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Preface

This book is about scheduling under uncertainties. However, the problems concern
the whole domain of decision aid. Of course, the question of decision aid under
unexpected events or uncertainties is not new, but a recent awareness has come on
the necessity to define specific models. This awareness has lead to research activities
in various domains like location, communication or transportation network design,
supply chain management, industrial planing and – of course – scheduling problems.

In Spring 2000, some members of the “GOThA” group (a French working group on
“Theoretical scheduling and applications”) decided to create a sub-group working in
the field of “flexibility”. It seemed convenient to gather the persons interested by the
question: “how do we schedule under uncertainties?”. The success of this initiative
was a surprise for their promoters themselves. In France only, among ten research
teams were working on this problem. These teams wanted to communicate ideas, to
unify the terminology, to exchange references. After multiple meetings during 2003,
this group became a project “Scheduling with flexibility and robustness” among an
official structure, the GDR-CNRS on Operations Research. The book Flexibilité et
Robustesse en Ordonnancement published by Hermes in 2005 was the first conclusion
of this project. This book is a revised version of this title.

The outline of the book is the following. The two first chapters are introductory.
The first one introduces the problem, the main concepts and basic definitions. The
second chapter is written by Bernard Roy, who examines the concept of robustness
in the more general framework of decision aid. Subsequent chapters correspond to
the specialties of several research teams. They can be organized according to the
resolution approach or the application field. Each chapter presents a state-of-the-art
survey related to its field.
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Chapters 3 to 8 (5 to 8 with probabilistic hypotheses) consider that all the decisions
have been taken before starting the schedule. In the approach of Chapters 9 to 13
most of the decisions are taken during the execution of the schedule. The last chapter
considers on-line re-optimization.

Scheduling theory concerns several fields. Chapters 3, 5, 7, 10, 11 and 13 consider
shop scheduling problems, whereas Chapters 6 and 8 consider project scheduling
problems and Chapters 4 and 12 consider parallel computing. Chapters 9 and 14 do
not consider a particular application field. But frontiers are sometimes thin.

We are very happy with this English version and hope that it will interest
numerous researchers and scheduling practitioners.

Jean-Charles BILLAUT

Aziz MOUKRIM

Eric SANLAVILLE



Chapter 1

Introduction to Flexibility and
Robustness in Scheduling

1.1. Scheduling problems

A large variety of scheduling problems are to be found in many domains. Almost
every sector is concerned by scheduling problems in the broad sense:

– Industrial production systems: problems may need to be solved simultaneously
in machine scheduling and vehicle dispatching (automated guided systems, robotic
cells, hoist scheduling problems), in workshop layout problems or supply chain
management problems.

– Computer systems: for example, to make full use of the processing power
provided by parallel machines or when scheduling tasks with resource constraints in
real-time environments.

– Administrative systems: appointment scheduling in health care sector, general
resource assignment, timetabling, etc.

– Transportation systems: vehicle routing problems, traveling salesman problems,
etc.

In all cases, for a realization being described as a series of interdependent tasks, it
is necessary to coordinate the implementation of these tasks, i.e. to allocate resources

Chapter written by Jean-Charles BILLAUT, Aziz MOUKRIM and Eric SANLAVILLE.
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to tasks and set their execution dates. Sometimes a schedule simply consists of
a sequence of tasks by machine, coupled with a simple rule for calculating task
start times (for example earliest schedules). However, in the more general case it is
necessary to allocate a start time to each task in the schedule definition.

The basic data of a scheduling problem (see for instance [BRU 07]) are: the tasks to
schedule with their precedence constraints, their duration, resources that are necessary
for their execution and a function to optimize.

Methods for solving scheduling problems draw from all the techniques of
combinatorial optimization, whether approximate methods (greedy algorithms, local
search, genetic algorithms, etc.) or exact methods (mathematical programming,
branch-and-bound methods, dynamic programming, decomposition methods,
constraint programming, etc.). Solving a particular problem may require the use of
modeling tools for complex systems (simulation, Petri nets, etc.), thus leading to the
definition of matchings between these methods.

The scheduling problems addressed in this book are described according to the
classification schemes proposed in [GRA 79]. The scheduling problems are specified
using a classification in terms of three fields, α|β|γ where α specifies the machine
environment, β the operation characteristics, and γ the criterion to optimize.

1.1.1. Machine environments

The majority of scheduling problems correspond to a number of fundamental
theoretical models. We have to schedule a set of n tasks or n jobs. The machine
environments are specified in the field α separated into two subfields α1α2. Depending
on the values of α1, we may distinguish the following models:

– Single machine problems. Each task Tj of duration pj runs on a dedicated
machine that cannot handle more than one task at a time. In that case the field α1

is absent and α2 = 1.

– Parallel machine problems. The tasks are to be executed on machines in parallel,
and pij denotes the execution time of Tj on machine Mi:

- If α1 = P , the machines are identical: pij = pj for any machine Mi.
- If α1 = Q, the machines are uniform: pij = pj/si where si is the processing

speed of machine Mi.
- If α1 = R, machines are unrelated: pij = pj/sij where sij is the processing

speed of task Tj on machine Mi.
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– Shop problems. In this model, a shop consists of m different machines. We
consider a set of jobs that need to be performed. Each job Jj is described by nj tasks
(which are called operations). Operation Jj running on machine Mi is denoted Oij ,
and its duration is pij . Operations belonging to the same job cannot be carried out
simultaneously. There are three main types of shop:

- Flow-shop. Each job consists of m operations and the order of execution on
different machines is the same for each job. In this case α1 = F .

- Job-shop. The number of operations is not necessarily the same for each job,
and every job has its own order of execution on the machines. In this case α1 = J .

- Open shop. This is the least constrained shop scheduling problem. The
number of operations is not necessarily the same for each job, and the order of
execution on the machines is completely free. In this case α1 = O.

– Project scheduling under resource constraints. In this model, known as the
“resource constrained project scheduling problem” (RCPSP), we consider a set of
tasks or activities. The execution of each task Tj requires the use of a fixed amount
Rij of resource i. The maximum capacity of each resource i is available. The field
α1 takes the value PS (“Project Scheduling”). Note that the case where the capacity
is unlimited corresponds to the central problem in the well-known PERT scheduling
model.

If α2 is a positive integer, the number of machines or resources is assumed to be
constant. If the field α2 is absent then this number is assumed to be arbitrary.

1.1.2. Characteristics of tasks

The field β = β1β2β3β4 describes the task characteristics.

Preemption means that the execution of an operation or a task can be interrupted
and completed later, either on the same machine or on another machine. An operation
or task can be interrupted several times. If preemption is allowed then β1 = pmtn,
otherwise field β1 is missing.

Precedence constraints are represented by a directed graph G = (X,≺), where
X denotes the complete set of tasks. Tj ≺ Tk means that the task Tj must be fully
completed before the task Tk begins. Whether the graph G is arbitrary, a union of
paths, an out-tree or an in-tree, β2 takes the value prec, chain, out-tree, or in-tree,
respectively. When there are no precedence constraints this field is missing. In the
context of parallel computing (message passing) or shop management (part transfer),
a quantity cjk may be associated with any precedence Tj ≺ Tk. If Tj and Tk are
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performed on two different processors (or machines), cjk corresponds to the shortest
delay between the end of Tj and the beginning of Tk, otherwise this delay is zero.

The release dates of tasks (earliest start times) are not necessarily identical. In this
case, β3 = rj . If all tasks are assumed to be available at time 0, the field β3 is missing.

If β4 = dj , we hope that the completion time Cj for each task Tj will be less than
or equal to dj , called the due date of Tj . If Cj exceeds dj , the task is considered late.

1.1.3. Optimality criteria

When a schedule is fixed, the following variables can be computed for each task
Tj or every job Jj :

– end date of the task Tj or job Jj , or completion time, noted Cj ;

– lateness Lj = Cj − dj or tardiness Tj = max{0, Cj − dj};
– unit penalty Uj = 0 if Cj ≤ dj , otherwise Uj = 1;

– flow time Fj = Cj − rj .

Optimality criteria are functions to minimize. Usually, they integrate the above
variables in the form of a maximum function or a sum function, possibly weighted.
For example:

– the duration of the schedule or makespan is the function Cmax = max1≤j≤n Cj ;

– the weighted number of late tasks is the function
∑n

j=1 wjUj .

Optimizing a single criterion is sometimes not sufficient, and in order to solve
the problem, several conflicting criteria must be taken into account. For example, a
company might want to minimize delivery delays and also to minimize its storage
costs. These two criteria are clearly antagonistic, and multicriteria optimization
methods are required to develop a procedure which will provide the best compromise
solution [T’K 06].

We conclude this section by defining three scheduling classes:

– a schedule is said to be semi-active if no task can be performed earlier without
changing the order of execution or violating the constraints;

– a schedule is said to be active if no task can be performed earlier without
violating the constraints;

– a schedule is said to be without delay if at any time t resources are not present in
sufficient quantity to start an available job processed later in the schedule.
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Figure 1.1 shows a single machine scheduling problem involving two tasks T1 and
T2 with p1 = 2, p2 = 1, r1 = 1 and r2 = 0. The schedule shown in Figure 1.1a
is semi-active but is neither active nor without delay, whereas the schedule shown in
Figure 1.1b is semi-active, active and without delay.

b)a)
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Figure 1.1. Examples of semi-active and delay-free schedules

Figure 1.2 shows a parallel machine scheduling (m = 2) of three tasks T1, T2 and
T3 with p1 = 2, p2 = 2, p3 = 4, r1 = 1 and r2 = r3 = 0. The schedule shown in
Figure 1.2 is both active and semi-active but not without delay.
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Figure 1.2. An example of an active schedule that is not delay-free

1.2. Background to the study

The subject under consideration is scheduling and the problem addressed in this
book is the integration of flexibility and robustness in scheduling problems.

Scheduling problems are widely discussed in the literature, in a large variety of
contexts (see section 1.1). We distinguish here two major classes of approach:

– Classical deterministic methods, which consider that the data are deterministic
and that the machine environment is relatively simple (disjunctive resources, possibly
in multiple copies: see section 1.1.1). Some traditional constraints are taken into
account (precedence constraints, release dates, due dates, preemption, etc.). The
criterion to optimize is often standard (makespan). Problems have been investigated
and classified according to their computational complexity. A number of methods
have been proposed (exact methods, greedy algorithms, approximate methods, etc.),
depending on the difficulty of a particular problem. These kinds of studies are the most
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common in the literature devoted to scheduling problems, and there are many books
dealing with the most classic problems (see for example [BLA 01, BRU 07, PIN 01]).

– On-line methods. When the algorithm does not have access to all the data from
the outset, we say that the data become available step by step, or “on-line”. Different
models may be considered here. In some studies, the tasks that we have to schedule are
listed, and appear one by one. The aim is to assign them to a resource and to specify a
start time for them. In other studies, the duration of the tasks is not known in advance.
These problems have given rise to many theoretical studies (e.g. [SGA 98, FIA 98]).

Flexibility occurs at the boundary between these two approaches: some
information is available concerning the nature of the problem to be solved and
concerning the data. Although this information is imperfect and not wholly reliable,
it cannot be totally ignored. We also know that there will be discrepancies, for a
number of reasons, between the initial plan and what is actually realized. Given that
disruptions will occur and unforeseen circumstances arise, the aim is to propose one
or more solutions that adapt well to disruptions, and then produce reactive decisions
in order to ensure a smooth implementation. Another parameter here is the freedom
left to the scheduler about the set of solutions it might be possible to propose:
this flexibility is internal to the individual problem. Hence there are two kinds of
flexibility, this internal flexibility, and the chosen flexibility, that the method really
use when proposing a set of solutions (see section 1.4).

Robustness refers to the performance of an algorithm in the presence of
uncertainties. Measures of robustness are required, which we will show later.
Robustness can be defined at several levels: we can speak of the robustness of a
solution of course, but also of the robustness of a procedure or of a conclusion
[ROY 02]. Robustness is a qualifier which generally refers to a capacity to tolerate
approximations (on the assumptions, model or data [ROY 02]). It is also a measure
of the result after the application of a procedure in the presence of uncertainties, or
after the appearance of uncertainty, for example relative to the operation duration
the transport time, the availability of the most qualified personnel, etc. It is the
performance characterization of an algorithm (or a complete process of schedule
construction) in the presence of uncertainties (see section 1.5).

1.3. Uncertainty management

This section summarizes the sources of uncertainty for scheduling problems and
shows that all data may be concerned. The different models that take into account these
uncertainties are presented and the different approaches proposed in the literature are
then reviewed. Recent literature is too rich to make a complete state-of-the-art survey
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possible. We restrict ourselves to some basic works, leaving the more specialized
studies in the bibliographies of the different chapters.

The book by Kouvelis and Yu [KOU 97] presents the sources of uncertainty in
operations research, particularly in scheduling, and provides a discussion on models
(see also the article by Daniels and Kouvelis [DAN 95]). The article by Davenport and
Beck [DAV 00] is a very detailed review with a classification of possible approaches,
while Herroelen and Leus [HER 05] focus on project scheduling and describe a wide
range of methods.

1.3.1. Sources of uncertainty

The data associated with a scheduling problem are the processing times,
occurrence dates of some events, some structural features, and the costs. None of this
data is free from factors of uncertainty.

The duration of tasks depends on the conditions of their execution, in particular
on the necessary human and material resources. They are thus inherently uncertain,
regardless of contingent factors that may impair their execution. At any time,
communications between two tasks depend on the state of the communication
network, the level of contention, the availability of links, and so on. Similarly,
transportation times for components between separate operations in a production
process will depend on the characteristics of the transportation resources available.
Finally, in a production context, some resources such as versatile machines require
a reconfiguration time between operations. This time depends on the type of tools
needed and the location of these tools in the shop, not to mention the operator
carrying out the reconfiguration.

The start times for some events within a schedule can be part of the initial data.
This is the case for the arrival of a task (release date), which often depends on events
outside the studied system, such as events in the supply chain or a customer order.
The same is true of the due date of a task. The periods of availability of human or
machine resources is also difficult to predict precisely, due to maintenance, delays or
unforeseen absences of an operator or a raw material.

More radically, some events can be totally unforeseen and change the structure of
the problem and consequently the ongoing schedule. A task can be added or removed
without warning. The characteristics of a task can be changed, like its way of execution
(regarding, for example, the range of products or the enforcement of a particular
operator) or its relationships with other tasks, such as precedences or disjunctions.
A machine may fail or suddenly become useless for unforeseen reasons.
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Finally, if a cost is associated with a task, it can be changed without notice,
especially when the considered system is part of a larger hierarchical system: the
priorities are set at a higher level.

Thus, no data can be regarded as immutable, although the possibility of a change
depends on the context. We can consider two cases for each piece of data (duration,
date or cost): either its value is uncertain, that is to say it may take any value inside
some fixed set; or its value may be subject to a disturbance, meaning that it is set
in order to ensure normal functioning of the system, but can be changed by some
unexpected event. This is of course always the case for structural data, which are
modified according to contingent events.

1.3.2. Uncertainty of models

It follows from the above discussion that non-deterministic models are essential
for solving concrete problems in scheduling, because of the inherent uncertainty in
the data. Let us first consider the hypothesis of randomness which has given rise to
a longstanding branch of research: stochastic scheduling. Here, all data (durations
and also the dates of events, including possible disruptions) are modeled using
random variables, and possibly constants. The probability of events is assumed to be
known. From this stochastic model, it is theoretically possible to compute a priori
the best schedules, or rather (in the case of possible disruptions) policies, i.e. the
most successful decision sets (see the chapter by Weis [WEI 95] in [CHR 95] for a
presentation of stochastic scheduling, as well as the book by Pinedo [PIN 01]).

This assumption of randomness is not always made, for at least three reasons.
First, a priori knowledge about the data is not always sufficient to deduce the laws of
probability associated with it, especially if the problem is addressed for the first time.
Secondly, assumptions regarding independence are rarely justified: a major source of
disruptions may often result in a number of uncertainties concerning various data.
Finally, even if a stochastic model can be envisaged, it is often too complex to be
usable.

Data values are therefore often regarded as “simply” uncertain. However, it is
usually possible to maintain values within some limits, in almost all cases within a set
which is discrete or continuous (interval). In the case of discrete sets, we obtain a finite
but potentially large number of scenarios (a value is assigned to all data). It may be
possible to allocate a probability to each scenario, even if it is not exactly computable,
thus indirectly achieving a stochastic model. Even in the continuous case, it is possible
to proceed using these intervals. The theory of fuzzy sets is applicable here, the
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application of which to scheduling problems has seen some recent developments. This
is not addressed in this book, but has been the subject of a book published by Hapke
and Slowinski [SLO 00]; see also Dubois et al. [DUB 03].

It may happen that the data are outside the considered sets. One simple solution
to this is not to propose a set at all. Nevertheless, a commonly-used technique is to
assign to each piece of data a central value, its estimate, and all these estimated values
may then be used while anticipating the possible differences at the execution step.

To sum up, the data can be represented as either random variables (stochastic
model), real intervals (interval model) or discrete sets (scenario model). They may
or may not be associated with an initial estimate. It is of course possible to combine
different modes of representation!

1.3.3. Possible methods for problem solving

We now look at different methods for solving a scheduling problem with
uncertainties. The choice depends of course on the chosen model. Let us first list the
steps needed to solve such a problem.

1.3.3.1. Full solution process of a scheduling problem with uncertainties

Obtaining a complete solution to the problem requires the following steps:

– Step 0: defining a static problem. The definition includes, in addition to the
classical specifications in deterministic scheduling, the specifications of uncertainties
and their modeling. The concept of schedule quality must also be specified at this
stage.

– Step 1: computing a set of solutions, i.e. a family of feasible schedules achievable
by a static algorithm α (static phase). A set of solutions can be obtained from a single
solution, for example when the start times of some tasks may vary within a known
interval.

– Step 2: during execution, a unique solution is calculated, that is to say the
schedule actually carried out, which is the outcome of applying a dynamic algorithm
δ (dynamic phase) to the set of possible solutions.

The solution methods differ depending on the choices made in steps 1 and 2,
and therefore on the static and dynamic algorithms chosen. These choices depend,
of course, on the models in step 0, which were discussed above, apart from the notion
of quality, which we examine in section 1.5.
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1.3.3.2. Proactive approach

In this approach, the focus is on step 1: knowledge of the uncertainties is used
by the static algorithm to build one baseline schedule or a family of schedules.
This family can be described either explicitly or implicitly. In the literature we
also encounter the term predictive approach, the difference being that the schedule
constructed in the latter case, using a static algorithm, does not take uncertainty into
account. The starting point of this book is that it must be taken into account, and
therefore we shall only look at proactive approaches.

In both approaches, predictive and proactive, step 2, during the execution, does
not require any calculations: according to the real value of data, the baseline schedule
is used or it is adjusted to remain feasible. These choices or adjustments are made
using simple rules, such as waiting for a task to complete if it is overdue, or taking a
particular action when a particular event occurs.

A stochastic model can give rise to a proactive approach, the uncertainty being
taken into account in the computation of a baseline schedule.

1.3.3.3. Proactive/reactive approach

It is natural to couple a proactive approach, when it proposes a family of schedules,
with a more elaborate step 2: as knowledge of the actual data values is acquired, and
possibly after a disruption, a non-trivial dynamic algorithm is used to choose among
the schedules selected in the previous (static) step those that prove to be the most
efficient. This approach, responding to actual conditions while using the results of
step 1, is called proactive/reactive.

In addition, let us note that it is often impossible to take all uncertainties into
account, in particular disruptions, during the static phase. The example of machine
failure is the most obvious but not the only one. The dynamic algorithm is then a
necessity.

There are two extreme types of dynamic algorithms. The first type attempts a
repair, trying to recover as fully as possible the baseline schedule or one of the
selected schedules. In contrast, the second type carries out a re-optimization or
post-optimization, i.e. it calculates, on the basis of actual conditions, a new schedule
without further reference to the results of the static phase. The re-optimization is
needed especially in the case of contingencies which significantly change the data of
the initial problem.
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1.3.3.4. Reactive approach

In the purely reactive approach, the choices specifying a schedule are made
during the dynamic phase. We must keep in mind that depending on the context,
the reaction time required may vary from several days for some projects to less
than a second for computer applications or embedded systems. If we have relatively
accurate information regarding the value of data in the ongoing schedule (see step
0), the ideal scenario is to compute the optimal decision at every point where a
choice can be made, which corresponds to post-optimization, here used in an iterative
manner. However, simple decision rules are more often applied, such as giving
priority to tasks with smaller margins. These rules rarely build optimal schedules. In
the particular case of stochastic models, it is sometimes possible to show that one
set of rules (here called policy) is the best, for example according to the criterion
expectation (see section 1.5).

Finally, when very few assumptions are made about the data (no estimates),
decisions to be made at each moment are very difficult to evaluate a priori, which
leads us into the area of on-line scheduling mentioned earlier. A typical case is when
the characteristics of a task (duration or mode of execution) are unknown until the
job is ready to be executed. The on-line scheduling reviewed by Sgall [SGA 98] is
beyond the scope of this book.

1.4. Flexibility

The introduction of flexibility into a scheduling problem reflects the degree of
freedom during the implementation phase of the scheduling. This flexibility can take
several forms:

– Time, or temporal flexibility, i.e. regarding the starting times of operations. This
flexibility can be seen as implicit in scheduling, since it allows some operations to
drift over time, if conditions dictate. This is the first level of flexibility in scheduling.

– Flexibility regarding order of execution, or sequential flexibility. This means
being able to change the order in which the operations should run on the machines, and
implicitly presupposes temporal flexibility. It can be proposed during the execution of
the sequence, allowing some operations to overtake others, if the conditions require it.

– Flexibility in assignments. In cases when there are multiple copies of resources,
this allows a task to be executed using a resource other than that which was initially
planned. This flexibility is a great help, for example when a machine becomes
unavailable. It implicitly presupposes sequential flexibility and temporal flexibility.
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– Flexibility in the execution mode. The execution mode encompasses the
possibility of preemption, overlap, changes in product range, whether set-up time
is taken into account, changes in the number of resources required to perform an
operation, and so on. This flexibility can be proposed depending on the context to
overcome a difficult situation.

Flexibility, which is a degree of freedom available during the operational phase,
can be harnessed in step 1, during the static phase. Indeed, some methods, in order
to give more flexibility regarding start times, will allocate the available margins to
operations in proportion to their length, for example, or will allocate margins to the
operations considered as the most critical, as is the case with the concept of buffer
in the critical chain [GOL 97, HER 01]. In order to give more sequential flexibility,
the concepts of groups of swappable tasks ([ART 99, ART 05]) and of partial order
between tasks [ALO 02, WU 99, MOU 99] have been proposed. These methods were
designed to build robust schedules.

The challenge when introducing flexibility is finding a way of measuring the level
of flexibility obtained. Some approaches rely on measuring a posteriori the utility of
the flexibility proposed by comparing the quality of a flexible solution to that of a
non-flexible solution in the presence of disturbances. It is consequently the robustness
measure that should indicate whether or not a particular flexible solution is better than
a non-flexible solution.

1.5. Robustness

It is really difficult to give a unique definition for robustness, as this concept
is differently defined in several domains. Furthermore, often in the literature, the
definition often remains implicit in the literature or is determined by the specific target
application. Finally, most authors prefer to use the concept of robust solution (and
here, of robust schedule).

Let us first propose some consensus definition: a schedule is robust if its
performance is rather insensitive to the data uncertainties. Performance must be
understood here in the broad sense of solution quality for the person in charge; this
naturally encompasses this solution value relatively to a given criterion, but also the
structure itself of the proposed solution. The robustness of a schedule is a way to
characterize its performance.

Anyway, analysis cannot restrict itself to one solution. We are mainly interested in
the performance of the process previously detailed (see section 1.3.3.1) to build these
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solutions according to the real problem data. Throughout this section, the term method
will be used to designate the whole building process of the final schedule. Thus, we
follow Bernard Roy [ROY 02] who states that the person in charge is not interested
in a specific solution, but in the set of solutions a method can build according to
the real data, and by their variability. The questions raised in this work, in the larger
framework of decision aid are fundamental also for scheduling under uncertainties.
When the whole method is not explicit, but one stage alone (static or dynamic) is
under study, it is then legitimate to use the terms of robust algorithm, or even of robust
schedule.

The curious reader might also find it very useful to look for works about robust
optimization at large, reflecting the diversity of the approaches; see Kouvelis and
Yu [KOU 97], Ben-tal and Nemirovski [BEN 99], Aïssi et al. [AÏS 07], among many
others.

In order to characterize robustness, different tools that might be used are presented.
This in fact implies that several types of robustness exist. The following notations shall
be used:

– P: a static problem, together with uncertainties description. Hence P is a set,
possibly infinite, of instances of the deterministic problem.

– I: an effective instance of P (describing the effective conditions met during
execution) also called the scenario.

– S: an effective schedule, obtained by the studied building process. S varies
according to the considered scenario and in cares of possible ambiguity it is noted
SI .

– zI(S): performance of schedule S realized on I, simply denoted zI if there is
no ambiguity.

– z∗I : performance of an optimal schedule on I.

In deterministic scheduling, the performance criterion is fixed from the
beginning, and it is immediately computable for a fixed schedule. In scheduling with
uncertainties, there are several possible measures for a given criterion, and we try to
give below a typology of these measures.

1.5.1. Flexibility as a robustness indicator

As said before, flexibility is the freedom allowed at execution phase for building
the final schedule. Intuitively, it should be easier to propose a robust method if the
allowed flexibility is large. Let us think about this. If everything is possible, we could
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be tempted to report any decision at execution phase (reactive approach); this is not
always the best for the quality of the final solutions (myopic behavior, temporal
constraints). Another key feature of a method is its feasibility for all considered
uncertainties. If uncertainty is large, and/or disturbances numerous, the feasibility
cannot be guaranteed in general (unless some exceptional repair mechanism can be
set). Hence we should always try to maximize the method flexibility, expressed as
its feasibility for the largest set of scenarios (here understood in a broad sense). It
must be noted that starting from the internal or allowed flexibility, we consider now a
chosen flexibility. In that sense, a flexibility indicator can rightly be considered as a
robustness measure for the method at hand; see Chapters 9 and 11 in this book.

Still, it is always a good idea to couple that indicator with another measure, bound
to the performance in the classical sense. Concerning the studies from the literature,
the feasibility guarantee is usually implicitly accepted as a property of the method (a
hypothesis that should be justified). In that case, flexibility is not measured.

1.5.2. Schedule stability (solution robustness)

Here the performance criterion (makespan, mean flow-time, etc.) is not considered.
For a given method, we try to minimize the differences between the different solutions
obtained (by the same method) for different scenarios. In automation literature this
specific aspect of robustness is sometimes called stability, a term that shall be used
in that sense inside this book (see Chapters 8 and 13); ideally, there is one schedule
unchanged for the different scenarios, hence it is stable. The difference between two
schedules, denoted their distance d, can be for instance the number of permutations
between tasks or machines, or any other adequate measure in the considered context.
Then we might try to minimize either the largest distance between two solutions, or
the largest distance with respect to some reference, or baseline, schedule S̃. In the
second case, we speak naturally of the stability of this baseline schedule, or of solution
robustness [HER 05].

R1 = max
I,I′∈P

d
(
SI , S′

I
)

R′
1 = max

I∈P
d
(
SI , S̃

)

In a way, we try to build the smallest set of schedules compatible with the
uncertainty taken into account. Equivalently, it is the search for a solution set of
minimum flexibility, but sufficient to guarantee feasibility. In practice, we usually
start from a reference (or baseline) schedule whose performances are acceptable for
the available estimations.
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1.5.3. Stability relatively to a performance criterion (quality robustness)

Again, we try to minimize a distance between the solutions obtained by different
scenarios. This time though, the distance is measured with respect to the obtained
value of the criterion. In [HER 05] this is called quality robustness, meaning that
the quality (criterion value) of the baseline schedule should remain equivalent in all
scenarios. With different models and points of view, such robustness measures are
used in Chapters 6, 7, 12 and 14. If this value is considered as one characteristic,
among others, of a schedule, it is a particular example of the previous case: we look
for a set of solutions with close performances. Most often this approach is used
jointly with a model based on estimations of the data (scenario Ĩ). There is a baseline
schedule, and the robustness measure is given by the largest difference between the
performance of this schedule for the initial scenario zĨ , and the performance obtained
for any other scenario:

R2 = max
I∈P

zI
zĨ

(relative difference)

R′
2 = max

I∈P
∣∣zI − zĨ

∣∣ (absolute difference)

R2 can be called the stability ratio. In one important case, only one schedule is
built whatever the scenario (this implies the feasibility hypothesis). In fact, a family of
schedules is usually considered, obtained from an initial schedule by accepting some
amount of temporal flexibility. The robustness of this schedule S is measured by R2

or R′
2, zI being here the performance of S for I.

From the perspective of the associated optimization problems, such as looking for
the most robust process for R2, the problem is equivalent to minimizing the largest
value of the criterion on the set of possible scenarios as soon as zĨ is fixed.

When statistical data are available, a stochastic model can be used and it is
possible to look for schedules whose mean behavior is good. Although the robustness
measures are obtained from R2 or R′

2 by replacing the maximum by, for instance,
the expectation, it is less natural to speak of stability (except that it means some
guarantees can be obtained about, for instance, the mean behavior). The obtained
measures are here the traditional measures in stochastic optimization, particularly:

R3 = EI∈P
[
zI
]

(criterion expectation)

The drawback of all these measures is that they sometimes lead to schedules quite
far from the best solution for a given scenario, even if it is reassuring to build a stable
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set of solution, or a set with good mean behavior. That is why many authors keep the
term robustness for other measures.

1.5.4. Respect of a fixed performance threshold

Frequently, a target performance z̃ is defined a priori. The method is then
considered as robust if no performance schedule exceeds this threshold, whatever the
scenario. Hence the measure

R4 = max
I∈P

(
zI − z̃

)
(absolute deviation with respect to some threshold)

Of course, the associated optimization problem is the same as for the stability with
respect to the performance criterion (see section 1.5.3) and the same drawback holds.

In the case of a stochastic model, it is logical (see Daniels and Carillo [DAN 97])
to minimize the probability of exceeding the threshold:

R5 = PI∈P
(
zI ≥ z̃

)
(service level measure)

The difficulty in using this measure (see Chapter 5) comes from the fact that we
must know the probability law associated with the random variable z.

1.5.5. Deviation measures with respect to the optimum

Robustness is measured here by comparing the criterion value obtained by the
method and the optimum value, this for all scenarios. Following [DAN 95, KOU 97]
we use the term of deviation: absolute deviation if the difference is computed; relative
deviation for the ratio. There are several possibilities for using these deviations. One
possibility is to compute their maxima, or their expectation in a stochastic setting.
Thus, two relative measures are possible:

R6 = max
I∈P

zI
z∗I

(worst case relative deviation)

R7 = EI∈P

[
zI
z∗I

]
(relative deviation in expectation)

and the corresponding absolute measures R′
6 and R′

7. In robust optimization literature
(see [AÏS 07, AVE 00, MUL 95]), the absolute deviation is called the “minmax regret
criterion”. Note also that in approximation literature, and sometimes in on-line
optimization, the term competitivity ratio can be used for the relative deviation.
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Computing these measures supposes that the optimal solution can be computed
for each scenario, and in the stochastic case, that the probability of each scenario is
known. This is not always possible, and we might just compute some upper bound,
called the sensitivity bound, absolute or relative (see Chapter 4). It is also possible in
the stochastic case to compute an approximation of R7 or R′

7, by computing a mean
after sampling the scenarios, see Kouvelis et al. [KOU 00] and more generally the
stochastic optimization literature. We might speak then of sampled mean deviation.

1.5.6. Sensitivity and robustness

In the literature, it is sometimes difficult to separate sensitivity analysis and
robustness. In fact the sensitivity analysis tries to answer the “what if...” questions.
It deals with disturbances more than with general uncertainty: data are fixed but
might be disturbed, a baseline schedule S̃ is given, which is most often optimal.
Sensitivity analysis tries to measure the performance degradation of S̃ for a particular
disturbance. It is not concerned with the execution phase: the robustness of a static
algorithm is measured. Among the above measures, sensitivity analysis might use
R′

1, R2, R6 or R′
6, and does not deal with probabilistic models. Furthermore, it comes

historically from linear programming (LP), and as for LP disturbances concerns one
parameter at a time. In LP, the maximum change of a parameter for which the current
basis is still optimal is easy to compute. In scheduling, Sotskov et al. [SOT 98] did
introduce the stability radius ρS̃ . Computing the radius is equivalent to searching for
the maximum disturbance size for which R′

2 = 0. Hall and Posner [HAL 04] present
a classification and many results about sensitivity analysis in scheduling.

It is of course possible to extend the analysis to a true uncertainty on data
simultaneously considered (see [PEN 01] and Chapters 3 and 4 in this book), if the
study is restricted to the static phase and to some disturbance types (taking into
account the breakdowns, for instance, seems impossible). However, it is then difficult
to show results on the stability radius for instance.
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Chapter 2

Robustness in Operations Research
and Decision Aiding

It is always advisable to perceive clearly our ignorance.
(Charles Darwin)

2.1. Overview

The search for robustness is an ever present concern is Operations Research and
Decision Aiding (OR-DA) where increasingly rich and diversified methodologies and
concepts are emerging. The term “robust” applies to a large variety of objects such as
solution, method and conclusion. In OR-DA, the notion of robustness is often used in
the same way as (sometimes even instead of) flexibility, stability, sensitivity and even
equity in certain cases.

Faced with this diversity, I think it is necessary to highlight what seems to be
the generally used meaning for the term “robust” in OR-DA (section 2.1.1) before
specifying the reasons leading to the concern for robustness in this discipline (section
2.1.2) and presenting the structure of this chapter (section 2.1.3).

Chapter written by Bernard ROY.
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2.1.1. Robust in OR-DA with meaning?

As I see it, robust is a term that is generally used in the sense of a capacity
for withstanding “vague approximations” and/or “zones of ignorance” in order
to prevent undesirable impacts, notably the degradation of the properties to be
maintained.

“Vague approximations” can refer to a way of modeling, the restrictive character
of certain hypotheses, mode of value allocation to data and/or parameters, etc.

“Zones of ignorance” may deal with the complexity of certain phenomena and of
value systems but mostly the future: trends, contingencies, behavior of others, etc.

Here are a few examples to illustrate this meaning of the term “robust” in
scheduling. In Chapter 1, a solution is said to be robust if its “performance is rather
insensitive to data uncertainties and disturbances”. In this context, insensitivity to
data uncertainty means resisting to this uncertainty1. The uncertainty in question can
for example refer to the way of modeling which processes certain data as insignificant
or not influenced by contingencies, a Gaussian hypothesis simplifying the mode
of consideration of a random phenomenon or the approximate character of values
attributed to data (processing time, due date, etc.).

In some maintenance studies, scheduling must be conceived to guarantee deadlines
are respected even though the jobs to be done are not well known (resistance to a
certain form of ignorance). Job-shop scheduling may have to be chosen for its capacity
to face an order book that is only partially known or with unknown reactions to delays
that the end customer may encounter because of contingencies. Climate conditions,
as well as work-related accidents or social upheavals, are sources of ignorance that
project management may have to consider.

Two comments seem necessary to specify the meaning of what was just discussed:

1) Even though the borderline between vague approximations and zones of
ignorance is far from being well defined, all vague approximations do not come from
a zone of ignorance and all zones of ignorance do not lead to vague approximations.

1. The term “uncertainty” imperfectly covers all forms of vague approximations and zones
of ignorance that need to be resisted. This is the case in particular of vague approximations
resulting from simplifications or ill determinations. This is also the case for zones of ignorance
coming from certain forms of imperfect knowledge relative to the complexity of phenomena or
value systems.
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2) Resistance can have the following meanings: protecting from, adapting to,
being rather insensitive to, remaining stable, settling a certain form of equity, etc.

We will now examine the reasons resulting in the need to resist these vague
approximations and zones of ignorance in OR-DA.

2.1.2. Why the concern for robustness?

In OR-DA, the capacity for resistance qualified by robustness is required in order
to be protected from undesirable impacts, impacts that should be apprehended taking
into account these vague approximations and/or zones of ignorance that need to be
resisted. The nature of these impacts, along with the (very often subjective) way of
assessing their undesirable character, are contingent to the context involved. The
concerns motivating the search for robustness are extremely diversified for these
reasons. I will settle for illustrating them through a series of examples in this chapter:

i) Exceptional character decisions

– Layout of a large linear infrastructure (very high speed train line, highway,
high-tension line, etc.): throughout the execution (five years or more), what reactions
will it generate? Once this is finished, what standards will it be judged by? Will the
size be adapted to traffic?

– Construction of a sanitation or waterworks system: knowing that implementing
such activities, as with the evolution of consumption patterns, can only be defined
in large variation ranges, will the designed system be able to fulfill population
requirements in the planned horizon without needing adjustments leading to
prohibitive costs?

– Updating of equipment: considering the evolution of technology and
environmental standards, when should the decision be made to update?

ii) Sequential character decisions

– Plan designed to be implemented in stages: how will the contexts in future stages
be affected by the decisions taken at this present stage? Do they allow for possible
evolutions of these contexts by keeping the range of adaptations and reactions open?

– Scheduling flight personnel in an airline company: how can we handle
unexpected unavailability of teams (unforeseen absences, immobilization during a
mission, etc.) in acceptable economic conditions and with no planning disruptions
for agents?
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iii) Choice of a method for repetitive applications

– Management support method for restocking a store: does the method protect
against out of stock risks that could result from a failure to respect of delivery lead
times by suppliers? Is it adapted for possible evolutions of purchase agreements?

– Method controlling budget distribution between members in a group: knowing
that the size and composition of beneficiary groups can greatly change over time and
space, will the method retained be considered fair in all cases where it will be applied?

– Adjustment method for a model dedicated to emphasizing the way in which
different factors contribute to global client satisfaction during consecutive surveys:
how can we avoid the results depending on final retained values (chosen in a relatively
arbitrary manner in certain intervals) for different technical parameters involved in the
model?

2.1.3. Plan of the chapter

In the next section, I will examine where, for a decision aiding problem (DAP),
“vague approximations” and “zones of ignorance” come from, for which the need
for protection leads to the search for robustness. These vague approximations and
zones of ignorance are closely linked to the way that the decision aiding problem
is formulated (DAPF). They can also depend (although generally less so) on the
processing procedure applied to this formulation in the decision aiding process. This
leads me to introduce the general concept of version. In section 2.3, I will specify
the meaning I give to several currently used terms (procedure and method notably)
in order to clarify their links with the concern for robustness. In section 2.4, I will
focus on the way to take robustness into consideration: what must be robust? How
can we formalize robustness? In what form can vague approximations and zones
of ignorance be taken into account? Unfortunately, many questions raised here will
remain unanswered. A brief conclusion will complete this chapter.

2.2. Where do “vague approximations” and “zones of ignorance” come from? –
the concept of version

2.2.1. Sources of inaccurate determination, uncertainty and imprecision

Once the DAP is formulated, we should identify, in this formulation, the
“places” (concepts, numerical data, presence or absence of links between phenomena,
neglected aspects and factors, way to formulate constraints and criteria, the
arbitrariness of certain operating instructions in a process mode, etc.) which could
be affected by vague approximations and/or zones of ignorance. The specific form in
which these relevant places are presented is obviously very specific to the problem
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studied, the way it is formulated and the process mode applied. Nevertheless, I think
it is possible to see them whatever they are as frailty points connected to sources
of inaccurate determination, uncertainty or arbitrariness (see [ROY 89]). The vague
approximations and zones of ignorance that must be resisted actually come from such
sources. They can, it seems, be classified into three categories (even though the line
separating these categories is not perfectly well defined, they affect sides of the DAPF
which I think it is important to distinguish):

– Source S · α: vague, uncertain, unknown, and even undetermined character of
factual data, objective descriptions of phenomena and purely technical procedural
aspects in relation to the form in which they must occur during the aiding process
in the present situation.

This source may, for example, affect frailty points such as: processing times, due
dates, process cost, failure probabilities, probability distributions chosen for modeling
a random factor, discrimination thresholds, values given to the parameters playing
a mostly technical role in a model or procedure, techniques used to adjust a model
intended to represent complex phenomena, etc.

– Source S ·β: implementation conditions of the decision that must be taken; these
conditions can be influenced by the future state of the environment:

- during implementation if the decision is punctual (i.e., taken all at once);

- by consecutive environmental steps if the decision is sequential.

This source may, for example, affect frailty points such as: what will have
happened (during implementation), labor and/or raw material cost, interest rates,
consumption patterns, boundaries of what is acceptable (social and environmental
standards among others) or the presence or absence of disrupting events (unavailable
personnel or equipment, opposition of some stakeholders, climatic incidents, etc.).

– Source S ·γ: eminently subjective character of different aspects (not dealing with
sources S ·α and S ·β) dealing with feasibility, relative interest and process modes of
the different potential actions, especially the fuzzy, unstable and possibly incoherent
and/or incomplete character of value systems which are supposed to prevail in the
decision aiding process.

This source may, for example, affect frailty points such as the role devoted
to certain criteria (notably on the basis of values allocated to substitution rates,
weight, veto thresholds, etc.), the level required to validate a majority or set a cut-off
threshold, the mode of appreciation for limits marking the feasibility or boundary
between categories, the way to code a qualitative dimension by means of an interval
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scale, the way to apprehend attitude toward risk, the place reserved for certain actors
(notably future generations).

2.2.2. DAP formulation: the concept of version

The expression DAP formulation must be taken in a very general sense. It
obviously includes the model, insofar as there is modeling (see section 2.3.3 below),
but in a broader sense, everything that was in question and has finally been retained to
contain and consequently formulate the problem, including the problematic (the way
in which decision aiding was conceived, see [ROY 96], Chapter 6), the properties to
preserve and, in general, the undesirable impacts from which we want to be protected.

When we start being concerned about robustness in OR-DA, it is necessary
in my opinion to start by identifying in DAPF what I have called frailty points
connected to each of the three types of sources S · α, S · β, S · γ. Relative to each
of these frailty points, we should then explain the different options which deserve
to be considered within this formulation in order to take inaccurate determination,
uncertainty and arbitrariness margins into consideration from these sources. The
selection of a specific option for each of the identified frailty points defines what I
proposed (see [ROY 02, ROY 07]) to call a version of DAPF. If it is carried out without
precautions, this selection can very well lead to combinations lacking in coherence or
plausibility. Let V̂ be the set of versions V corresponding to combinations of options
deemed (possibly from very subjective bases) to be of interest (V̂ cannot be discrete).
From this definition, two versions of V̂ can notably differ by:

1) The values assigned to certain factual data or technical parameters
characterizing events, phenomena, etc.: this is the case in particular with vague
approximations and zones of ignorance from S.α; when in the DAPF, this source is
the most significant, the word version becomes synonymous with instance or datasets.

2) The way that we describe the future universe in which the decision must
be executed: this is the case in particular with vague approximations and zones of
ignorance from S.β; when in the DAPF, this source is the most significant, the word
version becomes synonymous with scenario.

3) The way in which ambiguities, uncertainties and the multiplicity of value
systems are taken into consideration: with vague approximations and zones of
ignorance from S.γ this is particularly the case for; when in the DAPF, this source
is the most significant, the word version becomes synonymous with interpretation or
mode of appreciation.
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I think it is useful to emphasize that the way in which V̂ versions distinguish
themselves does not generally come from only one of the three sources. The search
for robustness must rely on what comes from each source in order to arrive at an
appropriate design (see section 2.4.3) of the set V̂ . However, the processing procedure
of these versions in a perspective of decision aiding can also be affected (in certain
cases, we could also say “infected”) by sources S ·α, S ·β, S ·γ as will be emphasized
in the next section.

2.3. Defining some currently used terms

These refinements seem useful to clarify what is commonly applied to the term
“robust” in OR-DA as well as the way in which the search for robustness can be
guided. With this goal in mind, I will first explain what I mean when I use the terms
procedures, results and methods. I will then discuss the existence of two types of
procedures and methods commonly used in OR-DA. Finally, since the search for
robustness generally leads to emphasizing a certain number of results in order to reach
conclusions, I will explain how I use this last term.

2.3.1. Procedures, results and methods

A procedure P represents a set of execution instructions for handling a problem
that will produce a R(P, V ) result when applied to a version V of a DAPF. These
execution instructions often present frailty points (I will give a few examples during
the presentation of a method) which always have S · α, S · β, S · γ as sources.

Result is used to refer to the outcome of applying P to a rigorously formulated
problem. A R(P, V ) result can have different forms, with the main ones as follows:

1) Solutions2 or bundles possessing the required properties: admissible, not
dominated according to a family of criteria, optimal according to a criterion, etc.;

2) Statements: absence of solutions with such property(ies). . . , observed
inconsistencies or incompatibilities are as follows . . . and they have this origin. . . , that
solution has this performance and its gap in relation to the optimum equals..., this
solution is not dominated, etc.

For different reasons, the search for robustness can lead to the application of
several approaches to the same decision aiding process: sources S.α, S.β, S.γ can
for example justify the involvement of a set P̂ of procedures.

2. In the context studied, the way that a problem is formulated is what leads us to agree on the
meaning that we give to the term “solutions”.



42 Flexibility and Robustness in Scheduling

A method M here designates3 a family P̂ of similar procedures, i.e., they satisfy
both the following requirements:

1) P̂ procedures act as members of the same class because of their common
features (structure, concepts, axioms or hypotheses, etc.).

2) Procedure class members are only different by the options taken in relation
to certain frailty points of the method (examples: concordance level or cut-off
threshold in ELECTRE methods, thresholds used to make strict certain inequalities
in MACBETH or MUSA, multiple parameters occurring in Tabu search, simulated
annealing, genetic algorithm methods4, etc.) and/or by different consideration modes
(not necessarily formalized) of certain aspects of the version to which they are applied
(examples: a way to exploit certain liberties offered in scheduling methods, see
Chapter 1, role of a function as criterion or constraint in multiobjective programming5,
expert subjectivity in an expertise type method (see section 2.3.2 below), etc.).

2.3.2. Two types of procedures and methods

In OR-DA, we use two types of procedures and consequently two types of
methods.

Algorithmic procedures (AP): these are procedures in which the execution
instructions for the processing procedure are formalized enough to be trusted to a
“machine” with no human intervention. In order to be applied to a version, this type
of procedure requires that this version has also received a complete and rigorous
formal definition.

By algorithmic methods (AM), I designate a method where all procedures are AP.

Expertise procedures (EP): these are procedures in which execution instructions
for the processing procedure require the intervention of a human, here called the
expert. With this term, I particularly include the one that has to intervene as decision
maker in an interactive procedure6. Procedures of this type can be applied to versions
which have not received a complete and rigorous formal definition. Because the result

3. In relation with the terminology of [VIN 99a, VIN 99b]; however, Vincke did not impose the
further restrictive conditions.
4. For more information on these methods, see [SOR 01, GRI 02, BAN 05] and [FIG 05b].
5. For more information on these methods, see [EHR 02].
6. For example, see [ROY 93, BEU 01, DIA 02, DIA 07, GRE 07, AÏT 04, BAN 05, KOR 05,
SAA 05, FIG 08].
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can depend on the expert, each EP procedure must incorporate the personality of the
expert in its definition (contrary to the machine which normally does not get involved
in an AP procedure definition). EP procedures can obviously include algorithmic
phases.

By expertise methods (EM), I designate a method where all procedures are EP. In
this type of method, I include, for example, those involving several experts in a single
DAPF7, the expert being for instance different from one procedure to the next.

A procedure and, more importantly, a method applied to several versions of a
DAPF produce a set of results that robustness research must use.

2.3.3. Conclusions relative to a set R̂ of results

A set V̂ of versions and a set P̂ of procedures that can be applied to these versions
being given, I propose calling (see [ROY 97, ROY 98]) conclusion any assertion
(deemed valid) which exploits all or a part of a set R̂ of results obtained from (P, V )
pairs, elements of a set T̂ ⊂ P̂×V̂ . Considering the previous definitions, there follows
a few assertion examples which may constitute conclusions:

– Except for the following procedures... all (P, V ) ∈ T̂ pairs reveal the following
solutions... as admissible with the following evaluations...

– For all pairs of T̂ , S is a solution for which the gap to optimum never exceeds a
given threshold.

– Results from R̂ obtained from a sampling T ⊂ T̂ reveal the following
invariants...

– The notable admissible solutions present in R̂ lead to bring to light the following
variation margins in relation to the performance of considered criteria...

– Except for a few pairs (P, V ), a given set S of solutions benefits from the
following properties...

– The following objectives... are irreconcilable when we only consider the pairs of
a given subset T ⊂ T̂ .

2.4. How to take the robustness concern into consideration

By using the previous definitions and conventions, it is now possible to specify
(see section 2.4.1) how the term “robust” is usually applied in OR-DA. This will then

7. See, for example, [SAL 95, ROU 96, KIM 98, PIC 01, DAM 02].
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lead me to raise some questions (without claiming to have many answers) concerning
validating robustness (see section 2.4.2) and conceiving the sets P̂ , V̂ , T̂ (see section
2.4.3).

2.4.1. What must be robust?

I would first like to shed light on the fact that, regardless of what is qualified as
“robust”, robustness involved is relative to the set of pairs (P, V ) considered. Second,
I would like to emphasize the fact that this term “robust” is not relevant for qualifying
the R(P, V ) product resulting from the application of a single procedure P to a single
version V . On the other hand, it can qualify:

1) A (AP or EP) procedure P by reference to a set V̂ of versions in the case where,
for each of these versions, P provides a solution, or a set of solutions, or a statement
considered adapted to the version involved, in relation to one or more criteria to define
it. Several chapters of this book examine, explicitly or otherwise, the robustness of a
procedure, often called an algorithm (for example see Chapters 3, 4, 6 and 9).

2) A solution S by reference to a set T̂ not reduced to a single pair (P, V ): for
example, we will say that S is robust because it is always admissible or it is always at
most ε% from the optimum in all cases studied; other example: value λ0 of parameter
λ occurring in a set P̂ of adjustment procedures constitutes a robust solution because,
regardless of the versions V ∈ V̂ considered, the model correctly reports observations.

3) A set S of solutions: this can be qualified as robust, for example:

– in the case where it is built from a set P̂ of procedures applied to a single version
V if these solutions are compatible or do not reveal a contradiction in a previously
defined sense;

– in the case where it is built applying a single procedure to a set V̂ of versions
if, ∀V ∈ V̂ , in S there exists at least one solution considered satisfactory, in a well
defined sense, for this version (see section 1.3.3.3).

4) A conclusion similar to those illustrated in section 2.3.3 above: qualifying this
robustness conclusion means that its validity is recognized in conditions which deserve
to be clearly made explicit. Before clarifying this point, I would like to point out
that the assertion of robustness of a procedure, a solution or a set of solutions (as
it was considered previously) is none other than a relatively familiar form of robust
conclusions. I have shown (see [ROY 07, ROY 98]) the usefulness of distinguishing
at least three types of validation conditions for a conclusion qualified as robust. They
are briefly described below:
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– A conclusion is qualified as perfectly robust when it is rigorously validated for
all pairs of a well defined set T̂ ⊂ P̂ × V̂ .

– A conclusion is qualified as approximately robust when it is rigorously validated
for “almost” all pairs (P, V ) of a set T̂ ⊂ P̂ × V̂ , “almost” meaning that exceptions
are relative to pairs (P, V ) which are not necessarily well identified but considered
insignificant in the sense that they involve combinations P × V not considered
interesting or relevant.

– A conclusion is qualified as pseudo-robust when it makes a statement that is not
necessarily rigorously formalized but considered valid for most pairs (P, V ) of a set
T̂ ; the validity judgment can for instance rely on the results obtained for a sampling
T of T̂ pairs.

5) A method M : defining the conditions that must be fulfilled to qualify a method
as robust can be very different according to contexts (in particular, see Chapter 1
and [VIN 99a, VIN 99b]; [SOR 01]; [SLO 03]). These definitions can in particular be
different whether the method must be applied to a single well identified version or to
a set of versions. I now propose to qualify a method as robust in relation to a version
or a set of versions to which it is applied:

– for AM if solution S or set S of solutions produced is robust in a well defined
sense (see 1 and 2 above);

– for EM if it is possible to arrive at validated conclusions (see section 2.3 above)
by the expert(s) involved.

These examples shed light on the fact that in all cases, the term “robust” must
relate to set T̂ or subset T ⊂ T̂ of pairs (P, V ) considered for validating the type of
robustness desired.

2.4.2. What are the conditions for validating robustness?

The considerations in the previous section highlight the variety to which the term
“robust” can be applied to as well as the diversity of validation conditions which can
be used to accept of reject robustness. Considering the DAPF and what we want to
apply the term “robust” to, choosing these validation conditions greatly depends on
the nature of undesirable impacts from which we want to be protected as well as the
way in which we must be protected. In order to set these validation conditions, we can
attempt to answer questions such as:

a) Will the validation conditions operate by acceptance-rejection (admissibility,
respect for a performance threshold, etc.) or by using a degree of robustness (see b
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below) or still by being qualified in different ways (perfectly robust, approximately
robust, pseudo-robust, etc.)?

b) When the concept of solution is present8 in what the term “robust” must apply
to, must undesirable impacts be understood in terms of:

– efficiency: performance level, cost difference (relative or absolute) in relation
to an optimum, etc. (see for example Chapters 4, 5 and [SEN 91, RIO 94, ESC 94,
KOU 97, VAL 99, HIT 00, JEU 00, AIS 07, KAL 07, ROY 07])?;

– flexibility: possibilities of adaptation, openness to the future, etc. (see for
example Chapters 9, 10, 11 and [GUP 72, ALO 01, ROS 01a, ROS 01b, ROS 01c,
SEV 02, ALO 07, SOR 07])?;

– stability: performance gap between solutions relative to the different version
pairs or between a reference solution or relative to the different versions (see for
example Chapters 1, 3, 12 and [SAN 07])?;

– equity: balance of a certain distribution (see for example [PER 03, SPA 03])?

c) Is it necessary to be able to compare the robustness of solutions, of set of
solutions, of conclusions or methods: if that is the case, must we define a single
criterion or a set of criteria?

d) Must the results relative to those of pairs (P, V ) ∈ V̂ which, in some respects,
seem to be the worst, play a decisive role in the way to understand robustness (see
Chapters 4, 6 and 11; [KOU 97])? Since the worst can very well be unlikely, is a more
nuanced reasoning possible by combining risk and efficiency (see [SOR 01, HIT 02])?

2.4.3. How can we define the set of pairs of procedures and versions to take into
account?

The answer to this question is (except in rare cases) very subjective. Considering
the nature of impacts from which the goal of robustness is to protect as well as the way
we must be protected, it is useful to begin by considering the following questions:

1) How can we state the definition of a set V̂ of representative versions? Should
they be completely formalized?

2) How can we choose a set P̂ of appropriate procedures? Must these procedures
be of AP or EP type?

8. Examples in section 2.4.1 illustrate that this is very often the case, even though “robust” is
used to qualify conclusions or a method.
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3) Can set T̂ of pairs (P, V ) to consider be restrictive or not (for incompatibility,
lack of interest or processing time reasons) to a subset of P̂ × V̂ ?

I think it would be useful at this stage to emphasize the fact that research that
is too systematic for frailty points to be affected by vague approximations and/or
zones of ignorance may lead to excessive proliferation of versions and/or procedures
to consider. On the other hand, an insufficient critical attitude, ignoring the saying “a
man who doesn’t know that he doesn’t know thinks he knows”, can lead to reducing
this proliferation excessively. In other words, it is advisable to find a compromise in
each situation between these two opposite tendencies taking into account expectations
of those in whose name decision aiding is occurring.

2.5. Conclusion

Those responsible for making decisions or more generally for influencing a
decision making process do not expect the decision aiding to dictate their choices.
They are looking for useful information that will help to restrict the scope of their
deliberations and actions.

Whether this information is presented in the form of recommended solutions,
suggested method or prescriptions based on conclusions, they will only really be
useful if the manner in which they are dependent or conditioned by contingency,
arbitrariness and ignorance liable to come from sources S.α, S.β, S.γ was taken into
account in a sufficiently large and explicit framework.

It is therefore important that this information exploits not only a single special
result R(P, V ) but all those associated with a set T̂ of pairs (P, V ) built from sets P̂

and V̂ . These sets must actually be conceived to respond to this robustness concern.
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Chapter 3

The Robustness of Multi-Purpose Machines
Workshop Configuration

3.1. Introduction

The aim of this chapter is to propose new tools to assess the configuration
robustness of a workshop in uncertain context. The present work is based on a
real-life application provided by a semi-conductor manufacturer. It is focused on
a photolithography workshop composed of 15 machines which process around
40 different product types. The configuration of this workshop is a major issue
because the machines are very expensive, and subject to rapid obsolescence. As a
consequence, the workshop manager aims at minimizing idle time on the machines.
Thus, the robustness of a configuration is its ability to maintain a loading ratio equal
to 100%, even when the actual demand deviates from the forecast demand.

3.2. Problem presentation

In this section, the workshop is modeled as a set of multi-purpose machines and the
uncertain context is explicitly delineated. The criterion used to assess the configuration
performance and the attached robustness measure are presented afterwards.

Chapter written by Marie-Laure ESPINOUSE, Mireille JACOMINO and André ROSSI.
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3.2.1. Modeling the workshop

3.2.1.1. Production resources

A photolithography workshop is composed of m parallel machines that are
partially multi-functional: each machine can process a subset of product types. This
is due to the fact that processing a product type requires equipping the machine with
a resin, which is available in limited quantity. This limitation is the origin of the
qualification constraints: a machine is said to be qualified for a product type if it is
equipped with the required resin, otherwise it is not qualified. Products of the same
type require the same resin, and are considered identical. The number of product
types is denoted n. The set of all the qualifications of the machines is the workshop
configuration. This configuration is the result of a decision-making process aiming at
reaching a loading ratio equal to 100%. Furthermore, this choice must be compliant
with technological constraints: an old-generation machine may not be able to process
a new product type (even with the necessary resin), or some different resins may not
be installed on the same machine because of incompatibility. For these reasons, the
photolithography workshop is a typical example of a set of multi-purpose machines
(see [BRU 97]).

In the most general version of the model, the processing speed of machine j

for the products of type i is denoted v(i, j), the machines are said to be unrelated.
With the notation introduced in Chapter 1, we have α1 = R. Furthermore, v(i, j)
is the quantity of products of type i that machine j can process per unit of time.
It is necessarily non-negative, and v(i, j) = 0 models a technological constraint. It
must not be confused with a qualification constraint, as qualification is the result of a
choice: when v(i, j) = 0, there is no choice to be made as machine j cannot process
any product of type i. Qualification arises only if v(i, j) > 0.

Preemption and splitting are allowed, so a product type may be processed on
several machines simultaneously provided, however, that these machines are qualified
for the given product type. Thus, this scheduling problem can be viewed as an
allocation problem since the starting times of the products have no impact on the
makespan. The set of machines [1,m] is denoted J , and the set of product types
[1, n] is denoted I . The qualification matrix Q is an n by m binary matrix such that
Q(i, j) = 1 if and only if machine j is qualified for product type i, otherwise Q(i, j)
is zero. Each column of Q models the qualification of a machine, each row of Q

models the machines qualified for a product type. The processing speed matrix v has
the same dimensions as Q.
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Provided that v(i, j) = 0 implies Q(i, j) = 0 for all i and j, matrix Qv is defined
by Qv(i, j) = Q(i, j)× v(i, j) (∀i ∈ I) (∀j ∈ J). This matrix models the machines’
processing speed only for the product types for which they are qualified.

A qualification matrix is said to be admissible if and only if it has neither a
zero-row nor a zero-column. Indeed, a zero-row shows that products which exist
cannot be processed by the workshop. Besides, a zero-column shows a machine that
is not qualified for any product type: as a consequence, it should not be considered
as a resource for the problem. In the rest of this chapter, only admissible qualification
matrices are considered. Moreover, the technological constraints are also assumed to
always be such that admissible qualification matrices can be built.

3.2.1.2. Modeling the workshop demand

The products that should be processed the same way in the workshop define
a product type. The workshop demand is a column vector denoted N , having n

elements. The non-negative real N(i) is the total amount of products of type i to
be processed by the workshop. N(i) is not necessarily an integer, as N(i) can be
the result of a mean calculation. Demand N is admissible if and only if N(i) is
non-negative for all i in I . In the rest of this chapter, only admissible demands are
considered.

The following example with n = 3 product types and m = 4 machines is to be
used later to illustrate the results presented in this chapter.

Q =

⎡
⎢⎣1 1 0 0

1 1 1 0
0 1 0 1

⎤
⎥⎦ v =

⎡
⎢⎣1 2 0.5 1.2

1 2 0.5 0
0 2 0.5 1.2

⎤
⎥⎦

so,

Qv =

⎡
⎢⎣1 2 0 0

1 2 0.5 0
0 2 0 1.2

⎤
⎥⎦ N =

⎡
⎢⎣ 1

2
1.7

⎤
⎥⎦

3.2.2. Modeling disturbances on the data

The context of semi-conductor manufacturing is highly uncertain. New product
types are launched very often because of regular advances in new technologies, but
launching new production processes often generates a lot of scrap at the beginning.
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This is the reason why semi-conductors (microprocessors, memory modules) are often
very expensive when they appear on the market, and why they become so cheap
when the technologies involved in the processing are well mastered. Scrap is not
only an economic loss, it also generates disturbances in production planning. If the
photolithography workshop is involved at several stages in the production process
of semi-conductors, it is said to be reentrant. Furthermore, the workshop we have
been focusing on is part of a manufacturing center dedicated to mass production, as
well as to research and development. For that reason, the photolithography workshop
produces a great variety of product types which also have very different volumes,
so that its actual demand cannot be accurately predicted in advance. On the other
hand, the machine qualification process is updated monthly, and must ensure that the
chosen configuration fits the demand for the entire month. The configuration cannot be
updated dynamically to fit the actual demand as qualification is a very time-consuming
process (it requires the machines to be stopped in order to perform tests and setups).
Thus, the machine configuration process aims at choosing a configuration that leads
to the highest loading ratio for a large set of possible demands.

Disturbances affecting upstream workshops may have different kinds of impacts
on the photolithography workshop. If a machine breakdown in an upstream workshop
leads to a decrease of the workshop demand, the demand mix may also be changed.
In the rest of this chapter, the photolithography workshop forecast demand is denoted
Nref , and the actual demand is denoted N . The actual demand N differs from Nref by
a quantity denoted dN , due to disturbances in upstream workshops. More precisely, it
can be written that N = Nref + dN , where dN can have negative entries. Thus,
dN(i) < 0 means that the quantity of products of type i is less than expected.
However, as the actual demand is non-negative, Nref (i) + dN(i) must be positive
or zero for each i.

The problem of determining the photolithography workshop configuration
under uncertain demand can be stated using the formalism adopted in Chapter 1.
The problem P is to find the best possible configuration for the photolithography
workshop. The uncertainties are supposed to impact the demand. Such a demand is
a scenario denoted I in Chapter 1. The configuration Q corresponds to a solution
S. The performance of S on the instance I, denoted zI(S) is the loading ratio of
the machines in the photolithography workshop. Providing performance guarantees
is also a key feature here, as the loading ratio is expected to remain equal to 100%.
To do so, the robustness criterion denoted R4 in Chapter 1 is to be minimized, as it
assesses the absolute deviation from a fixed level z̃.
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3.2.3. Performance versus robustness: load balance and stability radius

3.2.3.1. Performance criterion for a configuration

A manager’s attention must often be focused on the photolithography workshop for
several reasons. As new technologies frequently appear in the field, photolithography
machines are not only subject to rapid obsolescence, but are also very expensive.
That is the reason why this workshop often has a low production capacity, compared
to other workshops. As a consequence, the photolithography workshop is often a
bottleneck in the production flow, being responsible for WIP (Work In Progress) waves
that cause disorder in the whole production process by spreading along the production
flow. Thus, the workshop configuration is expected to ensure that all the machines
have the highest loading ratio. More precisely, the configuration performance is its
ability to guarantee the existence of a balanced load plan which meets the demand;
the load plan will be called production plan in this chapter.

3.2.3.2. Robustness

The configuration Qv is expected to ensure that the machines’ loading ratio
is equal to 100% for the actual demand N = Nref + dN . This should hold on
a “neighborhood” of Nref . The performance guarantee offered by Qv around
Nref is measured using the stability radius [SOT 98]. The stability radius assesses
the minimum magnitude of a disturbance vector dN being such that a balanced
production plan cannot be found for N . Thus, this work can be classified among
proactive approaches.

3.3. Performance measurement

The considered performance criterion is the maximization of the machine loading
ratio. This criterion is assessed in two stages. In the first stage, the minimization
problem of the completion time ([LAW 78]) is solved. A solution to this problem
is a production plan. Second, the production plan minimizing the machine workload
is computed saved up-on the (minimal) completion time. Both stages are delineated in
this chapter.

3.3.1. Stage one: minimizing the maximum completion time

For a given speed matrix v, a configuration Q and a demand N , the problem
addressed in the first stage aims at finding a production plan minimizing the
completion time. Such a production plan must meet demand while satisfying
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the qualification constraints. An optimal solution to this problem is returned in
polynomial time by solving a linear program derived from [LAW 78]. A production
plan can be written as a matrix RT of the same size as Q, where RT (i, j) is the
time spent by machine j processing products of type i. Satisfying the qualification
constraints implies that RT (i, j) = 0 if Q(i, j) = 0 for all i and j. Furthermore,
RT (i, j) is non-negative for all i and j. This problem is modeled as a linear program
denoted (LP1).

(
LP1

)
:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimize Cmax

m∑
j=1

RT (i, j)×Qv(i, j) = N(i) (∀i ∈ I)

n∑
i=1

RT (i, j) ≤ Cmax (∀j ∈ J)

RT (i, j)× (
1−Q(i, j)

)
= 0 (∀i ∈ I) (∀j ∈ J)

RT (i, j) ≥ 0 (∀i ∈ I) (∀j ∈ J)

The maximum completion time is denoted Cmax. The first set of constraints in
(LP1) ensures that the demand is met. The second set of constraints defines Cmax as
the maximum completion time over all the machines. The last two sets of constraints
ensure that the qualification constraints are met, and that the production plan has no
negative entries. For real-life instances, an optimal solution is returned in less than one
second using an interior point algorithm on an Intel Pentium IV Processor.

DEFINITION 3.1.– A couple (Qv, N) is said to be simply balanced if (LP1) has an
optimal solution where all the machines share the same workload, so:

Cmax =
n∑

i=1

RT (i, j) (∀j ∈ J)

EXAMPLE.– Let us consider the following configuration Qv , and the demands N1 and
N2 defined by:

Qv =

⎡
⎢⎣1 2 0 0

1 2 0.5 0
0 2 0 1.2

⎤
⎥⎦ N1 =

⎡
⎢⎣ 1

2
1.7

⎤
⎥⎦N2 =

⎡
⎢⎣1.7

2
1

⎤
⎥⎦
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An optimal production plan for (Qv, N1) (respectively for (Qv, N2)) is denoted
by RT1 (respectively RT2):

RT1 =

⎡
⎢⎣1 0 0 0

0 0.75 1 0
0 0.25 0 1

⎤
⎥⎦ RT2 =

⎡
⎢⎣ 0.5 0.6 0 0

0.557 0.457 1.057 0
0 0 0 0.8333

⎤
⎥⎦

C1 =
[
1 1 1 1

]
C2 =

[
1.057 1.057 1.057 0.8333

]

Vectors C1 and C2 just display the workload of the machines for both production
plans. Thus, it can be observed that (Qv, N1) is simply balanced while (Qv, N2) is
not, machine 4 being underloaded because of a lack of type 3 products.

3.3.2. Computing a production plan minimizing machine workload

After solving (LP1), the completion time value is minimal. However, the machine
workload need not be minimal as well. The following linear program, denoted (LP2),
returns a production plan R′

T minimizing the wear of the machines, knowing the
numerical value for Cmax returned by (LP1):

(LP2) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize

(
m∑

j=1

Z(j)

)
m∑

j=1

R′
T (i, j)×Qv(i, j) = N(i) (∀i ∈ I)

n∑
i=1

R′
T (i, j) ≤ Cmax − Z(j) (∀j ∈ J)

R′
T (i, j)× (

1−Q(i, j)
)

= 0 (∀i ∈ I) (∀j ∈ J)

R′
T (i, j) ≥ 0 (∀i ∈ I) (∀j ∈ J)

Z(j) ≥ 0 (∀j ∈ J)

The first set of constraints in (LP2) is similar to the one in (LP1). The second set
of constraints expresses the workload for each machine j. This load is Cmax − Z(j),
where Z(j) is the deviation to Cmax. This deviation is non-negative as the completion
time must not increase. The maximization criterion is the total time during which
the machines are not used (while keeping the completion time to its optimal value).
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Thus, the production plan R′
T is such that the machines are used only if necessary.

This criterion is relevant for a photolithography workshop, where the managers look
forward to rationalizing the machines’ engagements. Like (LP1), (LP2), is solved in
less than one second.

DEFINITION 3.2.– A couple (Qv, N) is said to be strictly balanced if (LP2) has a
zero objective value, so:

Cmax =
n∑

i=1

R′
T (i, j) (∀j ∈ J)

In the following example, the couple (Qv, N) is simply balanced because RT is
an optimal solution to (LP1) for which the machine loading ratio is equal to 100%.
However, it is not strictly balanced as R′

T , an optimal solution for (LP2) is such that
all the machines do not have the same workload.

v =

⎡
⎢⎣2 0 4

1 2 2
4 1 1

⎤
⎥⎦ N =

⎡
⎢⎣8

3
5

⎤
⎥⎦ Qv =

⎡
⎢⎣0 0 4

1 2 2
4 1 1

⎤
⎥⎦

RT =

⎡
⎢⎣0 0 2

1 1 0
1 1 0

⎤
⎥⎦ R′

T =

⎡
⎢⎣ 0 0 2

0 1.5 0
1.25 0 0

⎤
⎥⎦

C =
[
2 2 2

]
C ′ =

[
1.25 1.5 2

]

By construction, any strictly balanced couple is also simply balanced, but the
reverse is not true.

Then, the production plan RT will be said to be simply (respectively strictly)
balanced if it is an optimal solution to (LP1) (respectively to (LP2), i.e. Z = 0).

3.3.3. The particular case of uniform machines

The present section aims to show that when the photolithography workshop can be
modeled with uniform machines, any simply balanced production plan is also strictly
balanced. Thus, simple balance is sufficient since strict balance goes hand in hand
with simple balance in that particular case.
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Let vp be a column vector having n strictly positive elements, and vm be a row
vector having m strictly positive elements. It is recalled that if matrix v is defined by
v = vp × vm, it is a rank-one matrix and so it models a uniform machines workshop.

THEOREM 3.1.– If the workshop is modeled with uniform machines (i.e. matrix v is
defined by v = vp×vm), then any simply load balanced couple (Qv, N) is also strictly
balanced.

The proof of this theorem can be found in [ROS 03].

3.4. Robustness evaluation

The performance of a configuration is its ability to guarantee that a strictly
balanced production plan exists for the actual demand N . Such a performance
indicator is a binary function, as no deviation from strict balance is allowed by the
user. In that case, the robustness of a configuration can be assessed through the
magnitude of the disturbances on the demand for which the production plan remains
strictly balanced.

In the next section, the theoretical background used to determine all the demands
for which there exists a balanced production plan is presented. An appropriate
robustness measure for a configuration in the neighborhood of a given demand is
derived from that theory.

3.4.1. Finding the demands for which the production plan is balanced

There exist non-balanced production plans only because of non-qualifications (i.e.
zero entries in Q). Thus, some overloaded machines cannot share their load with
the other machines because of non-qualifications. These non-qualifications are the
result of economic choices or technological constraints. The main purpose of the
next paragraph is to characterize all the demands for which there exists a balanced
production plan for a given configuration Qv . This set of demands is denoted B(Qv).

Determining B(Qv) is a two-stage process. The first stage aims at finding all the
maximum rectangles of zeros in Qv . In the second stage, a linear constraint is built
from each of the maximum rectangles of zeros returned in the first stage. Then, each
constraint is shown to be associated with a frontier of B(Qv), which is the result of
the second stage.

Stage 1: finding all the maximum rectangles of zeros in Q

Let Q be a configuration and v a speed matrix having n rows and m columns. Ik

denotes a subset of I , and Jk a subset of J .
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DEFINITION 3.3.– The Cartesian product Ik × Jk is a rectangle of zeros in Q if and
only if:

Q(i, j) = 0
(∀(i, j) ∈ Ik × Jk

)

DEFINITION 3.4.– The Cartesian product Ik × Jk is a maximum rectangle of zeros
in Q if and only if there does not exist any other rectangle of zeros I ′k × J ′

k including
Ik × Jk.

The algorithm used to find all the maximum rectangles of zeros in Q is derived
from the work of [NOU 99], and addresses issues related to Galois lattices. The
maximum rectangles of zeros in Q can be viewed as concepts in the sense of
non-qualification. The set of these concepts is the Galois lattice edges associated with
the context (i.e. the configuration Q). Nourine and Raynaud propose an algorithm
to compute these edges, by building the lexicographic tree of a family denoted F

generated by a basis denoted B. This basis has m elements, element j being the set
of product types for which machine j is qualified.

Family F is a finite list of sets of product types that is stable for union. Each
element f of the family F is associated with the set γ(f), made of all the machines
that are qualified for product types in f only. Then, F is the list of the set of product
types {I1, I2, ..., Ih}, and γ(F ) is the associated list of the corresponding machines
{J1, J2, . . . , Jh}. The non-negative integer h is defined by h = |F | = |γ(F )|, it is
also the number of maximum rectangles of zeros that can be found in Q.

The neutral element for union is denoted e. Here follows the algorithm proposed
by [NOU 99] to build the lexicographic tree on F , that is to say all the couples
(f, γ(f)) = (Ik, Jk).

Initialization: F = e and γ(F ) = {e}
For each element b in the basis B, do

For each element f in F , do
f ′ = f ∪ b

If f ′ /∈ F then do
F = F ∪ {f ′}
γ(f ′) = γ(f) ∪ {b}

End-If
End-For

End-For
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Nourine and Raynaud have shown that building the lexicographic tree from B

requires o((n + m)×m× h) operations. Furthermore, they state that determining h

without building the lexicographic tree is still an open problem.

Stage 2: generating B(Qv) for uniform machines

All the maximum rectangles of zeros of Q are assumed to be known. The h sets
Ik × Jk (with 1 ≤ k ≤ h) can be deduced by setting Ik = fk and Jk = γ(fk).

DEFINITION 3.5.– Ik × Jk is a maximum rectangle of zeros of Q, and we denote
I ′k = I\Ik and J ′

k = J\Jk. The constraint (Ck) is defined by:

(Ck) :
∑
i∈Ik

N(i)
vp(i)

≤
∑

j∈J ′
k
vm(j)∑

j∈Jk
vm(j)

×
∑
i∈I′

k

N(i)
vp(i)

With this constraint, we express the fact that a maximum rectangle of zeros implies
that the load of the machines that do not belong to Jk for the products of type Ik must
be less than the load of the machines belonging to Jk for the products of type I ′k. The
border (Fk) which is associated with this constraint can be written as follows:

(Fk) :
∑
i∈Ik

N(i)
vp(i)

=

∑
j∈J ′

k
vm(j)∑

j∈Jk
vm(j)

×
∑
i∈I′

k

N(i)
vp(i)

Let us note that the expressions (Ck) and (Fk) are valid only for uniform machines.
Such a constraint limits the load of some machines if the load-balance property is to
be enforced. More details can be found in [ROS 03].

THEOREM 3.2.– The demand N is balanced if and only if N satisfies the constraints
(Ck), for all k in [1, h].

The proof of this theorem is given in [ROS 03]. However, for a better
understanding, this theorem is illustrated in an example. The matrix Qv previously
defined has 4 rectangles of zeros. vp = [1 1 1]T and vm = [1 2 0.5 1.2].
B(Qv) is characterized by the h = 4 following constraints:

Qv =

⎡
⎢⎣1 2 0 0

1 2 0.5 0
0 2 0 1.2

⎤
⎥⎦
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B(Qv) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N(1) ≤ 3
1.7
× (

N(2) + N(3)
)

I1 = {1} J1 = {3, 4}

N(1) + N(2) ≤ 3.5
1.2
×N(3) I2 = {1, 2} J2 = {4}

N(3) ≤ 3.2
1.5
× (

N(1) + N(2)
)

I3 = {3} J3 = {1, 3}

N(1) + N(3) ≤ 4.2
0.5
×N(2) I4 = {1, 3} J4 = {3}

The first constraint can be explained as follows. The rectangle of zeros I1 × J1

represents the fact that type 1 products are not qualified on machines M3 and M4. The
time spent by machines M1 and M2 to process all the type 1 products must be less
than the time spent by machines M3 and M4 processing all the other types of products
(i.e. types 2 and 3). If this was not the case, the load of machines M1 and M2 would
be greater than the load of machines M3 and M4. That is to say:

N(1)
1 + 2

≤ N(2) + N(3)
0.5 + 1.2

and this is the first constraint of B(Qv).

3.4.2. Stability radius

In the previous sections, all the balanced demands for a given qualification matrix
associated with a matrix speed have been characterized. At the beginning of every
period, the forecast demand of the photolithography workshop is supposed to be
known. This forecast demand denoted Nref is computed from the customer’s demand
for electronic components. However, the actual demand may be rather different.
This is due to machine breakdowns and more generally to disturbances that affect
other workshops. While it seems easy to check if the forecast demand leads to a
balanced production plan or not, this may not be obvious for an unknown demand. In
this section, we propose a measure of robustness to evaluate the minimum distance
between the forecast demand and the actual demand that may lead to the loss of the
load-balancing property. The notion of stability radius defined in [SOT 98] is used
for this purpose.

DEFINITION 3.6.– Let:

– p be a demand in Rq (for modeling a problem instance),

– z be an optimal solution for some instance (the set of decisions made for an
instance),
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Then the closed ball Or(p) of radius r and center p in the space of dimension q is
a ball of stability of z if, for any vector p′ in the intersection of Or(p) and Rq, the
solution z remains optimal. The maximum value for the radius r of a ball of stability
Or(p) associated with the solution z is defined as the stability radius of z.

Replacing Rq with Rn, p with Nref , z with Qv and choosing the load-balance
property as a criterion is performing an adaptation of the definition to the
photolithography workshop.

We use this tool to characterize a set of demands for which a configuration Q

guarantees the load balancing property. This set is defined by the neighborhood of the
forecast demand Nref for which the solution is balanced.

DEFINITION 3.7.– Let us define Ω = (ωk) the vector of distances between Nref and
the h borders of B(Qv). The process for determining those distances are not presented
here; more details can be found in [ROS 03].

DEFINITION 3.8.– We define r(Qv, Nref ) as the following quantity:

r
(
Qv, Nref

)
= min

k∈[0,h]

(
ωk

)

THEOREM 3.3.– If r(Qv, Nref ) ≥ 0, then it is the stability radius of the configuration
matrix Q associated with the speed matrix v and a forecast demand Nref , and any
demand N defined by N = Nref +dN with |dN |1 ≤ r(Qv, Nref ) leads to a balanced
production plan.

This theorem has been shown in [ROS 03]. The L1-norm has been chosen because
it measures the total load difference between two demands.

The set of the demands N defined above is a neighborhood of Nref for
which the load balancing property is guaranteed. However, there can exist some
balanced demands N for which |dN |1 > r(Qv, Nref ) (but these demands are not
characterized). This shows that the stability radius is a synthetic but restrictive
measure of robustness: it gives a sufficient but not necessary condition of robustness.

3.4.3. Graphic representation

Let us consider Qv , B(Qv) and N1 defined in section 3.3.1. For the sake of clarity,
it is assumed that the variations dN which affect Nref are such that

n∑
i=1

dN(i) = 0.
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The demand space is of dimension n = 3. Let us define Hs as the set of the
demands N defined by N = N1 + dN shown in Figure 3.1.

Figure 3.1. Hs

Such an assumption on dN leads to the simplification of the constraints of the
previous academic example for the definition of B(Qv). The new set of constraints is
denoted B1(Qv), and defined below in Hs:

B1(Qv) :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N(1) ≤ 3

N(1) + N(2) ≤ 3.5

N(3) ≤ 3.2

N(1) + N(3) ≤ 4.2

Ω
(
Qv, N1

)
=

⎡
⎢⎢⎢⎣

4
1
3
3

⎤
⎥⎥⎥⎦

where ωk is the kth component of the vector Ω. This new set of constraints is returned
using the following equality, which expresses the conservation of the load of N :

∑
i∈I

N(i) =
∑
i∈I

N1(i) = s

where s is a strictly positive number.
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We can also replace N1 with N ′
1 defined by N ′

1 = N1∑
i∈I N1(i)

. Indeed, the balance
property still holds when multiplying the demand by a strictly positive number.

B(Qv) is represented by the tinted zone in Figure 3.2. It can be observed that
N1 belongs to B(Qv), while this is not the case for N2. Ω is the vector of distances
from N1 to each of the border of B(Qv). The arrow represents the stability radius
r(Qv, N1) in Hs: that is the smallest distance from N1 to the four borders of B(Qv).

Figure 3.2. Stability radius

In this example, r(Qv, N1) = 1. The set of demands defined by B1(Qv) is
represented in dark gray. The light gray regular hexagon is included in B1(Qv): it
is the neighborhood of N1 defined by the stability radius, that is to say the set of
demands N defined by N = N1 + dN with |dN |1 ≤ r(Qv, N1).

The stability radius is represented by the arrow. The hexagon is the ball of radius
equal to one for which N1 is the center. This ball is not circular since the L1-norm is
used instead of the L2-norm. More precisely, the hexagon is the intersection between
the ball and Hs.
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3.5. Extension: reconfiguration problem

In this section, the stability radius is used as a measurement tool for helping
the decision-maker with improving the configuration quality. The so-called quality
used here is robustness, defined as the configuration ability to cope with demand
uncertainties while maintaining the load balance property for production plans. To
do so, it is shown how to add qualifications to the configuration in order to increase its
robustness.

3.5.1. Consequence of adding a qualification to the matrix Q

The set B(Qv) of balanced demands is defined by the constraints (Ck) which are
based on the maximum rectangles of zeros in the matrix Q. The aim of this section
is to study how B(Qv) and the stability radius are modified when a qualification is
added (a one entry in the matrix Q).

It is assumed that Q(i0, j0) = 0, this zero belonging to the maximum rectangle
of zeros Ik × Jk. Q+ is the configuration matrix defined by Q+(i, j) = Q(i, j) for
all i 
= i0 and for all j 
= j0, and Q+(i0, j0) = 1. Knowing the rectangles of zeros
in Q, the new configuration Q+ is now considered. Consequently, constraint (Ck) is
replaced with two new constraints denoted (C ′

k) and (C ′′
k ):

(
C ′

k

)
:

∑
i∈Ik−{i0}

N(i) ≤ s−
∑
j∈Jk

vm(j)

(
C ′′

k

)
:
∑
i∈Ik

N(i) ≤ s−
∑

j∈Jk−{j0}
vm(j)

If |Ik| = 1 or |Jk| = 1 then only one constraint has to be considered since the
second one turns out to be always true.

Now, we consider the distances from Nref to the new borders of B(Qv) induced
by (C ′

k) and (C ′′
k ).

ω′
k = 2×

(
s−

∑
j∈Jk−{j0}

vm(j)−
∑
i∈Ik

Nref (i)

)
= ωk + 2× vm

(
j0
)

ω′′
k = 2×

(
s−

∑
j∈Jk

vm(j)−
∑

i∈Ik−{i0}
Nref (i)

)
= ωk + 2×Nref

(
i0
)
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The last equalities show that Nref is much farther from each of the new
constraints than it was from (Ck), so the stability radius does not decrease. Let us
define G(Qv, Nref , k, i0, j0) by:

G
(
Qv, Nref , k, i0, j0

)
= min

(
ω′

k − ωk, ω′′
k − ωk

)
Furthermore, setting Q(i0, j0) to 1 could change other constraints with the same

consequences. More precisely, all the constraints coupled with a maximum rectangle
of zeros which contains Q(i0, j0) are modified like (Ck).

The strategy for adding a new qualification in the current configuration matrix
is thus the following one. The h constraints of B(Qv) are considered by increasing
order of the distances to Nref . In order to maximize the stability radius, the new
qualification has to belong to the intersection of the closest constraints to Nref .

3.5.2. Theoretical example

Qv =

⎡
⎢⎣1 2 0 0

1 2 0.5 0
0 2 0 1.2

⎤
⎥⎦ N1 =

⎡
⎢⎣ 1

2
1.7

⎤
⎥⎦ Ω

(
Qv, N1

)
=

⎡
⎢⎢⎢⎣

4
1
3
3

⎤
⎥⎥⎥⎦

In this example, only one critical constraint has to be considered since the vector
Ω(Qv, N1) has only one minimum equal to 1. This minimum is reached for the
constraint (C2): N(1)+N(2) ≤ 3.5. Thus, adding only one qualification is sufficient
to increase the stability radius. This one entry must be added into the maximum
rectangle of zeros of Q that defines the critical constraint I2×J2 with I2 = {1, 2} and
J2 = {4}. Thus, there are two possibilities as |I2 × J2| = 2. The closest constraints
from N1 after (C2) are (C3) and (C4). The intersection between the corresponding
rectangles of zeros and I2 × J2 is empty, thus whatever the zero entry in I2 × J2 that
is replaced with one, the increase of the stability radius will be the same.

For example, setting Q(1, 4) to one yields:

Q+ =

⎡
⎢⎣1 1 0 1

1 1 1 0
0 1 0 1

⎤
⎥⎦

B
(
Qv+

)
:

⎧⎪⎪⎨
⎪⎪⎩

N(1) + N(3) ≤ 4.2

N(2) ≤ 3.5

N(3) ≤ 3.2

Ω
(
Qv+, N1

)
=

⎡
⎢⎣3

3
3

⎤
⎥⎦
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Thus it can be seen that r(Qv+, N1) = 3. The stability radius would be the same
if we had set Q(2, 4) to one. However, adding a qualification outside I2× J2 does not
allow us to increase the stability radius.

3.5.3. Industrial example

Let us consider an industrial photolithography workshop with 36 types of
products and 13 machines. The forecast demand Nref is about 9,000 units of
products dispatched into the 36 product types. The stability radius was initially
equal to 43.2 for the original configuration (which was given). This means that the
original configuration was able to maintain the load balance property provided that
the demand variation magnitude |dN |1 is less than 43.2 products. This is quite a
low value in an uncertain context. After adding only one qualification, the stability
radius increases by 1,360%, reaching 587.4. Thus, the robustness of the configuration
increases in the same proportions as the load balance property is guaranteed for any
demand variation magnitude up to 587.4 products.

3.6. Conclusion and perspectives

In this chapter, two measures of robustness were presented for the configuration
of multipurpose machines in an industrial context. The method proposed to increase
the robustness of a configuration is based on the evaluation of the robustness of
this configuration Q. To do this, we determine B(Qv) which models the flexibility
structure of the configuration Q for the forecast products mix. It is a complete piece
of information about Q which allows us to determine all the demands for which the
configuration guarantees the desired performance (i.e. a perfect load balance). The
second proposed measure for robustness uses the information returned by B(Qv).
For a forecast demand, the stability radius measures the maximum demand variation
magnitude for which the desired performance is guaranteed.

The presented approach does not take into account some industrial constraints
(like the limited availability of resin for instance). Nevertheless, a set of action
(to increase robustness) is proposed to the user, who can take into account such
constraints. Furthermore, it is possible to use this method for uniform machines for
which photolithography is an application among others.

Addressing the attached scheduling problem is an interesting perspective as far
as the way of consuming products in the workshop could have an impact on the
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robustness (due to the variations of N ). Similarly, we can generalize this study by
considering setup costs, which do not exist in the photolithography workshop, but
may be relevant in some other application fields.
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Chapter 4

Sensitivity Analysis for One and m Machines

The problems studied in this chapter are scheduling problems on a single machine,
and on a fixed number of parallel machines. Uncertainty is either on task execution
times or on communication durations between tasks, if any. In one particular case,
machine unavailability are also investigated.

The study considers a proactive framework, in the sense of Chapter 1: the
scheduling algorithms are used before execution, but they take uncertainty into
account. Anyway, it is assumed that temporal flexibility is permitted during the
execution phase. Hence, the result of the algorithms is not a fixed schedule, but
a task sequence on the machine, or on each machine. The set of these sequences
is called a solution throughout the chapter or, by a slight abuse of notation, a
schedule. The proactive approach assumes at least a partial knowledge of the data
uncertainties, together with the use of that knowledge in the proposed solution choice.
Consequently, the desired solutions are those with good performances with regard
to some of the robustness measures proposed in this book’s introduction (robust
solutions). The aim of the chapter is to show the interest and the limits of sensitivity
studies for building such solutions. Not all existing works are presented here. We rely
on some significant publications in the field of sensitivity analysis for single and m

machine problems.

Chapter written by Amine MAHJOUB, Aziz MOUKRIM, Christophe RAPINE and Eric
SANLAVILLE.
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The chapter is organized as follows. Sensitivity analysis (SA) is clearly defined
in section 4.1; its traditional use for varied combinatorial optimization problems is
presented, with the questions arising from this use. Then several SA are presented for
single machine problems. In one case, the SA clearly shows the lack of robustness
of a statically (all parameters fixed) optimal solution. A systematic search of robust
solutions is then proposed. The m machine without communication delay problems
are studied with uncertain execution times. A more detailed analysis is presented in
one case where all durations are uncertain, and for which the relative deviation in the
worst case (also described as the competitivity ratio) can be computed as a function of
the disturbance’s magnitude. The case of uncertain communication delays is presented
last. A detailed study is done in the two machine case, and general results are proposed.

4.1. Sensitivity analysis

It might not be useless to think about the use of SA for decision problems in
uncertain context. In Chapter 1, the tool aspect of SA is highlighted. Through an a
priori study, it makes it possible to decide about an algorithm or a solution quality in an
uncertain context. Anyway, papers considering SA are numerous, their often implicit
definitions of SA might be very different. One definition of sensitivity analysis might
be the following.

DEFINITION 4.1.– Consider an optimization problem P and I an instance of P . Let
S∗ and z∗ be an optimal solution for I and its value, respectively. A sensitivity analysis
on P and I consists of answering (at least partially) to the following questions:

1) In what neighborhood of I does S∗ (resp. z∗) remain optimal?

2) In what neighborhood of I does S∗ remain feasible, with acceptable
performance?

3) Considering I ′ a neighbor of I, is S∗ feasible for I ′ and then, what is its
performance degradation?

4) Considering I ′ a neighbor of I, what is the new optimal solution (resp. value)?

and to the question variants obtained by replacing S∗ by an arbitrary solution in
questions 2 and 3.

Hopefully, this definition is general enough, so that any other (reasonable)
definition from an SA study is included in it, in particular because of the generality
of the notions of solution and neighborhood. We always start from a given instance,
which is perturbed. In the first case, the goal is to characterize a set of “acceptable”
disturbances (questions 1 and 2), in the second case (questions 3 and 4) the
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disturbance is imposed. Question 4 is exactly equivalent to the reoptimization
problem.

The main literature stream comes from the linear programming sensitivity
analysis. The aim is to answer questions 1 and 2 when one parameter is allowed
to vary (right hand side or objective coefficient). The answer is easy to obtain for
one parameter, hence many studies arose for more complex model, as integer linear
programming. These works are justified by the fact that SA would be of great help
for optimization under uncertainty, but this can be questioned.

Wallace [WAL 00] proposes a quite corrosive analysis of SA use, citing in
particular two representative books, Gal and Greenberg [GAL 97] and Ravindran
et al. [RAV 87]. His study considers a large framework for decision aid, but by
hypothesis a probabilistic model can be used, for instance by associating a probability
with each scenario. The probabilistic model can nevertheless remain implicit. For
Wallace, SA should help to build one or several “robust” solutions, that is, close to
the optimum for E(z): according to Chapter 1, in the sense of the expected stability
measure with respect to the optimization criterion z.

As we defined it, SA (except for question 4) is for Wallace a parametric analysis.
Thanks to such analysis, it should be possible to choose one or several stable
solutions, that is, solutions which remain optimal for a reasonably large set of
disturbances. To build such solutions, we may also consider a sample, for instance
randomly generated, of possible scenarios. Best solutions would be obtained from
the different optimal solutions, by keeping their common structure. Unfortunately,
Wallace shows that in many cases, the set of proposed solutions (obtained either by
a parametric study or by sampling) does not contain the optimal solution for E(z).
This robust-optimal solution might even miss the structure common to all proposed
solutions. Indeed, these common features appear because of the deterministic nature
of the models they come from. Wallace entails that deterministic analysis (where
random distributions are not explicitly associated with the uncertain parameters) are
useless for the building of optimal solutions according to a probabilistic criterion
(what is true for the expectation remains true for stochastic optimization, among
others). Some methods or decisions that are more flexible in the sense of this book
will often be discarded, as they are suboptimal for each scenario. The method
implicitly promoted by Wallace consists of using a probabilistic framework, even if
the model remains an approximation. This model may be used either to build optimal
solutions according to traditional stochastic criteria as stochastic minimization,
or simply to legitimate the choice of a fixed domain for the parameter values,
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hence permitting a worst case study. SA based on a parametric analysis would be
useful only for answering precise questions such as: “What if this parameter value
is changed by exactly this amount?”, for a model where the studied parameter is
originally completely deterministic. Wallace’s point of view is now widely shared
in the community of optimization under uncertainty. Recently, a number of works
consider explicitly robust optimization, particularly in linear programming (see
seminal works by Soyster [SOY 73], Ben-Tal and Nemirovski [BEN 99], Bertsimas
and Sim [BER 03] and Gabrel et al. [GAB 07] for some recent results).

Let us now examine the Wallace analysis in the specific field of scheduling
under uncertainty. He considers two phase decision models (extensible to n phases),
uncertainties being progressively removed. This is very similar to the model used
throughout this chapter: one off-line phase, one on-line phase, particularly when a
proactive or proactive/reactive method is mandatory (for instance, for problems dealt
with in this chapter, it is often necessary to choose off-line the machine allocation).
Hence its conclusions are valuable for us. Let us note, however, that he considers a
stochastic model to encompass uncertainties; furthermore, the study looks for optimal
solutions with respect to some stochastic criterion, especially expectation. When
robust solutions are sought, there are many ways to measure robustness as shown in
Chapter 1. A solution that optimizes the criterion optimization might be rejected if
its performance variations are too large. By contrast, worst case analysis, together
with appropriated robustness measures, make it possible to build “naturally” robust
solutions. The difficulty here consists of defining what the worst case is! Some gross
probabilistic model may help us here, by limiting the instances or scenarios with
rather small probability, or by making some hypotheses on the possible instances (for
instance, no more than one machine breakdown at a time).

What is well shown in [WAL 00] is that a stability criterion (like measuring the
size of the region where the proposed solution remains optimal) is not enough in
general to build robust solutions. However, traditional, parametric SA, issued from
linear programming, does not leave this framework. Hence it is only useful in the
intrinsically deterministic case, where few disturbances might occur. The works of
Sotskov and several co-authors (see for instance Sotskov, Wagelmans and Werner
[SOT 98]) are of that kind. Their main theoretical contribution consists of defining
the stability radius (an answer to question 1), and in proposing methods to compute
that radius. However, this definition is not specific to scheduling.

DEFINITION 4.2.– [SOT 98] Considering a problem P , an instance I and an optimal
solution s for I, the stability radius ρs(I) is the maximum radius of a ball centered
on I, inside which s remains optimal.
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In Sotskov et al. the radius is defined on execution duration only, and I is identified
with a vector p of execution durations. The infinite norm is used, but the stability radius
can easily be adapted to other contexts. The general results presented in [SOT 98] are
necessary and sufficient conditions, either on the existence of a strictly positive radius
or for the case of an infinite radius (a solution remains optimal for any instance). They
also provide general formulae for the computation of ρ, but this computation is of
exponential complexity. Their work applies to a large set of shop scheduling, but not
to parallel machines, except if machine allocation is fixed. Even if these results are
difficult to exploit directly, the computation of ρ for a given problem and a specific
algorithm can provide useful information. Examples of such computations may be
found in Hall and Posner (see section 4.3.1) and Chapter 3. Note again that stability
radius is useful in the context of small disturbance. Sotskov et al. also introduced the
approximated stability radius that gives the maximum magnitude of a disturbance for
a fixed loss of performance (a variant of question 3). Computing this approximated
radius is only possible in some particular cases.

In the case of a true uncertainty on a set of parameters, there is no interest in
starting from estimated values (that is, mean values), and performing an analysis for
the variation of one parameter only. The objective is at least to study the impact
of simultaneous variation around their mean value. Because of the complexity of
stochastic models, it is extremely difficult to look for an optimal solution relative to
some stochastic criterion, especially if unstable solutions (having a bad worst case
behavior) should be avoided. Such a search is to be avoided anyway, if our knowledge
on the data is too uncomplete. Last, we should observe that unlike questions 1 and 2
from definition 4.1, the answer to question 3 will provide more reliable data on the
robustness of a solution or of a method. A natural way of investigation consists of
starting from a method or a solution (for instance, optimal in a deterministic setting),
and to check its robustness.

It is therefore logical to make sensitivity analysis of the worst case type on
particular algorithms, or on particular solutions, thus generalizing question 3: a
whole neighborhood of initial instance I is considered. Wallace’s observations do not
question the interest of such analysis, but the limits on the parameters variations arise
as a major issue. Presenting the results as a function of the disturbance maximum
magnitude is a possible answer, see Penz et al. [PEN 01], section 4.3.2. Hence the
decision maker will get a more global vision of the expected performances. The
possibility of working on a probabilistic model should be considered, the choice
depending on our knowledge of the problem data. This probabilistic hypothesis is the
starting point of several chapters of this book including Chapters 5, 6 and 7.
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4.2. Single machine problems

4.2.1. Some analysis from the literature

Classical scheduling problems with uncertainties have recently been studied.
Chanas and Kasperski [CHA 04] provide a SA in the classical sense (answer to
question 1) for problem 1||max wjLj . The problem is solved by the polynomial
Lawler algorithm, but many schedules are optimal. For a given schedule and for
each parameter (duration, due date or weight) a set of values is computed for which
the schedule is optimal. This set is a union of intervals, which is computed in
linear time. Contrary to linear programs, their method generalizes easily to the case
when several parameters may vary. Then the set of possible values is the union of
polyhedra. [CHA 04] does not provide any result on the choice of the less sensitive
deterministic-optimal schedule. However, Kasperski in [KAS 05] gives a polynomial
algorithm to compute the most robust schedule in the minmax regret sense for
1‖Lmax, when all parameters vary within intervals.

Hall and Posner [HAL 04] possibly provide the most significant study: they
examine the important questions for sensitivity analysis in scheduling, the proposed
examples considering single or m machine problems. Single machine specific
results are mentioned here. In some examples, such as 1‖∑wjCj , algorithms
are provided to compute the maximal variations for each parameter for which S∗

remains unchanged, but also, if needed, the new optimal solution (questions 1 and 4
simultaneously). These algorithms are more efficient than simple re-optimization.
Their complexity depends on the number of modified parameters, but also on the
position in the schedule of the tasks concerned by the change.

In the case of pseudo-polynomial problem 1‖∑wjUj , whose deterministic
version can be solved by dynamic programming, two types of results are proposed.
First, Hall and Posner show that one might be done simultaneously with the
computation of an optimal solution, at the price of additional computation (the
algorithm remains pseudo-polynomial). There are two new dynamic programming
algorithms, according to the fact that the disturbances are on the durations or on the
weights. They allow us to know a priori the disturbances for which the computed
solution remains optimal. Hall and Posner [HAL 04] observe that a large number
of optimal solutions exist. It is also possible to choose among those solutions the
most robust with regard to disturbances on weights (and similarly on durations).
The robustness measure used here is simply the size of the smallest disturbance
(absolute or relative) for which the solution is no longer optimal. In other words, the
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most robust solution minimizes the stability radius (stability measure relative to the
performance criterion). The next section studies the same problem (without weights)
with uncertainty on the machine availability.

Daniels and Kouvelis [DAN 95] on the one hand and Lebedev and Averbakh
[LEB 06] on the other hand study problem 1‖∑Cj , but their studies begin where
Hall and Posner left off; they are looking for the most robust solution with respect
to the worst case absolute deviation (also called largest regret), defined in Chapter 1
by maxI zI(S) − z∗I . [DAN 95] shows that the problem is NP-complete as soon as
two scenarios only are considered for the execution durations. [LEB 06] assumes that
each duration is in a given continuous interval. The problem is still NP-complete
unless intervals have the same center and the number of tasks is even! Remember that
the list SPT algorithm is optimal for the corresponding deterministic problem. There
is no SA for SPT in the case of arbitrary intervals with this measure (it is immediate,
anyway, that its stability ratio is null if two tasks have the same estimated duration).
In section 4.3.2 such SA is performed for relative deviation (analysis valid for one or
m machines). In the centered interval case all tasks have the same average duration,
hence any order is SPT. The optimal algorithm of [LEB 06] consists of placing in the
middle of the sequence the tasks with the largest interval.

4.2.2. Machine initial unavailability for 1‖∑Uj

The results of this part are extracted from [MAH 04]. The problem of minimizing
the number of late jobs is considered. Disturbances arise from a potential machine
unavailability that may occur at the beginning of the sequence. The problem has
two interesting properties. On the one hand, the deterministic variant is polynomial
and may be solved in C(n log n). As we shall see, the optimal solution is extremely
sensitive to disturbances: there is no sensitivity guarantee that depends only on the
unavailability period duration. Hence it is important to look for robust solutions;
the worst case absolute deviation is used to measure that robustness. On the other
hand, and contrary to previous problem 1‖∑Ci, which is NP-complete with only
two scenarios, under some hypotheses a robust solution may be found in polynomial
time, even when the disturbance is inside a real interval [0, S], and not only in a finite
set Ω of scenarios.

4.2.2.1. Problem presentation

A set of n tasks must be executed sequentially, without preemption, on one single
resource (machine). Each task j has execution time pj and deadline dj . The goal is to
minimize the number of late tasks, that is, finishing after their deadline.
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To illustrate this problem, consider a firm that receives orders, each order being
one or a set of tasks to deliver before a time limit imposed by the customer. In the
production process, each task has to pass through a “bottleneck” machine. To decide
if an order should be accepted, the firm schedules the received orders and rejects those
that cannot be satisfied in time. This problem is polynomially solved by the Hoodson
and Moore (HM) algorithm, which is a slight modification of EDD (Earliest Due
Date). Tasks are ordered by increasing due date. If a task j is late, the largest task
scheduled before j finishing time is disqualified. The disqualified task will be executed
after all qualified tasks (this is equivalent to reject the customer’s order). The algorithm
is detailed in [BŁA 93].

Let us now assume that the machine might be unavailable at the beginning of the
production process (during time interval [0, s]). This unavailability might occur if the
bottleneck machine broke down, or if a component was delivered late. The effective
duration unavailability s is only known a posteriori, that is, after the beginning of
the production process. It may belong either to a discrete set Ω = {s0, . . . , sk} of
possible durations, or simply be bounded by a maximum value S. The disturbance
neighborhood is then the real interval [0, S].

4.2.2.2. Sensitivity of the HM algorithm

The solutions provided by HM are extremely sensitive to disturbances. Let
us consider the example of n tasks of unit duration, and deadlines dj = j. The
optimal solution schedules all tasks exactly in time. Imagine now that the machine is
unavailable during the first time slot. All tasks are now late. The optimal solution for
s = 1 consists of disqualifying the first task. The sequence obtained from HM is then
at distance n− 1 from the optimal for the considered robustness measure.

From this example, it is apparent that considering the solutions which are optimal
in the total availability case is not very wise. Furthermore it is not possible to bound
the performance loss obtained by HM, with respect to the disturbance size, and thus
find a sensitivity bound of HM solutions. The only interesting robustness criterion
(if stochastic models are left aside) is therefore minimizing the worst case absolute
robustness (that is, minimizing the maximum regret).

4.2.2.3. Hypotheses and notations

Let us suppose that without disturbance, all n tasks can be scheduled without
lateness. The study focuses on the case where a sequence is fixed: it is the sequence
obtained from HM without disturbance, noted σ0. The objective is to find the set of
tasks that disqualify σ0 from obtaining a robust solution. Symmetrically, the aim is to
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find the best sequence σR from σ0. Tasks are numbered in σ0 order. Disqualified tasks
are considered as late for all scenarios, hence they can be considered as non-scheduled
tasks. To justify these two hypotheses, let us consider again a firm that at the beginning
of each period receives a set of commands. Using the HM algorithm, it computes a
first schedule and refuses the tasks that are late for this schedule, thus minimizing the
number of tasks to reject. In order to attenuate the effects of a possible disturbance,
the firm can choose to disqualify some more commands, which are then considered as
lost.

For a given s, denote by f(K, s) the number of late tasks in the sequence obtained
by disqualifying the set K, and opt(s) the optimal number of late tasks for scenario
s. This optimum is simply obtained by applying HM on deadlines d′

j = dj − s. The
objective is then to find a set of tasks KR which minimizes the metric:

RDEV (K) = max
s∈[0,S]

{
f(K, s) + |K| − opt(s)

}

The task margin is the difference between its deadline and its finishing time:
Margin(j) = dj − Cj , for HM without disturbance. In the specific case where task
margins are increasing in sequence σ0 obtained by HM: i < j ⇒ Margin(i) ≤
Margin(j), the robust solution has a specific structure that is exploited below. For
more details see [MAH 04].

4.2.2.4. The two scenario case

Let us suppose that only two scenarios are possible: Ω = {0, S}. If s = 0, the
optimal solution consists of disqualifying zero tasks. If s = S, the opt(S) first tasks
are disqualified. Imagine now that the set KR = K∗

{0}, S of tasks disqualified by the
robust optimal solution is known. In this sequence denote by xS the first task that is in
time for disturbance S. A task placed after xS in initial sequence σ0 cannot be in KR.
Indeed, such a task has a larger margin than xS by property of σ0. Hence it is on time
if xS is; disqualifying it would strictly diminish the number of tasks in time for both
scenarios. For xS to respect its deadline for disturbance S, disqualified tasks should
satisfy:

∑
j∈KR

pj ≥ S −Margin
(
xS

)
(4.1)

As the distance between a robust solution and the optimal solution for disturbance
s = 0 is the number of disqualified tasks |KR|, among the sets K of tasks verifying
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equation (4.1), KR has minimal cardinality. Once task xS is known, finding KR is
equivalent to find the task set K verifying:

KR

(
xS

)
= arg min |K| such that

∑
j∈K

pj ≥ S −Margin
(
xS

)
(4.2)

Hence it is sufficient to disqualify the largest tasks before xS , xS excluded, until
a positive margin is obtained for xS . With a structure that maintains the list of tasks
before xS sorted, determining KR(xS) is done in time C(n). This solution quality is
then

max
{∣∣KR

(
xS

)∣∣, xS − 1− opt(S)
}
.

As n tasks are candidates to be xS , determining robust optimal solution can be
done in time C(n2).

1 2 3 4 5 6 7 8 9

1 2 3 6 7 8 9 10 11

Figure 4.1. Initial sequence

Let us consider the sequence of Figure 4.1, where due dates are equal to completion
times in the initial solution. The possible disturbance S is of duration 3. For this
sequence, if no task is disqualified, the maximum deviation is 6 and it is obtained for
S = 3. However, if tasks 1, 2 and 3 are disqualified (these are the tasks disqualified in
the optimal solution for S = 3) the maximum deviation is 3, obtained for s = 0. The
robust-optimal solution consists of disqualifying task 4 alone. The maximum deviation
is then of 1, and it is reached in both scenarios. For this example, task xS is task 5,
hence in order to keep task 5 on time (and all tasks scheduled after it) it is sufficient to
disqualify task 4, the largest task scheduled before 5, in order to verify equation (4.2).

Finding a robust-optimal solution in polynomial time is also possible in the case
of an arbitrary number of scenarios. It is done by relying on the continuous case (see
theorem 4.1). The algorithm is based upon dynamic programming; it looks for the set
of tasks to disqualify from the initial sequence. For more details the interested reader
can refer to [MAH 04].

THEOREM 4.1.– The robust-optimal solution for absolute deviation measure can be
found in C(n4) for problem 1||∑Uj , on any disturbance interval like [0, S], when the
margins of the tasks are increasing in initial sequence σ0.
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s = 3s = 0

f({4}, 0) − opt(0) = 1
unavailability

f({4}) − opt(3) = 1

1 2 3 5 6 7 8 9

4

1 2 3 4 5 6 7 8

1 2 3 5 6 7 8 9

1 2 3 4 5 6 7 8

1 2 3 5 6 7 8 9

4 5 6 7 8

Figure 4.2. Robust sequence

Concerning a sequence which does not verify the non-decreasing margin
hypothesis, the robust subsequence may be found by using dynamic programming,
and scanning the set of possible beginning times for the tasks. The algorithm is
pseudo-polynomial. In general, when the sequence is not fixed, the problem is still
open.

4.3. m-machine problems without communication delays

4.3.1. Parametric analysis

This part presents the few works proposing a parametric analysis, that is to say,
examining the effect of one disturbance on one parameter. For Hall and Posner, as for
Sotskov, a solution or a method quality is measured by the extent of the disturbances
for which this solution or method remains optimal (or keeps a fixed performance
guarantee); hence robustness is assimilated to stability. In case of optimality loss,
re-optimization is implicitly considered as always possible, and the complexity of this
new problem (fourth question) is considered.

Picouleau has more recently completed the results from Hall and Posner
[HAL 04] by showing that in many cases, modifying one parameter by one unit
only was sufficient to make the re-optimization NP-complete. Re-optimization
complexity is the subject of Chapter 14 of this book. Unfortunately, re-optimization
is not always possible. First, the exact values of some parameters might remain
unknown at some date t. Second, at some date t, it may be impossible to recompute
completely the schedule: either for stability reasons or because of delay constraints.
It seems to us that this occurs frequently in scheduling applications.

Hall and Posner did look for performance relative deviation of an optimal
solution in some specific cases. For problem P2‖∑wjCj , they proved the existence
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of a deviation depending on the disturbance size on an execution time, and on
initial sequence of the jobs. The results hold for some additional conditions on the
disturbance. Their study is particularly interesting for problem P2‖Cmax; it is first
shown that if disturbance Δ does not exceed some threshold, the relative deviation is
bounded by 8/7. The threshold may be computed in C(n log n) but depends on S∗.
If the threshold is exceeded, S∗ cannot be optimal anymore and the bound does not
hold. But if a slight modification is made to S∗, the obtained solution S′ is no longer
optimal on initial data; however, the ratio 8/7 is still verified for a much larger set of
disturbances (for instance, if in S∗ both machines finish at the same time, the initial
threshold is multiplied by 10/3, which is the maximum multiplier). Note that the
threshold for S∗ constitutes a robustness measure for S∗. S′ is more robust than S∗ in
the sense that its approximated stability ratio (for value 8/7, and a unique parameter)
is larger.

Let us consider the practical use of these results. If the parameter subject to
disturbances is known (here, an execution duration), and if the disturbance magnitude
may be foreseen to some extent, then it might be interesting to slightly modify the
initial optimal schedule to obtain a suboptimal, but more robust solution. It would be
interesting to check for other problems, where similar results hold, particularly for m

machines.

When the deterministic problem is polynomial, Hall and Posner show that an a
priori analysis allows us to diminish re-optimization time, as previously seen for one
machine. The complexity of this computation depends on the number of modified
parameters, but also on the deterministic-optimal schedule and on the position of the
tasks concerned by the changes. Optimal algorithms for studied problems are list
algorithms, priority algorithms or the simplex. Hall and Posner show clearly in this
last case that a parametric analysis of the linear program cannot be sufficient. Indeed,
modifying one parameter of the scheduling problem may entail the modification of
several parameters of the LP. Note, however, that if the SA can be executed off-line,
its complexity may not be a major issue.

Hall and Posner also proposed several proactive methods for building robust
solutions, as for 1‖∑wjUj (see section 4.2.1). In the case of Pm|pmtn|Cmax,
McNaughton’s simple algorithm can build a large number of optimal solutions. If
the task Tj whose duration might change is known, it is advisable to spread this
task on the maximum number of machines, thus sharing the additional load among
these machines (it is the same if the task duration decreases). The authors present
a linear algorithm to achieve this. The obtained solution is not McNaughton’s, and
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may have more preemptions. However, it remains optimal whatever the disturbance
on pj . This result should be discussed. First, if Tj is unknown, the authors do not
investigate a solution distributing all tasks at best. We may consider, however, that
in case of a processing time increasing, it will be distributed on all machines, even
on those that did not execute Tj . The diminishing case is more complex. Second, the
proposed method consists of increasing or decreasing each piece of Tj . This supposes
we fact to know the disturbance before execution of Tj begins (more an off-line
re-optimization than an on-line repair).

Kolen et al. [KOL 94] study different list methods for independent tasks and
makespan minimization. Priorities depend on processing times (for instance SPT,
LPT, etc.). They observe the number of possible schedules obtained by each method
when the processing time of a task varies. In the framework used in this book, they
measure the flexibility of these methods (see Chapters 10 and 11). They also study
the obtained makespans. There is no surprise: methods building best deterministic
schedules are also less flexible. Flexibility is assimilated in the article to sensitivity, in
the sense that a less flexible method will be more sensitive to disturbances. This work
might be applied in a proactive/reactive scheme: the study allows us to choose the
list method that will be used on-line. In other words, the schedule is not built before
the execution, but the on-line policy, that is, the set of rules to apply according to
different conditions, is fixed. With different tools, the stochastic scheduling approach
is similar: a policy is tested a priori, according to criteria (like makespan expectation)
taking uncertainties into account.

4.3.2. Example of global analysis: Pm‖∑Cj

Question 3 is considered in this section, where already we seek to determine
the performance loss caused by disturbance. As was shown, classical analysis
cannot answer unless restrictive hypotheses are made. Often, one unique parameter
is modified; the magnitude of the disturbance is limited, and furthermore this
limitation depends on the studied solution itself; it is not a choice of the user. Last,
robustness measures are in fact stability measures, which are less informative than
other measures. Here the worst case relative deviation is used. Gerasoulis and Yang
[GER 95], then Penz, Rapine and Trystram [PEN 01] propose to use as robustness
criterion a function s of the disturbance magnitude, called sensitivity guarantee.
For a given off-line algorithm A, sA(ε) is equal to the worst case relative deviation
when the disturbance magnitude is at most ε with regard to an estimated instance,
divided by the performance ratio of A in the deterministic case. This last ratio is of
course equal to 1 when A is optimal. Otherwise, the sensitivity guarantee expresses
the increase in the performance loss due to uncertainties. An algorithm may be
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considered as robust if it admits a sensitivity at most linear in ε (a less strong demand
would be that sA(ε) is polynomial in ε). Here it is the sensitivity of one algorithm
that is analyzed, the most robust solution is not investigated.

Hence, from a fixed processing time vector p̃, a neighborhood of p̃ is considered,
whose size is given by ε. A key feature of this approach is to give a correct definition
of the magnitude. The definition of [GER 95, PEN 01] is the following for processing
times. Let p̃j be the estimated duration for task Tj , and pj = (1+εj)p̃j be the effective
duration.

DEFINITION 4.3.– The disturbance magnitude �ε = (ε1, . . . , εn) is the real ε defined
by:

1 + ε =
1 + ε+

1− ε−

with ε+ = max⊕
i=1,n{εi} and ε− = max⊕

i=1,n{−εi}. The function max⊕ is defined as
max⊕ A = max A∪{0}. A disturbance vector �ε is an ε− disturbance if its magnitude
is less than or equal to ε.

This definition is rather precise. It corresponds to the intuitive idea of comparing
the largest and smallest ratios between real and estimated durations pj

p̃j
.

THEOREM 4.2.– [PEN 01] Let us consider a scheduling problem with tasks bound by
precedence constraints, and arbitrary resources constraints (but with constant amount
of resources). The criterion is either the makespan minimization or the flow time
minimization. Let A be an off-line algorithm. Then

sA(ε) ≤ (1 + ε);

Thus, the sensitivity guarantee is at most linear in the disturbance magnitude, and
this for a very large family of scheduling problems. This result is obtained through
rather large overestimates, and for any algorithm. We might hope to do better in many
cases. Furthermore, when A is optimal, an upper bound of the worst case relative
deviation is obtained. If A is not optimal, to obtain such an upper bound we must
multiply s by its performance ratio (see above the definition of sA). If this ratio is
bounded by a constant, the optimization remains linear in the disturbance magnitude.
This result was first proposed by [GER 95] in the case of an unbounded number of
processors and Cmax, and it is reached by the DSC algorithm. Penz et al. [PEN 01]
show it is asymptotically reached for m machines and makespan minimization. The
worst case arises when independent tasks have the same estimated processing times.
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Penz et al. show it is possible to do better in the case of m machines, independent
tasks and flow time minimization. The list algorithm based upon the SPT rule is
optimal.

THEOREM 4.3.– The sensitivity guarantee sA(ε) of SPT for 1‖∑Ci, and for
Pm‖∑Ci, is bounded by

√
1 + ε.

This bound is asymptotically reached once again for equal processing times.

The result shows that SPT, which is optimal on the estimated instance, is not very
sensitive to disturbances: if, for instance, the task duration is allowed to double in the
real instance with respect to estimated processing times, the performance degradation
of the solution remains bounded by

√
2. Remember that this is different from the

real increase of the flow time (absolute stability measure) which can be larger (in the
example the flow time can be multiplied by 2).

Unfortunately, this bound in the square root of the magnitude might be difficult
to obtain for other problems, particularly for other criteria than the flow time which
is an additive criterion. There are still few results of that type, which are yet rather
significant. Of course the definition of the magnitude has a great influence on the
functions s. Conversely, it is a great temptation to define the magnitude according to
the results which have already been found (see also section 4.4.3 for some additional
comments on the subject)!

4.4. The m-machine problems with communication delays

In this section, the model derived from Rayward-Smith [RAY 87] and
Papadimitriou and Yanakakis [PAP 90] is studied: a set of tasks bound by precedence
constraints must be executed on identical machines. The tasks have different
processing times. Furthermore, if two tasks bound by a precedence constraint are
executed by two different processors, there is a delay, called a communication delay,
between the end of the first and the beginning of the second task. Overlapping is
allowed: one machine may communicate (send or receive data) and process some task
simultaneously. However, neither preemption nor duplication are allowed. Finally,
the performance criterion is the makespan.

Inside a workshop, the communication delay models the transportation time of
one piece from one machine to another. In parallel computing, it models the time to
send a message, like the result of one first computation used as an entry for another
executed on another processor. There is a large literature on workshop problems with
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transportation times, usually not with a parallel model; it will not be explicitly studied
here.

In parallel computing, difficulties are of two kinds: first, it is difficult to divide
some applications into tasks small enough to be able to evaluate their processing
times; second, the interconnection network between the processors or machines of
the parallel system has to be taken into account. Indeed, even if the network is not
considered as a critical resource, for which it should be necessary to know the precise
schedule of the communication tasks (thus necessitating a much more complex
model), foreseeing the duration of some communication is not easy. It depends on the
message length, on the source and destination of the message, and on the path chosen
to route the message. The routing problem itself is complex. According to the choices
made in the target architecture, the computation of the communication times is very
different (traditional communication modes are store and forward, circuit switching,
worm-hole, etc.). Even for a fixed architecture, it is difficult to precisely compute this
time because of communication link availability or network contention. Other models
were proposed, like divisible tasks, where a task may be executed simultaneously on
different machines (see [BŁA 00]). They are outside the scope of this study.

The optimality results for the model are often obtained with the hypothesis that
communication delays are identical, whatever the tasks and their allocation may be.
However, for new problems (Internet use, grid computing) a deterministic model for
the communication delays does not seem to be adapted. Thus, looking for robust
schedules with respect to some uncertainty on these delays is a very promising trail.
However, there are still few works on the subject. Here a complete sensitivity analysis
is presented in the two machine case, with unitary estimated processing times, and
trees; then bounds are proposed in a more general framework. They are applied in the
case of an unbounded number of processors. These analyses consider uncertainties
on communication delays only, processing times being fixed. A proactive/reactive
approach for this model becomes interesting when SA shows the inadequacy of a
pure proactive approach. See [MOU 99, MOU 03, GUI 04, SAN 07] and Chapter 12.

4.4.1. Notations and definitions

In most models (and specifically for that used here) the communication delay
depends on initial and final tasks, Ti and Tj respectively, and not on the machines
that execute them. It is noted cij . The number of the machine assigned to task Tj by
schedule S is πj(S). When execution durations are unitary and communication costs
are zero, the problem is called UET. When communication delays are unitary too, it is



Sensitivity Analysis for One and m Machines 89

called UECT. If communication delays are less than equal to (respectively larger than
or equal to) execution durations, the problem is called SCT, or with coarse granularity
(respectively LCT or with small granularity).

DEFINITION 4.4.– A communication is effective between two tasks Ti and Tj for
schedule S if and only if Ti ≺ Tj or Tj ≺ Ti and πi(S) 
= πj(S).

The communication delay is noted c̃ij for estimated value and cij for effective
value during the execution phase. Furthermore, c (resp. c) denotes the maximum (resp.
minimum) delay of an effective communication.

A complete schedule – assignment of tasks to processors, execution order on each
processor, and beginning times of each task – is built before execution phase using
estimated delays. The schedule obtained with the real costs admits the following
properties:

– assignment is not modified,

– the execution order of the tasks on each processor is not modified,

– new execution times of the tasks are obtained by executing each task as early as
possible.

The sensitivity analysis in this section consists of studying the differences between
the beginning times in initial schedule S̃ obtained by a given algorithm and the final
schedule S. Let ω̃ be the makespan of S̃, and ω be the makespan of S. The optimal
makespan is noted ω∗ for the effective communication delays. The notation ωc will
sometimes be used for a cost vector c, with ω0 the makespan for zero delays, and ω1

the makespan for unitary delays. By a slight abuse of notation, c ∈ [c, c] means that
all coordinates of vector c are inside this interval. With these notations, the at worst
relative (resp. absolute) deviation of S is maxc∈[c,c]

ω
ω∗ (resp. maxc∈[c,c] ω − ω∗).

DEFINITION 4.5.– A sensitivity relative (resp. absolute) bound of an algorithm is an
upper bound of the ratio ω

ω∗ (resp. of the difference ω − ω∗) over all instances of the
problem.

Such bounds are expressed as functions of c and c. They are upper bounds of
relative and absolute worst case deviations, when effective communication delays
are within interval [c, c], and will be used as robustness measures for the considered
algorithms.
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The list algorithms might be extended to problems with communications in
several ways. The most natural extension, and the most frequently used one, shall
be considered here (see Hwang et al. [HWA 89], Hanen and Munier [HAN 98]). At
time t, a task Tk is ready if its execution can begin on at least one machine at time
t. Because of communications, ready tasks are of two kinds. If each predecessor Tj

of Tk is finished before t − cjk, Tk might be executed at t on any machine and is
called free. In the other case, there is a predecessor Tj that is finished after t − cjk,
and Tj cannot be executed at t, except on the same machine. It is ready, but bound
to this machine. It follows that only the ready task bound to a machine Mi with
highest priority can be executed on Mi. [HWA 89] calls this extension ETF (earliest
task first). A significant part of the literature is devoted to the performance of these
methods.

For instance, Moukrim et al. [MOU 03] studied the fork and join graphs with
uncertainties. A fork graph contains one task that precedes all the others (which are
two by two independent). A join graph is a reversed fork graph. In the static case ETF
is optimal for these graphs, whatever the duration times and communication delays
might be. However, it is shown quite simply that the stability radius of ETF is zero in
both cases. Such negative results on the stability radius, even for very simple graphs,
explains why studies focus on deviation measures.

4.4.2. The two-machine case

The complexity of P2|prec, UECT|Cmax is unknown. The list algorithm ETF
(without any particular order on the ready tasks) has a bound of 2. The ETF-CG

algorithm (Coffman-Graham order) has a bound of min(3/2, 4/3 + 3/w∗) that is
tight.

The P2|tree, UECT|Cmax problem is polynomial and we now present a sensitivity
analysis of the algorithms solving this problem. The detailed analysis may be found
in [GUI 04].

DEFINITION 4.6.– A processor-ordered assignment is an assignment such that all
effective communications are from one processor, noted Ps (sender), toward the
other one, noted Pr (receiver). A processor-ordered schedule (PO) is such that its
assignment is processor-ordered.

In what follows, PO-schedules denote the processor-ordered schedules.

Suppose that all communication delays are zero, and let us consider the schedules
obtained by Hu’s algorithm (list schedules with level by level priority) that is optimal
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for UET trees. The resulting schedules verify that Pr is without idleness until the end
of the schedule, and Ps is without idleness until some time t; after t, it does not execute
any other task. By using a task exchange argument, the following result can be shown:

THEOREM 4.4.– For any instance of P2|tree, uet|Cmax, there exists one PO-schedule
that is optimal.

Then a bound on the difference between the optimal makespan with and without
communication delays can be derived:

THEOREM 4.5.– The difference between the optimal makespan with and without
communication delays is bounded by c: ω∗ − ω∗

0 ≤ c.

Because an optimal PO-schedule exists for effective communication costs, it is
easy to verify that 1 − c is an absolute sensitivity bound. Unfortunately, we proved
that the PO-schedules are not dominant in general for SCT problems. It is however
possible to show the existence of the same bound for any UECT-optimal schedule;
see [GUI 04] for the proof details.

THEOREM 4.6.– Optimal schedules for UECT trees admit an absolute sensitivity
bound in the SCT case of at most 1− c:

ω − ω∗ ≤ 1− c

For LCT (large communication delays) problems, a relative sensitivity bound has
been established:

THEOREM 4.7.– Optimal schedules for UECT intrees admit a relative sensitivity
bound in the LCT case equal to c+1

2 .

We have also established a general result for PO-schedules:

THEOREM 4.8.– Let us consider a problem with c ≥ 1 ≥ c. The optimal PO-schedules
for UECT intrees admit an absolute sensitivity bound of c− c.

Four algorithms have been proposed to compute optimal schedules for UECT
trees on two processors [PIC 92, VEL 93, LAW 93, GUI 00]. None of the first
three systematically build PO-schedules, and the relative sensitivity bound c+1

2 (see
theorem 4.7) is tight for the three algorithms. By contrast, the schedules obtained by
the fourth algorithm of [GUI 00] (denoted CBOS: Clusters Based on Subtrees) are
PO. Hence for problem P2|tree, uect|Cmax, there is always an optimal PO-schedule.
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The results given above on PO-schedules imply that CBOS admits an absolute
sensitivity bound of c − c. This algorithm assigns to the second processor Ps some
task groups forming intrees (if a task is on Ps, all of its predecessors are too), and
respects a balance property between both processors. From each subtree of Ps, there
is one and only one communication towards Pr.

This example highlights the great difference in terms of robustness between
two algorithms, which are both optimal in the static case. It is logical for processor
ordered schedules to obtain better performances, as they limit the number and the
impact of communications. One perspective is the extension and study of such
algorithms for m machine problems. This extension can be achieved in different
ways, including the convex clustering presented and studied in a proactive/reactive
framework in Chapter 12.

4.4.3. The m-machine case

First, the performances of some algorithms are presented without uncertainty.
Specific sensitivity analysis might be performed on these algorithms, but the general
results presented afterward are applied to them instead.

4.4.3.1. Some results in a deterministic setting

The main results are given in [CHR 95]; see also [HAN 98, VAR 96]. Outside the
two processor case, there are few polynomial problems. Let us consider first the case 8
infinite number of machines (an unbounded number of machines is more appropriate).

Without communication, this is the central scheduling problem, often called
(somewhat abusively) the PERT problem. Thus, it is sufficient to compute the critical
path for finding a minimal makespan schedule. Adding communications changes
things. Indeed, with any problem with communication delays, computing the length
of a path cannot be done before assignment is made (as this length takes into account
the effective communications). The problem is NP-hard for tree precedence graphs
and arbitrary communication delays.

Chrétienne [CHR 89] proposes a polynomial algorithm in the case of SCT trees.
The algorithm is adapted from ETF for this particular case. The resulting schedule
is linear (two independent tasks are not executed on the same machine), as with
algorithms based on clusters. Without SCT hypothesis, list schedules are no longer
dominant, due to non-dominance of linear schedules: it might be necessary to delay
some task to execute it on the same processor as its successor.
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Many approximation results exist (positive and negative) in the case of m

machines and usually in UECT hypothesis; see [CHR 95, HAN 01]. The algorithms
are based on ETF list methods or on clusters, such as DSC algorithms of [GER 92]
and the CBoS algorithm from the previous section that can be generalized to
m machines. It then admits (see [GUI 97]) an absolute performance bound
ω − ω∗ ≤ m−1

2 . Cluster-based algorithms have the effect of minimizing the number
of effective communications, hence they are interesting methods to diminish the
uncertainty impact, as shown by the two-machine case.

4.4.3.2. Framework for sensitivity analysis

In this section a sensitivity analysis is presented concerning the communication
delays. The precedence graph is arbitrary. For any precedence Ti ≺ Tj represented by
the arc ak, an estimated delay c̃k and an interval [αk, βk] are given. By hypothesis, the
communication delays (real and estimated) are inside this interval. Denote by α and β

the n-vectors composed of the lower and upper bounds of these intervals. In the most
general case, these quantities might depend on the task assignment, hence the studied
schedule, see [SAN 05]. A worst case analysis is made, and sensitivity bounds are
computed for given vectors α and β. The above notations can be used: c = max βk

and c = min αk. The execution durations are fixed, and we use notation p = min pj .
Last, by reference to the study of section 4.3.2, a possible definition of the perturbation
magnitude is here described as ε = c− c.

4.4.3.3. Stability studies

Let us first consider the stability problem, that is the performance loss of
some schedule S after some disturbance, see Chapter 1. This loss is measured
by the stability ratio (relative stability) stc̃(S) = ωc(S)

ωc̃(S) , and when it does exist
by the stability difference or absolute difference (absolute stability) astũ(S) =
ωc(S)− ωc̃(S).

As might be expected, no upper bound of astc̃(S) independent of the graph size
exists, and this remains true in really special cases. [MOU 03] considers for instance
the unbounded case and Chrétienne’s algorithm.

THEOREM 4.9.– Consider the problem P∞|tree, SCT|Cmax. Let h be the height of
the task graph (considering the arcs), l its width, and ε = c − c. Let S be a schedule
computed by Chrétienne’s algorithm for delays c̃. Then

astc̃(S) ≤ min(h, l − 1)× ε

and this bound is tight.
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From the theorem, there indeed exists an absolute stability bound, but for either
height bounded or width bounded graphs. This result is obtained using the hypotheses
of unboundedness on m and of linearity of the obtained schedule.

However, it is possible to bound the stability ratio. Let us first note that inside
the chosen framework, stc̃(S) = ωβ(S)

ωc̃(S) , as the makespan naturally increases with the
delays for a fixed S.

Note. Let x and y be two communication vectors.

W (x, y) =
1 + p

maxk yk

mink
xk

yk
+ p

maxk yk

THEOREM 4.10.– [SAN 05] For any estimated delay vector c̃,

stc̃(S) ≤W (c̃, β)

In order to lighten the notations, the fact that the quantities W can in fact depend
on S is omitted. The expression is much simplified if equal intervals are considered:
[c, c] for all effective communications. The best bound is obtained in the case of equal
estimations c̃k = u ≥ c ∀k. In that case,

stu(S) ≤ p + c

p + u
.

4.4.3.4. Sensitivity bounds

Suppose now that an optimal schedule S is available for the estimated delays c̃.
Because of the above observations on the stability difference, it seems very difficult to
bound the worst case absolute deviation of S, as was done in section 4.4.2, and bounds
on the relative deviation are sought instead. A general bound is proved in [SAN 05].
From it, we can deduce:

THEOREM 4.11.– Suppose that ∀k, ck ∈ [αk, βk]. If S is optimal for delays α, or if S

is optimal for delays β, then

W (α, β) =
p + maxk βk

p + maxk βk ·mink
αk

βk

is a relative sensitivity bound for S.
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If S is an optimal schedule for an estimated vector different from α and β, the
bound is less interesting (for equal vectors α and β). As for stability, the expression of
the bound is much simpler in the equal interval case:

THEOREM 4.12.– Suppose that ∀k, ck ∈ [c, c]. If S is optimal for constant delays
u ∈ [c, c], then

p + c

p + c

is a relative sensitivity bound for S.

The bound of theorem 4.12 is tight in two particular cases. Let us first consider
the problem studied in section 4.4.2; then p = 1, and in the LCT case (c = 1) any
UECT-optimal schedule admits a relative bound of 1+c

2 (theorem 4.7). Remember
that the CBoS algorithm admits an absolute bound because it is processor-ordered,
but theorem 4.12 does not assume any hypothesis on S, apart from its optimality in
the deterministic case.

Let us now consider the problem for which Chrétienne’s algorithm is optimal,
P∞|tree, sct|Cmax. Any vector c̃ can be chosen for the estimated delays, while the
algorithm builds an optimal schedule for these delays as far as the SCT hypothesis is
respected: c ≤ p. In particular, theorem 4.12 applies. Furthermore it is easy in that
case to show that the bound is tight (for instance, when complete binary trees are
considered). This bound is independent of the estimation used to build the schedule.

Let us finally note that this bound, contrary to section 4.3.2, cannot be expressed
as a function of a unique parameter describing the size of the disturbance or of the
uncertainty; both parameters c and c are necessary. Another difference comes from
the nature of the data subject to uncertainty. If it is a processing time as in section
4.3.2, this duration is at least known a posteriori. However, if a communication is not
effective in the chosen schedule, the associated real delay will never be known. Hence
a posteriori analysis is questionable (and can not help to verify the adequacy of the
hypotheses on the delays).

4.5. Conclusion

The objective of this chapter was to present an overview of sensitivity analysis
applied to single and m machine problems. In order to do that, it has been necessary
to define what is, or what should be according to us, such analysis, its interest and its
limits. A number of recent results have been presented. The analyses were sometimes
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completed by the search for solutions maximizing robustness, which is in general a
more difficult problem than the analysis of a specific algorithm. Within the scope of
this book, a sensitivity analysis and/or the search for robust solutions should help
to define the theoretical performances of a predictive or proactive approach, before
eventually proposing a fully proactive/reactive approach, which always more difficult
to elaborate and to use.
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Chapter 5

Service Level in Scheduling

5.1. Introduction

This chapter is concerned with stochastic scheduling problems in which various
parameters are not known with certainty. However, we suppose that information
is available on the probability laws followed by these parameters. The goal is to
explicitly take them into account in scheduling problems, instead of implicitly as
most of the deterministic proactive and/or reactive approaches do in this book. Even
though information on probabilities of the various stochastic parameters may be
difficult to obtain in practice, information systems, increasingly present in companies,
allow starts and ends of tasks to be traced and stored. Analyzing these data, when
they are available for several years, helps to determine the probability laws of some
events and to estimate the parameters of these laws.

In this chapter, we study the case where processing times are stochastic, which
is the most frequently studied in the literature. This is a rather general case since it
includes possible failures on machines or varying processing speeds between operators
that can be assigned to an operation but that are often not explicitly considered in
scheduling problems.

A first important comment is that the literature on stochastic scheduling is
relatively limited compared to the research on deterministic scheduling. Most of the

Chapter written by Stéphane DAUZÈRE-PÉRÈS, Philippe CASTAGLIOLA and Chams LAHLOU.
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research on stochastic scheduling deals with the optimization of the mathematical
expectation of criteria considered in deterministic problems. For project scheduling
or flow-shop (the most studied stochastic scheduling problem), papers by Brucker
et al. [BRU 99] and Gourgand et al. [GOU 03] show that the makespan is the
most frequent criterion. For single or parallel machines, several criteria have been
investigated: number of late jobs [JAN 02b], weighted number of late jobs [JAN 02a],
sum of weighted completion times [LI 98, SKU 02, UET 03], earliness-tardiness
[JIA 01, CAI 99] for instance. We refer the reader to the book by Pinedo [PIN 02]
which contains a relatively recent survey on the optimization of the mathematical
expectation for numerous criteria.

Optimizing the mathematical expectation can be seen as the transposition of the
deterministic problem to the stochastic case. On the other hand, the idea of service
level, introduced and studied in this chapter, and which corresponds to the R5 measure
of Chapter 1, has no equivalent in a deterministic problem.

In order to obtain analytical results, it is usual to assume that the operation
processing times follow particular distribution functions, which make the
mathematical analysis easier. In many instances, as noted in [PIN 02], the exponential
distribution is used, which implies that the probability of an operation completing
does not depend on the time the operation has been processed so far. Obviously, this
is not a realistic assumption, particularly for production systems. The results given
in sections 5.3 and 5.4 are based on more general and realistic distributions, such
as gamma, lognormal, Weibull and beta distributions, which are characterized by a
mean, a standard deviation, a minimum value and possibly a maximum value.

We study the notion of service level, to which very few papers have been
dedicated, except those of Golenko-Ginzburg et al. [GOL 95] and Daniels and
Carrillo [DAN 97].

Golenko-Ginzburg et al. [GOL 95] study the case of a job-shop problem where
each job has a due date, a probability to be finished on time, and a weight representing
its importance. Operations have random processing times, but their mathematical
expectations and variances are known. They address two problems: in the first case,
the goal is to maximize the sum of probabilities (for the jobs) to be on time; in the
second case, the objective is to find a schedule minimizing the makespan, with the
additional constraint that the probability of a job being on time is at least equal to a
given value, i.e. a minimum service level is respected. The authors present several list
scheduling algorithms which are tested on 5 machines and 10 jobs.
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Daniels and Carrillo [DAN 97] are interested in a single machine problem, when
jobs have random processing times with mathematical expectations and variances.
They address the problem of finding a sequence for jobs that maximizes the probability
a criterion associated with the sequence remains below a given threshold, i.e. a given
service level. They propose a branch-and-bound algorithm and a heuristic for the sum
of completion times (

∑
Cj). Different problems of 10, 15 and 20 jobs are tested.

We will see in section 5.2 that the notion of service level, which answers questions
like “what is the probability for this schedule to be completed before this time?”, may
be interesting at several levels, such as the criterion to optimize or the constraints to
satisfy.

Scheduling problems which take a service level into account are complex. It is
generally difficult to compute a service level, even when the schedule is given, i.e.
the sequencing and allocation of jobs are known in advance. For instance, in the case
of a stochastic scheduling project (i.e. jobs must satisfy precedence constraints and
processing times follow independent and discrete distributions) Hagstrom [HAG 88]
proved that computing the probability to complete the project before a given date is an
NP-complete problem. The mathematical expectation of a criterion takes into account
only the mean of the processing times, whereas the service level integrates the range
of processing times. Experimental results of section 5.3.3 emphasize that the range of
processing times has a strong impact on the service level, and hence on the quality of
a schedule.

This chapter aims to study, define and spur further research in the calculation
of the service level associated with a given criterion and for a given schedule, but
also the determination of a schedule that optimizes a given service level. Computing
the service level of a given schedule can be seen as a means to perform sensitivity
analysis, whereas optimizing a service level corresponds to optimizing robustness.
The approaches that have been developed (and that mostly remain to be developed) to
optimize service levels are primarily proactive approaches, since they search for the
most robust schedule before it actually starts.

5.2. Motivations

To explain the notion of service level and its practical value in scheduling, it is
relevant to compare inventory theory with stochastic demand. In this case, the main
problem, if the order quantity is fixed, is often to determine the safety stock, i.e.
the order point. This last parameter corresponds to the stock level below which it
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is necessary to start a new order. The larger the order point, the larger the safety
stock becomes. The order point is generally determined in two different ways (see
for instance Silver et al. [SIL 98]):

– by minimizing the mean of a global cost (usually holding cost, order cost and
backorder cost);

– or by satisfying a given service level.

The service levels are, for example, the probability that a backorder occurs between
two replenishments or the percentage of demands satisfied without backorder. From
a practical point of view, using a service level is often very interesting for several
reasons. In particular, it may be very difficult to estimate backorder costs since they
must take into account the potential loss of customers that are not satisfied (in addition
to the costs related to sending products through faster transport means). It is then much
easier to explain that an order point has been determined, to ensure that 99% of the
demands are satisfied without backorders, than to minimize a global cost.

The service level in scheduling corresponds to the probability that a criterion is
smaller (or larger) than or equal to a given value. If the makespan is considered, it is
the probability that the makespan is smaller than or equal to a maximum time given
to execute all the operations. It is thus possible to consider the service level of any
criterion in deterministic scheduling. The criteria chosen to illustrate the results in this
chapter are the makespan Cmax and the sum of the completion times

∑
Cj . We believe

that optimizing a service level, i.e. finding a schedule that maximizes the probability
that a given quality is attained, allows the robustness to be optimized. As in inventory
theory, this optimization criterion is relevant and easy to grasp. For example, it is easier
to understand that the proposed schedule maximizes the chance that all the operations
will be completed before the end of the day than that it minimizes the mean of the
completion time of all the operations. The numerical results of section 5.3.3 show two
things rather clearly:

– two schedules that seem equivalent, because they have the same mean, may have
very different service levels;

– the schedule that minimizes the mean is not always the one that optimizes the
service level.

This can be explained by the fact that, in some schedules, the variability of the
operations has little or no impact on the service level: in the case of project scheduling
for instance, if the operations with high variability do not belong to the critical path,
the service level will be larger than in the opposite case.
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Even if optimizing is not the goal, providing the service level for a schedule
computed with deterministic parameters is very relevant from a practical point of view.
For example, if a set of production orders must be manufactured in a given period (e.g.
a day or a week), it may be very valuable to know that, using the schedule determined
with any method, the probability of completing all the production orders on time is
95%.

Another interesting problem would be to optimize the mean of a criterion, but with
the constraint that a given service level must be satisfied, as in the second problem
considered by Golenko-Ginzburg et al. [GOL 95]. It would also be interesting to
solve a multicriteria problem in which both the mean and the service level would be
considered as objectives. The decision-maker could then define the trade-off between
the “pure” performance of the schedule and its robustness. This problem is quite close
to the one considered in Chapter 9, in which the robustness (service level) is replaced
with flexibility.

5.3. Optimization of the service level: application to the flow-shop problem

We are interested in the flow-shop problem with m machines and n jobs (see
Chapter 1 for a definition). Only permutation schedules are considered, i.e. when jobs
are processed on each machine according to the same order. Given a permutation
π, it is possible, using simulation, to estimate the mathematical expectation of the
makespan Cmax(π) and of the sum of job completion times

∑
Cj(π). In order to

find a permutation minimizing the mathematical expectation, or maximizing the
service level, these computations are done for each possible permutation. However,
this approach, which enumerates all cases, is only possible for small problems such
as the ones we will study: two machines and two jobs (two permutations), and three
machines and five jobs (120 permutations).

5.3.1. Criteria computation

Let Xi,j be the random variable corresponding to the processing time of job j on
machine i. In our case, for a particular permutation π, the computation of the criteria
is equivalent to the computation of the longest paths in a precedence graph where the
values associated with the nodes are the Xi,js. As depicted in Figure 5.1, the value
of the longest path from X1,1 to Xm,n corresponds to the value of Cmax(π). For the
same reason, the date corresponding to the end of job j is equal to the length of the
longest path from X1,1 to Xm,j .
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X1,1 → X1,2 → · · · → X1,n

↓ ↓ ↓
X2,1 → X2,2 → · · · → X2,n

↓ ↓ ↓
...

...
...

...
...

...
...

↓ ↓ ↓
Xm,1 → Xm,2 → · · · → Xm,n

Figure 5.1. Precedence graph corresponding to permutation (1, 2, . . . , n)

The makespan (Cmax(π)) can be computed in the following way:

– C1,1 = X1,1,

– For j = 2 · · ·n, C1,j = C1,j−1 + X1,j ,

– For i = 2 · · ·m
- Ci,1 = Ci−1,1 + Xi,1,
- for j = 2 · · ·n, Ci,j = max(Ci,j−1, Ci−1,j) + Xi,j ,

– Cmax(π) = Cm,n.

In the case of the sum of job completion times (
∑

Cj(π)), the computation can be
done in a similar way:

– S = 0 /* S represents the objective function */

– C1,1 = X1,1,

– For i = 2 · · ·m, Ci,1 = Ci−1,1 + Xi,1

– S = S + Cm,1,

– For j = 2 · · ·n
- C1,j = C1,j−1 + X1,j ,
- for i = 2 · · ·m, Ci,j = max(Ci,j−1, Ci−1,j) + Xi,j ,
- S = S + Cm,j ,

–
∑

Cj(π) = S.

5.3.2. Processing time generation

We will assume that for each random variable Xi,j we know the mean μ, the
standard deviation σ > 0, the minimal value c and the definition interval length d > 0
such that Xi,j is defined on [c, c + d]. In this chapter, we will focus on four different
types of probability distributions: the gamma distribution, the lognormal distribution,
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the Weibull distribution and the beta distribution. Each of these distributions depends
on two parameters: a (shape) and b (scale). These probability distribution were chosen
because they have quite different shapes and are easy to simulate. For each of the
four distributions, we will define the PDF (probability density function) and we will
give the relations between the distribution parameters (a, b) and the input parameters
(μ, σ, c, d):

– The PDF of the gamma (a, b, c) distribution is defined on [c,+∞), i.e. d = +∞,
and is equal to

fγ(x|a, b, c) =
(x− c)a−1 exp

(
c−x

b

)
baΓ(a)

where Γ(a) is the gamma function. The values of a and b are equal to

a =
(

μ− c

σ

)2

b =
μ− c

a

– The PDF of the lognormal (a, b, c) distribution is defined on [c,+∞), i.e.
d = +∞, and is equal to

fL(x | a, b, c) =
bfN

(
a + b ln(x− c)

)
x− c

where fN (t) = (2π)−1/2 exp(−t2/2) is the normal (0, 1) PDF. In order to compute
a and b, we first have to evaluate

u =

(
1 +

(
σ

μ− c

)2
)1/2

v =
μ− c

u

and then

b = (2 ln u)−1/2

a = −b ln v
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– The PDF of the Weibull (a, b, c) distribution is defined on [c,+∞), i.e. d = +∞,
and is equal to

fW (x | a, b, c) =
a

b

(
x− c

b

)a−1

exp

(
−
(

x− c

b

)a
)

In order to find the value of a, the following non-linear equation has to be solved

Γ(1 + 2/a)
Γ2(1 + 1/a)

= 1 +
(

σ

μ− c

)2

and then

b =
μ− c

Γ(1 + 1/a)

– The PDF of the beta (a, b, c, d) distribution is defined on [c, c + d] and is equal
to

fβ(x|a, b, c, d) =
(x− c)a−1(d− x)b−1

B(a, b)(d− c)a+b−1

where B(a, b) is the beta function. In order to compute a and b, we must first compute
μ′ = (μ− c)/d and σ′ = σ/d and then

a =
μ′2(1− μ′)

σ′2 − μ′

b =
μ′(1− μ′)

σ′2 − 1− a

5.3.3. Experimental results

The simple case of a flow-shop problem with two machines and two jobs is first
considered. We assume that the processing times of operations follow the same
distribution, which means that the problem parameters c, μ, σ (and d for the beta
distribution case) are the same irrespective of the chosen distributions (see Table 5.1).
Note that only the processing time of the first operation of the first job (i.e. X1,1) can
vary significantly.
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c μ σ d

X1,1 5 50 45 95

X2,1 195 200 0.5 205

X1,2 45 50 0.5 55

X2,2 195 200 0.5 205

Table 5.1. Values of the parameters for 2×2 flow-shops

For these examples, the two schedules π1 = (1, 2) and π2 = (2, 1) have almost
the same mathematical expectation of the chosen criterion (E(Cmax(π1)) = 450 and
E(Cmax(π2)) = 451; E(

∑
Cj(π1)) = 699 and E(

∑
Cj(π2)) = 701). However, as

Figure 5.2 shows, in the case of the gamma distribution, they do not have the same
service level at all: the gap can reach 35%. For instance, the probability of having
a makespan less than 452 is 65% for the schedule minimizing the mathematical
expectation of the makespan, whereas it is 98% for the other one. Therefore, a
threshold exists below which one of the schedules has the best service level, and
above which the other schedule has, on the contrary, a better service level. This
can be explained when the criterion is expressed in terms of random variables. The
makespans of the two schedules are Cmax((1, 2)) = X1,1 +max{X1,2, X2,1}+X2,2

and Cmax((2, 1)) = X2,1 + max{X2,2, X1,1} + X1,2. Hence, Cmax((1, 2)) is very
dependent on X1,1, which varies considerably, whereas Cmax((2, 1)) is very stable
because the value of X1,1 is dominated by that of X2,2.
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The same curves are observed when the distributions are lognormal and Weibull. If
the distribution is bounded, such as the beta distribution, the gap between the service
levels is larger (it can reach 50%; see Figure 5.3).
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Figure 5.3. 2×2 flow-shop (beta distribution):
same mathematical expectation of the criteria

The same phenomenon can be observed in case of a flow-shop with three machines
and five jobs and the operations follow the same distribution. In Figure 5.4, in the case
of the lognormal distribution, we can see the service level of a schedule minimizing
the mathematical expectation of the criterion, and an optimal service level, obtained
by taking the maximum service level among the 120 schedules, for each value of the
criterion.
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Again, all schedules have almost the same mathematical expectation of the chosen
criterion (from minπ(E(Cmax(π))) = 1099.5 to maxπ(E(Cmax(π))) = 1101.2, and
from minπ(E(

∑
Cj(π))) = 3498.9 to maxπ(E(

∑
Cj(π))) = 3505) while they

have service levels that can be very different (the gap can be 35%). Moreover, several
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thresholds exist (15 for Cmax, and 20 for
∑

Cj) which correspond to the different
schedules with the best service level.

Finally, we compared the flow-shop problem with two machines and two jobs
when the mathematical expectations are different: on the one hand E(Cmax(π1)) =
325 and E(Cmax(π2)) = 357, on the other hand E(

∑
Cj(π1)) = 500 and

E(
∑

Cj(π2)) = 554. Figure 5.5 shows, in the case of the lognormal distribution,
that the schedule minimizing the mathematical expectation has a 10% lower service
level after a certain threshold.
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Figure 5.5. 2×2 flow-shop (lognormal distribution):
different mathematical expectation of the criteria

5.4. Computation of a schedule service level

Computing the service level of a given schedule (i.e. when the sequencing and the
allocation of operations are known) can be seen as working on a precedence graph,
that is, considering a project scheduling problem. When the criterion is the makespan,
the problem is similar to computing the distribution function of the project duration. In
this case, we can use numerous methods (see the surveys [ADL 87, CUB 92, BAC 93]
for example). Basically, there are three main approaches:

– Simulation (mainly Monte Carlo) which gives an approximate value of the
distribution function of the project duration.

– Analysis, based on critical paths or the graph structures (such as series-parallels).

– Computation of upper and lower bounds of the distribution function of the
project duration.

Additionally, the reader is referred to the paper by Iida [IID 00], who introduces
upper and lower bounds based on a path analysis in the graph, and the paper by
Möhring [MÖH 01], who presents several bounds based on a graph transformation.



110 Flexibility and Robustness in Scheduling

On the other hand, to our knowledge, there exist no works on the computation of
the distribution function for criteria other than the makespan for the project scheduling
problem. Even for deterministic problems, little research has been done, as the surveys
of Brucker et al. [BRU 99] and of Klein [KLE 99] show.

5.4.1. Introduction

Let X1, . . . , Xp be p independent continuous random variables. Let fXi
(x)

and FXi
(x) be respectively the PDF (probability density function) and the CDF

(cumulative distribution function) of the random variable Xi. Let z(x1, . . . , xp) be a
function from Rp → R. In our case, the function z(x1, . . . , xp) corresponds to one of
the considered criterion, i.e. Cmax and

∑
Cj as defined in section 5.3. By definition,

the CDF FZ(z) of the random variable Z = z(X1, . . . , Xp) is equal to

FZ(z) = P{z(X1, . . . , Xp) ≤ z} =
∫

z(x1,...,xp)≤z

fX1(x1) · · · fXp
(xp)dx1 · · · dxp.

The computation of this multivariate integral is a complex problem and, with the
exception of some specific cases for which the function z(x1, . . . , xp) and/or the
PDFs fX1(x), . . . , fXp

(x) have a particular structure, there is no general closed-form
solution. Due to the potentially large number p of variables, the numerical evaluation
(quadrature) of this multivariate integral is also impossible. In order to obtain an
approximation F̂Z(z) of FZ(z), a classical approach consists of using a Monte Carlo
simulation, i.e. randomly generate N replicates x

(1)
i , . . . , x

(N)
i for each random

variable Xi and then compute the following N values

z(1) = z
(
x

(1)
1 , . . . , x(1)

p

)
...

...
...

z(N) = z
(
x

(N)
1 , . . . , x(N)

p

)

An approximation F̂Z(z) of FZ(z) is then equal to

F̂Z(z) =
#(z(k) ≤ z)

N

where #(z(k) ≤ z) is the number of z(i)s among z(1), . . . , z(N) having a value smaller
than or equal to z. The Monte Carlo method is a computer intensive method that
gives good results if the number N of replicates is sufficiently large. Moreover, the
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larger the number p of variables, the larger the number N of replicates in order to
keep a good accuracy when computing F̂Z(z). If the number p of variables becomes
too large, the Monte Carlo method (or variants of this method) tends to be too time
consuming without being accurate enough. In order to overcome this major drawback,
some specific methods were developed. One of them is called FORM (First Order
Reliability Method).

5.4.2. FORM (First Order Reliability Method)

This method is derived from the structural reliability research field. For instance,
in this field, the rigidity z of a metallic structure depends on a large number of
structural variables x1, . . . , xp. As long as the rigidity of the structure is above a
predefined threshold, it has a normal behavior while, if the rigidity falls below the
predefined threshold, the structure is likely to be deformed or even broken. If the CDF
associated with each structural variable (assumed to be random variables) is known,
the FORM method helps to approximate the CDF of the rigidity and then to evaluate
the probability that the rigidity remains above a predefined threshold. This method
originates with the works of Freudenthal [FRE 56] but its modern developments are
mainly due to Hasofer and Lind [HAS 74], Rackwitz and Fiessler [RAC 78] and
Breitung [BRE 84]. An important reference on this topic is the work of Melchers
[MEL 99]. The base idea of the FORM method is to transform (see Figure 5.6) the
p random variables X1, . . . , Xp into p new random variables U1, . . . , Up using the
Rosenblatt’s transformation [ROS 52]

Uk = F−1
N

(
FXk

(
Xk

))
(5.1)

where F−1
N (t) is the inverse cdf of the normal (0, 1) distribution. From equation (5.1),

we have Xk = F−1
Xk

(FN (Uk)) and consequently

d

duk
F−1

Xk
(FN (uk)) =

fN (uk)
fXk

(F−1
Xk

(FN (uk)))

We finally obtain

FZ(z) =
∫

h(u1,...,up)≤z

fN (u1) · · · fN (up)du1 · · · dup

with

h(u1, . . . , up) = z(F−1
X1

(FN (u1)), . . . , F−1
Xn

(FN (up)))
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x1

x
2

z(x1, x2) < z

z(x1, x2) > z

−→ 0
0

u1

u
2

h(u1, u2) < z

h(u1, u2) > zu∗

d∗

Figure 5.6. Rosenblatt’s transformation in the case of p = 2 variables

Thus, the Rosenblatt’s transformation creates a new space where U1, . . . , Up are
independent normal (0, 1) random variables. The key to the FORM method consists
of finding the point u∗ = (u∗

1, . . . , u
∗
p)

T of Rp minimizing the Euclidean distance
|u| = (uT u)1/2 to the origin under the constraint h(u1, . . . , up) = z. The point u∗

is called the MPP or most probable point. Using the properties of the multinormal
distribution, if d∗ = (u∗T u∗)1/2 is the Euclidean distance between the point u∗ and
the origin, then an approximation F̂Z(z) of FZ(z) is equal to

F̂Z(z) =

{
FN (d∗) if u1 ≥ 0, . . . , up ≥ 0
FN (−d∗) otherwise.

(5.2)

This approximation is equivalent to the exact computation of the probability that
the random variables U1, . . . , Up belong to the region “below” the hyperplane passing
through the point u∗ and tangent to the hypersurface of equation h(u1, . . . , up) = z.
The approximation corresponding to equation (5.2) will be better if the hypersurface
of equation h(u1, . . . , up) = z is close to a hyperplane. A possible but more
complex extension of the FORM method is called the SORM (Second Order
Reliability Method) initially developed by Breitung [BRE 84] and improved by Tvedt
[TVE 90]. This method is identical to the FORM method with regard to Rosenblatt’s
transformation. The difference is the fact that the SORM method takes into account
the curvature of the hypersurface of equation h(u1, . . . , up) = z at point u∗.

5.4.3. FORM vs Monte Carlo

The FORM and Monte Carlo methods are implemented in C and tested on a PC
(Pentium III, 700 MHz)1. The number N of replicates used during the Monte Carlo
simulation is 100,000.

1. These experiments were conducted by Mohammed Brahimi during his Master’s thesis
[BRA 04].
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To begin with, we consider a flow-shop with two machines and two jobs. As was
the case in section 5.3.3, we assume that the processing times of operations follow the
same distribution (i.e. the problem parameters c, μ, σ (and d for the beta distribution
case) are the same: see Table 5.1).

The results for the lognormal distribution are reported in Table 5.2 and Figure 5.7.
We notice that FORM does not converge for small values of Cmax and

∑
Cj : y < 405

for the Cmax case, and y < 610 for the
∑

Cj case. On the contrary, FORM converges
in few iterations if 405 ≤ y ≤ 765 for the Cmax case, and if 610 ≤ y ≤ 1325 for the∑

Cj case.

Cmax

∑
Cj

y FORM Monte Carlo y FORM Monte Carlo
405 0.000009 0.000000 610 0.000003 0.000000
425 0.289692 0.282500 630 0.083358 0.085000
450 0.661854 0.671667 650 0.289376 0.282500
475 0.828373 0.832500 700 0.661743 0.670833
500 0.905636 0.914167 750 0.828325 0.833333
525 0.944625 0.952500 800 0.905612 0.914167
550 0.965777 0.970000 850 0.944613 0.952500
575 0.977946 0.982500 950 0.977942 0.982500
600 0.985290 0.985000 1050 0.989900 0.989167
765 0.998216 1.000000 1325 0.998168 1.000000

Table 5.2. 2×2 flow-shop (lognormal distribution):
service level by Monte Carlo and FORM
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Figure 5.7. 2×2 flow-shop (lognormal distribution)
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Table 5.3 and Figure 5.8 report similar results for the gamma distribution. As for
the previous distribution, FORM does not converge for small values of Cmax and∑

Cj : if y < 405 for the Cmax case, if y < 610 for the
∑

Cj case. The method
converges in few iterations otherwise. For both distributions, FORM and Monte Carlo
compute almost the same service level (see Figures 5.7 and 5.8).

Cmax

∑
Cj

y FORM Monte Carlo y FORM Monte Carlo
405 0.009066 0.005000 610 0.007167 0.004167
425 0.359343 0.365000 630 0.199855 0.195833
450 0.632378 0.622500 650 0.359206 0.361667
475 0.789069 0.786667 700 0.632315 0.623333
500 0.878976 0.880000 750 0.789036 0.788333
525 0.930561 0.926667 800 0.878957 0.881667
550 0.960159 0.959167 850 0.944613 0.952500
575 0.977141 0.975833 950 0.977138 0.975833
600 0.986885 0.987500 1050 0.992474 0.995000
700 0.998579 1.000000 1200 0.998578 1.000000

Table 5.3. 2×2 flow-shop (gamma distribution):
service level by Monte Carlo and FORM
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Figure 5.8. 2×2 flow-shop (gamma distribution)

In the case of a beta distribution, our tests show that FORM does not converge
for small and large values of the criteria: y < 405 and y > 499 for the Cmax case;
y < 610 and y > 795 for the

∑
Cj case. There is a small gap between the service
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Cmax

∑
Cj

y FORM Monte Carlo y FORM Monte Carlo

400 - 0.000000 605 - 0.000000

405 0.363757 0.200833 610 0.359172 0.194167

410 0.454192 0.465000 620 0.454150 0.465833

420 0.483777 0.493333 630 0.472227 0.480000

430 0.500033 0.509167 650 0.492610 0.502500

440 0.512589 0.524167 670 0.506571 0.520000

460 0.534666 0.552500 700 0.523743 0.538333

480 0.560215 0.570000 750 0.552831 0.567500

499 0.635754 0.675000 795 0.614964 0.623333

503 - 1.000000 805 - 1.000000

Table 5.4. 2×2 flow-shop (beta distribution):
service level by Monte Carlo and FORM

level computed by FORM and the one given by Monte Carlo simulation, for both
criteria (see Figure 5.9).
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Figure 5.9. 2×2 flow-shop (beta distribution)

Next, we consider more machines and jobs to check if the methods have the same
behavior, i.e. good results with the lognormal and gamma distributions and a small
gap with the beta distribution.

A flow-shop with three machines and five jobs is considered. Here again the
processing times of operations follow the same distribution (see Table 5.5).
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c μ σ d
X1,1 5 50 45 95
X2,1 45 50 0.5 55
X3,1 195 200 0.5 205
X1,2 45 50 0.5 55
X2,2 45 50 0.5 55
X3,2 195 200 0.5 205
X1,3 45 50 0.5 55
X2,3 45 50 0.5 55
X3,3 195 200 0.5 205
X1,4 45 50 0.5 55
X2,4 45 50 0.5 55
X3,4 195 200 0.5 205
X1,5 45 50 0.5 55
X2,5 45 50 0.5 55
X3,5 195 200 0.5 205

Table 5.5. Values of the parameters for 3×5 flow-shops

In the case of lognormal or gamma distributions, the results show that for small
values of Cmax and

∑
Cj the FORM method does not converge. The experiments

also show that Monte Carlo and FORM give the same service level (see Figures 5.10
and 5.11). Hence, the size of the problem does not seem to have an impact on the
results.

Cmax

∑
Cj

y FORM Monte Carlo y FORM Monte Carlo
1055 0.001424 0.000000 3270 0.000054 0.000000
1085 0.474301 0.473333 3330 0.106023 0.111667
1100 0.662498 0.671667 3340 0.145601 0.158333
1130 0.848818 0.849167 3380 0.311523 0.309167
1160 0.924369 0.915833 3420 0.457344 0.461667
1190 0.958782 0.955833 3480 0.620596 0.629167
1240 0.982784 0.983333 3550 0.745080 0.743333
1265 0.985951 0.987500 4150 0.979725 0.977500
1405 0.990733 0.999167 4530 0.988914 0.992500
1500 0.992892 1.000000 4700 0.990601 0.997500

Table 5.6. 3×5 flow-shop (lognormal distribution):
service level by Monte Carlo and FORM
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Figure 5.10. 3×5 flow-shop (lognormal distribution)

Cmax

∑
Cj

y FORM Monte Carlo y FORM Monte Carlo
1055 0.030696 0.007500 3270 - 0.000833
1080 0.427762 0.431667 3290 0.071267 0.060833
1100 0.632742 0.640833 3305 0.128589 0.127500
1130 0.811357 0.821667 3375 0.360009 0.373333
1165 0.913314 0.920000 3435 0.509619 0.525000
1200 0.960170 0.955000 3470 0.580215 0.585000
1230 0.979550 0.975833 3635 0.798328 0.807500
1355 0.991771 0.998333 3790 0.898726 0.905000
1455 0.994724 1.000000 4380 0.989178 0.993333
1500 0.995680 1.000000 4530 0.991334 0.996667

Table 5.7. 3×5 flow-shop (gamma distribution):
service level by Monte Carlo and FORM

For the beta distribution, FORM does not converge for small values of the criterion.
Moreover there is a significant gap between the service levels of the two methods (see
Figure 5.12).

Our experiments show that:

– if the processing times have a lognormal or gamma distribution, (i) FORM is a
very good method to approximate the service level and (ii) the size of the problem
does not seem to have an impact on the quality of the approximation;

– if the processing times have a beta distribution, (i) the approximation by FORM
is worst for the 2×2 flow-shop, and (ii) can be bad when the size of the problem
increases.
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Figure 5.11. 3×5 flow-shop (gamma distribution)
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Figure 5.12. 3×5 flow-shop (beta distribution)

5.5. Conclusions

In this chapter, we introduced the notion of service level in stochastic scheduling.
We have shown the relevance of this notion, something that has rarely been done in the
scientific literature. Through various examples, it clearly appears that only optimizing
the mean of a performance may lead to very poor service levels, even though a small
degradation of the mean performance can induce a much improved service level.

We believe that two types of basic research considering service levels are
particularly interesting:

1) the determination of a service level for a given schedule; and

2) the determination of a schedule that optimizes a service level.
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Some research has been conducted on the first type of problems when the service
level is associated with the makespan. However, there is very little research on service
levels based on other criteria. The most interesting problems will probably concern
the optimization of an average performance with the constraint of a minimum service
level to satisfy. In the examples of this chapter and for the purpose of illustration, the
complete distribution of the service level has been computed. However, it is important
to note that it is a priori not necessary to know this complete distribution if the service
level must be determined for one or several fixed limits, which is often the case in
practice.

Optimizing service levels is much more difficult, and will probably be based
on results obtained for the problems discussed above. It should be noted that there
is nearly no research on the optimization of a service level. Another perspective is
multicriteria optimization that simultaneously considers the mean and the service
level.

The resolution approaches that should be developed are by definition proactive.
Another research perspective would be to see how these approaches could be either
extended to make them reactive or coupled with reactive approaches to be defined.

We believe that stochastic scheduling with service levels is a research field
which is rich and promising, and of great practical interest. However, difficulties are
numerous, since it involves combining complex combinatorial optimization problems
with stochastic theory.
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Chapter 6

Metaheuristics for Robust Planning
and Scheduling

6.1. Introduction

As emphasized in Chapter 1, the stakes of robust scheduling are particularly high.
However, many solution methods which have been developed, often within theoretical
frameworks, are not easily applied in practice. Moreover, manufacturers, who are
committed to working with researchers, are often incapable – partially or totally –
of providing data that is reliable or that perfectly corresponds to the problem at hand.
To try to compensate for this deficit we propose a method for robust optimization in
this chapter.

Optimization problems are oftenNP-hard, even when they are deterministic, i.e.,
when all data is assumed to be known with 100% certainty. There are, therefore,
no efficient algorithms to optimally solve it. Metaheuristics have become a solution
tool of preference, guaranteeing both reduced development time and a high-quality
solution. An impressive number of articles using metaheuristics to solve scheduling
problems can be found in the literature. Among the most valued techniques we find
genetic algorithms and tabu search. [REE 97] presents a non-exhaustive list of genetic
algorithm applications in different optimization areas. A more recent study presents a
general panorama of metaheuristics [HAO 99].

Chapter written by Marc SEVAUX, Kenneth SÖRENSEN and Yann LE QUÉRÉ.
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Although metaheuristics and particularly genetic algorithms are often successfully
applied when dealing with scheduling problems, there are only a few applications
of these techniques in an uncertain environment. In this chapter, we assert that
metaheuristics can be easily adapted to the needs of a stochastic problem. Using
metaheuristics for this type of optimization has a certain number of advantages
which are presented throughout the chapter. The need for robust optimization in
metaheuristics has been recognized in the well known book on robust optimization
[KOU 97], when on page 354 the authors write that “We believe that considerable
more effort should be spent on the systematic development of [...] metaheuristic
frameworks, which with minimal adjustment effort can be applied to a large class of
robust optimisation problem [...]”.

This chapter therefore presents a general framework for robust optimization
(section 6.2) followed by two applications, in scheduling (section 6.3) and in planning
(section 6.4). To put the chapter into the context of the book, we will only be using a
proactive approach here. Providing such solutions has a very real interest when, on
the one hand, there is considerable uncertainty in the problem data (section 6.3) or
on the other, when social and historical constraints make the plan difficult to modify
(section 6.4).

6.2. A general framework for metaheuristic robust optimization

The objective of this chapter is not to propose a single genetic algorithm to deal
with robust scheduling and planning problems, but to present a general optimization
framework in which metaheuristics can be systematically used to produce robust
solutions. This section first presents the general principle of the method (section
6.2.1), and then a practical implementation of it in a genetic algorithm for robust
optimization (section 6.2.2). The last two sections of this chapter present an
application of the framework.

6.2.1. General considerations

For all metaheuristics, we must define both the encoding of the solutions to the
problem and the evaluation function, which attaches to each solution a real-valued
number indicating its quality. The method presented here transforms a metaheuristic
for the deterministic optimization of a given problem, into one to find solutions in
the stochastic case. As in [SÖR 01], this change is made by replacing the evaluation
function with a robust evaluation function. If a distinction needs to be made between
the two types of objective functions, the one for the deterministic case will be called
an ordinary evaluation function. The rest of this section is devoted to the definitions
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and explanations necessary for the preservation of the quality of the solution in the
uncertain case.

Let s be a solution to our problem. The quality of solution s is computed by an
evaluation function z(s). When necessary, as defined in Chapter 1, we can specify
which particular instance I of problem P we act upon, thus the evaluation function
will be written zI(s). To search for the robust solution, the evaluation function must be
replaced by a robust evaluation function fr(s). To find robust solutions, this function
adheres to the following two principles [SÖR 01, SÖR 03]:

Principle 1: Each solution is implemented on a set of characteristics or modified
parameters ζ(I) of the initial instance I. ζ is a sampling function which takes
a random sample of the uncertain elements of I. Let ζi(I) be the ith sample of
parameters of instance I. The implementation of a solution on a modified set of
parameters is called a derived solution.

Principle 2: Several evaluations of a solution on a sample of I are combined into
a new evaluation function. An evaluation of a derived solution is called a derived
evaluation. This new function, which uses the same principles as [KOU 97], is the
robust evaluation function fr(s).

A possible form of a robust evaluation function is the average of m derived
evaluations:

fr(s) =
1
m

m∑
i=1

zζi(I)(s) (6.1)

where m is the number of derived solutions to be evaluated. This is the same as
criterion R3 defined in Chapter 1 and similar to the evaluation function used in
Chapter 7 where the evaluation is carried out in an iterative manner and not averaged,
as here.

A more conservative form of a robust evaluation function consists in examining
the worst case of a solution among all the derived evaluations (worst-case analysis):

fr(x) = max
i=1...m

f
(
x, ζi(I)

)
(6.2)

if f is a function to minimize or

fr(x) = min
i=1...m

f
(
x, ζi(I)

)
(6.3)

if f is a function to maximize.
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Two examples of an evaluation function will be presented in sections 6.3.2 and
6.4. Both will be the same type as function (6.1).

6.2.2. An example using a genetic algorithm

For clarity, we will use a genetic algorithm as a reference metaheuristic. The
pseudo-code of this GA is given in algorithm 6.1.

Algorithm 6.1 Incremental genetic algorithm
1: generate an initial population
2: while stopping conditions are not satisfied do
3: select two individuals
4: crossover: apply the crossover operator to the two individuals
5: mutation: mutate offspring under probability
6: evaluation: evaluate offspring
7: insertion of offspring into the population under conditions
8: removal of an individual from the population under conditions
9: end while

10: report the results

A large part of the initial population is randomly generated. Adding good quality
solutions however, usually leads to faster convergence. These initial solutions are
obtained most often through heuristics, resulting from previous studies. The stopping
condition of the genetic algorithm is usually either a finite number of iterations, a finite
number of iterations with no improvement of the best solution found, or a maximum
computation time. On line 3 of algorithm 6.1, the choice of individuals is made either
through binary tournament or by Reeves’ ranking method [REE 95]. In both cases, it
is the objective function value that determines the choice of the individuals. Mutation
is carried out with a certain probability Pm. An important remark is that the crossover
and mutation operators must be suitable for the problem [POR 96].

By following the two principles stated in section 6.2.1, the ordinary evaluation
function is replaced by a robust evaluation function adapted to the problem. The
insertion and removal of individuals also depends on their evaluation values. For
example, we choose to insert a new individual if it is better than at least the worst
individual of the population. Since the population size is constant, we remove an
individual each time we insert one. The individual to be removed is an individual
whose evaluation is not as good as the individual average evaluation and is selected
through reverse binary tournament selection, for example. In several of these steps,
the functioning of the genetic algorithm will be determined by the results of the robust
evaluation through iterations and will thus lead to a robust solution.
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Among similar studies, the genetic algorithm by Leon et al. [LEO 94] which solves
a robust job-shop problem can be noted. This algorithm uses an objective function
including robust measures. In this article the authors suppose that the machines can
breakdown, but that operations immediately resume after the breakdown is finished
(right-shift reactive policy). Robustness is defined as a schedule delay function, for
example the difference between an effective makespan and an expected makespan
(without breakdowns).

Another major piece of work in this domain is Jensen’s doctoral thesis [JEN 01]
which presents several innovative ideas. For example, he defines neighborhood-based
robustness. The main idea is to select a partial set of high-quality solutions and to try
to preserve them throughout the optimization. Their quality should not be altered even
during disruptions. A particular genetic algorithm based on co-evolution is associated
with this idea. Co-evolution is a term used to describe a type of genetic algorithm
in which a population of robust solutions and a population of machine breakdowns
evolve simultaneously. In the end, the former population consists of the most robust
solutions and the latter of the worst machine breakdowns.

Other robust genetic algorithm references (Branke [BRA 98, BRA 01], Tsutsui
[TSU 99] and Tsutsui and Gosh [TSU 97]) present studies on robust genetic
algorithms but the applications used are limited to continuous mathematical function
optimization. The work that is without a doubt the closest to ours is that presented in
[FLE 04]. In this article, the authors present a precise stochastic evaluation of their
objective function and give robust solutions for stochastic arc routing problems. To
be able to compute a stochastic evaluation of a solution, the authors use in-depth
statistical knowledge of the problem data.

6.3. Single-machine scheduling application

6.3.1. Minimizing the number of late jobs on a single machine

A set of jobs must be sequenced on a single machine which does not allow
preemption. Each job is not delivered or available until its release date. The
processing time, due date, as well as weight depending on the priority of each job, is
assumed to be known. A job is considered late if its execution time overruns its due
date. Otherwise, it is considered on time or early.

NOTE 6.1.– Late jobs can be randomly placed after all of the early jobs without
changing the objective value. In practice, one could even avoid sequencing them.
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The objective of the problem is to find a schedule which minimizes the weighted
number of late jobs. Table 6.1 summarizes the notations used here.

Description Notation Comments
Number of jobs n
Release date rj

Processing time pj

Due date dj

Weight wj

Beginning time of processing tj rj ≤ tj

End time of processing Cj Cj = tj + pj

Late status Uj Uj = 1 iff Cj > dj and 0 otherwise

Table 6.1. Notations of a single-machine scheduling problem

In the standard classification, the problem is noted 1|rj |
∑

Uj . This problem is
NP-hard in the strong sense [LEN 77]. In the deterministic case, a certain number
of algorithms are able to efficiently solve this problem [DAU 95, BAP 99, DAU 03,
SEV 03].

In this chapter, a genetic algorithm is used to solve the problem, first in the static
case, then in the stochastic case. In this genetic algorithm, the solution is encoded as
a permutation of n jobs. An initial population is randomly generated and the stopping
condition is set to a finite number of iterations without an improvement of the best
solution. The selection of individuals is carried out with Reeves’ ranking method
[REE 95] which consists of giving a greater probability of best individuals being
selected. The crossover operator is a one-point crossover operator X1 [POR 96]
and the mutation operator is the general pairwise interchange GPI which consists
of exchanging two randomly selected jobs from the permutation. The mutation
probability is set to Pm = 0.25. The evaluation is made by taking the jobs in the
order of the permutation and by sequencing them straight away without changing
the partial order. If a job cannot be placed early, by adhering to note 6.1, it can be
pushed to the end of the schedule and its associated weight can be added to the final
value of the objective function. Insertion and removal are carried out according to the
instructions of section 6.2.2. In [SEV 03], several variations are studied with, notably,
the addition of a local search which allows the best solutions to be found.

Even if all the parameters of our problem can be rendered stochastic, only the
particular case in which the availability dates are deterministic will be modeled in this
chapter.
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6.3.2. Uncertainty of deliveries

A just-in-time production environment can be modeled like a scheduling problem
in which the production order is represented as a series of jobs sequenced on a single
machine. The solution to such a just-in-time problem consists of finding the sequence
which minimizes the weighted number of late jobs. Other objectives can also be used,
such as total weighted tardiness.

6.3.2.1. Considered problem

In just-in-time assembly, a large number of basic tasks can be regrouped into a
reduced number of jobs. This number n varies between 20 and 80 each day. The
horizon (a day) is divided into 80 five-minute periods. Earlier observations have shown
that for a significant number of jobs, the availability dates promised by the suppliers
for some parts or raw material are rarely respected causing a gap in the processing of
associated jobs. The percentage of effected jobs is about 20% each day and the gap can
go up to 20 units of time, about 1 hour and 40 minutes at the worst. Table 6.2 sums up
the parameters of the problem generator used for this experiment. For each problem
size (n), 20 instances are generated. The availability dates are generated according to
a Gamma distribution giving a greater probability of appearing at the beginning of the
horizon and the due dates are also generated according to a Gamma law but starting
from the end of the horizon, giving a greater probability of appearing at the end of it.

Parameters Values
Problem size (20,40,60,80,100)
Horizon T 80
Availability date rj Γ(0.2, 4)

Due date dj T − Γ(0.2, 4)

Processing time pj U(1, dj − rj)

Weight wj U(1, 10)

Table 6.2. Rules of the instance generator

6.3.2.2. Robust evaluation function

The robust evaluation function evaluates each generated solution a fixed number
(m) of times on the instance of the problem, the data of which has been modified.
For each evaluation, a number of jobs are randomly selected and the availability
dates of these jobs are increased by δ (defined in Table 6.3). The m evaluations are
accumulated and the average is computed to determine the robust evaluation value.
The robust evaluation parameters are summarized in Table 6.3. 20% of the jobs are
delivered late and the lateness follows a uniform law between 0 and 20 units of time.
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Parameters Values

Percentage of jobs delivered late 20%

Observed lateness δ U(0, 20)

Number of evaluations (m) for fr 100

Table 6.3. Robust evaluation parameters

The number of evaluations m must be high enough to avoid keeping any solution
that is not robust. Moreover, a computed average in this case would have little meaning
on a reduced number of evaluations. Value m = 100 from experience gives the
adequate results, maintaining at the same time a reasonable total execution time.

6.3.3. Results

The results of the method can be evaluated by comparing the sequence given by
the standard genetic algorithm (guided by the ordinary evaluation function, f ) and
the sequence given by the robust genetic algorithm (guided by the robust evaluation
function fr). The first method will be called SGA and the second RGA. The SGA
results are noted first. Then, for the final sequence (corresponding to the best SGA
result), we disrupt the data and measure the objective function value as well as the
deviation between the two values.

Instance CPU Nr. Fitness Avg. Avg. Inc.
name (sec) Iter. f f Pop 1000r (%)
ODD80_1 0.87 16775 400 405.05 430.17 7.54
ODD80_2 1.24 31903 349 353.90 373.00 6.88
ODD80_3 0.64 15606 348 354.19 371.25 6.68
ODD80_4 0.64 14505 411 417.14 431.00 4.87
ODD80_5 1.29 25518 307 312.76 337.28 9.86
ODD80_6 0.52 13217 329 332.62 340.99 3.64
ODD80_7 0.96 20278 331 336.86 361.88 9.33
ODD80_8 0.70 12646 354 357.67 368.84 4.19
ODD80_9 0.99 18863 317 321.43 343.06 8.22
ODD80_10 0.69 14645 344 347.67 366.58 6.56
ODD80_11 0.73 17557 394 398.19 417.80 6.04
ODD80_12 0.75 15224 363 374.52 385.68 6.25
ODD80_13 0.55 10500 317 322.81 338.57 6.81
ODD80_14 0.54 10104 364 368.86 389.80 7.09
ODD80_15 0.65 11040 369 373.86 385.32 4.42
ODD80_16 0.52 10418 370 375.90 384.52 3.92
ODD80_17 0.52 10982 325 331.48 342.11 5.26
ODD80_18 0.84 13599 307 312.81 324.60 5.73
ODD80_19 0.76 15434 357 363.43 376.29 5.40
ODD80_20 0.63 14365 365 372.33 391.88 7.36

Table 6.4. SGA results for the instances of 80 jobs
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In Table 6.4, the instances of 80 jobs are analyzed. For each of the 20 instances, the
SGA is run under the previously defined conditions. The CPU time and the number
of iterations are measured. The fitness f – the value of the best solution function at
the end of SGA – is given as well as the average fitness of the individuals of the
population (column “Avg. f Pop”). Column “Avg. 1000r” gives, for the sequence at
the end of the SGA run, the average evaluation of 1000 solutions, the data of which
have been disrupted. For instance ODD80_1 for example, the best solution found has
an objective function value of 400, whereas in disrupted mode the average value is
noted at 430.17. This corresponds to an increase in relation to the expected solution of
7.54% (column “Inc.”).

Instance CPU Nr. Fitness Avg. Avg. Inc.
name (sec) Iter. f fr Pop 1000r (%)
ODD80_1 158.33 22058 406 406.36 411.76 417.60 2.86
ODD80_2 72.52 9956 357 358.91 361.90 366.73 2.72
ODD80_3 108.76 15687 369 363.37 365.62 374.23 1.42
ODD80_4 152.49 20818 429 422.61 424.57 426.65 -0.55
ODD80_5 224.35 29705 310 314.94 317.48 328.88 6.09
ODD80_6 100.98 15109 327 328.24 335.24 335.49 2.60
ODD80_7 147.44 20249 342 345.39 344.33 358.54 4.83
ODD80_8 96.03 11853 358 360.67 363.67 365.09 1.98
ODD80_9 120.26 14271 325 327.12 330.67 337.71 3.91
ODD80_10 126.65 16910 353 355.95 359.57 358.47 1.55
ODD80_11 119.67 15989 403 408.82 414.05 419.97 4.21
ODD80_12 94.76 13801 369 371.24 375.29 377.26 2.24
ODD80_13 62.12 8559 341 333.90 337.33 340.49 -0.15
ODD80_14 85.73 12212 381 378.84 379.76 383.52 0.66
ODD80_15 146.25 16869 373 377.04 382.81 378.48 1.47
ODD80_16 106.09 14472 377 370.44 377.38 380.52 0.93
ODD80_17 144.83 19637 329 329.30 332.00 333.23 1.28
ODD80_18 120.86 15289 313 316.72 315.86 321.17 2.61
ODD80_19 158.79 21159 364 363.40 363.81 368.20 1.16
ODD80_20 151.64 23057 370 371.78 376.43 377.56 2.04

Table 6.5. RGA results for the instances of 80 jobs

In Table 6.5, the same 80 jobs are analyzed after running the RGA. For the first
instance, the best solution found had an objective value of 406 and in disrupted mode
the average of 1000 modified instances is 417.60 which corresponds to an increase
of 2.86%. Likewise, using the RGA sequence gives a certain advantage because
in disrupted mode the average value is 417.60 compared to 430.17 for the SGA.
However, this improvement comes at the cost of an increase in computing time. For
the first instance, we go from less than one second for the SGA to more than 150
seconds.
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Number Difference CPU time (s)

of jobs SGA (%) RGA (%) SGA RGA

20 11.95 3.84 0.03 1.73

40 8.47 2.89 0.13 10.27

60 7.35 3.08 0.36 45.81

80 6.30 2.19 0.75 124.93

100 5.32 2.01 1.53 215.69

Table 6.6. Difference between the solution in the disrupted
environment and in the non-disrupted environment

Table 6.6 shows the results for all of the instances. The use of the RGA gives less
of a difference in disrupted mode and allows the construction of a sequence which
will increase the objective function value by only a small amount. Our results confirm
that taking the uncertain nature of a problem into account within the solving method is
always beneficial, although an increase in computing time has to be taken into account.

6.4. Application to the planning of maintenance tasks

The SNCF or National Railway of France – the number one passenger transporter
in that country – has a rolling stock of about 250 TGV high-speed trains which, for
security reasons, need extremely regular maintenance. With this in mind, regional
factories have specialized in maintenance, exemplified by the Hellemmes factory.
These TGVs must be periodically serviced so that they can be used for the amount
of time they were designed to last: 30 years. The mid-life maintenance operation is
the most important one (with more than 10,000 basic operations). Our study focuses
on this maintenance operation, which was the main task of the Hellemmes factory in
2000 and 2001.

With the increase in passenger traffic, the demand for trains has become greater in
the last ten years. The SNCF therefore needs more and more simultaneously available
trains to reach their annually set transport objectives. The cost of immobilizing a TGV
for a day is not information that is available to the public, but can be considered
as very high. In the last decade, the immobilization time of a TGV for the mid-life
maintenance operation has been considerably reduced. Today, for a standard TGV
(eight coaches), such as Paris-South-East TGV, the mid-life maintenance operation
takes less than 40 days.
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6.4.1. SNCF maintenance problem

The TGV maintenance problem is extremely complex and consists of several
thousand basic tasks. For medium or short-term planning, TGV maintenance can
be broken down into eight main tasks per coach. A TGV usually has eight coaches,
giving us a total of 64 aggregated tasks which represent the principle stages of the
TGV mid-life maintenance operation. The initial objective is to carry out all of the
pre-established maintenance tasks while minimizing the total immobilization time.
This problem is linked to a theoretical RCPSP multi-resource problem.

Decoupling

of the wagons

Dismantling

of the wagons

Recoupling

Sandblasting
painting

Re-assembling

PlatinizingShot-blasting

Impact
filling

Lifting

Polluting
work

TSC 1 (1 ex.)

IP (1 ex.)

TSC 2 (1 ex.)

Tasks Resources

CTA (4 ex.)

Figure 6.1. Precedence constraints and resource allocation

Figure 6.1 presents the different tasks for each coach, the precedence constraints
between tasks, and the known resource allocation. The tasks related to the train
(decoupling and recoupling) are not taken into account in our problem which deals
only with the coaches. We can note that the CTA (Caisse TGV et Automoteur – TGV
body and engine) is divided into four parts. CTA1 deals with the first two coaches,
CTA2 with the next two, etc. There are two TSC (Traitement et Structure de Caisse
– treatment and structure of the train’s body) units, but they deal with different
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operations. IP (Industries Privées – private industries) regroup the whole of the
subcontractors and exclusively take care of the sand blasting of the coach structure.

Task Length

1 Dismantling 24

2 Sand blasting 15

3 Platinizing 8

4 Polluting work 10

5 Impact filling 8

6 Lifting 24

7 Sanding, painting 20

8 Re-assembling 24

Table 6.7. Length of tasks (in hours)

Table 6.7 shows the processing time of each task. The objective of our problem
is to put the train back into commercial service for use as rapidly as possible which
can be translated as a scheduling problem to minimize the makespan (Cmax). Ideally,
the length of the tasks are known and, especially, set so that this problem can be
formulated as a resource constrained scheduling problem [LE 01, LE 02]. Since
the mid-life overhaul is a complex task, including the dismantling of the entire
TGV, numerous unexpected issues can turn up. For example, during the dismantling
of a floor, one might find that the support of the very floor needs to be changed.
This implies that it is imperative all the unexpected operations to be done before
reassembling. The goal of this study is therefore to propose a schedule that takes
these unexpected events into account.

6.4.2. Uncertainties of an operational factory

In a factory of that size, unexpected factors often turn up, thus the production
management service has a crucial role to play. First, a list of all the different
unexpected factors encountered during mid-life maintenance operations on a
Paris-South-East TGV must be drawn up over a period of 12 months.
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Frequency Impact

Type of disruption (in %) (in days)

Wrong diagnosis 30% 8

Logistics problem 11% 1

Bad coordination 11% 0

Workload change (external cause) 10% 1

Bad preparation of task 10% 3

Tool problem 10% 3

Supply problem 10% 1

Quality control failure 5.5% 7

Strike 2.5% 1

Table 6.8. Disruptions encountered by the SNCF

Table 6.8 shows the frequency of unexpected disruptions and more specifically
their impact, i.e. the number of days delay in temporary planning. As can be seen
from the table, incorrect diagnoses are the most frequent disruptions, making their
impact on the schedule the greatest.

In our experiments, we create a robust schedule by allowing the duration of the
tasks to be increased with time, a factor δ. The percentage of disrupted tasks is
denoted pp.

6.4.3. A robust schedule

Once again, we use a genetic algorithm to solve the problem both in the static and
disrupted case. The encoding used is a permutation of 64 jobs which correspond to
the eight tasks of the eight coaches of a TGV. The availability of different resources
is taken into account as follows. We use the permutation order as a priority order.
A scheduling algorithm without delay is then used, and that attempts to place all
jobs which could be processed in t with the resources if they are available. Then,
we increment t and start the process again until all the jobs are placed. The choice
of this technique is not insignificant, because it partially corresponds to the planning
process used today.
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As with the previous problem (section 6.3) we will create two evaluation functions,
one ordinary and the other robust which are integrated into the genetic algorithm.
The ordinary evaluation function simply consists of measuring the makespan after
the placement of the scheduling algorithm without delay. For the robust evaluation
function, we measure the different makespans obtained for the same sequence when
the length of pp percentage of jobs are increased by a factor δ. The average of the
different measures is the robust evaluation function. At the end of the process, we will
have two sequences given by the SGA (ordinary evaluation function) and the RGA
(robust evaluation function).

To be able to solve it, we looked into the different techniques available. As is
usually the case, the manual method of solving the problem which is based on the
experience of one man (henceforth called the expert), which takes several years to
acquire, is the method currently used in the Hellemmes plant.

The choice of parameters for the disrupted case is not an easy one. In accordance
with the SNCF experts, we can consider that an increase in the length of tasks can
cover the all the unexpected factors in Table 6.8. Observations show that about 30%
of the tasks are subject to an increase in processing time. For numerical experiments,
the chosen parameters are thus pp = 30% and δ = 10.

We use the three methods (expert, SGA and RGA) to find a first maintenance
plan/schedule. Then, by preserving the obtained sequences, the disruptions are
simulated for 1000 modified instances in which the length of the tasks increase by δ.
As a result, the completion times of the different task are pushed back, in turn pushing
back the makespan of the schedule. An average evaluation of the 1000 instances is
shown in Table 6.9 (column Avg. 1000 r). The table shows the results in hours.

Method Time Fitness Avg.

used CPU f fr 1000r

expert ≈ 1/2 day 248 — 315.55

SGA 10.92s 228 — 295.65

RGA 479.13s 232 284.52 288.84

Table 6.9. Results (in hours) in the case of disruptions
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Method Time Fitness Avg.

used CPU f fr 1000r

expert ≈ 1/2 day 31 — 39.4

SGA 10.92s 28.5 — 37.0

RGA 479.13s 29 35.8 36.1

Table 6.10. Results (in days) in the case of disruptions

Table 6.10 shows the same results but this time the length is expressed in days.

We can observe that, although the manual method is still the one used today, it is
not competitive. In disrupted mode, the makespan is more than 39 days. However, the
SGA and RGA give good results (37 and 36.1 days). It should be noted that only the
RGA method can produce a schedule that is robust and has a high evaluation function
value in case of disruption (column fr).

6.4.3.1. Variations of the unexpected factors

The unexpected factors retained here are controlled by two parameters: pp, the
number of jobs whose lengths are effected by the disruptions and δ, the value of
the increasing in task length. To verify the accuracy of the method, we measured
the makespan (fr and Avg. 1000 r) when pp or δ varied. In Figures 6.2 and 6.3, the
abscissa represents the two parameters analyzed, the left vertical axis, the value of the
makespans and the right vertical axis, the CPU time in seconds.

Figure 6.2 shows the variation of the different makespan values when pp varies,
value δ is set at 10. The percentage of disturbed tasks varies from 0 to 100%. The
best makespan value varies between 225 and 260 hours. No link between pp and the
value has been found. However, when pp increases, the gap between the temporary
makespan and the post-computed makespan stays approximatively the same. This
means that the proposed method is reliable for this case study.

In Figure 6.3 the percentage of disrupted tasks is set to pp = 30%. The δ value
varies in the interval [0, 30] interval (in hours). Examining the results, we reach
the same conclusions as before. The gap between p-Makespan and e-Makespan is
reduced, indicating that the method is reliable. A linear link between the variation of
δ and the p-Makespan and e-Makespan values seems to exist. This can be explained
by the method applied, which consists of simply pushing back the tasks to take the
lateness into account, without questioning the order of the tasks.
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Figure 6.2. Impact of the variation of pp
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6.5. Conclusions and perspectives

The general robust optimization framework proposed in this chapter is a proactive
approach which allows us to propose robust solutions to a scheduling problem and
an SNCF maintenance task planning problem. The first point that we can highlight in
this study is the simplicity of the use of the general framework. A metaheuristic can
be adapted easily to a problem with stochastic data by modifying only one function.

A question that raises itself is how the general framework should be used? To
answer this question, a decision-maker must take the following steps:

1) Determine the stochastic data of the problem and if possible model them.
According to the problem, determine which robust evaluation function is the most
adapted.

2) Use the general robust optimization framework to determine robust solutions to
the problem.

3) Choose a proposed solution by answering the question “what would happen if?”
by varying the different parameters related to the uncertain nature of the problem.

To help the decision-maker during the final choice of the robust solution, we can
go back to the results presented in [SEV 04]. In this article we proposed measuring
the distance of a set of solutions from the initial solution. We can measure the distance
between the set of solutions found by the robust method and the basic solution (given
by an expert, a previous solution or by another method on static data). With classic
decision-making techniques, the decision-maker can then choose a typical interval for
the robust evaluation function and choose a solution least sensitive to variations, while
losing a little quality.

One of the next steps of our work will be research in robust evaluation functions in
which the “simulation” part will be replaced by complete statistical evaluation. Such
a function will allow us to noticeably reduce the computation time of the proposed
approach (as in [FLE 04]).

For both applications, it would be interesting to complete this unique pro-active
approach by a reactive approach, which would improve the understanding of the
difficulties caused by data variations. For scheduling applications, the study could use
the other results in this book. However, for the SNCF problem, other factors should
be taken into account. For example, work has to be carried out in accordance with the
SNCF representatives, who only rarely accept scheduling changes. Their hesitation
most often brings about the transmission of wrong information making scheduling
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updates almost impossible. Nowadays, questioning an existing schedule has become
more exceptional, even if several tasks are already late during processing. Yann Le
Quéré’s thesis, to a certain extent, deals with the coordination of different decision
centers and the integration of communication time in the re-scheduling process. This
integration allows us to measure both the reactivity of a decision structure and the
reactivity of the method used.
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Chapter 7

Metaheuristics and Performance Evaluation
Models for the Stochastic Permutation

Flow-Shop Scheduling Problem

In this chapter, we are interested in a basic scheduling problem: the permutation
flow-shop. We are within the framework of a proactive approach. The uncertainty
sources which we consider relate to the processing times of the jobs. These processing
times are supposed to be uncertain (a function of the processing conditions (see
Chapter 1)) and are described as random variables. The objective is to search for a
robust solution which can be defined as a solution which minimizes a performance
criterion z in expectation E(z). As mentioned in Chapter 1, the objective is to provide
a solution with a “good” behavior.

Our work falls within the framework of stochastic scheduling problems. Although
this problematic is described as old, few results have been obtained in this domain to
our knowledge. From a pure academic point of view, it is interesting to begin with
the stochastic flow-shop, which is “largely” unstudied compared to the deterministic
flow-shop, which has been the subject of many publications.

The outline of this chapter is as follows. In the next section, we define the
stochastic permutation flow-shop scheduling problem under study. This presentation
shows the existence of an underlying problem: a performance evaluation problem.

Chapter written by Michel GOURGAND, Nathalie GRANGEON and Sylvie NORRE.
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This problem, the corresponding state of the art, and proposed models are considered
in the second section. Section 7.3 deals with state-of-the-art methods proposed for
the stochastic scheduling problem. The methods are implemented and tested on
examples taken from the literature. Results are given in section 7.4.

7.1. Problem presentation

For several years, the static deterministic flow-shop scheduling problem has been
extensively researched and continues to be the subject of many investigations. A
deterministic permutation flow-shop (Figure 7.1) is composed of a set of m machines
and n jobs. The n jobs are processed by the machines in the same order (machine M1,
machine M2, . . . , machine Mm). Each job Tj , j = 1, . . . , n is processed during a
time pij by each machine Mi, i = 1, . . . , m.

Machine M1 Machine M2 Machine Mm

Buffer Machine

Figure 7.1. The flow-shop model

Traditional assumptions for the deterministic flow-shop are the following:

H1 job release dates are known,

H2 machines are always available,

H3 processing times are deterministic and independent,

H4 setup times and removal times are included in processing times,

H5 transportation times are negligible,

H6 there is no splitting,

H7 a machine cannot process more than one job at a time,

H8 no job may be processed by more than one machine at a time,

H9 between two machines, jobs can wait in an unlimited buffer, managed
according to the FIFO rule.
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The deterministic flow-shop scheduling problem consists of finding a job schedule
which minimizes a criterion. For instance, the criterion may be the completion time of
the last job (makespan), the total flow time, the tardiness, etc.

In this chapter, we are interested in a stochastic flow-shop in which the processing
times are modeled by random variables. Assumption H3 is replaced by the following
assumption:

H3’ The processing times are modeled by independent random variables.

In the literature, we mainly find the geometric, exponential, uniform and Erlang
distributions.

The buffer before a machine can have any capacity (limited or unlimited) or be
nonexistent. Assumption H9 is replaced by the following assumption:

H9’ There is a FIFO buffer of capacity bi (bi ≥ 0) before machine Mi (i = 2, . . . , m)
and b1 =∞.

We consider the problem of finding a job schedule on the first machine which
minimizes an expected criterion. By using the notation described in Chapter 1,
the criterion of a schedule S is minimized in expectation if its expected criterion
EI∈P(zI(S)) is lower than the expected criterion EI∈P(zI(S′)) of any other
schedule S′. By using the notation proposed by [GOU 00], the problem can be noted:

Fm
∣∣bi, pi,j ∼ general

∣∣E(z)

where bi is the capacity of the buffer before machine Mi.

In the literature on the stochastic permutation flow-shop problem, other problems
are considered:

– finding a job schedule which stochastically minimizes a performance criterion,
noted zst. The criterion of a schedule S is stochastically minimized, if it is
stochastically lower than the criterion of any other schedule, i.e. P (z(S) ≤ t) ≥
P (z(S′) ≤ t), ∀t, ∀S′;

– finding a job schedule which maximizes the robustness, noted Rob(z). In
[KOU 00], the robustness of a schedule S in a two machine flow-shop is defined by the
maximum deviation between the makespan of schedule S and the optimal makespan
(computed by using the Johnson rule) for a set of scenarios of processing times.
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Figure 7.2 lists the static scheduling problems studied in the literature. References
are given in Table 7.1. A detailed state of the art for the stochastic flow-shop is
delineated in [GOU 00] as well as a state of the art for the flow-shop with breakdowns.
We will talk again about the state of art in the section about performance evaluation
and in the section about scheduling.

E(Cmax)

general

0

m machines

E(Cmax)

general

0

E(Cmax)

general

unlimite d

E(Cmax)

Erlang

Rob(Cmax)

uniform

unlimited

2 machines

objective

buffer size

probability
distribution

(random processing times)
stochastic flow−shop

number of
machines

Weibull

E(Cmax)

geometric

E(Cmax) E(Cmax)

exponential

E(Cw) Cmax st

Figure 7.2. State of the art: flow-shop problem with random processing times

m bi,i+1, Probability Objective References

∀i = 1, . . . , m − 1 distribution

2 0 general E(Cmax) [PIN 82, JIA 98]

2 ∞ general service level [POR 06]

2 ∞ geometric E(Cmax) [PRA 81]

2 ∞ exponential E(Cw) [FOR 81, FOR 83]

2 ∞ exponential E(Cmax) [MAK 65, TAL 67, BAG 70b,
CUN 73, MIT 77, WEI 82]

2 ∞ Weibull E(Cmax) [KAL 06]

2 ∞ exponential Cmax st [KU 86, KAM 99]

2 ∞ uniform Rob(Cmax) [KOU 00]

2 ∞ Erlang E(Cmax) [BAG 70a]

m 0 general E(Cmax) [BAG 70a, PIN 82, FOL 84]

m ∞ general E(Cmax) [MAK 65, TAL 67, PIN 82]

Table 7.1. State of the art: flow-shop problem with random processing times

When random events disturb the system, an underlying problem exists: a
performance evaluation problem. Indeed, in a framework where all the data are
deterministic, the criterion of a schedule only depends on deterministic values. In a
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stochastic model, the criterion depends on a great number of random values. In the
next section, we propose models for performance evaluation: a Markovian model
and a Monte Carlo simulation model. The first model allows us to compute the exact
value of a criterion in expectation whereas the second one provides an estimation.
Then, we propose methods for the scheduling problem and combinations (Figure 7.3)
between a performance evaluation model and an optimization method (more often
metaheuristics).

Performance
evaluation

modelmethod

solution(s)

performance criterion

Optimization

Figure 7.3. Combination between an optimization method and
a performance evaluation model

7.2. Performance evaluation problem

Existing works about stochastic flow-shops propose methods for building optimal
schedules but generally do not give any method for evaluating the performance
criterion. Bagga, in [BAG 70a], expresses the expectation of the makespan by using
n integrals, but does not give any computation method. From this observation,
Cunningham and Dutta propose a method for computing the makespan expectation
E(Cmax) for a two machine flow-shop with unlimited buffers and processing times
exponentially distributed [CUN 73].

We propose to generalize this study in the following way: to solve the performance
evaluation problem, we use two methods, the Markovian analysis and the Monte Carlo
simulation.

7.2.1. Markovian analysis

A permutation flow-shop with buffers managed according to the FIFO rule is a
queuing system, where n already-arrived customers are to be served by m service
channels in series. When processing times follow exponential distributions with a
known rate, this system can be modeled as a Markov chain. Solving this Markov
chain (with QNAP2 software for example) gives the exact value of E(Cmax). In order
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to avoid the use of a dedicated software, we have generalized the method proposed
by [CUN 73] for the two machine flow-shop problem with unlimited buffer to the m
machine flow-shop problem. This generalization will allow us to deal with larger size
problems than with QNAP2, but it will also be limited in terms of number of jobs and
number of machines (which is natural in Markovian analysis).

In this part, we propose to use Markovian analysis to compute the exact value of
the expectation of the makespan for the problems:

Fm
∣∣pi,j ∼ exp

(
μi,j

)∣∣E(Cmax

)
unlimited buffers

Fm
∣∣bi = 0, pi,j ∼ exp

(
μi,j

)∣∣E(Cmax

)
no buffer

Fm
∣∣bi, pi,j ∼ exp

(
μi,j

)∣∣E(Cmax

)
limited buffers

In the following, we assume that the n jobs are numbered according to the
lexicographical sequence x = (1, 2, 3, . . . , j, j + 1, . . . , n) and the processing time
of job Tj , j = 1, . . . , n by machine Mi, i = 1, . . . , m follows an exponential
distribution with rate μi,j . Random variables are assumed to be independent.

A job can block a machine:

– when there is no buffer between two machines, the job completed by the first of
the two machines blocks it if the second one is processing another job;

– when there is a limited buffer between two machines, the job completed by the
first of the two machines blocks it if the buffer is full.

In order to use the Chapman-Kolmogorov equations, we need to represent the
states of the system and all the previous states of a given state. A state of the system
is represented by a m length vector:

−→
k =

(
k1, k2, . . . , km

)
with the following relations:

n + 1 ≥ |k1| ≥ · · · ≥ |ki| ≥ |ki+1| ≥ · · · ≥ |km| ≥ 1 (7.1)

0 ≤ |ki| − |ki+1| ≤ bi+1 + 1, i = 1, . . . , m− 1 (7.2)

|ki − ki+1| < 2|ki|, i = 1, . . . , m− 1 (7.3)

ki + ki+1 > −2|ki|, i = 1, . . . , m− 1 (7.4)

and bi ≥ 0 is the capacity of the buffer before machine i (i = 2, . . . , m) (b1 =∞).
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The absolute value |ki| represents:

– either a job number:

- the job number that is being processed by machine Mi (if ki ≥ 1),

- the job number that is blocked by machine Mi (if ki ≤ −1),

- the job number that machine Mi (if ki = ki−1 ≥ 1) waits for.

– or the fact that all the jobs have been processed by machine Mi, i = 1, . . . , m

(ki = n + 1).

More precisely, |ki| represents a job:

1) If k1 ≥ 1 and k1 < n + 1, then machine M1 is processing job Tk1 .

2) If ki ≥ 1 and ki < ki−1, then machine Mi is processing job Tki
, i = 2, . . . , m.

3) If ki ≥ 1 and ki = ki−1, then machine Mi is idle and is waiting for job Tki
,

i = 2, . . . , m (Tki
is the next job to be processed by machine Mi).

4) If ki ≤ −1, then job T|ki| blocks machine Mi (the buffer of machine Mi+1 is
full (bi+1 > 0) or machine Mi+1 is busy (bi+1 = 0)).

We consider two particular cases:

–
−−→
k(1) = (1, 1, . . . , 1) with ki = 1, ∀i = 1, . . . , m represents the initial state of the

system. The job T1 is processed by the first machine and the other machines are idle.

–
−−→
k(N) = (n + 1, n + 1, . . . , n + 1, n) with ki = n + 1, ∀i = 1, . . . , m − 1 and

km = n represents the state where job Tn is processed by machine Mm and other
machines are idle (they have processed all the jobs).

Let N be the number of states of the system.

In a closed queuing network composed of m stations and processing a constant
number j of customer, the number of states is:

(m−1

j+m−1

)

When the capacity of the buffers is unlimited, N is given by the formula:

N =
n∑

j=1

(m−1

j+m−1

)
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In a two machine flow-shop without buffer, N is given by formula:

N = 3n− 1

In a two machine flow-shop with a buffer of capacity b between the two machines,
N is given by the formula:

N = (b + 3)n− (b + 1)(b + 2)/2

EXAMPLE.– Let there be a six machine flow-shop with 12 jobs. Table 7.2 gives the
buffer capacity.

Machine M2 M3 M4 M5 M6

Buffer capacity 1 2 0 2 3

Table 7.2. Buffer capacity

The state
−→
k = (13,−12, 9, 8, 8, 5) is represented in Figure 7.4:

– k1 = 13 means that all the jobs have been processed by machine M1.

– k2 = −12 means that job T12 blocks machine M2.

– k3 = 9 means that job T9 is being processed by machine M3.

– k4 = k5 = 8 means that machine M4 is processing job T8 and machine M5 is
idle, waiting for job T8.

– k6 = 5 means that machine M6 is processing job T5.

6711 10

blocked

512 9 8

Figure 7.4.
−→
k = (13,−12, 9, 8, 8, 5)

As the jobs are processed in lexicographical sequence, job numbers in the buffers
can be deduced:

– jobs T10 and T11 wait in the buffer before M3;

– jobs T6 and T7 wait in the buffer before M6.

To study the states preceding state
−→
k , we introduce the vector −→a (

−→
k , i) defined

by:

1) −→a (
−→
k , i) = (k1, . . . , ki−1, ki − 1, ki+1, . . . , km) if (|ki−1| < bi + ki + 1 or

i = 1) and (ki > 0). Job Tki−1 is processed by machine Mi.
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2) −→a (
−→
k , i) = (k1, . . . , ki−1, |ki|, ki+1, . . . , km) if ki < 0. Job Tki

is processed
by machine Mi.

3) −→a (
−→
k , i) = (k1, . . . ,−(ki′ − 1), . . . ,−(ki−1− 1), ki− 1, ki+1, . . . , km) in the

other cases, where i′ = max{maxl=1,...,i−1{l/kl < 0}, maxl=2,...,i−1{l/|kl−1| =
bl + kl + 1}, 1} and Mi′ is:

- the first upper machine which is blocked,
- or the first upper machine with a non-full buffer,
- or by default the first machine of the flow-shop.

Job Tki−1 is processed by machine Mi and one or more jobs is blocked on the
upper machines.

The set of vectors −→a (
−→
k , i), ∀i = 1, . . . , m includes all the previous states of

−→
k .

This set may contain vectors with no significance for our problem: they do not verify
relation (7.1), (7.2), (7.3) or (7.4).

EXAMPLE.–

−→
k = (13,−12, 9, 8, 8, 5)

−→a (
−→
k , 1) = (12,−12, 9, 8, 8, 5) (case 1)

−→a (
−→
k , 2) = (13, 12, 9, 8, 8, 5) (case 2)

−→a (
−→
k , 3) = (13, 13, 8, 8, 8, 5) (case 3)

−→a (
−→
k , 4) = (13, 13,−8, 7, 8, 5) (case 3)

−→a (
−→
k , 5) = (13,−12, 9, 8, 7, 5) (case 1)

−→a (
−→
k , 6) = (13,−12, 9, 8, 8, 4) (case 1)

In this example, vectors −→a (
−→
k , 2), −→a (

−→
k , 5) and −→a (

−→
k , 6) are previous states of

state
−→
k . They are represented by Figures 7.5, 7.6 and 7.7. Vectors−→a (

−→
k , 1),−→a (

−→
k , 3)

and −→a (
−→
k , 4) do not correspond to states of the system (relation (7.1), (7.2), (7.3) or

(7.4) is not verified):

– In −→a (
−→
k , 1), machine M1 is processing job T12, the next machine cannot be

blocked by job T12 (relation (7.3) is not verified).

– In −→a (
−→
k , 3), machine M3 is processing job T8 and jobs T12, T11, T10 and T9

wait in the buffer before the machine. The buffer capacity is exceeded (relation (7.2)
is not verified).

– In −→a (
−→
k , 4), machine M4 is processing job T7, but machine M5 is processing

job T8 and the lexicographical sequence is not respected (relation (7.1) is not verified).
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81011 912 567

Figure 7.5. −→a (
−→
k , 2) = (13, 12, 9, 8, 8, 5)

56712 911 810

blocked

Figure 7.6. −→a (
−→
k , 5) = (13,−12, 9, 8, 7, 5)

5 46712 911 10 8

blocked

Figure 7.7. −→a (
−→
k , 6) = (13,−12, 9, 8, 8, 4)

Let

τ(
−→
k , i) =

⎧⎪⎪⎨
⎪⎪⎩

0 if ki = ki−1 or ki < 0 or ki = n + 1

or
−→
k is not a state of the system

μki,i otherwise

τ(
−→
k , i) is the processing rate of job Tki

for machine Mi, if Tki
is being processed

by machine Mi. It is equal to zero in the following cases:

–
−→
k does not represent a state of the system. Relation (7.1), (7.2), (7.3) or (7.4) is

not verified;

–
−→
k represents a state of the system but:

- if ki = ki−1, then machine Mi is not processing job Tki
but is waiting for it,

- if ki < 0, then job T|ki| blocks machine Mi,

- if ki = n + 1, then there is no job being processed by machine Mi as all jobs
have already been processed.

With the notations, the following theorem is proposed and proved [GOU 05]:

THEOREM 7.1.– In a m-machine permutation flow-shop, under the following
assumptions:

– there is a buffer of capacity bi in front of machine Mi (bi ≥ 0, ∀i = 2, . . . , m,
b1 =∞),

– the buffers are managed by the FIFO rule,
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– the n jobs are processed according to the lexicographical sequence:
S = (1, 2, . . . , j, j + 1, . . . , n),

– the job processing times are independent and exponentially distributed: the
processing time of job Tj , (j = 1, . . . , n) for machine Mi, (i = 1, . . . , m) follows
an exponential distribution function with rate μi,j .

The expected makespan E(Cmax) is computed using the formula:

E
(
Cmax

)
= −μn,mβ

(−−→
k(N)

)
where

α
(−−→
k(1)

)
= 1/μ1,1 (7.5)

β(
−−→
k(1)) = −1/μ2

1,1 (7.6)

α(
−→
k ) =

∑m
i=1 α

(−→a (
−→
k , i)

)
τ
(−→a (
−→
k , i), i

)
∑m

i=1 τ(
−→
k , i)

(7.7)

β(
−→
k ) =

−α(
−→
k ) +

∑m
i=1 β

(−→a (
−→
k , i)

)
τ
(−→a (
−→
k , i), i

)
∑m

i=1 τ(
−→
k , i)

(7.8)

NOTE.– The expected makespan for any other sequence S′ can be directly obtained
from the expression of E(Cmax) simply by interchanging the appropriate subscripts.

Table 7.3 shows existing works concerning Markovian models for the stochastic
flow-shop with exponentially distributed processing times.

flow-shop unlimited buffer limited buffer or no buffer
FIFO FIFO

2 machines [CUN 73] [GOU 01]
m machines [GOU 03] [GOU 05]

Table 7.3. Existing works on the evaluation of E(Cmax) for a flow-shop
with exponentially distributed processing times

7.2.2. Monte Carlo simulation

Markovian models allow us to compute the expected makespan when the
processing times are modeled by random variables which follow rational Laplace
transform distributions. For other cases (other criterion, other distribution, etc.),
Markovian models cannot be used, so we use Monte Carlo simulation models to
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evaluate EI∈P(ZI(S)) and the corresponding confidence interval. This model has
been validated by comparison with the results obtained with the queuing network
model written in QNAP2 software [QNA 94] and solved by simulation. QNAP2 is
queuing network analysis package, version 2. QNAP2 is a performance evaluation
software for systems modeled by queuing networks. Three types of solving methods
are proposed by the software: analytical methods (exact and approached), Markovian
analysis and discrete event simulation.

A flow-shop is modeled as a terminating system: initial state and final state
correspond to the same state: no job is being processed. We can successively realize
several statistically independent simulations, called replications. At each replication,
a sample of job processing times is chosen and the corresponding criterion is
computed. The mean of the obtained criteria is an estimation of the expected
criterion. The number of replications must be large enough to assure a good sampling
of the stochastic model behavior. The principle algorithm is given in Figure 7.8.

Let:

– NbRep: the number of replications,

– Ir: a sample of processing times of each job for each machine according to the
distribution functions (r = 1, . . . , NbRep),

– S: a schedule,

– zIr
(S): the criterion corresponding to S according to Ir,

– z(S): an estimation of the expected criterion for S,

– CI: the confidence interval of the estimation of the expected criterion.

for r = 1, . . . , NbRep do
Choose randomly Ir

Evaluate zIr
(S)

end for

z(S) :=
NbRep∑

r=1

zIr
(S)/NbRep

Compute the confidence interval CI

Figure 7.8. Evaluation of an estimation of E(Z(S))

When the size of the problem allows it, the Markovian model is used to validate
the simulation model (i.e. the exact value of Markovian model is in the confidence
interval of simulation model).
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7.3. Scheduling problem

The problem of minimizing of the performance criterion in expectation can be
formulated as a combinatorial optimization problem:

min
S∈Ω

EI∈P
(
zI(S)

)
where Ω is the set of feasible solutions and z the criterion to minimize in expectation.

The first publication about flow-shop scheduling with random processing times
appeared in 1965. Makino in [MAK 65] developed a sequencing rule to find the
schedule that minimizes the expected makespan in a flow-shop with two machines,
two jobs, unlimited buffers and exponentially distributed processing times. Talwar
[TAL 67], in 1967, extended Makino’s rule to the cases of three and four jobs and
speculates upon its use for more than four jobs. In 1973 Cunningham and Dutta
[CUN 73] proved Talwar’s conjecture called, in the following text, “Talwar’s rule”.

THEOREM 7.2.– Scheduling jobs in decreasing order of μ1,j − μ2,j minimizes
E(Cmax) in a two machine flow-shop with processing times exponentially distributed.
(μi,j is the rate of the processing time of job Tj , j = 1, . . . , n for machine Mi,
i = 1, 2).

State of the art resources about the stochastic flow-shop scheduling problem have
been published by: Forst [FOR 84], Righter in Chapter 11 of [SHA 94], Pinedo
[PIN 95] and Gourgand et al. [GOU 00]. In this latter reference, like many authors,
we noted that the stochastic flow-shop problem was studied from 1965 to 1980, then
forsaken by researchers and again studied since the late 1990s. Results presented in
the literature correspond to particular cases with restrictive assumptions. Moreover,
works mainly deal with the two machine flow-shop problem.

Metaheuristics are combinatorial optimization methods which allow us to deal
with high combinatorial optimization problems with complex constraints such
as technological constraints, routing constraints, etc. Metaheuristics are general
principles and can be used for a large class of problems [HAO 99]. One of its main
advantages lies in the possibility of controlling the processing time: the quality of
the solution is progressively improved and the user can stop the execution at any
time. The simulated annealing algorithm have been proved to converge in probability
towards an optimal solution [KIR 83], [HAJ 88]. These methods are based on the
concept of a neighboring system. The current solution S is modified by applying a
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transformation to obtain a new solution S′, called a neighbor of S. The definition
of this transformation generates a function which associates the set of neighbor
solutions with each solution. This function is called a neighboring system.

The implementation of a metaheuristic (such as simulated annealing) ensures
the value of the criterion is computed, at each iteration. To do this, we propose to
combine a performance evaluation model and a metaheuristic. The main principle of
the combination is described in [CAU 95].

7.3.1. Comparison of two schedules

When using an iterative improvement method, we must compare, at each iteration,
two schedules S and S′. S is the current solution and S′ is the candidate solution. If
the Markovian model can be used, E(z(S)) and E(z(S′)) are exactly known and they
can be compared without any problem. The schedule S′ is better than the schedule S

if E(z(S′)) ≤ E(z(S)).

Otherwise, we do not know the exact value of E(z(S)) and E(z(S′)) but only
an estimation z(S) and z(S′) obtained using the simulation model. In this case, the
evaluations of zIr

(S) and zIr
(S′) are computed according to the same samples.

When the performance evaluation model is a discrete event simulation model,
proposed algorithms compare schedules according to estimations of the expected
performance criterion. As these estimations are means, we propose to extend the
comparative process by using the confidence interval of the mean in the following
way.

As E(z(S)) is unknown, we compute an estimation v2
S of the variance of z(S):

v2
S =

∑NbRep
r=1

(
zIr

(S)− z(S)
)2

NbRep− 1

v2
S being an estimator of the variance whatever the distribution function. The

confidence interval of z(S) with 95% probability is:

z(S)± 2σS/
√

NbRep with σS � vS

In the traditional or first version, the schedule S′, chosen in the neighborhood of
S, is better than S if the mean z(S′) is lower than the mean z(S):

S′ is better than S if z(S′) ≤ z(S)
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We propose to modify the acceptance criterion of a neighbor by using the
confidence interval. Three other versions are proposed.

In the second version, the schedule S′, chosen in the neighborhood of S, is better
than S if the mean z(S′) is lower than the lower bound of the confidence interval of
z(S):

S′ is better than S if z(S′) < z(S)− 2vS/
√

NbRep

In the third version, the schedule S′, chosen in the neighborhood of S, is better
than S if the upper bound of the confidence interval of z(S′) is lower than the lower
bound of the confidence interval of z(S):

S′ is better than S if z(S′) + 2vS′/
√

NbRep < z(S)− 2vS/
√

NbRep

In the fourth version, the schedule S′, chosen in the neighborhood of S, is better
than S if the mean z(S′) is lower than the mean z(S) and if the upper bound of the
confidence interval of z(S′) is lower than the upper bound of the confidence interval
of z(S):

S′ is better than S if z(S′) + 2vS′/
√

NbRep < z(S) + 2vS/
√

NbRep

and z(S′) < z(S)

The four versions are illustrated in Figure 7.9.

7.3.2. Stochastic descent for the minimization in expectation

The basic algorithm is the stochastic descent (Figure 7.10). The neighbor solution
is accepted if it is better (according to section 7.3.1) than the current solution. This
algorithm allows us to find generally a local minimum.

The initial solution can be randomly generated or obtained by a heuristic usually
used for the deterministic model, for example. The algorithm stops after a given time
or a given number of iterations.

7.3.3. Inhomogenous simulated annealing for the minimization in expectation

The simulated annealing method (Figure 7.11) was proposed in 1983 by
Kirkpatrick [KIR 83] for solving combinatorial optimization problems. The
simulated annealing is an extended version of stochastic descent. It looks for solutions
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Version 1 Version 2 Version 3 Version 4

E
(z

)

z(S)

z(S’)z(S’)

z(S)

z(S’)

z(S) z(S)

z(S’)

Figure 7.9. Comparison of two solutions S and S′

Let S be an initial solution,
while necessary do

Choose S′ randomly and uniformly in the neighborhood V of S.
if S′ is better than S then

S:= S′

end if
end while
S is the solution of the method

Figure 7.10. Principle algorithm of the stochastic descent

with low cost while accepting, in a controlled way, solutions which may degrade the
objective function. At each iteration, a neighbor S′ ∈ V(S) of the current solution
S is randomly chosen. If S′ is better than S, then the solution S′ is systematically
accepted. Otherwise, S′ is accepted with a probability p(Δz, Tk) which depends
on the difference Δz = E(z(S′)) − E(z(S)) (the small deteriorations are more
easily accepted) and on the temperature T (a high temperature corresponds to a great
probability to accept deteriorations). The temperature is controlled by a decreasing
function which defines a cooling scheme.
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Let S be an initial solution, T0 an initial temperature,
Sbest:= S
while necessary do

Choose S′ randomly and uniformly in the neighborhood V of S.
if S′ is better than S do

S:= S′

else

if exp
(

Δz

Tk

)
> random[0, 1] then

S:= S′

end if
end if
if S is strictly better than Sbest then

Sbest:= S
end if
Compute Tk+1

k:= k + 1
end while
Sbest is the solution of the method

Figure 7.11. Principle algorithm of inhomogenous simulated annealing

Hajek proved, in [HAJ 88], that inhomogenous simulated annealing converges
in probability towards the set of optimal solutions under certain hypotheses on the
temperature and the neighboring system properties.

When the Markovian model can be used, E(z(S)) and E(z(S′)) are computed by
using theorem 7.1:

Δz = E
(
z(S)

)− E
(
z(S′)

)
otherwise, E(z(S)) and E(z(S′)) are estimated by using the algorithm described in
Figure 7.8:

Δz = z(S)− z(S′)

7.3.4. Kangaroo algorithm for the minimization in expectation

The kangaroo algorithm (Figure 7.12) was proposed in [FLE 93] with the aim
of avoiding the tuning of the parameter of the simulated annealing and to avoid the
convergence towards a local optimum with the stochastic descent. The algorithm
allows us, after a stochastic descent without improvement for a given number of
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Let A > 0 be a maximum number of iterations without improvement
Let S be an initial solution
k := 0, Sbest := S
while necessary do

if k < A then [Stochastic descent]
Choose S′ randomly and uniformly in the neighborhood V of S.
if S′ is better than S then

k := 0
if S′ is better than Sbest then

Sbest := S′

end if
S := S′

else
k := k + 1

end if
else [no improvement since A iterations]

Choose S′ randomly and uniformly in the neighborhoodW of S.
S := S′

k := 0
end if

end while
Sbest is the solution of the method

Figure 7.12. Kangaroo principle algorithm

iterations, to accept any solutions whatever the value of the objective function, and
to restart a stochastic descent. Compared to the iterated stochastic descent, this
algorithm does not lose the information about the local optimum found.

After a stochastic descent, with a neighboring system V , if there is no improvement
since A iterations, any neighbor in the neighborhoodW is accepted. The neighboring
systemW is not necessarily the same as V but must respect the accessibility property.
The choice of a neighbor in the neighboring systemW is called a “jump”.

The neighboring system W can be chosen in many ways. The easiest consists
of W = V , a jump then corresponding to the acceptance of a “bad” solution. If
W(S) = Ω, ∀S ∈ Ω, the algorithm is the iterated stochastic descent. Another
possibility consists of applying the neighboring system V many times, which amounts
to accepting, without condition, many successive transitions. The neighboring system
W can also be independently defined.

Contrary to the iterated local search, we obtain the following theoretical result:
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THEOREM 7.3.– [FLE 93] The kangaroo algorithm converges in probability towards
the set of global minimums if and only if the neighboring system W respects the
accessibility property.

The proof of the convergence lies in the fact that the kangaroo algorithm builds a
Markov chain where any state can lead to an absorbing state and the absorbing states
constitute the global optimal set.

7.3.5. Neighboring systems

Classical neighboring systems for the flow-shop problem are permutations and
insertions:

Pj,j+1: permutation of two contiguous jobs Tj and Tj+1 randomly chosen,

Pj,j′ : permutation of any two jobs Tj and Tj′ randomly chosen,

Ij,j′ : insertion of a job Tj randomly chosen at a new position j′ randomly chosen.

They satisfy the accessibility and the reversibility properties. For the kangaroo
algorithm, we use, for the neighboring systemW , five times the neighboring system
V . In the following, we use the neighboring system Ij,j′ which provides better results
than the others.

7.4. Computational experiment

We have tested proposed methods (performance evaluation methods and
scheduling methods) on flow-shop problems from the OR-Library (http://mscmga.ms.
ic.ac.uk/info.html). OR-Library is a collection of test data sets for a variety of
operations research problems. In this library, the data (job processing times pij)
correspond to deterministic problems. Here, we have deduced from these data,
processing times which follow exponential distribution, uniform distribution or
normal distribution.

The number of replications of the simulation model has been empirically
determined. For the three distribution functions, 5000 replications give good results
in a reasonable computation time.

The four versions of the comparative process between two schedules have been
tested. Detailed results are given in [GOU 03, GOU 01, GRA 01, GOU 05]. The best
results have been obtained by the first version (used here) and the fourth version.

Unless otherwise instructed, the set of methods have been tested on flow-shop with
unlimited buffers.
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7.4.1. Exponential distribution

The rates of exponential distribution (μi,j) are deduced from the processing
times by:

μi,j = 1/pi,j

Table 7.4 presents a comparison of schedules obtained by the combination
(stochastic descent – Markovian model) (1000 iterations) with optimal schedules
obtained in a deterministic context. Each schedule is obtained by a stochastic descent
without random variable: the descent is classically realized with processing times
pi,j and stopped when an optimal schedule is obtained, this being evaluated with
the Markovian model. For each instance, we give the number of jobs, the number
of machines, the optimal makespan Cmax in a deterministic context, the mean
of the expected makespan for ten runs E(Cmax) and the corresponding standard
deviation (SD).

Each of the ten runs of the stochastic descent without random variable provides an
optimal schedule for the deterministic problem but the obtained schedules are not the
same. The important standard deviation of the mean of the ten runs can be explained
by the fact that two schedules with the same makespan in a deterministic context may
have different expected makespans.

Deterministic optimum Stochastic descent

Markovian model

Instance (n × m) Cmax
¯E(Cmax) SD ¯E(Cmax) SD

car1 (11 × 5) 7038 9658.81 80.48 9513.26 0.00

car2 (13 × 4) 7166 9878.54 50.92 9651.88 0.00

car3 (12 × 5) 7312 10593.33 46.08 10339.89 0.05

car4 (14 × 4) 8003 10861.71 73.82 10507.93 0.11

car5 (10 × 6) 7720 11316.32 23.57 10789.47 0.00

car6 (8 × 9) 8505 12708.70 0.00 12618.87 0.00

car7 (7 × 7) 6590 9524.13 0.00 9436.88 0.00

car8 (8 × 8) 8366 11988.24 0.00 12047.04 0.01

reC01 (20 × 5) 1247 1809.18 3.39 1781.71 0.01

reC03 (20 × 5) 1109 1572.13 6.30 1544.39 0.00

reC05 (20 × 5) 1245 1741.53 9.54 1691.6 0.01

Table 7.4. Combination (stochastic descent – Markovian model) and (deterministic optimum)
for the problem Fm |pi,j ∼ exp(μi,j)|E(Cmax)
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Table 7.5 shows a comparison between the combination (stochastic descent –
Markovian model) (10000 iterations) and the combination (stochastic descent –
simulation model) (10000 iterations). The table gives, for each instance, the mean
of the obtained expected makespan for ten runs of each combination and the mean
computation time (CT) for obtaining the results (in seconds with an O2 Silicon
graphics at 195 MHz).

Stochastic descent
Markov Simulation

Instance (n × m) ¯E(Cmax) CT ¯E(Cmax) CT
car1 (11 × 5) 9513.26 825 9513.26 595
car2 (13 × 4) 9651.88 229 9653.31 562
car3 (12 × 5) 10339.89 1714 10339.89 698
car4 (14 × 4) 10507.93 557 10503.13 602
car5 (10 × 6) 10789.47 2920 10791.01 645
car6 (8 × 9) 12618.87 26282 12619.72 792
car7 (7 × 7) 9436.88 692 9438.19 520
car8 (8 × 8) 12047.04 8820 12048.71 679

reC01 (20 × 5) 1781.71 74955 1782.33 237
reC03 (20 × 5) 1544.39 234799 1545.39 237
reC05 (20 × 5) 1691.60 235140 1693.34 230

Table 7.5. Combinations (stochastic descent – Markovian model) and (stochastic descent –
simulation model) for the problem Fm |pi,j ∼ exp(μi,j)|E(Cmax)

Both combinations obtain similar results: the deviation between two means is
less than 1%. Moreover, the standard deviations of the means are small for the two
combinations. The computation times of the combination with the simulation model
remains steady, whereas the computation times of the combination with the Markovian
model have a large range. These depend only on the time to compute the expected
makespan, which increases quickly with the number of machines and the number of
jobs.

Table 7.6 presents a comparison between the combinations (stochastic descent –
simulation model) (10000 iterations) and (kangaroo algorithm – simulation model)
(10000 iterations). For each instance and each combination, the table gives the mean
of the obtained results for the ten runs and the mean computation time to obtain the
results (in seconds with an O2 Silicon graphics at 195 MHz). The size of the instances
does not allow us to compute the expected makespan in a reasonable time with the
Markovian model. The obtained schedules are compared using the simulation model
with 100000 samples of processing times.
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Stochastic Kangaroo
descent algorithm

Instance (n × m) ¯E(Cmax) CT ¯E(Cmax) CT
reC01 (20 × 5) 1782.34 236 1779.84 3090
reC03 (20 × 5) 1545.39 231 1545.39 3300
reC05 (20 × 5) 1693.34 231 1692.10 3802
reC07 (20 × 10) 2310.94 307 2310.63 6045
reC09 (20 × 10) 2299.04 307 2293.51 6117
reC11 (20 × 10) 2195.01 307 2190.14 6192
reC13 (20 × 15) 3000.18 442 2996.90 6044
reC15 (20 × 15) 2984.67 443 2978.82 4245
reC17 (20 × 15) 2984.62 443 2981.57 4231
reC19 (30 × 10) 3160.64 459 3153.10 4281
reC21 (30 × 10) 3022.87 462 3013.39 4318
reC23 (30 × 10) 3026.15 461 3013.68 4977
reC25 (30 × 15) 3932.09 663 3926.31 9294
reC27 (30 × 15) 3686.45 1251 3673.40 9300
reC29 (30 × 15) 3585.33 686 3570.46 9298
reC31 (50 × 10) 4462.75 764 4428.95 9798
reC33 (50 × 10) 4408.80 804 4375.48 9784
reC35 (50 × 10) 4477.04 763 4435.42 9788

Table 7.6. Combination (stochastic descent – simulation model) and (kangaroo algorithm –
simulation model) for the problem Fm |pi,j ∼ exp(μi,j)|E(Cmax)

The two combinations give similar results. The combination (kangaroo algorithm –
simulation model) provides, for each instance, better results than the combination
(stochastic descent – simulation model), but the improvement remains quite small
compared to the time required for obtaining it. For all instances, the standard deviation
of the mean is small.

Table 7.7 shows a comparison between the combination (stochastic descent –
Markovian model) (10000 iterations), (kangaroo algorithm – Markovian model)
(10000 iterations) and (simulated annealing – Markovian model) for flow-shop
problems without buffer and flow-shop with limited buffers. For each instance and
for each method, we give the buffer size, the mean of the obtained results by ten runs.
The three methods allow us to obtain similar results.

7.4.2. Uniform distribution function

We consider two ranges for the uniform distribution function: [0.9×pi,j ; 1.1×pi,j ]
and [0.8× pi,j ; 1.2× pi,j ]. These ranges correspond to a deviation of +/− 10% and
+/−20% of the processing times.



Metaheuristics and Performance Evaluation Models 165

Stochastic Simulated Kangaroo

bi, descent annealing algorithm

Instance (n × m) ∀i = 1, . . . , m E(Cmax) E(Cmax) E(Cmax)

car1 (11 × 5) 0 11615.70 11713.20 11615.70
1 10770.39 10770.39 10770.39
2 10386.57 10386.57 10386.57

car2 (13 × 4) 0 12328.69 12266.54 12328.69

1 10513.59 10492.64 10492.64
2 9962.60 9959.35 9962.60

car3 (12 × 5) 0 13210.87 13163.23 13163.23
1 11494.46 11494.46 11494.46
2 11049.07 11051.68 11049.07

car5 (10 × 6) 0 13745.36 13745.36 13745.36
1 12009.34 11996.77 11996.76
2 11578.52 11670.74 11578.52

car7 (7 × 7) 0 10212.60 10212.60 10212.6
1 9517.03 9517.03 9517.03
2 9410.21 9410.21 9410.21

reC01 (20 × 5) 0 2439.65 2426.46 2438.85

1 2027.64 2023.45 2023.04
2 1878.76 1948.10 1877.54

Table 7.7. Combinations (stochastic descent – Markovian model), (simulated annealing –
Markovian model) and (kangaroo algorithm – Markovian model)

for the problem Fm |bi,i+1, pi,j ∼ exp(μi,j)|E(Cmax)

Tables 7.8 and 7.9 present a comparison of the combination (stochastic
descent – simulation model) (10000 iterations) with optimal schedules obtained in a
deterministic context. The obtained schedules are compared by using the simulation
model with 100000 samples of processing times. For each instance and each method,
we give the optimal makespan in a deterministic context (Cmax), the mean of the
estimation of the expected makespan for ten runs (E(Cmax)) and the corresponding
standard deviation (SD).

When the range of the uniform distribution function is +/−10%, the estimation
of the expected makespan is close to the makespan in a deterministic context (from
0.02% to 1.27%). The impact of random events is weak on the makespan. Results
obtained by the stochastic descent without taking into account random events are
similar to the results obtained by the proposed combination. Taking into account the
computation time, it is not worthwhile using such a combination.
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Deterministic optimum Stochastic descent
Simulation

Instance (n × m) Cmax
¯E(Cmax) SD ¯E(Cmax) SD

car1 (11 × 5) 7038 7074.13 22.09 7037.42 0.00
car2 (13 × 4) 7166 7208.81 6.90 7167.63 0.01
car3 (12 × 5) 7312 7357.73 17.67 7407.32 6.60
car4 (14 × 4) 8003 8048.74 21.49 8009.44 0.89
car5 (10 × 6) 7720 7791.55 0.02 7828.52 33.76
car6 (8 × 9) 8505 8613.09 0.00 8679.62 91.37
car7 (7 × 7) 6590 6663.60 0.00 6711.35 57.77
car8 (8 × 8) 8366 8446.60 0.00 8446.60 0.00

reC01 (20 × 5) 1247 1263.81 0.84 1271.41 6.24
reC03 (20 × 5) 1109 1122.42 1.37 1121.47 5.89
reC05 (20 × 5) 1245 1257.51 0.93 1266.06 8.23

Table 7.8. Combination (stochastic descent – simulation model) and (deterministic optimum)
for the problem Fm |pi,j ∼ U(0.9 × pi,j ; 1.1 × pi,j)|E(Cmax)

Deterministic optimum Stochastic descent
Simulation

Instance (n × m) Cmax
¯E(Cmax) SD ¯E(Cmax) SD

car1 (11 × 5) 7038 7158.56 38.27 7066.21 0.00
car2 (13 × 4) 7166 7306.42 14.47 7274.85 98.50
car3 (12 × 5) 7312 7481.94 20.89 7471.67 22.16
car4 (14 × 4) 8003 8147.89 31.94 8056.51 6.67
car5 (10 × 6) 7720 7937.79 0.25 8023.44 137.91
car6 (8 × 9) 8505 8775.34 0.00 8773.64 5.13
car7 (7 × 7) 6590 6762.21 0.00 6763.33 0.28
car8 (8 × 8) 8366 8589.76 0.00 8589.12 9.23

reC01 (20 × 5) 1247 1288.45 1.13 1303.28 27.92
reC03 (20 × 5) 1109 1142.28 2.35 1136.57 2.43
reC05 (20 × 5) 1245 1276.06 1.65 1278.26 4.29

Table 7.9. Combination (stochastic descent – simulation model) and (deterministic optimum)
for the problem Fm |pi,j ∼ U(0.8 × pi,j ; 1.2 × pi,j)|E(Cmax)

When the range is +/−20%, the deviation between the estimation of the expected
makespan and the makespan in deterministic context increases (from 0.4% to 3.32%).
The impact of random events is more important on the makespan. The proposed
combination seems to obtain better results. Taking into account comments made
concerning the exponential distribution function, we can suppose that the more the
range increases, the better the results obtained by the combination.
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7.4.3. Normal distribution function

We consider a normal distribution function with mean pi,j and standard deviation
20% pi,j . As for the uniform distribution function, Table 7.10 presents a comparison
of the combination (stochastic descent – simulation model) (10000 iterations) with
optimum schedules obtained in a deterministic context.

Deterministic optimum Stochastic descent

Simulation

Instance (n × m) Cmax Cmax SD Cmax SD

car1 (11 × 5) 7038 7329.01 55.61 7167.57 0.00

car2 (13 × 4) 7166 7482.88 29.08 7398.80 78.31

car3 (12 × 5) 7312 7709.59 24.09 7645.19 20.92

car4 (14 × 4) 8003 8335.06 43.56 8186.32 7.82

car5 (10 × 6) 7720 8188.24 0.54 8125.36 10.72

car6 (8 × 9) 8505 9037.29 0.00 9037.33 0.05

car7 (7 × 7) 6590 6942.35 0.00 6926.54 1.18

car8 (8 × 8) 8366 8833.82 0.00 8819.12 2.22

reC01 (20 × 5) 1247 1328.59 1.79 1327.41 15.11

reC03 (20 × 5) 1109 1174.38 3.27 1160.36 6.45

reC05 (20 × 5) 1245 1308.71 2.53 1301.55 1.68

Table 7.10. Combination (stochastic descent – simulation model) and (deterministic optimum)
for the problem Fm |pi,j ∼ normal(pi,j ; 0.2 × pi,j)|E(Cmax)

In this case, random events have more impact on processing times and so on the
makespan. As supposed, the proposed combination, which takes random events into
account, provides better results than the stochastic descent without taking random
events into account.

7.5. Conclusion

The stochastic permutation flow-shop scheduling problem has been little studied.
Moreover, as shown in state-of-the-art reviews, the problem has been studied, then
abandoned, and studied again in the late 1990s. Nevertheless, many authors, among
them Cunningham and Dutta [CUN 73], comment that in many practical situations,
the time for a machine to realize a job is a random variable. Is this disaffection due to
a lack of interest or to the underlying performance evaluation problem?
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We have probably studied this problem because of the term stochastic which is
one of our central themes of research: queuing network modeling and discrete event
simulation. For us, this study is also a starting point for research into robustness
problems [KOU 00], stochastic minimization problems and more general problems in
an uncertain context (other distribution functions, other scheduling problems, supply
chain, etc.).
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Chapter 8

Resource Allocation for the Construction of
Robust Project Schedules

This chapter deals with disruption management in resource-constrained project
scheduling. We consider two types of uncertainties: increased activity duration and
insertion of an unexpected activity. A reactive policy based on resource allocation
decisions is defined to repair a static precomputed schedule. These decisions are
represented through a network flow model. To tackle the first type of uncertainty,
we propose a proactive resource allocation method aiming at maximizing the
baseline schedule stability. The stability criterion is defined as the weighted sum of
the expected start time deviations between the actually realized schedule and the
predictive schedule. Optimal flows are computed by means of a branch-and-bound
method, integrating constraint propagation techniques. To deal with the second type
of uncertainty, we propose a predictive/reactive method. A polynomial algorithm is
proposed to insert the unexpected activity in the precomputed resource flow network
while minimizing the makespan increase. The efficiency of the proposed methods is
shown using computational experiments.

8.1. Introduction

The resource-constrained project scheduling problem (RCPSP), denoted
PS |prec|Cmax according to the notation of Chapter 1, has received increasing
attention during the last decades. For state-of-the-art surveys, we refer to

Chapter written by Christian ARTIGUES, Roel LEUS and Willy HERROELEN.
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[BRU 99, HER 98, KOL 01, ART 08b]. The vast majority of research effort
concentrates on exact and heuristic solution methods in a static and deterministic
environment. In this context, start times are assigned to activities, generally with the
objective of minimizing the makespan. The resulting schedule, called in this chapter
the baseline schedule, is used to guide the project implementation in a dynamic
environment.

However, during project execution, activities are subject to uncertainty which
may greatly disrupt the initial solution. Such uncertainty comes from many different
possible sources: activities may last longer than expected, resources may become
unavailable, raw materials may be delivered late, workers may be absent, new
activities may have to be inserted, etc. Despite the variety of the possible sources, we
assume here that uncertainty can be represented by stochastic activity processing
times and by the possibility of activity occurrence after the baseline schedule is
issued. These two types of uncertainty cover multiple actual disruptions.

Mehta and Uzsoy [MEH 98] underline that the baseline schedule has two
major functions. The first one is resource allocation to the different activities so
as to optimize the workshop performance. The second one, which is also cited in
[WU 93], is to serve as a basis for external activity planning, such as material supply,
preventive maintenance, and due date announcement to customers. In multi-project
environments, establishing a baseline schedule approved in advance by all parties
(clients, suppliers, employees and other resources) is crucial. Subcontractors can
for example commit to perform the required work inside a pre-established time
window. The baseline schedule is of primary importance for budget projection and
for employee performance evaluation after project completion. A more complete
study of the baseline schedule functions can be found in [AYT 05]. Consequently,
the baseline schedule is in charge of guiding all human resources involved during
project execution. Therefore, its stability is a necessity. For more details on stability
in scheduling we refer to Chapter 1 and to [HER 04, LEU 03]. For robust or
proactive/reactive project scheduling, we refer to [HER 05, DEM 08].

For the sake of simplicity, we consider only one resource type, which can be
selected as the most restrictive resource, constituting the organization bottleneck.
The chapter is organized as follows. Resource allocation solutions, corresponding
to transportation network flows, are presented in section 8.2. Section 8.3 describes
a branch-and-bound method issuing a robust resource allocation. The algorithm
exploits constraint propagation techniques as well as an efficient procedure for
verifying the existence of a feasible flow. Section 8.4 is dedicated to an optimal
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reactive method in response to an unexpected activity arrival, while respecting the
initial resource allocation. In both cases, the proposed methods are validated using
computational results. Section 8.5 provides concluding remarks and suggestions
for future work. Note that a different approach from the dynamic RCPSP is
presented in Chapter 14. While resource allocation is not explicitly represented,
a predictive/reactive method based on constraint programming with explanations
allows for a re-optimization of a solution in the presence of various disruptions.

8.2. Resource allocation and resource flows

We present some mathematical notations used throughout this chapter (section
8.2.1). The representation of resource allocation by means of a flow in a transshipment
network is the subject of section 8.2.2 and a simple method for the generation of a
feasible flow starting from a given schedule is described in section 8.2.3. The way in
which we propose to react to deviations in the input data is explained in section 8.2.4.

8.2.1. Definitions and notation

It is assumed that a set of activities N is to be scheduled on a single renewable
resource type with availability a. The activities are numbered from 0 to n

(|N | = n + 1) and activity i has fixed baseline duration pi ∈ N and requires
Ri ∈ N units of the single resource type, with Ri ≤ a. Apart from the dummy
start activity 0 and dummy end n, activities have a non-zero duration; the dummies
also have zero resource usage. A is the set of pairs of activities between which
a finish-start precedence relationship with time lag 0 exists. We assume graph
G(N,A) to be acyclic and equal to its transitive reduction (no redundant arcs are
included). Without loss of generality, we also require ∀(i, j) ∈ A, i < j. For any
X ⊂ N × N , we can obtain the immediate predecessors of activity i by function
πX : N �→ 2N : i �→ πX(i) = {j ∈ N | (j, i) ∈ X}, and its direct successors by
σX : N �→ 2N : i �→ σX(i) = {j ∈ N | (i, j) ∈ X}, and we define TX to be
the transitive closure of X , meaning that (i, j) ∈ TX if a path from i to j exists in
G(N,X). Following Ford and Fulkerson [FOR 62] and to simplify the notation, we
adopt the following conventions. For X,Y ⊆ N , let (X,Y ) denote the set of all
arcs that lead from x ∈ X to y ∈ Y in the graph under consideration, and for any
function g on N × N , let g(X,Y ) =

∑
(x,y)∈(X,Y ) g(x, y). Similarly, when dealing

with a function h defined on the elements of N , we put h(X) =
∑

x∈X h(x). We
may denote a set consisting of one element by its single element and omit duplicated
brackets.
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A schedule S is defined by an (n+1) vector of start times s = (s0, . . . , sn); every
s implies an (n + 1) vector of finish times C, Ci = si + pi, ∀i ∈ N . Alternatively we
write s(S) and C(S) for indicating the schedule. With every schedule S, we associate
a set δ(S) of time instants that correspond with the activity finish times: t ∈ δ(S) if
and only if ∃i ∈ N, t = Ci. Define Nt = {i ∈ N | si < t ≤ Ci}, the activities that
are active during period t. The schedule S is feasible if

(1) ∀(i, j) ∈ A, Ci(S) ≤ sj(S), and (2) ∀t ∈ δ(S), R(Nt) ≤ a (8.1)

An RCPSP-instance (N,A, a, p,R) aims to find a feasible schedule that
minimizes Cn (in this case for a single resource type), where vector p collects the
activity durations and R the resource requirements.

8.2.2. Resource flow networks

Artigues and Roubellat [ART 00] present resource flow networks, in which the
amount of resources being transferred immediately from one activity to another is
explicitly recorded. A similar representation was used in [BOW 95, NAE 89, NEU 02,
FOR 97]. Let ui = Ri, ∀i ∈ N \ {0, n}, and u0 = un = a. A resource flow f

associates with each pair (i, j) ∈ N × N a value fij = f(i, j) ∈ N. These values
must satisfy the following constraints, which constitute flow conservation and lower
and upper bounds on node flow:

f(i,N) = ui ∀i ∈ N \ {n} (8.2)

f(N, i) = ui ∀i ∈ N \ {0} (8.3)

fij represents the (discrete) number of resources that are transferred from
activity i to activity j. For a flow f , we define the set of activity pairs
Φ(f) = {(i, j) ∈ N × N | fij > 0}, containing the arcs that carry flow in the
resource flow network. We also define χ(f) = Φ(f) \ TA: the arcs in χ(f) are the
flow-carrying arcs that do not represent technological precedence relations. In other
words, χ(f) are extra “resource arcs” that induce extra precedence constraints. For
any X ⊂ N × N , we let GX represent the graph G(N,TA ∪ X). We call flow f

feasible when condition (8.4) holds: the additional precedence constraints implied by
χ(f) do not prevent execution of the project if f is feasible.

Gχ(f) is acyclic (8.4)
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Figure 8.1. Example project network

EXAMPLE.– A small example allows us to illustrate the definitions given above. In
Figure 8.1, an example network is represented in activity-on-the-node format, and we
assume a = 3. According to our definitions, u0 = u5 = 3, u1 = u2 = 1 and
u3 = u4 = 2. One possible resource flow is illustrated in Figure 8.2(a). We see
for instance that one of the available resource units is transferred from the end of
dummy activity 0 to the start of activity 2. This unit is released at the completion
of activity 2 and transferred to the start of activity 3. The resource flow network
shown in Figure 8.2(b) represents an alternative resource allocation. For Figure 8.2(a),
χ(f) = {(4, 1), (4, 3)} while χ(f) = {(1, 3), (4, 1)} in the resource flow network of
Figure 8.2(b). The arcs in χ(f) are dashed.
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Figure 8.2. Two resource flow networks. Flow values are indicated on the arcs

Define the earliest start schedule Θ(X), X ⊆ N × N , to be the schedule in
which s0 = 0 and each other activity i starts at time si = maxj∈πA∪X(i)(sj + pj),
provided that graph G(N,A∪X) is acyclic: the arcs in X represent extra precedence
constraints, in addition to A. A solution to an RCPSP-instance can be obtained by
finding a feasible flow f that minimizes sn(Θ(A∪χ(f))), and we see that we obtain an
extension of the disjunctive graph representation of the classical job-shop scheduling
problem [ROY 64]. Both of the resource flows described in Figure 8.2 result in the
same schedule depicted in Figure 8.3.
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Figure 8.3. A schedule for the example of Figure 8.1

8.2.3. A greedy method for obtaining a feasible flow

Artigues et al. [ART 03] present a simple method for obtaining a feasible resource
flow by extending a parallel schedule generation scheme (see for example [KOL 98])
to derive the flows during scheduling. This allocation routine is easily uncoupled from
the schedule generation, and can be used to obtain a feasible flow for a given schedule
S. The procedure is described here for illustrative purposes, but will also be used
for comparison with the branch-and-bound algorithm presented in section 8.3, and
as a generation method for an initial flow before arrival of an unexpected activity
(section 8.4).

The greedy algorithm uses a list L of the activities, arranged in non-decreasing
order of the starting times in schedule S. At the start, all flows are initialized at 0,
except the flow between 0 and n, which is initialized at u0 = un = a. The flow is
stepwise generated by inserting the activities in the flow following the order dictated
by the list L. More precisely, the computations for each task j are the following. The
already included activities (including 0) are scanned in lexicographic order and for
each activity k that is finished at or before the start of j, a value q is removed from
fkn, with q = min(uj − f(N, j), fkn), and then fkj = fkj + q and fkn = fkn − q.
The insertion of j ends when f(N, j) = uj . Then let fjn = uj . This algorithm has
time complexity O(n2).

EXAMPLE.– Consider the schedule given in Figure 8.3 and list L = (2, 4, 1, 3). The
algorithm generates the flow represented in Figure 8.2(b).

8.2.4. Reactions to disruptions

The stochastic variable Pi represents the duration of activity i ∈ N . These
variables are collected in vector P . When information becomes known about
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durations Pi that take on a realization different from pi (the baseline duration), the
schedule needs to be repaired. The same holds when a new unexpected activity
arrives and needs to be inserted into the baseline schedule. In this schedule repair
process, we lay down that the resource allocation remains constant, i.e. the same
resource flow is maintained. This reactive scheduling policy is preferred when
specialized resources (e.g. expert staff) cannot easily be transferred between activities
at short notice, for instance in a multi-project environment, where it is necessary to
book key staff or equipment in advance to guarantee their availability [BOW 95].
This makes last-minute changes in resource allocation impossible, contrary to the
case of totally dedicated resources. Artigues and Roubellat [ART 00] also refer to
the desire to ensure schedule stability (avoiding system nervousness resulting from
complete rescheduling – this objective will be more extensively discussed in section
8.3), and limited computation time, especially in the case of on-line scheduling.

EXAMPLE.– As an illustration, we again use the resource flow networks in Figure 8.2.
Suppose that project management is uncertain about the duration of activity 4. It is
obvious that in this case, the flow pattern in Figure 8.2(a) is more robust with regard
to the expected makespan (currently equal to 3) than the pattern in Figure 8.2(b),
which was generated by the greedy algorithm presented in section 8.2.3: with respect
to a projected makespan of 3 time units, activity 4 has a total slack of 1 time unit in
the first resource allocation, and 0 in the second. As a result, an increase in p4 will
have an immediate impact on the makespan of the repaired schedule in Figure 8.2(b),
while a buffer of size 1 is provided in Figure 8.2(a).

Igelmund and Radermacher [IGE 83b] present different scheduling policies for
stochastic project networks under resource constraints, all based on the concept of
forbidden sets, which are sets of activities unrelated to procedure that are not allowed
to be scheduled simultaneously because of resource constraints. In this chapter, we
are interested in earliest start policies (ES-policies). The idea is to extend the given
partially ordered set G(N,A) to a partially ordered set G(N,A ∪ X) such that no
forbidden set remains precedence unrelated and can thereby be scheduled in parallel.
The condition for feasibility of the policy is that G(N,A∪X) still be acyclic. Then, in
order to obtain a feasible schedule S(p) for a given scenario p of activity durations, an
ES-policy simply computes earliest activity start times in the graph by performing a
forward CPM (longest path) pass [STO 01]. For a new activity, we proceed similarly,
requiring that the activity be appropriately inserted into the flow network.

The following theorem is intuitive and establishes a relation between flow
networks and ES-policies. A proof of theorem 8.1 is given in [LEU 04], based in part
on [MÖH 85].
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THEOREM 8.1.– For any feasible resource flow f , X = χ(f) defines a feasible
ES-policy. Conversely, if X defines a feasible ES-policy, then a feasible flow f exists
with TA ∪ χ(f) ⊆ T (A ∪X).

8.3. A branch-and-bound procedure for resource allocation

This section describes an algorithm for resource allocation with an eye on
protection against variability in the activity durations for a given baseline schedule.
Section 8.3.1 deals with the ties between duration perturbations and the concept of
stability. Section 8.3.2 states the problem to be solved and explains the branching
procedure. Further details of the search procedure are provided in section 8.3.3.
Section 8.3.4 presents a test for the existence of a feasible flow in a given network.
The branching rule is further outlined in section 8.3.5. Finally, section 8.3.6 presents
computational results.

8.3.1. Activity duration disruptions and stability

We lay down the constraint that a resource allocation decision is compatible
with an input schedule (the baseline schedule) S: this compatibility guarantees that
the baseline schedule will effectively be realized if everything goes as planned.
Define Λ(S) = {(i, j) ∈ N × N |(i, j) 
∈ TA, i 

= j, Ci(S) ≤ sj(S)}. A feasible
flow f is said to be compatible with a feasible schedule S, written f ∼ S, if
∀(i, j) ∈ TA ∪ χ(f), Ci(S) ≤ sj(S), or in other words if χ(f) ⊆ Λ(S). The
pre-schedule S is built before the resource allocation.

In situations where a pre-schedule is valuable it will often be of interest that
activities are not started as soon as is feasible. Rather, we should attempt to respect
the pre-schedule as far as possible in order to avoid system nervousness and constant
resource rescheduling, in other words, to maintain the stability in the system. As a
result, activities are started at the maximum of the ending times of the predecessors
and their pre-schedule starting time. Other scheduling disciplines that operate in this
way are railway and airline scheduling, crew rostering, etc. The actual starting time of
activity i is a stochastic variable

Si(P, χ(f),S) = max
(

si(S), max
j∈πT A∪χ(f)(i)

(
Sj

(
P, χ(f),S)+ Pj

))
,

with s0(S) = 0. Following [HER 04], we adopt as a measure of pre-schedule stability
the expected weighted deviation in start times in the actual schedule from those in
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the pre-schedule (see Chapter 1). Our aim is to construct a feasible flow f with
χ(f) ⊆ Λ(S) such that

E

[∑
i∈N

ci ×
(
Si

(
P, χ(f),S)− si(S)

)]
= g

(
χ(f)

)
(8.5)

is minimized, where E[·] is the expectation operator and schedule S is an input
parameter. ci ∈ N denotes the non-negative cost per unit time overrun on the start
time of activity i, which reflects either the difficulty in obtaining the required
resources (internal stability) or the importance of the activity delivering on time to
the customer (external stability). We always set c0 = 0; minimization of the expected
makespan is the special case ci = 0, i < n and cn > 0.

8.3.2. Problem statement and branching scheme

In section 8.3, the set of decision variables is the set of flows fij with
(i, j) ∈ F = TA ∪ Λ(S). For any (i, j) ∈ F , Bij is the domain within which
fij can assume values. The objective is to minimize expression (8.5) subject to
constraint sets (8.2) and (8.3) and the requirement that f ∼ S, which is implicit from
the choice of F . Condition (8.4) is also satisfied because each arc (i, j) ∈ F has
Ci(S) ≤ sj(S) ≤ Cj(S), since input schedule S is feasible. For fij ∈ F , Bij can
be represented by its lowest entry LBij and highest entry UBij : we represent the
domains as intervals. We propose a branch-and-bound algorithm to implicitly search
all valid flow values. The search procedure relies on constraint propagation for search
space reduction.

We find an optimal resource allocation for a schedule S by considering all subsets
Ω ⊆ Λ(S) that allow a feasible flow in network TA ∪ Ω. Each such set corresponds
with at least one and mostly multiple feasible f , with χ(f) ⊆ Ω. We iteratively add
arcs from Λ(S) to Ω until a feasible flow is attainable (the feasibility test is the subject
of section 8.3.4). [LEU 03] and [LEU 04] show that the intuitive restriction to subset
minimal sets Ω (when Ω admits a feasible flow, then other sets containing Ω need
no longer be examined) and the restriction to the integer numbers contained in the
interval domains of the flows does not remove all optimal solutions.

In each node k of the search tree, the set F = TA ∪ Λ(S) is partitioned into
three disjoint subsets: F = αk ∪ νk ∪ ωk, with αk = {(i, j) ∈ F, LBij > 0}
the set of included arcs, νk = {(i, j) ∈ F, UBij = 0} the set of forbidden arcs,
and ωk = {(i, j) ∈ F, LBij = 0 and UBij > 0} the set of undecided arcs. The
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bounds LBij and UBij are established using constraint propagation in conjunction
with branching decisions. We add all arcs in αk \ TA to Ωk, which results in partial
network Gk = GΩk

. If a feasible flow can be obtained in Gk, we find the current
search node and backtrack, otherwise we need further branching decisions. The
branching decision itself entails the selection of an undecided arc (i, j) ∈ Λ(S) ∩ ωk:
the left branch is to set LBij = 1, so as to include (i, j) in the partial network Gk.
The right branch is to impose UBij = 0, so as to forbid any flow across (i, j) and
prohibit inclusion of (i, j) in Ω by placing the arc into set νk. Indeed, by adding a
new constraint, we split up the domain into two disjoint subsets, one of which is
singleton {0}. We elaborate on the selection of the branching arc in section 8.3.5.

Branch-and-bound algorithms have been proposed for various classes of policies
for the stochastic RCPSP [IGE 83a, STO 01]. For ES-policies, these are based on the
forbidden set branching scheme, which proceeds as follows. The minimal forbidden
sets (MFSS) are arranged in a pre-determined order L. Each node v in the search
tree is associated with an MFS m and branching on v systematically resolves m by
creating a child node wij of v for each ordered pair (i, j), i, j ∈ m, i 
= j. Each leaf v

of the search tree represents a policy that is defined by resolving each MFS according
to the decisions made on the path from v to the tree root.

EXAMPLE.– The project of Figure 8.1 has 2 MFSS, namely {1, 2, 4} and {3, 4}, which
immediately gives us arcs (4, 1) and (4, 3) as only possible solution when S is S∗ –
the schedule given in Figure 8.3, which is a strong argument in favor of this strategy.

We note nevertheless that the extension of the so-called binary branching as
proposed above with constraint propagation also excludes the need for branching
in the example; for an illustration and theoretical comparisons between the two
branching strategies, we again refer to [LEU 04].

8.3.3. Details of the branch-and-bound algorithm

By Jensen’s inequality, the deterministic value obtained when activity durations
are set equal to their expected values is a lower bound for our objective function (see
[FUL 62] for an application to expected makespan bounding). In order to obtain a
lower bound at every node of the search tree, we maintain a set of earliest starting
times in Gk based on expected activity durations; these earliest starting times are
continuously updated. We refer to this bound as the critical path lower bound.
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Combinations of the precedence relations defined by TA ∪ Ωk imply extra
transitive relations, captured by T (A ∪ Ωk). These implicit precedences are incurred
anyway, so we can extend set Ωk = T (A ∪ Ωk) \ νk without deteriorating the
objective.

Stork [STO 01] presents a single machine relaxation bound for stochastic project
scheduling. This bound considers sets of precedence unrelated activities that are
pair-wise incompatible because of resource constraints and computes a lower bound
for expected project makespan as the sum of the expected durations of the activities,
plus some additional terms. In our problem, the sequencing problem for such sets
of activities have already been completely solved: either directly or transitively, a
precedence constraint i → j will be included for all pairs of incompatible activities
(i, j) with Ci(S) ≤ sj(S). We can include all those pairs into Ω0 from the outset (in
our implementation, we add them to A). We refer to this pre-processing measure as
the single machine rule.

EXAMPLE.– For the project in Figure 8.1, we see that activities 3 and 4 jointly
consume more than the available three resource units. The schedule in Figure 8.3,
referred to as S∗, solves this conflict by positioning activity 4 before activity 3. We
can therefore add element (4,3) to Ω0 or A.

When too many arcs have been forbidden, the partial network can no longer be
completed to generate a feasible flow. Fast detection of these situations allows us to
stop exploring the current branch of the search tree. For this purpose, we resort to
a second network: the remainder network Gν

k = GΛ(S)\νk
. As long as Gν

k allows a
feasible flow respecting the branching decisions higher in the search tree, it is possible
to select a set χ(f) ⊆ Λ(S) \ νk that allows a feasible flow in Gk and corresponds
with all branching decisions. In this case, we apply constraint propagation to further
tighten the domains of the decision variables and to avoid branching into unfeasible
areas as well as making branching decisions that are already implicit.

The evaluation of the objective function g(χ(f)) for a given flow f amounts to
the PERT problem, which cannot be efficiently solved [HAG 88, MÖH 00]. For this
reason, we usually approximate the expectation of the objective function of a given
policy by means of simulation [IGE 83a, MÖH 89, STO 01]. For this reason, the
branch-and-bound algorithm can be considered to be an approximation algorithm. In
our algorithm, when we obtain a feasible set Ωk (by extension, we call Ωk feasible
when the corresponding flow is feasible), we do not compute g(χ(f)) for a feasible
flow f in TA ∪ Ωk, but rather g(Ωk); logically g(χ(f)) ≤ g(Ωk). We can show that
this approach does not change the results of the algorithm.
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8.3.4. Testing for the existence of a feasible flow

In this section we discuss a simple way to test for the existence of a feasible
flow in a given network using maximal flow computations in a transformed network.
Möhring [MÖH 85] studies a related transformation that, in our terminology, allows
us to determine the minimal required value of a. Naegler and Schoenherr [NAE 89]
and Neumann et al. [NEU 02] discuss similar transformations.

For network GΩ, Ω ⊆ Λ(S), we construct a new network G′
Ω as follows. We

switch from bounds on node flow (quantities ui) to bounds on arc flow by duplicating
each node i ∈ N\{0, n} into two nodes is and it and adding arc (it, is) to the network,
with upper bound on the flow f(it, is) equal to its lower bound, both equal to ui (see
[FOR 62]); nodes 0 and n are renamed 0s and nt, respectively. All arcs entering i in
GΩ now lead to it in G′

Ω; all arcs leaving i now emanate from is.

Node it can be interpreted as the start of activity i (reception of resources), node
is as its completion (passing on the resources to successor activities). We augment
network G′

Ω with source node s, sink node t and arc (t, s). We construct a new network
G′′

Ω by replacing each arc (it, is) in G′
Ω by the arcs (it, t) and (s, is). The capacity

function c assumes the following values: c(s, is) = c(it, t) = ui, ∀i ∈ N , all other
capacities are equal to +∞. All flow lower bounds are set to 0.

EXAMPLE.– Figure 8.4(a) shows the transformed network G′
0 of G0 for the project

of Figure 8.1. We choose S = S∗ and Ω0 = {(4, 3)} as suggested in section 8.3.2.
Figure 8.4(b) shows the network G′′

0 obtained from network G′
0 of Figure 8.4(a).

Denote by μ(Ω) the maximal s-t flow value in G′′
Ω and let h be a corresponding

maximal flow. It is clear that h satisfies the following two conditions:

h
(
is,

{
jt | j ∈ N

}) ≤ ui ∀i ∈ N \ {n} (8.6)

h
({

js | j ∈ N
}
, it
) ≤ ui ∀i ∈ N \ {0} (8.7)

If we define μmax = a + R(N), we see that μ(Ω) ≤ μmax, and equality
μ(Ω) = μmax holds if and only if a maximal s-t flow in G′′

Ω saturates all source and
sink arcs, so that conditions (8.6) and (8.7) are satisfied as equality. It can be shown
that the following lemma holds (for a formal proof, see [LEU 04]):

LEMMA 8.1.– For Ω ⊆ Λ(S), a feasible flow f exists in GΩ with χ(f) ⊆ Ω if and
only if μ(Ω) = μmax.
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Figure 8.4. G′
0 and G′′

0 for the example. Lower and upper bounds on arc flow are as indicated
between brackets, otherwise (0, +∞). Flow values in (b) are indicated in italic, otherwise 0

The maximal flow in network G′′
0 of Figure 8.4(b) amounts to 8 < μmax = 9

(flow quantities are indicated in the figure), so we conclude that a feasible flow is
not attainable in G0. We apply lemma 8.1 during the course of the branch-and-bound
algorithm to test for the existence of a feasible flow in both the partial network Gk and
the remainder network Gν

k. For this purpose, we use the extended networks G′′
k and

G′′ν
k.

At level 0 of the search tree, f(is, jt) in both networks is initialized at LBij

for every (i, j) present, and we use a simple and efficient version of the traditional
labeling algorithm to maximize flow, the shortest augmenting path algorithm
[EDM 72, AHU 93]. This algorithm is strongly polynomial and is implemented in
a breadth first approach, such that the labels are immediately available for use in
the branching rule (see section 8.3.5). The flows in the two extended networks are
maintained on an incremental basis rather than recalculated restarting from the lower
bounds every time a feasibility check is required.

8.3.5. Branching rules

In this section we present a binary branching scheme that uses information about
the maximum flow computations in the partial and remainder network. In order to
obtain an increase in flow in G′′

k , the branching arc itself or one of the other arcs



184 Flexibility and Robustness in Scheduling

that are added to Ωk needs to create a new augmenting path from s to t. Define
S = {i ∈ N \ {n} | is is labeled}, T1 = {j ∈ N \ {0} | jt is unlabeled},
T2 = {j ∈ T1 | t can be reached from jt via an augmenting path}, and T3 = {j ∈
T2 | the flow on (jt, t) in G′′

k is strictly lower than uj}. T3 limits the augmenting path
in the definition of T2 to a single edge. The set of arcs considered for branching is set
(S, T3) if it is not empty, otherwise (S, T2) if it is not empty, otherwise (S, T1) (which
is never void).

We limit the set of candidate arcs to include only the arcs that have non-zero
flow in the remainder network; this set is never empty. Indeed, we mimic the flow
in the remainder network with the flow in the partial network: we acknowledge the
flow-carrying arcs in the left branch and afterwards destroy feasibility of the partial
network flow in the right branch. Choice between eligible arcs is based on the highest
sum of flow in Gν

k on the arc itself plus the other arcs that are added to Ωk by
transitivity (not constraint propagation). This sum is an estimate of the increase in
flow in G′′

k that is achieved by the addition of the arc. A tiebreaker rule selects an
arc (i, j) with lowest difference |j − i|. Multiple other evaluation criteria have been
considered but turned out to lead to less efficient results.

8.3.6. Computational experiments

We have implemented the algorithms in C++ using the Microsoft Visual C++ 6.0
programming environment, on a Dell XPS B800r PC with a Pentium III processor.
Section 8.3.6.1 explains the general experimental set-up. Different branching schemes
are compared in section 8.3.6.2. Objective function comparisons with an allocation
heuristic are the subject of section 8.3.6.3.

8.3.6.1. Experimental setup

For various values of n (21, 31, 41 and 61) a set of 200 scheduling instances
has been generated by means of RanGen, a recently developed network generator
[DEM 03]. The detailed characteristics of these instances are discussed in [LEU 04].

We have mentioned before that any schedule may be the input for the resource
allocation algorithm. In our experiments, we use a minimum makespan schedule
based on deterministic baseline durations for each activity. The schedule is obtained
by means of the branch-and-bound algorithm of Demeulemeester and Herroelen
[DEM 97]; the scheduling algorithm is truncated after one minute of CPU-time. We
assume that only duration increases occur compared with the baseline plan; Gutierrez
and Kouvelis [GUT 91] provide a motivation based on expected worker behavior
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under Parkinson’s Law. The duration of activity i (i 
= 0, n) is disrupted with a
probability that is drawn from a uniform distribution on the interval [0; 0.7]. In case of
disruption, the real duration Pi exceeds the baseline duration pi by a length Pi − pi,
which is a random variable. We assume exponential activity disruption lengths, with
average length if disrupted equal to the baseline duration. The cost coefficients ci are
integer values randomly selected from domain [1; 5]. We opt for 450, 350, 300 and
250 iterations for n=21, 31, 41 and 61, respectively. The final performance evaluation
of an allocation after terminating the algorithm is carried out by means of 2,000
simulations.

8.3.6.2. Branching schemes

Table 8.1 presents computational results for the different branching schemes
outlined in section 8.3.2: binary branching and branching based on MFSS. A time
limit of 150 seconds of CPU-time is imposed. We report the computational results
averaged over all instances, solved to guaranteed optimality or not, such that we
examine the performance of a truncated branch-and-bound heuristic; the values
between parentheses are only for the problems that were solved to optimality. The
enumeration of the MFSS is performed as described in [STO 01]. When an MFS
consists of two activities, it is already dealt with by the single machine rule and is
not listed. We limit the available memory space to 10 MB. For n = 61, this storage
space was exceeded in 6.5% of the cases (problems marked with an asterisk) and the
branch-and-bound tree for the algorithms that use this information was not entered.
These problems are considered as “not solved to optimality”, and are not taken into
account when computing the average values for the corresponding table entries
marked by a double asterisk. The MFSS are ordered as in [STO 01], based on the
effect on the initial lower bound and on the number of branching alternatives.

For each algorithm, the fraction of the running time consumed by simulation
is recorded; this is the larger part of the CPU-time for all runs. Both in number
of problems solved to optimality (# optimal) and in terms of computational effort
(CPU-time (CPU), number of search nodes (# nodes) and number of objective
function evaluations (# eval)), binary branching performs better than MFS-based
branching. The top part of Table 8.1 provides some additional data, namely the
number of simulations per evaluation (# simul/eval) and some details on the
MFS-structure of the problems in the data set. We report the total number of MFSS
(# MFSS) as well as the number of MFSS with more than two activities (on the
same line, separated by a semi-colon). We notice that almost all MFSS contain more
than two activities. We also mention the average computation time to obtain the
MFS-information (CPU MFS); these times are no longer negligible for n = 61.
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8.3.6.3. Comparison with the greedy heuristic

The greedy heuristic (see section 8.2.3) is used to compare the objective function
with the binary branching algorithm (again truncated after 150 seconds). The
greedy routine is written as “AMR”. The results are summarized in Table 8.2,
where we show the deviation between the objective function values obtained by
the branch-and-bound algorithm and by AMR. The CPU-time consumed by AMR
is negligible. The branch-and-bound performs significantly better than AMR, but
evidently requires more computational effort. Inclusion of the problems for which
optimality was not guaranteed increases the deviations, which indicates that the hard
problems have a wider variety of objective function values, and thus benefit more
from more intensive optimization efforts. In Table 8.2 we also provide details on the
results obtained for a simulation in which all disruption probabilities as well as the
average disruption lengths are divided by 2. We conclude that for smaller and less
frequent disruptions, the advantage of a sophisticated resource allocation technique
increases, while computational effort remains in the same order of magnitude.

n = 21 n = 31 n = 41 n = 61

avg dev AMR 5.03% 6.25% (5.81%) 5.65% (5.56%) 5.03% (4.51%)

avg dev AMR, shorter disr 5.89% 7.99% (7.31%) 7.37% (7.18%) 6.44% (5.76%)

Table 8.2. Improvement in objective function value compared
with allocation heuristic AMR

8.4. A polynomial algorithm for activity insertion

In this section, we propose a method to tackle the presence of an unexpected
activity, which has to be inserted in the baseline schedule. We consider the case where
resource allocation has already been performed (for example, with the algorithm
described in section 8.3 or with the heuristic presented in section 8.2.3). For the
reasons invoked in sections 8.2.4 and 8.3.1, we wish to modify the existing resource
allocation as little as possible, so as to favor system stability. A second objective is
to minimize the makespan increase occuring after insertion. Our approach lies in
replacing the stability objective by constraints. As explained below, such constraints
allow us to find the optimal insertion position in polynomial time.

Section 8.4.1 states the insertion problem and formally defines a feasible
insertion. Section 8.4.2 describes how to compute the local impact of a given
feasible insertion on the makespan. Section 8.4.3 gives feasibility conditions for an
insertion. The concepts of sufficient insertions and insertion cuts are presented in



188 Flexibility and Robustness in Scheduling

section 8.4.4. Section 8.4.5 presents dominance rules allowing to discard a priori
dominated insertions. A polynomial algorithm able to generate a dominant set of
feasible insertions is presented in section 8.4.6. Experimental results are presented in
section 8.4.7. A more detailed description of the method can be found in [ART 03].
Extension of activity insertion in resource flow networks in the context of an RCPSP
with minimum and maximum time lags is studied in [ART 07, ART 08a].

8.4.1. Insertion problem formulation

We consider an RCPSP instance (N,A, a, p,R) as defined in section 8.2.1 with
N = {0, 1, . . . , n − 1, n}, where 1, . . . , n − 1 denote the actual project activities
and 0 and n denote the dummy start and end activities, respectively. We assume in
this section that a resource allocation, represented by a feasible flow f has already
been computed, for example with the algorithm described in section 8.3 or with
the heuristic presented in section 8.2.3. Baseline schedule S is one of the minimal
makespan schedules compatible with Gχ(f), for instance S = Θ(A ∪ χ(f)) the
earliest start schedule.

We now assume that an unexpected activity, n+1, has to be inserted in the project.
The activity is defined by its duration p̃n+1, its resource demand R̃n+1, its direct
predecessors set Γ−

n+1 ⊆ N \ {n} and its direct successors set Γn+1 ⊆ N \ {0}.

Let p̃i = pi, R̃i = Ri, ∀i = 0, . . . , n, Ñ = N ∪ {n + 1} and Ã = A ∪
(Γ−

n+1, n + 1) ∪ (n + 1,Γn+1). The data associated with this new activity defines
a new RCPSP (Ñ , Ã, a, p̃, R̃). To maximize the stability of resource allocation, we
prevent the initial resource allocation from being deeply modified by the insertion.
To this end, the only flow modifications allowed lie in rerouting a part of the existing
flow to the inserted activity while sending back the rerouted flow units to the initial
destination activities after the completion of the inserted activity. Formally, a solution
of the insertion problem can be represented by a matrix q where qij represents the
amount of flow rerouted from the initial flow fij to activity n + 1, ∀i, j ∈ N ×N . It
follows that any matrix q defines an insertion. An insertion q is feasible if and only if
flow f̃ , defined by:

f̃ij = fij − qij ∀i, j ∈ N ×N (8.8)

f̃i(n+1) = q(i,N) ∀i ∈ N (8.9)

f̃(n+1)i = q(N, i) ∀i ∈ N (8.10)

is a feasible flow for the RCPSP (Ñ , Ã, a, p̃, R̃).
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The insertion problem amounts to finding an insertion q such that f̃ defined by
(8.8)-(8.10) is feasible for G(Ñ , Ã, a, p̃, R̃) and gives a schedule S̃ = Θ(Ã ∪ χ(f̃))
of minimal makespan. We assume that G(Ñ , Ã ∪ χ(f)) is acyclic. Otherwise the
initial flow and the precedence constraints of the new activity are incompatible and
the insertion problem simply has no solution, because of the stability constraints.

8.4.2. Evaluation of a feasible insertion

The makespan of the earliest start schedule corresponding to a feasible insertion
q can be computed efficiently by using the earliest start and the latest completion
times of the activities in the minimal-makespan schedules compatible with the
initial flow f . Let ESi denote the earliest start time of i according to flow f , i.e. its
start time in schedule Θ(A ∪ χ(f)), defined in section 8.2.2. Let LFi denote the
latest completion time of i according to flow f . The latest completion times can be
computed recursively by setting LFn = Cn and LFi = minj∈σA∪χ(f)(i)(LFj − pj)
for any other activity i. LFi is the makespan of Θ(A ∪ χ(f)) minus the tail
of i, plus the duration of i. The latest completion times have the following
property: if an activity i ends at time t > LFi, then the makespan increases by
t − LFi (provided that the resource allocation described by f is followed). Taking
account of equations (8.8)-(8.10), inserting n + 1 according to insertion q may
only right-shift the direct successors of n + 1 in Γn+1 and any activity of set
σ(q) = {j|j ∈ N,∃i ∈ N, qij > 0}. Now if π(q) = {j|j ∈ N,∃i ∈ N, qji > 0},
the start time increase of activities in Γn+1 ∪ σ(q) comes directly from the start

time of n + 1 after insertion, noted ẼS
π(q)

n+1. The smallest and latest completion

time possibly violated by the insertion is noted L̃F
σ(q)

n+1. The maximum violation
of latest completion times, corresponding to the makespan increase, is noted
ΔCmax(π(q), σ(q)). These values are given by:

ẼS
π(q)

n+1 = max
i∈Γ−

n+1∪π(q)

(
ESi + pi

)
(8.11)

L̃F
σ(q)

n+1 = min
i∈Γn+1∪σ(q)

(
LFi − pi

)
(8.12)

ΔCmax

(
π(q), σ(q)

)
= max

(
0, ẼS

π(q)

n+1 + pn+1 − L̃F
σ(q)

n+1

)
(8.13)

Assuming that earliest start and latest completion times of activities of N are
computed in advance, the makespan increase can be evaluated in O(n2) for a given
feasible insertion q.
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EXAMPLE.– Consider the resource flow given in Figure 8.2(a). The corresponding
earliest start times are represented in Figure 8.3, i.e. ES = (0, 1, 0, 2, 0, 3). We can
also compute the associated latest completion times LF = (0, 3, 2, 3, 2, 3). Now
assume that a new activity n + 1 = 6 defined by p6 = 2 and R6 = 2 must be inserted
between activities 4 and 3 (Γ−

6 = {4} and Γ6 = {3}). It is easy to verify that insertion
q with non-zero components q02 = 1 and q41 = 1 is a feasible insertion. It consists
of inserting activity 6 in the flow between activities π(q) = {0, 4} and σ(q) = {2, 1}.
The earliest start time of activity 6 after insertion is L̃F

σ(q)

6 = LF2 − p2 = 0. The
makespan increase is ΔCmax(π(q), σ(q)) = 3.

8.4.3. Insertion feasibility conditions

The following property, which simply comes from the definition of an insertion q

and from the feasibility of the issued flow f̃ , gives a necessary and sufficient condition
of feasibility for an insertion q.

PROPERTY 8.1.– An insertion q is feasible if and only if

(1) q(N,N) = un+1,

(2) 0 ≤ qij ≤ fij , ∀i, j ∈ N ×N ,

(3) there is no path in Gχ(f) from Γn+1 ∪ σ(q) to Γ−
n+1 ∪ π(q).

Indeed, (1) implies that the incoming and outgoing flow of (n + 1) are equal to its
demand. (2) states the remaining flow f̃ij = fij − qij must be non-negative and not
larger than its initial value. (3) states that graph Gχ(f̃), issued from the insertion, is
acyclic. Part (3) of property 8.1 can be replaced by a sufficient condition which makes
it possible to avoid path computations from Γn+1 ∪ σ(q) to Γ−

n+1 ∪ π(q). We obtain
the following sufficient condition for insertion feasibility:

PROPERTY 8.2.– An insertion q is feasible if conditions (1) and (2) of property 8.1
are verified and if at least one of the two following conditions is verified:

(3a) mini∈Γn+1∪σ(q)(ESi + pi) > maxj∈Γ−
n+1∪π(q) ESj ,

(3b) mini∈Γn+1∪σ(q) LFi > maxj∈Γ−
n+1∪π(q)(LFj − pj).

EXAMPLE.– Insertion q for activity 6 in the flow given in Figure 8.2(a), defined by
non-zero components q02 = 1 and q41 = 1 verifies

min
i∈Γ6={3}∪σ(q)={2,1}

(
ESi + pi

)
= 2 > max

j∈Γ−
6 ={4}∪π(q)={0,4}

ESj = 0.
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From property 8.2, q is feasible. A cycle search is not necessary to check its
feasibility.

8.4.4. Sufficient insertions and insertion cuts

We call sufficient insertion any ordered pair of disjoint activity sets (π, σ) such that
f(π, σ) ≥ Rn+1 and such that there is no path in Gχ(f) from Γn+1 ∪ σ to Γ−

n+1 ∪ π.
As a matter of fact, given such an ordered pair, a feasible insertion q (in the sense
given by property 8.1) can be easily computed by the following algorithm. Initialize
qij = 0, ∀i, j ∈ N × N , then update qij = min(Rn+1 − q(N,N), fij) for each
i, j ∈ N × N , while q(N,N) < Rn+1. By using (8.13), we compute in O(n2),
the makespan increase ΔCmax(π, σ). Since π(q) ⊆ π and σ(q) ⊆ σ, it holds that
ΔCmax(π(q), σ(q)) ≤ ΔCmax(π, σ).

Conversely, consider the optimal insertion q∗ giving the minimal makespan
increase ΔCmax(π(q∗), σ(q∗)). Let (π, σ) such that π = π(q∗) and σ = σ(q∗).
(π, σ) is indeed a sufficient insertion, obviously verifying ΔCmax(π(q∗), σ(q∗)) =
ΔCmax(π, σ). From these two properties, it follows that the search for an optimal
insertion can be replaced by the search for a sufficient insertion (π, σ) of minimal
ΔCmax(π, σ). This formulation has the merit of avoiding the enumeration of the
qij components. As noticed in section 8.3.2, it is not the quantity but the existence
of a flow between two activities that matters. With a slight abuse of terminology, we
say that an insertion q is included in a sufficient insertion (π, σ) if π(q) ⊆ π and
σ(q) ⊆ σ.

We call insertion cut a sufficient insertion (π, σ) such that π ∪ σ = N . Then,
we have f(π, σ) = a, thanks to the properties of flows in a network and by giving
a capacity to each arc (i, j) equal to fij . We can show that for any sufficient
insertion (π, σ), there exists an insertion cut (π, σ) such that π ⊆ π and σ ⊆ σ with
ΔCmax(π, σ) ≤ ΔCmax(π, σ). It suffices to integrate in π all activities leading to π

(including activities of π) by a path issued from 0, as well as all the activities leading
to σ except activities of σ. We obtain σ = N \ π. Thus, if we are able to generate a
dominant set of insertion cuts and if we have an algorithm to find the best sufficient
insertion included in each cut, we are able to find the optimal insertion. The proposed
algorithm is based on these principles, and on the dominant conditions given in the
next section.

EXAMPLE.– Consider cut (π, σ) with π = {0, 4} and σ = {1, 2, 3, 5}. (π, σ)
is a sufficient insertion since there is no path from σ ∪ Γ6 to π ∪ Γ−

6 and
f(π, σ) = 3 = a > R6. Moreover, since ΔCmax(π, σ) = 3, any insertion q such
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that π(q) ⊆ π and σ(q) ⊆ σ verifies ΔCmax(π(q), σ(q)) ≤ 3. This is the case for
insertion q of non-zero components q02 = q41 = 1, considered in previous sections.

8.4.5. Insertion dominance conditions

An insertion q1 dominates another insertion q2 if

ΔCmax

(
π
(
q1

)
, σ
(
q1

)) ≤ ΔCmax

(
π
(
q2

)
, σ
(
q2

))
A sufficient insertion (π, σ) dominates an insertion q if any insertion ρ verifying
π(ρ) ⊆ π and σ(ρ) ⊆ σ is such that ΔCmax(π(ρ), σ(ρ)) ≤ ΔCmax(π(q), σ(q)),
i.e. if the entire family of insertions characterized by (π, σ) dominates q. Given a
sufficient insertion, we can discard from the search any dominated insertion.

The following dominance conditions, based on makespan increase expressions
(8.11), (8.12) and (8.13), can be established. In properties 8.3, 8.4 and 8.5, (π, σ)
denotes a sufficient insertion and q denotes an insertion.

Property 8.3 gives a dominance condition involving two activities i and j.

PROPERTY 8.3.– If there are two activities i ∈ π(q) and j ∈ σ(q) such that
ẼS

π

n+1 ≤ ESi + pi and L̃F
σ

n+1 ≥ LFj − pj , (π, σ) dominates q.

Property 8.4 gives a dominance condition of a sufficient insertion (π, σ) on an
insertion q considering an activity j ∈ σ(q) if ẼS

π

n+1 = maxk∈Γ−
n+1

(ESk + pk),
which corresponds to the case where n+1 is inserted immediately after its predecessor
with the largest and earliest completion time for any insertion “included” in (π, σ).

PROPERTY 8.4.– If ẼS
π

n+1 = maxk∈Γ−
n+1

(EFk + pk) and if there is an activity

j ∈ σ(q) verifying L̃F
σ

n+1 ≥ LFj − pj , (π, σ) dominates q.

In a symmetric way, property 8.5 gives a dominance condition of a sufficient
insertion (π, σ) upon an insertion q, considering an activity i ∈ π(q) if ẼS

π

n+1 =
mink∈Γn+1(LFk − pk), which corresponds to the case where n + 1 is inserted
immediately before its successor of smallest latest start time for any insertion
“included” in (π, σ).

PROPERTY 8.5.– If L̃F
σ

n+1 = mink∈Γn+1(LFk − pk) and if there is an activity
i ∈ π(q) verifying ẼS

π

n+1 ≤ ESi + pi, (π, σ) dominates q.

EXAMPLE.– Insertion cut (π, σ), presented in section 8.4.4, dominates insertion q,
presented in section 8.4.2 because ẼS

π

6 = ES4 + p4 = 1 with 4 ∈ Γ−
6 and activity
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2 ∈ σ(q) is such that L̃F
σ

6 = LF2 − p2 = 0. Property 8.4 holds. Another example
considers insertion cut (π′, σ′) with π′ = {0, 2, 4} and σ′ = {1, 3, 5}. (π′, σ′)
dominates (according to property 8.3) any insertion q′ such that 2 ∈ π(q′) and
1 ∈ σ(q′). Furthermore, it also dominates any insertion q′ such that 2 ∈ π(q′) from

property 8.5 because L̃F
σ′

6 = LF3 − p3 with 3 ∈ Γ6.

8.4.6. An algorithm for enumerating dominant sufficient insertions

The analysis of the dominance conditions presented in the preceding section shows
that we can define a dominant set of sufficient insertions, comprising at most n2

sufficient insertions. Indeed, notice from property 8.3 that it suffices to compute a
single sufficient insertion by ordered pair of activities (i, j): the one that verifies
ẼS

π

n+1 = ESi + pi and L̃S
σ

n+1 = LFj − pj . Properties 8.4 and 8.5 allow us to
reduce the cardinality of this set by considering the time window associated with
the activity to insert. In [ART 03], an algorithm for generating a series of dominant
insertion cuts is proposed. For each generated insertion cut, a dominant sub-series of
included sufficient insertions is computed, each one being evaluated. The algorithm
allows us to generate and evaluate all the dominant, sufficient insertions in O(n2).

8.4.7. Experimental results

To validate the proposed insertion algorithm in a dynamic environment, we
consider an initial RCPSP and a schedule computed by a static method. We select
the parallel scheduling scheme applied with the MINLFT1 priority rule [KOL 98]
to produce the baseline schedule S. A feasible flow f , compatible with S, is then
generated using algorithm AMR, presented in section 8.2.3.

In our experimental framework, a single unexpected activity has to be inserted
in the project schedule. We test and compare three algorithms for repairing
schedule S. The first one, denoted by PARLFT, consists of solving the new RCPSP
instance ignoring the baseline schedule with the above-defined static algorithm
(the parallel scheduling scheme with the MINLFT priority rule). The second
algorithm, denoted by RESCHINS, consists of inserting the activity in flow f using
the algorithm proposed in the preceding section. The third algorithm, denoted by
RESCHINSACTIVE, consists of applying RESCHINS plus a post-processing phase
in which a schedule is generated using the serial scheduling scheme [KOL 98] and

1. The selected activity is the one with the smallest latest finishing time considering the
precedence constraints only.
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the following priority rule: at each step of the serial scheduling scheme, select the
activity with the smallest start time in Θ(Ã ∪ χ(f̃)), i.e. the earliest start schedule
compatible with the flow issued from the insertion. The post-processing phase aims at
filling the resource idle times possibly branded activity right-shifts during insertion.
The schedule thus obtained is as least as good as the one obtained after insertion. The
three algorithms have the same worst-case time complexity (O(n2)); the last one is
obviously slower than the first two.

We carried out our experiments on the 600 Kolish et al. [KOL 95] instances
with 120 activities. Since these problems comprise several resources, we used the
multi-resource variant of the proposed insertion algorithm, based on the same
principles and detailed in [ART 03]. For each of these instances, we generated 27
unexpected activities, each one being inserted in the same baseline schedule and
corresponding to different activity parameters. We coded these parameters using a
three digit number pfR. p ∈ {0, 1, 2} defines the duration of the inserted activity,
i.e. small, medium, large. f ∈ {0, 1, 2} describes the width (in an increasing order)
of the inserted activity time window, defined by its predecessors and successors.
R ∈ {0, 1, 2} defines the demand of the activity by increasing amounts.

In [ART 03], experimental results on the mean and maximum baseline makespan
increase, for each of the three algorithms and for each of the 27 characteristics are
averaged over the 600 instances. It appears that the level of resource demand is a
discriminating factor. For high resource demands, RESCHINS and RESCHINSACTIVE

are superior to PARLFT. For small and medium resource demands, PARLFT

obtains better mean increases than RESCHINS. This effect is largely tempered by
RESCHINSACTIVE, for which the difference with PARLFT becomes insignificant
as soon as PARLFT obtains better results. In terms of worst-case evaluation,
PARLFT obtains much worse results than RESCHINS and RESCHINSACTIVE since
it can obtain dramatic results in terms of maximal makespan increase. The good
relative performance of RESCHINSACTIVE shows that it can be fruitful to combine
an insertion algorithm with an active schedule generation scheme in a dynamic
environment.

8.5. Conclusion

This chapter has examined how to cope with uncertainties in the context of
project scheduling with limited resources. We have considered variability in the
activity durations and the arrival of new unexpected activities. Our objective in the
two cases has been to maintain the stability of the initial schedule, on the one hand by
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keeping the initial resource allocation unchanged, and on the other hand by selecting
as objective function the expected difference between actual and planned activity
starting times. A resource flow model has been used for modeling resource allocation
decisions. In the case of activity duration perturbations, our approach is to establish
a reactive policy based on resource flows and to find a resource allocation that
minimizes the expected starting time deviation. For the second type of uncertainty, a
new task is inserted in the pre-computed flow network with an eye to minimizing the
makespan increase. Experimental results show that, in both cases, the extra effort for
taking uncertainty into account is moderate, while substantial gains in stability and
robustness can be achieved.
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Chapter 9

Constraint-based Approaches
for Robust Scheduling

9.1. Introduction

By constraint-based approach, we refer in this chapter to studies focusing on
the representation and processing of constraints in scheduling. These approaches
compare and combine operations research methods with constrained representation
and processing from artificial intelligence (mainly constraint propagation algorithms).
The goal is to design tools to facilitate interaction between models and decision
makers, by integrating useful analysis methods in the context of decision support.

In accordance with the classification presented in Chapter 1, the scheduling
methods we propose in this chapter are said to be proactive/reactive. Indeed, such
methods aim to characterize a flexible group of schedules which can be used to face
the contingencies that arise during the plan execution, rather than a unique solution
[HER 05]. Since flexibility and quality of a set of solutions are conflicting measures
(see Chapter 9), we assume that the decision support can realize a satisfactory
trade-off.

Three main origins of flexibility are invoked here. The first concerns the sequential
flexibility, i.e. the possibility of modifying the execution order of tasks on resources.
The second concerns the flexibility over allocation of resources to tasks when several
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choices of resources (alternatives) are possible to process a task. The third is the
temporal flexibility associated with the slack of each task to be processed which can
be used without degrading the solution quality.

Seeking a trade-off between flexibility and quality, the flexibility of a set of
solutions must be measured. An obvious measure is to count the number of different
schedules (without enumerating them) amongst a set of solutions. Other metrics can
also be used.

This chapter presents how to characterize, avoiding the pitfalls of enumeration,
a flexible set of solutions using interval structures and necessary, sufficient and
dominant conditions of feasibility or optimality. Such conditions restrain the possible
allocations of resources to tasks, the time windows to perform the tasks, as well as the
possible sequencings between tasks. For example, for the latter case, we can define an
order only over a subset of the problem tasks. This partial order allows us to bound
the quality of the characterized flexible set in the worst case, and then to measure its
flexibility. Moreover certain orders can be rather insensitive to data variations; this
characteristic can be particularly useful in the context of robust scheduling.

First, we define the concepts of necessary, sufficient and dominant conditions, as
well as that of partial order which we will use in what follows. Then we address the
notion of interval structure and several related concepts. Finally, we will focus on the
study of necessary conditions of feasibility, and sufficient and dominant conditions of
optimality.

9.2. Necessary/sufficient/dominant conditions and partial orders

In scheduling, the concepts of necessary and sufficient conditions are related to
either the feasibility of a problem or the optimization of a criterion. Considering
feasibility, the theory of constraint-based analysis [ERS 76] provides necessary
and sufficient conditions that all the solutions must fulfill according to the problem
constraints. Owing to its NP-complete feature, constraint-based analysis splits into
the search for necessary conditions on the one hand and for sufficient conditions
on the other hand. The sets of solutions satisfying necessary conditions consist of
all the feasible (resp. optimal, considering a given criterion) schedules and other
unfeasible (resp. non-optimal) schedules. The search for sufficient conditions aims at
characterizing a subset of all feasible (resp. optimal) schedules.

Other approaches characterize a set of schedules according to dominant
conditions in relation to optimality or feasibility. When studying feasibility, we say
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that a sequence Seq1 dominates a sequence Seq2 iff Seq2 feasible implies Seq1

feasible [ERS 83]. The dominant sequences can be considered as potentially better
than others since if no feasible dominant sequence exists then no solution exists for
the global problem.

In the optimization framework, the definition of dominance involves the notion
of circuit in conjunctive graphs. Let G(X,U) be a conjunctive graph where X is the
set of tasks to be scheduled and U the set of conjunctive arcs between two tasks of
the problem [ROY 70]. Let us now consider two conjunctive graphs G1(X,U1) and
G2(X,U2) that describe two sequences Seq1 and Seq2. We state that sequence Seq1

dominates sequence Seq2 iff the length of every circuit of G2(X,U2) is greater than
or equal to the length of the longest circuit of G1(X,U1) [FON 80].

The notion of partial order is also important. A partial order P is characterized by
a pair P = (X,�P ) where every relation �P over X ×X is reflexive, antisymmetric
and transitive. A partial order P = (X,�P ) is a total order if for every couple
(u, v) ∈ X × X the relations u �P v or v �P u are satisfied. A partial order
Q = (X,�Q) is an extension of the partial order P = (X,�P ), if u �P v implies
u �Q v for every couple (u, v) ∈ X ×X .

As we will see later, partial order relations often correspond to necessary, sufficient
or dominant conditions of feasibility (or optimality). By extension, we also speak of
necessary, sufficient and dominant partial order.

9.3. Interval structures, tops, bases and pyramids

An interval structure can be defined by a couple < I,C > with I = {i1, . . . , in}
a set of intervals and C a set of constraints over I × I . Each interval ij is defined by
its lower and upper bounds xj and yj . Any constraint between two intervals ij and ik
can be expressed either by specifying a total order relation among the lower and upper
bounds of the intervals or by directly using the relations of the algebra proposed by
Allen [ALL 81] (see Figure 9.1).

Top and base are particular intervals of an interval structure that can be defined on
the basis of Allen’s relations.

DEFINITION 9.1.– A top of an interval structure < I,C > is an interval t ∈ I such
that ∀i ∈ I the Allen’s relation during(i, t) never holds.
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precedes(A, B) meets(A, B) overlaps(A, B)

xA ≤ yA ≤ xB ≤ yB xA ≤ yA = xB ≤ yB xA < xB < yA < yB

starts(A, B) during(A, B) ends(A, B) equals(A, B)

xA = xB < yA < yB xB < xA ≤ yA < yB xB < xA ≤ yA = yB xA = xB ≤ yA = yB

Figure 9.1. Allen’s relations

DEFINITION 9.2.– A base of an interval structure < I,C > is an interval b ∈ I such
that ∀i ∈ I the Allen’s relation during(b, i) never holds.

These notions of top and base can be respectively used to define the notions of
t-pyramid and b-pyramid [ESQ 99].

DEFINITION 9.3.– Given a top tα, a t-pyramid Pα related to tα is the set of intervals
i ∈ I such that during(tα, i) holds.

DEFINITION 9.4.– Given a base bα, a b-pyramid Pα related to bα is the set of intervals
such that during(i, bα) holds.

For illustration of definitions 3 and 4, let us consider the interval structure of
Figure 9.2. It has three tops {C,D,E} and four bases {A,B, F,G}. The involved
t-pyramids are PC = {B,A,G}, PD = {G} and PE = {F,G}, and the b-pyramids
are PA = {C}, PB = {C}, PF = {E} and PG = {C,D,E}.

9.4. Necessary conditions for a generic approach to robust scheduling

9.4.1. Introduction

Constraint-based approaches (also referred to as constraint programming) makes
a clear distinction between: the constraints model of a problem; analysis methods;
and resolution methods. The formalism of constraint satisfaction problems (CSP)
is used to write the model as a set of variables, a set of domains of values for each
variable, and a set of constraints. In the CSP formalism, a constrained variable
can also be used to represent an optimization criterion. For example, to iteratively
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Figure 9.2. An interval structure

minimize an objective function, we can write criterion_expression < criterion_value
where criterion_expression is a combination of problem variables and criterion_value
is a worst-case measure of characterized solutions which decreases at each step.
Therefore, the latest value of the criterion is a lower bound on the optimum.

Constraint propagation mechanisms allow us to decide whether there exist feasible
solutions for a problem without any enumeration. Such mechanisms characterize a
solution space using a logical deduction process to express necessary conditions for
feasibility. Thus, any solution removed from the space is effectively inconsistent; the
propagation mechanisms are said to be sound. Conversely, such mechanisms are also
said to be incomplete (in the general case) since any solution which belongs to the
space has not been proved to be inconsistent, although it may be. However, for certain
problems such as simple temporal problems (STP) [DEC 91, DEC 03], we know the
necessary and sufficient conditions of feasibility. In this particular case, the space of
obtained solutions exactly corresponds to the space of feasible solutions.

Generally, constraint propagation mechanisms may either eliminate inconsistent
values from variable domains or highlight new constraints between variables. They
can also, in certain cases, prove the global inconsistency of the problem before any
resolution attempt. This domain filtering provides a more precise characterization of
the problem under study and then avoids many doomed resolution attempts.

Constraint propagation satisfies robustness requirements. First, removing the
values not belonging to any solution, it provides a set of solutions without any
enumeration. The performance of propagation mechanisms may be measured through
their impact on domain reduction. Second, it is well-suited to dynamic and reactive
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changes of the model. For example, side constraints are not always formally modeled
(ill-known parameters, context-dependent behavior) albeit they may be of great
impact in practice. This can lead to the addition or the deletion of one or more
constraints. In the first case (addition), the solutions already obtained have to be
reconsidered whilst the deductions coming from propagation can be kept. In the
second case (deletion), the deductions must be reconsidered and the solutions can be
kept (as a solution of the original problem is still a solution of the relaxed problem).

9.4.2. Scheduling problems under consideration

In the literature, propagation techniques exist for generic constraints applied
to a wide range of scheduling problems. In this chapter, we limit our study to
non-preemptive and disjunctive problems. A set of tasks T is to be processed with no
interruption on a single resource chosen among a set M of non-sharable resources.

For every task i ∈ T , let sti be its start time, fti its finish time and mi

the resource used to process the task. To model a problem we then used a set
X = {sti, fti,mi}i∈T of decision variables and a set C of time and resource
constraints linking tasks i ∈ T and resources k ∈M .

Set C consists first of constraints on variable domains: sti ∈ [sti, sti], fti ∈
[ft

i
, fti] and mi ∈ Mi, where Mi corresponds to the set of resources able to process

a task i (in practice, one single resource of Mi will be allocated to process the task).
Next, we consider the precedence constraints between tasks: the constraint denoted
by i ≺ j means task i precedes task j and is represented by the inequality stj ≥ fti.
The generalized precedence constraints may also be taken into account. These can
be written as xj − xi ≥ aij , where xi and xj are temporal variables and aij is an
integer value (positive or negative). In addition, there are constraints to represent the
disjunctive nature of resources. Every pair of tasks (i, j) using a same resource k must
be sequenced: (i ≺ j) ∨ (j ≺ i).

Finally, we have duration constraints. In general, the processing time pi,k =
fti − sti of a task i is dependent on the resource mi = k chosen among Mi. For a
given resource k, the processing time may be set (for example pi,k = 4) and only one
variable (start or finish time) is sufficient to locate the task in time. This processing
time can also belong to an interval of possible values [p

i,k
, pi,k] (for example

pi,k ∈ [2, 5]) and both variables (start and finish times) are necessary to locate this
task. Such an interval of values associated with the processing time of a task may, for
instance, correspond to an imprecise duration on a given resource. This is interesting
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in the context of robustness. To take account of the various choices for allocation, the
interval of values for the processing time of a task is defined as the union of intervals
for each choice: [p

i
, pi] = [mink∈Mi

p
i,k

,maxk∈Mi
pi,k].

9.4.3. Necessary feasibility conditions

For the scheduling problems under consideration, the propagation techniques of
the literature allow the deduction of the following necessary feasibility conditions:

1) time variable domain filtering: start or finish times of tasks. Often, the
associated adjustments do not create holes in the domains of variables. They only
lead to an increase in the lower bound and a decrease in the upper bound of the time
variable domains;

2) forbidden allocations, i.e. domain reductions for allocation variables mi of
tasks i ∈ T ; for example l /∈Mi;

3) partial orders:

- mandatory precedences between a task i and a set of tasks S: i ≺ S or S ≺ i;

- forbidden precedences between a task i and a set of tasks S: i ⊀ S or S ⊀ i;

- non-insertability of a task i in a set of tasks S: i � S;

4) distances between time variables; for example: ftj − sti ≥ dmin (i.e., a
minimum distance constraint), p

i
≤ ftj − stj ≤ pi (i.e., a duration constraint), or

even constraints which come down partial orders between tasks, such as sti ≥ ftj
(i.e., a mandatory sequencing j ≺ i) or ftj > sti (i.e., a forbidden sequencing i ⊀ j,
that is j ≺ i since the problem is disjunctive).

The necessary conditions presented above are new constraints which enrich the
initial set of constraints. The addition of such constraints is different according to
their type:

– time variable domain filtering, distances, forbidden allocations and mandatory
precedences between tasks are directly added to the set of problem constraints;

– partial orders are added using the provided adjustments, that is:

if S ≺ i then sti ←− max

(
sti, max

S′⊆S

(
min
x∈S′

stx +
∑
x∈S′

p
x

))
,

if i ≺ S then fti ←− min

(
fti, min

S′⊆S

(
max
x∈S′

ftx −
∑
x∈S′

p
x

))
,
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if i ⊀ S then sti ←− max
(
sti,min

x∈S

(
stx + p

x

))
,

if S ⊀ i then fti ←− min
(
fti,max

x∈S

(
ftx − p

x

))
;

We note that the non-insertability of a task in a set is generally used in addition to
not-first/not-last conditions in order to deduce mandatory precedences between a task
and a set:

if i � S and i ⊀ S then S ≺ i; if i � S and S ⊀ i then i ≺ S.

From an initial set of constraints C, each necessary condition defines a new set of
constraints C ′ including C. Once these necessary feasibility conditions are obtained,
the propagation process can be iterated over the new set of constraints until no more
deduction can be obtained or an inconsistency arises. At the end of the propagation,
we have: for each time variable and for each allocation variable, a domain of values
which have not been proved as inconsistent; for each resource, a partial order on the
task processing (set of sequences not proved to be inconsistent).

Note that the iterative addition of induced constraints by propagation leads to
difficulties on the convergence of deduction towards a unique fixed-point (obtained
independently of the order of propagations and the associated algorithms to their
processing). This difficulty has been raised in [TOR 00a] and a theoretical framework
has been proposed in [DOR 00] to formalize the related algorithms.

9.4.4. Propagation mechanisms

The previous section presents the different types of necessary conditions obtained
by constraint propagation techniques in scheduling. We now describe in which cases
these conditions can be established. For this purpose, we distinguish time constraint
propagation and resource constraint propagation [ESQ 08].

9.4.4.1. Time constraint propagation

The mechanisms of time constraint propagation are particularly important
since some main deductions presented previously can be considered as temporal
constraints. For simple temporal problems (STP) [DEC 91], the propagation
mechanisms are sound and complete, that is, the set of feasible solutions is
characterized in a necessary and sufficient way. An STP only consists of a conjunctive
set of domain constraints and binary constraints, each of them representing a distance
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between two times. It can be modeled with a distance graph so that longest-path
algorithms allow the characterization of the set of solutions. Traditionally, we use an
algorithm checking the 2-consistency (Bellman-Ford, AC-3, etc.) to characterize the
domains of decision variables or an algorithm for 3-consistency (Floyd-Warshall,
PC-2, etc.) to make not only the domains of variables explicit but also all the implicit
constraints between each pair of variables.

For general temporal problems, the propagation algorithms are no longer complete
and we know only necessary conditions for feasibility of solutions. Here are some
examples of general problems for which disjunctions exist between time constraints:

– a task i may start either between [2, 4] or between [7, 9];

– at least a task among {i1, i2, ...., ik} must precede task j;

– either task i precedes task j, or task j precedes task i.

To represent general temporal problems we need particular graphs such as
temporal constraint networks (TCN) [DEC 91, SCH 98] or time-bounds on node
graphs [ESQ 92, ESQ 95] depending on the type of disjunctive constraint we handle.

Let us note finally that there are also some results for ill-known task durations
or start/finish times (contingencies). This refers to simple temporal problems with
uncertainties (STNU). The associated propagation algorithms proposed in [MOR 01],
sound and complete, guarantee that every partial solution may be extended whatever
the values of the uncertain uncontrollable quantities.

9.4.4.2. Resource constraint propagation

Following the seminal works of Carlier and Erschler [CAR 75, ERS 76], resource
constraint propagation techniques are now commonly used, especially inference rules
concentrated on a single machine (the so-called local operations). The research
on this topic has been very active and new rules and efficient algorithms are now
available. Among the most famous of them, the immediate selections allow the
deduction of mandatory precedences between tasks and sets of tasks [CAR 89].
Embedded efficiently in a dedicated branch-and-bound procedure for job-shop
scheduling, the immediate selections were able to close the famous instance FT10
[FIS 63], which remained open for more than 20 years.

More recently, global operations, also called shaving, provided stronger
deductions [CAR 94, MAR 96]. The principle of shaving techniques is as follows:
a local constraint is raised (instantiation of a start time or sequencing decision) and
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corresponding adjustments are propagated over the whole problem. If inconsistency
is detected, the negation of the constraint raised must be checked and is thus added to
the problem definition. Such a technique can be very time-consuming. Nevertheless,
it also offers a very promising approach. For example, it allows us to solve instance
FT10 to optimality at the root of a search tree [PÉR 96]. For more difficult instances,
shaving techniques resulted in a dramatic reduction of expanded nodes (a factor of
10 000) with a factor 4 decrease in CPU time [PHA 00]. In addition, we can consider
a hybrid use of shaving type propagation techniques and local search procedures
(notably the tabu search method) to enable the efficient extraction of local optima and
solve large job-shop problems (15 tasks – 10 machines and beyond) [TOR 00b].

These excellent results confirm the power of constraint-based approaches for
scheduling and still stimulate the work in this field. New rules and propagation
algorithms have been proposed (see for example [BRU 94, CAS 94, MAR 96]). In
addition, the extension of the propagation techniques, other types of constraints
(preemptive or cumulative [BAP 01, LOP 91, NUI 94, CAS 96, CAR 00]) enforce
their reusability and their effective applicability in a real-life context. Energetic
reasoning [LOP 92] or the Jackson pseudo-preemptive schedule (JPPS) [CAR 04] are
some examples.

9.4.5. Interval structures for propagation

The constraint propagation rules traditionally used in scheduling are based on
subsets of tasks satisfying particular properties (see the above sections). The search
for relevant subsets of tasks to apply such propagation rules to is generally highly
combinatorial. In order to reduce this complexity, it is worth examining the temporal
structure of the scheduling problem. In this section, we propose interval structures as
a support to implement propagation rules in an exhaustive (all the possible deductions
have been obtained) and generic (unicity of fixed-point) way.

9.4.5.1. Rank-interval based structures

The set of feasible locations is represented by a rank interval. For each task i,
the rank interval IR(i) represents the set of permitted locations of i in a sequence
[LOP 98]. With this definition, two simple notions have been introduced (we refer
here to Allen’s algebra introduced in section 9.3):

– Equal Rank-Interval Sets (ERIS) group together tasks having the same rank
intervals:

i, j ∈ ERIS GE iff equals
(
IR(i), IR(j)

)
;
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– Overlapped Rank-Intervals Set (ORIS) group together tasks having common
rank values:

i, j ∈ ORIS GO iff there exists a series of tasks k0 = i, . . . , ky = j such that

∀z = 1, . . . , y, we obtain

{
neither precedes

(
IR
(
kz−1

)
, IR

(
kz

))
nor precedes

(
IR
(
kz

)
, IR

(
kz−1

))
.

The partition into ORISs is attractive as far as the problem is well structured
enough so that independent subproblems can be pointed out (in practice only one
ORIS can be found). ERISs often lead to a too thin decomposition (small-size groups
highly dependent on each other).

A third notion is that of Included Rank-Intervals Set (IRIS):

DEFINITION 9.5.– i, j ∈ IRIS GI iff:

includes(IR(i), IR(j)) or

includes(IR(j), IR(i)) or

∃x ∈ GI , x 
= i, j, such that during(IR(i), IR(x)) and during(IR(j), IR(x)).

where the relation includes takes its value in {starts,during, ends, equals} Allen’s
relations.

The three notions are illustrated in Figure 9.3. IRISs group together tasks for
which there exists an inclusion between rank intervals. IRISs offer the best trade-off
between set interdependence of ORISs and activity permutability of ERISs. Hence the
characterization stage is going to be processed over each IRIS to favor computation
time savings.

The decomposition in IRISs has been used in disjunctive scheduling problems such
as single machine and flow-shop problems. This structuring is close to b-pyramids
and is easy to implement. Indeed, the complexity of decomposition in IRISs is that
of sorting a set of tasks [LEV 99]. This decomposition allows us to make explicit
necessary feasibility conditions in terms of rank adjustments. In addition, it provides
a guide for the application of certain propagation rules on subsets of reduced size.
For example, the mandatory precedences between a task and a set of tasks (immediate
selections) are searched only in IRISs and no longer in the whole set of tasks of the
problem tasks.
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Figure 9.3. Example of groups of tasks

9.4.5.2. Task-interval based structures

A task interval groups together a set of tasks in conflict for the use of a resource.
The names of two of these conflicting tasks (possibly the same) bound the task interval
[CAS 94].

DEFINITION 9.6.– Let i and j be two tasks (eventually i = j) using a same resource
k and such that sti ≤ stj and fti ≤ ftj; the task interval [i, j] corresponds to the set
of tasks x using k and such that sti ≤ stx and ftx ≤ ftj .

Let I(T ) = {[sti, fti] / i ∈ T} be the set of time windows of the set of tasks T .

We define the lattice of task intervals, in short LTI, as the set of task intervals of
I(T ) ordered by the immediate inclusion relation. An LTI presented without transitive
relations can be depicted by an Hasse diagram [TOR 99]. Figure 9.5 represents the
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Hasse diagram of the set inclusion relation between the task intervals of the example
in Figure 9.4.

ABC

BC

C

CDE

CDEF

EF

E

= [A,C]

= [A,E]

= [A,G]

= [B,C]

= [C,C]

= [C,E]

= [C,F]

= [E,F]

ABCDEFG

ABCDE

= [E,E]

Task intervals

D

A

 B

 C

E

F

G

Figure 9.4. Time windows and associated task intervals

To make a link with the definitions of section 9.3, we can notice the following
points when characterizing a problem using pyramidal structures:

1) the minimal elements of the LTI are tops;

2) b-pyramids are particular task intervals: there exists a task (the base) of which
the interval strictly includes all the other intervals of the pyramid.

Propagation rules based on the relative location of a set of tasks S and a task i /∈ S

(edge-finding for example) can be implemented considering lattices of task intervals
(LTI) [TOR 99]: only the sets of tasks that can have an impact applying these rules are
to be generated. Indeed, i /∈ S implies sti < minx∈S stx or fti > maxx∈S ftx.
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Figure 9.5. Lattice of task intervals: Hasse diagram and areas

In a lattice of task intervals ordered following the non-decreasing release order
dates and the non-increasing order of the deadlines, the two previous conditions divide
the LTI into four distinctive areas:

– Area 1© groups together all the task intervals such that sti > minx∈S stx and
fti < maxx∈S ftx; therefore they include x; hence this area is irrelevant to trigger
the rules.

– On task intervals S of Area 2©, if i � S is deduced, since fti > maxx∈S ftx, it
yields S ≺ i.

– On task intervals S of Area 3©, if i � S is deduced, since sti < minx∈S stx, it
yields i ≺ S.

– In Area 4©, both conditions sti < minx∈S stx and fti > maxx∈S ftx are
satisfied. If i � S is deduced, it yields (i ≺ S) ∨ (S ≺ i).

Figure 9.5 then illustrates the partition of the LTI for task D. Searching for
deductions on D leads us to consider only task intervals located in Areas 2© and 3©.

9.4.6. Discussion

Determining necessary feasibility conditions has now proved to be very
useful for representing and solving scheduling problems. Numerous publications
(see for example [DOR 00, BAP 01, BAP 02, BRU 02, LAB 03, LOP 03]) and
dedicated sessions in conferences or workshops (IJCAI, AAAI, ECAI, ICAPS,
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INAP, CP-AI-OR, etc.) on the topic can be easily found. These approaches use
general techniques of constraint satisfaction problems such as propagation, but also
solving strategies tuned for scheduling problems: variable/value ordering heuristics,
backtracking, etc.

9.5. Using dominance conditions or sufficient conditions

Unlike the study presented in the previous section, there does not exist any generic
sufficient condition of optimality or feasibility which can be used for solving any kind
of scheduling problem. Nevertheless, there exists a generic dominance condition: it is
well known that the search for a feasible solution, or an optimal solution (with regard
to a regular criterion), can be restricted to the set of the semi-active schedules. Of
course this set is very large and it is difficult to determine its performance. This is
why, in order to find tighter sufficient or dominance conditions which characterize
a smaller search space, researchers consider the deep nature of a schedule problem
by making many assumptions on its structure and properties (number of resources,
job-shop, flow-shop, open-shop, equal processing times, task preemption allowed,
etc.).

This is precisely what we are going to do in this section by taking an interest
in two famous scheduling problems: the single machine scheduling problem with
execution windows (the objective function being to minimize the maximum lateness
Lmax) and the two-machine flow-shop problem (the objective function being to
minimize the makespan). For these problems, denoted in the literature as 1|rj |Lmax

and F2|prmu|Cmax respectively, we intend to show how interval structure analysis
can be used in order to established specific dominance or sufficient conditions of
optimality. The major value of such conditions is that they characterize, for the
considered problems, a set of dominant sequences and a set of optimal sequences
respectively, with a known cardinality and performance. Such a set can be used inside
a robust scheduling approach, which uses sequential flexibility as a way of dealing
with uncertainties.

9.5.1. The single machine scheduling problem

In this section, we define a partial order based on a dominance theorem which
was issued in the early 1980s [COU 79, ERS 82, ERS 83]. The dominance, as it is
considered by the authors, is related to the feasibility of a schedule. In any case, it
has been demonstrated that their dominance theorem is still valid when optimization
criterion such as Lmax or Tmax is considered. The hypothesis frame studied by the
authors only takes into account the relative order of the release dates rj and due dates
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dj of the jobs to be sequenced. Therefore, the processing time pj as well as the explicit
values of rj and dj are not used. In other words, whatever the values of rj , dj and pj ,
the following results are valid as long as the relative order of the release and due dates
is kept unchanged.

An interval structure < IV , CV >, associated with a problem V , contains interval
ij = [rj , dj ] ∈ IV for each job j ∈ V . To characterize a dominant set of sequences,
the authors use the notions of tops and t-pyramids related to < IV , CV >.

It is assumed that the tops are indexed according to the ascending order of their
release dates or, in case of equality, according to the ascending order of their due
dates. When both their release dates and due dates are equal, the tops are indexed
in an arbitrary order. Thus, if tα and tβ are two tops then α < β if and only if
(rtα

≤ rtβ
) ∧ (dtα

≤ dtβ
). The t-pyramid Pα corresponds to the pyramid that the

top tα characterizes. The functions u(j) (v(j) resp.) indicates the index of the first
(the last resp.) t-pyramid to which the job interval ij belongs. A dominant partial
order can now be defined by the the following theorem:

THEOREM 9.1.– A dominant set of sequences can be constituted by the sequences
such that:

1) tops are sequenced in the ascending order with respect to their index;

2) only jobs belonging to the first pyramid can be located before the first top and
they are sequenced in ascending order with respect to their release dates (or in an
arbitrary order in case of release date equality);

3) only jobs belonging to the last pyramid can be located after the last top and they
are sequenced in ascending order with respect to their due dates (or in an arbitrary
order in case of release date equality);

4) only jobs belonging to the t-pyramids Pk or Pk+1 can be located between two
successive tops tk and tk+1. The jobs belonging only to Pk but not to Pk+1 are
sequenced immediately after tk according to the ascending order of their due dates
(or in an arbitrary order in case of equality). The jobs belonging to both Pk and Pk+1

are sequenced in an arbitrary order. Lastly to be sequenced are jobs belonging only
to Pk+1 but not to Pk in ascending order with respect to their release dates (or in an
arbitrary order in case of equality).

The fact that theorem 9.1 is relatively insensitive to the variations of the release and
due dates of the jobs is another interesting property. Indeed, let us assume that, due to
some fluctuations on these dates, the interval structure < I,C > becomes < I ′, C ′ >.
We note that:
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– �I and �I′ , the partial orders characterized by theorem 9.1 when it is applied
on < I,C > and < I ′, C ′ > respectively;

– SI and SI′ the set of tops of < I,C > and < I ′, C ′ > respectively;

– u(ij) and u(i′j), with ij ∈ I and i′j ∈ I ′ respectively, the indexes of the first
t-pyramid to which the job interval ij or i′j belongs;

– v(ij) and v(i′j), with ij ∈ I and i′j ∈ I ′ respectively, the indexes of the last
t-pyramid to which the job interval ij or i′j belongs.

Then we can state that �I is an extension of �I′ if:

(
SI = SI′

) ∧ (u(ij) ≤ u
(
i′j
)) ∧ (v(ij) ≥ v

(
i′j
))

(9.1)

In other words, the dominant partial order attached to the problem remains
dominant, whatever the variations in the release and due dates of the jobs, as long as
condition (9.1) is satisfied. This property is of interest with regard to robustness since
we can always be sure that an optimal solution exists in the dominant set of solutions,
even when problem parameters are deeply perturbed with respect to condition (9.1).

For instance, let us consider the single machine scheduling problem of Table 9.1
with four jobs. The interval structure attached with such a problem is displayed in
Figure 9.6. Two tops s1 = 1 and s2 = 4 can be distinguished which characterize two
t-pyramids P1 = {2, 5} and P2 = {2, 3}. Let us note that, with respect to definition
9.3, a top does not belong to the pyramid it characterizes.

Jobs 1 2 3 4 5

ri 6 1 21 24 4

di 13 37 33 31 17

pi 4 5 8 6 7

Table 9.1. A single machine problem 1|rj |Lmax

When applying theorem 9.1, a dominant set Sdom of cardinality card(Sdom) =
(1+1)2 ·(2+1)1 = 12 is characterized. It includes the job sequences (see Figure 9.7):

2 ≺ 5 ≺ 1 ≺ 3 ≺ 4, 2 ≺ 5 ≺ 1 ≺ 4 ≺ 3, 5 ≺ 1 ≺ 2 ≺ 3 ≺ 4, 5 ≺ 1 ≺ 2 ≺ 4 ≺ 3,

5 ≺ 1 ≺ 3 ≺ 4 ≺ 2, 5 ≺ 1 ≺ 4 ≺ 3 ≺ 2, 2 ≺ 1 ≺ 5 ≺ 3 ≺ 4, 2 ≺ 1 ≺ 5 ≺ 4 ≺ 3,

1 ≺ 5 ≺ 2 ≺ 3 ≺ 4, 1 ≺ 5 ≺ 2 ≺ 4 ≺ 3, 1 ≺ 5 ≺ 3 ≺ 4 ≺ 2, 1 ≺ 5 ≺ 4 ≺ 3 ≺ 2.
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Figure 9.6. Interval structure of the problem described in Table 9.1

Figure 9.7. Dominant set of job sequences associated with the example

Let us note that, with respect to the dominance property, any job sequence
s /∈ Sdom has its minimum Lmax greater than or equal to at least one sequence
belonging to Sdom. We also highlight that, in the case where the release date of Job 2
is greater than that of Job 1, in such a way that Job 2 would only belong to P2, Sdom

will remain dominant (see condition (9.1)). Indeed, in this case, the dominant set
S ′dom which corresponds to such a new interval structure would be strictly included
in Sdom.

Therefore, the partial order defined by theorem 9.1 characterizes a set of sequences
which are potentially better than the other sequences. In order to have a numeric
measure of the quality of a dominant set, it is interesting to compute for each job i

the best and the worst lateness (denoted as Lmin
i and Lmax

i respectively), among all
the sequences belonging to Sdom. Fortunately, it is possible to compute these values
avoiding the complete enumeration of the job sequences belonging Sdom. Indeed, the
computation of Lmin

i and Lmax
i can be made in O(n log n), as described in [BRI 07].

We notice that these values depend on ri, di and pi. Computing the Lmin
i and Lmax

i

of every job can be done in O(n2 log n). These values allow us to build up a lateness
diagram, such as the one displayed in Figure 9.8, with regard to the previous example.
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Figure 9.8. A lateness diagram

A major piece of information given by the lateness diagram is an upper-bound
and a lower-bound of the criterion Lmax: maxi∈T (Lmin

i ) ≤ Lmax ≤ maxi∈T (Lmax
i ).

Such bounds can be used inside a branch-and-bound procedure in order to characterize
the set of optimal sequences belonging to Sdom. Such a procedure is proposed in
[BRI 07] and avoids the enumeration of the optimal job sequences. It progressively
develops a search space where each node corresponds to a specific interval structure.
At each step, the branching scheme consists of selecting a pivot job p, corresponding
to a top, and another non-top job i. Then two children are generated, considering
either the cases where p ≺ i or i ≺ p. These precedence relations can be expressed
by means of updating of the interval structure of the parent node, i.e. ri ← rp and
di ← dp respectively. At the end of the procedure, the search tree leaves are such that
maxi∈T (Lmin

i ) = maxi∈T (Lmax
i ). Then, each leaf characterizes a set of optimal job

sequences.

A lateness diagram can also be used as a decision-aiding tool aiming at finding
a relevant trade-off between flexibility and performance [BRI 03]. In this case, a
scheduler is free to select any job x in order to decrease the value of Lmax

x which
does not satisfy him. Then a procedure, similar to that previously described, can
progressively eliminate from Sdom the worst job sequence for x, so decreasing the
Lmax

x value. At each step, the scheduler obtains knowledge of the remaining number of
job sequences, and the current values of Lmin

i and Lmax
i for each job i, so he becomes

able to arbitrate his choices with regard to the performance vs. flexibility trade-off.

9.5.2. The two-machine flow-shop problem

This subsection takes an interest in the famous F2|prmu|Cmax problem. It aims at
defining a sufficient partial order, which characterizes a large set of optimal sequences,
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with regard to the minimization of the maximum completion time Cmax. Traditionally,
we denote by T the set of n jobs to sequence on two machines M1 and M2 (pj1 and pj2

respectively indicate the processing times of each job j ∈ T on M1 and M2). Only
permutation sequences are considered (i.e. F2|prmu|Cmax) since they are dominant
for Fm ||Cmax, if m ≤ 3 [CON 67].

For this problem, let us notice first that a well-known sufficient order (further
denoted as �J ) has been established by Johnson [JOH 54] in 1954, who stated the
sufficient condition of optimality: min(pi1, pj2) ≤ min(pj1, pi2) ⇐⇒ i �J j.
Following this rule, a single optimal job sequence can be computed in O(n log n).
Nevertheless, because the number of optimal sequences characterized by Johnson’s
partial condition is relatively low, we present below another partial order which allows
us to characterize a larger set, this set necessarily including any Johnson’s sequences
together with numerous other optimal job sequences. For additional details on this
work, the reader should refer to [BRI 06].

Many researchers have taken an interest in enumerating a large number of optimal
sequences for F2|prmu|Cmax. The use of the algorithm proposed in [BEL 82] gives
the list of all the sequences satisfying Johnson’s rule. Billaut and Lopez [BIL 98]
also proposed an algorithm which enumerates, by job permutations inside optimal
Johnson’s sequences, the complete set of optimal sequences. A related approach based
on the notion of maximum sequence was also proposed in [BEN 00]. In both the last
cases, we notice that only small problems, with a dozen jobs at most, can be solved
due to a prohibitive time complexity of the algorithms. On the basis of a given optimal
job sequence, Esswein et al. also proposed a greedy forward grouping algorithm, with
worst case time complexity O(n log n), which determines an optimal group sequence
of jobs while maximizing the flexibility (i.e. the number of groups is minimized).

In order to define our partial order, two particular interval structures 〈I1, C1〉 and
〈I2, C2〉 are defined:

– I1 is-the interval structure associated with the jobs j ∈ T such that pj1 ≤ pj2;

– I2 is-the interval structure associated with the jobs j ∈ J such that pj2 ≤ pj1.

An interval ij = [pj1, pj2] is associated with each job j ∈ I1 and similarly,
an interval ij = [pj2, pj1] is associated with each job j ∈ I2. Therefore, a job j

such that pj1 = pj2 belongs to both interval structures 〈I1, C1〉 and 〈I2, C2〉 and its
corresponding interval is a point. Moreover, we can see that the interval structures
〈I1, C1〉 and 〈I2, C2〉 do not change as long as the relative order of the processing
times pj1 and pj2 remains unchanged.
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In the following, we focus on the bases of 〈I1, C1〉 and 〈I2, C2〉 and on the
b-pyramids that they characterize. We assume that the n1 bases of 〈I1, C1〉 are
indexed in ascending order with respect to their processing times on the first machine
(in an arbitrary order in the case of equality). Similarly, the n2 bases of 〈I2, C2〉 are
indexed, starting from the index n1 + 1, in the descending order with respect to their
processing times on the second machine (in an arbitrary order in the case of equality).
For each job j, we denote u(j) (v(j) resp.) the index of the base of the first (the last
resp.) b-pyramid to which the job j belongs. For a base bi, we set u(bi) = v(bi) = i.

For the problem instance of Table 9.2, the interval structures 〈I1, C1〉 and 〈I2, C2〉
are represented in Figure 9.9. First, we notice that 〈I1, C1〉 contains three bases,
b1 = 1, b2 = 2 and b3 = 3, which involve three b-pyramids: P1 = {5, 6}, P2 = {6, 7}
and P3 = {8}. The interval structure 〈I2, C2〉 only contains a single base, b4 = 4,
which involves the b-pyramid P4 = {7, 9}. Job 7 is such that p71 = p72 = 7, both
belong to 〈I1, C1〉 and 〈I2, C2〉.

Jobs 1 2 3 4 5 6 7 8 9

xi 1 3 8 8 2 4 7 9 5
yi 6 8 12 2 4 5 7 11 3

Table 9.2. A F2|prmu|Cmax problem instance

Figure 9.9. Interval structures I1 and I2 for the problem of Table 9.2
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We denote σj , with j ∈ [1, n1], the sub-sequence of jobs located between the bases
bj and bj+1. Similarly, we denote σk, with k ∈ [n1 + 1, n1 + n2], the sub-sequence
of jobs located between the bases bk−1 and bk. Now, we focus on job sequences in the
form: b1 ≺ σ1 ≺ b2 ≺ σ2 ≺ · · · ≺ bn1 ≺ σn1 ≺ σn1+1 ≺ bn1+1 ≺ · · · ≺ σn1+n2 ≺
bn1+n2 , as illustrated in Figure 9.10.

Figure 9.10. General structure of a job sequence

The theorem below has been stated in [BRI 06]:

THEOREM 9.2.– Any job sequence such that:

1) the bases of I1 and I2 are sequenced in ascending order with respect to their
indexes;

2) any job j is sequenced inside any sub-sequence from σu(j) to σv(j) in any order;

is optimal.

Theorem 9.2 defines a sufficient partial order which characterizes a large set
Sopt of optimal job sequences. We recall that this set necessarily includes any
Johnson’s sequence. Without counting the number of possible permutation inside
each subsequence σi, the number of optimal sequences can be expressed by the
formula: card(Sopt) =

∏N
q=1(q + 1)nq where nq corresponds to the number of

intervals exactly belonging to q b-pyramids and N is the total number of b-pyramids.
In order to illustrate how impressive the number of characterized sequences can be,
let us consider a problem with 20 jobs such that m = 4, u(j) = v(j) ∀j ∈ J and
ni = 4. In this case, (4!)4 = 331776 optimal sequences are characterized!

Another interest of such an approach lies in the fact that the set Sopt is relatively
insensitive to processing time fluctuations. In other words, as with the approach
described for the single machine problem, even if processing times vary significantly,
the set Sopt may remains optimal. This is a nice property for designing robust
scheduling methods.

Let us turn back to the example of Table 9.2. Theorem 9.2 defines the possible job
assignments which are displayed in Figure 9.11. Because the job order inside every
subsequence σi is free, 13 optimal sequences are characterized (see Figure 9.12) as
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having a Cmax = 59. By comparison, let us note that there are only three Johnson’s
sequences that are optimal for this example.

Figure 9.11. Possible job assignments

Johnson’s sequences

Figure 9.12. Set of characterized optimal sequences

9.5.3. Future prospects

The problems considered in this section, while rather academic, shed light on
the advantages that the use of dominance or sufficient conditions can bring when
searching for optimal or near-optimal schedules. We also show how interval analysis
can be profitable for determining dominance conditions which characterize a large set
of dominant solutions having many interesting properties (insensitivity to problem
parameter fluctuations, known worst performance, known cardinality). These
properties are quite interesting for designing robust scheduling approaches since such
approaches often involve the need of a trade-off between performance and flexibility.
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Of course, the results presented in this section cannot be directly generalized to
more realistic scheduling problems. This is why the determination of more generic
dominance conditions, which can be used for instance in flow-shop or job-shop
environments, seems a promising research track. For this purpose, as suggested by
Cheng et al. [CHE 02], more sophisticated hypothesis frames have to be explored,
taking, for instance, the relative order of the processing times, the earliest starting
times and the latest finishing times of the activities all together into account.

9.6. Conclusion

Constraint-based approaches seem particularly promising with regard to robust
scheduling. Indeed, whatever the considered kind of condition (necessary, sufficient
or dominance conditions), the analysis of the constraints attached to a problem
make it possible to characterize a solution set with a known performance and a
known flexibility. These features are of interest, especially when such approaches
are used inside a decision-aided process. Moreover, these approaches are relatively
insensitive to problem parameter fluctuations, which is another advantage with regard
to the robust scheduling field. Indeed, considering approaches based on necessary
conditions of feasibility, it is possible to represent the decision variables as intervals
of values, each interval value having a uniform probability. Now, considering
approaches based on sufficient or dominance conditions such as those detailed in
this chapter, the insensitivity to parameter fluctuations is induced by the considered
hypothesis frames which only take the relative order of the data into account, and not
their exact values. We also highlight the interest of the interval structure notion which
has been widely used in this chapter.

We underline that the dominance conditions which have been detailed in this
chapter are weakly generic since they are specific to the considered scheduling
problems. An interesting approach will be to study dominance conditions in order
to enlarge their application frame to more complex problems. Another interesting
prospect will be to study how dominance and necessary conditions can be used
together in the same approach in order to take benefit from both techniques. For
instance, a dominant partial order can be used inside some propagation rules for
deducing that a set of variable instantiations is not dominant and can be forbidden,
which will cause some adjustments of variable domains.
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Chapter 10

Scheduling Operation Groups: A Multicriteria
Approach to Provide Sequential Flexibility

10.1. Introduction

In comparison with pure proactive approaches and pure reactive approaches, robust
scheduling literature lacks proactive-reactive scheduling approaches, even if – in
general – the latter appear to be more appropriate (see for instance [DAV 00, HER 05]
or [LAM 08]).

In addition, among the methods providing some off-line flexibility to scheduling
solutions in order to use this flexibility on-line, the majority only considers temporal
flexibility which is only the lowest degree of flexibility in scheduling (see section 1.4).
In particular, very few studies consider sequential flexibility. One reason for this is the
difficulty attached to the design of a method that would produce a set of solutions and
allow an evaluation of the worst schedule of this set without enumerating its elements.
As well as approaches described in Chapters 9 and 11 (see also [ALO 02, BRI 06,
BRI 07, ART 07]), the concept of groups of permutable operations depicted in this
chapter has this particularity.

We present in this chapter two robust-scheduling proactive-reactive approaches.
They are based on the concept of groups of permutable operations. The first method

Chapter written by Carl ESSWEIN, Jean-Charles BILLAUT and Christian ARTIGUES.
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described in section 10.3 is called ORABAID1. Section 10.4 describes a modification
of the proactive part of ORABAID called AMORFE2 and initially proposed in
[ESS 03a]. It has been applied to several scheduling problems and a summary of
these applications is given in section 10.5.

10.2. Groups of permutable operations

10.2.1. History, principles and definitions

The notion of groups of permutable operations was born 30 years ago at the
CNRS “LAAS” laboratory in Toulouse (France). It was proposed to represent a
particular class of schedule sets, within the development framework of a decision-aid
approach for real-time shop scheduling. Even if it was not explicitly qualified this
way, this method was nothing but a robust scheduling approach. Called ORABAID, it
is implemented in the software ORDOR ([ROU 95]) used by many French companies
and has the following two goals:

1) to propose, at every decision point, a set of actions compatible with the
constraints (including due date constraints if possible),

2) to update this set of actions, taking into account all the actual events and
decisions taken in real-time in the shop.

To reach these goals, the choice has been made to propose, instead of a single
reference schedule, a set of reference schedules, and then to use this set to have
several alternatives at every decision point. Obviously, any of the choices given should
lead to the execution of a schedule that is feasible, that is, that satisfies all the hard
constraints of the model, and acceptable, that is, that respects the due date as long as
it is possible. In other words, this approach is a proactive-reactive approach whose
proactive “module” characterizes a set of schedules (defines the set but does not
enumerate its elements) that are feasible and acceptable regarding the decision-maker
preferences.

Since this characterization cannot efficiently define the whole set of feasible and
acceptable schedules (see [ERS 76]), the development of ORABAID turns, beginning
with the work of Demmou in [DEM 77], to the search for a subset of admissible
schedules by means of sufficient conditions of admissibility. This gave birth to the

1. ORABAID is the French acronym for “Ordonnancement d’Atelier Basé sur l’Aide à la
Décision”, that is, “shop scheduling based on decision aid”.
2. AMORFE is the French acronym for “Approche Multicritère pour l’Ordonnancement
Flexible”, that is, “multicriteria approach for flexible scheduling”.
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concept permutable operation groups: the definition of such sufficient conditions is
done by the definition of a sequence of groups of permutable operations on each
resource.

DEFINITION 10.1.– A group of permutable operations is a set of operations
consecutively processed on the same machine, in an order that is not fixed in advance.

In what follows, as long as there is no ambiguity, a group of permutable
operations is simply called a group. A group schedule is then defined by a sequence
of groups on each machine. A group schedule is called feasible if any permutation of
operations inside each group leads to a schedule that satisfies the problem constraints.
As a consequence, any feasible group schedule characterizes, without our needing to
enumerate them, a whole set of feasible schedules, defined by all the combinations of
permutable operations inside each group.

DEFINITION 10.2.– The quality of a group schedule is the quality of the worst
semi-active schedule it characterizes.

This choice has been made for several reasons, the most important being that
considering the worst case, which allows us to provide a performance guarantee for
the group schedule.

A great advantage of the use of group schedules is that this particular class of set
of schedules is such that “the degrees of freedom, related to the processing sequences
on the machines, are brought to light in a particularly pleasant way” [THO 80].

Through many studies (including [ERS 76, DEM 77, THO 80, LEG 89, BIL 93,
ART 97]), the ORABAID approach has been extended step by step. It is now able
to take into account a large set of constraint types. For instance, it can handle
scheduling problems with both disjunctive and cumulative resources, non-linear
routes, generalized precedence constraints, multi-resource operations, setup-times
etc.

In the rest of this chapter, for ease of reading, we consider a simplified scheduling
problem, that is, with only disjunctive resources, linear routes and no multi-resource
operation. Unless specified differently we consider the traditional job-shop scheduling
problem as defined in [BRU 07]. The ORABAID and AMORFE approaches described
in sections 10.3 and 10.4 can be extended to much more general problems.

In order to illustrate these definitions, let us consider the 3-machine job-shop
instance defined in Table 10.1. j refers to the job and i refers to the position of the
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j 1 2 3

i 1 2 3 1 2 3 1 2 3

Mj,i 1 2 3 2 3 1 3 1 2

pj,i 3 3 3 4 3 1 2 2 2

Table 10.1. A three-machine job-shop instance

operation in the route. Figure 10.1(a) represents a feasible group schedule for this
instance. Only the job numbers are given since we can easily check the routes. This
group schedule is made up of 7 groups: two two-operation groups and five groups with
a single operation.

As long as we only consider semi-active schedules, choosing a particular
sequence of operations inside each group leads to one of the four schedules of Figure
10.1(b). The group schedule has a Cmax of 17 which is given by the fourth depicted
characterized schedule.

10.2.2. Representation and evaluation

To use the concept of group schedule, it is necessary to find a way to evaluate such
a structure. More precisely, given a group schedule, we should be able to guarantee
it only characterizes schedules whose quality is over a given threshold. In brief, the
quality of the worst characterized schedule should be efficiently evaluable. The set
of semi-active schedules that a group schedule implicitly defines is such that this
evaluation is computable in polynomial time. In our opinion, this is another great
advantage of representing a set of schedules by means of a group schedule.

To evaluate this “worst-case quality”, each operation Oj,i is associated with a
worst-case latest completion time, denoted by γj,i. This completion time γj,i is such
that, whatever the sequencing choices made in each groups, it is guaranteed that
Cj,i ≤ γj,i, assuming – of course – that we only consider semi-active schedules. The
computation of the different γj,i requires the computation of all the worst-case earliest
start times, denoted by μj,i. In what follows, as long as there is no ambiguity, we omit
“worst-case” when talking about worst-case earliest start time and/or worst-case latest
completion times.
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(a) A group schedule. . .

(b). . . and the semi-active schedules it characterizes.

Figure 10.1. A feasible group schedule characterizes
several feasible semi-active schedules
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10.2.2.1. Earliest start time computation

The earliest start-time μj,i of operation Oj,i is defined as the smallest start time
compatible with the whole set of permutable operations within each group. We can
easily notice that only the permutations inside groups including operations preceding
Oj,i and linked to Oj,i by a constraint, are involved in the computation of μj,i. The
constraints implicated are of two kinds: the routes and those related to disjunctive use
of resources. It follows that:

– Oj,i cannot start before the completion of operation Oj,i−1 which is inside a
group that may contain other operations,

– Oj,i cannot start before the completion of all the operations inside the group
processed just before the group of Oj,i on its resource.

This simple remark enables the identification of the set of constraints involved in
the computation of μj,i.

For the first case, operation Oj,i−1 is placed in the worst position regarding the
consequences on operation Oj,i. This worst case happens when Oj,i−1 is processed in
the last position in his group and when the first operation of this group is the one with
the greatest earliest start time. We then have two sub-cases depending on whether
or not Oj,i−1 has the greatest earliest start time of the group. These sub-cases are
illustrated in Figure 10.2 where G(j, i− 1) denotes the operation group Oj,i−1.

Figure 10.2. Worst case routing constraints
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Thus, the routing constraint can be expressed in the following way:

∀(j, i) ∈ [1, . . . , n]× [2, . . . , m],

(A) μj,i ≥ max
Ou,v∈G(j,i−1)\Oj,i−1

{μu,v}+
∑

Ou,v∈G(j,i−1)

pu,v

(B) and μj,i ≥ μj,i−1 + pj,i−1

The second sub-case (line (B)) does not consider group considerations: it is
the simple expression of classical routing constraints in (no-group) scheduling.
Conversely, the first sub-case involves all the operations in the group including
operation Oj,i−1. The related constraints are referred to as group constraints.

Let us now consider resource constraints. We use Mj,i to denote the machine used
to process operation Oj,i, and G

Mj,i

k the group in kth position on machine Mj,i. The
fact that Oj,i could not be processed until all the operations in the group preceding
G(j, i) are finished can be formalized in the following way:

∀(j, i) ∈ [1, . . . , n]× [1, . . . , m], with G(j, i) = G
Mj,i

k ,

μj,i ≥ max
Ou,v∈G

Mj,i
k−1

{
μu,v

}
+

∑
Ou,v∈G

Mj,i
k−1

pu,v

In the particular case of the the first operation group on a resource, the resource
constraints are simply given by:

μj,i ≥ 0.

To make the computations easier, the choice has been made to represent a group
schedule by means of an operation-on-node graph ([THO 80]). This representation is
not given here but the interested reader could find more details about it in [THO 80,
LEG 89] or [BIL 93]. Let us just indicate that operations (including a few dummy
operations) are represented by nodes and that each type of constraint is represented by
a set of arcs. Computing a longest path in this graph gives the earliest start time of all
the operations and the earliest completion time of all the jobs in polynomial time.

Another graph definition, presented in [ESQ 95] and applied to groups in
[ART 05], allows this computation. It has the advantage of also computing the
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worst-case earliest completion times of operations. It is worth noticing that defining
the worst-case earliest completion time of an operation from the worst-case start
time is not obvious due to the fact that the worst-case for the completion time of an
operation involves all the permutation of the operations inside the group it belongs to,
which is not the case for the worst-case start time. So the authors propose some kind
of generalization of the previous graph representation which is done by defining two
nodes for each operation as well as some arcs to model the three sets of constraints.

10.2.2.2. Latest completion time computation

Similarly, such an enumeration of constraint types allows the computation of the
latest completion times. However, to give a sense to the qualifier “latest”, we should
previously define upper bounds for the completion time of jobs. We consider that each
job has a due date dj . As defined in the introduction, a schedule is called feasible if
it respects all constraints except the due date. A schedule is acceptable if it is feasible
and, in addition, satisfies the due dates. By extension a schedule set is feasible if all its
represented schedules are feasible and it is admissible if all its represented schedules
are admissible. The idea behind the definition of the upper bound limit of the job
completion times is to refuse to increase lateness of jobs already late, and to allow
non-late jobs to complete at their due date. Thus, for non-late jobs the upper bound is
fixed to their due date, when for the late jobs it is fixed to the earliest completion time
found previously.

Symmetrically with what is done when computing the earliest start time, the only
operations involved in computing the latest completion time γj,i are those following
Oj,i. Yet, the method proposed in [THO 80], [LEG 89] and [BIL 93] leads to the
computation of the latest completion time of each job, denoted by γj for any j, in
polynomial time.

10.2.2.3. Quality of a group schedule

So given a group schedule, the previous technique allows us to compute in
polynomial time the worst case completion time of every job, that is, the worst value
that could take each Cj from among the set of characterized schedules, whatever
the size of this set. It is important to notice that this evaluation is tight and that the
technique also makes it possible to determine the schedule with this value of Cj . As a
consequence, the following result about the evaluation of any regular minmax criteria
Z can be announced. The proof can be found in [ESS 03a].
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THEOREM 10.1.– Given a group schedule OG and a regular criteria Z =
maxj=1,...,n fj(Cj), the exact evaluation of the worst schedule characterized by OG

can be performed in polynomial time.

So, even if the number of characterized schedules is arbitrarily high, the exact
evaluation of the group schedule remains efficient.

Unfortunately, this nice property does not hold for minsum criteria. Indeed, for
any minsum criteria Z =

∑
j=1,...,n fj(Cj), we only obtain an upper bound of the

evaluation since the worst case for job k1 may be different from the worst case for job
k2.

A proactive-reactive approach based on group scheduling still remains of interest
for minsum criteria. We now simply require a group schedule evaluation method.
Interested researchers may then either develop a dedicated method or take one from
the literature. For instance, the evaluation techniques developed by Aloulou and
Portmann (see Chapter 11) and dealing with criteria maximization problems could be
applied here, since a group schedule is nothing but a particular partial order between
operations.

10.3. The ORABAID approach

10.3.1. The proactive phase: searching for a feasible and acceptable group schedule

The first of the two phases of a robust scheduling approach based on group
schedules consists of building off-line a group schedule that will be on-line the
reference solution for the second phase. The method developed for building such a
group schedule in the ORABAID approach is split into three consecutive steps:

– search for a feasible group schedule,

– attempt to make this schedule acceptable,

– attempt to increase its flexibility.

First, some groups are built and sequenced on the resources by means of a simple
greedy procedure. Then, if the group schedule is not acceptable, two techniques are
combined and applied iteratively to shorten the shortest paths associated with late jobs:
changing the resource allocation of a critical operation, and splitting a critical group
into two consecutive groups. Should there remain late jobs after having applied each
of these techniques, the due date of the latest job would be artificially reduced to its
earliest computed completion time and the procedure iterated once again; that is, until
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the group schedule is completely acceptable (with some potential modified due dates).
Finally, the third step consists of making some merges of consecutive groups without
violating admissibility or acceptability constraints. This last step aims at increasing
the number of operations per group and thus the sequential flexibility available for the
reactive phase.

The detailed description of this three-step approach can be found in [THO 80]. It
has then been successively extended to more general problems in [LEG 89, BIL 93,
ART 97]. We present here its main ideas.

10.3.1.1. Construction of a feasible group schedule

Except for the resource assignment problem which we omit here to ease
presentation, two issues have been generally treated, in terms of obtaining a feasible
group schedule: partition the operations on each resource inside groups, and sequence
the groups on each resource. These two connected problems are solved together by
means of a simple greedy procedure:

At each iteration of the procedure:

1) The set of candidate operations is defined as the set of operations whose
predecessors are already scheduled.

2) A resource is selected among the resources where candidate operations are
assigned to. In order to favor active schedule generation3, the selected resource is
the one that will advance the candidate operation completing first if selected.

3) Concerning the use of this resource, we have to select one operation among
candidate operations to be assigned to it. This is done by means of a priority rule
trying to respect due dates as much as possible: slacks of candidate operations are
computed and the selected operation is the one with the lowest slack over remaining
processing time ratio (SLACK/RPT rule).

4) Finally, if this does not violate the feasibility constraints of the partial group
sequence, the selected operation is added to the preceding group on the resource it is
assigned to.

3. Because of permutability conditions, the construction of active schedules is neither ensured
nor necessarily desirable in the strict sense.
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10.3.1.2. Searching for acceptability of the group schedule

Once a feasible group schedule is obtained from the previous step, its acceptability
for the decision-maker is not guaranteed: some jobs may be late in at least one
characterized schedule. The aim of the second step is to reduce the length of the
critical paths associated with these late jobs.

The proposed procedure identifies critical groups and iteratively realizes two
modifications on them: modifications of operations assignments, and group splits.
The first category consists of calling into question the decision of assigning an
operation to a resource (impossible in the job-shop case) and assigning it to another,
trying to insert it in another existing group. The second kind consists of splitting
a critical group into two consecutive groups still processed on the same resource.
Doing this ensures that the set of characterized schedules is modified and the
interested reader can find in [LEG 89] proofs that the detailed rules used ensure that
the obtained group schedule is closer to acceptability. These two techniques are
applied successively while acceptability is not reached while there remain untried
modifications.

10.3.1.3. Increasing the group schedule flexibility

In the third and final step of the proactive phase of the method described above we
try to decrease the total number of groups and to provide the maximum of flexibility
for the reactive phase. This is done by merging two consecutive groups. Some rules
can be defined (see [THO 80]) to establish whether merging two consecutive groups
can be done without modifying the feasibility of the group schedule.

At the end of the three steps that constitute the proactive phase of the method, a
group schedule is obtained. The procedure is such that it builds a group schedule that
is feasible (all the characterized schedules satisfy the problem constraints) and tends
to be acceptable (due dates are respected as much as possible).

10.3.2. The reactive phase: real-time decision aid

The reactive phase of the global approach corresponds to the actual execution
of the group schedule that has been obtained. It is managed by using an interactive
decision support system (described in [BIL 93, BIL 96] or [ART 08]) that works
as follows:

– the state of the workshop is characterized by the state of the resources and of the
operations. This state is regularly updated and is assumed to be perfectly known,

– the state modifications are due to events and decisions,
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– decision making is based on the group schedule – which is updated according to
the decisions – and on the decision support system.

The decision aid is based on the definition of the sequential slack. The sequential
slack of operation Oj,i, denoted by ss(j, i), is equal to the minimum between the
proper slack and the group slack defined as follows:

ss(j, i) = min
(

γj,i − pj,i − μj,i; min
Ou,v∈G(j,i)\Oj,i

γu,v −
∑

Ou,v∈G(j,i)

pu,v − μj,i

)

The sequential slack of an operation corresponds to the maximum increase of its
starting time without modifying the group schedule feasibility. It constitutes a good
measure for the feasibility of a group schedule. The sequential slacks are permanently
updated for all the operations that have not been started.

To decide which operation of a group should be started, the decision aid uses these
indicators as follows: the best choice of an operation inside a group is the one with the
maximum sequential slack [THO 80]. This decision allows us to increase the slacks
of the other operations of the group, which leads to a better situation.

Of course, the decision maker can take another decision. He has the ability to
simluate a decision and seeing the consequences of this decision. The decision maker
can then validate this decision or not.

10.3.3. Some conclusions about ORABAID

The interest of this method lies in the introduction of the concept of permutable
operations associated with an efficient method for evaluating the worst schedule, and
in the definition of the sequential slack, making it possible to preserve flexibility and
feasibility in real time. The value of the approach is demonstrated by its integration in
the ORDOR software widely used by French companies.

However, concerning the evaluation of the best characterized solution or about the
quality control of the worst characterized solution and of the flexibility proposed to the
decision maker, this approach only give partial answers. The objective of the AMORFE

method is to give a more satisfactory answer to these questions.

10.4. AMORFE, a multicriteria approach

In this section, we only consider the off-line problem of constructing a group
sequence. We explain why this problem can be approached from a multicriteria
perspective and we propose a new resolution method called AMORFE.
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10.4.1. Flexibility evaluation of a group schedule

The slacks defined in ORABAID (sequential slack, proper slack, group slack)
measure the temporal flexibility associated with the operations. Here we propose to
give an evaluation of the sequential flexibility and in the following, flexibility will
implicitly concern sequential flexibility.

The flexibility of a group schedule is related to the total number of groups,
denoted by #Gps. Indeed, if the number of groups is small, it means that operations
are gathered and thus that the number of characterized sequences is high and that
the solution is more flexible. Thus, maximizing the flexibility is closely related to
minimizing the number of groups.

As an illustration, let us consider the example of Figure 10.3 for a two-machine
job-shop problem. The first group schedule contains eight groups and characterizes
four semi-active schedules. The second schedule contains four groups and
characterizes 144 semi-active schedules.

Figure 10.3. The number of groups making it possible to determine
the sequential flexibility of a group sequence

It is clear that the number of groups is not systematically related to the number
of characterized sequences. For instance, two groups each containing n operations
characterize less semi-active schedules than one group with one operation plus a
second group with 2n−1 operations. Thus, the number of groups is an approximation
of the number of characterized sequences, but this objective has some merits: the
measure #Gps can take a polynomial number of different values (at most one group
per operation), which is not the case for the number of characterized semi-active
schedules.
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We propose minimizing the number of groups in order to maximizing the
flexibility of a group schedule, denoted by φ. The relation between the two measures
is the following:

φ =
NbOp−#Gps

NbOp−m

where NbOp is the total number of operations to schedule and m the number of
machines.

φ represents the “grouping rate” of the operations in the group schedule: the less
flexible case corresponds to the case where each group contains exactly one operation
(no flexibility). In this case, #Gps = NbOp and thus φ = 0. Conversely, when there
is one group per machine – which is possible for a flow-shop for instance – we have
#Gps = m and then φ = 100%.

In the example of Figure 10.3, the first group schedule has a flexibility equal to
φ = 2/8 = 25%, whereas the flexibility of the second group schedule is equal to
φ = 6/8 = 75%.

Note that in general for the job-shop problem, the minimum number of groups
is strictly greater than m, because of the routing constraints making one group per
machine impossible. Thus, it is generally impossible to obtain a flexibility of 100%.
Of course, this comment is invalid for flow-shop or open shop configurations.

10.4.2. Evaluation of the quality of a group schedule

Remember the definition of the quality of a group schedule (see definition 10.2).
The characterization of a solution set by a group schedule leads to the problem of
defining the quality of this solution set. We denote by Z the cost of minimizing one
schedule. The group schedule, denoted by GS, is characterized by a finite set of
values: at most the number of semi-active characterized schedules (several schedules
may have the same value of criterion Z). Because there are no hypotheses about
uncertainties and because they are not modeled by random variables, the mean
value is not considered for the evaluation process of the group schedule. However,
two other significant values can be used: the smallest – which corresponds to the
best characterized solution – and the biggest – which corresponds to the worst
characterized solution – denoted by Zbest and Zworst. We say that Zbest is the quality
of the group schedule in the best case and Zworst to the quality in the worst case.
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The quality in the worst case is the one that is optimized by the ORABAID

approach. This makes it possible to provide a solution set for which a performance
is guaranteed and a lot of users say that this approach is very useful for the decision
maker who prefers a set of good solutions instead of the best but unique and
non-robust solution. We agree with this remark and this is the reason why the quality
of the group sequence is defined by the quality in the worst case.

However, we believe that two other measures have to be taken into account. First,
we believe that the optimization process has to consider the flexibility of the proposed
solution. Second, we believe that considering the quality in the best case during the
construction of a group schedule allows more information to be given to the decision
maker, thereby improving the proposed solution.

10.4.3. Some considerations about the objective function definition

If the three measures were not conflicting, optimizing one will also optimize the
others. However, flexibility and quality are in the worst case conflicting measures, as
illustrated in Figure 10.4, where it is assumed that Z = Cmax.

Figure 10.4. Conflicting aspects of flexibility and quality in the worst case

Three group schedules are represented in Figure 10.4. The first is a schedule
of operations without groups that can be considered as a group schedule with
#Gps = 10. Its flexibility is equal to 0% and the worst Cmax (the only one) is
equal to 14. The second group schedule contains #Gps = 7 groups. Its flexibility is
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φ = 3/8 = 37.5% and its worst case quality is equal to Cmax = 17. The last group
schedule contains #Gps = 5 groups. Its flexibility is equal to φ = 62.5% and the
worst possible makespan is equal to 20. We easily understand that the greater the
flexibility, the greater the number of characterized schedules and the worst the quality
of the worst schedule.

Thus, we have to consider at least two conflicting criteria, φ and Zworst, which
justifies a multicriteria approach. We propose to use the ε-constraint approach.
Remember that with this approach, all the criteria except one are bounded and the
last is optimized. We have chosen this approach for several reasons related to the
properties of the approach. We refer to [T’k 06] for a detailed description of the
approach. It allows a clear definition of the objective function (better than a linear
combination of criteria) and the method can easily be implemented in an interactive
approach [STE 86]. At each step of such an interactive approach, the decision-maker
can modify the bounds on the criteria and drive the solving method in the direction of
its preferred compromise solution.

We will now present some algorithms that could be used as the basics of such an
interactive method.

We consider three criteria to optimize: Zbest, Zworst and #Gps and each time the
resolution method is used in the interactive method, one criterion has to be minimized,
whereas the two other criteria are bounded. The role of criterion Zbest is not crucial
since this criterion is not in conflict with Zworst. This is the reason why we consider
in the following the minimization of #Gps subject to a bound on Zworst and the
minimization of Zworst subject to a bound on #Gps.

It is easier for the decision maker to indicate the worst case quality he can accept
rather than the flexibility, so we consider in the following the problem of minimizing
the number of groups subject to the respect of a bound on the quality of the worst
characterized schedule. Such a problem is illustrated in Figure 10.5.

In the following, if (P ) denotes a scheduling problem, (PG) will denote the same
problem as (P ) with the additional constraint that we build group sequences instead
of operation sequences. The objective function is denoted by ε(#Gps/Z), which
corresponds to the minimization of #Gps subject to a bound for the worst value of
Z among the characterized sequences. In the three-field notation (see Chapter 1) we
use gps for the constraint to build groups of permutable operations. If problem P is
denoted by α|β|γ, problem (PG) is denoted by α|β, gps|ε(#Gps/γ).
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Figure 10.5. ε-constraint approach: maximization of the flexibility subject
to a given guarantee for the quality in the worst case

Zbest may also play an important role during the construction of a group sequence.
The way of considering this criterion is discussed in the next section.

10.4.4. Quality guarantee in the best case

10.4.4.1. Advantages

The quality evaluation of a set of semi-active schedules in the worst case is
a difficult problem if the objective function is arbitrary. However, for any regular
criterion of type minmax, it is possible with a group sequence to evaluate exactly
and in polynomial time the worst characterized solution. However, this is not possible
for the best characterized solution. Indeed, such an evaluation is equivalent to
minimizing the objective function, with the additional constraints imposed by the
group sequences, which is an NP-hard problem. Thus, determining Zbest is generally
impossible in polynomial time.

A solution is to build a group schedule for which the quality in the best case is
greater than a given bound Z0. For this, we do not need to know the best characterized
schedule: having a sufficiently good schedule may be sufficient.

10.4.4.2. Respect for quality in the best case

In order to respect the quality in the best case of a group schedule, we propose to
solve the group scheduling problem with fixed sequences. The problem is defined as
follows.
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Let (P ) be a scheduling problem and (PG) the corresponding group scheduling
problem, as defined in section 10.4.3.

DEFINITION 10.3.– Let us consider problem (P ) where the sequences on each
machine are fixed. We denote by σi the sequence on machine Mi, i = 1, . . . , m. The
group scheduling problem with fixed sequences associated with problem (P ), is
the problem (PG) with the additional constraint to characterize the sequences σi,
∀i = 1, . . . , m.

To ensure that the sequences σi are characterized by the group schedule, two
operations Oj,i and Ou,v can be assigned to two successive groups G�

k and G�
k+1 only

if Oj,i precedes Ou,v in the fixed sequence corresponding to the machine. In other
words, two arbitrary operations performed by a machine M� can be assigned to the
same group only if all the operations between them in sequence σ� are also assigned
to the same group.

The value of this restriction is that it provides a guarantee in the best case. Indeed,
suppose we have a good schedule s, solution of the scheduling problem without group.
The group scheduling problem with fixed sequences defined by schedule s insure that
the best characterized solution will be at least as good as solution s, because s belongs
to the set of characterized sequences.

Thus, we propose to build group schedules by considering fixed sequences,
where the sequences are given by solutions of the scheduling problem without group
consideration. The AMORFE approach proposed in [ESS 03a] for the determination of
a group schedule can be decomposed into two phases:

1) compute a solution to problem (P ), without group consideration,

2) group the operations as much as possible, so that the initial solution belongs to
the set of characterized solutions (fixed sequences) and so that a given bound on the
worst characterized solution is respected.

This procedure allows us to build a group sequence that is as flexible as possible,
that respects a bound on the worst characterized schedule, and that contains a known
(good) sequence, i.e. that respects a given quality in the best case.

10.5. Application to several scheduling problems

The AMORFE method has been applied to some traditional scheduling problems:
several single machine problems, two-machine flow-shop, job-shop and open shop



Scheduling Operation Groups 245

problems and the more general m-machine job-shop scheduling problem, with the
makespan criterion. We now give some results for the two-machine problems and for
the job-shop problem.

In a study concerning two-machine shop scheduling problems (see [ESS 05]),
group schedules with both a good flexibility and a good quality can be obtained in
polynomial time, even if these problems are NP-hard. The open shop problem is
the simpler problem to solve since it is always possible to find a group schedule
with optimal quality and at most three groups per machine. This allows us to build
group schedules with a huge flexibility. For the two-machine job-shop problem, some
particular cases can be solved in linear computation time and the general case study
shows that the most difficult case corresponds to the two-machine flow-shop case.
However, even if this problem is strongly NP-hard, a huge amount of flexibility can
be obtained together with an optimal quality. In other words, for the two-machine
flow-shop, a huge number of optimal solutions can be characterized by using group
schedules. As an illustration, for instances with 100 jobs and processing times
randomly generated between 1 and 100, an algorithm with complexity O(n log n)
can generate group schedules with an average flexibility of 94.8%, which corresponds
to the characterization of more than 5× 10167 optimal schedules.

The results obtained by the AMORFE method applied to the job-shop problem are
less extreme. However, some experiments have been made on classical benchmark
instances. The results show that it is possible to provide some flexibility together with
a high quality and that more flexibility can be obtained with a slight reduction of the
quality. “Squared” instances (for which the number of machines equals the number of
jobs) are the most difficult ones. For these instances, the flexibility provided without
reduction of the quality is small (8 to 15%) whereas for non-squared instances the
flexibility comes to 50 to 60%.

The interested reader can find in [ART 05, ESS 03b, ESS 03a] more details
concerning the algorithms that implement the AMORFE method, as well as the
associated computational results.

To conclude this section, remember that for each problem mentioned before,
the proposed algorithms are only one possible way to apply the AMORFE method.
Indeed, this method defines a general framework and it is possible to improve the
performances obtained for these problems, and particularly for the m-machine
job-shop problem.
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10.6. Conclusion

We have presented in this chapter two proactive-reactive methods for robust
scheduling based on the use of sequential flexibility. The first method that used
group schedules is the ORABAID method. The AMORFE method has recently been
developed and proposes a modification in the proactive part of ORABAID. This new
proactive phase uses a new measure of flexibility and improves the definition of
group schedule quality. In the AMORFE method, the notions of flexibility and quality
are integrated in a multicriteria approach where the flexibility is maximized subject to
a bound for the quality. This approach has the advantage of guaranteeing the quality
of the best and the worst characterized schedule, by using the solution of a classical
scheduling problem.

Thus, a clear advantage of this approach, from our point of view, is that this
proactive-reactive method for solving the scheduling problem under uncertainties,
uses traditional scheduling resolution algorithms. In other words, this approach is
able to integrate the most recent resolution algorithms – as well as future algorithm
discoveries – that have been tested for scheduling problems without uncertainties.
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Chapter 11

A Flexible Proactive-Reactive Approach:
The Case of an Assembly Workshop

11.1. Context

In this chapter, we focus on logistic chain problems encountered in the European
Growth Project V-chain GRD1-2000-25881. Our concern is for workshop level
interactions between downstream and upstream workshops from the same company
and with external suppliers, customers and partners in the organization (see Figure
11.1). In this workshop, semi-finished and finished products are produced and
then delivered to downstream workshops and to external customers. A penalty is
associated with each delay in relation to delivery dates desired by the internal and
external customers. Several components are needed to make the products: main
components, delivered by upstream workshops, and intermediate components,
purchased from suppliers. After acquisition, intermediate components are stored in
the workshop until they get used. We presume that there is a cost proportional to the
time these components remain in inventory.

Our objective is to propose a scheduling approach which considers main
component delivery dates as communicated by upstream workshops and
semi-finished and finished product delivery dates desired by downstream workshops
and by external customers. Based on job start dates given by the computed schedule,
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Figure 11.1. Context of the study

procurement dates of intermediate components are planned and new due dates can be
negotiated with downstream workshops and customers to ensure a safety margin. A
failure to respect these new dates is also penalized.

Besides the possible existence of disruptions in the assembly workshop (machine
failure, increases in job processing time, etc.), the workshop’s heavy dependence
on its partners increases the potential of uncertainty with arrival dates of main and
intermediate components. This makes workshop scheduling especially tricky since
activities of the downstream workshops may be planned according to calculated
scheduling. Consequently, it is important to plan for flexibility in the solutions
proposed to the workshop in order to increase system robustness.

In this chapter, we consider that the assembly workshop is only made up of a
single machine. We present a proactive-reactive approach for workshop control in
the presence of disruptions liable to occur in the shop or with partners. The key
point in this approach is to consider uncertainty in a proactive way (off-line). This
is done by the introduction of flexibility in job sequencing and flexibility in time in
the solution calculated by the proactive algorithm. In real time, a reactive algorithm
knowingly uses the flexibility introduced and proposes sequencing actions to control
the workshop. Note that the storage cost of intermediate components is not used
to implement our proactive-reactive approach; it is used instead to compare it to a
traditional predictive-reactive approach.

The global process that we propose for designing our control model has two
phases: definition and implementation. In the model definition phase, we define the
scheduling problem involved and its environment, what we call the solution to this
problem, as well as the different concepts used to measure the quality of a solution.
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In the implementation phase, we design and implement two algorithms: a proactive
algorithm and a reactive algorithm.

11.2. Definition of the control model

11.2.1. Definition of the problem and its environment

The problem is to schedule on one machine a set of jobs N = {T1, ..., Tn}
(representing finished and semi-finished products). Each job Tj ∈ N is characterized
by a processing time pj > 0, an earliest start date rj ≥ 0 (procurement date of
main components), a desired due date dj ≥ 0 (desired by downstream workshops
and customers) and a weight wj > 0 indicating its relative importance. Imperative
precedence constraints can exist between jobs. The workshop is subject to disruptions
caused by machine failures and to late arrivals of main and/or intermediate
components. The disruption characteristics, such as their frequency and time, are not
known before execution. Preemption of a job is only authorized if the machine breaks
down. In this case, we consider that this job must be restarted after the failure without
any modification to its characteristics.

We consider two objective functions to minimize:

– the weighted sum of absolute tardiness T̄w =
∑

1≤j≤n wj max{0, Cj − dj},
where Cj and max{0, Cj − dj} are the completion time and absolute tardiness of job
j respectively,

– the makespan Cmax = max1≤j≤n Cj .

11.2.2. Definition of a solution to the problem

As with the approaches proposed in Chapters 9 and 10, a solution to the problem
is not a specific schedule but a set of schedules. The main difference is the structure
representing a solution to the problem. Esswein et al. define a solution by an
ordered group assignment defining for each machine a sequence of groups where
the operations within a group are totally permutable. Any semi-active schedule
satisfying the constraints imposed by the sequence of groups is presumed eligible or
feasible (see section 10.2 in Chapter 10 for the definition of feasibility). We propose
two new characteristics to define a solution to the problem involved. Our goal is
to generate solutions with more flexibility or better performance a priori (and, we
hope, a posteriori) w.r.t. to the solutions given by Esswein et al. In order to do this, a
solution given by our approach is characterized by a structure defined by the type of
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schedules considered: semi-active, active or non-delay (see section 1.1.3 in Chapter 1
for definitions), and by a partial order between jobs. Contrary to Esswein et al. and
with the objective of obtaining better performances in the worst case a priori, we will
not only work with semi-active schedules, but we can constrain the space of flexible
solutions to active and even non-delay schedules. The partial order must fulfill the
constraints of the problem. It is chosen for offering a compromise between flexibility
and performance. Note that any ordered group assignment is a partial order between
operations, whereas the opposite is not true.

Generally speaking, proposing several high performance schedules for a workshop
is more interesting than proposing just one. In fact, the decision-maker can choose
among proposed schedules a schedule which will best satisfy his preferences or which
responds the best to non-modeled constraints. It is even more interesting if certain
proposed schedules have common characteristics making it possible to switch from
one schedule to another easily. In this case, the decider can delay the choice of which
schedule to execute. Only in real time will he have to gradually make this decision
considering the state of the workshop.

The structure defined by the pair (partial order of jobs, type of schedules) offers
several schedules with common precedence properties. In order to go from one
schedule to another or from one subset of schedules to another subset, we only need
to arbitrate one of several disjunctive arcs so as not to create cycles in the resulting
graph and to satisfy the constraints imposed by the type of schedules. A partial order
is a natural structure which integrates well in constructive resolution methods. In
these methods, each time one or more arcs are added, the transitive graph is retained
for easy prevention of cycle formation.

11.2.3. Definition of the solution quality

11.2.3.1. Preliminary example

In Figure 11.2, we consider a scheduling problem with four jobs and a partial order
in which the only restrictions are that job T1 precedes jobs T3 and T4 and that job T2

precedes T4. This partial order represents two non-delay schedules S1 and S2, three
active schedules S1, S2 and S3, all of which are of course semi-active (see Figure
11.3). Criteria values are also given in the same diagram.

This example shows that a priori quality of a partial order depends on the type of
schedules chosen. In fact, considering semi-active schedules offers more represented
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schedules than with other types of schedules thus improving flexibility of the solution.
However, the worst performance of represented schedules is not as good as for active
and non-delay schedules (see performances of schedules S4 and S5).

For the remainder of this chapter, we consider semi-active scheduling and we
define the indicators used to measure the a priori quality of a solution. Results
involving active and non-delay schedules can be found [ALO 07].

11.2.3.2. Performance of a solution

11.2.3.2.1. Definition of performance measures

A priori performance of a solution S depends on the performance of oS schedules
that it represents. In order for S to be chosen, all oS schedules must have acceptable
performance in relation to the optimal performance obtained by solving the original
problem without partial order added for criterion Cmax(C∗

max) and criterion T̄w(T̄ ∗
w).
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Since the number of schedules oS represented can be quite large, it is natural to
only consider the most representative of these schedules. To evaluate solution S, we
prefer to confine ourselves to schedules providing the best and worst performances
for both criteria Cmax and T̄w. The best and worst performances are lower and upper
bounds over criteria values following the partial order. They are noted as bCmax for
the best and wCmax for the worst makespan, and bT̄w for the best and wT̄w for the
worst weighted sum of tardiness.

We consider that a solution S is preferred if values bCmax(S) and wCmax(S)
(resp. bT̄w(S) and wT̄w(S)) are close to C∗

max (resp. to T̄ ∗
w). The following measure

D(S) is used to aggregate the four measures:

D(S) = αD1(S) + (1− α)D2(S), α ∈ [0, 1] (11.1)

D1(S) = β
bCmax(S)− C∗

max

C∗
max

+ (1− β)
wCmax(S)− C∗

max

C∗
max

, β ∈ [0, 1] (11.2)

D2(S) = γ
bT̄w(S)− T̄ ∗

w

T̄ ∗
w + 1

+ (1− γ)
wT̄w(S)− T̄ ∗

w

T̄ ∗
w + 1

, γ ∈ [0, 1] (11.3)

S is all the more preferable as D(S) is small.

11.2.3.2.2. Calculation of performance measures

Given a solution S, we must be able to calculate the four values bCmax(S),
wCmax(S), bT̄w(S) and wT̄w(S) by solving the corresponding minimization and
maximization problems. Because of [LAW 73], we know that the minimization
problem of makespan, noted as 1|prec, rj |Cmax, can be resolved in O(n2) times. The
minimization problem of the weighted sum of tardiness, noted as 1|prec, rj |T̄w, is
NP-hard in the strong sense [LAW 93]. For this problem, we implemented a genetic
algorithm and compared it to priority rule-based heuristics such as ATC, X-RM and
KZRM [MOR 93]. Results have shown that the genetic algorithm gives better results
than the other algorithms but requires more calculation time to converge [ALO 01].

To calculate the worst makespan and worst weighted sum of tardiness, we have
introduced in [ALO 04] new optimization problems. These problems are noted as
1(sa)|prec, rj |(F → max), where F is the objective function to maximize and the sa

notation means that semi-active schedules are considered. We showed that problem
1(sa)|prec, rj |(Cmax → max) can be resolved in O(n2) times and that problem
1(sa)|prec, rj |(T̄w → max) is NP-hard in the strong sense. We developed different
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heuristics based on genetic algorithms and priority rule-based heuristics. We obtained
the same conclusions as for minimization problems [ALO 01].

In conclusion, given a solution, we use two polynomial time algorithms to
calculate the exact values of the best and worst total time and heuristics to calculate
approximate values of the best and worst weighted sum of tardiness.

11.2.3.3. Flexibility of a solution

The solutions that we propose a priori offer two types of flexibility, also called
static flexibility: flexibility over sequences and flexibility over time. In what follows,
we present the indicators used to measure the static flexibility of a solution.

11.2.3.3.1. Flexibility over sequences

Having different schedules enables the decision maker to have several alternatives
for controlling the workshop in real time. Each time the decider must place a job, he
could, if the solution allows it, select the job which most aptly fulfills his preferences
or non-modeled constraints. This flexibility can also absorb disruptions caused by a
delay in delivery of main or intermediate components for example. Consequently, the
number of schedules can measure the flexibility over the sequences of the solution.
However, the calculation problem of this number is #P-complete [BRI 91]. We
propose another measure of flexibility Flexseq given by the number of directionless
arcs in the transitive graph representing the partial order. This number is an upper
bound of the number of additional sequencing alternatives, which are available only
to the decision-maker. The higher this number, the more flexible the solution will be.
If we note as U all the arcs in the transitive graph representing the partial order and
|U | as the cardinality of this group, we have

Flexseq =
n(n− 1)

2
− |U | (11.4)

In the proactive algorithm, to limit the number of flexibility classes, we
use a transformation of the number of directed arcs in a multi-level qualitative
measure. Each level Nl, l = 1, . . . , nbLevel, is characterized by an interval
[nbArcsMinl, nbArcsMaxl] representing minimum and maximum values of
directed arcs that a solution can have belonging to this level.

11.2.3.3.2. Flexibility over time

Flexibility over sequences generally implies flexibility over time, which is in fact
a zero degree of flexibility [GOT 02]. This flexibility is available according to time



256 Flexibility and Robustness in Scheduling

intervals in which the jobs can be executed. In the proactive algorithm, we use a global
measure of flexibility over time. This measure is given by the ratio between total job
margin, for solution S considered, and the total processing time P . It is given by the
following equation:

Flextime =
wCmax(S)− P

P
. (11.5)

11.3. Proactive algorithm

The objective here is to design a proactive algorithm that will calculate solutions
with good quality a priori. To measure the a priori quality of a solution, we use
performance and flexibility indicators presented in section 11.2.3. The performance
of a solution is linked to the best and worst values of the scheduling criteria that
it represents. Flexibility measures are associated with a solution: a flexibility
measure over sequences and a flexibility measure over time. The number of quality
measures, the NP-completeness of optimization problems associated with some of
these measures, and the size of problems involved, led us to not consider an exact
method approach. We have focused directly on the use of metaheuristics and more
particularly on genetic algorithms.

In what follows, we will present the general diagram of the global algorithm. We
will then explain in detail the different steps of this algorithm.

11.3.1. General schema of the proposed genetic algorithm

The algorithm that we propose is intended for the generation of a series of solutions
offering a good compromise between several quality measures a priori. The objective
of the algorithm is to search for one (or more) solution(s) S minimizing the measure
of performance D(S), maximizing the flexibility measure over sequences Flexseq and
maximizing the measure of flexibility over time Flextime. The problem considered
is then a multicriteria problem. To solve it, the proposed algorithm considers in an
iterative way the sub-spaces of solutions defined by the different levels of flexibility
over sequences Nl, l = 1, . . . , nbLevel (see section 11.2.3.3). In each sub-space of
solutions, the algorithm searches for solutions that minimize a Fitness measure, the
linear combination between D(S) and Flextime(S), given by the following equation.

Fitness(S) = θD(S)− (1− θ)Flextime(S), θ ∈ [0, 1]. (11.6)
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For l = 1 to nbLevel Do
Generate an initial population P0 of solutions belonging to level of flexibility
over sequences Nl;
Evaluate the chromosomes of P0 and initialize EliteNl,θ ;
For i = 0 to nbGen Do

Select, from Pi, Npop couples of chromosomes for reproduction;
Crossover selected couples of chromosomes;
Evaluate generated children and update EliteNl,θ ;
Mutate with low probability πmut generated chilidren;
Evaluate mutated children and update EliteNl,θ ;
Select, from Pi and generated children, Npop chromosomes for survival;

EndFor
EndFor

Figure 11.4. Genetic algorithm for set value θ

By varying θ between 0 and 1, we obtain solutions S offering a good compromise
between the flexibility measure over time Flextime(S) and the performance measure
D(S) for a given level of flexibility over sequences Nl. This algorithm is described in
Figure 11.4. In this algorithm, we use the following notations:

– nbGen is the number of generations of the single criterion genetic algorithm;

– Pi is the population of iteration solutions i, i = 0, . . . , nbGen;

– Npop is the size of a population of individuals;

– nbLevel is the number of flexibility levels over sequences;

– πmut is the mutation probability;

– EliteNl,θ is the elite population with a dimension of sizeElite that we obtain
at the end of the algorithm for a value of θ ∈ [0, 1] and a level of flexibility
Nl, l = 1, . . . , nbLevel.

After execution, the algorithm returns EliteNl,θ sets. The decision maker will
be able to select the solution deemed adequate based on the performances and
flexibilities that it presents. He will eventually be able to develop and calculate other
flexibility indicators not used during the optimization phase or test, in the presence of
disruptions, the solutions with simulations.

In practice, we do not have to explore all the research space defined by the
flexibility measure over sequences. In fact, the decision maker may:

– either impose a minimum performance limit (corresponding to maximum values
of criteria not to exceed) that the solutions must ensure. In this case, we can operate in
a dichotomic way (on flexibility levels) and search for solutions belonging to the most
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permissive flexibility level possible while guaranteeing the restrictions in performance
criteria,

– or request the search for the most powerful solutions belonging to two or three
given flexibility levels for example.

11.3.2. Selection and strategy of reproduction

At each iteration of the genetic algorithm, we use two selection procedures. The
first selects Npop couples of chromosomes for reproduction. The second selects,
among the children generated and the old population, Npop chromosomes which will
survive and form the new population. In our implementation, we use the roulette
technique [GOL 89]. NpopIn is the number of different chromosomes in the current
population. In this population, we select NpopOut chromosomes to reproduce as pairs
or to survive in the next generation. A new force equal to NpopIn acts upon the best
individual, while the second chromosome receives a force equal to NpopIn − 1 and
the last one experiences a force equal to 1. The chromosomes are selected with a
probability that is proportional to their force.

11.3.3. Coding of a solution

To code a partial order, between the jobs to execute, characterizing a solution S,
we use a square ternary matrix MT with a dimension of n × n, n being the number
of jobs to execute [DJE 96, POR 98]. Matrix MT = (MT (i, j))1≤i,j≤n is defined by

MT (i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1 if Ti precedes Tj in S,

−1 if Tj precedes Ti in S,

0 if Ti = Tj or Ti and Tj are permutable in S.

(11.7)

The resulting matrix is transitive and anti-symmetric. During implementation,
we can only memorize the higher diagonal matrix (n(n−1)

2 elements instead of n2

elements). Nevertheless, for a better understanding, the extended matrix is used here.

MT coding is a direct coding because there is bijective correspondence between
the space of partial sequences and the space of ternary matrices.

11.3.4. Crossover operator

The crossover operator introduces two chromosomes or parents to generate one,
two or more chromosomes or children. The crossover operator is the most important
operator in genetic algorithms and it must enable the efficient use of research space.



A Flexible Proactive-Reactive Approach 259

The crossover is made between two individuals selected by a procedure which favors
the strongest individuals. During the generation of children, it is advisable to retain
some of the important properties of parents. We propose a crossover inspired by
the MT3 crossover proposed by [DJE 96]. It guarantees the retention of precedence
constraints common to both parents, including imperative precedence constraints.

Figure 11.5 presents a version of the crossover algorithm for generating a child,
represented by a ternary matrix F, from two parents represented by matrices MT1 for
the father and MT2 for the mother respectively. This algorithm is not given in detail
for the sake of simplicity.

Step 1. F ← MT1+MT2

2
;

Update nbArcs(F );

Step 2. Modify one or two values F (i, j) to ensure that the generated child is
different from both parents;
Update nbArcs(F );

Step 3. While nbArcs(F ) < nbArcs(MT 1) Do
Randomly select one of the parents (parent 1 with probability π and parent
2 with probability 1 − π); let MT be the corresponding matrix;
Select two jobs i and j s.t. F (i, j) = 0 and MT (i, j) 	= 0;
F (i, j) ← MT (i, j);
F (j, i) ← −F (i, j);
Compute the transitive closure of F and update nbArcs(F );

End While

Step 4. If nbArcs(F ) ≤ nbArcsMax then F is retained;
else F is discarded;

Figure 11.5. Modified MT3 crossover

11.3.5. Mutation operator

The mutation operator is used to guarantee the diversity of the chromosome
population. The mutation we propose consists of changing the order of at least two
jobs. It is described in Figure 11.6, where MT and F represent the matrix of the
solution to mutate and the matrix of the mutant respectively.
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Step 1. F ← F0; /* F0 is the matrix representing imperative precedence
constraints*/

Step 2. Randomly select two jobs i and j s.t. MT (i, j) 	= 0;
F (i, j) ← −MT (i, j);
F (j, i) ← −F (i, j);
While nbArcs(F ) < nbArcs(MT )

Randomly select two jobs i and j s.t. F (i, j) = 0 and MT (i, j) 	= 0;
F (i, j) ← MT (i, j);
F (j, i) ← −F (i, j);
Compute the transitive closure of F ;

End While

Step 4. If nbArcs(F ) ≤ nbArcsMax then F is retained;
else F is discarded;

Figure 11.6. Mutation MUT3

11.4. Reactive algorithm

11.4.1. Functions of the reactive algorithm

The reactive algorithm ensures workshop control. It has three main functions. The
first one is to control the execution of jobs by following the partial order characterizing
the retained solution, and by respecting constraints caused by the type of scheduling
chosen. The second function is to react to disruptions. The third function is to detect
when the current solution no longer guarantees the decision maker’s expectations.

The reactive algorithm is based on the partial order defining the solution chosen in
the proactive phase. The question is how:

– each time a sequencing decision must be made, to offer different alternatives
respecting the partial sequence, thus increasing the potential of being able to absorb
late arrivals of raw material,

– to preserve flexibility over time until a breakdown occurs,

– to obtain good performance if no disruption occurs during the execution of jobs.

It is generally impossible to fulfill all these objectives simultaneously. For
example, in order to retain as much flexibility over sequences as possible, the
algorithm may choose to leave the machine idle for a longer period of time. This
leads to a loss of flexibility over time and can result in bad performance at the end of
the execution.
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In what follows, we proceed in two phases. In the first phase, we presume that there
is no disruption. We propose control algorithms and indicators for measuring their
capacity to fulfill the three objectives discussed. In the second phase, we consider that
disruptions can occur during job execution. At the start, we use the same procedures
as in the first step. When a disruption occurs, an analysis module is used to find out
if the partial order will absorb it or if modifications must be made to the partial order
to limit performance loss. When performance loss is high, intermediate actions must
be proposed while waiting for the construction of a new proactive solution for the
execution of the remaining jobs.

11.4.2. Reactive algorithms in the absence of disruptions

We will first present indicators which measure the aptitude of a reactive algorithm
to fulfill the three objectives discussed in the previous section. These indicators
are called a posteriori quality measures. We will then propose different control
algorithms.

11.4.2.1. A posteriori quality measures

11.4.2.1.1. A posteriori flexibility

A posteriori flexibility measures the capacity of the reactive algorithm to use
flexibility in the sequences of a solution. Consider the solution, given in Figure 11.7,
of a 5 job scheduling problem. This solution represents 15 semi-active schedules. Its
flexibility over sequences equals Flexseq = 6, since the number of directed arcs in the
transitive graph representing the partial sequence is 4 (= 10− 6).

�2 ���
�4

��� �5

� �3

�1

Figure 11.7. A solution to a 5 job problem

In Figure 11.8, we represent two schedules calculated by two reactive algorithms
P1 and P2 respecting the partial order in Figure 11.7. The available jobs at each
iteration are represented in the vertical axis. At first, jobs T1 and T2 are available.
The P1 algorithm chooses to schedule T2 first. In the second phase, jobs T1, T4
and T5 are available. P1 chooses to schedule T4. The P1 algorithm is applied until
all jobs are executed. The resulting sequence is presented in the horizontal axis; it is
sequence (T2, T4, T5, T3, T1) for P1.



262 Flexibility and Robustness in Scheduling

�

�

sequence
P1

Available
jobs

T2 T4 T5 T3 T1

T1 T1 T1 T1 T1

T2 T4 T3 T3

T5 T5

�

�

sequence
P2

Available
jobs
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Figure 11.8. Sequences given by P1 and P2

We observe that P1 offers two sequencing alternatives in the first phase (jobs T1
and T2), three alternatives in the second and third phases, two alternatives in the fourth
phase and one alternative in the last phase. However, P2 only offers two alternatives
in the first and third phases and one alternative in the other phases. In summary P1
proposes a total of 6 + 5 alternatives to the decider whereas P2 only offers 2 + 5
alternatives. Based on this example, we propose a measure that provides the proportion
of flexibility over sequences of a solution S used by an algorithm P . This measure is
computed by the following formula

Fflex(S, P ) =
Number of alternatives proposed by P − n

Flexseq(S)
(11.8)

If Fflex(S, P ) is very close to 100%, then P is able to use flexibility over
sequences contained in S. For our example, we have Fflex(S, P1) = 6

6 = 100% and
Fflex(S, P2) = 2

6 = 33%.

11.4.2.1.2. A posteriori performance measures

To measure the capacity of a reactive algorithm P to provide good performance,
we propose two a posteriori performance measures, F 1

perf and F 2
perf defined as

follows

F 1
perf(S, P ) =

Cmax(S, P )− bCmax(S)
bCmax(S)

(11.9)

F 2
perf(S, P ) =

T̄w(S, P )− bT̄w(S)
bT̄w(S) + 1

(11.10)

where bCmax(S) and bT̄w(S) are respectively the best makespan and weighted sum
of tardiness of solution S.
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11.4.2.2. Proposed algorithms

The algorithms that we propose all work the same way. They use priority rules in
a lexicographical way. At a given moment t, algorithms schedule job i∗ maximizing
PRIOR1(i, t) among the available jobs i. When two or more jobs are in competition,
the job maximizing PRIOR2(i, t) is selected. What differentiates these algorithms
are priority functions PRIOR1(i, t) and PRIOR2(i, t) and the definition of job
availability. A job is available if all its predecessors have already been scheduled
and if it fulfills the selected scheduling constraints. Even though the solution
was calculated a priori by considering semi-active schedules, we can decide for
performance reasons to only build active or non-delay schedules in real time. Note
that active and non-delay schedules are semi-active schedules.

We propose different priority rules intended for optimizing one of the a posteriori
quality measures:

– Fflex(S, P ) is increasing according to the number of alternatives proposed in each
phase. To maximize this number, we propose a priority rule which selects the available
job that will free up the largest number of successors. The algorithms connected to
this priority rule are called Flex1_SA, Flex1_A and Flex1_ND where SA, A and
ND indicate the type of scheduling considered: semi-active, active and non-delay. If
two jobs are in competition, the job with the shortest, earliest start date (refreshed) is
selected.

– It is also advisable to retain some flexibility over sequences throughout
execution. In order to do this, we propose a priority rule which selects the available
job maximizing the number of remaining non directed arcs. The algorithms connected
to this priority rule are called, as in the previous point, Flex2_SA, Flex2_A and
Flex2_ND. If two jobs are in competition, the job with the shortest earliest start date
(refreshed) is selected.

– In order to favor the main performance criterion, which for us is the weighted
sum of tardiness, we use known priority rules for this criterion [MOR 93]. In this case,
we have

PRIOR1(i, t) =
wj

pj
exp

(
− max

{
dj −

(
t + pj

)
, 0
}

kpav

)
(11.11)

where pav is the average job execution times and k, whose value is generally chosen
around 3, is a parameter expressing how the priority of a job increases when its margin
decreases.

The algorithms proposed are noted as Perf_SA, Perf_A and Perf_ND.
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11.4.3. Reactive algorithm with disruptions

During the occurrence of a disruption, an analysis module is used. Two cases are
considered:

– Case of machine breakdown: the module uses results developed in [ALO 02a] to
calculate upper bounds on the increase for the worst weighted sum of tardiness, and to
propose, if possible, one or more decisions to minimize this increase without violating
the initial partial sequence. The increase of the worst makespan can be calculated in
polynomial time [ALO 04]. To minimize this increase, the module can propose a shift
to non-delay control.

– Case of late component arrival: we presume that the control algorithm chooses
to schedule a job Tj with one of its components being late. This job can only be
executed from a date rm

j > t. If an available job Ti exists such that the arrival of
its components is not disrupted, then scheduling Ti at moment max{ri, t} does not
increase the worst weighted sum of tardiness of the current solution. If such a job
does not exist, the disruptions can then be considered as failure and an upper bound of
the increase can thus be calculated.

Generally, if the upper bound of the expected increase over the weighted sum
of tardiness is estimated as small, the module proposes the scheduling of the job
minimizing this increase. If that is not the case, the module can propose either to
enrich the partial sequence by adding arcs in order to limit performance deterioration
in the worst of cases, or to execute global rescheduling, i.e. recalculate a new solution
for remaining jobs.

11.5. Experiments and validation

The validation of our approach required three phases of experiments. In the first
phase, we experimented with the capacity of the proactive algorithm to explore
the different research spaces, defined by the qualitative measure of flexibility over
sequences, and to provide solutions offering an acceptable compromise between a
priori measures of performance and flexibility. In the second phase, we considered
that the workshop is not disrupted and we measured the aptitude of control algorithms
to use the flexibility introduced by the proactive algorithm while providing good
performances at the end of execution. In the third phase, we compared our approach
to a reactive predictive approach in the context described in the introduction to this
chapter.
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In what follows, we summarize the results obtained in [ALO 02b, ALO 02a,
ALO 03]:

– For all solutions S calculated by the proactive algorithm, we have 0.8T̄ ∗
w ≤

bT̄w(S) ≤ 1.04T̄ ∗
w, where T̄ ∗

w is the weighted sum of tardiness given by the best
scheduling calculated with heuristics known for this criterion such as ATC and X-RM.
This means that each solution S contains at least one schedule with very good
performances and that we can even increase the performance by approximately 20%
in relation to the best solution found off-line (obtained by a heuristic).

– The proactive algorithm offers a good compromise between performance and
flexibility in the case where job start dates are grouped in time. When these start dates
are spread out, job permutation must be limited in order to obtain good performances.

– In the absence of disruptions, procedures Flex1_ND and Perf_ND

dominate, in most cases, the other procedures and provide an acceptable compromise
between a posteriori measures of quality.

– In the presence of disruptions, our approach is superior to the reactive predictive
approach for disruptions on availability of raw material (main and intermediate
components) with low or average amplitudes and for a reasonable number of
breakdowns. In this comparison, we have given the predictive solution a flexibility
over time globally equivalent to the flexibility included in the proactive solution in
order to obtain very similar intermediate product storage costs for both approaches.

11.6. Extensions and conclusions

In this chapter, we considered the scheduling problem for activities in a workshop
made up of only one workstation for the assembly of components coming from
downstream workshops and components purchased from suppliers. In order to
minimize the effect of disruptions which can occur from the different players in
the logistics chain, we proposed a proactive-reactive approach to anticipate these
disruptions. At the proactive level, a genetic algorithm calculates one (or more)
solution characterized by a partial order between activities and a type of schedule.
Such a solution, said to be flexible, then represents several schedules with common
properties in order to easily move from one schedule to another. This constitutes
flexibility over sequences and over time that the reactive algorithm is supposed to
use knowingly to control the workshop. Control decisions involve the execution of
jobs and reaction to possible disruptions. We demonstrated using experiments the
superiority of our approach compared to traditional predictive-reactive approaches.

The results obtained for single machine scheduling problems gave us some insight
to extend our approach to the flow-shop scheduling problem [ALO 09].
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In our approach, disruptive characteristics, such as frequency and time, are not
known beforehand. It would be interesting to find out how to integrate a possible
knowledge of these characteristics as a research guide for flexible solutions.

11.7. Bibliography

[ALO 01] ALOULOU M.A. and PORTMANN M.C., “Incorporating flexibility in job
sequencing for the single machine total weighted tardiness problem with release dates”,
Proceedings of the 10th Annual Industrial Engineering Research Conference, May 2001,
CD-ROM.

[ALO 02a] ALOULOU M.A., “On the reactive scheduling design using flexible predictive
schedules”, Proceedings of IEEE SMC’2002, Hammamet, October 2002, CD-ROM.

[ALO 02b] ALOULOU M.A., Structure flexible d’ordonnancements à performances contrôlées
pour le pilotage d’atelier en présence de perturbations, PhD Thesis, Institut National
Polytechnique de Lorraine, December 2002.

[ALO 03] ALOULOU M.A. and PORTMANN M.C., “An efficient proactive reactive approach
to hedge against shop flow disruptions”, Proceedings of MISTA Conference 2003, August
2003.

[ALO 04] ALOULOU M.A., KOVALYOV M. and PORTMANN M., “Maximization in single
machine scheduling”, Annals of Operations Research, vol. 129, p. 21–32, 2004.

[ALO 07] ALOULOU M., KOVALYOV M. and PORTMANN M.-C., “Evaluating flexible
solutions in single machine scheduling via objective function maximization: the study of
a computational complexity”, RAIRO Operations Research, vol. 41, p. 1–18, 2007.

[ALO 09] ALOULOU M. and ARTIGUES C., “Flexible solutions in disjunctive scheduling:
general formulation and study of the fow-shop case”, Computers and Operations Research,
2009, forthcoming.

[BRI 91] BRIGHTWELL G. and WINKLER P., “Counting linear extensions”, Order, vol. 8,
p. 225–242, 1991.

[DJE 96] DJERID L. and PORTMANN M.-C., “Genetic algorithm operators restricted to
precedent constraint sets: genetic algorithm designs with or without branch and bound
approach for solving scheduling problems with disjunctive constraints”, Proceedings of
IEEE International Conference on Systems, Man and Cybernetics, vol. 4, p. 2922–2927,
October 14-17 1996.

[GOL 89] GOLDBERG D.E., Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, 1989.

[GOT 02] GROUPE FLEXIBILITÉ DU GOTHA, “Flexibilité et robustesse en ordonnancement”,
Bulletin de la ROADEF, no. 8, p. 10–12, 2002, full version available on
http://wwwmath.univ-bpclermont.fr/sanlavil/FRO.html.



A Flexible Proactive-Reactive Approach 267

[LAW 73] LAWLER E.L., “Optimal sequencing of a single machine subject to precedence
constraints”, Management Science, vol. 19, p. 544–546, 1973.

[LAW 93] LAWLER E.L., LENSTRA J., RINNOOY KAN A. H.G. and SHMOYS D.B.,
“Sequencing and scheduling: algorithms and complexity”, in GRAVES S., RINNOOY KAN

A. and ZIPKIN P. (Eds.), Handbooks in Operations Research and Management Science,
Volume 4: Logistics of Production and Inventory, North-Holland, Amsterdam, 1993.

[MOR 93] MORTON T.E. and PENTICO D.W., Heuristic Scheduling with Applications to
Production Systems and Project Management, Wiley, New York, 1993.

[POR 98] PORTMANN M.C., VIGNIER A., DARDILHAC C.D. and DEZALAY D., “Branch

and bound crossed with GA to solve hybrid flowshops”, European Journal of Operational

Research, vol. 107, p. 389–400, 1998.



This page intentionally left blank



Chapter 12

Stabilization for Parallel Applications

The recent development of new parallel and distributed platforms based on the
interconnection of a large number of standard components has significantly changed
the parallel processing field. The most important point for a more effective use of such
systems is the management and optimization of resources, particularly scheduling.
This consists of allocating the tasks of a parallel program to processors on the platform
and determining at what time the tasks will start their execution.

Now more than ever, handled data are subject to uncertainties and/or disturbances,
and thus it is almost impossible to have a precise prediction of the input parameters
of the scheduling problem, particularly those related to communications. We propose
in this chapter a brief survey of the existing approaches dealing with disturbances in
the context of the new parallel and distributed systems. Then, we present different
methods to study scheduling algorithms with the ability to absorb any perturbation on
the data and if necessary to develop new mechanisms to adapt these algorithms to the
new parameters during the execution. More specifically, to deal with disturbances, we
focus on a partially on-line approach (proactive/reactive approach) which start from
an initial solution computed with estimated data and correct it on-line depending on
the values of actual data, that is, the stabilization approach.

Chapter written by Amine MAHJOUB, Jonathan E. PECERO SÁNCHEZ and Denis TRYSTRAM.
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12.1. Introduction

In this chapter we deal with the problem of the analysis and design of efficient
scheduling algorithms in the domain of parallel and distributed systems. This domain
has changed considerably in the last decade with systems processing many new
features that should be taken into account when optimizing the performance. The
most important point for a more effective use of such systems is the management
and optimization of resources, particularly scheduling. This consists of allocating
the tasks of a parallel application to processors on the platform and determining
at what time the tasks will start their execution. In most cases, this application is
described in a high-level programming language from which we extract (more or
less automatically) the tasks, with their relations of interdependence. The scheduling
is determined before execution by more or less sophisticated methods, based on
estimated data of the tasks and their structures. However, the handled data can be
strongly modified at run-time by many unpredictable phenomena. The effects of
disturbances on the data may impact the system’s efficiency, eventually leading
either to an unfeasible situation or to the generation of opportunities that improve its
performance. Therefore, the problem is how to find a good schedule in such a context.
Thus, it is essential to develop new mechanisms for controlling (and if necessary
adjusting) the algorithm to guarantee reasonable performances.

This chapter is organized as follows. In section 12.2 we give a brief introduction to
the domain of parallel and distributed systems and state the computing model. Next,
in section 12.3, we review the main existing approaches dealing with uncertainties
in the actual parallel systems. Then, in section 12.4, we focus on partially on-line
approaches and we describe the stabilization process. Section 12.5 describes two
results for stabilization, a first one called the PRCP* algorithm and a second algorithm
that guarantees a strong stabilization. In section 12.6 we present a new, intrinsically
stable scheduling algorithm, that is, one that is able to absorb the bad effects of
disturbances occurring at runtime. Finally, before concluding this chapter and giving
some perspectives, we present some experimental results that assess the good behavior
of the new intrinsically stable algorithm.

12.2. Parallel systems and scheduling

In this section, we describe in detail the domain of parallel processing which is the
target for promoting the stabilization approach.

12.2.1. Actual parallel systems

Since the end of the 1990s, the domain of parallel processing has changed
considerably. The enormous advances in computing capability, the integration of
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computing and communications, and the reduction in the cost of these technologies
led to an increase in number and size of parallel and distributed systems. Traditional
parallel architectures have been replaced by large collections of standard computing
components that communicate with each other over local or large area networks
[CUL 99]. A huge number of new computing platforms have been installed
all over the world because they are a low cost alternative to super-computers.
The concept of grid computing can be used in different contexts, depending on
the type of components or connections. The first type of grids correspond to a
medium size and are composed of rather homogenous processors, typically several
hundred CPUs locally connected by a fast network [BUY 99]. They are usually
under the administration of a single operating system. Computational grids may
be composed by more heterogenous and distant processor units (some can even
be super-computers) [FOS 99]. Several operating systems run simultaneously on
different machines. Such systems are stable in the sense that any computing unit
participating to the grid has to be identified before. Global computing goes one
step further. It corresponds to a very large number of relatively small computational
units (several thousands) that can appear or disappear at any moment [GER 01].
Nowadays, the computational capabilities of stand-alone computers have increased
thanks to the dual-core or multicore architectures. With the introduction of this type
of architectures even mainstream PCs have become parallel systems.

All these new computing platforms are characterized by many new features, for
example, large communication delays with relatively slow connections in regard to
the computations, hierarchy in computing and communication media, heterogenity
and volatility of the resources. They all have in common a larger complexity than
traditional parallel machines. With various degrees, the consequences are an increased
difficulty in predicting the parameters that are the input of the scheduling problem,
particularly for communications. In this chapter, we consider homogenous processors
for a simplified presentation, although the results may be extended to heterogenous
platforms.

12.2.2. Definitions and notations

In this section, we present the scheduling problem in detail. This problem deals
with the optimal assignment of a set of tasks to processing elements in distributed
systems in such a way that the completion time of all tasks is minimized. In the
context of new parallel and distributed systems several criteria can be optimized. In
this chapter, we focus on the minimization of the schedule length or makespan (i.e.,
maximum completion time over all the processors) [LEU 04].
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We consider the computational model formalized by Rayward-Smith [RAY 87]
and Papadimitriou and Yannakakis [PAP 90], known as the delay model. It is a
classical model where the communication between tasks allocated on different
processors is explicit and can be overlapped by local computations. Communications
between tasks executed on the same processor are neglected (this is known as locality
assumption). A parallel application is usually modeled by precedence task graphs.
It is represented by a directed acyclic graph G = (V,E), where V = {1, . . . , n}
is the set of tasks to be scheduled, and E ⊆ V × V is the set of edges. Each
edge (i, j) ∈ E represents a precedence constraint that means “the results of task
i must be available before j starts its execution”, Figure 12.5 give an illustration
of such a graph. We denote by PREC(i) and SUCC(i) the set of predecessors
and successors of task i, respectively (PREC(i) = {j ∈ V ; (j, i) ∈ E} and
SUCC(i) = {j ∈ V ; (i, j) ∈ E}).

The processing time of a task j ∈ V is denoted by pj ∈ N+. It takes a time
cij ∈ N+ to transfer data from task i to task j, ∀(i, j) ∈ E, which is zero if both
tasks are scheduled into the same processor. However, some disturbances can affect
the communications at run-time. In this case, for a given graph G, we denote by G̃ the
graph whose structure is the same as that of G, but differs in the cost cij associated
with the edges. This cost is denoted c̃ij (more generally, we will denote x̃ the disturbed
value of parameter x).

Let us consider an application composed of n tasks to be processed on m identical
processors. If m ≥ n, then the number of available processors is unrestricted. A
schedule is defined as a pair of applications, namely, σ : V → N+ and π : V →
{1, . . . , m}, where σ(j) represents the starting time of task j and π(j) provides the
processor on which j is executed. The feasibility of the schedule means the respect of
the precedence constraints which are guaranteed by the following relations:

– ∀(i, j) ∈ E, σ(j) ≥ σ(i) + pi if i and j are allocated on the same processor
(π(i) = π(j)) and, σ(j) ≥ σ(i) + pi + cij otherwise (π(i) 
= π(j)). Task j cannot be
executed before task i has been completed,

– for any pair of tasks {i, j}, if π(i) = π(j), then σ(i) + pi ≤ σ(j) or
σ(j) + pj ≤ σ(i). Each task is allocated to only one processor and one processor
cannot execute more than one task at a time,

– preemption is not allowed: the execution of a task cannot be interrupted and
resumed at a later time.1

1. Preemption can be an interesting issue for scheduling independent jobs on uniformly related
parallel machines on-line [SHM 95].
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Let (σ, π) be a feasible schedule for G = (V,E). The completion time of each task
j ∈ V is defined by Cj ≡ σ(j)+pj . The length or makespan of (σ, π) is the maximum
completion time (denoted by Cmax) of the task. Formally, Cmax ≡ maxj∈V Cj . The
objective is to minimize Cmax.

The scheduling problem is known to be NP-hard in its simplest version (without
communications) – for more details we refer the reader to [ULL 75]. Many
approximation methods have been developed for variants of this problem and some of
them have been implemented in operational parallel environments of old generation
parallel systems [YAN 92].

The scheduling problem has usually been seen as a function of known and reliable
information. Most approaches that have been developed are mainly deterministic,
that is, they are based on nominal or estimated values for all the parameters,
thus implicitly assuming that a baseline schedule will be executed exactly as
planned. However, this assumption is rather idealistic since many unpredictable
events continually occur. Scheduling problems involve data, coming from different
sources, and which vary rapidly over time as resource availabilities. Data may
be ambiguous, outdated or inaccurately predicted before the problem is solved.
Nevertheless, in the context of new computing platforms, the processing time of tasks
can be approximately estimated depending on the processor where the tasks will be
executed. It is claimed, however, that communication delays are subject to many
unpredictable events that are hard to anticipate because of a highly disturbed context
of the actual execution of parallel applications. In this case, building an assured
theoretical model for such complex systems is a very intricate problem and the
analysis is in general intractable. Therefore, the problem is finding a good schedule
that takes into account only a partial knowledge.

12.2.3. Motivating example

In this section, we give an example of the impact of disturbances when scheduling
an application with perturbations in the communication delays.

As a consequence of the inherent uncertainty when deciding a baseline schedule
in new parallel systems, disruptions may appear at execution time affecting the
implementation of the schedule. Disruptions may be complex, multiple in nature, and
appear at any moment over the span of the schedule. Several sources of disturbances
in communication delays exist when scheduling an application. For example, in
many models, communication delays only depend on the source and destination
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tasks, not on the communication network. The general assumption is that such a
network is logically fully connected, and that the lengths of the links are equal.
This is rarely the case for a real machine: the network topology and the contention
of the communication links may largely influence the delays, not to speak of
communication failures. Another example is where the communication takes place
over a network where there may be contention for transmission, so communication
delays are non-deterministic.

We focus in this chapter on the impact of disturbances on the communication
delays which is the most significant performance factor in parallel and distributed
systems. We illustrate below the effects of disturbances on a simple example.

Let us consider the pre-allocated precedence task graph depicted in Figure 12.1.
It is composed of 9 tasks of unit execution time and all the communications have an
estimated value of 1.

Figure 12.1. A precedence task graph with its allocation

Let us assume that this pre-allocated precedence task graph is scheduled on two
processors m1 and m2. Now, let consider the optimal schedule depicted as a Gantt
chart in Figure 12.2(a). There are two effective communications2 between the tasks 1
and 8 (c18), and 8 and 5 (c85). The schedule length is Cmax = 5.

Let us now imagine that the actual durations of the effective communications (i.e.,
communications after disturbances) are c̃18 = 1 + ε1 and c̃85 = 1 + ε2.

A slight increase in the communication cost c18 results in delaying the starting
time of task 8 by ε1 and thus the communication between tasks 8 and 5 is also delayed
by the same amount of time. Another disturbance ε2 occurs in the communication c85.
Finally, it leads to an actual makespan C̃max = 5 + ε1 + ε2, as depicted in Figure
12.2(b). Of course, if the disturbances are greater, a change of allocations would be
profitable.

2. A communication is called effective between two communicating tasks if they are scheduled
on different processors.
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Figure 12.2. Impact of disturbances on the communications

Let us note from this example that the cumulative effect of the disturbances can
be highly significant if several disturbances occur, which is not rare in practice. This
is because the cumulative effect relies on communications occurring in opposed
directions between both processors. This can of course be generalized to any number
of processors.

12.3. Overview of different existing approaches

In order to contextualize the stabilization approach, we briefly recall the different
possible approaches dealing with uncertainties in the scheduling problem. Most of
them have been presented and discussed in other chapters of this book.

Fundamentally, the main difference between the possible approaches is to consider
if a solution can or cannot be modified during the execution, when the actual values
are known. If a solution cannot be modified, we deal with static or a priori approaches,
and the problem here is to construct a “good” solution that will not be impacted too
much by the disturbances. If a solution can be modified during the execution we are
dealing with dynamic approaches. More specifically:

– Static or robust approaches called a priori: a schedule is fully computed before
its execution with the estimated data.
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– Dynamic or on-line approaches: in such an approach the schedule is computed
at execution time using simple priority rules when the actual data are known. It is
difficult to take advantage of partial knowledge of the problem.

In addition to these two approaches, sensitivity analysis studies the performance
change of a given solution, due to a change in the data, that is, this approach analyzes
the variation of the solution relative to the disturbances on the estimated values which
occur at run-time. It is commonly used to assess the robustness of a schedule to
perturbations in the model’s specifications or input data [PEN 01].

Between the a priori and on-line approaches it is natural to consider an
intermediate approach, the partially on-line approach. The principle is to compute an
initial schedule with the estimated data and, depending on the on-line disturbances,
to adjust the schedule at run-time. From this partial knowledge, a scheduling solution
can be computed statically and then, potentially corrected at run-time. This is the
main idea behind the stabilization approach which will be described in the following
sections.

12.4. The stabilization approach

Compared to predictive approaches, stabilization is a partially on-line approach.
As we mentioned earlier, partially on-line (flexible) is an intermediate approach
between a priori and pure on-line approaches. In this approach, it is possible to
adapt a solution on-line once the actual data are known, in order to achieve a better
performance than the initial solution computed with the estimated data, that is, the
goal is to reduce the disturbance impact on the performance of the solution.

Schedule stabilization has been addressed in two main domains: parallel
processing and real-time systems. In this work, we focus on the stabilization approach
in the field of parallel processing. For more details about stabilization in real-time
systems we refer the reader to [MAN 67].

12.4.1. Stabilization in processing computing

For the user, one of the goals of parallel processing is to reduce the computational
time of any application and thus to minimize the makespan. We define a stable
schedule if the final makespan (obtained after running the algorithm on disturbed
data) is close to the initial makespan computed before the execution, without
referring to the optimal value of the actual instance; that is, the aim is to compute
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a makespan as close as possible to the initial schedule. We illustrate this definition
using Figures 12.3 to 12.4. Consider a set of instances P (Figure 12.3), an instance
I ∈ P (estimated instance) and a schedule σ. Cmax is the makespan computed by
schedule σ over the instance I and C∗

max is the optimal makespan.

Figure 12.3. Scheduling instance I without disturbances

If any disturbance occurs at run-time that transforms the instance I into a new
instance Ĩ, Figure 12.4(a), σ is stable if the makespan C̃max (the makespan of the
actual instance Ĩ) remains close to the initial makespan Cmax estimated without
disturbance. Note that the optimal solutions C∗

max and C̃∗
max cannot be so close,

Figure 12.4(b). Let us note that this definition of stability is coherent with the
mathematical definition of stability.

Figure 12.4. a) Applying σ on a disturbed instance; b) scheme of a stable solution

Based on this definition, several works have been proposed to develop algorithms
that compute stable schedules. In general, the stabilization (also called stabilization
process) is a 2-phase approach based on on-line sequencing after a statically fixed
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task allocation; that is, in the static phase, some mechanisms are used to stabilize
the application (i.e. to include safety in the baseline schedule in order to absorb the
anticipated disturbances as effectively as possible) and to define a procedure to react
to disturbances in the dynamic phase that cannot be absorbed by the baseline schedule.
We describe these two phases below.

Let us consider a predicted schedule obtained by any algorithm based on the initial
precedence task graph (that is, with estimated data). The principle of the stabilization
consists of adjusting this schedule on-line if any disturbances occurring at run-time
affect communication delays. This hypothesis assumes that the scheduler is able to
adapt or adjust the schedule on-line. With the scheduler, from the theoretical point
of view, all the permutations are possible, that is, if any perturbation affecting one
communication makes one task unavailable at the estimated date, then the scheduler
can schedule another task instead of the predicted one being executed at this date.
If necessary, the scheduler changes the processor allocation between tasks. It might
be interesting to change the allocation because we can adjust the baseline schedule
as we want. Unfortunately, the permutation between tasks could lead to an important
degradation instead of makespan minimization; that is, an on-line adaptation cannot
ensure the stability of the estimated makespan. For instance, if a high priority task is
not executed at the time determined by the static schedule, due to a slight perturbation,
the scheduler will execute another ready task, which is equivalent to the fact that the
priority list of execution is changed. Consequently, the makespan can increase beyond
what could have been achieved with a static execution. This is the case for the list
scheduling algorithms and is known as the Graham anomalies [GRA 66]. In practice,
we assume that the scheduler permutes only tasks allocated on the same processor
(however, this assumption does not prevent all anomalies in the schedule). We shall
briefly illustrate an example of the bad effects of some on-line permutations of tasks.

12.4.2. Example

First, consider the precedence task graph depicted in Figure 12.5: the nodes
represent tasks and edges represent precedence constraints, as described earlier in
this chapter. The corresponding processing time is given next to each node and all the
communications have an estimated value of 1. In the original formulation, Graham
focused on computations and did not consider communications. We present below an
adaptation of these anomalies for communications.

Figure 12.6 shows a list schedule obtained for the graph of Figure 12.5 on two
processors (the schedule is optimal). Consider now an on-line execution of this
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Figure 12.5. Precedence task graph

schedule: the list of priorities of the task executions is the sequential order on each
processor in the static execution, that is, L2 = {2, 5, 7, 6} on processor m1 and
L1 = {1, 4, 3, 8, 9} on processor m2.
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Figure 12.6. Initial schedule

Imagine now that the duration of task 4 decreases by ε (it is equivalent that the
communication between tasks 2 and 3 increases by ε). When the execution of task 4 is
completed, task 3 is not ready to schedule because of the communication originating
from task 2. Thus, the scheduler schedules the first ready task3 of the list, in this
case task 8 and the execution of task 3 is delayed until the completion of task 8.
The on-line schedule computed is given in Figure 12.7 with a makespan increased to
C̃max = 12−ε. On the contrary, the makespan of the static execution is C∗

max = 9. As
task 3 needs to communicate with task 6, so any delay on the execution of task 3 will
delay the completion time of task 6. For this example, task 3 is a critical (high-priority)
task. Thus, in this case, on-line adaptation of the schedule deteriorates the performance
of the schedule.

3. A task i is ready on processor π(i) at time t if all data from its predecessors have arrived in
π(i) and can be immediately executed on that processor at that time.
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It is clear that in some cases, it is preferable to wait for a critical task to become
ready like in the static schedule instead of executing another task. Then, the problem
is to prohibit the bad permutations of tasks. The addition of pseudo-constraints
might alleviate this problem, that is, the schedule is stabilized by adding precedences
or pseudo-edges between some tasks allocated inside the same processors. In the
following sections, we will describe the stabilization process in more detail.
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Figure 12.7. On-line execution of the initial schedule

12.4.3. Stabilization process

The principle underpinning the stabilization process consists of allowing only the
on-line permutations which can improve the makespan, that is, to prevent the scheduler
from bad permutations between tasks occurring at run-time and leading to an increase
in the makespan. As the final objective is to minimize the computational time, adding
some mechanism to select the right permutations (i.e., the permutations allowing us to
decrease the makespan) can be costly and can result in a higher computational time.
So, the idea is to determine the right permutations before the execution.

12.5. Two directions for stabilization

The main approaches for stabilization are based on a static process that is
achieved before beginning the execution. The goal is to determine (and to forbid) the
permutations leading to anomalies on the initial graph. As we have already mentioned,
the stabilization process is considered a 2-phase approach, as follows:

– compute a baseline schedule and stabilize it,

– execute the schedule on-line.

Let us emphasize again that the schedule is stabilized by adding pseudo-edges
between some tasks allocated into the same processors. This is a static phase. In
the following section, we survey two existing algorithms used for stabilizing an
application.
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12.5.1. The PRCP∗ algorithm

Moukrim et al. proposed in [MOU 99] a partially on-line stabilization algorithm
(called PRCP ∗) in the case of join and fork graphs. The algorithm is based on
a critical path to cope with the possible disturbances. The disturbances concern
communication delays, and in this model an estimation of the communication delays
is known at compilation time. However, due to network contention, link failure, etc.,
communication delays are disturbed at run-time. The authors claim that because of
the lack of accurate estimation of the communication delays, building a full-fledged
schedule at compile time is inappropriate. On the other hand, building the schedule
completely at run-time is also unsatisfactory. Therefore, a trade-off between these
two approaches is proposed. This approach (proactive) is decomposed into two main
phases, as follows:

– 1.1 compute an off-line schedule based on the estimated communication delays
and 1.2 compute a partial order by adding precedences between tasks assigned to
a same processor. The goal of this step is to stabilize the schedule obtained in the
previous step.

– 2 execute on-line the static schedule (i.e., the assignment of step 1.1) considering
the pseudo-edges (that is, the partial order) added in step 1.2.

The algorithm works as follows. The schedule of step 1.1 is built by any static
algorithm. The authors used the well-known ETF4 (earliest task first) algorithm
[HWA 89] based on critical path priority (denoted ETF/CP). The priority list is
defined as follows: for each task i compute L∗(i), the longest path to a final task,
including processing times and communication delays (between tasks to be processed
on different processors), the processing time of the final task but not the processing
time of i. Thus, the priority of i is proportional to L∗(i). The heuristic that sequences
ready tasks using the above priority is called RCP ∗ in [YAN 93].

Suppose that two tasks i and j are assigned to the same processor, with the partial
order of step 1.2 being obtained from the two following conditions:

1) task i has higher priority than j,

2) task i is sequenced before j in the schedule off-line (i.e., the schedule obtained
in step 1.1).

4. ETF is a list scheduling algorithm and considers a bounded number of processors.
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If the two previous conditions hold, then a pseudo-edge is added from i to j. This
will avoid a disturbance that leads to executing j before i at run-time.

Finally, in phase 2, RCP ∗ is again used as sequencing on-line policy to obtain the
complete schedule. The authors called the resulting algorithm PRCP ∗ for partially
on-line sequencing with RCP ∗.

We illustrate the execution of the algorithm by the following example. Let us
consider first the pre-allocated precedence task graph depicted in Figure 12.8(a). It
is composed of 9 tasks. The corresponding processing time is given next to each node
and all the communications have an estimated value of 1. Figure 12.8(b) shows one
possible schedule obtained at compile time by ETF/CP in step 1.1. Its completion
time is Cmax = 6. Figure 12.9 depicts the pre-allocated precedence task graph after
the stabilization, i.e., after adding the pseudo-edges (dashed edges). The following
pseudo-edges are added by PRCP*: for processor m1, between tasks 2 and 6, and
between tasks 2 and 7, while for processor m2, between tasks 3 and 8.

Figure 12.8. a) Pre-allocated precedence task graph;
b) schedule computed in step 1.1 by ETF/CP

Figure 12.9. The pre-allocated precedence task graph after stabilization: step 1.2.
Dashed edges represent the pseudo-edges added by PRCP ∗
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Let us now suppose that the actual duration of the communication between the
tasks 1 and 4 is c̃14 = c14.(1 + ε). The makespan of a static execution of the schedule
computed by ETF/CP is equal to 6+ε. However, PRCP ∗ produces a makespan equal
to 7 because of the small disturbance of c14 leads to execute task 3 before task 4 at
execution time (step 2), that is, at time 2 task 4 is not ready for processing, but task
3 is. No additional precedence was added between tasks 4 and 3 as they have the
same priority. Thus, PRCP ∗ executes task 3 before task 4 and increases the actual
completion time, as in Figure 12.10. Let us note that for this example the schedule
obtained at on-line execution without the stabilization process is also equal to 7.

Figure 12.10. Schedule obtained by PRCP ∗ after the stabilization: step 2

Clearly, PRCP ∗ fails here because it only takes L∗(i) into account, but not the
number of successors of i. However, examples can be easily built for which taking
this number into account (or using any other priority computation) does not guarantee
stability. Nevertheless, Moukrim et al. showed that the PRCP ∗ algorithm is optimal
for a fixed assignment when the task graph is a fork or join graph.

In order to avoid any degradation of the baseline scheduling, Gupta et al. in
[GUP 03] investigated means of identifying a minimum set of additional edges in the
context of partially on-line scheduling. The aim is to protect the baseline scheduling
from performing badly due to disturbances. Moreover, this construction guarantees a
result at least as good as the result obtained for the initial static scheduling, that is,
the strong stabilization. We present this work in the following section.

12.5.2. Strong stabilization

Gupta et al. [GUP 03] proposed another stabilization algorithm based on a similar
stabilization principle [MOU 99]. The authors consider the problem of scheduling,
precedence task graph with disturbances in processing time and communication
delays. Their solution starts from a static schedule computed with the estimated data
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by any well-known static algorithm, like ETF or DSC5 (dominant sequence clustering
[YAN 94]). Based on this schedule, the authors add some pseudo-constraints to the
precedence graph.

DEFINITION 12.1.– A communicating task is a task of where at least one of the
immediate successors is executed on a different processor.

The aim of the algorithm is to reduce the disturbance impact, but at the same time
to guarantee that the makespan obtained at on-line execution after the stabilization is
smaller than or equal to the makespan obtained with static execution on the actual
instance. They called this condition strong stabilization.

Let σ be the schedule computed at static execution, and let C̃max be the actual
makespan, that is, the disturbed makespan obtained by executing σ on the actual
instance. Let C̃

′
max be the makespan obtained after the stabilization. The condition

of the strong stabilization holds if

C̃
′
max ≤ C̃max

whatever the instance processed. For a given schedule σ, Gupta et al. introduced the
concept of permutable tasks, which is defined as follows: task i is permutable if and
only if the following two conditions holds:

– task i communicates with a task j scheduled on another processor,

– there exists at least one task j that is scheduled in σ after task i on the same
processor, and i and j are independent.

PROPERTY 12.1.– The only pseudo-edges that are necessary to add are those going
from a permutable task i to the set of tasks with which i could permute.

The principle behind strong stabilization is to prevent permutations between
tasks, which can increase the makespan. Gupta et al. proved that the minimal set
of pseudo-edges to guarantee the strong stabilization condition is the pseudo-edges
emanating from the permutable tasks.

Finally the algorithm is expressed as follows:

– Phase 1. Compute an off-line schedule using ETF or DSC. For each permutable
task i, add pseudo-edges between i and the set of tasks with which i could permute.

5. DSC is a clustering-based scheduling algorithm and considers unbounded number of
processors.
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– Phase 2. Each processor executes the tasks according to a ready-list maintained
locally.

Let us illustrate the execution of the algorithm with the following example.
Consider again the preallocated precedence task graph depicted in Figure 12.8(a) and
the associated schedule. Only task 4 satisfies the conditions of a permutable task,
that is, task 4 is a permutable task and the task this could permutate is task 3, so the
algorithm adds only the pseudo-edge between task 4 and 3; see Figure 12.11.

Figure 12.11. The pre-allocated precedence task graph after stabilization. The dashed edge
represents the pseudo-edge added by the strong stability algorithm

Suppose now a disturbance occurs between task 1 and 4; the actual communication
is c̃14 = c14.(1 + ε). Even with this disturbance at on-line execution, task 4
is scheduled before task 3. Thus, the completion time of the schedule after the
stabilization is C̃

′
max = 6 + ε, which is equal to the makespan at static execution after

disturbances C̃max = 6 + ε. Figure 12.12 depicts the schedule obtained by the strong
stability algorithm at on-line execution.

Figure 12.12. Schedule obtained by the strong
stability algorithm after the stabilization

Let us note that the condition of strong stabilization is interesting from the
theoretical point of view. However, it would be necessary to adapt it to weaker
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conditions, thus limiting the disturbance magnitudes or accepting worst schedules
produced by the disturbed static algorithm for small disturbances, for instance, by
allowing more flexibility while adding pseudo-constraints.

In this part of the chapter, we have only considered small communication delays.
In the following section we will consider large communication delays.

12.6. An intrinsically stable algorithm

In the first part of the chapter, we presented the stabilization approach. Let us
recall again that the aim of stabilization is to reduce the disturbance impact on the
performance of schedules computed at compile time. Basically, it consists of adjusting
the schedule at run-time once the actual data are known. From the theoretical point of
view, the stabilization approach can be applied on any schedule. However, in practice
the experience shows that the effectiveness of the stabilization depends on the structure
of the initial schedule. For instance, the stabilization has no significant effects on
the schedule obtained by the linear version of DSC (this will be discussed in section
12.7.2). However, in this section we show that is possible to design and develop a class
of schedules based on clustering approaches that is naturally stable. This means it is
able to absorb the bad effect of perturbations without using the stabilization process.
Before establishing the result for intrinsic stability, we present this class of schedules
and we briefly analyze its main interesting properties.

12.6.1. Convex clustering

In the context of parallel computing, much effort has been devoted to developing
efficient static scheduling algorithms with low complexity. The most widely used
methods are the list scheduling algorithms and the clustering based scheduling
algorithms [SIN 07] (ETF and DSC are respectively two examples of such
algorithms). We concentrate on the scheduling algorithms based on clustering.
The clustering algorithms are in general for an unbounded number of processors.
Clustering is an efficient way to reduce communication delay in the precedence task
graph by grouping heavily communicating tasks to the same labeled clusters, then
assigning tasks in a cluster to the same processor. In general, clustering algorithms
have two phases: the task clustering phase that partitions the original task graph into
clusters, and a post-clustering phase to merge the (folding) clusters generated in the
previous phase onto a bounded number of processors and to order the task executions
within each processor. We are interested here in the task clustering phase.
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Lepère and Trystram in [LEP 02] proposed a clustering based on a structural
criterion: to assign tasks to a location in convex clusters. Informally, a cluster is
convex if, for any path whose extremities are in the same cluster, all intermediate
tasks are also in that cluster. Figure 12.13(a) gives an example of convex clusters. On
the contrary, Figure 12.13(b) shows an example of clusters that are not convex. In this
case, the cluster containing tasks 1, 3, 6 is not convex because task 2 does not belong
to it.

Figure 12.13. a) The graph is clustered on convex clusters;
b) we have a clustered graph which has no convex clusters

In the following, we present a class of cluster schedules that is intrinsically stable.
We start with some definitions. Our notation is slightly different from that of [LEP 02].
From now on, let us consider a precedence task graph G = (V,E) defined as earlier in
the chapter. Let ≺ be the partial order of the tasks in G and ∼ the equivalence relation
defined as follows: for x and y ∈ V , x∼ y if and only if x 
≺ y and y 
≺ x. If two tasks
x and y are such that x ∼ y we say they are independent.

DEFINITION 12.2.– A clustering R = {Vi,≺i}i is a partition of the graph into groups
of tasks associated with a total linear order extension of the original partial order ≺.

In practice, the groups Vi are composed of tasks that will be executed sequentially
on the same processor. From each clustering, we can build a graph whose nodes are
the clusters by adding all edges corresponding to the sequential execution inside the
clusters. We call this graph an induced graph and we denote it by Ginduced

R . All
communication costs between tasks inside a same cluster are set to zero.
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Figure 12.14. The induced graph Ginduced
R related to the clustering R = {{1 ≺1 3},

{2 ≺2 4 ≺2 5 ≺2 7}, {6 ≺3 8}} of Figure 12.13(a). The bold edge added between
tasks 4 and 5 represents the sequential execution of tasks

If R = {Vi,≺i}i is a clustering, we derive a cluster-graph denoted by Gcluster
R

and defined as follows: the nodes of Gcluster
R are the clusters of R, that is, the set of

tasks {Vi}i. There exists an edge between two distinct nodes Vi and Vj 
= Vi if and
only if there exist two tasks x ∈ Vi and y ∈ Vj such that (x, y) ∈ E. Figure 12.15
depicts an example of the cluster graph derived from the clustering of Figure 12.13(a).

Figure 12.15. The cluster-graph Gcluster
R related to

the clustering depicted in Figure 12.13(a)



Stabilization for Parallel Applications 289

DEFINITION 12.3.– (Convex clustering) A clustering R = {Vi,≺i}i is a convex, if
and only if the cluster-graph is acyclic.

The longest path in the graph Gcluster
R verifies the following lemma:

LEMMA 12.1.– For a convex clustering R, the longest path length of the graph
Gcluster

R is an upper bound of its completion time CR
max.

The proof of lemma 12.1 is not developed here, so we refer the reader to [LEP 02].
Thus, the problem is to find a clustering R = {Vi,≺i}i of the graph G minimizing
CR

max.

It is also possible to characterize the clusters of a convex clustering [LEP 02].

PROPERTY 12.2.– Every cluster of a convex clustering is a convex cluster.

Let us comment that this condition is insufficient since convex clusters do not
imply systematically a convex clustering. We can now announce the main result
of convex clusterings. Let C∗

max be the completion time of an optimal clustering.
Considering unit execution times and large communication delays the convex
clustering are 2-dominants [LEP 02].

PROPERTY 12.3.– There exists a convex clustering R, such that CR
max ≤ 2C∗

max.

Proposition 12.3, whose proof is not detailed here, means that there exists a
convex clustering whose execution time on an unbounded number of processors is
no more than a factor of 2 from the optimal clustering. This property of 2-dominants
of the convex clusterings justifies the fact of being only interested in the convex
clusterings because from an approximation algorithm guaranteed for this problem of
decomposition it is possible to deduce one performance guarantee for the problem of
scheduling on an unbounded number of processors.

Another interesting property of convex clusterings is that the assignment obtained
by gathering tasks in convex clusterings is processor-ordered (discussed in Chapter 4),
that is, all the effective communications between two clusters occur from one cluster
to the other cluster, and there are no communications in the opposite direction.

After having stressed the strength of convex clusterings it remains for us to find
a “good” convex clustering. Several heuristics have been proposed for this problem,
most of them based on a recursive decomposition of the precedence task graph, see
for example [LEP 02] and [PEC 08]. For our purposes, in order to generate convex
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clusterings we consider only the recursive decomposition proposed in [LEP 02]. The
algorithm is called the recursive convex clustering algorithm (RCCA). We recall
the principle of the RCCA as follows: first, the RCCA looks for the coarse grain
parallelism. The algorithm determines four convex clusters of tasks A, Ã, A< and
A>, such that A and Ã are independent, i.e., can be executed simultaneously without
communications, and such that the smallest of both groups is as large as possible. If
such a decomposition leads to a clustering whose completion time is smaller than a
sequential execution, then the RCCA applies the same scheme recursively on each
cluster in order to find a smaller grain parallelism (fine grain). The sets of tasks
A< and A> represent the sets of predecessors and successors, respectively, of both
independent clusters A and Ã.

We illustrate the execution of the RCCA in an example. Figure 12.16 shows
a precedence task graph composed of 16 tasks of unit processing time. The
communication delays are constant (i.e., cij = ρ) and equal to ρ = 2. At a first stage,
the graph is decomposed into four clusters A<, A, Ã and A>. On the one hand,
by construction CR

max ≤ |A<| + ρ + max(|A|, |Ã|) + ρ + |A>|. In the example,
at this stage CR

max = 14. The inequality is strict if one of the groups A< or A>

is empty. On the other hand, max(|A|, |Ã|) + min(|A|, |Ã|) = |A| + |Ã|. Thus,
CR

max ≤ |V | + 2ρ − min(|A|, |Ã|). Moreover, from lemma 12.1 the clustering is
interesting if min(|A|, |Ã|) > 2ρ. If the communication delay ρ is small enough, the
execution time of the clustering R is smaller than the sequential time. In this case, the
RCCA is applied recursively on each group of the four induced graphs. Continuing
with the example, only the graph induced by Ã can be decomposed again. After the
decomposition of group Ã, the execution time of the clustering is 6 which is less
than the time of a sequential execution of this cluster (in this example, the sequential
execution of cluster Ã is equal to 7). Finally, the resulting clustering is {A<, A, B,
B̃, B>, A>}, whose execution time is equal to 12.

12.6.2. Stability analysis of convex clustering

Now, we study the impact of disturbances while scheduling convex clusterings.
We show that any algorithm based on convex clusterings is stable since there is no
cumulative effects of disturbances, that is, the intrinsic stability of convex clusterings.
Based on this result we show that the schedule obtained by the RCCA is also
intrinsically stable.

Since Gcluster
R is acyclic, if effective communications occur between two

processors mi and mj , there are no communications in the opposite direction (i.e.,
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Figure 12.16. Recursive decomposition of a graph composed of 16 tasks.
The completion time after clustering is CR

max = 12

between mj and mi). Hence, the effects of disturbances are minimized. More
specifically, if a task receives two perturbed communications originating from
tasks allocated on different processors, its completion time is affected by only the
maximum of the received disturbances.

Let us consider a convex clustering R = {(Vi,≺i)}i obtained by any
decomposition heuristic and σ the computed schedule associated with this clustering.
The tasks of each group are executed on a single processor. The problem of choosing
the local policy (i.e., the total order on each group) of scheduling on each processor
is not addressed here. It is important for practical implementations; however, let us
emphasize that the theoretical analysis is valid for any local policy. Consider a static
execution of this schedule, that is, an execution without changing the order of the task
execution on the different processors.

Let us consider a task u ∈ {Vi}. S(u) denotes the set of tasks in cluster
Vi scheduled before task u, and task u included. For any task u, we note by
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Pc(u) = {v ∈ PREC(u);π(u) 
= π(v)} the set of communicating predecessors of
task u (i.e., the predecessors of task u allocated on a different processor of that of
task u). Finally, for any pair of communicating tasks v and u, we note by εvu the
disturbance value of the communication cvu.

Let us now consider a task t in a cluster {Vi}. Let Ct be its completion time on
the schedule σ and C̃t its actual completion time (i.e., after disturbance). We state the
following property:

PROPERTY 12.4.–

C̃t ≤ Ct + max
v∈Pc(u), u∈S(u)

εvu

Property 12.4 expresses that the maximum delay of a task t corresponds to the
maximum disturbance over all the communications received by the tasks scheduled
before task t, task t included. Suppose now that t is the last scheduled task in the
cluster Vi, thus the maximum delay of t is equal to the maximum disturbances over all
the communications received by all the tasks in this cluster.

Let us now consider the schedule σ. Let x be the task such that Cx = Cmax

and f be the tasks such that C̃max = C̃f . We indicate by L̃ the critical path in the
disturbed graph. Applying property 12.4 recursively over the tasks in the critical path,
the maximum delay of the completion time of task f is the sum of the disturbances
along the path L̃, that is, the number of communications along this path being noted
|L̃|, by indicating by εmax the maximal value of all the disturbances, we then obtain:

C̃f ≤ Cf +
∣∣L̃∣∣εmax

≤ Cx +
∣∣L̃∣∣εmax

and thus the disturbed schedule length of a clustering computed by any heuristic of
convex decomposition is bounded by:

THEOREM 12.1.–

C̃max ≤ Cmax +
∣∣L̃∣∣εmax

|L̃| being the number of edges along the path L̃ means that it is the longest path (in
number of edges) in the graph Gcluster

R .
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We now turn to the recursive decomposition obtained by the RCCA. Based on its
principle, we state below an upper bound on the number of edges in the longest path
of Gcluster

R , which slightly improves the previous result and shows that any schedule
obtained by the RCCA after disturbances in communication delay is intrinsically
stable. Let R = {Vi,j ,≺i,j}i be a convex clustering obtained by the RCCA and let
mp be the number of clusters in its longest path after p partitions.

PROPERTY 12.5.– The maximum number of communications |L̃| in the longest path
of Gcluster

R is bounded by:

∣∣L̃∣∣ ≤ 2
3
(
mp − 1

)

Thus, from theorem 12.1 and property 12.5:

COROLLARY 12.1.–

C̃max ≤ Cmax +
2
3
(m− 1)εmax

Finally, as a concluding comment, let us emphasize that theorem 12.1 means that
the degradation of the makespan computed without disturbances remains bounded. It
achieves the stability of the initial schedule without needing on-line adaptation, and
the bound is tight if and only if εij = εmax; ∀(i, j) ∈ E, which is rare in practice.

12.7. Experiments

We report in this section some results and comparisons based on simulations of the
schedules obtained by convex clusterings and those obtained by ETF and DSC after
disturbances.

In order to generate convex clusterings, we have implemented the RCCA proposed
in [LEP 02]. The two independent groups have been randomly selected. This process
is repeated K times and we keep the best result. K is a constant that has been fixed
experimentally to 10. We have implemented a simple local policy to schedule the tasks
inside each cluster. The local policy is based on communicating tasks, that is, if there
exists two tasks available at the same time, the priority is given to that with the largest
number of successors, breaking ties randomly.
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Next two stopping criteria of recursive decomposition were implemented. The first
criterion was chosen on the cardinality of each cluster, that is, if the number of tasks
inside each cluster is less than a constant, then stop the recursive decomposition. The
constant is equal to 40 and is fixed experimentally. The second criterion is as follows.
If a parallel execution of the cluster is more useful than a sequential execution, then
apply the recursive decomposition, otherwise stop the decomposition. The choice of
one criterion or another depends on the communication delays. The first criterion is for
small communication delays and the second criterion for large communication delays.

We have used a linear version of DSC, that is, the clusterings obtained by DSC
are linear. We recall that the RCCA and DSC consider an unbounded number of
processors while ETF is designed for scheduling on a bounded number of processors.
Thus, to compare the performances between the three algorithms, we first apply the
RCCA and DSC to determine the number of processors (clusters), then ETF takes as
input the smallest number of processors used by other two approaches to compute a
solution.

We have generated random graphs using a Winkler graph generator [WIN 85].
This generator takes as parameter the size of the graph that will be generated.
Winkler graphs are random graphs representative of multidimensional orders. To
generate 2-dimensional order with n elements, n points are chosen randomly in the
[0..1]x[0..1] square. Each point becomes a node and there is an edge between two
points a and b if b is greater than a according to both dimensions. This kind of graph
has only one task without predecessors.

12.7.1. Impact of disturbances in the schedules of the three algorithms

For this experiment we have generated a subset of random graphs from 40 to 1,340
tasks in size, with an increment of 10. We have generated 30 graphs for each measure
point and we compare the average. For all the generated graphs we have assigned the
parameters as follows: the processing time was randomly assigned from a uniform
distribution in the interval pj ∈ [1, 20] and communication delays were randomly
assigned in the interval cij ∈ [1, 10]. The disturbances concern the communication
delays. We have considered that c̃ij ∈ [cij , 2cij ], so the values have been uniformly
chosen from this interval.

We compare the stability ratio (we refer the interested reader to the introduction of
this book for more information) of the schedules produced for each algorithm without
considering the stabilization process. It is defined as the ratio of the actual makespan
(C̃max) and the initial makespan obtained at static execution (Cmax).
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The stability ratio assesses the impact of disturbances in the schedules produced
by the scheduling algorithms. A ratio close to 1 indicates a slight impact of the
disturbances on the schedule. Conversely, any increase of this ratio implies that the
schedule is greatly affected by the disturbances. Average ratio curves for the various
scheduling algorithms are given in Figure 12.17. It can be seen from Figure 12.17
that the RCCA is more stable than DSC and ETF and the result is consistent while
varying the size of the graph. We can observe that the RCCA ratio is close to one.
This means that the makespan of the actual instance remains close to the initial
makespan estimated without perturbation. We also observe that DSC is more stable
than ETF because DSC is not sensitive to perturbations for the special configuration,
that is, for applications with small communication delays and small disturbances
[GER 95].
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Figure 12.17. Performance comparison between RCCA, ETF and DSC
after disturbances (small communication delays)

12.7.2. Influence of the initial schedule in the stabilization process

We now discuss the influence of the initial scheduling algorithm in the stabilization
process by some experiments obtained from simulations in the case of small
communication delays [MAH 03]. We stabilize the execution from the allocation
calculated by the initial algorithm through the addition of pseudo-constraints. We
give below a curve to estimate the efficiency of the strong stabilization algorithm
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experimentally. In order to evaluate the influence of the initial schedule in the
performance of the strong stabilization algorithm, we need only compare ETF and
the linear version of DSC.

We used a performance criterion which is a slightly different definition of the
stability ratio: it is defined as the ratio of the actual makespan (C̃max) and the
makespan obtained after the on-line stabilization (C̃

′
max). This performance criterion

assesses the improvement of an on-line execution with the stabilization process.
Clearly, a ratio equal to 1 indicates that the actual makespan and the makespan
obtained at on-line execution after the stabilization process are identical. On the
contrary, a ratio greater than 1 shows an improvement in the actual makespan after
the stabilization process.

We have generated another subset of Winkler graphs. The size of the graphs
varies from 10 to 500 tasks, with increments of 10. We compare the average for 30
graphs generated for each measure point. The parameter values were assigned as in
the previous experiment.
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Figure 12.18. Stabilization ratio of ETF and DSC (small communication delays)

Average curves of the defined performance criterion of both algorithms are given
in Figure 12.18. It can be observed that the ratio of the initial schedule computed
by DSC is constant and equal to 1. This means that the schedule computed at static
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execution after disturbances is equal to that computed at on-line execution after the
stabilization process. Hence, the stabilization process has no effect on the schedules
produced by DSC. This result is caused by the special structure of the schedule
computed by DSC, that is, the version of DSC used gives linear clusterings and there
are no independent tasks on an identical cluster. Thus, we cannot add pseudo-edges
and no task permutations are possible. Hence, the task execution order at static
execution is the same as the on-line execution leading to schedules with equal
makespan. On the contrary, for an initial schedule obtained by ETF it is possible to
add pseudo-edges avoiding bad permutations between tasks if some disturbances
occur at on-line execution. In this case, the curve corresponding to ETF indicates an
improvement on the makespan after the disturbances.

12.7.3. Comparison of the schedules with and without stabilization

Now, we compare the performance of the schedules with and without the
stabilization process. We have generated random graphs with two different
generators. The first is the Winkler generator and the second is a random layer graph
generator [YAN 94]. This kind of generator takes as input three parameters, the size
of the graph that will be generated, a parameter L which represents the number
of layers composing the graph and a parameter pr which indicates the probability
that two tasks are linked by an edge. We first generate the number of layers in each
precedence task graph. Then, the tasks are fairly distributed in the layers. Next, we
link the edges between tasks at different layers with a probability pr.

12.7.4. Test 1 – comparison for Winkler graphs

We compare the makespan of the RCCA with disturbances and ETF with and
without the stabilization process for the case of large communication delays and small
disturbances. For this experiment we have generated another subset of Winkler graphs.
This subset contains graphs with 1000 to 3500 task nodes with increments of 20. For
each measure point we have generated 30 graphs and we compare the average for
each measure point. The processing time for the tasks was randomly assigned from a
uniform distribution in the interval pj ∈ [1, 10] and the communication delays were
randomly assigned in the interval cij ∈ [10, 20]. For this configuration, the RCCA
used the second criterion to stop the recursive decomposition. For the disturbances,
we have considered the same interval as in the previous experiment.

Figure 12.19 shows the results of comparing the RCCA against ETF with and
without stabilization. As can be observed the schedules produced by the RCCA with
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disturbances and ETF with stabilization are comparable. However, the stability of
RCCA is slightly better than ETF with stabilization. On the contrary, the schedules
computed by ETF at static execution are highly affected by the disturbances. It can be
seen that ETF without stabilization gives worse schedules than the RCCA and ETF
with stabilization. These results show that the RCCA is intrinsically stable without
need of a stabilization process, that is, the schedules produced by the RCCA are able to
absorb the bad effects of disturbances occurring at on-line execution. This is because
of the special structure of the schedules produced by the algorithm.
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Figure 12.19. Performance comparison between RCCA with disturbances, ETF plus the
stabilization process and ETF without the stabilization process (large communication delays)

12.7.5. Test 2 – comparison for layer graphs

The second set of graphs was generated using a random layer graph generator
[YAN 94]. The size of the graph has been varied from 10 to 400 with an increment
of 10. Again, for each measure point we have generated 30 graphs and we compare
the average ratio for each measure point. For the values of processing time and
communication delays we have used the same configuration as in the experiments
of section 12.7.1. The disturbances have been uniformly chosen in the interval
c̃ij ∈ [cij , 4cij ].



Stabilization for Parallel Applications 299

Figure 12.20 depicts the results for the set of layer graphs. It can be seen that
the stabilization process at on-line execution for the schedules obtained by ETF
outperforms DSC with disturbances. That is, for this kind of graph the schedule
computed by ETF is efficiently stabilized at on-line execution by the stabilization
process, despite the fact that for applications with small communication delays
without disturbances DSC outperforms ETF.
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Figure 12.20. Performance comparison between ETF with stabilization
and DSC after disturbances (layer graphs)

The efficiency of the stabilization process is dependent on the structure of the
initial scheduling. The choice of such an algorithm is not often clear, indeed for
instances with small and average communication delays DSC gives better results
than ETF without taking into account disturbances [YAN 94]. On the contrary, if
disturbances (large disturbances) occur at run time, then the schedule obtained by
ETF could be efficiently improved by the stabilization process at on-line execution
which is not the case of the schedule computed by DSC [MAH 03].

12.8. Conclusion

We have presented in this chapter an approach to deal with the disturbances
appearing at run-time on communications for new parallel computing platforms.
First, we have presented the stabilization process that aims at minimizing the effects
of disturbances occurring during execution. Such a process guarantees that the
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solution obtained at run-time on the disturbed instance is not too far from the solution
computed on the initial instance. Then, we have described a scheduling algorithm
which is intrinsically stable.

However, the stabilization approach is interesting and efficient only when the
disturbances are not too important, i.e. when the actual instance remains close to the
initial one. In practice, the differences might be important, and in that case, it is more
useful to use a purely on-line approach.
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Chapter 13

Contribution to a Proactive/Reactive Control of
Time Critical Systems

13.1. Introduction

This chapter focuses on time critical systems (also called time window constraints)
in which task processing times are given by time intervals instead of a single value.
The control of such systems will be treated in a periodic functioning mode. Time is
a crucial notion in these systems because a feasible behavior not only depends on
the logical correctness of the task sequence, but also on the task completion times.
Indeed, the system may enter into a forbidden state if a required result or a required
event occurs too early or late.

These time intervals may correspond either to a temporal flexibility associated with
the processing time of the task; or to an uncertainty as to its real duration due to the
performing resource (machine or human); or also to take account of the deterioration
of the production equipment.

Such systems can be found in computer systems where supervision applications
require data consistency, in manufacturing systems of chemical industry where
chemical reagents are efficient during a given time interval or in the food industry,
where handling and delivery of products are subjected to freshness requirements.

Chapter written by Pascal AYGALINC, Soizick CALVEZ and Patrice BONHOMME.



304 Flexibility and Robustness in Scheduling

Control is mandatory to guarantee the logical and temporal specification
constraints of these systems. Because processing tasks lead to temporal constraint
violations as soon as possible, it is necessary to solve the sequencing problem by
considering uncertainty. Moreover, these systems constitute an attractive framework
for the validation of a proactive/reactive control in a disturbed environment. A
transgression of temporal specifications causes a decrease of the quality of service
and such an approach is justified.

The proposed approach follows the three steps defined in section 1.3.3.1 of
Chapter 1:

– Step 0: this step consists of modeling the considered system to bring out the set
of temporal and logical constraints the schedule has to respect. In others words, the
operations sequence and the required resources are known and modeled. The systems
considered here are called “time critical systems”. A time intervals modeling tool is
applied to translate a temporal tolerance on the task durations or an uncertainty on its
effective duration. Directly formulating an analytical expression of the constraints in
this context is difficult. Thus, Petri nets [BRA 82, DAV 92] are used as a modeling
tool for this phase. More precisely, p-time Petri nets [KHA 97] are used because time
intervals are associated with the sites of the Petri net. Their firing rules impose a firing
compulsion whatever the considered activities are. As the model includes the process
and the routing, it provides the set of temporal and logical constraints to be considered
in step 1.

– Step 1: the second step aims at computing a set of feasible schedules. When the
system is modeled by a Petri net, solving a static sequencing problem is determining
the sequencing of tasks (a particular firing sequence is imposed, so that the model
becomes deterministic) and setting the starting and completion times of each operation
by computing their firing instants.

The investigation of all the feasible sequences is made by enumerative analysis
that does not require any strong property of the net structure. Among the existing
enumerative analysis approaches [BER 83, KHA 97, BOU 93, BON 01a], we use the
one based on firing instants. This approach allows an absolute time referencing. Thus,
enumeration is potentially infinite because the same states are never found again
in regard of time evolution, but the definition of state classes avoids this problem
[BOU 93, BON 01a]. Moreover, together with linear programming techniques, this
approach makes the following possible:
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– determination of the (minimum and maximum) performances of each cyclic
repetitive enumerated functioning mode as well as the (minimum and maximum)
duration of the transient functioning leading from the initial state;

– computation of a reference schedule (the firing transition instants of the chosen
sequence). Criterion may be traditional (cycle time, makespan, etc.) or may refer to
temporal slacks (supervision intervals) that will initialize the following step.

It is possible to evaluate each enumerated sequence and to select one of them.
Generally, this selection needs a multicriterion approach (work-in-progress, cycle
time, number of solutions in case of failure). The chosen sequence is the reference
sequence for the next step.

– Step 2: this step introduces robustness and leads to a reactive dynamic control.
The disturbances that are considered here are earliness or tardiness of the task starting
times. The firing instances are updated and, depending on the level of flexibility, can
lead to a sequence modification [AYG 03, BON 01b]. The criterion used for updating
allows us to determine for all these transitions, all the time intervals in which the
associated event must occur. Of course, this procedure has to be iterated on-line.

These steps are developed in the following sections. Each phase of the procedure
is illustrated on a given manufacturing process.

13.2. Static problem definition

P-time Petri nets [BRA 82, MUR 89, DAV 92] offer an efficient and recognized
tool for modeling discrete event systems, thanks to their graphical nature, their
ability to model parallel and distributed processes and their firm mathematical
foundation. A detailed presentation of this tool is made in the references above.
Petri nets (or PNs) have been extended and modified in several ways to take
into account the system functions and to represent explicitly the temporal
specifications. Deterministic extensions are classified into two categories: the
time PN [RAM 74, SIF 77] where time attributes are single values and the p-time
PN [MER 74, VAN 92, DIA 94, KHA 97] where these ones are time intervals
representing either feasibility gaps of the operations or uncertainties on the process.
Due to the features of time critical systems, p-time PNs have been naturally chosen
because they are able to easily represent synchronization in a constrained time: in
other words, resources must be available in a time compatible with their exploitation.
Notice that our aim is not to develop all the specificities of this model but only to give
an overview allowing its use in a sequencing problem. Nevertheless, key definitions
of autonomous PNs are quickly recalled in the following section.
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13.2.1. Autonomous Petri nets (APN)

A PN is composed of two parts: one is static – the structural part – and one is
dynamic – the behavioral part. The structural part is made of an oriented and valuated
bipartite graph denoted by 〈P, T, Pre, Post >, where:

– P is a finite set of n places noted {p1, p2, . . . , pn},
– T is a finite set of m transitions noted {t1, t2, . . . , tm} with P ∩ T = ∅,
– Pre: P × T → N is the input incidence application, corresponding to the direct

arcs linking places to transitions,

– Post: P ×T → N is the output incidence application, corresponding to the direct
arcs linking places to transitions.

Using linear algebra, the input and output incidence matrices and the flow matrix
are defined by:

– Pre = [δij ], (1 ≤ i ≤ n, 1 ≤ j ≤ m) with [δij ] = Pre(pi, tj).

– Post = [εij ], (1 ≤ i ≤ n, 1 ≤ j ≤ m) with [εij ] = Post(pi, tj).

– W = [wij ], (1 ≤ i ≤ n, 1 ≤ j ≤ m), with wij = Post(pi, tj)− Pre(pi, tj).

Let us denote by:

– ◦t (respectively t◦) the set {p ∈ P/Pre(p, t) 
= 0} (respectively {p ∈ P/

Post(p, t) 
= 0}) of input places (respectively output places) of transition t.

– ◦p (respectively p◦) the set {t ∈ T/Post(p, t) 
= 0} (respectively {t ∈ T/

Pre(p, t) 
= 0}) of input transitions (respectively output transitions) of place p.

An initial marking M0 : P → N, where M0(p) indicates the number of tokens
that are initially in place p is added to the static part. The dynamic part of the net is
realized by the marking modification due to the firing of transitions.

DEFINITION 13.1.– A transition t is fireable for marking M if: ∀p ∈ P ,
M(p) ≥ Pre(p, t).

If the transition is fireable, it may be fired, leading to a new state: the marking M ′

obtained from marking M by the firing of t is given by the following fundamental
equation:

∀p ∈ P, M ′(p) = M(p) + Post(p, t)− Pre(p, t)
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Let σ = t1t2 · · · tk be a firing sequence of transitions which can be performed
from an initial marking M0. The fundamental equation gives the new marking Mk:

Mk = M0 + W × σ

where σ is the characteristic vector of sequence σ (each of the m components is the
number of transition firing occurrences t in sequence σ).

Notice that the fundamental equation is a necessary condition for accessibility.
Thus, a positive vector verifying this equation is not necessarily a feasible sequence
for the considered net.

13.2.2. p-time PNs

The formal definition of a p-time PNs [KHA 97] is given by a pair 〈N, SI〉 where:

– N is a marked PN.

– SI: P → Q+ × (Q+ ∪ {+∞}) with Q+ the set of positive rational numbers.
pi → SI(pi) = [ai, bi] with ai ≤ bi.

SI(pi) defines the static time interval of a token in a place pi and specifies
the minimum and maximum “waiting” time in this place. The model is no longer
autonomous: the state of a p-time PN refers, in addition to the marking, to the
temporal state of the tokens in the sites.

DEFINITION 13.2.– At a given time, the state S of a p-time PN is totally defined by
the pair (M, I) where:

– M is a vector of size n that contains the number of tokens in each place of the
net, for the considered state (∀p ∈ P,M(p) ≥ 0),

– I is a “potential interval” application of firing that associates a time interval
[ak

i , bk
i ] with each token k in place pi. This is called a “dynamic interval”, to be

distinguished from the static interval associated with the place containing this token.
These intervals are related to the time the token arrives in the place.

Thus, if token k arrives at instant τ in place pi then at instant (τ +d) (with d ≤ bi),
the dynamic interval of token k is [max(0, ai − d), bi − d]. Notice that:

– A new state may be reached by the passage of time and not only by transition
firing, as in an autonomous model.
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– Due to the continuity of time, generally, an infinite number of states may be
reached from a given state.

– Two problems may occur in the p-time PN: the first one is the classical blocking
where no transition is enabled. The second one is specific to the considered model: the
dynamic interval of the token is [0, 0] and no output transition of the place is enabled at
this instant. Such a token is defined as a dead-token [KHA 96] indicating a forbidden
state.

This model imposes control on the transition firing, to guarantee the potential
constraints of the places. The firing conditions of a transition generate three states
for a token, depending on the “waiting” time in the place:

– The state “not available”, when the waiting time is less than the temporal
minimum bound of the place containing it. The significance of this situation is that
the task is being performed. This token cannot be used for a transition firing.

– The available state, when its waiting time is found between the minimum and
the maximum bound. In this case, the task may be achieved at any time. This token
must be used by the firing of a transition (firing compulsion).

– The dead-token state, when its waiting time is greater than the maximum bound.
This state represents the transgression of the temporal specifications of the model. The
token remains in place and can no longer participate in the validation of the transitions.

Thus, for determining the firing interval of the enabled transition ti, it is not
sufficient to consider only the tokens in the set of the input places of ti (◦ti). All the
tokens of the net must be taken into account, even if they don’t help enable transition.
The two following definitions allow the expression of an accessibility relation between
different states in a p-time PN.

DEFINITION 13.3.– State E′ = (M ′, I ′) is reached from state E = (M, I)
by the running of time τ if and only if: M ′ = M , ∀j, a token in place pi,
aj′

i = max (aj
i − τ, 0) and bj′

i = bj
i − τ , with bj′

i ≥ 0, where aj
i and bj

i (respectively
aj′

i and bj′
i ) represent the minimum and maximum bounds of the dynamic interval

associated with token j in place pi, for state E (respectively E′).

DEFINITION 13.4.– State E′ = (M ′, I ′) is reached from state E = (M, I) by the
transition firing ti if and only if:

– ti is fireable from E (i.e. the minimum bound of its dynamic interval is equal
to 0),

– ∀p ∈ P,M ′(p) = M(p)− Pre(p, ti) + Post(p, ti),
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– the tokens that remain in places keep their dynamic intervals in E′ (the firing
time is considered as 0). The dynamic intervals of the new tokens created by the firing
of ti are initialized by the temporal interval associated with the places into which they
are dropped.

Among the controlled functioning modes of p-time PNs, the 1-periodic mode
(denoted by periodic mode in the sequel) is such that the time elapsed between two
successive firings of transition ti is always equal to the same quantity. This quantity
defines the functioning period. The formal definition of this mode is given by the
following theorem:

THEOREM 13.1 [RAM 74].– The behavior of the periodic mode is fully determined
by: ∀k, k ≥ 1, Si(k) = Si(1) + (k − 1) × π, where Si(k) is the kth firing instant of
transition ti and π the functioning period.

The first firing instants of the transitions and the functioning period are sufficient
to describe entirely the periodic functioning mode. As this mode provides the same
performance as any other controlled functioning mode [CAL 97], this mode will be
used in step 1 for building a reference schedule.

Illustrative example

To illustrate the presented methodology, a part of a graphite ceramic workshop
is considered. The raw materials (primarily coke and binder pitch) are first mixed
together at a high temperature in order to obtain a homogenous mass. The paste
obtained is then conditioned (the paste is cooled to bring down its temperature).
Finally, the paste is extruded into the shape and size of end-products. A time interval is
associated with each operation. This interval represents an uncertainty on the duration
(for example, the duration of the conditioning depends on the temperature of the
ambient air, of the paste and of the conditioner). It may also correspond to the duration
in which the good properties of the pitch are preserved (transfer, extrusion, etc.). The
line is composed of six mixing tanks, two conveyors, two conditioners and one press.

The modeling of the workshop is completed in two phases. The first one is the
modeling of the precedence (succession) constraints extracted from the manufacturing
process (linear central part of the graph): places model the operations and transitions
are the beginning and ending events.

Then, in the second step of the modeling, the resources necessary to perform these
operations are added up. Thus, transition t2 is synchronized in a constrained time:
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Figure 13.1. The graphite ceramic cell

Figure 13.2. p-time PN model of the cell

the conveyor and one of the conditioners must be free in a time compatible with the
end of the mixing operation. The initial marking of the net represents the idle state
in which the resources are available. To illustrate this, the number of tokens in p6(6)
corresponds to the number of mixers, the number of tokens in p7(2) corresponds to
the number of conditioners and number of tokens in p8(1) corresponds to the only
available press. Notice that only the conditioners necessitate a reuse time (duration
between two consecutive utilizations) which is a minimum of 2 time units. Thanks to
this model, it is possible to generate all the constraints of the sequencing problem of
this workshop. This is developed in the next section.
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13.3. Step 1: computing a feasible sequencing family

Enumerative analysis, also identified as exhaustive simulation, is an efficient
validation method for a p-time PN. It is used here to list all the feasible sequences of
the p-time PN of the considered system. Relying on the firing rule of the transitions,
it facilitates the building of a state class tree similar to the reachability graph obtained
for autonomous PNs. Thus, if the obtained tree (graph) is finished, the behavior
of the system can be investigated by analyzing some of its interesting properties:
boundedness, liveness, existence of steady states, existence of live tokens sequences
in the case of the p-time model, etc.

All the notions that contribute to this analysis are not be evoked here (for more
details, see [BOU 93, BON 01a]). Only the relevant ones, used to build the set of
constraints related to an enumerated sequencing, are developed.

The fundamental feature of the p-time PNs is the temporal state of the tokens. In
the sequel, it will be considered that a token is identified by its place (static aspect)
as well as its consumption instant (dynamic aspect). In the case of 1-valued arcs, this
induces the following definition of the function TOK:

DEFINITION 13.5.– TOK: N × N∗ → P(P ), with P(P ) the set of the parts of P .
TOK(j, n) = {p ∈ P/ a token exists in place p, created by the jth firing instant with
and consumed by the nth, with j < n} TOK(0, n) = {p ∈ P/ a token exists at the
initial instant in place p, and consumed by the nth, with n > 0}.

In the case of a multi-validation, for differentiating the tokens contained in the
same place, index j and n are associated with them. Indeed, by using these indices, it is
possible to have any type of management of the tokens in place. A FIFO management
is considered here. Notice that the building of the sets TOK depends directly on the
considered sequence (the firing sequence). From these sets TOK(j, n), the minimum
and maximum availability durations of the tokens in the places are related to the static
time intervals associated with the considered places and their expression are:

Dsmin(j, n) =

⎧⎨
⎩

max
i/pi∈TOK(j,n)

(
ai

)
if TOK(j, n) 
= ∅

0 if TOK(j, n) = ∅

Dsmax(j, n) =

⎧⎨
⎩

max
i/pi∈TOK(j,n)

(bi) if TOK(j, n) 
= ∅
0 if TOK(j, n) = ∅

with ai and bi the bounds of the static interval ([ai, bi]) of place pi.
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Enumerative analysis is based on the notion of firing instants introduced in
[BOU 93]. For the sake of simplicity, the index of transitions are classified according
to the sequence considered. Figure 13.3 illustrates the following σ sequence,
σ = t1t2 · · · tq.

Figure 13.3. Firing instants

Thus, x1 is the firing instant of transition t1, (x2 +x3) is the time elapsed between
the third firing instant and the first (i.e. the time elapsed between the firing of t1 and
the firing of t3), etc. To simplify the expressions in what follows, xi will represent
the firing instant of the ith fired transition (ti). Indeed, this is true if the reasoning is
made relatively to the transition firing preceding this of ti; in absolute value, the firing
instant of ti corresponds to the sum

∑i
k=1 xk.

First firing instant: a transition t1 initially enabled will be the first fired if and only
if it exists x1 ≥ 0 such that: Dsmin(0, 1) ≤ x1 ≤ Dsmax(0, i), ∀i, 1 ≤ i ≤ n.

The left part expresses the availability of the tokens engaged in the firing of
transition t1 (i.e. only the tokens located in input places of the transition considered
and participating to the firing are taken into account). The right part gives the set of
the constraints preserving from death all the tokens present in the net at the evaluation
instant. Thus, the consideration of the tokens located in the input places of t1 is
insufficient.

Note: in the expression Dsmax(0, i), ∀i, 1 ≤ i ≤ n, the quantity n represents only
the fact that at the evaluation of the first firing instant, the set of the tokens initially
present in the net are considered, without taking care over their consumption instant.

qth firing instant: a transition tq enabled by the firing instant i (0 ≤ i ≤ q − 1)
will be the qth to be fired (after the firing of t1,t2,. . . , tq−1) if and only if xq exists
such that:

Dsmin(u, q)u∈SEN(q) ≤
q∑

s=u+1

xs ≤ Dsmax(u, k)u∈SEN(q), k=q,...,n (13.1)
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with SEN(q) = {u/TOK(u, q) ⊂ (◦tq)}, and

q∑
s=i+1

xs ≤ min(Dsmax(j, k)j=0,...,i−1,
k=q+1,...,n

−
i∑

s=j+1

xs) with i > 0 (13.2)

and

q∑
s=i+1

xs ≤ min
(

Dsmax(j, k)j=i+1,...,q−1,
k=q+1,...,n

+
j∑

s=i+1

xs

)
with i + 1 < q (13.3)

SEN(q) represents the creation instants set of tokens consumed by the qth firing
instant. For the lower bound, the set of inequalities (13.1) represents the contribution
of the tokens participating to the firing considered (i.e. the qth, their creation instant
being of course less than or equal to i). For the upper bound, the previous set is
extended to the tokens which have a creation instant less than or equal to i, but with a
consumption instant possibly greater than q. The set of inequalities (13.2) represents
the influence of the tokens created after the enabling instant i and consumed after the
qth firing instant. The set of inequalities (13.3) represents the impact of the tokens
created after the ith firing instant and consumed after the qth. After the addition of∑i

s=0 xs to the previous results, the following conditions are obtained:

Dsmin(i, q) +
i∑

s=0

xs ≤
q∑

s=0

xs ≤ min
j=0,...,q−1
k=q,...,n

(
Dsmax(j, k) +

j∑
s=0

xs

)
,

and

Dsmin(u, q)u∈SEN(q)\{i} ≤
q∑

s=u+1

xs ≤ Dsmax(u, k)u∈SEN(q)\{i};
k=q,...,n

.

To express the obtained results more simply, the definition of the following
coefficients is required:

cuq =

{
Dsmin(u, q) if u ∈ SEN(q)

0 otherwise
,

djk =

{
Dsmax(j, k) if TOK(j, k) 
= ∅
+∞ otherwise

with ∀(j, k) ∈ [0, q−1]×[1, q], j /∈ SEN(q) and k 
= q, then cjk = 0, and ∀k ∈ [0, q],
xk ≥ 0.
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Intuitively, notice that cuq values are referred to as a set of tokens enabling a
particular transition and initiating its firing. That is why we specify that the cuq values
associated with the tokens that do not participate in the qth firing of the transitions
are inhibited. The djk values refer to the tokens present in the net at the observation
instant.

The following condition is finally obtained:

max
j=0,...,q−1
k=q,...,n

(
cjk +

j∑
s=0

xs

)
≤

q∑
s=0

xs ≤ min
j=0,...,q−1
k=q,...,n

(
djk +

j∑
s=0

xs

)

This result can be generalized to a firing sequence.

DEFINITION 13.6.– A sequence of transitions t1t2 . . . tq may be fired respectively at
firing instants 1, 2, . . . , q if and only if x1 ≥ 0, x2 ≥ 0, . . . , xq ≥ 0 exist such that:

Sσ(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0k ≤ x1 ≤ d0k, k = 1, . . . , n

max
k=2,...,n

(
c0k, c1k + x1

) ≤ x1 + x2 ≤ min
k=2,...,n

(
d0k, d1k + x1

)
...

max
j=0,...,q−1
k=q,...,n

(
cjk +

j∑
s=0

xs

)
≤

q∑
s=0

xs ≤ min
j=0,...,q−1
k=q,...,n

(
djk +

j∑
s=0

xs

)

DEFINITION 13.7.– The firing space at the qth firing instant denoted by FSP(q) is the
set of non-negative vectors (x1,. . . ,xq) such that the first, the second, etc. and the qth
firing conditions are satisfied.

In a cyclic functioning mode, the repetitive firing sequence associated with
the p-PN makes it possible to deduce easily from the model the suitable values
TOK(·). Thus, from these values, the inequalities system representing the firing
space associated with the repetitive sequence can be expressed.

The assumption made on the initial marking (available or not for the firing of the
initially enabled transitions) identifies the system as relaxed or non-relaxed. Whatever
the case, the knowledge of a repetitive firing sequence is not sufficient to determine the
bounds of its performance evaluation. Thus, the existence of initially present tokens
amounts to considering that the steady state is reached as soon as they leave the system
(the FIFO management of the tokens in the different places is significant).
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To face this particularity, it is necessary to build the firing space associated with
the considered repetitive sequence until index q, with q determined as follows.

Let us consider a firing finite sequence σ, with σ = t1t2 . . . ts (the transitions are
indexed according to their firing order in σ). Let us denote by:

– quantity |σ| the number of transitions composing the sequence σ (here, |σ| = s),

– mapping ordσ: T → N∗, tu → ordσ(tu) the function representing the
occurrence of tu in the sequence σ.

So, for each transition tu of the net, quantity ntu is evaluated by:

ntu = max
pi∈◦tu

(
ord

(
tu
)

+ M0

(
pi

)× |σ|)

The quantity q is then deduced from the previous relations and equal to:

q = max
∀tu

(
ntu

)

For a repetitive firing sequence σ, the duration of a cycle, denoted by πobj , is given
by the following expression:

πobj =
|σ|∑
i=1

xi

The following linear programs then provide the functioning bounds of the
repetitive sequence σ, the network being assumed to be relaxed (the quantities c0k,
d0k, ∀k do not create any restriction in this case [BON 01a]):

μmin
σ = min(π)

(
μmax

σ = max(π)
)

with
|σ|∑
i=1

xi, subject to the constraints of system Sσ(q).

In order to obtain a periodic schedule, associated with the firing sequence σ, with
a fixed cycle time πobj ∈ [μmin

σ , μmax
σ ], the following system has to be solved:

|σ|∑
i=1

xi = πobj , subject to the constraints of the system Sσ(q).
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Note: the consequence of the cyclic feature of the expressed constraints (due to
the fact that the considered functioning mode is 1-periodic) is that the determination
of the functioning bounds can be achieved by using the system S(|σ| + 1), extended
with inequalities corresponding to the tokens for which the consumption occurs later.
The system Sσ(q) can be rewritten under this following form:

Sσ(q) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0k ≤ x1 ≤ d0k∀k, 1 ≤ k ≤ n

max
(
c02 − x1, c12

) ≤ x2 ≤ min
k=2,...,n

(
d0k − x1, d1k

)
...

max
(

max
j=0,...,q−2

(
cjq −

q−1∑
s=j+1

xs

)
, cq−1,q

)
≤ xq

xq ≤ min
(

min
j=0,...,q−2
k=q,...,n

(
djk −

q−1∑
s=j+1

xs

)
, min
k=q,...,n

(
dq−1,k

))

with ∀k, c0k = 0 and d0k = +∞ and ∀(j, k) ∈ [0, q − 1] × [1, q], j /∈ SEN(q) and
k 
= q, then cjk = 0.

The specific structure of the system points out clearly the relations existing
between some firing instants. The choice of a value for the qth firing instant (i.e. xq)
could then depend on the chosen values for the (q − 1)th previous firing instants.

Application to a graphite ceramic workshop

The investigation of the particular functioning σ = t1t2t3t4t5t6 of length |σ| = 6
leads to the following system:

Sσ(7) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ x1 ≤ +∞
0 ≤ x2 ≤ +∞
4 ≤ x3 ≤ 10

0 ≤ x4 ≤ +∞
0 ≤ x1 + x2 + x3 + x4 ≤ +∞
4 ≤ x5 ≤ 6

8 ≤ x6 ≤ 720

0 ≤ x4 + x5 + x6 + x1 ≤ +∞
60 ≤ 5× (

x1 + x2 + x3 + x4 + x5 + x6

)
+ x2 ≤ 130

2 ≤ x6 + x1 + x2 ≤ +∞
8 ≤ x4 + x5 + x6 + x1 + x2 + x3 + x4 ≤ 36
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This system is obtained with MT = [5, 0, 1, 0, 1, 1, 1, 0, 1]. It corresponds to
the marking of one of the state classes associated with the considered functioning.
Performance evaluation can be computed by the following linear programs:

μmin
σ = min(π)

(
μmax

σ = max(π)
)

with
6∑

i=1

xi, subject to the constraints of Sσ(7).

The performances for the sequence σ = t1t2t3t4t5t6 are:

μmin
σ = 16 :

([
x1, . . . , x6

]
= [0, 0, 4, 0, 4, 8]

)
,

μmax
σ = 26 :

([
x1, . . . , x6

]
= [0, 0, 10, 0, 6, 10]

)
.

A periodic schedule for a desired period can then be computed. The next section is
devoted to the synthesis of a dynamic robust control when disturbances occur on the
planned instants of this periodic reference schedule.

13.4. Step 2: dynamic phase

13.4.1. Temporal flexibility

The occurrence of a disturbance on the ith firing instant xi (the ith fired transition
in σ) will be associated with an advance or a delay on the previously scheduled instant.
So, the disturbed firing instant will correspond to xnew

i with xnew
i = xi+Δxi (Δxi < 0

representing an advance and Δxi > 0 a delay, on the previously scheduled instant xi).
The admissibility of a disturbance xi on the ith firing instant, for a particular schedule
is verified if and only if:

max
(

max
j=0,...,i−2

(
cji −

i−1∑
s=j+1

xs

)
, ci−1,i

)
− xi ≤ Δxi

≤ min
(

min
j=0,...,i−2
k=i,...,n

(
djk −

i−1∑
s=j+1

xs

)
, min
k=i,...,n

(
di−1,k

))− xi

Δxi depends on the previous choices on the transition firing instants.

Thus, the occurrence of an admissible disturbance Δxi on the ith firing instant
xi will not produce any operation duration violation for the system considered
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if an actualization of the following firing instant (the post-disturbance ones)
depending on the ith one is feasible. This actualization refers to the firing instants
xi+1, xi+2, . . . , x|σ|, but also x1, x2, . . . , xi−1, these last quantities being relative
to the period following the one during which the disturbance appeared. Indeed, the
constraints considered are cyclic due to the periodic functioning mode. So, if a
disturbance occurs on the ith firing instant xi, the firing instants xi+1, xi+2, . . . , x|σ|,
x1, x2, . . . , xi−1, will be referred to as post-disturbance instants. The post-disturbance
instants that are coming after the firing instant xi must verify the following new
conditions:

max

(
max

j=0,...,u−3

(
cju −

u−1∑
s=j+1

xs −
u−1∑
r=i

Δxr

)
,

cu−2,u −
(
xu−1 + Δxu−1

)
, cu−1,u

)
≤ xnew

u

and

xnew
u ≤ min

j=0,...,u−3,
k=u,...,n

(
djk −

u−1∑
s=j+1

xs −
u−1∑
r=i

Δxr

)
,

xnew
u ≤ min

(
min

k=u,...,n
du−2,k −

(
xu−1 + Δxu−1

)
, min
k=u,...,n

du−1,k

)

with u ∈ {i + 1, . . . , |σ|} ∪ {|σ|+ 1, . . . , |σ|+ i− 1}, i ≥ 2 and xnew
|σ|+k = xnew

k .

To determine a robust schedule that allows smoothing over the maximum
disturbance on the ith firing instant, for a given cycle time, the following optimization
problem can be defined:

maximize/minimize (Δxi)

subject to the constraints:
|σ|∑
r=1

xr = πobj ,

max
(

max
j=0,...,i−2

(
cji −

i−1∑
s=j+1

xs

)
, ci−1,i

)
− xi ≤ Δxi

Δxi ≤ min
(

min
j=0,...,i−2
k=i,...,n

(
djk −

i−1∑
s=j+1

xs

)
, min
k=i,...,n

(
di−1,k

))− xi
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∀u ∈ {
i + 1, . . . , |σ|} ∪ {|σ| + 1, . . . , |σ| + i − 1

}
, i ≥ 2, with xnew

|σ|+r = xnew
r ,

r = 1, i− 1.

max
(

max
j=0,...,u−3

(
cju −

u−1∑
s=j+1

xs −
u−1∑
r=i

Δxr

)
,

cu−2,u − (xu−1 + Δxu−1), cu−1,u

)
≤ xnew

u

and

xnew
u ≤ min

(
min

j=0,...,u−3
k=u,...,n

(
djk −

u−1∑
s=j+1

xs −
u−1∑
r=i

Δxr

)
,

min
k=u,...,n

du−2,k −
(
xu−1 + Δxu−1

)
, min
k=u,...,n

du−1,k

)

and ∀r ∈ {1, . . . , |σ|}, xr and xnew
r verify Sσ(q).

The obtained margins define the firing instant supervision interval, i.e. the
admissible temporal domain of the considered event. If the admissibility of the
disturbance is verified, the post-disturbance firing instants will be actualized on-line.
The control then becomes dynamic, as the approach must be reiterated to determine
the margins available on the next firing instant, and so on. In the opposite case, if the
transition firing cannot occur in this interval, the disturbance will inevitably lead to
a potential constraint violation if the control structure is maintained. These margins
give a decisional criterion in order to use post-optimization procedures.

13.4.2. Temporal flexibility and sequential flexibility

The aim is to extend the flexibility level provided by the firing instant approach to
obtain flexibility on the sequence order. To increase the margins given by the previous
approach, it is possible to evaluate other possible functioning modes by introducing
partial order on the considered firing sequence. Then, proactive/reactive control will
be treated. The proposed approach, introducing partial order on the sequence, will not
only re-actualize the firing instants to compensate the effect of a disturbance, but will
also modify the sequence order. Of course, the sequence order to be redefined will
concern only the transitions subsequent to the one shifted by the occurrence of the
disturbance. Indeed, the previous firing instant approach requires a “strict” ordered
sequence. This order is necessary to build the sets TOK and the associated firing
inequalities system Sσ(q).
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Firing dates are expressed as relative values and represent the elapsed time between
two firing instants associated with successive transitions in the sequence considered
(xi ≥ 0 corresponds to the elapsed time between firing of ti−1 and ti). Consequently,
a solution of Sσ(q) is a set of non-negative instants and performance evaluation is
restricted to the sequence considered. The sequence used to establish the associated
firing inequalities system Sσ(q) will be called the “initial sequence” in what follows.
Variable xi represents the elapsed time between the (i−1)th and the ith firing instant.
As the transitions are labeled according to the initial sequence, xi also represents the
elapsed time between ti−1 and ti. Thus, when xi takes a non-negative value, ti−1

is fired before ti. However, if negative values are permitted, then this order may be
permuted: xi < 0 ⇔ ti−1 is fired after ti. Introducing partial order on the sequence
offers to extend the results of the approach based on firing instants as well in terms of
performance evaluation as the dynamic proactive/reactive control.

13.4.2.1. Partial order in performance evaluation

Ensuing from the interpretation of the previous section, as the partial order is
obtained by permitting negative firing instants, some new constraints must be added
to preserve the semantics of the firing constraints stemming from a definite sequence.
This specific sequence, called a reference sequence in what follows, becomes the root
of a family of possible schedules.

So, whatever the functioning generated from the reference sequence, the properties
to be maintained are:

– The semantics of the cycle time expression
∑|σ|=s

i=1 xi = πobj for the repetitive
sequence σ = t1t2 . . . ti . . . ts.

As the firing dates are expressed as relative values and as the cycle time is positive,
then it suffices to impose that the last fired transition is transition ts. Consequently, the
reference sequence σ is the root of (s− 1)! sequences in the best case.

– The preservation of the same number of firing occurrences of each transition in
the reference sequence σ because the generated sequence must be a repetitive one.

Hence, the firing instants xi with xi ∈ Q must verify the following constraints:

∀j = 1, s− 1,

j∑
i=1

xi ≤
s∑

i=1

xi, ∀j = 1, s

j∑
i=1

xi ≥ 0
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As the framework is the repetitive functioning, the set of the firing constraints
associated with the reference sequence σ is established by using the marking of
one of the state classes belonging to the steady state of the chosen functioning, and
moreover for a relaxed system. For each enabled transition ti, a positivity constraint
on its firing instant xi (0 ≤ xi ≤ +∞) is expressed in Sσ(q). This constraint
represents the possibility for the earliest firing date of each enabled transition to be
the instant 0. According to the previously added new constraints, and as quantities
cjk and djk are positive (see section 13.3), it is possible to remove from Sσ(q) the
positivity constraints on the firing instant(s) of the initially enabled transition(s)
without information loss. So, from a reference sequence σ = t1t2 · · · ti · · · ts with
|σ| = s and its associated system Sσ(q), the performance evaluation of other possible
functioning modes by means of introducing partial order in σ can be stated as
follows:

μmin
σ = min (π)

(
μmax

σ = max (π)
)

with π =
|σ|∑
i=1

xi,

subject to:

∀j = 1, |σ| − 1,

j∑
i=1

xi ≤
|σ|∑
i=1

xi, ∀j = 1, |σ|,
j∑

i=1

xi ≥ 0

and

Sσ(q)− {
0 ≤ xi ≤ +∞, i | ∀p ∈ ◦ti, M0(p) ≥ Pre

(
p, ti

)}
with

◦ti =
{
p ∈ P | Pre

(
p, ti

) 
= 0
}
.

Application to a graphite ceramic workshop

For the marking of state class leading to the reference schedule σ = t1t2t3t4t5t6,
transitions t1, t2 and t4 are enabled. Thus, the linear programs considered to compute
performance evaluation are:

μmin
σ = min (π)

(
μmax

σ = max (π)
)

with π =
6∑

i=1

xi
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subject to: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 ≤ x3 ≤ 10

4 ≤ x5 ≤ 6

8 ≤ x6 ≤ 720

0 ≤ x1 + x2 + x3 + x4 ≤ +∞
4 ≤ x4 + x5 + x6 + x1 ≤ +∞
60 ≤ 5× (

x1 + x2 + x3 + x4 + x5 + x6

)
+ x2 ≤ 130

2 ≤ x6 + x1 + x2 ≤ +∞
8 ≤ x4 + x5 + x6 + x1 + x2 + x3 + x4 ≤ 36

∀j = 1, 5,

j∑
i=1

xi ≤
6∑

i=1

xi

∀j = 1, 6,

j∑
i=1

xi ≥ 0

The results are:

μmin
σ = 12 : σmin = t1t2t4t3t5t6 : [0, 0, 4,−4, 4, 8]

μmax
σ =

65
2

: σmax = t2t3t4t5t1t6 :
[
65
2

,−65
2

, 10,
7
2
, 6, 13

]

Notice that the previous sequences are different from one another and furthermore
from the reference sequence σ = t1t2t3t4t5t6. The cycle time interval is larger than
that obtained for the reference sequence ([16, 26] ⊂ [12, 65/2]).

13.4.2.2. Partial order in proactive/reactive control

As seen previously (see section 13.4.1), the firing instants actualization due to
a disturbance (delay/advance in regard of the scheduled instant) must preserve the
reference firing sequence leading to time flexibility. Using partial order, it is possible
not only to actualize the firing instants to compensate for any disturbance effect, but
also to modify the firing sequence (order flexibility).

To express the constraints to be considered for the actualization of firing instants,
the sequence associated with the current schedule is as follows: t1 is the first transition
of the sequence, ts the last transition, and the transitions are indexed in regard of the
firing sequence: t1t2 . . . titi+1 . . . ts.
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Let us denote by:

– xref
i : the planned firing instant of transition ti for the current schedule.

– xi: the effective firing instant of transition ti. xi = xref
i + Δxi with Δxi an

admissible delay (advance) (Δxmin
i ≤ Δxi ≤ Δxmax

i ).

When using order flexibility, the next actualized firing instant xnew
k must respect

the following constraints along with those expressed in (13.4):

1)
∑i

k=1 xk ≤
∑j

k=1 xnew
k , ∀j ∈ {i + 1, . . . , s}.

2)
∑j

k=1 xnew
k ≤ minn=i+1,s(

∑n
k=1 xnew

k ), ∀j ∈ {1, . . . , i}.

The first constraint lays down that the next actualized firing instants must be greater
than the current instant (firing instant of transition ti) while allowing permutations in
the order of the transitions still awaiting firing (i.e ti+1 . . . ts). The second constraint
allows a new order for the transitions already fired (t1 . . . ti), but for the next cycle.

Moreover, the next actualized firing instants must respect the constraints of a
periodic schedule to ensure a good management of the work-in progress.

3) 0 ≤∑j
k=1 xnew

k ≤∑s
k=1 xnew

k , ∀j ∈ {1, . . . , s−1} with
∑s

k=1 xnew
k = πnew

The quantities xnew
k are obtained by a linear program that maximizes the

supervision interval of the next fired transition. As this next transition is unknown
a priori when several transitions are enabled by the current marking, an equal
number of linear programs as enabled transitions must be solved to select each of the
transitions in turn by time progression.

13.5. Restrictions due to p-time PNs

The p-time PNs offer a powerful graphic way to naturally represent the constraints
of resource availabilities by means of synchronization structures. Nevertheless, this
model is not suitable for representing task preemption. Thus, the proposed approach
is more appropriate for systems without β1.

The robust proactive/reactive approach presented, initially developed to treat the
repetitive functioning has been extended to transient phases leading to a repetitive
functioning: starting phase of a production system [CAL 04] (and conversely from
the periodic functioning mode to unload the system), transient functioning during the
maintenance phase [CAL 05].
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For the starting phase leading to a repetitive functioning, the model is assumed to
be non-relaxed to build the firing inequalities system S(q). Some constraints are added
to this system to express that the firing instants of the repetitive reference sequence are
relevant if they are greater than the transient mode duration.

For transient functioning during the maintenance phase, according to the previous
restriction, p-time PNs remain efficient if preventive maintenance is considered as
the temporary loss of some unoccupied resources, regarded as a non-preemptive
task and not requiring a stochastic model. To avoid down time of the manufacturing
system, the policy generally consists of fitting a maintenance program into the
production schedule. This decreases the number of the available resources required to
continue the production and causes a transient functioning during the maintenance
phase. At step 0, as the possible states of a resource are “free”, “operating” or “in
maintenance”, the model is completed to represent the unavailability state due to
preventive maintenance. Thus, some places and choice structures must be added.
For instance, for the illustrative example, the initial model described in Figure 13.2
becomes the model described in Figure 13.4.

Figure 13.4. Maintenance model

Consequently, fitting a preventive maintenance plan into a busy production
schedule will be tantamount to determining the firing instants of the following
sequence σ = (σrσtσ

′
r), where
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σr is the reference periodic sequence of the current functioning, σt is the sequence
associated with the preventive maintenance phase, and σ′

r is the reference periodic
sequence of the new functioning.

So, a firing inequalities system is built from this sequence. Constraints are added
to ensure the good management of the work-in process, and to express that the firing
instants of the preventive maintenance sequence are relevant if they are greater than
those of the current functioning, but less than those of the new functioning.
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Chapter 14

Small Perturbations on Some NP-Complete
Scheduling Problems

We consider some basic NP-complete scheduling problems in which we add both
a feasible solution and a small perturbation to the instance (typically, removing one
of the precedence constraints, decreasing or increasing by one unit of a numerical
parameter, etc.). The aim is to compute a feasible schedule for the perturbed
problem, using the schedule of the unperturbed problem which is given with the
problem instance. It is proved that this perturbed problem is NP-complete for some
basic scheduling problems (single machine scheduling, multiprocessor scheduling,
scheduling with communication delays, etc.). Thus, it is shown that for these
problems the knowledge of a solution cannot be efficiently used to obtain a schedule
for the perturbed problem.

14.1. Introduction

The goal of this chapter is to study, for some basic NP-complete scheduling
problems, the way a feasible solution can be used to compute a schedule when a
small perturbation occurs on the data. The perturbations considered here are minimal:
for example, they consist of removing a unique precedence constraint, or removing a
single task, or in the unitary increasing, or decreasing, of a sole numerical parameter.
Furthermore, the perturbations taken into account are discrete (the variations on the

Chapter written by Christophe PICOULEAU.
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numerical parameters are integer). Scheduling problems where the perturbations
of the numerical parameters are continuous are taken into account in [HAL 04].
The reader can refer to section 4.2.1, which gives the main results of this study.
The perturbations considered are not obvious in the sense that the answer to the
decision problems is not always “yes”. It is proved that despite the minimality of the
perturbations it is not always easy to efficiently use the schedule provided before
the perturbation. Indeed it has been proved that the NP-completeness of this kind
of perturbation problems issued from some well-known NP-complete problems
of scheduling theory (see [GAR 79, PIC 95]): sequencing with release times and
deadlines; multiprocessor scheduling for any fixed number of processors m,m ≥ 2;
unitary execution times (UET) schedule of a precedence graph on m processors;
unitary execution times and unit communication times (UET-UCT) schedule of a
precedence graph on an unbounded number of processors.

14.2. Problem definitions

We give here the definitions of the NP-complete scheduling problems that will be
considered in this chapter. We also define formally the perturbed versions of these
problems: an instance of a perturbation problem is obtained by adding both a feasible
schedule and the perturbation of one parameter to the former instance.

14.2.1. Sequencing with release times and deadlines

The sequencing with release times and deadlines decision problem, henceforth
called SRTD, is defined as follows:

INSTANCE: a set T of n tasks, and for each task i ∈ T : a processing time pi ∈ N,
a release time ri ∈ N, and a deadline di ∈ N.

QUESTION: is there a single processor non-preemptive schedule for T that
satisfies the release times and deadline constraints? This problem is NP-complete in
the strong sense (see [GAR 79]).

The SRTD with a unitarily increasing single release time, denoted by SRTDr, is
defined as follows:

INSTANCE: a set T of n tasks, for each task i ∈ T : a processing time pi ∈ N, a
release time ri ∈ N, and a deadline di ∈ N; S a schedule satisfying the release times
and the deadlines; a task t ∈ T .
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QUESTION: is there a single processor non-preemptive schedule that satisfies the
release times and deadlines where the new release time for the task t is rt + 1 (the
other parameters stay unchanged)?

Symmetrically, the SRTD with a unitarily decreasing deadline, denoted by SRTDd,
is defined as follows:

INSTANCE: a set T of n tasks, for each task i ∈ T , a processing time pi ∈ N, a
release time ri ∈ N, and a deadline di ∈ N; S a schedule satisfying the release times
and the deadlines; a task t ∈ T .

QUESTION: is there a single processor, non-preemptive schedule that satisfies the
release times and the deadline constraints in which the new deadline for the task t is
dt − 1?

Note: the two problems above are equivalent since by reversing the time axis,
SRTDr can simply be transformed into SRTDd and vice versa.

The SRTD with a unitarily increasing processing time, denoted by SRTDp, is
defined as follows:

INSTANCE: a set T of n tasks, for each task i ∈ T , a processing time pi ∈ N, a
release time ri ∈ N, and a deadline di ∈ N; S a schedule satisfying the release times
and the deadlines; a task t ∈ T .

QUESTION: is there a single processor, namely preemptive schedule that satisfies
the release times and the deadlines when the new processing time for the task t is
pt + 1?

14.2.2. Multiprocessor scheduling

The multiprocessor scheduling problem, called MS, is defined as follows:

INSTANCE: a set T of n tasks, for each task i ∈ T , a processing time pi ∈ N; m

the number of identical processors; D ∈ N the overall deadline.

QUESTION: is there a m-processor non-preemptive schedule for T that meets the
overall deadline D?

This problem is NP-complete for every fixed m ≥ 2 and NP-complete in the strong
sense when m is a parameter (see [GAR 79]).
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The multiprocessor scheduling with a unitary decreasing of one of the processing
times for m = 2 processors, denoted by MSp−2 is defined as follows:

INSTANCE: a set T of n tasks, for each task i ∈ T , a processing time pi ∈ N; an
overall deadline D; S a two processor schedule of T with length less than or equal to
D; a task t ∈ T .

QUESTION: is there a two processor schedule of length D−1 when the processing
time of t becomes pt − 1 and all other processing times remain unchanged?

The multiprocessor scheduling with a unitarily increasing processing time for
m = 2 processors, denoted by MSp+2 is defined as follows:

INSTANCE: a set T of n tasks, for each task i ∈ T , a processing time pi ∈ N; an
overall deadline D; S a two processor schedule of T with length less than or equal to
D; a task t ∈ T .

QUESTION: is there a two processor schedule of length D when the processing
time of t becomes pt + 1 and all other processing times remain unchanged?

14.2.3. Unit execution times scheduling

The unit execution times scheduling decision problem on m processors, named
UET is defined as follows:

INSTANCE: G = (I, A) a directed acyclic graph; m and B two positive integers.

QUESTION: is there a schedule of G on m processors with length less than or
equal to B?

For this problem, a schedule is a mapping S of the set of tasks I to {1, . . . , B} ×
{1, . . . , m} such that: for two tasks i and j, i 
= j, S(i) = (ti, πi) 
= S(j) = (tj , πi)
(at each time period each processor executes at most one task) and m tasks at most
can be processed during an equivalent time period; for each arc (i, j) of A, ti < tj (an
arc (i, j) is also a precedence constraint, so i precedes j).

It is well known that this problem is NP-complete in the strong sense even for
B = 3 (see [GAR 79, LEN 78]).

The UET−(i,j) problem (one precedence constraint is deleted) is defined as
follows:
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INSTANCE: G = (I, A) a directed acyclic graph, (i, j) ∈ A an arc of G; m,B

two positive integers; S a UET schedule of G on m processors with length less than
or equal to B.

QUESTION: is there a UET schedule of G−(i,j) = (I, A \ {(i, j)}) on m

processors with length less than or equal to B − 1?

The UET−i problem (one task is deleted) is defined as follows:

INSTANCE: G = (I, A) a directed acyclic graph, i ∈ I a task of G; m and B

two positive integers; S a UET schedule of G on m processors with length less than
or equal to B.

QUESTION: is there a UET schedule of G−i = (I \ {i}, A′) on m processors
with length less than or equal to B − 1? (A′ is the subset of arcs a of A such that i is
not an endpoint of a.)

14.2.4. Scheduling unit execution times with unit communication times

The UET-UCT scheduling problem is defined as follows:

INSTANCE: G = (I, A) a directed acyclic graph and B a positive integer.

QUESTION: is there a schedule with communication of G with length less than
or equal to B?

A schedule with communication is a mapping S of the set of tasks I to {1, . . . , B}
× N∗ such that: for two distinct tasks i and j, S(i) = (ti, πi) 
= S(j) = (tj , πj) (for
each time period a processor executes at most one task); for each arc (i, j) of A, if
πi = πj then ti < tj and if πi 
= πj then ti + 1 < tj (if i and j are performed by
the same processor then there is no communication between the two tasks: so ti < tj ,
otherwise the task j needs a unitary communication from i and ti + 1 < tj).

This problem has been proved NP-complete in the strong sense in [PIC 95].

The UET-UCT−(i,j) problem (one precedence constraint is deleted) is defined as
follows:

INSTANCE: G = (I, A) a directed acyclic graph, (i, j) ∈ A an arc of G; B a
positive integer; S a UET-UCT schedule of G with length less than or equal to B.
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QUESTION: is there a UET-UCT schedule of G−(i,j) = (I, A \ {(i, j)}) with
length less than or equal to B − 1?

The UET-UCT−i problem (one task is deleted) is defined as follows:

INSTANCE: G = (I, A) a directed acyclic graph, i ∈ I a task of G; B a positive
integer; S an UET-UCT schedule of G with length less than or equal to B.

QUESTION: is there a UET-UCT schedule of G−i = (I \ {i}, A′) with length
less than or equal to B − 1?

14.3. NP-completeness results

Before proving the results for the problems SRTDr and SRTDd, it will be shown
the NP-completeness of a problem issued from SUBSET-SUM (see [GAR 79] for
the definition of SUBSET-SUM). The problem named SUBSET-SUM-1 is defined as
follows:

INSTANCE: m items of size s(bi) ∈ N, 1 ≤ i ≤ m; B ∈ N; and I ⊂ {1, . . . , m}
such that

∑
i∈I s(bi) = B.

QUESTION: is there K ⊂ {1, . . . , m} such that
∑

i∈K s(bi) = B − 1?

We recall the definition of the NP-complete problem PARTITION (see [GAR 79]):

INSTANCE: k items a1, . . . , ak of size s(aj) ∈ N∗, 1 ≤ j ≤ k.

QUESTION: is there J ⊂ {1, . . . , k} such that
∑

j∈J s(aj) = 1
2

∑k
j=1 s(aj)

(w.l.o.g. it is supposed that
∑k

j=1 s(aj) is even)?

LEMMA 14.1.– SUBSET-SUM-1 is NP-complete.

Proof. SUBSET-SUM-1 ∈ NP. The transformation is from PARTITION. Set
m = k + 1; s(bi) = s(ai), 1 ≤ j ≤ m − 1 and s(bm) = 1 + 1

2

∑k
j=1 s(aj) = B;

I = {m}.

If there is J ⊂ {1, . . . , k} such that
∑

j∈J s(aj) = 1
2

∑k
j=1 s(aj) then setting

J = K we have
∑

i∈K s(bi) = B − 1. Conversely, if there is K ⊂ {1, . . . , m}
such that

∑
i∈K s(bi) = B − 1, m 
∈ K, so setting J = K we obtain∑

j∈J s(aj) = 1
2

∑k
j=1 s(aj).
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THEOREM 14.1.– SRTDr is NP-complete.

Proof. SRTDr ∈ NP. The transformation is from SUBSET-SUM-1. We denote
W =

∑m
i=1 s(bi). We set n = m + 1, the tasks have processing times pi = s(bi),

1 ≤ i ≤ n − 1, pn = 1; the release times are ri = 0, i ≤ n − 1, rn = W − B; the
deadlines are set to di = W + 1, i ≤ n− 1, dn = W −B + 2; the task t is t = n; the
feasible schedule S is obtained by scheduling successively the tasks i 
∈ I from date
0, the task n with the starting time W −B and the tasks i ∈ I from time W −B + 1
to W + 1.

If there is K ⊂ {1, . . . , m} such that
∑

i∈K s(bi) = B − 1, a feasible schedule
is obtained by successively scheduling the tasks i 
∈ K during the time interval
[0,W −B +1], the task n with the starting time W −B +1 and the tasks i ∈ K from
time W −B +2 to W +1. Conversely, if there is a feasible schedule for T , the task n

is scheduled with starting time W −B + 1 since his new release time is W −B + 1.
Thus, the sum of the processing times of the tasks scheduled after n is B − 1, so K

exists such that
∑

i∈K s(bi) = B − 1.

COROLLARY 14.1.– SRTDd is NP-complete.

Proof. Reversing the time axis, SRTDr and SRTDd are equivalent.

COROLLARY 14.2.– SRTDp is NP-complete.

Proof. SRTDp ∈ NP. The transformation is from SUBSET-SUM-1. We denote
W =

∑m
i=1 s(bi). We set n = m + 1, the processing times of the tasks are:

pi = s(bi), 1 ≤ i ≤ n − 1, pn = 1; the release times are ri = 0, i ≤ n − 1,
rn = W −B + 1; the deadlines are set to di = W + 2, i ≤ n− 1, dn = W −B + 3;
the task t is t = n; the feasible schedule S is obtained by successively scheduling the
tasks i 
∈ I from the date 0, the task n with the starting time W −B + 1 and the tasks
i ∈ I from time W −B + 2 to W + 2.

If there is K ⊂ {1, . . . , m} such that
∑

i∈K s(bi) = B − 1, a feasible schedule
is obtained by successively scheduling the tasks i 
∈ K during the time interval
[0,W −B +1], the task n with the starting time W −B +1 and the tasks i ∈ K from
time W −B +3 to W +2. Conversely, if there is a feasible schedule for T , the task n

is scheduled during the time interval [W −B+1,W −B+3] since its new processing
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time is pt = 2. Thus, the sum of the processing times of the tasks scheduled after n is
B − 1, so K exists such that

∑
i∈K s(bi) = B − 1.

COROLLARY 14.3.– MSp−2 is NP-complete.

Proof. MSp−2 ∈ NP. We use a polynomial transformation from PARTITION defined
above. W.l.o.g. it is supposed that

∑k
j=1 s(aj) is even and s(aj) > 1, 1 ≤ j ≤ k.

An instance of MSp−2 is built as follows: the number of tasks is set to n = k +2;
the processing times are pi = s(ai) for 1 ≤ i ≤ k, pk+1 = B, and pk+2 = B − 1
where B = 1

2

∑k
j=1 s(aj); D = 2B; t = k + 1; thus, a schedule S of length D is

obtained by processing the tasks k+1 and k+2 on the same processor and the k other
tasks on the second processor.

If the processing time of t becomes pk+1 − 1 = B − 1 and the new deadline is
D− 1 = 2B − 1, necessarily the tasks k + 1 and k + 2 must be scheduled by distinct
processors (recall that s(aj) > 1, 1 ≤ j ≤ k). So, it is easy to verify that the answer
to such an instance of MSp−2 is equivalent to answering the corresponding instance
of PARTITION.

COROLLARY 14.4.– MSp+2 is NP-complete.

Proof. The proof is similar to the proof above. MSp+2 ∈ NP. We use a transformation
from PARTITION.

An instance of MSp+2 is built as follows: the number of tasks is n = k + 2; the
processing times are pi = s(ai) for 1 ≤ i ≤ k, pk+1 = B, and pk+2 = B + 1 where
B = 1

2

∑k
j=1 s(aj); D = 2B + 1; t = k + 1; a schedule S of length D is obtained by

processing the tasks k + 1 and k + 2 on the same processor and the k other tasks on
the second processor.

If the processing time of t becomes pk+1 + 1 = B + 1 and the deadline keeps the
value D = 2B+1, the tasks k+1 and k+2 are scheduled by distinct processors. So the
answer to such an instance of MSp+2 is equivalent to answering the corresponding
instance of PARTITION.

COROLLARY 14.5.– UET−(i,j) is NP-complete.
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Proof. The UET−(i,j) problem belongs to NP. The polynomial transformation
(inspired from [LEN 78]) is from the NP-complete problem CLIQUE defined as
follows:

INSTANCE: H = (V,E) a connected undirected graph, k ≤ |V | a positive
integer.

QUESTION: does H contain a complete subgraph with k vertices?

We will use the following notations: θ = k(k−1)
2 , ν = |E| − θ (w.l.o.g. it is

supposed that |E| > θ) and μ = max{k, |V | − k + θ, ν}.

The task graph G is built as follows (see Figure 14.1): each vertex x of H is
associated with a vertex-task x; each edge {x, y} is associated with an edge-task
{x, y}; each edge-task {x, y} has for predecessors the two vertex-tasks x and y;
each edge-task has to precede a terminal task t; to complete the description of G

we add a path (p1, p2, p3, p4) with p4 preceding the task t, and we also add μ − k

tasks t11, . . . , t
1
μ−k preceding the task p2, μ − |V | + k − θ tasks t21, . . . , t

2
μ−|V |+k−θ

preceding the task p3 with the task p1 as predecessor, and μ − ν tasks t31, . . . , t
3
μ−ν

preceding the task p4 with the task p2 as predecessor.

We set m = μ + 1, B = 5 and (i, j) = (p4, t).

A schedule of length B = 5 for G is made as follows (see Figure 14.1): k

vertex-tasks are processed during the time-slot 1, the remaining |V | − k vertex-tasks
are processed in the time-slot 2, ν edge-tasks are scheduled in the time-slot 3, the
remaining θ edge-tasks are processed in the time-slot 4; the tasks t11, . . . , t

1
μ−k and p1

are scheduled in the time-slot 1, the tasks t21, . . . , t
2
μ−|V |+k−θ and p2 are scheduled

in the time-slot 2, the tasks t31, . . . , t
3
μ−ν and p3 are processed in the time-slot 3, the

task p4 is processed in the time-slot 4; finally, the terminal task t is processed in the
time-slot 5.

We will prove that H contains a clique of size k if and only if G−(p4,t) can be
scheduled on m processors with a makespan less than or equal to B − 1 = 4.

First, suppose that H contains a clique of size k. The task graph G−(p4,t) is
scheduled as follows: the tasks t11, . . . , t

1
μ−k and p1 are scheduled in the time-slot

1, the tasks t21, . . . , t
2
μ−|V |+k−θ and p2 are scheduled in the time-slot 2, the tasks

t31, . . . , t
3
μ−ν and p3 are processed in the time-slot 3, the task p4 is processed in the

time-slot 4; the k vertex-tasks constituting the clique are scheduled in the time-slot 1;
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Figure 14.1. The transformation from CLIQUE

the |V |−k other vertex-tasks and the θ edge-tasks occurring in the clique are processed
in the time-slot 2; the ν remaining edge-tasks are scheduled in the time-slot 3; the task
t is processed in the time-slot 4; thus, we obtain a schedule of length 4.

Now suppose that G−(p4,t) can be scheduled on m processors by time
less than or equal to 4: since p1, p2, p3, p4 form a chain of length 4, the tasks
t11, . . . , t

1
μ−k and p1 are scheduled in the time-slot 1, the tasks t21, . . . , t

2
μ−|V |+k−θ

and p2 are scheduled in the time-slot 2, the tasks t31, . . . , t
3
μ−ν and p3 are

processed in the time-slot 3, and the task p4 is processed in the time-slot 4; since
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k +μ−k +1+ |V |−k +θ +μ−|V |+k−θ +1+ν +μ−ν +1 = 3m, the terminal
task t is necessarily scheduled in the time-slot 4; since each vertex-task has to
precede some edge-tasks, and since each edge-task is preceded by two vertex-tasks, k

vertex-tasks are scheduled in the time-slot 1 and θ = k(k−1)
2 edge-tasks are scheduled

in the time-slot 2: so the corresponding k vertices and θ edges of H form a clique of
size k.

THEOREM 14.2.– UET-UCT−(i,j) is NP-complete.

Proof. The problem belongs to NP. The polynomial transformation is from the
NP-complete problem 3-SAT. We denote by xi, 1 ≤ i ≤ n, the n Boolean variables
and by Ci, 1 ≤ i ≤ m, the set of clauses occurring in 3-SAT.

Figure 14.2. The gadgets associated with the variables and with the clauses

The precedence graph G is constructed as follows: each variable xi is associated
with three tasks Xi, xi, x̄i; the task Xi has to precede the two tasks xi and x̄i (see
Figure 14.2). Each clause Ci = (a, b, c), where a, b, c are three literals, is associated
with six tasks Ci, C

′
i, C

′′
i , ci, c

′
i and c′′i ; ci precedes C ′

i, c′i precedes the two tasks C ′
i

and C ′′
i , c′′i precedes C ′′

i , and the two tasks C ′
i and C ′′

i precede Ci (see Figure 14.2).

Each task ci, c
′
i, c

′′
i has for predecessor the task associated with the corresponding

literal (see Figure 14.3). To complete the description of the precedence graph G, we
make two chains (p1, . . . , p9) and (q1, . . . , q9), such that their last two tasks p9, q9

precede a terminal task t; the task t is also preceded by the m clause tasks Ci (see
Figure 14.4).

Let (i, j) be the arc (q9, t), B = 11 and S be the UET-UCT schedule of G

obtained as follows: Xi, xi, x̄i are scheduled on the same processor πi in the time-slots
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Figure 14.3. The precedence constraints between the
variable gadgets and the clause gadgets
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Figure 14.4. The two chains completing G

1, 2, 3, respectively; the six tasks forming the gadget associated with the clause Ci are
scheduled on their own set of three processors in the following way: ci, c

′
i, c

′′
i are

processed in the time-slot 5, C ′
i, C

′′
i are processed during the time-slot 7, and the task

Ci is scheduled in the time-slot 9; the two chains are scheduled on two processors
during the time-slots 1, . . . , 9, and the terminal task t is performed in the time-slot 11.
Thus, we built in polynomial time a feasible UET-UCT schedule of length B = 11
for G.
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Now, it will be proved that there is a graph schedule G−(i,j) = (I, A \ {(q9, t)})
with length less than or equal to B − 1 = 10 if and only if the corresponding instance
of 3-SAT is satisfied.

First, suppose that the instance of 3-SAT is satisfied. We build a schedule in the
following way: if the variable xi has the value true, Xi, xi, x̄i are scheduled on the
same processor πi in the time-slots 1, 2, 3 respectively; if the variable xi has the
value false, Xi, x̄i, xi are scheduled on the same processor πi in the time-slots 1, 2, 3
respectively. Because each clause Ci contains a literal with the value true, at least one
task among ci, c

′
i, c

′′
i is scheduled during the time-slot 4, and the other tasks (associated

with a literal having the value false) are scheduled in the time-slot 5. First suppose
that ci is processed in the time-slot 4 (the case for c′′i is the same): C ′

i, C
′′
i , Ci are

processed by the same processor as c′i in the time-slots 6, 7, 8, respectively. Secondly,
suppose that c′i is processed in the time-slot 4: C ′

i is processed by the same processor
as ci in the time-slot 6, C ′′

i is processed by the same processor as c′′i in the time-slot 6,
and Ci is scheduled in the time-slot 8. Since the instance of 3-SAT is satisfied, the tasks
Ci are scheduled during the time period 8, the tasks p1, . . . , p9, t are scheduled by the
same processor in the time-slots 1, . . . , 9, 10, respectively, and the tasks q1, . . . , q9

are scheduled by the same processor in the time-slots 1, . . . , 9. Thus, we obtain a
UET-UCT schedule for G−(i,j) = (I, A \ {(q9, t)}) with length 10 ≤ B − 1.

Now suppose that there is a UET-UCT schedule for G−(i,j) = (I, A \ {(q9, t)})
with length less than or equal to B − 1 = 10. Since t is performed during a time-slot
less than or equal to 10, the tasks Ci are completed at time less than or equal to 8. So
at least one of the two predecessors of each task Ci is scheduled in a time slot less
than or equal to 6. W.l.o.g. it can be supposed that C ′

i is scheduled in a time-slot less
than or equal to 6, thus at least one task among ci and c′i is scheduled in a time-slot
less than or equal to 4. W.l.o.g. we suppose that the task ci is scheduled in a time-slot
less than or equal to 4. So its predecessor xi or x̄i is processed in the time-slot 2 on
the same processor as the corresponding task Xi (Xi is scheduled in the first period).
Thus, taking the value true for the variables xi such that the associated tasks xi are
scheduled in the time-slot 2 with the value false for the variables xi, we obtain a truth
function that satisfies each clause.

THEOREM 14.3.– UET-UCT−i is NP-complete.

Proof. The proof is the same as the proof of theorem 14.2 taking i = q9.



340 Flexibility and Robustness in Scheduling

14.4. Conclusion

We defined and proved the NP-completeness of some new kinds of scheduling
problems. The main feature of these problems is that a feasible schedule is given
with a slight modification of the data such as the deletion of an arc of the precedence
graph, a unitary increasing of one of the release times, etc. The problem is to
determine whether the perturbed problem can be easily solved using the solution
of the unperturbed problem. It has been shown that even with the knowledge of a
solution of the unperturbed problem, obtaining a solution to the pertubed problem is
NP-complete.

Numerous other scheduling problems submitted to small perturbations can
be studied. For example, we can consider a shop problem (job-shop, flow-shop,
open-shop) in which the processing time of a single job is increased or decreased by
a single time unit.

For all the non-trivial problems (the answer to the identity problems is not
invariably “yes”) studied here, the perturbed version is NP-complete whenever the
initial problem is NP-complete. Thus, it will be asked if there exists a NP-complete
scheduling problem for which the (non-trivial) perturbed version is polynomial.

In another way, from a practical point of view, a good solution is often enough.
Thus, in this context we can naturally extend our study to consider how we may
efficiently compute a good schedule from a good schedule when the data of the initial
schedule is slightly modified? Our intuition is that despite the NP-completeness results
proved here, finding a good solution could be an easy task from a computational point
of view. This study should be interesting for both practical and theoretical reasons.
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