seeding a heuristic solution to the initial popu-
lation pool improved the average GA performance. To extend this work

K.P. Dahal and S.J. Galloway376

the GA/SA hybrid approach also had its initial population seeded, this be-
ing referred to as the inoculated GA/SA approach. The initial population
pool is seeded using Heuristic solution 2 with the remainder of the candi-
date solutions in the pool generated randomly (initial population case 3 as
described in section 5.2). This case was found to give the best performance
for the inoculated GA. The steady state population updating structure with
population size=100, CP=1.0, MP=0.05 and cooling parameter =0.95 has
been used, these having been identified to give the best performance for
the GA/SA approach. The average evaluation value of the best solutions
found by the inoculated GA/SA is 141.71 and the best solution found has
an evaluation measure of 139.10.

5.6 Performance comparison of different methods

 Average of best so-
lutions

Best solutions

 Evaluation value EvaluationObjective
(105)

TMV TLV

Heuristic schedule 1 - 222.61 134.61 22 0
Heuristic schedule 2 - 483.70 149.7 3 161
GA 146.71 137.91 137.91 0 0
SA 146.06 140.49 140.49 0 0
Inoculated GA 142.67 139.95 139.96 0 0
GA/SA 145.78 138.12 138.12 0 0
Inoculated GA/SA 141.71 139.10 139.10 0 0

From Table 7 the average performance of the inoculated GA is demon-

strably better than the average performance of the SA, which is slightly
better than that of the simple steady state GA.

The average performance of the GA/SA hybrid is slightly better than
that of the GA and SA methods individually. Although the performance of
the hybrid approach with the best parameters does not differ significantly
from the performance of the simple GA, it is an important point to note
that the approach is much more robust in the sense that it consistently
gives good results over a wide range of CP and MP values. The GA/SA
performance does not vary much as long as the parameters are within the
reasonable ranges.

It can be observed from Table 7 that the average evaluation value of the
best solutions found by the inoculated GA/SA is 141.71, which is an im-

Evolutionary Generator Maintenance Scheduling in Power Systems 377

Table 7. Comparison of results obtained using different methods.

provement over that found by other approaches. The best solution found
by the inoculated GA/SA approach has an evaluation measure of 139.10,
which is lower (better) than that of the best solution found by the SA, heu-
ristic and inoculated GA. This evaluation value however, is slightly greater
than the evaluation measure of the best solutions found by the GA (137.91)
and GA/SA (138.12). On the basis of by comparing the average of best so-
lutions over multiple experiments, the expectation is that the inoculated
GA/SA method will be more consistent at finding a better solution. Fur-
thermore, the best parameters of the SA and GA are generally decided
upon after a number of experiments. From the inoculated GA/SA perform-
ance analysis it can be seen that the approach can produce a good solution
for a wide range of technique parameters. Hence, the parameter selection
process in the GA/SA method involves considerably less experiments than
that of the GA and SA.

6. Chapter summary

The GMS is a long-term operation planning problem. The solution to this
problem is a timetable to take generators off-line for preventive mainte-
nance. The decision must take into account power system reliability, main-
tenance crew limitations and constraints on the individual generators and
the power system. This chapter has presented the development and appli-
cations of GA, SA and GA-based hybrid approaches for GMS problem.
The design, implementation, performance, sensitivity and results obtained
of these approaches have been discussed.

A detailed analysis of the use of different GA designs, problem repre-
sentations, genetic operators and GA parameters has been presented for a
test GMS problem. Different types of solution representations (binary, bi-
nary for integer and integer) have been employed and discussed. As the
GMS problem variables are integer, representing them directly as integers
in a genetic structure has many advantages. The most significant of these is
the great reduction in the GA search space. Furthermore, this type of rep-
resentation is obvious and easy for decoding and a meaningful crossover
and mutation operator can be applied. The sensitivity of these GA ap-
proaches to generational and steady state population updating approaches
as well as to the variations of the crossover probability and the mutation
probability have also been established. The results obtained show that the
GA is generally sensitive to these GA features, and can find good solutions
of the GMS problem if an appropriate problem encoding, GA approach,
evaluation function and GA parameters are selected.

K.P. Dahal and S.J. Galloway378

The applications of SA approach using an integer representation have
been demonstrated for a test problem of GMS. The effects of the initial
temperature, initial solution, and cooling parameters for two types of cool-
ing schedules were studied for the SA method. The test results show that
the selection of an initial solution and a cooling schedule does not greatly
affect the performance of the SA method provided the initial temperature
is high enough to allow the free movement of a trial solution in the search
space in the early stages of the search process. The initial temperature
should be selected considering the problem domain and the setting of the
cooling parameter for a chosen cooling schedule. This is performed by
making a trade-off between the computational time and the quality of solu-
tions.

The study of the inoculated GA using heuristically derived solutions in
the initial population shows that the inoculation can enhance the perform-
ance of the GA. However, the inclusion of a superfit solution in the initial
population pool may lead to only a local optimum being identified.

A GA/SA approach has been designed by incorporating the SA prob-
abilistic acceptance test for every newly created solution within a GA
framework. The application of a GA/SA approach using an integer repre-
sentation has been demonstrated for the test GMS problem. The sensitivity
of the approach to the variation of cooling parameter, crossover probability
and mutation probability has been studied. An inoculated GA/SA using a
seeded initial population pool has also been employed to the test GMS.
The performance and results obtained from these GA/SA approaches have
been compared with those of other techniques. The test results show that
the GA/SA approach is sensitive to the cooling parameter; this should be
selected to make a good compromise between exploration and exploitation
of the search space for the given number of iterations (computational
time).

The best parameters of the SA and GA are generally decided upon after
a number of experiments. The results presented in this chapter show that
the GA/SA approach is more robust and stable for solving GMS problems
in a wide range of technical controlling factors, such as cooling parameter,
crossover probability and mutation probability than the simple SA or sim-
ple GA. Hence, the parameter selection process in the GA/SA method in-
volves fewer experiments than that in the GA method. Furthermore, the
hybrid method also improved the convergence of the simple GA. The
study of the inoculated GA/SA using a heuristically derived solution in the
initial population shows that inoculation can enhance the performance of
the GA/SA approach. Comparing the individual average results of differ-
ent approaches considered, the inoculated GA/SA approach gives the best
average performance.

Evolutionary Generator Maintenance Scheduling in Power Systems 379

The GA/SA evolutionary-based approaches obtained feasible schedules
whereas developed heuristic schedules 1 and 2 were infeasible (due to non-
satisfaction of constraints). Mathematical programming approaches cannot
be readily applied due to the complexity and combinatorial explosion of
the problem. Although the evolutionary-based approaches do not guarantee
the global optimal solution, these techniques have successfully found fea-
sible, near optimal solutions. It is a significant achievement to obtain a
good solution to a complex problem like GMS.

References

Scheduling Optimization Using a Genetic Algorithm (GA) with a Probabilis-

[2] S. Baskar , P. Subbaraj , M.V.C. Rao and S. Tamilselvi, “Genetic algorithms
solution to generator maintenance scheduling with modified genetic opera-
tors”, IEE Proceedings - Generation, Transmission and Distribution, vol. 150,
no. 01, pp. 56-66, 2003.

[3] L. Bertling, R. Allan, R. Eriksson, “A Reliability-Centered Asset Mainte-
nance Methodfor Assessing the Impact of Maintenance in Power Distribution
Systems”, IEEE Transactions on Power Systems, vol. 20, no. 1, February
2005.

[4] E.K. Burke, A.J. Smith, “Hybrid Evolutionary Techniques for Maintenance
Scheduling Problem”, IEEE Trans. on Power Systems, vol. 15, no. 1, pp. 122-
128, 2000.

[5] D. Chattopadhyay, “Life-Cycle Maintenance Management of Generating
Units in a Competitive Environment”, IEEE Trans. on Power Systems, vol.
19, no. 2, pp. 1181-1189, 2004.

[6] K.P. Dahal, C.J. Aldridge, J.R. McDonald, Generator maintenance schedul-
ing using a genetic algorithm with a fuzzy evaluation function Fuzzy Sets
and Systems, vol. 102, pp. 21-29, 1999.

[7] K.P. Dahal, J.R. McDonald and G.M. Burt, “Modern heuristic techniques for
scheduling generator maintenance in power systems”, Transactions of Insti-
tute of Measurement and Control, vol. 22, pp. 179-194, 2000.

[8] K.P. Dahal, G.M. Burt, J.R. McDonald, S.J. Galloway, GA/SA-based hybrid
techniques for the scheduling of generator maintenance in power systems ,
Proceedings of IEEE Congress of Evolutionary Computation (CEC2000),
567-574, San Diego, 2000.

integer programming”, IEEE Trans. PAS-94(5):1537-1545, 1975.
[10] Egan, G.T., Dillon, T.S. and Morsztyn, K. 1976. ‘An experimental method of

determination of optimal maintenance schedules in power systems using

K.P. Dahal and S.J. Galloway380

[1] A. Abdulwhab, R. Billinton, A.A. Eldamaty, S.O. Faried, “Maintenance

“
”

[9] J.F. Dopazo, H.M. Merrill, “Optimal generator maintenance scheduling using

“
”

no. 12, pp. 1239-1254, 2004
tic Fitness Function”, Electric Power Components and Systems, vol. 32,

branch-and-bound technique’. IEEE Transactions on Systems, Man and Cy-
bernetics. SMC-6, 538-547.

scheduling for power generation systems—A literature review,” in Proc.

Maintenance and Rel. Conf., vol. 1, May 01–20.10, 1998, pp. 20.01–20.10.

Transmission Systems Using Fuzzy Evolutionary Programming”, IEEE
Trans. on Power Systems, vol. 18, no. 2, pp. 862-866, 2003.

[13] M.Y. El-Sharkh., A.A. El-Keib, “An evolutionary programming-based solu-
tion methodology for power system generation and transmission maintenance

2003.

pact of Maintenance on Reliability”, IEEE Trans. on Power Systems, vol. 16,
no. 4, pp. 638-646, 2001.

[15] W.K. Foong, H.R. Maier, A.R. Simpson, “Ant colony optimization for power

[16] Fustar, S. and Hsieh, J. (1988) A knowledge based method for revision of
yearly generator maintenance scheduling, IEEE Symposium on Expert Sys-

tems Application to Power Systems, Stockholm-Helsinki 9-23.
[17] Glover F. and Kochenberger G., (eds.) Handbook of Meta-Heuristics, Kluwer,

2003.
[18] K.-Y. Huang and H.-T. Yang, “Effective algorithm for handling constraints in

generator maintenance scheduling”, IEE Proceedings - Generation, Transmis-
sion and Distribution, vol. 149, no. 03, pp. 274-282, 2002.

[19] B.L. Kralj, and R. Petrovic, (1988) Optimal preventive maintenance schedul-

mulations and solution methods, European Journal of Operational Research

35, 1-15.
[20] B. Kralj, and N. Rajakovic, “Multiobjective programming in power system

optimization: new approach to generator maintenance scheduling”, Electrical

power and Energy Systems 16, 211-220, 1994.
[21] H. Kim, K. Nara and M. Gen, “A method for maintenance scheduling using

GA combined with SA”, Computers and Industrial Engineering 27, 477-480,
1994.

[22] H. Kim, Y. Hayashi and K. Nara, “An algorithm for thermal unit maintenance
scheduling through combined use of GA, SA and TS”, IEEE Transactions on
Power Systems 12, 329-335, 1997.

[23] Lin, C.E., Huang, C.J., Huang, C.L., Liang, C.C. and Lee, S.Y. (1992) An ex-
pert system for generator maintenance scheduling using operation index,
IEEE Transactions on Power Systems 7, 1141-1148.

[24] M. Marwali and M. Shahidehpour, “A Probabilistic Approach to Generation
Maintenance Scheduler with Network Constraints,” Electric Power and En-
ergy Systems, Vol. 21, pp. 533-545, 1999.

Evolutionary Generator Maintenance Scheduling in Power Systems 381

[11] M.Y. El-Sharkh, R. Yasser, and A.A. El-Keib, “Optimal maintenance

[12] M.Y. El-Sharkh, A.A. El-Keib, “Maintenance Scheduling of Generation and

[14] J. Endrenyi et al, “The Present Status of Maintenance Strategies and the Im-

plant maintenance scheduling optimization”, Proceedings of the Genetic and
Evolutionary Computation conference, pp. 249-256, 2005.

ing of thermal generating units in power systems - A survey of problem for-

scheduling”, Electric Power Systems Research, vol. 65, no. 1, pp. 35-40,

Term and Short-Term Generation Scheduling with Network Constraints”,
IEEE Trans. on Power Systems, vol. 15, no. 3, pp. 1161-1167, 2000.

[26] M. Marwali and M. Shahidehpour, “Integrated Generation and Transmission
Maintenance Scheduling with Network Constraints,” IEEE Transactions on
Power Systems, Vol. 13, No. 3, pp. 1063-1068, 1998.

[27] V. Miranda, D. Srinivasan and L.M. Proença, “Evolutionary computation in
power systems”, Electrical Power & Energy Systems. 20, 89-98, 1998.

[28] Moro, L.M. and Ramos, A. (1999) Goal programming approach to mainte-
nance scheduling of generating units in large scale power systems, IEEE

[29] R. Mukerji, H.M. Merrill, B.W. Erickson, J.H. Parker, R.E. Friedman, Power
plant maintenance scheduling: optimising economics and reliability , IEEE

[30] “Reproductive Plan Language (RPL2) - User manual”, Quadstone Ltd, 1997.
[31] T. Satoh and K. Nara, “Maintenance scheduling by using simulated annealing

method”, IEEE Transactions on Power Systems. 6, 850-857, 1991.
[32] M. Shahidehpour and M. Marwali, Maintenance Scheduling in a Restructured

Power System. Norwell, MA: Kluwer, May 2000.
[33] Y.-H. Song (ed) “Modern Optimisation Techniques in Power Systems”, Klu-

wer Academic Publishers, 1999.
[34] Y. Wang, E. Handschin “A new genetic algorithm for preventive unit mainte-

nance scheduling of power systems”, International Journal of Electrical
Power & Energy Systems, vol. 22, no. 5, pp. 343-348, 2000.

[35] X. Wang, and J.R. McDonald, (Eds.) Modern Power System Planning,
McGraw-Hill, London, 247-307, 1994.

[36] X. Xu M. Kezunovic, “Mobile Agent Software Applied in Maintenance
Scheduling”, North American Power Symposium (NAPS 2001), Texas, 2001.

[37] Z. Yamayee and K. Sidenblad, “A computationally efficient optimal mainte-
nance scheduling method”, IEEE Transactions on Power Apparatus and Sys-
tems PAS-102, 330-338, 1983.

[38] H.H. Zurn, V.H. Quintana, Several objective criteria for optimal generator
preventive maintenance , IEEE Transactions on Power Apparatus and Sys-

K.P. Dahal and S.J. Galloway382

“
”

”
“

tems, Vol. PAS-96, No. 3, May/June 1977, pp. 984-992.

Transactions on Power Systems, Vol. 6, No. 2, May 1991, pp. 476-483.

[25] M.K.C. Marwali and S.M. Shahidehpour, “Coordination Between Long-

Transactions on Power Systems 14, 1021-1028.

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

J.H. Li et al.: Evolvable Fuzzy Scheduling Scheme for Multiple-Channel Packet Switching Network,

Evolvable Fuzzy Scheduling Scheme

for Multiple-Channel Packet Switching

Network

Ju Hui Li1, Meng Hiot Lim2, Yew Soon Ong3, and Qi Cao4

1 School of EEE, Block S1, Nanyang Technological University, Singapore 639798
pg01896341@ntu.edu.sg

2 School of EEE, Block S1, Nanyang Technological University, Singapore 639798
emhlim@ntu.edu.sg

3 School of SCE, Block N4, Nanyang Technological University, Singapore 639798
asysOng@ntu.edu.sg

4 School of EEE, Block S1, Nanyang Technological University, Singapore 639798
pg04780942@ntu.edu.sg

Evolvable fuzzy system (EFS) relies on dynamic adaptation of the heuristics
which are coded as fuzzy rules. If the mechanisms for fuzzy inferencing are
realized in hardware within the framework of the EFS in order to satisfy the
time-critical requirement of the application, the system can be regarded as a
form of evolvable fuzzy hardware. This chapter considers the application of
evolutionary fuzzy system for cell scheduling in ATM network. Besides being
able to adapt to the changing environment, the EFS also enjoys a special
property whereby the cell delay can be conveniently adjusted by explicitly
tuning a parameter in the fitness function. In this chapter, we explore the
application of EFS to solve multiple channel scheduling. We show that any
number of input channels can be accommodated while still preserving the
special advantages of the EFS.

1 Introduction

For modern networks, effective management of bandwidth resource is criti-
cal because of the diversity in the services required. Bandwidth sharing is
thus inevitable for efficient bandwidth utilization. Multiplexer is a network
component to administer the sharing of high speed link for different input
channels through time division. The output capacity is divided into different
time slots assigned to various input traffic flows according to a specific con-
trol scheme. The effectiveness of the control scheme can be gauged by the

Studies in Computational Intelligence (SCI) 49, 383–403 (2007)

384 J.H. Li et al.

level that the desired quality of service (QoS) requirements of the input flows
are met. QoS includes factors such as cell delay and cell loss. Sometimes the
balance of cell losses among different input flows and the isolation of contract
following flows from the effects of mal-functioning flows are also considered.
The cell delay factor mainly refers to the overall waiting time of the cells in
the buffers before being serviced by the multiplexer. The cell loss factor indi-
cates the number of cells being dropped when the input buffer overflows. This
is inevitable when the sum of the actual input bit rates is larger than the link
capacity that the output channel can offer. The balance of cell losses refers to
the requirement that the system should not be biased towards certain input
flows while always dropping packets from other input channels. This is a form
of fairness to be achieved by the scheduling scheme, as specified in [1]. Another
form of fairness can be considered during the occurrence of congestion. For
such a situation, only the flows which override their reserved bit rates should
suffer significant QoS degradation.

Each input flow should negotiate with the network system on its bit rate
requirement before the admission of its connection. Regarding the required bit
rate, the connection would be set up only if there is enough link capacity to
accommodate the input flow. After the success of the admission process, the
bit rate of the traffic flow cannot exceed its reserved bit rate. Based on a QoS
consideration, significant QoS degradation should only be suffered by the mis-
behaving flow channels. This approach can effectively restrain the aggressive
source domination, which could be a symptom of systematic vicious attacks
on a network. The delay suffered by a cell unit in a network system includes
propagation delay, queuing delay and service time at every queuing point. In
this chapter, we focus on a single node switching system, thus only queuing
delay is of major concern in the following parts.

The common services supported by modern networks include constant bit
rate (CBR), variable bit rate (VBR), available bit rate (ABR), and unspecified
bit rate (UBR). CBR always reserves a static bandwidth, and it can transmit
cells at the peak cell rate (PCR) for any duration of time. CBR is normally
used to support telephone, video conferencing and entertainment video. VBR
is for the services that require variable bandwidth resource. It is characterized
by the PCR, sustainable cell rate (SCR), and maximum burst size (MBS).
ABR and UBR are complementary services to fully take advantage of the
bandwidth resource. The cell flow characteristic of CBR can be modeled by
Fig. 1. VBR can be modeled by a two-state Markov chain model in which the

PCR

Bit Rate

t

Fig. 1. Model of CBR

385EFS for Multiple-Channel Packet Switching Network

PCR

ON

OFF

Bit Rate

t

Fig. 2. Model of VBR

cell flow has ON (burst) period and OFF (silence) period [2-7]. The source
transmits cells equidistantly during the ON period while keeping silent during
the OFF period. VBR’s cell flow characteristic is depicted by Fig. 2

There are many schemes which have been proposed to address the cell-
scheduling problem. Some of the schemes will be discussed in Section 2.
EHW(evolvable hardware), which has been attracting greater interests in the
research community was also applied on the cell-scheduling problem domain.
EHW is a kind of hardware that can evolve its architecture or behaviour to
adapt to its working environment. Due to the complexity of the evolution-
ary algorithms and the huge solution space, the advantage of EHW to solve
cell-scheduling was not very obvious. For the purpose of promoting EHW’s
application, we proposed the EFS(evolvable fuzzy system) to address the cell-
scheduling problem. The proposed EFS is capable of adapting to the dynamic
environment instantly and is thus viable to be applied in the real-time prob-
lem domain. The efficacy of the EFS in cell-scheduling involving 2 input chan-
nels has been demonstrated in earlier work [19, 20, 22]. In order to further
demonstrate the applicablity of EFS, we extend the work to multi-channel
application, a more general problem on cell-scheduling.

The remaining of this chapter is organized as follows. In Section 2, some
conventional schemes for cell-scheduling is described. In Section 3, the evo-
lution scheme of the EFS for three input channels is described. In Section
4, the encoding scheme of the fuzzy system for genetic algorithm (GA) in
the evolutionary system is introduced. This is followed by the introduction
of the fitness function adopted in the evolutionary system for multi-channel
applications in Section 5. In Section 6, the simulation results of the proposed
evolutionary system are compared with other schemes such as GPS (general
processor sharing), MCRR(minimized cycle round robin), and FCFS (first-
come first-serve). We conclude in Section 7 with discussion on the properties
of EFS and some comments on possible extension of our work.

2 Related Research

Various algorithms or systems have been designed for cell-scheduling. For
example, the generalized processor sharing (GPS) is an idealized scheduling
scheme using a fluid model [8]. It is assumed that every input channel is

386 J.H. Li et al.

serviced by an independent server simultaneously with a reserved link ca-
pacity. GPS has two significant properties, appropriate delay bound and fair
bandwidth allocation. Although GPS has significant properties, it is not re-
alizable due to the ideal fluid model it adopts. Nevertheless, GPS is used by
many algorithms as a benchmark or to generate time stamps. The weighted
fair queuing (WFQ) is a scheme which selects cells based on the simulation
of the GPS system [9]. The cell that finishes its transmission first in the GPS
system will be selected for transmission in the WFQ system. This system can
guarantee a service for each cell no later than the GPS system, but some-
times it may service the cell much earlier than the GPS system. In order
to overcome the disadvantages of WFQ, worst-case fair weighted fair queu-
ing(WF2Q) has been proposed [10]. WF2Q can approximate to GPS system
very effectively. Other schemes such as virtual clock [11], start-time fair queu-
ing (SFQ) [12] and self-clocked fair queuing (SFCQ) [13] use time stamps to
control the sequence of cells transmission. There is significant computation
complexity involved during the scheduling process or in the queuing process
for every cell in the above systems.

Another approach of cell scheduling is round robin (RR) scheme whereby
within one round, each input channel is serviced according to a predetermined
quota. Weighted round robin (WRR) is a modified round robin scheme [14].
Each input channel is assigned a weighted value based on its reserved band-
width resource. The weighted factor is the service quota each channel can
acquire during a service round. After its quota runs out, the channel will not
be serviced any more until the next service round. WRR can strictly guar-
antee the bandwidth allocation ratio regardless of the misbehaviour of other
input flows. But its major drawback is its queuing delay and delay jitter. To
overcome this, the minimized cycle round robin (MCRR) is proposed, which
is an improvement of WRR in two aspects. First, the quota of each cell flow is
determined in such a way that there is no common factors among them. The
second aspect of improvement is that one cell from each cell flow is serviced
for each visit [16]. This modification is similar to the WRR1 [15]. In order to
maintain good isolation of the ill effects from misbehaving cell flows and to
achieve good delay guarantees without incurring high computational complex-
ity during the scheduling process, multi-class WRR has been proposed [15].
In multi-class WRR, the cell flows are categorized as group1, group2, group3

and so on, in the order of decreasing bandwidth ratio. For the first round robin
cycle, all the sessions in group1 are serviced, followed by the first few sessions
of group2. In the next round robin cycle, the sessions from group1 are serviced
again, and the sessions in group2 starting from where it left off before, followed
by the sessions of group3, and so on. This is called a minicycle. The maximum

length of the minicycle is the smallest value of Di, which corresponds to the
maximum length of the round robin slot whereby all the sessions of groupi

must be visited. The bandwidth ratio denoted by the parameter φi = 1
Di

, is
allocated to every session of groupi. One major drawback of multiclass WRR

387EFS for Multiple-Channel Packet Switching Network

is that φi cannot be an arbitrary value. For example, suppose φ1 is 0.7, then
D1 is 1

0.7 ≈ 1.4. Since D1 should be an integer, D1 is either 1 or 2. If it is
assigned the value 1, group1 will monopolize the complete bandwidth. If it is
2, group1 will only utilize half of the bandwidth resource.

Both the fluid model approach and the round robin approach have their
own advantages and disadvantages. GPS time stamp based approach in-
curs high computational overhead during the queuing or de-queuing process.
This can significantly affect the efficiency of the cell scheduling. Round robin
approach has the lowest computational complexity but poor delay guarantee.
The traditional schemes are very inflexible and cannot adapt to the system’s
environment in an efficient way. In order to address this shortcoming, evolv-
able hardware (EHW) system was proposed [7, 17, 18]. Liu. et. al. reported
the applications of functional evolvable hardware in ATM cell scheduling. In
the reported system, a circuit to compute the desired weighting factors for
the WRR scheme was successfully evolved. Due to the large search space and
hence the large number of generations required for the evolutionary search, the
reported functional evolvable hardware is not applicable for real-time appli-
cations. The time cost for one circuit evolution process is very high. The second
reason why it is not applicable is that there is no reasonable scheme to trace
and adapt to the dramatic changes of the input cell flows. In order to promote
the application of EHW for real-time applications, Li and Lim [17] proposed
evolvable fuzzy system (EFS) for the cell scheduling application. This scheme
is suitable for implementation as evolvable fuzzy hardware (EFH) [19, 20].
EFH can effectively address some existing open issues outlined in [21]. In the
proposed system, two cell flows were mainly considered, one being delay sen-
sitive and another being loss sensitive. The system adopted the principle of
“locality” to justify the training scheme and fixed the number of generations
for the evolution process. The “locality” principle is based on the assumption
that the cell flow pattern of subsequent time period tends to be similar to the
current cell flow pattern. The validity of such an assumption has been shown
for CBR or for the bursty period of VBR using the flow models in Fig. 1 and 2.
Based on the simulation presented in the published paper, the prediction error
during the changes from OFF to ON period or from ON to OFF period is not
very significant when the time window for evolution is small enough. Thus
the evolvable system is trained using the current cell flow to search for a good
fuzzy rule set to control the subsequent cell flows. The number of generations
for the evolution process can be determined experimentally. It should be suf-
ficient for EFS to find good chromosomes. These two schemes endowed the
EFS with real-time applicability. In order to further demonstrate the capabi-
lity of EFS, we employ it on a more general cell-scheduling problem domain.
Through the analysis and simulations presented in the following Sections of
this chapter, we will demonstrate how the EFS model can be extended to
handle multi-channel applications.

388 J.H. Li et al.

3 Evolution Scheme

The block architecture of the EFS can be described by Fig. 3. class# repre-
sents the different classes of input cell flow. BUF# is the queuing buffer for
each input channel. It is used to temporarily store data packets when conges-
tion occurs. The size of BUF# corresponds to the size of the time window,
consistent with the principle of “locality”. TB# is the buffer for the storage of
training patterns. It mainly stores the information of each cell, in particular
the arrival time and the arriving bit rate. When one of the TB# is full, the
evolution process is triggered. Thus the fuzzy rule set is optimized for every
small period. MP is a multiplexer to send the cells in the buffers through
the OUT channel under the control of an RFIC. RFIC refers to reconfig-
urable fuzzy inference chip, a fuzzy processing unit whereby the context can
be re-configured on-line without any setup overhead [22]. The value of SEL
indicates the buffer from which the cells are to be sent. The evolution module
is a component that realizes the GA search. Every chromosome generated by
the evolution module is evaluated by the scheduling model block. The block
simulates the scheduling behaviour of the MP unit. TB# supplies the cell
flows to the scheduling model, which carries out scheduling according to the
control of the chromosome being evaluated. After all the cell units stored in
TB# are transmitted by the scheduling model, the fitness value is calculated
for each chromosome. In order to prevernt the evolution system from taking
a too long time to evolve and, to make the evolvable system suitable for the

BUF2

BUF j

M P

RFIC

Evolution M oduleScheduling M odel

TB j

class2 O U T

SEL

TB1 TB2

BUF1

class1

.

.

.

.

.

.

.

.

.

...

classj

Fig. 3. The System Architecture For Multiple Input Channels Application

389EFS for Multiple-Channel Packet Switching Network

BUF2
'

BUF j
'

M P '

RFIC'

class2
'

classj
'

O U T'

SEL'

BUF1
'

class1
'

Fitness Com putation

.

.

.

.

.

.

.

.

.

Fig. 4. The Architecture of The Scheduling Model

application of real-time problem domain, number of generations adopted in
GA can be fixed. The best chromosome after a fixed number of generations
will be downloaded into the RFIC. At the beginning of the evolution, the con-
tent in TB# is modified based on the arrival time of the last cell unit in BUF#

to prepare the training data. The architecture of the scheduling model is as
′ ′ ′

and the fitness computation
block. RFIC′ is also a reconfigurable fuzzy inference chip. MP′ is an emula-
tion of the MP. It simulates the functionality of the MP block by calculating
the queuing delay for every cell stored in BUF′

#. class′# is the cell flow from

TB#. The fitness computation block in Fig. 4 computes the fitness value for
each evaluated chromosome.

The evolution process of the EFS can be described by the procedural
codes listing in Algorithm 1. The function of TB# Modification routine is to
prepare the training data for the evaluation process. This process generates
packet information such as arrival time and bit rate based on the last few cells
in BUF#. The Initialization of BUF′

routine copies the cell information from
BUF# in Fig. 3 to BUF#

′ in Fig. 4. Evolution and Evaluation routine carries
out the evolution and evaluation. The routine for the Evaluation module in
Algorithm 1 is described further by Algorithm 2. The Enqueuing process adds
the information of the arriving cells to BUF′

#. Evaluation process implements
the fuzzy inference and cell scheduling. The Fitness Computation Process
carries out fitness computation.

4 Fuzzy System

In this section, the fuzzy terms involved in the proposed EFS are first
introduced. For the purpose of GA search in the solution space of the fuzzy

shown in Fig. 4. It includes RFIC , MP , BUF

390 J.H. Li et al.

Algorithm 1 Evolutionary Process

Notations:
m: The size of TB#

υ: The size of BUF′
and BUF#

g: The number of the generation
p: Population size
q#: The number of cells in BUF′

#

c: The number of evolution cycle
l: Chromosome length in bits
j: Channel number

TB# Modification:
/*Construct TB# based on the bit rate
when evolution is triggered*/

for i < m do
modify TB1(i);
modify TB2(i);

...
modify TBj(i);

end for;

Initialization of BUF′
#:

/*Copy cell information from BUF# to BUF#′*/
for i < j do

copy BUF1(i) to BUF1(i)
′;

copy BUF2(i) to BUF2(i)
′;

...
copy BUFj(i) to BUFj(i)

′;
end for;

Evolution and Evaluation:
for i < c do

for i1 < p do
Initial population generation;
Call Evaluation();

end for;
for i2 < g do

for i3 < p do
Toss for crossover;
Select chromosomes for crossover;
Do crossover operation;
Toss for mutation;
Do mutation operation;
Call Evaluation();

end for;
end for;

end for;

391EFS for Multiple-Channel Packet Switching Network

Algorithm 2 Evaluation

Enqueuing: /*Upon the arrival of cells*/
modify BUF1(i)

′;
q1=q1 + 1;

or / and
modify BUF2(i)

′;
q2=q2 + 1;

...
or / and

modify BUFj(i)
′;

qj=qj + 1;

Evaluation: /*Simulate the cell transmission*/
while ((∃i, 1 ≤ i ≥ j)qi > 0) and (no cell is sending) do

fuzzy inference;
/*according to the fuzzy inference result*/Calculate the queuing delay

of the oldest unit in BUFi;
Delete the oldest unit from BUFi;

end while;
Fitness Computation:
/*Compute the fitness value*/

Fitness Computation;

rule set, genetic coding of the fuzzy rule set is necessary. In the second part
of this section, the encoding scheme of the fuzzy rule set is introduced. In
the following parts, three input channels (j = 3) are assumed for simplicity of
discussion.

4.1 Fuzzy Terms

For the fuzzy system, we define three fuzzy variables c1, c2 and c3. c# can

be defined as
L#

Lmax
. L# represents the number of empty units in BUF#.

Lmax is the length of the buffers. c# can be characterized by the fuzzy terms
{S, M, L}. The membership functions for these fuzzy terms are chosen to be
triangular as in Fig. 5.

The output of the fuzzy system can be described by the terms set
{0, 1, 2, 3}. “0” indicates the absence of fuzzy rule for the corresoponding
input condition. “1”, “2” and “3” mean that the cell in the corresponding
buffer is to be transmitted. For the fuzzy system, the fuzzy rules are in the
form “if < antecedent1 > and < antecedent2 > and < antecedent3 > then
< conclusion >”. Two examples of rules are “if < c1 is S > and < c2 is S >
and < c3 is S > then 1” and “if < c1 is M > and < c2 is M > and < c3 is M >
then 2”. The first rule means that the cell in BUF1 is to be transmitted while
the second rule indicates that the cell in BUF2 is to be sent. The Mamdani

392 J.H. Li et al.

 S

M

L

0 0.5 1

S sm all

M m edium

L large

1

Fig. 5. The membership functions for c#

Table 1. A Startup Rule Set

c3 = S
c1

S M L

c2

S 1 2 2
M 1 3 3
L 1 3 3

c3 = M
c1

S M L

c2

S 1 2 2
M 1 2 3
L 1 2 3

c3 = L
c1

S M L

c2

S 1 2 3
M 1 2 3
L 1 2 3

implication is adopted for fuzzy inference. When some rules have the same
conclusion, the final conclusion for these rules will be aggregated. The out-
put of the fuzzy system is derived by comparing the degree of the different
conclusions. The one with biggest degree will be used as the final output. An
example of rule set for the startup of the system is shown in Table 1. All these
rules can work together to fulfill the control scheme. The inference results
related to “1”, “2” or “3” can be aggregated respectively and the final value
of the aggregated results determines whether class1, class2 or class3 is to be
serviced.

4.2 GA Encoding

According to the rule set presented in Table 1, the core rule set can be coded
as “122133133, 122123123, 123123123”. The first 9 genes correspond to the
case when c3 = S. The second 9 genes correspond to c3 = M , and the last
9 genes represent the rules for c3 = L. Each sub-table grouping in Table 1
can be interpreted in a row-wise manner. The one-point mutation scheme
and one-point crossover operation are adopted in the GA implementation.
For selecting the chromosomes to be mutated or crossed, the roulette wheel
selection scheme is adopted.

5 Fitness Function

Fitness function is an important component which directly affects the behav-
ior of the evolvable system. In [17] and [19], where only two cell flows were
considered, the QoS of class1 is positively correlated to that of class2. Hence,

393EFS for Multiple-Channel Packet Switching Network

only the cell delay of class1 needs to be considered in the fitness function. For
a multi-channel application, it is far too complicated to distinguish between
cell flows that are delay sensitive and cell flows which are loss sensitive. In
this chapter, the main objective is to benchmark the performance of EFS with
that of GPS. Hence the average cell delay and bandwidth allocation of each
cell flow are included in the fitness function.

The fitness function can be described by Eqs. 1-8 as follow.

βi = 10 × (
ni

BitRatei

− 1) (1)

ǫi′ =

{

λ × 10βi if βi < 0
λ else

(2)

ǫi =

{

ǫi′ if ǫi′ < ǫi

ǫi else
(3)

Ratioi = γ ×

∣

∣

∣

∣

ni

n1 + n2 + n3
−

mi

m1 + m2 + m3

∣

∣

∣

∣

(4)

ReqDelayi = αi × ρ × υ (5)

RealDelayi =

∑mi

h=1 Delay(h)

mi

(6)

Delayi = |RealDelayi − ReqDelayi| (7)

F = κ −
∑

3
i=1ǫi × (Delayi + Ratioi) (8)

The meaning of the variables in the above equations are outlined in Table 2.
If BitRatei is larger than ni, indicating that classi is misbehaving, βi will

be negative and hence ǫi in Eq. 3 will be much smaller than λ. This will put
less emphasis on the significance of the QoS of classi in Eq. 8. In Eq.2, λ is a
constant value. If βi is larger than 0, ǫi ′ in Eq. 2 is assigned the value of λ,
otherwise it is left unchanged. Eq.3 captures the smallest value of ǫi during
the control process. This equation indicates that if one cell flow overrides its
contract, its QoS is subsequently deemphasized even if it recovers. This app-
roach elimiates the bad effects on future flow patterns by past misbehaviour.
mi in Eq.4 is the number of cells from classi transmitted during the evalu-
ation process. mi

m1+m2+m3
indicates the real bandwidth allocation during the

evaluation process by the evaluated chromosome for classi.
ni

n1+n2+n3
repre-

sents the desired bandwidth ratio. Thus,
∣

∣

∣

ni

n1+n2+n3
− mi

m1+m2+m3

∣

∣

∣ is the error

of the bandwidth ratio allocation for classi. ReqDelayi indicates the desired
average delay for cells from classi. RealDelayi is the average delay suffered
by cells from classi during evaluation. Eq.8 describes the calculation of the

394 J.H. Li et al.

Table 2. Definition of Variables

Variable Definition

βi Status of contract following of classi

BitRatei Bit rate of the flow patterns stored in TBi

ni Subscribed bandwidth of classi

λ A constant for the fitness weight factor

ǫi Fitness weight factor for classi

mi Number of cells transmitted from classi

γ Weight factor for bandwidth error

Ratioi Error of bandwidth ratio for classi

αi Tuning factor of the average cell delay

ρ Transmission time of one cell unit

υ Size of BUF#

ReqDelayi Required average delay for classi

RealDelayi Average delay suffered by cells from TBi

Delayi Error of average delay for classi

Delay(h) Delay suffered by every cells

κ A constant

F Fitness value

fitness value of each evaluated chromosome. This fitness model expresses the
objective of small error in bandwidth allocation ratio and small difference in
average delay between EFS and the desired average delay.

6 Simulations

In this section, the computation complexity of the evolution and evaluation
process is first analyzed. Based on the analysis of the computation complexity,
a paremeter will be set in the following simulations to consider the time taken
by the evolution and evaluation processes. EFS has a special property whereby
the QoS performance can be tuned through parameteric adjustment of the
fitness function. In this section, the good performance achieved in terms of
bandwidth allocation and average delay is demonstrated by comparisons with
GPS, MCRR and FCFS. Then, the property of tunability is demonstrated by
tuning αi. For the simulations, it is supposed that the capacity of the output
channel is 155.52 MHz. For the CBR flows, the bit rate is constant and the gap
between each packet is one bit time period. For VBR flow, the bit rate in every
ON period is constant which is a normally distributed random variable. The
gap between two adjacent ON periods is also a normally distributed random
variable. The time gap between two adjacent packets is fixed as in the CBR
case. All the simulations are carried out for 2 seconds of cell flows using a
C++ program.

395EFS for Multiple-Channel Packet Switching Network

6.1 Computation Complexity Analysis

In order to assess the performance of the whole EFS for real-time application,
it is useful to determine the computation cost taken by the evolution process.
The faster the evolution, the better the system reacts to the changing patterns.
It is assumed that multiplication and addition are basic operations requiring
the same computation time. Exponential operation can be realized by means
of a lookup table. Thus the time taken by an exponential operation is only the
memory access time. The number of input channels considered is 3 (j=3). All
the notations are the same as in Algorithms 1 and 2. The variables involved
in the complexity analysis are described in Table 3.

The computation complexity of Algorithm 1 and Algorithm 2 are sum-
marized in Table 4. For Algorithm 2, during the whole evaluation, there is
maximally m× j cells arriving from TB#. Each arriving cell takes two opera-
tions for modifying BUF#′ and incrementing the cell counter q#(# represents
numbers between 1 and j). Thus the computation cost for the Enqueuing part
in Algorithm 2 is at most m× j × 2 basic operations. The fuzzy inference can
be realized by hardware implementation and it takes one basic operation tim-
ing cycle. Hence, the number of computations required by the Evaluation in
Algorithm 2 is about j× (m+υ)×3. The value 3 is the number of operations
within the while loop. Each operation is a fundamental operation. For the
whole evaluation process, there are at most j × (m + υ) cells to be processed.
So j × (m + υ) times of while loop will be executed. The computation time
taken by the Fitness Computation in Algorithm 2 is about 22, since each

Table 3. Variables Description

Variable Description

j Number of input channels

m Size of TB#

υ Size of BUF′
and BUF#

g Number of generations

p Population size

c Number of evolution cycle

l Chromosome length in bits

Table 4. Computation Complexity of Algorithm1 & Algorithm 2

Algorithm Operations Computation Complexity

Algorithm 1 TB# Modification m × j

Initialization of BUF#′ ρ × j

Evolution & Evaluation g × ρ × E

Algorithm 2 Enqueuing 2 × j × m

Evaluation 3 × j × (m + v)
Fitness Computation 22

396 J.H. Li et al.

calculation in Eqs.1-8 in Section 5 takes about one operation timing cycle and
there are about 22 operations in total. Thus the total number of operations for
Algorithm 2 is (m× j × 2) + [j × (m + υ) × 3] + 22 which can be represented
by E.

For Algorithm 1, TB# modification, filling out TB# based on the corre-
sponding bit rate when evolution is triggered, takes m × j operations. Dur-
ing Initialization of BUF#′, the copying of cell information from BUF# to
BUF#′, requires a computation cost of j × υ. In the Evolution and Evalua-
tion, the first internal for loop requires a total of p × (l + E) operations in
which l is for the initialization cost of every chromosome. “E” is the com-
putation cost of Algorithm 2. This is followed by two embedded for loops,
which requires approximately g × p × (5 + E) operations in total. The value
“5” is for the 5 instructions before the Evaluation operation. In Algorithm 1,
the Evaluation subroutine is the most computationally intensive. In order to
solve the bottleneck of the evolution speed, the p Evaluation processes can be
realized through parallel hardware implementation. Hence, the Evolution and
Evaluation routine in Algorithm 1 can be modified to Algorithm 3.

Adopting Algorithm 3, the number of operations required by Algorithm 1
is approximately c × [(p × l + E) + g × (5 + E)] operations. The parameters
adopted in the following simulations are m = 100, υ = 100, g = 10, p = 10,
j = 3, c = 2 and l = 9. Here the generation number is fixed to 10. The
bigger the number of generations, the better the solution derived. The best
chromosome searched for the specified number of generations is deemed to be
good enough for the scheduling control purpose.

Algorithm 3 Modified Evolution

Evolution and Evaluation:
for i < c do

for i1 < p do
Initial Population generation;

end for;
Call Evaluation();
for i2 < g do

for i3 < p do
Toss for crossover;
Select chromosomes for crossover;
Do crossover operation;
Toss for mutation;
Do mutation operation;

end for;
Call Evaluation();

end for;
end for;

397EFS for Multiple-Channel Packet Switching Network

Based on the above parameters, the total number of operations required
by Algorithm 1 is approximately 50000 operations. Given a state-of-the-art
microprocessor of 3000MIPS (Million Instructions Per Second), the evolution
process requires less than 20 µs of computation time. If hardware pipeline is
adopted in the implementation, the computation cost can be further reduced.
In the following simulations, a computation time of 20 µs is considered.

6.2 Normal QoS Performance

Scenario1

In this scenario, class1 is CBR with a reserved bit rate of 65.52 MHz. class2

and class3 are also CBRs with reserved bit rate of 50 MHz and 40 MHz
respectively. Assume that for unknown reasons, class1’s actual bit rate is 100
MHz while that of class2 and class3 adhere to their contracts. For this case,
the parameters in the fitness function can be set as follows, in which α# can
be calculated by equation ti

ρ×υ
. Here, ti refers to the possible transmission

delay suffered by cells from classi in the GPS system based on its reserved bit
rate. The parameters setting for the simulation is α1 = 0.0237, α2 = 0.0312,
α3 = 0.0387, λ = 1000, γ = 1000, ρ = 2.73, υ = 100 and κ = 108. λ should
be a value which is much larger than 1. According to Eq.4 and 8, γ = 1000
emphasize the significance of the error of bandwidth allocation ratio to be
1000 times that of the delay error. The physical meaning of λ is to emphasize
the QoS of contract following and de-emphasize the QoS of contract breaking
flows. If this value is too big, the average cell delay will have much less effect
on the final fitness value. If it is very small, the value of the second part in
Eq.8 for contract breaking flows will have similiar effect on the final fitness
value as the contract following flows. The average delay for the four schemes
after simulation is presented in Table 5(a).

In the table, it can be seen that FCFS dealt with all the flows equally, thus
the three flows show similar average delay. MCRR achieved much bigger delays
for the contract following flows than that achieved by GPS. EFS achieved
good average delay for the input flows of class2 and class3, which observe
their contracts. In this scenario, the delay of class2 and class3 achieved by
EFS is very close to that of GPS.

The bandwidth utilization ratio for this scenario is as shown in Table 6(a).
In this scenario, the bandwidth ratio is sampled for every 50 µS. The means
and standard deviations for the three input flows for the various schemes
are recorded. Based on this table, MCRR’s performance is closer to that of
GPS than EFS and FCFS in terms of mean and standard deviation. But the
difference in performance of these four schemes is very slight. By considering
both the QoS of delay and the bandwidth allocation, EFS is much better than
MCRR and FCFS.

398 J.H. Li et al.

Scenario2

In this scenario, class1 is VBR with the reserved bit rate of 65.52 MHz while
class2 and class3 are CBRs with the reserved bit rates of 50 MHz and 40 MHz
respectively. Assume that for some unknown reasons, class1’s actual bit rate
varies between 55.52 MHz and 105.52 MHz randomly during its ON period
and class2 and class3 adhere to their contracts well. For this scenario, the
parameters setting can be the same as that of scenario1. From simulation,
the average delay for the four schemes, is presented in Table 5(b). From the
table, it can be seen that FCFS achieves similar average delays for all the
three cell flows. MCRR achieved better delay performance for the contract
following flows, but the delay for class2 and class3 are still not good. On the
other hand, EFS achieved good average delay for the input flows that adhere
to their contracts. In the table, the delay of class2 and class3 achieved by
EFS is very close to that of GPS.

The corresponding bandwidth utilization ratio for this scenario is as shown
in Table 6(b). In this scenario, class1 is a bursty flow. The congestion may
only occur during the ON periods of class1, the bandwidth utilization ratio is
averaged over each bursty period of class1. Based on the mean and standard
deviation values in Table 6(b), EFS performs better than MCRR and FCFS.
The mean values for the bandwidth allocation ratio of the three flows achieved
by EFS are closer to that of GPS than using MCRR or FCFS. Furthermore,
the bandwidth allocation deviations by EFS are also much smaller than that
of MCRR and FCFS.

Table 5. Average Delay for Scenario1, Scenario2 and Scenario3

(a) SCENARIO1

GPS(µs) EFS(µs) MCRR(µs) FCFS(µs)

class1 650.2 647.9 620.5 647.4

class2 8.5 11.9 155.9 648.7

class3 10.6 15.5 86.5 650.3

(b) SCENARIO2

GPS(µs) EFS(µs) MCRR(µs) FCFS(µs)

class1 558.8 555.2 557.2 589.2

class2 8.5 10.1 59.3 588.9

class3 10.6 13.0 39.0 589.5

(c) SCENARIO3

GPS(µs) EFS(µs) MCRR(µs) FCFS(µs)

class1 1421.6 147.2 1767.8 63.0

class2 4.9 6.2 68.0 82.9

class3 10.6 12.2 859.9 63.6

399EFS for Multiple-Channel Packet Switching Network

Table 6. Bandwidth utilization ratio in scenario1, scenario2 and scenario3

(a) SCENARIO1

GPS EFS MCRR FCFS

mean dev mean dev mean dev mean dev

class1 0.4214 1.15×e−4 0.4205 0.0012 0.4208 3.66×e−4 0.4218 0.0042

class2 0.3215 8.56×e−5 0.3219 7.41×e−4 0.3217 2.17×e−4 0.3213 0.0023

class3 0.2572 5.46×e−5 0.2575 4.61×e−4 0.2575 1.65×e−4 0.2570 0.0019

(b) SCENARIO2

GPS EFS MCRR FCFS

mean dev mean dev mean dev mean dev

class1 0.4208 0.0036 0.4200 0.0112 0.4266 0.0914 0.4219 0.0150

class2 0.3219 0.0021 0.3221 0.0053 0.3183 0.0501 0.3212 0.0084

class3 0.2574 0.0071 0.2579 0.0076 0.2551 0.0455 0.2569 0.0067

(c) SCENARIO3

GPS EFS MCRR FCFS

mean dev mean dev mean dev mean dev

class1 0.2160 0.0134 0.2890 0.0447 0.1209 0.1501 0.3150 0.0174

class2 0.4961 0.0312 0.4515 0.0490 0.6976 0.2497 0.4331 0.0311

class3 0.2879 0.0178 0.2595 0.0082 0.1816 0.1456 0.2520 0.0138

Scenario3

In this scenario, class1 is CBR with reserved bit rate of 30 MHz while class3

is CBR with reserved bit rate of 40 MHz. class2 is VBR with reserved bit
rate of 85.52 MHz, but its actual bit rate may varies between 55.52 MHz and
85.52 MHz randomly during its ON period. In this scenario, class2 and class3

follow their contracts well but the actual bit rate of class1 is 50 MHz. The
related parameters in the fitness function can be set as follows according to
the GPS model: α1 = 0.0519, α2 = 0.0183 and α3 = 0.0387. The average
delays for the four schemes based on simulations are presented in Table 5(c).
From the table, it can be seen that FCFS achieved average delays within a
tight range for the three flows as in scenario1 and scenario2. MCRR achieved
poor delay performance for the three flows. EFS achieved good average delay
in this scenario. The delay of class2 and class3 in this scenario achieved by
EFS is very close to that of GPS. The delay for class1 achieved by EFS is
quite different from that achieved by GPS. This is mainly due to the fact that
EFS is a bandwidth conserving scheduling system, which means that there is
always cell unit being transmitted as long as there are cell units waitting in
the BUF#. It attempts to achieve full bandwidth utilization. class2 in this
scenario sometimes transmitted below its subscribed bandwidth, the residual
bandwidth in this case goes to class1.

400 J.H. Li et al.

Table 7. The tuned average delay for scenario1

GPS(µs) EFS(µs) MCRR(µs) FCFS(µs)

class1 650.2 645.2 620.5 647.4

class2 8.5 50.0 155.9 648.7

class3 10.6 14.6 86.5 650.3

The bandwidth utilization ratio for this scenario is as shown in Table 6(c).
For this scenario, class2 is a bursty flow. The congestion may only occur dur-
ing the ON period of class2, the bandwidth utilization ratio is averaged over
each bursty period of class2. MCRR shows a very good overall bandwidth
utilization ratios of 0.1931, 0.5494 and 0.2575. They are close to the corre-
sponding reserved bandwidth ratios of 30

155.52 = 0.1929, 85.52
155.52 = 0.5499 and

40
155.52 = 0.2572. However, its bandwidth utilization ratios during the bursty
periods are poor. As shown in the table, its performance is far from that of
GPS while EFS achieved good performance, very close to that of GPS.

6.3 QoS Tunability

A special property of EFS is its QoS tunability. Suppose the average delay
of class2 in scenario1 needs to be 60 µs. The value of α2 can be calculated
by 60

ρ×υ
= 60

2.73×100 = 0.2198. The values of α1 and α3 are the same as that
in the previous simulation of scenario1. The average delay of EFS for all the
flows with α2 = 0.2198 is listed in Table 7. Comparing Table 7 with Table 5,
it can be deduced that after tuning the value of α2, only the average delay
of class2 for EFS shows a significant change. The average delay of class2

increases significantly. The achieved average delay of class2 is less than the
desired value of 60 µs. This can be attributed to the EFS being an open loop
system rather than a closed-loop feedback system. If the average delay needs
to be equal to the desired value, an adaptive feedback mechanism can be
adopted to tune the value of α2 automatically. This property of tunability is
very useful in the case where one or more good performing flows need bigger
queuing delay. By tuning the parameters of α#, these requirements can be
satisfied without affecting the other good performing flows.

7 Conclusions and future directions

In this chapter, we have presented EFS as a new traffic control scheme for
packet-switching networks. EFS is presented in this chapter to demonstrate its
capability to address the more general cell-scheduling problem. It is based on
evolutionary algorithm and fuzzy control, thus it can be regarded as a third ap-
proach which is independent of the GPS approach and RR approach. After the

401EFS for Multiple-Channel Packet Switching Network

analysis of the system computation complexity, EFS was simulated on three
different input scenarios. In the first scenario, all the three schemes had sim-
ilar performance as that of GPS in terms of bandwidth allocation. However,
when the cell delay QoS was taken into consideration, the performance of EFS
was much better than the other two. In scenario2 and scenario3, EFS showed
very good average delay for the good performing flows while MCRR and FCFS
achieved much bigger average delay. The bandwidth allocation ratio achieved
by EFS was close to that of GPS in terms of mean and deviation. These sim-
ulations demonstrated that without adopting the clock schemes as in [11, 13]
and so on, the QoS performance for cell-scheduling very close to that of GPS
can also be achieved by EFS. Besides effective management of delay and band-
width allocation, another desirable property of EFS is the QoS tunability. This
was also demonstrated through simulations on scenario1. If different average
delay is desired for the good performing flows, the corresponding parameter in
the fitness function can be tuned accordingly. In general, larger average delay
can be achieved by increasing the corresponding parametric value.

Based on our work reported in this chapter, EFS can stand on its own
as a useful technique to handle dynamic switching applications. EFS demon-
strated strong performance based on simulations, with potential deployment
in real-time applications. Further study on its performance in network switch-
ing application needs to be carried out. In particular, the evolution time can
be further improved. For the purpose of reducing the computation time and
advancing the system’s performance, further study on the hardware architec-
ture and hardware implementation of the evaluation process, a crucial part
of the EFS, is required. And further, EFS can be employed to address the
even more general scheduling problem such as the packet-switching problem
in which the packet has variable length. Another promising application do-
main is the multi-protocol label switching system where similiar scheduling
philosophy can also be employed.

References

1. R. Zhang, Y.A. Phillis, and J. Man, “A Fuzzy Approach to the Balance of Drop
and Delay Priorities in Differentiated Services Networks”, IEEE Transactions
on Fuzzy Systems, vol. 11, no. 6, December 2003.

2. E.P. Rathgeb, “Modeling and Performance Comparison of Policing Mechanisms
for ATM Networks”, IEEE J. Select. Areas Commun., vol. 9, no. 3, April 1991.

3. L. Zhang, “Virtual clock: A new traffic control algorithm for packet switched
network”, ACM Trans. Comput. Syst. vol. 9. no. 2. pp. 101-124, May 1991.

4. T. Lizambri, F. Duran and S. Wakid, “Priority Scheduling and Buffer Man-
agement for ATM Traffic Shaping”, in Proc. of 7th IEEE Workshop on Future
Trends of Distributed Computing Systems, FTDCS’99, pp. 36-43, Dec. 20-22,
1999, Cape Town, South Africa.

402 J.H. Li et al.

5. B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson and J.D. Robbins, “Per-
formance models of statistical multiplexing in packet video communications”,
IEEE Trans. Commun., vol. 36, no. 7, pp. 834-844, July 1988.

6. R. Guerin, H. Ahmadi, M. Naghshineh, “Equivalent Capacity and Its Applica-
tion to Bandwidth Allocation in High-Speed Networks”, IEEE J. Select. Areas
Commun., vol. 9, no. 7, pp. 968-981, Sept. 1991.

7. W.X. Liu, M. Murakawa and T. Higuchi, “ATM Cell Scheduling by Func-
tion Level Evolvable Hardware”, Evolvable Systems: From Biology to Hardware,
First International Conference, ICES 1996 (LNCS 1259): pp. 180-192.

8. A.K. Parekh, R.G. Gallager, “A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Networks: The Single-Node Case”,
IEEE/ACM Trans. Networking., vol. 1, no. 3, pp. 344-357, June 1993.

9. A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queu-
ing algorithm”, Journal of Internetworking Research and Experience, pp. 3-26,
Oct. 1990.

10. J.C.R. Bennett and H. Zhang, “WF2Q: Worst-case fair weighted fair queuing”,
in Proc. IEEE INFOCOM, 1996, pp. 120-128.

11. L. Zhang, “VirtualClock: A new traffic control algorithm for packet switch-
ing networks”, in Proc. of the ACM Symposium on Communications Architec-
tures & Protocols, pp. 19-29, September 24-27, 1990, Philadelpia, PA, USA.

12. P. Goyal, H.M. Vin, and H. Cheng, “Start-Time Fair Queuing: A Scheduling
Algorithm for Integrated Services Packet Switching Networks”, IEEE/ACM
Trans. Networking, vol. 5, no. 5, pp. 690-704, Oct. 1997.

13. J. Davin and A. Heybey, “A simulation study of fair queuing and policy
enforcement”, Computer commun. Rev., vol. 20, no. 5, pp. 23-29, Oct. 1990.

14. M. Shreedhar and G. Varghese, “Efficient Fair Queuing Using Deficit Round-
Robin”, IEEE/ACM Trans. on Networking, vol. 4, no. 3, pp. 375-385, June
1996.

15. H.M. Chaskar, and U. Madhow, “Fair Scheduling With Tunable Latency: A
Round-Robin Approach”, IEEE/ACM Trans. Networking, vol. 11, no. 4, pp.
592-601, Aug. 2003.

16. Y. Liang, “A Simple and Effective Scheduling Mechanism Using Minimized
Cycle Round Robin”, in Proc. of IEEE International Conference on Commu-
nications, vol. 4, pp. 2384-2388, New York, NY, April, 2002.

17. J.H. Li and M.H. Lim, “Evolvable fuzzy system for ATM cell scheduling”, in
Proc. of 5th Int. Conf. Evolvable Syst.: From Biology to Hardware, ICES 2003
(LNCS 2606), pp. 208-217, Springer-Verlag, 2003.

18. W.X. Liu, M. Murakawa and T. Higuchi, “Evolvable Hardware for On-line
Adaptive Traffic Control in ATM Networks”, in Proc. of the Second Annual
Conference on Genetic Programming, 1997, pp. 504-509, July 13-16, 1997, Stan-
ford, California.

19. J.H. Li, M.H. Lim and Q. Cao, “An Intrinsic Evolvable and Online Adaptive
Evolvable Fuzzy Hardware Scheme for Packet Switching Network”, in Proc.
NASA/DoD Conference on Evolvable Hardware, 2004, pp. 109-112, June 24-26,
2004, Seattle, Washington, USA.

20. J.H. Li, M.H. Lim and Q. Cao, “Evolvable Fuzzy Hardware for Real-Time Em-
bedded Control for Packet-Switching”, Evolvable Machines: Theory & Practics,
N. Nedjah, L. de Macedo Mourelle (Eds), vol. 161, pp. 205-227, Springer-Verlag,
Heidelberg, 2004.

403EFS for Multiple-Channel Packet Switching Network

21. X. Yao and T. Higuchi. “Promises and Challenges of Evolvable Hardware”,
IEEE Trans. on Systems, Man and Cybernetics, Part C, Applications and
Reviews, vol. 29, no. 1, pp. 87-97, Feb. 1999.

22. M.H. Lim, Q. Cao, J.H. Li and W.L. Ng, “Evolvable Hardware Using Con-
text Switchable Fuzzy Inference Processor”, IEE Proc. - Comput. Digit. Tech.,
vol. 151, no. 4, pp. 301-311, July 2004.

A Multi-Objective Evolutionary Algorithm

Chi Keong Goh, Wei Ling Lim, Yong Han Chew and Kay Chen Tan

Department of Electrical and Computer Engineering, National University
of Singapore, 4, Engineering Drive 3, Singapore 117576

Summary. The channel routing problem (CRP) is derived from detailed
routing model in VLSI design. The objectives of the problem can vary from
reducing the number of horizontal tracks to minimizing the number of vias,
length of wires used etc. It is not known how these objectives interact with
one another, although it is believed that they are conflicting in nature.
Unlike traditional single-objective optimization approaches, this paper pre-
sents a multiobjective evolutionary algorithm (MOEA) for CRP. Special-
ized genetic operators for solving the CRP are devised. In addition, a new
method of random routing is introduced for better routing performance.
Some standard benchmark problems are solved in this paper using the pro-
posed algorithm to validate its performance. It is shown that the proposed
algorithm is consistent and is able to obtain very competitive results as
compared to well-known approaches.

1 Introduction

In the physical design process for VLSI circuits, the logical structure of the
circuit is transformed into its physical layout through the processes of par-
titioning, placement, routing and finally compaction. This research focuses
on the task of detailed routing, specifically the channel routing problem
(CRP) which connects pins of signal nets in a rectangular region called a
channel, in accordance to certain routing constraints and objectives. The
result of this detailed routing has a strong influence on the fabrication yield
and production costs of the given circuit.

It is not known to what extent the various objectives of the CRP are con-
flicting in nature, although it is highly likely that it is not possible to find a

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

C. Keong Goh et al.: A Multi-Objective Evolutionary Algorithm for Channel Routing Problems,
Studies in Computational Intelligence (SCI) 49, 405–436 (2007)

for Channel Routing Problems

single optimal solution for most such problems. Despite this, past research
[1, 2, 4, 7, 19, 30] converted the objective vector into a scalar function,
thus optimizing the problem as though it is having single objective. Unfor-
tunately, such conversions involve the determination of weighting coeffi-
cients for each of the objectives and this poses impracticalities due to diffi-
culties in ascertaining such parameters.

Evolutionary algorithms (EAs) are stochastic search methods that simu-
late the process of evolution. They incorporate the concepts of reproduc-
tion, mutation, and crossover of chromosomes and the Darwinian principle
of “survival of the fittest”. As channel routing problems belong to the class
of NP-hard problems [29], it is not possible to solve it in polynomial time.
The stochastic nature and ability to handle large complex problems of EAs
make them well suited for combinatorial optimization problems like the
CRP. However, it is likely that the objectives of the CRP are conflicting in
nature and should be best tackled by means of multiobjective (MO) opti-
mization.

In addition, many existing routing algorithms [6, 21, 26] allow viola-
tions in the routing process and results in infeasible solutions. Such solu-
tions would require further difficult manual routing to eradicate the in-
feasibilities and so defeat the whole purpose of designing an algorithm to
solve the CRP automatically. On the other hand, those methods that do not
permit violations [9, 20] may be too random in nature and often conduct
the search in limited areas of the feasible region that yields poor results. As
such, more computational resources had to be spent to obtain optimal solu-
tions by using larger population and generation sizes. In some cases, the
algorithms remain locked in the non-optimal region of solution space.

In contrast to conventional approaches, a multiobjective evolutionary
algorithm (MOEA) [31] is proposed and applied to find the possible trade-
off solutions of the CRP. In order to deal with problem effectively, differ-
ent operators that exploit problem knowledge such as channel update and
problem-specific mutation operators are developed. Furthermore, a novel
method of random routing is designed to utilize the effort of searching ef-
ficiently without compromising on the diversity and quality of the solu-
tions. Analysis on the statistical performance of the proposed method is
performed and the results obtained are compared to the best solutions
found in literature according to the authors’ best knowledge.

This paper is divided into 5 sections. Section 2 gives an overview of
channel routing problem while Section 3 illustrates the proposed MOEA.
The application and evaluation of the proposed method using benchmark
problems and relevant quantitative performance metrics are given in Sec-
tion 4. It also presents a comparative study of the proposed algorithm to
other published results. Conclusions are drawn in Section 5.

C. Keong Goh et al.406

2 Channel Routing Problems

In the physical design process of Very Large Scale Integration (VLSI) cir-
cuits, the logical structure of the circuit is transformed into its physical
layout. Detailed routing is one of the tasks in this process performed at the
final stage. In channel routing problem, a detailed router connects pins of
signal nets in a rectangular region, called a channel which is shown in Fig.
1. The pins are located exclusively on the upper and lower boundaries,
along the length of the channel. Pins belonging to the same net are con-
nected together within the channel region.

The process of routing is highly constrained and there exist numerous
routing constraints, such as number of layers, minimal space between
wires, minimum channel width and minimum wire width [19]. The quality
of this routing process has a strong influence on the performance and pro-
duction costs of the circuit. With such complexity, the channel routing
problem is NP-complete [29] and there is no known deterministic algo-
rithm that can solve them in polynomial time. Some detailed routing mod-
els are presented in Section 2.1 while Section 2.2 gives a very brief note on
common objective functions and constraints imposed in channel routing
problems. The discussion continues with a review on evolutionary ap-
proaches to CRP in Section 2.3.

1 3 4 1 2

1 4 2 2 3

terminals

via

terminals

branch

dogleg

trunk

track

Fig. 1. A channel

A Multi-Objective Evolutionary Algorithm for CRP 407

2.1 Detail Routing Models

Many different ways of modeling the channel routing problem exist in lit-
erature [15]. The models used serve different purposes and are designed to
resolve different issues that arise in the process of routing. Five models are
discussed here. The first three are major graph-based detail-routing mod-
els, which are popular with most researchers. The fourth model, the
gridless model, is a generalization of the previous three models. The fifth
model, the multi-layer model, is an extension of models that allow only
two layers to multiple layers.

In planar routing [15] different routes are required to be vertex-disjoint
and it is often called the “river routing” model, because rivers cannot cross
without their waters merging. This model is very restrictive, as many in-
stances of detailed routing problems cannot be routed without crossing
wires. This model is often used for routing chip inputs and outputs to the
pads on chip boundary, or routing wires on single layer in routing schemes
where the layer assignment is determined by technological constraints,
such as power supply routing.

A Knock-Knee routing [15] is more general than planar routing as it al-
lows wires to cross. Fig. 2 shows a knock-knee where two nets bend at a
grid-vertex. Thus, at least two layers and sometimes even four layers are
needed. This feature is not allowed in the Manhattan model. Unfortunately,
the assignment of layers is found to be non-trivial and NP-hard. Further-
more, technological constraints like preferred wiring directions for differ-
ent wiring layers do not fit well with this model.

In a Manhattan model, the detail-routing graph is assumed to be a partial
grid graph and different routes are required to be edge-disjoint. There exist
two variants in Manhattan routing: Restrictive routing and Unrestricted
Overlap routing [15]. In the restrictive routing model, two layers are used
typically and all vertical wire segments are routed on one layer, while
horizontal wire segments are routed on the other layer. For the unrestric-
tive overlap model, both vertical and horizontal segments are routed on
both layers, as long as the routes remain edge-disjoint. However, long
stretches of overlapping wires in unrestricted overlap may introduce cross-
talk problems in chip technologies. In both models, contact cuts (vias) can
be placed at grid vertices to join wire segments on both layers. The model
with unrestricted overlap is chosen to be used in this work.

The preceding three routing models are based on planar graphs and as a
result of that, they can only model real technological constraints impre-
cisely. The gridless routing model is an attempt to move away from the de-

C. Keong Goh et al.408

tailed-routing graph and use the continuous plane as the basic routing domain.

real geometrics more precisely and achieve tighter optimization [15].
In PCB wiring, there are typically many more than two routing layers.

The multilayer routing model [15] addresses this by representing each wire
segment explicitly. As the determination of layer assignment for wire seg-
ments is done at detailed routing, the grid-based routing models are ideal
for multilayer routing.

Fig. 2. A Knock-Knee in routing

2.2 Properties of Manhattan Routing

As the focus of this research is about solving channel routing in the Man-
hattan model, this section is dedicated to present relevant concepts in this
model. Lower bounds on channel width, as well as vertical and horizontal
constraints in the Manhattan routing model had been studied in the litera-
ture. However, its mathematical structure has not been known very well.
The following are some concepts employed by others in the optimization
of the channel routing problem.

Lower bounds and routability

The lower bound (Close density) of channel width for a restrictive Manhat-
tan model is defined by [15] as follows. Let I be an instance of the channel
routing problem. The closed density,

() : max | |c x
x

d I N (1)

where x is an arbitrary real number and Nx is the set of (nontrivial) nets that
have one terminal on a column x and another in a column x . From
there, it can be deduced that in a Manhattan model with unrestricted over-
lap, the closed density can be defined as follows [9].

A Multi-Objective Evolutionary Algorithm for CRP 409

It incorporates design rules of the fabrication process, so as to model

~

() : max | | / 2c x
x

d I N (2)

The routability [8] of restricted CRP is determined by the Vertical Con-
straint Graph (VCG) [13]. A VCG is simply a directed graph with its nodes
representing the nets in the channel and its branches representing the rela-
tive position of the horizontal parts of the net from the top to the bottom of
the channel. It is formed by scanning each column in the channel and add-
ing an edge pointing from the node representing the net that has a pin on
the top of the channel, to the node representing a net that has a pin at the
bottom of the channel.

The minimum number of rows in a restricted CRP is determined by the
Horizontal Constraint Graph (HCG). Like the VCG, the HCG is a directed
graph with nodes that represents the nets in the channel. However, its
branches represent overlapping nets. The HCG is constructed by checking
the rows and adding an edge between the nodes with overlapping intervals.
The interpretation of the HCG is that the vertical segment of the node
pointing to a second node should be routed on the right hand side of the
vertical part of the net being pointed to. The concepts of the vertical and
horizontal graphs had been used extensively in work found in literature [4,
16, 26, 32] to solve the channel routing problem.

Constraints and objectives

As mentioned in Section 2.1, routing of pins is highly constrained and it is
performed in accordance to certain constraints and quality factors, so as to
obtain good feasible routing solutions. Four constraints for interconnec-
tions were defined in [20]. A net is to be routed using Manhattan geometry
with unrestricted overlap. Two layers are available for routing. A net may
change from one layer to another using a contact window called a ‘via’.
Different nets cannot cross each other on the same layer and must respect a
minimum distance rule.

The list below includes four characteristics that are used frequently to
measure quality of channel routing in previous research.

 100% routing: Manual routing of a few unrouted nets is time con-
suming and often involves the rerouting of most, if not all of the
routed nets. Hence, it is important that the router completes routing
the channel.

 Minimum area: The channel length is fixed, but the channel width
(number of rows of the channel) is allowed to vary during the
process of routing. It is desirable that the routed channel occupies
the minimum area possible.

C. Keong Goh et al.410

 Netlength: The shorter the length of the inter-connection wires, the
smaller the propagation delay and smaller the routing area. The
signal quality also improves.

 Number of vias: The introduction of via between 2 interconnection
layers may result in more routing area, longer propagation delay
and lower fabrication yield. The fewer the number of vias, the bet-
ter the routing quality.

The use of evolutionary algorithms, particularly genetic algorithms, to
solve CRP is found in [19], [26], and several other publications. As the
available works are many, it is impossible to discuss each of them. Instead,
an overview on the various methods of implementation used by these ge-
netic algorithms is presented in this section.

Representation

Davidenko et al. [4] used a novel approach to reduce the channel with un-
restricted overlaps to a binary string representation. In their work, only
nets with horizontal constraints are represented in the chromosome and
they are arranged according to the top and bottom terminals on the chan-
nel. A bit ‘1’ for pin i with respect to j implied that track for pin i should
appear above that of pin j in the channel.

Other structures used are vectors and matrices. Lienig and Thulasiraman
[20], represented the chromosome using a three-dimensional lattice struc-
ture. Finally, the work by Lin et al. [21] represented the chromosome as a
four-dimensional matrix that stored information of the net, as well as the
layer, row and column occupied by the net.

Initial Population

The initial populations for the different evolutionary algorithm are created
through random routing techniques. In some cases [6, 21, 26], violations
are allowed in the initial population and the individuals with infeasibilities
are penalized in their fitness.

In HGA [9], a pin is chosen from the set of all pins of the channel one at
a time and is connected to pins of the same net. There are five modes of
connection, namely left, right, forward, backward, and layer change. The
choice of the mode chosen is dependent on probability, with the highest
probability assigned to the mode that will give the shortest distance.

A Multi-Objective Evolutionary Algorithm for CRP

2.3 Evolutionary Algorithms for CRP

411

In GAP [20], a completely randomized routing technique is proposed. A
set S = {s1, …si, …sk} of all pins of the channel that are not connected and a
set T ={tu, …tj, …tv} of pins having at least one connection to another pin
are kept. The random routing of (si, tj) is done by extending a vertical line
from both si and tj until they reached obstacles. A position between the
start and end points of each of the lines is chosen and from this position,
horizontal lines are extended in a similar way. Each of the channel layers
have a preferred direction and each extension line has a 2/3 chance of being
routed on the layer associated with the extension line. Additional rows are
inserted randomly if a connection is not found within i iterations. The ran-
dom routing algorithm continued in this manner until either a connection is
found or the number of rows inserted exceeded the maximum threshold. If
the maximum threshold is exceeded, the entire channel is destroyed.

Fitness Evaluation and Selection

To our knowledge, all existing works used a weighted sum of evaluation
criteria as the fitness function. The criteria used are specific to the imple-
mentations and includes penalty, constraints and quality factors. Typical
criteria used are the number of violations, vias, tracks, netlength, vertical
constraints, horizontal constraints and other cost factors. Most works are
not clear on how selection was performed. In [20], roulette wheel selection
is used, where each individual i cp P is selected with a probabil-
ity () / ()

i c

i

p P

F p F p . Göckel et al. [9] also used the roulette wheel selection.

Genetic Operators

Most literature found use either a 1-point or 2-point cut along the channel
length as the crossover operator. In most cases, two parents give off two
offsprings and each of the offspring inherits different portions of the cut
channel from both parents.

Many different types of mutation have been proposed in literature. For
typical binary representation, normal binary mutation is used [4]. Besides
that, mutation could involve individuals being created [6], vertical and
horizontal violations solved and most algorithms [9, 21] implemented a
‘rip up and re-route’ mutation operator.

In [26], an “Inter-Cluster Mutation” (ICM) is proposed. In the algo-
rithm, a branch and bound method is used to partition the VCG into sub-

C. Keong Goh et al.412

normal mutation operation is used, such optimal information can not be
information gained by the algorithm over the previous generations. If a
problems. The use of the ICM is to avoid disruption of optimal partition

mation. The ICM consists of five different functions and they are: Move-
Net, ExchangeNets, MergeCluster, BreakCluster and Vertical Swap. In
[20], four different types of mutation operators are used to effectively ex-
plore the solution space of the highly constrained CRP.

Parallel Genetic Algorithms

Various works [17, 18, 24, 25, 27] have also attempted to use Parallel GA
to solve the CRP. There are two main approaches, namely the Island model
[18] and the Master-Slave model [24].

In the Island-model, instead of using parallel GA for the sole purpose of
speeding up the algorithm, the theory of punctuated equilibria is employed
to achieve better results. Using this theory, independent subpopulations of
individuals have their own fitness functions and they evolved in isolation.
There is an exchange of individuals, called migration, when a state of equi-
librium has been reached throughout all the subpopulations. Nine proces-
sors with 50 individuals each are used, thus creating a total population of
450 individuals. The processors are connected by an interconnected net-
work with torus topology and each processor had exactly four neighbors.

In the Master-slave model, both features of global and local selection
are used. The root processor executed the conventional GA with global se-
lection on total population and the remaining processors performed the
conventional GA with local selection on subpopulations. After twenty-four
generations, the total population on the root processor and the subpopula-
tions on the remaining populations are interchanged and the process is
executed for four generations. This algorithm is designed to achieve a
faster runtime and to obtain good global optimal solution, with full utiliza-
tion of the parallel system.

3 MOEA for Channel Routing

In this section, the proposed MOEA for solving channel routing problem is
presented. Section 3.1 gives the actual Manhattan model of channel routing
problem to be solved. Section 3.2 summarizes relevant principles for mul-
tiobjective optimization using evolutionary algorithms. All details involved
in the proposed algorithm, such as genetic operators, representation and
fitness evaluation are included.

A Multi-Objective Evolutionary Algorithm for CRP 413

retained, as the operator will randomly cause the destruction of such infor-

3.1 Problem Definition

A problem definition of the Manhattan model is presented as below:
 The two-layer Manhattan model with unrestricted overlap was

chosen for the following reasons:
 This two-layer model can be easily altered to allow for multiple

layers.
 This model does not pose restrictions that result in impracticalities,

unlike the Knock-Knee and Planar model.
 This model has fewer complexities than the gridless model.
 There already exist many research results to compare performance

of benchmark test cases on this model.
This model is able to solve problems with multiple cyclical constraints,

unlike the restrictive Manhattan model. Furthermore, the following as-
sumptions were made in the problem definition:

 All routing is to be done within the channel.
 Doglegs are allowed.
 Multiple objectives to be optimized are conflicting in nature.

3.2

Multi-objective Evolutionary Algorithm has the capability of searching for
a set of Pareto optimal solutions for MO optimizations. The MOEA main-
tains a population of individuals and each of which is assigned a fitness
value for different objectives to be satisfied. These solutions undergo a
simulated evolution process of selection, crossover and mutation. In the se-
lection process, a mating population is formed when individuals are se-
lected for reproduction. The selected individuals are then manipulated by
genetic operators to produce offspring.

Variable Length Chromosome Representation

A m n vector (Fig. 3) is used as the chromosome representation, where m
is the number of terminals and n is the number of rows. Each element of
the vector contains information such as the integer value of pins occupying
the two different layers and a binary value specifying the presence of a via.
Since information such as the desired number and location of the terminals
are not known a prior, the variable length chromosome implemented here
allows for dynamic adaptation of routing design as opposed to a fixed ma-
trix structure.

C. Keong Goh et al.414

for CRP
A Multiobjective Evolutionary Optimization Algorithm

Fig. 3. Chromosome representation

Random Routing

Through an implementation and testing of the random routing algorithm
proposed in [20], it is found that the method tends to result in channels
with a large number of vias and thus the solution space is ‘expensive’ in
terms of the number of vias. As such, a new method is proposed to avoid
such problems, as well as to maintain a balance between different objec-
tives within the search space. Two functions in the algorithm required the
use of random routing algorithm and they are the initial population router
and the re-router, which is used when the channel went through genetic
operations.

Initial Router: The purpose of the initial router is to randomly route the
given channel, so as to create a population of solutions that is diverse,
while complying all the constraints present in CRP. Violations are not al-
lowed in solutions produced by this routing process.

The channel is first assigned a fixed starting number of tracks, with
() 2* ()

c c
d I d I , where dc(I) is defined in Section 2.2.1. The algorithm
then initialized an empty channel with number of tracks. Next, let U =

{u1, u2, …, un} be the set of all terminal pins of the channel that is not
routed yet and R = {r1, r2, …, rm} be the set of terminal pins of the channel
that are routed. Initially R = .

Choose a pin, ui, of net Nj randomly from set U. This pin is set as the
current pin. Search through set R to look for routed pins of Nj. If one or
more such pins are found, randomly choose one. Otherwise, search set U
to obtain a pin of net Nj through a random selection. Once a pin is found, it
is set as the target pin.

Next, using the relative x (horizontal) and y (vertical) positions of the
current pin and the target pin, determine the Preferred Horizontal and
Preferred Vertical directions from the following functions. Using the Pre-

A Multi-Objective Evolutionary Algorithm for CRP 415

ferred Horizontal and Preferred Vertical direction, one of the following
routing states is determined.

y y

y y

1 if target current 0

Preferred Vertical direction 1 if target current 0

0 otherwise

(3)

x x

x x

1 if target current 0

Preferred Horizontal direction 1 if target current 0

0 otherwise

(4)

Next, both the current and target pins are routed in accordance to the
routing state chosen. Each routing state dictated the preferred horizontal
and vertical routing motion. For instance, if state 8 is chosen, the current
pin appeared along the top terminal, while the target pin along the bottom
terminal, on the right of current pin. A random choice of either moving
down or right is made and an extension line is drawn along the chosen di-
rection until an obstacle is met or the edge of the channel is reached. If ei-
ther the preferred horizontal or vertical direction is ‘0’, a random choice of
moving left-right or up-down is made in the respective cases. If both pre-
ferred directions are ‘0’, the pin is routed to the target position. Each time
an obstacle is met in the current routing state, an attempt is made to move
the extension line to the next layer. If it failed, a new routing state is as-
signed based on the new position of the current pin after extension.

During the routing process, the algorithm constantly checked if the cur-
rent routing extension is connected to routed connections of the same net.
If it is so, routing for the current pin is stopped, instead of forcing it to be
routed to the target. This is done to improve the quality of solutions and to
save computational resources spent on performing the process of random
routing. A new pin is then randomly selected from set U and the entire
process of random routing is repeated until all the pins are routed. After the
channel has been successfully routed, an update is done on the channel to
remove redundancies, like redundant tracks or vias. If an extension line is
completely ‘stuck’ and impossible to route anymore, a new row is added
and all routed connections are adjusted. After a maximum number of rows,
Rowmax, has been added and if the channel is still not completely routed,
the channel is discarded. The entire routing process is repeated to create a
new individual.

A simple illustration of the routing algorithm can be seen in the follow-
ing example (Fig. 4). Details on performing the process of random routing
on this channel are as shown in Fig. 5. The current pin chosen to be routed

C. Keong Goh et al.416

is highlighted by a circle; the target pin is highlighted by a square, while
extension lines are highlighted in a shaded box. The routing algorithm is
designed to allow for some degree of guidance to route each given pin to-
wards its destination, while at the same time randomness is introduced in
the decision to route either vertically or horizontally. By doing so, redun-
dant cyclical connections cannot occur during the routing process and
computation time is saved on checking through the channel for such re-
dundancies.

Re-router: The re-route algorithm is used to re-connect disconnected pins
during the genetic operations of crossover and mutation. The re-route algo-
rithm is essentially the same as that of the initial router, though some fea-
tures have been included to make the process of re-routing more robust. In
addition to the random routing algorithm, if the current pin cannot be
routed anymore, instead of adding one more row into the channel, all ex-
tension lines are deleted and the status of the current pin and target pin are
exchanged, i.e. current pin became target pin and vice versa. The routing
process proceeds on and another attempt is made to connect the two points.
If this failed, the pins’ statuses are reset back and all extension lines, to-
gether with all connections belonging to the net blocking the extension
lines are deleted. Re-routing is then repeated. The maximum number of de-
letions allowed for any channel is limited to DelNetmax . The value of Del-

Netmax is set to three in this research. This is to ensure that schema from the
parent channels are not totally destroyed due to the deletions. Otherwise,
the re-routing process will cause the MOEA to be merely a random search
process.

1 3 4 1 2

1 4 2 32

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

0, 0, 0

Fig. 4. Channel to be routed

A Multi-Objective Evolutionary Algorithm for CRP 417

Iteration Process Channel illustration

Iteration 1

Pin to route: 1

PrefVert: 0; PrefHor: 1

Route: 4

Randomly chosen layer: 1

Pin is routed.

1 3 4 1 2

1 4 2 32

1, 0, 0 1, 0, 0 1, 0, 0 1, 0, 0 0, 0, 0

0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Iteration 2a

Pin to route: 4

PrefVert: 1; PrefHor: -1

Route: 5

Randomly chosen layer: 1

Layer 1 is occupied by net ‘1’,
so route on layer 2.

Random direction: Vertical

Pin not routed.

1 3 4 1 2

1 4 2 32

1, 0, 0 1, 0, 0 1, 4, 0 1, 0, 0 0, 0, 0

0, 0, 0 0, 0, 0 0, 4, 0 0, 0, 0 0, 0, 0

Iteration 2b

Pin: 4

PrefVert: 1; PrefHor: -1

Route: 5

Random direction: Horizontal

Pin is routed.

1 3 4 1 2

1 4 2 22

1, 0, 0 1, 0, 0 1, 4, 0 1, 0, 0 0, 0, 0

0, 0, 0 0, 4, 0 0, 4, 0 0, 0, 0 0, 0, 0

Iteration 3

Pin: 1

PrefVert: -1; PrefHor: 0

Route: 2

Randomly chosen layer: 1

Pin is routed.

1 3 4 1 2

1 4 2 32

1, 0, 0 1, 3, 0 1, 4, 0 1, 0, 0 0, 0, 0

1, 0, 0 0, 4, 0 0, 4, 0 0, 0, 0 0, 0, 0

Fig. 5. Illustration of the random routing algorithm

Fitness Function

Contrary to existing approaches, the different objectives can be treated

C. Keong Goh et al.418

separated by MOEA. Since this eliminates the need to determine appropriate

specify the individual specifications instead of the aggregated functions
used as described in the review. Two variations of the algorithm, in terms
of the number of objectives to be minimized, are implemented. MOEA2
consists of two objective functions, while MOEA3 has three objective
functions. The objective functions used in MOEA2 are:

wirelengthf Sum of wire length in channel (5)

viasf Sum of vias in channel (6)

In addition to the above objective functions, MOEA3 has a third fitness
function,

trackf Number of tracks in channel (7)

Diversity Preservation

The use of niche sharing [10, 12, 22] prevents genetic drift and helps pro-
mote the discovery of the whole Pareto front by the population. The basic
idea is that individuals in a particular niche should share the available re-
sources and the fitness value of an individual is degraded as the number of
individuals in its neighbourhood increases. Niching can be performed in
either the decision variable domain or the objective domain. The choice
between niching in decision variable domain or objective domain depends
on what is desired for the underlying problem. In general, niche sharing is
achieved using a sharing function. Let d be the Euclidean distance between
x and y. The neighbourhood size is defined in terms of d and specified by
the so-called niche radius share . The sharing function is defined as follows

1 (/) if d<()
0 otherwise

share sharedsh d
(8)

And the niche count function is defined with the help of sharing function,

() ((,))
y

nc x sh dist x y (9)

The niche radius share is a key parameter that affects MOEA s effective-
ness. In this paper, the niche radius is obtained from extensive simulation
studies.

A Multi-Objective Evolutionary Algorithm for CRP

’

419

weights for aggregating the different objectives, it is now possible to

Genetic Operators

Crossover: A one-point cut is used in this algorithm. Two parents (P1, P2)
are first chosen. If the two parents have different channel width, the one
with a smaller channel width is adjusted by adding tracks randomly until
the channel widths for both parents are equal. Next, a cut, Xi is randomly
chosen with 2 2

i term
X X , where Xterm is the number of columns in the

channel, as shown in Fig. 6 (a), (b). The left-hand-side of P1 is combined
with right-hand-side of P2 to create offspring1. Likewise, the right-hand-
side of P1 is combined with the left-hand-side of P2 to create offspring2.
As some pins will be disconnected or connections crossed during this
process, all such pins and connections are deleted from the offsprings, as
shown in Fig. 6 (c). Thereafter, the re-route algorithm is applied on the off-
spring channels to route them completely as seen in Fig. 6 (d).

Fig. 6. Crossover operation

Multimode Mutation: Three different mutation operators are used in this
algorithm. This because the CRP consists of many constraints and using
merely one mutation operator will not provide a good ‘exploration’ of the
search space. Here, the main objectives of the mutation operators are to
explore the possibilities of other solutions, as well as to guide the search
towards a more optimal solution space. The mutation operators used are
shown in Table 1 below. Both Mutation_1 and Mutation_2 operations pro-

C. Keong Goh et al.420

vide an exploration of the search space through new routing solutions pro-
vided by the operators. The Mutation_3 is used to reduce the channel
width and in the process helped to guide the search towards a more optimal
solution space, especially in terms of reducing the number of tracks used.

Table 1. Multimode mutation operators and their procedures

Operation Procedures

Mutation_1 In this mutation, k nets are chosen, where Nk 3
1 and N being

the total number of nets in the channel. The nets chose are deleted
from the channel and then the re-route algorithm is applied on the
channel to produce a new complete solution.

Mutation_2 In this mutation, a point Xi is chosen along the length of the

channel, such that 33 termi XX , where Xterm is the total

number of columns in the channel. Next, a random choice is
made either to delete all connections to the left or right Xterm. Af-
ter which, the re-route algorithm is applied to the channel to cre-
ate a new complete solution.

Mutation_3

In this mutation, a random track Tj is chosen, such

that 11 totalj TT , where Ttotal is the total number of tracks

in the channel. The chosen track is then removed from the chan-
nel. All broken connections between any two pins of each net are
deleted, while those that remain connected are left intact. The re-
route algorithm is then applied to the channel to produce a new
solution.

Channel Update: Redundancies in the channel will inevitable arise during
the optimization process. While these redundancies have no positive con-
tribution to the overall channel, their presence will incur unnecessary
channel width. Therefore, the channel update mechanism, a local search
strategy is developed to remove redundancies found in the channel. Spe-
cifically, channel update is applied to every new offspring and checked for
redundant rows. Subsequently, all uncovered redundant rows will be re-
moved from the offspring.

Program Flowchart

The flowchart of the algorithm can be seen in Fig. 7. An initial population
of feasible solutions is created when the algorithm was first executed. This
was done using a random router as detailed in Section 3.2.2, which created

A Multi-Objective Evolutionary Algorithm for CRP 421

the individuals through randomized routing, so as to maintain diversity in
the initial population. Following which, each of the individuals fitness is
assessed. Each individual in the population is assigned a fitness value,
which forms the basis of evaluation on the individual. The Pareto based
ranking approach [5] that assigns the smallest rank values to all non-
dominated individuals in the population and the rest of the individuals are
ranked according to the number of individuals dominating them is adopted
here. Therefore, the rank of an individual p in a population is given by

() 1rank p q (10)

where q is the number of individuals that dominate the individual p based
on the above criteria.

Individuals are selected into the mating pool by means of tournament se-
lection where a random number (N) of individuals are chosen at each time
and the fittest among these individuals is chosen to become a parent is
adopted here [3, 11]. The selection criteria is based on Pareto ranking and
niche count will be used in the event of a tie. Archive updating criteria was
based on non-dominance criteria. In every generation, all the non-
dominated solutions were updated into the archive population, whose size
was dynamic. Likewise, archived solutions that are dominated are re-
moved. In the event where the archive size reaches a predetermined limit,
batch pruning which is based on niche count is employed. The process of
fitness evaluation, ranking, crossover, mutation and archive update was re-
peated until the maximum generation is reached.

C. Keong Goh et al.422

Output Pop_best

Begin

Maximum

 generation?

End

Selection

Yes

No

Update Archive Population

Evaluate fitness

Initialize population randomly

Crossover

Mutation

Nicing

Channel Update

Fig. 7. The program flowchart of MOEA

4 Performance Comparison

The section begins with the listing of standard benchmark problems used
and parameters settings. Following which, comparison of results obtained
by using the proposed MOEA for two objectives channel routing problem
can be found in section 4.2. Section 4.3 analyses the results for three objec-
tives channel routing problem. Section 4.4 shows the comparison of differ-
ent variations of the algorithm made against the best found in literature.

4.1 Simulation Setup

Five standard benchmark problems, Joobbani’s test channels (Joo6_12,
Joo6_13 and Joo6_16), Yoshimura-Kuh Channel (Yos), and Burstein’s
Difficult Channel (Burstein) are used to test the algorithm. Ten runs are
performed for each algorithm setting on every test problem in order to
study the statistical performance, in terms of consistency and robustness of
the proposed algorithm. The algorithm is implemented in C++ program-
ming language and the simulations were performed using an Intel Pen-

A Multi-Objective Evolutionary Algorithm for CRP 423

tium4 2.4 GHz computer. Ten independent runs using ten different fixed
seeds are used to simulate each benchmark test data. A summary of the
simulation parameters are shown in Table 2.

Table 2. The simulation parameters

PARAMETER VALUES

Population Size 150

Archive Size 20

Generation Size 120

Seeds used (10 runs) 99, 1, 1003, 153, 645, 475, 135, 6, 8, 127

Initial number of rows 7

Crossover probability 0.9

Mutation_1 rate 0.2

Mutation_2 rate 0.2

Mutation_3 rate 0.2

Niche radius 0.1 (normalized search space)

4.2 Two-objective Optimization (MOEA2)

benchmark test case respectively. The figures show the plots of netlength
against vias for the final and archive populations belonging to different test
cases. The attainment surfaces obtained by MOEA2 are represented by the
black line joining non-dominated solutions.

Due to the inherently lower pressure exerted by the routing algorithm to
increase the number of vias, it can be seen from the figures that the number
of vias lying along the attainment surface are minimized close to optimum.
As a result of which and due to the discrete nature of the problem, there are
relatively few points lying along the non-dominated front for smaller test
sets. Nonetheless, the trade-off curves do show that there indeed exist
some form of confliction between the objectives of minimizing netlength
and vias, as a decrease in netlength inevitably resulted in an increase in

C. Keong Goh et al.

(a)-(e) while a tabulation of their variances is found in Table 3 for each

424

The optimization results from the proposed MOEA are shown in Fig. 8

number of vias used. Hence this supports the use of MOEA to solve this
class of problems.

Interestingly, the optimization managed to optimize benchmark, Yos, to
a single point as shown in Fig. 8(e). The optimized channel solution for
this benchmark has 4 tracks, 67 units of netlength and 1 via. This could
imply that in the case of benchmark Yos specifically, the problem could be
treated as a single objective optimization. While the objectives of the
Channel routing problems may be conflicting in nature, the degree of con-
fliction differs depending on the difficulty of the individual problem and it
is possible to find a single optimal solution in some cases. Yet, there is no
way to find out whether a problem is easy to solve or not before optimiza-
tion is performed.

In the case of benchmark, Yos, suppose four tracks and an infinite num-
ber of layers could be used in the channel. The lower bound for netlength
can be found to be 63 units, while the number of via used is 0. However,
only 2 layers are allowed in this implementation, thus a netlength of 67
units and one via is considered to be very close to the lower bound of 63
units with zero via. As such, it could be almost impossible to find a solu-
tion that required zero via when netlength is increased; or fewer units of
netlength when vias are allowed to increase. This could explain why only
one solution point is obtained by the optimization.

Table 3. Variance values for the simulation results of MOEA2

TEST CASES VIA NETLENGTH

Joo6_12 0 0

Joo6_13 1.7333 7.1111

Joo6_16 0.6222 1.6

Burstein 0.1 0

Yos 0 0

A Multi-Objective Evolutionary Algorithm for CRP 425

0 1 2 3 4 5
70

75

80

85

90

95

100

N
e
tl

e
n
g
th

Via

(a) Joo6_12

0 5 10 15
150

160

170

180

190

200

N
e
tl
e
n
g
th

Via
(b) Joo6_13

1 2 3 4 5 6 7 8 9 10
110

115

120

125

N
e
tl
e
n
g
th

Via
(c) Joo6_16

0 1 2 3 4 5
70

75

80

85

90

95

100

105

110
N

e
tl
e
n
g
th

Via
(d) Burstein

0 1 2 3 4 5
65

70

75

N
e
tl

e
n
g
th

Via
(e) Yos

Fig. 8. Attainment surface of MOEA2 for the various benchmark problems

Channel Update

In order to evaluate the effects of channel update, two different MOEA set-
tings are used in this section. The first setting do not allow channel update
for all subsequent generations after the initial population, though update is
performed before updating the archive of the population. The second set-
ting updates all individuals in the population. Fig. 9 (a)-(e) show the box-

C. Keong Goh et al.426

plots of the best 10 results obtained for each of the benchmarks from 10
separate runs each.

The effects of channel updating are observed to be significant through
experimental runs. It can be observed that in general, results with channel
update outperformed those obtained without channel update, in terms of
minimization of the objectives. Besides that, the comparison of variance of
each objective shows that in general, there is a higher variance for results
obtained without channel update. Hence, this shows that there is less con-
sistency and reliability of performance if channel update is not performed.

It may appear that Channel update will exert exceptionally high pressure
to reduce channel width, resulting in a loss of diversity in the population
and possibly pre-mature convergence of population. However, it can be
observed from the Fig. 8 that this concern is unfounded because less supe-
rior solutions did appear in the final solutions, thus showing that diversity
had not been compromised. The diversity of population might be main-
tained due to the process of reproduction, where mating between a superior
individual and one that is less superior in terms of channel width, may re-
sult in a degradation of the offspring produced and thus preventing the
population from converging to a single solution.

A Multi-Objective Evolutionary Algorithm for CRP 427

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
o
rm

al
is

ed
 P

ar
am

et
er

s

Track

No update No update No updateUpdateUpdateUpdate
Netlength Via

(a)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
o

rm
al

is
ed

 P
ar

am
et

er
s

No updateUpdate No update No updateUpdate Update
Track Netlength Via

(b)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
o

rm
al

is
ed

 P
ar

am
et

er
s

Track

No update No update No updateUpdateUpdateUpdate
Netlength Via

(c)

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
o

rm
al

is
ed

 P
ar

am
et

er
s

Track

No update No update No updateUpdateUpdateUpdate
Netlength Via

(d)

Fig. 9.

4.3 Three-objective Optimization (MOEA3)

The algorithm was tested for its performance in the optimization of 3 ob-
jectives in MOEA3. The plots for the normalized non-dominated solutions
are shown in Fig. 10. In the figures, all three objectives of minimizing
netlength, via and tracks are considered. The normalized value for each of
these objectives belonging to each non-dominated solution is represented
by a node and the nodes representing each solution are linked together by a
black line.

From the graphs, it can be observed that the lines linking via and
netlength crossed one another. This shows that the improvement in the ob-
jective of reducing the number of vias inevitably resulted in an increase in
the netlength. In same way, it is clear that the objective of minimization
the number of vias conflicts with the objective to reduce netlength. How-
ever, the lines linking netlength and track do not cross one another in the
figures. This implies that the objectives to minimize netlength and number
of tracks are non-conflicting in nature. This is logical as fewer tracks used
should reduce the length of wires used as well, unless there are redundant
cyclical connections in the channel. From here, we can deduce that the ob-
jectives of minimizing tracks and netlength are non-conflicting generally.

As the number of tracks and netlength have been shown to be non-
conflicting, it is sufficient to plot the graphs of netlength against via to
show the attainment surface of the benchmarks problems obtained through
the use of MOEA3. The graphs are shown in Fig. 11 (a)-(e). Similarly to
the case of MOEA2, only a single point can be found for benchmark prob-
lem, Yos.

C. Keong Goh et al.

Comparison of performance with and without channel update

428

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

N
o
rm

al
is

ed
 P

ar
am

et
er

s

Track

No update No update No updateUpdateUpdateUpdate
Netlength Via

(e)

Fig. 10. Normalized non-dominated solutions for MOEA3

A Multi-Objective Evolutionary Algorithm for CRP 429

0 1 2 3 4 5
65

70

75

N
e
tl
e
n
g
th

Via
(e) Yos

Fig. 11. Attainment surface of MOEA3 for the various benchmark problems

The non-dominated solutions of both MOEA2 and MOEA3 are listed in
Table 4. The first and second number represents the number of via and
netlength respectively. Comparison on performance for the objectives of
minimizing netlength and via is made to find out if performance of the two
algorithms differs. It is observed that the solutions obtained in both optimi-
zations are comparable. The solutions in MOEA3 do not show much dete-
rioration in the two objectives (via and netlength) comparing to results in
MOEA2. With this, it can be shown that it is possible to extend the pro-
posed algorithm to solve any N-objectives channel routing problems with-
out making any compromise on the solutions obtained.

Table 4. Comparison of non-dominated solutions from MOEA2 and MOEA3

Benchmark MOEA2 MOEA3

Joo6_12 <1, 89>, <2, 76> <1, 88>, <2, 76>

Joo6_13
<2, 182>, <3, 174>, <4, 172>,
<5, 168>, <6, 166>, <7, 165>,
<8, 161>, <9, 159>,<12, 157>

<3, 179>, <4, 173>, <5, 168>,
<7, 161>, <8, 159>, <11, 157>

Joo6_16 <3, 115>, <4, 113>, <6, 111> <3, 115>, <4, 112>, <6, 111>

Burstein <1, 102>, <2, 82>, <3, 72> <1, 92>, <2, 82>, <3, 72>

Yoshimura-Kuh <1, 67> <1, 67>

4.4 Comparison with Best Known Results in the Literature

Comparison of solutions obtained from MOEA2 and MOEA3 have been
made against solutions reported in other researches in Table 5 according to

C. Keong Goh et al.430

the authors’ best knowledge. From the results, it can be seen that the pre-
sent work is able to yield results that are better than the best that has been
known in literature. In fact, for Burstein’s Difficult Channel, the channel
width is reduced to 3, when the best solution found previously needed 4
tracks. As a result of which, a significantly better solution is found for
Burstein’s Difficult Channel.

In addition, it can be observed that the optimal number of vias used by
the present work is significantly reduced for most of the solutions. This
supports the assertion made about the routing algorithm proposed; that it
has the advantage of finding solutions in the search space that would yield
better performance in terms of the number of vias used. This also shows
that in the case of the highly constrained CRP, the importance of the rout-
ing algorithm must not be overlooked as it influences the quality of solu-
tions found.

5 Conclusions

This research has presented a novel approach to solving the channel rout-
ing problem through the use of a Multi-Objective Evolutionary Algorithm
(MOEA). A novel method of random routing has also been proposed to
avoid solutions that are ‘expensive’ in terms of the number of vias used.
The algorithm is tested on five well-known benchmark problems. Analyses
based on channel routing benchmark problems showed that the results ob-
tained from the proposed algorithm are consistent, as variance in the best
results obtained from ten independent runs for each test case is found to be
insignificant. This confirmed the reliability of the proposed algorithm,
which has also been shown to be robust as it is able to solve problems of
varying sizes and difficulties. The results also show that it is possible to
extend the algorithm to solve N-objective channel routing problems.

This work has confirmed the multi-objectivity nature of the channel
routing problem. Comparisons have been made between the best results
obtained for the different benchmark problems with those found in litera-
ture. It has been observed that the solutions obtained from the proposed
approach are very competitive and in some cases significantly better than
others. This suggests that the treatment of CRP as a multiobjective optimi-
zation problem to be solved by MOEA has yielded better results than pre-
vious methods that reduced the problem to single objective optimization.

Since the proposed algorithm is shown to be effective in solving two-
layer channel routing problems (CRP), it can be extended to an N-layer
CRP. An additional objective could be included, such as the minimization

A Multi-Objective Evolutionary Algorithm for CRP 431

of the number of layers used. Besides that, the algorithm can be modified
to allow for pre-routed wires and obstacles, so more practical CRP can be
modeled and solved using the new algorithm. It is believed that the pro-
posed algorithm can also be applied to switchbox routing problems, since
both problems are based on similar geometry, although the switchbox rout-
ing problem consists of more constraints than the CRP.

Table 5. Comparison to the best results found in literature. (*) denotes interactive while
(~) denotes use of parallel GA

BENCHMARK ALGORITHM COL ROWS NETLENGTH VIAS

Monreale [6] 12 4 84 13

Packer [30] 12 4 82 18

Weaver [14] 12 4 79 14

GAP [20] 12 4 79 14

MOEA2 12 4 76 2

Joo6_12

MOEA3 12 4 76 2

Greedy [28] 18 8 194 38

Het-GA [23] 18 6 172 24

Silk [21] 18 6 171 28

Weaver [14] 18 7 169 29

Packer [30] 18 6 167 25

GAP(~) [33] 18 6 164 22

MOEA2 18 6 157 12

Joo6_13

MOEA3 18 6 157 11

Weaver [14] 11 8 131 23 Joo6_16

Weaver(*) 11 7 121 21

C. Keong Goh et al.432

Monreale [6] 11 7 120 19

HGA [9] 11 6 115 16

GAP(~) [18] 11 6 115 15

Het-GA [23] 11 6 115 14

MOEA2 11 6 111 6

MOEA3 11 6 111 6

Mighty 13 4 83 8

Packer [30] 12 4 82 10

Monreale [6] 12 4 82 10

GAP [20] 12 4 82 8

Het-GA [23] 12 4 82 8

MOEA2 12 3 72 3

Burstein s
Difficult
Channel
(Burstein)

MOEA3 12 3 72 3

Yos-Kuh [32] 12 5 75 21

Monreale [6] 12 4 72 11

HGA [9] 12 4 71 12

GAP [20] 12 4 70 11

Weaver [14] 12 4 67 12

MOEA2 12 4 67 1

Yoshimura-
Kuh
Channel
(Yos)

MOEA3 12 4 67 1

References

[1] Burstein, M. (1986). “Channel routing,” in Layout Design and Verification,
Ohtsuki, T. (ed), New York: Elsevier Science.

A Multi-Objective Evolutionary Algorithm for CRP

’

433

[2] Burstein, M. and Pelavin, R. (1983). “Hierarchical wire routing,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, vol. 2, no. 4, pp. 223-234.
[3] Blickle, T. and Thiele, L. (1995). “A mathematical analysis of tournament

selection,” in Proceedings of the 6th International Conference on Genetic

Algorithms, pp. 9-16.
[4] Davidenko, V. N., Kureichik, V. M. and Miagkikh, V. V. (1997). “Genetic

algorithm for restrictive channel routing problem,” in Proceedings of the

7th International Conference on Genetic Algorithms, pp. 636-642.
[5] Fonseca, C. M. and Fleming, P. J. (1993). “Genetic algorithm for multiob-

jective optimization: formulation, discussion and generalization,” in Pro-

ceedings of the 5th International Conference on Genetic Algorithms, pp.
416-423.

[6] Geraci, M., Orlando, P., Sorbello, F. and Vasallo, G. (1991). “A genetic al-
gorithm for the routing of VLSI circuits,” in Proceedings of Euro ASIC91,
pp. 218-223.

[7] Gerez, S. H. and Herrmann, O. E. (1989). “Switchbox routing by stepwise
reshaping,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 8, no. 12, pp. 1350-1361.
[8] Groeneveld, P. (1933). “Necessary and sufficient conditions for the routa-

bility of classical channels,” The Integration, the VLSI Journal, vol. 16, no.
1, pp. 59-74.

[9] Göckel, N., Pudelko, G., Drechsler, R. and Becker, B. (1996). “A hybrid

genetic algorithm for the channel routing problem,” in Proceedings of the

1996 IEEE International Symposium on Circuits and Systems, pp. 675-678.
[10] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and

Machine Learning, Boston: Addison Wesley.
[11] Goldberg, D. E. and Deb, K. (1991). “A comparative analysis of selection

schemes used in genetic algorithms,” in Foundations of Genetic Algo-

rithms, Gregory, J. (ed), pp. 69-93.
[12] Goldberg, D. E. and Richardson, J. (1987). “Genetic algorithms with shar-

ing for multimodal function optimization,” in Proceedings of the 2nd In-

ternational Conference on Genetic Algorithms on Genetic algorithms and

their Application, pp. 41-49.
[13] Hashimoto, A. and Stevens, S. (1971). “Wire routing by optimizing chan-

nel assignment within large apertures,” in Proceedings of the Eight Design

Automation Conference, pages 155-169, ACM/IEEE.
[14] Joobbani, R. (1986). An Artificial Intelligence Approach to VLSI Routing,

Boston: Kluwer Academic Publishers.
[15] Lengauer, T. (1990). Combinatorial Algorithms for Integrated Circuit Lay-

out, New York: John Wiley & Sons.
[16] Leong, H. W., Wong D. F. and Liu, C. L. (1985). “A simulated annealing

channel router,” in Proceeding of IEEE International Conference on CAD,
pp. 226-228.

C. Keong Goh et al.434

[17] Lienig, J. (1997). “A parallel genetic algorithm for performance-driven
VLSI routing,” IEEE Transactions on Evolutionary Computation, vol. 1,
No. 1, pp. 29-39.

[18] Lienig, J. (1997). “Channel and switchbox routing with minimized
crosstalk - a parallel genetic approach,” in Proceedings of the 10th Interna-

[19] Lienig, J. and Thulasiraman, K. (1994). “A new genetic algorithm for the
channel routing problem,” in Proceedings of the 7th International Confer-

ence on VLSI Design, pp. 133-136.
[20] Lienig, J. and Thulasiraman, K. (1994). “A genetic algorithm for channel

routing in VLSI circuits,” Evolutionary Computation, vol. 1, no. 4, pp. 293-
311.

[21] Lin, Y. L., Hsu Y. C. and Tsai F. S. (1989). “SILK: A simulated evolution
router,” IEEE Transactions Computer Aided Design of Integrated Circuits

and Systems, vol. 8, no. 10, pp. 1108-1114.
[22] Mahfoud, S. W. (1995). Niching Methods for Genetic Algorithms, Univer-

sity of Illinois, Urbana-Champaign, PhD thesis.
[23] Masuda, T., Hayashi, Y., Shigchiro, Y. and Inoue, J. (2000). “A VLSI

channel routing method using genetic algorithm based on the coexistence
of heterogeneous populations,” IEE Japan Extended Summary, vol. 120-C,
no. 11.

[24] Prahlada Rao, B. B. and Hansdah, R. C. (1993). “Extended distributed ge-
netic algorithm for channel routing,” in Proceedings of the IEEE Sympo-

sium on Parallel and Distributed Processing, pp. 726-733.
[25] Prahlada Rao, B. B., Patnik, L. M. and Hansdah, R. C. (1995) “An ex-

tended evolutionary programming algorithm for VLSI channel routing”, in
Proceedings of the Fourth Annual Conference on Evolutionary Program-

ming, pp. 521-544.
[26] Prahlada Rao, B. B., Patnaik, L. M. and Hansdah, R. C. (1994). “A genetic

algorithm for channel routing using inter-cluster mutation,” in Proceedings

of the first IEEE International Conference on Evolutionary Computation,
pp. 97-103.

[27] Prahlada Rao, B.B., Patnaik, L. M. and Hansdah, R.C.(1993). “A parallel
genetic algorithm for channel routing problem,” in Proceedings of the

IEEE 3rd Great Lake Symposium on Design Automation of High Perform-

ance VLSI Systems, pp. 69-70.
[28] Rivest, R. L. and Fidducia, C. M. (1982). “A greedy channel router,” in

Proceedings 13th Design Automation Conference, pp. 418-424.
[29] Saymanski, T. G (1985). “Dogleg channel routing is NP-complete, ” IEEE

Transactions on Computer-Aided Design, vol. 4, no. 1, pp. 31-41.
[30] Shin, H. and Sangiovanni-Vincentelli, A. (1987). “A detailed router based

on incremental routing modifications mighty,” IEEE Transactions on

[31] Tan, K. C., Khor, E. F., Lee, T. H. and Sathikannan, R. (2003). “An evolu-
tionary algorithm with advanced goal and priority specification for multi-

A Multi-Objective Evolutionary Algorithm for CRP

tional Conference on VLSI Design, pp. 27-31.

Computer-Aided-Design, vol. 6, no. 6, pp. 942-955.

435

objective optimization,” Journal of Artificial Intelligence Research, vol.
18, pp. 183-215.

[32] Yoshimura T. and Kuh, E. S. (1982). “Efficient algorithms for channel
routing,” IEEE Transactions on Computer Aided Design of Integrated Cir-

cuits and Systems, vol. 1, no.1, pp. 25-35.

C. Keong Goh et al.436

Simultaneous Planning and Scheduling

D.K. Liu and A.K. Kulatunga

ARC Centre of Excellence for Autonomous Systems
Faculty of Engineering, University of Technology, Sydney
POBox 123, Broadway, NSW 2007, Australia, {dkliu, akula}@eng.uts.edu.au

Summary. With the increasing applications of autonomous vehicles in dynamic
and strictly constrained environments such as automated container terminals,
efficient task/resource allocation and motion coordination (i.e., path and speed
planning) of multi-autonomous vehicles has become the critical problem and
have therefore been recently recognized as the key research issues by both aca-
demics and industry. This chapter addresses a generic approach for integration
of task allocation, path planning and collision avoidance, which has so far not
attracted much attention in the academic literature. A Simultaneous Task Allo-
cation and Motion Coordination (STAMC) approach is presented. Two meta-
heuristic algorithms, i.e. simulated annealing and ant colony, and an auction al-
gorithm are investigated and applied. The proposed approach is able to solve
the scheduling, planning and collision avoidance problems simultaneously; im-
prove the usage of bottleneck areas; handle dynamic traffic conditions and
avoid deadlock. Simulation results demonstrated the effectiveness and effi-
ciency of this approach.

1 Introduction

An autonomous vehicle is a driverless system which can derive information
about the environment from its on-board sensors, make decisions based on the
information, and control it to meet the mission requirements. Examples of
autonomous vehicles include automated guided vehicle (AGV) and unmanned
aerial vehicles. AGVs are equipped to navigate a flexible guided path net-
work, either unidirectional or bidirectional. AGVs have been widely used in

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

D.K. Liu and A.K. Kulatunga: Simultaneous Planning and Scheduling for Multi-Autonomous Vehicles,

for Multi-Autonomous Vehicles

Studies in Computational Intelligence (SCI) 49, 437–464 (2007)

material handling since their introduction in 1950s [33], including indoor and
outdoor environments such as manufacturing, distribution, transshipment and
transportation areas.

The significant increases of AGV applications in various areas, the number
of autonomous vehicles employed, the dynamics of traffic conditions and the
constraints in environments have resulted in a considerable increase in the
complexity of autonomous vehicle task allocation and motion coordination
(i.e., path and speed planning and collision avoidance) with the goal of operat-
ing autonomous vehicles efficiently and safely. Planning and scheduling of
autonomous vehicles, including task allocation (also called dispatching), path
and motion planning and collision avoidance, play an important role in im-
proving the productivity, and have therefore been recently recognized as key
research issues in autonomous vehicle systems by both academics and indus-
try [46,39,6].

The problem of AGVs planning and scheduling is to have the correct
AGVs to perform the tasks in the right places and times. Functionally, there
are three activities of AGVs planning and scheduling: task allocation, path
planning and scheduling.

1.1 Task allocation

Task allocation or dispatching refers to a rule used to select a vehicle to per-
form a task, which is usually a continuous and dynamic process as the tasks
and idle vehicles could change instantly. When a request is received to assign
a task to a vehicle, either work-centre-initiated or vehicle-initiated task alloca-
tion [13] can be conducted. In work-centre-initiated task allocation, an AGV
is selected from a set of idle AGVs. Various rules, for example, random vehi-
cle rule, nearest vehicle rule, and least utilized vehicle rule, can be employed
for assigning priorities to AGVs. Some of the task allocation policies in vehi-
cle-initiated approach include shortest travel time/distance rule, maximum
outgoing queue size rule, and modified first-comes-first-served rule [41, 48].
Evaluations on the performance of those rules and policies have been con-
ducted. For example, De Koster, et al. [11] evaluated the performance of sev-
eral real-time vehicle dispatching rules in three different environments,
namely a European distribution centre, a container terminal and a production
site. The vehicle dispatching problem is also studied in combination with
other related optimization problems such as container location assignment in
the storage area [4].

Various algorithms and models have been proposed and studied for task al-
location. Examples include a dynamic deployment algorithm for dispatching
AGVs to containers in order to minimize the (un)loading time for a vessel
[27]; an auction algorithm as a dispatching method for AGVs [28]; a dynamic

D.K. Liu and A.K. Kulatunga438

model for real-time optimization of the flow of flatcars [36] which considers
constraints for assignment of trailers and containers; a mixed integer linear
programming model to dispatch multi-load AGVs [18], etc. Other heuristic
and computational algorithms studied for application in vehicle task allocation
include Markov decision processes, fuzzy logic and neural network ap-
proaches. For real life applications with a large number of vehicles, more re-
search for advanced heuristics and optimization approaches is required [46].

1.2 Path planning

Path planning is the selection of AGV paths with the assigned tasks before
movement commences. For applications in known environments such as road
networks, path planning is usually solved in two steps: (1) build a graph to
represent the geometric structure of an environment and (2) perform a graph
search to find a connected path between the start and destination points based
on certain pre-specified criteria, current traffic situation and availability of the
vehicle. The efficiency of path planning is normally analyzed in terms of dis-
tance traveled or time required to complete the given task(s).

Path planning algorithms have been studied for autonomous vehicles in
partially known environments, examples include D* [42], Delayed D* [15]
and E* algorithm [35]. Meta-based heuristic optimization algorithms have
been studied for applications in path planning, e.g. particle swarm optimiza-
tion (PSO) [37] and genetic algorithm [9].

Finding shortest paths in known and dynamic environments appears to have
diverging approaches. For example, Fu and Rilett investigated the dynamic
and stochastic shortest path problem by modeling link travel time as a con-
tinuous-time stochastic process [16]. By allowing for variation in speed, Horn
presented an algorithm to calculate an approximation of shortest travel time
after studying a number of Dijkstra variant algorithms [19].

The majority of published research on shortest path planning algorithms,
which are often used to find the “best” paths for road vehicles in known envi-
ronments, has dealt with static road networks that have fixed topology and
less constraints. Roadmap approach, which is based on the concepts of con-
figuration space and continuous path, is one of the most common approaches
to vehicle path planning in road networks. Zhan and Noon presented a com-
prehensive study of shortest path algorithms on 21 real road networks from 10
different states in the U.S. [49]. In this study, Dijkstra-based algorithms out-
performed other algorithms in one-to-one or one-to-some fastest path prob-
lems. Husdal reported that the A* algorithm dominates the research literature
for static networks and A* and Dijkstra algorithms are applicable in both
static and dynamic networks [21]. Evolution based algorithms, e.g. genetic al-
gorithms, have also been applied in path planning problems [45, 22, 2].

Planning and Scheduling for Multi-Autonomous Vehicles 439

1.3 Scheduling

Scheduling determines arrival and departure times of AGVs at each path seg-
ment, pick-up and delivery point and intersection to ensure collision free
movement. An AGV’s schedule is generated by combining the paths of all
AGVs into an overall sequence based on certain scheduling rules such as task
priorities. During scheduling, some of the planned path(s) may need to be up-
dated to achieve a conflict-free schedule with a high degree of concurrency in
AGVs movement. Those updates may include changes of vehicle speeds,
paths, start and finish time, etc. Scheduling normally repeats at regular inter-
vals to cope with foreseen and/or unforeseen problems such as the addition of
new tasks, traffic congestion, changes of task priority, etc.

Collision avoidance and deadlock prevention are important issues in
scheduling. Most algorithms for deadlock prevention and collision avoidance
use cyclic [31] or loop based approaches. There are some studies on path to-
pologies in AGV systems [1, 14]. In most cases uni-directional movement of a
vehicle along a path is assumed [31, 32]. The approach proposed in [34] deals
with optimal routing for an AGV to do a job, e.g. moving from one place to
another. However the path segments allocated for an AGV can not be used by
other vehicles until the AGV completes the current job. The effectiveness and
robustness of an incremental path planning approach proposed by [43] were
proved by comparing with the complete path planning method. A Petri net
based deadlock prevention method [20] was proposed for an AGV system.
This approach can not be used for a complex or difficult planning problem
due to its high computational cost.

1.4 Simultaneous approaches

A few research studies have been conducted for integrated scheduling prob-
lems. The problem of integrated scheduling of various types of handling
equipment at an automated container terminal in a dynamic environment was
investigated [30]. In this research, an optimization based Beam Search heuris-
tic and several dispatching rules were presented. An extensive computational
study is carried out to investigate the performance of these solution methods
under different scenarios, with the conclusion that the Beam Search heuristic
performs the best on average, but that some of the relatively simple dispatch-
ing rules perform almost as well. Bish et al. [5] modeled a transportation sys-
tem for container terminals which uses the assumptions of constant vehicle
velocity and uni-directional vehicle movement. An algorithm presented in
[24] does fleet sizing and vehicle routing for container transportation based on
Tabu search method. This algorithm initially starts up with the lower bound of
fleet size and increases it until the criteria are satisfied. The study in [38]

D.K. Liu and A.K. Kulatunga440

gives collision free routing for AGVs in a bi-directional flow path layout. Si-
multaneous machine and AGV scheduling in flexible manufacturing system is
introduced by Ulusoy et al. [44] in order to minimize the makespan. A genetic

lems with a finite horizon such that capacity, parking space and release time
constraints are met. An evolution based algorithm with domain-specific op-
erators is proposed to solve the integrated mission assignment and path plan-
ning problem for multiple unmanned ground vehicles in a dynamic environ-
ment [22].

1.5 Issues and problems

Research on autonomous vehicle planning and scheduling in known environ-
ments such as container terminals has been attempting to provide more realis-
tic and versatile solutions over the last decade. However, the following issues
still remain unresolved:
(1) Planning and scheduling issues are often studied separately. The integra-

tion of task allocation, path planning and motion coordination has not
been studied [46]. This integration forms a very challenging problem. It
is expected that this integration is able to increase the efficiency of plan-
ning and scheduling, and productivity.

(2) Efficient management of congested and bottleneck areas which cause the
most difficulties in planning and scheduling. In a time-dependent dy-
namic environment, considering the limitations on space and vehicle
paths, the planned shortest paths of autonomous vehicles have significant
effect on the path planning of their successors. However, most of the ex-
isting shortest path algorithms plan the shortest paths without considering
the issues of traffic congestion and opposite direction collision in a long
and bi-directional flow path where only one vehicle is allowed to pass
each time. Avoiding congestion, deadlock and delay becomes highly sig-
nificant [46].

(3) Most of the previous studies focus on selection of shortest path for a sin-
gle autonomous vehicle with the consideration of computational cost [8].
Some reported approaches claimed that the variations in speed and time
delays at nodes are allowed, however, those changes in speed and wait-
ing time are normally allowed in the scheduling stage after path planning.
That is to say, the planned paths can not be changed. As a result, the
changes in speed and waiting time can only contribute to the solution in
scheduling. The integration of task allocation, path and motion planning
for a team of autonomous vehicles is expected to provide the optimal or

Planning and Scheduling for Multi-Autonomous Vehicles 441

algorithm is studied for this simultaneous scheduling problem [45]. Hussain
et al. [12] presented a generic approach to modeling integrated scheduling prob-

near optimal solution for the whole system. A generic approach is re-
quired to solve the integrated problem.

(4) How path and motion planning algorithms accommodate dynamic traffic
conditions. Practically, the traffic condition related to the movement of
autonomous vehicles changes from time to time. Some studies have men-
tioned the necessity of link weight change [40]. However, those studies
focus on how the changes of connection weights among nodes affect the
existing planed shortest paths [47], instead of how the planed paths affect
the changes of connection weights and how the changed weights affect
the successive vehicles’ paths and speeds.

To the best of our knowledge, the integration of task allocation, path plan-
ning and motion coordination for multiple autonomous vehicles in dynamic
and strictly constrained environments has not been well studied, and no ge-
neric approach can be used to solve the integrated problem. In this research, a
Simultaneous Path and Motion Planning (SiPaMoP) [29] approach is pre-
sented (Section 2). This generic approach coordinates the motion of multiple
autonomous vehicles in dynamic and strictly constrained environments by
conducting vehicles’ path and speed planning and collision avoidance simul-
taneously, which can efficiently manage congestion and bottleneck areas,
avoid collisions among vehicles and between vehicles and obstacles, handle
dynamic changes in traffic conditions and environments.

 Based on the SiPaMoP approach, a Simultaneous Task Allocation and Mo-
tion Coordination (STAMC) approach is further presented (Section 3). Inte-
gration of task allocation with the SiPaMoP approach provides a way to dis-
patch vehicles by taking path and motion planning into account, and to
maximize the productivity. Two meta-heuristic algorithms, i.e. simulated an-
nealing and ant colony, and an auction algorithm are investigated and applied
in this research. Simulation studies and comparison of the performance of
those three algorithms are conducted. The results demonstrated the effective-
ness and efficiency of those algorithms in simultaneous autonomous vehicle
planning and scheduling.

2 Simultaneous Task Allocation and Motion Coordination

2.1 The architecture of the STAMC

As mentioned above, traditional centralized approaches deal with task alloca-
tion, path planning, motion planning and collision avoidance separately as
shown in Fig.1. The proposed simultaneous approach, i.e. STAMC shown in
Fig.2, allocates tasks to vehicles by integrating vehicle path and motion plan-

D.K. Liu and A.K. Kulatunga442

ning and collision avoidance into one stage. Dynamic traffic conditions and
environment changes are taken into account with the mission and commands
in the stage.

The task allocation problem for multiple autonomous vehicles consists of a
certain multiple vehicles (Nv) and a number of tasks (NJ) to be carried out by
the vehicles. Solving such a problem amounts to making discrete choices such
that an optimal solution is found among a finite or a countable number of al-
ternatives. This problem is proved to be a NP hard combinatorial optimization
problem in that it is difficult to find an optimal solution without use of an es-
sentially enumerative algorithm, and that computational time increases expo-
nentially with the problem size. This problem becomes more difficult to solve
when a large number of vehicles are used in dynamic and strictly constrained
environments. Many algorithms have been investigated to solve the problem.
A simulated annealing (SA) algorithm has been proved as one of the algo-
rithms [25, 26].

The objective of vehicle task allocation and motion coordination is to
minimize the maximum travel time of vehicles (makespan), or the total travel
time of all vehicles (vehicle utilization):

v s

s

v

N

v

B

i

is

B

i

is
Ns

tTT

ortMS

1 1
,

1
,

,...,2,1

.min

max.min

where, MS represents makespan, TT is the total travel time of all vehicles and
Nv is the total number of vehicles. ts,i is the travel time of vehicle s performing
task i, which is formulated in Section 2.2. Bs is the number of tasks allocated
to vehicle s, which should satisfy:

Planning and Scheduling for Multi-Autonomous Vehicles

Fig. 1. Traditional sequential approach Fig. 2. STAMC approach

(1)

443

Task allocation/mission planning

Mission Commands

Scheduling and collision

avoidance

tasks

static environment

Vehicle control

Task allocation, path

and motion planning

and collision avoid-

ance (STAMC)

Mission Commands

Path & speed

static environment

 and dynamic traf-

fic changes

Vehicle control

SiPaMoP

Path planning

J

N

s

s NB
v

1

Eq. (2) implies that the allocated tasks to all vehicles should be equal to the
total number of tasks, NJ. Other constraints are task, vehicle and environ-
mental condition dependant, mainly including a task’s start time and comple-
tion time, requirement of safety distance between vehicles, node condition
(staticly locked nodes or dynamicly locked nodes), vehicle maximum speed
and capacity, task priority, etc.

2.2 Motion coordination

Motion coordination of multiple autonomous vehicles is conducted by the Si-
multaneous Path and Motion Planning (SiPaMoP) method [29]. The SiPaMoP
is used as a module in the proposed STAMC approach (Fig.2), which coordi-
nates vehicles’ motion (path and speed) and avoids collision simultaneously
with the objective of minimizing the travel time of vehicles and avoiding col-
lisions with static and moving obstacles in a dynamic and strictly constrained
environment. A vehicle’s path and motion are designed as:

],...,,[:
,,2,1,, isksssis pppP : path segments of vehicle s for performing task i.

The length of a path segment, ps,j is Ss,j. The time for vehicle s to perform task
i is defined as:

unloadloadv

k

j

wv

k

j js

js

is ttt
v

S
t

js

is

js

is

0
1

0
1 ,

,
, ,

,

,

,

where, tw represents waiting time, tload is the loading time and tunload the
unloading time.],...,,[:

,,2,1,, isksssis vvvV is the average speed of vehicle s from
the first path segment to the last link ks,i in the path for performing task i.

Based on the tasks allocated, changes in the environment and the location
of static and moving obstacles, the SiPaMoP approach generates the path Ps,i

and speed Vs,i simultaneously for each vehicle s (s=1, 2,…, Nv) by minimizing

Assume nodes i, j and k are nodes connected serially from node i, j and then
to k, and the weight for each connection, for example, connection between
nodes i and j, is the travel time for a vehicle at the given speed or allowed
maximum speed. While planning a path and speed for a vehicle to undertake a
task, the SiPaMoP method will change the connection weight (travel time) be-
tween nodes i and j in the way of:

D.K. Liu and A.K. Kulatunga

below.
the operational time for a set of tasks. The SiPaMoP method is described

(2)

(3)

444

www ji

d

ji ,, (4)

where jiw , is the connection weight which is equivalent to the travel time be-

tween these two nodes; d

jiw , is the new connection weight between nodes i
and j. w is a parameter determined by

otherwise

freeisnodeif0

TT
w

j
 (5)

where, T is the time difference between two relevant vehicles when they ap-
proach the same node j, T is the minimal time difference between two ve-
hicles according to safety requirements.

For example, as shown in Fig.3, vehicle V1 is traveling from node d to a
via intermediate nodes c, j and b. The SiPaMoP algorithm is planning vehicle
V2’s path from node h to node l, and finds that V1 and V2 will pass the same
node j within T . So the algorithm will automatically change the connec-
tion weight between node i and node j by letting TTww ji

d

ji ,, . As a
result of this weight increase between nodes i and j, V2 will either change its
path, for example, travel from h to l via i, b (or c) and k, or reduce its travel
speed from i to j to allow V1 to pass node j safely. This change in connection
weight will automatically be removed after V2 leaves node j towards node k,
which allows other vehicles passing the link without a change in speed if there
is no collision in this link.

This dynamic change of connection weight between nodes i and j can also
solve the collision problem in the case that V1’s path is from node d to l via c,
j and k, and V2 travels from node h to l. In this case, V2 will pass node j after
V1 with a minimum time difference of T .

The search mechanism of the SiPaMoP is based on the Dijkstra algorithm.
Other search mechanism such as A* can be easily adapted. By changing the
connection weight, the SiPaMoP method is able to vary the coming vehicle’s
path and/or speed in one of the following three ways depending which one
gives the least travel time:

(1) Changing a vehicle’s travel speed: this way keeps the same path as that
planned without weight change but changes the vehicle’s travel speed from
node i to node j. As we assume the paths planned previously have higher pri-
ority than the current path being planned, and vehicles are running with their
maximum speed when there is no collision on their path, the change in weight
will only slow down the coming vehicle.

(2) Waiting until other vehicles passing node j. This happens normally in
the bottleneck areas.

Planning and Scheduling for Multi-Autonomous Vehicles 445

(3) Taking an alternative path if this path takes the vehicle less travel time;

2.3 Simulation studies on the SiPaMoP

The indoor environment shown in Fig.4 is mapped as a bi-directional flow
path network with 186 nodes and a number of links. The crosses (x) in the
map represent the nodes where vehicles can access. The lines are the connec-
tions among nodes and represent possible paths vehicles have to follow. An
autonomous vehicle is supposed to move from node to node following the link
between nodes. It can be seen from the map that there are several bottleneck
areas which affect the system productivity significantly. Traffic congestion is
unavoidable in these areas. This situation becomes worse when more autono-
mous vehicles are employed. The management of these areas is a crucial issue
in path and motion planning for a team of vehicles.

Four case studies are conducted below to demonstrate the performance of
the SiPaMoP method under the assumptions of that all transportation demands
with origin and destination are known; vehicle V1 is planned first, then vehi-
cle V2; no target time applies to the transportation order; and all changes of
traffic condition and the environment are known.

Case 1. Two vehicles collide and one changes its travel speed. In this case,
vehicle V1’s task is to travel from node 88 to node 55, and vehicle V2 from
node 68 to node 107. The paths for the two vehicles are first planned by ap-
plying Dijkstra algorithm independently without considering other vehicles,
which means that the two paths obtained may not be collision free. The
planned paths are: V1 starts from node 88 to node 55 via node 69, and V2
starts from node 68 to 107 via nodes 69, 88 and 109 (Fig.5a and Table 1).
Those two vehicles collide at node 69.

D.K. Liu and A.K. Kulatunga

Fig. 3. A bidirectional path network

446

h

V1

tcj

a

b

c

l j k

d

i

V2

By applying the proposed SiPaMoP method to plan the two vehicles’ paths,
the two vehicles have the same paths (Fig.5b) as those obtained by Dijkstra
algorithm, but the collision is avoided in the planning stage by slowing down
V2 when it travels from nodes 68 to 69. After V1 leaves node 69, V2 resumes
its speed to the normal value. The total travel time of V1, 7.4 (unit time), does
not change, but V2 increases its travel time to 25.2 (unit time) from 20.2 (unit
time) which is increased by 5 (unit time) (Table 1).

(left), (b) Paths obtained by the SiPaMoP approach (right)

Planning and Scheduling for Multi-Autonomous Vehicles

Fig. 4. An indoor environment (left) and its path network (right) (Unit: cm)

Fig. 5. Case 1: vehicles V1 and V2 collide at node 69. (a) Paths obtained by Dijkstra approach

447

0 200 400 600 800 1000 1200

400

500

600

700

800

900

1000

1100

1200

1300

1400

88

69

55

68 69

88

109108107

V1 and V2 collide at node 69

V1V2

0 200 400 600 800 1000 1200

400

500

600

700

800

900

1000

1100

1200

1300

88

69

55

68 69

88

109108107

V1V2

V2 slows down until V1
passes node 69 towards
node 55

Table 1. Case 1: changing vehicle travel speed: paths and travel time (unit time)

Case 2. Two vehicles collide and one changes its path. In this case, vehicle
V1’s task is to travel from node 3 to node 89, and vehicle V2 from node 112
to node 38. Similar to Case 1, the paths for the two vehicles are first planned
by applying Dijkstra algorithm. As shown in Fig.6a and Table 2, the path of
V1 starts from node 3 to node 89 via nodes 4, 21, 37, 57 and 71, and the path
of V2 starts from node 112 to 38 via nodes 90, 71, 57 and 37. The two vehi-
cles collide between nodes 37 and 57.

With the application of the proposed SiPaMoP method, vehicle V1 does not
change its path and travel speed (Fig.6b), but the collision is avoided in the
planning stage by changing V2’s path between nodes 112 and 57 (Fig.6b). V2
does not change its speed. With this change of path, V2 travels a longer path
than the one obtained by Dijkstra algorithm in order to avoid the collision
with V1. As a result, V2’s travel time increases from 18.3 (unit time) to 35
(unit time) (Table 2). The change in path, in this case, is better than changing
speed because the two vehicles collide in a bottleneck area and V2 needs to
wait at least 18 (unit time) (the travel time of V1 from node 21 to node 71
plus the safety distance between the two vehicles).

by the SiPaMoP approach (right)

Vehicle 1 Vehicle 2
 Dijkstra only SiPaMoP Dijkstra only SiPaMoP

St
ar

t
no

de

E
nd

no

de

N
od

e
tim

e
T

ot
al

tim

e
St

ar
t

no
de

E

nd

N
od

e
N

od
e

tim
e

T
ot

al

tim
e

St
ar

t
no

de

E
nd

no

de

N
od

e
tim

e
T

ot
al

tim

e
St

ar
t

no
de

E

nd

no
de

N

od
e

tim
e

T
ot

al

tim
e

88 69 4.4 4.4 88 69 4.4 4.4 68 69 4.4 4.4 68 69 9.4 9.4

69 55 3.0 7.4 69 55 3.0 7.4 69 88 4.4 8.8 69 88 4.4 13.8
 88 109 4.6 13.4 88 109 4.6 18.4
 109 108 4.4 17.8 109 108 4.4 22.8
 108 107 2.4 20.2 108 107 2.4 25.2

D.K. Liu and A.K. Kulatunga

Fig. 6. Case 2: changing path: (a) Paths obtained by Dijkstra approach (left); (b) Paths obtained

448

0 500 1000 1500 2000 2500

400

600

800

1000

1200

1400

1600

1800

3 4

21

37

57

71

89

112

90

71

57

37 38

V1

V2

V1 and V2 collide at bottleneck
nodes 37 and 57

0 500 1000 1500 2000 2500

400

600

800

1000

1200

1400

1600

1800

3 4

21

37

57

71

89

112 113 114

93

74

595857

37 38

V2

V1

V1 passes bottleneck nodes 37 and 57
V2 changes its path

Table 2. Case 2: changing path: paths and travel time (unit time)

Vehicle 1 Vehicle 2
 Dijkstra only SiPaMoP Dijkstra only SiPaMoP

St
ar

t
no

de

E
nd

no

de

N
od

e
tim

e
T

ot
al

tim

e
St

ar
t

no
de

E

nd

no
de

N

od
e

tim
e

T
ot

al

tim
e

St
ar

t
no

de

E
nd

no

de

N
od

e
tim

e
T

ot
al

tim

e
St

ar
t

no
de

E

nd

no
de

N

od
e

tim
e

T
ot

al

tim
e

3 4 2.2 2.2 3 4 2.2 2.2 112 90 4.5 4.5 112 113 4.8 4.8
4 21 3.8 6.0 4 21 3.8 6.0 90 71 3.0 7.5 113 114 2.8 7.6
21 37 3.0 9.0 21 37 3.0 9.0 71 57 3.4 11.0 114 93 4.0 11.6
37 57 5.4 14.4 37 57 5.4 14.4 57 37 5.4 16.3 93 74 3.0 14.6
57 71 3.4 17.8 57 71 3.4 17.8 37 38 2.0 18.3 74 59 3.4 18.0
71 89 3.7 21.6 71 89 3.7 21.6 59 58 4.6 22.6

 58 57 5.0 27.6
 57 37 5.4 33.0
 37 38 2.0 35.0

Case 3. Two vehicles collide and one vehicle waits until the other passes
safely. In Case 3, vehicle V1 travels from node 50 to node 18, and vehicle V2
from node 35 to node 48. The paths for the two vehicles obtained by applying
Dijkstra algorithm are: V1 starts from node 50 to node 18 via node 34 and V2
starts from node 35 to 48 via nodes 34, 33, 54 and 49. Those two vehicles col-
lide at node 34 (Fig.7a and Table 3). By applying the proposed SiPaMoP
method, vehicle V1 and V2 do not change their paths and travel speeds
(Fig.7b), but V2 delays its travel by 4.2 (unit time) in order to avoid a colli-
sion with V1. With this extra waiting time, V2’s travel time increases from
20.7 (unit time) to 24.9 (unit time) (Table 3). In this case, waiting at V2’s start
node is better than decreasing V2’s speed because of the requirement of safety
distance between the two vehicles.

SiPaMoP approach (right)

Planning and Scheduling for Multi-Autonomous Vehicles

Fig. 7. Case 3: waiting: (a) Paths obtained by Dijkstra approach (left); (b) Paths obtained by the

449

2600 2800 3000 3200 3400 3600 3800 4000

1100

1200

1300

1400

1500

1600

1700

1800

50

34

18

353433

5449

48

V2

V1

V1 and V2 collide at node 34

2600 2800 3000 3200 3400 3600 3800 4000

1100

1200

1300

1400

1500

1600

1700

1800

50

34

18

353433

5449

48

V2
V1

V2 delays its start time

Table 3. Case 3: waiting: paths and travel time (unit time)

Vehicle 1 Vehicle 2
 Dijkstra only SiPaMoP Dijkstra only SiPaMoP

St
ar

t
no

de

E
nd

no

de

N
od

e
tim

e
T

ot
al

tim

e
St

ar
t

no
de

E

nd

no
de

N

od
e

tim
e

T
ot

al

tim
e

St
ar

t
no

de

E
nd

no

de

N
od

e
tim

e
T

ot
al

tim

e
St

ar
t

no
de

E

nd

no
de

N

od
e

tim
e

T
ot

al

tim
e

50 34 3.2 3.2 50 34 3.2 3.2 35 34 5.0 5.0 35 34 8.8 9.2

34 18 3.8 7.0 34 18 3.8 7.0 34 33 5.0 10.0 34 33 5.0 14.2
 33 54 4.8 14.8 33 54 4.8 19.0
 54 49 2.4 17.2 54 49 2.4 21.4
 49 48 3.5 20.7 49 48 3.5 24.9

Case 4 . 13 tasks and four vehicles. This case study is to show the scalabil-

ity and efficiency of the SiPaMoP approach in complex applications. There
are 13 tasks allocated to four vehicles with vehicle V1 allocated four tasks and
each of the other three vehicles allocated three tasks (Table 4). The vehicles’
current positions and tasks’ start positions and destinations are also listed in
Table 4. Except for that the first four tasks start from time zero, all other tasks
start immediately after their predecessor tasks [39].

Table 4. Case 4: 13 tasks and four vehicles

Vehicle
Vehicle cur-
rent position

Task No
Start
node

Destina-
tion node

Start
time

V1 176 1 176 56 0
V2 3 2 3 172 0
V3 135 3 135 25 0
V4 143 4 143 74 0
V1 56 5 56 174 19.18
V2 172 6 172 20 60.20
V3 25 7 25 53 21.61
V4 74 8 74 18 36.59
V1 174 9 174 142 45.91
V2 20 10 20 68 94.72
V3 53 11 53 170 48.46
V4 18 12 18 20 84.71
V1 142 13 142 2 92.39

For the purpose of comparison, Dijkstra algorithm is applied to plan the

paths for the four vehicles undertaking their allocated tasks, but without con-
sideration of collisions. Those paths obtained by Dijkstra algorithm are not
collision free, but the makespan obtained for completing all the tasks is 151.8
(unit time) which should be the ideal target for the SiPaMoP method. The
closer the makespan obtained by SiPaMoP to the target time, the better the
SiPaMoP’s performance. When the SiPaMoP method is applied, all the colli-

D.K. Liu and A.K. Kulatunga450

sions are avoided in three ways (i.e. changes in path, travel speed or waiting)
automatically in the planning stage depending on which one can reduce the
completion time of all tasks. The makespan obtained by SiPaMoP method is
158.6 (unit time) which is very close to the target value of 151.8 (unit time).

Planning and Scheduling for Multi-Autonomous Vehicles

Fig. 8. Flow chart of the SA based STAMC approach

451

Input

Task sequence generator

Task-vehicle pair selection SiPaMoP

Are all tasks

selected?

Makespan (MS)

calculation

MS<MSbest?

MS and paths

update

Temp=Temp*CR

Are end

conditions

met?

Output

Generation of a

random number r

Temp

accept eP /∆−=

Paccept < r ?

N

Y

Y

N

Y

N

N

Y

SA Module

3 Simulated Annealing, Ant Colony and Auction Algorithms
based STAMC

The SiPaMoP discussed above is a component in the simultaneous task allo-
cation and motion coordination approach and is called by the task allocation
module as shown in Fig.2. In this section, two meta-heuristic algorithms, i.e.
simulated annealing and ant colony, and an auction algorithm are investigated
for task allocation in the STAMC approach. Simulation studies and compari-
sons among those three algorithms are presented below.

3.1 Simulated annealing algorithm based STAMC

Simulated Annealing (SA) algorithm was first used for combinatorial optimi-
zation problem by Kirkpatrick et al. [23]. This algorithm has proven its ability
to find near optimal solutions to many NP-hard combinatorial optimization
problems such as the travel salesman problem, graph partitioning, quadratic
assignment and scheduling problems, etc.

The simulated annealing algorithm accepts not only solutions with im-
proved cost, but to a limited extent the solutions with deteriorated cost. This
feature gives the algorithm hill climbing capability and the ability to avoid be-
ing trapped in the local optimum. Initially the probability of accepting inferior
solutions is large. This probability is then reduced with the search process
proceeding. SA is effective, robust and relatively easy to implement for opti-
mization problems.

There are several factors to be considered with the application of SA: a
concise description of a task allocation problem, a quantitative objective func-
tion and an annealing schedule of temperatures.

In the application of SA to autonomous vehicle task allocation, the
makespan (MS) of a number of tasks, i.e. the maximum travel time among all
vehicles, is the objective function to be minimized in the SA based task allo-
cation module. The SA algorithm compares the current makespan (MS) with
the best value obtained so far (MSbest). If the current MS is less than MSbest

then the current MS is accepted, otherwise a random number r (0<r<1) is gen-
erated and the accepting probability (Paccept) is calculated:

Paccept= e – /Temp (6)

where, is the difference between MS and MSbest and Temp is the current
temperature of the annealing process. Next step is to reduce the annealing
temperature by multiplying the Temp with the cooling rate (CR) set initially.
In most cases CR is close to 1. In this research, we use the combination of
minimum annealing temperature and the number of annealing cycles (j) as the
convergence criteria. Fig.8 shows the flow chart of the SA based STAMC.

D.K. Liu and A.K. Kulatunga452

In the STAMC approach, the SA algorithm and SiPaMoP method conduct
task allocation and collision free path and motion planning simultaneously.
Task allocation is to find the tasks-vehicle pairs in an order such that the
makespan of all available tasks is minimized. The makespan changes with dif-
ferent task orders. In the task-vehicle pair selection, the SiPaMoP module is
called for each pair in order to calculate collision free shortest path from the
vehicle present node to the task start node and to task destination node. After
all the tasks are allocated, the SA decides whether to accept the allocation or
not. If yes, this allocation is the best so far. This allocation process continues
until the stop criteria are satisfied.

In the case study below, assuming there are 8 tasks (8T) and 4 vehicles
(4V) running in the environment shown in Fig.4. The 8 tasks, including their
start and destination nodes, are listed in Table 5, and the 4 vehicles’ start posi-
tions are listed in Table 6. All the tasks are assumed to have equal priority.
Task allocation process starts with randomly selected task allocation se-
quence. Values of the SA parameters in this case study are: start temperature

0

Table 5. Eight tasks’ start and destination nodes

Task No Start node Destination node
1 177 153
2 43 83
3 113 115
4 91 148
5 166 172
6 142 138
7 85 33
8 4 76

Table 6. Four vehicles’ initial positions

Vehicle No Start node
1 174
2 171
3 77
4 167

The simulation results of task allocation obtained by the proposed SA

based STAMC method are listed in Table 7 and Fig.9. For the 8T-4V prob-
lem, vehicle V1 is assigned to tasks 4 and 5, V2 task 7, V3 tasks 3, 6 and 2,
and V4 tasks 1 and 8. The Gantt chart of the allocated task-vehicle pairs are
shown in Fig.9. The planning order or the priority order of the 8 tasks is fi-
nally determined to be 1, 7, 3, 6, 4, 5, 2 and 8, which results in the makespan

Planning and Scheduling for Multi-Autonomous Vehicles 453

=100, cooling rate CR = 0.9 and stop temperature T = 1.

of 45.96 (unit time). The processing time of each task is also listed in the last
column in Table 7.

Table 7. Simulation results obtained by SA based STAMC method

Task No
Start
node

Destination
node

Allocated
 vehicle

Planning
order

Processing
time (unit time)

1 177 153 V4 1 15.02
7 85 33 V2 2 45.34
3 113 115 V3 3 10.90
6 142 138 V3 4 15.30
4 91 148 V1 5 19.62
5 166 172 V1 6 12.26
2 43 83 V3 7 19.49
8 4 76 V4 8 30.94

3.2 Ant colony algorithm based STAMC

Ant colony algorithms were inspired by the observation of real ant colonies.
Ants are social insects that live in colonies and whose behavior is directed
more to the survival of the colony as a whole. An important and interesting
behavior of ant colonies is their foraging behavior, and, in particular, how ants
can find the shortest paths between food sources and their nest. These behav-
iors are modeled mathematically as a meta-heuristic algorithm where artificial
ants update pheromones while traveling.

Ant colony algorithms were proposed by Colorni et al [10] as a multi-agent
approach to solve difficult combinatorial optimization problems such as the
traveling salesman problem and the quadratic assignment problem. There is

D.K. Liu and A.K. Kulatunga

Fig. 9. Task allocation results obtained from SA based STAMC approach

454

Task 4

Task 3

task 7

task1 Task 8

Task 5

Task 6 Task 2

0 10 20 30 40 50 60

1

2

3

4

V
e
h

ic
le

s

Makespan/(Time units)

1st task

2nd task

3rd task

currently ongoing activity in the scientific community to extend and apply
ant-based algorithms to many different discrete optimization problems.

When an ant algorithm is applied to task allocation for multi-autonomous
vehicles, an ant represents a vehicle and starts from its start node (depot). The
first task of each ant is allocated randomly, then each ant selects the next task
from the available task list until all tasks are selected. Each ant’s total travel
time is calculated based on its selected tasks, planned routes and travel speeds.
The maximum traveling time out of all the ants is the makespan (MS).

For the selection of tasks that are not yet allocated, two aspects should be
taken into account: how good the previous task-vehicle pairs are and how
promising the next task selection is in general. The first information is stored
in the pheromone trails ij associated with each task-vehicle pare, whereas the
second is the heuristic function. The measure of desirability, called visibility,
is denoted by ij .

In an ant colony optimization algorithm (ACO), each ant selects its next
task based on the probability of selection. The probability distribution pij is
calculated by:

() ()

() ()
l

ij ij

ij

iu iu

u T

p

(7)

where ij is equal to the amount of pheromone of selecting task j after task i.
The value of ij is defined as the inverse of the complete traveling time which
is the sum of the transient time for the vehicle from its current position to the
start node of the task, and the task processing time (vehicle travel time from
the task start node to end node). The probability distribution is biased by pa-
rameters and that determine the relative influence of the trails and the
visibility, respectively. Allocated tasks are removed from the task list Tl.

In order to improve the solutions, the pheromone trails of ants must be up-
dated to reflect the ants’ performance and the quality of the solutions found.
This update is a key element to the adaptive learning technique of ACO and
helps in improving the subsequent solutions. The update is conducted by re-
ducing the amount of pheromone elements in the pheromone table of each
task-ant combination in order to simulate the natural evaporation of phero-
mone and to ensure that no one task-vehicle combination becomes dominant.
This is done by the following equation:

0(1)ij ij (8)

Planning and Scheduling for Multi-Autonomous Vehicles 455

where is a parameter that controls the speed of evaporation and 0 is the
initial pheromone value. In our algorithm 0 is the inverse of the completed
tour cost (travel time) of each ant.

The probability calculations are based on travel time instead of travel dis-
tance used in other applications such as TSP problems. The travel time comes
from the SiPaMoP module. Each ant calculates the probability to select the

selected. Each ant selects one task at a time until all the tasks in the task list
are selected. After all tasks are allocated, the makespan can be calculated and
the best makespan so far can be updated accordingly. This process repeats un-
til the fixed number of cycles is reached.

The simulation example in Section 3.1 is also used in the ACO based

listed in Table 8 and Fig.10. For the 8T-4V problem, vehicle V1 is assigned to
tasks 2 and 6, V2 to tasks 1 and 8, V3 to tasks 3 and 4, and V4 to tasks 5 and
7. The Gantt chart of the allocated task-vehicle pairs are shown in Fig.10. The
planning order or the priority order of the 8 tasks is finally determined as 2, 1,
3, 5, 6, 8, 4 and 7. The processing time of each task is also listed in the last
column in Table 8. The makespan obtained from this ACO based approach is
59.94 (unit time) which is the completion time of V4.

Table 8. Simulation results obtained by ACO based STAMC method

Task No
Start
node

Destination
node

Allocated
vehicle

Planning
order

Processing
time (unit time)

2 43 83 V1 1 37.48
1 177 153 V2 2 19.66
3 113 115 V3 3 10.90
5 166 172 V4 4 14.32
6 142 138 V1 5 10.25
8 4 76 V2 6 30.94
4 91 148 V3 7 16.44
7 85 33 V4 8 45.62

D.K. Liu and A.K. Kulatunga

next task based on Eq. (7). The task, which gives highest probability, will be

456

STAMC. Values of the ACO parameters in this case study are: = 3, = 5,
= 0.7. The simulation results of task allocation by the ACO based method are

3.3 Auction algorithm based STAMC

An Auction algorithm (AA), which is derived from a typical auction process
has been used in many applications such as assignment, transportation, short-

For task allocation process in the STAMC approach, an adapted version of the
auction algorithm, called first cycle auction process is used due to its ability to
produce results quickly.

The main steps of the auction based simultaneous task allocation and path
and motion planning algorithm are: (1) initially, the task sequence is gener-
ated randomly by the task generator; (2) The first task is broadcast to all
autonomous vehicles to allow everyone to place a bid for the task; (3) After
every vehicle has offered a bid, a winner is determined and allocated the task;
(4) The second task is then broadcast, followed by bidding from vehicles and
selecting winner. This auction process continues until all tasks are allocated.

For every vehicle, the calculation of a bid is based on the travel time to
complete the current broadcast task and any previously allocated (as the win-
ner) tasks. Once the travel time has been calculated it is used to post a bid
(e.g. B1,j to Bi,j in Fig. 11). The traveling time and collision free paths are ob-
tained using the SiPaMoP algorithm. A winner is then determined based on
the lowest travel time to perform the task. In the completion time calculation
for an autonomous vehicle, previous task commitments of this vehicle are also
considered. This will balance the load of vehicles. For example, if a previous
task is allocated to a particular vehicle, then there will be fewer tendencies for
the same vehicle to win the next task. In addition, load balancing of the vehi-
cles can be achieved partially. After all tasks of the current task sequence are
allocated, the makespan is calculated. This process continues for a fixed num-
ber of cycles with a different task sequence generated randomly in each cycle.

Planning and Scheduling for Multi-Autonomous Vehicles

Fig. 10. Task allocation results obtained from ACO based approach

457

est path search problems and recently for mobile robots applications [3, 7, 17].

The best task sequence is then determined, which provides the minimum
makespan.

Task No
Start
node

Destination
node

Allocated
vehicle

Planning
order

Processing time
(unit time)

8 4 76 V1 1 35.37
7 85 33 V2 2 45.34
3 113 115 V3 3 10.90
1 177 153 V4 4 15.02
2 43 83 V3 5 23.42
4 91 148 V4 6 15.04
5 166 172 V5 7 12.26
6 142 138 V3 8 10.25

Fig. 12. Task allocation results obtained from AA based approach

The simulation example in Section 3.1 is also used in the simulation study
of the AA based STAMC. The simulation results of task allocation by the AA

D.K. Liu and A.K. Kulatunga

Fig. 11. Auction Process

Table 9. Simulation results obtained by AA based STAMC method

458

based method are listed in Table 9 and Fig.12. For the 8T-4V problem, vehi-
cle V1 is assigned to task 8, V2 to task 7, V3 to tasks 3, 2 and 6, and V4 tasks
1, 4 and 5. The Gantt chart of the allocated task-vehicle pairs are shown in
Fig.12. The planning order of the 8 tasks is optimized as 8, 7, 3, 1, 2, 4, 5 and
6. The processing time of each task is also listed in the last column in Table 9.
The makespan obtained from this AA based approach is 45.34 (unit time)
which is the completion time of vehicle V2.

3.4 Comparison and discussion

In the STAMC approach studied above, task allocation is based on three algo-
rithms namely ant colony optimization (ACO), simulated Annealing (SA) and
auction Algorithm (AA). The three algorithms were applied for the same
simulation case, i.e. 8 tasks and 4 vehicles. The same parameter values are
used in this simulation. It can be seen from the discussions above that the task
allocation results are different, but their makespans are similar (Table 10).
The makespans obtained from SA and AA are 45.96 (unit time) and 45.34
(unit time), respectively, but the one from ACO is 59.94 (unit time) which is

total travel time of all 4 vehicles for performing the 8 tasks) are also given in
Table 10. Vehicle utilization in SA based STAMC (168.87 (unit time)) is very
close to that of the AA base approach (167.6 (unit time)), the ACO based ap-
proach results in more vehicle utilization (185.6 (unit time)).

Table 10. Comparison of Makespans and vehicle utilization of the three methods (unit time)

Parameter Approach
 SA ACO AA

Makespan (unit time) 45.96 59.94 45.34
Vehicle utilization (unit time) 168.87 185.60 167.60

Since a task processing time includes two components, namely the travel

time from a vehicle’s initial node to a task’s start node and the time taken
from the task start node to its destination node, task processing time varies
even if the same task is allocated to different vehicles. This is clearly visible
from task 8, where SA and ACO methods take approximately 30 (unit time) to
process it and AA method takes 35 (unit time) to process the same task. In ad-
dition to this, the processing time of the same task can also change when the
vehicle performs it at different time due to traffic congestion.

In order to extensively test the performance of the proposed STAMC
method for multi-autonomous vehicle task allocation and motion coordina-
tion, more simulation studies are conducted and the results are shown in Table

Planning and Scheduling for Multi-Autonomous Vehicles 459

about 4 (unit time) more than the other two. The vehicle utilizations (i.e. the

11. Two task-vehicle pairs, i.e. 20 tasks and 5 vehicles (20T-5V) and 40 tasks

and 10 vehicles (40T-10V), are used. In each task-vehicle pair, there are six
cases, each case has different tasks and vehicle positions. The number of runs
of each algorithm for each task-vehicle pair is given in the second column of
Table 11. Out of the makespans calculated in all the runs in each case of each
pair, the minimum value is selected as the makespan for the given task-
vehicle-case. It can be seen from Table 11 that the proposed STAMC is scal-
able and the makespans obtained from the three algorithms are similar.

Table 11. Makespan comparisons of ACO, SA and AA methods

Tasks-Vehicles No. of runs ACO SA AA
20T-5V-case 1 400 130.1 124.0 125.7
20T-5V-case 2 400 107.3 112.6 108.7
20T-5V-case 3 400 137.8 141.1 141.1
20T-5V-case 4 400 118.8 112.6 106.1
20T-5V-case 5 400 94.4 95.2 89.5
20T-5V-case 6 400 110.4 105.2 105.6

40T-10V-case 1 200 108.3 105.4 100.0
40T-10V-case 2 200 119.0 109.4 107.0
40T-10V-case 3 200 121.1 127.4 112.0
40T-10V-case 4 200 133.3 115.5 116.0
40T-10V-case 5 200 124.1 119.7 115.0
40T-10V-case 6 200 125.3 107.6 110.0

4 Conclusions and Remarks

In this research, a simultaneous path and motion planning (SiPaMoP) method
is first presented for multi-autonomous vehicle collision-free path and motion
planning. This method is demonstrated to be able to efficiently coordinate the
motion of multiple autonomous vehicles in strictly constrained environments
by conducting vehicle path and motion planning and collision avoidance si-
multaneously. It can also efficiently manage congestion and bottleneck areas,
avoid collisions and handle dynamic changes in traffic conditions and envi-
ronments.

 A simultaneous task allocation and motion coordination (STAMC) ap-
proach is then studied. Integration of task allocation with the SiPaMoP
method provides a way to dispatch vehicles by taking collision-free path and
motion planning into account. Two metaheuristic algorithms, i.e. simulated
annealing and ant colony, and an auction algorithm are investigated for task
allocation in the STAMC approach. Simulation studies and performance com-

D.K. Liu and A.K. Kulatunga460

parison of the three algorithms demonstrated the effectiveness and efficiency
of those algorithms in autonomous vehicle planning and scheduling.

Comparison of the STAMC to the sequential approach (Fig.1) and dis-
patching rule based approaches, and application of the proposed method in a
fully automated container terminal with over 15 autonomous vehicles are cur-
rently being conducted. Combination of this approach with the scheduling and
optimization of other machines such as cranes is another important issue and
will be studied.

5 Acknowledgements

This work is supported by the ARC Centre of Excellence programme, funded
by the Australian Research Council (ARC) and the New South Wales State
Government, Australia. The authors like to acknowledge Professor G. Dis-
sanayake and Dr. X. Wu for their contributions to this research.

References

[1] Asef-Vaziri A, Laporte G (2005) Loop based facility planning and material han-
dling. European Journal of Operational Research, 164: 1-11

[2] Baker B, Ayechew M (2003) A genetic algorithm for the vehicle routing prob-
lem. Computers and Operations Research, 30: 787-800

[3] Bertsekas DP, Castanon DA (1989) The Auction Algorithm for Transportation
Problems. Annals of Operations Research, 20: 67-96

[4] Bish EK, Leong TY, Li CL, Cheong Ng JW, Simchi-Levi D (2001) Analysis of
a new vehicle scheduling and location problem. Naval Research Logistics 48:

[5] Bish EK, Chen FY, Leong YT, Nelson BL, Ng WC, Simchi-Levi D (2005) Dis-
patching vehicles in a mega container terminal. OR Spectrum 27: 491-506

[6] Boddy MS, Bennett BH, Isle BA, Isle RA (2004) NASA Planning and Schedul-
ing Applications: Emerging Technologies and Mission Trends. Final Report,
28/03/2004, Adventium Labs, USA

[7] Botelho SC, Alami R (1999) M+: A scheme for multi-robot cooperation through
negotiated task allocation and achievement. Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation (ICRA 99) Detroit, Michigan,
pp1234-1239

[8] Buriol LS, Ressende MGC, Thorup, M (2003) Speeding up Dynamic Shortest
Path Algorithms. At&T Labs Research Technical Report TD-5RJ8B

[9] Chiba R, Ota J, Arai T (2004) Integrated design for AGV systems using coop-
erative co-evolution. Proceedings of IEEE/RSJ International Conference on In-
telligent Robots and Systems, September 28-October 2, 2004, Sendai, Japan,
pp3791-3796

Planning and Scheduling for Multi-Autonomous Vehicles

’

461

363-385

[10] Colorni A, Dorigo M, Maniezzo V (1991) Distributed Optimization by Ant
Colonies. Proceedings of the First European Conference on Artificial Life
(ECAL 91), pp134-142

[11] De Koster RBM, Le-Anh T, Van der Meer JR (2004) Testing and classifying
vehicle dispatching rules in three real-world settings. Journal of Operations

[13] Egbelu PJ, Tanchoco JMA (1984) Characterization of automatic guided vehicle

[14] Farling BE, Mosier CT, Mahmoodi F (2001) Analysis of automated guided ve-
hicle configurations in flexible manufacturing systems. International Journal of
Production Research, 39: 4222-4239

[15] Ferguson D, Stentz A (2005) The Delayed D* algorithm for efficient path re-
planning. Proceedings of the 2005 IEEE International Conference on Robotics
and Automation Barcelona, Spain, pp2057-2062

[16] Fu L, Rilett LR (1996) Expected shortest paths in dynamic and stochastic traffic
networks. Transportation Research, Part B: Methodological 32: 499-516

[17] Gerkey BP, Mataric MJ (2001) Sold! Auction methods for multi-robot coordina-
tion. IEEE Transactions on Robotics and Automation, 18: 758-768

[19] Horn MET, Efficient modelling of travel in networks with time-varying link
speeds. CSIRO Mathematical and Information Sciences Technical Report CMIS
99/97 http://www.cmis.csiro.au/Mark.Horn/

[20] Hsieh S, Kang TP (1998) Developing AGVs Petri Net Control Models from
Flowpath Nets. Journal of Manufacturing Systems, 17: 237-250

[21] Husdal J (2000) Fastest path problems in dynamic transportation networks. Uni-
versity of Leicester, UK http://www.husdal.com/mscgis/research.htm

[22] Hussain T, Montana D, Vidaver G (2004) Evolution-based deliberative plan-
ning for cooperating unmanned ground vehicles in a dynamic environment. Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO)

[23] Kirkpatrick S, Vecchi MP (1983) Optimization by Simulated Annealing. Sci-
ence, 220- 4598: 671-680

[24] Koo PH, Lee WS, Jang DW (2004) Fleet sizing and vehicle routing for con-
tainer transportation in a static environment. OR Spectrum 26: 193-209

[25] Kulatunga AK, Liu DK, Dissanayake G (2004) Simulated Annealing Algorithm
based Multi-Robot Coordination. Proceedings of the 3rd IFAC Symposium on
Mechatronic Systems, Sydney, Australia, September, 2004, pp411-416

[26] Kulatunga AK, Liu DK, Dissanayake G, Siyambalapitiya SB (2006) Ant colony
optimization technique for simultaneous task allocation and path planning of
autonomous vehicles. Proceedings of the IEEE International Conference on Cy-
bernetics and Intelligent Systems (CIS), 7-9 June, 2006, Bankok, Thailand,
pp823-828

[27] Leong C Y (2001) Simulation study of dynamic AGV-container job deployment
scheme. Master of science, National University of Singapore

D.K. Liu and A.K. Kulatunga

¨[18] Grunow M, Gunther HO, Lehmann M (2004) Dispatching multi-load AGVs in

462

tated transportation systems for integral scheduling. OR Spectrum 26: 263-282.

dispatching rules. International Journal of Production Research 22: 359-374.

[12] Ebben M, Van der Heijden M, Hurink J, Schutten M (2004) Modeling of capaci-
Management 22:369-386

highly automated seaport container terminals. OR Spectrum 26: 211-235

[28] Lim JK, Kim KH, Yoshimoto K, Lee JH (2003) A dispatching method for
automated guided vehicles by using a bidding concept. OR Spectrum 25: 25-44

[29] Liu DK, Wu X, Kulatunga AK, Dissanayake G (2006) Motion Coordination of
Multi-Autonomous Vehicles in Dynamic and Strictly Constrained Environ-
ments. Proceedings of the IEEE International Conference on Cybernetics and
Intelligent Systems, 7-9 June 2006, Thailand, pp204-209

[30] Meersmans PJM, Wagelmans APM (2001) Dynamic Scheduling of Handling
Equipment at Automated Container Terminals https://ep.eur.nl/handle/1765/137

[31] Moorthy RL, Hock-Guan W (2000) Deadlock prediction and avoidance in an
AGV system. Master of science, Sri Ramakrishna Engineering College, Na-
tional University of Singapore

[32] Moorthy RL, Hock-Guan W, Ng WC, Chung-Piaw T (2003) Cyclic deadlock
prediction and avoidance for zone-controlled AGV system. International Journal
of Production Economics, 83: 309-324

Verlag, K/Berlin
[34] Oboth CB, Karwan MR (1999) Dynamic conflict-free routing of automated

guided vehicles. International Journal of Production Research, 37: 2003- 2028
[35] Philippsen R, Siegwart R (2005) An interpolated dynamic navigation function.

Proceedings of the 2005 IEEE International Conference on Robotics and Auto-
mation Barcelona, Spain, April 2005, pp3793-3800

[36] Powell WB, Carvalho TA (1998) Real-time optimization of containers and flat-
cars for intermodal operations. Transportation Science 32:110-126

[37] Qin Y, Sun D, Li N, Cen Y (2004) Path planning for mobile robot using the par-
ticle swarm optimization with mutation Operator. Proceedings of the 2004 In-
ternational Conference on Machine Learning and Cybernetics, Aug. 2004,
pp2473-2478

[38] Qiu L, HsuW-J (2001) Scheduling of AGVs in a mesh-like path topology: a case
study in a container terminal, Technical Report CAIS-TR-01-35, School of
Computer Engineering, Nanyang Technological University

[39] Qiu L, Hsu WJ, Huang SY, Wang H (2002) Scheduling and Routing Algorithms
for AGVs: a survey. International Journal of Production research 40: 745-760

[40] Seifert RW, Kay MG, Wilson JR (1998) Evaluation of AGV routeing strategies
using hierarchical simulation. International Journal of Production Research 36:
1961-1976

[41] Srinivasan MM, Bozer YA, Cho M (1994) Trip-based material handling sys-

[42] Stentz A (1994) Optimal and efficient path planning for partially-known envi-
ronments. Proceedings of the IEEE International Conference on Robotics and
Automation, San Diego, CA, USA, May 1994

[43] Taghaboni-Dutta F, Tanchoco JM (1995) Comparison of dynamic routing tech-
niques for automated guided vehicle system. International Journal of Production
Research, 33: 2653-2617

¨

Planning and Scheduling for Multi-Autonomous Vehicles

[33] Müller T (1983) Automated Guided Vehicles. IFS (Publications) Ltd. Springer-

2873

[44] Ulusoy GU, Bilge U (1993) Simultaneous scheduling of machines and auto-

463

tems: Throughput capacity analysis. IIE Transactions 26: 70-89.

mated guided vehicles. International Journal of Production Research 31: 2857-

[45] Ulusoy GU, Sivrikaya SF, Bilge U (1997) A genetic algorithm approach to the
simultaneous scheduling of machines and automated guided vehicles. Com-
puters & Operations Research, 24: 335-351

[46] Vis IFA (2006) Survey of research in the design and control of automated

709
[47] Wagner D, Willhalm T, Zaroliagis C (2003) Dynamic Shortest Paths Containers.

[48] Yamashita H (2001) Analysis of dispatching rules of AGV systems with multi-

[49] Zhan FB, Noon CE (1996) Shortest Path Algorithms: An Evaluation using Real
Road. Transportation Science, 32: 65-73

D.K. Liu and A.K. Kulatunga

Theoretical Computer Science, 92 http://www.elsevier.nl/locate/entcs/volume92.
html

464

guided vehicle systems. European Journal of Operational Research 170: 677-

ple vehicles. IIE Transactions 33: 889-895

Scheduling Production and Distribution of Rapidly

Perishable Materials with Hybrid GA’s

David Naso, Michele Surico, and Biagio Turchiano

Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari (Italy),
Email naso@poliba.it

Summary. This paper considers the problem of scheduling the production and
distribution activities of a network of plants supplying rapidly perishable mate-
rials. The main challenges are (1) addressing simultaneously several interre-
lated scheduling and routing problems, and (2) finding solutions that take into
account the amount of cooperation/interaction necessary between the various
plants. We propose a strategy that combines genetic algorithms and fast sched-
ule construction heuristics for job scheduling and truck routing. The effective-
ness of the approach is evaluated against other methods used in industrial prac-
tice on a challenging large-scale case study.

1 Introduction

Supply networks (SN’s) are cooperative organizations of partially autonomous pro-
duction and distribution centers. The activities of SN’s involve a number of large-
scale, interrelated assignment, scheduling and routing problems. Due to the well-
known combinatorial nature of these problems, operating SN’s is very challenging,
especially when the supplied goods have an extremely short lifespan, as in the case of
ready-mixed concrete (RMC) considered in this chapter. Since the product is rapidly
perishable, it must be produced on demand and delivered within the time window
specified by customers according to their construction plans. Clearly, it is not possi-
ble to produce in advance a certain amount of the good to cope with possible demand
peaks, and therefore production and distribution activities must be necessarily syn-
chronized and optimized on a daily basis. The perishable nature of the RMC is not the
only additional complication of the supply problem. Another significant difficulty is
related to the fact that orders are often much larger than the capacity of a single truck,
and thus they must be split in long sequences of concatenated deliveries, which must
also be coordinated to avoid interruptions between truck unloads. Both a delay be-
tween two consecutive unload operations, and a delay that exceeds the lifespan of the

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

D. Naso et al.: Scheduling Production and Distribution of Rapidly Perishable Materials with Hybrid
GA’s, Studies in Computational Intelligence (SCI) 49, 465–483 (2007)

transported RMC are extremely undesirable events that involve significant economi-
cal and environmental costs. Thus, most of the optimization efforts are dedicated to
minimize the likelihood of these two types of events, while maintaining the adequate
levels of resource utilization and profit.

In spite of the fact that mobile communication technologies make it possible to
share detailed information about distributed operations (e.g. customer orders, produc-
tion schedules, location and status of delivering vehicles) in real time, the time
needed by general-purpose mathematical programming solvers to find satisfactory
solutions for such large-scale problems is generally too long to make these tools
really useful for SN managers. Therefore, industrial companies tend to rely on skilled
operators that work out scheduling decisions basing on their experience [1, 10], and
plan the activities on short time horizons considering each production plant separately
from the other ones. In this way, they renounce to the potential benefits of longer-
term and larger-scale optimization to achieve a reduced risk of delayed delivery [20].

This chapter presents a meta-heuristic algorithm to address the RMC production
and distribution problem in an efficient way. Our dynamic scheduling approach com-
bines the following complementary tools:

1) A detailed mathematical programming model of the large-scale logistic problem
that unambiguously specifies the decision variables, the technical requirements, and
the constraints that must be fulfilled at each single stage of the supply.

2) A set of fast constructive heuristics that use the mathematical model to find a
fully feasible solution for the entire SN starting from a given assignment of a prede-
fined subset of problem variables.

3) A stochastic search engine based on Genetic Algorithms (GA’s), and designed
to optimize the subset of problem variables used by the constructive heuristics to
build feasible solutions. In other words, the GA performs the optimization of the
predefined objective function by continuously interacting with the constructive heu-
ristics until the stopping criterion is met.

The integration of these tools forms a global meta-heuristic approach that achieves
an effective tradeoff between exploration (the GA exploring various regions in the
solution space) and exploitation mechanisms (local heuristics concentrating the
search into a specific region of the search space).

With respect to our earlier work described in [13], the approach presented here
overcomes some significant limitations, allowing us to extend it to the case of produc-
tion centers (PC’s) with more than one dock, trucks with different speed, and opera-
tion slack times of different length. The meta-heuristic tool is very effective, and can
be used to address scenarios in which several hundred delivery jobs (up to 800 in our
numerical experiments) must be scheduled and coordinated so as to meet product
demands on a relatively wide geographical area. The chapter is organized as follows.
Section 2 overviews the related literature, discussing the analogies between the RMC
problem and other scheduling and routing problems. Section 3 summarizes the essen-
tial aspects of the mathematical model, introducing the essential objectives and con-
straints. Section 4 describes the two components of the search algorithms, i.e. the
master GA engine, and the subordinate constructive heuristics. Section 5 summarizes
the numerical investigation based on a large scale SN with over 10 nodes and hun-
dreds of delivery jobs, and Section 6 is dedicated to the conclusive remarks.

D. Naso et al.466

 2 Literature overview

A comprehensive overview of the RMC supply problem can be found in [20]. The
supply process can be essentially viewed as a joint production-distribution problem,
and thus related to various research areas of industrial automation and operation re-
search. The RMC job loading stage can be modeled as a scheduling problem on paral-
lel machines with earliness/lateness objectives, which is proven to be NP-hard (see
e.g., [15]). Reference [2] considers the problem of scheduling a single RMC batch
plant so to satisfy delivery time constraints. The work assumes that an unlimited fleet
is available, and that each load has to be delivered at a certain desired time, while
delays are addressed with a linear earliness/tardiness penalty. Reference [8] devises a
scheduling algorithm composed of a timing algorithm that computes the optimal start
time of each job, and a sequencing strategy to determine the processing order based
on a GA. A similar approach is described in [16] and [12].

Similarly, the delivery stage of RMC can be viewed as a particular vehicle routing
problem known as Multi-Depot Multi-Vehicle Routing Problem with Time Windows
(MDVRPTW for brevity). The MDVRPTW is NP-hard, and even finding a feasible
solution in the case of a fleet of fixed size can be an NP-complete problem [17]. Sev-
eral heuristic approaches providing satisfactory solutions for various MDVRPTW
problems in acceptable times have been recently surveyed [6, 21, 9], and significant
results have been achieved also using GA’s [18, 19], and other stochastic approaches
[3]. Most literature considers an unlimited number of vehicles, although recent pro-
gresses on the case of a limited fleet have also been reported (see [7] and the included
references). Routing problems in the specific context of RMC supply are analyzed in
[10]. In particular, that paper considers both the carriers for the delivery of the con-
crete to customers’ sites, and the pumps necessary to unload the cement from the
trucks, and focuses on a Tabu Search algorithm for their solution. Studies on dynamic
vehicle routing with variable travel times are also emerging (an updated survey is in
[4]). Reference [1] integrates the scheduling and the routing problems. The paper
considers the RMC supply from a single PC equipped with a fleet of vehicles with
identical capacity. Truck loading and unloading times are assumed to be equal for all
the jobs, so that the production scheduling is reduced to a permutation problem, and
is solved with a GA. An extensive discussion on the technical differences between
these recent approaches and our meta-heuristic tools is available in [13] and omitted
here for brevity.

3 A Model for the RMC production and distribution

depots (p {1,...,P} is the depot index) located in a given geographical area. Each
depot has a number of loading docks (Dp) where the RMC is loaded on the trucks for

Production and Distribution of Rapidly Perishable Materials 467

A SN for RMC consists of a consortium of P independent and distributed PC’s or

its delivery. Each dock d can service only one truck at a time, but the docks of a PC
work concurrently. Thus, we define the total number of loading docks:

1

P

p

p

D D . (1)

Every day the SN has to process a set of R requests or orders from different cus-

tomers (r {1,...,R} is the request index), whose construction sites are spread over a
certain geographical area. An order r consists of a customer-specified delivery time
window [ED

r , LD

r] (earliest and latest delivery time), a required amount Qr, and a
delivery location.

The SN is also equipped with a fleet of K trucks (k {1,...,K} is the truck index) to
deliver the product to customers’ construction site. Some PC’s in the SN do not own
trucks, and thus rely on the fleet of the other SN nodes for the delivery of their prod-
ucts. Large demands exceed the capacity of one truck, and must be split in a number
of sub-demands simply called jobs (ir {1,...,Nr} is the job index and Nr is the total
number of jobs composing demand r). As mentioned, these jobs have to be synchro-
nized, because the overall unloading process at the customer site must be uninter-
rupted, so as to guarantee the homogeneity of the placed fluid and the final mechani-
cal properties of the solidified concrete. Each job is produced at a dock by mixing
water with dry components directly when the product is being loaded on the truck
(production is simultaneous with loading), and each dock can load one truck at a
time. Loading is a non-preemptive operation encompassing a fixed setup time and a
loading time interval that depends on the loading rate of the dock and on the size of
the load. The latter is, in turn, limited by truck capacity.

In case none of the nodes of the SN is able to produce a certain (fraction of) de-
mand with the requested characteristics, the production of the residual jobs is out-
sourced to external suppliers. Similarly, the SN can hire additional trucks to deliver
jobs that cannot be handled by the internal fleet. Clearly, outsourcing production and
hiring further vehicles involve additional costs, and are performed only when neces-
sary. Moreover, the need of additional resources is not only related to the amount of
requests, but also to the actual utilization of internal resources, which is also influ-
enced by the effectiveness of cooperation between the various partner nodes.

Let us define a task of a truck as the delivery of a job to its destination, and intro-
duce the task index m {1,..., Mk}, where Mk is the last task of truck k. As Fig.1
shows, the generic task m of truck k is made up by several phases, characterized by
the following times:
1) The loading waiting time (LWTkm) before the job load starts.
2) The loading time for job i of demand r (LTir), influenced by the loading rate of the
dock and by the load size.
3) The travel time from the source depot of job ir to the destination (SDTir).
4) The unloading waiting time (UWTkm): Each truck is normally scheduled to arrive
slightly in advance, and thus it must wait either for the initial placement of customer
unloading pump or for the end of the previous unload.

D. Naso et al.468

5) The unloading time (UTir), depending on the unloading rate of the customer and on
the load size.
6) The travel time from the customer to the PC of its next task (DSTir).

Fig. 1. Activities of truck k and their synchronization with those of other trucks at the delivery

Each phase has a starting and ending time described by the following notation:
 0

kmt start of the m-th task for truck k;

 1
kmt start of the loading phase;

 2
kmt end of the loading phase and start of the trip toward the customer;

 3
kmt end of the outward trip and start of the waiting time for the unloading phase;

 4
kmt end of the waiting time and start of the unloading phase;

 5
kmt end of the unloading phase and start of the trip toward the next source depot;

 6
kmt end of the trip toward the source depot of the next task.

Each truck k executes one task after another, and the end of one task corresponds

exactly to the start of the next one, i.e. it holds:

1,...,k K , 1,..., 1km M

 0 6

(1)k m kmt t . (2)

LWT
km

LT
ir

SDT
ir

DST
irjs

UT
ir

t
km
4t

km
3t

km
2t

km
1t

km
0 t

km
5

LWT
lm

DST
irjs

LWT
hm

LT
(i-1)r

DST
(i-1)rjs

UWT
hm

r
ED

r
LD

t
km
6

UT
ir

UT
(i-1)r

Constraint on unload continuity

SDT
(i-1)r

UT
(i-1)r

UWT
lm

UWT
km

LT
(i+1)r

UT
(i+1)r

UT
(i+1)r

Customer delivery
time window

TRUCK k

TRUCK h

TRUCK l

CUSTOMER r

time

time

time

time

DST LWT

SDT
(i+1)r

Production and Distribution of Rapidly Perishable Materials 469

site.

A full solution for our problem involves the definition of all the production activi-
ties at the PC’s and distribution activities of the trucks. A solution can be univocally
described by a set of integer and real-valued decision variables. The first integer deci-
sion variable Ko defines the number of additional trucks that must be hired to distrib-
ute all the produced jobs. Then, a set of binary variables is used to indicate assign-
ment decisions. Such variables are defined as follows:

Xikm {0,1} if the job ir is assigned to truck k as m-th task, Xikm=1,

otherwise Xikm=0.
Yid {0,1} if job ir is produced at the dock d, Yid = 1 otherwise Yid = 0.
Yio {0,1} if the production of job ir is outsourced, Yio =1, otherwise Yio =0.

Finally, real-valued timing variables indicate the start time of truck tasks. As the

various truck activities are executed in sequence, their start and end times can be

with a minimal set of independent timing variables. In particular, for each truck k, our
model uses the previously defined truck waiting times LWTkm and UWTkm, and the
start of the first task 0

0kt as further non-negative decision variables.

To obtain a fully feasible solution, the decision variables must fulfill a large num-
ber of constraints, describing conditions as correctness or feasibility of the assign-
ments, precedence, non-overlap, synchronization and timeliness of activities. The
extensive list and formal specification of all problem constraints can be found in [13],
and thus omitted for brevity.

The decision variables LWTkm and UWTkm are also key-factors for the robustness of
every feasible solution. Essentially, LWTkm and UWTkm play the role of slack times
between the activities executed by trucks. From the viewpoint of resource utilization,
LWTkm and UWTkm should be as short as possible, so as to minimize truck idle times.
On the other hand, longer waiting times make the overall schedule more tolerant to
the frequent, inherently unpredictable delays occurring during transportation. For
example, if a truck is scheduled to arrive at the PC 10 minutes before the actual start
of next-job loading, any arrival delay shorter than the 10 minutes slack will not affect
the subsequent parts of the schedule. In this paper, the desired slack times are com-
puted as a function of the length of truck route, i.e. we assume that the waiting time
must be larger than a predefined number of seconds per km of travel.

To sum up, it can be noted that there are three main factors making the considered
problem particularly challengig: (1) the typical combinatorial complexity of routing
and scheduling problems, (2) the high number of constraints deriving from the per-
ishable nature of RMC, and (3) the conflicting nature of the cost minimization and
delay-tolerance maximization objectives.

The objective function of our problem is computed as the sum of three terms:

 .transport waiting extraC C C C (3)

The transportation costs account for the distances traveled by all the trucks of the

fleet, including the initial and final trips from and to the base locations. It is obtained

D. Naso et al.470

easily related to each other (see Fig.1). Thus, the activity scheduling can be specified

by multiplying the total distance traveled by all trucks with an average cost per kilo-
meter. The waiting costs account for all the truck waiting times. They are obtained by
multiplying the total waiting time of all scheduled trucks (waiting before loading and
before unloading) with a penalty for each minute of idle waiting. The extra costs
include all the additional costs related to outsourced production, hired trucks, and
payments for overtime of truck drivers. Among the three addends in (3), Ctransport and
Cextra are computed using estimates of the actual production, outsourcing or hiring
costs available for the geographical area considered in the case studies, while the
penalty costs related to wait times Cwait are chosen heuristically basing on ranges
suggested by expert managers and a number of preliminary simulations.

4 The Genetic Algorithm and the Constructive Heuristics

The mathematical model of the SN could be directly used in a general purpose
mathematical programming solvers. However, as mentioned, the long computational
times and the lack of flexibility strongly limit the utility of these tools in the consid-
ered context. A viable and effective alternative to cope with problem size can be
achieved by distributing the optimization tasks between different heuristic tools. In
particular, our approach is based on the combination of a GA and a set of Construc-
tive Heuristic Procedures (CHP). The GA works as the master algorithm that defines
a set of assignment and priority decision variables, while the CHP is a subordinate
constructive tool that builds a fully legal schedule starting from the subset of decision
variables specified by the GA. More precisely, this paper describes two variants of
our meta-heuristic tool devised to address slightly different versions of our produc-
tion and distribution problem. The first variant consider the case in which it is
strongly preferred (unless for exceptional reasons) that all the jobs of a single demand
are produced at the same PC. This situation is particularly common in industrial prac-
tice, because it is a means to guarantee the homogeneity of the raw materials used for
a given demand, and also because when fractions of demands are supplied by differ-
ent centers, higher levels of synchronization between the operations of the autono-
mous PC’s are necessary. This first type of SN will be hereafter referred to as Low-

Cooperation SN (LCSN). The second variant of our meta-heuristic tool applies to the
SNs in which jobs of the same demand can be assigned to different PC’s without
particular restrictions. Sharing the production of large orders makes it possible to
obtain an improved overall resource utilization, and accept requests that could be
impossible for a single PC. This second type of SN will be hereafter called High-
Cooperation SNs (HCSNs). The following subsections describe the main components
of our search engine separately.

4.1 The Genetic Algorithm

Every GA requires the preliminary definition of a coding strategy that transforms a
generic solution of the problem into a string of symbols chosen from a pre-specified
alphabet. The strings should also be devised so as to let the recombination operators

Production and Distribution of Rapidly Perishable Materials 471

(crossover and mutation) obtain new solutions with relatively simple manipulations.

800 jobs, 5-10 docks and 50-120 trucks) and the peculiarities of the considered prob-
lem make the use of a standard GA inappropriate, due to the excessively long search
times. Moreover, conventional strategies to address constraint satisfaction in evolu-
tionary computation cannot be easily applied to the RMC SN’s. In fact, due to the
large number of constraints, approaches based on penalty functions require extremely
long search times before the GA identifies the regions of the solution space contain-
ing fully feasible solutions. On the other hand, coding strategies that guarantee that
each chromosome (generated by crossover or mutation) is feasible, or repair in some
way the unfeasible chromosomes after they have been generated, would lead to pro-
hibitive computational costs.

To overcome this problem, the task of our GA is to process and optimize only a
subset of the decision variables, while the remaining unassigned variables are subse-
quently handled by the CHP. It is important to mention here that the proposed combi-
nation of tools is slightly different from the way meta-heuristic or memetic algorithms

search algorithm as a tool to pass good initial solutions to a faster or more accurate
second (local) search algorithm, which returns the improved solutions to the first one.
In such a type of hybridization, the use of one tool (the GA or the local search tool) is
not strictly necessary for the operation of the other one (in other words, the GA and
the local search tool could be used separately). On the contrary, in our strategy, the
GA explicitly relies on (and cannot work without) the CHP to obtain a complete solu-
tion. The CHP, in turn, requires the set of variables determined by the GA to perform
its task. This coupling strategy allows us to obtain a GA that is significantly faster
than a penalty-based conventional GA in obtaining feasible solutions, and that does
not require complex chromosome repair strategies, as the GA always processes, com-
pares and combines fully-legal solutions obtained by the CHP.

Customer’s Request-to-

Depot Assignment
Priority of request

in schedule construction
r1 r2 r3 r4 r5 r6 p1 p2 p3 p4 p5 p6

1 3 2 1 2 2 4 5 6 1 3 2

To illustrate the basic operations of the GA, let us first focus on the chromosome
encoding (see Fig. 2). The chromosome consists of two separate parts, both contain-

(in our experiments R ranges between 50 and 100). For the LCSN variant, the first
part defines the assignment of demands (requests) to the PC’s. More specifically, the
chromosome defined by the GA specifies the PC where each request has to be pro-
duced. Then, a dedicated algorithm (described in the next subsection) splits the de-
mands in jobs and assigns them to the docks of the PC. In this variant, each gene is an
integer between 1 and P (the number of PC’s): the l–th gene of this first part of the

D. Naso et al.472

The large number of variables in instances of realistic size (e.g., 20-60 requests, 400-

are usually defined [22, 23, 24]. In general, memetic algorithms use a first (global)

Fig. 2. A single chromosome.

ing R (the number of demands) elements. Fig. 2 illustrates a simple example with R = 6

chromosome indicates the PC to which request rl is assigned. For instance, in the
chromosome represented in Fig. 2, requests r1 and r4 are assigned to PC 1, r2 to PC 3
and all the remaining ones to PC 2. In the case of the HCSN variant, the first half of
the chromosome directly assigns requests to the single docks. Then, a specific algo-
rithm (described in the next subsection) reexamines the jobs assignment and, if neces-
sary, redirects some of them to other docks in order to obtain a fully feasible produc-
tion plan. In this case, each gene is an integer between 1 and D (the number of
docks): the l–th gene of this first part of the chromosome indicates the dock to which
request rl is assigned. The second part of the chromosome (which has identical mean-
ing for both the LCSN and the HCSN) establishes the order in which the R requests
will be considered in the construction of the complete schedule of the production
chain. The l-th gene in this second part indicates the demand that will be considered
at the l-th step of the scheduling construction procedure. Thus, demand corresponding
to p1 will be considered first, followed by demand corresponding to p2, and so on. For
instance, in the chromosome reported in Fig. 2, request r4 (represented by the integer
4) corresponds to p1 and will be the first one to be allocated in the scheduling plan.
The next demand in the order of priority is r5 (represented by integer 5 and corre-
sponding to p2), followed by request r6 (corresponding to p3), and then r1, r3, and
finally r2. Clearly, the second part of the chromosome can be any permutation of the
sequence of integers 1,2,…, R. It should be underlined that the scheduling priority is
not a variable of the mathematical model, but rather a seed that specifies to other
constructive heuristics how to handle the remaining decision variables. It is evident
that the chromosome structure is particularly transparent, as it essentially specifies
which PC must process the request (or at least the largest part of the request), and the
priority of the request in the activity of the PC. In this way, if necessary, a plant man-
ager can easily assign requests to specific PC’s (fixing a priori one or more genes in
the left-hand part of the chromosome) or to impose higher priority to specific requests
(fixing their position in the right-hand part) without needing to handle/readjust the
whole schedule of activities by hand.

Once a new chromosome is available (e.g., as the output of a crossover or a muta-
tion), it is passed to the CHP, which is in charge of determining (1) a complete, fully
feasible schedule of all the SN’s activities, (2) the corresponding overall cost of the
solution (see eq. (3)) returned to the GA fitness as fitness of the chromosome.

Fig. 3 provides a generic pseudo-code for the GA. The included functions can be
summarized as follows:

1) random_pop: randomly generates a population of npop=100 chromosomes.
2) fitness_eval(Pop()): for each chromosome in the population, this func-

tion runs the selected CHP to obtain a feasible schedule and evaluate the associated
fitness.

3) select(Pop()): selects the mating pool of the population solutions using
tournament selection [11].

4 – 5) crossover(Pop()) and mutation(Pop()): generate a new popula-
tion of chromosomes by applying crossover to 50% and mutation to 10% of randomly
selected chromosomes in the mating pool. Both operators randomly select a point in
the chromosome, and apply a different operator if the selected point is in the first or
in the second part of the string, always producing legal offspring solutions. Technical

Production and Distribution of Rapidly Perishable Materials 473

details on these operators and on their implementation can be found in [13] and in
[11, 14, 5], respectively, and are omitted here, for brevity.

6) Pop(i) p_best the GA completes the new population by adding the
elitist individual p_best .

7) WHILE … END WHILE: Iterate steps 2-6 for the available computation time
(usually 200 iterations).

/* Genetic Algorithm Startup */
i = 1;
Pop(1) = random_pop
fitness_eval(Pop(1))
i = 2;

/* main loop of the GA */

WHILE terminating_condition == false

 Pop(i) = select(Pop(i-1));
 Pop(i) = crossover&mutation(Pop(i));

 Fitness_eval(Pop(i))

 Pop(i)=Pop(i) p_best
 i=i+1;

END WHILE

Fig. 3. Pseudocode for the main optimization loop.

4.2 Constructing a complete schedule from a chromosome

Both versions need a chromosome as input, and return a fully legal schedule and the
associated value of the cost function (3). As an extensive description of the HCNS is
available in [13], here we concentrate on the essential details, and on the differences
between the two variants. The CHP is composed of two modules. The first one is
devoted to production scheduling, while the second addresses truck routing. Dock
scheduling involves the assignment of each job to a dock, and the definition of feasi-
ble start and end times for each job loading. To perform this task, the CHP assumes
that a truck is always available at the dock to load the job (truck routing is considered
in a subsequent stage), and executes a sequence of operations that can be basically
distinguished in three sequential phases.

Phase 1. The CHP considers each request following the priority order assigned in
the chromosome. For each request, it checks if the distance between delivery location

D. Naso et al.474

Two different CHP’s are used to solve the LCSN’s and the HCSN’s problems.

and assigned PC permits the end of the unloading before the RMC set (otherwise the
request is redirected to other PC’s, considered in order of shortest distance from the
customer location, and the chromosome is changed accordingly). The jobs of the

4

assigned PC at their ideal start times, i.e., those that make the unloading of first job
start exactly at customer-specified earliest delivery time. The CHP tries to find load-
ing windows for the jobs of the second and subsequent requests in the same way,
avoiding overlaps previously assigned jobs. If overlaps are detected, several attempts
are performed to overcome the conflict. First, the CHP tries to assign the job to an-
other dock of the same PC, and if this attempt is unsuccessful it runs a forward-
backward search algorithm that tries to insert the conflicting jobs in the idle time
windows of all the docks of PC, without altering the schedules of the jobs with higher
priorities. The jobs that are still unscheduled at the end of this procedure will be re-
considered in a subsequent phase. In the case none of the jobs composing a demand
can be scheduled on the assigned PC, the entire demand is reassigned to another PC
of the SN, considered in order of shortest distance from the customer, and the chro-
mosome is changed accordingly.

Phase 2. the CHP reconsiders the unscheduled jobs, and attempts to place them on
other PC’s redirecting all the unscheduled jobs of a request r to the same PC to mini-
mize the amount of coupling between PC’s. The depots are considered in order of
shortest distance from the customer’s site to minimize the distance between PC and
customer.

Phase 3. The main peculiarity of this last attempt is that the CHP now is allowed to
force job insertion by moderately shifting backward in time some of the already
scheduled jobs. This operation may significantly alter the already constructed part of

long waiting times before the unloading of some job). For this reasons, the result of
this operation is accepted only if the consequent additional cost due to the increased
waiting times is lower than the cost of outsourcing the unscheduled job under consid-
eration. Finally, all the jobs unscheduled at the end of the third phase must be out-
sourced.

Once the assignment solution encoded in the chromosome is converted in a feasi-
ble loading sequence for each PC, the fleet of trucks must be assigned to jobs (setting
the values of decision variables Xikm) and routed from PC’s to customer sites and
vice-versa to pickup and deliver loads. Basically, the truck scheduling must guarantee
that a truck assigned to a job is available at the loading dock of the supplying PC at
the scheduled loading start time. The procedure consists of the following two phases.

Phase 4-Phase 5. Both phases perform the same sequence of operations, with the
only difference that Phase 4 uses the trucks owned by a PC to deliver jobs of the
same PC, and then Phase 5 deals with all the jobs that remained unassigned at the end
of Phase 4. The jobs are examined in order of start time. To illustrate the truck alloca-
tion procedure, let us divide the trucks available to deliver a job i into two sets: the
first one is made up by the vehicles that have not left their base location since the
beginning of the working day (hereinafter defined as type 1); on the contrary, the
trucks that have already completed some transport operations, and are able to reach

Production and Distribution of Rapidly Perishable Materials 475

request with highest priority (e.g., r in Fig. 2) are scheduled on the first dock of the

the schedule, and may also involve undesirable effects (e.g., determining excessively

the assigned PC before the loading start time of job i, compose the second set (type 2).

this reason, it first tries to assign trucks of type 2. When multiple trucks of type 2 are
available, the LCSN CHP sorts them giving higher priority to those with the latest
expected arrival time at the depot (first ranking criterion) and with shortest distance
from PC (second ranking criterion). Finally, the job is assigned to the first vehicle in
rank. This hierarchical criterion was preferred to other combinations of routing rules
because it provided the most satisfactory results in a preliminary comparison of alter-
native routing strategies. Finally, if no truck is available to deliver a given job, the
procedure requests the hiring of a truck. The complete scheme of the proposed algo-

Fig. 4. The main structure of the proposed search algorithm.

The main difference between the CHP’s used for the LCSN and HCSN cases is re-
lated to job redirection. In particular, the redirection of jobs to docks of other PC’s is
allowed without limitations for the HCSN case, while it determines additional penalty
costs in the CHP for LCSN.

Finally, it is worth noting that the proposed encoding scheme well lends itself to
interpretation and manual interventions by plant managers. In particular, one or more
genes in the left-hand part of the chromosome can be directly assigned by plant man-
agers in order to force requests to be produced at specific PC’s. Similarly, plant man-
agers may decide to assign higher priority to specific requests by fixing their position
in the right-hand part of the chromosome.

D. Naso et al.476

The objective of the LCSN CHP is to minimize the number of used trucks. For

rithm is illustrated in Fig. 4.

5 Case study

The SN considered in this paper describes an hypothetical consortium of 10 inde-
pendent PC’s (with a total of 15 loading docks) spread over a large area in the south-
ern Italy. Customers have construction sites located in the area surrounding the SN, as
illustrated in Fig. 5. Only the PC’s with more than one dock have their own fleet of
trucks (a total of 120 units). We consider a set of instances describing typical work-
days of such a SN, with daily production satisfying 60 requests (over 800 jobs, see
Fig 6. for an example of a docks Gantt diagram). The values of the main parameters
of the SN and of the GA are summarized in the Tables 1 and 2.

Table 1. Cost parameters in normalized units (NU’s)

cost for each Km of travel of the trucks 10
penalty for idle time 15
loss of income for m3 of concrete to outsource 2000
cost of an hired truck 10000
extra pay for truck drivers' overtime minute 5

Table 2. Configuration of the genetic algorithm

population size (randomly generated) 100
termination condition (generations) 200
crossover rate 50%
mutation rate 10%

The GA’s parameters have been chosen after an extensive preliminary tuning phase.

We compare the results obtained by the two variants of our meta-heuristic tool
with a reference constructive heuristics implementing the typical constructive criteria
used by plant expert managers. This comparison complements the analysis provided
in [13], where a preliminary version of the HCSN CHP variant is compared with
several other scheduling strategies on 250 instances differing in size and complexity.
With respect to the data used in [13], the SN and the instances considered here are
significantly larger and more challenging. We focus on 50 reference instances having
two different levels of complexity, referred to as normal and hard, according to the
amount of conflicts between the customer requests.

Tables 3 and 4 highlight that the variant for HCSN can significantly outperform
the overall results obtainable with the strategy for LCSN in terms of both average and
standard deviation (STD) of the final costs. On the other hand, it could be underlined
again that the HCSN requires more complex information and communication infra-
structures, necessary to guarantee activity synchronization in an inherently stochastic
(truck delays) environment.

Production and Distribution of Rapidly Perishable Materials

The average behavior of the GA with the configuration in Table 2 is illustrated in
Fig. 7.

477

Fig. 5. Case Study: map of the area with PC locations.

D. Naso et al.478

Fig. 6. Example of Gantt diagram for the production scheduling at the docks.

Production and Distribution of Rapidly Perishable Materials479

5
:0

0
6
:0

0
7
:0

0
8
:0

0
9
:0

0
1
0
:0

0
1
1
:0

0
1
2
:0

0
1
3
:0

0
1
4
:0

0
1
5
:0

0
1
6
:0

0
1
7
:0

0
1
8
:0

0
1
9
:0

0

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

D
O

C
K

S
 G

A
N

T
T

tim
e

docks

20:

21:

22:

534:

230:

690:

447:

103:

691:

448:

104:

692:

449:

105:

693:

694:

450:

106:

727:

695

451:

107:

234:

452:

729:

108:

312:
453:

454:

109:

696:

501:

502:

110:

697:

503:

504:

111:

313
505:

506:

112:

507:

508:

113:

510:

512:

684:

114:

514:

680:

516:

115

519:

521:

682

523:

525:

527

533

466:

467

144:

145:

146:

147:

148:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

35:

37:

39:

41:

43:

45:

47:

49:

51:

53:

55:

57:

59:

61:

63:

65:

67:

347:

70:

677:

683:

348:

74:

76:

349

515:

80

517:

530:

520:

522:

524:

526:

149:

150:

151:

152:

153:

154:

155:

156:

157:

158:

159:

161:

163:

165:

167:

169:

171:

173:

48:

178:

180:

54:

185:

187:

189:

191:

193:

64:

197:

199:

69:

71:

73:

75:

513:

679:

616:

686:

681:

518:

617:

687:

531:

688:

532:

623:

217:

559:

218:

560:

219:

561:

220:

541:

221:

562:

222:

542:

223

543:

571:

544:

545:

373:

579:

457:

546:

374

458:

547:

587:

459

548:

591:

549

595:

1:

598:

600:

2:

603:

3:

607:

668:
4:

550:

705:

5:

706:

6:

699:

707:

7:

700:

708:

8:

701:

709

9:

702:

10

703:

704

491:

350:

247:

492:

351:

248:

390:

249:

391:

336:

392:

250:

393:

337:

394:

251:

395:

339:

396:

252:

397:

253:

398:

341:

399:

254:

400:

342:

401:

255

402:

343:

403:

357:

404

344

669:

670:

671

358:

359:

360:

361:

19:

139:

140:

141:

142:

143:

261:

262:

263:

405:

406:

407:

408:

409:

410:

411:

412:

413:

414:

415:

416:

417:

418:

419:

420:

421:

422:

423:

424:

425:

426:

427:

428:

429:

430:

431:

432:

433:

434:

435:

436:

437:

438:

439:

440:

441:

442:

443:

444:

445:

446

77:

79:

316:

388:

317:

215:

318:

389

319:

216

320:

689

321

18

620:

260

621:

362

134:

622

135

283:

284:

285:

286:

334:

335:

710:

711:

712:

713:

714:

715:

716:

717:

718:

720:

722:

724:

726:

728:

375:

731:

733:

376:

736:

738:

377:

741:

743:

735:

648:

737:

224:

378:

746:

748:

225:

744:

379:

747:

749:

751:

226:

229

380

756

136:

227:

137:

364:

228

138

89:

366:

367:

368:

369:

370:

371:

372

92

624:

625:

626:

627:

628:

629:

630:

631:

632:

633:

352:

634:

539:

636:

495:

353:

338:

354:

299:

300:

644:

340:

302:

303:

649:

305:

307:

192:

308:

196:

83:

310:

204:

657:

84:

606:

205

611:

85:

242:

460:

86:

256:

243:

87:

257:

88:

244:

462:

463:

258:

245:

259:

90:

465:

246

91:

563:

564:

565:

566:

567:

568:

569:

570:

572:

573:

574:

576:

578:

540

581:

583:

585:

588:

496:

590:

455:

456

355:

383:

599:

601:

597:

596:

652:

384:

654:

356:

656:

509:

385:

608:

511:

610:

612:

614

667

461:

464:

121:

160:

122:

162:

164:

166:

123:

643:

168:

170:

645:

124:

646:

174:

176:

382:

125:

181:

183:

126:

651:

498:

653:

190:

655:

127:

499:

198:

200:

201:

500

128:

665:

685:

129:

130:

131:

132:

133:

535:

287:

288:

289:

290:

93:

322:

233:

34:

94:

323:

36:

38:

95:

324:

40:

42:

96:

325:

44:

46:

97:

326:

50:

52:

98:

327:

56:

58:

99:

328:

742:

60:

62:

100:

329:

66:

68:

101:

330:

72:

213:

102

615:

331:

78:

214:

345:

332:

116:

346

117:

333

118:

119:

120

721:

723:

725:

538:

528:
494:

295:

529
296:

297:

208:

209:

172:

647:

175:

177:

179:

650:

182:

184:

186:

188:

206:

194:

195:

81:

207

202:

203:

745:

82

311

753:

750:

752:

754:

363:

551:

365:

552:

553:

554:

555:

556:

557:

558

719:

271:

536:

537:

493:

272:

292:

293:

266:

273:

294:

267:

274:

268:

269:

381:

275:

298:

270

235:

276:

301:

236:

210:

277:

304:

237:

211:

278:

306:

238:

212:

279:

309:

678:

239:

280:

755:

386:

281:

282

635:

637:

638:

639:

640:

641:

575:

577:

642:

580:

582:

584:

586:

589:

592:

593:

594:

497

672:

602:

673:

604:

674:

605:

675:

609:

676

662:

613:

658:

659:

660:

661:

314:

663:

664:

666:

315:

291:

264:

265:

231:

232:

468:

469:

470:

471:

472:

473:

474:

475:

476:

477:

478:

479:

730:

732:

734:

480:

481:

740:

739:

482:

483:

484:

485:

486:

698

487:

488:

489:

490

240:

11:

387:

12:

241

13:

14:

618:

15:

16:

619:

17:

Fig. 7. Convergence rate of the GA.

D. Naso et al.480

Table 3. Average characteristics of the solutions found by the two variants on a set of 25
instances of normal difficulty

Table 4. Average characteristics of the solutions found by the two variants on a set of 25
instances of hard difficulty

In a second campaign of numerical experiments, we compare the two variants of
our meta-heuristics with a reference constructive algorithm proposed in [13]. Essen-
tially, this algorithm constructs the schedule by assigning jobs to the PC closest to
customer’s site (Shorter Distance, SD), and assigning tasks to the candidate truck that
has the Smallest Idle Time (SIT). Conflicts and overlaps are handled with a series of
constructive rules similar to those described for the CHP. The effectiveness of the
solutions obtained by this algorithm, hereafter referred to as SD-SIT, depends on the
particular characteristics of the considered instance. In any case, it represents a sig-
nificant reference for comparison, as it has been shown that it can achieve very satis-
factory solution in many reference scenarios derived from industrial data.

Table 5. Average components of the cost function for the LCSN and the SD-SIT on a set of
100 instances (normal and hard difficulties)

CHP SD-SIT LCSN
Components avg std avg std

Empty trips (Km) 15582.44 422.26 14984.84 490.094
Loaded trips (Km) 10983.15 309.64 16199.27 1351.114
Waiting time (min) 22141.55 617.87 16943.73 996.402
Hired trucks 21.98 0.46 19.08 1.75

(m3) (115.34)
0.31
(1.72)

5.45
(52.955)

0.17
(1,38)

Total cost (NU’s) 1048309 36885 862757 27689
Search Execution Time (min) 1.04 17.46

Table 6. Average components of the cost function for the HCSN and the SD-SIT on a set of
100 instances (normal and hard difficulties)

CHP SD-SIT HCSN
Components avg std avg std

Empty trips (Km) 16474.13 444.76 15622.42 354.893
Loaded trips (Km) 11716.04 325.34 15819.79 1028.566
Waiting time (min) 23530.44 641.03 18055.4 745.2005
Number of hired trucks 16.285 0.44 10.41 1.00
Number of outsourced jobs (m3) 11.80

(115.34)
0.31
(1.72)

4.90
(46.34)

0.16
(1.22)

Total cost (NU’s) 1028388 37619 782033 23284
Search Execution Time (min) 1.08 18.63

Tables 5 and 6 compare the LCSN and the HCSN CHP with the SD-SIT strategy on
two distinct sets of 100 instances (50 normal and 50 hard). The tables clearly show
that our meta-heuristics always outperform the SD-SIT. In particular, while the SD-
SIT is effective in optimizing the amount of truck travel, the two CHPs obtain a better
distribution of production activities between PC’s (thus allowing a substantial reduc-
tion of the outsourced production) and use a lower amount of hired trucks. On the
other hand, being a relatively simple constructive heuristics, the SD-SIT is remarka-
bly faster (15-18 times) in terms of execution time. Nevertheless, the search times of
the evolutionary approaches LCSN and HCSN is still acceptable even for problems
with several hundreds of jobs, and the amount of cost saving obtained fully counter-
balances the relatively increased computational demand.

Production and Distribution of Rapidly Perishable Materials

11.80 Number of outsourced jobs

481

6 Conclusions

production and distribution activities of a network of PC’s for the supply of rapidly
perishable goods. The proposed meta-heuristic approaches are able to provide highly
effective solutions with the desired tradeoff between production costs and ability to
tolerate small delivery delays. We considered two different types of SN’s (independ-
ent centers with restricted cooperation, and highly cooperative network). The numeri-
cal results show that in both cases the proposed approach can find effective solutions.
It is important to remark that the proposed approach could be easily extended to other
types of SN’s by changing the problem specific heuristics used in the CHP.

Long term research involves the investigation of innovative paradigms based on
distributed optimization, in which enhanced reactivity and fault tolerances are
achieved by distributing the optimization task between various decision nodes located
at each PC of the SN.

References

1. Feng, C. W., Cheng, T. M., Wu, H. T.: Optimizing the schedule of dispatching RMC trucks
through genetic algorithms. Automation in Construction, Vol. 13, issue 3 (2004) 327 – 340

2. Garcia, J. M., Lozano, S., Smith, K., Kwok, T., Villa, G.: Coordinated scheduling of pro-
duction and delivery from multiple plants and with time windows using genetic algorithms.
Proceedings of the 9th International Conference on Neural Information Processing, ICONIP
02, Vol. 3 (2002) 1153 – 1158

3. Gendreau, M., Laporte, G., Séguin, R.: A tabu search heuristic for the vehicle routing prob-
lem with stochastic demands and customers. Operations Research, Vol. 44, issue 3 (1996)
469 – 477

4. Ghiani, G., Guerriero, F., Laporte, G., Musmanno, R.: Real-time vehicle routing: Solution
concepts, algorithms and parallel computing strategies. European Journal of Operational

5. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in
memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Transactions
on Evolutionary Computation, Vol. 7 issue 2 (2003) 204 – 223

6. Laporte, G., Gendreau, M., Potvin, J. Y., Semet, F.: Classical and modern heuristics for the

7. Lau, H. C., Sim, M., Teo, K. M.: Vehicle routing problem with time windows and a limited

8. Lee, C. Y., Choi, J. Y.: A genetic algorithm for job sequencing problems with distinct due
dates and general early-tardy penalty weights. Computers & Operations Research, Vol. 22,
issue 8 (1995) 857 – 869

9. Marinakis, Y., Migdalas, A.: Annotated Bibliography in Vehicle Routing. Operational
Research –– An International Journal, Vol. 2, (2003) 32 – 46

10. M

Vol. 152, issue 2 (2004) 487 – 499

D. Naso et al.

’

4 – 5 (2000) 285 – 300
vehicle routing problem. International Transactions in Operational Research, Vol. 7, issue

atsatsinis, Nikolaos F.: Towards a decision support system for the ready concrete distri-
bution system: A case of a Greek company. European Journal of Operational Research,

482

Research, Vol. 151 (2003) 1 – 11

number of vehicles. European Journal of Operational Research, Vol. 148 (2003) 559 – 569

In this chapter, we have considered the challenging problem of coordinating the

11. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn.
Springer-Verlag, Berlin Heidelberg New York (1996)

12. Min, L., Cheng, W.: A genetic algorithm for minimizing the makespan in the case of

sue 4 (1999) 399 – 403
13. D. Naso, M. Surico, B. Turchiano, U. Kaymak, “Genetic algorithms for supply chain

scheduling: a case study on ready mixed concrete”, Erasmus Research Institute of Man-

14. Nearchou, A. C.: The effect of various operators on the genetic search for large scheduling
problems. International Journal of Production Economics, Vol. 88, issue 2 (2004) 191 –
203

15. Pinedo M.: Scheduling: theory, algorithms, and systems. Prentice-Hall, Englewood Cliffs,
New Jersey (1995) Chap. 4, 86

16. Serifoglu, F. S., Ulusoy, G,: Parallel machine scheduling with earliness and tardiness
penalties. Computers & Operations Research, Vol. 26, issue 8 (1999) 773 – 787

17. Solomon, M. M.: Algorithms for the Vehicle Routing and Scheduling Problems with Time
Window Constraints. Operation Research, Vol. 35, issue 2, (1987) 254 – 265

18. Tan, K. C., Lee, L. H., Ou, K.: Hybrid genetic algorithms in solving vehicle routing prob-
lems with time window constraints. Asia-Pacific Journal of Operational Research, Vol. 18,
issue 1 (2001a) 121 – 130

19. Tan, K. C., Lee, L. H., Zhu, Q. L., Ou, K.: Heuristic methods for vehicle routing problem
with time windows. Artificial Intelligence in Engineering, Vol. 15, issue 3 (2001b) 281 –

20. Tommelein, I. D., Li, A.: Just-In-Time Concrete Delivery: Mapping Alternatives for Ver-
tical Supply Chain Integration. Proceedings of the Seventh Annual Conference of the In-
ternational Group for Lean Construction IGLC-7, University of California, Berkeley, Cali-
fornia, (1999) 97 – 108

21. Toth, P., Vigo, D.: Models, relaxations and exact approaches for the capacitated vehicle

22. H. Ishibuchi, T. Yoshida, and T. Murata: Balance between genetic search and local search
in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans.

23. N. Krasnogor, J. Smith: A tutorial for competent memetic algorithms: model, taxonomy,
and design issues. IEEE Transactions on Evolutionary Computation, Vol. 9, Issue 5

rithms: a comparative study. IEEE Transactions on Systems, Man and Cybernetics, Part B.

Production and Distribution of Rapidly Perishable Materials 483

24. Y. S. Ong, M. H. Lim, N. Zhu, K. W. Wong: Classification of adaptive memetic algo-

Research, 2006 or 2007

scheduling identical parallel machines. Artificial Intelligence in Engineering, Vol. 13, is-

agement – Report ERS-2004-096-LIS, to appear on European Journal of Operation

295

Evol. Comput., vol. 7 (2003), pp. 204 – 223

Vol. 36, issue 1(2006) 141 – 152

(2005), 474 – 488

routing problem. Discrete Applied Mathematics, Vol. 123, issue 1 – 3 (2002) 487 – 512

A Scenario-based Evolutionary Scheduling

Stephen Baker1, Axel Bender2, Hussein Abbass3, and Ruhul Sarker4

1 Defence Science and Technology Organization Land Operations Division P.O.
Box 1500, Edinburgh SA 5111, Australia. steve.baker@dsto.defence.gov.au

2 Defence Science and Technology Organization Land Operations Division P.O.
Box 1500, Edinburgh SA 5111, Australia. axel.bender@dsto.defence.gov.au

3 Defence and Security Applications Research Centre, Australian Defence Force
Academy, University of New South Wales, Canberra, ACT 2600, Australia.
abbass@itee.adfa.edu.au

4 Defence and Security Applications Research Centre, Australian Defence Force
Academy, University of New South Wales, Canberra, ACT 2600, Australia.
ruhul@cs.adfa.edu.au

When assessing land vehicle fleet capabilities in off-shore military operations,
it is necessary to develop and apply a reliable mechanism for creating and
testing different fleet structures. In this paper, the problem of optimizing ve-
hicle fleet mixes in the settings of military deployments is introduced, the
complexity of this problem is discussed and a fleet-optimization system that
optimizes multiple objectives while satisfying the system constraints is intro-
duced. The system is based on a set of heuristics that can answer a number of
key questions required for long-term capability planning such as utilization of
current fleet, mix of different vehicle and modular units for a given scenario,
and overall fleet structure. It is evolutionary and uses a relaxed version of the
concept of Pareto-dominance to identify the set of different options available
for possible use by military analysts. The effectiveness of our system through
a case study based on a simple example dataset is demonstrated. The novelty
in this work is that we optimize a problem where scheduling is tightly cou-
pled with routing and bin packing. In addition, land-based operations are also
constrained with different standard operating procedures that complicate the
scheduling problem. This paper is a first attempt towards solving this complex
problem.

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

S. Baker et al.: A Scenario-based Evolutionary Scheduling Approach for Assessing Future Supply Chain

Fleet Capabilities, Studies in Computational Intelligence (SCI) 49, 485–511 (2007)

Chain Fleet Capabilities

Approach for Assessing Future Supply

1 Introduction

Vehicle fleets of large organizations, such as land-based military forces, sig-
nificantly contribute to operational effectiveness in all battlefield operations
systems. For example, let us consider a military context. Here, one objective
from the organization’s point of view is its ability to negotiate diverse terrain
quickly and under adverse environmental conditions. Another objective is to
build the capacity to sustain prolonged and sizeable operations. Both these
objectives depend heavily on the force’s core transport capability. Designing
and optimizing such a capability in a manner that meets operational require-
ments and, at the same time, is cost efficient therefore is of utmost importance
to any land-based military force.

The strategic significance of optimizing military vehicle fleets is matched
by the complexity of the problem. Owing to its large-scale and combinator-
ial complexity, determining and optimizing the mix of a large heterogeneous
transport fleet carries a heavy computational burden because of two reasons.
The first reason is the large-scale hard-to-decompose nature of the problem.
The second is the combinatorial complexity of the problem. As shown in this
chapter, the problem has a coupled interaction between three NP-complete
sub-problems; these are: scheduling, routing, and bin-packing. The realization
of any of these problems in an acceptable time frame is very unlikely. Thus
heuristic or approximation methods are often employed [2, 19].

While the subject of fleet mix optimization has been studied in the context
of commercial fleets [9] and some military airlift fleets [1], little research effort
has been focussed on the problem domain of purely land-based military vehicle
fleets. The military land environment includes a number of operational con-
straints many of which have unique military dimensions. Amongst them are
threats, risks and concomitant protection requirements, terrain limitations,
load compatibility, maintenance requirements, task connectivity, convoy re-
quirements, crew restrictions, tasking time windows, and occupational health
and safety requirements. Additionally, military vehicle fleets confront a multi-
tude of tasks, subsets of which may be isolated to a particular industry sector
in the commercial domain such as in the case of routine transport of person-
nel. In this regard, examinations of fleet mix problems in the literature often
are made with reference to one particular industry sector.

The nature of the future military vehicle fleet examined in this paper can

concept of a modularized vehicle fleet sees a basic truck and/or trailer combi-
nation configurable to a task specific variant, suitable for a particular payload

cargo functional type, for example, should be configurable by adding to a base
vehicle chassis a flat rack (a type of demountable truck tray to carry cargo
loads), ISO container (shipping container compliant with standards promul-
gated by the International Organization for Standardization, ISO), bulk liquid
tank, dump or tip-truck module. Other vehicle functional types also employ

S. Baker et al.

‘or function, by the addition of an appropriate module’. Vehicles of a general

‘be described as modularized’. Incorporating both truck and trailer assets, the

486

this modularized capability. The concept of utilizing modules is designed to
divorce the payload task functionality from the mobility and manoeuvrability
functions of the vehicle chassis. Additionally, the notion is that with common
interfaces, system components can be designed so that vehicles can easily and
quickly swap modules to meet contemporary mission requirements.

As indicated, the modularized concept is applicable to both trucks and
trailers as shown by current day examples in Figure 1. As seen in this figure,
allied with the modularized vehicle fleet concept is the adoption in cargo car-
rying vehicles of load handling systems that are organic to trucks (known as
integral load handling systems, ILHS) and allow loading/unloading of mod-
ules from trucks and trailers without the need for other material handling
equipment, such as forklifts and cranes.

Fig. 1. On left: Modular Vehicle with ISO Module and Integral Load Handling Sys-
tem7. On right: Modular Vehicle with Integral Load Handling System and Modular
Trailer both with Flat Rack Modules8.

Quite apart from the strategic significance and complexity of the fleet mix
issue, it is this modularized concept that adds a novel dimension to the prob-
lem addressed in this paper. While previous analysis have addressed container
movement for example, we are not aware of such a modularized concept be-
ing examined, and also note that the wide use of trailer assets in military
fleets introduces a further range of issues that have received relatively narrow
investigation in the literature.

The Modularized Fleet Mix Problem (MFMP) being examined in this
paper therefore can be stated as:

A deployed military force has a range of mobility tasks to be undertaken
utilizing a heterogeneous modularized vehicle fleet incorporating truck and/or
trailer operations. The deployed military force along with its vehicle fleet is dis-
tributed among many locations in an area of operation. Each mobility task is
characterized as requiring a number and range of modules to be moved between

Assessing Future Supply Chain Fleet Capabilities 487

locations, to meet a priority for movement, within time window constraints.
Each truck and trailer type has characteristics in terms of its ability to carry a
particular range and number of modules and its ability to move across particu-
lar terrain classifications at particular speeds. The problem is to select trucks,
trailers and modules assets to provide the best fleet outcomes. The fleet mix
options are to be assessed against several efficiency and effectiveness criteria.

In this Chapter some of the approaches and methods that have been ap-
plied to vehicle fleet optimization problems are reviewed. The heuristics-based
solver system is then presented followed by applying it to a simple case study.
In the final section future work is outlined.

2 Fleet mix problems and approaches

Most of the fleet mix problems described in the literature also address, simul-
taneously, fleet management problems other than fleet optimization. Amongst
these are vehicle assignment, vehicle routing, and/or vehicle scheduling within
a network of customers or demand locations, and they are often referred to as,
or based upon, the classical Vehicle Routing Problem (VRP), Vehicle Schedul-
ing Problem (VSP) and combinations or variants thereof. The survey by Bodin
et al [9], despite its age, continues to be cited as one of the most comprehen-

characteristics that differentiate them.

devoted to developing a sophisticated theory’ for problems in this domain. As
such, resource routing, scheduling and assignment represent huge fields of
research endeavor where the application of heuristics and meta-heuristics is
prominent. Ruiz et al [16] also note that while solution approaches based on
exact methods have been applied for reasonably sized problems, generally only
basic versions of such problems, such as the VRP or VSP, are considered.

The fleet mix problem presented in this Chapter is most closely aligned
with the VSP, which can be stated in the following manner: Complete a range
of tasks, originating from multiple depots, by employing appropriate movement
assets within established time windows so as to optimize such aspects as the
number of vehicles of various types, fixed and variable costs, and vehicle ca-
pacity utilization. Some recent examination of VSP can be found in Park [18],
Dell’Amico et al [10], and Ferland and Michelon [6]. In this area the literature
demonstrates the application of a wide range of heuristic and meta-heuristic
solution approaches.

However, despite this interest in vehicle operations, few applications of
combined truck and trailer fleet mix problems can be found in the literature.
Those few areas of investigation are generally aligned with either the Vehicle
Routing Problem with Trailers (VRPT), the Truck and Trailer Routing Prob-
lem (TTRP), or the Truck and Trailer Vehicle Routing Problem (TTVRP).

S. Baker et al.

‘As Fisher and Jaikumar [12] point out literally person-centuries have been

sive undertaken in this area of interest. Along with this survey, Desrochers et al
[11] highlight the great variety of problem types examined and the principal

488

Semet and Taillard [4] consider a VRP that includes the use of trailers
under accessibility constraints. Semet [3] similarly models a related problem
called the partial accessibility constrained VRP’. As an extension of the VRP,
Semet categorizes customers as either trailer-customers’ and therefore acces-
sible by either a truck or a truck-trailer combination, or as truck-customers’
and therefore accessible by a truck only.

Gerdessen [7] examines a similar extension of the classical VRP entitled the
VRP with trailers (VRPT) to determine optimal truck and trailer combina-
tions. This problem is based on the consideration that manoeuvring problems
may be encountered at certain customer sites. As a result it considers unhitch-
ing trailers at various parking sites in order to visit some ’difficult’ customers
with an easily manoeuvrable truck only.

Chao [5] considers a related problem identified as the Truck and Trailer
Routing Problem (TTRP). The core of the problem is as presented by
Gerdessen, however, a number of important assumptions are relaxed. The
VRPT studied by Gerdessen differs from Chao’s TTRP in that all customers
have unit demand, customers are assigned manoeuvring times instead of cus-
tomer types, each customer location can be used as a trailer parking place
and each trailer is parked exactly once. In their heuristic solution approaches
both Gerdessen and Chao develop construction and improvement algorithms.
Chao, however, applies a solution construction method and a tabu search im-
provement heuristic together with the deviation concept found in deterministic
annealing to solve the TTRP. In a later article Scheuerer [17] also addresses
the TTRP and proposes two construction heuristics for this problem and a
tabu search heuristic.

The aforementioned problem constructs involving trailer operations belong

Vehicle Routing Problem (TTVRP). In addition to time windows, unlike the
TTRP, the TTVRP:

• requires vehicles to visit designated trailer exchange points for picking up
the correct trailer types depending on the tasks to be undertaken,

• models trucks as essentially prime movers with no organic carrying capac-
ity (i.e. trucks do not operate independently of trailers), and

• allows for the outsourcing of tasks that are not routed by sub-fleets in the
TTVRP.

Tan et al [8] propose a hybrid multi-objective evolutionary algorithm in-
corporating specialized genetic operators, variable length chromosome rep-
resentation and a local search heuristic to find the Pareto optimal routing
solution.

In [15], a heuristic was developed for the multi-period multi-commodity
transportation problem. In this problem, commodities are to be transported
from a number of sources to a number of destinations. This is only part of
the problem we are dealing with in this chapter because it does not consider

Assessing Future Supply Chain Fleet Capabilities

‘
‘

to the domain of vehicle routing. With the addition of time windows, Tan et al
[8] introduce an element of scheduling when examining the Truck and Trailer

‘

489

the path taking from one place to another, and it does not consider the many
constraints we will explain later on.

In the military domain, recent attempts to build a computerized scheduling
system include the work in [13], where the concept of multi-agent systems is
proposed to model military scheduling problems. In a more recent publication
by these authors [14], the authors focus on the dynamic scheduling problem
and the dynamic load balance between agents in terms of processing time.

3 Scenario-Based Military Vehicle Fleet Scheduling

Approach

The problem being introduced in the introduction is more complex than what
can be found in the literature, and consists of a number of coupled sub-
problems. Before the proposed approach is discussed, the problem is stated
formally. In the discussion presented from now on, the trailers are ignored in
order to simplify the problem formulation. Including trailers in the approach
does not pose a fundamentally new problem, however it increases combinato-
rial complexity.

Assume a command structure (see Figure 2) defined as a tree-graph , where
U are the units in the command structure and O is the set of directed-edges.
It provides information on which unit is in command of which other unit(s).
Each unit is divided into a set of sub-units (capability groups). Overall, the
command structure defines the ownership of vehicles; vehicles owned by a
particular unit cannot be used by any other units. However, by having de-
fined a command structure changes to vehicle ownership can be made when
needed. For instance, a vehicle owned by a unit may be allowed to be used
by any other unit who is in command of the former unit. This enables the
examination of the effect of changes to vehicle ownership on fleet mix optimiza-
tion, by switching” between organic (situation-based, location-based and dy-
namic ownership) and hierarchical fixed ownership. The command structure
described here also allows for the study of other ownership philosophies, such
as centralized fleet management or network-enabled ownership in which a unit
closest to a vehicle can use it independent of ownership issues.

Assume a nodal structure (i.e. a model of a geographical region) repre-
sented as a graph, G(N, E), N is the set of nodes, while E is the set of directed
edges. The nodal structure represents physical locations, where nodes repre-
sent places and edges represent roads. There are three different types of nodes:
a physical location, a dummy node, and an exchange point as shown in Fig-
ure 3. Dummy nodes are used when there are multiple roads between two
nodes. An exchange point is a physical location agreed-on by the units as a
mid-point for vehicles to meet to exchange materials. For example, assume a
need arises to transport materials from two nodes, N1 and N2. An exchange
point E1 between these two nodes is used such that vehicles move from both
N1 and N2 to meet at E1 at a given point of time to exchange materials. In

S. Baker et al.

“

490

Fig. 2. A simple visualization of a simple tree-based command structure.

this case, vehicles from N1 (N2) will move from N1 (N2) to E2 and back to
N1 (N2) respectively.

A capability group can exist in one physical node only at any point of time,
while a single physical node can have many capability groups. Each node has a
number of properties including the size of the node, the average length between
any two points within the node, the maximum day and night speed of internal
roads and the unique set of sub-units located at this node. Since some tasks
can be internal within a node, this node-specific information is necessary for
scheduling internal tasks. Each edge has a number of parameters associated
with it, including the mobility criterion of the road, the length, width, and
maximum load (for example, when there is a bridge, the load is limited), and
maximum day and night speed of vehicles travelling on the road.

Assume the existence of V k vehicles, where k represents the vehicle type;
thus it also represents the combination of modules that the vehicle chassis
can carry. Also assume the existence of Mr

modules, where r is the module
type which also represents the set of materials that can go with each module.
Further assume the existence of Tw

di tasks, where w is the time window in

Assessing Future Supply Chain Fleet Capabilities 491

Fig. 3. A simple nodal structure.

which a task needs to be fulfilled, d is the duration of the task, and i is a
unique task ID. Let Ck be the cost of a vehicle of type k, Lk be the length
of a vehicle of type k, and Cr be the cost of a module of type r. The cost
in this simple formulation can be seen as the acquisition cost thought in our
tool, it covers other cost factors such as expected preventive-maintenance cost
during the expected lifetime of an asset, and operation cost. The problem is
to identify a mixture of vehicles and modules to fulfil the tasks such that

1. the cost is minimum;

min
∑

k

CkV k +
∑

r

CrMr

2. the mixture is balanced (a balance between different vehicle types); |k| in
the equation is the cardinality of the set k while V is the average number
of vehicles of all types.

min

∑

k (V k − V)2

|k|

S. Baker et al.492

3. the lane meter (a measure that describes the space a vehicle occupies in
a strategic sealift vessel) is minimum.

min
∑

k

LkV k

Typically, the three objectives may exist in conflict, i.e. fleet options that are
optimal when assessed against one of the objectives may not optimize the
other two objectives. The mixture balance is calculated through the variance
of the fleet mix vector.

The vehicle is assumed to return to the origin after fulfilling the task. In
the current version of the model, a working day is eight hours for a driver.
The daylight period is from 6am to 6pm and the night time is the rest of the
day. A fixed loading and unloading time for the vehicle is assumed.

When solving this problem, time is of the essence. Given that the size of
operation imposes a huge number of tasks, it is not convenient to allow the
solver to generate many (sometimes any) infeasible solutions. Thus, the solver
is designed around the concept of generate-mix-improve.

The current solver is designed as presented in Figure 4. The system is
characterized by a unique and modular structure which provides the system
with the required flexibility to evolve over time with minimal changes. An
oracle’ agent is introduced that interacts with three main agents:

1. the route agent;
2. the task agent; and,
3. the combination agent.

The oracle coordinates the synchronization among these three agents. It pro-
vides the main internal interface for exchanging data and information between
the three agents as well as the recombination operation of Stage 3 of the
heuristic presented later in this Chapter.

The distributed multi-agent system is written in Java. Figure 4 depicts
the overall design of this multi-agent system. Some of these agents undertake
pre-processing operations when they first get activated. Some of these pre-
processing operations are inefficient when the problem size is small as they
have a large fixed-cost. However, when the problem size becomes large, the
pre-processing operations save a huge amount of time. The pre-processing
operations associated with each agent are described when we explain each
agent below. The overall system flow chart is depicted in Figure 5.

The first operation takes place in the route agent. This agent is responsible
for providing a route for a given task, vehicle, trailer if needed, and modules
if needed. It gets initialized by generating all possible routes between any two
nodes in the network. This is an exponential list as the average degree per
node in the network increases. However, given that a typical military network
tends to have a small average degree per node, the complexity of this process
is not that expensive. The fixed inputs to the route agent is the start node,

Assessing Future Supply Chain Fleet Capabilities

‘

493

Constraint Category Constraints

Tasks material types
material quantity
material volume
early start time and date
latest finish time and date
duration
priority
source/origin of the task
destination
intermediate deliverables and local demands
frequency for doing the task
preferred vehicle
preferred module

Modules payload in volume
payload in kilograms
the combination of materials

Trailers valid combinations of modules
mobility criterion (restriction on suitable terrains)
payload in volume for fixed trailers
payload in kilograms for fixed trailers
maintenance parameters

Vehicles valid combinations of modules
driver skill level
mobility criterion (restriction on suitable terrains)

payload in volume for fixed vehicles
payload in kilograms for fixed vehicles
fuel capacity
dimensions
crew size required
maintenance parameters
speed limits
load/uploading time

Routing Road capacity
Road mobility criterion
Road risk level
Road length
Road width
day and night speed

Operating procedures Convoy requirements for certain tasks

Drivers maximum working hours in a day
maximum working hours without a stop
rest time

S. Baker et al.

Minimum and maximum number of vehicles on a given road

vehicle ownership (whether only owners can assign tasks or not)

494

Fig. 4. The multi-agent system in the solver of the scenario-based military vehicle
fleet scheduling problem.

end node, task, and proposed vehicle. Optional inputs include the proposed
trailer and/or modules associated with the vehicle. The route agent is then
responsible for deciding which of these different routes is suitable for a task
(i.e. satisfies the constraints). The routes agent uses the following criteria to
decide on which route is most suitable for the given task–vehicle combination:

• mobility criterion (the worst mobility criterion of the route which, in the
military domain, is based on the quantifiable assessment of road surface,
terrain conditions, slopes, obstacles, etc),

• the total distance of the route, and
• the maximum load that can be transported through this route.

The combination agent oversees the decision on forming a vehicle-trailer-
module combination given a task. The pre-processing associated with this
agent is that it enumerates the possible list of modules that can be carried
with each vehicle or trailer type. For each combination, the total payload in
kilograms and volume, and the mobility criterion of the vehicle (or vehicle–
trailer combination) are calculated.

The multi-agent system works by message-passing between agents. Each
message is tagged with a unique ID to overcome deadlocks. It works in a
similar way as a ticket reservation system, where the resource is either free,
reserved, or scheduled. A reserved resource for one operation is not available
for any other operation until it gets unlocked.

Assessing Future Supply Chain Fleet Capabilities 495

Fig. 5. A holistic view of the oracle.

The task agent is responsible for choosing a task for the schedule agent
to schedule. When a task is selected for scheduling, the task agent orders
the tasks using a random sequence (to overcome the problem of fixed bias
discussed later in this section) of the following set of criteria:

S. Baker et al.496

• Descending order on earliest start time,
• Descending order on latest finish time,
• Sorting the origins according to ID,
• Sorting the destination according to ID,
• Sorting on priority from important to less important with 1 being the

highest priority,
• Descending or ascending order on weight,
• Descending or ascending order on volume

In the nodal structure, each node is given a unique ID. The ID is generated
by the system from left to right, top–down. This represents some sort of a
linear encoding for the nodal structure and is used as a criterion above to sort
tasks based on flow of origin/destination.

Once the task agent has sorted the tasks, a task is selected and its char-
acteristics are passed on (by the oracle agent) to the vehicle agent so that
the vehicle agent can select a suitable vehicle for the task. If there is no suit-
able vehicle available to perform a task, then the vehicle agent has access to
an (unlimited) pool of vehicles in order to create’ the required vehicle. The
vehicle selection process uses the following constraints:

1.
2. A driver (also a vehicle) cannot operate more than ten hours a day.
3. Every five hours, the driver/vehicle must task a break for 30 minutes.
4. If the sum of the duration of the trip and the time the vehicle has been

operating so far without a break is greater than the maximum allowed time
to operate without a break, the driver will take a break before commencing
the task

5. The mobility criterion of a vehicle needs to be suited to the road. Here
we assume that a vehicle with a mobility criterion VM can be used for a
road with mobility criterion RM if VM ≤ RM.

6. The class of supply for the vehicle is consistent with the materials to be
transported. The heuristic is configured to prefer a light vehicle over a
water tanker if the amount of water to be transported is less than 1000lt
since it is not cost effective to use a water tanker for a small amount of
water.

7. If the vehicle is an existing one (it has been created before), the owner of
the vehicle must reside at the location from where the task originates.

8. Volume, pax, and weight of tasks must be less than those of the vehicles;
otherwise the task will be split into smaller tasks.

The overall scheduling heuristic comprises three stages. In the first stage,
a single feasible solution is generated by calling the multi-agent system. Each
agent in the system makes a decision using the set of criteria explained above.
The heuristics associated with each agent are explained above. The generated
solution is guaranteed to satisfy all constraints. If during the generation proce-
dure one or more of the constraints cannot be satisfied - for example, because

Assessing Future Supply Chain Fleet Capabilities

‘

The default start time for a task is 6 am.

497

of a lack of a suitable vehicle - the system takes specific actions to satisfy all
constraints - for example, buying a suitable vehicle. In the second stage, the
first stage is called a number of times to create a number of feasible solutions
by shuffling some criteria in the heuristics. In the third stage, the solutions
go through selection and recombination, and new solutions evolve. The new
solutions are used as input to the first stage in order to repair them should
they not satisfy all of the constraints. The main algorithm is given below.

Algorithm 1 A pseudo code of the system

Initialize the sorted task list, SList, to empty
Stage 1:

For each task T in the sorted task list
Until T is completed (T.quantity>0)

While there is combination available based on T
Select one combination from C according to the heuristic
While there is a route available based on T and C

Select one route R according to the heuristic
While there is a set of modules based on T,C,R

Select a set of modules M according to the heuristic
Break;
While there is a vehicle based on T,C,R

Obtain vehicle V according to the heuristic
Reset the available time of V and M
Break;

End While
End While

End While
End While

End Until
End For
Let the created schedule be S0
If the size of SList is < maximum size

Add S0 to SList
Else if S0 dominates any other schedule S1 ∈ SList

Replace S1 with S0
Else if S0 is non-dominated when compared to all schedules ∈ SList

Add S0 to SList
End if

Stage 2:
While (time-elapsed < time-available)

Shuffle the orders for sorting
Call Stage 1

End while
Stage 3:

While (time-elapsed < time-available)

S. Baker et al.498

Select 2 schedules S1 and S2 from SList
Let S3 = Operator(S1,S2)
If the size of SList is < maximum size

Add S3 to SList
Else if S3 dominates any other schedule S0 ∈ SList

Replace S0 with S3
Else if S3 is non-dominated when compared to all schedules ∈ SList

Add S3 to SList
End if

End while

In the described approach, we minimize three different objectives. The
first objective is budget or the total purchasing cost of the fleet. The second
objective is the cost of strategic lift expressed in lane meters: imagine that all
vehicles are lined-up in a single line, the strategic lift bill’ would be the length
of this line. The third objective is the variance of the fleet composition; this
reflects how uniform the fleet is. It is not desirable to have a fleet just with
heavy vehicles since it does not provide enough flexibility and operational
maneuverability. We define non-uniformity as the variance of vehicle numbers
of a given type compared to the average number of vehicles irrespective of
type. For instance if we have a fleet of 30 light, 30 medium, and 30 heavy
vehicles, then the average number of vehicles per type is 30 and the variance
is 0, which describes a (very) uniform fleet mix.

One issue that deserves a discussion here is why the fleet variance was
chosen over other objectives such as completing tasks on time. Fleet variance
as an objective actually subsumes many other objectives in the sense that
if the fastest way to complete the list of tasks is by having a fleet of small
vehicles only, this is a potential extreme point on the Pareto front. Thus, using
the fleet variance as an objective allows for solutions to complete tasks quickly
as well as solutions where a balance in capability is achieved. In general, when
we optimize future fleets, we should keep in mind that the future is usually
hard to predict; thus a balance in fleet mix is needed. In scenarios where
small vehicles cannot operate, heavy vehicles would be needed while in other
scenarios small vehicles can be preferred.

Once the set of criteria that a heuristic follows gets initialized, a problem
of fixed bias may arise. Take, for example, a heuristic which always prefers a
large vehicle over a small one. This heuristic will only generate a fleet with all
vehicles being large. We may not worry so much about this fixed bias since
in stage 3, solutions get selected and combined. However, we use a parameter
called “acceptance rate” to test whether or not this type of bias creates a
diversity problem for stage 3. The “acceptance rate” parameter represents
the probability a decision made by an agent will be accepted. If the agent’s
decision is rejected, the agent will need to re-generate another decision. If no
such alternative decision is available, the agent will need to back-track and
the original decision is chosen.

Assessing Future Supply Chain Fleet Capabilities

‘

499

4 The Evolutionary computation Setup

We use a parameter called “population size” to signify the maximum number
of solutions generated by the scheduling algorithm before selection pressure
is applied. If this parameter is set, say, to 20, all first 20 solutions will be
accepted regardless of their objective values. Once 20 solutions have been
generated, any additional new solution will be added to the population only
if it is non-dominated or it dominates any of the solutions in the population.
In the latter case, the new solution replaces the dominated solution. This is
the selection strategy we used because it is important for our end user to
see the full scale of non-dominated options available. This is because many
qualitative objectives are hard, if not impossible, to include in the model.

We use this strategy because of the nature of our problem. Let us assume
that the objectives are not in conflict; thus there might be a single unique
optimal solution. This solution, from a practical sense, may not necessarily be
the best solution. There can be many other qualitative ways to judge on the
quality of solutions from a military perspective. The process to come up with
proper measures for the quality of the fleet can be too complex that makes
the cost for evaluating a single fleet too expensive.

The fundamental question in this work is what is the smallest fleet size to
perform a certain scenario. Therefore, a chromosome is defined as a string of
integers representing the fleet composition for each capability group. Assuming
that we have k different type of vehicles, r different type of modules, l different
type of trailers, and m capability group, the chromosome length is k×r×l×m.

We use an arithmetic crossover operator for this exercise. We intend in
future work to experiment with different crossover operators. The arithmetic
crossover operator works as follows: assume two chromosomes p1 and p2, then
the child c is generated through c = α×p1+(1−α)×p2, where α is randomly
chosen from a uniform distribution U(0, 1). The new generated fleet is used
as an input to the multi-agent system and get repaired if it is not sufficient
to undertake the tasks (assuming that we are allowed to create’ or buy more
vehicles). This repair operator is used as some sort of corrective mutation. As
a result, we did not use a mutation operator, although it would be interesting
to try to do so in the future.

5 Validation

In this section, we validate the model by comparing it against two integer
linear programming models solved using the branch and bound technique. The
answers were obtained on the same computer with the following specifications:
CPU: Intel Centrino 1.8G Hz; Memory: 521MB; OS: Windows XP professional
SP2.

We simplify the problem to a two-node model, where all tasks start at one
node and ends at the other. There is only one mobility criterion dictating a

S. Baker et al.

‘

500

constant speed of 80Km/h. The length of the road is 40Km, which forces the
time needed to deliver a task and return to base to be one hour.

In the first model, we assume that all tasks start together; thus the problem
is reduced to the following very simple integer linear programming model:

Let xjk be the number of vehicles of type j undertaking task k. Let Cj

be the cost of buying one vehicle of type j, Capacityj be the capacity of a
vehicle of type j, and Qk the capacity required by task k. The model is

min
∑

j

Cj × Pj

S.T.
∑

k

xjk ≤ Pj

∑

j

Capacityj × xjk ≥ Qk

xjk ≥ 0; integer

In this model, the problem is reduced to a very simple case where only the
number of vehicles need to be determined in this simple environment and all
tasks will be undertaken simultaneously. We assume that there are 3 different
vehicles: Heavy with capacity 1000 Kg, Medium with capacity 500 Kg, and
small with capacity 100 Kg. We assume 10 tasks, 3 with capacity 1000 Kg
each, 3 with capacity 500 Kg each and 4 with capacity 100 Kg each.

The second model tests the scalability of traditional optimization in a sim-
ple situation. We allow tasks to be undertaken in different time slots. In fact,
the problem is fully decomposable but we do not use this decomposition, nei-
ther in our system nor in the traditional optimization model, as it is the result
of our simplification and cannot be achieved in more complicated situations.
Overlapping the data will complicate the mathematical model unnecessarily,
when the objective of this section is merely to test some aspects of our system.
We assume that we have ten different time slots and each task can be done
in anyone of them or being split as well. The second model is as follows:

min
∑

j

Cj × Pj

S.T.
∑

t

∑

k

xjkt ≤ Pj

Assessing Future Supply Chain Fleet Capabilities 501

∑

t

∑

j

Capacityj × xjkt ≥ Qk

xjk ≥ 0; integer

In both models, we use three different cost functions. The costs used are
listed below:

Cost Heavy Medium Small
function Vehicle Vehicle Vehicle

1 400000 225000 50000
2 350000 212500 50000
3 250000 187500 50000

The first mathematical model has 30 variables while the second has 300
variables. We used the LINGO software to solve the integer linear program-
ming model. The LINGO code for the second example is shown in the appen-
dix. The same code can be used for the first example by setting t = 1. One can
also notice that there is a third constraint being added to limit the number
of vehicles of any type to 10 for numerical reasons in LINGO to establish an
upper bound on the search space.

Both the optimization model and the proposed system reached the optimal
solution. For the first model, both LINGO and the proposed system took less
than one second (running time rather than CPU time) to solve the problem
for all cost functions. The results of the second model were surprising. The
proposed system took between one and three seconds to solve each problem,
while LINGO took 13 seconds on the first cost function, 36 seconds on the
second cost function and LINGO complained when solving the third cost
function. When we investigated the problem further, we found that when the
equality component of the inequalities is fully satisfied, it resulted in an ill-
matrix in LINGO. To overcome this, if the reader changes the Capacity in
the third last line of the code to 1001 instead of 1000 and 501 instead of
500, LINGO will run fast and will give solutions in a similar speed as our
algorithm. We attach LINGO code so that the reader can try for him/herself
these difficulties which was surprising for us.

6 Case study

In this section, we present an example with three different vehicle types:
heavy (mobility criterion 3, day speed 60 km/hour, night speed 40 km/hour),
medium (mobility criterion 2, day speed 80 km/hour, night speed 50 km/hour)
and light (mobility criterion 1, day speed 80 km/hour, night speed 50
km/hour). There are also three different module types which can carry up
to 1000, 500 and 100 Kg of materials. We use three different cost functions to
demonstrate the functionality of the system. The cost functions are plotted in

S. Baker et al.502

Figure 6 with the nodal structure in Figure 7. The three different purchasing
cost for the vehicles are (in dimensionless units): L: 50,000, M: 225,000, H:
400,000; L: 50,000, M: 212,500, H: 350,000; and L: 50,000, M: 187,500, H:
250,000.

Fig. 6. The three different cost functions for the truck types.

Fig. 7. The nodal structure.

Assessing Future Supply Chain Fleet Capabilities 503

The nodal structure has the following characteristics

Road Name From To Mobility Criteria Length Width
Road 0 Base 1 Base 0 3 25 10
Road 1 Base 1 Base 3 4 50 10
Road 2 Base 1 Base 4 4 55 10
Road 3 Base 3 Base 0 3 30 10
Road 4 Base 3 Base 2 4 60 10
Road 5 Base 4 Base 0 3 30 10
Road 6 Base 4 Base 2 4 55 10
Road 7 Base 0 Base 2 3 35 10

There are two materials, food and water. The early start time for all tasks
is the start of the day and the latest finish time is eight hours afterwards.

There are 114 daily tasks included in the test, divided into 6 different
groups for validation purposes. The six groups are: [(Water 1000 + Food
1000) * 1]; [(Food 1000) * 1, (Water 1000) * 1]; [(Water 500 + Food 500) * 2];
[(Food 500) * 2, (Water 500) * 2]; [(Water 100 + Food 100) * 4]; [(Food 100)
* 3, (Water 100) * 3]. Each group is assigned to a different base-base combi-
nation. These combinations, ordered according to groups, are: Base1-Base2;
Base1-Base3; Base1-Base4; Base3-Base2; Base3-Base4; and Base4-Base2 re-
spectively.

We experimented with four different “acceptance rate” levels: 1, 0.99, 0.95,
and 0.80. We also experimented with three different population sizes: 10, 25,
and 50.

The convention for presenting the results is as follows. Each figure consists
of 24 sub-figures divided into a consecutive group of 6 figures. The top three
figures in each group depict all solutions that have been generated in stage 2
(marked with circles) and stage 3 (marked with black dots) in the algorithm.
All solutions shown in the figures are valid solutions. For solutions generated
in stage 3, those solutions are repaired for feasibility before get evaluated and
presented in the figure. The bottom three figures in each group depict the
final population at the end of the run.

Representative figures with different cost functions for population size 10
are shown in Figures 8, 9, 10. By scrutinizing these figures, one can notice the
following:

1. With a smaller acceptance rate, more distinct solutions get generated in
stage 2 as can be seen by the increase in the number of circles in all graphs.
With acceptance rate 1, very few distinct solutions get generate in stage
2 and mostly these solutions would have high variance, indicating the ef-
fect of the bias in the heuristic. However, the wide spectrum of solutions
that get generated by using low acceptance rate, can also be generated
through the recombination operator. This can be noticed by comparing
the population corresponding to acceptance rate of 1 with the population
corresponding to acceptance rate of 0.8. The two figures are almost iden-

S. Baker et al.504

tical except that most of the solutions with the former acceptance rate
get generated in stage 3.

2. Surprisingly, the argument of the usefulness of using a lower acceptance
rate as a replacement for the recombination operator does not hold true
as we can see when we compare the final population corresponding to
acceptance rate of 0.95 and acceptance rate of 0.8. It seems that the final
population corresponding to the latter acceptance rate has less spread
than the former. This may entail that a very low acceptance rate may
deteriorate the solution quality. However, the recombination operator in
conjunction with a high acceptance rate would perform consistently well.

3. The population size seems to have no effect on all acceptance rates with
the first cost function. One needs to interpret this remark carefully since
our definition of population size is not the traditional evolutionary com-
putation definition in the sense that we use a varying population size. The
population size makes a difference only in the first x number of solutions
that get generated, whether they will enter into a competition or not. As
such, this initial pressure has less effect in this problem when the rate of
change in the cost function is almost constant. However, when we look
at the second and third cost functions, one can notice that the higher
population size, the more variations we get in the final population. This
variation could have been redundancy (duplicate solutions) in the pop-
ulation, however after a closer examination to the populations we found
that these are legitimate variations (unique and mostly non-dominated
solutions).

4. The cost functions, on the other hand, had a notable impact on the spread
and variety of solutions that we obtained. It is clear when comparing across
the different cost functions that the smaller the rate of change in the cost
function (the slop of each function in Figure 6), the less variability of
solutions one obtains. One may be biased when comparing the sub-plots
showing the total cost since it is natural that the change in cost would
change these sub-plots. However, the phenomena that the cost function
has an impact on the variability of solutions being generated can par-
ticularly be noticed when comparing the sub-plots of lane meter against
variance.

5. The computational cost for generating these solutions was very low. A
valid solution that satisfies all constraints takes less than a second to be
generated on a Pentium 4 PC. We should emphasis also that we paid a
lot of attention in the design and coding of the multi-agent system to
optimize the code and speed up the processes.

7 Conclusion

Applying the presented solver system to the simple case study illustrates that
(1) schedule recombination (Stage 3) results in improvement in the fleet mix

Assessing Future Supply Chain Fleet Capabilities 505

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce
40 60 80 100 120 140 160

0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

Fig. 8. Cost function 1 with different acceptance rates and population size 10.
Figures are grouped with a group size of 6. Groups from top to down corresponds
to acceptance rates of 1, 0.99, 0.95, and 0.80 respectively. Circles and dots represent
solutions generated in stage 2 and 3 respectively.

S. Baker et al.506

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce
2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

Fig. 9. Cost function 2 with different acceptance rates and population size 10.
Figures are grouped with a group size of 6. Groups from top to down corresponds
to acceptance rates of 1, 0.99, 0.95, and 0.80 respectively. Circles and dots represent
solutions generated in stage 2 and 3 respectively.

Assessing Future Supply Chain Fleet Capabilities 507

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce
40 60 80 100 120 140 160

0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

2 4 6

x 10
6

40

60

80

100

120

140

160

Vehicles cost

La
ne

 m
ete

r

2 4 6

x 10
6

0

50

100

150

200

250

Vehicles cost

Va
ria

nce

40 60 80 100 120 140 160
0

50

100

150

200

250

Lane meter

Va
ria

nce

Fig. 10. Cost function 3 with different acceptance rates and population size 10.
Figures are grouped with a group size of 6. Groups from top to down corresponds
to acceptance rates of 1, 0.99, 0.95, and 0.80 respectively. Circles and dots represent
solutions generated in stage 2 and 3 respectively.

S. Baker et al.508

solutions found in Stage 2, and (2) the solver system produces fleet options
with great efficiency at low computational cost. This instils confidence that
the developed method can be applied to more complex examples. However,

We are currently working on refinements to the heuristics employed in the
three stages of the solver system, and the definition of optimization objec-
tives that provide a “good” spread for the Stage 2 seed solutions upon which
improved solutions are generated during Stage 3. We have also started to in-
vestigate the structure of the fleet option landscape in order to obtain a better
understanding of the accuracy of the optimization approximation used, and
to evaluate computational effort required to find accurate approximation.

In future work, we will continue with the development of the solver sys-
tem to enable the optimization of vehicle fleets that operate in dynamically
changing military environments characterized, in parts, by enemy disruption
and high uncertainty of demands in supply classes, such as ammunition. We
expect that the evolutionary computation method will change to deal with
the dynamics. Our previous work on dynamic environments in general reveal
that identification of linkage and building blocks is a stable approach to deal
with changing environments. In this problem, it would be interesting to de-
fine what a building block is; especially with the tight coupling of scheduling,
routing and bin-packing.

8 Acknowledgements

The paper is written as unclassified materials of a DSTO-ADFA project on
Defence Fleet-mix Problem. The project is funded by the Australian Depart-
ment of Defence, Land Operations Division (LOD) of the Australian Defence
Science and Technology Organization (DSTO) awarded to Hussein Abbass
and Ruhul Sarker of the Australian Defence Force Academy, University of
New South Wales, Canberra. The authors like to thank Dr Yin Shan and Mr
Qi Fan for their effort in modifying the codes, system implementation and
experimentation. The authors also like to thank the management of LOD,
DSTO for allowing them to submit the paper.

9 Appendix

Algorithm 2 The LINGO Code for Example 2
MODEL: SETS:

VEHICLE: CAPACITY, COST, NUM;
TASK: REQD;
PERIOD;
LINKS (VEHICLE, TASK, PERIOD): XVAR;

Assessing Future Supply Chain Fleet Capabilities 509

approach.
examining examples is not equivalent to proofing the effectiveness of the

ENDSETS
MIN = SUM (VEHICLE(J): COST(J) * NUM(J));
@FOR (TASK(K):

@SUM (PERIOD (T):

@FOR (VEHICLE(J):
@FOR (PERIOD (T):

@SUM (TASK (K): XVAR(J,K,T))<= NUM(J)));
@FOR (VEHICLE(J):

@FOR (PERIOD (T):
@FOR (TASK (K): XVAR(J,K,T) <= 10)));

@FOR (VEHICLE(J):
@FOR (PERIOD (T):

@FOR (TASK (K): @GIN(XVAR(J,K,T)))));
DATA:

VEHICLE = H M S;
COST = 250000 187500 50000;
TASK = T1 T2 T3 T4 T5 T6 T7 T8 T9 T10;
PERIOD = P1 P2 P3 P4 P5 P6 P7 P8 P9 P10;
CAPACITY = 1000 500 100;
REQD = 1000 1000 1000 500 500 500 100 100 100 100;

ENDDATA END

References

1. Morton D.P., Rosenthal R.E., and Weng L.T. Optimization modelling for airlift
mobility. Technical report, United States Navy, Naval Postgraduate School,
Monterey CA, 1995.

2. Baita F., Pesenti R., Ukovich W., and Favaretto D. A comparision of differ-
ent solution approaches to the vehicle scheduling problem in a practical case.
Computers & Operations Research, 27(13):1249–1269, 2000.

3. Semet F. A two-phase algorithm for the partial accessibility constrained vehicle
routing problem. Annals of Operations Research, 61(1):45–65, 1995.

4. Semet F. and Taillard E. Solving real-life vehicle routing problems efficiently
using tabu search. Annals of Operations Research, 41(4):469–488, 1993.

5. Chao I.M. A tabu search method for the truck and trailer routing problem.
Computers & Operations Research, 29(1):33–51, 2002.

6. Ferland J.A. and Michelon P. The vehicle scheduling problem with multiple
vehicle types. Journal of the Operational Research Society, 39(6):577–583, 1988.

7. Gerdessen J.C. Vehicle routing problem with trailers. European Journal of
Operational Research, 93(1):135–147, 1996.

8. Tan K.C., Chew Y.H., and Lee L.H. A hybrid multi-objective algorithm for
solving truck and trailver vehicle routing problems. European Journal of Oper-
ational Research, 2005. Corrected Proof, In Press.

S. Baker et al.

@SUM(VEHICLE(J):CAPACITY(J)*XVAR(J,K,T)))>=REQD(K));

510

9. Bodin L.D., Golden B.L., Assad A.A., and Ball M.O. Routing and scheduling
of vehicles and crews: The state of the art. Computers & Operations Research,
10(2):63–211, 1983.

10. Dell’Amico M., Fischetti M., and Toth P. Heuristic algorithms for the multiple
depot vehicle scheduling problem. Management Science, 39(1):115–125, 1993.

11. Desrochers M., Lenstra J.K., and Savelsbergh M.W.P. A classification scheme
for vehicle routing and scheduling problems. European Journal of Operational
Research, 46(3), 1990.

12. Fisher M.L. and Jaikumar R. A generalised assignment heuristic for vehicle
routing. Networks, 11:109–124, 1981.

13. D. Montana, J. Herrero, G. Vidaver, and G. Bidwell. A multiagent society for
military transportation scheduling. Journal of Scheduling, 3(4):225–246, 2000.

14. D. Montana, G. Vidaver, and T. Hussain. A reconfigurable multiagent society
for transportation scheduling and dynamic rescheduling. In International Con-
ference on Integration of Knowledge Intensive Multi-Agent Systems (KIMAS),
2005.

15. KL Poh, KW Choo, and CG Wong. A heuristic approach to the multi-period
multi-commodity transportation problem. Journal of the Operational Research
Society, 56:708–718, 2005.

16. Ruiz R., Maroto C., and Alcaraz J. A decision support system for a real vehicle
routing problem. European Journal of Operational Research, 153(3):593–606,
2004.

17. Scheuerer S. A tabu search heuristic for the truck and trailer routing problem.
Computers & Operations Research, 2005. Corrected Proof, In Press.

18. Park Y.B. A solution of the bicriteria vehicle scheduling problems with time and
area-dependent travel speeds. Computers & Industrial Engineering, 38(1):173–
187, 2000.

19. Park Y.B. A hybrid genetic algorithm for the vehicle scheduling problem with
due times and time deadlines. International Journal of Production Economics,
73:175–188, 2001.

Assessing Future Supply Chain Fleet Capabilities 511

Evolutionary Optimization of Business Process

Designs

Ashutosh Tiwari, Kostas Vergidis and Rajkumar Roy

School of Applied Sciences, Cranfield University,
Cranfield, MK43 0AL, U.K.

Summary. Business process redesign and improvement have become in-
creasingly attractive in the wider area of business process intelligence. Al-
though there are many attempts to establish a qualitative business process
redesign framework, there is little work on quantitative business process
analysis and optimization. Furthermore, most of the attempts to analyze and
optimize a business process are manual without involving a formal auto-
mated methodology. Business process optimization can be classified as a
scheduling problem, expressed as the selection of alternative activities in
the appropriate sequence for the available resources to be transformed and
thus satisfy the business process objectives. This chapter provides an over-
view of the current research about business process analysis and optimiza-
tion and introduces an evolutionary approach. It demonstrates how a busi-
ness process design problem can be modeled as a multi-objective
optimization problem and solved using existing techniques. An illustrative
case study is presented to demonstrate the results obtained through three
multi-objective optimization algorithms. It is shown that multi-objective op-
timization of business processes is a highly constrained problem with frag-
mented search space. However, the results demonstrate a successful attempt
and highlight the directions for future research in the area.

1 Introduction

Business process redesign is inherently linked to the scheduling problems.
One of the main topics of research in scheduling has been the optimal allo-
cation of resources to tasks. Business processes can be analyzed using

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

A. Tiwari et al.: Evolutionary Optimization of Business Process Designs, Studies in Computational

Intelligence (SCI) 49, 513–541 (2007)

similar perspective. The design and management of business processes is a
key factor for companies to effectively compete in today’s volatile busi-
ness environment. By focusing on the optimization and continuous im-
provement of business processes, organisations can establish a solid com-
petitive advantage by reducing cost, improving quality and efficiency, and
enabling adaptation to changing requirements. Multi-objective optimiza-
tion of business processes can result in novel approaches and more effi-
cient ways of business process improvement as more than one optimiza-
tion criteria can be selected and satisfied concurrently.

The rest of the chapter is organized as follows: Section 2 introduces the
basic concepts of business processes and examines the basic formal defini-
tions. Section 3 presents existing performance analysis techniques for
business processes and section 4 investigates current optimization ap-
proaches for formal business process models. Section 5 presents the au-
thors’ approach towards evolutionary multi-objective optimization of busi-
ness processes and section 6 introduces the results of this approach.
Finally, section 7 discusses the potential directions for future research in
the area.

2 Formal Approaches to Business Processes

For a business process design to be optimized, the model construction
methodology plays a decisive role. This section provides an introduction to
the ‘business process’ concept and presents the most common modeling
notions to provide a familiarization with the basic ideas. The focus is to the
business process modeling techniques that allow formal optimization. This
section begins with a discussion on how different authors perceive busi-
ness processes and how these are related to scheduling.

2.1 Business Processes and Scheduling

An overview of most common business process definitions is provided in
[16] suggesting that most of the attempts to define a business process are
inadequate and confined to a mechanistic viewpoint of the process. Most
of these definitions ignore the human side resulting in static simplified rep-
resentations of business processes [18]. According to [5], business proc-
esses are complicated and thus more difficult to be fully specified. How-
ever, the ‘mechanistic’ definitions of business processes bring them closer
to scheduling problems thus making a range of successful approaches al-
ready applied to scheduling, available.

A. Tiwari et al.514

 There are many authors influenced by this perspective and provide
business process descriptions that are more indicative of scheduling prob-
lem descriptions. For example, Hammer and Champy [9] suggest that a
process is a ‘set of partially ordered activities intended to reach a goal’. A
process is thus a specific ordering of work activities across time and place
with a beginning, an end and clearly identified inputs and outputs: a struc-
ture for action. A similar perception [3] also suggests that a business proc-
ess can be perceived as a network of tasks. This approach is in line with
scheduling, as it is concerned with resource allocation to tasks and justifies
the attempt in [28] to map scheduling problems using a technique (i.e.
Petri-nets) that has been already used for business process modeling.

Another attempt to define business processes and relate them to schedul-
ing is found in [2] describing a business process as ‘the combination of a
set of activities within an enterprise with a structure describing their logi-
cal order and dependence, whose objective is to produce a desired result’.
Also, in [11] the business process model described is quite similar to the
Resource-Constraint Project Scheduling Problem (RCPSP). An inadequate
attempt to define and model a business process could have a significantly
negative effect on people’s productivity by restraining their ability to gain
expertise and apply innovative approaches while carrying out a business
process.

2.2 Business Process Modeling

Business process modeling gives a snapshot of what is perceived at a point
in time, in terms of a process that takes place in a business environment.
Process models are currently best used to represent the internal elements of
business processes; for example the activities needed and their dependen-
cies, the dataflow, the roles and actors involved, and the goals. Along with
the large number of attempts to define business processes, there is an
abundance of techniques for capturing and modeling business processes.
Aguilar-Saven [2] provides an overview of the most commonly used busi-
ness process modeling techniques.

According to [17], business process improvement is dependent on an in-

sight in the structure of business processes and their relations. This insight
can be obtained by creating business process models that clearly and pre-
cisely represent the essence of the business organization. Business process
modeling is itself a complex interdisciplinary and time-consuming process
that involves judgments based on domain knowledge and experience, due
to the multifaceted and dynamic nature of organizations [23]. The main
objective of process modeling is the high-level specification of processes

Evolutionary Optimization of Business Process Designs 515

thus a process model should be properly defined, analyzed, verified, and
refined to all of its aspects including structure, data flow, roles and con-
straints [24]. It is also important to identify the uses or purposes of the
model when undertaking modeling of any kind in order to select the most
appropriate technique [2]. Phalp [22] also highlights notation and method
as two important parameters that need to be taken into account when mod-
eling a business process as the model’s general purpose and specific char-
acteristics are significantly influenced by these two.

Taking the above into consideration, we can apply a number of criteria
to classify the various modeling approaches. Frameworks and classifica-
tions of business process models can be found in relevant literature based
on the purpose of the model, the notation or the structure ([2], [14]). We
introduce a classification of business process models according to their
formality, i.e. their ability to represent a process in a mathematically cor-
rect and rigorous way. The result of this classification is two groups of
process models. On one hand are the so-called traditional or diagrammatic
methods of process modeling, e.g. flowcharts or IDEF models and on the
other hand, the business process modeling approaches that can be formally
(i.e. mathematically or algorithmically) analyzed and verified. The next
section introduces three representative formal business process modeling
approaches. We choose to focus on these models because performance
analysis and optimization – that is our main areas of focus- can be applied
almost exclusively to this second group.

2.3 Formal Modeling Approaches

The most frequently recognized shortcoming of process modeling is the
lack of analysis tools. Owing to the qualitative and static nature of most
process models, mathematical techniques are difficult to apply. In order to
make the process modeling methodologies more attractive, formal tech-
niques for analysis of process models are required [30]. Formal process
models are the ones in which process concepts are defined rigorously and
precisely, so that mathematics can be used to analyze, extract knowledge
from and reason about them. An advantage of formal models is that they
can be verified mathematically, can be proved that they are consistent, and
have or lack certain properties [15]. Although there are a number of formal
modeling approaches, the majority of the business reengineering commu-
nity uses simple diagrammatic modeling techniques [19]. This affects the
analysis of business processes restricting it to simple inspection of the
business process diagrams thus the conclusions are mostly heavily depend-
ent upon the skill of the modeler.

A. Tiwari et al.516

Luttighuis et al. [17] recommends formal methods for detailed analysis
of process over the diagrammatic modeling. The same perspective is also
highlighted in [2] when suggesting that the analysis of business processes
needs models that present both the dynamic and functional aspects of the
process and also sophisticated mechanisms that qualitative analysis of
static diagrammatic models cannot offer. Although formal methods can
provide significant benefits to business process modeling by introducing
new perspectives, there is a lack of formal methods to support the actual
design of business processes [11]. This is mainly because design elements
and constraints on process designs are hard to characterize in a formal way
amenable to analytical methods. The qualitative nature of process designs
explains the difficulty of ‘parametric’ models of business processes [26].
Three representative formal business process models found in the literature
are discussed below.

2.3.1 Petri-nets

Petri-nets is a formal graphical process modeling language. According to
[10], Petri-nets help describe the semantics of process control flow, includ-
ing basic branch and join rules, as well as more complicated synchroniza-
tion scenarios. Petri-nets are an established tool for modeling and analyz-
ing processes that has been widely recognized. They can be used as a
design language for the specification of complex workflows and also Petri-
net theory provides powerful analysis techniques that can be used to verify
the correctness of workflow procedures – they can be used for both quali-
tative and quantitative analysis of workflows and workflow systems [29].
A Petri-net is a directed graph that uses as main constructs places, transi-
tions, tokens and arcs.

- Places: drawn as a circle, a place is a stopping point in a process, the
attainment of a milestone.

- Transitions: a transition is a rectangle that represents an event or
action.

- Tokens: A token is a black dot residing in a place representing the
current state of the process. During the execution of the process,
tokens move from place to place.

- Arcs: An arc is a link from a transition to a place or a place to a
transition.

Van der Aalst [29] supports that Petri-nets have a series of advantages

that played a key role in their establishment. Although they support dia-

Evolutionary Optimization of Business Process Designs 517

grammatic process modeling, they also provide formal semantics. Moreover,

ess providing a more holistic view on the process flow. Also, they offer an
abundance of analysis techniques that can be used to evaluate the perform-

ance of the modeled business process by calculating e.g. the estimated
throughput of a process, the average throughput time of a job, the esti-
mated occupation rate, etc. [27]

However some attempts to use Petri nets in practice reveal two serious
drawbacks. First of all, there is no data concept and hence the models often
become excessively large, because all data manipulation has to be repre-
sented directly in the net structure. Secondly, there are no hierarchy con-
cepts, and thus it is not possible to build a large model via a set of separate
sub-models with well-defined interfaces [2]. For these reasons Petri-nets
have been extended supporting constructs like time and color.

2.3.2 Business Process AI-based Language

The second approach to formal business process modeling comes from
[15]. The proposed business process modeling methodology is constructed
with an Artificial Intelligence (AI) programming language thus ensuring
the formality of the proposed process model.

The methodology begins with the definition of business process objec-
tives. The output is a detailed formal specification of a business process
that achieves those objectives. This perspective is established and con-
firmed by the logical assumption that a process model cannot be repre-
sented by a single model but as a set of various sub-models that capture the
business process from different viewpoints. There are five interconnected
sub-models specified to formally describe different aspects of the business
process are:

- organizational sub-model, describing the actors that participate in the
process, their roles, their responsibilities and their capabilities,

- objectives and goals sub-model, describing what the process and its
actors try to achieve,

- process sub-model, describing how the process will achieve those
goals,

- concepts sub-model, describing non-intentional entities, and

- constraints sub-model, describing factors limiting what the enterprise
and its components can do.

Each of these models consists of various concepts that are formally de-

scribed by the declarative logical language L [7]. L is used to introduce ap-
propriate constructs, write axioms and capture process semantics. The em-

A. Tiwari et al.518

apart from process events, they record the various states of the proc-

phasis is on actor and role concepts as each role involves a set of respon-
sibilities and actions that need to be carried out by an actor. L is used here
to precisely define the relationships between various concepts.

Using the same methodology, other sub-model concepts like goals and
actions are specified. This approach ensures the formality of the concepts
although it becomes increasingly complicated as the concepts to be mod-
eled incorporate other concepts. This attempt can be discouraging because
‘it is a lot of work to create and maintain a formal business process and
also retain its consistency’ [15]. Other disadvantages of this proposal lie in
the use of complex mathematical notation that might put off the business
analyst and the skills of AI programming that are essential but rarely found
in an average manager.

2.3.3 Scheduling-based Mathematical Formulation of Business
Processes

The third approach to formal business process modeling comes from [11]
and it is related to mathematical definition of business processes. This
modeling approach is linked with three different optimization approaches
that will be thoroughly discussed later on this chapter. A business process
is described using a mathematical model with an objective function which
can portray any business process objective e.g. cost. The objective function
is minimized or maximized by the optimization algorithm.

The main concepts used in the process design are activities and re-
sources. A business process is perceived as a sequence of activities. These
activities use some resources and produce others to be used by the follow-
ing activities until the goal resources are produced. Resources are the
physical or information objects which flow through the system. Activities
are transformation steps which use resources as inputs and produce new
ones as outputs. Both activities and resources are represented as sets. Each
process begins with some input resources and produces a desired set of
output resources. Each activity has two parameters: one for its starting
time and another for its execution duration. The input resources of this ac-
tivity must be available before the activity starts and the output resources
must be produced after the activity has been executed. The time that a re-
source becomes available is another parameter critical to process feasibil-
ity.

The particular modeling approach gives flexibility to the authors, to ap-
ply different optimization methods. It is also close to scheduling problem
definition as it explicitly involves activities and resources to a business
process design. The process model is adjusted and further defined in each
of the different optimization attempts. This approach will be more exten-

Evolutionary Optimization of Business Process Designs 519

sively discussed later as it forms the basis for our evolutionary optimiza-
tion of business process designs.

3 Business Processes Performance Analysis

Qualitative performance analysis of business processes can only occur to
formal business process models. It is the only kind of process analysis that
can contribute to process optimization by identifying the process bottle-
necks that can be optimized. A business process might be correct (verified)
and also produce the expected outcome in a given context (validated) but it
could still have redundant steps or not satisfactory performance in terms of
cost effectiveness, duration, resource allocation etc. Before introducing the
existing business process optimization approaches in the next section, this
section provides a brief introduction to different process analysis attempts
in literature that approach the subject from different perspectives and can
be considered as a significant first step towards business process im-
provement.

3.1 The Fuzzy Logic Approach

Zakarian [30] attempts to model and quantify a business process using a
combination of fuzzy logic and rule-based reasoning. The main motivation
for this approach is to model efficiently the uncertain and incomplete in-
formation of process variables that exist in most of the traditional model-
ling techniques. The starting point of this approach is a business process il-
lustrated with an IDEF3 model. This model is used as the basis for
quantification and performance analysis of the business process. IDEF3 is
quite popular and widely used modelling method in the business process
context. One of the major advantages of IDEF3 representation is its sim-
plicity and its descriptive power. The essence of IDEF3 methodology is its
ability to describe activities and their relationship at various levels of de-
tail, because an initial model includes parent activities that can be decom-
posed into lower level activities. These models are also easy to extend.
IDEF3 offers several important characteristics for successful process rep-
resentation:

1. process description in the form of activities,
2. structure of the underlying process, and
3. flow of objects and their relationship.

A. Tiwari et al.520

In the first step of the process presented in [30], IF-THEN fuzzy rules
are extracted from the IDEF3 model and thus the linguistic variables are
defined. The linguistic variables, which owing to their nature contain in-
complete or uncertain information, fall into two categories: input and out-
put variables. In the formal model, which consists of IF-THEN fuzzy rules,
the input variables appear in the IF part, while the output variables are
found in the consequent THEN part. In order to understand the author’s
approach an example with two fuzzy rules is demonstrated with the as-
sumption that the rules were extracted from a simple IDEF3 model:

- Rule 1: IF product stock is low THEN Marketing department informs
customers about urgent orders.

- Rule 2: IF shipping products’ weight is heavy THEN postage costs
are high.

The linguistic variables for rule 1 are ‘low’ and ‘urgent’ and for rule 2

‘heavy’ and ‘high’ and they need to be quantified. The quantification will
take place by assigning possibility distributions to the linguistic variables.
Possibility distribution is the definition of the lower and upper limits of a
fuzzy set using numbers. For example, ‘low’ product cost can be defined
by the fuzzy set as being lower than 1,000 product items. The possibility
distribution is precisely defined as the result of a process called ‘de-
fuzzification’. De-fuzzification is about obtaining a crisp value for each of
the output fuzzy set variables (e.g. ‘high post costs’ can be de-fuzzified to
100 dollars).

The main outcome of this methodology is that having started from an
IDEF3 model containing incomplete information about its linguistic vari-
ables, a set of specific IF-THEN rules is extracted based on the model’s
flow. The linguistic variables of these rules are then categorised into fuzzy
sets which are de-fuzzified by assigning precise boundaries. The signifi-
cance of this procedure is that the process is accurately executed and its
output can be quantified and predicted. Performance analysis can then oc-
cur by combining different values for each variable to estimate the various
process outputs.

This methodology was applied to a real industry process problem (film
decomposition process) and succeeded in calculating process outputs for
different values of the linguistic variables of the process. This provides the
opportunity to perform performance analysis of the process output for dif-
ferent scenarios. This modelling and analysis approach, being co-operative
(or supplementary) to an IDEF3 process model, manages to represent and
quantify information that is usually not applicable to diagrammatic process
models. The effectiveness of quantification is apparent as it can be used to

Evolutionary Optimization of Business Process Designs 521

combine a number of values for each participating variable and to produce
potential process outputs helping the business analyst to track which proc-
ess scenario is more beneficial.

3.2 Quantifying Role Activity Diagrams

Role activity diagrams (RADs) are based on a graphical view of the proc-
ess from the perspective of individual roles, concentrating on the responsi-
bility of roles and the interactions between them [12]. Roles are abstract
notations of behaviour describing a desired behaviour within the organisa-
tion. RADs are object-state transition diagrams used in object-oriented
models. They describe how a role object changes state as a result of the
occurring actions and interactions.

Phalp [21] attempts to quantify RADs thus create a measure for per-
formance analysis. The main objective of this approach is to minimise the
coupling between the various roles in a Role Activity Diagram. Coupling
is defined as the interaction between two or more roles in order to com-
plete a task [20]. Coupling can be captured and visualised within RADs.
The starting point for this coupling measure is the sum of actions and in-
teractions of a particular role. This measure is called ‘coupling ratio’
(CpFX) measuring the correlation between actions (independent activities
of a role) and interactions (involvement of another role) in terms of per-
centage. If the ratio is high, it means that the coupling is large and the
business process needs further improvement.

A major benefit of the coupling ratio is that it enables comparison be-
tween roles of different sizes [21]. Reducing coupling allows roles to be-
come more autonomous because they do not need to synchronise. This has
a major effect on the business process as it improves the performance in a
way that each role performs its tasks more quickly and with less opportu-
nity to delay since there is independence from redundant interactions. This
approach enables business process performance analysis by quantifying
one feature, i.e. role coupling. Reducing coupling in a process, directly re-
sults in the process becoming more straight-forward, faster and – in general
terms- improved through the analysis and inspection of the coupling ratio.

3.3 Performance Analysis through a Query Language

The last business process performance analysis approach is workflow re-
lated. Workflow is a similar concept to business process and many authors
are using these two keywords interchangeably. In [1] an approach is pro-
posed for the performance evaluation of automated business processes

A. Tiwari et al.522

based on the measurement language WPQL (Workflow Performance
Query Language). The adoption of a Workflow Management System
(WfMS) to automate a business process gives the opportunity to collect
real execution data continuously, from which exact information about the
process performance can be obtained. On the one hand, such data can be
used for monitoring, work balancing and decision support. On the other,
execution data can feed simulation tools that exploit mathematical models.
Through the simulation, it is possible to obtain an assessment of the cur-

Although formal languages have been exploited in order to define the
concept of process, the use of formal languages to handle the problem of
performance evaluation of workflow has received not as much coverage
[1]. A language is an application tool that could enable the writing of que-
ries against a WfMS in order to compute measures about given workflow
entities. The main benefit of such a tool is the expressive power of a pro-
gramming language to define and evaluate new performance measures.
The basic idea of the WPQL language is based on the following steps:

1. Define a new measure
2. Select workflow entities to measure
3. Apply the measure to the selected entities

The WPQL also offers a standard set of performance measures as well
as the facilities to define new ones. WPQL is a specialized language, its
focus is on the measurement of workflow related quantities and its con-
structs have been introduced to ease the handling of concepts such as proc-
ess or workflow participant.

4 Scheduling-based Business Process Optimization
Approaches

After reviewing the business process modeling techniques and perform-
ance analysis approaches, it is time to examine the not-as-many business
process optimization attempts. Process improvement – often used as an
umbrella term for performance analysis and business process optimization-
is one of the most significant motivations for process modeling. According
to [25], large organizations are attempting to map their processes for two
main reasons: One is to acquire a realistic knowledge of the current situa-
tion and flow of activities within the organization and second to efficiently
improve those processes thus meeting the organization goals. The prereq-

Evolutionary Optimization of Business Process Designs 523

reengineering alternatives.
rent process performance and to formulate hypotheses about possible

uisites for business process optimization are: (i) the business processes
should be correctly designed, (ii) their execution should be supported by a
system that can meet the workload requirements, and (iii) the (human or
automated) process resources should be able to perform their work items in
a timely fashion [8]. The same would stand for any other scheduling-type
of problem.

The quality of a business process is defined by many, often conflicting
criteria such as costs, duration, or quality of output. A business process op-
timization approach should clearly define and specify how optimization is
perceived and which aspects of the process are going to be optimized. Not
many optimization techniques found in literature are suitable for business
processes. Due to their qualitative nature, process designs are hard to char-
acterize in a formal way amenable to analytical methods and thus improve
them in a measurable way. There is also a lack of tools for identifying the
bottleneck areas in these models. Their qualitative nature also explains the
difficulty of developing ‘parametric’ models of business processes. For
these reasons, there is a lack of algorithmic approaches for the optimiza-
tion of business processes [26]. In this section some optimization tech-
niques found in literature are discussed.

4.1 Mathematical Programming Formulation

As mentioned previously, there is an attempt in [11] to optimise a business
process using three different approaches that are examined thoroughly in
this section. Having already mentioned the modelling approach towards
business processes it becomes easier to understand the perspective towards
the model’s optimization.

The formulation of the process design as a mathematical problem is
close to scheduling problems. A linear objective function and a number of
constraints are used to describe the problem and cover all of its aspects.
The objective function –which can illustrate a process objective e.g. cost-
is minimised or maximised according to the goal of optimization. The con-
straints describe and ensure the feasibility of the process in a mathemati-
cally formal way. A constraint, for example, can restrict the use of a par-
ticular resource before it is produced within the process. The main
concepts used in the process design are activities and resources. The
mathematical constraints regarding the activities and resources can be
grouped into two major categories:

1. constraints related to input and output resources of each activity and
2. constraints regarding the sequence and timing of resources and

activities.

A. Tiwari et al.524

Each process begins with some input resources (Iglob) and produces a de-
sired set of output resources (Oglob). The participating activities should be
sequenced in such a way that they use some resources as inputs and then
produce resources that can be used as inputs by other activities until the
desired output is produced. Constraints that belong to the first group make
sure that input resources are available by activities to use and that the final
set of output resources is eventually produced. The second group of con-
straints checks the time sequence of activities and resources. Each activity
has a starting time p and an execution duration d. The input resources of
this activity must be available before p and the output resources must be
produced in p+d time. The time that a resource becomes available is q and
is critical to the feasibility of the process.

In order to formally set the constraints, a number of variables and arrays
that bind together the resources and activities are being introduced. This
increases the complexity of the process model but also ensures its mathe-
matical formality. It also makes the model more flexible as a constraint can
be eliminated to simplify a particular aspect of the model or extra con-
straints can be inserted to further shape the model. The total number of
constraints in the final mathematical is thirteen. According to experiments
[11] the mathematical approach produced satisfying results but high execu-
tion times.

4.2 Direct Branch and Bound Method

Apart from mathematical programming, branch and bound method is an-
other way of optimising a business process [11]. Optimization problems
that have a significant number of binary variables are often solved using
branch and bound algorithms as they are easy to implement. Moreover,
these algorithms provide a bound on the optimal objective during execu-
tion, meaning that they can be stopped when the potential improvement is
small, without solving the problem to full optimality. During the branch
and bound procedure, a search tree is generated and in every branching
step another activity is added to the tree constructing the process design
i.e. at the first level, the first activity to be included in the design is se-
lected, at the second level the second activity and so on. When a feasible
solution is found then the particular node is no longer expanded if it con-
tains a feasible solution. In order to implement a branch and bound strat-
egy, two particular problems are being examined [11]:

1. The selection of a node to be expanded.
2. The computation of bounds on the objective value at each node.

Evolutionary Optimization of Business Process Designs 525

In terms of the first problem, two strategies attempt to restrict the set of
activities considered for branching: (i) The forward strategy that starts
from global inputs using resources available to link activities and produce
the global output and (ii) the backward strategy that starts from global out-
puts and tries to generate initial resources. Computational experiments
confirm that the forward strategy is considerably more efficient. These ex-
periments show that the branch and bound algorithm turned out to be con-
siderably fast, solving most of the problems quickly and yielding better re-
sults than other approaches.

4.3 Genetic Algorithms

Genetic Algorithms (GAs) has been a popular method that has been devel-
oped and successfully applied to complex problems in a variety of areas. A
significant advantage of GAs is that they maintain a population of possible
solutions to reach feasibility and that makes them more powerful. Another
significant advantage is their extendibility to optimise a problem with
more than one objective. Multi-objectivity makes genetic algorithms a
flexible and truly beneficial methodology that can be applied to any opti-
mization problem.

In order to find an optimal solution, a genetic algorithm imitates the
process of natural evolution. It works on a large number of solutions in
parallel, where each solution corresponds to an individual in a population.
Each solution is represented by an appropriately coded string. Initially, a
set of randomly generated solutions is produced. Then, superior solutions
are selected to form a new population. The selection probability depends
on the objective function value. The resulting selected individuals are then
selected for mating. A crossover operation exchanges information between
two individuals. Finally, a mutation operation changes the values of ran-
domly chosen bits. This process continues until some pre-defined termina-
tion criteria are fulfilled.

The business process design that is proposed in [11] has a significant
number of constraints. There are two different approaches to deal with
constraints in the GAs optimization approach. In the first approach, a pen-
alty term for constraint violation is added to the original objective func-
tion. The second approach modifies the genetic operators to limit the
search space to feasible solutions. This approach is appropriate if feasible
changes can easily be determined. Nevertheless, during the performance
tests, genetic algorithms show weak performance. Their main problem is
the feasibility maintenance in this business process design problem. Our
approach –presented on the next section- attempts to resolve these prob-

A. Tiwari et al.526

lems by modifying the business process model appropriately and then ap-
plying selected evolutionary algorithms to achieve multi-objective optimi-
zation.

5 Scheduling-based Evolutionary Multi-objective
Optimization

This section introduces our approach towards business process optimiza-
tion. A formally defined business process model is optimized using evolu-
tionary algorithms. The utilization of evolutionary techniques provides the
additional ability of optimizing the problem under multiple criteria. The
framework to be presented next, aims to introduce a methodology for ap-
plying multi-objective optimization algorithms to business process models.
It consists of two main stages: The first stage of the framework is the busi-
ness process model definition and the second stage involves the applica-
tion of the evolutionary algorithms to a test business process model for op-
timization results generation.

5.1 Business Process Model

The first stage of the optimization framework is the business process
model specification. The model has a mathematical basis to ensure formal-
ity, consistency and rigor. The business process model is limited to a series
of mathematical constraints that define the feasibility boundaries of the
business process and a set of objective functions that consist of the various
business process objectives. Representing a business process using a for-
mal mathematical model guarantees the construction of consistent and rig-
orous business processes following a formally correct, repeatable and most
importantly, verifiable approach [15].

The business process model consists of two key concepts: activities and
resources. Apart from the resources that are generated within the process,
the business process design has two sets of resources, the initial (Iglob) and
the final (Oglob) resources. The initial resources are available at the begin-
ning of the business process, while the final resources form the business
process final output. The resources flow through the process and belong to
two categories: physical and information resources. The activities, on the
other hand, are perceived as the transformation steps within the process
that use some resources as inputs and produce others as outputs. In a feasi-
ble process design, all the activities are in a defined sequence, the avail-

Evolutionary Optimization of Business Process Designs 527

ability of resources is adequate and most importantly the final (output) re-
sources are being produced by the participating activities.

For the business process model to be optimised, it is necessary to define
the process objectives (e.g. process duration) as well as the input variables
(e.g. activity duration). The business process model receives as input vari-
ables the participating activities and their starting times, whereas the aim is
to produce an optimised process in terms of minimising two objectives, the
process duration and cost. For each process design, there is a library of
candidate activities with attributes such as activity duration and activity
cost. For an optimised business process design to be produced, a set of ac-
tivities that generate minimum business process cost and duration needs to
be selected. It is important to note that the framework works independently
of the number of objectives and their type. Process duration and are cost
chosen as the two objectives for business process improvement. The com-
plete mathematical model is the following:

1

2 1

() max() min, :

() min

. .

1. , , : , ,

2. , , : , ,

3. , : ,

4. , : ,

5. ,

6. (1), , : ,

7.

j j j

i i

i ij j i j P

i j j i j I

i ij j ij i j P

i i

j j ij i j I

i

j j

i j i j i

j

f P q j b go

f P u x

s t

x r i j b I b B

x y i j b I b B

go r M gi t x j b B

y gi t x j b B

y go

p q M x i j b I

q

:

:

(1), :

8. (1) (1), : ,

9. , , : ,

10. (1), : , 0,

11. 1 (1), : , 0,

12. {0,1}, ,

13. {0,1}, , :

j i

j i

i i i j i

j i i i ij j i

ij i j i

ij ij i j P j

i b O i

ij j j P j

i b O

i

ij j

p M x i b O

q p M x M i b O

x i j b O

r og M y j B gi

M y j b B gi

x i

i j b .iO

A. Tiwari et al.528

The mathematical model of business process defines the optimization
objectives with two objective functions and ensures the business process
consistency and feasibility with thirteen constraints. Further objectives can
be added with extra functions. The process model appears to be compli-
cated in contrast to the simplistic approach of the business process consist-
ing only of activities and resources. A brief description of the mathemati-
cal model’s main features can provide a good understanding of its
functionality. The mathematical model consists of a number of binary
variables and binary matrices that have an impact on the production of fea-
sible process designs since they result to a highly fragmented search space.
The first objective function (f1) of the model calculates the duration of the
business process. The total duration for a feasible process equals the time
the last resource that belongs to global outputs is produced. The second ob-
jective function (f2) calculates the business process cost as the sum of costs
of all participating activities.

Table 1. Main Parameters in Mathematical Model

Parameter Explanation
ui1 Cost of execution for activity ai.

xi
Binary variable that indicates whether a candidate activity ai par-
ticipates in the business process design.

yj
Binary variable that indicates whether resource bj is or becomes
available in the business process.

ti,j
Matrix of binary variables that link the activities with their out-
put resources.

rij
Matrix of binary variables that indicate if a unit of physical re-
source bj is available for use by activity ai.

gij & goj
One-dimensional binary constants that indicate which resources
belong to global inputs and/or global outputs.

M
Large constant indicating that physical resources contained in
the set of global inputs are available in unlimited amounts.

pi Starting time of activity ai.
qj Time when the resource bj becomes available.

i Duration of activity ai.

ij
Binary variable indicating that activity ai is used to create re-
source bj.

Ii / Oi Sets of input/output resources of activity ai.
BP / BI Set of physical / information resources bj.

The mathematical model constraints ensure that the model produces fea-

sible business processes by examining different aspects of the business
process model. Table 1 provides an explanatory legend for all the mathe-

Evolutionary Optimization of Business Process Designs 529

matical model variables and parameters and table 2 provides a short

to highlight two features of the business process model. The mathematical
model consists of many discrete binary variables that significantly increase
the complexity of even a simple process design as the search space for fea-
sible solutions is highly fragmented. Another feature of the business proc-
ess model is that although it is simple to conceive and understand, it is
highly constrained when it comes to formal mathematical definition. This
can create serious difficulties in locating the optimum solutions since even
feasible solutions are hard to be produced. The concepts that describe the
business process and its mathematical model are inspired by [11]. Our aim
is to extend the model to multi-objectivity and optimise it using multi-
objective evolutionary algorithms.

5.2 Test Problem Construction

This section describes the construction of a business process design test
problem. Five different test process designs were constructed for assessing
their capability to be optimised by the optimization algorithms. We will
describe analytically the construction of one of these problems.

The test problems utilised, have an increasing number of activities par-
ticipating in each process design. The results demonstrate that this is a sig-
nificant cause in increasing the problem complexity and has a serious im-
pact on the quality of results. Each of the problems has a fixed predefined
number of participating activities in the process. The initial and final re-
sources of the business process are given. Remember that for each process
design there is a library of candidate activities that can potentially partici-
pate in the process.

A business process design is optimised when the activities selected
along with their starting times produce a business process with minimum
duration and cost in contrast with any other combination of candidate ac-
tivities. The case study discussed here is based on the generic business
process model, it is called ActivitiesST4 and it involves four participating
activities. The library of candidate activities contains 10 activities that can
be alternatively used in various combinations of four. For ActivitiesST4
design to be optimised, the four activities selected to participate must
minimise the total process cost and duration.

A. Tiwari et al.530

description of each constraint of the mathematical model. It is also important

Table 2. Explanation of Constraints

1. , , : ,i ij j i j Px r i j b I b B

All input physical resources of an activity must be available (rij=1) at some
stage of the process if the activity is participating (xi=1).

2. , , : ,i j j i j Ix y i j b I b B

All input information resources (yj) of an activity must be available at some
stage of the process if the activity is participating (xi=1).
3. , :i ij j ij i j P

i i

go r M gi t x j b B

The output physical resources -final or not- must not exceed the sum of initial
and produced -during the process.
4. , :j j ij i j I

i

y gi t x j b B

An information resource (yj) can be available either at the beginning of the
process -as initial resource (gij) - or as an output resource of a participating ac-
tivity.
5.

j jy go

A resource (yj) cannot be part of the output without first being available at some
stage of the process (goj).
6. (1), , :i j i j ip q M x i j b I

In terms of time, a participating activity must start (pi) only after the time that
all its input resources have become available.
7. (1), :j i i i j iq p M x i b O

8. (1) (1), :j i i i ij j iq p M x M i b O

In terms of time, an output resource must become available exactly when the
generating activity has been completed (qj=pi).
9. , , :ij i j ix i j b O

A non-participating activity (xi=0) cannot have output resources (ij=1).
10.

:

(1), : , 0,
j i

ij ij i j P j

i b O i

r og M y j B gi

When a physical resource does not belong to initial resources, it must be pro-
duced in greater or equal amounts to the required resource inputs.
11.

:

1 (1), : , 0
j i

ij j j P j

i b O

M y j b B gi

Each physical resource that does not belong to initial resources but appears in
the output of a participating activity must be produced at least once.
12. {0,1},ix i

The variable x (indicating participating activities) must be binary.
13. {0,1}, , :ij j ii j b O

The variable (indicating output resource j of activity i) must be binary.

Evolutionary Optimization of Business Process Designs 531

The process design sketch of ActivitiesST4 problem is demonstrated in
figure 1. Process optimization depends on the input parameters:

1. The appropriate activities need to be selected from the library and
combined according to their duration and cost attributes and

2. The activities’ starting times need to be properly calculated in order
for the process outputs to be produced as early as possible and thus
minimise the total process duration.

Fig. 1. ActivitiesST4 initial process design

The process design of figure 1 can be described as follows: There are
two global input resources to start the process. These two resources to-
gether with the two global outputs are considered as constants. The system
variables of the problem are the four participating activities and their start-
ing time attribute. This means that the optimization algorithms attempt to
meet the optimization objectives by defining a set of four activities (from a
library of 10 alternatives) and the starting time for each of them. All the
potential activities are stored in a built-in library and the algorithms can se-
lect any four activities. The four potential activities of the process design
must be combined in a way that the given process output resources are
produced. The optimization criteria are the minimisation of process dura-
tion and cost.

The other four test problems have identical structure as the one de-
scribed. Their major differences are in the number of activities that partici-
pate in the business process design and the size of the library of candidate
activities. The test process designs range from simple ones (e.g. Activiti-
esST2 with two participating activities and a library of 10) to more com-
plex ones (e.g. ActivitiesST5 with 5 activities in the process design and a
library of 20 alternatives). As is mentioned earlier in this section, although
the different test problems give the impression of having minor differences
in the process size and library, these have a significant impact on the opti-
mization performance as is demonstrated on the next section.

A. Tiwari et al.532

5.3 Experimental Results

This section describes the experimental results for the test problem of the
previous section. Three popular evolutionary algorithms that allow multi-
objective optimization have been selected to optimise the business process
model. The optimization algorithms that were selected are NSGA2,
SPEA2 and MOPSO. These algorithms attempt to optimize the process de-
signs by selecting different sets of activities and defining their starting
times. Non-dominated Sorting Genetic Algorithm II (NSGA2) is non-
dominated, sorting-based, multi-objective evolutionary algorithm [6].
NSGA2 has been quite popular and has been applied to many problems on
a number of research areas. Strength Pareto Evolutionary Algorithm II
(SPEA2) is another elitist evolutionary algorithm with a fine-grained fit-
ness assignment strategy, a density estimation technique, and an enhanced
archive truncation method [31]. SPEA2 has also been quite popular and
used in a variety of optimization problems. Multi-Objective Particle
Swarm Optimization (MOPSO) is different from most evolutionary com-
putation techniques as it is an extension of the Particle Swarm Optimiza-
tion (PSO) method. MOPSO is demonstrating better performance in prob-
lems that have continuous search space [13]. Since more than one
optimization methods are applied to the business process model, the oppor-
tunity of comparing the performance of the different algorithms in the par-
ticular problem context is appealing. NSGA2 and SPEA2 are being dem-
onstrated in a number of papers and although similar they battle each other
in quality of results in different subject domains. MOPSO on the other
hand has never been used in such a constrained problem.

All the five test problems are optimised with each of the evolutionary
algorithms. To evaluate the results a metric is also introduced which dem-
onstrates the algorithms’ performance. The ‘success ratio’ is the opposite
of error ratio [6] and is calculated as the percentage of generated solutions
that belong to the Pareto optimal front against the total number of solu-
tions. The equation of the success ratio is:

*_ _
%

_R

no of solutions P
s

total solutions

The numerator of the success ratio holds the number of generated solu-
tions that belong to P* (Pareto optimal front) while the denominator holds
the total number of generated solutions.

Evolutionary Optimization of Business Process Designs 533

Fig. 2. Generated solutions for ActivitiesST4 by the optimization algorithms

In this particular context, the success ratio (sR) calculates the percentage
of the near-Pareto optimal solutions that the optimization algorithm has
generated because being a real-life situation the actual Pareto optimal front
is not known for the test problem. To acquire a picture of the search space
10,000 random solutions were created and the feasible solutions amongst
these were identified and plotted. Therefore, near-Pareto optimality of a

A. Tiwari et al.534

solution in this case is defined with respect to the large set of randomly
generated solutions such as the ones demonstrated in figure 2. A solution
generated by an algorithm is considered here as near-Pareto optimal if it is
non-dominated with respect to the set of these random solutions.

The test problems are incorporated in KEA toolbox [4] an optimization
platform that uses (among others) NSGA2, SPEA2 and MOPSO algo-
rithms to optimise user-defined problems. In order to produce the results,
each of the optimization algorithms was executed 30 times with different
random seed values. Most of these 30 runs produced similar results. The
results presented here belong to one of those runs. The graphs in figure 2
demonstrate the solutions that each of the optimization techniques gener-
ated for the test process design. These solutions consist of feasible busi-
ness processes with minimised process duration and cost. The graphs de-
pict the process duration and cost values for both the random population
and the optimised. The dotted points represent the solutions of each tech-
nique while the ‘x points’ the random solutions. Each graph demonstrates
the results for ActivitiesST4 process design by NSGA2, SPEA2 and
MOPSO algorithms.

The success ratio was used to evaluate the results that the optimization
algorithms produced. Figure 3 demonstrates the success ratio percentages
for all the five test problems. For ActivitiesST2 process design, both
NSGA2 and SPEA2 performed very well, unlike MOPSO that identified
only 40% of the near-Pareto optimal solutions. SPEA2 also produced very
good results for ActivitiesST3 problem, while NSGA2 gave a satisfactory
number of optimum solutions. Nevertheless the algorithms’ performance
drops significantly with the addition of an extra activity in ActivitiesST4.
MOPSO performs poorly as apart from the first test problem it does not
seem to be able to locate optimum solutions. Moving to test problems with
bigger activity libraries, NSGA2 produced satisfactory results for Activiti-
esST4(20) only, while for ActivitiesST5 problem none of the algorithms
was able to locate solutions near the Pareto front. The average success ra-
tio for both NSGA2 and SPEA2 is approximately 40%, while for MOPSO
is only 8%.

Before the results are further discussed, the features of the search space
need to be highlighted once more as they seriously influence the quality of
the results. The mathematical model of the business process designs con-
sists of discrete binary variables that increase the optimization complexity
even for a simple process design as the search space for feasible solutions
is highly fragmented. Also the business process models are highly con-
strained having 13 constraints to check for every possible set of solutions,
decreasing the performance of the algorithms.

Evolutionary Optimization of Business Process Designs 535

The optimization algorithms have a difficult task even to produce sets of
feasible solutions. Given the complex nature of the business process design
problem, the overall performance of NSGA2 can be characterised as good
and can be attributed to its elitism. As NSGA2 archives the optimum solu-
tions of each generation and compares them with the ones it produces, it
manages to preserve the identified feasible solutions. SPEA2 is also an
elitist algorithm that provides bigger spread of the solutions. It also pre-
serves feasible individuals through generations and that justifies its satis-
factory results. On the other hand, MOPSO seems to have a serious prob-
lem in successfully defining the guide that combines the two objectives.
The algorithm demonstrates poor performance as the solutions that are
generated are not near to the Pareto optimal front for most of the test prob-
lems. This supports the claim that MOPSO has best performance in prob-
lems with continuous search space [13] which is not the case here.

Fig. 3. Evaluation graph based on success ratio

Figure 3 also shows that as the complexity of the problems increases,
the performance of the optimization algorithms declines significantly. The
simplest of test problems (ActivitiesST2) is handled well by all three algo-
rithms. Moving to medium complexity problems, SPEA2 provides better
results while NSGA2 hits back on high complexity problems with 58%
success on one of the problems. On average performance NSGA2 holds
the best position with slightly better results that SPEA2 which has also
performed above 40% on average. This enhances the view of SPEA2 and
NSGA2 behaving very similar on various problems [31]. Many applica-
tions of the NSGA2, SPEA2 and MOPSO are not as successful in dealing

A. Tiwari et al.

536

with large dimensional problems and extremely disconnected Pareto
fronts.

6 Discussion of Results

This section discusses the practical implications of the business process
optimization framework, along with its limitations. As mentioned in a pre-
vious section, there are not many optimization techniques for business
processes. Many of the techniques only provide quantifiable measures
from diagrammatic process models.

However, the test problems demonstrated that the proposed framework
is capable of successfully applying multi-objective optimization to various
business process designs. The ability to produce an overall 40% of opti-
mum solutions provides a good set of optimised alternative business proc-
esses with trade-offs in process duration and cost. This gives the capability
to the business analyst to select a business process from a range of near-
Pareto optimal solutions according to decision making priorities. This ex-
tends the approach beyond a single objective. The results are indicative but
also promising, and future research can lead to better quality results.

During the development of the multi-objective optimization methodol-
ogy a number of limitations were unveiled. The first limitation originates
from the mathematical model of the business process. The mathematical
model focuses on activities and resources as its two main concepts and it
ignores the participating (physical or mechanical) actors. This conse-
quently results in what is criticised as ‘a mechanistic viewpoint of business
processes’ [16]. Also it is more difficult for a formal business process
modelling technique to capture the roles of the participants than a dia-
grammatic approach which visualises the flow of the process.

Another limitation lies in the selection of the five process designs as test
problems. In order to better assess the optimization techniques used, an
approach with a scalable range of problems was selected. Evaluating the
algorithms’ performance using a larger series of problems can better dem-
onstrate the algorithms’ behaviour providing a better and more apparent
performance overview. The last limitation is linked with the evaluation
metric that did not take into account the diversity of the generated solu-
tions.

Formal business process optimization techniques can significantly con-
tribute to the wider area of business process improvement in a number of
ways. Firstly, an analytical method which takes into account the entire
range of possible designs might produce process designs that are over-

Evolutionary Optimization of Business Process Designs 537

looked or cannot be conceived by a human designer. Secondly, by optimiz-
ing a process for different design criteria, the inherent trade-offs and the
sensitivity of results to variations in design parameters will become more
transparent with an analytical method. This can help a designer in identify-
ing those parameters that are most important in achieving the desired
goals. Therefore, business process optimization based on mathematical or
algorithmical techniques can contribute significantly to introducing new
perspectives and approaches.

7 Directions for Future Research

Future research in this area should focus on building more complete proc-
ess models, testing more complicated process designs and exploring more
efficient metrics. The construction of a business process model that can
cover more aspects of a ‘closer to real world’ business process can be very
useful for effective business process optimization. Business processes in
real world have patterns such as feedback loops or decision points. Model-
ling and optimizing these aspects can prove a complicated process with in-
creased complexity. Future research should also focus on selecting the
most appropriate techniques for business process multi-objective optimiza-
tion from a wider set of techniques and algorithms, and thus locating more
accurately the most suitable optimization method. To improve the optimi-
sation results of similar problems, there is a need to develop novel initiali-
zation and recombination schemes instead of relying to existing evolution-
ary approaches. Again, scheduling domain can provide techniques that
have been successfully applied to solve complex scheduling problems of
similar nature.

8 Conclusions

This chapter presented business process re-design as a problem of similar
nature to scheduling. Business process optimization was perceived as the
combination and sequencing of resources and alternative activities. After
examining the business process concept in a generic sense and examining a
selection of business process modeling, performance analysis and optimi-
zation techniques, we presented a framework for applying multi-objective
optimization to business processes. By developing a formal business proc-
ess model and orienting it to multi-objectivity, the generation of optimized
business processes was facilitated.

A. Tiwari et al.538

The business process optimization problem is unique because of its
highly constrained nature and the fragmented search space that have a sig-
nificant impact on locating the optimum solutions. It is shown that state-
of-the-art multi-objective optimization algorithms, such as NSGA2 and
SPEA2, produce satisfactory results by managing to generate and preserve
optimal solutions. This provides a number of alternative optimised process
designs for the business analyst to decide the trade-offs between the differ-
ent objectives. The results presented here demonstrate that principles of
scheduling could be effectively applied for optimization of business proc-
esses. This work is encouraging for further research in the area of business
process multi-objective optimization.

References

[1] Abate AF, Esposito A, Grieco N, Nota G (2002) Workflow Performance
Evaluation Through WPQL. In: Proceedings of the 14th International Con-
ference on Software Engineering and Knowledge Engineering, Vol. 27.
ACM Press, New York, pp 489-495

[2] Aguilar-Saven RS (2004) Business process modeling: Review and frame-
work. Int J of Production Economics 90: 129-149

[3] Aiello R, Esposito A, Nota G (2002) A Hierarchical Measurement Frame-
work for the Evaluation of Automated Business Processes. Int. J. of Soft-
ware Eng. and Knowledge Eng. 12: 331-361

[4] Bartz-Beielstein T, Mehnen J, Naujoks B, Schmitt K, Zibold D (2004)
KEA - A software package for development, analysis and application of

2004_mehn_kea_a.pdf> viewed February 2, 2006
[5] Curtis B, Kellner M, Over J (1992) Process modeling. Communications of

the ACM 35: 75-90
[6] Deb, K.: Multi-objective optimization using evolutionary algorithms. John

Wiley & Sons, New York (2001)
[7] Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press,

New York (1972)
[8] Grigori D, Casati F, Castellanos M, Dayal U, Sayal M, Shan M.C. (2004)

Business Process Intelligence. Computers in Industry 53: 321-343
[9] Hammer M, Champy J (1993): Re-engineering the Corporation: A mani-

festo for business revolution. Harper Business, New York
[10] Havey M (2005) Essential Business Process Modeling. O Reilly, U.S.A
[11] Hofacker I, Vetschera R (2001) Algorithmical approaches to business proc-

ess design. Computers & Operations Research 28: 1253-1275
[12] Holt AW, Ramsey HR, Grimes JD (1983) Coordination systems technology

as a programming environment. Electrical Communication 57: 307-314

Evolutionary Optimization of Business Process Designs

multiple objective evolutionary algorithms, <http://www.isf.maschinenbau.
uni-dortmund.de/veroeff/documents/

’

539

[13] Kennedy J, Eberhart R (1999) The Particle Swarm: social adaptation in in-
formation-processing systems. In: Corne D, Dorigo M, Glover F, (Eds.):
New Ideas in Optimization. McGraw-Hill, Cambridge, pp 379-388

[14] Kettinger WJ, Teng JTC, Guha S (1997) Business Process Change: A
Study of Methodologies, Techniques and Tools. MIS Quarterly 21: 55-80

[15] Koubarakis M, Plexousakis D (2001) A formal framework for business
process modeling and design. Information Systems 27: 299-319

[16] Lindsay A, Downs D, Lunn K (2003) Business processes - attempts to find
a definition. Information and Software Technology 45: 1015-1019

[17] Luttighuis PO, Lankhorst M, van de Wetering R, Bal R, van den Berg H
(2001) Visualizing Business Processes. Computer Languages 27: 39-59

[18] Melao N, Pidd M (2000) A conceptual framework for understanding busi-
ness processes and business process modeling. Information Systems Jour-
nal 10: 105-129

[19] Miers D (1994) Use of tool and technology within a BPR initiative. In:
Coulson-Thomas C (ed.): Business Process Re-engineering: Myth and Re-
ality. Elsevier Science, North-Holland, Amsterdam, pp 142-165

[20] Ould MA (1995) Business Processes: Modeling and Analysis for Reengi-
neering & Improvement. John Wiley, New York

[21] Phalp K, Shepperd M (2000) Quantitative analysis of static models of proc-
ess. The Journal of Systems and Software 52: 105-112

[22] Phalp K (1998) CAP framework for business process modeling. Informa-
tion and Software Technology 40: 731-744

[23] Reyneri C (1999) Operational building blocks for business process model-
ing. Computers in Industry 40: 115-123

[24] Sadiq W, Orlowska EM (2000) Analyzing process models using graph re-
duction techniques. Information Systems 25: 117-134

[25] Smith H (2003) Business process management - the third wave: business
process modeling language (bpml) and its pi-calculus format. Information
and Software Technology 45: 1065-1069

[26] Tiwari A (2001) Evolutionary computing techniques for handling variables
interaction in engineering design optimization. PhD Thesis, SIMS, Cran-
field University, Cranfield, UK

[27] van der Aalst W.M.P, van Hee K.M (1995) Framework for Business Proc-
ess Redesign. In: JR Callahan (ed.) Proceedings of the Fourth Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises. IEEE
Computer Society Press, Berkeley Springs, pp 36-45

[28] van der Aalst WMP (1996) Petri Net Based Scheduling. OR Spectrum 18:
219-229

[29] van der Aalst WMP (1998) The Application of Petri-Nets to Workflow
Management. Journal of Circuits, Systems and Computers 8: 21-66

[30] Zakarian A (2001) Analysis of process models: A fuzzy logic approach.
The Int J of Advanced Manuf. Technology 17: 444-452

[31] Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the Strength
Pareto Evolutionary Algorithm. TIK Report Nr. 103, Computer Engineer-

A. Tiwari et al.540

ing and Networks Lab (TIK), Swiss Federal Institute of Technology (ETH)
Zurich

Evolutionary Optimization of Business Process Designs 541

Using a Large Set of Low Level Heuristics

Scheduling

Peter Cowling and Konstantin Chakhlevitch

Modeling Optimisation Scheduling And Intelligent Computing (MOSAIC)
Research Centre, Department of Computing, University of Bradford,
Bradford BD7 1DP, UK

Summary. A hyperheuristic is a high-level search method which manages
the choice of low level heuristics, making it a robust and easy to implement
approach for complex real-world problems. We only need to develop new
low level heuristics and define the objective functions in order to apply a
hyperheuristic to an entirely new problem. Although hyperheuristic meth-
ods require limited problem-specific information, their performance for a
particular problem is determined to a great extent by the quality of low level
heuristics used. This chapter addresses the question of designing the set of
low level heuristics for the problem under consideration. We construct a
large set of low level heuristics by using a technique which allows us to
“multiply” partial low level heuristics. We apply hyperheuristic methods to
a trainer scheduling problem using commercial data from a large financial
institution. The results of the experiments show that simple hyperheuristic
approaches can successfully tackle a complex real-world problem provided
that low level heuristics are carefully selected to treat various constraints.
We examine experimentally how the choice of different sets of low level
heuristics affects the solution quality.

1 Introduction

Given its economic importance, there is continuing research interest in
solving real-world personnel scheduling problems. The purpose of person-
nel scheduling is to allocate the available workforce to timeslots and loca-
tions and to assign particular tasks to each member of staff optimising

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

P. Cowling and K. Chakhlevitch: Using a Large Set of Low Level Heuristics in a Hyperheuristic

in a Hyperheuristic Approach to Personnel

Approach to Personnel Scheduling, Studies in Computational Intelligence (SCI) 49, 543–576 (2007)

various measures such as worker quality of life, workforce utilisation and
service quality. However, real-world scheduling problems require increas-
ingly complex models and finding optimal solutions may require prohibi-
tive amounts of computer time. Heuristic methods are often used in prac-
tice, which produce solutions of acceptable quality in reasonable time.
Various metaheuristic approaches have been developed and successfully
applied for different personnel scheduling problems. Recent examples in-
clude fast local search and guided local search algorithms applied to Brit-
ish Telecom’s workforce scheduling problem [24]; a simulated annealing
approach for shift scheduling problems [23]; tabu search applied to audit
staff scheduling [10]; different approaches to tackle a nurse rostering prob-
lem, specifically tabu search with strategic oscillation [11], genetic algo-
rithms [1], and memetic algorithms and their hybrids with tabu search [2].

Although metaheuristics and especially their hybrids have proved to be
quite efficient for solving some real-world scheduling problems, their ap-
plication is usually dependent on the problem domain. Specific metaheu-
ristic approaches designed to effectively solve a particular problem may
not be applicable or may produce very poor solutions for other problems or
even for the other instances of the same problem. Metaheuristics incorpo-
rate information specific for the problem and require expertise both in the
problem domain and in heuristic methods. Therefore, metaheuristics are
often quite expensive to implement [7]. For that reason, development of
general domain-independent heuristic search techniques has received in-
creased attention from researchers. These new approaches have recently
become known as hyperheuristics and their development is described by
Burke et al. [3] as “an emerging direction in modern search technology”.

The term “hyperheuristic” was introduced in [7], as an approach that
manages the choice of which low level heuristic method should be applied
at any given time, depending upon the characteristics of the region of the
solution space currently under exploration, and the history of each low
level heuristic. This means that a hyperheuristic does not search directly
for a better solution of the problem but instead it looks for a method by
which a promising solution can be obtained. A hyperheuristic requires lim-
ited domain-specific information which is concentrated in the set of low
level heuristics and the objective function(s). Low level heuristics usually
represent simple local search neighbourhoods or the rules used by a human
expert for constructing solutions.

Several hyperheuristic approaches have been presented over recent
years. Gratch and Chien in [14] develop a general adaptive problem-
solving approach which automatically acquires domain-specific informa-
tion and selects well-suited heuristic method from a given set. In [20],
Randall and Abramson develop a general metaheuristic based solver for

P. Cowling and K. Chakhlevitch544

combinatorial optimisation problems. Their solver uses a linked list repre-
sentation of the problem which enables rapid prototyping of solution heu-
ristics for different problems. Nareyek in [19] presents a method which
learns how to select promising heuristics during the search process using
different weight adaptation mechanisms. The method is tested on two op-
timisation problems, yielding promising results.

Genetic algorithm (GA) based hyperheuristics use indirect chromosome

for solving the problem rather than a solution. The indirect GA evolves
the heuristic choice in order to find combinations of heuristics that lead to
improved solutions of the problem. Fang, Ross and Corne [12] use an indi-
rect GA for solving open shop scheduling problems. They use a set of
simple dispatching rules as the basic blocks for chromosome, and the se-
quence of rules in a chromosome specifies the method for schedule con-
struction. The GA developed in [22] evolves constraint satisfaction strate-
gies for examination timetabling problems. Hart and Ross [17] develop a
GA-based heuristic combination method for solving dynamic job shop
scheduling problems. The chromosome in the GA encodes the combina-
tion of two methods: an algorithm for constructing a set of operations to be
scheduled and a heuristic which selects an operation from the set. Heuris-
tics represent simple priority rules. Such an approach outperforms other
heuristic combination methods for benchmark problems. The method of
evolving heuristic choice is successfully implemented in [18] for a com-
plex real-world problem of scheduling chicken catching and transportation.
Cowling, Kendall and Han [6] introduce a robust hyper-GA approach
which can easily be reimplemented for different problems. Each individual
in the hyper-GA population encodes a sequence of low level heuristics and
indicates which heuristics to apply and in what order. The hyper-GA is ap-
plied to a trainer scheduling problem and produces strong results. The ap-
proach is further advanced in [15] to allow the length of the chromosome
to change adaptively during the search.

Ross et al. [21] use a learning classifier system based on evolutionary al-
gorithm (EA) to learn a solution process for various instances of the bin-
packing problem. Their method determines an order in which simple heuris-
tics should be applied to solve particular problem instance. The approach
produces optimal solutions for most instances whereas the heuristics applied
separately are not able to achieve an optimum very often.

Burke, Kendall and Soubeiga [4] investigate the robustness of tabu
search based hyperheuristic applied to multiple instances of timetabling
and rostering problems. The choice of low level heuristics at any time is
based on their ranks. The ranks of low level heuristics are dynamically ad-
justed during the run of hyperheuristic using reinforcement learning tech-

Hyperheuristic Approach to Personnel Scheduling 545

coding, i.e. such that the chromosome represents a sequence of heuristics

niques similar to those employed by Nareyek [19]. A tabu list of low level
heuristics with poor recent performance is maintained in order to avoid
their selection too soon. The approach produces results comparable to
those of problem-specific metaheuristics for both problems.

A hyperheuristic approach based on statistical ranking of low level heu-
ristics is proposed by Cowling, Kendall and Soubeiga in [7]-[9]. They in-
troduce a choice function for low level heuristics which accumulates in-
formation about their recent performance. The choice function represents
the weighted sum of three components which contain the information re-
garding recent performance of each low level heuristic, information about
recent effectiveness of consecutive pairs of low level heuristics, and the
amount of time since each heuristic was last called. The weights of the
components are selected empirically [7] or automatically adjusted as the
search progresses [8], [9]. The authors present hyperheuristics which em-
ploy different techniques for selection of low level heuristics based on the
values of the choice function. The approaches are successfully tested on
different real-world personnel scheduling problems.

In this chapter we study the performance of a range of hyperheuristics
applied to a real-world personnel scheduling problem, focusing particu-
larly on the question of designing the set of low level heuristics for the
problem under consideration. Although hyperheuristic methods use limited
problem-specific information, it appears intuitively likely that their per-
formance for a particular problem is determined to a significant extent by
the low level heuristics used. In this chapter we investigate experimentally
whether this intuition is correct. We split simple local search neighbour-
hoods into “event selection” and “resource selection” rules, then use soft-
ware engineering techniques to “multiply” these approaches. Hence by
writing only 27 pieces of code (where only 5 are substantially different)
we are able to quickly produce 95 low level heuristics. Such an approach
allows us to effectively treat various constraints of the problem by having
several low level heuristics which can deal with each constraint. We exam-
ine how the choice of different subsets of low level heuristics affects the
outcome of applying a hyperheuristic.

The contribution of this chapter is twofold. Firstly, it further investigates
the application of hyperheuristic methodology for solving real-world optimi-
sation problems. We present a group of “peckish” [5] hyperheuristics where
simple greedy and random approaches are effectively combined in order to
achieve a good balance between intensification and diversification of the
search in the space of low level heuristics. We also study the use of meta-
heuristic approaches at a higher level for managing the choice of low level
heuristics. The previous work in this area has employed GAs (e.g. [6], [15]).
Here we develop hyperheuristics based on the concepts of the variable

P. Cowling and K. Chakhlevitch546

neighbourhood search [16] and tabu search [13] metaheuristics. Our tabu
search based hyperheuristics differ from that presented in [4] in tabu list
contents and the way in which the tabu list is maintained. Secondly, unlike
classical problems such as open shop, job shop and bin-packing problems
where various priority rules and simple heuristics are known from the litera-
ture and can be effectively combined (as in [12], [17] and [21]), for hard
real-world problems usually there is no obvious choice of low level heuris-
tics. The set of problem-specific heuristics can be developed intuitively or
based on the rules used by human experts to construct solutions. In this
chapter we introduce a scheme for designing a set of low level heuristics.
The approach is based on the following simple idea. In order to improve (or
to modify) the current solution at any time, we have to answer two ques-
tions: which part or component of the solution should be a subject of change
(what question) and what changes should be applied to it (how question).
The idea is implemented by creating two separate sets of simple rules for
event selection (what) and resource selection (how) respectively. The choice
of rules allows us to treat various problem constraints. The rules from two
sets are combined (“multiplied”) resulting in a large collection of low level
heuristics. This approach is easy to implement and could be used for a wide
range of other real-world scheduling problems.

The rest of the chapter is organised as follows. In Section 2 we formu-
late the trainer scheduling problem which belongs to a wide class of per-
sonnel scheduling problems. Section 3 describes the set of low level heu-
ristics, in Section 4 we introduce hyperheuristic approaches, and Section 5
presents and analyses the results of detailed experiments. Section 6 con-
cludes the chapter.

2 The trainer scheduling problem

The trainer scheduling problem arises in a large financial institution which
regularly organises training for its personnel. The problem involves assign-
ing a number of training courses (events) to a limited number of training
staff, locations, and timeslots as shown in Figure 1. Each event has a nu-
merical priority and the travel of each trainer is penalised depending on the
distance from the home location of the trainer to the location where the
event is conducted. The objective is to maximise the total priority for
scheduled events while minimising the total travel penalty for the training
staff. A previous project by one of the authors developed the scheduling
decision support system currently in use by the financial institution; there-
fore we have excellent access to user expertise and problem data.

Hyperheuristic Approach to Personnel Scheduling 547

Courses

(events)

StaffLocations Timeslots

Schedule

Resources

Fig. 1. The trainer scheduling problem.

The problem has a number of constraints:

 Each event can be delivered only by trainers from a limited pool who
are competent in the particular topic of the event;

 Each event can be delivered at only one location from the limited list
of possible locations for the event;

 Each location has a limited number of rooms and the rooms differ in
types and capacities. Each event requires a specified number of rooms
each of which satisfies one of the capacity and type requirements for
the event;

 Each event can start only within a given time window;

 Trainers are not available on pre-booked holidays. Part-time trainers
work only on certain days of the week;

 Each trainer can deliver courses for at most a specified proportion of
his/her available timeslots (with the remaining time used for
preparation);

 The events are compound, i.e. each event consists of one or more
parts (elements). There are complex space/time/resource relationships
between the elements of the event. The first element of each event
should start within the time window for the event; start times of
subsequent elements may be shifted relative to the start of the first
element and may have their own time windows. Each element has its

P. Cowling and K. Chakhlevitch548

own requirements for rooms and trainers. Different elements of an
event may require the same trainer, chosen from the pool of possible
trainers. The duration of each element is given and preemptions are
not allowed.

The mathematical model for a much simplified version of the trainer
scheduling problem is presented in [6]. The authors consider simple events
which do not consist of any elements and many constraints from the real-
world version of the problem (considered in this work) are relaxed in their
model. Note that development of integer programming formulations for real-
world problems with a complex structure and a large number of non-trivial
constraints is often quite tricky and burdensome task and a resulting model
can become very complex and difficult to follow. For our problem, a
mathematical model would be too complex to either solve or offer an insight
into the problem and we do not present it here. Therefore, in what follows
we only define the objective function.

Let S = {si} be the set of possible schedules for the problem, E = {ej},
j = 1, ... , n be the set of events, where n is the number of events to be sched-
uled, and Gi E be the set of scheduled events in schedule si. Let wj be the
priority of event ej and pij be the travel penalty associated with event ej in
schedule si (pij = 0 if event ej is not scheduled). Our objective is to maximise
the total priority of scheduled events minus total penalty imposed on travel
of training staff to the events’ locations:

).(max
:

ij

Gej

j
i

pwf
ij

We use real datasets provided by the financial institution, each represent-
ing the training delivered by about 50 training staff over a period of 3
months in 16 different locations, with around 200 events to be scheduled.
Prior to the use of a commercial decision support system (developed by one
of the authors), it required about 9-person days of regional manager time to
produce an acceptable quarterly schedule.

3 Low level heuristics

The design of the set of problem-specific low level heuristics for the prob-
lem is important for the quality of the outcome of applying a hyperheuris-
tic. We use the following approaches to choosing our low level heuristics.

1. Since our primary objective is to maximise the total priority of
scheduled events, we need low level heuristics which insert events
which are not yet scheduled.

Hyperheuristic Approach to Personnel Scheduling 549

2. We have to include heuristics concerned with decreasing travel
penalties.

3. We need a range of low level heuristics to resolve conflicts in trainer,
room or timeslot requirements.

4. Our low level heuristics should recognise and deal with difficult-to-
schedule, tightly constrained events, ideally scheduling them early in
the process.

Taking into account the above considerations we propose below a
scheme for low level heuristics. Each low level heuristic represents the
combination of an event selection rule and a resource selection rule. Both
categories of selection rules are divided into two subsets: rules for events
which are not yet scheduled and rules for events which are already in the
current schedule.

3.1 Event selection rules

We use 5 rules for selection from the list of not yet scheduled events:

ESn1. Select event at random;

ESn2. Select event with the highest priority;

ESn3. Select event with the smallest number of possible trainers;

ESn4. Select event with the smallest number of possible locations;

ESn5. Select event with the smallest number of feasible trainer-
location-timeslot combinations.

For already scheduled events we consider the following 7 rules:

ESs1. Select event at random;

ESs2. Select event with the highest priority;

ESs3. Select event with the widest time window;

ESs4. Select event with the highest travel penalty,

ESs5. Select event with the largest number of possible trainers;

ESs6. Select event with the largest number of possible locations;

ESs7. Select event with the largest number of feasible trainer-location-
timeslot combinations.

P. Cowling and K. Chakhlevitch550

Note that in rules ESn3 – ESn5 and ESs3 – ESs7 we randomly select one
event from the top 30% of events in the whole list of not scheduled or al-
ready scheduled events sorted according to the relevant criterion. This al-
lows diversity in the solution process preventing selection of the same
events too often which can lead to wasted CPU time. On the other hand, it
ensures reasonable focus on difficult parts of the schedule. In rules ESn2
and ESs2 we simply randomly select one of the events with the highest
priority, since in this case the number of events with the same priority is
sufficiently large, as for the datasets used events are put into only five
categories according to their priority.

The selection criteria ESn3 – ESn5 for not scheduled events are chosen
in such a way as to always attempt to insert the most constrained events in
the schedule, whereas rules ESs3 – ESs7 select scheduled events with the
largest number of possible resources. We are not interested in rescheduling
events with very limited resources because it is very unlikely that alterna-
tive available resources exist for such events. At the same time, the first
two rules (similar for both categories) ensure that there are no events
which are completely ignored.

3.2 Resource selection rules

For not scheduled events we suggest 5 resource (timeslot/trainer/location/rooms)
selection rules:

RSn1. Select the first found combination of available resources. If no
such combination exists, select resources available after un-
scheduling the first found conflicting event;

RSn2. Select the best combination of available resources in terms of
travel penalty. If no such combination exists, select resources
available after unscheduling a conflicting event which leads to
the lowest penalty for the inserted event;

RSn3. As RSn2, but the conflicting event with the smallest value of
(priority – penalty) is considered;

RSn4. As RSn2, but the conflicting event with the lowest priority is
sought;

RSn5. As RSn2, but the conflicting event with the highest travel penalty
is chosen.

When the conflicting event here is unscheduled it frees up resources
necessary for the selected event to be scheduled. Note that after scheduling

Hyperheuristic Approach to Personnel Scheduling 551

the selected event instead of some conflicting event, we immediately at-
tempt to reschedule the conflicting event. If there are no possible re-
sources, we include the event into the list of not scheduled events.

In order to move scheduled events (e.g. to reduce travel penalties), we
should find available resources which are different to the currently sched-
uled ones. We introduce 10 rules of resource selection:

RSs1. Select the first found combination of available resources;

RSs2. Select the best combination of available resources in terms of
travel penalty;

RSs3. Select a possible location with the lowest travel penalty for un-
changed trainers/timeslots;

RSs4. Select a possible location randomly for unchanged train-
ers/timeslots;

RSs5. Select the next available timeslot for unchanged location/trainers;

RSs6. Select possible trainers randomly for unchanged loca-
tion/timeslots;

RSs7. Select possible trainers with the lowest travel penalty for un-
changed location/timeslots;

RSs8. Select possible trainers with the maximum number of available
timeslots for unchanged location/timeslots;

RSs9. Select possible trainers with the minimum number of scheduled
events for unchanged location/timeslots;

RSs10. Select possible trainers with the maximum number of timeslots
remaining under their workload limits for unchanged loca-
tion/timeslots.

Selection of new resources for the events which have already been
scheduled aims to achieve two targets. First, moving these events can im-
prove the schedule reducing travel penalties. Second, freed up resources
can be used for other events which are not yet scheduled.

3.3 Low level heuristics

Combining event selection rules with resource selection rules for each
category of events, we construct a set of 95 low level heuristics (5*5=25
heuristics for not scheduled events and 7*10=70 heuristics for scheduled
events). Although the actual number of low level heuristics is large, such

P. Cowling and K. Chakhlevitch552

an approach is quite easy to implement. Since different heuristics can use
the same event or resource selection rules as their components, we create
only 27 pieces of code representing different event/resource selection
mechanisms, and only 5 of these pieces of code are substantially different
to each other.

For implementation purposes and easier reference low level heuristics
are numbered from 1 to 95. The numbers from 1 to 25 are assigned to low
level heuristics for not scheduled events and the numbers from 26 to 95
correspond to low level heuristics for already scheduled events. Given an
event selection rule i and a resource selection rule j it is easy to calculate a
low level heuristic’s number (as shown in Figure 2) and vice versa. We
shall refer to any particular low level heuristic by its number in further dis-
cussion.

Low Level Heuristic
for Not Scheduled Event

LLH(5*(i-1)+j)

Event
Selection Rule

ESni

Resource
Selection Rule

RSnj

Low Level Heuristic
for Scheduled Event
LLH(25+10*(i-1)+j)

Event
Selection Rule

ESsi

Resource
Selection Rule

RSsj

Fig. 2. Low level heuristics.

4 Hyperheuristics

In this section we present 3 groups of hyperheuristic approaches which can
be easily applied with only minor modifications to a very wide range of
optimisation problems given a set of problem-specific low level heuristics
and an objective function.

The first group includes simple random and greedy methods.

 Hyperheuristic Random selects a low level heuristic randomly from
the whole set at each iteration and applies it, repeating this process
until some stopping condition is true.

 Hyperheuristic Greedy selects and applies at each iteration the best
low level heuristic from the set. The “best” heuristic means either the
heuristic providing the greatest improvement to the objective function
or the heuristic leading to the smallest deterioration (or yielding zero
improvement) if there are no improving heuristics. Here and later

Hyperheuristic Approach to Personnel Scheduling 553

through the text we consider improvements upon the current objective
value, not upon the best value found so far. Ties are broken randomly.

 Hyperheuristic Greedy-Improvement uses only improving low level
heuristics.

To combine random and greedy methods, a group of so-called peckish
hyperheuristics is introduced. The term “peckish” is used in [5] where
population initialisation algorithms for evolutionary timetabling containing
features of both greedy and random methods are considered. In our peck-
ish hyperheuristics we experiment with various degrees of greediness and
randomness aiming to achieve better balance between intensification and
diversification components of the search process than in pure greedy or
random approaches. The general scheme for peckish hyperheuristic can be
represented as follows:

Repeat

 CandidateList {“good” low level heuristics};

 If (CandidateList Ø)

 Select a low level heuristic at random from CandidateList and apply it;

 Else

 Select a low level heuristic using another random method and apply it;

Until (Stopping condition is true)

In this pseudocode, “good” low level heuristics may mean only improv-
ing heuristics or the top n low level heuristics from the set of 95 (not nec-
essarily improving). In the former case, “another random method” may in-
volve random selection of low level heuristics either from the whole set or
from the subset of the best n low level heuristics; in the latter case, it is not
applicable since the candidate list is always non-empty. The range of peck-
ish hyperheuristics is given below.

 Hyperheuristic Peckish1 randomly selects a low level heuristic at
each iteration from the candidate list of low level heuristics which
improve the current solution. If the candidate list is empty, a low
level heuristic is selected randomly from the whole set of low level
heuristics.

 Hyperheuristic Peckish2 randomly selects a low level heuristic from
the candidate list which contains the n best (not necessarily
improving) heuristics from the whole set of 95 low level heuristics.
The candidate list size n plays an important role here: it determines
how “greedy” and how “random” the hyperheuristic is – an increase
in the candidate list size adds randomness and a decrease in it makes
the hyperheuristic greedier.

P. Cowling and K. Chakhlevitch554

 Hyperheuristic Peckish3 combines the features of the previous two
methods. At each iteration, it attempts to form the candidate list of
only improving heuristics and if such a list is not empty, randomly
selects a low level heuristic from it. Otherwise, random selection
from the subset of the best n non-improving heuristics is applied.

 Hyperheuristic Peckish4 employs ideas related to Variable Neighbour-
hood Search [16]. The candidate list contains only improving low level
heuristics. Variable n indicates how many non-improving low level
heuristics will be considered for random selection if the candidate list is
empty. The value of n is initially set to 1. If at some iteration there is an
improving low level heuristic(s), the hyperheuristic selects either one of
the improving heuristics randomly (Peckish4-v1) or the best one
(Peckish4-v2) and the value of n is reset to 1. Otherwise, a low level
heuristic is randomly selected from n best non-improving heuristics and
the value of n is then incremented for the next iteration. The dynamic
changes of variable n provide intensification/diversification of the search.

Hyperheuristics from the third group are based on the tabu search meta-
heuristic [13].

 Hyperheuristic TabuHeuristic employs a tabu list of recently called
heuristics. The size of the tabu list is fixed and set to some
prespecified value l. The algorithm greedily selects the best low level
heuristic at each iteration. If such a heuristic leads to an improved
objective function value, it is always selected and released from the
tabu list if there; a non-improving heuristic is chosen only if it is not
in the tabu list and immediately becomes tabu after its application.

 Hyperheuristic TabuEvent is similar to TabuHeuristic except that it is
more conventional in that the tabu list holds recently selected events.

 We also consider hyperheuristics TabuHeuristicAdaptive and
TabuEventAdaptive which are analogous to the previous two but
allow the tabu list size to change adaptively as the search progresses.
We decrease the tabu list size when the current solution keeps
improving and increase it when we are having trouble in finding a
better solution. After empirical evaluations of different adaptation
schemes we have adopted the following one: increase the tabu list
size by one in the case of non-improvement and decrease it by
current size/10 *4 when an improvement occurs discarding the

oldest members of the list as necessary, where x denotes the largest
integer which is less than or equal to x. The maximum tabu list size is
also specified to prevent unlimited growth of the tabu list.

Hyperheuristic Approach to Personnel Scheduling 555

For all our hyperheuristics except Random we do not consider low level
heuristics producing no changes to the current schedule (although we do
consider low level heuristics which leave the objective value unchanged).
This prevents “dummy” iterations and ensures that the solution is always
perturbed at each iteration.

5 Experiments and results

The problem model, all low level heuristics and hyperheuristics have been
implemented in Microsoft Visual C++ and the experiments have been con-
ducted on a Pentium 4 1600MHz PC with 640MB RAM running under
Windows 2000. We use real data from two datasets which represent two
problem instances of different dimensions and with different degrees of
difficulty. Dataset1 contains 224 events, 53 training staff, 16 locations and
37 rooms. In Dataset2 there are 147 events, 54 trainers, 16 locations and
39 rooms. The scheduling period is 3 months in both cases. In spite of a
significantly smaller number of events, Dataset2 is more difficult than
Dataset1. The majority of the events from Dataset2 have tight time win-
dows and very restricted lists of possible trainers and locations whereas the
constraints in Dataset1 are not so strict.

5.1 Initial schedules

Initial schedules are constructed using two greedy heuristics. In the first
approach we take events one by one in a random order and select the first
available combination of possible resources for each event (if any exists)
until all the events have been tried. The possible trainers and locations are
considered in the order in which they appear in the dataset. The second ap-
proach first sorts the events in descending order of their priority. Then
each group of events with the same priority is randomly permuted and the
final ordered list of events is created. Events are taken from the list one by
one; all available combinations of possible trainers and locations are con-
sidered for each event and the combination yielding the lowest travel pen-
alty is selected for scheduling.

We use two initial solutions of different quality for our experiments.
The “poor” initial solution is the worst one among 10 solutions obtained
by applying the first greedy method and the “good” initial solution is the
best one out of 10 runs of the second greedy heuristic. The good initial so-
lution is far superior to the poor one in terms of the total priority of sched-
uled events, the total penalty and the number of events not scheduled.

P. Cowling and K. Chakhlevitch556

5.2 Upper bounds

In order to assess the quality of the solutions obtained by our approach, we
need to compare them with either optimal solutions or solutions con-
structed manually by a human expert. However, due to the inherent com-

Manually constructed schedules are not available. Hence in our experi-
ments we will compare the results with the upper bounds of the optimal
values obtained via relaxing some of the problem constraints.

Before calculating upper bounds, we analysed the results of multiple
runs of hyperheuristic Random applied to both problem instances in order
to check whether all the events could be scheduled. Since the random ap-
proach is very fast, we could easily allow it to perform a large number of
iterations. Comparing the results of multiple runs, we found that there were
always a few events which were not scheduled. Moreover, similar events
(however, not always the same) repeatedly appeared in the lists of events
not scheduled after each run of the hyperheuristic. Further analysing the
input data, we have identified the groups of events which share conflicting
trainers, locations, and timeslots. We proved that such conflicts could not
be resolved and at least one event from each group of conflicting events is
impossible to schedule. Therefore, the maximum possible number of
scheduled events has been found.

To calculate the upper bound of all possible schedules, assume that all the
events are scheduled except those which are impossible to schedule due to
irresolvable conflicts. Select from each group of conflicting events the event
with the lowest priority and form the list of events which are not considered.
The total priority for the rest of the events is calculated giving the optimal
value for the total priority. Then we relax the constraints on availability of
trainers and rooms, rooms’ types and capacities, and on starting times for the
events. For each event we identify the location/trainer(s) combination yield-
ing the minimum travel penalty. If the lowest possible travel penalty for the
event exceeds its priority (which can happen for some low priority events),
we exclude such an event from further consideration and reduce the total
priority value accordingly. Subtracting the sum of the lowest possible travel
penalties for all events which can be scheduled with positive (priority – pen-

alty) from the total priority, we obtain an upper bound on the objective
value.

Note that the upper bounds calculated in such a way, while useful in our
experiments, are not particularly tight since a large number of constraints
are ignored.

Hyperheuristic Approach to Personnel Scheduling 557

instances cannot be obtained using manual or enumerative techniques.
plexity of the problem under study, the optimal solutions for non-trivial

5.3 Experiments

We performed 10 runs for each hyperheuristic described in Section 4,
starting from the same initial solution. Both poor and good initial solutions
are tried in separate experiments for both problem instances. We test dif-
ferent values of parameters n and l for hyperheuristics Peckish2 and Peck-

ish3 and for tabu list based hyperheuristics respectively. The stopping
condition for each run is the number of iterations which is set to 500.

In addition to experiments with the whole set of 95 low level heuristics,
we conduct separate experiments with subsets of 3, 5, and 10 low level
heuristics. The heuristics for such small sets are selected randomly from
the whole set. We ensure that in each subset approximately a quarter of the
heuristics deal with not scheduled events and the remaining heuristics con-
tain the rules for already scheduled events.

5.4 Results

5.4.1 The whole set of low level heuristics.

The average performances of hyperheuristics for both datasets and the
whole set of 95 low level heuristics are presented in Tables 1-4. We use
the following notation in the tables:

PRbest – the highest total priority among 10 schedules obtained;

PRav – average total priority over 10 runs of a hyperheuristic;

PNbest – the lowest total penalty among 10 schedules obtained;

PNav – average total penalty over 10 runs of a hyperheuristic;

Fbest – the highest objective value among 10 schedules obtained;

Fav – average objective value over 10 runs of a hyperheuristic;

NSbest – the minimum number of not scheduled events among 10 sched-
ules obtained;

NSav – average number of not scheduled events over 10 runs of a hyper-
heuristic;

CPUav – average running time of the hyperheuristic in seconds (over 10
runs);

Ibest – average iteration number (over 10 runs of a hyperheuristic) when
the solution with the best objective value is found for the first time (in
fact, a number of solutions with the same objective can be obtained dur-
ing one run).

P. Cowling and K. Chakhlevitch558

Hyperheuristic PRbest PRav PNbest PNav Fbest Fav NSbest NSav CPUav Ibest
Initial solution 181235 824 180411 16
Random 185410 184670 960 1198 184118 183472 5 7 39.37 146
Greedy-I 184335 184323 868 882 183447 183441 9 10 25.10 7
Greedy 185385 185080 816 877 184493 184203 6 7 1452.59 408
Peckish1 185410 185205 908 959 184473 184246 5 5 1567.91 357
Peckish2(10) 184385 184378 852 862 183533 183516 7 7 1628.28 440
Peckish2(25) 185385 184578 832 876 184465 183702 6 7 1580.33 430
Peckish2(40) 185385 184763 864 958 184357 183805 6 8 1539.50 258
Peckish3(10) 185385 184780 832 868 184497 183912 6 7 1605.66 357
Peckish3(25) 185385 185080 832 884 184493 184196 6 7 1507.53 397
Peckish3(40) 185385 184973 836 878 184485 184094 6 7 1412.58 388
Peckish4-v1 185385 184683 824 861 184497 183822 6 7 1551.34 428
Peckish4-v2 185385 184880 828 869 184493 184011 6 7 1608.55 396
TabuH(10) 185385 184783 828 865 184489 183917 6 7 1602.29 412
TabuH(30) 185385 184878 800 860 184497 184017 6 7 1543.00 394
TabuH(60) 185385 184983 836 870 184508 184113 6 7 1526.00 382
TabuE(10) 185385 184980 796 867 184501 184113 6 7 1510.22 411
TabuE(30) 185385 184878 828 863 184496 184014 6 7 1491.60 383
TabuE(60) 185385 184975 800 861 184497 184114 6 7 1437.43 402
TabuE(100) 185385 185075 824 865 184508 184210 6 7 1418.07 405
TabuHA(30) 185385 184780 816 859 184497 183921 6 7 1648.09 412
TabuHA(45) 185385 184875 792 861 184489 184014 6 7 1597.33 366
TabuHA(60) 185385 184778 808 860 184493 183918 6 7 1519.37 408
TabuEA(30) 185385 184680 804 845 184517 183835 6 7 1569.42 407
TabuEA(45) 185385 185080 820 872 184501 184208 6 7 1587.26 421
TabuEA(60) 185385 185083 812 868 184505 184215 6 6 1491.22 388
TabuEA(100) 185385 184783 792 852 184517 183931 6 7 1480.62 417
Upper bound 185385 622 184763 6

We also use short names for some hyperheuristics: Greedy-I for Greedy-

Improvement, TabuH and TabuE for TabuHeuristic and TabuEvent re-
spectively, TabuHA and TabuEA for TabuHeuristicAdaptive and
TabuEventAdaptive.

Notably good values in each column are highlighted in bold font. Note
that very small differences between values in the tables represent practi-
cally very significant differences in trainer inconvenience due to additional
travel, or additional low priority scheduled events.

From Tables 1-4 we can observe that our hyperheuristics perform well
for both starting solutions. As expected, random and greedy hyperheuris-
tics (Random and Greedy-Improvement) produce the worst results. Ran-
dom frequently selects low level heuristics which lead to deterioration of
the objective function and all the solutions are quite poor in terms of travel
penalty. Even long runs of Random (300000 iterations and 10 hours of
CPU time) generate solutions with very high total travel penalties and
therefore with lower objective values. Greedy-Improvement stops too
early when there is no any improving heuristic at some iteration.

Hyperheuristic Approach to Personnel Scheduling 559

Table 1. Performance of hyperheuristics on Dataset1 starting from good initial solution.

Table 2. Performance of hyperheuristics on Dataset1 starting from poor initial solution.

Hyperheuristic PRbest PRav PNbest PNav Fbest Fav NSbest NSav CPUav Ibest
Initial solution 168360 3040 165320 24
Random 185410 184405 2576 2667 182834 181738 5 6 34.33 444
Greedy-I 184410 184005 1272 1438 183058 182567 6 7 378.65 122
Greedy 185410 185110 1048 1102 184362 184008 5 5 1380.96 435
Peckish1 185410 184710 1036 1124 184266 183586 5 6 1659.12 467
Peckish2(10) 185410 185110 1136 1248 184178 183862 5 5 1659.29 492
Peckish2(25) 185410 185110 1352 1442 183994 183668 5 5 1726.89 495
Peckish2(40) 185410 184605 1576 1682 183814 182923 5 6 1716.05 494
Peckish3(10) 185410 185108 1028 1137 184286 183971 5 5 1771.24 439
Peckish3(25) 185410 184810 988 1094 184346 183716 5 6 1749.45 467
Peckish3(40) 185410 184510 948 1095 184346 183415 5 6 1648.88 473
Peckish4-v1 185410 185010 1068 1136 184342 183874 5 5 1719.59 470
Peckish4-v2 185410 185210 1032 1115 184358 184095 5 5 1525.66 460
TabuH(10) 185410 185210 1040 1110 184370 184100 5 5 1478.13 472
TabuH(30) 185410 185210 1056 1112 184322 184098 5 5 1492.37 453
TabuH(60) 185410 185110 1020 1100 184346 184010 5 5 1443.72 473
TabuE(10) 185410 185310 1068 1124 184342 184186 5 5 1469.56 437
TabuE(30) 185410 185408 1056 1106 184354 184302 5 5 1438.45 418
TabuE(60) 185410 185210 1064 1103 184342 184107 5 5 1397.09 449
TabuE(100) 185410 185210 1056 1096 184354 184114 5 5 1360.32 458
TabuHA(30) 185410 185210 1036 1129 184374 184081 5 5 1406.52 450
TabuHA(45) 185410 185310 1064 1121 184346 184189 5 5 1465.93 453
TabuHA(60) 185410 185110 1032 1112 184378 183998 5 5 1424.55 469
TabuEA(30) 185410 185210 1080 1122 184330 184088 5 5 1404.00 464
TabuEA(45) 185410 185310 1036 1105 184374 184205 5 5 1419.11 472
TabuEA(60) 185410 185310 1068 1108 184342 184202 5 5 1396.10 447
TabuEA(100) 185410 185208 1060 1115 184350 184093 5 5 1450.29 448
Upper bound 185385 622 184763 6

The rest of the hyperheuristics produce similar high-quality results. This

provides evidence that a very rich set of low level heuristics can be expected
to perform well. There is no clear champion among the hyperheuristics, al-
though the tables suggest that TabuEvent hyperheuristics and their adaptive
versions perform better than others. The reason is probably that the tabu lists
in these hyperheuristics help to avoid cycles, forbidding selection of events
for which resources have been recently changed. Since we have a rich set of
low level heuristics, each individual objective and each constraint can be
treated by a group of several low level heuristics capable of resolving various
conflicts. The large number of low level heuristics also allows us to consider
many different events at each iteration which increases the chances of select-
ing the “right” event whose scheduling or rescheduling leads to greater im-
provements of the solution and may guide the search in a promising direction.

For peckish hyperheuristics, those with greater degrees of randomness
(Peckish1 and parameterised peckish hyperheuristics with greater values
of parameters) usually produce better results for Dataset1 and a good ini-
tial solution than their more greedy competitors (see Table 1). This follows

P. Cowling and K. Chakhlevitch560

from the fact that the travel penalties for scheduled events in initial solu-
tion are already quite low and reducing them as well as inserting new
events into the schedule becomes more difficult.

Scheduling a new event often requires a few rescheduling steps making
the penalties higher in order to release the necessary resources. It is
unlikely that hyperheuristics with a dominating greedy component would
apply low level heuristics which significantly worsen the current solution
by increasing the penalties (preferring zero-improving low level heuristics
instead) while hyperheuristics employing more randomness could accept
these moves. Therefore the latter hyperheuristics are more effective in
terms of inserting “difficult” events into the schedule and the solutions
constructed by them generally have a higher total priority. Since the total
priority component dominates in the objective function, it is fair to assume
that the average performance of the hyperheuristic is determined primarily
by the total priority of the solutions. The figures from columns PRav and
Fav in Tables 1-4 support this statement: the best average objective values
are achieved when the average priority values are the highest.

Table 3. Performance of hyperheuristics on Dataset2 starting from good initial solution.

Hyperheuristic PRbest PRav PNbest PNav Fbest Fav NSbest NSav CPUav Ibest
Initial solution 72654 648 72006 21
Random 77199 75759 697 765 76424 74994 8 9 8.41 365
Greedy-I 74289 74289 661 661 73628 73628 12 12 9.68 11
Greedy 78289 77009 633 658 77578 76351 7 9 742.71 373
Peckish1 79199 77018 646 683 78418 76335 6 8 367.77 342
Peckish2(10) 78189 76589 623 649 77500 75940 8 10 579.83 374
Peckish2(25) 77389 76549 620 658 76643 75891 7 9 653.98 358
Peckish2(40) 78289 77014 660 711 77544 76303 7 9 666.91 401
Peckish3(10) 78189 76799 623 648 77495 76152 8 9 574.38 423
Peckish3(25) 78189 76589 618 649 77486 75941 8 10 494.29 293
Peckish3(40) 77199 76604 633 652 76554 75952 8 9 406.44 340
Peckish4-v1 77199 76790 623 641 76554 76149 8 9 612.82 319
Peckish4-v2 78189 77420 633 658 77512 76762 8 8 775.75 353
TabuH(10) 77189 76699 627 636 76556 76063 9 9 644.78 265
TabuH(30) 78189 77419 633 676 77512 76743 8 9 578.34 338
TabuH(60) 78199 76604 633 672 77501 75932 7 9 471.72 310
TabuE(10) 78189 77399 633 667 77510 76732 8 9 838.40 377
TabuE(30) 78189 77109 623 656 77494 76453 8 9 677.18 316
TabuE(60) 79189 77219 633 674 78450 76545 7 9 655.69 366
TabuE(80) 78289 77421 633 661 77592 76760 7 8 565.43 393
TabuHA(30) 78189 77329 633 665 77496 76664 8 9 593.63 303
TabuHA(45) 78189 77099 620 655 77496 76444 8 9 468.67 303
TabuHA(60) 77289 76740 633 647 76650 76093 8 9 464.06 349
TabuEA(30) 78189 77119 635 653 77512 76466 8 9 476.36 432
TabuEA(45) 78189 77209 635 661 77510 76548 8 9 508.69 289
TabuEA(60) 78189 77019 625 648 77485 76371 8 9 538.41 322
TabuEA(80) 78189 77209 633 665 77496 76544 8 9 436.69 313
Upper bound 79389 656 78733 5

Hyperheuristic Approach to Personnel Scheduling 561

Table 4. Performance of hyperheuristics on Dataset2 starting from poor initial solution.

Hyperheuristic PRbest PRav PNbest PNav Fbest Fav NSbest NSav CPUav Ibest
Initial solution 65799 834 64965 23
Random 76974 74847 706 814 76065 74033 7 10 7.31 404
Greedy-I 76199 75240 731 755 75401 74484 9 11 23.05 31
Greedy 78199 77609 671 720 77474 76889 7 8 335.14 390
Peckish1 78199 77089 652 698 77457 76391 6 7 311.37 376
Peckish2(10) 78199 76749 626 703 77469 76046 7 8 348.48 464
Peckish2(25) 78199 77097 661 729 77453 76367 7 8 322.71 430
Peckish2(40) 77299 76436 697 739 76554 75697 7 9 366.44 390
Peckish3(10) 78199 77308 655 706 77500 76603 7 8 327.59 366
Peckish3(25) 78199 77409 655 698 77469 76711 7 8 330.06 373
Peckish3(40) 78199 77339 647 705 77486 76634 7 8 313.05 398
Peckish4-v1 78199 77209 651 709 77484 76500 7 8 324.37 401
Peckish4-v2 78199 77198 711 725 77478 76473 7 8 320.62 389
TabuHc(10) 78199 77399 665 710 77468 76689 7 8 319.39 333
TabuH(30) 78199 77489 646 704 77474 76785 7 8 344.08 369
TabuH(60) 78199 77299 705 726 77474 76573 7 8 358.25 422
TabuE(10) 78199 77409 653 698 77480 76711 7 8 334.62 381
TabuE(30) 79199 77399 657 703 78430 76696 6 8 341.06 379
TabuE(60) 78199 77499 665 693 77486 76806 7 8 343.90 378
TabuE(80) 79199 77699 655 709 78418 76990 6 8 349.89 407
TabuHA(30) 78199 77399 666 717 77484 76682 7 8 337.81 414
TabuHA(45) 78199 77788 655 714 77474 77074 7 8 357.96 373
TabuHA(60) 78199 77499 671 709 77490 76790 7 8 328.59 315
TabuEA(30) 78199 77399 671 711 77466 76688 7 8 326.10 375
TabuEA(45) 78199 77399 630 695 77472 76704 7 8 353.26 415
TabuEA(60) 78199 77499 661 718 77468 76782 7 8 346.14 362
TabuEA(80) 79199 77199 646 704 78422 76496 6 8 354.14 391
Upper bound 79389 656 78733 5

From Table 1 we can also conclude that tabu list based hyperheuristics

with large tabu list sizes are preferable for this instance. The larger tabu
list size serves a similar role to the randomness in the peckish approaches
and means that the probability of selecting low level heuristics with nega-
tive improvement is higher. This can be a factor when starting from a good
initial solution as it was mentioned above.

In contrast, in case of a poor initial solution (Table 2) hyperheuristics
with a larger greedy component are quite consistent and produce slightly
better outcomes. Since there are more opportunities to improve the travel
penalties and scheduling new events is easier, improving low level heuris-
tics appear in many iterations. The greediest hyperheuristics would likely
accept the most improving low level heuristics at each iteration providing a
faster growth of the objective value. Hence low to moderate values for the
tabu list sizes are also desirable.

For Dataset2, however, the moderate values of the parameters for all
groups of hyperheuristics are preferred and more balanced hyperheuristics
are generally better (see Tables 3-4). The reason is probably that the events

P. Cowling and K. Chakhlevitch562

in the Dataset2 are tightly constrained and less possibilities exist to manipu-
late with the available resources. As a result, a good balance between
greediness and randomness is needed. The only exception is TabuEvent,
where it seems that this hyperheuristic works better when the tabu list con-
tains approximately half of the events from the dataset.

As it is discussed in subsection 5.2, for some low priority events the
travel penalty may exceed priority for any possible combination of loca-
tions and trainers. In fact, there is only one such an “unprofitable” event in
each dataset and including it in the schedule worsens the objective value.
Hyperheuristics usually ignore the unprofitable event and it does not ap-
pear in the best schedule generated (except Random and Peckish1) unless
it has already been included in initial schedule. In the latter case, hyper-
heuristics do not remove this “unprofitable” event from the schedule and
the resulting objective value is slightly worse than it could be without this
event being scheduled. In our experiments, good initial schedules for both
datasets do not contain unprofitable events while in poor initial solutions
these events are scheduled. Therefore, the numbers of not scheduled events
in Tables 2 and 4 are often less by 1 than in Tables 1 and 3 due to extra
unprofitable events in the schedules. For “easy” Dataset1 these numbers
are often even less than the value specified in the upper bound (see Table 2
and Random and Peckish1 hyperheuristics in Table 1).

It would be desirable to control the appearance of unprofitable events
in the schedule from the point of view of the current objective criterion.
It could be easily implemented by including into the initial greedy heuris-
tic the mechanism of identifying such events (simple check similar to
that used in calculating the upper bound) and marking them as “redun-
dant” to prevent low level heuristics from dealing with them. Alterna-
tively, we may include a low level heuristic which removes unprofitable
events. It is worth noting that the problem owners prefer to see these
events in the schedule, so the human decision maker can decide whether
they remain.

From Tables 1-4 we can notice a clear tradeoff between the total priority
and total penalty in the objective function. The best solutions in terms of
priority are not the leaders in terms of penalty and vice versa. Indeed, each
additional event scheduled incurs extra penalty; such a penalty can be quite
considerable when a hyperheuristic inserts a “difficult” event at a late it-
eration, although the gain yielded by the priority of the inserted event usu-
ally exceeds the loss incurred by a higher penalty. In general, the larger the
number of events scheduled, the higher the total penalty of the solution.
For Dataset2 the total penalties of some solutions are lower than the pen-
alty of the upper bound because some “expensive” (in terms of penalty)
events have been left unscheduled by certain hyperheuristics.

Hyperheuristic Approach to Personnel Scheduling 563

For Dataset1 the best solutions are usually found after 400 iterations
which indicates that given more time the hyperheuristics may construct
even better solutions thereby closing the gap to the upper bound. This is
especially true when starting from a poor initial solution since the penalties
for some events can be further reduced. For Dataset2 the number of itera-
tions before the best solution is found rarely exceeds 400 and we can not
expect much improvement even with extra time available. A single run of
each hyperheuristic requires about 25 minutes of CPU time for Dataset1
and 5-10 minutes for Dataset2.

5.4.2 Behaviour of hyperheuristics

Although the performance of hyperheuristics is quite similar for good and
poor initial solutions in terms of objective value, the structure of schedules
obtained is different, as is the behaviour of the hyperheuristics. The typical
behaviour of a hyperheuristic is shown in Figure 3. When a hyperheuristic
starts from a good initial solution, there are frequent improvements in the
first 20-30 iterations when the hyperheuristic schedules the “easiest” not
scheduled events and further improves penalties for some events. Then a
sequence of iterations yielding zero improvements in the objective func-
tion follows until the next low level heuristic call which results in an im-
proved objective, and so on. The current objective value deteriorates only
rarely and then only during the runs of Peckish1 or parameterised hyper-
heuristics when the candidate list size or tabu list size is large enough. The
improvements become more and more rare towards the end of the run and
usually represent reductions in travel penalties. It is not easy to schedule
the remaining “difficult” not scheduled events because in order to put such
events into a schedule we need to change the resources for some conflict-
ing events which often requires an increase of the travel penalties. But due
to the fact that travel penalties for scheduled events in a good initial solu-
tion are already set to the good values by the initial greedy heuristic and
because of the certain degree of greediness in our hyperheuristics, the
choice of low level heuristics at each iteration is usually limited to those
yielding zero improvement. In spite of such limitations, hyperheuristics are
still able to schedule the majority of the events before the stopping condi-
tion is met, although each insertion of a new event requires a long se-
quence of iterations with zero improvements. The final schedule is almost
always attractive in terms of travel penalty and priority when assessed by
users but may contain some not scheduled events when compared to the
upper bound.

P. Cowling and K. Chakhlevitch564

64000

65000

66000

67000

68000

69000

70000

71000

72000

73000

74000

75000

76000

77000

78000

79000

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 376 391 406 421 436 451 466 481 496

Iterations

O
b

je
c

ti
v

e
 v

a
lu

e

good initial solution poor initial solution

Fig. 3. Performance of hyperheuristic TabuEventAdaptive(80) on Dataset2 starting from
different initial solutions.

In a poor initial solution the travel penalties are often quite high. In or-
der to achieve better values for penalties, new combinations of trainers and
locations are selected which may differ significantly from the current ones.
This ability to vary the trainers and the locations makes it possible to
schedule new events more quickly and easily. There are a lot of improving
iterations among the first 100-200 iterations, then improvements become
more rare and low level heuristics with zero improvements start to play
their part in the search process (see Figure 3). The schedules obtained con-
tain more scheduled events on the average than when starting from a good
initial solution and therefore the total priority is higher. The travel penalty
for these schedules is generally worse than if we start from a good initial
solution, but since total priority of scheduled events is weighted more
highly than travel penalties, the schedules generated starting from poor ini-
tial solutions are generally better on the average.

5.4.3 Long runs of hyperheuristics

The best schedules out of each group of 10 runs are usually constructed
starting from a good initial solution. We have also run the hyperheuristics
for a much longer time (10000 iterations) to have a better idea about the
quality of the solutions obtained so far and the magnitude of further im-
provements possible. For Dataset1 and good initial solution different hy-
perheuristics consistently achieve very similar outcomes being able to
schedule all events which may be profitably scheduled and make a few ad-
ditional penalty improvements. The best objective value after 10000 itera-

Hyperheuristic Approach to Personnel Scheduling 565

tions is slightly better than the best one obtained during 500 iterations: for
Dataset1 it is 184537 against 184517 which means lower penalties for 3-5
events. On the other hand, in case of a poor initial solution, long runs of
hyperheuristics are not able even to “catch” the best values in Table 1 de-
spite multiple improvements in travel penalties during the runs. Although
the gap in total travel penalty is reduced comparing to that of between the
values in Tables 1 and 2, it still remains quite noticeable. For Dataset2
more significant improvements can be achieved in longer runs since there
is larger number of not scheduled events after 500 iterations. Hyperheuris-
tics are able to schedule most of them making the total priority of sched-
ules higher. However, the outcomes are not as consistent as for Dataset1
and the best result for 500 iterations (78450 in Table 3) is never beaten
(possibly because it at or very close to the optimal). Note that such long
runs are time consuming: for Dataset1 each run requires about 10 hours of
CPU time against 25 minutes for 500 iterations and for Dataset2 about 2
hours instead of 10 minutes.

5.4.4 Summary of results for a large set of low level heuristics

Table 5 summarises the best results produced by hyperheuristics for the
whole set of low level heuristics. The figures represent the deviation in
percent from the upper bound averaged over 10 runs of hyperheuristics,
so smaller numbers represent better solutions. Three different values of
the parameters for hyperheuristics employing candidate lists and tabu
lists have been tested and those providing the most consistent results for
corresponding hyperheuristics are shown in Table 5. Hyperheuristic
TabuEvent produces its best outcomes when the tabu list is allowed to
contain up to approximately half of all events in the dataset denoted by
N/2 in the table. Table 5 demonstrates the high quality of solutions when
a large collection of low level heuristics is used. For “easy” Dataset1 the
difference from the upper bound is well under 1% and for “difficult”
Dataset2 it does not exceed 3.6%, for all hyperheuristics except simple
random and greedy.

5.4.5 Small sets of low level heuristics

The results of the previous subsection indicate that a large collection of low
level heuristics is very effective. We conducted additional experiments with
smaller sets of low level heuristics. The main purpose is to check whether a
“good” subset of low level heuristics can produce the results of similar qual-
ity as for the whole set. Although random choice of low level heuristics for

P. Cowling and K. Chakhlevitch566

subsets can not guarantee that the “best” low level heuristics will be

of our hyperheuristics for different subsets, thus confirming the existence of
strongly and poorly performing low level heuristics in a large set.

The average performance of hyperheuristics for a reduced set of 10 ran-
domly selected low level heuristics is presented in Table 6. The results are
still good enough although not as good as for the whole set of low level
heuristics. The hyperheuristics nearly always perform better starting from
the good initial solution rather than a poor one; the only exception is
TabuHeuristicAdaptive for Dataset2.

Table 5. Average performance of hyperheuristics for the set of 95 low level heuristics
(deviation in % from upper bound).

Dataset1 Dataset2 Hyperheuristic
good init.
solution

poor init.
solution

good init.
solution

poor init.
solution

Initial solution 2.35 10.52 8.53 17.48
Random 0.69 1.63 4.74 5.96
Greedy-I 0.71 1.18 6.47 5.38
Greedy 0.30 0.40 3.01 2.33
Peckish1 0.27 0.63 3.03 2.96
Peckish2(25) 0.57 0.59 3.60 2.99
Peckish3(25) 0.30 0.56 3.54 2.56
Peckish4-v1 0.50 0.47 3.27 2.82
TabuH(30) 0.40 0.35 2.52 2.46
TabuE(N/2) 0.29 0.34 2.49 2.20
TabuHA(45) 0.40 0.30 2.90 2.10
TabuEA(45) 0.29 0.29 2.76 2.56

Table 6. Average performance of hyperheuristics for the set of 10 low level heuristics
(deviation in % from upper bound).

Dataset1 Dataset2 Hyperheuristic
good init.
solution

poor init.
solution

good init.
solution

poor init.
solution

Initial solution 2.35 10.52 8.53 17.48
Random 0.50 1.61 4.69 7.06
Greedy-I 1.81 4.53 7.81 13.71
Greedy 0.75 0.94 4.35 4.70
Peckish1 0.43 1.31 4.37 4.80
Peckish2(3) 0.63 1.49 4.28 5.44
Peckish3(6) 0.57 1.24 3.76 4.61
Peckish4-v1 0.43 1.11 3.75 4.79
TabuH(3) 0.66 1.12 4.11 5.08
TabuE(60) 0.64 1.19 4.18 4.87
TabuHA(4) 0.57 1.14 4.57 4.54
TabuEA(30) 0.71 1.17 4.36 4.87

The best randomly generated combinations of 10 low level heuristics con-

struct solutions comparable to that of the large set, while the running time is

Hyperheuristic Approach to Personnel Scheduling 567

selected, such an approach may provide an idea about the difference in results

less. It is important to notice that the best subsets of low level heuristics are
different for Dataset1 and Dataset2, which indicates that the performance of
low level heuristics depends on the problem instance. The worst selection of
10 low level heuristics produces a schedule of relatively poor quality.
Choosing an appropriate subset of low level heuristics from a large superset
is an interesting research direction which we will pursue in the future.

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

3 5 10 95

Number of low-level heuristics

D
e

v
ia

ti
o

n
 f

ro
m

 U
B

 (
%

)

Dataset1 - good init. solution

Dataset1 - poor init. solution

Dataset2 - good init. solution

Dataset2 - poor init. solution

Fig. 4. Average performance of hyperheuristic TabuEvent on different sets of low level
heuristics.

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

3 5 10 95

Number of low-level heuristics

D
e

v
ia

ti
o

n
 f

ro
m

 U
B

 (
%

)

Dataset1 - good init. solution

Dataset1 - poor init. solution

Dataset2 - good init. solution

Dataset2 - poor init. solution

Fig. 5. Average performance of hyperheuristic Peckish4-v1 on different sets of low level
heuristics.

P. Cowling and K. Chakhlevitch568

The relative performance of hyperheuristics TabuEvent and Peckish4-v1
on the sets of 3, 5, 10, and 95 low level heuristics is shown in Figure 4
and Figure 5. We have selected these hyperheuristics as representatives
of peckish and tabu list based groups which perform well on all sets.
Figures 4 and 5 show the advantages of our approach of “multiplying”
event selection rules and resource selection rules for the trainer schedul-
ing problem especially for the problem instance with tight constraints.
The figures lend support to the claim that more low level heuristics is
generally better.

5.4.6 Performance of individual low level heuristics

In this subsection we analyse how individual low level heuristics contrib-
ute to the solution process. Such an analysis is important from two points
of view. First, it would help us to make a conclusion about the predictabil-
ity of the performance of low level heuristics for a given problem instance.

Low level heuristics for not scheduled events (e.g. Figures 6a and 6b)
attempt to insert new events into the schedule, which improves the cur-
rent solution in terms of priority (although travel penalty can be some-
times improved in parallel if another scheduled event is moved). Low
level heuristics for already scheduled events (e.g. Figures 6c and 6d) re-
duce travel penalties by changing event locations or trainers. We observe
frequent positive improvements in the first 30-50 iterations when there
are not scheduled events which are relatively easy to schedule. We can
expect that low level heuristics for not scheduled events could be called
by the hyperheuristic frequently at that time because of the greater mag-
nitude of improvements than for their penalty-improving counterparts.
After these “easy gains”, primarily iterations with zero and negative im-
provements occur until the stopping condition is met, punctuated by a
small number of improving iterations. It appears that each of the low
level heuristics in Figures 6a-6d is able to find different, significant
changes at different points in the search. Similar behaviour is seen for
many other low level heuristics. Whilst it is hard to pin down when or
why a particular low level heuristic will produce such an improvement,
having a diverse range of low level heuristics makes these improvements
much more common than for a smaller collection.

Hyperheuristic Approach to Personnel Scheduling 569

Second, it might lend further support to the idea that having a large,
diverse set of low level heuristics is advantageous.

Fig. 6. Performance of low level heuristics during 500 iterations (hyperheuristic Peckish4,
Dataset1, poor initial solution).

P. Cowling and K. Chakhlevitch570

-200

-100

0

100

200

300

400

500

600

700

800

900

1000

1100

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298 309 320 331 342 353 364 375 386 397 408 419 430 441 452 463 474 485 496

Iteration

Im
p

ro
v

e
m

e
n

t

-1100

-1000
-900

-800

-700
-600

-500

-400
-300

-200

-100

0
100

200

300
400

500

600
700

800

900
1000

1100

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298 309 320 331 342 353 364 375 386 397 408 419 430 441 452 463 474 485 496

Iteration

Im
p

ro
v

e
m

e
n

t

-10

-5

0

5

10

15

20

25

30

35

40

45

50

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298 309 320 331 342 353 364 375 386 397 408 419 430 441 452 463 474 485 496

Iteration

Im
p

ro
v

e
m

e
n

t

-60

-55
-50

-45

-40
-35

-30

-25
-20

-15

-10

-5
0

5

10
15

20

25
30

35

40
45

50

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298 309 320 331 342 353 364 375 386 397 408 419 430 441 452 463 474 485 496

Iteration

Im
p

ro
v

e
m

e
n

t

a) LLH10 (ESn2-RSn5)

b) LLH24 (ESn5-RSn4)

ɫ) LLH32 (ESs1 -RSs7)

d) LLH75 (ESs5-RSs10)

Table 7. The most and the least frequently applied low level heuristics over 10 runs of
hyperheuristic Peckish4-v1 for Dataset2 using a poor initial solution.

Most frequently applied LLH Least frequently applied LLH
LLH

number
Event se-

lection
method

Resource
selection
method

Number
of calls

LLH
number

Event se-
lection
method

Resource
selection
method

Number
of calls

For not scheduled events For not scheduled events
LLH13 ESn3 RSn3 19 LLH18 ESn4 RSn3 9
LLH3 ESn1 RSn3 18 LLH23 ESn5 RSn3 9
LLH6 ESn2 RSn1 15 LLH16 ESn4 RSn1 8
LLH4 ESn1 RSn4 14 LLH21 ESn5 RSn1 8
LLH8 ESn2 RSn3 13 LLH22 ESn5 RSn2 8
LLH11 ESn3 RSn1 13 LLH1 ESn1 RSn1 7
LLH24 ESn5 RSn4 13 LLH10 ESn2 RSn5 7
LLH7 ESn2 RSn2 12 LLH19 ESn4 RSn4 6
LLH12 ESn3 RSn2 12 LLH20 ESn4 RSn5 5
LLH14 ESn3 RSn4 12 LLH17 ESn4 RSn2 4

For already scheduled events For already scheduled events

LLH50 ESs3 RSs5 265 LLH80 ESs6 RSs5 28
LLH47 ESs3 RSs2 215 LLH76 ESs6 RSs1 20
LLH92 ESs7 RSs7 202 LLH70 ESs5 RSs5 19
LLH94 ESs7 RSs9 198 LLH40 ESs2 RSs5 16
LLH53 ESs3 RSs8 191 LLH49 ESs3 RSs4 13
LLH52 ESs3 RSs7 187 LLH79 ESs6 RSs4 13
LLH93 ESs7 RSs8 182 LLH89 ESs7 RSs4 10
LLH90 ESs7 RSs5 180 LLH69 ESs5 RSs4 7
LLH32 ESs1 RSs7 158 LLH29 ESs1 RSs4 6
LLH46 ESs3 RSs1 136 LLH60 ESs4 RSs5 5
LLH87 ESs7 RSs2 131 LLH39 ESs2 RSs4 2
LLH27 ESs1 RSs2 118 LLH59 ESs4 RSs4 2
LLH51 ESs3 RSs6 112 LLH38 ESs2 RSs3 1
LLH42 ESs2 RSs7 105 LLH88 ESs7 RSs3 1
LLH31 ESs1 RSs6 104 LLH95 ESs7 RSs10 1
LLH91 ESs7 RSs6 103 LLH28 ESs1 RSs3 0
LLH26 ESs1 RSs1 102 LLH48 ESs3 RSs3 0
LLH34 ESs1 RSs9 100 LLH58 ESs4 RSs3 0
LLH54 ESs3 RSs9 99 LLH68 ESs5 RSs3 0
LLH33 ESs1 RSs8 95 LLH78 ESs6 RSs3 0

Table 7 contains the statistics for those low level heuristics which are

the most and the least frequently called over 10 runs of hyperheuristic
Peckish4-v1 applied to Dataset2 starting from a poor initial solution. The
total numbers of calls are given for the top 10 low level heuristics for not
scheduled events and for the best 20 low level heuristics for already
scheduled events. Not surprisingly, the latter low level heuristics are ap-
plied much more often since a lot of rescheduling steps are usually re-
quired until the resources necessary for scheduling a new event become
available. Comparing two parts of Table 7, we can observe that the differ-
ence in numbers of calls for low level heuristics for not scheduled events is

Hyperheuristic Approach to Personnel Scheduling 571

not very significant: all of them are more or less effective. This may follow
from the fact that early in the search the list of not scheduled events in our
experiments is quite short and the number of conflicting events for a par-
ticular not scheduled event may be very limited (often, there is only one
conflicting event). Therefore, the same event may be selected by different
event selection rules and the same conflicting event may be chosen by ap-
plying different resource selection rules. However, as we have seen in Fig-
ures 6a and 6d, later in the search these low level heuristics for not sched-
uled events have different, complementary behaviour. For the second
category of low level heuristics, clear champions and outsiders can be
identified. Why does this happen? The main factor is the structure of the
constraints for a particular problem instance.

runs of hyperheuristic Peckish4-v1 for Dataset2 and a poor initial solution.

Event selection rules Resource selection rules
Rule Number of calls Rule Number of calls
For not scheduled events For not scheduled events

ESn3 67 RSn3 68
ESn1 60 RSn4 55
ESn2 57 RSn1 51
ESn5 50 RSn2 46
ESn4 32 RSn5 46

For already scheduled events For already scheduled events
ESs3 1284 RSs7 823
ESs7 1090 RSs8 659
ESs1 842 RSs2 647
ESs2 563 RSs9 612
ESs6 381 RSs5 591
ESs5 319 RSs6 499
ESs4 255 RSs1 495

RSs10 353
RSs4 53

RSs3 2

From Table 8, which demonstrates the frequency of appearance of indi-

vidual selection rules in the applied low level heuristics, we can find out,
for example, that resource selection rules which involve selection of alter-
native locations for the events (specifically RSs3 and RSs4) are not very
useful. It is because the tightest constraints in Dataset2 are those that re-
strict the number of possible locations for the events. Table 7 confirms that
all low level heuristics which employ resource selection rules dealing with
locations are among the least frequently called (regardless of which event
selection rule is used) and some of them are never applied being unable to
change the current solution (see right part of Table 7). On the other hand,
Dataset2 contains groups of the events with a wide time windows and big

P. Cowling and K. Chakhlevitch

 Table 8. Frequency of occurrence of selection rules in applied low level heuristics over 10

572

lists of possible trainers. Hence, low level heuristics which deal with such
kinds of events and look for the alternative trainers or timeslots, should
perform reasonably well. For example, the leading low level heuristic
LLH50 (see left part of Table 7) selects the alternative timeslot(s) for the
event with a wide time window. Almost surely such a timeslot will be
found at any iteration and LLH50 can be potentially applied by the hyper-
heuristic. This type of behaviour of problem instances was not apparent
when the model was developed, and indeed business practices have
changed repeatedly since the initial contact with the financial company.
Hence having a wide range of ways to deal with varying problem data is
important and useful here, and for a range of other real-world problems.

The discussion above does not suggest that there are generally good or
relatively useless low level heuristics in the set. It rather persuades that
there are low level heuristics which are fitted better for the particular prob-
lem instance than others and some low level heuristics are not very useful
for that instance. It is difficult to predict the behaviour of individual low
level heuristics for a particular dataset. However, a large, diverse set of
low level heuristics provides our approach with the flexibility and robust-
ness leading to high quality results for a wide variety of foreseen and un-
foreseen characteristics of instances of the problem. Although the set of
“good” low level heuristics is very different for each dataset, the hyperheu-
ristic is able to shape a collection of low level heuristics into a method tai-
lored for a specific problem instance.

6 Conclusions

Hyperheuristics are starting to prove themselves as fast and effective
methods for solving complex real-world optimisation problems. A hyper-
heuristic is a robust approach which manages the choice of low level heu-
ristics and requires limited problem-specific information. We have com-
pared a wide range of hyperheuristic approaches for a real-world trainer
scheduling problem in this chapter.

The performance of hyperheuristics is determined to a great extent by
the quality of low level heuristics used. We split simple local search
neighbourhoods into “event selection” and “resource selection” rules and
construct a large set of low level heuristics by using all possible combina-
tions of those rules. Such an approach allows us to effectively handle vari-
ous constraints of the problem and requires only limited implementation
time. From our experiments, we observe that a rich set of low level heuris-
tics can be used to construct very good solutions to a complex real-world

Hyperheuristic Approach to Personnel Scheduling 573

problem. Furthermore, small subsets of low level heuristics must be care-
fully chosen to generate high quality results. We have demonstrated effec-
tive peckish and tabu hyperheuristics.

In further research we intend to develop methodologies for finding
promising low level heuristics from a large set of candidates by learning
the behaviour of a low level heuristic in a given situation. We expect that
this can significantly reduce CPU times, increasing the number of itera-
tions possible and hopefully solution quality, while still meeting the low
CPU times demanded by many practical scheduling decision support sys-
tems. We believe that our methods of quickly generating a large number of
low level heuristics and putting them together with hyperheuristic AI is
likely to be applicable to a wide range of complex real-world planning and
scheduling optimisation problems.

References

[1] U. Aickelin and K. Dowsland (2000). “Exploiting problem structure in a
genetic algorithm approach to a nurse rostering problem,” Journal of

Scheduling 3, 139-153.
[2] E. Burke, P. Cowling, P. De Causmaecker, and G. Vanden Berghe (2001).

“A memetic approach to the nurse rostering problem,” Applied Intelligence
15, 199-214.

[3] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg
(2003). “Hyperheuristics: an emerging direction in modern search technol-
ogy.” In F. Glover and G. A. Kochenberger (eds.), Handbook of Metaheu-

ristics. Kluwer Academic Publishers, 457-474.
[4] E. Burke, G. Kendall, and E. Soubeiga (2003). “A tabu-search hyperheuris-

tic for timetabling and rostering,” Journal of Heuristics 9, 451-470
[5] D. Corne and P. Ross (1995). “Peckish initialisation strategies for evolu-

tionary timetabling.” In E. Burke and P. Ross (eds.), Practice and Theory

of Automated Timetabling. Springer Lecture Notes in Computer Science
1153, Springer, 227-240.

[6] P. Cowling, G. Kendall, and L. Han (2002). “An investigation of a hyper-
heuristic genetic algorithm applied to a trainer scheduling problem.” In
Proceedings of 2002 Congress on Evolutionary Computation (CEC2002),
IEEE Computer Society Press, Honolulu, USA, 1185-1190.

[7] P. Cowling, G. Kendall, and E. Soubeiga (2000). “A Hyperheuristic Ap-
proach to Scheduling a Sales Summit.” In E. Burke and W. Erben (eds.),
Practice and Theory of Automated Timetabling III: PATAT 2000. Springer
Lecture Notes in Computer Science 2079, Springer, 176-190.

[8] P. Cowling, G. Kendall, and E. Soubeiga (2001). “A parameter-free hyper-
heuristic for scheduling a sales summit.” In Proceedings of the Third Meta-

heuristic International Conference (MIC 2001), Porto, Portugal, 127-131.

P. Cowling and K. Chakhlevitch

’

574

[9] P. Cowling, G. Kendall, and E. Soubeiga (2002). “Hyperheuristics: a tool

lutionary Computing: Proceedings of Evo Workshops 2002. Springer Lec-
ture Notes in Computer Science 2279, Springer, 1-10.

[10] B. Dodin, A. A. Elimam, and E. Rolland (1998). “Tabu search in audit
scheduling,” European Journal of Operational Research 106, 373-392.

[11] K. Dowsland (1998). “Nurse scheduling with tabu search and strategic os-
cillation,” European Journal of Operational Research 106, 393-407.

[12] H.-L. Fang, P. Ross, and D. Corne (1994). “A promising hybrid GA/heuristic
approach for open-shop scheduling problems.” In A. Cohn (ed.), Proceedings

of ECAI 94: 11th European Conference on Artificial Intelligence. John Wiley
& Sons, 590-594.

[13] F. Glover and M. Laguna (1997). Tabu Search. Kluwer Academic Publish-
ers, Norwell, MA.

[14] J. Gratch and S. Chien (1996). “Adaptive problem-solving for large-scale
scheduling problems: a case study,” Journal of Artificial Intelligence Re-

search 4, 365-396.
[15] L. Han, G. Kendall, and P. Cowling (2002). “An adaptive length chromo-

some hyperheuristic genetic algorithm for a trainer scheduling problem.” In
Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution

and Learning (SEAL 02), Singapore, 267-271.
[16] P. Hansen and N. Mladenovi (2001). “Variable neighbourhood search:

Principles and applications,” European Journal of Operational Research
130, 449-467.

[17] E. Hart and P. Ross. (1998). “A heuristic combination method for solving

ture Notes in Computer Science 1498, Springer, 845-854.
[18] E. Hart, P. Ross, and J. Nelson (1998). “Solving a real-world problem using

an evolving heuristically driven schedule builder,” Evolutionary Computa-

tion 6, 61-80.
[19] A. Nareyek (2003). “Choosing search heuristics by non-stationary rein-

Computer Decision-Making. Kluwer Academic Publishers, 523-544.
[20] M. Randall and D. Abramson (2001). “A general meta-heuristic based

solver for combinatorial optimisation problems,” Computational Optimisa-

tion and Applications 20, 185-210.
[21] P. Ross, S. Schulenburg, J. G. Marín-Blázquez, and E. Hart (2002). “Hy-

per-heuristics: learning to combine simple heuristics in bin-packing prob-
lems.” In Proceedings of the Genetic and Evolutionary Computation Con-

ference (GECCO 2002). Morgan Kauffmann, 942-948.
[22] H. Terashima-Marín, P. Ross, and M. Valenzuela-Rendón (1999). “Evolu-

tation Conference. Morgan Kaufmann, 635-642.

Hyperheuristic Approach to Personnel Scheduling

’

575

et al. (eds.), Proceedings of the GECCO99 Genetic and Evolutionary Compu-

tion of constraint strategies in examination timetabling.” In W. Banzhaf

J. Gottlieb, E. Hart, M. Middendorf and G. Raidl (eds.), Applications of Evo-

for rapid prototyping in scheduling and optimisation.” In S. Cagoni,

forcement learning.” In M. Resende and J. de Sousa (eds.), Metaheuristics:

H-P.Schwefel (eds), Parallel Problem Solving from Nature V. Springer Lec-
job-shop scheduling problems.” In A.E. Eiben, T. Back, M. Schoenauer,

[23] G. Thompson (1996). “A simulated annealing heuristic for shift scheduling
using non-continuously available employees,” Computers and Operations

Research 23, 275-288.
[24] E. Tsang and C. Voudouris (1997). “Fast local search and guided local

search and their application to British Telecom’s workforce scheduling
problem,” Operations Research Letters 20, 119-127.

P. Cowling and K. Chakhlevitch576

A Genetic-Algorithm-Based Reconfigurable Scheduler

David Montana, Talib Hussain and Gordon Vidaver

BBN Technologies, Cambridge MA 02138, USA

dmontana@bbn.com, thussain@bbn.com, gvidaver@bbn.com

Summary. Scheduling problems vary widely in the nature of their constraints and optimiza-

tion criteria. Most scheduling algorithms make restrictive assumptions about the constraints

and criteria and hence are applicable to only a limited set of scheduling problems. A recon-

figurable scheduler is one that, unlike most schedulers, is easily configured to handle a wide

variety of scheduling problems with different types of constraints and criteria. We have im-

plemented a reconfigurable scheduler, called Vishnu, that handles an especially large range

of scheduling problems. Vishnu is based upon a genetic algorithm that feeds task orderings

to a greedy scheduler, which in turn allocates those tasks to a schedule. The scheduling logic

(i.e. constraints and optimization criteria) is reconfigurable, and Vishnu includes a general and

easily expandable framework for expressing this logic using hooks and formulas. The sched-

uler can find an optimized schedule for any problem specified in this framework. We illustrate

Vishnu’s flexibility and evaluate its performance using a variety of scheduling problems, in-

cluding some classic ones and others from real-world scheduling projects.

1 Introduction

Most optimizing schedulers solve a limited class of scheduling problems in a single

domain. In contrast, a reconfigurable scheduler can solve a wide range of different

problems across a variety of domains. Using a reconfigurable scheduler, a user should

be able to switch easily between scheduling, for example, taxicab pickups, athletic

fields, factory machinery, classrooms, and service visits.

Although the term “reconfigurable scheduler” is new, the concept of reconfig-

urable scheduling has existed for decades, and a variety of reconfigurable schedulers

have been created. However, the progress in this area has been slow recently. To a

large extent, this reflects the view that the existing reconfigurable scheduling frame-

works, such as AMPL [1] and OPL Studio [2], are as powerful as possible, and offer

little room for improvement. However, we claim that our more recently developed re-

configurable scheduler, called Vishnu, is a significantly better approach that is closer

to the ideal of full coverage of real-world scheduling problems.

Like other reconfigurable schedulers, Vishnu has both an optimizer and a prob-

lem representation framework, as first described in lesser detail in [3]. Unlike other

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

D. Montana et al.: A Genetic-Algorithm-Based Reconfigurable Scheduler, Studies in Computational

Intelligence (SCI) 49, 577–611 (2007)

such schedulers, the optimizer is a hybrid of a genetic algorithm and a greedy sched-

ule builder. The genetic algorithm generates orderings of the task to schedule, and

the schedule builder adds one task at a time to the schedule in that order. In both the

genetic algorithm and schedule builder are logic hooks where the user can specify

key pieces of the scheduling logic, such as the optimization criterion, the task du-

rations, and amount of capacity consumed. The user specifies these using a formula

language that is similar to those used in modern spreadsheet programs. For each

hook, the user either specifies a formula for computing the result or accepts the de-

fault formula. Vishnu also provides additional components, such as a graphical user

interface and configurable statistical tables.

Section 2 provides a brief background of reconfigurable scheduling and evolu-

tionary scheduling, with the focus of the latter on those schedulers closest to our par-

ticular approach. Section 3 gives an overview of the Vishnu optimizer and problem

representation framework, with an emphasis on a high-level view of its capabilities

and philosophy. Section 4 examines Vishnu in greater detail, describing how each of

the different types of constraints is implemented. Section 5 demonstrates the perfor-

mance and capabilities of Vishnu on both classical scheduling problems and com-

plex real-world problems. While the former are useful for benchmarking, the latter

more accurately showcase Vishnu’s power to allow quick development of solutions

to complex and unique scheduling problems. Section 6 concludes the paper.

2 Background

Our work is at the intersection of two distinct threads of scheduling research: re-

configurable scheduling and evolutionary scheduling. We now discuss each of these

threads.

2.1 Reconfigurable Scheduling: The Concept

A reconfigurable scheduler has two main components: a problem representation

framework and an optimizer (also called a solver). The problem representation

framework provides a means for a user to specify the hard and soft constraints

of a scheduling problem. Hard constraints cannot be violated and determine what

constitutes a legal schedule. Soft constraints are preferences that need not be satisi-

fied, but violating them causes a decrease in schedule quality; hence, they determine

what constitutes a good schedule and define the optimization criterion. Generally, the

framework includes a language to represent these constraints. The optimizer searches

for a schedule that satisfies all the hard constraints and that optimally (or at least

nearly optimally) trades off between the different soft constraints. Preferably, the op-

timizer can solve any problem specified in the framework. Additional components

are also highly desirable. A graphical user interface allows a user to view, modify,

and otherwise interact with the schedules created. A database allows multiple users

to interact with the same scheduling problem. Configurable statistics gathering al-

lows a user to create statistical tables matched to the problem.

D. Montana et al.578

There are some clear advantages to a reconfigurable scheduler [4]. Primarily, it

greatly reduces both the time and cost of developing a scheduler for a new scheduling

problem. If the nature of the scheduling problem changes, it is quick and easy to

modify to incorporate these changes. A reconfigurable scheduler is reusable, so a

user does not have to develop or purchase, and then learn how to use, a different

scheduler for each scheduling problem. So, the existence of an effective and easy-to-

use reconfigurable scheduler would make optimized scheduling available to a much

larger set of users.

A reconfigurable scheduler cannot solve every scheduling problem. There will

always be some type of constraint that cannot be represented in the problem repre-

sentation framework. The goal for a reconfigurable scheduler is to approach the ideal,

handling as many different types of real-world scheduling problems and scheduling

concepts as possible. It should be capable of being easily extended to cover new

concepts to ensure that it can grow towards the ideal. Furthermore, the problem rep-

resentation framework should make it easy for a user to define scheduling problems,

and the optimizer should perform a reasonably efficient search for a schedule.

2.2 Reconfigurable Scheduling: Previous Work

The separation of the problem representation from the schedule generation process,

which is central to reconfigurable scheduling, is not a new idea. Both the mathemati-

cal programming community and constraint programming community have a history

of work on problem representation languages and associated solvers.

For mathematical programming, AMPL [1] is the most popular modeling lan-

guage and serves as a good representative of its class. Competitors and predeces-

sors, such as GAMS [5], have similar functionality. AMPL allows representation of

the algebraic constraints and optimization criteria used in mathematical program-

ming. There exist multiple solvers, including CPLEX [6], that generate solutions to

the problems modeled in AMPL. From the viewpoint of reconfigurable scheduling,

there are two major shortcomings of the AMPL approach. First, the solvers gener-

ally cannot solve all problems representable in AMPL. For example, CPLEX can

only solve problems amenable to linear programming, mixed integer programming,

or convex optimization. Second, there is a limited representation capability in AMPL

for logical, as opposed to algebraic, constraints. As an example, it would be hard to

represent the following constraint in AMPL: “If it is later than 10:00 and a resource

has already done a full hour of work executing tasks and has not rested yet, then the

resource should rest for 10 minutes.”

Constraint programming also has its own languages and frameworks for rep-

resenting scheduling problems. Some examples are CHIP [7], Prolog III [8], and

ODO [9]. The solvers associated with constraint programming are usually tree-based

search algorithms. One traditional shortcoming of the constraint programming ap-

proach is an inability to express constraints involving complex algebraic expressions.

A second shortcoming is that the tree search method is ineffective at global opti-

mization. Recent developments have addressed these problems. A new constraint

A Genetic-Algorithm-Based Reconfigurable Scheduler 579

programming language, OPL [2], allows representation of complex algebraic con-

straints in addition to logical constraints. There are associated OPL solvers, such

as those available in ILOG’s OPL Studio product. Improvements to the tree-based

search technique, such as those described in [10], have increased the optimization

performance. Still, there are a variety of types of constraints that cannot be rep-

resented in OPL, and hence many real-world scheduling problems that cannot be

solved. So, there is still much room for improvement.

Reconfigurable scheduling is a much more recent development in the evolu-

tionary computation, as well as the larger metaheuristic, community. In addition to

Vishnu, there have been some other efforts at making reconfigurable genetic sched-

ulers, including [11] and [12], but these lack the generality of Vishnu.

An area closely related to reconfigurable scheduling is scheduling ontologies [13,

14]. A scheduling ontology is a set of vocabulary, concepts and relations that can

be used to describe and characterize different scheduling problems. It is essentially

equivalent to the problem representation framework component of a reconfigurable

scheduler. Smith and Becker [13] have created a fairly extensive ontology, and we

aim to create a reconfigurable scheduler that can both represent and schedule as

extensive a set of scheduling concepts as possible.

2.3 Evolutionary Scheduling: Previous Work

Genetic algorithms (and, more generally, evolutionary algorithms) have achieved

success in scheduling applications [15]. There are several reasons why evolution-

ary algorithms are well suited for most scheduling problems, including many for

which traditional mathematical programming techniques are inadequate. First, they

are easy to apply to almost any optimization problem, including those with complex

and/or discontinuous constraints/criteria that may derail other algorithms. Second,

evolutionary algorithms are good at searching large and rugged search spaces to find

nearly optimal solutions; furthermore, they can find good, though suboptimal, solu-

tions very quickly. Third, genetic algorithms, with their population-based approach,

allow for easy and effective large-scale parallelization [16], and this can provide a

further performance boost.

The combination of complex constraints with the fact that orderings (rather than

binary or numerical values) are often the primary outputs means that the standard

chromosome representation (a binary string) is often not appropriate for schedul-

ing problems. In fact, the first use of genetic algorithms for scheduling (by Davis

[17]) also introduced one of the first non-standard chromosomes. There has been a

large variety of representations and genetic operators used for evolutionary schedul-

ing. Many of these are targeted to specific scheduling problems, such as the vehicle

routing problem with time windows [18]. Such an approach is necessary in order to

compete in terms of performance with other techniques tuned to specific problems,

whether they be classic scheduling problems or real-world applications.

However, approaches targeted to specific scheduling problems are not useful for

reconfigurable scheduling because of their lack of generality. An alternative is an

order-based genetic algorithm combined with a greedy schedule builder [19, 20].

D. Montana et al.580

This is one of the earliest approaches to evolutionary scheduling, and its advantage

is its universal applicability. The order-based genetic algorithm [21, 22] was devel-

oped based on the recognition that for problems like the traveling salesman problem,

the goal is to find the best ordering of N objects. Its chromosome is a direct repre-

sentation of a permutation of N objects, labeled 1 through N, and its operators are

designed to manipulate chromosomes of this type. Whitley [20] and Syswerda [19]

developed an approach whereby an order-based genetic algorithm can be applied

to more complex types of scheduling problems by adding a greedy schedule builder.

The order-based genetic algorithm generates orderings of the tasks to schedule, while

the greedy schedule builder translates these orderings into schedules, handling the

tasks in the order in which they are presented in the chromosome. This approach is

universally applicable, since it is generally easy to create a greedy schedule builder

for a scheduling problem.

3 Vishnu Overview

Vishnu is more complex than the standard scheduling application because in order

to achieve its generality it needs to handle many different aspects of scheduling. In

this section, we provide a general overview of the approach before exploring many

of the details in the next section.

3.1 The Genetic Algorithm

In our approach, the genetic algorithm generates task orderings and relies on a sched-

ule builder to translate these into actual schedules. The genetic representation uses an

order-based chromosome. Each chromosome is some permutation of the integers 1

through N, where N is the number of tasks to schedule and each number corresponds

to a task.

The only novelty of our genetic representation is that it incorporates prerequi-

site constraints. If task A has task B as a prerequisite, then task B must be handled

earlier in the scheduling process than task A. (Note that this does not necessarily

preclude task A from being scheduled at an earlier time than task B.) The genetic

algorithm enforces prerequisite constraints by only generating chromosomes with

orderings that obey all such constraints. A reordering operation is applied to every

chromosome produced (either by mutation and crossover or during initialization of

the population) to maintain these constraints. It works by finding any task that is ear-

lier in the chromosome than any of its prerequisites and changing its location so that

it is directly after the last of its prerequisites.

The crossover operator used by the genetic algorithm is position-based crossover

[19], and its operation is illustrated in Figure 1. It works as follows. A set of positions

is randomly selected (which in the example of Figure 1 are positions 4, 6 and 7). The

elements at these selected positions in the first parent (which in the example are the

integers 4, 6 and 7) are maintained at these positions in the child. The remaining

elements (which in the example are the integers 1, 2, 3 and 5) are used to fill in the

A Genetic-Algorithm-Based Reconfigurable Scheduler 581

Fig. 1. The crossover and mutation operators. The *’s indicate the randomly selected positions.

It is assumed that the prerequisites are such that task 4 precedes task 5 and task 2 precedes

task 6.

remaining slots in the child, but will in general be at different positions in the child

than in the first parent. The order of these elements in the child will be the same as

their order in the second parent (which in the example means that 2 is placed in the

first empty position, followed in order by 5, 1 and 3).

Also illustrated in Figure 1 is the mutation operator. It works the same as the

crossover operator except without a second parent to provide the ordering for the

subset of elements that are reordered in the child. Instead, the new order of the shuf-

fled elements is randomly selected.

Each member of the initial population is generated by selecting a random order-

ing and then reordering the entries to obey the prerequisites constraints. The flow of

operations of the genetic algorithm is shown in Figure 2.

Fig. 2. The operation of the genetic algorithm.

D. Montana et al.582

The genetic algorithm is steady-state, which means that it generates and replaces

one individual at a time rather than an entire population. The advantage of a steady-

state replacement strategy is that the search generally proceeds faster, since the ge-

netic algorithm can use good individuals as soon as they are created rather than wait-

ing for generational boundaries. Since there are no generations, the amount of work

done by the search algorithm is measured by the number of individuals evaluated.

There is a uniqueness constraint to ensure that there are no two identical individ-

uals in the population; duplicates generated by the genetic operators are discarded

without being evaluated.

A fitness function is used to evaluate each individual, i.e. each task ordering. The

evaluation starts by feeding the tasks to the greedy schedule builder in the specified

order. The result is a schedule that obeys the required hard constraints. The opti-

mization criterion, specified in a manner discussed in Section 4.3, then produces a

numerical score representing the quality of the schedule, and hence the fitness of the

individual.

There are two primary parameters for the user to specify: the population size

and the number of evaluations. Increasing the population size and the number of

evaluations increases the expected quality of the schedule at the expense of a longer

search. As an extreme, if the user wants to execute just a greedy scheduler and bypass

the genetic search, he can set the number of evaluations to be one.

Other parameters for the genetic algorithm are usually just set to their default

values, as we do for all the experiments described in Section 5. The default prob-

ability of selecting mutation as the genetic operator is 0.5, with default probability

also 0.5 for crossover. Parent selection is done using an exponential probability dis-

tribution, i.e. the individuals in the population are ranked and the ith best individual

has selection probability that is some factor k as great as the (i − 1)st best. This

factor k is set by default to be 1-(10/popSize). There are also parameters that can

specify termination criteria that are alternatives to ending after a certain number of

evaluations. These include: the maximum number of duplicates (which specifies to

stop the search after a certain number of duplicate individuals has been discarded),

the maximum run time (which specifies to terminate after a certain amount of wall

clock time has elapsed), and the maximum age of the best individual (which speci-

fies to terminate if no progress has been made during a certain number of consecutive

evaluations). By default, these parameters are set so that the number of evaluations

is guaranteed to be the termination criterion.

Note that it is possible to use other optimization techniques, such as simulated

annealing or tabu search, to search the space of permutations (task orderings). Which

technique is best depends on the characteristics of the problem, particularly the

search space size and ruggedness. Genetic algorithms are a good match for Vishnu

because they display good performance over a wide range of different search space

characteristics, which is important because Vishnu should be able to handle a wide

variety of different scheduling problems.

A Genetic-Algorithm-Based Reconfigurable Scheduler 583

3.2 Greedy Schedule Builder Overview

Our greedy schedule builder needs to be more general than those designed for spe-

cific scheduling problems, such as the active schedule generation algorithm for job-

shop scheduling [23]. While the details of the greedy schedule builder are compli-

cated, the basic idea is simple. We provide a high-level description of the algorithm

with italicized concepts corresponding to some (but not all) of the logic hooks where

the user specifies the logic in a manner explained below.

The schedule builder assigns tasks one at a time in the specified order. For each

task, it looks for the best resource(s) and time for that task, where the goodness of

a resource and time is evaluated based on a specified greedy criterion. The schedule

builder only considers resources capable of performing the task. For each capable

resource, it checks the legality of scheduling the task at its specified target start time.

(The target start time can be the beginning of time, indicating to schedule the task

as early as possible.) If assigning at this time would not violate any hard constraints,

such as availability or capacity, then it uses this time as the sole potential assignment

time for this resource. If assigning at the target start time would violate a hard con-

straint, then the schedule builder finds the two times closest to the target time, one

earlier and one later, at which it is legal to assign the task. Because one or both of

these times may not exist, this search results in 0, 1 or 2 possible assignment times

for this resource. From all the possible resources and corresponding times, the sched-

ule builder selects the best one based on the greedy criterion and schedules the task

without violating a hard constraint), then this task is not scheduled.

Fig. 3. The greedy schedule builder converts two different genotypes (task orderings) into two

different phenotypes (schedules). The diagonally striped area indicates where the resource is

unavailable.

Figure 3 illustrates the operation of the greedy schedule builder for a very simple

scheduling problem. It shows how two different genotypes translate into two differ-

ent phenotypes/schedules. The example makes certain assumptions about what the

user has specified for the scheduling logic. These include the following default be-

haviors: (a) the target start time for all tasks is the beginning of scheduling window,

(b) all resources are capable of performing all tasks, (c) tasks are always available,

(d) there is no multitasking, i.e. a resource performs only one task at a time, and

(e) each task requires only one resource. It also assumes that the greedy criterion

D. Montana et al.584

there. If no legal resource and time exist (i.e. there is no way to schedule the task

specifies that given a choice between multiple times at which to schedule a task, the

earliest is the best. For the first genotype, the greedy scheduler starts with task 1.

For resource 1, the task can be scheduled at its target time. For resource 2, the task

cannot be scheduled at its target start time, so the schedule builder looks forward

in time to find the first available slot, which is right after the initial block when re-

source 2 is unavailable. (Looking backward in time yields nothing.) Since the greedy

criterion says that earlier is better, the schedule builder chooses resource 1. Next, it

schedules task 2. The first available slot on resource 2 is earlier than that on resource

1, so the schedule builder assigns task 2 to resource 2. Finally, using the same logic,

task 3 is assigned to resource 1 in the slot after task 1. (Note that each task has three

stages: setup, execution and wrapup, although one or two of these may require zero

time.) For the second genotype, the schedule builder uses the same procedure, but

a different order in which the tasks are scheduled leads to a different schedule. If

the optimization criterion is makespan (i.e. minimize the end time of the final task

completed), then the top schedule is better than the bottom one.

Fig. 4. Another greedy scheduler example, with different problem specifications.

Figure 4 shows what happens for a different set of problem specifications. The

key differences from the prior one is: (a) the target start time is in the middle of

the scheduling window rather than at the beginning, and (b) the greedy criterion is a

penalty proportional to the deviation of the actual start time from the target time, with

lateness penalized 1.5 times more heavily than earliness. The first task scheduled,

task 1, is placed at the target time. The second task, task 2, cannot be assigned at

the target time, so there are two options. Searching forward in time finds the first

available slot is immediately after task 1, while searching backward finds the slot

right before task 1. The greedy criterion selects the earlier slot, since the penalty is

smaller. For task 3, the greedy criterion prefers the slot after task 1 rather than before

3.3 Problem Representation Framework Overview

Like the greedy schedule builder, the problem representation framework operates on

a simple basic concept, with the complexity in the details. We provide an overview

here and fill in the details in the next section.

The genetic algorithm and greedy schedule builder both export logic hooks where

the user can specify logic specific to a particular scheduling problem. Examples of

such hooks include one that allows the user to specify the task execution duration for

any task, one that allows the user to specify the prerequisites for any task, and one

A Genetic-Algorithm-Based Reconfigurable Scheduler

task 2.

585

that allows the user to specify the optimization criterion. The user defines a formula

for each hook or accepts the default value for that hook.

The formula is then evaluated within context to provide the required informa-

tion to the scheduling algorithm. Establishing the context primarily involves defining

special variables and setting their values accordingly. The two most commonly used

variables are task and resource, which refer to the particular task and/or resource

about which to compute the information. All hooks provide the context variables

tasks and resources, which are lists of all the tasks and resources, and winStart,

which gives the earliest time in the scheduling window. The scheduling algorithm

sets the context and evaluates the formula in that context, so all the user has to do is

define the formula.

As an example, consider the Execution Duration hook, which specifies the

amount of time that a resource spends executing a task and is discussed further in

Section 4.3. We examine some different possibilities for formulas for this hook, start-

ing with simple ones and then more complex ones.

• Empty - The default for this hook is 0, so if no formula is specified, then all tasks

require 0 seconds to execute.

• 5 - This simple formula specifies that every task requires 5 seconds to execute.

• task.duration - This specifies that the time to execute a task is given by a field

called duration in the task. (Note that the ‘.’ character is the notation used to

access a field inside a structure.)

• task.distance / resource.speed - The execution duration is the task’s distance

divided by the resource’s speed.

• entry (resource.durations, task.type) - Each resource has a field durations that

is a list of how long it takes that resource to execute different types of tasks, and

each task has a numerical field that specifies its type. The task execution duration

is the entry in the resource’s list corresponding to the type of the task. (Note

that entry is one of many predefined functions in Vishnu’s formula language; it

accesses the nth element of a list.)

4 Vishnu Details

In this section, we provide details about Vishnu. We start with a discussion of how

to represent data, most notably data about the tasks and resources. We then describe

the formula language and how formulas are evaluated. We next examine in-depth the

different logic hooks and how the scheduling algorithm incorporates them. We con-

clude with examples of how to represent, and hence solve, three classic scheduling

problems using Vishnu.

4.1 Scheduling Data

Vishnu provides a small number of atomic data types plus the ability to combine

these atomic data types into composite data types. Some commonly used composite

D. Montana et al.586

data types are predefined, but each scheduling problem requires the definition of new

problem-specific composite data types.

The atomic data types are string, number, boolean, and time, plus a special type,

list, which is a variable-sized set of instances of a single specified data type. The pre-

defined composite data types include interval, which contains the fields start (a time)

and end (a time), and matrix, which contains fields numrows (a number), numcols (a

number), and values (a list of numbers).

The problem-specific data types are built from the atomic and predefined types.

The type for a field can itself be another problem-specific type, and hence it is pos-

sible to construct arbitrarily complex data types. For each scheduling problem, one

data type must be declared to represent tasks and another type specified as repre-

senting resources. Each of these two types must have one field that serves as a key,

providing unique identification of instances of this type.

All data for a scheduling problem must be instances of the composite data types

(including the predefined types) defined for that problem. While the primary data (i.e.

what the scheduler needs to schedule) are the tasks and resources, other types of data

(e.g. business rules or distance matrices) may be required to define the scheduling

logic.

Examples of representation of scheduling data are given in Section 4.4 and Sec-

tion 5.

4.2 Formulas: Language and Evaluation

Formulas are built from the following types of components: constants, variables,

accessors, operators, and functions. Accessors provide access to the fields of a data

structure using the notation .’ followed by the field name. (For example, task.id gives

the id field of the data structure referenced by the variable task.) There is a fixed set

of standard arithmetic (+, -, *, /) and comparison operators (=, <>, <, <=, >, >=)

written using infix notation. There is also an expandable library of functions, where

the syntax for invoking a function is fcnName (arg1, ..., argn).

Note that null means no value, and all accessors, operators and functions must

handle the case when one or more of their arguments are null, usually by just re-

turning null. A null value can be introduced into a formula by context variables such

as next or previous (which are null when the task of interest is respectively the last

or first task for its resource) or by functions such as resourceFor and taskStartTime

(which are null if the task is not assigned to a resource).

There are too many functions to list them all here, so we provide a representative

sample:

• if (a, b, c) returns the evaluation of b if a evaluates to true and returns the evalu-

ation of c if a is false, or returns null if the third argument, c, is omitted.

• list (...) combines all of its arguments into a list.

• interval (startTime, endTime) returns an interval object.

• entry (list, index) returns the element of list at index.

• distance (location1, location2) returns the distance between the two locations.

A Genetic-Algorithm-Based Reconfigurable Scheduler

‘

587

• max (a, b) returns the maximum of the two numbers.

• and (...) returns true if all of its boolean arguments are true.

• hasValue (a) returns false if a is null and true otherwise.

• withVar (varName, varValue, a) evalutes a with variable varName bound to var-

Value.

• mapOver (list, varName, a) binds the variable varName to each element of list

in succession and evaluates a, returning the results as a new list.

• sumOver (list, varName, a) does the same as mapOver except returning the sum

of the results.

•

Time return the other three times associated with a task assignment. The func-

tions formerSetupTime and formerWrapupTime provide the setup and wrapup

times of an already scheduled task prior to the assignment of another task that

may have caused these times to change.

• resourceFor (task) returns the currently assigned resource of task.

• lastTask (resource) returns the last task assigned to resource, and complete (re-

source) returns this task’s end time.

Note that these functions can be classified into different types including mathemati-

cal functions (max, and, distance), control functions (if, withVar), data constructors

(list, interval), list operations (mapOver, sumOver, entry), and schedule accessors

(taskStartTime, taskEndTime, resourceFor).

Many examples of formulas are given in Sections 4.3, 4.4 and 5.

When the formulas are originally written, a compiler transforms them into parse

trees, which are what the scheduler executes to evaluate formulas. As part of the

compilation process, the compiler checks that each formula is correct with respect

to data types, i.e. that the formula returns the data type expected by the hook and

that each argument to each function is of the expected type. Before execution of a

formula, the scheduler ensures that all context-dependent variables, such as task and

resource, are set appropriately.

Since the formulas are evaluated many times in different contexts, the efficiency

of formula evaluation is a major aspect of scheduler performance. One important

way in which we have made formula evaluation more efficient is by caching (i.e.

storing) the results of formulas and recalling, rather than recomputing, the results in

the future. The trick is knowing when, both in terms of which formulas and which

contexts, caching results and then recalling them is valid. The validity of cached

results depends on the variables and functions used in the formula. If the formula

contains any schedule-dependent function (i.e. a function whose returned value de-

pends not just on its arguments but also the current schedule, such as taskStartTime

or resourceFor), then the formula needs to be re-evaluated whenever the schedule

or arguments change. If the formula contains no schedule-dependent functions but

refers to both task and resource variables, it needs to be evaluated once for each

task/resource pair. If the formula just references the task (or resource) variable, then

the formula must be evaluated just once for each task (or resource).

D. Montana et al.

taskStartTime (task) returns the currently assigned start time of task (or null if task

is not assigned). The functions taskSetupTime, taskEndTime and taskWrapup-

588

Hook Default Description

Optimization Criterion 0 Measure of quality of current schedule

Greedy Criterion 0 Measure of quality of assignment of task to resource

Target Start Time winStart Optimal time for task to begin when assigned to resource

Prerequisites empty list Tasks that must be scheduled before scheduling task

Execution Duration 0 Seconds required for resource to perform task

Setup Duration 0 Seconds resource prepares for task after doing previous

Wrapup Duration 0 Seconds resource cleans up after task before doing next

Breakable false Can a task be executed in discontinuous time intervals?

Resource Unavailable empty list All intervals of time when resource is busy

Task Unavailable empty list All intervals when task cannot be scheduled on resource

Capability true Can resource perform task?

Capacity Thresholds empty list Maximum capacity of each type for resource

Capacity Contributions empty list How much task adds to each type of capacity of resource

Capacity Resets empty list Capacity restored to resource by performing task

Multitasking Type none How resources perform more than one task at a time

Groupable false Can task1 and task2 can be performed in the same group?

Multiresource Reqts empty list Set of requirements task needs satisfied by its resources

Satisfied Requirements empty list Contribution of resource to requirements of task

Auxilliary Tasks Before empty list Set of auxilliary tasks to schedule before scheduling task

Auxilliary Tasks After empty list Set of auxilliary tasks to schedule after scheduling task

4.3 Hooks and Scheduling Logic

In this section, we discuss all of the hooks currently available in Vishnu. To define the

logic for a scheduling problem, a user must associate a formula with each relevant

hook or accept the hook’s default. Table 1 provides a brief overview of the different

hooks. Sections 4.3-4.3 discuss in greater detail the function of each hook and its role

in the scheduling process. The hooks are divided into different classes to facilitate

our explanation.

[Note that this set of hooks is only a current snapshot. Over time, we have grad-

ually added new hooks, which explains why there is greater functionality available

now than when we first introduced Vishnu in [3]. When we identify aspects of a

scheduling problem that cannot be represented by the current hooks, we may specify

a new hook to provide this functionality (along with updates to the schedule builder

to utilize this hook). Careful consideration is given to ensure that a new hook is

broadly applicable and not just a one-of-a-kind fix.]

Scheduler Directives

The first set of hooks we examine are those that instruct the scheduler how to execute

rather than specifying problem constraints.

A Genetic-Algorithm-Based Reconfigurable Scheduler

Table 1. The scheduling logic hooks, with context variables bolded

589

Optimization Criterion is the hook whose formula produces a numerical score

for the current schedule. As discussed above, the genetic algorithm searches for the

schedule with the smallest possible value for this score. All the different types of soft

constraints of the problem must be aggregated into a single score, with the user (i.e.

the person defining the problem) responsible for specifying how to combine them.

The simplest and most common approach for combining penalties from different

soft constraints is a weighted sum, but there are many other possibilities. Since this

hook references the schedule as a whole rather than a particular task or resource, the

only context variables are the standard ones: tasks, resources and winStart. A simple

example is the formula that implements makespan, which scores a schedule based

on the latest end time of any task:

maxOver(tasks, t”, taskEndTime(t)) − winStart

Note that subtracting winStart allows the formula to return a number, which is the

expected data type, rather than a time. A more complicated sample formula combines

a penalty for a task being late, a penalty for the time resources spend setting up, and

a penalty for each task that was not scheduled:

sumOver(tasks, t”, 10 ∗ if(taskStartTime(t) > t.dueDate,

taskStartTime(t) − t.dueDate, 0) + (taskStartTime(t) − taskSetupTime(t))+

if(hasValue(resourceFor(t)), 0, 1000000))

assuming that the task data type has a field dueDate. Other examples of sched-

ule characteristics that might be penalized include resources working overtime or

changes from a previous schedule. There should always be a formula specified for

this hook except when the genetic algorithm is not used (with the user content to

accept the first schedule produced by the greedy schedule builder).

Greedy Criterion is the hook whose formula produces a numerical score for

any potential assignment of a task to a resource. As discussed above, it is used by the

greedy scheduler to compare different possible task assignments to select the best

one, and is essentially equivalent to a dispatch rule. It is often, but not always, an

incremental version of the optimization criterion. Like the optimization criterion, it

can combine multiple subcriteria into a single score. The context variables task and

resource refer to the task and resource being assigned. A simple example for the case

when earlier is better is the formula:

taskEndT ime(task) − winStart

Another sample formula penalizes both any deviation from the task’s target start time

and an assignment to any resource other than the task’s best resource:

abs(taskStartTime(task) − task.bestT ime)+

if(resource.name = task.bestResource, 0, 1000)

Other potential types of criteria include minimizing the travel (setup) time for a task

or finding the least full resource.

D. Montana et al.

“

“

590

Target Start Time tells the greedy schedule builder the optimal point on a re-

source’s schedule to try to assign a task. As described above, for a given resource,

the greedy scheduler searches forward and backward from the best time for the first

legal assignment times and only considers assignments at these (at most) two times.

This approach limits the number of assignment times to consider and hence the com-

putation required. The context variables are task and resource. Often, the formula for

this hook is not specified, instead accepting the default value winStart, which indi-

cates to schedule the task as early as possible. An example of a case where earlier is

not better is scheduling the delivery of food to a party. If the food arrives too early,

it will not be fresh for the party, but it also should not arrive too late, hence making

the best time n hours before the party. Note that a hard constraint on task availability

(see below) may be used in conjunction to ensure that the food is never scheduled to

be delivered after the party starts.

Prerequisites tells the genetic algorithm which other tasks must precede a given

task in any generated task ordering, and hence will be handled earlier than this task

in the greedy schedule building process. The context variable is task, and the formula

must return a list of task names. The most common reason that task A would have

task B as a prerequisite is that task A is constrained to start after task B finished, and

hence needs task B scheduled to determine its own availability. However, there are

other possibilities. For example, tasks A and B might need to be performed simulta-

neously, and task B is the more difficult of the two to schedule, so task B should be

scheduled first and then task A assigned at the same time. Another example is back-

wards planning, where the last leg of a journey is scheduled first, with the scheduling

process working backwards towards the earlier legs.

Task Durations

A second set of hooks defines the time required for a resource to perform a task. Re-

call that there are three stages for this process: setup, execution and wrapup. Each of

these stages has a hook that tells the time in seconds required for this stage. Another

hook tells whether or not task performance can be broken into multiple disconnected

intervals.

Execution Duration determines the length of time spent in the execution stage

when a resource performs a task. Since this potentially depends on the identity of

both the task and resource, the context variables include task and resource. Some

sample formulas for this hook were provided in Section 3.3. Note that during the

execution stage, the task and resource both must be available, which limits the times

at which the greedy scheduler can place the task.

Setup Duration computes the time a resource spends in the setup stage before

performing a task. It generally depends not just on the task and resource but also

on what the resource was previously doing, i.e. the previous task. Hence, the context

variables include task, resource and previous, where previous references the previous

task and is set to null if the task being performed is the earliest on the resource’s

schedule. For example, a painting machine might have a setup duration of 0 if the

previous task has the same color as the current task and 2 minutes if the previous

A Genetic-Algorithm-Based Reconfigurable Scheduler 591

Fig. 5. The setup and wrapup durations of already scheduled tasks can change when a new

task is inserted.

task has a different color, as expressed by the formula:

if(previous.color = task.color, 0, 120)

Another example is where the setup time represents travel time between the previous

and current tasks and is proportional to the distance between the geographic locations

of these tasks, as given by the formula:

distance(task.location, previous.location)/resource.speed;

Because of the potential dependency on the previous task, the result of this hook

may need to be recomputed as the greedy scheduler searches through the resource’s

schedule trying to find where the task fits. In this case, it also needs to recompute the

setup duration of the following task when inserting in a spot other than the end of

the schedule, as illustrated in Figure 5. Note that only the resource, and not the task,

needs to be available during the setup stage.

Wrapup Duration computes the time a resource spends in the wrapup stage. It

can depend on the task, the resource and what the resource is doing afterwards (i.e.

the next task), so the context variables include task, resource and next. Consider the

example where if a task is the final one on a resource’s schedule, then the resource

needs to spend five minutes cleaning up, but otherwise no time during wrapup. The

formula to capture this is

if(hasvalue(next), 0, 300)

Like Setup Duration, the value for this hook is potentially recomputed not just for

each potential position of the task on the resource’s schedule but also for the preced-

ing task already on the resource’s schedule, as illustrated in Figure 5.

Breakable tells whether the task performance interval can be split into discon-

tinuous sections. For example, if a coffee break for the resources is scheduled for

10:30-10:45, a breakable task that requires an hour can start at 10:00 and be com-

pleted in two intervals, 10:00-10:30 and 10:45-11:15. This hook is just a choice of

two values, yes or no, with the default being no. (There could be further development

in the future of the semantics for breakable tasks, e.g. allowing specification of the

conditions under which tasks can be broken and into what size chunks the task can

be broken.)

D. Montana et al.592

Availability

Another set of hooks specifies when tasks and resources are available to be sched-

uled.

Resource Unavailable specifies the times at which a resource is not available to

be scheduled. This is independent of the tasks being scheduled, so the only context

variable is resource. The formula returns a list of intervals. For example, if a person

downtimes.

Task Unavailable specifies the times at which a task is not available to be sched-

uled. Unavailable intervals can be independent of how other tasks are scheduled.

For example, a service call can only be scheduled when a person is around to allow

entrance, or a delivery cannot be scheduled after the time when the item is needed.

However, unavailable intervals can also depend on other task’s assignments. For ex-

ample, it is very common that one task cannot be scheduled to start earlier than the

end time of another task. Another example is that a task may only be allowed to be

scheduled at the same time as another. A sample formula that specifies both that the

task finishes before a due date and that it must wait for the end of another task is:

list(interval(task.dueDate, endT ime), interval(winStart,

if(hasValue(task.followsTask),

taskEndTime(taskNamed(task.followsTask)), winStart)))

Capability specifies whether a particular resource is capable of performing a

particular task. For example, an electrician can perform electrical wiring tasks but

not plumbing tasks, and a painting robot can perform painting tasks but not welding

tasks. The context variables are task and resource, and the hook returns a boolean

indicating whether the resource is capable. An example formula that searches for a

particular skill on a resource’s list of skills possessed is

contains(resource.skills, task.skillRequired)

Capacities

Capacities are hard limits on what resources can do based on accumulation of quan-

tities over multiple tasks. There are a few hooks for specifying the functionality of

capacity constraints.

Capacity Thresholds is the hook that specifies for a resource the thresholds

that cannot be exceeded for each type of capacity. In general, capacity has multiple

dimensions. For example, there are limits on both total volume and total weight for

the cargo transported by a vehicle. As another example, an employee may have limits

on both the hours worked in a day and the hours worked in a week. Therefore, the

hook expects a list of numbers that are the thresholds, as in the formula

list(resource.maxWeightCargo, resource.maxV olumeCargo)

A Genetic-Algorithm-Based Reconfigurable Scheduler

and between 8 PM and noon. Other examples are fixed break times or maintenance

works from noon to 8 PM on weekdays, then this resource is unavailable on weekends

593

The context variable is resource. If there are no capacity constraints, then the hook

should use the default, which is the empty list.

Fig. 6. This examples illustration how capacity can affect scheduling. The reset task, task 5,

must be scheduled prior to other tasks to provide the additional capacity for these other tasks.

Capacity Contributions specifies the amount that a task contributes towards

filling the capacity of a particular resource. A task cannot be assigned to a resource

if it causes the threshold to be exceeded in any dimension. The context variables

include task and resource, and formula should return a list of numbers of the same

size returned by the Capacity Thresholds hook. The contributions of multiple tasks

are accumulated by a simple vector sum. Note that when multitasking, i.e. a resource

performing more than one task at a time, the capacities are summed and compared at

a particular time, but otherwise they are accumulated over the duration of a resource’s

schedule. Continuing the weight and volume example, a sample formula is

list(task.weight, task.volume)

A more complex sample formula indicates that the amount of fuel required for a fuel

truck to service a fuel request is the amount of fuel requested plus the amount of fuel

for the truck to travel:

list(task.requestedFuel + resource.consumptionRate∗

(taskStartTime(task) − taskSetupTime(task)))

Capacity Resets specifies when a task causes the accumulated capacity contri-

butions of a resource to be reduced rather than increased. In many cases, the capacity

contributions do not just keep on accumulating over time. At some point, an event

happens that causes the accumulated counts to be reset, or partially reset. For ex-

ample, with the capacity constraint that an employee can only work so many hours

in a day, the total hours worked is reset to zero when a new day begins. Similarly,

the total weight of a vehicle’s cargo is reset to zero when all the cargo is dropped

D. Montana et al.594

off at a central depot. The formula on this hook returns a list of quantities by which

to reduce the accumulated contributions, with the stipulation that they cannot be set

to less than zero. The context variables are task and resource, and the default is an

empty list, indicating no reset. An example formula that resets the contributions to

zero if the task is to drop off the cargo is

if(task.isDropoff, list(1000000, 1000000), list(0, 0))

Figure 6 shows the different aspects of capacity, including capacity resets, being

used.

Multitasking

Multitasking is when a resource can perform multiple tasks simultaneously. There

are a few hooks that determine this functionality.

Multitasking Type is a hook that has no formula but instead just a choice among

three options. The first option is none, which means that the resource can only per-

form a single task at a time. This is the default and the most common option. With

no multitasking, for the greedy scheduler to place a task on a resource’s schedule,

it needs to find a place where the time to perform the task, including the setup and

wrapup, does not overlap the time to perform any other task already on the schedule.

The second option is grouped (or batched) multitasking. In this case, a resource can

perform multiple tasks simultaneously but only if all the tasks start at the same time

and end at the same time. For example, consider a ship transporting cargo from one

port to another. If each task is an item to transport, then the ship can perform more

than one task at a time, but only if the items all depart from the same origin at the

same time and travel to the same destination. The capacity constraints set the limit

on how many simultaneous tasks a resource can handle. When assigning a task to

a resource the greedy schedule builder can either add the task to an existing group

or start a new group. The third option is ungrouped (or asynchronous) multitasking.

In this case, the resource can perform multiple tasks simultaneously, and there is no

need to synchronize the start and end times of the tasks. Hence, partial overlapping of

the task performance periods is permitted as long as the capacity constraints are not

violated at any time in the new task performance interval. An example of ungrouped

multitasking is when a resource is actually a pool of homogeneous sub-resources,

e.g. a set of N electricians or M cutting machines.

Groupable is a hook that only applies when using grouped multitasking. It spec-

ifies whether two tasks can be put in the same execution group, i.e. executed by the

same resource at the same time. Context variables task1 and task2 provide references

to the two tasks, and the formula returns a boolean. A sample formula indicates that

two tasks are groupable if and only if they share the same origin and destination

ports:

and(task1.origin = task2.origin, task1.destination = task2.destination)

A Genetic-Algorithm-Based Reconfigurable Scheduler 595

Multiresourcing

Multiresourcing is when tasks potentially require more than one resource, and this

section describes the hooks that specify this functionality. Note that when a task uses

more than one resource, the greedy scheduler currently assumes that all the resources

are committed to the task for the entire duration of task execution. If the scheduling

logic requires finer-grain control over the times at which the different resources are

busy, then auxilliary tasks (see Section 4.3) should be used instead, with the single

task split into multiple tasks that are tightly coupled.

Multiresource Requirements produces a list of numbers, similar to the capacity

thresholds, that enumerate what requirements the resources in aggregate must satisfy.

The context variable is task. As an example, if a class needs one classroom, one

teacher, and a certain number of teaching assistants, the formula is

list(1, 1, task.assistantsRequired)

As another example, if a resupply task requires a certain number of gallons of fuels

and a certain number of rounds of ammunition, the formula is

list(task.fuelRequired, task.ammoRequired)

The default is the empty list, and hence no multiresourcing.

Multiresource Contributions specifies a list of numbers, similar to the capacity

contributions, that are the contributions that a resource makes towards satisfying a

task’s multiresourcing requirements. As resources are added to a task, the contribu-

tions accumulate until all requirements are fully satisfied or it is proven impossible

to do so. The greedy scheduler adds a new resource to a set of resources potentially

satisfying a task’s requirements only if it provides a non-zero contribution to at least

one of the requirements not yet satisfied. The context variables are task and resource.

Continuing the class scheduling example, a sample formula is

list(if(resource.isClassroom, 1, 0), if(resource.isTeacher, 1, 0),

if(resource.isAssistant, 1, 0))

Auxilliary Tasks

Auxilliary tasks provide no direct benefit from being scheduled, and hence are not

included in the task ordering created by the genetic algorithm. They are helper tasks

that allow the primary tasks to complete. An auxilliary task that helps a particular

primary task complete is scheduled at the same point in the scheduling process as the

primary task. As an example, consider trying to schedule an air marshal to monitor

a certain flight from Los Angeles to New York, but there is no air marshal scheduled

to be in Los Angeles at that time. Scheduling a connecting flight as an auxilliary

task can put a marshal in position to perform the primary task. As discussed above,

auxilliary tasks are used for the situation when a task requires a variety of resources

at different times. In this case, the task is divided into multiple tasks, one of which is

D. Montana et al.596

the primary task and the rest auxilliary. For example, a military air mission needs not

just a plane and crew, but also maintenance crews and facilities, runways, airspace,

etc. at different points in its execution.

Auxilliary Tasks Before provides a list of names of auxilliary tasks associated

with a particular primary task that should be scheduled prior to scheduling the pri-

mary task. (Here, prior means earlier in the scheduling process, not earlier in the

schedule.) The default is the empty list, and the context variable is task.

Auxilliary Tasks After is the same as Auxilliary Tasks Before but indicates the

tasks scheduled subsequent to primary task rather than prior.

4.4 Examples - Classic Scheduling Problems

We now provide three examples of problem specifications using Vishnu. The prob-

lems are well-known and well-studied benchmarks from the operations research lit-

erature. (The OR-Library [24] is a good source of such classic problems and is avail-

able on the web at http://graph.ms.ic.ac.uk/info.html.) They are logically (though

not computationally) simple, and therefore provide good examples with which to il-

lustrate how to apply Vishnu before moving to more logically complex problems.

While the Vishnu formulas can be hard to understand initially, it takes a relatively

small amount of experience for a user to become acclimated to its method of problem

representation.

Traveling Salesman Problem (TSP)

A salesman starts at a given city, travels to a set of other cities visiting each city once,

and then returns to the starting city. The objective is to schedule the visits so as to

minimize the total distance traveled.

Hook Formula

Optimization Criterion taskEndTime (taskNamed (City 1”))

Prerequisites if (task.index = 1, mapover (tasks, t”, if (t.index <> 1, t.id)))

Setup Duration entry (task.distances, if (hasvalue (previous), previous.index, 1))

Table 2. Scheduling Logic for the Traveling Salesman Problem

The task data type, city, has fields id (a string), index (a number), and distances

(a list of numbers). The resource data type, salesman, has the field id (a string). The

data has one salesman with id = “Salesman”. There are N cities. The ith city has

index = i, id = “City i”, and distances equal to a list containing the distance from

each city to this one.

The hooks with associated formulas are shown in Table 2. The optimization cri-

terion is the completion time, where this time is equal to the distance traveled. The

prerequisities constraint indicates that the salesman cannot return to the city of ori-

gin, city 1, until he has visited every other city. The setup duration is obtained by

looking up the distance from the previous city in the current city’s list of distances.

A Genetic-Algorithm-Based Reconfigurable Scheduler

“

“

597

Job-Shop Scheduling Problem (JSSP)

This problem was originally proposed by [25]. There are M machines and N manu-

facturing jobs to be completed. Each job has M steps, with each step corresponding

to a different specified machine. There is a specified order in which the steps for a

certain job must be performed, with each step not able to start until the previous step

has ended. The objective is to minimize the end time of the last step completed.

Hook Formula

Optimization Criterion maxover (resources, r”, complete (r)) - winStart

Prerequisites if (task.preceedingStep <> ””, list (task.preceedingStep))

Execution Duration task.duration

Capability task.machine = resource.id

Task Unavailable if (task.preceedingStep <> ””, list (interval

(winStart, taskEndTime (taskNamed (task.preceedingStep)))))

Table 3. Scheduling Logic for the Job-shop Scheduling Problem

The task data type, step, has fields id (string), duration (number), machine

(string), and preceedingStep (string). The resource data type, machine, has field id

(string).

The hooks with associated formulas are shown in Table 3. The optimization cri-

terion is the makespan. If a task is not the first step in a job, its prerequisite is the

step that precedes it, and it is unavailable to be scheduled earlier than the end time

of this preceding task. Only the designated machine is capable of performing a task.

Since there is only one choice of resource, there is no need for a greedy criterion.

Hook Formula

Optimization Criterion sumOver (tasks, t”, (taskStartTime (t) - taskSetupTime (t)) +

if (hasvalue (resourceFor (t)), 0, 1E7))

Greedy Criterion if (hasvalue (next), 0, if (hasvalue (previous),

taskWrapupTime (task) - formerWrapupTime (previous),

taskWrapupTime (task) - winStart))

Prerequisites mapover (tasks, t”, if (t.latest < task.earliest, t.id))

Execution Duration extra.serviceTime

Setup Duration distance (task.location, if (hasvalue (previous), previous.location,

extra.depotLocation))

Wrapup Duration if (hasvalue (next), 0, distance (task.location,

extra.depotLocation))

Task Unavailable list (interval (winStart, task.readyTime),

interval (task.latest + extra.serviceTime), endTime))

Capacity Contributions task.load

Capacity Thresholds extra.capacity

Table 4. Scheduling Logic for the Vehicle Routing Problem with Time Windows

D. Montana et al.

“

“

“

598

Vehicle Routing Problem with Time Windows (VRPTW)

This is a more logically complex problem than the previous two. It is described in

[26]. There are M vehicles and N customers from whom to pick up cargo. Each

vehicle has a limited capacity for cargo, and each piece of cargo contributes a differ-

ent amount towards this capacity. There is a certain window of time in which each

pickup must be initiated, and the pickups require a certain non-zero time. Each ve-

hicle that is utilized starts at a central depot, makes a circuit of all its customers, and

then returns to the depot. The objective is to minimize the total distance traveled by

the vehicles.

The task data type has fields id (string), load (number), earliest (number), latest

(number), and location (xycoor). The resource data type has fields id (string) and

capacity (number). A third data type has fields serviceTime (number) and depotLo-

cation (xycoor) and has a single instance named extra.

The hooks with associated formulas are shown in Table 4. The optimization cri-

terion is the sum of the distances traveled by the vehicles plus a large penalty that

is proportional to the number of unassigned tasks. The execution duration is just the

constant defined in extra. The setup duration is the distance from the location of the

previous pickup, or if this is the first pickup, the distance from the depot. The wrapup

duration is nonzero only if this is the last pickup, in which case it is the distance to

return to the depot. Each customer is unavailable before the start of its pickup win-

dow and after the end of this window allowing the time for pickup. The capacity

formulas indicate that the sum of the loads contributed by the different customers

cannot exceed a vehicle’s capacity.

The greedy criterion and prerequisites formulas are actually not part of the prob-

lem specification but directives that help the scheduler find a solution faster. Task B

is defined to be a prerequisite for task A if the end of B’s pickup window is earlier

than the start of A’s window. This allows the greedy scheduler to predominantly build

the schedule forward in time. The greedy criterion states that if there is a way to fit a

new task to schedule earlier than the last task of a resource, that is the preferred as-

signment. Otherwise, the preference is to find the assignment that packs the schedule

as compactly as possible.

4.5 Additional Scheduling Capabilities

While problem specification and automated schedule creation are the core capabili-

ties required by a reconfigurable scheduler, there are additional capabilities that make

it more practical and generally applicable. We now provide a brief discussion of some

of these additional capabilities that Vishnu possesses.

Dynamic rescheduling is the process of creating a modified schedule from an

existing schedule in response to updates to the data. Many real-world scheduling

problems require the ability to change the schedule “on the fly”, i.e. during the pro-

cess of executing the schedule. Vishnu provides a few mechanisms to support dy-

namic rescheduling, including sticky assignments and frozen assignments [27].

A Genetic-Algorithm-Based Reconfigurable Scheduler 599

In many cases, when doing dynamic rescheduling, the scheduler should attempt

to minimize the perturbation from the prior schedule, i.e. maximize schedule stabil-

ity. A sticky assignment is a type of soft constraint that penalizes a new assignment

for a task for differing from the previous assignment for the task. To implement

sticky assignments, the scheduler provides functions priorResource, priorStartTime,

etc. that provide information about the prior assignment. This allows the user to ex-

plicitly include penalties for maintaining schedule stability on the Optimization Cri-

terion, Greedy Criterion, and Target Start Time hooks. Furthermore, tasks provide

data fields that indicate the level of commitment to the current assignment, provid-

ing a priority for maintaining this assignment.

The scheduler also allows an assignment to be frozen, i.e. creating a hard con-

straint that the assignment stay the same upon rescheduling. There are two reasons

why a user might want to make an assignment frozen, which is a hard constraint,

rather than sticky, which is a soft constraint. First, the human scheduler may want

to force a particular assignment without giving an override option to the computer.

Second, it is much more efficient computationally, since tasks with frozen assign-

ments fall automatically into place without the need to search for the best position.

In contrast, tasks with sticky assignments require a scheduling decision to be made,

and in general place the same computational burden on the scheduler as a new and

previously unscheduled task.

Schedule display and interactive scheduling are other features that enhances

Vishnu’s usefulness. Vishnu automatically generates color-coded Gantt charts to dis-

play a schedule. The colors used for the different assignments and the text to display

are specified by the user employing formulas of the same type used to specify the

scheduling logic. The display also includes the capability to generate user-defined

spreadsheet-like data tables, with the data to display also based on formulas.

Vishnu not only displays the schedule for the user but also allows the user to

modify the schedule. It provides various ways for users to make their own assign-

ments, or undo existing assignments, including drag-and-drop. After a user has made

his own assignment of a task to a resource, he can make this assignment sticky or

frozen so that the scheduler cannot just discard it during the next round of schedul-

ing. In this way, the user and automated scheduler can work together to produce a

final schedule.

Vishnu, applicable in more situations. For certain applications, a single-user stan-

dalone scheduler is sufficient, with any sharing of schedule data done via files. How-

ever, other applications require that the scheduler be integrated as part of a larger

software system. Although a discussion of the details of the software architecture

of Vishnu is beyond the scope of this paper, we do note that Vishnu is composable

in a variety of ways. First, it has a web-based deployment mode, in which sched-

ules are stored in a database and are accessible via a web server. This allows shared

viewing and editing of schedules across multiple locations. Second, Vishnu has been

integrated as the basis for scheduling agents in a multiagent scheduling architecture

[28]. This allows multiple schedulers to cooperate on producing schedules, which

D. Montana et al.

A composable software architecture makes a reconfigurable scheduler, such as

600

is important when a scheduling problem is too big and/or too heterogeneous for a

single scheduler. Third, Vishnu provides standard interfaces for communication with

non-scheduling software, including formats for passing data back and forth and a

well-defined interface. This allows easy integration into larger software systems.

5 Evaluation

The traditional metrics for evaluating scheduling algorithms do not measure what

Vishnu is trying to accomplish. Traditionally, evaluation involves selecting a set of

benchmarks that are instances of the particular problem for which the scheduler was

designed. The performance of the scheduling algorithm can be compared to what

other algorithms achieve on the same benchmarks, both in terms of quality of so-

lution and the time to reach the solution. This makes sense as a way to compare

schedulers targeted to a specific problem.

However, this is not the right way to evaluate Vishnu. The goal of Vishnu is to

make it quick and easy to develop optimized scheduling solutions to new scheduling

problems. Therefore, the primary metrics should be (a) the ability to solve a wide

range of problems with just reconfiguration and (b) the ease of solution develop-

ment, i.e. the time and effort it takes a user to configure for a particular problem.

For certain problems, particularly well-studied benchmarks, Vishnu’s generality will

mean that its performance based on traditional metrics will be inferior to that of

problem-specific schedulers, sacrificing raw speed for flexibility and ease of solution

development. For those readers familiar with software development, this tradeoff is

analogous to that between high-level programming languages, such as C++ or Java,

and low-level languages, such as assembly or microcode.

While there is no obvious way to measure the ease of development or range of

problems solved, we can provide sample problems, anecdotes, and an analysis of the

capabilities of Vishnu. Of course, traditional measures of scheduling performance

still matter for Vishnu (just as for programming languages), so we additionally pro-

vide some performance numbers on a few benchmark problems to show that Vishnu

passes the threshold for acceptability. Section 5.1 discusses two sample problems

logically more complex than the benchmark problems as a way to show how easy

it is to develop scheduler for new problems, even if they are complex. Section 5.2

provides speed and optimality performance numbers on some common benchmark

problems. Section 5.3 provides a brief analysis of the capabilities of Vishnu not pos-

sessed by other reconfigurable schedulers, which allow it to solve a wider range of

problems.

5.1 Sample Problems

The following two sample problems demonstrate how a Vishnu scheduler can be

easily specified for problems with greater logical complexity than traditional bench-

marks. These are just a representative set, and a variety of additional problems are

available in the demonstration at the Vishnu web site [29].

A Genetic-Algorithm-Based Reconfigurable Scheduler 601

Air Marshal Scheduling

Air marshals are people who fly on commercial airline flights and monitor them for

terrorist, or other illegal, activities. There are not enough marshals to monitor all

flights. Therefore, good scheduling is required to put marshals on as many flights,

particularly those designated as high priority, as possible while not putting undue

burdens on the marshals.

Each marshal has an airport designated as his home base. He should take a set

of flights that form a circuit that eventually brings him back home. The hard con-

straints of the problem are

(a) All flights leave and arrive at their scheduled times.

(b) The marshal must be located at an airport to take a flight that flies from it.

(c) A marshal must arrive at least an hour early for a flight.

(d) A marshal can work at most 14 hours in a day, with a maximum of 8 hours spent

on flights.

(e) A marshal cannot work during his time off.

The soft constraints are

(a) As many different flights as possible, particularly the high priority ones, should

be covered.

(b) Marshals should return home at the end of the current scheduling window.

Air marshal scheduling is a variation of the air crew scheduling problem. Over

time, a standard approach for air crew scheduling has emerged where the problem is

split into two subproblems, crew pairing and crew assignment (or rostering) [30]. The

former creates a set of circuits of flights, each of which ends at the same airport as

it begins. The latter determines which crew members to assign to each route/circuit.

This approach works well for large-scale problems when there are many flights and

many potential crew members. However, it does not scale down well to small num-

bers of crew members (marshals), in which case building the routes cannot be done

independent of knowledge of the crew members’ work schedule.

We were able to create an optimizing solution to the air marshal scheduling prob-

lem within a day using Vishnu. This is very rapid turnaround time given the com-

plexity of the problem. A version is shown in Table 5. A big benefit of Vishnu is the

compactness of the problem representation, requiring only a small number of lines

of formulas.

We now describe how the specifications in Table 5 meet each of the constraints

for the problem given above, starting with the hard constraints.

(a) To ensure that flights only depart and arrive as scheduled requires a combination

of formulas on two hooks. Execution Duration constrains each flight to extend

for its scheduled length of time, while Task Unavailable constraints a flight to

not start before its schedule departure or end after its scheduled arrival.

(b) To ensure that a marshal must be at an airport in order to fly from it involves

two hooks. The Setup Duration hook determines at which airport the marshal

is located by finding the arrival airport of the marshal’s previous flight, or the

marshal’s home airport if the current flight is his first. If this airport is not the

departure airport of the current flight, the formula on the hook evaluates to a

D. Montana et al.602

Hook Formula

Optimization Criterion sumOver (tasks, t”, if (hasValue (resourceFor (t)), 0,

if (t.priority = 1, 1, if (t.priority = 2, 0.2, 0.04)))) +

sumOver (resources, r”,

if (lastTask (r).arrivesWhere = resource.home, 0, 0.5))

Greedy Criterion task.departsWhen - complete (resource)

Prerequisites mapover (tasks, t2”, if (task.departsWhen >= t2.arrivesWhen +

entry (t2.arrivesWhere.minConnectTime,

task.departsWhere.index), t2.name))

Execution Duration task.arrivesWhen - task.departsWhen

Setup Duration if (if (hasvalue (previous),

previous.arrivesWhere = task.departsWhere,

resource.home = task.departsWhere), 3600, 999999)

Resource Unavailable resource.unavailable

Task Unavailable list (interval (winStart, task.departsWhen),

interval (task.arrivesWhen, endTime))

Capability complete (resource) +

entry (lastTask (resource).arrivesWhere.minConnectTime,

task.departsWhere.index) <= task.departsWhen

Capacity Thresholds list (28800, 50400)

Capacity Contributions list (task.arrivesWhen - task.departsWhen,

if (and (hasvalue (previous), not (isReset)), task.arrivesWhen -

previous.arrivesWhen, task.arrivesWhen - task.departsWhen) +

if (and (not (hasvalue (next)),

endTime - task.arrivesWhen < 68400.0),

entry (task.arrivesWhere.travelTimes, resource.home.index), 0))

Capacity Resets if (and (hasvalue (previous),

task.departsWhen - previous.arrivesWhen > 36000,

andOver (tasksFor (resource), t”, or (capacityReset (t, 1.0) = 0.0,

taskStartTime (t) >= taskStartTime (task)))),

list (1E8, 1E8), list (0, 0))

Auxilliary Tasks Before list (entry (entry (if (hasValue (lastTask (resource)), lastTask

(resource).arrivesWhere, resource.home).connectSchedules,

task.departsWhere.index).latestConnect,

(task.departsWhen - winStart) / 1800 + 1))

Table 5. Scheduling Logic for the Air Marshal Scheduling problem

very large number, making it impossible to assign the flight to the marshal. The

Auxilliary Tasks Before hook checks to see if there is a connecting flight in the

case that the two airports are different. If so, it specifies to assign this flight as a

way to position the marshal for the flight of interest.

(c) To ensure that marshals are at least an hour early for their flight, the Setup Du-

ration evaluates to 3600 seconds when the marshal is at the right airport.

(d) Enforcement of the flight-time and working-hours limitations relies on the three

capacity-related hooks. The limits are set to 8 hours and 14 hours respectively

by the Capacity Thresholds hook. The Capacity Contributions hook specifies

A Genetic-Algorithm-Based Reconfigurable Scheduler

“

“

“

“

603

that the additional flight time is the length of the flight, while the additional

time worked is the length of the flight if this is the first flight since a reset or,

otherwise, the length of the flight plus the time spent between flights.

(e) The marshals’ time off from work is protected from assignments by the Resource

Unavailable hook.

The Optimization Criterion formula embodies the soft constraints, penalizing

1.0, 0.4 and 0.02 for each flight not covered with priority 1, 2 and 3 respectively,

plus 0.5 for each air marshal not home at the end of the scheduling window. Like

in the vehicle routing problem discussed above, other hooks assist in achieving the

goals of the Optimization Criterion. The Greedy Criterion hook specifies that the

greedy scheduler should pick the marshal for a flight that would have the shortest

waiting from his last flight to this flight. The Prerequisites hook says that a flight

cannot be scheduled until all flights that could possibly feed it by bringing a marshal

to its originating airport are all scheduled. At that point, the greedy scheduler knows

which marshals will be at the airport and therefore can make an informed decision.

The Capability and Capacity Contributions hooks both help get marshals home by

prohibiting them from traveling too far away without enough time remaining to get

home. Specifying this as a hard constraint rather than just a greedy preference makes

it much less likely that a marshal will not make it home.

Battlefield Supply Scheduling

An agile military requires that its combat units be able to fight for long periods

of time without running out of supplies. To accomplish this, supply trucks drive

around the battlefield, although preferably not the area of actual fighting, delivering

their cargo to the vehicles of the combat units. Each unit has multiple vehicles all

geographically clustered, so it is efficient for one supply truck (or a small number of

supply trucks) to deliver all the supplies of a particular unit. The problem is how to

schedule the deliveries of multiple supply trucks to the different combat units.

There are actually different battlefield supply scheduling problems with different

constraints for each broad class of supplies. Here, we consider two different classes

of supplies: fuel and ammunition (ammo). The problem specifications shown in Ta-

ble 6 show the formulas separately for food and ammunition for those hooks where

the formulas differ. One of the big benefits of Vishnu is that it allows easy adjustment

for the idiosyncracies of variations on a single problem, as illustrated by the ease with

which we can specify different problem specification, and hence schedulers, for the

two types of supplies.

The hard constraints of the problem are

(a) Each delivery requires five minutes to execute.

(b) The supply trucks travel a time equal to the distance between the points divided

by the truck’s average speed.

(c) There is a fixed window of time for each delivery to occur.

(d) (ammo) There are different types of ammunition, so each request needs to be

matched with the types and quantities available on a supply truck.

D. Montana et al.604

Hook Formula

Greedy Criterion omitted for brevity

Target Start Time task.desiredTime - 300

Prerequisites mapover (tasks, t”, if (t.DesiredTime ¡ task.DesiredTime, t.id))

Execution Duration 300

Setup Duration distance (if (hasValue (previous), previous.location,

resource.initialLocation), task.location) / resource.speed * 3600

Capability (Fuel) or (task.refillAmount = 0, task.recipient = resource.id)

Capability (Ammo) and (or (task.refillAmount = 0, task.recipient = resource.id),

hasValue (find (resource.loadedAmmo, a”,

a.type = task.desiredType)))

Task Unavailable list (interval (winStart, task.earliest),

interval (task.latest, endTime))

Cap Thresholds (Fuel) resource.initialGallons

Cap Thresh (Ammo) mapOver (resource.loadedAmmo, a”, a.rounds)

Capacity Contributions if (task.refillAmount > 0, 0,

(Fuel) withVar (f”, find (task.fuelProfile, f2”,

and (taskStartTime (task) >= f2.startTime,

taskStartTime (task) <= f2.endTime)),

(f.endValue - f.startValue) * (taskStartTime (task) -

f.startTime) / (f.endTime - f.startTime) + f.startValue))

Capacity Contributions mapOver (resource.loadedAmmo, a”,

(Ammo) if (and (task.refillAmount = 0, a.type = task.desiredType),

max (1, min (task.desiredQuantity,

capacityRemaining (resource, task.DesiredTime,

indexOf (resourceFor (task).loadedAmmo, a”,

a.Type = task.desiredType)))), 0))

Capacity Resets (Fuel) task.refillAmount

Cap Resets (Ammo) mapOver (resource.loadedAmmo, a”,

if (a.type = task.desiredType, task.refillAmount, 0)))

Table 6. Scheduling Logic for the Battlefield Supply Scheduling problem

(e) (ammo) The requested amount is a maximum, and less can be delivered if the

full amount is not available.

(f) (fuel) A different amount of fuel is required depending on when the fuel is deliv-

ered. The recipient continually consumes fuel while awaiting the delivery, and

hence needs more fuel the later the delivery. A piecewise linear fuel profile spec-

ifies how much is required.

(g) The supply trucks themselves are restocked at fixed times and locations by fixed

amounts.

The soft constraints are

(a) The schedule should fill as many requests as possible.

(b) For each delivery, the time should be as close as possible to the desired time with

preference to earlier than later.

(c) The schedule should minimize travel time/distance of the supply trucks.

A Genetic-Algorithm-Based Reconfigurable Scheduler

“

“

“

“ “

“

“

“

605

The problem specification in Table 6 satisfies the hard constraints as follows.

(a) The time for a delivery is specified by the Execution Duration hook.

(b) The travel time is specified by Setup Duration, with the prior location being

either the location of the last delivery or, if this is the first delivery, then the

truck’s initial location.

(c) The delivery window is specified by Task Unavailable.

(d) (ammo) To ensure that the truck carries the right type of ammunition, the Capa-

bility formula checks that the desired type is in the truck’s list of initial supplies.

The quantities of the different types of ammunition are tracked using the capac-

ities, with each dimension of the capacity corresponding to a particular type of

ammunition. Capacity Thresholds indicates that the maximum of each type of

supply is as given at initialization. Capacity Contributions removes the amount

delivered from the truck’s stock.

(e) (ammo) Capacity Contributions sets the amount delivered to be the minimum of

the amount requested and the amount left on the truck but never less than one.

(f) (fuel) Each task has an associated fuel profile that is a list with each element cor-

responding to one piece of the piecewise linear function. Capacity Contributions

finds the right piece and interpolates between the endpoints.

(g) Capacity Resets restores the inventory on the supply truck.

With respect to the soft constraints, for the particular application it was more

important to have fast turnaround than fully optimized schedules. So, we used just

a single greedy schedule generated from a random task ordering. This meant that

we had no need for an optimization criterion. The Greedy Criterion is not shown in

Table 6 because it is a bit too long and is not particularly instructive. However, it is

simple in concept. There are four penalty terms. One penalizes additional travel time.

A second term penalizes the deviation of the actual delivery time from the desired

time, with a much heavier weight for being late. The third rewards putting two supply

tasks from the same unit consecutively on a resource. The fourth penalizes putting

two supply tasks from different units contiguously on a resource. The Prerequisites

formula specifies to perform the scheduling of tasks in the order of their desired

delivery times, although there is much room for randomness in the ordering with

many tasks having the same desired time.

This was a successful application of Vishnu [31]. We were able to quickly build

different types of supply schedulers and easily adjust them to changing specifications

of the problem. We were also able to easily integrate the schedulers into a larger

multiagent system for managing supplies.

5.2 Performance Results

We now provide performance numbers on some benchmark classic scheduling prob-

lems. As discussed above, Vishnu cannot always compete in terms of speed and

optimality with problem-specific algorithms. However, the results on these bench-

marks still provide some idea of how Vishnu will perform on other problems similar

in scale that do not have existing solutions.

D. Montana et al.606

Problem Population Evaluations Optimal Median Average Avg Time

Name Size Score Score Score (M:S)

JSSP-mt06 1000 5000 55 55 55 0:01

JSSP-mt10 500 10000 930 1012 1010 0:06

JSSP-mt10 5000 100000 930 982 982 1:04

JSSP-mt10 50000 1000000 930 961 962 10:21

TSP-bays29 5000 140000 2020 2028 2042 0:11

VRPTW-c101 100 200 827.3 828.9 828.9 < 0:01

Table 7. Summary of experimental results

Table 7 summarizes the results. All the experiments involved ten runs of Vishnu

on the problem, reporting the mean and median scores of the resulting schedule

produced and the mean time for the run to complete. In addition, the table shows

the two parameters that need to be selected for the genetic algorithm, the population

size and the number of evaluations performed, as well as the score for the known

optimal solution to the problem. All the runs were made on a 2.8GHz Pentium 4

processor.

The data sets we used were

•

and 6 jobs, and hence 36 tasks. The latter has 10 machines and 10 jobs, and hence

100 tasks. They are available from OR-Library (under the names ft06 and ft10).

• The bays29 traveling salesman problem is a 29-city symmetric problem available

at the TSPLIB web site [32].

• The c101 vehicle routing problem with time windows is one of the Solomon

benchmarks [26]. There are 100 pickups/tasks and 25 vehicles/resources. This is

one of the instances where the time windows are very tight.

Job-Shop Scheduling Problem - The Muth-Thompson 6x6 problem is not a

difficult problem, but it is also not trivial given the 36 tasks to schedule. Therefore,

the ability of the automated scheduler to consistently find an optimal solution in

under 5000 evaluations and 1 second reflects well on both the effectiveness of the

genetic search algorithm (which needs to explore only a very small fraction of the

search space of task orderings) and the efficiency of the greedy schedule builder

(which despite its generality can still build each schedule in approximately 0.2 msec).

much attention, there was no solution proven to be optimal until relatively recently

[33]. The results show three sets of experiments with three different genetic algo-

rithm parameters. The first set of parameters has a small population size, leading to

fast convergence. The second set of parameters is a factor of ten longer before con-

vergence than the first, and the third a factor of ten longer than the second. This illus-

trates two properties of our reconfigurable scheduler (and of many pure genetic algo-

rithms). First, on difficult problems it can quickly find a reasonable solution (within

A Genetic-Algorithm-Based Reconfigurable Scheduler

benchmarks for job-shop scheduling [25]. The former has 6 machines/resources

The Muth-Thompson 10 x10 problem is much more difficult. In fact, despite

Muth-Thompson 6x6 (mt06) and Muth-Thompson 10 x10 (mt10) are two standard

607

8.6% of the optimum in 6 seconds and within 5.6% of the optimum in a minute) but,

even with much longer runs, may not find the optimum solution. Second, there is a

tradeoff between the search time and the expected quality of the solution, which can

be selected explicitly via choice of the parameters.

Traveling Salesman Problem - The 29-city problem used is a small one, but it

is sufficient to show that our algorithm clearly cannot compete with custom designed

algorithms. For example, the Concorde algorithm [34] completes the bays29 prob-

lem in 0.13 seconds, as compared to our algorithm taking over 11 seconds on a much

faster machine. The fact that our algorithm is a genetic algorithm is not the primary

issue, as a variety of competetive genetic algorithms for the traveling salesman prob-

lem attest [35]. There are two main reasons for our algorithm’s shortcomings, both

of which are related to the fact that the traveling salesman problem is purely a rout-

ing problem rather than a true scheduling problem (insofar as time-based constraints

are not involved). First, there is a lot known about the structure of the search space

(particularly when the distances are symmetric), and large performance gains can be

achieved by designing an algorithm that exploits this structure. Second, there is a

large software overhead, since Vishnu builds a full schedule as part of the evaluation

process, while a particular route can be evaluated just by summing the distances.

Vehicle Routing Problem with Time Windows (VRPTW) - The performance

of our algorithm on this problem is respectable, scheduling all 100 tasks in a nearly

optimal fashion in less than a second. Note that the genetic search required little

work, one pseudo-generation, beyond the initial population. The use of a steady-state

genetic algorithm helps the search proceed this quickly, since the best children can

immediately produce their own offspring. Even more important to the performance

is the fact that the Prerequisites and Greedy Criterion formulas were specified so as

to tightly pack the schedule.

Overall Conclusions - The experimental results do support the premise that our

reconfigurable scheduler can provide reasonable performance on a range of prob-

lems. The poor performance on the traveling salesman problem is, in some sense,

the exception that proves the rule. Not only did it require many researcher-years

to discover the much better solutions (which is a magnitude of effort that cannot

be devoted to every scheduling problem), but more importantly it is also a highly

“atypical” scheduling problem because of its very simple constraints, the lack of any

concept of time, and the existence of exploitable structure in its search space.

5.3 Analysis of Capabilities

Comparing different reconfigurable schedulers with regards to their generality and

flexibility to solve a large variety of problems is an inexact and difficult task. There

are no sets of benchmark problems where we can say that if a reconfigurable sched-

uler can solve all problems in set X then it achieves level Y of reconfigurability.

There is a wide range of different types of scheduling problem features that a re-

configurable problem should handle, many of which were discussed in Section 4.3

(multitasking, multiresourcing, capacities, etc.). At this point, the best that we can do

D. Montana et al.608

is list some of the capabilities that help distinguish Vishnu from other reconfigurable

schedulers.

These features include

• Auxilliary Tasks - While their only use in the example problems was to represent

connecting flights, their most powerful use is allowing the decomposition of a

complex task into multiple subtasks with different requirements, yet handling

them as a single entity in the scheduling process.

• Capacity Resets - Capacities are a more fluid concept than just adding up the

individual contributions and comparing to a threshold, and resets are an important

part of this extra complexity.

• Dynamically Computed Constraints - Quantities such as task setup and execution

times, capabilities, task availabilities, and capacity contributions all can depend

on the schedule and can change as the schedule gets built.

• Algorithmically Specified Constraints - Constraints specified using a real, though

simple, programming language can express a wider range of possibilities than

the mathematically specified constraints of mathematical programming or just

picking among some prespecified types of constraints.

• Scheduler Directives - These allow the user to guide the scheduler to produce

better solutions faster, and do so in an easily understandable way and within

paradigm of the problem specification framework. The only scheduler controls

that are not part of this framework are the the population size and number of

evaluations, which the user sets by selecting values rather than formulas.

• Additional Capabilities - Dynamic rescheduling, interactive scheduling, and soft-

ware composability are all important for building real-world scheduling systems.

Even more important than the particular features already in Vishnu is that the

infrastructure allows easy addition of new features and capabilities as required. If

we encounter a scheduling problem that requires a capability not currently contained

in Vishnu, we can add a new hook and modify the greedy scheduler to handle this

new constraint. Since the greedy scheduler does not rely on any idiosyncratic search

algorithm, it is generally the case that it can be modified to incorporate the new con-

straints. We have developed Vishnu this way, starting with very simple functionality

and expanding the capabilities as needed to solve new problems requiring new fea-

tures. We have yet to encounter a problem that we have not been able to handle by

adding new functionality to Vishnu, without affecting existing capabilities.

6 Conclusion

We have developed a powerful framework for representing scheduling problems, and

we have built a reconfigurable scheduler, Vishnu, that can find an optimized solution

for any problem specified in this framework. The approach we have used involves a

genetic algorithm feeding task orderings to a greedy schedule builder as its method

of finding optimized schedules. Hooks and formulas provide a method for users to

define customized scheduling logic. This approach allows easy introduction of new

A Genetic-Algorithm-Based Reconfigurable Scheduler 609

capabilities into the scheduler and problem specification framework, thus allowing

us to make a reconfigurable scheduler that is particularly powerful in its ability to

handle a wide range of scheduling problems with a wide variety of scheduling logic.

The major benefit of Vishnu is that it makes development of optimized schedul-

ing for a wide range of problems simple and inexpensive. There is a vast array

of scheduling problems that are currently solved using manual or non-optimized

scheduling. For most of these problems, our reconfigurable scheduler could provide

a simple and inexpensive optimized scheduling solution.

References

1. Fourer, R., Gay, D., Kernighan, B.: AMPL: A Modeling Language for Mathematical

Programming. Duxbury Press, Belmont, CA (1993)

2. Van Hentenryck, P.: The OPL Optimization Programming Language. MIT Press, Cam-

bridge, MA (1999)

3. Montana, D.: A reconfigurable optimizing scheduler. In: Proceedings of the Genetic and

Evolutionary Computation Conference. (2001) 1159–1166

4. Montana, D.: Optimized scheduling for the masses. In: Genetic and Evolutionary Com-

putation Conference Workshop Program. (2001) 132–136

5. Bisschop, J., Meeraus, A.: On the development of a general algebraic modeling system

in a strategic planning environment. Mathematical Programming Study 20 (1982) 1–29

6. Bixby, R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: Theory and practice

- closing the gap. In Powell, M., Scholtes, S., eds.: System Modelling and Optimization:

Methods, Theory, and Applications. Kluwer (2000) 19–49

7. Dincbas, M., Van Hentenryck, P., Simonis, H., Aggoun, A., Graf, T., Berthier, F.: The

constraint logic programming language CHIP. In: Proceedings of the International Con-

ference on Fifth Generation Computer Systems. (1988) 693–702

8. Colmerauer, A.: An introduction to Prolog III. Communications of the ACM 28(4) (1990)

412–418

9. Davis, G., Fox, M.: ODO: A constraint-based architecture for representing and reasoning

about scheduling problems. In: Proceedings of the 3rd Industrial Engineering Research

Conference. (1994)

10. Van Hentenryck, P., Perron, L., Puget, J.F.: Search and strategies in OPL. ACM Transac-

tions on Computational Logic 1(2) (2000) 285–320

11. McIlhagga, M.: Solving generic scheduling problems with a distributed genetic algo-

rithm. In: Proceedings of the AISB Workshop on Evolutionary Computing. (1997) 85–90

12. Raggl, A., Slany, W.: A reusable iterative optimization library to solve combinatorial

problems with approximate reasoning. International Journal of Approximate Reasoning

19(1-2) (1998) 161–191

13. Smith, S., Becker, M.: An ontology for constructing scheduling systems. In: Working

Notes of 1997 AAAI Symposium on Ontological Engineering. (1997)

14. Rajpathak, D., Motta, E., Roy, R.: A generic task ontology for scheduling applications. In:

Proceedings of the International Conference on Artificial Intelligence. (2001) 1037–1043

15. Montana, D.: Introduction to the special issue: Evolutionary algorithms for scheduling.

Evolutionary Computation 6(1) (1998) v–ix

16. Cantu-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer (2000)

D. Montana et al.610

17. Davis, L.: Job shop scheduling with genetic algorithms. In: Proceedings of the First

International Conference on Genetic Algorithms. (1985) 136–140

18. Homberger, J., Gehring, H.: Two evolutionary meta-heuristics for the vehicle routing

problem with time windows. INFORMS Journal on Computing 37(3) (1999) 297–318

19. Syswerda, G.: Schedule optimization using genetic algorithms. In Davis, L., ed.: Hand-

book of Genetic Algorithms. Van Nostrand Reinhold (1991) 332–349

20. Whitley, D., Starkweather, T., Fuquay, D.: Scheduling problems and traveling salesmen:

The genetic edge recombination operator. In: Proceedings of the Third International Con-

ference on Genetic Algorithms. (1989) 133–140

21. Goldberg, D., R. Lingle, J.: Alleles, loci, and the traveling salesman problem. In: Pro-

ceedings of the First International Conference on Genetic Algorithms. (1985) 154–159

22. Grefenstette, J., Gopal, R., Rosmaita, B., van Gucht, D.: Genetic algorithms for the trav-

eling salesman problem. In: Proceedings of the First International Conference on Genetic

Algorithms. (1985) 160–165

23. Giffler, B., Thompson, G.: Algorithms for solving production-scheduling problems. Op-

erations Research 8(4) (1960) 487–503

24. Beasley, J.: OR-Library: Distributing test problems by electronic mail. Journal of the

Operational Research Society 41(11) (1990) 1069–1072

25. Muth, J., Thompson, G.: Industrial Scheduling. Prentice Hall, Englewood Cliffs, NJ

(1963)

26. Solomon, M.: Algorithms for the vehicle routing and scheduling problem with time win-

dow constraints. Operations Research 35 (1987) 254–265

27. Montana, D., Brinn, M., Moore, S., Bidwell, G.: Genetic algorithms for complex, real-

time scheduling. In: Proceedings of the IEEE International Conference on Systems, Man,

and Cybernetics. (1998) 2213–2218

28. Montana, D., Herrero, J., Vidaver, G., Bidwell, G.: A multiagent society for military

transporation scheduling. Journal of Scheduling 3(4) (2000) 225–246

29. Montana, D.: Vishnu reconfigurable scheduler home page (2001) http://vishnu.bbn.com.

30. Fahle, T., Junker, U., Karisch, S., Kohl, N., Sellmann, M., Vaaben, B.: Constraint pro-

gramming based column generation for crew assignment. Journal of Heuristics 8(1)

(2002) 59–81

31. Hussain, T., Montana, D., Brinn, M., Cerys, D.: Genetic algorithms for UGV navigation,

sniper fire localization and unit of action fuel distribution. In: Military and Security

Applications of Evolutionary Computation (MSAEC) Workshop, part of GECCO. (2004)

32. Reinelt, G.: TSPLIB (2001)

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

33. Carlier, J., Pinson, E.: Adjustment of heads and tails for the job-shop problem. European

Journal of Operations Research 78 (1994) 146–161

34.

template paradigm. In Junger, M., D., Computational Combinatorial

Optimization. Springer (2001) 261–304

35. Watson, J., Ross, C., Eisele, V., Denton, J., Bins, J., Guerra, C., Whitley, D., Howe, A.:

A Genetic-Algorithm-Based Reconfigurable Scheduler

Applegate, D., Bixby, R., Chvatal, V., Cook, W.: TSP cuts which do not conform to the

eds.:Naddef,

The traveling salesrep problem, edge assembly crossover, and 2-opt. In: Parallel Problem

Solving from Nature V. (1998) 823–832

611

Ek Peng Chew, Loo Hay Lee and Kanshukan Rajaratnam

Department of Industrial & Systems Engineering, National University

of Singapore, Singapore 119260, Singapore

Summary. This paper deals with minimizing the cost in a joint loca-

assign retailers to distribution center within the service level

constraints. The costs considered include the transportation cost,

inventory holding cost and ordering cost. We develop an adaptive real-

coded genetic algorithm to solve the problem. We conduct few

experiment runs to compare the performance of the proposed method

with some existing methods which include the simple genetic

algorithm, the column generation method and the greedy method. For

the non-capacitated case, the method shows very promising results with

respect to both time and quality of the solutions. Similarly for the

capacitated case, where the column generation method cannot be

applied, the model is also significantly better than all the other methods,

especially when the problem size is big.

This paper studies a distribution problem with joint inventory and loca-

tion decisions. The system consists of a number of capacitated distri-

bution centers (DCs) which are replenished by a single plant and they

are serving their assigned retailers (customers) where the demands are

stochastic. The DC and its assigned retailers must satisfy two service

requirements. The first requirement is that the delivery leadtime (or the

distance between the DC and the retailers) should not exceed a certain

threshold value. The second requirement is that the DC should keep

www.springerlink.com © Springer-Verlag Berlin Heidelberg 2007

E.P. Chew et al.: Evolutionary Algorithm for an Inventory Location Problem, Studies in

Evolutionary Algorithm for an Inventory

demands from multiple retailers. The problem is to determine how to

capacitated distribution centers. The distribution center faces stochastic

tion-inventory model with a single supplier supplying to multiple

1. Introduction

Location Problem

Computational Intelligence (SCI) 49, 613–628 (2007)

some level of safety stock to meet a certain fill rate. The problem is to

determine which retailer is to be allocated to a particular DC and how

much stock to carry in each DC such that the overall costs can be

minimized and the service requirements can be satisfied.

When a DC is serving many retailers, potential saving can be

achieved through the reduction of the safety stock due to risk pooling.

Moreover, consolidating many retailers at a single DC will also reduce

the total cycle stock. However, this may potentially lead to higher

transportation cost since some of the retailers might be far away from

inventory holding cost. In addition, the capacity of DCs also has to be

considered.

Formally, the problem is stated as follows: Given a set of DCs each

having its own capacity and a set of retailers with stochastic demands,

determine which retailer is to be allocated to which DC by not violating

the service requirements. Furthermore, determine how often to reorder

as well as the level of stock to be maintained at each DC at the lowest

includes both the costs of inbound and outbound transportation of the

average cycle stock and the safety stock. The ordering cost is incurred

for each order placed by the DC to the plant. The set up cost for the

DC is ignored.

Inventory theory deals with developing and evaluating policies for

evaluated on the service levels, inventory and shortage costs (Hopp and

focuses on determining the number of DCs and their locations with

provides an overview of the location theory. However, solving these

two problems independently will lead to a suboptimal solution.

Some works have been done on considering the inventory and loca-

tion problems jointly. Erlebacher and Meller (2000) solve a joint loca-

tion-inventory model but that model is highly non-linear and takes 117

hours to be solved on a Sun Ultra SPARCstation. Shen (2000), Daskin

bank which looks into the setting up of regional DCs at the hospitals

distributing the platelets on a daily-need basis. However, the proposed

methods can only solve two special cases. The first case assumes the

ratio between the variance of the demand and the mean is identical for

E.P. Chew et al.

Spearman 2000, Silver et al. 1998). On the other hand, location theory

et al. (2001) and Shen et al. (2003) conduct a study at Chicago blood

614

the DC. Therefore we need to balance the transportation cost and the

system cost. The costs consider include the transportation cost, the

inventory holding cost and the ordering cost. The transportation cost

DC. The inventory holding cost includes the holding costs for the

respect to various customers or retailers. Daskin and Owen (1999)

ordering and fulfillment process at the DC. These are generally

provide a review of facility location modeling. Chan (2001) also

Evolutionary Algorithm for an Inventory Location Problem

all retailers while the second case assumes the demand has zero vari-

ance. The problem is first formulated as a nonlinear integer program-

the column generation method for the set-covering model involves a

non-linear term in the objective function of the location-allocation

case. They propose the use of the primal and dual approach to solve

the general model and use the variable fixing technique to solve the

sub modular function minimization problem.

In this paper, we consider an integrated approach to model both the

inventory and location cost simultaneously. We extend the model by

genetic algorithm (ARGA) as a solution procedure to solve this

problem.

The remainder of the paper is organized as follows. In Section 2, we

develop the cost model and discuss the properties associated with the

Sections 3 and 4 respectively. In Section 5, the conclusion and future

direction of work are presented.

2. Model Formulation

For our problem, we need to minimize the cost incurred when alloca-

ting DCs to serve all retailers. The cost includes the transportation

cost, inventory holding cost and ordering cost. Furthermore, the DC

capacity needs to be considered when allocating a DC to retailers.

To model this distribution problem, we define the following

variables:

I set of all retailers

J set of all DCs

Ji set of all DCs that can serve retailer i for each i I (not

violating the service level requirement by the delivery

leadtime)

µi Annual mean demand at retailer i for each i I;
2

i Variance of the daily mean demand at retailer i for each i I;

j Unit transportation cost between plant/supplier to DC j for each

j J;

Inputs and Parameters

model. Shu et al. (2002) extend the work to a more general demand

ij Unit transportation cost between DC j to retailer i for each i I

and j J;

programming model. The pricing problem that must be solved as part of

ming model and it is later transformed into a set-covering integer

615

considering the capacity of a DC. We propose an adaptive real-coded

model. The computational procedures and results are presented in

dij Unit transportation cost per from plant to DC j and from DC j

to retailer i for each i I and j J; i.e. dij = j + ij for each i I

and j J;

Wj Capacity of DC j for each j J;

hj Holding cost at DC j for each j J;

Lj Lead time at DC j for each j J;

Aj Ordering cost at DC j for each j J;

Qj Cycle stock held at DC j for retailers i for each j J;

Xij = 1, if retailer i is served by DC j and 0 otherwise for each i I and

j J.

The problem can be formulated as follows.

Jj

j

ij

Ii

i

j

Ii ijji

j

j

Ii

ijiij

Q

X

A

XLz
Q

hXd

Min

2

2

(1)

subject to

Ii ijjijj XLzzWQ 20
(2)

iJj

ijX 1 (3)

}1,0{ijX (4)

The objective function (1) minimizes the system cost. The first term

in the objective function represents the total transportation cost within

the system and it includes both the transportation costs between the

plant to the DCs as well as from the DCs to the retailers. The second

term represents the holding costs in the system and the third term

accounts for the reorder cost for placing an order from the DC to the

plant.

Decision Variables

E.P. Chew et al.616

Evolutionary Algorithm for an Inventory Location Problem

Equation (2) represents the capacity constraint for the DC. z is the

safety factor to buffer against the demand uncertainty (to satisfy the fill
rate) while z is a safety factor to prevent against the inventory

overflow due to the possibility of low demand (probability of inventory

overflow should be less than). Constraint (3) ensures that one retailer

is allocated to only one DC which satisfies the service requirement

based on the delivery leadtime.

The solutions to the model will consider the tradeoff between the

risk pooling effect and the transportation cost. For example, it may be

better to assign many retailers to a DC although some retailers may be

far from the DC due to the potential saving from the risk pooling.

When there is no capacity limit on DCs, it is always optimal to have

cycle stock equals to Economic Order Quantity (EOQ). However, if

there is a capacity limit on the DC, and in the event that the EOQ-

determined cycle stock exceeds the allowable capacity of the DC (i.e.,

violating equation 2), the models might provide three possible solutions

according to different scenarios. The first one is that some retailers

will be reallocated to other DCs, and the cycle stock of the DC remains

at the EOQ level. The second one is that no retailers are reallocated,

but the cycle stock is reduced to the level which satisfies the DC

capacity level (i.e., equation 2). The third one is the hybrid of the first

and second solutions.

As this problem is highly nonlinear and involves integer variables,

the traditional mathematical programming approach (MIP or NLP) is

not able to provide satisfactory solutions. Hence, we propose to use

genetic algorithm as a solution approach and the detail discussion on

the approach will be presented in the next section.

Genetic algorithm (GA) is known to be a good method to tackle com-

general characteristics of GA. In GA procedure, there are two phases.

type of GA, mutation probability, crossover probability,… etc. The

second phase involves finding the solution to the optimization problem

by using the GA with parameters chosen in phase 1. A good choice of

parameters in the first phase can lead the search to a good local opti-

mum faster while a bad choice might cause the solutions either to be

3. Proposed methodology

binatorial problems. Song et al. (1996) gives a good overview on the

617

The first phase involves selecting the set of parameters for GA, i.e.,

trapped at a poor local optimal solution or take a longer time to

or trial and error. Some of the parameters need to be varied during the

run so as to achieve a better solution, and this approach is known as

the adaptive GA (Fogarty 1989, Srinivas and Patnaik 1994, Herrera

and Lozano 1996, Lis and Lis 1996, Lee and Fan 2002).

In this paper, we will adopt the adaptive real-coded genetic

algorithm (ARGA) approach proposed by Lee and Fan (2002). There

are two phases in the ARGA procedure. In the first phase, a screening

experiment based on the factorial design on GA parameters is

conducted to identify critical and time-sensitive parameters which will

influence the searching performance of the GA. Then in the second

phase, these critical and time-sensitive parameters will be adaptively

tuned according the most recent information on the searching

performance when ARGA is used to search for the optimal solution.

The implementation details of the two phases of the ARGA is

summarized as follows.

1. Choose high and low levels for all the parameters of GA that we are

interested in investigating.

2. Run all the GAs with different parameter combinations to solve the

problem at different number of iterations.

3. Identify the parameter that will influence significantly on the search

performance of the GA.

4. For those parameters that are significant, compute the variance of their

effect across different number of iterations. Those parameters with high

variance on the effect will be identified as time-sensitive parameters and

1. Choose few levels for those time-sensitive parameters identified in the

phase 1 screening procedure, and form different combinations of

i

2. Generate initial population Po with N individuals. Fix the computing

budget of one iteration at C (generations). For each mi, the belief index,

b(mi) = 1/M,

3. If the terminating condition is met, end of procedure, otherwise for i =1,

2,….,M, run the GA with parameter combination mi for q(mi) = C.b(mi)

generations. All the M GAs have the same initial population Po. Denote

P(mi) as the final population obtained by GA with parameter

combination, mi.

4. Form a population
im imPP)(.

Phase 1 Screening procedure

they need to be adaptively tuned during the GA search process.

Phase 2 Searching procedure

E.P. Chew et al.

parameters. Denote m as parameter combination i, i = 1,2,….,M.

 i = 1,2,….,M.

618

converge. The choice of parameter is usually decided by past experience

Evolutionary Algorithm for an Inventory Location Problem

5. Determine whether the best fitness value of population P has improved.

If yes, select the top N individuals from P to form the new population

Ptop and goto Step 6. If no, goto Step 7.

6. Calculate the performance of each parameter combination, f(mi) which

equals to the percentage of Ptop that is from P(mi) and update belief

index.

Mi
mbmf

mbmf
mb

M

i ii

ii

i ,...,2,1,
)().(

)().(
)(

1

Let b(mi)=b'(mi) and goto step 3.

7. Reset b(mi) = 1/M, i =1,2,….,M and goto 3.

In running GAs in step 2 of phase 1 and step 3 of phase 2, we use

the following procedure.

1. Initialize a population of chromosomes, which is called the parent

population.

2. Evaluate the fitness of each chromosome in the population.

3. Randomly select the chromosomes from the population to form a team

with a given team size.

4. Select the best two chromosomes from the team to form parent

chromosomes.

5. Create new chromosomes using either crossover operator or mutation

operator. The crossover probability will determine the choice of the

operators to be used.

6. Repeat steps 2,3,4,5 until a children population is formed.

7. Replace the worst performers of the parent population by the top

performers of the children population without duplication. The

replacement percentage will determine the number of parents to be

replaced. The modified population will be used as the new parent

population in the next generation.

8. Repeat steps 2-7 until the termination condition is met.

In implementing the ARGA in solving the inventory and location

problem, we use the following chromosome representations and

operators.

In our paper, we use a direct representation of solution. The position

of each gene in the chromosome represents a retailer and stores an

integer value that represents a DC number. An example is seen below

in Fig. 1.

GA procedure

Chromosome Representation

619

DC 2 1 4 … 3 2

Customer 1 2 3 … N-1 N

Fig. 1. Chromosome Representation

The Fig. 1 shows that customer 2 has been allocated to DC 1 and

customer N-1 has been allocated to DC 3. Note that we have not

represented cycle stock quantity in the chromosome. This value can be

easily computed in equation (5) once the retailers assignment to DCs is

known (i.e., Xijs are all known).

Jj

XLzzW

h

AX

Q

Ii ijjj

j

j

Ii

iji

j

2

,

2

min

(5)

In the crossover operator, we swap certain genes between the parents

in the hope that the offspring would have the desirable features of both

their parents. One point and two point crossovers have been widely

used and presented in the literature. One point crossover is when a sin-

gle gene is randomly chosen and all genes after the chosen genes are

exchanged by the parents to produce the offspring. In a two point

crossover, two random genes are chosen and all genes between these

two random genes are swapped by the parents to generate the offspring.

mine if the genes are to be swapped between the two parents. The

mask is of the same length as the chromosomes and is assigned with

random numbers between 0 and 1. If the number is less than a pre-

determined crossover rate, the genes are exchanged and if the number

is greater than the crossover rate, the genes are not swapped by the par-

ent chromosomes. Since crossover rates are symmetric at 0.5, we allo-

cate crossover rates between 0 and 0.5. The choice of crossover rate is

important as a high crossover rate will lead to wide range of solutions

and may overshoot the optimal solution space. A low crossover rate

Crossover Operator

Syswerda (1989). Uniform crossover uses a mask or template to deter-

However, we propose to use the uniform crossover introduced by

E.P. Chew et al.620

Evolutionary Algorithm for an Inventory Location Problem

will produce children with little variation from the parents and will take

longer time to find the optimal solution.

At each point of crossover, Qj is calculated using equation (5). If Qj

is negative (this means the capacity constraint is violated), a customer

from the DC j is randomly allocated to another DC which does not

violate the capacity constraint.

Mutation operator brings in fresh solutions to the set of population.

We use the mutation process recommended by Thomas Back (1993),

where each gene has an equal probability of mutation. For each gene,

we generate a random number between 0 and 1 and if this random

number is larger than the mutation rate, the gene is mutated and if

smaller, the gene is not mutated. The mutation rate is chosen to be a

low value (e.g. 0.1) so that the offspring solution will not be too

different from the parents. If the gene (retailer) is chosen to be

mutated, it will be randomly assigned to a new DC. If capacity con-

straints are not satisfied, the gene is then allocated to another DC

randomly.

When initializing population, we need to select random assignment

of DCs to retailers. However, we must ensure that the DC assignment

is within the service level requirements as well as within the capacity

constraints of the DCs. To obtain feasible solutions as well as a good

representation of the solutions, the following steps are taken to generate

the initial population.
1. Start with a gene (retailer) and assign it to a random DC.

2. Check whether the delivery leadtime is within the service level

requirement. If no, assign it randomly to another DC and repeat step 2.

3. Use equation (5) to determine if the assignment has violated the capacity

constraint of the DC. If yes, select randomly a customer from the current

assignment and then assign it randomly to those DCs that are within the

service level constraint and repeat step 3.

4. Check if all the genes in the chromosomes have been allocated a DC. If

5. Check if the predetermined number of initial population has been

reached. If no, goto step 1.

Mutation Operator

Population Initialization

no, allocate a random DC to the gene (retailer) and goto step 2.

6. Stop.

621

In this section, we would like to evaluate the performance of the

ARGA. It will be compared with three different approaches, namely,

standard GA (SGA), the column generation method and the greedy

method. The brief discussions of these three methods are given below.

We run the SGA with the same chromosome representation and

same operators with ARGA except that the parameters are not adaptive,

i.e., it will not be tuned during the runs. However, in order to compare

the results fairly, we run all possible parameter combinations for SGA

(i.e., the M parameter combinations used in the phase 2 of ARGA

procedure), and the best results of these combinations will be selected.

Another existing approach for this problem is the column generation

represented by a column (in this case it is the assignment of retailers to

DCs). Then the total-cost of the column can be computed easily by

solving the nonlinear problem for the given assignment. If all the pos-

sible columns are given, the original problem can be formulated as a

set-covering problem and the optimal solution can be found. However,

as the number of possible columns can be very large due to the many

possible assignments, one efficient way is to start off with a subset of

feasible columns, and then add more new columns when it is needed.

To find these columns, we need to first solve the relaxed set covering

problem given the subset of columns to obtain the dual information.

Then we formulate a pricing problem by using the dual information to

generate better columns. The approach will be repeated until no better

columns can be found. Note that when we solve the relaxed set cover-

ing problem, we treat the column variable as a continuous variable and

thus the optimal solution cannot be guaranteed. However, past experi-

ence shows that it usually gives good solutions in many applications.

4. Computational Results

SGA

Column Generation Method

Step 3 ensures that the capacity constraint is always met while allo-

cating retailers to DCs. The above steps will lead to a set of initial

feasible solutions which are then used in the ARGA to search for the

better solutions.

E.P. Chew et al.

method (Shu et al. 2002). In this method, an integer solution will be

622

Evolutionary Algorithm for an Inventory Location Problem

This method uses the marginal cost concept to determine the

assignment. It starts with no assignment of DCs to retailers and then

assigns a DC to a retailer one at a time. For a given retailer, the DC is

selected such that the marginal increase in the total cost is the lowest.

For example, retailer 1 is the first retailer to be assigned with a DC.

We will pick a DC that gives a lowest cost, and in this case it will be

the DC that is closest to the retailer 1. Then retailer 2 will be assigned

to a DC that minimizes the marginal increase in the cost function by

taking into account of the assignment for retailer 1. In this case,

retailer 2 can either choose the same DC as retailer 1 to exploit the

benefit of risk pooling or choose a DC that is the closest. The decision

depends on which alternative gives the lowest cost increase. This

process will be repeated until all the retailers have been assigned with a

DC. Note that, the capacity constraint need to be satisfied when

determining the assignment.

In the numerical experiment, we first compare the performance of

the proposed methodology with the three methods discussed above on

the uncapacitated case. As for capacitated case, since the existing

column generation method cannot be used, only SGA and the greedy

method are used for comparison. The algorithms for the SGA and

ARGA are coded in C++ while the column generation method is coded

using GAMS and all the experiments are conducted on a PC Pentium

696 MHz.

For the uncapacited case, we consider 5 different data sets as

follows. (1) a 30 retailer 6 DC system, (2) a 50 retailer 15 DC system,

(3) a 50 retailer system where all the retailer sites can also function as

DC, (4) a 100 retailer 30 DC system and (5) a 200 retailer 30 DC

system. Table 1 gives the input data used in the experiments.

Table 1. The input data used in the numerical experiment

Parameters Ranges/values

Di [1,100]
2

i
[1,Di/3]

dij [1,10]

hj 1

Lj 1

Aj 100

Greedy Method

For this inventory and location problem, the pricing problem is not triv-

ial as it involves nonlinear terms, and so we use the method proposed
by Shu et al. (2002). Due to the complexity of the problem, the

method can only solve the non-capacitated case.

623

We set the maximum iteration number for the ARGA and SGA at

20,000, since we observe the algorithm converges around 8,000 itera-

tions at the trial experiments.

For the screening experiment that we conduct during the first phase

of ARGA, the high-low levels for all the parameters of GA are given in

Table 2.

Table 2. The values for the GA parameters used in the phase 1 ARGA procedure

GA Parameters Low (-) High (+)

Population Size 100 200

Team Size 2 4

Crossover Probability 0.5 0.7

Crossover Rate 0.3 0.5

Mutation Rate 0.1 0.3

Replacement Percentage 70% 80%

From the results of the screening experiments, it is found that the

population size, the team size, the crossover probability, the crossover

rate, the mutation rate, and their interactions have significant impacts

on the performance of the search process. Hence, these are critical

parameters. On the other hand, among these parameters, the top 5 most

time-sensitive parameters or interactions are as follows.

 Interaction between mutation rate and population size

 Interaction between crossover probability and population size

 Population size

 Crossover rate

 Mutation rate

Based on these observations, we choose the population size, the

crossover probability, the crossover rate and the mutation rate as the

time-sensitive parameters. They will be set at 3 different levels given

in Table 3 for forming the parameter combinations. These 81 different

parameter combinations will be used in the phase 2 of the ARGA

procedure. On the other hand, the replacement percentage is fixed at

70%.

Table 3. The values for the GA parameters used in the phase 2 ARGA procedure

Parameters Level 1 Level 2 Level 3

Population Size 50 75 100

Crossover Probability 0.3 0.5 0.7

Crossover Rate 0.15 0.3 0.45

Mutation Rate 0.01 0.05 0.1

E.P. Chew et al.624

Evolutionary Algorithm for an Inventory Location Problem

The final results of the uncapacitated case are shown in Table 4. The

first column indicates the problem size. The second, third, fourth and

final columns represent the results from the greedy method, the column

generation method (CG), SGA and ARGA respectively.

Table 4. Results for the uncapacicated case

Cases Greedy CG SGA ARGA

30x6 4518 4639 4518 4518

50x15 6500 6734 6353 6375

50x50 4590 4444 4471 4462

100x30 12245 11543 11853 11579

200x30 21604 20229 21822 20304

From Table 4, we notice that the greedy method gives better results

when the problem size is small, but becomes worse when the size of the

problem is large. This is because the greedy method conducts only the

myopic search, and hence usually gives local optimal solution. For a

small size problem, the number of alternatives is small and hence the

solution given by the greedy method might not be far away from the

optimal solution. However, when the number of alternatives becomes

very large, the chances of getting a good solution will be low.

The solutions given by the column generation method improves

when the problem size gets bigger. Although the solution is not

guaranteed to be optimal due to the linear relaxation in the master

problem, it does solve the problem holistically and hence the gap

between the solution and the optimal solution is expected to be small in

most of the cases.

For the two GA algorithms, SGA performs similarly to ARGA for

small size problem, but does not perform as well as ARGA for larger

size problem. In all the cases that we have conducted, ARGA

consistently gives good results. The reason is because the parameters

for ARGA are adaptively tuned according to the search performance,

and hence it is less dependent on the problem scenarios and initial

parameter settings.

In comparing the run times of all the algorithms, the greedy method

is always the fastest (less than 1 second). On the other hand, the col-

umn generation method is very slow especially when the size of the

problem increases. For a 200 retailer 30 DC case, it takes about 7 days

to complete the run. For ARGA and one run of SGA, the running time

is within 10 minutes. However, we have to run all the 81 possible pa-

rameter combinations for SGA in order to obtain the best result given

in Table 4. Hence, we can say that the actual running time for SGAs is

625

much larger than ARGA. Based on all these observations, we can con-

clude that ARGA is very promising in giving consistent results for this

problem.

We repeat the experiment for the capacitated case but without the

column generation method. We use the same data set as the

uncapacitated case except that the capacity of each DC is generated

uniformly between 0 and 400. The results of the experiment runs are

given in Table 5.

Table 5. Results for the capacitated case

Cases SGA ARGA Greedy

30x6 4552 4552 4552
50x15 6436 6401 6583
50x50 5563 5608 5640
100x30 12327 12195 12858
200x30 22148 20622 22063

The observed trends for all the algorithms are similar to the

uncapacitated case. The ARGA again produces better solutions in most

of the cases. The greedy method only produces good results for small

problems. For the larger problem, ARGA is significantly better than

the other methods. Although SGA performs comparably well with

ARGA for medium to smaller size problems, the computation time that

the SGA takes in fact is much larger than ARGA due to the fact that we

have run all the possible 81 parameters combinations in order to get the

best answer.

In the paper, we propose an ARGA to tackle the transportation

inventory problem. Given a set of DCs and retailers, we determine

how to assign the retailers to the DCs and how much of cycle and

safety stock to be held at each DC to minimize the system cost while

satisfying service requirements.

We conduct numerical experiments to compare the performance of

ARGA with SGA, the column generation method and the greedy

method. ARGA is promising in providing good and consistent results

because its parameters are adaptively tuned during the search process,

and hence less dependent on the problem scenarios and initial

parameter settings. Moreover, the running time of the ARGA is also

reasonable compared to the other approaches.

5. Conclusion

E.P. Chew et al.626

Evolutionary Algorithm for an Inventory Location Problem

There are two possible extensions to this current work. The first one

involves extending the model to include multiple items. The second

extension deals with a system with differentiated service requirements

for different retailers. This extension is realistic as currently the service

providers always give customized services to their customers.

Back T (1993) Optimal mutation rates in genetic search. In: Forrest S (Ed),

Proceedings of the Fifth International Conference on Genetic Algorithms

Chan Y (2001) Location Theory and Decision Analysis. Cincinnati, Ohio:

Daskin MS and Owen SH (1999) Location models in transportation, R. Hall

ed. Handbook of Transportation Science. Kluwer Academic Publishers,

Daskin MS, Coullard CR, Shen ZJ (2002) An Inventory Location Model:

Formulation, solution, algorithm, and computational results. Annals of

Operations Research 110: 83-106

Erlebacher SJ and Meller RD (2000) The interaction of location and inventory

Fogarty T (1989) Varying the probability of mutation in the genetic algorithm.

In: Schaffer JD (Ed.), Proceedings of 3rd International Conference on

Herrera F, Lozano M (1996) Adaptation of Genetic Algorithm Parameters

based on Fuzzy Logic Controllers. In: Herrera E, Verdegay JL (Eds),

Lee LH, Fan Y (2002) An Adaptive Real-coded Genetic Algorithm. Applied

Artificial Intelligence 16: 457-486

Lis J, Lis M (1996) Self-adapting parallel genetic algorithm with dynamic

mutation probability, crossover rate and population size. In: Arabas J (Ed)

Proceedings of 1st

Shen ZJ (2000) Efficient algorithms for various supply chain problems. Ph.D.

dissertation, Department of Industrial Engineering and Management

Sciences, Northwestern University, Evanston, IL

Shen ZJ, Coullard CR, Daskin MS (2003) A joint location-inventory model.

Transportation Science 37: 40-55

Shu J, Teo C, Shen ZM (2005) Stochastic Transportation-Inventory Network

Design Problem. Operations Research, 53(1): 48-60

References

Genetic Algorithms and soft computing, Physical-Verlag, pp 95-125

 Polish National Conf. Evolutionary Computation,

South-Western College Publishing, a division of Thompson Learning,

and their Applications, Morgan-Kaufmann, pp 2-8

Norwell, MA, pp 311-360

in designing distribution systems. IIE Transactions 32:155-166

Hopp W, Spearman ML (2000) Factory Physics: Foundations of Manu-

facturing Management, Irwin, McGraw-Hill

pp 16-17

Genetic Algorithms, San Mateo

pp 324-329

627

Silver E, Pyke DF, Peterson R (1998) Inventory Management and Production

Planning and Scheduling. John Wiley & Sons

Song YH, Johns A, Aggarwal R (1996) Computational Intelligence

Applications to Power Systems. Science Press, Kluwer Academic

Publishers, Chapter 12, pp 128-133

Srinivas M, Patnaik LM (1994) Adaptive Probabilities of Crossover and

Mutation in Genetic Algorithms. IEEE Transactions on systems, man and

cybernetics 24(4): 656-666

Syswerda G (1989) Uniform crossover in genetic algorithms. In: Proceedings

of the Third International Conference on Genetic Algorithms, Fairfax,

VA: Morgan Kaufmann, pp 1-9

E.P. Chew et al.628

