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Preface to the second edition 

It is a real pleasure for us to present the second edition of this book on multi-
criteria scheduling. In this preface we would like to introduce the reader with 
the improvements made over the first edition. During the writing of the first 
edition of this book we were focused on putting in it all the results, algorithms 
and models necessary for the reader to tackle correctly the field of multicri-
teria scheduling, which is at the crossroad of several research domains: from 
multicriteria optimisation to scheduling. Writing a second edition is a totally 
different exercise since we concentrate more on refining, augmenting and, in 
a sense, making growing the existing manuscript. 

We received valuable comments that lead us to rewrite, more or less partially, 
some chapters as Chapters 5 and 7. Besides, new significant research results 
published since the first edition have been included into existing chapters of 
that second edition. We review hereafter the most important changes. 
Chapters 2 and 4 now include a survey on the complexity of counting and enu
meration optimisation problems with application to multicriteria scheduling. 
These two chapters provide theoretical tools for evaluating the complexity of 
the enumeration of the set of strict Pareto optima. Chapter 4 also includes 
new real-life applications of multicriteria scheduling. 
Chapter 5 has been drastically revised and now provides a general unified 
framework for Just-in-Time scheduling problems. Besides, classic optimal 
timing algorithms, which calculate optimal start times of operations when 
the jobs order is fixed, are now presented. 
At last, chapter 6 is a new chapter dealing with robustness in multicriteria 
scheduling. This research area has been subject to a growing interest in the 
literature since the last ten years, notably when considering a criterion of 
flexibility or robustness in addition to a classic scheduling criterion. Hence
forth, the aim of some scheduling problems become to increase the robustness 
of the calculated solution for its pratical use. Providing flexibility is a way to 
ensure a certain robustness when unexpected events occur in the shop. 
We hope that this new edition will become an important tool and a practical 
guide for novice an senior researchers that work on multicriteria scheduling. 

V. T'KINDT and J.-C. BILLAUT 
Tours (Prance), October 15th 2005 



Preface to the first edition 

Prom Theory to Practice, there is a world, and scheduUng does not escape 
this immutable rule. 
For more than fifty years, theoretical researches on scheduling and complexity 
theory have improved our knowledge on both a typology of academic prob
lems, mainly involving a single criterion, and on their solving. Though this 
work is far from being completed, a few famous books have been a major 
breakthrough. The typology will be all the more useful as it takes more and 
more realistic constraints into account. This is just a matter of time. 
The relevance of some single criteria, their equivalence and their conflict have 
been studied... 
Yet, numerous genuine problems, even outside the realm of scheduling, do not 
square with these single criterion approaches. For example, in a production 
shop, minimising the completion time of a set of jobs may be as interesting as 
retaining a maximum fragmentation of idle times on an easily damaged ma
chine and minimising the storage of in-process orders. Moreover, even though 
the optimal solutions to the F2\\Cmax yielded by S.M. Johnson's famous al
gorithm are numerous, they are far from appearing equivalent to the decision 
maker when their structure is analysed. A genuine scheduling problem, in 
essence, involves multiple criteria. 

Besides, more general books on Decision Aid in a multicriteria environment 
have been published and a pool of researchers have long tackled the problem. 
Undoubtedly, a synthesis book offering a state-of-the-art on the intersection 
of both the fields of Scheduling and Multicriteria Decision Aid and providing 
a framework for tackling multicriteria scheduling problems is a must. 

I am most happy to present this book. It is divided in four parts: - the first 
one deals with research on scheduling, now an important branch of opera
tional research. 
- the second one presents theories on Decision Aid and Multicriteria Optimi
sation as well as a framework for the resolution of multicriteria scheduling 
problems. 
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- the third and fourth parts involve a tremendous work since they contain 
state-of-the-arts on multicriteria scheduhng problems. Numerous works and 
resolution algorithms are detailed. 

In my opinion, this book will become a reference book for researchers working 
on scheduling. Moreover, I am convinced it will help PhD students suitably 
and quickly embark on a fascinating adventure in this branch of Operational 
Research. May they be numerous in joining us... 
I very warmly thank MM. Vincent T'kindt and Jean-Charles Billaut for their 
tenacity in writing this significant book, and Springer-Verlag publishing for 
entrusting them. 

Professor C. PROUST 
Tours (Prance), february 22th 2002 

The authors are very grateful to all the people who have directly or indirectly 
contributed to the birth of this book. Professor Christian Proust is at the root 
of this research and is undoubtedly the grandfather of this book. We would also 
like to thank the members of the research team "Scheduling and Control" of the 
Laboratory of Computer Science of the University of Tours for creating a friendly 
environment and thus for having promoted the emergence of this book. In this 
vein, all the technical and administrative persons of the E3i school have also to be 
thanked. 
At last, we would like to thank Professor Jacques Teghem of the "Faculte Poly tech
nique de Mons" for having provided excellent ideas and remarks which have helped 
in improving this book. 
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Introduction 

Scheduling theory first appears in the mid 1950s. Since then the problems 
addressed become closer to industrial applications, thus increasing in com
plexity. The layout of the shops taken into account are closer and closer to 
those met in practice: we encounter shops where the machines are found in 
different multiple copies, shops where an operation may require several re
sources simultaneously, or with multipurpose machines, etc. At the same time 
the embedded constraints are more and more concrete: many authors take 
into account release dates, the preemption of the jobs, the resource availabil
ities, etc. 
Paradoxically, the literature shows that in the majority of the problems ad
dressed, schedules are only evaluated by a single criterion. During the diflFerent 
phases of planning different criteria can be considered. At a strategic level, 
at the long term planning phase with several years in view, the objectives 
concern minimising the costs related to the investment plans for materials, 
finance, or personel, related to the choice of new directions, or the launching 
of publicity campaigns. For tactical planning at the medium term phase with 
several months in view, the objectives always focus on minimising the costs: 
stock costs (supply or interruption of stocks), costs of getting supplies, costs 
of modifying production capacity, launching costs, costs of modifying pro
duction systems and certain commercial costs ([Merce, 1987], [Giard, 1988]). 
At the short term planning phase (with the order of a week in view), or 
scheduling phase, several objectives require the attention of the production 
executive: above all he must consider the delays that satisfy the customer, 
next, he must minimise the work-in-process costs in the shop, and finally he 
must minimise the manufacturing costs related to the time spent to set up 
the machines or idle periods of the machines. Therefore, a scheduling problem 
involves multiple criteria. 

Bernard Roy emphasises ([Roy, 1985]), that taking account of several criteria 
enables us to propose to the decision maker a more realistic solution. This 
still holds when solving scheduling problems in an applied context. Literature 
is dedicated in abundance to the study of multicriteria problems, whatever 
their field of application. Numerous theoretical works have been developed 
on multicriteria decision making. The purpose of this book is to provide a 
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survey, based on a proposed methodology, of the existing methods for solving 
multicriteria scheduling problems, considering both methods of multicriteria 
optimisation and scheduling fields. 

This book is divided into five major parts each devoted to particular themes. 
The first two chapters are devoted to the rudiments. Chapter 1 sets 
out the scheduling problems as encountered in the literature. It presents 
the shop layouts and the classic constraints and criteria. The notation used 
throughout this book, as well as the notation of scheduling problems, based 
on that of Graham, Lawler, Lenstra and Rinnooy Kan ([Graham et al., 1979] 
[Blazewicz et al., 1996]) are provided. We present a new typology, as well as 
several classifications. Chapter 2 reviews the basic concepts of the complex
ity of algorithms and the complexity classes of problems. 

The following two chapters are devoted to multicriteria decision making 
and multicriteria optimisation, and introduce multicriteria scheduling prob
lems. It opens up a new approach to the resolution of multicriteria scheduling 
problems. Chapter 3 presents some important concepts related to method
ologies of multicriteria decision aids. A large part of the difficulty in solving a 
multicriteria problem is linked to the way in which the criteria are taken into 
account. Optimisation techniques, which help in taking account of the criteria 
are also presented. Chapter 4 presents an approach to the tackling of mul
ticriteria scheduling problems. This approach is divided into three phases. 
In the first phase the decision maker indicates what constraints define his 
problem as well as the criteria to be taken into account. The second phase, of 
taking account of criteria, consists in choosing a resolution approach, i.e. the 
method which is going to be called upon to calculate a solution. The decision 
maker also indicates the type of algorithm which he wants to implement: a 
priori^ interactive or a posteriori algorithm. This phase enables an objective 
function to be defined for the scheduling problem. The last phase consists 
of solving the identified scheduling problem. Its resolution leads to the best 
trade-off solution. 

The next two chapters are chapters devoted to a particular thematic, what
ever the configuration of the shop. In Chapter 5 we are concerned with 
"Just-in-Time" scheduling problems. Both general considerations and tech
nical issues are investigated in this chapter. Chapter 6 focuses on robustness 
considerations in scheduling when multiple criteria are involved. 

The next two chapters of this book are devoted to the presentation of mul
ticriteria scheduling problems depending on the shop configuration. Chap
ter 7 is devoted to single machine problems, which category of problems is 
undoubtly the most addressed in the literature on multicriteria scheduling. 



Introduction 3 

Chapter 8 is devoted to shop problems, i.e., flowshop, jobshop and open-
shop problems. 

The last two chapters are dedicated to the presentation of multicriteria 
scheduling and assignment problems. Chapter 9 is devoted to multicriteria 
parallel machines scheduling problems, whilst Chapter 10 is devoted to 
multicriteria hybrid flowshop scheduling problems. 



1. Introduction to scheduling 

1.1 Definition 

Scheduling problems are encountered in all types of systems, since it is nec
essary to organise and/or distribute the work between many entities. We find 
in every book in the literature a definition of a scheduling problem as well as 
its principal components. Among these definitions we can quote the following 
one [Carlier and Chretienne, 1988]: 
"Scheduling is to forecast the processing of a work by assigning resources to 
tasks and fixing their start times. [...] The different components of a schedul
ing problem are the tasks, the potential constraints, the resources and the ob
jective function. [...] The tasks must be programmed to optimise a specific 
objective [...] Of course, often it will be more realistic in practice to consider 
several criteria." 

Another definition has been put forward by [Pinedo, 1995]: 
"Scheduling concerns the allocation of limited resources to tasks over time. 
It is a decision-making process that has as a goal the optimization of one or 
more objectives." 

A statement of scheduling problems can be found in [Gotha, 1993]. This ar
ticle sets out the resolution approaches and the traditional scheduling prob
lems. We can find in [Lee et al., 1997] a presentation of the current problems 
as well as more recent resolution methods. 

In the above definitions, the task (or operation) is the entity to schedule. In 
this book we deal with jobs to schedule, each job is broken down into a series 
of operations. When all the jobs contain only a single operation we speak of a 
mono-operation problem. By contrast, we speak of a multi-operation problem. 
The operations of a job may be connected by precedence constraints. In this 
case the set of operations of a job and their precedence constraints define the 
routing of this job. 
We are also dealing with the resource or machine (this latter term is 
more often used in the context of shop scheduling). We consider gener
ally that the resources are of two types: renewable or consumable. Re
newable resources become available again after use (machine, file, proces-
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sor, personel, etc.), whereas non renewable resources disappear after use 
(money, raw materials, etc.). Among the renewable resources we can dis
tinguish between the disjunctive resources, which can only perform one op
eration at a time and the cumulative resources which can process a lim
ited number of operations simultaneously. The case of cumulative resources 
is being studied more and more as for example in shop scheduling prob
lems [Carlier and Latapie, 1991], in project scheduUng problems and in batch 
scheduling problems ([Potts and Kovalyov, 2000]). 
Frequently, to solve a scheduling problem, we are also caused to solve an 
assignment problem, where it concerns in addition specifying the resources 
to process the operations. 

We can separate the criteria to optimise into two types: those relating to 
completion time and those relating to costs. In the category of completion 
time related criteria we find for example those which measure the completion 
time of the whole schedule and those which measure tardiness of jobs in 
relation to their due date. In the category of cost related criteria we may cite 
those which represent cost of machine use and those which represent cost 
allied to waiting time of operations before and/or after they are processed. 

1.2 Some areas of application 

Scheduling problems are encountered at all levels and in all sectors of activity. 
Generally, we can distinguish between those of manufacturing production and 
those in computer systems or project management. 

1.2.1 Problems related to production 

We encounter scheduling problems in Flexible Manufacturing Systems 
(FMS). Numerous definitions of an PMS are found in the literature. For 
[Liu and MacCarthy, 1996]: "i4n FMS comprises three principal elements: 
computer controlled machine tools; an automated transport system and a com
puter control system.'''' These problems are broadly covered in the literature 
and most often in a well defined application class. Besides, this very broad 
problem encompasses other problems related to Robotic Cell Scheduling and 
Scheduling of Automated Guided Vehicles (AGV). 

Equally, electroplating and chemical shops have their peculiarities in 
scheduling problems. The latter are also called Hoist Scheduling Problems. 
These shops are characterised by the presence of one or more travelling cranes 
sharing the same physical area and which are ordered to transport the prod
ucts for treatment in tanks. In general, the soaking time in a tank is bounded 
by a minimum and a maximum {the interval processing time)., transport time 
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is not negligible and the operations must be carried out without waiting time. 
These problems are very common in industry and the "simple" cases (mono-
robot, single batch tanks, etc.) have been well solved by now. 

Scheduling problems in car production lines, so called Car Sequencing 
Problems, are encountered in assembly shops where certain equipment (or 
options) must be assembled in the different models of vehicles. These prob
lems have constraints and peculiarities of their own. Knowing a sequence of 
vehicles undergoing treatment, the problem is to determine the type of the 
next vehicle programmed. We have to take account of a group of constraints 
connected principally to the assembly options for these vehicles and to the 
limited movement of the tools along the production Une. 

1.2.2 Other problems 

We encounter scheduling problems in computer systems. These problems 
are studied in different forms by considering mono or multi processor systems, 
with the constraints of synchronisation of operations and resource sharing. In 
these problems, certain operations are periodic others are not, some are sub
ject to due dates, others to deadlines. The objective is often to find a feasible 
solution, i.e. a solution which satisfies the constraints. Literature abounds on 
these problems. In fact, in spite of appearances they are very close to those 
encountered in manufacturing systems ([Blazewicz et al., 1996]). 

Timetable scheduling problems concern all educational establishments 
or universities, since they involve timetabling of courses assuring the avail
ability of teachers, students and classrooms. These problems are just as much 
the object of studies. 

Project scheduling problems comprise a vast literature. We are inter
ested more generally in problems of scheduling operations which use several 
resources simultaneously (money, personel, equipment, raw materials, etc.), 
these resources being available in known amounts. In other words we deal with 
the multi-resource scheduling problem with cumulative and non-renewable 
resources ([Brucker, 2004],[Herroelen et al., 1998b],[Herroelen et al., 2001]). 

1.3 Shop environments 

When confronted with a scheduling problem, one has to identify it before 
tackling it. Acknowledging that the problem is complicated and to know if it 
is already solved in the literature, we must use a recognised notation. For that 
purpose, shop "models" have been set up, which differ from each other by 
composition and organisation of their resources. We denote by n the number 
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of jobs to schedule, by Ji the job number i, by n^ the number of operations 
of job Ji, by Oi^j the operation j of job J^, by m the number of machines 
and by Mk the machine number k. A complete synthesis of the notations is 
given in appendix A. 

1.3.1 Scheduling problems without assignment 

The problem is to find a processing start time for each operation. Several 
types of arrangement are traditionally encountered: 

• single machine: Only a single machine is available for the processing of 
jobs. It concerns a basic shop or one in which a single machine poses a 
real scheduling problem. Besides, resolution of more complex problems is 
often achieved by the study of single machine problems. We can find an 
area of direct application in computing, if we think of the machine as the 
single processor of the computer. The jobs to be processed are necessarily 
mono-operation. 

• flowshop (F): several machines are available in the shop. The characteris
tic of this type of shop is that the jobs processed in it use machines in the 
same order: they all have the same processing routing. In a permutation 
flowshop we find in addition that each machine has the same sequence of 
jobs: they cannot overtake each other. 

• jobshop (J): several machines are available in the shop. Each job has a 
route of its own, i.e. it uses the resources in its own order. 

• openshop (O): several machines are available in the shop. The jobs do not 
have fixed routings. They can, therefore, use the machines in any order. 

• mixed shop (X): several machines are available in the shop. Some jobs 
have their own routing and others do not. 

1.3.2 Scheduling and assignment problems with stages 

The machines are grouped in well defined stages and a machine belongs to 
one stage only. In all cases the machines of a stage are capable of performing 
the same operations. To carry out one operation it is necessary to choose 
one among the available machines and, therefore, the problem is twofold, as
signing one machine to each operation and sequencing the operations on the 
machines. At each stage we can differentiate between the following configu
rations: 

• the machines are identical (P): an operation has the same processing time 
on all the machines. 

• the machines are uniform (Q): the processing time of an operation Oi,j 
on the machine Mk is equal to Pi,j^k = Qi.jhk where qi^j is for example 
a number of components in the operation Oi^j to be processed, and Vk is 
the number of components which the machine Mk can process per unit of 
time. 
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• the machines are unrelated or even independent (R): the processing time 
of the operation Oij on the machine Mk is equal to Pi,j,/c, and is a data 
of the problem. Of course, just as the assignment of Oij is unknown, so is 
its processing time. 

Globally, "traditional" scheduling and assignment problems correspond to 
the following configuration: 

• parallel machines (P/Q/R): there is only one stage and the jobs are 
mono-operation. 

• hybrid flowshop (HF): all the jobs have the same production routing, 
and therefore use the stages in the same order. 

• general jobshop (GJ): each job has a route of its own. 
• general openshop (GO): the jobs do not have a fixed routing. 

It is easily possible to generalise these problems by supposing that each op
eration can only use its own subset of the resources of the performing stage. 

1.3.3 General scheduling and assignment problems 

This is the most general case where we suppose that each operation has its 
own set of machines on which it can be processed. No assumption is made 
on these sets of resources. We can differentiate several cases: 

• the jobs are mono-operations, and we are confronted by a problem of par
allel machines with general assignment. We find these problems in 
the literature ([Brucker, 2004]) under the name "Multi Purpose Machines 
Scheduling Problems" (P /Q/R MPM SP). 

• the jobs follow a processing order. It is difiicult in this case to distinguish 
between flowshop and jobshop since the groups of machines used by these 
jobs are not comparable. This is what is called shops with general as
signment problems (" General Shop MPM SP"). 

• the jobs do not follow a fixed routing. This is the case in openshop with 
general assignment problems ("Openshop MPM SP"). 

1.4 Constraints 

A solution of a scheduling problem must always satisfy a certain number of 
constraints, be they explicit or implicit. For example, in a flowshop problem it 
is implicit that the jobs are processed according to the routing and therefore 
an operation cannot start while its precedent remains uncompleted. On the 
other hand, the occurrence of different release dates constitutes a constraint 
which must be stated precisely. In this section we describe the explicit con-
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straints encountered most frequently in scheduling. A summary is given in 
appendix A. 

There are several types of constraints related to the due dates. There are 
those due dates which we do not wish to pass by, even if we tolerate to 
completing afterwards. They correspond to an agreed commitment which is 
negotiable. There are those due dates which are imperatives, also called dead
lines, and which cannot be passed. Typically, they correspond to an unveiling 
date when the manufacturer must present his product, or even the departure 
date of the delivery lorry. These dates cannot be passed by: therefore, no 
tardiness can be permitted. Problems where we encounter these constraints 
are usually decision problems: these dates can or cannot be respected. When 
we can, either we are satisfied with a feasible solution or in addition we try 
to minimise a criterion. 

Constraints relating to start times are equally various. Of course, there is 
the release date of the product. Sometimes, it corresponds to the date of the 
order. Equally, we can find a release date associated with a specific operation 
of a job. This date can correspond to the arrival of supplies for the opera
tion. Finally, it can happen that the start time of a particular operation is 
imposed. In this case it is a matter of meeting with the customer for him to 
witness the implementation of the operation which he regards as critical in 
the manufacturing process. These two latter definitions correspond to prob
lems rarely dealt with in the literature. 

We list below some constraints met frequently in the literature. 

• pmtn indicates that preemption is authorised. Here it is possible to forsee 
interuption of an operation so that, possibly it can be taken up next by 
another resource. 

• split indicates that splitting is authorised. Here it is possible to forsee 
splitting of the operation into lots, which can be performed on one or 
several machines, possibly simultaneously. 

• prec indicates that the operations are connected by precedence constraints. 
This heading gives different particular cases according to the nature of the 
constraints: prec to describe the most general case, tree, in-tree, out-
tree, chains and sp-graph (for series-parallel graph ; see [Pinedo, 1995] 
or [Brucker, 2004]) to denote particular cases. 

• batch indicates that the operations are grouped in batches. Two types of 
batch constraints are differentiated in the literature: the first called some
times s-batch concerns serial batches where the operations constituting a 
batch are processed in sequence and the second of type p-batch concerns 
parallel batches where the operations constituting a batch are processed 
in parallel on a cumulative resource. In both cases, the completion time of 
an operation is equal to the completion time of the batch. In the first case. 
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the duration of the batch is equal to the sum of the processing times of the 
operations which constitute it, whereas in the second case its duration is 
equal to the longest processing time of the operations in the batch. 

• no-wait indicates that the operations which constitute each job follow 
each other without any waiting. 

• p r m u (permutation) indicates that the operations occur on the machines 
in the same order. In other words, they cannot overtake themselves (this 
is true solely for flowshop problems). 

• di = d indicates that all the due dates are identical. Likewise di — d for 
the deadlines. 

• Pi = P indicates that the processing times are all identical. We often en
counter this constraint with p = 1. 

• Snsd and Rnsd indicate that the setup and removal times on the resources 
before and after each processing, respectively, must be taken into account. 
These preparation times are independent of the sequence of operations. 

• Ssd and Rsd indicate that the setup and removal times on the resources 
before and after each processing, respectively, must be taken into account. 
These preparation times are dependent of the sequence of operations. 

• ai^,i2 indicates that a minimum time lag must be respected between 
the jobs Jii and 7^2, if the jobs are mono-operation. Otherwise, we use 
Ciii,ji,i2j2 ^o indicate a minimum time lag which must be respected between 
the operation 0^^ j ^ and the operation Oi^j^- If ^̂ ^̂  value is positive, we 
model, for example, a drying time between two successive operations, or 
else a transport time. In the latter case the resource is available to process 
the following operation during the transport. If this value is negative, it in
dicates that it is possible to carry out an overlap, i.e. to start an operation 
before its precedent in the routing is completely finished. Of course, this 
is possible when a job is composed of lots of items and it is not necessary 
to wait for the end of a lot on a machine to start the operation on the 
following machine. 

• blcg (balancing) is a constraint peculiar to parallel machine shops, trans
lating the fact that the machines must complete processing of jobs which 
are assigned to them at the same time. This constraint may be imposed 
when it is necessary to change the type of manufacture on all the machines 
simultaneously. 

• block (blocking) is a constraint indicating that the shop has a limited stock 
area between the machines. Then we note bk the stock capacity between 
machine Mk and machine Mk-\.i* 

• recre (recirculation) is a constraint which indicates that a job may be 
processed several times on the same machine. 

• unavailj translates the case where all the resources are not available all 
the time, but only during well defined periods. It is a matter of timetables 
translating periods of opening/closing of the factory, periods of planned 
maintenance, of hohdays, etc. Two types of operations can be associated 
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with this problem: interruption and resumption of an operation as soon as 
possible (unavailj-resumable) or else the operation is not started if it is 
going to be interrupted (unavailj-nonresumable). In the latter case we 
can have problems of unfeasibility. 

We now state the difference between routing and precedence constraints: 

• a routing is a document which precisely describes the set of operations 
necessary for ending up with a final product: machine, processing time, 
tools, particular conditions, etc. This routing contains, of course, the order 
in which the operations must be processed, possibly with the help of a 
precedence graph (in the case of non identical routings). Two successive 
operations in a routing indicate a flow of material between machines or a 
set of machines. 

• precedence relations between operations indicate simply that the start of 
an operation is conditioned by the end of all the preceding operations. No 
notion of flow is attached, a priori, to this constraint and it may simply 
be a matter of severe technological constraints. Two operations linked by 
a precedence relation may correspond to two distinct jobs. 

In computer systems this distinction does not really exist since the routing 
of a job does not have a strong sense as in production systems. We have only 
a set of operations to schedule knowing that these ones can be connected by 
precedence constraints. Often it is assumed that these constraints are associ
ated to communication times between the operations. We can also consider 
the existence of a communication media, or server, thus inducing disjunctive 
constraints. 

1.5 Optimality criteria 

In order to evaluate schedules we can use a certain number of criteria. Oc
casionally we want a criterion to be close to a certain reference value. Here 
we are at the frontier between the notions of criteria and constraints. If a 
constraint represents a fact which definitely must be respected, optimising 
a criterion allows rather a certain degree of freedom. For example, stating 
that no job should be late regarding its due date leaves no margin in the 
schedule calculation. We may even find a situation where no feasible sched
ule exists. On the other hand, minimising the number of late jobs allows us 
to guarantee that there will always be a solution even though to achieve this 
certain operations might be late. Prom a practical point of view the difference 
between a criterion and a constraint is only apparent to the decision maker 
who initiates a schedule calculated by an algorithm. 
Certain criteria are equivalent and that is why they are presented jointly: 
minimising one or the other leads to the same optimal solution even if the 
criterion value is not the same in the two cases. Some scheduling problems 
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have no criterion to be minimised. In this case we are deaUng with a feasi-
biUty problem, also called a decision problem: does a solution which satisfies 
the constraints exist ? 

We can classify criteria into two large families: '^minimaj^^ criteria, which 
represent the maximum value of a set of functions to be minimised, and 
''minisum!^ criteria, which represent a sum of functions to be minimised. A 
summary of the criteria presented below is given in appendix A. 

1.5.1 Minimisation of a maximum function: "minimax" criteria 

We present "minimax" criteria which are most frequently met in the liter
ature. The most traditional is without doubt the criterion measuring the 
completion time of the whole jobs. This criterion is denoted by Cmax and is 
called "makespan^\ We define Cmax = max (C^), with Ci being the comple-

i = l , . . . , n 

tion time of the job J^. To simplify the notation, we write "max" for " max " 
i = l , . . . , n 

when there is no possible ambiguity. Cmax is the total length or duration of 
a schedule, i.e. it is the completion time of the last scheduled job. 

We also encounter other criteria based solely on the completion times of jobs, 
such as criteria: 

• -̂ max = max(Fi) with Fi = Ci — rf. the maximum time spent in the shop, 
or even yet, the duration of resting, with r̂  the release date of the job Ji, 

• -̂ max = max(//c): with Ik the sum of idle times on resource M/j. 

Equally, we encounter in the literature criteria which are based on the due 
dates d ,̂ Vz = 1, ...,n, of jobs. Notably, we find criteria: 

• -̂ max = max(Li) with Li = d — di'. the maximum lateness, 
• ^max = max(Ti) with Tj = max(0; Ci — di): the maximum tardiness, 
• -E'max = max(£^j) with Ei = max(0; di — Ci): the maximum earliness. 

Generally, fmax refers to an ordinary "minimax" criterion, which is a non 
decreasing function of the completion times of jobs. This is not the case for 
the criterion Emax-

1.5.2 Minimisation of a sum function: "minisum" cri ter ia 

"Minisum" criteria are usually more difficult to optimise than "minimax" 
criteria. This is confirmed from a theoretical point of view for certain spe-

n 

cial problems ([Ehrgott, 1997]). We write "X]" for " ^ " when there is no 

ambiguity. Among the minisum criteria, we meet criteria: 
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• C to designate ^J2^i ^^^^i- T^^^^ criterion represents the average com
pletion time or total completion time of jobs. 

• C to designate ^Y^WiCi^ ^ ^ J ] WiCi or else "^WiCi. This criterion rep
resents the average weighted completion time or total weighted completion 
time of jobs. 

• F to designate ^ S ^ i ^^ J2^i- Optimising this criterion is equivalent to 
optimising the criterion C It is the same for the criterion F regarding to 
the criterion C . 

• T to designate ^J2'^i ^^ Z^^i- This criterion designates the average tar
diness or total tardiness of jobs. 

• T to designate ^^WiTi, vlJ^jX^^i^i ^^ S '^i^i- This criterion desig
nates the average weighted tardiness or total weighted tardiness of jobs. 

• i7 to designate ^ Ui which is the number of late jobs with Ui = 1 ii the 
job Ji is late and 0 otherwise. 

• U to designate ^^WiUi, ^ ^ ^WiUiOi Y^WiUi which is the weighted 
number of late jobs. 

• £̂  is the average earliness of jobs. 
• E the average weighted earliness of jobs. 

In a general way, / designates an ordinary "minisum" criterion which is usu
ally a non decreasing function of the completion times of jobs. This is not 
the case for criterion E. 

1.6 Typologies and notat ion of problems 

Concerning scheduling problems, we distinguish between their typology and 
their notation. A typology is a classification of the problems according to 
their nature. In scheduling it is usually based on the machines environment 
and on the jobs particularities. A notation enables us to refer quickly to a 
problem. Thus it is possible to construct a database of the set of problems 
treated in the literature. The traditional notations in scheduling are clearly 
based on existing typologies. 

1.6.1 Typologies of problems 

Different typologies of scheduling problems exist in the literature. We present 
in figure 1.1a typology which generalises that of [Mac Carthy and Liu, 1993] 
and which brings together the problems introduced in section 1.3. 

Concerning scheduling problems, the objective is to determine a sequence on 
each machine and a start time for each operation. In scheduling and assign
ment problems with stages we can define, independently of each operation, 
stages of machines. A machine belongs to only one stage. Then, we combine 
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Fig. 1.1. Typology of scheduling problems (1) 

each operation with a stage, and an operation can be processed by any ma
chine of its stage. Therefore, we add an assignment problem to the initial 
scheduling problem. We must then not only find a s tar t t ime for the oper
ations but also an assignment of the operations on the machines. The same 
is t rue for general scheduling and assignment problems where a set or pool of 
machines is detailed for each operation. Of course, a machine may participate 
in several pools. An operation may be processed by any machine in its pool. 

The foregoing typology uses the machines environment and operations to dif
ferentiate between problems. Other typologies exist ([Blazewicz et al., 1986]). 
Notably, we can consider problems according to different characteristics (fig
ure 1.2): 

1. deterministic vs. stochastic. In the case where all the characteristics of 
the problem (processing time of each operation, release dates, etc.) are 
well known, we speak of a deterministic problem. Conversely, some of 
these characteristics may be random variables of known probability law. 
In this case we speak of a stochastic problem (see [Pinedo, 1995]). 

2. unitary vs. repetitive. If the operations appear to be cyclical, we are deal
ing with a repetitive problem. Conversely, if each operation corresponds 
to a unique product the problem is said to be unitary. 

3. static vs. dynamic. If all the da ta of the problem are known at the same 
t ime we speak of a static problem. For some problems, a schedule may 
have been calculated and being processed when new operations arrive in 
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the system. Then the foregoing schedule has to be re-established in "real 
time". These problems are said to be dynamic. 

Deterministic-

Stochastic 

Unitary 

Repetitive 

Static 

t 
Dynamic 

Fig. 1.2. Typology of scheduling problems (2) 

These two typologies are complementary since it is possible to handle, for 
example, a deterministic flowshop problem, whether it be unitary or static. 
As we shall see in the following section, traditional notation of scheduling 
problems are the mirror image of these typologies. 

1.6.2 Nota t ion of problems 

Two notations exist for referencing scheduling problems. Despite the fact 
that the oldest was proposed by [Conway et al., 1967], the notation most 
used in the literature was introduced by [Graham et al., 1979] (see a detailed 
description in [Blazewicz et al., 1996]). This notation is divided into three 
fields: a|/3|7. 

Field a refers to the typology presented in figure 1.1 and describes the struc
ture of the problem (see section 1.3). It breaks down into two fields: a = a ia2 . 
The values of a i and a2 refer to the machines environment of the problem 
and possibly to the number of available machines. 

Field ß contains the explicit constraints of the problem. See section 1.4 for 
some possible such constraints. 

Field 7 contains the criterion/criteria to be optimised (see section 1.5). Con
cerning a more complete presentation of the different possible criteria, the 
interested reader may refer to [Rinnooy Kan, 1976]. This field is detailed in 
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chapter 4 for the multicriteria case. Appendix A presents a summary of the 
most current values which can take the fields a, /?, and 7. 

[Vignier et al., 1999] propose an extension of the notation for hybrid flow-
shop problems. For these ones the field a breaks down as follows: a = 

(a3af^)^ii. The values a^OTA ^ represent the configuration of each stage. 
Other extensions of the notation exist. We can quote works, notably the one 
of [Baptiste et al., 2001] who broaden the notation to hoist scheduling prob
lems. When we address problems where machines are of the type ^^batch", 
[Jolai Ghazvini, 1998] and [Oulamara, 2001] similarly propose an extension 
of the notation. 

1.7 Project scheduling problems 

Project scheduling problems have been extensively studied in the literature. 
They are usually separated from problems occuring in shop environments, 
since they have their own particularities. Several papers review the literature 
on project scheduling (see [Herroelen et al., 1998a], [Herroelen et al., 1998b], 
[Brucker et al., 1999], [Kolisch and Padman, 2001], [Tavares, 2002]). 

In project scheduling problems we consider the scheduling of a set of oper
ations which are also called activities. Each operation has a processing time 
and the operations are connected by precedence constraints. These ones are 
usually represented by an "activity-on-the-node" network, where an edge 
represents a finish-start precedence relationship between two operations. To 
process the operations we distinguish between two situations. 
When the operations can be performed without any resource, we meet two 
classical problems in the literature. In the first one we have to compute a 
schedule of the operations which minimises the completion time of the whole 
project, also called makespan. In the second problem we associate to each 
operation a cash flow value and we compute a schedule which maximises the 
net present value of the project. 
When operations require resources, we deal with a Resource-Constrained 
Project Scheduling Problem (RCPSP). We can distinguish between the re
newable resources, the non-renewable resources, the partially renewable re
sources (these are renewable ones during a known time period) and the dou
bly constrained resources (these are non-renewable resources with the added 
limitation of consumption for known time periods). Besides, we associate to 
each resource, whatever its type, a limited capacity per time unit and each 
operation requires one or several resources in known amounts. In the basic 
RCPSP we have only renewable resources and the problem is to minimise 
the makespan. This problem is a generalisation of the jobshop scheduling 
problem with makespan minimisation. We can consider extensions of this ba
sic problem by allowing the preemption of operations, or by imposing time 
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lags between the processing of two consecutive operations. Another classical 
extension of the basic RCPSP consists in defining for each operation a mini
mum and a maximum processing time. This is related to the presence of at 
least one non-renewable resource. The more we use of this resource to process 
an operation, the lower is its processing time. Therefore, the exact processing 
time of each operation has to be calculated. The aim is to minimise the total 
requirement of the non-renewable resources, or if this total requirement is 
limited, to minimise the makespan of the project. A presentation of other 
classical models can be found in [Herroelen et al., 1998b]. 

Various extensions to the three-field notation presented in section 1.6.2 exist. 
The two major are due to [Herroelen et al., 1998b] and [Herroelen et al., 2001] 
for the first extension and [Brucker et al., 1999] for the second one. 

1.8 Some fundamental notions 

The notions which are presented in this section refer to the characterisation 
of dominant sets for certain scheduling problems. We say that a subset of 
schedules is dominant for a problem if and only if, whatever the data of the 
problem, an optimal solution is contained in this subset. Definition 1 intro
duces the notion of regular criterion in the case of a minimisation problem. 

Definition 1 
Let S be the set of solutions. A criterion Z is a regular criterion if and only 
if Z is an increasing function of the completion times of jobs, i.e. if and only 
if: 

Vx,j/ € S, Ci{x) < Ci{y), Vi = 1, ...,n, 
^Z{Cx{x),...,Cn{x))<Z{Ci{y),...,Cn{y)) 

For the criteria presented in section 1.5, we deduce the following result, which 
is not difficult to prove. 

Corollary 1 
The criteria Cmax, C, C , Lmax, Tmax, T, T , U and U are regular. The 
criteria Imaxj ^maxj E and E are not regular. 

We distinguish four classes of schedules (figure 1.3). The schedules with in
sertion of machine idle times constitute an interesting class for the minimi
sation of certain non regular criteria. This is the case for many Just-in-Time 
scheduling problems. 

Definition 2 
A schedule belongs to the class of schedules with insertion of machine idle 
times if and only if before each scheduled operation, the machines are volun
tarily left idle during a positive or null period. 
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Fig. 1.3. Inclusion of classes of schedules 

Some examples of schedules with insertion of machine idle times are presented 
in figures 1.4a, 1.4b and 1.4c. 

Definition 3 
Let X G S be a schedule and Sx be the set of schedules having the same 
sequences of operations on the machines as x. A schedule x belongs to the 
class of semi-active schedules if and only if ßy G Sx such that Ci{y) < Ci{x), 
Vi = 1, ...,n, with at least one strict inequality. 

We note that the class of semi-active schedules is a subclass of the class of 
schedules with insertion of machine idle times. We say that the semi-active 
schedules are "left shifted". Figures 1.4b and 1.4c present some semi-active 
schedules. 

Definition 4 
A schedule x e S belongs to the class of active schedules if and only if ßy £ S 
such that Ci{y) < Ci{x), Vi = l,. . . ,n, with at least one strict inequality. 

Active schedules are equally semi-active. Figure 1.4c presents an active sched
ule. We say also that a schedule is active if it is impossible to start earlier the 
processing of an operation without delaying another. We can note that the 
definition of active schedules may be interpreted from a multicriteria point 
of view: the class of active schedules is the set of solutions which are not 
dominated for the n completion times Ci. 

Definition 5 
A schedule x E S belongs to the class of non delayed schedules if and only if 
no operation is kept waiting while a machine is available to process it 

Non delayed schedules are equally active schedules. Figure 1.4c presents a 
non delayed schedule. One important result, presented in lemma 1, relates 
regular criteria to the class of active schedules. 
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Lemma 1 [Baker, 1974] 
For optimisation problems of a regular criterion, the set of active schedules 
is dominant 

Lemma 1 implies that the search for an optimal solution of the optimisation 
problem of a regular criterion, may be limited to the set of active schedules. 
For multicriteria problems this result remains equally true if we optimise 
several regular criteria. However, it becomes invalid if at least one criterion 
is not regular, since this is the case for some problems where criteria E and 
T are minimised. This is the case in Just-in-Time scheduling. 

1.9 Basic scheduling algorithms 

This section is intended to present some of the basic scheduling algorithms 
for single criterion problems. These algorithms are referred to through
out the book. More complex algorithms can be found in books dedicated 
to scheduling (see for instance [Tanaev et al., 1994a], [Tanaev et al., 1994b], 
[Pinedo, 1995], [Blazewicz et al., 1996] and [Brucker, 2004]). 

1.9.1 Scheduling rules 

Several scheduling rules, optimal or heuristic, have been proposed in the 
literature. They are very often used in heuristic applications to industrial 
problems, given their simplicity and the little calculation time which they 
require ([Morton and Pentico, 1993]). Among the most traditional rules, we 
find the rule SPT which enables us to compute an optimal active schedule 
for the 1\\C problem. 
Rule SPT: {Shortest Processing Time first) sequences the jobs in increasing 
order of their processing time. 

The converse rule is the rule LPT {Longest Processing Time first). The 1\\C 
problem is solved optimally with the rule WSPT. 
Rule WSPT: (Weighted Shortest Processing Time first) sequences the jobs in 
increasing order of their ratio pt/wi. 

When we consider the due dates and the minimisation of criterion Lmax ? the 
corresponding single machine problem denoted by l\di\Lmaxj can be solved 
optimally by calculating an active schedule using the rule EDD. 
Rule EDD: {Earliest Due Date first) sequences the jobs in increasing order 
of their due date di. 
We notice that this rule also solves the l|rfj|Tmaa; problem optimally. 

Addition of the release dates r«, i = l,.. . ,n, of the jobs no longer enables 
us to solve these problems optimally by simply considering an adaptation of 
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these rules. For example, the rule EST {Earliest Start Time first) sequences 
the jobs in increasing order of their earliest start time, and breaks ties in 
favour of the job with the smallest processing time. This rule does not solve 
optimally the l | r i |C problem. Likewise, no simple sort based on the weights, 
the processing times or the due dates, can solve optimally the l | r i |C and 
l\ri^di\Lmax problems, since these problems aie AfV-haid. 

Generalisation of these rules to parallel machines problems necessitates the 
addition of a job assignment rule to the machines. In the case of identical ma
chines, we generally use the assignment rule FAM {First Available Machine 
first), which assigns a job to the first available machine. The rule SPT-FAM 
solves optimally the P\\C problem by considering the jobs in the increasing 
order of their processing time, and assigning them in turn to the earliest 
available machine. The rules WSPT-FAM and EDD-FAM give way to the 
respective heuristic algorithms for the P\\C and P\di\Lmax problems. 
In the case of proportional machines, we often consider the assignment rule 
FM {Fastest Machine first) which consists of assigning a job to the fastest 
machine among those available. The rule SPT-FM solves optimally the Q\\C 
problem. The rules WSPT-FM and EDD-FM give heuristic algorithms for 
the Q\\C and Q\di\Lmax problems, respectively. 

When preemption of jobs is authorised, the rule SPT-FM becomes SRPT-FM 
{Shortest Remaining Processing Time on Fastest Machine first) and solves 
optimally the Q\pmtn\C problem. It consists of scheduling the job with the 
smallest remaining processing time, on the fastest machine among those avail
able, preempting when necessary. The rule LRPT-FM optimally solves the 
Q\pmtn\Cmax problem. 

1.9.2 Some classical scheduling algorithms 

Lawler's algorithm for the l\prec\fmax problem 

Consider the problem where n jobs have to be scheduled on a single machine. 
A set of precedence constraints between jobs is defined and no preemption 
is allowed. Let fi be an increasing function of the completion time of Ji, 
Vz = 1,..., n. The objective is to minimise the maximum cost function defined 
by fmax = inax {fi{Ci)). [Lawler, 1973] proposes an optimal polynomial 

i = l , . . . , n 

time algorithm which iteratively schedules a job by starting from the last 
position. At the first iteration the jobs that have no successor are candidates 
and can therefore be scheduled in the last position. Notice that the completion 
time of the last position is equal to P = pi +p2 + ••• +Pn- Thus, we schedule in 
the last position the candidate job Ji which has the lowest cost Ci {P) among 
the candidate jobs. By setting P = P — piwe can iterate this process for the 
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previous position. The complete algorithm, denoted by EELl, is presented in 
figure 1.5. 

ALGORITHM EELl 
/* T is the set of jobs to schedule */ 
5 = 0; 

n 

i=i 
For i = n down to 1 Do 

F = {Ji eT/Ji has no successor in T}; 
If (F = 0) Then 

I The problem is not feasible; 
End If; _ _ 
Let Jee Fhe such that fe{P) = min {fk{P)); 

/* Break ties by choosing the job with the greatest processing time */ 
S={Je}//S; 
T = T-{Jeh 
Ce=_P; 
P = P-pe', 

End For; 
Print 5; 

[Lawler, IQTäT 

Fig. 1.5. An optimal algorithm for the l\prec\fmax problem 

Moore's algorithm for the l|di|f/ problem 

Consider the problem where n jobs have to be scheduled on a single machine 
and each job Ji has a due date di. No preemption is allowed. The objective 
is to minimise the number of late jobs, denoted by U. [Moore, 1968] provides 
an optimal polynomial time algorithm to solve this problem. It starts with 
the schedule obtained by the rule EDD. Let Jk be the first tardy job in this 
schedule, i.e. all jobs scheduled before are early or on time. Moore's algorithm 
puts Jk on time by removing the preceding job with the greatest processing 
time. The latter is scheduled late and is not considered anymore. This process 
is iterated until we have no late jobs in the schedule, except those which have 
been previously removed and voluntarily put late. The number of late jobs 
is equal to the number of removed jobs. The algorithm, denoted by EJMl, is 
presented in figure 1.6. 
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ALGORITHM EJMl 
/* T is the set of jobs to schedule */ 
/* We assume that c?i < (̂ 2 < ... < ĉn */ 
S = (Ji, J2,..., Jn); 
Tardy = 0; 
While {3Je € S such that d > de) Do 

Let k be such that Cs[k] > ds[k] and Vi < A;, Cs[i] < ds[i]': 
Let j be such that j < k and P5[j] = max {ps[i])'i 

i=l,...,k 

S = S-{Jj}; 
Tardy = Tardy//{Jj}; 

jEnd While; 
U=\Tardy\\ _ 
Print S//Tardy and [/; 

[Moore, IQGST 

Fig. 1.6. An optimal algorithm for the l|c?i|[7 problem 

Johnson's algorithm for the F2\prmu\Cmax problem 

Consider a two-machine flowshop problem where n jobs have to be scheduled. 
They first have to be processed on machine Mi and next on machine M2. 
As the makespan criterion is a regular criterion we are restricted to the set 
of permutation schedules which is a dominant set. [Johnson, 1954] proposes 
a sufiicient condition of optimality and derives an 0(nlog(n)) time optimal 
algorithm. It proceeds by scheduling first the jobs such that pi^i < pi^2 ac
cording to the increasing order of the Pi,i's. The remaining jobs are scheduled 
last according to the decreasing order of the Pi,2's. This algorithm, denoted 
by ESJl, is presented in figure 1.7. It is often also referred to as algorithm J. 

ALGORITHM ESJl 
7* T is the set of jobs to schedule */ 
Let U = {Jie T/pi,i < pi,2}; 
Let V = {Jie T/pi,i > pi,2}; 
Sort U by increasing values of the values pi,i; 
Sort V by decreasing values of the values pi,2; 
S = U//V; 
^max ^̂  y^max\^)i 
Print S and C:i:riax'', 

[Johnson, 1954] 

Fig. 1.7. An optimal algorithm for the F2\prmu\Cmax problem 
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Campbell, Dudek and Smith's heuristic for the F\prmu\Cmax prob
lem 

Consider a flowshop problem where n jobs have to be scheduled on m ma
chines. The jobs have the same routing, and we assume that they are first 
processed on machine Mi, next on machine M2, etc. Even if the set of per
mutation schedules is not dominant for this problem, [Campbell et al., 1970] 
restrict to this set and propose an heuristic to minimise the makespan crite
rion. This algorithm proceeds by building (m—1) fictitious two-machine prob
lems and by solving each one using Johnson's algorithm ([Johnson, 1954]). 
Therefore at most (m — 1) distinct permutation schedules are built. The best 
one regarding the m-machine problem is retained. This detailed heuristic, 
denoted by HCDSl, is presented in figure 1.8. 

ALGORITHM HCDSl 
/* T is the set of jobs to schedule */ 
/* J refers to Johnson's algorithm */ 
For 7 =: 1 to (m - 1) Do 

/* Building of a fictitious two-machine problem */ 
j m 

Pi,i = ^Phk and p-,2 = XI ^*'^' 
fc=l k=m—j-\-l 

Let 5^ be the sequence obtained by algorithm ESJl on 
the fictitious problem; 

End For: 
Let S^ be the schedule such that Cmax{S^) = min (Omax(»^ ))5 

i= l , . . . , (m- l ) 

/* Notice that the makespan is calculated by considering the m machines */ 
Print S^ and Cmax(S^); 

[Campbell et al., 1970] 

Fig. 1.8. An heuristic algorithm for the F\prmu\Cmax problem 

Nawaz, Enscore and Ham's heuristic for the F\prmu\Cmax problem 

[Nawaz et al., 1983] consider the same permutation flowshop problem as the 
one of Campbell, Dudek and Smith. They propose an heuristic based on a job-
insertion scheme. Initially, the jobs are sorted by decreasing sums of process-

771 

ing times on the machines, i.e. by decreasing order of the values /]pi,j' The 

heuristic considers only the two first jobs and retains the permutation sched
ule, among the two possible ones, which has a minimal value of criterion 
Cmax' This is the starting partial schedule. It next inserts the third job of 
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the initial sorting, by trying all the possible positions in the partial schedule. 
The one which has a minimal makespan value is retained. This process is 
iterated until all the jobs are scheduled. The heuristic is presented in figure 
1.9. Other classical algorithms for flowshop scheduling problems can be found 
in [Proust, 1992]. 

ALGORITHM HNEHl 
/* T is the set of jobs to schedule */ 

m m 

/* We assume that y jp i , i ^ ••• > Y^Pn.j */ 

Let S be the best permutation schedule among (Ji, J2) and (J2, Ji); 
For i = 3ton Do 

/* Insertion of job Ji */ 
Vfc = 1,..., |5| , 5̂ ^ is the partial schedule with job Ji inserted 

in position k in S; 
V£ = 1,..., \Sl let S^ be such that Cmax{S^) = _min {Cmax{S^))] 

End For; 
Print S and CmaxjS); 

[Nawaz et aL, 1983] 

Fig. 1.9. An heuristic algorithm for the F\prmu\Cmax problem 

Sahni's algorithm for the P\pmtn/di\— problem 

Consider a scheduling problem where n independent jobs have to be scheduled 
on m parallel identical machines. Preemption of jobs is authorised but no job 
can simultaneously be processed b^ more than one machine. Each job Ji 
has associated with it a deadline di and the aim is to compute a feasible 
schedule, if it exists. [Sahni, 1979] proposes an optimal algorithm to solve 
this problem. This algorithm, denoted by ESSl, is presented in figure 1.10. 
Notice that this problem can also be solved by reducing it to a network flow 
problem ([Horn, 1974]). 
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ALGORITHM ESSl 

/* We assume that rfi > ... > dn */ 
/* Cj^: the completion time of the last job on Mj 
C f = 0,Vj = l , . . . ,m; 
For i = 1 to n Do 

/* We schedule job Ji */ 
Let L = {j/Cf < di}', 
If ((L = 0) or (di - min(Cf ) < pi)) Then 

Print "No feasible schedule exists"; 
END 

End if; 
Let A; G L be such that Cjf = max-,eL(CJ^); 
If (di - C f > Pi) Then 

Vj: . ,m */ 

End For; 

Else 

/* Job Ji is entirely scheduled on Mj */ 

c^ cf + Pi\ 

End If; 

/* Job Ji is processed by more than one machine */ 
Let Li = {j e L/di - Cf < Pi}; 
Let La = {j € L/di - Cf > pi}; 
Let a € 1/2 be such that C^ = maxj^LiiCi^); 
Let /? 6 Li be such that Cp' = min^gii {Cj); 
C^ = C^ + {pi-di+C^); 
Cß = di] 

Print the calculated schedule; 
[Sahni, igTOf 

Fig. 1.10. An optimal algorithm for the P\p7ntn,di\— problem 



2. Complexity of problems and algorithms 

This chapter presents an introduction to the theory of complexity. Decision 
problems, optimisation problems, couting problems and enumeration prob
lems are defined, and complexity classes associated to these problems are 
introduced. These classes aim at qualifying the diSiculty of solving prob
lems. We first start with some considerations on the complexity of solution 
algorithms. 

2.1 Complexity of algorithms 

The complexity of an algorithm lies in estimating its processing cost in time 
(time complexity) or in the required space memory (spatial complexity). Set 
apart for certain particular algorithms, as for example dynamic programming 
algorithms which usually take up a lot of memory space, spatial complexity 
has been less considered than time complexity. In both cases it is possible 
to propose a theoretical complexity and a practical complexity. Theoretical 
complexity reflects an independent estimate on the machine which processes 
the algorithm. It is less accurate than the practical complexity which enables 
us to calculate the cost of the algorithm for a given computer. For the latter 
case, time complexity is obtained using an estimation of the calculation time 
for each instruction of the program. The advantage of theoretical complexity 
is that it provides an estimation independent of the calculation time for the 
machine. 

In the remainder of this section we use the term complexity to refer to the time 
complexity of an algorithm. This complexity is established by calculating the 
number of iterations done by the algorithm during its processing. The number 
of iterations depends on the size of the data, noted Length, and possibly the 
magnitude of the largest element, noted Max, belonging to these data. If 
the number of iterations is bounded by a polynomial function of Length 
then the algorithm is of polynomial complexity. If this function is limited 
by a polynomial of Max and Length, then we say that the algorithm is of 
pseudo-polynomial complexity. In other cases the algorithm is said to be of 
exponential complexity. 
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More precisely, we can distinguish minimal, average, and maximal complex
ities in order to translate complexity in the best case, the average case or 
in the worst case respectively. These latter two actually are interesting and 
the easiest to calculate is maximal complexity. On the other hand, average 
complexity requires a statistical analysis of the processing of the algorithm 
by function of the input data . 

Example. 
We can illustrate these notions by the example presented in figure 2.1. The maxi
mum number of iterations is equal to n and the minimum number to 1. The average 
complexity itself depends on the probability p that the element is found in a given 
position. We suppose that this probability follows a uniform law, i.e. p = ^ . Thus, 
the average complexity is equal to p(l + 2 + 3 + ... + n) = \^ = ^ ^ . We notice 
that the calculation is only valid if we are sure that the element belongs to the list. 
In the opposite case, the calculation of the average complexity is even more com
plicated as it causes the law of generation of the elements of the list to intervene. 

Search for an element belonging to a list 
/* elt the searched element */ 
/* n is the list size */ 
/* list is the list of elements */ 
/* We assume that elt belongs to the list */ 
i = 0; 
While {elt ^ list\i]) Do 

z = i-h 1; 
End While; 

Fig. 2 .1 . Search for an element in a non sorted list 

To calculate the complexity of an algorithm, it is possible either to count the 
number of iterations, as we have done in the above example, or to break up 
the algorithm into sub-algorithms of known complexity. In this latter case, 
we can multiply or add the complexities according to the structure of the 
program. By using the above example, we can propose an algorithm which 
searches k elements in a list. Its average and maximal complexities are then of 
the order of fe x n. In the case of spatial complexity, the calculation cannot be 
performed on the algorithm itself -we cannot count the number of iterations-
but rather on the da ta it uses. 

The theoretical complexity of an algorithm is usually a function of Max, of 
Length and of addition and multiplying constants. Very often, we resume this 
complexity by the expression of the term which gives its asymptotic value. For 
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example, if the maximal complexity of an algorithm is Max^ + a x Length + c, 
we say that it is in 0{Max^ + Length). More precisely, the notation 0(6) 
means that the complexity has an upper limit set by a linear function in b 
whereas the notation 0(6) enables to specify that the complexity is equiv
alent to 6. The simplification by the notation 0(6) may lead to paradoxical 
situations. In effect, an algorithm A in 0{Max'^) may be slower than an 
algorithm B in 0(2^^^) for certain problems. Let us take, for example a 
scheduling problem where Max is the number of jobs n and let us suppose 
that the complexity of the algorithm A is 2^^°^n^ and that of the algorithm 
B is 2'^. It is then obvious that for n < 1000, the algorithm A causes more 
iterations than the algorithm B. This remark does not imply that the theo
retical complexity of an algorithm is lacking in interest. Indeed, algorithm A 
remains more sensitive to the calculating machines than algorithm B since 
between two machines of different power, algorithm B attaches little differ
ence regarding the size of the largest problem it can solve, which is not the 
case with algorithm A, 

We give in table 2.1 the complexities of the best algorithms available to solve 
some classical problems. Notice that for those examples the average complex
ity is equal to the maximal complexity. 

Table 2.1. Some types of algorithms and their complexity 

Algorithm t o . . . 
Search an element belonging 
to a list of n elements 
Add an element in a non 
sorted list of n elements 
Add an element in a sorted 
list of n elements 
Perform a dichotomic search 
in an interval [min; max] of 
integer values 
Sort a list of n elements (fu-

1 sion sort) 

Maximal 
complexity 

0(n) 

0(1) 

0{n) 

0(log(max — min)) 

0(nlog(n)) 

The complexity of a well written algorithm may sometimes be improved to 
the detriment of the spatial complexity: it is possible to reduce the compu
tational time of an algorithm by increasing the size of the data. However, 
such a step often leads to adding new functions uniquely dedicated to the 
management of these data. 
So, the equilibrium to find is between the size of the used data and the com
plexity of the algorithm. It is clear that this complexity cannot be indefinitely 
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broken down in order to get at the end an algorithm which complexity is null. 
Solving a problem implies a minimum algorithmic complexity. But what is 
the minimum algorithmic complexity required to solve a given problem ? The 
algorithm provided in figure 2.1 solves the problem of searching an element in 
a non sorted list in 0{n) time, which is equivalent to say that it is solvable in 
a polynomial time of the size n. Can we guarantee that this is the case for any 
problem, i. e. there always exists a polynomial time algorithm to solve it ? If 
the answer to this vaste question is yes then all problems are easy to solve: we 
just have to find the correct algorithm and solve it. Otherwise it means there 
are some problems which are intractable: do not think about solving in poly
nomial time these problems. In this case we are only able to solve small-size 
problems; for the bigger one we should let the computer running for hundred 
years ! Unfortunately we do not know the answer to the above question. This 
is quite confusing: given a problem on which we try unsuccessfully to design 
a polynomial time algorithm, must we continue in this way or should we give 
up because such an algorithm does not exist? Complexity theory provides 
useful elements to establish the complexity of problems. This theory assumes 
that there are some problems which can be solved in polynomial time whilst 
others cannot. Given this, complexity classes exist which help in deciding if 
we must look for a polynomial time algorithm or not. This is the matter of 
the next section. 

2.2 Complexity of problems 

Complexity theory proposes a set of results and methods to evaluate the 
intrinsic complexity of the problems. A problem belongs to a class of com
plexity, which informs us of the complexity of the "best algorithm" able to 
solve it. 
Hence, if a given problem is shown to belong to the class of "easy" problems 
then it means that we are able to exhibit a polynomial time algorithm to 
solve it. Usually this is a good news but unfortunately this does not often 
happen for complex problems. Accordingly, if a problem belongs to the class 
of hard problems, it cannot be solved in polynomial time which, said dif
ferently, implies that for some instances the required CPU time to solve it 
becomes "exponential". 
Along the years, numerous complexity classes have been defined and can be 
separated depending on the type of problems they address to. Basically we 
distinguish between decision problems, search and optimisation problems, 
and counting and enumeration problems. In this section we present these 
kinds of problems and provide the existing complexity classes. Notice that 
counting and enumeration problems are not often considered in the literature. 
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2.2.1 The complexity of decision problems 

Complexity theory brings our attention to decision problems. Basically, the 
complexity classes presented in this section have been firstly dedicated to 
such problems. Complexity theory is based, at the roots, on language theory 
and Turing machines but can be presented less formally in terms of algo
rithms. The reader interested in a very detailed presentation of complexity 
theory is referred to [Garey and Johnson, 1979] or [Papadimitriou, 1995]. 

Let us first define a decision problem . 

Decision problem 77: 
• Input data , or instances, noted I. The set of all the instances is noted 

• Question such that for each instance I G D77, the answer R € {yes\ no). 

The set of instances / for the problem 77, for which the answer to the question 
is yes^ is noted Yn- It is possible to propose a grammar G equivalent to the 
problem 77, by encoding all the instances by an encoding scheme e (see figure 
2.2). For example, with the binary coding scheme all the terminal and non 
terminal elements will be binary numbers. With set Y/j of the decision prob
lem, we can associate a set of chains produced by the grammar: the language 
7/(77, e). Thus, we have transformed the decision problem into a grammar. If 
the answer to the question is yes for an instance, then the chain correspond
ing to this instance belongs to the language L{n,e). In order to know this, 
we propose a Turing machine. Taking the input chain, this machine exits in 
an accepting state if the chain belongs to L(77, e). We see that for the deci
sion problem this Turing machine is equivalent to a "^o/t'e" procedure which 
returns true or false. The complexity of a decision problem thus depends on 
the "best" Turing machine which we can propose. The encoding scheme used 
influences equally the efiiciency of the proposable Turing machine. In general, 
we consider a reasonable encoding, i.e. which does not pointlessly complicate 
the obtained grammar. For all reasonable encoding schemes, the proposable 
Turing machines are judged equivalent ([Garey and Johnson, 1979]). 

Before introducing the classes of problems, we must define for the decision 
problem 77 two functions: Length[I] and Max[I], with 7 € Dn- The func
tion Length represents the size of the instance 7, i.e. the length of chains 
produced by the grammar G. The function Max enables us to know the 
magnitude of the instance 7. In general, we consider that this function re
turns the magnitude of the largest integer, if it exists, occurring in 7. For 
example, if 7 = {3; 4; 6; 8; 14}, we have Length[I] = 5 and Max[I] = 14. 
The functions Length and Max are supposed to be calculable in polynomial 
time. It is then possible to define several classes of problems according to 
the difläculty in finding an answer to the decision problem. The definition 
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Decision problem n 

Answer Answer 
Yas No 

Solve (I) 

Using an encoding 
scheme e we can 

provide a; 
which corresponds 
to the instances of 

> 

< 

The existence of a 
Turing machine is 

J 

Grammar G 

We refer to UJ\,e) as the 
language associated to the 
chains produced by G and 
which correspond to the 

«ofYn 

We search a Turing 
machine able to 
decide if a chain 
produced by G 
belongs to UJl,e) 

V 
I I I I I M I I I I I M I I 

equivalent to the 
existence of a 
decision algorithm 
for problem n I I I I I | T I I I I I I I 

A Turing machine 

Fig. 2.2. Decision/grammar duality problem 

of these classes requires the notion of deterministic and non deterministic 
Turing machines ([Hopcroft and Ullman, 1979]). 

Definition 6 
A decision problem U belongs to the class V if the following holds: an encoding 
scheme e exists, such that for all instances I of 11, we can construct for 
the corresponding grammar a one-tape deterministic Turing machine, capable 
of checking if the chain corresponding to I belongs to the language. This is 
equivalent to a ^^yes" answer to the decision problem U. In this case the 
resolution time is a polynomial function of Length[I], 

This definition does not prevent the number of possible solutions from being 
exponential. We simply have the equivalence: a decision problem iJ is in 7̂  if 
and only if an algorithm exists which enables us to calculate in polynomial 
time a solution which has the answer yes. Not all decision problems belong to 
the class V. A more general class exists, which is introduced in the following 
definition. 

Definition 7 
A decision problem 77 belongs to the class AfV if a non deterministic poly
nomial one-tape Turing machine exists which reaches an accepting state in 
a finite number of iterations when it takes upon entry a chain of language 
L{n, e). The number of iterations is upper bounded by a polynomial function 
of Length. 
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A non deterministic polynomial one-tape Turing machine can be seen as 
a Turing machine having two modules: a divination module allowing us to 
construct a solution and an evaluation module capable of calculating if the 
answer R is yes in a time which is a polynomial function of Length. Obviously, 
we have V C J\fV. A conjecture in complexity theory which has never been 
demonstrated to this day, rests on the non inclusion ofAfV in V. We suppose 
in the following that V ^ ÄfV, which implies that decision problems which do 
not belong to V exist. This leads to the definition of the class AfVC of AfV-
complete problems, which is a sub-class of ÄfV. For this we must introduce 
the notion of polynomial reduction (or transformation), denoted by oc. 

Definition 8 
A polynomial reduction oc of a decision problem 11' towards a decision prob
lem n is a function such that: 

• V/' instance of U', a {!') is an instance of 11 and is calculable in polyno
mial time. 

• MI' instance of 11', the answer for the instance I' is yes for the problem 
n' if and only if the answer for the instance oc (/') is yes for the problem 

n. 
This means that a deterministic one-tape Turing machine exists, which is 
capable of calculating oc starting with a chain x generated by the grammar 
G. Moreover, x € L{n',e') ^ a {x) € L{n,e). 
If we consider two decision problems 77 and IT', 11' oc 11 means that the 
problem IJ' reduces polynomially towards the problem 77, which implies that 
n is at least as difficult to solve as 11'. 
A polynomial reduction, or transformation, of a problem U' towards a prob
lem 77 can be seen as a function (in the algorithmic sense) which: 

1. solves 77', i.e. which is able to verify if an instance I' of 77' leads to an 
answer yes. 

2. to solve 77', transforms in polynomial time the instance 7' in an instance 
7 of 77, and calls a resolution function of 77. The answer returned by this 
last function is the answer to the problem 77'. 

Definition 9 
A problem U is MV-complete if and only if 11 £ MV and \in' G MV, 3 oc 
such that n' oc n. 

This definition implies that the class MVC of ATP-complete problems contains 
the most difficult problems to solve. Indeed, if an A/^P-complete problem 77 
is solvable in polynomial time, then all the problems of MV are so since all 
reduce to 77, and therefore V = MV. We say that an ATP-complete problem 
is solvable in polynomial time if and only if V=J\fV. The first problem to 
have been demonstrated A/'P-complete is due to [Cook, 1971]. In practice, to 
demonstrate that a problem 77 is A/'T^-complete, it is sufficient to demonstrate 
either that: 
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1. i7 G NV and that a polynomial reduction oc and an ATT^-complete prob
lem n' exist such that i J ' a 77, or that 

2. there exists an ATP-complete sub-problem 11' of 77. 77' is a sub-problem 
of 77 if and only if: 
• 77 and 77' have the same question. 
• the set of instances of 77' is included in the set of instances of 77. 
• the set of instances of 77' for which the answer is yes is included in the 

set of instances of 77 for which the answer is yes. 

In the class of A/^T^-complete problems we can distinguish two types of prob
lems: problems ATP-complete in the weak sense (or ordinary sense) and prob
lems A/'T'-complete in the strong sense. 

Definition 10 
A problem 11 is weakly MV-complete if it is MV-complete and if it is possi
ble to find an algorithm to solve it such that its complexity is a polynomial 
function of Max[I] and of Length[I], V7 instance of 11. We say then that 77 
is solvable in pseudo-polynomial time. 

If an A/''P-complete problem 77 is such that p a polynomial function of Length 
exists, for which V7 instance of 77, Max[I] < p{Length[I]), then 77 cannot 
be solved by a pseudo-polynomial time algorithm. Otherwise, this pseudo-
polynomial algorithm would be a polynomial algorithm, which contradicts 
the fact that 77 is jVT^-complete. If such a polynomial p exists, then we say 
that 77 is A/^'P-complete in the strong sense. If p does not exist, then 77 is 
called a number problem. 

More precisely, the definition of strong ATP-completeness can be introduced, 
extending this result. 

Definition 11 
Let n be a decision problem and p a polynomial defined over a set of integer 
values. We define lip the sub-problem of 11 which is such that: 

1. The set of instances of lip, denoted by D^, is included in Dn-

2. yi eD^jj, Max[I] < p{Length\i]). 

The problem 11 is AfV-complete in the strong sense if: 

L n eNV. 
2. A polynomial p exists such that Lip is MV-complete. 

A decision problem 77 is weakly ATP-complete if we can show either that: 

1. 77 is A/'P-complete and there exists an algorithm that solves it requiring 
a computational time upper bounded by a polynomial of Max[I] and 
Length[I] for every instance 7, or that 

2. 77 is A/'P-complete and a polynomial reduction ex of 77 exists towards a 
weakly ATT^-complete problem 77', or that 
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3. 77 is A/'T^-complete and iJ is a sub-problem of a weakly jVP-complete 
problem. 

It is diflFerent to show that a problem is strongly ATP-hard. As for proving 
A/'P-completeness in the weak sense, suppose that we have a known strongly 
AfV-couiplete problem U' and a polynomial time reduction oc such that 77' oc 
77. It is not possible to conclude that 77 is strongly A/^P-complete for the 
following reasons. We note D^ = {a {1')^!' G Dn'}- Two cases can occur: 

1. A polynomial p exists such that V7 € DJj^ Max[I] < p{Length[I]). 
2. A polynomial p does not exist such that V7 € 7>^, Max[I] < p{Length[I]), 

In the first case, the corresponding problem 77p is necessarily strongly J\fV-
complete, otherwise we have found a polynomial time algorithm to solve 
problem 77'. 
In the second case, 77p is a number problem. Thus, we cannot decide if 77 is 
strongly A/'P-complete. Therefore, to establish strong ATT^-completeness we 
have to consider special reductions. A pseudo-polynomial reduction is one 
such special reduction and is defined below. 

Definition 12 
A pseudo-polynomial reduction from a decision problem 77' towards a decision 
problem 11 is a function ocs such that: 

1. V7' G Dw, r G Yw if and only if ocs (7') G Yn-
2. (Xs can be calculated in polynomial time of Max[r] and Length[r]. 
3. It exists a polynomial qi such that MI' G Dn', 

qi{Length[(Xs (7')]) > length'[r]. 
4' It exists a polynomial q2 such that V7' G Dn', 

Max[(Xs (7')] < q2{Max'[riLength'[r]), 

Conditions 3 and 4 of the above definition ensure that with the instances 
built by (X5, 77p does not correspond to a number problem. Thus, it enables 
us to prove that if problem 77' is strongly A/'P-complete, then problem 77 is 
also. 

To demonstrate that a decision problem 77 is strongly A/''P-complete, it is 
thus sufficient to show that either: 

1. 77 G Afp and that a strongly ATT^-complete problem 77' and that a 
pseudo-polynomial transformation oCs exist such that 77' oCs 77, or that 

2. 77 is ATP-complete and that a polynomial p exists such that V7 instance 
of 77, Max[I] < p{Length[I]), or that 

3. 77 G AfV possesses a strongly A/^P-complete sub-problem. 
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2.2.2 The complexity of optimisation problems 

We now turn to a more general class of problems for which the aim is not 
to decide on the feasibility of an instance but to calculate a solution to that 
one. These problems are generally referred to as search problems. A search 
problem SP is more formally defined as follows. 

Search problem SP: 
• Input data, or instances, noted I. The set of instances is noted Dsp^ 
• A set of solutions 5/ for each instance / G Dsp^ defined by means of 

the question. 

An algorithm is said to solve a search problem if, given an instance / G Dsp^ 
it returns the answer "no" if Si is empty and otherwise returns a solution 
s E Sj. A decision problem U can be considered as a particular search prob
lem for which Sj = {yes} if / € l / j and 5/ = 0 otherwise. 

However, we do not usually search for an arbitrary solution in 5/ but for a 
solution which optimises a given objective function. In this case, the search 
problem turns to an optimisation problem and the aim becomes to calculate 
any optimal solution. Formally, an optimisation problem O is defined as fol
lows. 

Optimisation problem O: 
• Input data, or instances, noted / . The set of instances is noted Do^ 
• For each instance / € Do, a set of optimal solutions 5 / , i.e. solutions 

which optimise a given objective function (also called criterion). 

An algorithm is said to solve an optimisation problem if, given an instance 
/ G Do, it returns the answer ^^no^^ if 5 / is empty and otherwise returns an 
optimal solution 5 G 5/ . 

It is not difficult to associate a decision problem with an optimisation prob
lem by searching for a solution which has a better value than a given bound 
K. Henceforth, the question of the decision problem is '^Does a solution exist 
with a criterion value lower than K ?', with K an input of the problem. If 
this decision problem is A/'T^-complete, then at least so is the optimisation 
problem. Starting from the results presented in section 2.2.1 it is possible to 
derive straight complexity classes for optimisation problems. This is achieved 
by using a generalisation of polynomial reductions: the polynomial Turing 
reductions. 

A polynomial Turing reduction OCT of a problem O towards a problem O', 
from the algorithmic point of view, is an algorithm A which verifies the 
following three properties: 
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1. A solves O, i.e. calculates for an instance / a solution of Sj if it exists. 
2. A uses a procedure S which solves the problem 0\ 
3. If 5 solves the problem O' in polynomial time, then A solves O in poly

nomial time. 

The complexity of the procedure S is not important in defining the polyno
mial Turing reduction. What matters is that if S is polynomial then A is 
also. We notice that the notion of polynomial Turing reduction generalises 
the notion of polynomial reduction in the sense that procedure S can be used 
iteratively. In the remainder of this chapter we denote by OCT any polynomial 
reduction or polynomial Turing reduction, if there is no ambiguity. 

Definition 13 
An optimisation problem O is J\fV-hard if another optimisation problem O' 
AfV-hard and a polynomial Turing reduction ofO' towards O exist. The prob
lem O is at least as difficult to solve as the problem O'. 

This definition is also true if O' is an A^T^-complete decision problem, and 
the reduction used a polynomial reduction. We say that an ATP-hard problem 
cannot be solved in polynomial time unless V=NV. 

An optimisation problem O is ATP-hard if we can show that: 

1. A polynomial Turing reduction OCT and an ATT -̂hard optimisation prob
lem O' exist such that O' OCT O. 

2. A polynomial Turing reduction OCT (which is not a simple polynomial 
reduction) and an ATT^-complete decision problem 11' exist such that 
n' OCT O, 

3. O contains an ATP-hard sub-problem. 

Similarly we can demonstrate that a problem is weakly MV-hoxd. Besides, 
we can deduce the following property. 

Property 1 
Let us consider two optimisation problems O and O'. If 

1. yr instance of Do', 3 / an instance of Do such that Sj C Sp. 
2. I can be constructed in polynomial time starting with V. 

then a polynomial Turing reduction exists such that O' OCT O. 

Considering strong A/'T^-hardness, similar results to those for proving strong 
A^'P-completeness have to be stated. Thus polynomial Turing reductions 
are not sufficient to prove strong A/'P-hardness, and similarly the notion of 
pseudo-polynomial Turing reduction must be considered. 

A/'T^-hardness is definitely a general complexity state, an AfV-hdud problem 
being at least as hard as any problem in class ÄfV. The class of AfV-hdiid 
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problems is not a class specifically dedicated to optimisation problems and 
even decision problems can belong to it. For instance, the Kth largest subset 
problem (see [Garey and Johnson, 1979] for a formal definition) is a decision 
problem which cannot be proved to belong to class ÄfV but which can be re
duced from Partition problem. Consequently, the Kth largest subset problem 
is not A/'P-complete but AfV-haid. 
The central question is whether an optimisation problem can belong to J\fV 
or not. If so, it is straightforward that AfV-hard optimisation problems are 
AT'P-complete and the complexity classes introduced for decision problems 
are relevant for optimisation problems. But, the definition of class AfV im
plies that given a solution, we are capable of checking in polynomial time if 
it is optimal or not. Henceforth, except for polynomialy solvable problems, 
there are few chance that an optimisation problem belongs to AfV since of
ten this checking step is as hard as solving the optimisation problem itself. 
This is the main reason why, in the literature, complexity of "hard" opti
misation problems is often established in term of AfV-handness instead of 
TVP-completeness. It is remarkable that for optimisation problems, notably, 
the class MVO has been introduced to overcome that unsuitability of class 
MV. A problem belongs to class MVO if any solution can be evaluated, ac
cording to the criteria, in polynomial time. And we still have V C MVO, 
Henceforth, it can be easily seen that a ATT -̂hard optimisation problem is 
ATPO-complete. More formally, the completeness inside class MVO is, at 
the lower level, defined by mean of an straigth extension of the polynomial 
reduction introduced for class MV. Henceforth, a polynomial reduction be
tween an optimisation problem O' towards an optimisation problem O can 
be seen as an algorithm capable of changing, in a time bounded by a poly
nomial of Lengthy every instance of V of O' into an instance / of O. Besides, 
this reduction can also change in polynomial time any solution for instance 
/ into a solution for instance / ' . A particular polynomial reduction, namely 
the AP-reduction, already enables to define the completeness of class MVO 
(see [Ausiello et al., 1999]). This reduction has been originally introduced in 
the context of approximation algorithms. 

2.2.3 The complexity of counting and enumeration problems 

In terms of complexity, when we introduced the complexity classes dedicated 
to decision or optimisation problems, we were only interested in deciding of 
the feasibility or finding one solution. Not to count the number of solutions 
to the problem, nor to enumerate them. In the literature we commonly dis
tinguish between the problem of counting the number of solutions and the 
problem of enumerating them. The latter is also referred to as a generation 
problem. In this section we consider the counting and enumeration problems 
associated to optimisation problems, even if we can also define versions asso
ciated to decision problems. It is quite natural to think that the enumeration 
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of optimal solutions is at least as hard as the calculation of one optimal so
lution. For instance, if the latter is a strongly A/^T^-complete problem, the 
former is so. But, can the enumeration be even harder ? Is there any addi
tional complexity classes dedicated to the enumeration of solutions? 

And what about the counting problem? A trivial way to count the number 
of solutions would be to solve the enumeration problem and to count the 
number of calculated solutions. Henceforth, we can informally derive that 
enumeration is at least as hard as counting, since when the enumeration is 
performed the counting of solutions can be polynomially done whilst the con
verse is false. We first focus on the complexity of counting problems before 
considering the complexity of enumeration problems. 

Let us define the counting problem, denoted by C, associated to an opti
misation problem O as follows: 
Counting problem C 

• Input data, or instances, denoted by 7. The set of all the instances is 
denoted by Do, 
• Counting question: how many optimal solutions to the objective of prob
lem O exist ? 

A counting problem is basically different from a search, an optimisation or 
even a decision problem since the outcome is not a solution or a state but 
a number: counting problems are function problems whilst the other men-
tionned are set problems. [Valiant, 1979a] introduced a general complexity 
class, which could merely be seen as the equivalent of class J\fV but for 
counting problems. Besides, Valiant considered the counting problems asso
ciated to decision problems. The following definition is a straight adaptation 
of this class when dealing with counting problems associated to optimisation 
problems. 

Definition 14 
Let e be any reasonable encoding scheme. A counting problem belongs to the 
class # P if a non deterministic polynomial Turing machine^ with au auxiliary 
output device, exists which prints the number of accepting states in a finite 
number of iterations when it takes upon entry a chain of language L{0,e). 
It is required that the number of iterations induced by the longest verification 
of a solution is upper bounded by a polynomial function of Length. 

Informally speaking, this definition states that a counting problem is # P if 
the corresponding decision, search or optimisation problem belongs to ÄfV or 
AfVO, as soon as any solution to the problem can be checked in polynomial 
time. As in the case of class AfV it is possible to establish subclasses of 
counting problems. 

Definition 15 See for instance [Vadhan, 1995] 
We denote by J^V C # P the class of polynomially solvable counting problems. 
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Class # P is not assumed to be limited to class J^V. Among the counting 
problems in # P there are those supposed to be "at least as hard as" all others 
belonging to # P . Before formally introducing this, we define parsimonious 
reductions. 

Definition 16 See for instance [Ehrgott, 2000a] 
A parsimonious reduction, denoted by occ, from a counting problem C^ to
wards a counting problem C^ is a polynomial time reduction such that the 
number of optimal solutions of every instance I of C^ is the same as the 
number of optimal solutions of the instance occ {I) of C^. 

Definition 17 [Valiant, 1979a] 
A counting problem C is ^P-complete if C E # P ; and VC G # P , 3 occ 
such that C occ C. The class of 4fP-complete problems is denoted by #PC. 

It is clear from the above definition that the class of #P-complete prob
lems contains the hardest counting problems, as it was the case for the class 
of A/^PO-complete optimisation problems. For this reason, study of # P -
completeness for counting problems has attracted a lot of attention since 
the seminal work of Valiant in 1979. A list of #P-complete problems is 
notably given by [Vadhan, 1995], [Valiant, 1979a] and [Valiant, 1979b]. It 
is remarkable that decision problems reduce to their counting counterpart 
([Vadhan, 1995]), i.e, if a decision problem is ATP-complete then the asso
ciated counting problem is A/'P-hard. More precisely it is #P-complete: as
sume that for a A/'P-complete decision problem we could count in polynomial 
time the number of "yes" answers, then we would have shown that V—MV. 
However it appears difficult to establish the same links for A/'PO-complete 
optimisation problems and their counting counterparts, since knowing the 
number of solutions does not necessarily helps in finding one solution. 

To achieve this general overview of #P-completeness, we point out that a 
counting problem C is #P-hard if another #P-complete problem C reduces 
to it by means of a polynomial Turing reduction, and if C has not been 
shown to be in # P . Notice that if C can be shown to be in # P then it is 
#P-complete. Also notice that to show a counting problem C is #P-complete 
it is sufficient to show that there exists a parsimonious reduction occ and a 
#P-complete counting problem C such that C occ C (class # P is closed 
under parsimonious reductions). When considering counting problems asso
ciated to known decision or optimisation problems it is often interesting to 
first examine existing reductions between these problems in order to deter
mine if they are parsimonious. For example, consider the decision version of 
the classic knapsack problem, denoted by KP and the decision version of the 
bicriteria shortest path problem, denoted by BSPP. [Serafini, 1987] proves 
that BSPP is A/'P-complete by providing a polynomial reduction from KP 
to BSPP. This reduction can be shown to be parsimonious and as the count
ing problem associated to KP is #P-complete ([Ehrgott, 2000a]) then the 
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counting problem associated to BSPP is also #P-complete. [Simon, 1977] 
observed that many polynomial reductions between search or optimisation 
problems were already parsimonious and that, if not, alternative parsimo
nious reductions can be built. By the way, the informal following statement 
is often true in practice: "if an optimisation problem is A/'T^O-complete then 
the associated counting problem is #P-complete". [Vadhan, 1995] presents 
more complicated techniques for proving #P-completeness. 
We now turn our attention to enumeration problems associated to opti
misation problems. As already stated, enumeration is harder than counting. 
"Harder" in the sense that even if we know the number of solutions in polyno
mial time, calculating all of them may require an exponential time. But also 
"harder" in the sense that even if we are able to compute a single solution 
in polynomial time, maybe we are not able to calculate all of them due to 
an exponential number of solutions and huge memory requirements. Hence
forth, when dealing with complexity of enumeration problems we have to 
take account of the time and space dimensions. Notice that like optimisation 
problems, enumeration problems are set problems. We define the enumeration 
problem, denoted by E, associated to an optimisation problem O as follows: 
Enumeration problem E 

• Input data, or instances, denoted by / . The set of all the instances is 
denoted by Do-, 
• Objective: Find all optimal solutions to the objective of problem O. We 
refer to Si as the set of all these optimal solutions. 

Several classes of complexity dedicated to enumeration problems have been 
introduced in the literature by various authors, mainly in the case of enu
meration problems associated to decision problems. We present hereafter the 
extension of these classes of complexity to the case of enumeration problems 
associated to optimisation problems. 

Definition 18 [Fukuda, 1996] 
An enumeration problem E belongs to the class £MV if for any instance 
I, there exists an algorithm, which complexity is bounded by a polynomial 
function of Length[I] and \Si\, capable of checking that any solution of set 
SI can be evaluated in polynomial time. 

The class SAfV introduced by Fukuda as extended in the above definition, 
is a direct generalisation of class MVO. Notice that in the original definition 
of Fukuda, class £MV is a generalisation of class MV which, translated in 
terms of optimisation, would imply that we can check in polynomial time 
that set SI is the correct outcome of problem E. However, from a practical 
viewpoint, checking in polynomial time that set Si is the correct outcome of 
problem E is often as hard as calculating this set. This implies that, often, 
we would not be able to show that a problem belongs to class ZMV. 
Fukuda also provides a generalisation of class V which requires first the def
inition of a bipolynomial algorithm. 
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Definition 19 [Fukuda, 1996] 
An algorithm which solves an enumeration problem E is a bipolynomial al
gorithm if and only if, for any instance I, it requires a number of iterations 
bounded by a polynomial function of Length[I] and | 5 / | . 

Definition 20 [Fukuda, 1996] 
An enumeration problem E belongs to the class SV if there exists a bipoly
nomial algorithm which solves it. 

Notice that the above definition implies that some problems in £V cannot be 
solved by a polynomial time algorithm in a similar sense of class V^ i.e. there 
are enumeration problems E G £V for which we cannot provide the outcome 
in polynomial time of only Length. Nevertheless we have V C £V. 

Various works have been done to characterise classes inside £V and how it 
is "easy" to solve an enumeration problem. [Johnson et al., 1988] introduce 
different classes of complexity and first consider polynomial total time enu
meration problems which are in fact exactly the problems inside class £V. 
Next, they introduce the notion of incremental polynomial time algorithms. 

Definition 21 [Johnson et al, 1988] 
Consider an enumeration problem E and, for any instance I, let S be a subset 
of SI, i.e. S C Sj. An algorithm for E is an incremental polynomial time 
algorithm if, starting with S, it is capable of calculating a solution s G Si/S, 
or to decide that S = Sj, with a time complexity bounded by a polynomial 
function of Length[I] and \S\. 

Definition 22 An enumeration problem E belongs to class IPT if and only 
if there exists an incremental polynomial time algorithm which solves it. 

Prom the above definition we can easily deduce that class IPT is a subclass 
of £V since with an incremental polynomial time algorithm we can generate 
SI with a time complexity bounded by a polynomial function of Length[I] 
and |S/ | , for any instance / . Besides, we have VC IPT. In his works on the 
complexity of counting problems. Valiant also introduces a particular class 
of complexity for enumeration problems which is in fact a subclass of £V. 

Definition 23 [Valiant, 1979a] 
An enumeration problem E belongs to the class of V-enumerable problems 
if and only if there exists an algorithm which solves it with time complex
ity bounded by a function p{Length[I])\Si\ for any instance I, where p is a 
polynomial function. 

As function p{Length[I])\Si\ is a polynomial function of Length[I] and |S/ | 
then we have VC 7^-enumerableC £V. Notice that the class of 7^-enumerable 
problems is slightly more general than the class of problems, introduced by 
[Johnson et al., 1988], which can be solved by a polynomial delay algorithm. 
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These problems, which form a class referred to as class W^ are solvable in 
such a way that the time spent to output one solution is upper bounded 
by a polynomial of n. Henceforth, any problem inside class PD is also V-
enumerable whilst the converse is not necessarily true. Johnson, Yannakakis 
and Papadimitriou also define polynomial delay algorithms for a specified 
order which are no more than algorithms that generates the outcome in a 
specified order with a polynomial delay. 

Up to now we have defined various classes of SV which gives only measure 
of the time complexity of the enumeration problem. But the space dimension 
has also to be taken into account. Consider an enumeration problem E G. £V 
such that its time complexity depends on the size of the outcome | 5 j | for 
each instance / . If | 5 / | becomes sufiiciently high for some instances / , then a 
solution algorithm for E may require too much memory space to work. And 
if it holds for any solution algorithm for E^ then problem E may become 
practically unsolvable. This observation leads to the definition of a compact 
algorithm. 

Definition 24 [Fukuda, 1996] 
An algorithm is compact for an enumeration problem E if it solves E us
ing a memory space hounded by a polynomial function of Length[I] and 
xnaxj^Si{Length[J]), for any instance I. 

This definition enables to identify a particular class of £V: the class CSV. 

Definition 25 [Fukuda, 1996] 
An enumeration problem E belongs to the class CSV if there exists a compact 
bipolynomial algorithm which solves it. 

Prom the above definition it follows that VQ CSVQ SV. [Fukuda et al., 1997] 
introduce the class of strongly 7^-enumerable problems, based on compact 
linear-time algorithms where such an algorithm is a compact bipolynomial 
algorithm with time complexity bounded by a linear function of | 5 / | . 

Definition 26 [Fukuda et al, 1997] 
An enumeration problem E belongs to the class of strongly V-enumerable 
problems if and only if there exists a compact linear-time algorithm which 
solves it. 

Notice that in [Fukuda et al., 1997], the authors consider a slightly restricted 
definition of a compact algorithm, by comparison to Definition 24, since they 
define a compact algorithm as one having space complexity bounded by a 
polynomial of Length, only. However, whatever the considered definition of a 
compact algorithm, we have 7^Cstrongly 'P-enumerableC CSV and strongly 
P-enumerableC 7^-enumerable. 
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To complete this section, we need to introduce the class of the hardest prob
lems of SMV, those supposed to be "at least as hard as" all others belonging 
to £MV. We first define the notion of a bipolynomial reduction. 

Definition 27 A bipolynomial reduction, denoted by OCB, from an enumer
ation problem E^ towards an enumeration problem E'^ is a reduction which 
time complexity is bounded by a polynomial ofLength[I] and |S'ocß(/)| for any 
instance I of E^. 

Fig. 2.3. The world of SAfV 

Definition 28 An enumeration problem E is SAfV-complete if and only if 
E G £NV, and \/E' G SNV, 3 a ^ such that E' ocß E. The class ofSMV-
complete problems is denoted by £MVC. 

Henceforth, the notion of completeness in class £J\fV is defined by mean of 
bipolynomial reductions which are no more than a straigth adaptation of 
polynomial reductions to enumeration problems. We now state an important 
result related to class SMVC. 

Theorem 1 The class SMVC is not empty. 

Proof. 
We do the proof by contradiction. First we recall that a bipolynomial reduction OCB 
from a problem E' toward a problem E is capable of changing in polynomial time 
any instance / ' of E' into an instance / of E, the number of solutions 15/1 = |5// | , 
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and any solution of Si can be changed into a unique solution of Si> in polynomial 
time. 
Assume that class SMVC is empty. 
=^ V£; G SNV, 3E' such that ß (XB with E' (XB E. 
Let us consider a problem E such that its associated counting problem C is # P -
complete and its associated optimisation problem O is ATPO-complete. We intro
duce set Rp{E') = {reductions from E' towards E which are parsimonious but not 
polynomial}. We have Rp{E') ^ 0 since problem C is #P-complete. The previous 
statement implies: 
\fE e SMV, 3E' such that V ocG Rp{E'), 31' instance of E' such that 3s G 5oc(//) 
with s non convertible in polynomial time into a solution s' G Sji. 
But here we have a contradiction with the fact that problem O is A/^PO-complete 
since we can exhibit a polynomial reduction capable of changing in polynomial time 
a solution of problem E into a solution of problem E' (the solutions of the enumer
ation problems are all possible solutions of the associated optimisation problems). 
Henceforth, class SMVC is necessarily non empty.D 

Figure 2.3 summarizes the world of SMV. In this section, to prove the diffi
culty of a problem we have suggested the use of reductions. For instance, to 
show tha t a counting problem C^ is in J^V we can provide a parsimonious 
reduction occ and another J^V counting problem C^ such tha t C^ occ C^. 
For enumeration, we use the bipolynomial reduction. These reductions have 
also been used to define the classes of complete problems. 
However, it exists some links between an optimisation problem and its count
ing and enumeration counterparts enabling us to quickly derive, in some cases, 
the complexity of those problems. 

P r o p e r t y 2 If an enumeration problem E belongs to class V then so is the 
corresponding optimisation problem O, and the associated counting problem 
belongs to class TV. 

The following property states a powerful result which is a consequence of 
theorem 1. 

P r o p e r t y 3 / / an optimisation problem O is NVO-complete and has its 
counting problem which is H^P-complete, then the associated enumeration 
problem E is SMV-complete. 

Proof. 
As problem O G MVO it follows that any solution to an instance I can be checked 
with a time bounded by a polynomial of Length[I] (see Section 2.2.2). From Defi
nition 18, we conclude that problem E necessarily belongs to class SNV. Besides, 
as problem O is A/^PO-complete we can exhibit another problem O' belonging to 
MVO and a polynomial time reduction oc such that O' oc O. Assume, without loss 
of generality, that the associated enumeration problem E' belongs to class SMVC 
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(otherwise class SMVC would be empty, see Theorem 1). We now slightly transform 
the reduction oc in order to obtain a bipolynomial reduction ocß. First, notice that 
the instances of O (resp. O') are also the instances of E (resp. E'). Henceforth, for 
any instance I' of E', oc (/') is an instance of E. The difference between problems O 
and E is that the outcome of E is the whole set of optimal solutions. But, reduction 
oc is capable of changing in polynomial time any solution of Scc{i') into a solution 
of Sjf. Besides, as problem C is #P-complete we can state that there exists such a 
reduction oc which is parsimonious. This implies that by making reduction oc chang
ing all solutions of 5oc(j') into solutions of Sjf we obtain a bipolynomial reduction 
OCß, since the time complexity becomes bounded by a polynomial of Length[I'] and 

\So.(n\ = \Sr\n 

As already done previously for counting problems, we can informally state 
that often: ''if an optimisation problem is ÄfVO-complete then the associated 
enumeration problem is f AT'P-complete". This follows the remark of Simons 
related to polynomial reductions which often are, or can be transformed into, 
parsimonious reductions. However, no formal proof of this statement has been 
proposed. 
Several techniques are available to show that an enumeration problem is 
£J\fV-comp\ete and they are similar to those useable for optimisation prob
lems. Accordingly, to show that an enumeration problem E is f A/'T^-complete 
we can show that it is in SÄfV and there exists another fTVT^-complete prob
lem E^ which bipolynomially reduces to it. Notice that this kind of proof 
becomes straightforward if we can exhibit a parsimonious reduction between 
the two corresponding optimisation problems. 

2.3 Application to scheduling 

Scheduling problems are optimisation problems. When we address a schedul
ing problem, we must always look for its complexity, since this determines 
the nature of the algorithm to implement. If the problem under consideration 
belongs to the class P , we know that an exact polynomial algorithm exists to 
solve it. In this case it is convenient to use or to perfect such an algorithm. By 
contrast, if the problem is AT'P-hard, two alternatives are possible. The first 
is to propose an approximated algorithm, therefore an heuristic one, which 
calculates in polynomial time a solution which is as close as possible to the 
optimal solution. The second is to propose an algorithm which calculates the 
optimal solution of the problem, but for which the maximal complexity is 
exponential. In this case, the challenge is to design an algorithm which can 
solve problems of the largest possible size. 

To calculate the complexity of scheduling problems, a certain amount of tra
ditional results exist in the literature. They show the links between different 
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single criterion scheduling problems. We can represent them under the form of 
trees of polynomial Turing reductions (see for example [Pinedo, 1995]) where 
the vertices characterise the problems and where there is an arc between a 
vertex A and vertex ^ if 4̂ OCT B. Such trees exist for types of problems 
(figure 2.4), types of constraints (figure 2.5) and criteria (figure 2.6). In fig
ure 2.4, the presence of an arc from A towards B means that a polynomial 
Turing reduction exists from an A\ß\j problem towards the corresponding 
^1/317 problem. In figure 2.5, the presence of an arc from A towards B means 
that a polynomial Turing reduction exists from the a\A\^ problem towards 
the corresponding a|-B|7 problem. Finally, in figure 2.6 the presence of an arc 
from A towards B means that a polynomial Turing reduction exists from the 
a 1/31A problem towards the corresponding a|/3|J5 problem. 
For example, the arc between Cmax and I/max enables us to deduce that the 
^1 l-̂ max problem is AT'P-hard given that the P | |Cmax problem is also. In figure 
2.4, the arc of the problems {P, Q, i?} towards the problem HF means that 
polynomial Turing reductions between these problems exist when the parallel 
machines are of the same type as those appearing in the stages of machines 
in workshop problems with assignment. Thus, there is a reduction of problem 
Q towards the corresponding problem HF if at least one stage of the hybrid 
flowshop contains proportional machines. It is the same for parallel machines 
problems with general assignment towards corresponding shop problems. 
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Thus, the reduction trees presented are usable only when we already know 
the complexity of certain scheduUng problems. In order to complete the re
sults presented in this section we therefore recall the complexity of certain 
basic scheduling problems of the type a\\Z where Z refers to any criterion 
(table 2.2). 

Concerning the criteria E'max, ^ and E and whatever the structure of the 
shop be, the problem is solvable in polynomial time when the insertion of 
voluntary idle times before each job is authorised. Any schedule such that 
jobs start after their due date di is an optimal schedule for these criteria. 

Concerning single machine problems, the minimisation of a function fmax = 
max {fi{Ci)) with fi an increasing function of the completion times is a 

problem which is solvable in polynomial time. Consequently, the 1\\Z prob
lems with Z e {Cmaxy Fmax.Tmax, Lmax) are equally so. Notice that any se
quence is optimal for the l||Cmax problem. The 1||C and 1\\C problems are 
solvable in polynomial time (see [Lawler et al., 1989]) and it is similar for the 
l|di|i7 problem (see [Pinedo, 1995]). Without adding any constraints, the only 
A/'P-hard 1\\Z problems, are the problems l|di|T in the weak sense, l|di|C/ 
in the weak sense and l\di\T in the strong sense (see [Lawler et al., 1989]). 
As a consequence, all the a|di|T problems are so, whatever the value of a. 

For parallel machines problems, the P||/max problem is strongly A/'P-hard 
(see [Lawler et al., 1989] and [Pinedo, 1995]). It is similar for the P\\Z prob
lems with Z e {Cmax, i^maxj^max, î max} (see [Brucker, 2004]). We note 
also that to solve the i?m ||Cmax problem (the number of machines m 
is fixed), a pseudo-polynomial time dynamic programming algorithm (see 
[Lawler et al., 1989]) exists. Concerning the criterion C its minimisation re
mains a polynomial time problem whatever the type of considered machines 
(see [Pinedo, 1995]). On the other hand, the P\\C problem is strongly AfV-
hard (see [Brucker, 2004]). As for the Ä||Cmax problem a pseudo-polynomial 
time dynamic programming algorithm exists to solve this problem when the 
number of machines m is fixed (see [Lawler et al., 1989]). 
Knowing that the a\di\Lmax problems with a G {P, Q, i?} are strongly AfV-
hard we deduce immediately from this that the same problems but with the 
criteria t/, U and T are equally so. We note that a pseudo-polynomial time 
dynamic programming algorithm exists to solve the Rm\di\U problem (see 
[Pinedo, 1995] and [Lawler et al., 1989]). 

Finally, we end this complexity survey of scheduling problems with fiow-
shop, jobshop and openshop problems. Beginning with the results presented 
in [Tanaev et al., 1994b] and the reduction rules presented in this section, 
we note that all these problems, without adding simplifying hypotheses 
are strongly A/'T^-hard for the criteria studied. A comprehensive survey 
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of the complexity of single criterion scheduling problems can be found at 
www. mathemat ik . uni-osnabrueck. de/research/OR/class / . 

Table 2.2. Complexity of single criterion problems 
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3. Multicriteria optimisation theory 

3,1 MCDA and MCDM: the context 

Decision Making arises at all levels in firms. A firm may be described as a 
"complex system", and we can make the following remarks ([Boldur, 1982]): 

• A complex system can be broken down into sub-systems according to the 
objectives of the first one (production sub-system, human resources man
agement sub-system, etc.). 

• The methods of management must be arranged in order to propose solu
tions that fit the actual objectives. 

• It is necessary to mix different disciplines such as Operational Research, 
Management and Psychology in order to thoroughly understand and model 
a complex system. 

These remarks make apparent the complexity of the decision processes in the 
firms. The desire to rationalise these processes to the extreme leads inevitably 
to an aberration ([Roy, 1985]) as certain factors, which occur in real time, 
cannot be taken into account in advance. The multicriteria decision domain 
proposes a set of tools which enables to model the decision process more or 
less faithfully ([Boldur, 1982]). 

The representation of the decision process, or even simply the search for a 
correct decision, is conditioned by diff'erent elements ([Zionts, 1997]): 

• Well defined decisions do not exist all the time, sometimes only "orienta
tions" exist. 

• The decision maker is rarely a unique individual. Often there is a group of 
people that take decisions. 

• The set of possible decisions (or actions, or alternatives) is rarely fixed, but 
tends to evolve in real time. 

• Although the decision maker wants to choose the optimal decision, this 
perhaps does not exist or else he is incapable of differentiating between a 
good decision and the optimal solution. 

Two particular domains, MultiCriteria Decision Making and MultiCriteria 
Decision Aid, are found in the literature. The difference lies mainly in the 
way to model the problems. 



54 3. Multicriteria optimisation theory 

3.1.1 MultiCriteria Decision Making 

MultiCriteria Decision Making (MCDM), is a descriptive approach (see 
[Roy and Bouyssou, 1993] and [Roy, 1990]) as it consists of describing the 
problem: 

• by defining the possible decisions, 
• by defining the attributes (the consequences of these decisions) and the 

evaluation criteria, 
• by incorporating in a utility function / the set of retained criteria. 

Finally, we choose the decision which maximises this function. This ap
proach is based on a certain number of fundamental axioms ([Roy, 1985] 
and [Roy and Bouyssou, 1993]): 

• When the decision maker makes a decision he maximises, implicitly or 
explicity, a utility function. 

• An optimal decision exists in every situation. 
• Two decisions which might be incomparable do not exist. We can make a 

choice or a sort between every pair of decisions. 
• Formally, the decision maker's preferences hinge upon two binary relations: 

the preference P and the indifference / . Let us consider two decisions a and 
6, either a is preferable to b (aPb), or b is preferable to a (bPa) or a and b 
are indifferent {alb). These two relationships are transitive. 

Different methods classified in the MCDM approach exist (see for example 
[Olson et al., 1997] and [Guitouni and Martel, 1997]). Among the best known 
and most used are: 

• the methods relating to the MultiAttribute Utility Theory (MAUT, see 
[VonNeumann and Morgenstern, 1954]) which use a stochastic approach. 
These methods concern the problems where the different decisions are sub
ject to uncertainty at the criteria level. Finally, these approaches assume 
that the decision maker is alone. 

• the Analytic Hierarchy Process method (AHP, [Saaty, 1986]), which clas
sifies the criteria into groups using a hierarchical analysis in the form of a 
tree. Each criterion has a weight inside the objective function and to fix 
these weights the decision maker must compare each pair of criteria and 
he must give a ratio that reflects his preference. 

[Dyer et al., 1992] give a critical presentation of the works in the MultiCri
teria Decision Making domain and break it down as shown in figure 3.1. 

3.1.2 MultiCriteria Decision Aid 

MultiCriteria Decision Aid (MCDA) is an approach known as construc
tive ([Roy and Bouyssou, 1993] and [Roy, 1990]). It does not seek an optimal 
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Case where the utility 
fiinction is implicit 

(but assumed to exist) 
Interactive Methods 

MAUT AHP 

Case where the utility 
fiinction is explicit 

• (we search to set out 
an approximation) 

MCDM 

Fig. 3.1. Analysis of the methods of type MCDM 

solution but it enables to model the problem by taking account of the pref
erences and experience of the decision maker. It concerns a flexible approach 
([Roy, 1985]) which, by successive dialogues with the decision maker, enables 
the analyst to propose some response elements (see figure 3.2). The decision 
process represents in this figure the considerations of the decision maker. In 
parallel, the decision aid process contains the set of elements highlighted by 
the analyst to help the decision maker. Thus, from the outset of the question
ing by the decision maker, the analyst can construct models of the problem 
from which he can make a certain number of deductions. These contribute 
to helping the decision maker to make an explicit choice and therefore make 
a decision. 
The basic axioms for MultiCriteria Decision Aid are the following: 

• There are problems for which there is no optimal solution. 
• The set of decisions may evolve during the course of the study. 
• There is a strong interaction between the decision maker and the analyst. 
• The decision maker's preferences may be expressed by means of four basic 

relationships: the relationship of strict preference, of weak preference, of 
indifference and of incomparability (these relationships are not necessarily 
transitive). 

More details are presented by [Roy, 1985] and [Roy and Bouyssou, 1993]. 

3.2 Presentation of multicriteria optimisation theory 

Multicriteria Optimisation Theory occurs in the context of MCDA and 
MCDM. Such theory provides results and methods for calculating best trade
off solutions when the preferences of the decision maker are known. 
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Fig. 3.2. Decision Process and Decision Aid 

Prom a mathematical point of view, multicriteria optimisation problems are 
a special case of vectors optimisation problems, defined by: 

Min Z{x) with Z{x) = [Zi{x);...; ZK{x)f 
subject to 

xeS 
S = {x/[gi{x);.,,;gM{x)f <0} 

Traditionally we can distinguish four axes in the field of vectors optimisation: 
cone dominance theory, the definition of efficiency, duality theory and the sta
bility analysis of the set of efficient solutions. Cone dominance theory enables 
us to define order relation in vectorial space on which the sets S and Z{S) 
are defined. This leads therefore to the notion of efficiency (or Pareto opti-
mality). Duality theory proposes results which enable us to characterise the 
eflScient solutions. Finally, stability analysis allows us to study the behaviour 
of the set Z{S) when the definition of 5 depends on one or several parameters. 

Multicriteria optimisation problems are vectors optimisation problems where 
solutions space S and criteria space Z{S) are the vectorial euclidian spaces 
of finite dimension, Q and K respectively, i.e. S C U9 and Z{S) C R^ with 
1<Q,K <oo . 
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We firstly present definitions and basic results related to these problems. 
Afterwards, we study these problems more particularly within the framework 
of linear problems with real or integer variables defined by: 

Min Cx 
subject to 

Ax = h 

where C is the matrix of the criteria coefläcients of dimension {K xQ)^ A the 
matrix of the constraint coefficients of dimension (M x Q) and h is the vector 
of right-hand values dimension M, where M is the number of constraints. 

3.3 Definition of optimality 

Let S C M9 be the set of solutions and Z C R^ the image in the criteria 
space of 5 by K criteria Zj. We consider that the order structure associated 
w i t h R ^ is, Vx,2/€R^: 

X <y <^ Xi<yi,\/i = l,..., K 
x = y ^Xi=yu\li = l,..., K 

This order defines a partial preorder, valid for K > 2. We may note that 
for single criterion optimisation problems (ÜT = 1), the structure associated 
with R is a total preorder, i.e. there is no incomparability between two solu
tions. Thus in the single criterion case, the definition of an optimal solution is 
straightforward. In the multicriteria case this definition is no longer trivial be
cause a solution minimising simultaneously all the criteria rarely occurs. We 
then use a more general definition of optimality: that of the Pareto optima. 

Definition 29 
X £ S is a weak Pareto optimum, also called a weakly efficient Solution, if 
and only if$yeS such that Vi = 1, ...,i(r, Zi{y) < Zi{x). We note WE the 
set of weak Pareto optima of S. The set WE defines in the criteria space the 
trade-off curve, also called the efficiency curve. 

This definition introduces a general class of Pareto optima, but other kinds 
of Pareto optima exist. Definitions 30 and 31 concern subsets of WE. 

Definition 30 
X Q S is a strict Pareto optimum, also called an efficient solution or a strict 
efficient solution, if and only if$yeS such that Vi = 1,..., iC, Zi{y) < Zi{x) 
with at least one strict inequality. We note E the set of strict Pareto optima 
of S and we have E C WE. 

Notice that [Ehrgott, 2000b] introduces a slightly different definition of strict 
Pareto optimality. Definitions 29 and 30 are illustrated in figure 3.3 where 
the extreme Pareto optima correspond to extreme points of the polyhedron. 
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Very often, we prefer to be interested in the set E rather than in the set WE^ 
as the latter may contain solutions which are of little interest to the decision 
maker. 

ẑ ,ẑ z2,ẑ ,z4,ẑ ,ẑ ,ẑ ,ẑ : weak Pareto optima 
z2,ẑ ,ẑ ,ẑ ,ẑ : strict Pareto optima 
2P,z\z^,z^: non strict Pareto optima 
zP,z^,z^,z^,z^,z^: extreme weak Pareto optima 
z\z^,z^,z^: extreme strict Pareto optima 

Fig. 3.3. Illustration of weak and strict Pareto optima in the case where Z defines 
a polyhedron 

Definition 31 [Geoffrion, 1968] 
Let x,y e S,y ^ X and ly = {i E [1\K]/Zi{y) < Zi{x)}. x G S is a proper 
Pareto optimum , also called a proper efficient solution if and only if x is a 
strict Pareto optimum and 3M > 0 such that 
yyeS,y^x,Iyj^(l}=^ 

M i £ ly, (3j, I < j < K with Zj{x) < Zj{y)) such that 
Zi{x)-Zi{y) 
Zj{y)-Zj{x) -

We note PRE the set of the proper Pareto optima of S and we have PRE C 
E. 

These definitions are only valid if each criterion Zi can reach its minimal 
value. We suppose that it is thus in the remainder of this book. We notice 
that the wording of definition 31, which is illustrated in figure 3.4 in the 
bier iter ia case, is redundant. Indeed, if there exists a value M > 0 as intro
duced in this definition, then x^ is a strict Pareto optimum. In the particular 
case of Multicriteria Linear Programming (MLP) and of Multicriteria Mixed 
Integer Programming (MMIP) and if the number of constraints is finite, then 
we have E = PRE ([Steuer, 1986]). 
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X is a proper Pareto optimum if and only if: 
(a) there is no solution belonging to area (B), 
(b) 3 M>0 such that, Vy eS* belonging to area (A) 
minus Lj and L2: -l/w<M, 
(c) 3 M>0 such that, Vy e S belonging to area (C) 
minus LI and L2: -l/w<M, 
with w the slope of the line containing x and y. 

Fig. 3.4. Illustration of the definition of proper Pareto optima 

An interesting result concerning the connectedness of the sets WE and E 
is presented in [Warburton, 1983] in the general case of vectors optimisation 
problems. We recollect at once some basic definitions. 

Definition 32 
A function f : W ^ R is convex if and only ifiz^.z^ eW, VA G [0; 1] 
f{\z' + (1 - \)z^) < \f{z') + (1 - \)f[z^). 

Definition 33 
A function / : R"̂  —> R Z5 quasi-convex if and only ifWz^^z'^ € R"", VA € 
]0;1[ f{\z^ + (1 "" ^)^'^) ^ T^^^{f{^^)'',f{^'^))' ^t 5̂ strictly quasi-convex if 
f^Xz' + (1 _ x)z^) < me.x{f{z'yj{z^)). 

Definition 34 
^ 5e^iS C R"" is convexifandonlyifMz^.z'^ GS^^XG [0 ;1] , XZ'^-\-(1-X)Z^ G 

S. 

Definition 35 
A set S C R'̂  is compact if and only if it is closed and bounded. 

Theorem 2 [Warburton, 1983] 
LetaGZ and C{a) = nf^^L^{ai) with L'^{ai) = {x G S/Zi{x) < a j . IfS 
is a convex and compact set we have the following results: 

• If\/i — 1^...^K, Zi is a quasi-convex function, then the set WE is con
nected. If moreover "ia € Zi{S) x . . . x ZK{S), C{a) is compact then WE 
is not empty. 
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• lf\/i = l^,..^K, Zi is a strictly quasi-convex function then the set E is 
connected. If moreover Va € Zi{S) x . . . x ZK{S), C{a) is compact then E 
is not empty. 

Some similar results in the framework of Multicriteria Linear Programming 
are presented in [Yu and Zeleny, 1975]. 

3.4 Geometric interpretation using dominance cones 

We give here a brief idea of a geometric interpretation of the definitions 
of Pareto optima in the case where the criteria are linear functions of the 
form Zi{x) = c^x, Vi = l,...,ür. This interpretation is based on the use of 
dominance cones. 

Definition 36 
AsetCc W^ is a cone if and only if\/xGC,\/aGR'^, ax GC. If moreover 
C n —C = {0} with —C = {—x/x € C}, then C is pointed. 

Definition 37 
Let p vectors v' G R^ and C = {v e W/v = E L i ^i'^'^ ^i ^ 0}; 

• The vectors v^ are the generators of the cone C. 
• Let i € [I'lP]' If there exists [Ai;...; Ai_i; A^+i; A^]^ > 0 such that v'^ = 

YX=i^k^i ^k^^ ^hen v^ is a non essential generator (C can be generated 
without the vector v^). Otherwise, v^ is an essential generator. 

• The dimension of the cone C is equal to the number of linearly independent 
vectors v'^. 

We note in the remainder Cz the convex criteria cone generated by the gra
dients c* of the criteria Zi. To introduce the notion of dominance set, it is 
convenient to define the notion of semi-positive polar cone. 

Definition 38 
We note C^ the semi-positive polar cone generated by the generator vectors 
of Cz and we have: 

C | = { y € R V c ' y > 0 , V i = l , . . . , i ^ , [ c iy ; . . . ; c^y ]^0}U{0} . 

Cf contains all the vectors of W^ making an angle lower than or equal 
to 90 degrees with the generators of Cz- The dominance set at a point 
X £ S is then defined by D-^ = {x} — C^ = {x € W^/x = x — y with 
y e W,[c^y;...;c^y]^0 andc'y>0,\/ i = l,...,K}\J{x}. 

A geometric representation is given in figure 3.5. In this figure, —C^ is rep
resented at the point x. 

Theorem 3 See for example [Steuer, 1986] 
x^ E S is a strict Pareto optimum if and only if D^o OS = {x^}-
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"^ 

Fig. 3.5. A dominance set 

It is also possible to present a similar result for weak Pareto optima by con
sidering D^o =x^ -C^ with C^ = {y € W/dy > 0, V z = 1,..., K} U {0}. 

The more the angles between the different gradients d are important the 
more C^ is reduced, which has a tendency to increase the number of strict 
Pareto optima for a given problem. Let us consider a bicriteria problem. Let 
c^ and c^, the two gradients of Zi and Z2, be the generators of the cone C^. 
Figure 3.6 presents three cases. In case 1, the dominance set at the point x 
is the open half-space below the line passing this point. This line is excluded 
from Dx' In case 2, the dominance set at the point x is demarcated by a 
quadrant whereas in case 3 this set is itself reduced to point x. We note thus 
that in case 1, a point x has "little chance" of being a strict Pareto optimum 
whereas in case 3 they all are. We note that the dominance cones constitute 
not only a tool to geometrically interpret the notion of Pareto optimum in 
the decision space, but equally they provide information on the number of 
potential Pareto optima. 

In criteria space, geometric interpretation is simplified given that the image 
of the dominance set is the quadrant defined by the half-lines emerging from 
Z{x) and parallel to the reference axes (figure 3.7). 
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Case 1: ĉ  and ĉ  are colinears 
and in the same direction 

x̂ . 

Case 2: ĉ  and ĉ  are orthogonals 
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V 
Case 3: ĉ  and ĉ  are colinears 
and in opposite directions 

Fig. 3.6. Three cases for a bicriteria problem 

3.5 Classes of resolution methods 

Pareto optima correspond to "best trade-ofF' solutions between different con
flicting criteria. Clearly it appears that only the decision maker can choose the 
most satisfactory solution for his problem, among the set E (or WE), Tradi
tionally, multicriteria optimisation problems are part of the MCDM approach 
and with this heading we assume that when the decision maker chooses his 
solution, he optimises a utility function, i.e. an aggregation function of the 
criteria. This function is not known with certainty, but we assume that the 
solution it optimises is a Pareto optimum. Among the solutions which we are 
going to seek we can distinguish: 
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Fig. 3.7. Interpretation in criteria space 

1. Solutions which are proper, strict or weak Pareto optima. 
2. Among the Pareto optima, those which best satisfy the requirements of 

the decision maker. 

The analyst must propose a resolution algorithm for the multicriteria opti
misation problem, i.e. an algorithm which will enable the decision maker to 
choose his solution. For this he must take account of all the information at 
his disposal: the decision maker may provide the weights of the criteria to the 
resolution algorithm or he may give the goals to be attained, etc. Moreover, 
the analyst knows that the resolution of a multicriteria optimisation problem 
cannot be done without the intervention of the decision maker. A resolution 
algorithm which does not enable the decision maker to intervene, can only 
determine the whole Pareto optima set. 
[Evans, 1984] presents three occasions where the decision maker can inter
vene: before, during or after the resolution process. A general category of 
methods can be associated to each of these occasions: 

1. The methods enabling the decision maker to intervene before the resolu
tion process are called a priori. 

2. The methods enabling the decision maker to intervene during the course 
of the resolution process are called interactive. 

3. The methods enabling the decision maker to intervene after the resolution 
process are called a posteriori. 



64 3. Multicriteria optimisation theory 

In the a priori methods, the resolution process cannot be performed with
out the decision maker having provided a set of information, as for example 
the value of the weights of the criteria for the minimisation of a linear com
bination of criteria. Determination of the value of these parameters consti
tutes a problem itself, which requires the use of a decision aid method. The 
interested reader is referred particularly to [Roy, 1985], [Vincke, 1989] and 
[Roy and Bouyssou, 1993]. 

In the interactive methods, the resolution process is iterative. Each iteration 
provides the decision maker a solution, which is not necessarily a Pareto op
timum. He then orients the process by providing, directly or indirectly, new 
values for the parameters of the problem. For example, it may concern new 
weightings for the linear combination, or improvement/damaging of certain 
values of criteria in relation to the current solution. The process is then capa
ble of calculating a new solution and the following iteration can begin. This 
category of methods has been the object of numerous studies in the field 
of multicriteria optimisation and more generally in the field of decision aid 
([Vanderpooten, 1990]). 

Finally, a posteriori methods aim to provide the decision maker with an 
exhaustive set of Pareto optima, among which belongs the most satisfactory 
solution. The set of Pareto optima suggested to the decision maker depends 
on the properties of the solved problem. 

3.6 Determination of Pareto optima 

The solution adopted to the problem of taking into account the conflicting 
criteria depends on the information which the decision maker can provide. 
From the point of view of the analyst it is possible to classify the diff'erent 
methods of determining Pareto optima by means of this information (figure 
3.8). 

The results presented in this section lead to an aggregation of criteria in one 
or several more general criteria, by adding new parameters (weights, goals, 
etc.) to the problem. Generally, the more interesting the results for these new 
criteria are, the more difficult is their application (tuning of the parameters, 
algorithmic complexity, etc.). The choice of a method necessitates therefore 
a trade-off between the quality of the calculable solutions and the ease of its 
application. 

3.6.1 Determination by convex combination of criteria 

A traditional result is proposed by [Geoffrion, 1968]. It concerns the minimi
sation of a convex combination of criteria, for which the basic result is pre-
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sented in theorem 4, also called "Geoffrion's theorem" in the remainder. It 
concerns a necessary and sufficient condition for the determination of proper 
Pare to optima. 

T h e o r e m 4 [Geoffrion, 1968] 
Let S he the convex set of the solutions and K criteria Zi convex onS. x^ is a 

K 

proper Pareto optimum if and only if 3a G R ^ , with ai G]0 ; 1 [ and 2_\^'^ ~ ^^ 
i = l 

such that x^ is an optimal solution of the problem {Pa)' 

K 

Min g{Z{x)) with g{Z{x)) = y^aiZi{x) 
i=l 

subject to 
xeS 

Proof. 
I ^ I Let us show that if x^ is an optimal solution of (Poc) with a fixed, then x^ is 
a proper Pareto optimum. For this, it is sufficient to show the existence of M > 0 
such as it is presented in definition 31. Let us proceed by contradiction, i.e. suppose 
that x^ is an optimal solution of (Pa) with a fixed, and that x^ is not a proper 
Pareto optimum. 
Then, VM > 0,3x^ ^ x^,x^ G «S and 3i G 4 i , where I^i = {i e [1;K]/Zi{x^) < 
Zi{x^)}, such that: 

Vj, l<j<K, with Z,(x°) < Zj{x'), we have f^j^ij I ^ f f ) > ^ -

Let us write M = K x max ( —^ ) and x^ a solution verifying the hypothese. 
a,b=l,...,K \ab J 

Note Ji = {j G [hK]/Zj{x^) < Zj{x^)}. 
Vj G J i , Ziix"") - Zi{x^) >Mx {Zj{x^) - Z,(x°)) 
=> Zi(x°) - Zi{x^) >Kx max( — ) x {Zj{x^) - Zj{x^)),'ij G Ji 

a ,6 OLh 

=^ Ziix^) - Ziix^) > K x ^ x (Zjix^) - Zj(x^)),\/j G Ji 

=^ Zi(x^) - Zi{x^) > iJil X ^ X (Zj(x^) - ZAx^)),\/j G J i , since K > | J i | 
OLi 

=^ ^^{Zi{x') - Zi{x')) > ajiZjix') - Zj{x')),\/j G Ji 

=> ^ Z i ( x ° ) + a ,Z,(x°) > ^Zi{x') + ajZj{x'),yj G J i 

=> Y;^^Z,(x')+Yl^jZj{x')>J2ff-M^^ 

^ ^ ajZj{x')> ^ a,Z,(x^) (A) 
jeJiu{i} jeJiu{i} 

Note J2 = {j G [l;i^]/Z,(x°) > Z , (x ' )} . 
We have Ji O J2 = 0 and Ji U J2 = [hK]. V^ G J2, we have aeZe{x^) > 
aeZeix') (B) . 

K K 
(A) and (B) ^ ^ a i Z i ( a ; ° ) > ^Jo^i-^iC^ )) which contradicts the fact that rr° is 

i=l i=l 
an optimal solution of (Pa). ic° is therefore a proper Pareto optimum. 
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I =» I Let us suppose that x^ is a proper Pareto optimum and let us show that 
3a G]0; 1 [ ^ such that x^ is an optimal solution of (Pa). 
x^ e PRE ^ 3M > 0 such that Vi = 1,..., /C the system (5*) should not have a 
solution y E S. 

^"^ ^ \ Zi{x') - Zi{y) >Mx {Zj(y) - Zj{x')) Wj = 1,..., KJ ^ i 

fc^i.f Zi{y)<Zi(x'') 
^^ ^ \ Ziix"") + M X Zjix"") > Zi{ 

Given that the criteria Zi are convex functions, we have the following result 
K 

([Berge and Gouila-Houri, 1965]): 3 A} > 0,Vi = l,...,K,^X) = 1, such that 

we deduce from the system (5*), Vi = 1,..., i(", the following system (5 *): 

(c'iJ>^iZi(y)<KZi(x°) 

^^ > \ XiiZiix") + M X Zj(x°)) > \*{Zi{y) + M x ZM), Wj = 1,..., K,j / i 

with at least one strict inequality. 
K 

=^ Vi = l,...,K,ty e S such that XiZi{y) + J^ ^K^^(2/) + ^^jiv)) < 

K 

AiZi(x°)+ Y. AJ(Zi(:r°) + MZ,(:r')) 

K K 

^\/i^l,...,K,tyeS / Zi[y)^M ^ A}Z,(y) < Zi(x') + M ^ AJZ,.(x°) 

3 = 1 i=l,i^j j = l j=l i=l,i^j j = l 

i = i i = i , i ^ j j = i i = i , i ^ j 

i+M ; ^ Aj ^ 

=^ 3aj / aj = ^~ '^^ , Vj = 1, ...,K, verifying that ^Z^J ~ ^^ ^^^ such 

that yZ^J^jiy) — y^^J^ji^^) ^^v® ^o solution y E S, Therefore x^ is an optimal 

solution of (Pa).n 



68 3. Multicriteria optimisation theory 

In theorem 4, the parameters a^ cannot be equal to zero because in the 
opposite case, the generated solutions would not all be proper Pare to optima. 
More precisely, we would obtain a necessary and sufßcient condition for the 
determination of weak Pareto optima. 

L e m m a 2 
Let S be the convex set of solutions and K criteria Zi convexes on S, x^ 

is a weak Pareto optimum if and only if 3Q; G R ^ , with ai G [0; 1] and 

Yli^i <̂ i = 1̂  ^'^c/i that x^ is an optimal solution of the problem {Pa)-

Proof. 
I ^ I Let us suppose that x^ is an optimal solution of (Fa) with a G [0; 1]^ fixed 
and let us show that x^ is a weak Pareto optimum. Let us proceed by contradiction, 
i.e. we suppose that x^ is not a weak Pareto optimum. 
Let us suppose that 3x^ such that Vi = 1,..., iC, Zi(x^) < Zi(x^). We have: 
ai{Zi{x^) - Zi{x^)) < 0 because ai > 0, Vi = 1, ...,K 

but as Y^ai = 1,3j such that a-,- > 0 =^ aj(Zj{x^) - Zj(x^)) < 0 
i=l 

K 

=> ^ a i ( Z i ( x ' ) - Ziix"^)) < 0 

K 

=^ ^aiZi{x^) < ^aiZi{x^), 
i=l i=l 

which contradicts the fact that x^ is an optimal solution of (Pa), x^ is therefore a 
weak Pareto optimum. 
I =» I Let us suppose that x^ is a weak Pareto optimum and let us show that 
3a G [0; 1]^ such that x^ is an optimal solution of (Pa). 
x^ G WE <^$x^ eS such that Zi{x^) < Zi{x^), Vi = 1, . . . , i^ , by definition. 
Given that the criteria Zi are convex functions, we have the following result 
([Berge and Gouila-Houri, 1965]): 3a G E ^ with aj > 0,Vj = l,...,K and 
K 

y^g-/ = 1, such that we deduce from the previous inequalities that $x^ e S such 

that Vi = l,...,K,aiZi{x^) < aiZi{x^) 
K K 

^tx^ eS such that Y^aiZi{x^) < ^aiZi^x^) 

=> x^ is an optimal solution of (Pa )D 

The level curves are a practical tool to geometrically illustrate diflFerent op
timisation problems. Concerning the minimisation of a convex combination 
of criteria, problem (P«) can be interpreted in the following manner: let 
X= (a ) = {x G 5 / X^il i OLiZi{x) = a with ai G]0 ; 1 [ and J2i=i ^i = 1} t>e the 
set of level curves in the decision space. We write L={a) = Z ( X = ( a ) ) . To solve 
(Pa) is equivalent to determining the level curve of minimal value g* such tha t 
L={g*) is tangential to Z in the criteria space (figure 3.9). L={g*)nZ defines 
in the decision space a set of Pare to opt ima for the multicriteria problem. 
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ai<a2<g*<a3<a4 

Fig. 3.9. Geometrie interpretation of a problem (P«) 

In the case of a priori methods, we must define a way to obtain the weights 
of the criteria to use in the objective function. Within the field of a poste
riori methods, we must conduct a parametric analysis by means of a. We 
note A = {a = ( a i ; . . . ; aK)/'^i^ on €]0; 1[ and Yl,i=\ oti = 1}. The basic idea 
consists of dividing A into v parts Ai such that A = U^^j^li. Each part Ai is 
allocated a division OPTi of the set of Pareto optima such that Va^, a^ G yli, 
if we note OPTi{a^) the set of the optimal solutions of (PaO and OPTi{a^) 
the set of optimal solutions of (P^O then OPTi{a^) = OPTi{a^) = OPTi, 
Within the field of interactive methods, we can iteratively vary, according 
to the instructions of the decision maker, the value of the weights a^. These 
instructions can be, according to the algorithm under consideration, new 
weights, desired improvements, etc. 

Theorem 4 and lemma 2 are only valid if the set S and the criteria Zi are 
convex. If we suppose that the criteria are not convex functions, then only the 
necessary condition remains valid: the optimal solutions of a problem (P«) 
are (proper or weak) Pareto optima. Moreover, as we shall see in section 3.8 
for Multicriteria Mixed Integer Programming, these results no longer allow 
the full determination of the set of Pareto optima. 
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3.6 .2 D e t e r m i n a t i o n b y parametr i c analys i s 

An interesting result is proposed by [Soland, 1979], since it allows the cal
culation of all the strict Pare to optima, while being simple to use. Before 
presenting this result we recall the definition of a strictly increasing function. 

Def in i t ion 39 See for example [Schwartz, 1967] 
A function f: R ^ —> R is strictly increasing if and only if\fx, y G R ^ , x ^ y, 
x<y=^f{x) <f{y). 

T h e o r e m 5 [Soland, 1979] 
Let GY be the set of strictly increasing functions from R ^ to R which are 
lower bounded on Z, and g G Gy- x^ G S is a strict Pareto optimum if and 
only if 36 G R ^ such that x^ is an optimal solution of the following problem 

Min g{Z{x)) 
subject to 

XGS 

Z{x) < b 

Proof. 
I <= I Let us show that if x^ is an optimal solution of {P(g,b)) with g G Gy and b G M^ 
fixed, then x^ is a strict Pareto optimum. Let us proceed by contradiction, i.e. we 
suppose that x° is not a strict Pareto optimum with this same vector b. 
Then x^ G S exists such that Z{x^) < Z{x^) with Z{x'^) :^ Z{x^). As p is a 
strictly increasing function on Z, we have g{Z{x^)) < g{Z(x^)). Moreover, as x° is 
a solution of {P(g,b))j we have Z(x^) < 6, and therefore Z{x ) < 6, which guarantees 
that x^ equally satisfies the constraints of {P(g,b))' x^ is therefore also a solution of 
{P(9,b)) and we thus arrive at a contradiction with the optimality hypothesis of x^ 
for {P(g,b))' x^ is therefore a strict Pareto optimum. 
I => I Let g G Gy be fixed. Let us show that if x^ is a strict Pareto optimum then 
b G R^ exists such that x^ is an optimal solution of {P(g,b))' We take b = Z{x^). Let 
us proceed by contradiction to show that x^ is an optimal solution of the problem 
(P(^^6)), i.e. we suppose that 3x^ G S satisfying the constraints of {P(g,b)) with 
g{zlx^)) < g(Z{x^)). We have: 

( g(Z(x')) < g{Z{x')) 
\z{x^)<Z{x'')=b 

As ^ is a strictly increasing function on Z^ this system implies that Z(x^) < Z{pcP) 
with at least one criterion Zk such that Zk{x^) < Zk{x^), which contradicts the fact 
that x^ is a strict Pareto optimum, x^ is therefore an optimal solution of problem 

The problem (P(^^5)) is generic and simple to use since the function g is chosen 
by the analyst. For example, we can choose to minimise a convex combina
tion of criteria, which enables us to set a necessary and sufficient condition 
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for the calculation of strict Pareto optima, even for non convex problems. 

Geometrically, the problem {P{g,b)) can be interpreted by means of level 
curves. Let S' = {x e S/Z{x) < 6}, X={a) = {x G S'/g{Z{x)) = a) and 
L^{a) = Z[X={a)). Solving {P(g,b)) corresponds to determining the level 
curve of minimal value g* such that L={g*) is tangential to Z^ in criteria 
space (figure 3.10). L=,{g*)r]Z^ defines in decision space a set of strict Pareto 
optima for the multicriteria problem. 

ai<a2<g* 

Fig. 3.10. Geometric interpretation of a problem iP(g,b)) 

Use of this result in the resolution of multicriteria problems depends on the 
determination of the vector b when the function g is fixed. In an interactive 
procedure or in an a posteriori procedure, we must iteratively vary the vector 
b to obtain several Pareto optima. For example, we can start with an initial 
vector which is composed of high values and next reduce these values either 
according to the analyst's instructions (interactive algorithm) or according 
to a reduction procedure which enables us to enumerate the set £?. In an a 
priori method, it is sufficient to ask the decision maker for the bound values 
bi. 
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3 .6 .3 D e t e r m i n a t i o n by m e a n s of t h e €-constraint approach 

The e-constraint approach is often used in the Uterature. It minimises a crite
rion knowing tha t the others K — 1 are upper bounded ([Haimes et al., 1971] 
and [Haimes et al., 1975]). Theorem 6, presented in [Soland, 1979], comes 
from the results proposed in [Yu, 1974], and enable us to calculate strict 
Pare to optima. 

T h e o r e m 6 [Yu, 1974] 
x^ e S is a strict Pareto optimum if and only if Vfc G [I'.K] 3e^ = 
( e ^ ; . . . ;e-^_i;ej^_^i;.. . ; e ^ ) € R^~^ such that Z{x^) is the unique criteria 
vector corresponding to the optimal solution of the following problem (P^k) ; 

Min Zk{x) 
subject to 

xeS 
Zi{x)<el yie[l;K],ij^k 

Proof. 
1 ^ I Let us suppose that x^ is a strict Pareto optimum and let us show that 
\/k e [l;Kl 3e^ = (ef;... ;e^_i; e^+i; . . . ;e^) G R^"^ such that Z{x^) is the 
unique criteria vector corresponding to the optimal solutions of the problem (P^k). 
We take e^ = {Zi{x% . . . ; Zfc_i(x°); Zfc+i(a;°); . . . ; ZK{X^)\ VA; = 1,..., K. Let us 
proceed by contradiction, to show that, \fk = 1,...,K, Z{x ) is the unique criteria 
vector corresponding to the optimal solutions of problem (P^k). 
Let us suppose that 3k e [1; K] such that 3x^ G S optimal solution of (Pgfc), with 
Z(x°) j^ Z{x^). We have: 

r Zk(x') < Zfc(x°) 
I Zi{x^) < e^ = Zi{x^) yi = 1,..., K,i:^k 
[ Z{x') ^ Z{x') 

This system contradicts the fact that x^ is a strict Pareto optimum. 
P ^ Let us suppose that \/k G [l;K],3e^ = (eSf;... ;efc_i;efc+i;... ie^) G R^~^ 
such that Z(x^), x^ G <S, is the unique criteria vector corresponding to the optimal 
solutions of the problem (P^k) and we show that x^ is a strict Pareto optimum. 
Let us proceed by contradiction, i.e. let us suppose that x^ is not a strict Pareto 
optimum. Then, x^ e S exists such that Z{x^) < Z{x^) with Z{x^) 7̂  Z(x°). Let 
us consider k G [1; K]. For all e^ G M^"^ such that Zi(3p) < e^ x fe. Vi = 1,..., K, 
2 7̂  fc, xMs a solution of (P,fc) for Zi{x^) < Zi{x^) < et Moreover, Zk{x^) < Zk(x^) 
implies that either Zk{x^) — Zk(x^), or Zk{x^) < Zk{x^) which contradicts in every 
case the fact that Z{x^) is the unique criteria vector solution of (Pgfc).D 

The result shown in theorem 6 is quite difficult to implement, notably because 
of the constraint of uniqueness. In the case where this is not taken into 
account, we have the following theorem. 

T h e o r e m 7 [Miettinen, 1994] 
Let x^ G S. If 3k G [1;^:] , and if3e^ = ( e j ; . . . ; e ^ _ i ; e ^ ^ i ; . . . ; e | : ) G R^-\ 
such that x^ is an optimal solution of the following problem {P^k); 
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Min Zk{x) 
subject to 

XGS 

then x^ is a weak Pareto optimum. 

Proof. 
Let us consider x^ e S, k e [1; K], and ê  = (e j ; . . . ; efc_i; e^+i;...; e^) G R ^ " \ 
such that a;° is an optimal solution of problem (P^k). Let us proceed by contradic
tion to show that x° is a weak Pareto optimum. 
Let us suppose that 3x^ G S such that Z{x^) < Z(xP). We have therefore 
Vi G [l;i^],z 7̂  k, Zi{x^) < Zi{x^) < ei, and x^ satisfies the constraints of (P^k). 
As Zfc(x )̂ < Zk{x^), the optimality hypothesis of x° for (Pefc) is no longer verified 
which is a contradiction, x^ is therefore a weak Pareto optimum.D 

The reciprocal of theorem 7 is false. Let us consider a problem with three 
criteria where the set Z contains the following criteria vectors: 

Z^ = [3; 5; 5]"^ (non dominated) 
Z^ = [4; 4; 6]^ (non dominated) 
Z^ = [3; 5; 6]^ (weakly non dominated) 
Z^ = [4; 5; 7]-^ (weakly non dominated) 

It appears then that for all criteria Zk and all vectors e'̂ , Z^ will never be a 
solution to problem {Pe^). To realise this it is sufficient to construct the three 
possible problems {P^k) and to verify that Z"^ is never an optimal solution. 
Nevertheless, when the convexity of the set S and of the criteria Zi is imposed, 
it is possible to show that the condition of theorem 7 becomes a necessary 
and sufficient condition. 

Lemma 3 
Let S be a convex set and K criteria Zi convex onS. x^ e S is a weak Pareto 
optimum if and only if 3k E [1; K] and 3e^ = ( e j ; . . . ; e^_i; ej^_^j;...; e^) G 
R^~-^ such that x^ is an optimal solution of problem (Pek). 

Proof 
I <= I The proof is identical to that of theorem 7. 
I => I Let us suppose that x^ is a weak Pareto optimum and let us show that 3 k E 
[1; K] and ^e'̂  G R^~^ such that x^ is an optimal solution of the problem (P^k). We 
proceed by contradiction by considering that Vfc, Ve'̂ , 3x^ such that x^ satisfies 
the constraints of (P^k) and Zk{x^) < Zk{x^). 
A solution x^ always exists which verifies the following system {S^k)y VA;, Ve'̂  > 
[Zi{xy,...; Zfc_i(x°); Zk+i{xy,...; Zx(cc°)]^: 

r Zk{x^) < Zfc(x°) 
I Zi{x^) <ef= \/i = l,...,K,ii^k 
{Zi{x'')<e'l ^i = l,...,KJ:f^k 
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Let us take for example, Ci = Zi{x^), Vz = l,...,i^,z ^ k, because thus x^ 
remains a solution of the corresponding problem (P^k). As <S is a convex set 

K 

and Zi are convex functions on «S, we have: Va G [0;1]^, with Y^a^ = 1, 

K 

3x" G «S such that Z(x^) = ^ a j Z ( a : ^ ) . We have therefore, Va G [0;1]^: 
j=i 

K 

Therefore -^(x") < Z{x^) and a;° is dominated which is a contradict ion. D 

The above results do not assume tha t the criterion to be minimised is fixed, 
which is not necessarily practical from the point of view of their use in an 
algorithm. A result similar to theorem 7, but more simple by assuming tha t 
the criterion to be minimised is fixed, is proposed in the following lemma. 

L e m m a 4 
Let a criterion Zk, with k G [1; K], be fixed. If 3e^ = (ef ; . . . ; e^.^; e^.^^;. . . ; 
e^) G R^"-^ such that x^ £ S is an optimal solution of the problem (Pefc), 
then x^ is a weak Pareto optimum. 

Proof. 
We suppose that k is fixed. Let e^ = ( c i ; . . . ; €fc_i; €fc_|_i;...; e^) G E^~^ such that 
x° G «S is an optimal solution of the problem (P^k). Let us proceed by contradiction 
to show that x° is a weak Pareto optimum. Pursuit of the proof is similar to that 
of theorem 7. 
Let us suppose that 3x^ G S such that Z{x^) < Z(xP). We have therefore on one 
hand \/i G [l;iir],z ^ k,Zi{x^) < Zi{x^) < ef, which guarantees that x^ satisfies 
the constraints of (Pgfc), and on the other hand Zk{x^) < Zk{x^), which contradicts 
the optimality hypothesis of x° for (P^k). x^ is therefore a weak Pareto optimum.D 

Lemma 4 shows, tha t when the criterion is fixed, the set of the calculable 
Pare to opt ima is a subset of the set of the weak Pareto optima. By contrast 
to theorem 7, the addition of convexity hypothesis to the set S and the 
functions Zi does not guarantee tha t all the set WE is calculable. A counter 
example is given in figure 3.11. Nevertheless, we can show tha t the subset of 
WE which is calculable by lemma 4 contains the set E. 

L e m m a 5 
Let a criterion Zk, with k G [ l ; i ^ ] ; be fixed. If x^ is a strict Pareto opti
mum, then 3e^ = ( e ^ ; . . . ; e^_^; ^k-\-i''> • • • 5 ^ K ) ^ R^""^ such that x^ e S is an 
optimal solution of problem (Pefc). 

Proof. 
We suppose that k is fixed. Let x^ be a strict Pareto optimum and let us show 
that 3 e'^ such that x^ is an optimal solution of the problem (P^k). We take 
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The set Z(S) is convex and reduced to 
the segment [z ;̂z ]̂. If the minimised 
criterion is Zj subject to the constraint 
Z2<e, hence Ve the points ]ẑ ;ẑ ] can 
never be computed. 

•^z2 

Fig. 3.11. Counter example of the reciprocal of lemma 4 under convexity hypoth
esis 

e^ = [Zi(x^)\...; Zfc-i(x°); Zfc+i(x°);...; ZK{X^)]^. We proceed by contradiction 
to show that x^ is an optimal solution of the defined problem (Pgfc), i.e. we suppose 
that 3x'^ such that Zk[x^) < Zk(x^) and Zi{x^) < ej', Vi = 1, ...,K,i^ k. 
We have the following system: 

I Zk{x^) < Zki.x'') 
\ Zi{x^) < Zi{x^) Vi = 1,...,K.ii^k 

=> Z{x^) < Z(a;°) 
We arrive at a contradiction with the fact that x^ is a strict Pareto optimum, x^ is 
therefore an optimal solution of the problem (P^k) previously defined.D 

Geometrically, the problem (P^k) can be interpreted by means of level curves. 
Let k e [1; K] and ê  = (ef;...; e^.^; e^^^;...; e^) G R^-\ Let us define 
S^ = {xe S/Zi{x) < e^ Vi € [l;i^],i ^ fc}, X={a)^ = {x £ S^/Zk{x) = a} 
and L={a)^ = Z(X=(a)^). To solve (P^k) is equivalent to determining the 
level curve with the minimal level curve value a* such that L={a*)^ is tan
gential to Z{S^) in the criteria space (figure 3.12). If V fc,3 S^ such that 
L=={a*)^ n Z{S^) = {Z(a:*)} then x* is a strict Pareto optimum for the mul-
ticriteria problem. 

The e-constraint approach has been used widely in the literature (see for ex
ample [Steuer, 1986]) because it is easy to use in an interactive algorithm: the 
decision maker can interactively specify and modify the bounds and analyse 
the influence of these modifications on the final solution. In the context of 
an algorithm which determines the set of strict Pareto optima, one of the re-



76 3. Multicriteria optimisation theory 

ai<a2<g* 

L=(g*) 

Lia^) 

Fig. 3.12. Geometric interpretation of a problem (P^k) 

suits presented can be used to vary the upper bounds. For each fixed bound, a 
weak Pareto opt imum is calculated by solving a problem (Pefc). [Steuer, 1986] 
presents a result for the estimation of the local trade-oflFs between two criteria, 
useable in the context of such an algorithm to vary these bounds. Another 
advantage of the e-constraint approach lies in the fact tha t a t each itera
tion, we retrieve a single criterion problem for which we can already know an 
efficient resolution algorithm. 

3.6.4 Use of the TchebychefF metric 

To determine the Pareto optima it is possible to use a metric and to search 
for "the closest possible" solution to a reference criteria vector. In this 
section, we are interested in a particular metric: the Tchebycheff metric 
([Bowman, 1976]). Before presenting this metric, as well as the related the
orem, we recall some definitions linked to the reference points, or reference 
criteria vectors. The following definition assumes that each criterion can reach 
its minimal value. 

Definition 40 
y,id .yid. ^id]T is the ideal point, or ideal criteria vector if and only 
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if zj^ = mm{Zi{x)),yi = 1,...,K. Generally, this vector does not correspond 

to any feasible solution. 

Definition 41 
Let K vectors z^ = [z\\...', zi^Y verifying z\ = z^, Vi = 1,..., K. The gains 
matrix^ noted G, is defined by Gj^i = z^Wi = l,...,Ä",Vj = l,...,ür. This 
matrix is not necessarily unique. 

Definition 42 
Let G be the gains matrix. The nadir is a criteria vector, noted z^^, defined 
by z'^^ = max (Gj^i), Vj = 1,..., K. We note that this point depends on the 

gains matrix considered (when there are several of these). 

Definition 43 
z'^^ is a Utopian point, or Utopian criteria vector if and only if z'^^ 
dominates z^^, i.e. z^* < z^^ with at least one strict inequality. This point 
does not correspond to any feasible solution. 

Definition 44 
Generally speaking we call reference point, or reference criteria vector 
every vector z^^^ which is considered as an objective to reach. The objective 
is to find the closest possible solution to this point, in the sense of a function 
to be optimised. The points z'^^, ^^" and z'^^ are reference points. 

The previous definitions are traditional and are often used in interactive 
methods. To measure the distance of a solution from a reference point, we 
use a metric, as for example that of Tchebycheff. 

Definition 45 [Bowman, 1976] 
Let z^ and z^ G M^. The Tchebycheff metric is a measure of the distance in 
R^ between z^ and z^, defined by: 

\\z^ -Z-\T= . m^'^{\z\-z\\). 

To use this metric in the area of the determination of Pareto optima 
([Bowman, 1976]), we use a special reference point which we call the Tcheby
cheff point. Let z* G R^ such that z* is an optimal solution of the 
minimisation problem of K criteria according to the lexicographical or
der Zi -^ Z2 —̂  . . . -^ ZjC' This means that the vector z* is such that 
z* = min {Zi{x)) with S' = {x G S'-^/Zi{x) = min {Zi{x'))} and 

50 = 5 . VÖ = (0, Ö2,..., OK) e R^, (^* - e) is called a Tchebycheff point. 

Theorem 8 [Bowman, 1976] 
Ifx^eS is a strict Pareto optimum then 36* = (0, Ö2,.. . , 0^^) G R^ such 
that x^ is an optimal solution of the following problem {Pe)' 
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Min | |Z(a:)-(z*-ö*)||T 
subject to 

xeS 

Proof. 
For all x^ e S,$u > 0, u ^ 0, such that Z{x^) = Z{x^) + u because x° is a strict 
Pareto optimum. Let us take ^i = 0 and 9* = -Zi{x^) + z* - zl -\- Zi(x°), \/i = 
2,...,K. 
We deduce from this that Vz = 2,..., K, Zi{x^) - {zt -0*) = Zi{x^) - zl - Zi{x^) + 
z: - z*i + Ziix"") 
^ Vi = l,...,K,Z,(:c°) - (z:-e:) = Zi(x°) -zi*. 
Thus, we have: 
\\Z{x°) - (z' - 0*)\\T = max (|Zi(:t°) - zt\; |Zx(a;°) - zt\;...; |Zi(^°) - z'^\) 
i.e. \\Z{x°) - {z' - Ö')\\T = |Zi(x°) - zl\, and 
\\Z{x') - (z- - r ) | |T = . max {\Zi{x') - z* + ö*|) 

= max(|Zi(xi) - «1*1; \Z2{x^) - ^2(3;°) - «Jf + ^i(a;°)|;. •.; \ZK{X^) - ZK{X°) - zl + 
Mx°)\) 
now, as Vx' € S,$u>Q,u ^ 0, such that ^(a;°) = Z{x^) + u, we have necessarily 
u < 0 
=̂  |Zi(x') - Zi{x°) - zl + Zi(x°)| = I - «i - zi» + Zi(x°)| > I - zl + Zi(x°)| 
We obtain thus: 
WZix") - (z* - r ) | |T = max(|Zi(xi) - Zi*|; . j iax^(| - u< - Zj* + Zi(x°)|)) > 

|Z:(x°)-zn = ll^(^°)-(2*-Ö*)||T. 
Therefore, ö*exists such that x^ is an optimal solution of {Pe)S2 

In theorem 8, the determination of a strict Pareto optimum is made by using 
a Tchebycheff point (2:* — Ö). It is obvious that this point must not correspond 
to any feasible solution of S otherwise the optimal solution of {PQ) would be 
the point [z* —S) which is not necessarily a Pareto optimum. Geometrically, 
the problem {PQ) can be interpreted by means of level curves (figure 3.13). 
Let ^* and Ö be fixed, X=(a) = {a; G SI\Z{x) - (^* - 6>*)||T = a} and 
L^[a) = Z(X=(a)). Solving {PQ) is equivalent to determining the level curve 
of minimal value a* such that L=(a*) ^ 0. The solutions of X=(a*) are then 
solutions of {PQ). 

The use of this metric in a resolution algorithm is related to the position of 
the Tchebycheff point (z* — G), In an interactive algorithm, we may suggest 
to the decision maker a first solution corresponding to an initial Tchebycheff 
point. The instructions he gives enable us next to vary this point and to 
repeat the process, until a satisfactory solution is obtained. In an a posteriori 
algorithm we must get a procedure enabling us to vary (^* — G) and eliminate 
all the dominated solutions of the set of obtained solutions. 
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a^<a2<g* 

' L=(^) 

Fig. 3.13. Geometrie interpretation of a problem (Pe) 

3.6.5 Use of the weighted TchebychefF metric 

When we consider that weights Â  are associated with criteria, it is possible 
to use a generalisation of the TchebychefF metric. In this case, we make use of 
several results which are more interesting than that presented in the previous 
section. We begin with the definition of the weighted TchebychefF metric. 

Definition 46 
Let z^ and z^ G R^. The weighted Tchebycheff metric is a weighted measure 
of the distance in R^ between z^ and z^, defined by: 

\\z^ - Z'^WTP = max {Xi\zl - zf\) with A G R^. 

The principal result tied to the determination of Pareto optima is displayed 
in theorem 9. 

Theorem 9 [Bowman, 1976] 
If x^ e S is a strict Pareto optimum then 3X G R^^ such that x^ is an 
optimal solution of the following problem {P\): 
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Min \\Z{X)-Z''^\\TP 

subject to 
XGS 

with z'^^ G R ^ a Utopian point. 

Proof. 
Let x^ be a strict Pareto optimum and A G M+* defined by: 

I Ai = 1 otherwise 

with z'^* G M^ a fixed Utopian point. We have z^^ < Z{x)^ \fx E S with at least one 
strict inequaUty, therefore \Zi(x^) — z^^\ = Zi(x^) — zf*, Vi = 1, . . . , i^ , from where 
Xi\Zi{x^) - zf\ = 1 if Zi(x^) ^ zf, and 0 otherwise. 
We deduce from this that ||Z(x°) - Z^'^TV = . max (Ai(Zi(x°) - zf)) < 1. 

Let x^ G 5 , we have \\Z(x^) - Z'^'WTP = ._max (Xi{Zi{x^) - 2;̂ *)) 

= max I max J) /. -; max (Zi(x^) — z^*)]. As x^ is a strict 
\i/ZiixO)jLzY'M^ ) - ^ i/Zi(xO)=zf ) 

Pareto optimum, Jx^ G S such that Zi{x^) < Zi{x^)^ Vz = 1,...,K, with 
Z(x^) 7̂  Z{x^), and we deduce from this that 3i/Zi{x^) - zf > Zi{x^) - zf. 
Whence ||-^(ic^) — ^ '̂̂ ^HTP > 1, and x^ is an optimal solution of {Px).n 

Theorem 9 remains valid if we consider tha t x^ is a weak Pareto optimum. 
Besides, the result shown in this theorem is a sufßcient condition and if we 
are interested in its opposite, we can simply show tha t the calculable solu
tions are weak Pare to optima. 

L e m m a 6 
Let A G M^^ and z'^^ G M^ he a Utopian point. If x^ E S is an optimal 

solution of the problem (Px), then x^ is a weak Pareto optimum. 

Proof. 
Let us proceed by contradiction and suppose that x^ is an optimal solution of (FA) 
and that it is not a weak Pareto optimum. Then, 3x^ G S such that Zi{x^) < Zi{x^), 
\fi = l,...,K. 
=^ Xi\Zi{x^) - zf\ < Ai|Zi(x°) - zf\ for Ai > 0 and zf < Zi{x), Vi = 1, . . . ,Ü:, 
\/xeS 
=> max {\i\Zi{x'^) - zf\) < max {\i\Zi{x'^) - zf\), 

which contradicts the fact that x^ is an optimal solution of (Px)-^ 

Corollary 2 makes a synthesis of the results presented in lemma 6 and in 
theorem 9 for the calculation of weak Pareto optima. 
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Corollary 2 
x^ G S is a weak Pareto optimum if and only if 3X G R^^ and z^* € R^ a 

Utopian point, such that x^ is an optimal solution of the problem (PA)-

If we are only interested in the determination of strict Pareto optima, we can 
then use the result presented in theorem 10. 

Theorem 10 See [Teghem, 1996] in the case of MLP 
x^ e S is a strict Pareto optimum if and only if 3X G R^^ and z'^^ G R^ a 
Utopian point, such that x^ is an optimal solution of problem (P\) o,nd Z{xP) 
is the unique optimal criteria vector. 

Proof. 
I => I The proof is identical to that of theorem 9 in which Z{x^) is also the unique 
optimal criteria vector. 
1 ^ I Let us suppose that 3A G R+« and z^^ G M^ a Utopian point, such that x° G «S 
is an optimal solution of (PA) with Z{x^) the unique optimal criteria vector. Let us 
show by contradiction that x^ is a strict Pareto optimum. 
Let x^ eS such that Z{x^) < Z{x^) with Z{x^) ^ Z(x°) 
^ \i{Zi{x^) - zf) < \i\Zi{x^) - zf), Vi = l,...,i^, with at least one strict 
inequality 
^ max {\i{Zi{x^) - zf)) < max {Xii.Ziix'^) - zf)) 

Two cases can appear: 

• max {Xi{Zi(x ) — z^*)) = max {Xi(Zi{x ) — zt^)) and that contradicts the 

uniqueness hypothesis of Z{x^)^ 
• max {Xi{Zi{x^) — z'^^)) < max {Xi{Zi{x^) — z'^*)) and that contradicts the 

fact that x^ is an optimal solution of (PA)-

In every case we end up with a contradiction, which leads to the conclusion that 
x^ is a strict Pareto optimum.D 

Geometrically, the problem (PA) can be interpreted by means of level curves 
(figure 3.14). Let ^^* and A be fixed, X=(a) = {x G S/\\Z{x) - ;^^*||TP = a} 
and L^{a) = Z(X=(a)). To solve (PA) is equivalent to determining the level 
curve of minimal value a* such that L^{a*) ^ 0. The solutions of X=(a*) are 
then the solutions of (PA)-

This approach depends on the Utopian vector z'^* and the weights A .̂ An 
example of its use in an a posteriori algorithm is of making z^* vary. For each 
vector obtained, it is then necessary to conduct a parametric analysis of Ai 
in order to obtain all the Pareto optima. In an interactive algorithm we use 
the instructions of the decision maker to make z'^^ and A vary. 

3.6.6 Use of the augmented weighted Tchebycheff metric 

It is possible to use a still more general form of the Tchebycheff metric than 
that presented in the previous section. The basic result yielded is interesting 
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Fig. 3.14. Geometric interpretation of a problem (PA) 

but difficult to apply in practice. Thus, we present at the end of this section 
a more convenient result. At the outset we define the considered metric. 

Definition 47 
Let z^ and z^ G R^. The augmented weighted Tchebycheff metric is a 
weighted measure of the distance in R^ between z^ and z^, defined by: 

K 

\\z^ - z'^Wrpa = . max (Ail 2;/ - zf\) + pY^l^i " ^i\ 
2=1 , . . . , J \ -*—' 

i= l 

with A G R+ and p G R̂ _ a low value. 

The use of the augmented weighted Tchebycheff metric to calculate Pareto 
optima leads us to the following theorem. 
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T h e o r e m 11 See [Teghem, 1996] in the case of MLP 
x^ e S is a strict Pareto optimum if and only if 3A G M^*; ^^* ^ ^^ ^ 

Utopian point and 3p € RÜj. a low value, such that x^ is an optimal solution 
of the following problem (P(A,p)): 

M m | | Z ( x ) - Z ^ * | | T p a 
subject to 

xeS 

Proof. 
I => I Let us suppose that x^ is a strict Pareto optimum and let us show that 3A G 
R^*, ^^* G R^ a Utopian point and 3p G R+ such that x^ is an optimal solution of 

Let z"* be fixed and such that z"* < z"^, i.e. Vx 6 S, zf < Zi{x). We define 

A 6 R ? , by Xi = —-^ ^ for Zi{x°) ^ zf^^i = 1,..., K. 

We have then Ai(Zi(x°) - zf) = 1, whence . max {Xi{Zi{x^) - zf)) = 1. 

As x° is a strict Pareto optimum, Ja;^ G 5 such that Zi{x^) < Zi{x^), Vz = 1,..., ii ' 
with Z{X^) y^ Z(X^). 
^ Vcĉ  G iS, Z(a:^) ^ Z(x°), 3 j G {1,. . . , /i'} such that Zj{x^) > Zj{x^), whence 
Xj{Zj{x')-zf)>Xj{Zj{x')-zr). 
^ Xj{Zj{x') - zf) > 1 
=^ . max (Xi{Zi(x^) - zf)) > 1 = . max (Ai(Zi(T°) - ^ f ) ) . 

Let the value p defined by: 

min ( max (Xi(Zi(x) — zf)) — max (XiiZAx^) — zf))) 

P< K 

K p G R j and ordinary, otherwise. 

Wx^ G <S, we distinguish two cases: 

max (y"(Zi(x'^)-Zi(x))) 
xes,z(x)^z(xO)^^^ ^ "^ 

K 

if max (y^(Zi (x°) - ZJx) ) > 0 
Z = l 

1. max (y^(Zi (x° ) - Zdx))) > 0, and then 
x€5,Z(x)#Z(xO) ^ - ^ ^ ^̂ ^ 

X£S,Z{X)T^Z(X^) T^ 

mm 
x€5,Z(x)7^Z(x 

K 
p X ̂ ( Z , ( x ° ) - Zi{x') - zf + zf) < 

i=l 

min ( max (Xi(Zi(x) — zf))— max (Xi(Zi(x^) — zf))] 
5,Z(x)^Z(xO) Vi=l , . . . ,K ^ V V / ^ // i=l,...,K^ v v / * / / y 

pf^(Z,(rr°) - zf) - pf2iM^') - ^i') < . max (A,(Z,(cr^) - zf)) 
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max (Xi(Zi(x^) — z^*)) 

K 

=> j n a x (Ai(Zi(x°) - zf)) + p x ^ ( Z i ( x ° ) - zf) < . jnax^(Ai(Zi(x') -

zr))+px^{Mx')-zr) 
=> | | Z ( X ° ) - > | | T p a < \\Z(x') - z'^'Wrpa. 

K 

2. max (S^(Zi(x^) — Zi(x))) < 0, and in this case o eRt ordinary and 
x € 5 , Z ( x ) / Z ( x O ) ^ 

then: 
K 

p X max „ ( ^ ( Z i ( x ° ) - Zi{x))) < 0 
xG5,Z(x)7^Z(xO) f—̂  

K 

=^ p X 5^(Z,(x°) - Zi{x^) + ; . r - zf) < 0 
i = l 

^ p X Y.^Zi{x°) - zf) <px f^(^i(rr^) - zf) 
i=l i = l 

We have therefore max {Xi{Zi{x^) — z'^^)) — max {Xi{Zi{x^) — z'^^)) 
i=l,...,K i=l,...,K 
K 

+p max (y^(Zi(x°) - Zi{x))) < 0 

x 6 5 , Z ( x ) ^ Z ( x O ) ' ^ ' 

=^ ||Z(X°) - Z^'WTva < \\Z[X^) - Z-'WTpa 

Whence 3p, A, and z'^^ such that x^ is an optimal solution of (F(A,p)). 
I ^ I Let us suppose that 3A G M+*, ;2̂ *̂ G M^ is a Utopian point and 3p G M+ 
such that x^ is an optimal solution of (P(A,p)) and let us show that x^ is a strict 
Pareto optimum. We proceed by contradiction. 
Let x^ G <S,x^ 7̂  rc°, such that Z{x^) < Z{x^) with Z(x^) ^ Z{x^). 
Vz = 1,..., K, Zi(x^) - z'i^ < Zi{x^) - zf^ with at least one strict inequality. 

r max {Xi{Zi{x^) - zf) < max {Xi{Zi{x^) - zf) 

pf̂ (Z,(x̂ ) - zf) < pj^iZiiA - zt') 
i=l i=l 

Whence \\Z{x^) - z'^^Wrpa < \\Z{x^) - z'^^Wrpa, which contradicts the fact that x° 
is an optimal solution of (P(;\^p)). x^ is therefore a strict Pareto optimum.D 

The principal inconvenience of this metric is linked to the determination of 
the parameter p. In the proof of the necessary condition of theorem 11, we 
propose a method of regulating this parameter. Nevertheless, this method is 
not usable in practice given tha t it requires the evaluation of an upper bound 
which depends on the set S. [Steuer, 1986] notices tha t a numeric method 
does not exist to deduce a value of p when z'^^ and A are fixed. In practice, 
we have to consider the values between 10"^ and 10"^. The problem {P(^\^p)) 
can be interpreted by means of level curves (figure 3.15). Let z*,A and p 
be fixed, X^{a) = {x G S/\\Z{x) - z'^^Tpa = a} and L={a) = Z{X={a)). 
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Solving (P(A,p)) is equivalent to determining the level curve of minimal value 
a* such that L={a*) ^ 0. The solutions of X=(a*) are then the solutions of 

ai<a2<g* 

»Lia )̂ 

Fig. 3.15. Geometric interpretation of a problem (P(A,p)) 

In figure 3.15 we have represented by means of broken lines the contour 
generated by the weighted Tchebycheff metric. This enables us to visualise 
the influence of the term p ^ ^ ^ j \Zi{x) — z'^*\ on the search for a strict Pareto 
optimum in the case of a linear problem. The angles 9i and 62 are functions 
of the value p and in the example we have ([Steuer, 1986]): 

^ — - ) , and 02 = tan-\ f ) 
A2 + p 1 - Al + p 

= tan ^(: 
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We thus notice that the greater the value p becomes the more important the 
angles become. As we have seen in section 3.6.5, The use of the weighted 
Tchebycheff metric can generate weak Pareto optima (several solutions be-

K 

long to a line of a broken rectangle). The presence of the term pS2\Zi{x)—z'^^\ 
i=l 

in the augmented metric will only lead to retaining, among the solutions ob
tained by the weighted Tchebycheff metric, those which are strict Pareto. 

A similar approach to that presented in this section consists of breaking down 
the augmented weighted Tchebycheff metric into two criteria and defining a 

K 

lexicographical order. Let Ti = max (Ai|Zi(a:)—zj**|), andT2 = y^\Zi{x) — 

z'!^^\ and the lexicographical order Ti -^ r2: among the solutions having an 
optimal value of the criterion Ti, we choose the one having the lowest value 
of T2. We note T̂ * the optimal value of the criterion Ti. 

Theorem 12 See for example [Steuer, 1986] 
x^ E S is a strict Pareto optimum if and only if 3X G R^^ and z^* € M^ 
a Utopian point such that x^ is an optimal solution of the following problem 

MinT2 
subject to 

xeS 
Ti = Ti* 

The advantage of theorem 12 lies in the fact that we no longer have to em
pirically fix a value p. Moreover, this approach only generates strict Pareto 
optima. Using it is equivalent, in theory, to minimising initially a weighted 
Tchebycheff metric (see corollary 2 and theorem 10). If several solutions 
are then obtained we apply for a second time minimisation of the term 
Yli=i \Zi{x) — z'-^^l to obtain a strict Pareto optimum and to remove the 
non strict weak Pareto optima. In practice, we realise the minimisation of 
the functions Ti and T2, according to a lexicographical order, at one go. 

3.6.7 Determination by the goal-attainment approach 

An approach which is similar to those using the TchebycheflF metrics is the 
goal-attainment approach ([Gembicki, 1973] and [Wierzbicki, 1990]). This re
quires the definition of a goal, for the criteria, and we search for the solu
tion which best approaches this. The difference to the approaches based on 
Tchebycheff metrics is in the way in which this solution is sought. 

Theorem 13 [Gembicki, 1973], [Wierzbicki, 1990] 
x^ e S is a weak Pareto optimum if and only if 3 z^^^ G R^ a reference 
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point and w G R^^ a weights vector such that x^ is an optimal solution of 

the following problem {P{z-^^f ̂ w))' 

Max g{Z{x)) with g{Z{x)) = _min ( — « ^ " ^ - Zi{x))) 

subject to 
xeS 

Proof. 
I =^ I Let us suppose that x^ is a weak Pareto optimum and let us show that 3z'^^^ 
and 3w such that x^ is an optimal solution of the problem (^(^r-e/.„,)). We take 
^ref _ z{x^) and ordinary K; > 0. Let us proceed by contradiction to show that x^ 
is an optimal solution of the problem {P^z-^ef ̂ ^>^). Let 2;° G R be the value of the 

objective function obtained for x^. We have z^ = min (— (z^^^^ — Zdx ))). Let 

us suppose that 3x^ ^ x^ e S and 3^^ G R such that: 

' Z{x^) i- z^w < z^^f 
z'>z'^ 

Which is equivalent to: 

r Z(a:°) + z'^w < Zix"") (A) 
{ Z{x^)-\-z^w<Z{x'^) (B) 
[z^>z'' (C) 

The inequality (A) implies that z^ = 0. The inequality (C) implies then that z^ > 0. 
Finally, the inequality (B) implies that Z(x^) < Z{xP) which contradicts the fact 
that x^ is a weak Pareto optimum, x^ is therefore an optimal solution of the problem 

[W\ Let us suppose that ^z""^^^ G R^ and w^ G R+* such that a;° G iS is the 
optimal solution of (̂ (̂̂ ^e/o ,^o)). Let us proceed by contradiction and suppose that 
x^ is an optimal solution of (^(^re/o ^^o)), and x^ is not a weak Pareto optimum. 

Note z^ = j n i n ( - ^ « ^ ^ ° - Zi{x^))). Then, 3x'^ G S such that Zi{x^) < Zi{x^), 

\/i = 1,...,K. Then, Vi = h...,K, Zi{x^) + z^w^ < Zi{x^) + ; ^ V and as 
z^ < :;jö-«^^° - Zi{x^)) we have Zi{x^) + z^w^ < <^^°, and therefore x^ is a 

s o l u t i o n o f {P(zrefO^^O^). 

Vz, Zi{x^) < Zi(x°) 

=> :^(zr'' - Z,(x')) > ^{zr'' - Z,{x')) for t . > 0 

=^i^(zr''-z,{x'))>z\ 
i 

which contradicts the fact that x° is an optimal solution of (P^^^^^/iy)).D 

In section 3.6.6 we have seen tha t the consideration of two criteria Ti (of 
maximum type) and T2 (of sum type) enables us to determine only strict 
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Pareto optima. We were then concerned with a lexicographical problem. In 
the goal-attainment approach area, we can show that the addition of a sub-
criterion of the sum type allows us to return to the problem {P{g,b)) presented 
in the section 3.6.2. 

Theorem 14 
Let z'^^^ e M^ he a reference vector, w G R^^ a weights vector and {Pf^ref ^\) 
the problem defined by: 

Max h{Z{x)) with h{x) = ^ ( — « ^ ^ - Zi{x))) 

subject to 

xeS 

.jLt^'Ji^^'^''-'^™^-with z* = max( min (—(z^^^ 
xes \=i,...,K^Wi * 

Problem {Pf^ref ^)) is equivalent to a parametric problem iP{g,b)) where 
K 

g{Z{x)) = ^^aiZi{x), ai > 0,Vz = l,...,iir, with ai = :^ and bi = 

zl^^ -Wiz\ \fi = l,...,K, 
Proof. 

(i) We know that min ( — « ^ ^ - Zi(x))) = z* 
i=l,...,K Wi 

^^^{zr^-Zi(x))>z\yi = h...,n 
^ Zi{x) < z1^^ -WiZ*, Vi = l,...,n. 
We note bi = z^^^ — wiz*, Vi = 1,..., n. 

(ii) Maximising y~ (̂ — {z^^^ — Zi{x))) is equivalent to minimising 2_\ — Zi{x). 
i=l * i=l 

Knowing that it;» > 0, Vi = 1,..., n, the new objective function is strictly increasing. 
Prom the points (i) and (ii) we deduce that the problem {Pf^r-ef ^\) is equivalent to 

a problem (P(g^b)) with^(Z(x)) = 2_] — Zi{x) and 6f = z^^^ —wiz*."ii = 1,...,X.D 
, Wi 

Theorem 14 allows us to apply the results which are valid for the parametric 
approach to the problem {PLvef ^))- Thus we deduce from this that the solu
tion of this problem allows us to obtain a strict Pareto optimum and that all 
these optima may be calculated by solving a problem {PLref ^))- The proof 
theorem 14 shows equally that the maximisation of the criterion of type sum 
is equivalent to a problem {Pa) (see section 3.6.1). 

Lemma 7 
Let z'^^^ € R^ a reference vector, w € R^^ a weights vector and {Pf^ref ^)) 
the problem defined by: 
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Ma:cf2i^i<'^-Zii^))) 
subject to 

xeS 

The problem {Pf^ref ^\) is equivalent to the problem (Pa) with ai = ^ ^ j ^ , Vi 

_ ^ 1 1,..., K^ and w = > — 
i=l 

Proof. 
Following from point (ii) of the proof of theorem 14.D 

Lemma 7 leads to the conclusion that the solutions calculated are proper 
Pareto optima and that it is not wise to solve {Pf^ref ^\) to calculate Pareto 
optima when the convexity hypotheses have not been verified. A geometric in
terpretation of the problem (P(^re/,y,)) is proposed in figure 3.16. Two cases 
concerning the position of the point z^^-^can occur. In the first case, z'^^^ 
does not correspond to any feasible solution. The solution of (P(^re/.j^)) is 
equivalent to projecting the point z'^^^ onto the trade-off curve in a direction 
specified by the weights value Wi. In the second case, the result is identical 
despite the fact that z'^^^ corresponds to one or more feasible solutions. 

Fig. 3.16. Geometric interpretation of a problem (^(2^6/,̂ ,)) 

If we go to a more detailed analysis of the functioning of theorem 13, we 
realise that the solution of the problem (P(^re/,j^)) does not solely depend 
on the values z"^^^ and w. In fact, the significance of the weights w and of 
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the reference vector z'^^^ depends on the relative position of this vector with 
respect to the set ^ . A simple example is presented in figure 3.17. The set Z 
is made up of the vectors z^ and z'^^ and the weights given by the decision 
maker are ^ = [100; 10]^. In the first step, we suppose that the reference 
point given by the decision maker is the point z'^^^^. The optimal solution 
of the problem (P(2;re/,„;)) then corresponds to the vector z^, since we have 
min(100x (5-20); 10x'(5-40))>min(100x (5-40); lOx (5-20)). Therefore, 
we notice that this optimal solution minimises the distance to z"^^^^ for the 
criterion Zi. Thus, the greater the weight Wi is the more we search for a solu
tion minimising the criterion Zi, Let us now consider in the second step that 
the decision maker gives the vector 2̂ ^̂ -̂ ^ as the reference point. The optimal 
solution of the problem {P(zref^u})) corresponds now to the vector z'^ since we 
have min(100x (60-20); 10 X (60-40)) <min(100x (60-40); 10 X (60-20)). 
Interpretation in weight terms of wt is thus inverted: the lower the weight Wi 
is the more we go in search of a solution minimising the criterion Zi. Thus, 
it is difficult to tell the decision maker if an important value for Wi means 
that Zi is an important criterion or of little importance, since this depends 
on the position of the vector z'^^^ in relation to the set of solutions. 

40. 

20-L 

^refZ 

^refl 

20 40 

2refl= 

7ref2= 
=[5;5]T 
[60;60]T 

l/w=[100;10]T 
zi=[20;40]T 
z2=[40;20]T 

Fig. 3.17. Meaning of the weights Wi regarding the position of z'^^^ 

This example shows well that following the position of the reference point 
with respect to the set Z, the meaning of the weights can be radically dif
ferent. This implies that for the decision maker who will fix the weights, the 
importance of a criterion is diflScult to control. Use of the goal-attainment 
approach therefore makes the role of the analyst a particular factor of this 
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problem. To overcome this it is possible for example to stipulate that the 
reference point should be a Utopian point. 

3.6.8 Other methods for determining Pareto optima 

Other methods for determining Pareto optima exist in the literature. For 
example, it is possible to derive results using a different metric than the ones 
presented in the previous sections. Principally, we present in this section 
the approaches without any trade-off allowed where a lexicographical order 
between the criteria is defined. Other methods enable us to determine existing 
Pareto optima. We refer to [Ehrgott, 2000b] for a presentation of different 
approaches such as the "max-ordering" approach or the global lexicographical 
approach. 

Use of a lexicographical order 

A technique frequently used to minimise several criteria consists of defining 
an optimisation order. This type of problem occurs when no trade-off between 
the criteria is authorised. It concerns an optimisation problem according to 
a lexicographical order, defined without any loss of generality by the criteria 
indices, Zi —> Z2 -^ . . . —̂  ZK, and noted minLex{Z). 
To determine an optimal solution x^ of miriLexiZ) is equivalent to finding a 
solution x^ G S^ with 

51 = {x^ e S/Zi{x^) = min(Zi(a;))}, 

52 = {̂ 0 G 5VZ2(xO) =''min(Z2(a;))}, . . . , 

S^ = {x'^ £S^-^/ZK{X^)= min {ZK{X))}, 

A necessary and sufficient condition for the existence of a solution of the 
problem miriLexiZ) is that each criterion Zi is lower bounded on each subset 
S'-^ and that 5 7̂  0 ([Steuer, 1986]). 

Property 4 
1) Vx^ G 5^, 1 < fc < jFf, x^ is a weak Pareto optimum, 
2) Vx° G S^ ^x^ is a strict Pareto optimum. 

Proof. 
1) Let us proceed by contradiction. We suppose that 3x^ G S such that Zj{x^) < 
Zj{x^), \/j = 1,..., K. It is obvious that for j = I there is a contradiction with the 
fact that x^ e S^ ^ S^. x° is therefore a weak Pareto optimum. 
2) We must show that $x^ eS,x^ ^ x°, such that Zi{x^) < Zi{x^), Mi = 1, ...,K, 
with at least one strict inequality. Two cases can arise: 
• x^ ^S — S^'. Given that Z\(x^) = min(Zi(x)) < Zi(x^), x^ does not dominate 

x^ therefore $x^ G <S — «Ŝ  which dominates x^. 
• 3 i G {1,...,K} such that x^ G S': Vj = l,...,i, Zj{x^) = Zj{x^) and Vj = z + 
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l,...,i<r, Zj{x^) < Zj{x^) which impHes that we cannot have Zi(x^) < Zi{x^), 
yi = 1,...,K, with at least one strict inequaUty. 

Therefore x^ is a strict Pareto optimum.D 

Use of a lexicographical order with goals 

An approach derived from the problem miriLex is to consider that the criteria 
are sorted according to the order Zi —> Z2 -> . . . -^ Z/^:, and that for every 
criterion there is a goal to reach. Thus, we no longer search for the minimal 
value for every criterion in the set 5% but we search for a solution which is 
the closest to the goal we wish to reach. This problem, noted miriLexobj takes 
shape as follows: let z'^^^ be a reference vector. Determination of an optimal 
solution x^ of miriLexobj (Z) is equivalent to finding a solution x^ £ S^ with: 

51 = {xO e 5/|Zi(xO) - z\'f\ = nnn(|Zi(a;) - z\'^\)], 

52 = {xO e 5Vl^2(xO) - zl'f\ ="mm(|Z2(a;) - 2^^!))}, . . . 

The definition of the above problem miriLexobjiZ) assumes that the distance 
between the reference point z'^^^ and the set of vectors of Z is measured by 
a metric Loo in R̂-

Property 5 
jf ^ref ^̂  either the ideal point z'^^, or a Utopian point z'^^, then the problems 
minLex{Z) and miuLexobji^) ^^^ equivalents. 

Proof. 
It is sufficient to show that for a set «S* minimisation of the term \Zj{x) — z^^^\ is 
equivalent to minimisation of the criterion Zj{x). We have z^^^ = z'^'^ or z'^^^ = z'^* 
=^ \Zj{x) — z'^^\ = Zj(x) — z^^' Thus, minimising Zj{x) — z^^^ is equivalent to 
minimising Zj(x) since z^^ is a constant.D 

By contrast to the problem minLexi^), membership to the set E of a solution 
of the problem miniexobj cannot be guaranteed. Similarly, a solution x^ G 
5*, Vi = 1,..., X — 1, can be a dominated solution. 

3.7 Multicriteria Linear Programming (MLP) 

The methods presented in the previous sections are valid without having 
to suppose strong hypotheses on the structure of the criteria and on the 
structure of the set of solutions. Nevertheless, some of the results presented 
are simplified in the case of Multicriteria Linear Programming (MLP). 
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3.7.1 Initial results 

We define an MLP model as follows: 
Q 

Min Zi, with Z\ — ̂ c ] x j = c^x 

Q 

Min ZK, with ZK = ^ c j ^ ^ j = c^^ 

subject to 

with A the coefficients matrix (M x Q) and 6 the constants vector of size 
M. The set of solutions 5 is a polyhedron defined by the constraints of the 
problem: it is therefore by definition convex. Moreover, each criterion Zi is 
a linear function and therefore convex and Z is thus a convex polyhedron. 
Before considering the application of the theorems addressed in section 3.6, 
we shall present a few results on the connectedness of the sets E and WE. 

Lemma 8 
The set WE is connected. 

Proof. 
Direct application of theorem 2.D 

Lemma 9 [Yu and Zeleny, 1975] 
Let Eex be the set of the extreme points of the polyhedron S which are strict 
Pareto optima. The set Eex is connected. 

Given that each point x^ G E can be expressed by a convex combination of 
points x^ G Eex^ we can deduce from lemma 9 that the set E is connected. 

3.7.2 Application of the previous results 

Theorem 4, presented in section 3.6.1, enables us to determine proper Pareto 
optima in the general case by minimisation of a convex combination of cri
teria. In the context of problems with real variables we shall see that this 
theorem is slightly different. Let us return firstly to the definition of a proper 
Pareto optimum. We have seen in section 3.3 that a proper Pareto optimum 
was a strict Pareto optimum verifying the following condition: 
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Properness condition: 3M > 0 such that 
yy^x,yeS,iy(x)^ü=> 

W iely, 3j, l<j<K with Zj{x) < Zj{y) such that z][f)Zzf^] < M 
with Iy{x) = {ie [1;K]/Zi{y) < Zi{x)}. 

We can show that for every Unear problem, every strict Pareto optimum is 
proper (see [Steuer, 1986]). In other words, every strict Pareto optimum ver
ifies the above properness condition and theorem 4 enables us to determine 
the set E. By authorising weights a^ being equal to 0 in this theorem, we 
obtain lemma 2. Given the paucity of parameters to regulate in the approach, 
this is easier to use for the resolution of problems which can be modeled by 
MLP. An obvious interest in theorem 4 (and in the results derived from it) is 
to enable the design of a simple interactive algorithm causing only variations 
on the weights. 

Concerning the e-constraint approach the result presented in lemma 3 holds 
since in the context of problems which can be modeled by MLP, the set of 
solutions and the set of criteria vectors are convex sets. This result implies 
therefore that the set WE can be determined by varying the value of k and of 
the bounds e^. By contrast, even with the convexity hypotheses of S and the 
criteria Z^, the reciprocals of lemmas 4 and 5 are not valid. In other words, 
even for problems which can be modeled by MLP, the use of the e-constraint 
approach, when the criterion to minimise is fixed, only enables us to reach a 
subset W of WE. We have EQW. 

Concerning the results related to the parametric analysis (theorem 5), to 
the Tchebycheff metrics (theorems 8, 10 and 11), to the goal-attainment 
approach (theorem 13) and to the lexicographical approach (section 3.6.8), 
their application does not raise any problem in the context of linear problems 
with real variables. 

3.8 Multicriteria Mixed Integer Programming (MMIP) 

3.8.1 Initial results 

The absence of convexity hypotheses on Z implies that non supported solu
tions appear. We thus distinguish for the problems which can only be modeled 
by Multicriteria Mixed Integer Programming (MMIP) the supported Pareto 
optima and the non supported Paneto optima. Figure 3.18 presents this dis
tinction through an example. Set Z is the set of points represented and co{Z) 
is the convex hull defined by Z, We have co{Z) = {z G R^/Va^ G [0;1], 
X]i=i <^i = I5 ^iid Vz* e Z^z = Y^i^i OLiZ'^]. The point z^ corresponds to one 
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or several non supported strict Pareto optima since z^ does not belong to the 
border of co(Z). The point z^ represents non supported weak Pareto optima. 

z \ z ,̂ T?, z :̂ supported strict Pareto optima 
ẑ : non supported strict Pareto optimum 
ẑ : supported weak Pareto optima 
z"*: non supported weak Pareto optima 

co(Z) 

Fig. 3.18. Supported and non supported Pareto optima 

We denote by WEs and EQ the weak supported Pareto and the strict sup
ported Pareto optima, respectively. WEns and E^s denote the set of non 
supported weak Pareto and the set of non supported strict Pareto optima, 
respectively. 

3.8.2 Application of the previous results 

Geoffrion's theorem (theorem 4) proposes a result based on the minimisation 
of a convex combination of criteria. This theorem is not suitable in the domain 
of MMIP given that the set S is not convex. In this case we make use of a 
degraded version of Geoffrion's theorem. 

K 
Theorem 15 

Let OL € [0; 1]^ such that Y^aj = 1. If x^ G S is an optimal solution of the 
i=l 

problem (Pa) then x^ is a weak Pareto optimum. {Pa) is defined by: 

K 

Min g{Z{x)), with g{Z{x)) = } ^aiZi{x) 

subject to 
XGS 
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Proof. 
Identical to the proof of the sufficient condition of lemma 2.D 

If we consider in theorem 15 non null weights, i.e. a G]0; 1 [ ^ , then the solu
tions of (Pa) are strict Pareto optima. Theorem 15 shows that certain Pareto 
optima cannot be calculated by minimising a convex combination of criteria. 
In other words, whatever the chosen weights, certain Pareto optima will never 
be solutions of (Pa)- These are the non supported Pareto optima. An illus
tration is proposed in figure 3.19. The vectors z^ and z^ correspond to the 
supported strict Pareto optima whereas z^ corresponds to a non supported 
Pareto optimum. 

K\^) 

L.V) 

Fig. 3.19. Geoffrion's theorem and non supported Pareto optima 

To understand the notion of non supported Pareto optima we define a 
set of level curves. We set X^{g^) = {x e ^/Yli=i^)^ji^) —9^} ^^^ 
Ltig') = Z{Xi{g')) with g' G M the minimal value such that X i n 5 7̂  0. 
Therefore, we note that Va* G [0; 1]^, the criteria vector z^ does not corre
spond to any solution of (Pai). A direct consequence of this result is that 
the resolution of non convex problems by convex combination of criteria does 
not enable us to propose all the solutions x^ G WE to the decision maker. In 
other words, solutions of potential interest cannot be proposed to him. 

Concerning the e-constraint approach only lemma 3 cannot be applied since 
the set S is not convex. Thus, the set of calculable solutions, even if the 
criterion to minimise is not fixed is only a subset, denoted by W, of the set 
WE. We still have ECW. 
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Concerning the results related to the parametric analysis (theorem 5), to 
the Tchebycheff metrics (theorems 8, 10 and 11) and to the goal-attainment 
approach (theorem 13), their apphcation does not raise any problem in the 
context of linear programs having integer variables. These approaches enable 
us to determine the supported as well as the non supported Pareto optima. 
Concerning the lexicographical approach (section 3.6.8), we have S^ C Es 
whatever be the defined order of the criteria. 

3.8.3 Some classical algorithms 

Numerous algorithms, based on either an interactive method, or an a poste
riori method, have been proposed in the literature. As a general rule, these 
algorithms tend to separate the search for Pareto optima into two steps. In 
the first step, we are interested in the supported Pareto optima and in the 
second step in the non supported Pareto optima. 

The algorithm of [Klein and Hannan, 1982] is among the most classical al
gorithms. It enumerates the image of the set E in the criteria space. The 
principle of the algorithm lies in the resolution of q single criterion problems. 
The problem noted (Pi), of the minimisation of criterion Zi is solved at the 
first step. We denote by s^ the solution which is obtained. The problem (P2) 
is then constructed by adding to the problem (Pi) the disjunctive constraint 
"Zi{x) < Zi[s^) - e or Z2{x) < ^2(5^) -e or ...or ZK{X) < ZK{S^) - e'' 

where e > 0, for example e = 1. The implementation of this constraint in 
a mathematical model necessitates of course the addition of boolean vari
ables. Klein and Hannan also propose an implementation of this algorithm. 
An inconvenience of this approach lies in the fact that the criteria vectors 
corresponding to weak Pareto optima can be generated as well. 

Other algorithms, of a heuristic nature, have been proposed in the litera
ture. [Ulungu et al., 1995] propose a generic simulated annealing algorithm 
to approximate the set E. The characteristic of this algorithm lies in the ac
ceptance test of a solution y belonging to the neighbourhood of the solution 
X. Since the problem is multicriteria the authors use a convex combination F^ 
of the criteria to get an evaluation of the solutions. Knowing Fi{x) and Fi{y) 
the solution y is kept according to the classic scheme of simulated anneal
ing algorithms. The solutions of each iteration are stored as potential Pareto 
optima. This heuristic is iterated several times for the different values of the 
weights of the convex combination. The sets of solutions which are obtained 
are then aggregated to obtain an approximation of the set E. Another heuris
tic is proposed in which the evaluation function is the weighted Tchebycheff 
metric. Other similar heuristics have been proposed by [Ulungu et al., 1999]. 
Equally, we can refer to the works of [Czyzak and Jaszkiewicz, 1997] who also 
propose a generic simulated annealing algorithm. 
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Besides, [Gandibleux et al., 1997] propose a tabu search algorithm which ap
proximates the set E. At each iteration of the algorithm, the solutions y in 
the neighbourhood of the current solution are evaluated by a metric Lp and 
Lp. Upon reaching a single criterion evaluation of the solutions it is then pos
sible to apply the scheme of a classic tabu algorithm. At each iteration among 
the best M solutions y of the neighbourhood of x, we can add the solutions 
which are not dominated to the set E under construction. The solutions of 
this set can become dominated, and are therefore eliminated. The weights 
of the metric L^ are updated at each iteration by a procedure described by 
the authors. An application of this algorithm to a particular problem is also 
presented. 

A panorama of resolution algorithms for linear and non linear multicrite
ria problems is addressed by [Climaco et al., 1997]. Besides, a state-of-the-
art of resolution algorithms and of Operational Research problems is pre
sented by [Ulungu and Teghem, 1994]. They address for instance the mul
ticriteria assignment problem, the multicriteria travelling salesman problem 
or still yet the multicriteria knapsack problem. More recently, we find in 
[Ehrgott and Gandibleux, 2000] a study of the multiciteria problems most 
addressed in the literature of Operational Research. They tackle notably the 
principal resolution algorithms. 

[Tuyttens et al., 1999] address a bicriteria assignment problem. This prob
lem, noted BAP, is AfV-hd^vd ([Serafini, 1987]) and is defined by: 

n n 

Min Zk{x), with Zk{x) = ^^ X^cf^-^ij, Vfc = 1,..., 2 

subject to 
n 

^Xij = 1, Vz = l , . . . , n 
n 

Y^Xij = 1, Vj = l, . . . ,n 

Xij e {0; 1} 
The costs c!ij are assumed to be positive. Firstly, an improvement of an exact 
algorithm described by [Ulungu and Teghem, 1995] to determine the set E 
is proposed. This algorithm proceeds in two phases. In the first one, the set 
of strict supported Pareto optima is calculated and in the second one, the 
non supported strict Pareto optima are addressed. Besides, an improvement 
of the simulated annealing procedure described by [Ulungu et al., 1999] is 
proposed. Some experimental results show that the heuristic determines few 
strict Pareto optima when n > 25. By contrast, these results show that the 
improved version gives, on average, better results than the basic version. 
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[Ulungu and Teghem, 1997] address a bier iter ia knapsack problem. This prob
lem, noted BKSP, is defined by: 

n 

Max Zk{x), with Zk{x) = 2_\^f^j^ ^^ ~ ^»•••»^ 

subject to 
n 

Y^WjXj < W 

Xj € {0; 1} 

The costs c^, the weights Wj and W are assumed to be positive. This problem 
is AfV-haxd and a branch-and-bound procedure is proposed to enumerate the 
set E. The search tree constructed is a binary tree where at each node we 
decide whether an object takes part or not in the contents of the knapsack. 
This algorithm was inspired by the procedure of [Martello and Toth, 1990] 
for the single criterion problem. Ulungu and Teghem also study the gen
eralisation of their algorithm in the tricriteria case. The problem BKSP is 
similarly addressed in [Visee et al., 1998] who propose two exact enumera
tion algorithms of the set E, These two algorithms proceed in two phases. In 
the first, the set of supported strict Pareto optima is calculated by solving 
iteratively the single criterion knapsack problems where the objective func
tion is a convex combination of two criteria. These problems are solved using 
Martello and Toth's algorithm. The difference between the two algorithms 
lies in the second phase where the set of non supported strict Pareto optima 
is generated. The first algorithm uses an adaptation of a procedure proposed 
by [Ulungu and Teghem, 1995] whereas the second uses an adaptation of the 
Branch-and-Bound procedure proposed by [Ulungu and Teghem, 1997]. Sev
eral experimental results show that the number of strict Pareto optima is 
a function of the weights Wj and the capacity W and that the number of 
non supported Pareto optima is largely greater than the number of sup
ported Pareto optima. Comparisons show that the first algorithm can tackle 
problems with up to 120 objects whereas the second is capable of tackling 
problems with up to 500 objects. The problem BKSP is similarly solved by 
[Gandibleux and Freville, 1998]. Initially, they propose dominance conditions 
to reduce the search space. A tabu search algorithm to approximate the set 
E is proposed next. This heuristic integrates the dominance conditions men
tioned and is issued from the heuristic presented by [Gandibleux et al., 1997]. 

Among the methods for solving multicriteria optimisation problems we can 
similarly refer to the evolutionary algorithms. [Bentley and Wakefield, 1996], 
[Cvetkovic and Parmee, 1998] and [Coello Coello, 1999] show that the pro
posed algorithms are generally of type a posteriori, and that they optimise: 

• a linear combination of criteria, 
• the criteria according to a lexicographical order. 
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• an objective function linked to the goal-attainment approach, 
• one of the criteria using the e-constraint approach. 

3.9 The complexity of multicriteria problems 

In this section we are interested in the complexity of certain types of multi-
criteria optimisation problems. Then, just as there are well known reduction 
trees for the classic scheduling criteria (see chapter 2), we present some re
duction results among different objective functions. These results are inde
pendent of the structure of the problem. In the remainder of this section we 
note S the set of solutions. 

3.9.1 Complexity results related to the solutions 

Firstly we define several basic multicriteria optimisation problems. 

Let Ojy be the problem of determining one weak Pareto optimum. We set: 
Ol^: Data: Let S be the set of solutions. 

Objective: Find one solution x^ e S such that $x^ G «S\{a:^} such 
that Z{x^) < Z{x^). 

Let O^ be the problem of determining all the weak Pareto optima. We set: 
O^: Data: Let S be the set of solutions. 

Objective: Find all the solutions x^ e S such that $x^ ^ <5 \ {x^} 
such that Z{x^) < Z{x^). 

In the same way, we define O] the problem of determining one strict Pareto 
optimum and Og the problem of determining all the strict Pareto optima. 

Some works in the literature are interested in generating all the solutions of a 
problem. These are called generation problems. Particular classes of complex
ity have been defined for these problems. The interested reader is referred to 
[?]. In the remaining discussion we do not consider these complexity classes 
but only the classical ones ([Garey and Johnson, 1979]). 

We first show two simple results. 

Lemma 10 
A polynomial Turing reduction OCT exists such that Oj^ OCT O] . A polynomial 
Turing reduction OCT exists such that O^ OCT O^. 

Proof. 
Straightforward. D 
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Lemma 11 concerns the relationship between the complexity of single cri
terion and multicriteria problems. It shows that determination of any weak 
Pareto optimum is a problem which is simpler than the simplest of its single 
criterion problems. 

Lemma 11 
Let there be K criteria Zi and the K associated single criterion problems Oi. 
For all criterion Zi, Vi = 1,...,^", a polynomial Turing reduction exists ar 
such that O^ OCT Oi, 

Proof. 
Straightforward .D 

Notice that for all the reductions presented in this section, the four condi
tions of definition 12 hold. This means that all these reductions are pseudo-
polynomial reductions. 

3.9.2 Complexity results related to objective functions 

It is interesting to study the links, in terms of complexity, between the dif
ferent kind of objective functions introduced in this chapter. 

• In lemma 12 we are interested in the case where a lexicographical order 
among the criteria is stated. We define the optimisation problem Oiex for 
the order Lex{Zi,... ZK) as follows: 

OLCX'- Data: Let S be the set of solutions. 
Objective: Find a solution x^ e S such that. Vi = l,...,ür, 
Zi{x^) = min {Zi{x')) with S' = {x G S'-^/Zi-i{x) = 

min {Zi-i{x'))} and S^ = S. 

Lemma 12 
Let there be K criteria Zi and the associated optimisation problem OLCX • We 
have Ol OCT OLCX o^f^d 0\ OQT OLCX whatever the order of criteria. 

Proof. 
Ol is the optimisation problem of the criterion Zi. Demonstration of Oi OCT OLCX 
for the order Zi —> .. . ^^ ZK follows immediately from the property 1. It is the 
same for the proof of Ol OCT OLCX whatever the order of criteria.D 

• We are now interested in the optimisation problem in which we look for 
the minimisation of a convex combination of the criteria. We define the op
timisation problem Oe as follows: 
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Of, Data: Let S be the set of solutions and a G [0; 1 ] ^ , such tha t 
K 

2 = 1 

K 

Objective: Find a solution s^ G S such tha t Y^a^Z^(5^) = 
i = l 

K 

i=l 

L e m m a 13 
Let there be K criteria Zi and the associated optimisation problem Oe. We 
have: 

1. OiOCrOe, \/i = l,.,.,K, 
2- OLCX O^T Oe, whatever the order among the criteria, 
3. Ot^rOl. 

Proof. 
1) The algorithm A used to solve the problem d is defined by: 

Algorithm A: 
cxi = 1; 
o^j = 0 , Vj = l , . . . ,K , j j^i; 
Call S[av....;aK\s% 

In this algorithm, the procedure S solves the problem Oe and returns the calculated 
solution s*̂ . 
We note that if this procedure has a polynomial time complexity, then the algo
rithm A is equally so, which proves that Oi OCT Oe, Vi = 1,..., i^. 

2) We suppose that the order is that defined by the indices, i.e. L e x ( Z i , . . . , ZR)-
The algorithm A which we propose to solve OLCX , is close to that presented previ
ously: 

Algorithm A; 
A = i; 
/ 3 , = 0 , \/j = 2,...,K; 
C3nS[ßu...;ßK;s']; 
FoTi = 2toKDo 

OLi = 1 ; 

a i = 0 , \fj = l,...,K,i^j; 
Call S\aM...:arc:s^]: 
6 = Zi{s') - Zi{s^y, 
Ä = i; 
ßj=ßjxS, Vj = l , . . . , z - 1 ; 

. CanS[ßi;...;ßK;s^]; 
End for; 

In this algorithm the procedure S solves a version of the problem Oe where the 
weights are positive but not normalised to 1. If we know how to solve this problem, 
then we also know how to solve the problem Oe- Algorithm A solves the problem 
OLCX given that at each iteration we calculate the weights in such a way that the 
value of the previously minimised criterion is not increased. The value Ö represents 
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the largest improvement of the criterion in hand and modification of the weights ßi 
guarantee that we are not enabling trade-offs with the previous criteria. We notice 
that if the procedure S has a polynomial time complexity, then the algorithm A is 
equally so, which proves OLCX OCT Oe-

3)The algorithm A presented below solves the problem Ot. 

Algorithm A; 
Call F = S[ai, a 2 , . . . , a x ] ; 
/* F contains the set of weak Pareto optima sorted in ascending order 

K 

of values ^S^aiZi */ 

Return F ( l ) ; 

S* is a procedure which solves the problem 02, and sorts the weak Pareto optima 
K 

found by increasing order of values y^ajZ^.D 

• Concerning the parametric approach, few results exist due to the generic 
form of theorem 5. We define the optimisation problem Op as follows: 

Op: Data: Let S be the set of solutions, k = [fei;...; kxY ^ vector of 
K constants and a strictly increasing function ^̂  : R'̂  ^ R, 
Objective: Find a solution x^ ^ S such tha t g{Z{x^)) — 
min(^(Z(:r ' ) )) subject to Z{x^) < [fci; . . . ; UKY. 
x'£S 

L e m m a 14 
Let there he K criteria Zi and the associated optimisation problem Op. We 
have Ol OCT Op. 

Proof. 
Deduced from property 1 and theorem 5.D 

• In the next lemma we are interested in the e-contraint approach. We suppose 
tha t the criterion Zi is minimised and we define the problem Oe as follows: 

Oe : Data: Let S be the set of solutions and K — 1 constants Cj, Vj = 
2 , . . . , i r , 
Objective: Find a solution x^ £ S such tha t Zi{x^) = min(Zi(a; ')) 

x'^S 
subject to Zj{x^) < Cj, \Jj = 2, , . . , K. 

L e m m a 15 
Let there be K criteria Zi and the associated optimisation problem O^ We 
have: 

i . Ol OCT O,, 
2. OeOCrO}. 
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Proof. 
1) We introduce a resolution algorithm A for the problem Oi. 

Algorithm A; 
kj = oo, Vj = 1,...,K] 
CanS[k2]...;kK;s% 

The procedure S used in this algorithm solves the problem Oe- We therefore have 
Ol OCT Oe. The value kj can be initiated eventually with an upper bound on the 
criterion Zj, Vj = 2,..., K. 

2) Let the resolution algorithm A for the problem Oe be defined as follows: 

Algorithm A; 
Call S[a]\ 
Min = oo; 
For (all s € a) do 

• U{Zj{s) < Ej, \/j = 2, . . . ,X and Zi{s) < Min) Then 
s* = s; 
Min = Zi(s); 

End If; 
End For; 

Procedure S solves the problem 0 } . We note that if procedure S has a polynomial 
time complexity, then the number of elements in a is bounded by a polynomial of 
Long which is the length of the instance. In this case, the algorithm A is equally 
polynomial.D 

A special link also exists between the problem Oiex and the problems O^, 
where 01 refers to the problem Oe in which we minimise the criterion Zi 
instead of the criterion Zi. 

L e m m a 16 
If all the problems 01, Vi = 1,..., ÜT, are polynomially solvable, then the prob
lem OLCX «̂S equally so whatever the order of the criteria under consideration. 
Conversely, if a problem Oiex, for a fixed order, is MV-hard then at least 
one of the problems 0\ is MV-hard. 

Proof. 
The proof is based on the existence of a polynomial Turing reduction. Let us sup
pose, without loss of generality, that the lexicographical order is that defined by 
the indices, i.e. Lex{Zi,..., ZK)- We introduce an algorithm A which solves the 
corresponding problem OLBX and which is defined as follows: 

Algorithm A: 
kj = oo, Vj = 1,...,J^; 
Fgri = 1 K Do 

Call S[ki;...; fc_i; fc+i;...; kK] i] s% 
ki = Zi(5°); 

End For; 

The procedure S used in this algorithm solves the problem 01. We notice that if 
all the problems 01 are polynomially solvable, running of the procedure S can be 
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realised in polynomial time and the algorithm A is polynomially solvable. Con
versely, if the problem OLBX is A/'P-hard then at least one running of the procedure 
S cannot be done in polynomial time. 
Besides, we deduce that this reasoning is valid whatever the order among the cri
teria in the lexicographical order.D 

We denote by Di the decision problem associated with the criterion Z^, de
fined as follows: 

Di : Data: Let S be the set of solutions and D a value, 
Question: Does a solution x^ G S exist such that Zi{x^) < D ? 

If it appears to be difBcult to establish a general reduction of the problems 
Oi, for z 7̂  1, towards the problem Oe, we can show that such reductions 
exist if we consider the decision problems Di. 

Lemma 17 
Let there be K criteria Zi and the associated optimisation problem Oe- We 
have Di ocr Oe, Vi = 2,..., K. 

Proof. 
To solve a problem A , for a fixed index i, i.e. to provide an answer True or False, 
it is sufficient to consider the following algorithm A: 

Algorithm A: 
Cj = oo, Vj = 2, ...,K, j ^i] 
ei = D-
Call 5[e2;... \eK\s^\answer]\ 

5 is a procedure which solves Oe and which returns a solution s° if answer = 
True.U 

• Concerning the Tchebycheff metric approaches and the goal-attainment 
approach, it appears to be difficult to propose polynomial Turing reductions 
given the parameters used in these approaches. If we denote the minimisation 
problems of the Tchebycheff metrics by Or, Orp and Orpat we can simply 
show that polynomial Turing reductions exist such that Oj (XT OT^ Oj OCT 
OTP and Oj OCT Oxpa- The same is true for the goal-attainment approach, 
the problem of which is denoted by O«. 
All the reductions stated in this section are polynomial Turing reductions 
which are not sufficient to show strong ATP-hardness reducibility, since we 
need pseudo-polynomial reductions. However, we can easily prove the follow
ing result. 

Corollary 3 
The polynomial Turing reductions introduced in lemma 12, 13, 14, 15, 16 and 
17 are also pseudo-polynomial reductions. 

Proof. 
The result can be shown by simply applying the definition 12. As the reductions 
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considered are polynomial Turing reductions, the conditions 1 and 2 are verified. 
Besides, notice that for all these reductions Length'[I'] = Length[ocT (/')] ^^^ 
Max[r] = Max[(XT {I')], V/'. Therefore, the conditions 3 and 4 are also verified.D 

3.9.3 Summary 

The set of reductions shown in the previous section is summarised in figure 
3.20. 

M e a n s t h a t a 
polynomia 1 Turing 
reduction exists from 
the problem A towards 
the problem B 

D2 ... DK 

Fig. 3.20. Polynomial reductions tree 

These results are especially interesting to study the complexity of multicrite
ria problems when we know this of single criterion problems. Moreover, they 
show that the multicriteria problems are likely to be J\fV-haxd given that 
they are at least as difficult as the single criterion problems. For example, 
the decision problem associated with the bicriteria shortest path problem in 
a graph ([Serafini, 1987]), is A/'P-complete whilst the single criterion prob
lems are not. The same is true for the decision problem associated with the 
bicriteria assignment problem. 

Concerning the study of theoretical results for the complexity of multicri
teria problems, we can refer to [Ehrgott, 2000b] who studies certain prob
lems for which the set of solutions S is defined in the following way: let 
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E = {e i ; . . . ; CAT} be a set of elements and S = {s/s C E}. The complexity 
of bicriteria problems where the criteria are functions of form "max" or " J^" 
is studied using the e-constraint approach. It is shown that the problems 
composed of one or two criteria of the form " ^ " are the most difficult to 
solve. 

3.10 Interactive methods 

Interactive methods have been the object of numerous works since the 1970s. 
Their interest is in allowing the decision maker to lead the resolution process. 
This avoids the problems connected to the incomparability of Pareto optima. 
An interactive method proceeds by iterations. Each iteration comprises two 
phases ([Steuer, 1986] and [Gardiner and Vanderpooten, 1997]): 

1. A dialogue phase where a solution is presented to the decision maker. 
2. A calculation phase where the method uses the instructions of the decision 

maker to calculate a new solution. 

The final solution held by the decision maker must be a Pareto optimum. 
When we perfect an interactive algorithm, we must pay attention to its con
vergence towards a final solution. Two cases can occur: the convergence of the 
algorithm can be shown mathematically or the convergence depends on the 
behaviour of the decision maker. In the first case we can show that the algo
rithm will run no more than k iterations. Then, the decision maker must have 
retained a solution before the end of the process. For the second type of algo
rithm it is not possible to restrict the number of iterations since the conver
gence depends on the behaviour of the decision maker. For example, he may 
reject a solution initially and accept it several iterations later ([Vincke, 1989]). 
A typology of interactive methods is proposed in [Vanderpooten, 1992]. This 
typology refiects the different types of convergence. We can distinguish: 

1. The search oriented methods which depend on the hypothesis which 
the decision maker cannot change his mind about during the resolu
tion process. The objective is to converge towards the solution which the 
decision maker wants. This convergence then depends uniquely on the 
method used to obtain this solution and may be limited. 

2. The learning oriented methods which depend on the hypothesis which the 
wishes of the decision maker can evolve during the resolution process. At 
one given iteration, these methods must, beginning with the information 
provided by the decision maker at the time of the previous iterations, try 
to determine the solution of the current iteration. We can classify these 
methods as "one shot methods". 

3. The mixed methods which combine the search and learning phases. 
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[Gardiner and Vanderpooten, 1997] show that historically the learning ori
ented methods are more recent than the search oriented methods. They sim
ilarly propose a panorama of the principal existing interactive methods. 

Another typology is proposed by [Steuer, 1986] in the case of problems which 
can be modeled by linear programming. By contrast to the typology proposed 
by [Vanderpooten, 1992], the one presented by Steuer classifies the interactive 
methods according to the implemented techniques. We distinguish: 

1. The methods which proceed by reducing the solutions set. With each 
iteration, constraints on the values of the criteria are added. The set of 
solutions to consider with the following iteration is thus reduced. 

2. The methods which proceed by reducing the set of possible weights for 
the criteria. In these methods we assume that a weight is assigned to each 
criterion. With each iteration the set of possible values of these weights 
is reduced according to decision maker's instructions. 

3. The methods which proceed by reducing the criteria cone. This cone is 
reduced with each iteration. If the number of iterations is not limited 
then the cone converges towards a unique vector c. That brings us back 
to transforming the multicriteria problem into a single criterion problem 
for which the optimal solution is the Pareto optimum acceptable by the 
decision maker. 

4. The methods which proceed by navigating in the set of solutions. With 
each iteration a solution is retained by the decision maker who next indi
cates the new search direction to calculate the next solution. For example, 
this research direction may be calculated by improvements on the criteria 
which the decision maker wishes, related to the current solution. 

We do not aim to presente a complete state-of-the-art of interactive methods. 
We simply present in table 3.1 a summary of the most classical methods. 
Equally, we mention the existence of interactive software, as for example the 
NIMBUS software ([Miettinen, 1999]). 

3.11 Goal programming 

The origins of goal programming return us to [Charnes et al., 1955] and 
[Charnes and Cooper, 1961]. The special feature of this programming is in 
the statement of goals for each criterion to best satisfy. Thus, we do not seek 
to optimise directly the criteria as in traditional mathematical programming. 
To illustrate the principle of goal programming we introduce the problem 
(Pobj) defined by: 
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Table 3.1. Summary of some interactive methods 

R e f e r e n c e II III C o n t e x t 

Benayoun et al., 1971] 
Geoffrion et al., 1972] 

[Roy, 1976] 
[Zionts and Wallenius, 1976] and 
[Zionts and Wallenius, 1983] 
;Vincke, 1976] 
Steuer, 1977] 
Steuer and Wood, 1986] 
Wierzbicki, 1990] and 
[Wierzbicki, 1982] 
;Steuer and Choo, 1983] 
Korhonen and Laakso, 1986] 
Levine and Pomerol, 1986] 
Jacquet-Lagreze et al., 1987] 
Vanderpooten, 1988] 
[Lofti and Zionts, 1990] and 
"Lofti et al., 1992] 
Jaszkiewicz and Slowinski, 1997] 
Ulungu et al., 1998] 
Alves and Climaco, 2000] 
Kaliszewski, 2000] 
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X 

MLP 
MLP 

MLP 

MLP uniquely 
MLP uniquely 

Discrete problems 

X Discrete problems 

X 
X 

Discrete problems 
MMIP 
MMIP 

X 

I: 
III: 

Method by reduction of the set 
of solutions 
Method by reduction of the cri
ter ia cone 
Search oriented method 
Mixed method 

B : Method by reduction of the set 
of weights 

D : Method by navigation 

II: Learning oriented method 

Criterion I: Zi{x) 
Criterion II: Z2{x) 
Criterion III: Z3{x) 
subject to 

xeS 

Objective: Zi (x) < 61 
Objective: Z2{x) = 62 
Objective: Zslx) £ [bf'.bf] 

where the three objectives of (Pobj) represent three categories of objective 
which can be encountered. In the problem (Pobj), the objective of criterion 
I shows that a solution with a low value Zi is searched, if possible a value 
which is smaller than 61. The objective of criterion II forces calculation of a 
solution which the value of the criterion Z2 is equal to 62 while in the case 
of criterion III the value of the criterion Z3 has to belong to the interval 
[63̂ ; 63^]. The criteria objectives define in the criteria space the Utopian set, 
noted U. li Z nU ^ ^ then Vx such that Z{x) e ZOU, x is a. solution of the 
problem, and in this case dominated solutions can exist which are solutions 
of the problem (Pobj)- But we can have ZnU = ^ and in this case, we must 
determine a solution for which the criteria vector is "as close as possible", in 
the sense of a function which remains to be defined, of the Utopian set. For 
that, we transform the problem (Pobj) into a problem (Psiack) by introduc
ing positive slack variables df and/or d~ and supplementary constraints to 
translate the objectives of each criterion. 
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For the objective imposed on the criterion Zi, we will introduce a slack vari
able dl and the constraint Zi (x) — d'l < 61. 

For the objective imposed on the criterion Z2, we will introduce the slack 
variables d^ and d2 and the constraint Z2{x) — ^2" + c!J =62-

For the objective imposed on the criterion Z3, we will introduce the slack 
variables ^3" and d^ and the two following constraints: Zs{x) + d^ > 63̂  and 
Zs{x)-dt<bf. 

In the problem {Psiack)^ these are then the slack variables which are opti
mised. There exist several types of problems (Psiack) which distinguish them
selves by the way in which the slack variables are optimised. Traditionally 
we find: 

1. Archimedian problems. We speak similarly of archimedian goal program
ming. 

2. Preemptive or lexicographical problems. We speak similarly oi preemptive 
or lexicographical programming. 

3. Interactive problems, which are a mixture of archimedian and lexico
graphical problems. Similarly, we speak of interactive goal programming. 

4. Reference point problems, which are particular lexicographical problems. 
Similarly, we speak of goal programming by reference. 

5. Problems with multiple functions. Similarly, we speak of multicriteria goal 
programming. 

In goal programming, the notion of Pareto optima is not defined for the 
problem {Pobj) but for the problem (Psiack) ([Steuer, 1986]). A solution to 
the problem (Psiack) is a couple (x, d) where x G S and d is the vector of the 
p slack variables, each component of which can be noted di. 

Definition 48 
Let (x, d^) be a solution of the problem (Psiack)- x e S is a strict Pareto-slack 
optimum, called also an efficient-slack or a strict efficient-slack solution, if 
and only if${y,dy),y £ S, such that Vi = 1, ...,p, d^ < df with at least one 
strict inequality. We note Esiack the set of strict Pareto-slack optima. 

It is possible to state a similar definition for the notion of weak Pareto-
slack optimum. The set of weak Pareto-slack optima is noted WEgiack- The 
solutions of the problems (Psiack) presented in the following sections, are 
generally Pareto-slack optima. They are not necessarily Pareto optima for 
the criteria of the problem (Pobj)- That is equivalent to saying that a solution 
of a problem modeled in the form of a goal program can be dominated by 
another solution. To avoid this problem, different works study the possibilty 
of reconstructing a Pareto optimum for the criteria under consideration from 
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the optimal solution of the problem (Pobj)- The interested reader may refer 
notably to [Tamiz et al., 1999]. We shall now present different types of goal 
programming. 

3.11.1 Archimedian goal programming 

When trade-offs between different objectives are allowed and when the 
weights can be defined by the decision maker, then we can use archimedian 
goal programming. In this case, the problem (Psiack) is written in the form: 

subject to 
xeS 
Zi{x)-dt <bi 
Z2{x)-dj +d2 =&2 

(C) { Zs{x) + d^>bf 
Zs{x)-dt <bf 
dj- > 0 , Vz = l,. . . ,3 
d- > 0 , Vi = 2,..., 3 

In general, we suppose that the weights a^ are positive. For this problem, 
it is possible to apply Geoffrion's theorem to show that the resolution of 
the problem {Psiack) enables to calculate a weak or a strict Pareto-slack 
optimum following the value of the weights. If the set S is not convex, then 
the solution of the problem (Psiack) does not enable us to determine non 
supported Pareto-slack optima. 

3.11.2 Lexicographical goal programming 

When it is not possible to compensate between different objectives, we can 
use lexicographical goal programming. We then define a lexicographical order 
between the objectives. Let us suppose in our example that this order is that 
of the criteria indices. The problem (Psiack) is written then in the form: 

TTtiriLex (df, ^2" 4- d^, cJj + d^) 
subject to 

(C) 

The solution of the problem (Psiack) is a strict Pareto-slack optimum. 

3.11.3 Interactive goal programming 

Interactive goal programming intervenes when we can define classes of ob
jectives such that it is possible to define a strict order between these classes 
and such that only trade-offs are allowed between criteria of the same class. 
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For example, for the problem {Pobj) introduced previously we can define two 
classes. The first groups the slack variables associated to objectives I and IL 
We note / i the convex combination of the slack variables associated with this 
class. The second class groups the slack variables associated to objective III 
and we note /2 the convex combination of these slack variables. We consider 
the lexicographical order given by the indices of the classes. The problem 
{Psiack) is written then in the form: 

minLex{fij2) 
subject to 

(C) 

The problem (Psiack) is solved traditionally by an interactive algorithm. At 
the first step, the decision maker provides the classes, the order of the classes 
and the weights. The problem {Psiack) is therefore solved and the solution ob
tained is presented to the decision maker who can modify the weights and/or 
the classes and/or the order between the classes. A new solution is calculated 
and the process is repeated until the desired solution is reached. Besides, if 
the set S is bounded, then each optimal solution of the problem (Psiack) is a 
weak or strict Pareto-slack optimum (see for example [Steuer, 1986]). 

3.11.4 Reference goal programming 

This type of goal programming, is inspired by the methods using reference 
points, and was proposed by [Ogryczak, 1994]. More exactly, the objective 
function of the problem (Psiack) is broken down in the same way as in the 
problem of the minimisation of an augmented weighted Tchebycheff metric 
according to a lexicographical order (see theorem 12). The problem (Psiack) 
is then written in the form: 

minLex(Ti,T2) 
subject to 

(C) 

Ogryczak shows that every solution of this problem is a strict Pareto optimum 
for the criteria of the problem (Pobj)- The extension of this model to a problem 
by lexicographical reference is presented in [Ogryczak, 1997]. 

3.11.5 Multicriteria goal programming 

As for interactive goal programming problems the decision maker defines 
classes of objectives and provides the weights for each objective. Convex com
binations fi for each class are also constructed. The solution of the problem 
(Psiack) returns us to determining the set of the strict Pareto-slack optima. 



4. An approach to multicriteria scheduling 
problems 

4.1 Justification of the study 

4.1.1 Motivations 

In the context of production, the planning phase is broken down hierarchically 
into different levels: strategic, tactical and operational. The production plan 
at the tactical level determines the quantities of products to make by time 
period. Its objectives are: 

• to satisfy the customers' requirements, that is to say to supply the customer 
with the product he wants, in the desired quantity and at the desired date, 

• to balance continuously the existing resources and the resources necessary 
for production, by avoiding underloading as well as overloading, 

• to ensure production at lowest cost or at least with maximum profitability. 

Next, at the operational level, the established plan must be followed as best 
as it can. This is not without bringing up some coherence problems, allied 
to the fact that the first module handles aggregated information, and the 
second detailled information. Scheduling has as principal objectives: 

• to minimise work-in-process in the shop, 
• to have high respect for the planned and promised delivery dates given to 

the customers, 
• and to optimise the shop resources. 

By its very nature therefore, a scheduling problem in the context of produc
tion is very often multicriteria. RCPSP may also involve several criteria of 
time and cost type ([Herroelen et al., 1998a] and [Hapke et al., 1998]) as for 
example: 

• the respect of delivery dates, 
• the cost related to the duration of an activity when this duration belongs 

to an interval and has to be fixed. 

Examples of such problems are time/cost trade-off problems. As a general 
rule, and as [Roy, 1985] points out, taking several criteria into account enables 
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us to provide the decision maker with a more realistic solution. Some concrete 
examples are presented in section 4.1.2. 

DiflFerent states-of-the-art of multicriteria scheduling can be found in the lit
erature (see [Dileepan and Sen, 1988], [Pry et al., 1989], [Hoogeveen, 1992a], 
[Nagar et al., 1995a] and [Hoogeveen, 2005]). Analysis of these works under
lines: 

• the necessity of knowing the results of the domain of multicriteria opti
misation to understand well the difficulties related to taking into account 
conflicting criteria, 

• the need for a typology enables us to formalise the different types of prob
lems and to unify the notation of these problems, 

• the need for a knowledge of the results on single criterion scheduling prob
lems. 

Application of multicriteria optimisation constitutes a field of activity which 
has been little explored until today. 

4.1.2 Some examples 

Many scheduling problems in the production domain involve several criteria. 
We find in the literature numerous works dealing with a category of problems 
which correspond well to a situation: the need to produce "Just-in-Time". 
This need translates into two wishes, one is not to deliver to the client late, 
the other is not to store the finished products. To produce "Just-in-Time" is 
therefore a trade-off between producing slightly late and not too early. Nu
merous definitions of "Just-in-Time" scheduling exist in the literature. These 
works are presented in chapter 5. 

We now present some scheduling problems corresponding to practical situa
tions, whatever their application field. 

Manufacture of bottles 
A factory manufactures glass bottles the colours of which are selected in 
advance at the planning phase ([T'kindt et al., 2001]). A furnace containing 
the molten glass of a given colour, serves several different forming machines. 
These machines are fitted-^ith several moulds, allowing several types of bot
tles to be made, which correspond to several orders. Changing a mould on 
a machine takes a negligible time compared to the production time, thus 
allowing the changeover from one product to another in hidden time. The 
manufacture of a product by a machine creates a profit which can be mea
sured. One of the objectives is therefore, given the production horizon, to 
assign the jobs to the machines, in order to maximise the total profit. On 
the other hand, change of colour in the furnace affects the set of machines 
which it serves, and this change can only occur when all the machines have 
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completed their current production. In order not to allow the machines to be 
inactive for a too long time, which creates a prohibitive cost, we desire that 
the machines should cease production within a limited timeframe. A second 
criterion aims therefore to assign the jobs in order to minimise the greatest 
difference of workload between two machines. The decision maker wishes to 
find the better trade-off between the total profit and the greatest idle time 
of the machines. 

Electroplating and chemical industry 
This category of problems returns us to the Hoist Scheduling Problem in the 
literature. A certain number of tanks containing chemicals are available for 
the galvanisation treatment of items. Arrival of the items in the shop is cyclic. 
These items pass from one tank to another by means of a transportation ro
bot (or a pool of robots) usually suspended above the tanks. The processing 
time, or soaking time, of the items in the tanks is a variable of the problem. 
Indeed, the chemical engineers give a minimum and maximum duration for 
each soaking, thus leaving complete freedom for the analyst to calculate the 
best durations. The basic problem is to seek a minimum cycle time, i.e. a 
minimum value of the makespan criterion. Nevertheless, two factors force us 
to consider this problem from the multicriteria point of view. Firstly, prac
ticalities show that scheduling of the movement of the tranportation robots 
(handling and placing of the items into the tanks) is the most difficult part to 
determine to efficiently minimise the cycle time. Next, for most of the tanks 
(therefore the chemicals baths) respecting the minimum soaking time is the 
only vital consideration. In practice we can sometimes exceed the maximum 
soaking time if it enables us to better manage movements of the robots. Thus, 
the problem becomes bier iter ia when we want to minimise the cycle time and, 
for example, a weighted sum of overtaking the soaking times compared to the 
authorised maximum soaking times ([Fargier and Lamothe, 2001]). 

Steel hot rolling mill industry 
The steel hot rolling mill problem consists in producing steel coils starting 
from steel slabs ([Cowling, 2003]). In this problem the shop can be decom
posed into two parts: a huge slabyard in which the steel slabs are stored 
waiting to be processed by the rolling mill, and the rolling mill in itself. Each 
slab has particular characteristics and can be used to process several kinds of 
steel coils. When a slab has been selected to be processed, it is transported 
by cranes up to the rolling mill and introduced into a furnace in which it is 
subjected to a high temperature. After the furnace, the hot steel slab passes 
into a series of rolls that submit it to high pressures in order to achieve the 
desired width, thickness and hardness for the steel coil. Notice that to each 
shift of processed orders is associated an ideal sequencing shape which take 
account of additional constraints related, for instance, to the furnace and the 
fact that we cannot make varying its temperature has we want. One of the 



116 4. An approach to multicriteria scheduling problems 

desire of the planner is to reduce the changes of pressure settings between 
two consecutive produced coils because this can severely alters their quality. 
Besides, has the rolls are in contact with hot steel they are quickly worn and 
must be replaced by new rolls. Accordingly the production of coils is planned 
by shifts of a few hours. There are also a certain number of additional con
straints. The aim is to sequence the steel coils in order to maximise the value 
of the coils rolled in the sequence, to minimise the changes in characteristics 
between two consecutive coils, to minimise the number of non-essential crane 
movements and to minimise the deviation from the ideal sequencing shape. 

Car assembly 
Car production lines create multicriteria scheduling problems for the sub
contractors. This is especially true for car seats. The manufacturer and the 
assembler of cars are synchronised and the sequencing of a vehicle on the pro
duction line automatically instructs the manufacturer to produce seats. This 
stipulates a limited time for their delivery. This problem is a Just-in-Time 
scheduling problem since early production of a seat creates for the assembler 
additional storage costs (higher than storage costs of an engine). Conversely, 
late delivery of seats causes the assembly line to halt. The vehicle in question 
must then be repositioned to the front of the line, which causes additional 
production costs. 

Processing of cheques 
The organisation of a processing centre, dedicated to perform operations on 
cheques (debit, credit, printing, etc.) is similar to a production centre. More 
precisely, it can be represented as a three-stage hybrid flowshop problem, 
where the jobs pass several times through the same stage (recirculation). We 
can associate two due dates to each job. The first relates to the completion 
time of an operation of the routing which transfers data to customers. The 
second relates to the completion time of the last operation of the jobs. If this 
date is not respected, delivery of the cheques is delayed by a whole day, which 
creates a cost proportional to the amount of money delayed. Two different 
criteria are associated with these due dates. The first is that of the maximum 
tardiness, to be minimised in order to limit upsetting the customers, and the 
second is the weighted number of late jobs where the associated weight is the 
cost incurred by the delay ([Bertel and Billaut, 2004]). These two criteria do 
not have the same importance for the firm, which wants above all to minimise 
the second and only then the first. 

Scheduling problems related to transport 
Numerous planning and scheduling problems occur when dealing with trans
portation of goods or passengers. Among others, the aircrew rostering prob
lem can be seen as a multicriteria problem ([Lucie and Teodorovic, 1999]). 
This problem arises when dealing with the scheduling of crews to flights in 
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air transport. Assume there is a set of flights to do and a set of predefined 
rotations, a rotation being a sequence of flights. Knowing a set of pilots we 
have to assign them to rotations without violating constraints related to the 
air security and the skill of the pilot. For example, a pilot only flies one type of 
aircraft, his monthly flying time is limited to 85 hours, the number of takeoffs 
per month is limited to 90, etc. Besides, each day a pilot stays in a foreign 
country, he has a foreign per diem allowance. The aim is to minimise two 
criteria. The first one is the average relative deviation per pilot between the 
real and ideal monthly flight time and the second one is the average absolute 
deviation per pilot between the real and ideal number of foreign per diem 
allowances during the month. 
Another application in transport scheduling is related to passenger train ser
vices planning in high-speed rail lines ([Chang et al., 2000]). This problem 
occurs when dealing with inter-city transportation, where we have a lot of 
train stations and a possibly huge quantity of passengers. Given a set of sta
tions the aim is to determine stop-schedules in order to satisfy the constraints 
of the problem and to minimise the criteria. A stop-schedule is a sequence of 
stations at which a train must stop. We also have to determine the minimal 
number of trains required to satisfy the stop-schedules. Two criteria are min
imised: the total operating cost for the planning horizon and the passenger's 
total travel time loss for the planning horizon. 

Timetabl ing problems 
In academic administration, the resources usually are students, faculties, 
staff, facilities, equipment, finances and time. Resource allocation problems 
refers to the determination of the levels of certain resources to be allo
cated among a number of competing activities. For the allocation of cer
tain resources, specific names are given such as, for instance, scheduling 
or timetabling, when dealing with the allocation of courses, timeslot, ex
aminations and classrooms. The research addressing these problems (see 
[Mustafa and Goh, 1996]) propose the use of goal programming, heuristics 
and interactive methods. 

Spor ts scheduling 
Sports scheduling is a particular area of scheduling theory which is closely 
related to timetabling problems: the aim in sports scheduling is usually to 
set a timetable of matches in a tournament or a championship. This kind of 
problem being hardly constrained it can be sometimes interesting to relax 
constraints into objectives, by the way leading to a multicriteria scheduling 
problem. [Wright, 2005] presents the particular case of the National Basket
ball League (NBL) of New Zealand. Ten basket teams meet twice in home 
and away matches, leading for each team to eighteen matches in a season. As 
only fifteen week-ends are available to play the matches, all teams have at 
least one week-end with two matches, which does not simplify the problem 
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because additional constraints exist on these "doubling up" week-ends (the 
two teams that meet in a doubling up week-end must meet away and must 
not be located too far from each other). Other constraints are also described. 
Due to the complexity of the problem and the way a timetable is built by 
the NBL, most of the hard constraints are relaxed into objectives which are 
equal to 0 when the original related constraint is met. This leads to a total 
of twenty criteria minimised in a convex combination reflecting the total cost 
of constraint violation. 

Satellite scheduling 
Satellites are rare and costly resources that must accomplish defined tasks. 
One example of a multicriteria satellite scheduling problem is provided by 
[Gabrel and Vanderpooten, 2002] who focus on the scheduling of an earth 
observing satellite. Such a satellite has to daily process a series of photos 
of the earth according to a daily plan. This plan has to be calculated in 
order to fuUfil a set of contraints: each photo must be taken in a given time 
window due to the satellite track, set-up times exist between two photos, the 
satellite can only take photos in the daylight, etc. Besides, the problem is 
so much constrained that, often, some photos cannot be done. Henceforth, 
the scheduling problem also concerns the choice of the photos to process. 
Three criteria are to be considered: (i) maximise the demand satisfaction, 
(ii) maximise the sum of the priorities of the scheduled photos, (iii) minimise 
the number of used camera. Gabrel and Vanderpooten solve this problem 
by enumerating all strict Pareto optimal paths in a tricriteria graph. This 
cannot be done in polynomial time. It is also interesting to notice that this 
problem can be modelled as a single machine problem (the satellite) with n 
jobs (the photos), time windows, set-up times and with a rejection cost (see 
for instance [Bartal et al., 2000]). 

4.2 Presentation of the approach 

4.2.1 Definitions 

We now present a breakdown of the multicriteria scheduling problems by set
ting out the different phases which are more linked to Multicriteria Decision 
Aid, Multicriteria Optimisation, or Scheduling. 

Definition 49 
We call a multicriteria scheduling problem the problem which consists 
of computing a Pareto optimal schedule for several conflicting criteria. This 
problem can be broken down into three sub-problems: 

1. modelling of the problem, whose resolution leads to the determination 
of the nature of the scheduling problem under consideration as well as the 
definition of the criteria to be taken into account, 
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2. taking into account of criteria, whose resolution leads to indication 
of the resolution context and the way in which we want to take into ac
count the criteria. The analyst finalises a decision aid module for the 
multicriteria problem, also called a module for taking account of criteria, 

3. scheduling, whose resolution leads us to find a solution of the problem. 
The analyst finalises an algorithm for solving the scheduling problem, also 
called a resolution module for the scheduling problem. 

Modelling of the problem ([Roy, 1985]) is done with the decision maker, 
and consists on one hand of defining what are the relevant criteria which 
have to be taken into account. We assume that these criteria are conflicting 
that is to say that minimising one criterion is not equivalent to minimising 
another. On the other hand, we define at this phase the environment where 
the scheduling problem occurs, that is to say the set of resources available 
to carry out these jobs (it may concern machines and personel in the case 
of a shop, or another kind of resource), and the manner in which the shop 
is organised. We identify in some way the nature of the scheduling problem. 
Finally, we define the particular constraints of the problem: authorised pre
emption or not, release dates, etc. All this interactive process is done when a 
company wants to solve a scheduling problem. The analyst and the decision 
maker work together to define the problem, so that the analyst can draw up 
a model. 

A large part of the difficulty in solving a multicriteria problem lies in the 
taking account of the criteria. During this phase, the decision maker 
provides the information concerning his perception of the criteria: firstly he 
states whether or not he authorises trade-offs between the criteria. If this is 
not so, he indicates the order in which the criteria should be optimised. On 
the other hand, if trade-oflFs are allowed, he indicates whether it is possible 
to associate a weight to the criteria if this has any sense, and he gives the 
weights eventually; he indicates the objectives to achieve for each criterion if 
he knows them; etc. Next, he arranges the choice of the method indicating 
whether he wants an algorithm which will give him a unique solution, taking 
into account the supplied information, or whether he prefers to intervene in 
the resolution procedure. The latter case occurs when he is not sure how to 
answer the questions. Finally, he might wish to see all the possible solutions 
in order to retain the one which interests him. These choices will automati
cally direct the respective method to an a priori^ interactive or a posteriori 
algorithm. The information gathered on the problem at this phase and the 
way in which the decision maker is able and wishes to tackle it will allow the 
analyst to choose an appropriate resolution approach, whatever should be 
his choice: a linear combination of criteria, a parametric approach or another 
method. The result is the form of the objective function of the scheduling 
problem for which a resolution algorithm must be proposed. This phase will 
usually lead the analyst to finalise a module to take account of the criteria. 
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that is to say an algorithm which will perform the interactions asked for by 
the decision maker (launching an interactive procedure, a posteriori proce
dure, etc.). 

Scheduling has as objective to provide a schedule which optimises the objec
tive function which was defined at the previous stage. The obtained solution 
is a Pareto optimum for the mult icr iter ia scheduling problem. The analyst 
has therefore to finalise a scheduling module that will solve the scheduling 
problem resulting from the previous stages. 

It is important to emphasise that [Faure, 1979] already advised the thorough 
breaking down of the tasks. He stated what was and what was not the compe
tence of the operational researcher. He eventually advised that the problems 
should be tackled from a multicriteria point of view, by means of multicrite-
ria analysis. Therefore, the approach which we present is not new: it simply 
proposes to effect these concepts by means of Decision Aid for the resolution 
of multicriteria scheduling problems. 

Figure 4.1 presents the breakdown of multicriteria scheduling problems as it 
was developed in definition 49. 

Information from 
the decison maker 

Information from 
on 

c 

Information from 
the decison maker on maker K 

Information from 
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Modelling of the problem 
. The problem is defined 
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v1 
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N Resolution of the resulting scheduling problem (find 
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Fig. 4 . 1 . A framework for solving multicriteria scheduling problems 



4.2 Presentation of the approach 121 

4.2.2 Notation of multicriteria scheduling problems 

At the phase of taking account of criteria, and following the information 
which it sets out, the analyst chooses a resolution approach for the schedul
ing problem and thus defines a scheduling problem. Taking account of the 
diversity of the methods of determining Pareto optima (see chapter 3), the 
functions to optimise for the scheduling problem can take different forms. 
Each one translates a method of determining a Pareto optimum. The crite
ria do not change and they correspond to those defined during the phase of 
modelling of the problem. 

A multicriteria scheduling problem, after the modelling phase, can be noted 
in a general way by using the three-field notation, where the field 7 contains 
the list of criteria: a|/3|Zi, Z2 , . . . , ZK- The scheduling problem produced by 
the phase of taking account of the criteria may equally be noted by means 
of the three fields, where only field 7 is spread. We define the following new 
functions for this field: 

• Z if the objective is to minimise the unique criterion Z (single criterion 
problem). It concerns the well known case, i.e, Z may be Cmax^ Tmaxi ^tc. 

• ^^ (Z i , . . . , ZK) if the objective is to minimise a linear convex combination 
of the K criteria. For example, this case can agree if the decision maker 
can allocate a weight to each criterion. 

• e{Zu/Zi,..., Zu-i-iZu^i,..., ZK)^ indicates that only the criterion Zu is 
minimised, subject to all the other criteria being upper bounded by known 
values. This case is distinguished from the the previous case because the 
function to be minimised is Zu and this criterion is not subject to any 
bound constraint. The analyst is in the area of the e-constraint approach. 

• P ( Z i , . . . , ZK) indicates a non decreasing function of the criteria to min
imise, if we suppose that all the criteria are upper bounded by known 
values. In this case, the analyst is in the area of parametric analysis. 

• FT{ZI, . . . , ZK) indicates an objective function which is the expression of 
a distance to a known ideal solution. The distance is calculated by using 
the Tchebycheff metric. This ideal solution must not be reachable. 

• FTP{ZI, . . . , ZK) indicates an objective function which is the expression of 
a distance to a known ideal solution. The distance is calculated by using the 
weighted Tchebycheff metric. This ideal solution must not be reachable. 

• FrpaiZi,,.., ZK) indicates an objective function which is the expression 
of a distance to a known ideal solution. The distance is calculated by using 
the augmented weighted Tchebycheff metric. This ideal solution must not 
be reachable. 

• F s (Z i , . . . , ZK) indicates a very particular function which takes into ac
count a known ideal solution to find the sought solution. The analyst is in 
the area of the goal-attainment approach. 

• GP(Zi, Z2 , . . . , ZK), if there are goals to reach for each criterion in the 
scheduling problem (goal programming). The problem is not to optimise 
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the criteria, but to find a solution which satisfies the goals, even if this 
solution does not correspond to a Pareto optimum. 

• Lea;(Zi, Z2 , . . . , ZK) indicates that the decision maker does not authorise 
trade-offs between the criteria. The order in which the criteria are given is 
related to their importance, the most important being in first place. The 
analyst uses the lexicographical order and optimises the criteria one after 
the other. 

• # ( Z i , Z 2 , . . . ,Zi^) indicates the enumeration problem of all the Pareto 
optima. Therefore we associate uniquely to this problem an a posteriori 
resolution algorithm which does not use any of the aggregation methods 
presented in chapter 3. 

Among these approaches the most encountered in the literature are the Fe, 
Lex, GP and # approaches. 

4.3 Classes of resolution methods 

We have seen (figure 4.1) that the analyst has to solve three problems in 
order to propose a resolution algorithm to the decision maker. According to 
the answers he receives he will create one resolution algorithm rather than 
another. We can distinguish three cases: 

1. The decision maker desires a unique solution from the tool provided for 
him. In other words he chooses an a priori method. In this case the 
algorithm which the analyst produces is composed of a module which 
selects the value of the parameters, which enables to obtain an instance 
of a scheduling problem. The parameters are the input of the second 
module, which is responsible for the resolution of the scheduling problem. 
The solution obtained is returned to the decision maker. 

2. The decision maker would like to intervene in the resolution of the 
scheduling problem. In other words he chooses an interactive method. 
In this case, the first module of the algorithm will discuss with him to 
determine and at each iteration the new search direction, and next the 
second module will solve the scheduling problem and return the calcu
lated solution. If he wishes to pursue the search, a new search direction 
is pointed out and the process is repeated. 

3. Finally, if the decision maker prefers to choose the solution within a set 
of Pareto optima, he positions himself in the a posteriori area. The first 
module will cause the parameters of the objective function to vary in 
order that the second should be able to calculate the whole set of Pareto 
optima. This set is returned to the decision maker. 

Figure 4.2 represents the three methods of searching for a solution, with the 
two phases which constitute them. 
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Fig. 4.2. Breakdown of the resolution methods for multicriteria problems 

4.4 Application of the process - an example 

Let us suppose that when modelling the problem, the decision maker brings 
up a three-stage hybrid flowshop problem, each stage having identical ma
chines (see for instance "Processing of cheques", section 4.1.2). The jobs have 
different release dates and different due dates. The first objective to be identi
fied is the criterion U and the second is the criterion Tmax- The multicriteria 
scheduling problem addressed can be denoted by HF3, (PM(^))f^i|ri,di|Cr, 
Tmax' Next, we can find several possible situations. 

First situation: 
The decision maker wishes to see all the strict Pareto optima of the problem, 
in order to choose the one which best suits him. The analyst is therefore 
directed to an a posteriori method. 
For this he can solve, for example, the problem: 

HF3, {PM^'))l^^\rudi\e{ir/Tmax) 
with a large value for e at the start, then smaller and smaller values. This 
leads finally to the enumeration of all the weak Pareto optima. 
The analyst can also solve the problem: 

By making the weights of the linear combination vary, he can enumerate all 
the supported strict Pareto optima. Next, he can look for the non supported 
optima using another method. 
He can also propose an enumeration method of type branch-and-bound or of 
type dynamic programming. He then solves the problem: 

i?F3, (PMW)l^ilr i ,di |#(t7" ' , r„„^) 
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Second situation: 
The analyst has convinced the decision maker that the enuneration of all the 
strict Pareto optima would be long and of little interest, because of the huge 
number of solutions. 
The decision maker would like therefore that the cost of the proposed solution 
is the closest possible to a cost {U ^T^^^) that he manages to fix empiri
cally. The analyst goes therefore for an a priori method and the problem to 
solve is the problem: 

HF3,{PM('))l^,\ri,di\FT{Tr,Trnax) 
or else of the type FTP( . ..) or Fxpai* • •) if ^^^ intended solution is not reach
able. Otherwise, he may solve the problem: 

Third situation: 
The decision maker not knowing how to tackle his problem, wishes to be 
helped to identify the Pareto optimum which best suits him. The analyst 
therefore sets up an interactive algorithm. 
At the start he solves, for example, the problem: 

HF3, {PMW)j^,\rudi\Fe{ir,Tma.) 
then he modifies the weights using the new search direction given by the 
decision maker at each iteration. Remember that by this method, only the 
supported Pareto optima are able to be proposed. 
The analyst can equally solve the problem: 

ifF3,(PM(^))f^i |n,d, |P(C7",r^a.) 
by making vary the bounds fixed for the criteria, depending on the orienta
tions of the decision maker. 

4.5 Some complexity results for multicriteria scheduling 
problems 

In this section we go back to the complexity theory but applied to multi-
criteria scheduling problems. We consider these problems in the light of the 
complexity classes presented in chapter 2 and the reductions provided in 
chapter 3. We first consider the complexity of multicriteria scheduling prob
lems in terms of ATP-hardness before turning our attention to the complexity 
of the counting and enumeration of Pareto optima. 

We have seen that a multicriteria problem is ATP-hard if the calculation of 
a weak Pareto optimum is an J\fV-hend problem. Moreover, for a problem 
with K criteria, it is sufficient that the optimisation of a single criterion is 
AfV-haid for the multicriteria problem to be so. [Chen and Bulfin, 1993] are 
equally interested in such results since they set the rules which enable us to 
deduce the complexity of bicriteria scheduling problems beginning with the 
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corresponding single criterion problems. The mult icr iter ia problems under 
consideration by this study are the problems: 

• where a lexicographical order among the criteria is defined, 
• where the criteria are aggregated by a linear combination, 
• where all the Pareto optima are generated. 

In section 3.9 we have demontrated several reductions among the general 
problems. It is possible to consider new reductions in the framework of certain 
classic criteria in scheduling. 

Lemma 18 
For all Z\ € {Cmax-,Lmax^C^C ^U^U ^T^T } there exist a polynomial Tur
ing reduction such that: 

1, a\ß\Lex{Zi,C) (XT a\ß\Lex{Zi,C^), 
2, a\ß\Lex{ZuTJ (XT a\ß\Lex{ZuT^), 
3, a\ßi\LexlZi,U) (XT a\ß\Lex\Zi,U''). 

Proof. 
It is possible to solve an a\ß\Lex{Zi,C) problem by using an algorithm for the cor
responding a\ß\Lex(Zi, C ) problem, by setting Vi = 1, Vi = 1, ...,n. The solution 
returned is optimal for criterion Zi and minimises criterion C. We can use similar 
reasoning to prove the two other reductions.D 

Other more interesting reductions can be considered among certain criteria. 

Lemma 19 
For all Zi G {Cmax^C,C } there exist a polynomial Turing reduction such 
that: 

1. a\ß\Lex{ZuC) OCT a\ß\Lex{ZuT), 
2. a\ß\Lex{ZuC^) OCT a\ß\Lex{Zi,f^), 
3. a\ß\Lex{Zi,Cmax) OCT a\ß\Lex{Zi,Lmax)' 

Proof. 
It is possible to solve an a\ß\Lex{Zi,C) problem by using an algorithm for the 
corresponding a\ß\Lex{Zi,T) problem, by setting di = 0, Vz = l,...,n because 
criterion Zi does not take the due dates into account. Similar reasoning is useable 
to prove the two other reductions.D 

Lemma 20 
For all Z\ G {Cmax^C^C } there exist a polynomial Turing reduction such 
that: 

1. a\ß\Lex{Zi,Lmax) OCT a\ß\Lex{Zi,T), 
2. a\ß\Lex{Zi,Lmax) OCT a\ß\Lex{Zi,U). 
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Proof. 
The two reduction proofs being similar we can^how the first uniquely. 
If we only consider the criteria Lmax and T we can show (see for example 
[Brucker, 2004]) the existence of a polynomial Turing reduction of the criterion 
Lmax towards the criterion T. This reduction rests on the fact a schedule s exists 
such that Lmax{s) < k a and only if an optimal schedule s' exists for the crite
rion T (by considering d'i = di -\- k) in which no job is late. We use this result to 
show the existence of a reduction of the a\ß\Lex{Zi,Lmax) problem towards the 
a\ß\Lex{Zi,T) problem. 
We consider the resolution algorithm of a a\ß\Lex{Zi, Lmax) problem as follows: 

Algorithm A; 
k = max (dj)] 

di = di — k, Vi = 1,..., n; 
Cal l5[ ( i ; ; . . . ;d ; ;5°] ; 
While (T(s°) > 0) Do 

k= min (Ti(s°)); 

di = di — k, Vi = 1,..., n; 
C a l l 5 [ d i ; . . . ; < ; 5 ° ] ; 

End While; 

The procedure S solves the a\ß\Lex{Zi,T) problem and returns the calculated so
lution s°. This solution satisfies the optimality constraint for the criterion Zi, since 
it is not based on the due dates. Therefore, it is also a solution which satisfies the 
constraints of the a\ß\Lex{Z\^Lmax) problem. 
The number of iterations produced by the algorithm 4̂ is a unique function of the 
number of jobs given that: (i) the value k is at each iteration a lower bound on the 
minimal value of the criterion Lmax, (ii) at each iteration the number of late jobs 
decreases, (iii) the maximal number of late jobs is equal to n. If the procedure S is 
polynomial, then the algorithm A is also.D 

The results of lemma 18, 19 and 20 are summarised in the reduction trees 
presented in figures 4.3 and 4.4. 

Lexi.Zi.C"") Lex{Zi,T") Lex{ZuU"") 

Lex{Zi,C) Lex{Zi,T) Lex{Zi,U) 

VZl G {CmaxtL 
max 5 T'max j C^ T^ 

Fig. 4.3. Reductions for a lexicographical minimization (1) 

The complexity of bicriteria scheduling problems on a single machine has 
been considered by [Hoogeveen, 1992a], [Chen and Bulfin, 1993] and next 
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Lex{Zi,T") 

LexiZuC"") Lex{ZuT) Lex{Zi,U) 

Lex {Z\,C) Lex (Zi, Lmax) 

LeXyZ\, Omax) 

VZi G {Cmax^C.'C^} 

Fig. 4.4. Reductions for a lexicographical minimization (2) 

[Lee and Vairaktarakis, 1996] who draw up state-of-the-art surveys. The 
complexity of bicriteria problems on multiple machines is addressed by 
[Chen and Bulfin, 1994]. The polynomial reductions presented in section 3.9 
show that knowledge of the complexity of lexicographical multicriteria prob
lems is as important as that of single criterion problems, when we want to 
study the complexity of a multicriteria problem. By way of illustration, we 
give in tables 4.1, 4.2 and 4.3 some complexity results for bicriteria scheduling 
problems on a single machine of the type Lex, F^, and e-contraint. 

Table 4.1. Complexity of scheduling problems of type l||Lex(Zi, Z2) 

Zi 

J^max 

•i^ max 

Jmax 

c 
c^ T 
T-
U 
U"' 

Z2 
-L/max 

— 
— 
* 
* 
* 
** 

* * + 
0 
** 

J-max 

— 

* 
* 
* 
** 

* * + 
0 
** 

Qmax 

* 
* 
* 
* 
* 
** 

* * + 
** 
** 

c 
* 
* 
* 

— 
— 
** 

* * -f 
** 
** 

C" 
* * + 

** 
* * -l-

— 
— 
** 

* * + 
* * + 
* * + 

T 
" Ö " 

** 
** 
* 
** 
— 
— 
** 
** 

r"̂  
~cr" 

** 
* * -f 

* 
** 
— 
— 

* * + 
* * + 

u 
~~ö~ 

0 
* * — 

* 
* 
** 

* * -f 
— 
— 

^ . 
** 
** 
** 
* 
** 
** 

* * -f 
— 
— 

^ / **: yv /^-nara / * * —: weaKiy j \ /^-r 
/ * * -f: strongly A/'P-hard / O: open 

A glance at the literature shows that when solving multicriteria scheduling 
problems we are often interested in enumerating or counting the number of 
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Table 4.2. Complexity of scheduhng problems of type l\\e{Zi/Z2) 

Zi 

-L/max 

J- max 

c 
C"' 
T 

r-
u 
c/-

J-^max 

— 
— 
* 

* * - } -

** 
* * -h 

0 
** 

J-max 

— 

* 
0 
** 

* * -l-

0 
** 

c 
* 
* 

— 
— 
** 

* * -h 

0 
** 

Z2 

c^ 
0 

o 
— 
— 
** 

* * + 
0 
** 

T 
** 
** 
** 
** 
— 
— 
** 
** 

T" 

* * + 
* * 4-
* * - j -

* * + 
— 
— 

* * + 
* * + 

U 
~~Ö~ 

o 
** 
** 
** 

* * -f 
— 
— 

c/" 
** 
** 

* * + 
* * + 

** 
* * 4-

— 
— 

*: P / **: AfV-haid / * * —: weakly AT'P-hard 
/**-!-: strongly J\fV-haid / O: open 

Table 4.3. Complexity of scheduling problems of type l\\Fe(Zi,Z2) 

Zi 

-L/rnax 

J- max 

c 
c^ T 

[jZ 

•L/max 

— 

— 
— 

J- max 

— 
— 
— 
— 

C 
* 
* 

— 
— 

Z2 
C^ 

* * + 
** 
— 
— 

T 
** 
** 
** 
** 

T -

* * + 
* * + 
* * -f 
* * -f 

u 
~ö~ 

Ü 

** 

* * + 
** 

* * + 

u^ \ 
** 
** 
** 
** 
** 

* * + 
*: V I **: ATP-hard / * * —: weakly AT'P-hard 

/ * * +: strongly ATP-hard / O: open 

strict Pareto optima. Thus, it becomes necessary to consider the complexity 
classes provided in section 2.2.3 to evaluate the complexity of solving multi-
criteria scheduling problems ([T'kindt et al., 2005]). We first provide general 
results and next give tables which summarize the complexity of multicriteria 
scheduling problems tackled in the literature. But first of all, we define the 
problems under consideration, which is a key point for the remainder of this 
section. 
Basically, we can either solve a multicriteria scheduling problem in criteria 
space or in solution space. The first solution approach, namely the descriptive 
approach, consists in counting or enumerating the set of non dominated crite
ria vectors whilst the second one, namely the constructive approach, consists 
in counting or enumerating the Pareto optima. Intuitively, we guess that the 
second version of a multicriteria scheduling problem is harder than the first 
one since more "solutions" are involved. Often in the literature we are inter
ested in solving the descriptive version of a multicriteria scheduling problem 
by enumerating one strict Pareto optimum per non dominated criteria vector. 
Let us first introduce instrumental definitions. 
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The optimisation problem O associated to a multicriteria scheduling problem 
consists in calculating a single strict Pareto optimal schedule with respect to 
the criteria (and it is any strict Pareto optimal schedule). The counting prob
lem C associated to the above problem O consists in counting the number 
of strict Pareto optimal schedules. At last, the enumeration problem E as
sociated to problem O consists in enumerating all the strict Pareto optima. 
All these problems are constructive problems. Whenever necessary we will 
consider their descriptive version, using the same notation if this raises no 
ambiguity. 

Let us first consider a simple bier iter ia problem, referred to as F2\di = 
d, unknown d\Ü^ d. Calculating a single strict Pareto optimal schedule can be 
done in polynomial time, or equivalently problem O belongs to class V. This 
is a direct consequence of the fact that the strict Pareto optimal schedule 
associated to the non dominated criteria vector with C7 = 0 can be calcu
lated in polynomial time since in this case problem O is equivalent to solving 
the F2\\Cmax problem, which is polynomial ([Johnson, 1954]), and setting 
d = C^cix' Besides, it is clear that the descriptive counting version of this 
bicriteria problem belongs to class J^V since the number of non dominated 
criteria vectors is exactly equal to (n +1). The complexity of the constructive 
enumeration of this set is stated in the following lemma. 

Lemma 21 The constructive enumeration problem associated to the F2\di = 
d, unknown d\Ü,d problem is £J\fV-complete. 

Proof. 
Jozefowska et al. ([Jozefowska et al., 1994]) exhibited a polynomial reduction from 
the PARTITION problem towards the F2\di = d, unknown d,d = D,Ü = e\-
problem with particular values of D and e and such that the (n — e)th job com
pletes at time D on machine 2. Let us refer to this particular problem as F2p. The 
proposed reduction is parsimonious and as the counting version of PARTITION 
is #P-complete ([Garey and Johnson, 1979]) we deduce that counting the number 
of feasible solutions to the F2p problem is #P-complete. According to property 
3 (see section 2.2.3) we deduce that the enumeration of those feasible solutions is 
£^A/''P-complete. 
It is remarkable that the set of solutions of F2p is a subset of the set of strict Pareto 
optima for criteria d and Ü which leads to the result that the enumeration of all 
the strict Pareto optima is also (^A/^P-completcD 

Starting from this example problem several remarks can be derived. First, the 
descriptive counting problem is in J^V due to the property that the number 
of distinct values for criteria Ü is equal to (n + 1) and that to each of these 
values there exists a non dominated criteria vector. Even if this property is 
quite strong, a weaker one can be stated for classic scheduling criteria. 
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Property 6 For any discrete bicriteria scheduling problem involving two cri
teria among Cmax, Tmax, Lmax, C, C'^, T and T^, the number of non dom
inated criteria vectors is upper bounded by /{Lengthy Max), where f is a 
polynomial function of Length and Max. 

Proof. 
We separate the proof into two parts. 
1) Assume that among the two criteria at least one is the Cmax, Tmax or Lmax 
criterion. Remind that Cmax = maxi<i<n(Ci), L 

max — maxi<j<7i,(Ci di) and 
Tmax = maxi<j<n(max(0; Cj — di)). An upper bound on the worst value of such 
a criterion for a strict Pareto optimum is given by X]r=i S^i^*»i' which is the 
sum of the processing times of the n jobs on the m machines. Conversely, a lower 
bound on the best value for a strict Pareto optimum is given by — 5̂ 7=1 ^T=i P^J-
Henceforth for a given criterion the range of values that it can take is comprised 
in [— J^^^i S ^ i PiJ'-> Sr=i S ^ i Pij] ^^^ ^ these three criteria can only take dis
crete values inside this interval, it follows that the number of non dominated criteria 
vectors is upper bounded by 2 x X^̂ ^̂  YyjLiPiJ = f {Length, Max). 
2) Now assume that the two criteria are sum criteria, i.e. C, C^, T and f^. 
Remind that C = YT.^^Ci, C"" = Y17=i'^iCh f = X;r=i max(0;ft - di) and 
jjw _ ^^^^ ^^ max:(0; d — di). Based on the same reasonning than in the first part 
of the proof we can derive that for a given criterion the range of values it can take 
is comprised in [0; n x Ylll=i '^k SILi S ^ i ^«.il' with Wk = \vci case of criteria C 
and T. As all these four criteria can only take discrete values inside this interval, 
it follows that the number of non dominated criteria vectors is upper bounded by 
n * E L i f̂e EILi E ,^ i Pi.3 = f {Length, Max).D 

A similar straigthforward property can be established in the particular case 
of the number of tardy jobs criterion. 

Property 7 For any discrete bicriteria scheduling problem involving crite
rion Ü, the number of non dominated criteria vectors is upper bounded by 
(n + 1) = f {Length), where f is a polynomial function of Length. In case 
of the weighted number of tardy jobs criterion, denoted by Ü"^, the number 
of non dominated criteria vectors is upper bounded by (n +1) maxi<i<n Wi = 
g{Length, Max) where g is a polynomial function of Length and Max. 

Proof. 
Similar to that of property 6.D 

Let us consider again the example problem, for which the calculation of a sin
gle strict Pareto optimum is achieved by solving an e-constrained problem, 
namely the F2\di = d, unknown d\e{d/Ü), which consists in imposing the 
desired value of criterion Ü and calculating the minimal value of the common 
due date d. As this problem is A/^T^O-complete, the constructive enumeration 
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problem cannot be solved in polynomial time. But it is clear that, for a bicrite-
ria scheduling problem, if the calculation of each non dominated criteria vec
tor can be done in polynomial time, for instance by solving an e-constrained 
problem, and if the number of such vectors is upper bounded by f{n) with / 
a polynomial function, then counting the number of non dominated criteria 
vectors is in class J^V and the associated descriptive enumeration problem is 
in V. Moreover, if the number of non dominated criteria vectors cannot be 
shown to be upper bounded by f{n) then we can conclude that the descrip
tive enumeration problem belongs to class £V. Caution must be taken when 
showing that the calculation of each strict Pareto optimum can be achieved in 
polynomial time: some well-known approaches do not enable us to calculate 
all these optima. For instance, minimising a convex combination of multiple 
criteria on a non convex problem leads only to the calculation of the subset 
of supported strict Pareto optima. Henceforth, even if this problem can be 
polynomially solved we cannot conclude that the descriptive enumeration of 
all strict Pareto optima is in class £V. 
It is remarkable that in the literature on multicriteria scheduling involving 
enumeration problems, always the descriptive enumeration problem is con
sidered. And it is usually solved by calculating to each non dominated criteria 
vector a strict Pareto optimum. It means that we solve a problem potentially 
harder than the descriptive enumeration problem since we not only output a 
set of criteria vectors but a set of criteria vectors and a set of schedules. To 
complete this section we provide in Tables 4.4 and 4.5 synthesizes of complex
ity results for some descriptive multicriteria scheduling problems tackled in 
the literature. In both tables the first column contains the problem notation 
and the three following columns contain the complexity of the problem of 
calculating a single Pareto optimum, the counting problem and the enumera
tion problem respectively. In column O the method used to calculate a single 
Pareto optimum is indicated in parenthesis. Lex refers to the lexicographic 
method, e to the e-constrained method, Fe to the convex combination method, 
GP to the goal programming method. FT to the Tchebycheff method and # 
to a basic enumerative method. The fifth column presents some additional 
information about the cardinality of the set of strictly non dominated criteria 
vectors and the sixth column gives references dealing with the problem. 
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Table 4.4 presents results for problems in which computing a single strictly 
non dominated criteria vector can be achieved in polynomial time. All 
the problems presented are polynomial in their optimisation, counting and 
enumeration versions. Notice that for P{2,3}|pmtn,di| Lmax^Cmax and 
Q\pmtn\C, Cmax problems, the set of strictly non dominated criteria vec
tors is continuous and piecewise linear, thus either reduced to the empty set, 
to a single element set or to an infinite set. Accordingly the considered opti
misation, counting and enumeration problems are related to the calculation 
of the strictly non dominated criteria vectors that are extreme points of the 
tradeoff curve. 
Table 4.5 presents results for problems in which calculating a single strict 
Pareto optimum is a A/^T^O-complete problem (referred to as AfVOC in the 
first column). Concerning the counting problems we were not able to establish 
either their completeness or to prove that they are polynomially solvable. Be
sides, notice that even though the enumeration problems cannot be solved in 
polynomial time, we do not state that they are £J\fV-complete since no formal 
proofs are provided. For some of the problems mentioned, the calculation of 
a single strict Pareto optimum is achieved by minimising a convex combina
tion of criteria (referred to as Fe in the first column). As previously noted in 
this section, this approach does not allow calculating all strict Pareto optima 
since some are not minima of the convex combination whatever the weights. 
However, it is clear that if minimising a convex combination of criteria is 
not a polynomial problem, then there is no opportunity for the enumeration 
problem to be solvable in polynomial time. 



5. Just-in-Time scheduling problems 

5.1 Presentation of Just-in-Time (JiT) scheduling 
problems 

One of the classical objectives in shop scheduling is linked to the respect of 
the due dates which attend, for example, the meetings with customers on 
the delivery dates of the manufactured products. For numerous problems, 
the criterion used in this case is a measure of the tardiness of the finished 
products, as for example the average tardiness^ the maximum tardiness or 
yet the number of late jobs. Nevertheless, even though for example, storage 
of products means a non negligible cost, it is necessary to optimise, at least, 
just as well a criterion linked to the earliness of jobs. 
Historically, interest in JiT for manufacturing appeared after the second world 
war in the Toyota company factories (described in [Pinedo and Chao, 1999]). 
In the context of vehicles production, a certain number of components are 
produced by subcontractors. The JiT scheduling problem appears for the 
latter since the subcontracted parts must be delivered at the moment of the 
vehicle assembly. A late delivery leads to the halt of the assembly line be
cause it is necessary to withdraw the vehicle concerned in order to be able to 
reposition it at the head of the line. This means a penalty for the customer. 
Conversely, manufacture of the subcontracted parts in advance means a stor
age charge for the subcontractor which may not be negligible. This is notably 
the case, nowadays, for car seats for which storage costs are very high. More 
generally, we note that a JiT scheduling problem appears when the due dates 
have to be respected and when parts do not have a negligible storage cost. 

Contrary to mass production, where a stock of finished products is built up, 
JiT production consists of regulating manufacture. In terms of stocks, the 
objective is to plan the regular arrival of the materials which are necessary 
for the manufacture of the products. We wish to reduce not only the interme
diate stocks but equally the stock of finished products. In this situation, we 
want to calculate a plan such that all these products are manufactured just 
at the moment when they have to be used. In scheduling terms the objective 
is therefore to calculate a schedule such that the finished products (or jobs) 
should be available "Just-in-Time". We must therefore optimise, at least, a 
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measure of the tardiness of the jobs as well as a measure of their earliness. For 
the latter we distinguish two categories of criteria: those which measure the 
earliness of a job in relation to a desired start time and those which measure 
this earUness in relation to a due date. In the first case, we only consider 
that processing a job earlier than necessary will disrupt the supply chain of 
raw materials, which leads to disruption of stock levels and which therefore 
must be penalised. For the second category of criteria we only consider that 
stocks of finished product generate a cost which we want to reduce. When 
the difference between the due date and the desired start time for each job 
is equal to the total processing time of the job, we can then show that these 
two categories of criteria are equivalent. 

Literature on JiT scheduling problems addresses essentially single machine 
and parallel machines problems. The objective of this chapter is to present a 
set of significant works in the domain. 
We first present a typology of such problems as dealt with in the literature, 
and next provide a general model of Just-in-Time shop scheduling problems. 
We conclude this chapter by providing a literature review of major works. 

5.2 Typology of J iT scheduling problems 

The literature contains numerous works on JiT scheduling problems and 
several states-of-the-art surveys have been published (see among others 
[Baker and Scudder, 1990], [Hall and Posner, 1991], [Gordon et al., 2002a], 
[Gordon et al., 2002b] and more recently [Kaminsky and Hochbaum, 2004] 
and [Gordon et al., 2004]). The JiT scheduling problems can be separated 
according to the definition of their due dates and the optimised criteria. 

5.2.1 Definition of the due dates 

The due dates often result from a choice made by the decision maker and 
constitute a data for the analyst. In this case, we consider that these dates 
are fixed. Conversely, problems occur for which the due date of a job or an 
order result in negotiations between the decision maker and his customer. 
In this case, the decision maker must set up an algorithm which returns a 
schedule and a due date taking account of other jobs already scheduled. We 
consider then that the due date is unknown. If the date which is calculated 
is far from that desired by the customer, then a reduction of the order price 
may be suggested, and therefore a compromise solution is looked for. On the 
other hand, the more the due dates are spaced the greater is the probability 
that the order will be delivered on time. Thus, for the decision maker, the 
problem is to find a trade-off between the cost created by a potential delay 
and a non negligible storage cost. Besides, we encounter problems for which 
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each job has its own due date. We speak of a problem with arbitrary due 
dates. Conversely, we speak of a problem with common due date. We distin
guish between two cases. A common due date is said to be non restrictive if 
increasing it does not enable us to compute a schedule with a lower value of 
the objective function. Otherwise, the common due date is said to be restric-

n 
tive. For single machine problems ii d> T^Pi then the due date d is clearly 

non restrictive. 
We notice that the problems with an unknown common due date are equiv
alent to the problems with a fixed and non restrictive common due date. 
In other words, the optimal solutions of these two problems are the same 
schedule and same objective value, the sole difference being the value of the 
common due date. 

Determination of due dates is a crucial point in JiT production. In fact, fixing 
too many close dates can lead to disturbance of product stocks since few jobs 
can be completed at their due date. Conversely, fixing the dates too far apart 
can lead to a reduction in production of the factory. Determination of these 
due dates is generally done by the decision maker, alone or during the course 
of negotiations with his customers, before solving the scheduling problem. 
The analyst must then just calculate a schedule of jobs so that they are 
completed JiT. For the definition of due dates, we encounter different models 
([Ragatz and Mabert, 1984]). Amongst the most classic, can be found the 
model CON (CONstant flow allowance model) in which we consider that all 
the jobs have a common due date. When all the due dates are different, we 
encounter in the literature the model SLK {SLacK) which considers that all 
the jobs Ji are such that di = ri-\-pi-{• q where pi represents the sum of the 
processing times of the operations of job Ji and q a common tail. This case can 
occur when the due dates are fixed by the decision maker who then proceeds 
to use the value of criterion C as an estimation of the value q. In the model 
TWK {Total WorK content) the due dates are defined by di = ri -\- kpi^ 
Vi = l,. . . ,n, where fc is a positive integer. In the model NOP {Number of 
operations) these dates are defined by di = r̂  + fen^, Vz = 1, ...,n, where k 
is a positive integer and Ui the number of operations of job Ji. Finally, the 
model PPW {Processing-Plus-Wait) combines models SLK and TWK since 
di = ri-{- kpi + g. Vi = 1,..., n, where fc is a positive integer and q a common 
tail which can be negative. Very often, the dates di are considered as unknown 
because k and q are variables to be determined. 

5.2.2 Definition of the JiT criteria 

Solving a JiT scheduling problem necessitates at least the optimisation of 
a criterion related to the tardiness of jobs and a criterion related to their 
earliness. As we have previously commented, two categories of problems 
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are encountered. In the first, the earliness of jobs is defined by relation to 
the due dates. We consider then that the earliness of job Ji is defined by 
Ei = ma.x{0] di — Ci). The maximum earliness is denoted by Emax- In the 
second type of problem, the earliness of jobs is defined by relation to a de
sired start time si. We speak then of the promptness of job J^, which is 
defined by Pi = max(0;5i —ti). The maximum promptness is denoted by 
Pjnax' Basically, these problems are encountered when the start time of a job 
can induce costly disturbances of stocks of raw materials. For problems for 
which di = Si-\- pi^ Vi = 1,..., n, we have Pi = Ei. 

For the majority of problems which are considered in the literature, only 
criteria linked to earliness and tardiness of jobs are optimised. Very often, 
the objective function does not constitute a regular criterion, and thus we 
are led to consider schedules with insertion of voluntary idle times before 
the operations. This means that we can delay the processing of jobs so that 
they complete on time, to the detriment of the storage costs of semi-finished 
products. Thus, for certain problems we also consider the minimisation of 
a criterion reflecting these storage costs. It mainly concerns the criterion C 
minimisation of which leads to minimising the inventory costs. 

The diversity of problems leads to a large number of objective functions. 
Furthermore, a precise definition of a Just-in-Time schedule does not exist. 
These two reasons have favoured the appearance of numerous models with 
different objective functions. Table 5.1 presents a summary of the principal 
objective functions considered in the literature. The first column of the ta
ble shows the objective function and the second states whether this function 
corresponds to a regular criterion. If this is not the case, it means that it 
is necessary to consider the class of schedules with idle time insertion when 
solving the problem in order to compute an optimal solution. Nevertheless, 
in certain works the constraint '^no-machine idle time" (nmit) is imposed in 
spite of the fact that the objective function is not regular. Justification of 
this hypothesis is connected with prohibitive costs occuring when a machine 
becomes inactive. 

Certain equivalences exist between different objective functions. For exam
ple, we have E -\-T = Yl\Li\ because Ei -{• Ti = \Li\. Similarly, we have 
Li = Ef+T^ which enables us to deduce that the objective functions a'^Lf 
and a Yli^f + ^?) ^^^ ^^^ same. For some problems, each job Ji has a unit 
earliness penalty, denoted by a^, and a unit tardiness penalty, denoted by ßi. 
These penalties are the weights in the objective function. We distinguish the 
following cases: 

1. The weights are asymetrical, i.e. 3i,i = 1, . . . ,n,ai ^ ßi. 
2. The weights are symetrical, i.e. Vi = 1, . . . ,n,ai = /J .̂ 
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3. The weights do not depend on the jobs, i.e. Mi = l, . . . ,n,a^ = a and 

ßi = ß. 
4. The weights depend on the jobs, i.e. 3i,j^ i ^ j , i^j = 1,..., n, a^ ^ aj or 

ßi^ßi-

Table 5.1. Summary of the principal types of JiT objective functions 

Objective function 
E 4 - T 
aE-\-ßT 

E'-^r 
{E-\-TY 

n n 

i = l jf=z-f 1 
n n 

1=1 j=i-\-l 

i=l 

n n 

i=l i=l 
max {ai\Li\) 

i= l , . . . , n 
max{g{Emax), h{Tmax)) with g and h two increas
ing functions 

max {g{Ei),h{Ti)) with g and h two convex 
i=l,...,n 
functions 
oE-^ßTi-^fd 
oE-j-ßT + jC 
oE -h ßT -\- 7max(0, di - A) with A a due date 

Z/^+r 
C/" + jd 
£/" + 7max(0, dj — ^ ) with A a due date 

Regular criterion 
No 
No 

No 
No 

No 

No 

No 

No 

No 

No 

No 

No 

No 
No 
No 

No 
Yes 
Yes 

5.3 A new approach for J iT scheduling 

JiT scheduling problems occur in the context of JiT production. This evident 
fact implies that the roots of JiT scheduling have to be searched in the 
abundant Uterature on JiT production which has been the subject of a lot of 
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studies and is now well defined. Among others, [NoUet et al., 1994] describe a 
JiT production system as a system which "processes and delivers finish goods 
just-in-time to be sold, components just-in-time to be assembled into finished 
goods and materials bought just-in-time to be converted into components". 
In a JiT production system quality and productivity have to be improved at 
all stages of the industrial system. This implies reducing wastings and taking 
account of human factors ([Nollet et al., 1994]). Under the term "wasting", 
Nollet et al. gather a series of elements: 

1. Wasting due to overproduction which induces useless storage costs, in
creased human requirements, etc. This can be reduced by producing just 
what is needed and by satisfying the lead times. 

2. Wasting due to waitings caused by machine breakdowns for instance. 
3. Wasting due to useless transportation and material handling, for in

stance, when two resources are too far from each other. 
4. Wasting due to a failing or badly prepared production process. 
5. Wasting due to the storage of in-process or finished goods. This is a 

crucial point of a JiT policy. 
6. Wasting due to production flaws, which can be limited by increasing the 

efficiency of the production process (this is related to the concept of total 
quality in JiT philosophy). 

Another way to define briefly the JiT philosophy, complementary to that of 
Nollet et al., is given by [Baglin et al., 2001]: each product must ideally be 
processed on a "chain of machines". This means that when a job enters the 
shop it has to be processed ideally by the machines without waiting time, 
as if they were available for it alone. This is the smoothing of the job flow. 
Clearly, each machine must also have a smooth flow of jobs to process in 
order to be made cost-effective. 

All the above elements are production based, but in this book we only focus 
on the scheduling component of the production system. Henceforth, only a 
subset of these elements concerns scheduling. Firstly, the notion of "chain of 
machines" can be easily translated into the "no-wait" constraint of classic 
scheduling theory. However, in the case of "sufficiently closed" due dates, 
imposing the no-wait constraint may result in increasing the tardiness of 
products, i.e. customer dissatisfaction. Consequently, we may be allowed to 
violate this constraint and thus have increased in-process storage costs in or
der to limit the tardiness in producing orders. This means strictly processing 
products on a "chain of machines" is a concept that may conflict with that 
of limiting wastes due to the storage of in-process products. Limiting wasting 
caused by the storage of materials is, as quoted by Nollet et al., a key point in 
JiT production system. Storage is related to three distinct elements of pro
duction: the raw materials, the in-process and subcontracted components, 
and the finished products. The aim is, henceforth, to improve the quality 
and productivity at each level where we encounter these elements in order to 
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reduce the induced storage costs and answering as much as possible the lead 
times ([Schonberger, 1982]). 

Firstly, consider the case of raw materials. The need in raw materials is of
ten evaluated at a mid-term planning level, ie. far away from the scheduling 
phase. Starting from the routings and the decomposition of a product, the re
quired raw materials and components are often ordered independently of the 
scheduling phase. Hence, during the Material Requirements Planning phase 
in a MRP system, we decide of which materials will be made available in 
the shop, in which quantity and at which time. As in this phase we do not 
have an accurate view of what will be the real operations schedule, materials 
are usually made available in the shop before the start of such a schedule 
(or sufficiently early before an operation, requiring materials, starts). Thus, 
the calculation of a schedule in a JiT environment can be achieved without 
having to accurately take account of the need in raw materials. 
The situation for in-process and subcontracted components is different, no
tably for work in-process components because they induce storage constraints 
and costs which are directly related to the operations schedule. This is also 
the case for finished products. It follows that, when calculating a JiT sched
ule, the limitation of work in-process and finished products storage must be 
taken into account. As a consequence lead times are reduced and the prod
ucts tend to be produced on a "chain of machines". 

In the remainder of this section we develop a mathematical formulation of 
the costs to be minimised when calculating a JiT schedule and show how this 
formulation includes the different costs functions optimised in the literature 
on JiT scheduling (see section 5.2). 

5.3.1 Modelling of production costs in JiT scheduling for shop 
problems 

Consider a job Ji that has be processed on a set of m machines, following 
a sequence TT̂  = (7ri(l); 77 (̂2); ...;7ri(m)) with 7ri{k) the number of the fc-th 
machine which processes Ji. Whenever sequences TTJ. Vi = l,. . . ,n, are fixed 
we face a jobshop or flowshop problem whilst if determining these sequences 
is a part of the problem, then we face an openshop problem. 
We assume that Ji can be decomposed into, at most, qi equal-size sublots. 
This assumption enables us to be more general than in classic scheduling 
where jobs are often indivisible, z.e. ĝ  = 1, Vz = 1, ...,n. Besides, in the case 
of divisible jobs, i.e. qi > 1, Vz = 1, ...,n, the lead times can be reduced by 
enabling lot-streaming. This consists in tranferring any sublot of an opera
tion to the next machine without waiting for the completion of the whole 
operation (see figure 5.1). All sublots of the same job must be sequentially 
processed on any given machine, and between two of these sublots voluntary 
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idle times can be inserted if this helps in reducing the costs. For simplic
ity purpose we assume that all operations are decomposed into 6 equal-size 
sublots, where S has to be calculated in order to minimise the costs. We also 
make use of the following additional notations: 

Quantity 
Si . 

M^iU-\-i 

Time 

Work 
in-process 

Quantity 

Stock level 

di 
Tipie 

Finished 
product 

Fig. 5.1. Evolution of stock levels for a given job Ji with 4 equal-size sublots 

Data: 

7i 

ßi 

-^iij) : unit storage cost of work in-processes between machines 
M^.(^) andM^.(j-4.i), 
: unit storage cost of finish products, 
: the cost, per sublot, for the decomposition of job Ji into sublots, 
: unit cost for completing job Ji tardy (penalty costs). 

Variables: 
fij{t) : number of elements of job Ji produced by M;r.(j) from time 0 

to t in the work in-process storage area which follows M^T-Q), 
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fij{t) : number of elements of job Ji consumed by M7r.(j) from time 0 
to t in the work in-process storage area which precedes M^^(^j^, 

Uj^k • s tart ing t ime of the fc-th sublot of job Ji on machine M;r.(j). 

The total cost induced by a job Ji comprises the cost for the storage of work 
in-processes, the storage of finished products, the cost for the decomposition 
into sublots and the cost for delivering Ji tardy. 

L e m m a 22 
The total cost of job Ji when produced Just-in-Time is defined by: 

Zi = ßiTi + 6Xi - KiQiT + hiiqiti^^,(rn),6 + f^iQi^^^^i^^^ + i^iQiEi 

with T a high value, j ^ ' ^ ^ = 0 and ^^^^^^ = K^. 

Proof. 
The cost Zi is defined as the sum of three costs: the cost for delivering job Ji tardy, 
defined by ßiTi, the cost for decomposing job Ji into sublots, defined by SXi, and 
the cost for storing Ji. For the latter, we refer to figure 5.1 to have an illustration 
of the evolution of stock levels, even though on this figure these evolutions are as
sumed to be continuous. We now focus on the calculation of the storage costs. We 
have 

Zi = ßiTi + 5Xi + Ki E f = o {ff,.,ir.)it) - / r , . a m + l ) ( < ) ) 

+Er="/ 7-^ '̂ (ELO (//:..Ü)(*) - fUi+iM) 
with /i^,7ri(m+i)(0 t^® number of finished products of Ji consumed from time 0 
to t. Here we assume that the stock of finished products is emptied instantaneously 
on the last machine either at the due date di, or at the completion time of Ji if 
Ji is tardy. As T,J=o fi,'rriU)(^) = T,f=ofi,7ri(j)(^)y ^y rearranging the sums in the 
previous formulae and setting 7^ = 0 and 7^* "̂̂ ^ = /^i, we have 

Zi = ßiTi H- 6Xi — Ki J2t=0 /*>i(m+l)(0 

By replacing XlLo fi,7riim+i)(i) by its formulation, i.e. qi{T-ti^^^(rn),ö - ^''l^^^^ -
Ei) we obtain the formulation given in the lemma.D 

It is interesting to notice tha t the cost function Zi is independent from the 
consumption of elements in the storage areas. In the following lemma we 
define accurately the functions ffT^.tj)-

L e m m a 2 3 

We have E L O C Ü ) ( 0 = " ^ ^ ^ ^ - f E L I kMJhk + 1^-

Proof. 
Calculating the mathematical expression of the term X^^^Q ff-K mi^) ^^ equivalent 
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M, TTiO) 

tity 

^Qi 

A 6 
<7f, 
<5" 

Stock level 

[ ^\ B A B A B A 
Time 

Fig. 5.2. The production function ff^.tj) of a given job Ji with 4 equal-size sublots 

to calculate the area below the stock level curve if we only consider the stock sup
plying and not the consumption of elements by machine M^^(j_|.i) (see figure 5.2 
for an example). This area can be decomposed into two kinds of areas: areas A and 
areas B. The sum of areas A is exactly equal to iU) . The sum of areas B is 
dependent on the starting times of each sublots and we have 

2 

+ f{U,7ri(j),2 -t. 

+ ... 
J 

6 

6 
_ Pi,niU) 

_ ^iPi>^iU) 

_2i£^5i(2)(i4.2 + ... + ^) 

~ 2 T^ ^ 2 

D 

By put t ing Lemma 23 into Lemma 22 we can to s tate the total scheduling 
cost of job Ji, 

Corol lary 4 
The total scheduling cost of job Ji when produced Just-in-Time is defined by 

Zi = ßiTi + 5\i + KiQiEi + /^i^i^''"^^"^ + l^iqiti^7ri(m),6 
. S i V ^ m /TT, 

5 Z^j=l\li 

2(5 Z ^ j = l V H 
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In the next section we study the particularization, of the production cost 
given in the above corollary, to several shop configurations. We also show 
the links with existing objective functions in classic Just-in-Time scheduling 
literature. 

5.3.2 Links with objective functions of classic JiT scheduling 

In the previous section the scheduling cost of a job Ji in a workshop has been 
stated. Table 5.2 provides particularizations of this cost to given shop envi
ronments. Whenever necessary simplifications of notation have been made in 
this table. The first column contains the shop environment and the indication 
of lot-streaming. The second column contains the mathematical formulation 
of the cost Zi stated in Corollary 4 and the third column contains a func
tion which minimisation is equivalent to the minimisation of Zi. Notice that 
the configurations without lot-streaming are equivalent to lot-streaming with 
qi = 5 = 1. It \s remarkable that once the lot-streaming is possible the 
mathematical formulation of the scheduling cost Zi of job Ji is not a linear 
function, since the term 5 is a variable to calculate. Besides, the formulations 
for the single machine environment can be straightly adapted to some parallel 
machines environments. 

Table 5.2. Particularizations of the scheduling cost of a job Ji 

Shop environment Mathematical formulation Optimisation equivalence 

2-machine flowshop ßiTi + Xid + mqiEi 

(lot-streaming) + ^ ( E L I *i.2.fe - E L I *i,i,fc) 

5— 2^fc=l *i,2,fc + 25 

+ -̂ 2T" (Pi,2 — Pi , l ) + l^iQiti,2,S 
2-machine flowshop 

(no lot-streaming) 

Single machine 

(lot-streaming) 

Single machine 

(no lot-streaming) 

PiTi-^-Xi-hKiQiEi 

ßiTi -\- Xi5 -{- KiQiEi 
_.JliSiV^<5 f , 1 »^iQiPi 

-hKiQiti^S 

ßiTi-{-\i-[-KiEi-h ^ ^ 

ßiTi-\-KiqiEi-\--fi(Ci,2-

ßiTi -\- KiEi 

-Cia) 

We are now ready to study the links between the modelling provided in sec
tion 5.3.1 and the objective function encountered in the literature on JiT 
scheduling (see table 5.1, page 139). 
The objective functions E + T, a E + ^ T and E " + T^ of table 5.1 are ob
tained by linear combination of the Z^'s in the case of single machine envi
ronments without lot-streaming. The two first functions are particular cases 
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of the last one. For shop problems, or even the single machine problem with 
lot-streaming, these three functions do not completely fit with the objective 
of scheduling the jobs Just-in-Time. For instance, the objective function ob
tained by linear combination of the Z^'s in the case of the 2-machine flowshop 
problem without lot-streaming is E^+jf^ + C'̂  —^^^^^ liCi^i, As indicated in 
table 5.1 the objective function E " + T^ + C'^, or special cases, is sometimes 
minimised in a single machine environment without lot-streaming. The main 
argument, found in the literature, for minimising the weighted sum of comple
tion times criteria is that it reduces the average presence time in the shop of a 
job, which in turns tends to reduce the average storage time. This is partially 
true when the lot-streaming is enabled for the single machine problem and for 
the flowshop problem. Even when lot-streaming is disabled for the flowshop 
problem the sum of the ZiS is not exactly equivalent to minimise the sum of 
weighted earliness, tardiness and completion times. Similar comments hold 
for the objective functions a E -1- /3T + 7d and a E + /3T + 7 max(0, di - A) 
of table 5.1 in the case of an unknown common due date d or in the case 
of unknown due dates di which have to be as close as possible to a desired 
common due date A, 
Similarly, the objective functions aX;r=i ^ f + /^Er=i Tf and YA^^ a iE?+ 
Z^iLi ßi^t of table 5.1 are obtained by linear combination of the Z^'s power 
2, only in the case of single machine environments without lot-streaming. 
But for other shop environment or when lot-streaming is allowed, minimising 
these two functions does not completely reflects the objective of JiT schedul
ing. Similar comments can be done for the (E + T)^ objective function of 
table 5.1. 
Another important class of objective functions of table 5.1 are those related 
to the difference between completion times. For instance the problem of min
imising the Completion Time Variance (CTV) consists in minimising the 
objective function E r = i ( ^ i " C)^ of table 5.1. [Merten and MuUer, 1972] 
have introduced this problem in the context of computing systems with large 
data files for which often the response time to a user's request is strongly 
dependent on the time required to access or retrieve the file referenced by 
the user. But it is also recognized that the CTV problem has application 
to JiT scheduling since it leads to make the jobs staying approximately the 
same time in the shop. So, the production is smoothed (see for instance 
[Viswanathkumar and Srinivasan, 2003]). But this intuitive argument seems 
not to clearly hnk this objective function to JiT philosophy. Another, more 
convincing, argument lies to the fact that the CTV objective function can be 
seen as a special case of Y^=\ ^t ^^^^ an unknown common due date d = C 
in the case of a single machine problem without lot-streaming. But for the 

objective functions Er=i EU+i \^' ' ^jl ^̂ ^̂  ^^=1 Ej l i+iC^i " Cj)^ of 
table 5.1 the links with JiT philosophy are less clear. 
To conclude this analyse, we only point out that the objective function 
maxi=i,...,n(A|Li|) of table 5.1 is exactly equal to maxi^i^^.^nC-^i) for a sin-
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gle machine problem without lot-streaming but with symetric weights, i.e. 
ßi = Ki, Vz = l,. . . ,n. Again, for other shop configurations this objective 
function does not fully apply the JiT philosophy. 
The links between the remaining objective functions of table 5.1 and JiT 
philosophy are not straightforward. 

5.4 Optimal timing problems 

The objective functions minimised in JiT scheduling are interesting because 
they have a direct practical meaning, but also they are often non regular 
functions (see chapter 1 for a formal definition of a regular function). Con
sequently, the set of active schedules, or even semi-active schedules, is not 
dominant. This implies that sometimes it is interesting, from the viewpoint 
of the objective function, to insert voluntary idle times before the starting of 
a job on a machine. Along the years, several authors have thus focused on 
the optimal timing problem, i.e. on the problem of determining the optimal 
start time of each job, when the sequences of jobs on the machines are known. 
Often, when the sequencing problem on each machine is solved, the optimal 
timing problem can be solved in polynomial time. We review in this section 
some of the major optimal timing problems. These problems are referred in 
the three-field notation of scheduling problems by adding the constraint seq 
in field ß. 

5.4.1 The l\duseq\Fi{f'^,Ef^) problem 

The works of [Garey et al., 1988] concern several JiT problems. The authors 
n 

show that the l\di\Fe{T,'E) problem with Fe{T,^) = T+ 'E = ^\Ci - di\ is 
2 = 1 

AfV-hdiid. They are then interested in solving this problem when the sequence 
of jobs is imposed, denoted by l\di,seq\F£{T,E), and proposing an optimal 
algorithm with an average complexity in 0 (n log (n)). 
The jobs are placed iteratively in order of the imposed sequence. We note 
CTj-i the partial sequence obtained at the iteration i — 1. Let Ji be the job 
to be inserted in the iteration i. If Cmax{o'i-i) + Pi < dt then the job Ji 
starts at the date di — pi and an idle time is inserted before Ji. Otherwise, 
if Cmaxif^i-i) +Pi > di then the job Ji is processed just after the sequence 
CTi-i. We then try to timeshift part of the sequence ai = <Ji-i//{Ji}. We 
define a block by a maximum set of consecutive jobs, and we denote by Bk 
the last block of CTJ (figure 5.3). If most of the jobs in Bk are late then it is 
interesting to shift Bk to the left until this is no longer the case or until Bk 
could no longer be timeshifted. 
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B. B, k-l B,. 

Fig. 5.3. Definition of a block 

ALGORITHM EGTWl 
/* a: the schedule under construction */ ' 
/* We assume that the jobs sequence is (J i , J2, J3, . . . , Jn) */ 
a = 0; 
For i = 1 to n do 

If (di —pi> Cmax{cr)) Then 
Schedule the job Ji at time U = di — pi] 
a = a//{Ji}] 

Else 
^(<^); Schedule the job Ji at time U = Cmax \ 

<T = <7//{Jih 
Let Bk be the last block of cr; 
Let r be the number of jobs Ji E Bk / Ci — di > 0; 
If ( r > ( | ß f c | - r ) ) T h e n 

Let 6 = min (d — di): 
JieBk/Ci>di^ 

Let u bet the starting time of the first job of Bk', 
Let TT be the completion time of the last job of Bk-i (0 if A; = 1); 
Vj G Bk, tj = tj — min((5;u — n); 

End If; 
End If; 

End For; 
[Carey et aL, 1988] 

Fig. 5.4. An optimal algorithm to calculate start times of jobs 

The principle of this algorithm, denoted by E G T W l , is presented in figure 5.4. 

Example. 
We consider a scheduling problem for which n = 5. The job sequence is that of the 
indices. 

i 
Pi 
di 

1 
2 
8 

2 
4 

10 

3 
3 

14 

4 
5 

18 

5 
2 

19 

(i) a = 0, di —pi = 6 > 0 and the job J i is scheduled at time h = 6. 
(ii) (7 = (J i ) , Cmax{cr) = 8, d2—p2 = 6 < 8 and the job J2 is scheduled at the date 
t2 = 8. r = 1 = \Bk\ — r and we perform a timeshift with a — (J i , J2), 6 = 2, u = 6 
and TT = 0. We have ti = 4 and 2̂ = 6. 
(iii) a = ( J i , J2), Cmax{(y) = 10, da — Pa = H > 10 and the job J3 is scheduled at 
time ts = 11. 
(iv) a = ( J i , J2, J3), Cmax(o') = 14, d4—p4 = 13 < 14 and the job J4 is scheduled at 
t imei4 = 14. r = 1 = \Bk\ — r and we perform a timeshift with a = ( J i , J2, Js, J4), 
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6 = 1, u = 11 and TT = 10. We have ts = 10 and t4 = 13. 
(v) a = (Ji, J2, ^3, «/4), Cmaxicr) = ISyd^—pb = 17 < 19 and the job J5 is scheduled 
at time U = IS. r = 1 < \Bk\ — r = 4 and we do not perform a timeshift. 

We obtain the schedule presented in figure 5.5, and y^l-C'il = 4. 

Jo 

4 6 10 13 18 20 

Fig. 5.5. The schedule calculated by the algorithm EGTWl 

Next, Garey, Tarjan and Wilfong show that the l\pi = l,di\T -\- E problem 
can be solved by this algorithm. Finally, they are interested in adding con
straints to the l\di\T + E problem like time windows for each job or chain 
precedence constraints. In these two configurations they propose generalisa
tions of the algorithm EGTWl. 

For the l\di\Fi{E ,T ) problem, the calculation of the start times of jobs 
when the sequence is fixed is addressed by [Szwarc and Mukhopadhyay, 1995]. 
This problem is polynomially solvable and the authors propose an algorithm 
based on a breakdown of the sequence into blocks. When di^i — di < Pi 
then jobs Ji and J^+i belong to the same block. Besides, it is only necessary 
to insert idle time between two blocks. The algorithm starts by building an 
active schedule, i.e. all the jobs are processed without idle time. Using the 
inequality mentioned above jobs are grouped into blocks. Then the blocks 
are timeshifted from the left to the right, starting with the first block. The 
proposed algorithm is in 0{cn) where c is the number of blocks and experi
mental results show that for problems up to 500 jobs the average calculation 
time is lower than 2 seconds. Besides, for this size of problem, this algorithm 
is almost 30 times faster than that proposed by [Davis and Kanet, 1993]. 

5.4.2 The Poo|prec, fi convex\ J2i fi problem 

This scheduling problem has been considered by [Chretienne and Sourd, 2003] 
which naively does not looks like an optimal timing problem. However, as we 
will see, by particularizing suitably the cost functions and the precedence 
constraints we get an optimal timing problem for a class of Just-in-Time 
scheduling problems. Chretienne and Sourd provide first theoretical insights 
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and a general algorithm which we briefly present here. First, notice that each 
job Ji is defined by a desired start time 5 ,̂ a processing time pi and a cost 
function fi{t). 
The general algorithm follows the same line than algorithm EGTWl. Jobs 
are sorted according to their rank in the graph of precedence constraints and 
scheduled in this order. Again, the notion of block is considered here and 
defined as a set of jobs in which for each job, either its start time coincides 
with the completion time of another job in this set, or its completion time 
coincides with the start time of another job in this set. When a new job is 
added in a partial schedule it is either scheduled at its desired start time if 
possible, or scheduled at the end of the block B with which it conflicts. Hence
forth, block B is enlarged and next the question becomes to left timeshift or 
not the new block B, Let tß be the start time of that block, i.e. the low
est start time of the jobs in B. First, if there does exist t < tß such that 
S j i € ß •̂ (̂̂ ) "̂  S j i € ß fii^ß) the block is not left timeshifted. Otherwise, let 
fß be the ideal start time at which the contribution of block B is minimal. B 
is left timeshifted until either we met t*ß or, as in the algorithm EGTWl, we 
met another block B'. In that case the new block B is defined by B = BUB'. 
Then we try to left timeshift the new block B if necessary to minimise the 
total cost. But there is also a third case that can occur when shifting a block: 
it can be split into several blocks. This occurs when a sub-block b of block B 
is on-time whilst the remaining block B — b still needs to be left timeshifted 
in order to decrease its total cost. It is due to the fact that in the problem, 
jobs can be processed in parallel and clearly this event cannot occur in the 
problem tackled by Carey, Tarjan and Wilfong. 
Notice that this algorithm is polynomial as far as we are capable of comput
ing in polynomial time the ideal start times t*ß. This is implied by the fact 
that the cost functions fi are convex functions. 

This general algorithm is particularized to various special cases as the 
scheduling problem with the cost functions fi being linear earliness-tardiness 
costs. The problems with particular precedence constraints like tree and 
chains are also investigated. We focus on the problem with linear earliness-
tardiness costs since the corresponding problem, referred to as Poo\si\Fi{E^, 
r ^ ) , enables to solve a class of optimal timing problems depending on how 
the precedence constraints are set. 
For this problem we assume that each job Ji is defined by a desired start 
time Si, a processing time pi, a unitary earliness cost a^ and a unitary tar
diness cost ßi. The cost induced by job Ji in the schedule is defined by 
fi = ai max(0, Si — U) + ßi max(0, t̂  — Si). As each job has only one oper
ation, this cost is equivalent to aiEi + ßiTi. We first introduce theoretical 
notions useful for the algorithm. 
To each block B, let G be the associated graph of precedence constraints 
with processing times on the arcs. We denote by r{B) the spanning active 
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equality tree associated to B, i.e. the spanning tree on G in which all arcs are 
active, i.e. if we delete an arc the two created sub-blocks B^ and B'^ are con
flicting: one must be timeshifted in order to decrease its contribution to the 
objective function, by the way increasing the contribution of the other block. 
Notice that the spanning active equality tree of a block does not need to be 
computed at each iteration of the algorithm since it is only updated when 
merging two blocks: for two merged blocks B and B^ the spanning tree of the 
new block B = BUB^ is equal to r{B) Ur{B') . We now must describe how 
are calculated the ideal start times t*ß for the particular earliness-tardiness 
cost functions. First notice that the cost functions fi are piecewise linear 
functions, each one admitting a single breakpoint. Thus, we define to each 
block B a set of singular points tf defined by tf = Sj -\-tB— tj, \/Jj € B, and 
each singular point corresponds to a change in the slope of at least one job of 
block B. By the way in each spanning active equality tree r{B) we maintain 
on the arcs slopes: for a given arc {i,j) the slope £ij corresponds to the unit 
time contribution to the total cost of the jobs associated to nodes that follows 
node j in r{B). We also denote by £{B) the slope of block B which can be 
interpreted as the unit time contribution to the total cost of the jobs in B. 
For instance if B is made up of one early job Ji and one tardy job Jj, we have 
£{B) = ai + ßj. A consequence is that all the singular points of a block are 
the breakpoints of the cost function of the block, i.e. its contribution to the 
total cost. The ideal start time tß of a block B is then the breakpoint which 
leads to the minimum cost and the left timeshift of the block is done from 
one breakpoint to the next one unless we meet the ideal start time of the 
block or we meet another block. In the latter case we merge the two blocks 
and left timeshift the new block if it is not at its ideal start time (its slope is 
negative). Another case may occur when meeting a breakpoint: the current 
block must be split into two sub-blocks since one sub-block is on-time (the 
slope of an arc in the graph r{B) is negative). Among the two blocks, the one 
with the positive slope is next left timeshifted. The details of the algorithm, 
denoted by ECSl, are given in figures 5.6 and 5.7. 
Chretienne and Sourd show that it can be implemented in 0(nmax(n, M))-
time with M the number of precedence constraints. When the graph of 
the precedence constraints is a tree graph the complexity of the algorithm 
ECSl becomes 0(n^)-time. The time complexity can again be reduced to 
0 ( n log(n)) in case the precedence graph is of type chain. 

The algorithm ECSl is of a very high importance for solving optimal timing 
problems in Just-in-Time scheduling problems. It can be applied to a large 
number of problems as far as all jobs are made up of a single operation. 
Besides, the presence of release dates and deadlines can be easily taken into 
account by introducing appropriate dummy jobs in the graph of precedence 
constraints (see [Esteve et al., 2004] for an apphcation). 
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ALGORITHM ECSl (1) 
/* ^ : the set of precedence constraints */ 
/* S: the set of jobs ranked according to their rank in the graph of the 

precedence constraints */ 
b = 0] // b is the number of blocks 
ti = +oo,Vz = 1, ...,n; 
While 5 9̂  0 do 

/ / We create a new block with only job Js[i] 
6 = 6+1 ; 
Bb = {Js[l]}i 
If (V(i,5[l]) e A,ss[i] > ti+pi)) Then 

/ / Job Js[i] is on-time 
Schedule the job Js[i] at time ^^[i] = ss[i]; 
iB,=aS[l]; 
S = S-{S[l]h 

Else 
/ / Job Js[i] is not on-time 
iB,=ßS[l]; 
S = S-{S[1]}; 
While {3B such that i{B) < 0) Do 

End While: 
End If; 

End While; 

Let B be a block with £{B) < 0] // B is not on-time 
Left timeshift block B until one the following event occurs: 

1) 3Ji G ß , such that Ji starts at time Si. 
II We change the slopes in the current block 
^^l i{B) = IL(B) - Oii - ßi\ 
Call update_tree(ß, i, —on — ßi)\ 

2) 3B', Jj G BandJi G B' such that tj =ti-\-pi. 
II We merge blocks B and B' 
Let Jj G BandJi G B^ be such that tj = U -\-pi\ 
Call upda te_ t ree (ß j / (ß ' ) ) ; 
Call update-tree(ß',i/(J5)); 
G = GuG'U{(iJ)}; 
B = ByjB'\ i{B) = £{B) + i{By, 

r{B) = r{B)ur{B')u{{ij)}; 
6 = 6—1; Renumber the blocks consecutively; 

3) 3{iJ) G r{B) such that £ij < 0. 
/ / We split block B between jobs Ji and Jj 
Let B = B'U B" where B" is the block defined by the 

jobs following Jj in G] 
Separate r{B) and G accordingly in sub-graphes; 
i{B") = £ij'A{B')=£{B)-iiy, 
Call update_tree(ß',i ,-^(B")); 
Call update_tree(ß ' ' j , -^(ß ' ) ) ; 
6 = 6 + 1 ; Renumber the blocks consecutively; 

[Chretienne and Sourd, 2003] 

Fig. 5.6. _An_ optimal algorithm to calculate start times of jobs for the 
Poo\si\Fi{E°',T^) problem 
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ALGORITHM ECSl (2) 
Procedure update-tree(B,i,(5); 

Set i visited; 
For (j unvisited such that iij < 0 or £j^i < 0 in r{B)) Do 

I If (j, i)eA Then £j,i = £j,i + S; 
I Call update_tree(B,2,<5); 

End For; 
[Chretienne and Sourd, 20Q3J 

Fig. 5.7. The procedure update.tree of algorithme ECSl 

5.4.3 T h e l\fi piecewise linear\F£(^^ fi^^^j Ij) problem 

[Sourd, 2005] considers the problem in which all jobs are already sequenced 
on a single machine, without loss of generality, in the order (Ji , J2, •••,»/n)-
Each job Ji is defined by a processing time pi and a cost function fi which 
is piecewise linear with a number of segments that may be greater than two. 
Therefore, this problem generalises the earliness-tardiness problem for which 
the cost functions have only two segments. Besides, we assume that each in
serted idle times j induces a cost mesured by a cost function Ij. The aim is to 
solve the optimal timing problem by minimising ^ ^ fi + J2j ^3 • -̂ ^ outlined 
by Sourd, functions fi enable to model a certain number of real situations as 
for instance the presence of time windows in which jobs must be processed: 
if a job cannot be processed in a certain time period then the corresponding 
cost fi is set to +00 during this period. 

Unfortunately the problem is shown to be AT'P-hard in the weak sense. Sourd 
proposes a dynamic programming algorithm to solve the problem which com
plexity is 0{n^UB) time, with UB an upper bound on the makespan value of 
the optimal schedule. The algorithm also works when the problem is no more 
defined as a single machine problem but as a general scheduling problem with
out resource constraint and with a tree precedence graph. Next, more partic
ular problems are considered as for instance the earliness-tardiness problem 
around a common due date or the problem with convex cost functions. 

5.5 Polynomially solvable problems 

5.5.1 The l\di = d> ^ p i | F £ ( E , T ) problem 

[Kanet, 1981a] is interested in a JiT problem where the objective is to deter
mine a schedule which minimises the deviation of the completion times of jobs 
in relation to a due date. This problem is noted l\di = d > ^pi\Fe{E^T) 
with Fi{E^T) = E -i- T. The common due date is non restrictive. This 
problem is solvable in polynomial time and Kanet proposes the algorithm. 
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denoted by EJKl and presented in figure 5.8. The maximum complexity of 
this algorithm is in Oin?). 

ALGORITHM EJKl 
/* T: the set of n jobs to schedule */ 
/* 4- the sequence of jobs scheduled early or on-time */ 
/* R: the sequence of jobs scheduled tardy */ 
A = R = 0i 
setA = 1; 
For i = 1 to n Do 

Let Jk be such that pk = max(pi); 

li(setA=l) Then 
I A = A//{Jk}; 

Else 
I R={Jk}//R; 

End If: 
T = T-{Jkh 
setA = 1 — setA; 

End For; 
S = A//R', 
Compute the start time of jobs in S in such a way that the last job 
of A completes at time d and that the first job of R starts at time d; 

[Kanet, 1981a] 

Fig. 5.8. An optimal algorithm for the l\di = d> J]pi|F£(E,T) problem 

The resolution of this problem is based on the fact that the set of V-shaped 
schedules is dominant. We say that a schedule is V-shaped if the set of jobs 
Ji such that Ci < d are ordered according to the rule LPT and if the set of 
jobs Ji such that Ci > d are ordered according to the rule SPT. Kanet also 
shows that it is sufficient to consider the schedules without the addition of 
voluntary idle time after processing of the first job, the latter being able to 
start at a date greater than 0. In the example of figure 5.9 we note that no 
permutation of jobs can reduce the value of the criterion E+T. It is sufficient 
to consider the permutation of the jobs Ji and Jj and to deduce that it does 
not decrease the value of the objective function. 

Fig. 5.9. An example of a V-shaped schedule 
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Example. 
We consider a scheduling problem for which n 
algorithm EJKl. 

5 and d = 18. We apply the 

i 
Pi 

1 
2 

2 
4 

3 
3 

4 
5 

5 
2 

(i) A = R = 0, setA= 1, 
(ii) k = 4,A = (J4), il = 0, set A = 0, 
(iii) A; = 2 , A = (J4), Ä = (J2), set^ = 1, 
(iv) k = 3,A = (J4, J3), Ä = (J2), 5et^ = 0, 
(v) k = l, A=(J4,J3), i ? = ( J i , J2), seM = l, 
(vi) A; = 5, ^ = (J4, J3, J5), i^ = («71,̂ 2), 5eM = 0. 
We obtain the schedule presented in figure 5.10. 

i 

J4 

I 1 
J3 J5 

3 16 

J. J2 

20 24 
d=18 

f2\Li\ = 15 

Fig. 5.10. The schedule calculated by the algorithm EJKl 

A similar problem is tackled by [Bagchi et al., 1986] who are interested in 
the l\di = d > 5\Fi{T,^) problem with F^(T,'E) =T + E. We suppose that 
the jobs are such that pi > p2 > . . . >Pn and we define S = pi+ps-i-.. .-\-pn 
if n is odd and 5 = p2 + P4 + • • • + Pn otherwise. This is the limit value of 
d so that it should not be restrictive. To solve this problem we can use a 
polynomial enumeration algorithm based on a branch-and-bound algorithm. 
Besides, Bagchi, Sullivan and Chang show through two examples that this 
problem is equivalent to a P2| |C problem, which is solvable in polynomial 
time. 

5.5.2 The l\di = d unknown^nmit\Fi{E^T^d) problem 

[Panwalker et al., 1982] study a JiT problem where all the jobs have the same 
unknown due date d which is also to be minimised. This problem isjdenoted 
by l\di = d unknown, nmü\Fe(E, T, d), with Fi(E, T, d) = oE + 0T-h ^nd. 
Given that the common due date d is to be determined, an optimal solu
tion for this problem exists which contains no voluntary idle time. When 
7 > ß the problem is very simple to solve since the reduction of one time 
unit of d enables us to modify the value of the objective function from at least 
n/3 —717 < 0- An optimal solution is obtained therefore by setting d* =0 and 
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by classifying the jobs according to the rule SPT. When 7 < /3, an optimal 
solution exists in which the date d coincides with the completion time of a job 
in position k. More precisely, we have k = f^T^p^l • An optimal algorithm in 
0(nlog(n)) time, denoted by EPSSl, is proposed by Panwalker, Smith and 
Seidmann to solve the whole problem (figure 5.12). 

Example. 
We consider a problem for which n = 5, a = 4, /? = 5 and 7 = 8. 

i 
Pi 

1 
2 

2 
4 

3 
3 

4 
5 

5 
2 

(i) k = 2, 
(ii) -Ki = nj + {i — l)a, Vi = 1,2 and TT« = (n + 1 — i)ß, Wi = 3,..., 5, 

position i 
TTi 

1 
15 

2 
19 

3 
15 

4 
10 

5 
5 

/ = (2,1,3,4,5) and J = (Ji, J5, J3, J2, J4). 
(iii) d* = 4 and we obtain the schedule presented in figure 5.11. 

0 2 4 7 11 16 
Fe(E,T,d) = 178 

Fig. 5.11. The schedule calculated by the algorithm EPSSl 

Step 1: 
Step 2: 

Step 3: 

ALGORITHM EPSSl ' 

A; = m a x ( 0 ; r ^ ^ ^ l ) ; ~ ~ " 
Vi = 1,..., A;, TTi = 717 + (z — l )a ; 
Vz = A; + 1,..., n, TTj = (n 4-1 — z)/̂ 5 
/* TTi is the weight of the job scheduled in position i */ 
/ is the list of positions sorted by decreasing value of m; 
J is the list of jobs sorted using the rule SPT; 
Build the optimal schedule S* such that the job J[i] is assigned 
in position I[i], Vi = 1,..., n; 
d* = C[fc] ; /*C[o]=0*/ _ 

[Panwalker et al., 1982] 

Fig. 5.12. An optimal algorithm for the l\di 
lem 

: d unknown, nniit\F£(E, T, d) prob-
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Extension to other connected problems is also studied. For example, addition 
of the term 5C to the objective function leads to a problem which is solvable 
in polynomial time. Panwalker, Smith and Seidmann also study the case 
with distinct due dates di. An extension in the case where the jobs can 
be grouped into classes is studied by [Chen, 1996]. The treated problem is 
noted l\di = d unknown^nmit,classes\Fe(E,T,B,d). All the jobs have a 
common due date d to be determined, and are delivered in batches after 
being processed on the machine. The delivery date of the job Ji is noted Di. 
All the early jobs are delivered in a single batch to the date d, i, e. are such 
that Di = d. The criterion B represents the number of batches which are 
delivered after this date. Chen proposes for this problem an optimal dynamic 
programming algorithm, of which time complexity is in 0{n^). 

5.5.3 T h e l\pi C [pr,Pi]nN,di = d non restrictive\Fi(E,T, CC ) 
problem 

This problem, with Fe(E,T,CC^) = oE -\- 0T -{- 'CC^, is tackled by 
[Chen et al., 1997]. The processing time pi of each job Ji is a variable to 
determine. Additional assumptions are made: 

1. Vj = l,...,n,Vi = l , . . . , n , P i - ü . =pj - p , 
—I J —J 

n 

2. the crashing time cost criterion is defined by CC^ = 2^Ci{pi —pi) where 
Ci is an increasing penalty function. 

Chen, Lu and Tang first show that there exist an optimal schedule in which 
the /ith job completes at time d, with h = l-^ßg]- Next they propose to 
reduce the problem to an assignment problem, by introducing costs Vi^k of 
scheduling the job Ji to the position k. We have: 

min {{k - l)a{p + j) + Ci{pi -p - j)} 
3=0,...,{pi-p) - * - * 

Vi,k 
If fc < /i, i.e. job Ji is early or on-time, 

min {(n - A; + l)ß{p + j) + Ci{pi -p - j)} 
j = 0 , . . . , ( p i - p . ) - * - * 

If fc > /i, i.e. job Ji is tardy. 

Notice that in both cases we can deduce, from the value of j which gives the 
minimum, the value of the exact processing time pi if job Ji is scheduled in 
position k: Pi = p. -\- j . When the costs Vi^k are computed the problem can 
be reduced to an assignment problem, that can be solved in 0{n^) time. A 
model of this problem, denoted by ECLTl, is introduced in figure 5.13. 

5.5.4 T h e P\di = d non restrictive^nmit\Fi{E^T) problem 

[Sundararaghavan and Ahmed, 1984] study a scheduling problem for which 
the jobs have the same due date, denoted by d, which is non restrictive. The 
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Mathematical formulation ECLTl 

/*VA; = l,...,/i,Vz = l , . . . ,n, */ 
/* Vi,k = min {{k - l )a(p + j) + CiCp^ -p - j)} */ 

J=0, . . . , (Pi -£ . ) -* -* 
/* VA; = /i + 1,..., n, Vi = 1,..., n, */ 
/* Vi^k = ^ min {(n - k-\- l)ß{p + j ) + aip^ - p - j)} */ 

Data: n, the number of jobs, 
fi.fc, i = Ij .-.J n, A; = 1,..., n, the cost of assigning the job Ji 
to position k. 

Variables: t/i,fc, ^ = 1, •••? n, m = 1,..., n, boolean variable, equal to 1 if 
job Ji is assigned in position k and 0 otherwise. 

n n 
Objective: Minimise /^y^^i,fc2/i,fc 

i = l fc=l 
n 

Constraints: /^y i ,k = 1, Vz = 1,...,n 
fc=i 

n 

^t / i , fc = 1, VA;= l , . . . ,n 

2/t,fc G {0; 1}, Vi = 1,..., n, Vfc = 1,..., n 

Fig. 5.13. An MIP model for the l\pi G [p.;pj fl N,di 

d non restricbive\Fi{E,T,CC ) problem 

aim is to minimise the criteria E and T via a convex combination Fi{E,T) 
with Fe{E^T) = E -\-T. Insertion of voluntary idle time before each job is 
forbidden when the machines have star ted to process the jobs. This problem 
is solvable in polynomial time. 

If 5 is an optimal solution for the non restrictive problem, then \ni — nk\ < 
1̂  Vi, fc = 1,... , m, with rij the number of jobs processed by machine Mj and 

771 

y^rij = n. In the case where m = 1, the hypothesis d non restrictive can be 

j=i 
verified easily ([Bagchi et al., 1986]). In the general case m > 2, we can verify 

a posteriori tha t the due date d is restrictive if Vj = 1, ...,m,cJ — ^ J P A J H ^ 0 
i= l 

with Aj the list of the Vj early or on-time jobs on Mj in an optimal sched
ule. The proposed algorithm, denoted by ESAl , is presented in figure 5.15. 
It generalises tha t proposed for the single machine problem, denoted by 
l\di = d,nmit\F£{E^T). A V-shaped schedule is constructed by assigning 
and sequencing the jobs iteratively on the machines. 

Example. 
We consider a problem for which n = 10, m = 2 and di = d = 37, Vi = 1,..., 10. 
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i 
Pi 

1 
20 

2 
18 

3 
16 

4 
14 

5 
12 

6 
10 

7 
8 

8 
6 

9 
4 

10 
2 

(i) We place the m first jobs early on the machines, i.e. 

i^i = 0, R2 = 0. 
(ii) Js is tardy on Mi and J4 is tardy on M2. 
Al = (Ji), A2 = (J2), 
Ri = (Ja), R2 = («/4). 
(iii) We repeat the process until we obtain 
Al = (Ji, J5, J9), A2 = (</2,«/s, Jio), 
Ri = {J71 Jz)-> R2 — {JS^JA)' 
(iv) The due date d is non restrictive because d = 37 > max(36; 30). We obtain the 
schedule shown in figure 5.14. 

Ml /: 

M2 '\ 

1 
Ji 

1 

h 

2 
J5 J9 

1 33 

2 

h 
5 3 

JiO 

5 

J7 

h 

J3 

45 

J4 

43 

61 

57 

d=37 

F^(E,T) = 92 

Fig. 5.14. The schedule calculated by the algorithm ES Al 

5.5.5 The P\di = d unknown^nmit\Fi{E^T) problem 

[Emmons, 1987] is interested in a more general problem than the one_tackled 
by [Sundararaghavan and Ahmed, 1984] where Fe(E,T) = oE + 0T, This 
problem is solvable in polynomial time ([De et al., 1991]). 

When m = 1, [Kanet, 1981a] proposes an optimal polynomial algorithm for 
an equivalent problem. Besides, [Hall, 1986] shows that in the cases m = 1 
and a =/3 = 1, we have: 

E + T = ^ l a - d\ = Jy{j - 1) X p[j^ + 2^J X Pin-j^i] 
i=l j = l 

with d = C[y], V the number of early or on-time jobs, u the number of tardy 
jobs and p[j] the processing time of the job in position j . The previous for
mula is valid when the set of early jobs and the set of tardy jobs have been 
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ALGORITHM ESAl 
/* We assume that pi > . . . > Pn */ 
/* Aj is the list of early or on-time jobs on Mj */ 
/* Rj is the list of tardy jobs on Mj */ 
Step 1: /* We determine the lists Aj and Rj */ 

k=l] 
For z = 1 to n Do 

If (z < m) Then 
/* The job Ji is the first scheduled job on Mi */ 
Ai = {Ji}; Ri = 0; 

Else 

End If; 

Lf( 

Else 

^ f c | - l < | i ? f c | ) T h e n 
/* The job Ji is scheduled early on Mk */ 
Ak = Ak//{Ji}; k = k-\-l; 

/* The job Ji is scheduled tardy on Mk */ 
Rk = {Ji}//Rk; k = k-\-l] 

End If; 

If (A; > m) Then 
\ k = l; 

End If; 
End For; 

Step 2: /* We check that the due date d is non restrictive */ 
/* and we locate in time the jobs */ 
All the sequences Rj start ai t = d; 
For j = 1 to m Do 

\Aj\ 

U{d<J2pAj[k])ThBn 
k=l 

Print "The due date is restrictive"; 
END; 

Else 
l^il 

Aj starts at time t = d— yZP^j[^1' 
fc=i 

End If; 
End For; _ _ 

Step 3; Print the resulting schedule and E -{-T; 

[Sundararaghavan and Ahmed, 1984] 

Fig. 5.15. An optimal algorithm for the P\di = d non restrictive, nniit\ Fe{E,T) 
problem 
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determined. In the case of parallel machines, Hall shows that : 

m Vk Uk 

with Vk the number of early and on-time jobs assigned to M/e, Uk the num

ber of tardy jobs assigned to Mk and p^i the processing t ime of the job in 

position j on M^, Besides, we have d = Ch^ = C?^i = . . . = CP^i with 

Cr^ 1 the completion t ime of the job in position Vj on M j , Vj = l , . . . , m . 

[Emmons, 1987] shows tha t when the weights a and ß are different we have: 

k=i S = i j= i / 

Thus, when the sets of tardy and early jobs on each machine are fixed, the 
optimal schedule is a V-shaped one on each machine. 

In order to solve the problem when a ^ ß^ [Emmons, 1987] proposes an al
gorithm, denoted by E E M l (figure 5.16), based on tha t of [Hall, 1986]. The 
principal difference between the former algorithm and algorithm ESAl lies 
in the choice of the assignment in a set Aj or Rj. In algorithm E E M l this 
choice is made by taking account of the weights a and ß. 

Example. 
We consider a problem for which n = 10, m-

i 
Pi 

1 
20 

2 
18 

3 
16 

4 
14 

5 
12 

6 
10 

7 
8 

8 
6 

9 
4 

10 
2 

(i) We place the m first jobs early on the machines, i. e. 
Al = (J i ) , A2 = (J2), 
ß i = 0 , R2 = 0. 
(ii) Job J3 is tardy on Mi and job J4 is tardy on M2. We obtain: 
Al = (J i ) , A2 = (J2), 
Ri = (J3), R2 = (J4)' 
(iii) Job Js is early on Mi and job JQ is early on M2. We obtain: 
Al = (J l , J5) , ^2 = (J2,J6), 
Ri = (J3), R2 = (J4). 
(iv) Job Jr is tardy on Mi and job Js is tardy on M2. We obtain: 
Al = ( J i , J5) , A2 = (J2, Je), 
Ri = {Jr, J3), R2 = (Js, J4). 
(v) Job Jg is tardy on Mi and job Jio is tardy on M2. We obtain: 
Al = (J i , J5), A2 = (J2, Je), 
Ri — (J9, J7, J3), R2 = (Jio, Js, J4). 
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ALGORITHM EEMl 
/* We assume that pi > .. .>Pn "^f 
/* Aj is the list of early or on-time jobs on Mj */ 
/* Rj is the list of tardy jobs on Mj */ 
Step 1: /* We compute the lists Aj and Rj */ 

k=l] 
For i = 1 to n Do 

If (i < m) Then 
/* The job Ji is the first scheduled job on Mi */ 
Ai = {Ji}; Ri = 0; 

Else 

End If; 

If ((l^fcl - 1) X a < \Rk\ X ß) Then 
/* The job Ji is scheduled early on Mk */ 
Ak = Ak//{Jiy, k = k-\-l; 

Else 
/* The job Ji is scheduled tardy on Mk */ 
Rk = {Ji}//Rk] k = k'^l; 

End If: 

U{k>m) Then 

End If: 
Enf For: 

Step 2: /* We locate in time the lists */ 
\Ai\ 

"^^ i "f^jY^p^^y^ 
All the sequences Rj start at t = d; 
For j = 1 to m Do 

Aj starts at time t = d— /^PAiik]] 
fc=i 

End For: 
Step 3: Print the resulting schedule, aE + ßT and d] 

[Emmons, 1987] 

Fig. 5.16. An optimal algorithm for the P\di = d unknown, nmit\ Fe{E,T) prob
lem 

(vi) The due date d is given by d = max(32; 28) = 32. We obtain the schedule 
presented in figure 5.17. 

Emmons is also interested in the P\di = d unknown^ nmit\ Lex{Fi{E,T), 
Cmax) problem with Fi{E, T) = aE + ßT. He justifies taking account of the 
criterion Cmax a.t the second level by the fact tha t several optimal sched
ules for the objective function Fe{E,T) but with different makespan values 
exist. Once the lists Aj and Rj have been calculated, other optimal sched
ules obtained by producing permutat ions of jobs between sets Aj and Rj 
can exist. In order to solve the tricriteria problem, Emmons proposes an al-
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Ml 

^ 
4 

Ji 

h 

Js 
20 32 

h 
22 

h h 
36 

Jio h 
34 40 

44 

h 

h 

s ^ 

54 

60 

:̂;:V '̂> 

d=32 

Fe(E,T) = 164 

Fig. 5.17. The schedule calculated by the algorithm EEMl 

gorithm which improves the schedule obtained by the algorithm EEMl. It 
is based on a particular aggregation operator. Let us consider two lists Li 
and L2 of m jobs. The aim is to aggregate Li and L2 in order to create 
a third list, denoted by Z/3, composed of m fictitious jobs. The aggregation 
process consists of taking from Li the job with the largest processing time 
and from L2 the job with the smallest processing time. These two jobs are 
aggregated in X3 and are deleted from the lists Li and Z/2. This process is re
peated until the initial lists are empty. An example is presented in figure 5.18. 

J, 

h 
h 
h 
J4 

h 

J'l 

J'2 

J'3 

Pi 
4 
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15 
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19 

17 

19 

X 
i 

Fig. 5.18. An example of aggregation of jobs 

The algorithm proposed by Emmons, denoted by EEM2, is presented in fig
ure 5.19. 
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ALGORITHM EEM2 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Step 5: 

Step 6: 

Apply the algorithm EEMl. Let 5" be the obtained schedule; 
/* We now reduce to a fictitious problem such that n = rm. */ 
/* Ai and Ri are the lists calculated in algorithm EEMl */ 
ki = max (\Ai\) ; k2 = max {\Ri\) ; 

i = l , . . . , m i = l , . . . , m 

Add, if necessary, fictitious jobs Jn+jy with Pn+j = 0, 
in the lists Ai in such a way that | ^ i | = A;i, Vi = 1, ...,m; 
Add, if necessary, fictitious jobs Jn-^-j-, with Pn+j = 0, 
in the lists Ri in such a way that \Ri\ = fe, Vz = 1,..., m; 
/* We build the lists to aggregate */ 
Let A = (üij) be the matrix of dimension m x (fci + fe) 
such that aij is the number of the jobs assigned in position j 
on the machine Mi] 
\/i •= 1,..., k\,Ei = [ai,i] 02,i ; . . . ; am.i]'^] 
Vz = 1,..., fe, Fi = [ai,fci+i; a2,fci+i; • • •; am,fci+*] 5 
/* We aggregate the lists Fi */ 
Fi = [0;...;Of; 
For i = 1 to A;2 Do 

I Aggregate F/_i and Fi to obtain F/; 
End For: 
/* We aggregate the lists F« */ 
E'o = [0;...;Of; 
For i = 1 to Âi Do 

I Aggregate Ei^i and Ei to obtain F^; 
End For: 
/* Building of the schedule S^ */ 
For 2 = 1 to m Do 

The jobs aggregated to compute F^^ [i] are scheduled 
on Mi in the order of their fusion; 
The jobs considered to compute F^.^ [i] are next 
scheduled on Mi, following their aggregation order; 

End For: 
/* The obtained schedule is denoted S^ */ 
Print S ' \ a F + 0T and the value d; 

[Emmons, 1987] 

Fig. 5.19. An optimal algorithm for the P\di = d unknown, nmit\ 
Lex{Fe{E,T),Cmax) problem 

Example. 
We consider a problem for which n 10, m = 2, a = 4 and / ?= 1. 

i 
Pi 

1 
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(i) The schedule obtained by the algorithm EEMl is the one presented in the 
previous example. The criterion Cmax has a value of 60 for this schedule, ki = 
\Ai\ = \A2\ = 2 and /c2 = |-Ri| = I-R2I = 3. So, we do not add a dummy job, 
(ii) The matrix A is defined by: 
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1 5 9 7 3 
2 6 10 8 4 

El = [ l , 2 r , E 2 = [5,6F 
Fi = [9 ,10 r ,F2 = [ 7 , 8 r , F 3 = [3,4F. 
(iii) We aggregate the lists Fi and we obtain: 
Fi = [11,12]^, Fi = [13,14]^ and F^ = [15,16]^ with: 

i 
Pi 

11 
2 

12 
4 

13 
10 

14 
10 

15 
24 

16 
26 

(iv) We aggregate the lists Ei and we obtain: 
Ei = [17,18]^ and E'2 = [19,20]^ with: 

i 
Pi 

17 
18 

18 
20 

19 
30 

20 
30 

(v) In order to calculate E2, Ji is aggregated with Je and J2 is aggregated with 
J5. We therefore find on Mi J2 then J5 and on M2, Ji then JQ. Next, by doing the 
same thing with F3, we go backwards and we find Jg, Js then J3 on Mi, and Jio, 
J7 and J4 on M2. The obtained schedule is presented in figure 5.20. 
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C™„x = 58, Fi{E,T) = 164 

Fig. 5.20. Schedule calculated by the algorithm EEM2 

5.5.6 The P\di = d unknown,pi = p,nmit\Fi(E, T,d) problem 

[Cheng and Chen, 1994] study a scheduling problem where the jobs have a 
common due date which is to be determined. Besides, the processing times 
are all supposed to be equal to a value p. The aim is to compute a schedule 
which minimises the objective function Ft{E, T, d) = aE + ßT + jnd. This 
problem is solvable in polynomial time. 

We recall that when m = 1, the problem with ordinary processing times is 
solved by an optimal polynomial algorithm ([Panwalker et al., 1982]). The 
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single machine problem addressed by Panwalker, Smith and Seidmann is 
broadened to m machines by [Cheng, 1989], who proposes an heuristic to 
solve it. The latter is AfV-haid (see [Cheng and Kahlbacher, 1992]). For the 
problem with equal processing times, and when 7 > /3, we reduce to the 
minimisation of criterion C. 

Lemma 24 
If 1 ^ ß, then the optimal value of the due date d, denoted by d*, is d* = 0 . 
The P\di = d unknown, pi = p\F£{E,T,d) problem is then reduced to the 
P\Pi = P\C problem. 

Proof. 
Let S* be the optimal solution and d* be the corresponding due date. Let us suppose 
that d* > 0 and consider another solution_defined by S" = S* and d' = d* — 1. 
Then we_have: Fe{E,T,d){S\d*) - Fz{E,T\d)(S\d') _ 

= aE{S\d*) + ßT{S\d*J_ + ^nd* - aEj,S\d') - ßT{S\d') - jnd' 
Because d' < d*, we have aE{S*,d*) > aE{S*,d'). On the other hand, ^nd* -
^nd' = -fu. We have similarly 0T{S\d*) < 0T{S\d'), but ß{T{S\d')-T{S\d*)) 
<ßn< 7n. Thus, Fe(E,T,d)(S\d*) - Fe{E,T,d){S\d') > 0. Then, the solution 
defined by S' = S* and d' = d* — 1 is not worse than that defined by S* and d*. 
Therefore an optimal solution exists for which d* = 0. 
In this case E = 0 and the criterion T is equivalent to the criterion C. The problem 
reduces to the P\pi = p\C problem, which is polynomially solvable.D 

To solve the P\di = d unknown,pi = p\F£{E, T, d) problem in the case where 
7 < /3, Cheng and Chen use the results for the l\di = d,pi = p, nmit\F£{E, T) 
problem. For the single machine problem, a schedule is defined completely 
by the starting time SQ of the sequence of jobs. The starting time which 
corresponds to an optimal schedule is given by: 

nß 
SQ = max(0; d — uxp) with u = \ -] 

Lemma 25 [Cheng and Chen, 1994] 
For the l\di = d unknown,pi = p,nmit\Fi{E,T,d) problem we have: 

1. Fe{E,T,d) is a decreasing function on d when de [0;r xp], 
2. Fi{E, r , d) is an increasing function on d when d G ]r x p; +oo[; 

withr=\^^^^l 

Regarding the parallel machines problem, an optimal schedule which verifies 
l^i — %| < I5 Vz, j = 1,..., m, with ni the number of jobs assigned on machine 
M(> exists. This implies that two groups of machines exist. The group A 
gathers together the (m — h) first machines (Mi to Mm-h) which process k 
jobs each. The group B gathers together the h last machines (M^-Zi+i to 
Mm) which process {k + 1) jobs each. We have k = [^J and n = km + h. 
Knowing that all the jobs have the same characteristics, they can be split 
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indifferently into two sets NA and NB • The first contains the jobs processed 
on machines of group A and the second those processed on machines of group 
B. Let ST A and STB be the start times of the first jobs on each machine of 
the group A and of the group B respectively. If SQ is the start time of the 
sequence of jobs on machine Mj, we have SQ = 5 T A , Vj G A, and SQ = STBI 

Vj € B. 

Theorem 16 [Cheng and Chen, 1994] 

Let VA = I , ^ I; rB = \- ^7-5 ^ I, dA=rAXp and dB = VB x p. 

dA (respectively dB) is the optimal due date obtained by considering only 
jobs scheduled on machines of group A (respectively B). We set similarly 

d\ = UA X P CLTid d'ß = UB X p with UA = \ ;̂ 1 cbnd UB = \ ^-1 • If 
a-\- p a-\r p 

dB = dA+p then two cases occur: 

• First case: d\ > dA- If rA < —7 ^ , then there is an optimal schedule 

for which d* = dB and ST A = STB = 0. Otherwise d* = dA and ST A = 
STB = 0. 

• Second case: d'^ = dA. If rA < ^ ^ \ ! ' ^ ^ " ^ ^ then an optimal schedule 
^ ^ ^ ^ - h{a + ß) 

exists for which d* —dB, ST A = p and STB — 0. Otherwise d* = dA and 
STA = STB = 0. 

If dA = dB, then there is an optimal schedule in which d* = dA and STA = 
STB = 0. 

The algorithm proposed by Cheng and Chen, denoted by ECCl, is presented 
in figure 5.23. 

Example. 
We consider a problem for which m = 5, n = 21, and pi = 1, Vi = 1,..., n. We study 
two instances. 

• Let us consider in the first instance a = 20, /? = 30 and 7 = 2. We obtain then 
k = 4,h = l,A = {Mi,... ,M4}, B = {Ms}, rA = 3, r s = 3, UA = 3, UB = 3 , 
C/A = 3, dß = 3, d^ = 3 and d'ß = 3. The case dA = dß of theorem 16 is verified 
(figure 5.21), therefore d* = 3. 

• Let us now suppose that a = 20, ß = 60 and 7 = 2. We have then TA = 3, 
rB = 4, UA = 3, UB = 4, dA = 3, dß = 4, d^ = 3 and dß = 4. Case dA+p = dß 
of theorem 16 is verified. Moreover d^ = dA and rA < 3.225. We deduce from this 
that an optimal schedule exists such that d* = dß = 4, STA = 1 and STB = 0 
(figure 5.22). 
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M, 

M, 

M3 

M, 

M, 

dA=dB=3 

Fe(E,T,d) = 636 

Fig. 5.21. Case where dA = ds 

M, 
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M4 

M3 

'̂̂  ^ ̂^ ^ 

-. -- s ^' -' '̂  

dA=dB=4 

Fe{E,T,d) = 828 

Fig. 5.22. Case where dA + p = ds 
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ALGORITHM ECCl 
/* Initialisation of the algorithm */ 

k = I — I; h = n — km: 
m 

A= {Mi,...,Mm-h}] B= {Mm-h-f-l,--

Step 1: 

Step 2: 

Step 3: 

Step 4: 

,Mm}] 

UA 
kß ritLMv 

a-\- p a + p 
dA = rAX p\ dß =rB X p ; 
dA =UAXp; d'ß = UB xp; 
/* Assignment of jobs on machines */ 
Partition the set J in m sub-sets iVi, . . . , Nm such that: 
\Nj\ = k, Vj e [ l , m - / i ] , and \Nj\ = k-{-l,\/j e [ m - / i + l ,m]; 
The jobs of set Nj are assigned on machine M,, \/j = 1,..., m; 
/* Computation of the start times and of the due date d* */ 
If {{h = 0) or {dB = dA)) Then 

I d* = dA] STX = ST^ = 0; END; 
End If; 
If (dA > dA) Then 

m(a-j-ß)J 
d* = dß't ST A ST^ = 0; END; 

Else 

Else 
I d* = dA] STX = ST^ = 0; END; 

End If; 

If ( r A < 
h{k + l)ß - nj 

) Then 

Else 

h{ai-ß) 
d* = ds'i 
5 T l = p ; ^ T ^ = 0;END; 

I d* = dA] STX = ST^ = 0; END; 
End If; 

End If; 
Print the resulting schedule, d* and the value of the objective 
function; 

[Cheng and Chen, IQQJT 

Fig. 5.23. An optimal algorithm for the P\di = d unknown,pi = p\Fe{E,T,d) 
problem 

5.5 .7 T h e R\pij G [p. . ; P i j ] , d i = d unknown\Fi{T,E, CC ) 

p r o b l e m 

[Alidaee and Ahmadian, 1993] are interested in a Just-in-Time scheduling 
problem where the processing times are not da ta of the problem, and where 
we have pij G [p. . ;P i j ] , Vi = 1,..., n, Vj = 1,..., m. Besides, all the jobs have 
the same due date d which has to be determined. The aim is to minimise 
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the function Fe{T.'S.ÜC^) = a T + !E + ÜC"^. This problem is solvable in 
polynomial time. 

For the single machine problem ([Panwalker and Rajagopalan, 1982]) we 
know that: 

• the optimal due date d* coincides with the completion time of a job, 
• the set of V-shaped schedules is dominant, 
• an optimum sequence of jobs exist such that. Vi = 1,..., n, p^ = p. or p^. 

These results can be extended to the case where m is ordinary. Moreover, 
an optimal due date d* exists which coincides with the completion time of 
a job on each machine. The parallel machines problem can be reduced to 
a transportation problem solvable in 0{n^). This problem is obtained by 
considering the set of possible assignments of jobs on machines and for all 
positions. Moreover, when the sequences of jobs on machines are known, 
the determination of the optimal processing times is done according to the 
following rule: 
If Ji is scheduled on Mj and is tardy then: 

- p.. if Wij < ßk, 

if 'Wij > ßk. 

If Ji is scheduled on Mj and is early or on-time then: 

'̂'•̂  [0 ' iiwi^j>a{k-l). 

with k the number of jobs processed after Ji if this is scheduled on Mj. 

5.5.8 Other problems 

• [Hoogeveen, 1996] is interested in two problems where the earliness of 
the jobs is expressed in relation to desired start times. These problems are 
denoted by l\si,di,Si G [di - Pi\di],nmit\t{Lmax/Pmax) and l\si,di,Si G 
[di — Pi\di]\e{Lmax/Pmax)' Hoogevccn shows that these two problems are 
solvable in polynomial time whereas in the case where the data Si and di are 
arbitrary (with Si < di) these problems become AT'P-hard in the strong sense. 
The difference between the two problems is that in the first one insertion of 
voluntary idle time before each job is forbidden. In both cases, minimisation 
of the criterion Pmax brings us back to maximising the real start times. Thus, 
Hoogeveen shows that the constraint Pmax < ^ brings us back to imposing 
release dates defined by r̂  = 5̂  — e,V2 = l,. . . ,n. We obtain then a prob
lem that can be denoted by l\ri,di,ri G [di — pi — e;di — e],ß\Lm,ax with 
ß G {0,nmit}. To solve these two problems, two optimal algorithms based 
on greedy methods are proposed. The algorithm which solves the l\si,di,Si G 
[di — Pi'idi],nmit\e{Lmax/Pmax) problem with e fixed is of time complexity 
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0(nlog(n)) whereas that without the constraint nmit is in Oin^ log(n)). Fol
lowing this, Hoogeveen proposes a determination algorithm of the set E when 
the insertion of voluntary idle time is forbidden. This algorithm iteratively 
modifies the parameter e of the l\si^di^Si G [di —pi]di\,nmü\e{Lmax/Pmax) 
problem and each iteration calls the algorithm which solves it. The latter 
only determines strict Pareto optima. Thus the set E can be calculated com
pletely. Moreover, Hoogeveen shows that the number of strict Pareto optima 
is at most equal to n. 

• [Bector et al., 1988] are interested in the l\di = d,d unknown\ Fi{E^T) 
problem, with Fi{E,T) = E+ T and restrict their study to the set of sched
ules with no insertion of voluntary idle time after the start of processing of 
the first job. Remember that a classical result ([Webster et al., 1998], see sec
tion 5.2.1) states that solving problems with an unknown common due date 
is equivalent to solving problems with a fixed and non restrictive common 
due date. The distinction between these two types of problems is important 
for the decision maker because of the difference in the value of the date d. 
[Bector et al., 1988] propose a goal programming model of the problem with 
unknown date d and deduce some properties for an optimal schedule. Notably, 
they show that in such a schedule, the common due date d is equal to the 
completion time of the job in position r in the sequence with ^ <r< f + 1. 
This result has been shown in part by [Francis and White, 1974] and Bector, 
Gupta and Gupta propose a more complete proof. Moreover, they show that 
the set of V-shaped schedules is dominant for this problem and then propose 
an optimal algorithm which starting from an initial V-shaped sequence, pro
ceeds by permutations of jobs to obtain an optimal V-shaped sequence. 

• [Kondakci et al., 1997] consider the l\pi = l ,di, nmit\e{E/U), l\pi = 
l,di,nmit\e{Emax/U) and l\pi == l,di,nmit\e{Fi{E,T)/U) problems with 
Fe{E,T) = E + T, and for which the insertion of voluntary idle time before 
each job is forbidden. To solve these problems, they propose a mixed inte
ger program which is that of the assignment problem, with the criterion U 
inserted as a constraint. Enumeration of the set of weak Pareto optima is 
solved by considering firstly that the value of the criterion U corresponds to 
an optimal solution of a single criterion problem with E, Emax or E -\- T^ 
depending on the considered problem. The bicriteria problem is then solved 
and at each iteration the value of the upper bound of the criterion U is re
duced by one and the bicriteria problem is solved once again. 

• [Ahmed and Sundararaghavan, 1990] study the minimisation problem of 
the weighted earliness and tardiness when the weights are symetrical, depen
dent on the jobs and are equal to the processing times. We also assume that 
all the jobs have the same non restrictive due date. The problem addressed is 
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n 

denoted by l|d, = d> Y.Pi\Ft{E^,T^) with Fe(E^,T^) = Y^Pi{Ei + T,). 
i=l 

We can show that the set of schedules without insertion of voluntary idle 
time except before the first job is dominant. To solve this problem a greedy 
algorithm is proposed which sorts at the first step jobs according to the rule 
LPT. n schedules Si are next obtained by timeshifting the sequence of jobs so 
that the ith job of the schedule Si completes at time d. The optimal schedule 
is the one having the minimal objective function value. 

• [Garey et al., 1988] study a particular JiT problem in which the jobs have 
unit processing times. This problem is denoted by l\pi = l^di\F{Ei,Ti) with 
F{Ei^Ti) = max (E'^+Tj). To solve this problem Garey, Tarjan and Wilfong 

propose an optimal algorithm in 0(nlog(n)) time which uses an algorithm 
for the l\pi = l,di,F{Ei,Ti) < D\— problem. To determine the optimal 
value D* of the objective function, for the original problem, the algorithm 
proceeds by binary search on an interval [Dnj^Dub]- This algorithm can be 
used to solve the problem with arbitrary processing times. In this case, its 
time complexity is in 0(71^). 

• When the earliness of the jobs is defined in relation to a desired start time, 
[Sidney, 1977] is interested in a problem where the start times and the due 
dates are agreeable. The problem addressed is noted l\si,di,Si < Sj <=^ di < 
dj\F{f{Tmax), 9{Pmax)) "^ith F{f{Tmax), 9 (Pmax)) = TOCiax{f{Tmax), 9(Pmax))' 

The functions / and 9 are taken to be continuous and increasing on R and 
Pmax refers to the maximum promptness of jobs. The treated problem is 
thus analogous to that tackled by [Hoogeveen, 1996]. According to Sidney, 
this approach can be used in project scheduling problems in the chemical 
industry. Sidney moreover supposes that the dates Si and di are agreeable, 
i.e. \/i,j = l , . . . ,n, 5̂  < 5̂  4=> di < dj. To solve this problem, he proposes 
an optimal algorithm which proceeds in two steps. An optimal sequence of 
jobs is obtained by sorting them in increasing order of start times Si. Next, 
an algorithm is applied to determine the real start times from the sequence. 
This problem is taken up by [Lakshminarayan et al., 1978] who show that 

it is possible to improve the algorithm which determines the real start times 
when the sequence is fixed. They then show that the complexity of the gen
eral algorithm is in 0(nlog(n)) time whereas for Sidney it is in 0{ri^). 

• Few JiT scheduling problems with more than two criteria have been ad
dressed in the literature. [Seidmann et al., 1981] consider a tricriteria prob
lem in which the due dates are unknown but must be as close as possible to a 
common due date. The problem is noted l\di unknown,nmit,A\Fi{E,T,A) 
with Fe(E,T,Ä.) = oE + 0T + 7 Ä The criterion Ä is defined by Ä = 
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n 

y]max(0;dj — A), where A is a due date which we do not wish to pass 

by. We suppose besides that insertion of voluntary idle time on the machine 
is forbidden. To solve this problem Seidmann, Panwalker and Smith propose 
an optimal algorithm in 0(nlog(n)). The jobs are numbered according to 
the rule SPT. The optimal due dates di are then calculated in the following 
manner, Vz = 1,..., n: 

di= { 3=1 

min(^; Y ^ j ) otherwise 
j = i 

A similar problem, but with a common known due date and criteria U 
and A, is tackled by [De et al., 1991]. The problem is denoted by l\di = 
d,A\Fe{Ü'^,Ä) with FiiTJ"^,Ä) = TT + jÄ, We define M = Yl ^^ ^^^ 

threshold value A such that the problem is restricted or not. li A < M then 
the problem is so and ATP-hard. In this case. De, Ghosh and Wells propose 
an heuristic based on a relaxation of a model of the problem, li A> M then 
the problem is not restricted and solvable in polynomial time. An optimal 
algorithm is proposed by the authors. 

5.6 A/'P-hard problems 

5.6.1 T h e l\di,nmit\Fi{E'^,T^) problem 

[Ow and Morton, 1988] and [Ow and Morton, 1989] consider the weighted 
early/tardy problem with no voluntary idle times insertion. They propose 
sequencing rules to solve the problem. Ow and Morton show that any adjacent 
pair of jobs (Jt^Jj) such that Ji immediately precedes Jj in the optimal 
sequence, must satisfy the following condition: Vij{si) > Vj^i{sj) with 5̂  = 
di—t—pi the slack of job J^, t being the earliest time the machine is available 
for processing this job, and 

T='iAsi)={ 

( ßi 
Pi 
ßi 

if Si < 0, 

foti + ßi\ 
Si if 0 < 5i < Pj, 

Pi V PiPj J 
otherwise. 

Pi 
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Then, a priority can be associated to each job Ji by comparison with a dummy 
n 

job with average processing t ime p = /^^Pi - The linear priority rule, denoted 

by LIN-ET, for job Ji is defined by: 

( ßi 
Pi 

Vi{si) 

if Si < 0, 

Pi \ Pll^P J 

^ otherwise. 
Vi 

with k a given parameter , tha t should reflect the average number of jobs tha t 
may conflict at each t ime a sequencing decision is to be made. The priority 
rule depends on the slack of job J^. The first extreme situation occur when 
job Ji is tardy, i.e. 5̂  < 0, and the priority rule is then W S P T . The second 
extreme situation occurs when job Ji is early, with Si > kp, and the priority 
rule is then W L P T . The piecewise Unear function Vi{si) corresponding to 
LIN-ET is shown in figure 5.24. 

4Pi(Si) 

Fig. 5.24. LIN-ET priority rule 

ßi 
-kp. However, using this rule, We can notice tha t Vi(si) = 0 <^ 5̂  -

ai 4- ßi 
the problem of jobs conflicting can make the obtained sequence far from the 
optimal solution. To avoid this problem, Ow and Morton propose another 
priority rule, denoted by EXP-ET, defined as follows: 



Vi{si) 

ßi 
—exp 
Pi 
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Siiai+ßiY 

OtiP 
if 0 < S i < ^ ^ f c p , 

OLi-\- ßi 
3 

^''Ks-"(w))'^s;fi^'<''^* 
The parameter k controls the time at which the priority of a job increases. 
The algorithm tha t implements the priority rules is presented in figure 5.25. 

ALGORITHM HOMl 
/* A; is a given parameter, for instance A; = 3 if n = 8 or 15, /;; = 5 if n = 25 */ 
T — {Ji , J2,..., Jn}; 

n 

i = l 

^ = 0; 
5 = 0; 
While T 9̂  0 Do 

Fbr Ji G T Do 
Si ^^ CLi L j9i ^ 

Compute Vi{si)', /* depending on LIN-ET or EXP-ET priority rule */ 
End For; 
Let Jk e T/Vk{sk) = maxVi{si); 

S = S//{Jkh 
T = T-{Jkh 
t = t-^Pk] 

End While; 
[Ow and Morton, 1988] and [Ow and Morton, i9S9]~ 

Fig. 5.25. An heuristic algorithm for the l\di,nmit\Fi(E°',T ) problem. 

Then, Ow and Morton propose several versions of a filtered beam search pro
cedure to solve the problem. This method is a t runcated branch-and-bound 
algorithm, because only a certain number of branches of the search tree are 
explored. Experimental results show tha t the average deviation between the 
best solution and the best lower bound comprises between 5% and 10%. 
[Li, 1997] proposes for this problem a neighbouring heuristic which uses a 
set of n operators fc-NAPI (fc = 0,.. . , n — 1) where fc-NAPI refers to the op
erator realising the permutat ions of two jobs separated by k jobs. Starting 
with an initial sequence calculated by means of an heuristic based on the 
rule E X P - E T , the operator 0-NAPI is applied until no further improvement 
can be achieved. The operator 1-NAPI is applied next, then the operator 
2-NAPI, etc. Li also proposes a branch-and-bound procedure for which the 
lower bound is the sum of two bounds LBi and LB2, valid for the single crite-

ß Q; 

rion problems T and E . Each of these boundaries is obtained by solving a 
lagrangean relaxation model (relaxation of constraints defining the variables 
Ti and Ei). The primal problem for each bound is solved either using the rule 
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WSPT or the rule WLPT. The corresponding dual problem is next solved by 
applying a perturbation algorithm of the langrangean coefficients which does 
not modify the sequence calculated for the primal problem. Experimental 
results show that the branch-and-bound procedure solves all the problems 
with up to 25 jobs in less than 100 seconds. Besides, the proposed heuristic 
is compared with that presented by [Ow and Morton, 1989] and the results 
show that the first mentioned is the most successful (in time and quality). 
[Liaw, 1999] proposes algorithms which are very close to those of [Li, 1997], 
Firstly, he provides a neighbouring heuristic in 0{n'^) time, which improves 
the schedule calculated using the rule EXP-ET. The neighbouring operators 
considered diff̂ er from fc-NAPI and no comparison with Li's heuristic is pre
sented. Liaw also proposes a lower bound calculated according to an identical 
step to that used by Li. The principal difference lies in the two sub-problems 
considered to calculate LBi and LB2. Experimental results show that the 
lower bound proposed by Liaw is better than that proposed by Li. Neverthe
less, concerning the branch-and-bound procedure the experimental results 
show that it is appreciably equivalent to that of Li. 
[Almeida and Centeno, 1998] are similarly interested in the l\di, nmit\Fe{E , 
T ) problem and propose an heuristic which iteratively uses tabu search, 
simulated annealing and local search heuristics. These ones use three neigh
bouring operators: API, fc-NAPI and a particular operator. Starting with 
an initial solution obtained by applying the rule EXP-ET, the heuristics are 
successively applied according to a particular scheme. Diversification is intro
duced by means of a random selection step of a solution in the neighbourhood 
of the current solution. Experimental results only show that the proposed 
heuristic produces better results than the meta-heuristics used alone. 

5.6.2 The F\prmu,di,nmit\Fi{E ,T ) problem 

[Zegordi et al., 1995] study a Just-in-Time flowshop scheduling problem and 
consider that the insertion of voluntary idle time before each job is forbidden. 
This problem is strongly AfV-haid because the corresponding single machine 
problem is also. 

Zegordi, Itoh and Enkawa propose a simulated annealing heuristic, denoted 
by HZIEl, the peculiarity of which lies in the neighbourhood operator. They 
use the definition of a priority function ([Ow and Morton, 1989]) for a single 
machine problem and they extend it to a m-machine problem. Let 5 be a 
permutation schedule. We define a lower bound for the earliest start time of 
the job in ith position on the machine Mm in S by: 

m—1 i—1 

^ '•**'' k=l j = l 
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An upper bound on the algebraic earliness is then ss[i] = ds[i] — {ts[i],m + 
P5[i],m)) Vz = l,. . . ,n. Generalisation of the priority functions of Ow and 
Morton, denoted by P ^ o and P|j^i, can be stated as follows: 

V i _ 2 n P^ -7i;cri ^Sli]{wsii]+hs[i]) yi - 2, ...,n, I^sii] - ^S[i\ — — 
yS[i-l],m 

V,- - 1 „ 1 pB _ ssii\{ws[i\ + hs[i\) 
Vt - 1,...,n - 1, P^j,] - — wsii] 

FS[i-{-l],m 

The more P^^^-^ is important, the more it is interesting to permutate jobs in 
zth and (z — l)th position in 5. Conversely, the more P^u] is important the 
more it can be interesting to permutate jobs in zth and (z + l)th position. For 
example, if the bound on the algebraic earliness for position i is positive, then 
we estimate that the job in this position is late. We have then P|j^i > P^o 
and we prefer to permutate jobs in position i and (i — 1). 
At a given iteration of the algorithm, we get a solution S from which we 
search for the best neighbour S\ For this, it is sufficient to calculate the 
values of the priority functions. Amongst all the values of the priorities P|jo 
and P^^i we search for the greatest value. The corresponding permutation to 
this is then done and we obtain the schedule S'. Zegordi, Itho and Enkawa 
state that it is possible to consider the exact values of the algebraic earliness 
by setting ss[i] = dsm — Csm^ Vi = l,. . . ,n. The priority functions will be 
thus more realistic but more costly in terms of the calculation time necessary 
to obtain the values Cs[i]' The heuristic HZIEl is presented in figure 5.26. 

Concerning regulation of the temperature, Zegordi, Itoh and Enkawa refer 
to [Connolly, 1990]. An initial schedule S is randomly generated. A random 
permutation of jobs is performed in S and the variation A of the objective 
function is memorised. The initial schedule is then restored and a new per
mutation is performed. This process is repeated 50 times. The minimal value 
Amint and the maximal value Amax which result from these permutations 
are then obtained. The initial temperature To and the final temperature T/ 
are defined by: 

•»771271 • 

At a given temperature, Zegordi, Itho and Enkawa consider that no permu
tation is able to improve the current solution if all the values of the priority 
functions are negative. A new value of the temperature is then calculated by 

the formula T,+i = ^ - - j ^ with ß = ^ ^ and M = 5 0 ^ ^ ^ ^ ^ ^ . Two 

stopping conditions are presented: 

• There are two temperature changes without modification of the current 
solution. 
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ALGORITHM HZIEl 
Step 1: /* Initialisation of the algorithm */ 

Generate randomly a schedule S; 
Compute To and T/; 

S* = S; 
Compute the priorities Pg^^ and Pg^^; 

Step 2: /* Main part */ 
While (a stopping criterion is not verified) Do 

End 

While (there exists a positive priority value) Do 

End 

Search the best neighbour iS"; 

If (Af > 0) Then 
S = S'; 
Compute the priorities P^^ and Ps[i]'^ 

Else 

End If; 

P = .^.. 
Choose randomly a number x in the interval [0; 1]; 
If (x < p) Then 

Compute the priorities Pg^^^ and P/f^j; 
End If; 

If (E"(5*) + T\S*) - E^'iS) - T\S) > 0) Then 
\ S* = S; 

End If; 
While; 

1+/3T' 
While; 

Step 3: Print S*, E"" and T^; 
[Zegordi et aL, 1995] 

Fig. 5.26. An heuristic algorithm for the F\prmu,di,nmit\Fe{T ,E ) problem 

• The number of permutations performed is greater than M. 

Experimental results show that the heuristic HZIEl is more efficient than 
simulated annealing algorithms proposed by [Wilhelm and Ward, 1987] and 
[Connolly, 1990]. However, the latter are not adapted to resolution of the 
Just-in-Time problem. 

.——in —-7i>. 
5.6.3 T h e P\di = d non restrictive^nmit\fmax(E , T ) problem 

[Li and Cheng, 1994] are interested in a Just-in-Time scheduling problem 
where all the jobs have the same due date which is not restrictive. The 
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aim is to determine a schedule which minimises an objective function defined 
^y fmax{E ,T ) = max {wi{Ei-\-Ti)) == max (t(;i|Li|). We areonly inter-

i = l , . . . , n i=l,. . . ,Ti 

ested in the set of schedules without insertion of voluntary idle times, except 
before the first job assigned on each machine. 
Li and Cheng show that the problem is strongly ATP-hard and present a 
greedy heuristic, denoted by HLCl. The jobs are grouped by decreasing order 
of their weights Wi and are placed iteratively on machine Mj which minimises 
\Li\. The algorithm is presented in figure 5.29. The worst case ratio of this 
heuristic is given by / ^ f f V/mao: < 2m. 

Example. 
We consider a problem for which n = 10, m = 2 and d = 40. 

i 
Pi 
Wi 

1 
2 
20 

2 
4 
19 

3 
6 
18 

4 
8 
17 

5 
10 
16 

6 
12 
15 

7 
14 
14 

8 
16 
13 

9 
18 
12 

10 
20 
11 

(i) L = {J i , . . . , Jio}, 
(ii) We schedule the m first jobs on the machines and we obtain the partial schedule 
presented in figure 5.27. 

M, 

M, 

38 

Jo 

36 
d=40 

Fig. 5.27. A partial schedule 

Xi =2, yi=y2 = 0, X2 = 4, 
(iii) We schedule the remaining jobs and we obtain the schedule presented in figure 
5.28. 

An improvement of this heuristic can be obtained by recalculating the start 
time of the first job on each machine. For this an ideal common due date 
dj for all jobs scheduled on machine Mj, is calculated by considering that 
the sequence of jobs is fixed. Let Sj be the sequence of jobs processed on 
Mj. The due date dj 
Wi{dj -Ci) = Wi'{Ci> 

is such that 3Ji e S^ 
-dj) = max {wk\Ck 

j/Ci < dj,3Ji> G Sj/Ci' > dj and 
dj\). The new start time of the 

first job on machine Mj is then increased by rf — dj, i.e. the sequence Sj is 
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M, 

M , 

'10 

22 32 38 52 72 

J. J-, 

14 56 28 36 

d=40 

J max ^̂ ^ öoZ 

Fig. 5.28. The schedule calculated by the heuristic HLCl 

ALGORITHM HLCl 
— Xj is the time at which machine Mj starts to process */ 

/* the jobs assigned on it */ 
/* d -h yj is the time at which machine Mj completes to process */ 
/* the jobs assigned on it */ 
Step 1: /* Initialisation of the algorithm */ 

L — {Ji sorted by decreasing value oiwi)\ 
For 2 = 1 to m Do 

J f c -L [ l ] ; 
Assign job Jfc on machine Mi such that Ck = d\ 
Xi =pk] Vi = 0; 

L = L-{Jk}; 
End For; 

Step 2: /* ScheduHng of the n — m remaining jobs */ 
For i = 1 to (n — m) Do 

• Jk = L[l]; 
Let machine Mj be such that Xj is minimum; 
Let machine Mjf be such that yjf is minimum; 
If {{yjf -\-pk <Xj) or {d- Xj < pk)) Then 

Job Jk is scheduled last on machine Mjf; 
Vf = Vj' -^Vk\ 

Else 
Job Jk is scheduled first on machine Mj ; 
Xj = Xj -\- Pk] 

End If: 
L = L-{Jkh 

End For; 
Step 3: Print the resulting schedule and fmax{E , T ); 

[Li and Cheng, 1994] 

Fig. 5.29. An heuristic algorithm for the P\di 
nmü\fmax{E , T ) problem 

d non restrictive, 
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timeshifted. The heuristic, denoted by HLC2, is presented in figure 5.30. Its 
complexity is in 0{mn'^) t ime. 

ALGORITHM HLC2 
/* Sj is the sequence of jobs processed on machine Mj */ 
/* tj is the start time of the first job on machine Mj */ 
Step 1: Compute a schedule s using the heuristic HLCl; 
Step 2: For ?' = 1 to m Do 

Sequence again the jobs Ji processed on Mj and 
such that Ci < d, by decreasing value of Wi] 

End For; 
Step 3: /* We compute the new start times of machines */ 

For j = ltom Do 
/* We compute the ideal due date for this machine */ 
Z = oo; 
Fbr i = 1 to \Sj\ Do 

• For fe = i + l to | 5 . | Do 
^/ ^ i'^Sj [i] Csj [i\ + wsj [k] Csj [k]) ^ 

{wSj[i]-\-WSj[k]) 
U{ws,m\Cs.[i]-d'\<Z)Th^ 

End If; 
End For; 

dj = d\ Z = wsj[i\ X \Csj[i\ - d'\; 

End For; 
/* The jobs processed on Mj are timeshifted */ 
tj = tj -{- d — dj; 

End For; 
Step 4: Print the resulting schedule and the value of the objective function; 

[Li and Cheng, 1994] 

Fig. 5.30. An heuristic algorithm for the P\di 
fmax (E^ , T"^) problem 

d non restrictive, nmit\ 

Li and Cheng propose next a lower bound on the value of the objective 
function, which is used to measure the performance of the heuristic HLC2. 
Experimental results show tha t with m fixed, the average ratio f^^^'^/LB 
decreases when the number of jobs increases. Conversely, when n is fixed the 
average ratio increases proportionally with the number of machines. 

Regarding the multicriteria approach used by Li and Cheng to tackle the 
Just-in-Time scheduling problem, we notice tha t the objective function con
sidered is a particular case of an objective function produced from the goal-
a t ta inment approach (see chapter 3). In fact, it is suSicient to consider the 

objective function min {—{bi — \Li\)) with Wi = ^ and bi = 0, Vz = 1,... , n. 
i = l , . . . , n Vi * 
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This implies that for each job, we associate a criterion defined by \Li\ and 
that one or several weak Pareto optima for these n criteria are determined. 

5.6.4 Other problems 

• The problem which is considered in the literature as the basis of JiT 
scheduling problems is denoted by l\di\Fe{T, E). It is AfV-hand because the 
l|(ii|T problem is so. [Szwarc, 1993] studies the sequencing of two jobs if 
they have to be performed consecutively and with no idle time between the 
two processings. The original problem may break down into blocks where 
the jobs of a block are scheduled consecutively and two successive blocks 
are separated by an idle time. The sufficient conditions proposed are then 
used to sequence the jobs within the blocks. Szwarc proposes a branching 
scheme, useable in a branch-and-bound procedure, which does not consider 
schedules dominated by the previous conditions. He considers similarly the 
particular case where di = d, \/i = l,. . . ,n. Besides, [Azizoglu et al., 1991] 
propose for the l\di, nmit\Fe{T, E) problem, an adaptation of the heuristic 

presented by [Ow and Morton, 1989] for the l\di^nmit\Fe{E^,T ) problem. 
A branch-and-bound procedure is similarly proposed and experimental re
sults show that in the more favourable configurations problems with up to 
20 jobs can be solved. 
|Kim_and Yano, 1994] tackle the l\di\Fi(E,T) problem, with Fi(E,T) = 
E -\- T, and propose heuristics and an exact algorithm to solve it. We re
call that when the sequence of jobs is known, calculation of start times can 
be realised in 0(nlog(n)) by an algorithm proposed by [Garey et al., 1988] 
(see algorithm EGTWl). In the case where only two jobs Ji and Jj have to 
be sequenced, with di < dj^ Kim and Yano show that if they confiict {i.e. 
dj — di < pj) then: 

1. Ji is scheduled before Jj if di -\-pj — dj < dj +Pi — di and Jj is scheduled 
before Ji otherwise (figure 5.31, case a). 

2. If the jobs are scheduled before di then Ji preceeds Jj if pi > pj and Jj 
preceeds Ji otherwise (figure 5.31, case b). 

3. If the jobs are scheduled after max(di — p^, dj — pj) then Ji preceeds Jj 
lipi < Pj and Jj preceeds Ji otherwise (figure 5.31, case c). 

These results can be used as dominance conditions in a branch-and-bound 
procedure even if they are particular cases of earlier results presented by 
[Szwarc, 1993]. Kim and Yano propose next two lower bounds and a branch-
and-bound algorithm. To calculate an upper bound they apply the algorithm 
for the calculation of start times EGTWl beginning with the sequences ob
tained by several priority rules. Experimental results show that the exact 
algorithm is limited to problems containing around 20 jobs. 
This problem is taken up again by [Fry et al., 1996] who propose a branch-
and-bound procedure based on a breakdown of the problem into blocks. Ex-
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< > 

dj+Pi-d; 

-case a-

-case b-

j 

-case c-

Pî Pj 

d. d 

Pj>Pi 

Fig. 5.31. Different configurations for sequencing two jobs 

perimental results show that this algorithm solves problems with up to 25 
jobs. 
When the insertion of voluntary idle times before every job is forbidden (con
straint nmit), [Fry and Leong, 1986] propose an integer linear program to 
solve the problem. 

• The common due date problem, denoted by l\di = d,nmit\Fe{T,E)^ has 
been studied by [Sundararaghavan and Ahmed, 1984]. The due date d may 
be restrictive which implies that the problem addressed is A/'P-hard, because 
the l\di = d < ^ p i , n m z t | Fz{T,E) problem is also. The set of weakly V-
shaped schedules is dominant. A schedule is said to be weakly V-shaped if all 
the jobs Ji such that Ci < d, are sorted according to the rule LPT and if all 
the jobs Ji such that U > d, are sorted according to the rule SPT (see figure 
5.32). AH the V-shaped schedules are also weakly V-shaped. Notice that if 
the common due date concides with the completion time of a job then weakly 
V-shaped schedules are also V-shaped schedules. 

Fig. 5.32. An example of a weakly V-shaped schedule 
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Sundararaghavan and Ahmed propose an heuristic based on a greedy method, 
n 

inspired by the algorithm proposed by [Kanet, 1981b] for the case d > /]pi' 
i=l 

For the problem with a restrictive common due date denoted by l\di = 
d < ^pi,nmit\F£{T,E), [Bagchi et al., 1987a] propose a branch-and-bound 
procedure. Notice that the notion of restrictive common due date is stated 
in [Bagchi et al., 1986] who are interested in the l\di = d < 5^nmit\Fc{T^E) 
problem with JF>(T, E ) = T + ^ . The bound 5 is defined by 5 = pi + ps + 
. . . + Pn if ^ is odd and 5 = P2 + P4 + • • • + Pn if not (by supposing that 
Pi ^ • • • ̂  Pn)- This quantity represents the value of the date d below which 

n 
the problem is restrictive. Clearly, we have 5 < /^^Pi-

We suppose that all optimal schedules are such that the start time of the 
sequence, noted to, is equal to 0. To solve this problem, Sundararaghavan 
and Ahmed propose a branch-and-bound procedure. [Szwarc, 1989] takes up 
this problem again and studies the case where the date to is fixed in advance 
and equal to 0. He is interested in properties of this problem and proposes 
necessary conditions for a schedule to be optimal. He provides next a branch-
and-bound procedure which makes use of the conditions previously shown to 
prune nodes in the search tree. The value of the initial upper bound is calcu
lated by the heuristic of [Sundararaghavan and Ahmed, 1984]. Experimental 
results show that the algorithm can solve problems with at least 25 jobs. Fi
nally, Szwarc is interested in the case where the start time of the sequence is 
not fixed. He shows, with the help of an example, that contrary to the claims 
of [Bagchi et al., 1986], optimal schedules exist for which to is not equal 0. 

• When the earliness is measured in comparison with desired start times, 
|Kou]amas, 1996] studies the l\su di\Fi(T,'P) problem for which Fe{T,T) = 
T -\- P, Koulamas shows that this problem is A/^P-hard and proposes seven 
heuristics to solve it as well as an optimal algorithm based on an enumera
tion method. Dominance conditions allowing the enumeration algorithm to 
be more efiicient are also described. Experimental results show that two of 
the heuristics produce results which are close to the optimal solution. 

[Chand and Schneeberger, 1988] deal with a particular case of the l\di^nmü\ 
e{E /U) problem where the objective is to minimise the criterion E under 
the constraint [/ < 0, z.e. f/ = 0. Chand and Schneeberger show that for 
this problem, minimisation of the criterion E is equivalent to minimisation 
of the criterion C . They deduce that the problem addressed is A/'T^-hard 
and propose an heuristic based on the algorithm of [Smith, 1956] for the 
l\di^Lmax = 0|C problem. A dynamic programming algorithm to calculate 
an optimal solution is presented and the experimental results show the efii-
ciency of these algorithms. 
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• The l\di\Fi{E^,T ) problem is the generalisation of the basic JiT schedul
ing problem. This problem is strongly AfV-haid given that the l|di|T prob
lem is also. To calculate an optimal solution, [Pry et al., 1987a] consider the 
class of schedules with insertion of voluntary idle times, which is dominant for 
this problem. An heuristic based on an improvement algorithm of an initial 
sequence by permutation of jobs is proposed. It enables only the calculation 
of a jobs sequence. Insertion of idle times before each job is next realised 
by solving a mathematical program. [Fry and Blackstone, 1988] take up this 
problem again in the context of the method of production organisation '^Op
timised Production Technology" (see for example [Goldratt and Cox, 1984]). 
They propose a mixed integer linear program for the single machine schedul
ing problem. The design of tabu search algorithms for this problem is studied 
by [James and Buchanan, 1997] and [James and Buchanan, 1998]. They pro
pose different implementations of two different approaches. In the first the 
algorithm calculates a sequence then solves the mathematical model proposed 
by [Pry et al., 1987a] to obtain a schedule. The second approach considers a 
particular coding of sequences. Por each calculated solution an heuristic is 
used to deduce a feasible schedule. 

• When jobs have distinct release times the problem is noted l\ri^di\Fe{E , 

T ) and is strongly ^fV-ha.rd. [Yano and Kim, 1991] consider a special case 
n 

where the objective function is defined by Fi{E^^T ) = y^{aiEi + ßiTi) 
1 = 1 

where a^ and ßi are functions of the processing times. They propose five 
heuristics and a branch-and-bound algorithm. 
[Mazzini and Armentano, 2001] deal with the general problem with ordinary 
weights and propose a greedy heuristic and a local search heuristic. The for
mer computes a schedule by assigning to each job Ji a priority which is equal 
to di —pi if Vi -\-pi < di and r̂  otherwise. At each iteration the unscheduled job 
with the lowest priority value is inserted in the partial schedule under con
struction. This insertion is done in order to minimize the cost generated in the 
objective function. Conflicts with already scheduled jobs are solved according 
to the rules presented by Mazzini and Armentano. After having scheduled all 
the jobs, a procedure to compute optimal idle times between jobs is used. The 
greedy heuristic requires 0{n^) time. The local search heuristic uses as an 
initial schedule the solution of the greedy heuristic. The neighbourhood oper
ator applied during the search is the Adjacent Pairwise Interchange operator 
(API): at each iteration the heuristic permutates two adjacent jobs and then 
recomputes the optimal idle times for the new sequence obtained. To decide 
if a swap of two jobs can lead to a decrease in the value of the objective 
function, Mazzini and Armentano propose a generalisation of a result pre
sented by [Ow and Morton, 1988]. This one states a necessary condition to 
have precedences between jobs in an optimal schedule. Some computational 
experiments show that the local search heuristic does not improve so much 
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the schedule computed by the greedy heuristic. The average improvement is 
around 0.3%. 

• [VandenAkker et al., 1998a] and [VandenAkker et al., 1998b] are interested 
in the previous problem when we have di = d>Y^pj, Vz = 1,..., n. The prob-

lem addressed is therefore denoted by l\di = d > Y^pj,nmit\Fi{E ,T ). 
This problem is AfV-haid because the problem with symetrical weights is so 
(see [Hall and Posner, 1991]). Van den Akker, Hoogeveen and Van de Velde 
notice that in some optimal schedules, the common due date d coincides with 
the completion time of a job. The jobs completing before the date d must 
be sorted by decreasing order of the values ^ whereas those completing af
ter the date d must be sorted by increasing order of the values |^. To solve 
this problem an exact algorithm combining the lagrangean relaxation and a 
method of columns generation is proposed. Experimental results show that 
problems with up to 125 jobs are solved in less than 8 minutes. 
[Azizoglu and Webster, 1997] consider this problem when families of jobs are 
defined. When two jobs belonging to two different families are processed 
consecutively, a setup time must be considered. Thus, we attribute to 
each family a setup time supposed to be independent of the other fam
ilies. The problem addressed by the authors can be denoted by l\di = 

Q; g 

d>J2Piy *5'sd,nmit,classes\Fi{E ,T ). Azizoglu and Webster present some 
properties which enable the determination of an optimal schedule. These 
properties are generalisations of results presented in [Hall and Posner, 1991] 
in the case where the weights of the criteria are symetrical {i.e. a^ = /3i, 
\/i = l , . . . ,n) and if there is only a single jobs class. As for the the prob
lem without setup times ([VandenAkker et al., 1998a]), Azizoglu and Web
ster show notably that an optimal schedule exists such that the due date d 
coincides with the completion time of a job. Moreover, they show that an 
optimal schedule exists in which the jobs completed before the date d must 
be sorted by decreasing order of the values ^ whereas those completing after 
the date d must be sorted by increasing order of values ^. A branch-and-
bound procedure using the properties introduced, to reduce the size of the 
search tree, is then presented. An heuristic based on a filtered beam search is 
also proposed. Experimental results show that the exact algorithm can solve 
problems with 20 jobs in less than 15 minutes. 
[Webster et al., 1998] tackle a similar problem where the due date d is 
unknown, i.e. is a variable to be determined. This problem is denoted 
by l\di = d unknown, Ssd,'f^'nnit\Fe{E ,T ) and is AfV-haid because the 
l\di = d> Y^Pi\ Ylwi{Ti-\-Ei) problem is also (see [Hall and Posner, 1991]). 
Webster, Job and Gupta remind us that for this problem, insertion of vol
untary idle times before execution of the jobs is not necessary in order 
to calculate an optimal solution. To solve it they propose a genetic algo
rithm which they compare to the branch-and-bound procedure presented by 
[Azizoglu and Webster, 1997]. The computation time allocated to the exact 
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algorithm is one hour maximum. The experimental results show that the ge
netic algorithm produces better results than the truncated branch-and-bound 
procedure. 

• [Gupta and Sen, 1983] are interested in the l\di,nmit\F{Ei,Ti) problem 
n 

with F{Ei,Ti) = ^{Ei-VTif. To solve it they propose a branch-and-bound 

procedure where each node is evaluated by a lower bound which is calculated 
using the SPT rule and a neighbouring algorithm. Secondly, an heuristic is 
presented. This heuristic is the branch-and-bound algorithm in which certain 
nodes are not explored. The choice of non explored nodes is made according 
to the following step: consider a constant y > 0 and Xk the number of nodes 
generated to obtain the fcth complete sequence (corresponding to a leaf of the 
tree). The heuristic terminates the exploration of the tree when Xk-^\ > Yxk-
Some experimental results show that the heuristic is very successful (in both 
quality and time). 
[Bagchi et al., 1987b] are interested in this problem when all the jobs have 
the same due date which has to be determined. The problem obtained is 
denoted by l\di — d,nmit\F{Ei^ Ti). Two cases can be distinguished, i.e. 

n 
the problem with d > / ^ P i (non restrictive case) and the problem with 

i=l 
n 

d < 2 j P i (restrictive case). For each case a branch-and-bound procedure 
i=l 

which calculates the optimal schedule and due date is proposed. Dominance 
conditions are also presented and they allow the second problem to be solved 

n 

efficiently. Gupta and Sen show that in the case where d = ^/^P^ their 

algorithm is faster than that proposed by [Eilon and Chowdhury, 1977]. 
• [Dileepan and Sen, 1991] consider in the l\di,nmü\F{E,T, C) problem 

n 
with F(E,T,C) = (1 - a ) ^ ( i ? ) + aC and propose a branch-and-bound 

i= i 
procedure. Experimental results show that their algorithm is faster than that 

n 
of [Gupta and Sen, 1983] who solve the l |di |y^(L?) problem. 

• [Bagchi et al., 1987a] study the l\di = d,nmit\Fe{^Ef, Y^Tf) problem 
and distinguish restrictive and non restrictive problems, i.e. problems for 

n n 

which d > 2^ Pi ^^d ^ < z2^^' ^^ ^^^ ^^^^ ^^ ^^^^ problem they propose a 
2 = 1 2 = 1 

branch-and-bound procedure which takes into account dominance conditions 
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to prune nodes in the search tree. Some experimental results are also pre
sented. 

• Accounting for a criterion linked to the storage costs of semi-finished prod
ucts is studied by [Fry et al., 1987b] who are interested in the l\di\Fi{C^ T, E) 
problem. This problem is J\fV-ha.id because the l|(ii|T problem is also. They 
propose a branch-and-bound procedure which uses dominance conditions at 
each node of the search tree. Besides, the insertion of idle times between each 
job is realised by solving a linear program. This model, denoted by EFLRl, 
is presented in figure 5.33. It is solved at each node of the tree by considering 
only jobs which have already been sequenced. Experimental results show that 
the branch-and-bound procedure solves problems with up to 15 jobs. 

Mathematical formulation EFLRl 
Data: 

Variables: 

Objective: 

Constraints: 

n, the number of jobs, 
a,/5,7, the criteria weights, 
s{i)y i — 1,..., n, the number of the job in position i, 
Pi, i = 1, ...,n, the processing time of job Ji, 
di, i = 1, ...,n, the due date of job 3%. 
6i, i=l,...,n, length of the idle time inserted before job Ji , 
Ci, i = 1, ...,n, the completion time of job Jj, 
£ î, 2 = 1, ...,n, the earliness of job J», 
Ti, i = 1, ...,n, the tardiness of job Ji. 

n 

Minimise ^{aEs(i) + ßTs(i) + 7^5(0) 

Cs(i) — T(^s(i-i) + Es(i-i) — 6s(i) = ds(i-i) +Ps(i), Vz = 1, ...,n 
-Cs(i) -\-Ts(i) - Es(i) = -ds(i), V2= l,...,n 
Ts(o) = Es(o) = ^s(o) = 0 
Es(i) > 0, Vi = l,...,n 
T,(i)>0, Vi=l , . . . ,n 
^s(i) > 0, Vi = l,...,n 

Fig. 5.^3^ Â  mathematical model for the calculation of start times for the 
l\di\Fe{C,T,E) problem 

5.7 Open problems 

Few JiT scheduling problems have an open complexity and often we are 
concerned with very particular problems. 

5.7.1 The Q\di = d unknown^ nmit\Fi{E^T) problem 

[Emmons, 1987] is interested in a Just-in-Time scheduling problem where the 
machines Mj have different processing speeds denoted by kj. The time nee-
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essary to process job Ji on Mj is |^ . The complexity of this problem is open. 

The objective function Fe{E^T) = aE + ßT can be rewritten in the form 

J2{J2^ ^(^- 1 ) ^ + £ ^ X ̂ P[n-e.-^ihj^ ^ . ^ j ^ ^̂  ^j^^ number of early 
j = l e=l ^̂ ' e=l ^̂ ' 
and on-time jobs assigned to Mj, Uj the number of tardy jobs assigned to Mj 
and p[e]j the processing time of the job assigned to position e on Mj. The 

common due date d is then defined by cJ = max 
^•yPMAy The algorithm 
e=l -̂  

proposed by Emmons, denoted by HEM3, solves the problem by considering 
the jobs in decreasing order of their processing time and by assigning them 
to the machines, in such a way as to load them in proportion to their process
ing speed. This algorithm is a generalisation of the algorithm EEMl which 
solves the problem on identical machines. The algorithm HEM3 is presented 
in figure 5.35. 
Example. 
We consider a problem for which n = 1 0 , m = 2, a = 4 and ß = 1. 

1 2 i 
Pi 

1 
20 

2 
18 

3 
16 

4 
14 

5 
12 

6 
10 

7 
8 

8 
6 

9 
4 

10 
2 Kj 

(z) Al = (Ji), A2 = (J2), Ri = 0, Ä2 = 0. 
(ii) 1̂ = 1, 2̂ = 1 

Ai = {JuJ3), A2 = {J2), Ä1=0, i?2 = 0. 
(in) 1̂ = 2, ̂2 = 1 

Al =(Jl,J3), ̂ 2 = (J2,J4), i?l=0, R2=9. 
(iv) 1̂ = 1, 2̂ = 1 

Ai = (Ji,J3), A2 = {J2,J4), Rl = (J5), R2 = t 
{v) ̂ 1 = 1, 2̂ = 2 

Al = (Ji, J3), A2 = (J2, J4), îi = (J5), Ä2 = (Je). 
(i;z) After the last iteration of the algorithm we obtain: 
Al = (Ji, J3), A2 = (J2, J4), Ri = (J9,t/7, J5), R2 = (Jio, Js, t/e)-
(i;n) d = max(36/3; 32/1) = 32. We obtain the schedule presented in figure 5.34. 

5.7.2 Other problems 

• [Adamopoulos and Pappis, 1996] tackle the l\di unknown^ nmit\Fi{E ,T ) 
problem. They consider moreover that the weights of earliness and tardiness 
are functions of job processing times. To solve this problem, they propose 
four branch-and-bound procedures. Each of these is adapted to a particular 
definition of the weights. The due dates di are calculated according to the 
model SLK. 
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M. 

M. 

1 

2 J2 

Ji J3 

60/3 80/3 

J4 

18 

Tf J7 J5 

100/3 108/3 120/3 

•̂ 10 

; 
1 Js 
34 40 

h 
50 

d=32 

Fe(E,T) = 3U/3 

Fig. 5.34. The schedule calculated by the algorithm HEM3 

ALGORITHM HEM3 

/* We assume that pi > . . . > Pn */ 
/* Aj is the list of early jobs on Mj */ 
/* Rj is the list of tardy jobs on Mj */ 
Step 1: /* We compute the lists Aj and Rj */ 

For 2 = 1 to n Do 
If (z < m) Then 

/* Job Ji the first one scheduled on Mi */ 
Ai = {Ji}; Ri = 0] 

Else 
Let h be such that a{\Ae^ \ - l)/ke^ = min ia{\Ae\ - l)/ke); 

Let £2 be such that ß\Re^\/ke^ = _min {f3\Ri\/ke); 

If {a{\Ae,\- l)lki, < ß\Re,\/ke,) T h e T 
/* Job Ji is scheduled early on M^̂  */ 
Ae,=AeJ/{Jih 

Else 
/* Job Ji is scheduled tardy on Mi^ */ 

End If 
End If 

End For 
Step 2: /* We schedule the lists */ 

d- max 
j=l,...,m 

(E^); Kj 

All the sequences Rj start at time t = d; 
For j = 1 to m Do 

Aj starts at time t = d— y^pA^m/kj; 
fc=i 

End For _ _ 
Step 3: Print the resulting schedule, aE + ßT and d] 

[Emmons, 1987] 

Fig. 5.35. An heuristic algorithm for the Q\di = d unknown, nmit\Fe{E,T) prob
lem 
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• Minimisation of the largest deviation between the algebraic lateness leads 
to the determination of a JiT schedule. The l\di^ nmü\ Fe{Lmax^Lmin) prob
lem with Fe{Lmax^Lmin) = Lmax — Lmin and Lmin = «lin {Li) is treated 

i = l , . . . , n 

by [Gupta and Sen, 1984]. They only consider the set of semi-active sched
ules which is not dominant for this problem and propose a branch-and-bound 
procedure to solve it. An improvement of the bounds used in this problem is 
proposed by [Tegze and Vlach, 1988]. 
[Liao and Huang, 1991] propose for this problem an algorithm in 0(n^plog(n)) 

n 

time where p = / J Pi- The special feature of this algorithm is in the fact that 
i=l 

it concerns an a posteriori algorithm for the l\di,nmit\e{—Lmin/L>max) prob
lem which chooses among the calculated solutions the strict Pareto optimum 
which minimises Lmax - Lmin-
Accounting for a criterion linked to the the work-in-process minimisation is 
studied by [Sen et al., 1988] who are interested in the l|cfi, nmit\F^{C^ Lmax — 
Lmin) problem. They propose a branch-and-bound procedure to enumerate 
the set of strict Pareto optima. Given that a convex combination is minimised, 
this algorithm only determines the set of supported strict Pareto optima. Ex
perimental results which are presented show that for a problem with 9 jobs 
the average number of supported strict Pareto optima is between 5.2 and 8.3 
for an average computation time between 2.4 and 38.1 seconds. 



6. Robustness considerations 

6.1 Introduction to flexibility and robustness in 
scheduling 

Scheduling is generally seen as a function with known inputs. For instance, 
the set of available machines is supposed to be known and the processing 
times of operations are supposed to be fixed. The model used for solving the 
problem is supposed to be the most suitable model - even if it is often a model 
corresponding to a simplified version of the problem ([McKay et al., 1998]). 
However, it is well known that real-word scheduling problems usually are very 
different from the mathematical models studied by researchers in academia 
([Pinedo, 1995]). 
Sometimes, the scheduler does not take care of the real application of its 
schedule, because this schedule is only used for simulating reasons. But in a 
real-world context, jobs arrive continuously, machines can break down, op
erators may be absent, critical tools may already been used, raw materials 
deliveries can be delayed, preferences of operators are not taken into account, 
processing times are not perfectly known, etc. When the schedule has to be 
applied the probability to process this schedule exactly as planned is very 
low. 
In such a context, it is clear that decision makers have to react in real time 
to modify the proposed schedule, in order to always have a feasible solu
tion and the notion of "quality" of a schedule can be discussed. The quality 
of a schedule is valid before the schedule becomes on line, but on line, the 
problem is to maintain a feasible solution, without blocking problems and if 
possible with a good quality. We can notice that an optimal schedule can be 
modified very quickly in a real time context, and can lead finally to a very 
bad solution, if this apparently optimal schedule was very sensitive to the 
perturbations that occur. On the other hand, a schedule with a "not so bad" 
value of the objective function may lead to a "not so bad" solution even after 
some unexpected events, if it was not too sensitive to the perturbations. This 
is the reason why searching for a compromise between the quality and the 
robustness of a schedule takes all the sense. 
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When the scheduler does not take uncertainty into account when build
ing a solution, the proposed solution is called a predictive schedule and 
the solution approach a predictive approach. In order to deal with uncer
tainty, [Davenport and Beck, 2000] separate solution approaches into two cat
egories: proactive approaches that take account of some knowledge of uncer
tainty, and reactive approaches for which the schedule is revised in real time, 
each time an unexpected event occurs. [Herroelen and Leus, 2005] distinguish 
five approaches in project scheduling, considering also stochastic scheduling, 
scheduling under fuziness and sensitivity analysis as possible approaches. 
The aim of proactive scheduling is to make the schedule more robust. Several 
definitions ([Davenport and Beck, 2000]) have been proposed for robustness 
in the hterature. Among others, [Billaut et al., 2005] state that a schedule is 
robust if its quality is little sensitive to data uncertainties and to unexpected 
events, and for [Leon et al., 1994] a robust schedule is one that is likely valid 
under a wide variety of disturbances. [Davenport and Beck, 2000] conclude 
that when dealing with uncertainty, it is very likely to employ both proactive 
and reactive techniques. 
Robustness is related to flexibility, that can be seen as a freedom given in 
real time to the decision maker, allowing him to repair the schedule if an 
unexpected event or a non modeled constraint makes it infeasible. Flexibil
ity can take several aspects ([Billaut et al., 2005]). The temporal flexibility 
allows a decision maker to start an operation earlier or latter, the sequencing 
flexibility allows the decision maker to modify or to define its own sequence 
of operations on a machine, the assignment flexibility allows to modify the 
assignment of an operation to another resource and finally the mode flexibility 
allows to modify the execution mode of an operation (overlapping, preemp
tion, setup considerations, etc.) in real time. 

When considering robust scheduling problems, one difiiculty is to define a 
measure of the robustness or of the flexibility that is proposed in real time. 
Some approaches in the literature associate two measures to a schedule: a 
measure for the robustness or the flexibility, that has to be maximized and a 
measure for the quality of a schedule. The measure of the quality is generally 
a classical objective function in scheduling like makespan or maximum late
ness. We focus in this chapter on the approaches in the literature dealing with 
robustness and consider more than one criterion. Other approaches dealing 
with a single criterion concerning robustness, flexibility, or stability are not 
presented here. The interested reader can refer to the more recent surveys of 
[Aytug et al., 2005] and [Herroelen and Leus, 2005]. 

Some of the approaches presented in this chapter propose sequential flexibility 
by characterizing a set of solutions. Since these approaches does not explicitly 
make any assumption on which uncertainties are considered and how, they 
are not really "proactive methods". But since the aim of these methods is to 
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propose to the decision maker some possible decisions related to the sequence 
of operations, respecting a given quality of the final solution, and with the 
concern to provide robustness, these methods are not only "predictive" ones. 
Section 6.2 presents approaches that aim at characterizing a set of solutions 
for some scheduling problems. Section 6.3 presents approaches that deal with 
single machine problems. Section 6.4 focuses on flowshop and jobshop prob
lems whilst Section 6.5 deals with resource constrained project scheduling 
problems. 

6.2 Approaches that introduce sequential flexibihty 

6.2.1 Groups of permutable operations 

[Artigues et al., 2005] consider a general shop scheduling problem where n 
operations have to be scheduled on m machines, rrii denotes the machine al
located to the processing of operation O«. Each operation Oi has a release date 
ri and a due date di and there are precedence relations between some pairs 
of operations. Instead of a sequence of operations, the authors associate to 
each machine a sequence of groups of operations where the operations within 
a group are totally permutable ([Erschler and Roubellat, 1989]). Hence, the 
problem is to assign each operation to mutually exclusive ordered groups, so-
called the ordered group assignment problem. An ordered group assignment, 
denoted by 77, defines on each machine M^, a sequence gk.ii" ">9k,uk oi Uk 
groups where Uk ^ 'rik, the number of operations processed on Mk verifying 

Uk J^k 

U, 9k,T = {Oi\mi = Mk} and n gk,r = 0-
r = l r = l 
Let g{i) denote the group that contains operation Oi. We have \g{i)\ > 1. 
We assume that on each machine Mjt, any operation belonging to a group 
gk,r has to start after the completion of any operation belonging to group 
gk,T-i' In terms of the disjunctive graph, this means that all disjunctive arcs 
are oriented from gk,T-i to gk^r-
Let us consider an example with 8 operations: 1 ^ 2 , 3 ^ 4 , 5 ^ 6 and 7 ^ 8 ; 
operations 1, 3, 6 and 8 are processed on machine Mi, operations 2, 4, 5 and 
7 are processed on machine M2; all the processing times are unitary, all the 
release dates are equal to 0 and all the due dates are equal to 4. 
The sequence of groups that is represented in figure 6.1 enables to character
ize 16 schedules, without enumerating them: for any order of the operations 
inside each group, the precedence constraints and the due dates are answered. 

To evaluate a given ordered group assigment 77, a worst-case earliest comple
tion time is associated to each operation. The worst-case earliest completion 
time Q^ is the maximum earliest completion time of operation Oi among all 
the semi-active schedules characterized by 77". Artigues et al. show that all 
the worst case earliest completion times can be determined by longest path 
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QMS 
1 1,3 1 6,8 1 

1 5,7 1 2,4 1 

Fig. 6.1. Example of a sequence of groups 

computations in a graph associated with an ordered group assignment. They 
provide the steps to build this graph. 

The flexibility of an ordered group assignment is intuitively related to the 
total number of groups, denoted by #Gps. They also propose, as a measure 
of flexibility, the number of characterized sequences, denoted by #Seq. The 
quality of an ordered group assignment is given by the quality of the worst 
characterized schedule. Thus, if the flexibility increases (the number of groups 
decreases), the number of characterized sequences increases and the quality 
of the worst characterized schedule decreases. In practice, it is necessary to 
reach a compromise between the proposed flexibility and the quality of the 
worst characterized solution. To tackle this multicriteria scheduling problem, 
the authors use the e-constraint approach assuming that the objective is to 
maximize the flexibility, respecting a threshold value on the quality. 

The authors propose some algorithms for single machine problems. For solv
ing jobshop problems, a branch-and-bound algorithm is used to optimally 
solve the classical J||Cmaa; problem. Then, a heuristic algorithm is proposed 
to build groups on machines, starting from the known optimal solution, i.e. 
given the optimal sequence of jobs on each machine. A maximum deviation A 
on the makespan value is given, which leads to the definition of deadlines for 
all jobs and then algorithms for single machine problems are used iteratively. 
Artigues et al. notice that for problems with n > m, a high level of flexibility 
can be reached for an acceptable increase of the worst case makespan. 

[Esswein et al., 2005] tackle three classical two-machine shop problems: the 
F2\\Cmax, the J2\\Cmax and the 02\\Cmax problems. A measure for the flex
ibility is proposed: 

2n-#Gps 
^ 2n-2 

so that if all the operations are assigned to the same group, the flexibility 
is equal to 100% (one group per machine), and if there is only one oper
ation per group (no flexibihty), (j) is equal to 0%. The authors search for 
a compromise between the flexibility and the worst characterized schedule. 
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Heuristic algorithms with interesting worst-case performance ratio are pro
posed to solve these problems. For the flowshop problem, one interesting 
result is that a heuristic algorithm enables to provide high flexibility even if 
the upper bound on the quality is set to the optimal makespan value. 

The presented concept of ordered group assignment is equivalent to the con
cept of ordered assignment introduced by [Wu et al., 1999]. 
It can be noticed that this concept of groups of permutable operations 
has been implemented in a real time workshop scheduling software package 
ORDO^, used now in more than 60 companies ([Billaut and Roubellat, 1996]). 

6.2.2 Partial order between operations 

[Aloulou, 2002] considers a single machine environment where release times 
are associated to the operations. In order to propose not only a single solution 
to the decision maker, but a set of solutions, Aloulou proposes to characterize 
a set of solutions 5 by a partial order between operations. Two criteria are 
associated to measure the quality of a partial order. Since it is not possible 
to enumerate all the characterized solutions, only the quality of the best 
characterized solution and of the worst characterized solution for both criteria 
are determined ([Aloulou et al., 2004]). We denote by Z^^'^'iS) and Z^^^'^iS) 
the value of the best and the worst characterized solution for criterion Z^, 
1 < f c < 2 . 
Finally, the performance of a partial order between operations is a function of 
these four parameters plus the coordinates of the Utopian point (minimimum 
of each criterion when considered separately, denoted by Z^ and Z2). Figure 
6.2 illustrates the definition of the quality of a set of solutions. 

Z2 

Utopian point 

y m a x 

r^min 

Z2 
A/f * 

• 

• 

• 

• 

• 

• 

• 
1 
1 
1 
1 
1 
1 

1 

1 

1 
1 

zr zr zr 
Zi 

Fig. 6.2. Quality of a set of solutions characterized by a partial order of operations 

A measure of the performance of a solution S is given by the following rela
tions. 
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D{S) = aDiiS) + {1 - a)D2{S) 

^k ^k 

with a and ßk real parameters belonging to the interval [0,1]. 
The smaller the value D{S) the best the solution 5. 

The ideal measure of the sequential flexibility is the number of characterized 
solutions, i.e. the number of "linear extensions of a partially ordered set", 
but this problem is #P-complete as shown by [Brightwell and Winkler, 1991]. 
Thus, Aloulou measures the sequential flexibility by the number of non-
oriented edges in the transitive graph representing the partial order, i.e. the 
number of non fixed precedences. This measure is denoted by Zseqfiex • A s a 
measure for the temporal flexibility, Aloulou proposes to compute the mean 
slack, where the slack is determined with the worst possible starting time for 
each operation. This measure is denoted by Ztempfiex-
[Aloulou, 2002] provides a genetic algorithm to find solutions that minimize 
a linear combination of D{S)^ Zseqfiex and Ztempfiex-

[Policella, 2005a, Policella, 2005b] considers a resource constrained project 
scheduling problem with minimum and maximum time lags. The aim is to 
propose a set of solutions with an implicit and compact representation of 
this set. The author introduces a partial order schedule (VOS), i.e. a set of 
feasible solutions to a scheduling problem that can be represented by a graph 
with the activity on nodes and with arcs to represent the constraints between 
activities, such that any "time feasible" schedule defined by the graph is also 
a "feasible" schedule. The makespan of a VÖS is defined as the makespan 
of its earliest start schedule, where each activity is scheduled to start at its 
earliest start time. 

Some metrics are proposed to compare VOS [Policella et al., 2004]. Two met
rics give an evaluation of the flexibility and one measure gives an evaluation 
of the stability of the solutions found. 
The first measure for evaluating the flexibility is Zseqfiex (as defined in 
[Aloulou and Portmann, 2003]). The second metric is based on the slacks 
associated to the activities: 

stackfiex i^ H xnx(n-l) 

with ti and Ci the starting time and the completion time of activity z, H the 
horizon time and n the number of activities. d{tl, t2) is the distance between 
the two time points ti and ^2- This metric characterizes the fluidity of a 
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solution, i.e. its availability to absord temporal variation in the execution of 
activities. The higher the value of Zslack flex the higher the probability of 
localized changes. 
To measure the stability, [Policella et al., 2004] introduce a third measure, 
called disruptibility, denoted by Zdisrup and defined by: 

1 v ^ sli 
^disrup — / . • / • A \ n^numn^Ai) 

1 = 1 

with sli the slack of activity i (difference between latest and earliest starting 
times) and num{i, Ai) a. function that returns the number of activities that 
are shifted in the process if activity i is shifted to the right for Ai time units. 
For solving the problem, [Policella et al., 2004] propose several heuristic al
gorithms. The more efficient is called the two-step ESTA^ procedure (for 
Earliest Start Time Algorithm with a post processing phase), that first com
putes a solution and then translates it into a flexible VOS. 

6.2.3 Interval s t ruc tures 

[La, 2005] considers the l\ri^di\Lmax problem and aims at proposing a set 
of solutions to the decision maker. An interval [ri,di] is associated to each 
operation Oi and an interval structure is defined based on [Allen, 1981]'s 
relations. Let us consider two intervals A and B, during(A,B) is true if and 
only if rß < r^ < d^ < dß. A top of an interval structure is an interval T 
such that for all A, Aliens' relation during (A, T) never holds. Given a top Tai 
a T-pyramid Pa is a set of intervals A such that during(T, A) holds. 
[Erschler et al., 1983] show that a set of dominant sequences is composed by 
sequences such that: 

• the tops of intervals are sequenced in the r̂  increasing order {di in case of 
equality), 

• before the first top of interval, are sequenced the operations that belong to 
the first T-pyramid in the ri non decreasing order, 

• after the last top of interval, are sequenced the operations that belong to 
the last T-pyramid in the di non decreasing order, 

• between two tops T^ and Tk^i are sequenced first the operations that 
belong to Pk and not to P/e+i in the di non decreasing order ; then the 
operations that belong to Pk O Pk-\-i in an arbitrary order ; and finally the 
operations that belong to P/c+i but not to Pk^ in the r̂  non decreasing 
order. 

Figure 6.3 illustrates an interval structure for the following example: n = 6 
operations, release dates r = (2,1,0,6,4,8), due dates d = (3,5,10,7,9,11). 
The tops of this interval structure are operations Ti = 1, T2 = 4 and T3 = 6, 
and the T-pyramids are Pi = {2,3}, P2 = {3,5} and P3 = 0. This inter
val structure characterizes the following sequences: (3,2,1,5,4,6), (3,2,1,4,5,6), 
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(3,1,2,5,4,6), (3,1,2,4,5,6), (2,1,3,5,4,6), (2,1,3,4,5,6), (1,2,3,5,4,6), (1,2,3,4,5,6), 
(2,1,5,4,3,6), (2,1,4,5,3,6), (1,2,5,4,3,6), and (1,2,4,5,3,6). 

H — I — I — h H — \ — h 
9 10 11 0 1 2 3 4 5 6 7 

^ — I — \ — h 
3 4 5 6 7 8 9 

Fig. 6.3. Illustration of an interval structure 
10 11 

La proposes one measure for the flexibility and two measures for the quality. 
The flexibility is equal to the number of characterized sequences, which is 
equal to 119=1 (^ + 1)"̂ ^ with P the number of pyramids and riq the number 
of operations different from a top, that belong exactly to q pyramids. For the 
example, Ylq=.i{Q + l)""" = (1 + 1)^ x (2 + l) i x (3 + 1)^ = 4 x 3 x 1 = 12 
sequences. 
Two measures are associated to each operation: its best possible lateness and 
its worst possible lateness, both computed in 0 ( n log n). The quality of a set 
of solutions is measured by the maximum of the best possible lateness for 
all the operations, denoted by max(L^^") and by the worst possible lateness, 
denoted by max(L^^'^). 
A branch-and-bound algorithm is proposed to characterize a set of solutions. 
Problems with 100 operations are solved in less than two seconds on the av
erage, and enable to characterize up to 10^^ sequences. 

A base of an interval structure is an interval B such that for all A, Allen's rela
tion during(B, A) never holds. Given a base Ba, a ^-pyramid Pa related to Ba 
is the set of intervals A such that during(A,B)a holds. [Briand et al., 2005] 
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use the concept of 6-pyramid to characterize a subset of optimal sequences for 
the F2\\Cmax problem. Two interval structures are defined: an interval struc
ture with the jobs such that pi^i < pi^2' an interval [pi,i,Pi,2] is associated to 
these jobs; and an interval structure with the jobs such that pi^i > pi^2' an 
interval [pi,2,Pi,i] is associated to these jobs. A huge number of solutions are 
characterized in polynomial time, including all the Johnson's sequences. 

This characterization can be considered as robust since the interval structures 
do not change if the relative order of the processing times pi,i, pi^2 remains 
unchanged. 

6,3 Single machine problems 

6.3.1 Stability vs makespan 

[Wu et al., 1993] address the problem of rescheduling jobs after a disruption 
has occurred on the single machine of the system. Heads and tails are asso
ciated to each operation. As a consequence of this disruption, a particular 
operation has an additional and unforeseen processing time. Two conflicting 
scheduling objectives are considered: (1) to minimize the makespan and (2) 
at the same time to minimize the system impact due to the disruption. 
The authors assume that the machine returns to service at time to- A subset 
of jobs denoted by iV' have to be rescheduled. The original schedule is de
noted by SQ. 

The makespan criterion is obtained by totally rescheduling the jobs of N\ 
after an updating of ready times: r̂  = max(ri, to), for any operation i oi N'. 
A new schedule Sm is computed by using the algorithm of [Carlier, 1982]. 
Two measures are proposed for the system impact criterion. In order to min
imize the deviation from the original sequence, operations of N^ are right-
shifted, using up idle times each time it is possible. We denote by Sr the 
right-shift schedule. 
The first measure for the system impact criterion is the average absolute start 
time diff'erences from the original schedule 5o. We denote by U the starting 
time of operation i in the first schedule and f/ in the new schedule S. The 
total start-time deviation is given by: 

DoiS)=^\t^-U\ 
i£N' 

The second measure is based on the right-shift schedule Sr- The total start-
time deviation is given by: 

Dr{S)=J2\ti-t'i\ 
ieN' 
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The authors search for the set of efficient schedules and use a Unear com
bination of criteria to explore the frontier. They propose two sets of local 
search heuristics: pairwise swapping methods and local search based on ge
netic algorithms. All these methods are comparable in terms of quality, but 
one pairwise swapping method requires the least computation time. Results 
show that the stability can be improved significantly with little sacrifice in 
efficiency (measured by the makespan). 

6.3.2 Robust evaluation vs distance to a baseline solution 

[Sevaux and Sorensen, 2004] study a single machine problem in which the 
objective is to minimize the total weighted number of late jobs, denoted by 
l|r-, |[/. They propose a genetic algorithm to solve this problem in its standard 
version, thus using a fitness value f{S) equal to the sum of the weights of the 
late jobs in solution S. This evaluation is called "the quality of a solution": 

n 

f{S) = ^wjUj 

Then, they propose to obtain robust schedules. Assuming that the solution S 
has been obtained with problem data P , that represents the characteristics of 
the jobs, the fitness can be denoted by / ( S , P) . The solution S is implemented 
on a modified set of data, denoted by P^, and evaluated by / ( 5 , Pi). A weight 
Ci is associated to the set of data Pi according to its importance and m 
denotes the number of derived data sets to evaluate. 
The fitness function is replaced by a "robust evaluation function" denoted 
by f*{S) and defined by: 

1 = 1 

This function measures the quality robustness. The robustness of a solution is 
defined by the authors as "a property of a solution that is similar to a given 
baseline solution x^, i.e. for which the distance to the baseline solution is 
small". The distance between two schedules can be interpreted as the number 
of changes that have to be made to the first schedule to turn it into the second 
one, a change being an insertion of a job into the schedule, a deletion of a 
job or the substitution of a job by another one. 
The robustness of a solution is measured by two objectives: the quality ro
bustness and a small distance to the initial solution. The decision maker 
searches for a compromise solution for these two measures. The genetic algo
rithm proposed by Sevaux and Sorensen generates non dominated solutions 
that improve both criteria iteratively. 
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6.4 Flowshop and jobshop problems 

6.4.1 Average makespan of a neighbourhood 

[Jensen and Hansen, 1999] consider a jobshop environment with makespan 
minimization. They define the neighbourhood of a jobshop schedule 5, de
noted by Afis)^ as the set of all the feasible schedules that can be created 
from s by interchanging two consecutive operations on the same machine. 
Notice that s G Af{s). The robustness of a schedule 5, denoted by R{s), is 
defined by a weighted average makespan of the schedules in the neighbour
hood of s. The weight function w{s, 5') reflects the expected probabilities of 
encountering schedule 5' in J\f{s). The robustness of schedule s is defined by 

This objective function can be seen as the agregation of the criteria of the 
makespan of neighbour schedules, including the makespan of 5, that is also 
to minimize. 
Jensen and Hansen propose a genetic algorithm to solve the problem. When 
the fitness is evaluated, the makespan is calculated for the original schedule 5, 
and for a number of its neighbours. The objective value on which the fitness 
is based is set to the mean of these calculated makespans. The acceptance of 
new individuals is defined as follows. Individual s is replaced by its offspring 
o if Cmax{o) < Cmax(s) + {Cmax{s) - LB)5, with LB a trivial lower bound 
and (5 < 1 a given value. 
Tests are conducted on classical instances of the jobshop literature: some in
stances of [Lawrence, 1984] and the well-known instance FTIO of 
[Fischer and Thompson, 1963]. Jensen and Hansen show that it is possible 
to limit the number of makespan evaluations by choosing a random subset 
of neighbours in M{s)^ and to obtain robust solutions in a more reasonable 
computation time. 

6.4.2 Sensitivity of operations vs makespan 

[Kawata et al., 2003] consider the classical jobshop problem referred to as 
J\\Cmax' They notice that in general, many minimum makespan schedules 
exist and they propose to select the best solution among the optimal ones. 
They assume that the optimal makespan value is known and they consider 
only active schedules. The authors denote by Ej the sensitivity of operation 
j , and by Wj the set of operations which start time will be delayed if the 
completion time of operation Oj is delayed by one time unit. The sensitivity 
is defined by Ej = \Wj\. 
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The robustness of a schedule is defined by i? = max Ej. This definition impUes 

that the smaller the value of R the more robust the associated schedule. The 
authors propose a branch-and-bound algorithm to find a schedule with an 
optimal makespan value and then with an optimal robustness value, i.e. they 
solve the J\\Lex{Cmax,R) problem. The proposed method can only solve 
problems with up to 10 jobs and 5 machines. 

6.5 Resource Constrained Project Scheduling Problems 
(RCPSP) 

Concerning robust and reactive resource constrained project scheduling prob
lems, [Herroelen and Leus, 2004] propose a review and a classification of the 
procedures. Two types of robustness measures are presented: the solution ro
bustness, related to the insensitivity of the activity start times to changes in 
the input data; and the quality robustness, related to the insensitivity of the 
schedule performance. However, most of the described approaches focus on a 
single criterion. 

6.5.1 Quality in project scheduling vs makespan 

[Icmeli-Tukel and Rom, 1997] explain that most of the studies in RCPSP 
literature consider as an objective function the makespan minimization or 
the Net Present Value maximization. They notice that the problems deci
sion makers are facing are more complicated than those studied in the project 
scheduling literature. They indicate that generally, the objective is to max
imize the quality, where the quality is measured by the degree to which a 
project's outcome conforms to the customer's requirements and the degree 
to which the project completes within budget and on schedule. Their objec
tive is then to eliminate the reworking associated with incorrectly completed 
activities. 
Icmeli-Tukel and Rom explain that many activities of a project need to be 
totally or partially reworked to achieve the full customer satisfaction. This 
rework requires additional resources, usually in the form of overtime, that 
is more expensive than regular time. This creates an additional cost called 
the reworked cost. Of course, the rework can also have some impacts on 
the project duration. They consider that the total amount of reworked time 
and of reworked cost are bounded. They propose two mixed integer linear 
programs, that are solved by using OSL software. The objective function is 
defined by Z = Qi + Q25 where Qi and Q2 represent the proportion of the 
total reworked time used and of the total reworked cost used, respectively. 
These variables cannot really be considered as criteria, gathered into a linear 
combination since they are not confiicting. The computational experiments 
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conducted by the authors show that one model performs better than the 
other. 

[Haouari and Fawzan, 2002] tackle the same problem. They define the quality 
of a schedule by three factors: the performance, the conformance to specifica
tions and the robustness of the design. They consider that the performance 
is indicated in the makespan measure of the schedule. The conformance to 
specifications consists in respecting activities requirements, resource capaci
ties and precedence constraints. The robustness of the design is the degree to 
which the planned schedule could be achieved as intended even if undesirable 
conditions occur. 
Haouari and Al-Fawzan define the robustness of a schedule as its ability to 
cope with small increases in the duration of some activities. The problem is 
modeled as a bi-objective problem. They define sk as the slack of activity O^, 
i.e. the amount of time an activity can slip without causing a project duration 
increase. A weight wi is associated to each activity and the robustness of a 
schedule is given hy R = Ylo eü'^i^^i^ ^^^^ ^ ^^^ ^̂ ^ ^^ activities. The 7-
field of the problem notation is {R,Cmax) with R to maximize and Cmax to 
minimize. The authors propose several versions of a Tabu search algorithm 
to approximate the set of efiicient solutions. 

6.5.2 Stability vs makespan 

[Van de Vonder et al., 2005] propose a heuristic to generate stable solutions 
to the RCPSP. A weight Wi is associated to each activity O^. This weight 
denotes a relative cost of starting the activity one time unit earlier or later. 
Stability is measured as the weighted sum of deviations between planned and 
actual activity start times. Instead of building a semi-active schedule, gen
erating stable schedules consists in introducing idle times between activities, 
in order to absord uncertainty during the process, like a duration increase. 
The proposed solution procedure works as follows. The problem is solved 
to optimality for makespan minimization, using the branch-and-bound pre
sented by [Demeulemeester and Herroelen, 2002]. The project due date is 
fixed to ^C^ax ^^^ the float floati of each activity Oi is computed. Let 
ti{BB) denotes the start time of activity Oi in the optimal solution and 
ti{S) the starting time of activity Oi in the solution under construction. We 
have ti{S) = ti{BB) + a^ x floati, and a^ is called a float factor. In or
der to build feasible solutions, i.e. without resource conflicts, the insertion 
procedure presented by [Artigues and Roubellat, 2000] is used to determine 
interesting float factors. This heuristic is called RFDFF by the authors. 
Then, Demeulemeester and Herroelen consider the critical chain approach of 
[Goldratt, 1997] who introduces some buffers in order to protect the project 
due date from variability in the critical chain activities. This method is de
noted by CC/BM in the paper. 
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The authors propose computational experiments to investigate whether it 
is advantageous to protect a schedule only for makespan performance or 
also for stability. They study the impact of a lot of parameters (number 
of activities, weighting parameters, ...) and conclude that the advantage of 
the two scheduling approaches depends on the project characteristics. 
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7.1 Polynomially solvable problems 

7.1.1 Some l|rfi|C,/max problems 

In this section we provide various results for single machine problems involv
ing criteria C and fmax'> where fmax refers to a maximum increasing function 
of completion times. We first focus on the l|di|e(C/Lmax) problem since cri
terion Lmax is a particular case of the function fmax- Next we briefly review 
the results available for the general l|<ii|e(C//max) problem. 

The l |di|C, Lmax problem 

The early paper met in the literature is due to [Smith, 1956], and deals with 
a particular case of the l|di|e(C/I/max) problem where Lmax = 0 is imposed. 
The algorithm of [Smith, 1956] is extended to the l|di|e(C/Lmax) problem by 
[Heck and Roberts, 1972], who propose an a priori algorithm. An a posteriori 
algorithm for this problem is provided by [VanWassenhove and Gelders, 1980]. 
This algorithm represents a major step in multicriteria scheduling and it has 
led to numerous similar, exact or heuristic, algorithms. Its principle is as 
follows. For a fixed value e, a strict Pareto optimum is determined using a 
greedy algorithm which combines the rules SPT and EDD. The constraint 
Lmax < e is equivalent to imposing deadUnes on jobs, and so, the algorithm 
proceeds backward, starting from the last position. At each position, a list 
of eligible jobs is calculated and among this one the SPT/EDD priority rule 
is applied to select the job to schedule. The next value e is deduced from 
the built schedule. The a posteriori algorithm, denoted by EWGl, is pre
sented in figure 7.1 and requires, as shown by Van Wassenhove and Gelders, 

n 
0{in? log(n)p) time with p = /^Jpi-

Example. 
We consider a problem for which n = 5. 

i 
Pi 
di 

1 
3 

23 

2 
5 

22 

3 
6 

24 

4 
7 

22 

5 
9 

18 



208 7. Single machine problems 

ALGORITHM EWGl 
/* T is the set of jobs to schedule */ 
/* We assume that pi < P2 ^ • • • ̂  Pn */ 
Step 1: /* Initialisation of the algorithm */ 

n 

/* Initialisation of the deadlines */ 
di = di •{- e, Vi = 1,..., n; 
End=FALSE; E = 0; 

Step 2: /* Computation of the set E */ 
While (End=FALSE) Do 

• L = T;S = $; 
/* We use a modified version of the rule SPT */ 
While ((End=FALSE) and (L 9̂  0)) Do 

F = {Jie L/di > Y^ pkh 
Jk^L 

If (F = 0) Then End=TRUE; 
Else 

Let Ji G F be such that pi = max(pfc); 
JfcEF 

/* Break ties by choosing the job */ 
/* with the greatest due date */ 
S = {Ji}/IS; 
L = L- {Ji}; 

End if: 
End While; 
If (L = 0) Then 

E = E + {S}; 
€ = Lmax{o) — 1; 

di = di -\- e, Vi = 1,..., n; 
End=FALSE; 

End if; 

Step 3: 
End While; 
Print E; 

[VanWassenhove and Gelders, 1980]" 

Fig. 7 .1 . An a posteriori algorithm for the l\di\e(C/Lmax) problem 

(i) e = 30, di = [53; 52; 54; 52; 48]^, End=FALSE and E = 0. 
(ii) L = {Ji , J2, J3, J4, J5}, Si = 0. 
F = {Ji,J2, J3, J4, J5}, 2 = 5, Ä = (J5). 
F={Ji, J2, J3, J4}, i = 4, Ä = (J4, J5). 
F = {Ji , J2, Ja}, z = 3, 5i = (Ja, J4, J5). 
F = {Ji , J2}, i = 2, Ä = (J2, Ja, J4, J5). 
F = {J i} , 2 = 1, 5i = ( J i , J2 , Ja , J4 , J5) , End=TRUE, Lmax(5) = 12 and 
C(5i) = 76. 
F = { ( J i , J 2 , J a , J 4 , J 5 ) } . 
End=FALSE, e = 11, di = [34; 33; 35; 33; 29]^. 
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(iii) L = {Ji, J2, J3, ^4, Js}, S2 = 0. 
F = {Ji, J2, J3, J4}, i = 4, 52 = (J4). 
F={J i , J2 , J3 , J5} , i = 5, 52 = (J5,J4). 
F = {Ji, J2, Ja}, 2 = 3, 52 = (Ja, J5, J4). 
F = {Ji, J2}, i = 2, 52 = (J2, Ja, J5, J4). 
F = {Ji}, i = 1, 52 = (Ji, J2, Ja, J5, J4), End=TRUE, Lmax(52) = 8 and 
C(52) = 78. 
E = {(Ji, J2, Ja, J4, J5); (Ji, J2, Js^Jb, J4)}. 
End=FALSE,€ = 7, Ä = [30; 29; 31; 29; 25]^. 
(iv)L = {Ji,J2,J3,J4,J5}, 5a = 0. 
F = {Ji,Ja}, z = 3, 53 = (J3). 
F — {Ji, J2, J4, J5}, i = 5, 53 = (J5, J3). 
F = {Ji, J2, J4}, z = 4, 53 = (J4, Js, J3). 
F = {Ji, J2}, z = 2, 53 = (J2, J4, Js, J3). 
F = {Ji}, i = 1, 5a = (Ji, J2, J4, Js, Ja), End=TRUE, Lmax(53) = 6 and 
C(53) = 80. 
E = {(Ji, J2, J3, J4, Js); (Ji, J2, J3, Js, J4); (Ji, J2, J4, Js, J3)}. 
End=FALSE,e = 5, di = [28; 27; 29; 27; 22]^. 
(v)L = {Ji,J2,J3,J4,Js}, 54 = 0. 
End=TRUE, L ^ i/}. 

Experimental results show that for a problem having 50 jobs there may be 
up to 29 strict Pareto optima. 
Prom step (iv) of the above example, it appears that schedules of set E are 
quite similar from one Pareto optimum to the next one. Let's take the two 
first ones, namely sequences (Ji , J2, J3, J4, J5) and (Ji , J25^37 Js? J4)- They 
only differ by job J5 which, giving the Lmax value in the first schedule, is 
scheduled earlier in the second one. The same remark holds for job J4 be
tween the second and third schedules. This yields the conclusion that, in the 
EWGl algorithm, when calculating one strict Pareto optimum few changes 
must been done from the one calculated at the previous iteration. [John, 1984] 
provides results in this vein, however we present here more accurate results. 
They provide mathematical insights on the enumeration problem. 
We first define an instrumental notation: we write Ji y Jj iff {pi > pj) or 
{Pi = Pj and di > dj). Besides, we denote by a^^^ the schedule builds by the 
EWGl algorithm at the fcth iteration of Step 2, and Nj ^ refers to the set of 
unscheduled jobs when choosing a job for position j of a^^^ (it is exactly the 
set L in figure 7.1), whilst Rj = X^̂ ^̂ (fc) Pi- Consider that we are building 

a sequence a^^^ in the EWGl algorithm. Then, we define the slack of job Ji 
if scheduled in position j as the gap before meeting its deadline: 

G('̂ >(i)=| ^P-Rf^ ifJi€7Vf 
^ \ — 00 otherwise 

the value d\ ^ is the value of the deadline of job Ji at the fcth iteration of 
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Step 2 in the EWGl algorithm. A negative slack Gj \i) indicates that job 

Ji cannot be scheduled in position j in a^^\ Let us define 5- ^ as the set 

of jobs Ji with a positive gap Gj \i) and it is clear that 5J ^ is the set of 

candidate jobs for position j in schedule a^^^ in the EWGl algorithm (it is 

exactly the set F in figure 7.1). We now define the slack of schedule a^^^ as 

follows: first, we define Â  ^ as the slack of the job scheduled in position j in 

a^^\ ie, \f^ = Gf\a^^\j)). Accordingly, the slack Â ^̂  of schedule a^^^ is 

defined by Â '̂ ^ = mini<j<n(AJ ^). It is clear that jobs giving the slack of a 
given schedule are those which yield the maximum lateness value, equal to 
(e-A^'^)). 
In the EWGl algorithm, schedule a^^'^^^ is built from schedule a^^^ by de
creasing the job slacks, hence yielding to a change in the positions in a^^^ 
with a slack value of A '̂̂ .̂ Assume that different positions in sequence a^^\ 
noted Qu and called critical positions, are such that X% = X^^\ All jobs 

Qu 

in a critical position in a^^^ are scheduled earlier in a^^'^^\ Let us refer to 
Q^^^ as the set of these critical positions and we refer to qi ^ as the maximal 
critical position in Q^^\ We now define the target position associated to a 
critical position, the former corresponding in a^^^ to the best candidate for 
being scheduled in (j(^+i) in the critical position. 

Definition 50 The target position, denoted hylu\ associated to the critical 
position qi is the index that satisfies the three conditions: 

3. v / e {lll^^ + l;...;qi'^-l}, aW(t) ^ 8^% or (aW(i) e S%, crW(e^) •< 
Qu \ Qu 

Qu / 

Condition 1 of the above definition states that the job in a target position can 
be scheduled in the corresponding critical position. Condition 2 implies that 
the target position is not itself a critical position and condition 3 implies that 
if there is another candidate job for a critical position it cannot be scheduled 
in the critical position in a^^'^^\ 

We denote by li ^ the minimal target position in a^^^. Notice that each posi
tion Qu has at most one associated lu and if there exists one position QU 
with no associated target position, then schedule a^^^ is the last strict Pareto 
optimum calculated by the EWGl algorithm. 

P r o p e r t y 8 In a^^\ \/qi^^ G Q^^\ \/i G {li^^ + l]...]qi^^}, a^^^^) y 
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Proof. 
We show the result exhibiting a contradiction. Assume that there exists a po
sition JQ e {li^^ + 1;...;^!^^} such that job a^^\li^^) y cT^^\jo). Using defini
tion 50, we know that cT^''\li^^) can be scheduled in position qi ^ in a^^\ Since 
we have d\ ^ — Rj < d] ^ — Rj_i, Vi = l , . . . ,n, Vj = l, . . . ,n, we know that 

can be scheduled in all positions u < qu\ including jo. But job jo has 
been assigned to this position, which means that either {P(rW(jQ) > P„(k)(iW)) or 

(P<r('^Hjo) = Pa('^)(ii^^) ^^^ ^^^(^Hjo) ^ l̂̂ (fc)(iL*'>)̂ ' ^^^^ contradicts the assumption 

ih8it(j^^\li''^)>-a^^\jo)n 

P r o p e r t y 9 Letj be a position which is not critical in a^^^ • ̂ f^j = N. 

then,a^^^^\j) = (j^^\j). 

(k) 

Proof. 
Straight forward. D 

We are now ready to s ta te how to build the strict Pareto opt imum cr̂ ^^+i) 
making rearrangements on a^^^. 

T h e o r e m 17 Schedule cr̂ '̂ "̂ ^̂  is obtained from schedule a^^^ only by ex

changing in a^^^ jobs in positions [x, ...,^* ] where x ^̂  the minimal position 

of the jobs scheduled in a higher position in a^^'^^^ than in a^^\ We have 

Proof. 
We prove the result by showing how can be built ö-(̂ +i> by using a^^ and starting 
from the last position. Remember that Vi = 1, ...,n, d̂  = di — Â '̂ ^ — 1. 
Consider the last position, and assume without loss of generality that g* < n. We 
have Nn = Nn = {1, . . . ,n} . Hence, as position n is not a critical position and 
thanks to property 9, the same job is scheduled in position n both in schedules a^^^ 
and a^^'^^\ and we have -^(^-1) = -^(n-i)- Using the same argument for positions 
(n - 1) to # ^ + 1, we prove that a^^-^^\i) = ^(^^(i), Vz G {qi^^ + 1, . . . ,n} . 
In the second part of the proof, we consider jobs scheduled in positions x^ "">Q* • 
First consider that x = I* • We start with position qi ^ and assume that the crit
ical position corresponding to that position is qv . Due to definition 50 and since 
q^^^ = ql \ job a^^\lv) is scheduled in position qi ^ in a^^^^K Remember that 
cT^^Hqi'"^) y (J^^Hli^^), which yields Ä^^+'^ > R^'^l, . Therefore, set 5^^+'^ 

contains a subset of S^ L) plus job cr^^\qi ) . Without loss of generality, as-
(qv - 1 ) 

sume that either position (qv — 1) is not a critical position either (qv —1) = li 
(otherwise apply the same reasoning and consider position (qi — 2)). We have two 
different possible configurations: either G^^\qv — 1) ^ ^ Ik) or not. In the latter 

case, assume that there exists a job JTT, scheduled in cr^^"^ in a position in {1,. . . , /I ^}, 
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such that JTT is the greatest job in S^ ("|̂ ) . Therefore it is scheduled in a^^'^^^ in 

position {qi —1). Hence, we can update x a-nd set x — min(r^'^^(7r); x), with r^^'^{n) 
the position of job JTT in a^^\ That process can be iterated until position x £̂ nd it is 
straightforward that schedule a^^^^^ may be different from a^^"^ between positions x 
and qi \ When considering a critical position qw in {x,..., Q'* } two situations can 
occur. Either job a^^\lw ) has not already been scheduled in a^^'^^'^ in a position 
greater than gi, , either it was also the target position of another critical position 
^x > Q'u; • In the former case, exactly the same reasoning than previously can be 
applied for position q^ (i.e. job a^^\lw ) is scheduled in cr̂ '̂ "̂ ^̂  in this position). 
In the latter case, another job J^ such that J^x -< (j^^\lw ) -< cr^^\qw ) is scheduled 
in position qi, ^ in a^'^^^\ and x = min('r^^HM);x)> with r^^\ij.) the position of job 
J ^ i n a ( ^ ) . 
For the third part of the proof, we only need to consider positions from (x — 1) down 
to 1. We can easily check that no job scheduled in a^^' in a position greater than 
or equal to x is scheduled in cr̂ '̂ "''̂ ^ in a position lower than x? since otherwise we 
would violate the previous definition of x as a job scheduled in a smallest position 
than X in <^^^^ would need to be scheduled after position x in a^^'^^K Hence, it fol
lows that -^L^i) = -^Li i ) - Property 9 yields the conclusion that Vj = 1,..., (x — 1), 
^(fc+i)^^-^ = cr^^\j) which gives the last part of the proof.D 

It is interesting to notice tha t the proof of the above theorem gives a way to 
compute the value x when building schedule (j^^+^\ We can also derive tha t 
each job in a critical position in a strict Pareto optimum a^^^, is scheduled 
earlier in any other strict Pare to optimum a^^^ with k' > k. Henceforth, 
from theorem 17 it appears tha t start ing from a^^^ we can build the next 
strict Pare to opt imum a^^'^^'^ by applying Step 2 of the algorithm EWGl 
only between positions x ^^^ qi . A modified version of this algorithm is 
proposed by [Esswein et al., 2001]. 

Example. 
Let us consider the previous example in which we applied algorithm EWGl al
gorithm. Three strict Pareto optima have been found: a^^^ = (J i , J2, Ja, «/4, Js), 
cr^'^^ = (J i , «/2, Js, Jby JA) and a^^^ = (J i , J2, J4, J5, Jz)- Notice that Ji ^ J2 < Jz < 
JA -< J5. 
Assume that we have already calculated cr̂ ^̂  and we want to build (7^^\ The slacks 
are given in the following table. 

i 
5 
4 
3 
2 
1 

1 

23 
32 
39 
45 
50 

2 

22 
31 
38 
44 
—00 

3 

24 
33 
40 
—00 

—00 

4 

22 
31 
—00 

—00 

—00 

5 1 
18 
—00 1 
—00 1 
—00 1 
—00 1 

pn 
18 
31 
40 
44 

1 50 
The slack of a^^^ is equal to Â ^̂  = 18 = e - Lmax{(J^^^)-
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There is only one critical position q{ ' since there is only one position with a 
slack equal to 18, i.e. q'^^ = qi^^ = 5 and Q^^^ = {qi^H. Notice that S^]l = 

{Ji , «/2, JZ.JA, J S } - By applying definition 50 the target position associated to q^' 

is equal to l\' — l);^ = A since job J (i) = JA G S^^^ has the largest processing 

time. The interested reader can check property 8. The examination of the proof of 
theorem 17 shows that x = ^1^^ = ^i^^ As /l^^ + 1 = q^*^ sequence cr̂ ^̂  is built from 
(7̂ ^̂  by swapping jobs in positions /; ^ and qi in (T^^\ 

The same reasoning can next be applied on a^2) to deduce a^^\ 

From the previous results we can derive a result, differently proved by 
[Hoogeveen and VandeVelde, 1995]. 

T h e o r e m 18 The number of strictly non dominated criteria vectors is at 

most equal to ^ 2 + 1? ^^^ ^^^ hound is tight. 

Proof. 
For a given schedule G^^\ we define for each job Ji a maximal position r^lx{i) at 
which it can be scheduled, i.e. Vj > Tinaxii), Gj (i) < 0. Besides, Vz = l , . . . ,n, 

VnJ J> AC, Tmaxx'^) S: 'rmax\'^) • 

Notice that if there exists more than one critical position equal to 1, a^^^^^ does not 
exist and a^^^ is the schedule with the smallest C value among all feasible schedules. 
It can be generalized in the following way: if there exists a position j G {1, ...,n} 
such that there is more than j maximal positions Tmax{i) lower than or equal to 
j , schedule cr^^'^^^ does not exist. Hence to guarantee that a^'^^^^ exists we have to 
check that Z7=i ^mix W > (1 + 2 + ... + n) = ^ ^ i ^ . 
To determine the maximum number of strictly non dominated criteria vectors, we 
need to compute the greatest value of k such that a^^^ exists but not a^^'^^K Let 
us start with Tr^äx(i) = n, \/i = l , . . . ,n, which means that Y^^=i'^rnax{i) = n^-
As at least one job, which is in a critical position, has a maximal position that is 
decreased while building a^'^'^^^ from cr^^K Assume that in the worst case exactly 
one maximal position is decreased by one unit. We have '^^P~'^) < YH^= 
S r = i '^r^ax{i) — k-{-l = n^ — k-\-l and the maximal k value is achieved for '^\^~^) 4-1. 
To prove that this bound is tight, consider any instance with two jobs where pi < p2 
and di > d2' The only two sequences correspond to strictly non dominated criteria 
vectors and we have 2(l) /2 + l = 2. 

The above theorem leads to the conclusion that the algorithm EWGl has not a 
pseudo-polynomial time complexity, since the numuber of strict Pareto optima cal
culated by this algorithm is bounded by '^^^~^) -\. i . Consequently, the algorithm 
EWGl requires 0{n^ log(n)) time.D 

[Nelson et al., 1986] also study this enumeration problem for which they pro
pose a branch-and-bound algorithm which determines a subset of the set of 
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weak Pareto optima. Dominance conditions are used to improve the efficiency 
of the algorithm. 

[Sen and Gupta, 1983] study a similar problem which involves the minimisa
tion of criteria C and Tmax- They are implicitly interested in the determina
tion of weak Pareto optima, because they seek to determine the optimal solu
tions for the l\di\Ft{T^^^,C) problem with F^(r„,ax,C) = aT^ax + (1 - a ) C 
and a € [0; 1]. In order to solve it. Sen and Gupta propose a branch-and-
bound algorithm which enumerates the set of solutions minimising all the 
possible convex combinations of the criteria. Following the results presented 
in chapter 3, we deduce that the calculated solutions belong to the set WEQ. 

T h e l|di|C,/max problem 

[Emmons, 1975a] is interested in the minimisation of the criteria C and /max 
via the l||I/ea;(/inax,C') problem. To solve this, Emmons proposes a greedy 
algorithm based on the algorithm of [Lawler, 1973] for the l\prec\fmax prob
lem. 
[John, 1984] studies the l||6(C//max) problem for which he proposes an al
gorithm which determines the set E, This algorithm starts with an optimal 
sequence for the l||Lex(C,/max) problem. Initially, we set e to the value of 
the fmax criterion of this solution minus 1. To compute one strict Pareto op
timum, a l||e(C//max) problem with e fixed is solved. Under the assumption 
that fmax is a reversible function, this problem can be reduced to a l |di|C 
problem, which is polynomially solved by Smith's backward algorithm (see 
[VanWassenhove and Gelders, 1980]). After the current solution has been 
computed, the value e is updated to the value of the fmax criterion found 
and the procedure is iterated. John provides results to improve the compu
tation of the current strict Pareto optima, knowing the one computed at the 
previous iteration. Prom one strict Pareto optima to the other, only parts of 
the sequences are changed by permutations of jobs. This may reduce the prac
tical average complexity. John shows that the complexity of this algorithm is 
in 0{in?X) with X being the number of strict Pareto optima. He also shows 
that X <\{n^- l){pmax -Pmin) if n is even and that X < \n^(pmax -Pmin) 
otherwise, with pmax = niax {pi) and pmin = min (pi). 

i = l , . . . , n i = l , . . . , n 

[Hoogeveen and VandeVelde, 1995] are also interested in this problem. They 
propose an algorithm based on a greedy method to determine a strict Pareto 
optimum when e is fixed and they next describe an a posteriori algorithm 
which determines the set E by making e vary. Classically, this approach en
ables us to determine a subset of the set WE. Nevertheless, Hoogeveen and 
Van de Velde show that the a posteriori algorithm does not generate the weak 
Pareto optima which are not strict. Similarly, they show that the cardinality 
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of the set E is at most n{n — l ) /2 + 1. This upper bound is clearly more 
precise than that proposed by [John, 1984]. 

7.1.2 The l\si,pmtn,nmit\Fi{C,Pmaix) problem 

In the previous section regular maximum criteria have been investigated to
gether with the total completion time criterion. The case of a particular non 
regular criterion is considered by [Hoogeveen and van de Velde, 2001]: the 
maximum promptness. To any job Ji let Si be the associated desired start
ing time, which can merely seen as a release date that can be violate at a 
certain cost. Let Pi{cr) = Si — ti{a) be the promptness of job Ji in a given 
schedule cr, and Pmax = TocidiXi<i<n{Pi) is the maximum promptness. This 
criterion is minimised simultaneously with criterion C via a convex combina
tion aC -\- {1 — a)Pmax • Preemption of jobs is allowed but not the insertion of 
voluntary idle times between jobs except before the first job of the exchange. 

Hoogeveen and van de Velde study the enumeration of the optimal solutions 
of the above objective function for all values of a (in fact only one optimal 
solution per a value is calculated). This corresponds to the enumeration of 
the supported strict Pareto optima. In fact, this enumeration is achieved by 
an algorithm which iteratively solves l\si^pmtn,nmit\e{C/Pma,x) problems 
and obtains a set of strict Pareto optima which comprises the supported 
ones. This algorithm works in a way similar to algorithm EWGl. First, the 
l\si,nmit\Pmax problem is solved by the MTST rule: ^^schedule at each time 
t the job with the smallest desired starting time^^. Let P^ax ^^^ ^^^^ ^e the 
obtained criteria values which constitute the first Pareto optimum calculated. 
For any value e > P^^ax^ ^^^ corresponding e-constraint problem is equivalent 
to the l\ri = Si — e^pmtn\C problem which can be polynomially solved by 
applying the SRPT rule: ^'schedule at any time t the job with the smallest 
remaining processing time among those available^^. This leads to a new Pareto 
optimum. The main question is how to obtain the set of e values such that the 
solution of the corresponding e-contraint problems are the supported strict 
Pareto optima. The solution algorithm proposed by Hoogeveen and van de 
Velde calculates a bigger set of e values, i.e. for some e value in this set the 
corresponding optimal solution is a non supported optimum. However, they 
do not provide information on the fact that their algorithm enumerates or 
not the whole set of strict Pareto optima. The basic idea on which is based 
the algorithm is that, starting from a previously calculated strict Pareto 
optimum cr, it is necessary to increase e of such a quantity that there is an 
interchange of two jobs in a. If this does not occur the optimal solution of 
the €-constraint problem cannot be a supported strict Pareto optimum. The 
detained algorithm, denoted by EHVl, is presented in figure 7.2. 
Hoogeveen and van de Velde show that there is at most n(n—l)-f-l supported 
strict Pareto optima. As the SRPT rule requires 0{n'^) time, the EHVl al-
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ALGORITHM EHVl 
/* T is the set of jobs to schedule */ 
Step 1: /* Initialisation of the algorithm */ 

Apply rule MTST to solve the l\pmtn\Pmax problem and let 
Pmax be the optimal solution value; 

Apply rule SPT to solve the 1 HC problem and let P^£, be the Pmax 
value of the calculated solution; 

e = P* ' 
*- •'• m a x ? 

TT = 0; tti = + 0 0 , Vi = 1,. . . , n ; 
End=FALSE; Es = 0; 

Step 2: /* Computation of the set Eg */ 
While (End=FALSE) Do 

Apply rule SRPT to solve the l\pmtn,ri = max(0, Si — e)|C 
problem and let a be the optimal schedule; 

Es = EsU {a}; 
Let Jfc be the job that starts at time TT in a; 
/* We compute the minimal increase in e to get the next 

strict Pareto optimum */ 
If (Jfc is a preempted job) Then 

Ofc = Pfc(7r) where Pki^r) is the length of the portion of 
job Jfc that starts at time TT; 

7r = Ck{<7); 
Else 

f̂c = {Jj/sj - e> tk{cr) and pj > pk}; 
ük = mmj.^rp^i^Sj - e - tfc(cr)); 
7r = Cfc(cr); 

End if; 
If (TT < YJ^^^ Pi) Then Goto Step 2; 
e = minj=i,...,n(aj) -h e; 
If (e = PmTx) Then End=TRUE; 

End While; 
Step 3: Remove from Es the non supported solutions; 

Print Es\ 
[Hoogeveen and van de Velde, 200if 

Fig. 7.2. An a posteriori algorithm for the \\si^pmtn^nmit\Fi{C^Pmax) problem 

gorithm requires 0{n^) t ime. They also show tha t the problem without pre
emption but with a > 0.5 can be solved in O(n^) time. 

7.1 .3 T h e l\pi G [pAPi],di\Fi{Tmaa^,CC ) p r o b l e m 

[Vickson, 1980b] is interested in a bicriteria scheduling problem where the 
processing times of jobs are decision variables. This problem is denoted by 
l|Pi ^ [v_]Pi]',di\Fi{Tmax^CC ). The criterion CC is called the crashing 
time costs criterion and represents the weighted sum of the slack of processing 

n 
times in relation to the maximum allowed times, i.e. CC^ = ^ K ; ^ ^ ^ with 
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Xi G [0;Pi —p.]. The variable Xi represents the amount of compression of job 
Ji for which the processing time is equal to pi — p^ — xi. Notice that the 

expression oTmax + ßCC is equivalent to the expression Tmax + CC , We 
consider here therefore that F^ (Tmax ? CC ) = Tmax 

+ CC , This type of 
criterion has an application, for example, in hoist scheduling problems where 
the soaking times of the items, assimilated with the processing times, are 
not determined in advance. In project scheduling problems we also find an 
application of such a criterion. The second criterion studied by Vickson is the 
criterion Tmax which is formulated for these problems by: 

i 

TmaxiS) = .^ax^(max(0; J2^Ps[j] " ^sij]) - dsii]))-

where S[i] refers to the ith job in schedule S. To solve the bicriteria prob
lem, Vickson proposes a mixed integer program and a polynomial algorithm, 
denoted by ERVl (figure 7.4), which requires 0{'n?) time. A sequence of 
jobs is initially obtained by applying the rule EDP and by considering that 
Pi = Pn ^^ = l,. . . ,n. We have therefore CC = 0 and a compression en
abling us to reduce the value of the criterion Tmax^ increases the value of the 
criterion CC . The algorithm ERVl initiates therefore a series of compres
sions such that the reduction of Tmax from one time unit compensates the 
increase of the criterion CC . 

Example. 
We consider a problem for which n = 4. 

i 

Pi 
Pi 

Wi 

di 

1 
1 
3 
1 
3 

2 
2 
4 
0 
4 

3 
3 
5 
4 

10 

4 
1 
3 
2 

12 

(i) S = (Ji,J2, J3, JA) and pi = [3; 4; 5; 3]^. 
Tmax = 3, CC"" = 0 and Fe{Tmax,'CC^) = 3. 
k = 2. 
(ii) The solution S is not optimal. 
(iii) j = 2 , 6j = 2 , Tiax = 0_aild 6j < (Tmax - Tlax)' 

Pi = [3; 2;5;3]^, Tmax = 1, CC"" = 0 and Fe(Tmax,CC^) = 1. 
(iv) The solution S is optimal because Vj' < k/pj > p., Wj > 1. The schedule S is 

presented in figure 7.3 and J- max + CC =1. 

[VanWassenhove and Baker, 1982] are interested in the l\pi G [p.;Pi],c!i| 

^{Tmax/CC ) problem for which they propose a greedy algorithm which 
determines the set of strict Pareto optima. The complexity of this algo
rithm is in 0(71^) time. It is then extended to the more general case of a 
criterion fmax defined by fmax = i^ax {gi{Ci)). The functions gi{t) are 
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J. 

0 3 5 10 13 

Fig. 7.3. The schedule calculated by the algorithm ERVl 

ALGORITHM ERVl 
/* T is the set of jobs to schedule */ 
/* We assume that c/i < (̂ 2 < • • • < <̂n */ 
/* p. , minimum processing time of job Ji, Vi = 1, ...,n */ 
/* p^, maximum processing time of job J j , Vi = 1, ...,n */ 
Step 1: /* Initialisation of the algorithm */ 

Pi =Pi, Vi = l , . . . , n ; 

5 = (J i , J 2 , . . . , Jn); Tmax = m a x ( 0 ; 
i= l , . . , ,n 

Let Jk be such that max(0; Ck — dk) — Tmax] 
/* Break ties by choosing the job with the smallest value d */ 

Step 2: /* We check if the current solution is optimal */ 
If {(Tmax = 0) or (pi = p., Mi = 1,..., k)) Then 

I Goto Step 4; 
End If; 
If {{Tmax > 0) and {wi > 1, Vi = 1,..., k such that pi > p.)) Then 

/* The decrease oiTmax from one time unit does not */ 
/* compensate the increase of CC */ 
Goto Step 4; 

End If: 
Step 3: /* Improvement of the schedule */ 

Let Jj be such that j < k, pj > p., Wj = min {wi); 
~J i=l,...,k,pi>p^. 

^3 = Pj ~ 2 •' /* Maximum compression */ 

T^a,x= max (max(0;Ci-c/ i)) ; 
If {Sj < {Tmax - Tiax)) T h c U 

/* We do a maximum compression of job Jj */ 
Pj = p . ; Tmax = Tmax - Sj] CC^ = CC"" + Wjdj\ 

Else 
/* We reduce criterion Tmax until T^^ax */ 
Pj "^ Pj ~ \-i-max ~ J-max)r J-max = -l-max'i 

O G = G G "{- Wj\Imax — J-max)\ 

Let Jk be such that max(0; Ck — dk) — Tmax] 
/* Break ties by choosing the job with the smallest value d */ 

End If: 
Goto Step 2; 
X f l l l t u 5 1 max 5 O O 5 Step 4: 

. d i ) ; C C ^ = 0; 

[Vickson, IQSQbT 

Fig. 7.4. An optimal algorithm for the l\pi 6 boPil?di\Fi{Tmax',CC'") problem 

file:///-i-max
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assumed to be non decreasing and such that an order of jobs verifying 
9i{t) > 92{t) > . . . > gn{t), yt>0 exists. 

7.1.4 T h e l\pi G [pr,Pi],di\Fi{C,CC ) problem 

[Vickson, 1980b] studies the minimisation problem of criteria C and CC via 
the l\pi € [p.;Pj]\Fi{C,CC ) problem and shows that this problem can be 
reduced to an assignment problem solvable in 0{n^) time. 
[Chen et al., 1997] consider the problem with integer processing times, de
noted by l\pi e [p.;Pi] n N\Fe{C,'CC^), The criterion ÜC^ is defined by 

n 

CC = 2_]^iiPi ~Pi) where Ci is an increasing cost function. Chen, Lu and 
2 = 1 _ _ 

Tang also assume that Vi,j, 1 < z,j < n^p^ — p. = Pj — P- They propose 
to reduce the problem to an assignment problem by introducing costs Vi^k 
of scheduling job Ji in position k in the schedule. More precisely, Vi^k is the 
contribution to the objective function of job Ji if it is scheduled in position 
k. We have: 

Vi^k = min {(n - fc + l)(p + j) + aip^ - p - j)}. 

Notice that we can deduce, from the value of j which gives the minimum, 
the value of the exact processing time pi if job Ji is scheduled in position k: 
p^ —p-\-j. When the costs Vi^k ai"^ computed the problem can be reduced to 
an assignment problem that can be solved in 0{n^) time. A integer program, 
denoted by ECLT2, of this problem is introduced in figure 7.5. 

7.1.5 Other problems 

Minimisation of K increasing functions of the completion times 

[Hoogeveen, 1992b] studies the general problem of the minimisation of K 
functions of the completion times, denoted by fT^ax ^^^ assumed to be 
increasing. We have fma,x{>^) = max f]{Cj{S)) with f] being also in-

j = l , . . . , n •' -f 

creasing functions. Hoogeveen proposes an a posteriori algorithm for the 
l|k(/max//max' " ^ fmax) problem and distinguishes both bicriteria and mul-
ticriteria cases. 
First case: K = 2. Hoogeveen shows that a modification of the algorithm of 
[Lawler, 1973] enables us to solve the problem optimally when the bound e 
is fixed. The complexity of the algorithm is in 0{'n?) time and the number of 
strict Pareto optima is at most n{n —1)/2 + 1 . He then proposes an algorithm 
which determines the set E in 0{n'^) time. 
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/ * Vi,k = 

Data: 

Variables: 

Objective: 

Constraints: 

Mathematical formulation ECLT2 
,n,\/i = l , . . . ,n, V 

min {(n - A; + l)(p + j ) + Ci(pi -p - j)} */ 

n, the number of jobs, 
Vi^ki i = 1, •.., n, A; = 1,..., n, the cost of assigning the job Ji 
to position k. 
yi,k, ^ = 1, ...,n, A; = 1, ...,n, boolean variable, equal to 1 if 
job Ji is assigned to position k, and 0 otherwise. 

Minimise ^^i;i ,fc2/i ,fc 
i = l fe=l 

n 

Y^yi,k = 1, Vi = l , . . . ,n 
fc—1 

n 

^2/i,fc = 1, VA;= l , . . . ,n 

yi,fc e {0; 1}, Vij= j ^ ..., n, Vfe = 1,..., n 

Fig. 7.5. An MIP model for the l\pi e \p.;Pi]nN\Fe{C,CC ) problem 

Second case: K > 2. In the general case with K criteria, the cardinality of the 
set E is at most {n{n — l ) /2 +1)^~^ . The algorithm proposed by Hoogeveen 
to determine this set is an extension of the one proposed for the case K = 2. 
Its algorithmic complexity is in 0{n^^^^^^~^) time when K >3. 

Minimisation of the average weighted completion time 

[Chen and Bulfin, 1990] study some bier iter ia scheduling problems with unit 
processing times. This kind of study sometimes enables us to find com
plexity results for some problems. Sometimes, it is possible to find an ap
plication of such problems in computing systems, or even more according 
to Chen and Bulfin, in car production shops as for example with Toy
ota (see [Monden, 1998]). Chen and Bulfin are interested in the l\pi = 
l,di\Lex{C^,Z2) problems with Z2 G {r,T^,C7,C7'^,rmax}, for which they 
propose greedy algorithms, in 0(nlog(n)) time, based on the rule WSPT. 

Moreover, Chen and Bulfin study the l\pi = l,di\e{C / Tm&x) problem 
for which they propose an algorithm which enumerates the set E, The 
l\pi = l,di\Fe{C^, Z2) problems with Z2 G {T,T^,!7,17^} are similarly ad
dressed. Chen and Bulfin state that the algorithm of [Aneja and Nair, 1979], 
which enables us to solve a bicriteria assignment problem, can be easily mod
ified to solve these problems. Thus, they propose to determine the set E 
whereas the approach Fe only enables us to compute solutions of the set 
Es in the case where the solutions set is not convex. Chen and Bulfin also 
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tackle the l\pi = l^di\Lex{Z\^C ) problems with Zi e {T ^U^U jT^ax}? 
and show how to reduce these problems to an assignment problem solvable in 
0{n^) time. For the l\pi = l,di\Lex{T^C ) problem they propose a greedy 
algorithm in 0(nlog(n)) time. 

Minimisation of tool changing costs 

• [Gupta et al., 1997] study a problem in which M. customer orders are 
taken into account. Each one of these orders, denoted by Oj, Vj = 1,..., A^, 

M 

is composed of rij jobs. The number of jobs to schedule is equal to n = /]nj. 

Moreover, we suppose that k predefined classes of jobs Bi exist and that 
\Oj n Be\ = 1, \fj = 1, ...,jV(,V^ = 1, ...,fc. Each order contains exactly one 
job of each class. Moreover, the processing of two jobs J[i] and J[i-fi] {J[i] 
refers to the job in position i) belonging to different classes induces a setup 
cost, denoted by 5C[i]ji_|_i], depending on the class of J[i+i] and which is 
equal to the corresponding setup time. The aim is to minimise two criteria: 

- The cost of changing tools which is defined by SC = y^SC[i-.i]^[i]. We 

notice that the minimisation of this criterion leads to the minimisation of 
criterion Cmax, 

M 
- The carrying cost, which is defined by AC = ^^ max (0; Ci — Ce). Such 

T ^ JiyJi€Oj 

a cost may appear, for example, when partial processing of an order implies 
that it is stored waiting for the complete processing of the order. 

Gupta, Ho and Vanderveen consider that trade-offs between the criteria 
AC and SC are forbidden, because a lexicographical order Lex{SC,AC) 
is defined between these criteria. The problem addressed is denoted by 
l\classeSj orders, Ssd\Lex{SC, AC). An optimal schedule for the criterion SC 
is such that all the jobs in the same class are processed consecutively and the 
minimisation of the criterion AC leads then to schedule classes on one hand, 
and the jobs within these classes on the other hand. An optimal algorithm 
in 0 (n log(A^)) time is proposed. 

• [Gupta et al., 1997] are next interested in the opposite lexicographical prob
lem, that is to say in the l\classes, orders, Ssd\Lex{AC, SC) problem. Gupta, 
Ho and Vanderveen show that an optimal schedule for the criterion AC is 
such that all the jobs belonging to the same order are processed consecutively. 
Among all these jobs the first to be carried out is the one having the greatest 
sum of processing and setup times. The aim becomes therefore the determi
nation of a sequence of orders as well as the jobs completing these orders, in 
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a way that the criterion SC is minimised. This problem can be reduced to a 
particular case of the travelling salesman problem for which they propose an 
optimal algorithm in 0{n) time. 

Minimisation of due date based criteria 

[Chen and Bulfin, 1990] are interested in problems where the jobs have unit 
processing times. They consider the l\pi = l,di\Lex{T ^Z]) problems, with 
Zl e {Ü.Ü'"} and theJL|p^= l,di|Lex(!7,Z|) and l\pi = l , d i | L e x ( f r , Z | ) 
problems with Zf = {T, T } which they model as an assignment problem 
solvable in 0{n^) time. Chen and Bulfin also study the l\pi = 1, di\Lex{Ty Z]) 
problems for which they propose an optimal greedy algorithm. Besides, they 
state that for the l\pi = 1, di\Fe{U, Zf) and l\pi = 1, di\F£{U , Zf) problems, 
the algorithm of [Aneja and Nair, 1979] can be modified easily to determine 
the set E. In fact, only the solutions of the set Eg can be determined. Chen 
and Bulfin are also interested in the minimisation of the criterion T^ax via 
the l\pi = 1, di\Lex{Tmax, Zf) problems, with Zf = {C/, C/ , T }, which they 
reduce to an assignment problem. Likewise for l\pi = l,di|6(Z2/Tmax) prob
lems. 

7.2 A/'P-hard problems 

7.2.1 The l | d i | T , C problem 

This problem has been tackled by [Lin, 1983] who proposes an a posteriori 
algorithm. This problem is J\fV-haid because the l\di\T is also. Lin proposes 
dominance conditions between jobs, which are valid in all strict Pareto sched
ules. To determine the set E, a dynamic programming algorithm which in
tegrates these dominance conditions is described. This algorithm is based on 
the multicriteria dynamic programming algorithm introduced by [Yu, 1978] 
and [Yu and Seiford, 1981]. At each phase j , Vj = 1, ...,n, we deal with the 
set, or state e^, of the considered j jobs. Therefore, there are at each phase 
j , j possibilities or decisions Xj, to schedule a job in the first position in the 
set ej. We note T the set of the n jobs to be scheduled and we define for each 
decision Xj G ej a criteria vector rj{ej,Xj) by: 

rj{ej,Xj) = [max ( ^ Pk-^Pj- dj,0); X^ PA: + Pjf-
Jk^T—Cj Jk^T—Cj 

We can therefore define the recurrence function by: 
^jiej.Xj) = min {Fj-i{ej - {xj},Xk))+ rj{ej,Xj). 

Xk£ej — {xj} 

This function is therefore a vector which is composed of the values of the 
criteria T and C of the best schedule having the job Xj in the first position of 
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the set ej. We set Fo(0,0) = [0; 0]^ and we search the criteria vectors which 
are not dominated among the vectors Fn{T, Jk), "iJk ^ T. 

Example. 
We consider a problem for which n = 4. 

i 
Pi 
di 

1 
1 
2 

2 
2 
7 

3 
3 
5 

4 
4 
6 

(i) At phase 1, we consider all the possibilities of scheduling a job in last position. 
We have therefore: 

ei 

Xl 

n ( e i , x i ) 
i^i(ei,a;i) 

{^1} 
9 

Ji 
[8; 10]^ 
[8; 10]^ 

{J2} 
8 

J2 
[3; 10]^ 
[3; 10]^ 

Us} 
7 

Ja 
[5; 10]^ 
[5; 10]^ 

{^4} 
6 

J4 
[4; 10]-̂  
[4; 10]^ 

(ii) After having calculated phases 2, 3 and 4 we obtain strictly non dominated 
solutions [5; 20]^ and [4; 21]^. Each result corresponds to a sequence: 

• (Ji, J2,0/3, J4) for which T = 5 and C = 20. We notice that it is also an optimal 
solution for the 1||C problem, 

• («/i, «/a, J2, «74) for which T = 4 and C = 21. It is also an optimal solution for the 
11 |T problem. 

The set of solutions in criteria space is represented in figure 7.6. The non dominated 
criteria vectors are indicate in the figure using small circles. 

Experimental results presented by Lin show that for a problem with 12 jobs 
the maximum computational time is under 5 seconds and the maximum num
ber of strict Pareto optima is about 96. 

7.2.2 T h e l\ri,pi G [p.;Pi] n N | F £ ( C ^ a x , C C ) problem 

This problem with integer controllable processing times has been tack
led by [Chen et al., 1997]. The processing times are defined as follows: (i) 
Pi ^ [P.'^Pi] n N, and (ii) Vi,; ft - p = p- - p = k. 
This problem is shown to be jv 7^-hard by reduction from the knapsack prob-

n 
lem. The criterion CC^ is defined by CC^ = ^ ^ ^ ( f t — p i ) . When the 

processing times are known the problem is polynomially solvable by using 
the rule Shortest Ready Time first Thus the major difficulty lies in comput
ing the optimal values of the processing times. To this purpose, Chen, Lu and 
Tang provide a dynamic programming algorithm of which the time complex
ity is in 0{kntmax) where tmax is an upper bound on the optimal Cmax value. 
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.C 

Fig. 7.6. The set of criteria vectors 

defined by tmax = max (r^) -f / Pi- Without loss of generality assume that 
i = l , . . . , n ^—^ 

1 i=l 
^1 < ^2 ^ ••• < ^n- F{j^t) is the value of the objective function when con
sidering only the sub-sequence (l , . . . , j ) with a makespan value equal to t. 
We have F{j,t) = min l^'iÜ',^)}, Vj = 2,...,n, Vt = 0,„.,tmax' The 

i=l , . . . , (A;+l) 

function gi{j^t) is the value of the objective function for the sub-sequence 
(1, . . . , j ) , with a makespan equal to t and if the job Jj has a processing time 
equal to pj = {p. +i — 1). Therefore we have: 

QiU^t) 

F{j 

GO 

1,^ 

+Cj{p. + i 

{p.+i 
-3 

1)) 

1) if t > Vj + p. -{- i — 1 

otherwise 
-J 

Notice that from the value of i which gives the minimum value of F ( j , t) we 
can deduce the value of pj. The initial conditions of the recurrence relation 
are as follows, Vt = 0,..., tmax' 

nht) = < 

fci(pi) iit>ri-j-pi 
ci{p^-hi-l)iiri-^p^-}-i-l=t 

and i = l,...,fc 
00 ii t < ri -\- p 
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Besides, pi = g^ + z - 1 if F ( l , t ) = ci{p^ + i - 1), \/i = l,...,fc + 1. The 

optimal solution is obtained by computing min (F(n,t) +1) . 
t=U,.. . ^tmax 

7.2.3 The l\ri,pi G [p.',Pi]nN\Fi{U ,CC ) problem 

This problem with integer controllable processing times has been tack
led by [Chen et al., 1997]. The processing times are defined as follows: (i) 
Pi ^ \Pi'^Pi\ nN , and (ii) Vi, j Pi-P-= Pj -p. = k. 
First the special case with a common due date is shown to be ÄfV-haid. 
Chen, Lu and Tang propose a dynamic programming algorithm which re
quires 0{nkdjnax) time, where dmax = niax (di). Before presenting this al-

i=l,. . . ,n 
gorithm, they show that an optimal schedule exists such that: (i) each tardy 
job is scheduled after all the early and on-time jobs, (ii) all early or on-time 
jobs are ordered according to the rule EDD, and (iii) For each tardy job Ji 
we have pi = p^. At each phase we decide to schedule a job early (or on-time), 
or tardy. All the early and on-time jobs are scheduled according to ^he rule 
EDD. So, without loss of generality, we assume that di < ... < dn- F{j,t) is 
the value of the objective function when considering only the sub-sequence 
(1, . . . , j ) and when the jobs Ji such that Ci < di do not complete after time 
t. We have, Vj = 2, ...,n, Wt = 0,...,dmax' 

mt) = { 

min{ min (F{j-l,t-{p -j-i - 1)) 
z=l,...,(fc+l) -J 

+Cj{p.+i-l)); 
F{j-l,t)^Cj{pj)-^wj} iit<dj 

00 otherwise 

To deduce the value of the processing time p^, Vj = 2,..., n, from the previous 
recurrence relation, we have to distinguish different cases: 

Pj 

Pj iit< dj and F ( j , t) = F(j - 1, t) + Cj{pj) + Wj 
L d F ( i , 0 = F ( i - l , t - ( p . + 2 - l ) ) 

•i-Cj{p. + z - 1), and i = 1,..., {k + 1) 

p.-^i-liit<dj andF(j ,^) = F{j -l,t - {p.+i-1)) 

_ - J 

[ Pj otherwise 

The initial conditions are the following, Vt = 0, ...,cJmaa;* 

{ ^^1+^1(^1) ift = 0 
ci{p^+ i - 1) if di >t = p^-i- i - 1 Bind i = 1,..., fc + 1 
00 otherwise 

Besides, the value of pi is given by: 
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Pl if ^ ( M ) ='"^1 +Ci(Pi) 
^ o r F ( l , t ) = Ci(pi) 

^^ ^ o r F ( l , t ) = oo 
p^ + i — 1 if F ( l , t ) = ci(g + i — 1) and i = 1, ...,fc 

The optimal solution is obtained by computing min (i^(n, t) + t). 
t=0,...,dmax 

Chen, Lu and Tang also tackle the l\di,pi e [p.;Pi] D N\F£{Tmax^ CC ) 
problem that they show to be A/'P-hard. They provide a pseudo-polynomial 
time algorithm based on the dynamic programming algorithm for the prob
lem with the U criterion. Firstly, we compute T^^a: ^^e optimal value of 
criterion Tmax computed by the rule EDD with pi = p^, Vz = l,. . . ,n. By 
setting Wi = oo. Mi = 1, ...,n and performing a binary search in the interval 
[0; T^^^] it is possible to solve optimally the problem with the Tmax criterion. 
For each value z G [0; T^ax]^ fictitious due dates d̂  = d̂  + z, \/i = 1,..., n, are 
computed and the corresponding U problem is solved. If its optimal solu
tion has no tardy jobs, then an optimal solution exists, for the Tmax problem, 
such that Tmax < z. 

7.2.4 Other problems 

Minimisation of the average completion time 

• [Azizoglu et al., 1997] study the l\di,nmit\e{C/Ema,x) problem which is 
strongly AfV-haid since the l\di,nmit\Lex{Ema,x,C) problem is also (see 
[Hoogeveen, 1992a]). Azizoglu, Kondakci and Koksalan propose an a priori 
algorithm and restrict the search for a Pareto optimum to the class of sched
ules with insertion of machine idle times. Dominance conditions are presented 
and used in an heuristic which approximates the set WE. 
Notice that when the nmit constraint is disabled the bicriteria problem, re
ferred to as l\di\e{C/Emax), remains strongly A/'T^-hard and reduces to the 
l | r i |C problem with ri = di — e — pi, Vz = 1,..., n, and e is the bound on the 
Emax criterion. It is possible to design an a posteriori algorithm which main 
line is similar to that of algorithm EWGl, except that changing the e value 
results in shifting all the release dates and no more the deadlines. Besides, to 
enumerate all strict Pareto optima it is necessary to consider all integer values 
of e within the time interval [0; Emax{SPT)] where Emax{SPT) refers to the 
value of the maximum earliness criterion in the schedule computed using the 
SPT rule. The l | r i |C problem has been extensively studied in the literature. 
Recently, [Delia Croce and T'kindt, 2002] proposed a recovering beam search 
algorithm which is, to the best of our knowledge, the most efiicient heuristic 
for this problem. Reported computational results show that this heuristic is 
close to the lower bound calculated by using the rule SRPT {Shortest Re
maining Processing Time first). Notice that this bound has been seriously 
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improved by [Delia Croce and T'kindt, 2003]. By using the improved lower 
bound and the heuristic it is, henceforth, possible to calculate a tight time 
interval containing the optimal C value. This latter can be calculated using 
the efficient branch-and-bound algorithm proposed by [Chu, 1992]. 
A lower approximation of the trade-off curve can be obtained by iteratively 
calculating the SRPT lower bound (or its improved version), denoted by 
LB^^ for all integer values e G \f)\Emax{SPT)\. Similarly, it is possible to 
obtain an upper approximation by using the above quoted recovering beam 
search algorithm to calculate upper bounds UB^. It is interesting to no
tice that, Ve, e' > m\ni<i<n{di — Pi), we have LB^ = LB^ + n(e' — e) and 
UB' = UB'' +n{e'-€). 

• [Emmons, 1975b] studies the l\di\Lex{U, C) problem which has been shown 
to be jVT^-hard by [Chen and Bulfin, 1993]. Emmons considers firstly the al
gorithm of [Moore, 1968] for the l|c!i|{7 problem and shows that this algo
rithm is not optimal for the bicriteria problem. He proposes then a branch-
and-bound algorithm and shows that the dominance conditions enable us to 
prune nodes in the search tree. 

• The enumeration of the Pareto optima for the criteria C and U is stud
ied by [Nelson et al., 1986] who propose an a posteriori algorithm for the 
l\di\e{C/U) problem. This algorithm is a branch-and-bound algorithm which 
determines a subset of the set of weak Pareto optima. This algorithm proceeds 
by determining iteratively a value e, and then by minimising the criterion C 
under the constraint U < e. Every level of the search tree contains solu
tions such that this constraint is verified for the same value e. Besides, they 
present dominance conditions which they use to reduce the search space. Nel
son, Sarin and Daniels propose similarly two heuristics based on the previous 
optimal algorithm, i.e. truncated branch-and-bound algorithms, which ap
proximate a subset of WE. The problem of enumerating the Pareto optima 
is taken up again by [Kiran and Unal, 1991] who propose general conditions 
for calculating these optima. These conditions are notably related to proper
ties of the sequence obtained by applying the SPT rule and Smith's algorithm 
for the l\di\e{C/Lmax) problem. 

• [Nelson et al., 1986] study the l|di|e(C/C/, Tmax) problem for which they 
propose a branch-and-bound algorithm which determines a subset of the set 
of weak Pareto optima. To increase the efficiency of this algorithm and to 
reduce the search space. Nelson, Sarin and Daniels use dominance conditions. 

Minimisation of the average weighted completion time 

• [Chand and Schneeberger, 1984] propose a dynamic programming algo-
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'7^=^\ rithm to solve the l\di\Lex{Lmaix,C ) problem. They show similarly that 
this problem is TVP-hard. Its complexity is also studied by [Hoogeveen, 1992a] 
who shows its strongly ATP-hardness. 

• [Smith, 1956] studies a particular case of the l|cfi|e(C /Lmax) problem 
because he is interested in the minimisation of the criterion C under 
the constraint Lmax = 0. This problem is strongly AfV-ha>Yd since the 
l\di\Lex{Lma,x^C ) problem is also. Smith proposes an algorithm based 
on the rules EDD and WSPT, which he conjectures as being optimal. 
[Emmons, 1975a] shows by a counter example that this conjecture is false. 
This problem is taken up again by [Bansal, 1980] who proposes a branch-
and-bound algorithm to determine the optimal solution, if it exists. 
[Chand and Schneeberger, 1986] show that for a certain number of problems 
and if a solution with Lmax = 0 exists, the algorithm proposed by Smith 
is optimal. This is the case notably for problems where the weights Wi are 
defined by Wi = f{pi), with a decreasing function / . 
[Heck and Roberts, 1972] study the general problem of the minimisation of 
criterion C under the constraint Lmax < e- This problem is strongly ÄfV-
hard due to the fact that: (i) when e is fixed it reduces to the 1 |di|(7 problem, 
and (ii) the l|(ii|C problem is strongly ATT -̂hard ([Lenstra et al., 1977]). To 
solve this problem they propose an heuristic based on a result presented 
in [Smith, 1956]. [Burns, 1976] also proposes an heuristic based on a neigh
bourhood method. Following this [Miyazaki, 1981] returns to this problem 
and shows that it exists a polynomial reduction from the l\di^Lmax ^ ^\ — 
problem towards the l|di|— (or l|d^, Lmaa; = 0|—) problem. Thus, we are led 
back to the problem which was studied by [Smith, 1956]. Miyazaki proposes 
then conditions to improve a sequence by permutation of adjacent jobs. A 
neighbourhood heuristic, which uses the heuristic of [Smith, 1956] to obtain 
an initial sequence is presented. The complexity of the proposed heuristic is 
in 0{n^) time. The experimental results demonstrate its efficiency in com
parison with the heuristics proposed by [Smith, 1956] and [Burns, 1976]. No 
comparison is made with either the heuristic of [Heck and Roberts, 1972] or 
the branch-and-bound algorithm of [Bansal, 1980]. 

• [VanWassenhove and Gelders, 1978] are interested in the minimisation of 
the criteria C and T via the l|d^| Fi{C ,T ) problem which is strongly 
J\fV-ha,id given that the l|<ii|T is also. They propose dominance conditions 
based on a result demonstrated by [Lawler et al., 1975] and four resolution 
algorithms. The first three are branch-and-bound algorithms which only dif
fer by the lower bound used at each node. In the first algorithm the lower 
bound of a node is calculated by solving a transportation problem applied 
to unscheduled jobs at this node. Van Wassenhove and Gelders show how 
to construct the transportation cost matrix. In the second proposed branch-
and-bound algorithm, the lower bound of each node is calculated by solving 
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an assignment problem applied to the unscheduled jobs at the current node. 
If the unscheduled job Ji is placed in the non occupied position j then it 
is possible to get a lower bound Cij of the contribution to the objective 
function of the job Ji. These bounds are used as costs Cij when solving 
the assignment problem. Dominance conditions shown by Van Wassenhove 
and Gelders are also used. For the third algorithm a method proposed by 
[Fisher, 1976] to calculate the lower bounds is used. These bounds are cal
culated by a dynamic programming algorithm. Finally, Van Wassenhove and 
Gelders propose a dynamic programming algorithm, which solves the initial 
problem and uses the dominance condition presented. Experimental results 
show that this algorithm is faster but requires more memory space than the 
branch-and-bound algorithms. They speculate that for problems with more 
than 40 jobs the algorithm which combines a branch-and-bound algorithm 
and a dynamic programming algorithm is more efficient than the others. 

Minimisation of tool changing costs 

• [Bourgade et al., 1995] are interested in an industrial scheduling problem 
related to the production of glass packaging. The aim of this problem is to 
determine a schedule which minimises the maximum tardiness Tmax and the 
total tool changing costs on the machine. These costs, denoted by 5C[i_i]ji] 
with [i] the job in the ith position, are assumed to be dependent on the se
quence. The problem tackled is denoted by l|di, Ssd\F{SC, Tmax)- Bourgade, 
Aguilera, Penz and Binder propose a mixed integer program and two possible 
definitions of the objective function F are considered: 

F(5C,rmax) = 5̂ -aE =̂l̂ p̂"""̂ '̂ '̂ -̂'̂ --̂  
and F{SC, T^ax) = ^ + max (O; (T^ax - T^ax) x (1 + ^ ) ) , 

with T^ax ^he optimal value of the criterion Tmax for the l|c?i|rmax problem. 
The l\Ssd\SC problem is ATT^-hard, since it reduces to the travelUng salesman 
problem and then the bicriteria problem is also: it is sufficient to consider 
a = 0 in the first function and o; = — 1 in the second. In order to solve these 
two problems Bourgade, Aguilera, Penz and Binder propose a branch-and-
bound algorithm. Experimental results show that the solutions obtained by 
minimisation of the first objective function F can be dominated solutions. 

• [Barnes and Vanston, 1981] tackle a similar problem, which is denoted by 
MSsd\Fe{SC,C ). This one is A/'T^-hard. Barnes and Vanston show that it 
can reduce to the travelling salesman problem and they propose an heuristic 
which uses the rule "choice of the closest unvisited town" to calculate a 
schedule. They also propose two optimal algorithms. The first is a branch-
and-bound algorithm and the second is a dynamic programming algorithm. 
The latter uses a lower bound for each decision to reduce the search space. 
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Experimental results show that the dynamic programming algorithm is faster 
than the branch-and-bound algorithm. These results show moreover that the 
relative deviation between the heuristic and the optimal solution is on average 
0.66%. 

7.3 Open problems 

7.3.1 The l\di\Ü,Tmaa^ problem 

[Shantikumar, 1983] is the first who tackled the minimisation of criteria 
Ü and Tmax while solving the l\di\Lex{Ü,Tmax) problem. He proposes a 
heuristic and a branch-and-bound algorithm in which dominance conditions 
are used to prune nodes in the search tree. Each node is evaluated by a 
lower bound, the calculation of which depends on the algorithm presented by 
[Moore, 1968] for the l|(ii|i7 problem. No experimental result is presented by 
Shantikumar, however later works done by [Gupta et al., 1999a] show that 
this exact algorithm is not capable of solving problems with more than 30 
jobs in size. Later on, [Gupta and Ramnarayanan, 1996] propose a heuristic 
algorithm based on Moore's algorithm for the l|di|l7 problem, and an inter
change improving procedure. 

Up to now the complexity of the l\di\Lex{Ü,Tmax) problem is open but 
assumed to be non polynomial by [Gupta et al., 1999a] who propose a branch-
and-bound algorithm to solve it. It is based on several results given below. 
The first theorem is trivial and states that once the sets of on-time and tardy 
jobs have been fixed (so the value of criterion Ü is determined), the Tmax 
criterion is minimised by applying twice the EDD rule. 

Theorem 19 [Gupta et al, 1999a] 
There exists an optimal schedule in which on-time jobs are sequenced in EDD 

order, and tardy jobs are sequenced in EDD order. 

The next theorem states a result that can be used to fix a job in the last 
position of the sequence. Notice that this result is close to the one used by 
Shanthikumar to build his constructive heuristic. 

Theorem 20 [Gupta et al, 1999a] 
For a given partition of the jobs into a set E of on-time jobs and a set T of 

tardy jobs, let Ji £ E and Jj eT be two jobs such that di = vcidiyij^^Eidk) and 
dj = maxj^eT(cf/c)- U ^i ^ Y^^=iPk ihen there exists an optimal schedule in 
which job Ji is sequenced last. Otherwise, there exists an optimal schedule in 
which job Jj is sequenced last. 

In the remainder we assume, without loss of generality, that jobs are num
bered according to the EDD order, i.e. di < d2 < ... < dn- From theorem 20 
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it follows that if dn > Yl^=i Pk then there exists an optimal schedule in which 
job Jn is scheduled last. By applying this remark repeatedly we can reduce 
the set of jobs to be scheduled. This procedure is applied in a preprocessing 
phase which also reduces the size of the instance by trying to determine jobs 
which necessarily early of tardy. Let E (resp. T) be the set of early (resp. 
tardy) jobs in the schedule, denoted by 5, given by Moore's algorithm for 
the l|di|i7 problem. The two following results are applied: 

1. Let Jj G E and 5 ' be the schedule obtained by applying theorem 19 on 
sets E//{Jj} and T U {Jj}. If Ü{S) ^ Ü{S') then job Jj is necessarily 
on-time. 

2. Let Jj € T and 5 ' be the schedule obtained by applying theorem 19 on 
sets E U {Jj} and T//{Jj}. If Ü{S) ^ Ü{S') then job Jj is necessarily 
late. 

Henceforth, by applying the whole preprocessing phase we can reduce the 
problem size by deriving the set of jobs LP that are scheduled last, the set of 
jobs E^ that are necessarily early and the set of jobs T° that are necessarily 
late. The set of remaining jobs is denoted by N^. 

Starting from this partitioning of the initial set of jobs, a branch-and-bound 
process is applied. Each node of the search tree represents a partition of the 
set of jobs since, thanks to theorem 19, it is possible to derive the sequencing 
of jobs inside each set of early or tardy jobs. Henceforth, from a node s two 
child nodes are created by selecting a job Jh G N^ and assigning it either in 
E' or in ^ ^ The root node s is defined by E' =E^,T' = T^ and N^ = N^. 
The choice of the job Jh to branch from depends on the calculation of the 
lower and upper bounds provided by the authors. 

The lower bound proposed by Gupta, Hariri and Potts is based on a re
laxation, at a node s, of the subproblem defined by set AT*. The idea is to 
partition iV*, and eventually change the due dates of some jobs, into two 
sets E" and T' such that we can prove this partition is optimal for the modi
fied instance. The relaxation is based on an unproved result provided by the 
authors. 

Property 10 [Gupta et al, 1999a] 
Let n' he the smallest index, where 0 <n^ <\N^\ such that 

dn' + T^Ln'^iPk < dj, Vj = n' + 1,..., lAT̂ I, with do = 0. 

Ln any schedule with the minimum number of tardy jobs, jobs J^'+i,..., J|iv«| 
must be on-time. 

The details of the lower bound, denoted by HGHPl, are given in figure 7.7. 
This bound requires 0(nlog(n)) time. At each node an upper bound is also 
calculated in 0{n'^) time by applying algorithm HGHP2 (figure 7.8). Notice 
that for a given node, HGHPl is run before HGHP2. 
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ALGORITHM HGHPl 
/* N^ is the set of unscheduled jobs, numbered from 1 to |Ar*| */ 
/* We assume that di < d2 < ... < d\M^\ */ 
Step 1: /* Initialisation of the algorithm */ 

Find n' according to property 10 on AT*; 
E = {Jn'+i,. . . , J|iv«|}; 
£; = T = 0; t = 0; 
di = oo, Vi = 1, ...,n; 

Step 2: /* Computation of the sets E and T */ 
Fbr (i = 1 to n') Do 

t = t-\-pj', E = EU{Jj}] 
If (t > dj) Then 

I Let Ji £ E such that pi = maxj^e£?(Pfc); 
I di = dj; t = t-pi] E = E-{Ji}; T = TU{Ji}] 

End If: 
End For 

Step 3: /* Computation of the sets E' and T' */ 
di = di^ ^Ji G T^; 

Order T = {Jji,.. . , Jj^} such that dj^ < ... < dj^\ 
Let the index 1 < z < ^ be such that t + J^^^iPj^ < ein'; 

Step 4: /* Calculation of the lower bound on the Tmax */ 
/* using the modified due dates d'i */ 
LB = Tmax{EDD{T')/t)\ /* EDD{T') starts at time t */ 
Return LB 

[Gupta et al., 1999a] 

Fig. 7.7. A lower bound for the l\di\Lex{U,Tmax) problem 

Gupta , Hariri and Pot t s also present four dominance conditions, used to 
prune nodes of the search tree, one of which being due to [Shantikumar, 1983], 
These four conditions are given below. 

T h e o r e m 21 
A node s is dominated and thus pruned if one on the following condition 
holds: 

1. ([Shantikumar, 1983]) 3Jj G T^, 3Jk £ E^ such that pj < pk, dj < dk, 

and dj — pj >dk—pk' 

2. 3Jj € T^, 3Jk G E^ such thatpj < pk, dj < dk, and J2i=iPi ^ ^hi V/i = 
l,.. . ,fc. 

3. 3Ji, Jk ET^, 3Jj € E^ such that pi < pj, dj <di<dk and dj > dk—pk-
4. 3Ji G T^, 3Jj,Jk G E^ such that pi < pk, di < dk < dj and di > dj —pj. 

When applying these conditions special care must be taken to jobs have the 
same values of processing times or due dates. Besides, at each node obtained 
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ALGORITHM HGHP2 
Step 1: /* Initialisation */ 

Retreive from HGHPl T, E, E and the d-'s; 
Apply iteratively theorem 20 on ^ U £? and T 

to build sequence 5; 
UB = TmaxiS); 

Step 2: /* Improvement of the current seed sequence */ 
Let Jh be such that Th = Tmax (S) 

(break ties by choosing the job with the smallest rank in 5); 
If {d'h 7̂  +0O and d^ > dn) Then 

Let Jk E: E he the job such that dk = d^; 
E = EU {Jh}\{Jkh T = TU {Jk}\{Jhh 
Apply iteratively theorem 20 on EU E and T to obtain S] 
If (all jobs of EU E cannot be scheduled on-time) Then 

I UB'= -\-oo] 
End If; 
If {UB' < UB) Then 

I UB = UB'; 
Goto Step 2; 
End If; 

End if; 
Step 3: Return UB: 

[Gupta et al., 1999a] 

Fig. 7.8. An upper bound for the l\di\Lex{U,Tmax) problem 

by assigning job Jh to set E^ or T^ they are applied with jobs in N^ assuming 
that they will be assumed in T* or E*, respectively. 

Gupta, Hariri and Potts conduct intensive testings to evaluate the eflBciency 
of their branch-and-bound algorithm. They also compare it to their imple
mentation of the branch-and-bound algorithm of [Shantikumar, 1983]. 

The obtained results show that the latter is limited to problems with up to 30 
jobs whilst the proposed branch-and-bound algorithm is capable of solving to 
optimality problems with up 100 jobs. From the results it appears that, for 
most values of n, between one third and one half of the problems are solved 
after the preprocessing at the root node. Additional testings show that the 
second dominance condition presented previously is the most efficient one 
and gives very good results. 

[Nelson et al., 1986] study the more general problem which is denoted by 
l|(ii|e([//rmax) for which they propose a branch-and-bound algorithm to de
termine a subset of the set of weak Pareto optima. An heuristic is proposed 
which enables us to determine a subset of the set of weak Pareto optima. 
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7.3.2 Other problems 

Minimisation of the average completion time 

[Pry and Leong, 1987] study the l\di\Fe{E,C) problem for which they pro
pose a mixed integer program. Experimental results show that the optimal 
solution can be determined in less than 100 seconds for problems with 10 
jobs. 

Minimisation of crashing time costs 

[Vickson, 1980a] studies the l\pi G [p.'',Pi]\Fi{C ,CC ) problem. Vickson 
does not present a study of its complexity but he speculates that this 
is A/'P-hard, in contrast to the l\pi € [goP^]! Fi{C,CC^) and l\pi € 

\p'',Pi]^di\F£{Tma,x,CC ) problems. Vickson proposes a branch-and-bound 
algorithm and a greedy heuristic based on the rule WSPT. One case study 
shows that the heuristic is capable of sequencing and calculating the optimal 
processing time of certain jobs. For other jobs, we have to use the branch-
and-bound algorithm. 



8. Shop problems 

8.1 Two-machine flowshop problems 

In this section we are interested in multicriteria flowshop scheduling prob
lems with two machines. Each job Ji is processed on the machine M\ for a 
duration p^^i, then on the machine M2 for a duration ^^,2- In this context, the 
multicriteria scheduling problem which is addressed the most in the literature 
involves the minimisation of the criteria C and Cmax- Different scheduling 
problems are derived according to the form of the considered objective func
tion. 

8.1.1 The F2\prmu\Lex{Cmax^C) problem 

[Rajendran, 1992] 

This problem is strongly ÄfV-hdiid ([Chen and Bulfin, 1994]) and Rajendran 
proposes two heuristics and one exact algorithm to solve it. These two heuris
tics, denoted by HCRl and HCR2, use the algorithm ESJl of [Johnson, 1954] 
to obtain an optimal initial sequence for the criterion Cmax- Next they per
form adjacent job permutations which are chosen by two indicators Di and 
-D ,̂ generally defined for a sequence 5 and a position r by: 

Ds[r] = PS[r],l +P5[ r ] , 2 - P 5 [ r + l ] , l - P 5 [ r + 1 ] , 2 

^S[r] = 2p5[^],i 4-p5[rl ,2 " 2p5[r+l] , l - P 5 [ r + l l , 2 

The aim of these permutations is to reduce the value of the criterion C of 
the schedule S. The next job to be permutated is determined according to 
these indicators. The heuristic HCRl uses the indicator Di and ties between 
several jobs are broken using D^. The heuristic HCR2 uses the indicator Z)̂  
and ties between several jobs are broken using Di. The heuristic HCRl is 
presented in figure 8.1 and the heuristic HCR2 is similar. We frequently refer 
in the literature to the best schedule calculated by HCRl and HCR2. 

Example. 
We consider a problem for which n = 10 and we apply the heuristic HCRl. 
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ALGORITHM HCRl 
/* T is the set of the n jobs to schedule */ 
/* ESJl is the algorithm of [Johnson, 1954] for the F2\'prmu\Cmax problem */ 
Step 1: Apply algorithm ESJl to obtain the schedule 5; 
Step 2: Let k be the index in S such that 

k fc—1 u u—1 

r = l r = l r = l r = l 

For r = 1 to n Do 
If (r = A; — 1) or (r = fc) or (r = n) Then 

Ds[r] = - 1 ; 
D'sir] = - 1 ; 

Else 

End If; 

Ds[r] = PS[r],l + PS[r],2 " P5[r+l ] , l - PS[r-^l],2\ 

^S[r] = 2p5[r],l + P 5 [ r ] , 2 " 2p5[r+l ] , l - P 5 [ r + 1 ] , 2 ; 

End For; 
L = {r/Ds[r] > 0}; 
Sort L by decreasing order of values Di (break ties by choosing 
the job with the greatest value D^); 

Step 3: While (L ^ 0) Do 
r = L[l]; 
S' = S after permutation of jobs in positions r and (r + 1); 
If {{Cmax{S') = Cmax(S)) and {C{S') < C{S))) Then 

I 5 = 6"; 
I Goto Step 2; 

End If; 
L = L-{r}; 

End While; 
Step 4: Print 5, Cmax(5) and C(5); 

[Rajendran, 1992] 

Fig. 8 .1 . An heuristic algorithm for the F2\prmu\Lex{Cmax,C) problem 

i 
Pi,l 
Pi,2 

1 
5 
10 

2 
6 
8 

3 
7 
11 

4 
10 
10 

5 
10 
9 

6 
8 
7 

7 
13 
5 

8 
7 
4 

9 
10 
2 

10 
2 
1 

(i) The schedule obtained by the algorithm ESJl is S = ( J i , J2, Ja, J4, J5,«/6, J?, 
Js^Jg, Jio) and we have C^ox = Cmax{S) = 79 and C(S) = 521. 
A; = 10. 
(ii) Calculation of the initial indicators 

r 
^S\r] 

^SH 

1 
1 
0 

2 
-4 
-5 

3 
-2 
-5 

4 
1 
1 

5 
4 
6 

6 
-3 
-8 

7 
7 
13 

8 
-1 
-4 

9 
-1 
-1 

10 
-1 
-1 

L — {JJIJ^.JA:-, Jl}' 

(iii) S = (J l , J2, J3, J4, J5, Je, Js, J7, J9, Jio), Cmax{S ) = 79 = C^ 
521. 
J/ = {J5, J4, J l}-

and C{S') = 
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(iv) S"_= (Ji, J2, Ja, t/45 Je, J5, J7, Js, J9, Jio), Cmax{S') = 79 = C^ax and C(S '̂) = 
519<C(5). 
We set therefore S = S' and we still have A; = 10. 
(v) Calculation of the indicators 

r 
Ds\r] 

^ S H 

1 
1 
0 

2 
- 4 
- 5 

3 
- 2 
- 5 

4 
5 
7 

5 
- 4 
- 6 

6 
1 

- 2 

7 
7 

13 

8 
- 1 
- 4 

9 
- 1 
- 1 

10 
- 1 
- 1 

L = {J7, J4, Ji, Js} 
We apply the heuristic HCRl until it halts and we obtain the schedule S which is 
presented in figure 8.2. 

M, 

( 

M2 

J, 
) 

h h h h J4 J7 1 Js 1 J9 
5 11 19 26 36 46 59 66 

J, h h h J5 J4 1 h 1 k 

J,o 
76 78 

h ho] 
15 23 30 41 50 60 65 70 78 79 

Cmax(5) = 79 = C;;ax and Ü(5) = 511 

Fig. 8.2. The schedule calculated by the heuristic HCRl 

Rajendran also proposes a branch-and-bound algorithm to determine an op
timal solution. Every node includes a list a of n' scheduled jobs, a set i? of 
n — n' unscheduled jobs and two lower bounds. The first bound is an evalu
ation of the value of the criterion Cmax knowing that jobs in a are already 
scheduled. The second bound is an evaluation of the value of the criterion 
C, Rajendran uses the bounds of [Ignall and Schräge, 1965] to calculate this 
lower bound. 
The lower bound on the criterion Cmax is calculated by sorting on each ma
chine the jobs in i? by increasing order of their processing times. With these 
two independent orders we can thus define dummy jobs such that the dummy 
job number k the fcth processing time on both machines. The sequence ob
tained is concatenated at the end of sequence a and the lower bound of the 
criterion Cmax is obtained by calculating the value of the criterion Cmax of 
this schedule. This evaluation is obviously a lower bound whereas it is possible 
to obtain an exact evaluation in polynomial time of the value of the crite
rion Cmax a-t each node. It is sufiicient to concatenate a with the sequence 
obtained by applying the algorithm ESJl on the set i? and to calculate the 
value of the criterion Cmax of this new schedule. 
This implies that the branch-and-bound algorithm, denoted by ECRl, pro
posed by Rajendran (figure 8.3) can preserve a node after evaluation whereas 
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this does not enable us afterwards to obtain a schedule with an optimal 
makespan. The search strategy used is the best first strategy. 

ALGORITHM ECRl 
/* T is the set of n jobs to schedule */ 
Step 1: /* Initialisation of the algorithm */ 

Apply heuristic HCRl to obtain the schedule 5 ' ; 
Apply heuristic HCR2 to obtain the schedule S"; 
/* Initialisation of the upper bound */ 
If {C{S') < Ü(5")) Then 

I S.ref = S'; 
Else 

I S.ref = 5"; 
End If; _ _ 
Cmax-ref = Cmax{S-ref); Cref = C{Sjref); 
Create the root node SQ: CTQ = 0 ; QQ = T\ Q = {so}; 

Step 2: /* Main part of the branch-and-bound */ 
While (Q 7̂  0) Do 

Choose the node si with the lowest value of LB-Q in Q; 

Fb r / c= 1 to \Qi\ Do 
Select a job Jj in Ü: Q = Q — {Jj}; 
Create a child node sf^-^: a^^^ = cTi//{Jj}; f^i^i = Oi - {Jj}; 

Compute LBcmax («1+1) and L%(s^^ \ ) ; _ 
Lf ( {LBcma.{s^^^i) < Cmax-ref) and {LBä{s%\) < Cref) ) 
Then 

Lf (r?l^\ 7̂  0) Then Q = Q + {s\%}; 
Else 

End If: 

S.ref : 
C.ref = C{S.refy, 

End If; 

End For; 
End While; 

Step 3: Print Sjref, Cmax-ref and Cref] 

[Rajendran, 1992] 

Fig. 8.3. An optimal algorithm for the F2\prmu\Lex{Cmax^C) problem 

The heuristic H C R l has the advantage of being optimal if min (pz,i) > 

max (pi,2)- This configuration corresponds to the case where the machine 

M l dominates the machine M2. Before proving the optimality of the algo
r i thm H C R l in this case we introduce preliminary results in lemma 26, 27 
and 28 . 
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L e m m a 26 
Let T be a set of n jobs Ji such that min (pi,i) > max (pi,2)- A schedule 

S is optiuicil for the CTitevioTi Cmax 
if and only if S is such that Ps[n],2 = 

min (pi,2). 

i = l , . . . , n 

Proof. 
n 

Under the hypothesis min (pi,i) > max (pi,2) we have Cmax(S) = Y^Pi,! + 
i = l , . . . , n i=l,...,n ^-^ 

i=l 

Ps[n],2' Thus a schedule S is optimal for the criterion Cmax if and only ii ps[n],2 = 
min (pi,2).ü 

1=1,...,n 

Proof of lemma 26 also shows tha t there are at least (n — 1)! equivalent 
optimal solutions for the criterion Cmax-
L e m m a 27 
Under the hypothesis min (pi,i) > max (pi,2), every permutation done by 

i=l,...,n ' i = l , . . . , n 
the heuristics HCRl and HCR2 leads to an optimal schedule for the criterion 
^max' 

Proof 
After having obtained an optimal schedule S for the criterion Cmax by using the 
algorithm ESJl , the heuristics HCRl and HCR2 search for the value k such that 

k k-l 

y^pg[i],i - y^P5[i],2 be a maximum. Given that, Vz = 1, ...,n,ps[i\,i - Ps[i\,2 > 0, 
i = l i = l 

we have k = n. Because these heuristics forbid permutations with the kth. job -
Rajendran shows that this can only lead to increase the criterion Cmax - we there
fore deduce the result.D 

L e m m a 28 
Under the hypothesis min {pi,i) > max {pi,2), a^ optimal schedule for 

i = l , . . . , n ' 2=1,. . . ,n 

the single criterion C is obtained by scheduling the jobs in increasing order 

ofPiA-

Proof. 
In every schedule S we necessarily have Cs[i],2 = Cs[i],i +Ps[i],2? Vi = 1, ...,n. We 
deduce immediately from this that minimisation of the criterion C is equivalent 

n 

to minimisation of 'y2ps[i],i- This sum is minimised by applying the rule SPT on 

machine Mi, which leads to the result,D 

L e m m a 29 
Under the h 

putes the optimal solution of the problem F2\prmu\Lex{Cmax^ C). 

Under the hypothesis min (pi,i) > max (pi,2); the heuristic HCRl com-
i = l , . . . , n ' i = l , . . . , n 
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Proof. 
Initially, the heuristic HCRl uses the algorithm ESJl to obtain an optimal sequence 
S for the criterion Cmax- From lemma 27, we know that all the permutations 
performed on the sequence S will not modify its optimality for the criterion Cmax -
These permutations are based on the indicator Ds[r]' If Ds[r] > 0 then we must 
permutate the jobs in_position r and r + 1 to try to get a schedule having a lower 
value of the criterion C. When a better sequence is found, all the coefficients Di are 
recalculated and we examine whether new permutations are needed. The sequence 
calculated by the algorithm ESJl can be broken down into two sub-sequences u 
and V (see different implementations of ESJl recalled in [Proust, 1992]) such that 
u = {Ji/pi,i < Pi,2} and V = {Ji/pi,2 < Pi,i}- ^^ ^^^ beginning, u is sorted by 
increasing order of values pi,i and v by decreasing order of values pi,2. Prom lemma 
28, we can_deduce that the list u must not be modified if we wish to minimise the 
criterion C. Therefore, no permutation that could do HCRl on the list u will be 
retained, and HCRl can only do permutations on the list v. 
At an arbitrary iteration, let there be two consecutive jobs Ji and Jj in the list v. 
We recall that Di = pi,i +pi,2 —PjA —Pja- If Pi,2 > Pj,2, then two cases can occur: 

• Pi,i ^ Pi,i then Di >0 and these two jobs are permutated. We then find a lower 
value of the criterion C (lemma 28), 

• Pi,i < PjA 2ind Di > 0 the permutation of Ji and Jj does not lead to a lower 
value of the criterion C (lemma 28) and therefore the sequence is not retained. 

Besides, if pi,2 < Pj,2, then we have already performed a permutation of Ji and 
Jj which has allowed the criterion C to be minimised: therefore it is not of in
terest to permutate these two jobs again. With lemma 27, we deduce that HCRl 
will reorder the list v in increasing order of the values pi,i, without modifying the 
last job of V. The heuristic respects lemma 26 and 28 and therefore solves the 
F2\prmu\Lex{Cmax,C) problem optimally.D 

Experimental results show tha t the algorithm E C R l is limited to problems 
with up to 15 jobs. 

[Gupta e t al . , 2001] 

Gupta , Neppali and Werner propose nine heuristics and one optimal algo
r i thm to solve the F2\prmu\Lex(Cmax^C) problem. They study two partic
ular cases for which an optimal schedule can be constructed in polynomial 
time: 

1. We suppose tha t Vi = l , . . . , n , pi^i < pi^2 and Vz,j = l , . . . , n , i ^ j , 
Pi,i < Pj,i => Pi,2 < Pj,2' Then an optimal schedule can be obtained by 
sorting the jobs in increasing order of the values pi,2-

2. If min (pi,i) > max (^^,2)7 then an optimal schedule can be obtained 
i = l , . . . , n ' j—l,...,n 

by sorting the jobs in increasing order of the values pi^i and by sequencing 
the job with the smallest pi,2 in the last position. 

With regard to the first case, the proof is deduced from the fact tha t the 
rule S P T which is applied to the processing times on the second machine 
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independently minimises the criteria C and Cmax- With regard to the second 
case, we find a similar result to that shown in lemma 29. 
The optimal algorithm, denoted by EGNWl, proposed by Gupta, NeppaUi 
and Werner proceeds by enumeration. The dominated sequences are elimi
nated by using a result derived from the following theorem. 

Theorem 22 [Gupta, 1972] 
We denote by uj, 5 and n three partial sequences. Let us consider two se
quences üJTT and OTT. If Cmaxi^) < Crnax{S) and C{(JJ) < C{5), then we have 
Cmax{(^7r) < CmaxiSir) and C{U'K) < C{67T). 

This result can be particularised and used as a dominance condition in a 
branch-and-bound algorithm. In this case we make use of the following the
orem. 

Theorem 23 [Gupta, 1972] 
We denote by u and TT two partial sequences and Ji and Ji two jobs. Let us 
consider two sequences ujJiJjTc and uJjJin. If Cmaxi^JiJj) ^ Cmaxi^JjJi) 
and Cmaxi^Ji) + Cmaxi^JiJj) < Cmaxi^Jj) + Cjnaxi^JjJi), then wc havc 
Cmaxi^JiJj^) < Cmaxd^JjJi'^) CL'^d C{LüJiJj7r) < C{ujJjJi7r). 

The algorithm EGNWl proceeds by enumerating for every position of the 
sequence the jobs which can be placed in it. Certain jobs are eliminated if, 
at a given position, they cannot lead to an optimal schedule for the criterion 
Cmax- If a partial sequence is dominated using theorem 23 then the corre
sponding node is pruned. The algorithm is presented in figure 8.4. 

The nine heuristics also presented by Gupta, Neppalli and Werner are greedy 
algorithms and neighbourhood algorithms. Experimental results show that on 
average one of these heuristics, denoted by HGNWl, dominates the others. 
This heuristic proceeds by inserting a job into a partial sequence at each iter
ation. All possible insertion positions are tested, leading thus to several new 
sequences. The best sequence is retained for the next iteration. The heuristic 
HGNWl is presented in figure 8.5. Its complexity is in 0{n'^) time. 

Example. 
We consider the earlier example, i.e. for which n = 10. 
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(i) The schedule calculated by algorithm J is S* = (Ji, J2 , . . . , Jio) with C^ax = 79 
and C{S*) = 521. We set S = (Ji) and position = 1. 
(ii) For J2 we construct the sequences S^'^ = (J2, Ji) and S^'^ = (Ji, J2)-
For J3 we construct the sequences 5^'° = (J3, Ji) and 5^'^ = (Ji, J3). 
For J4 we construct the sequences 5^'° = (J4, Ji) and 5^'^ = (Ji, J4 )v 
For Jio we construct the sequences S^^'^ = (Jio, Ji) and 5^°'̂  = (Ji, Jio). 
r _ fo2,0 o2, l c3,0 c3 , l o4,0 o4, l q5,0 o5, l 06,0 06,1 c7 , l 08,0 c8,l"l 
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ALGORITHM EGNWl 
/* T is the set of n jobs to schedule */ 
/* ESJl is the algorithm of [Johnson, 1954] */ 
/* C'^ax is the optimal value of criterion Cmax */ 
Step 1: /* Initialisation of the algorithm */ 

G = {(Ji) ;(J2); . . . ; (Jn)}; 
Level = 1; 

Step 2: /* Enumeration of the set of possible schedules */ 
While (Level ^ n) Do 

Step 3: 

/* We check if we can eliminate sequences using 
theorem 23 */ 
U($cr eG such that \a\ = Level) Then 

Among the sequences of length Level + 1 of G apply 
theorem 23 to eliminate dominated sequences; 
Level = Level + 1; 

End If: 
Let a he a sequence of G such that |<j| = Level; 
G = G-{a}; 
Ü = T-(j] 
For z = 1 to \n\ Do 

• CTi = Cj//{Q\i]}; 

/* We test the value of the criterion Cmax */ 

If (max( YJ PJA + Cmax{ESJl{n - {/?[i]})); 

Ca,,2 + Y^ Pi,2) < Cmax) Then 
jen-{n[i\} 

I G = G + {ai}; 
End If: 

End For: 
End While: 
Apply theorem 23; 
Print G[llCmax{G[l]) and C(G[1]); 

[Gupta et al., 2001] 

Fig. 8.4. An optimal algorithm for the F2\prmu\Lex{Cm,ax,C) problem 

We have 5^'" = 5^ ' ' and C ( 5 ^ ' V M ^ 2 , J3, • • . , J?, Jg, Jio)) = 500 < C\ We up
date S'*. _ 
We take S = S^'^ because C(5®'°) is minimum, 
(iii) We iterate and we obtain the schedule S* presented in figure 8.6. 

Experimental results show similarly tha t H G N W l is better than H C R l and 
HCR2. Comparisons with the optimal algorithm E G N W l are presented for 
problems with up to 10 jobs, and show tha t the heuristic H G N W l is on av
erage 0.6% of the optimal solution for the criterion C. 
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ALGORITHM HGNWl 
/* T is the set of n jobs to schedule */ 
/* ESJl is the algorithm of [Johnson, 1954] */ 
/* S[j) is a sub-sequence of S containing the j first jobs */ 
/* S(position-j] is a sub-sequence of S containing the (position — j) last jobs */ 
Step 1: /* Initialisation of the algorithm */ 

~ ~ S* = ESJliT); 

5' = 6'*[l]; 
position = 1; 

Step 2: /* We build a schedule */ 
While (position < n) Do 

• For Ji e (T- S) Do 
For j = 0 to position Do 

ion—j] J 

End For; 
End For: 
L = {S'^^/Cma.(S'^'//ESJl(T - 5^'0) = C;aa.}\ 
Let S""^ be such that C(S''^y/ESJl(T - 5^'^)) = 
min C(S^'^//ESJl(T-S^'% 

If (Ü(6 ' ^ ' 7 /E5J1(T - 5^'^)) < C(S*)) Then 
I 5 * = 5 ^ ' 7 / E 5 J l ( T - 5 ^ ' ^ ) ; 

End If; _ _ 
Let 5^'^ be such that 0(5^'^) = min C(S^'^)\ 

5 = 5'^'^; 
position = position + 1; 

End while; 
Step 3: Print S\Cmax(S'') and C(5*); 

[Gupta et aL, 2001] 

Fig. 8.5. An heuristic algorithm for the F2\prniu\Lex(CmaxiC) problem 
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Cmax (5*) == 79 and CCS'*) = 489 

Fig. 8i6. The schedule calculated by the heuristic HGNWl 
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[T'kindt e t al . , 2003] 

T'kindt , Gup ta and Billaut propose an heuristic, denoted by H T G B l , to 
solve the F2\prmu\Lex{Cmax^ C) problem, which is an extension of tha t pre
sented by [Nagar et al., 1995b] and next by [Billaut et a l , 1998]. The heuris
tic H T G B l proceeds in two steps: in the first step a schedule is constructed 
by a greedy algorithm while in the second this schedule is improved by a 
local search. The greedy step adapts the functionning of the rule S P T to 
the flowshop problem, by placing at each iteration the job having the lowest 
completion t ime on machine M2, and such tha t at least one optimal schedule 
exists for the criterion Cmax s tart ing with the sequence of jobs already sched
uled. The complexity of this phase is in 0{n^) time. The second phase of the 
heuristic proceeds by permutat ing the jobs by the operator fe-NAPI. For a 
given position i in the sequence, the permutat ion with the job in position 
fc + z is carried out. The heuristic H T G B l is presented in figure 8.8. 

Example. 
We consider the earlier example, i.e. for which n = 10. 

i 
Pi,l 
Pi,2 

1 
5 

10 

2 
6 
8 

3 
7 

11 

4 
10 
10 

5 
10 
9 

6 
8 
7 

7 
13 
5 

8 
7 
4 

9 
10 
2 

10 
2 
1 

We uniquely apply the greedy step of the heuristic HTGBl. 
(i) ^ = 0, 5 = 0 and L = (Jio, Js, J9, J2, J i , Je, J3, J7, Js, J4). 
The job Jio cannot be put in the first position because an optimal schedule for the 
criterion Cmax, which starts with this job, does not exist. 
5 = ( J 8 ) . 
(ii) t = 4 and L = (Jio, J9, J2, J i , Je, J3, J?, Js, J4). 
The jobs Jio and Jg cannot be put in the second position. 
5 = ( J 8 , J 2 ) . 
(iii) t = 8 and L = (Jio, J9, Je, J i , J7, J3, J5, J4). 
The jobs Jio and Jg cannot be put in the third position. 
S = (Js, J2, Je). 
(iv) t = 7 and L = (Jio, Jg, J i , Js, J7, Js, J4). 
The jobs Jio and Jg cannot be put in the fourth position. 
S = (Js, J2, Je, Ji)-
(v) t = 12 and L = (Jio, Jg, J7, Js, J4, Ja). 
The jobs Jio and Jg cannot be put in the fifth position. 
S = (Js, J2, Je, J i , J7). 
(vi) t = 5 and L = (Jio, Jg, J3, Js, J4). 
The jobs Jio and Jg cannot be put in the sixth position. 
S = (Js, J2, Je, J i , J7, J3). 
(vii) t = 11 and L = (Jio, Jg, Js, J4). 
The jobs Jio and Jg cannot be put in the seventh position. 
S = (Js, J2, Je, J i , J7, Js, Js). 
(viii) t = 10 and L = (Jio, Jg, J4). 
The jobs Jio and Jg cannot be put in the eighth position. 
S = (Js, J2, Je, J i , J7, Js, Js, J4). 
(ix) t = 10 and L — (Jio, J9). 
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The job Jio cannot be put in the ninth position. 
S = (Js, J21 JQ-, Ji-, J7-, Jz-t Jbi JA-, J9)' 
(x) We obtain the schedule S presented in figure 8.7. 

M, 

( 
h 

) -

h \h J. h pr 1 5̂ 1 J4 J9 J,o 
J 13 21 26 39 46 56 66 76 78 

•U 1 h h J, 1 Uli 1 ^3 1 J 5 h J9 j j 
11 21 28 38 44 57 66 76 78 79 

Cnzax(^) = 79 and C{S) = 498 

Fig. 8.7. The schedule calculated by the heuristic HTGBl 

The local search phase does not improve the solution S. 

T'kindt, Gupta and Billaut also study several exact methods and propose a 
mixed integer programming model, a dynamic programming algorithm and 
a branch-and-bound algorithm. The latter is the most successful. For each 
node, an exact evaluation of the criterion Cr̂ iaa; is carried out. The lower 
bounds for the criterion C are based on a lagrangean relaxation and the 
linear relaxation of the program. These bounds are adapted to the bicrite-
ria problem because they integrate the optimality constraint of the criterion 
Cmax' Besides which, the authors show that the dominance conditions for 
the F2\prmu\C problem are not necessarily valid for the bicriteria problem. 
Therefore, they adapt certain existing conditions and propose a new generic 
condition. 

In the following lemma, we denote by T the set of jobs to be scheduled, 
C (LV) the sum of the completion times of the jobs of sequence a;, if they are 
scheduled after sequence TT. 

Lemma 30 [T'kindt et al, 2003] 
Let us consider two partial sequences TT and a. We denote by u = T — a and 
u' = T — TT. Let A be a value such that A < C (a;') — C (a;). 
IfCmax{(TllJ{w)) - C^„ , and Cmaxii^ 11JW)) = C*^ax andC{a)-C{'K) < 
A, then a dominates T^. 

To obtain the value Zi of lemma 30 we can calculate a lower bound LB of 
the term C (u') and an upper bound UB of the term C (a;). We note then 
A = LB - C/i5. T'kindt, Gupta and Billaut use the heuristics SPT on Mi, 
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ALGORITHM HTGBl 
/* T is the set of jobs to schedule */ 
/* ESJl is the algorithm of [Johnson, 1954] */ 
/* C^ax is the optimal value of criterion Cmax */ 
Step 1: /* Initialisation of the algorithm */ 

t = 0; 5 = 0; C*max = Cmax{ESJl(T)); L = T; 
Step 2: /* Greedy step */ 

While (Ly^iD) Do 

Step 3: 

Sort L by increasing values of max(t;pi,i) -\- pi,2 (break ties 
by choosing the job with the lowest value Pi,i); 
/* [i] is the ith job in the list L */ 
bool = FALSE] z = 1; 
While {{bool = FALSE) and (i < |L|)) Do 

t{i) = max(t -p[i],i ,0) +P[i\,2\ 
/* Cmax{S\t): makespan of the schedule S if M2 is only */ 
/* availalDle at time ^ */ 

If {Cmax{ESJl{L - {J[i]})|t(i)) + 

JjGS 

I bool=TRUE; k = i] 
Else 

I i = i + l; 
End If; 

End While: 

,) Then 

S = 5//{J[fc]}; L = L- {J[,]}; t = t{k); 
End While: 
/* Improvement step */ 
i = l; 
While {i<n) Do 

j = i + 1; 
While {j < n) Do 

5 ' is obtained by per mutating S[i] and S[j] in S] 
If ((Cn.ax(^0 = C:^ax) and (C(5') < C(5))) Then 

I S = S';i = l',j = i + l; 
Else 

h ' = j +1; 
End If: 

End While: 
z = i 4 - 1 ; 

End While: 
Step 4: Print 5, Ol^aaa, and C(5); 

[T'kindt et al., 2003] 

Fig. 8.8. An heuristic algorithm for the F2\prmu\Lex{Cmax,C) problem 
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SPT on M2 and the greedy phase of the heuristic HTGBl to construct partial 
sequences. 

Experimental results show that the heuristic HTGBl is better than the 
heuristic HGNWl both in quaUty and time. Besides, the proposed branch-
and-bound algorithm solves problems containing up to 35 jobs in the most 
difficult cases. 

[T'kindt et al., 2002] 

T'kindt, Monmarche, Tercinet and Laugt investigate the effectiveness of Ant 
Colony Optimisation algorithms (AGO) on this problem. The basic idea of 
these algorithms comes from the ability of ants to find shortest paths from 
their nest to food locations. Considering a combinatorial optimisation prob
lem, an ant iteratively builds a solution of the problem. This constructive 
procedure is conducted using at each step a probability distribution that cor
responds to the pheromone trails in real ants. Once a complete solution has 
been computed, pheromone trails are updated according to the quality of the 
best solution built ([Dorigo et al., 1999]). 
Hence, cooperation between ants is performed with the common structure 
that is the shared pheromone matrix. Due to the simple structure of a so
lution to the lexicographical problem, which reduces to a sequence of jobs, 
the pheromone matrix is a job-position matrix defined as follows: Let r be 
this matrix and Tij the probability of having job Ji at position j in a good 
schedule for the C criterion. Tij is referred to as the pheromone trails and 
higher is this value higher is the probability to have job Ji in position j 
in a good solution for the bicriteria problem. Each ant of the nest builds 
a feasible solution starting from position 1 and going onwards. For a given 
position, the most suitable job for position j is chosen according to either 
the intensification mode or the diversification mode. We note po the selection 
probability of being in one of these two modes. Let a be the subsequence of 
the j — 1 first scheduled jobs. In the intensification mode, an ant chooses as 
the most suitable job for position j , the one with the highest value of Tij 
such that it exists at least one optimal schedule for the makespan beginning 
with cr//{Ji}. This makespan check can be done using Johnson's algorithm 
for the F2\\Cmax problem. Let S be the schedule obtained by applying this 
algorithm on the set of jobs not in cr//{ J^}. If the value of the makespan 
for the schedule (^//{Ji}//S is equal to the optimal value, then it exists at 
least one optimal schedule for the makespan that begins with subsequence 
cr//{Ji}. In the diversification mode, an ant uses a wheel process to select 
the most suitable job. This procedure is the same than in classic genetic 
algorithms except that only a job satisfying the makespan check described 
before, can be chosen. 
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When an ant has built a complete schedule, a local search is applied. This 
one is performed as follows. For each position j of the schedule, compute n—j 
schedules by applying the 1-API, 2-API, ..., (n —j)-API operators, where the 
fc-API operator is defined as follows: consider a fixed value fc, a schedule S 
and a position i < n — k in this schedule. After applying the fc-API operation 
on S at position i we obtain a schedule 5 ' where the jobs in position i and 
i -\- k in S have been exchanged. Among the calculated schedules plus the 
starting one, keep the schedule that has an optimal value of the makespan 
and the lowest value for the total completion time criterion. Therefore, con
sider position j + 1. This local search has an overall 0{n^) time complexity. 
After all the schedules have been built by the ants, the best one is kept and 
the pheromone matrix is updated using the evaporation and enforcement 
processes. The former decreases the pheromone trails by setting them to p% 
of their previous value whilst the latter increases the pheromone trails that 
correspond to the schedule kept at the current iteration. The heuristic ter
minates if the number of iterations exceeds the total number of iterations 
allowed. 

Using a local search algorithm within the AGO heuristic reinforces the con
vergence of the algorithm since few different schedules may be considered at 
the end of each iteration. To regulate the use of diversification and intensifica
tion processes the scheme of classic AGO heuristics is modified by the authors 
which consider that diversification is preferred at the beginning of the solu
tion process whilst intensification is preferred at the end. That principle is 
equivalent to the acceptance probability controlling in Simulated Annealing 
search. In the proposed heuristic, it means that the selection probability po 
is no longer fixed along the solution process. Let N be the total number of 
iterations before stopping. At an iteration fc, the selection probability is de
fined by po = iog(;v) • Hence, for an ant lower is the value po and higher is the 
chance to choose a job at position j using the diversification mode. A straight 
consequence is that it is no longer necessary to initially generate randomly 
the pheromone trails: as diversification is enforced at the beginning of the res
olution, it is sufficient to consider equal initial values for the Tij 's. As in the 
AGO heuristic proposed by Stutzle ([Stuztle, 1998]), the values Tij belong 
to an interval [rmin'', Tmax] to avoid pheromone trails from being negligible. 
The heuristic, denoted by HTMTLl (figure 8.9), requires 0{n^) time. Gom-
putational experiments show that heuristic HTMTLl strongly outperforms 
heuristic HTGBl in quaUty but requires more calculation time. 
T'kindt, Monmarche, Tercinet and Laugt also experimentally study the sta
bility of their heuristic, i.e. when run several times on the same instance what 
is the distribution of the C criterion ? Is the set of the obtained values nar
rowed ? A statistical analysis is conducted and Fischer's coefficient, which 
is a measure of the degree of flattening of a frequency curve near its mode, 
is calculated on the values of the C criterion calculated by the heuristic run 
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ALGORITHM HTMTLl 
/* Let T be the set of jobs to schedule */ 
/* Let N be the number of iterations and M the number of ants */ 
Step 1: p = 0.9; Tmax = jz^; 

Tmin ^̂  Tmax/0\ Tij = Tmaxt VZ, J = i..Tl]Dbest = («^ij «̂ 2j • • • j »^njj 

Step 2: For Iteration=l to N Do 

Step 3: 

Po 
log(Jteratzon) 

- log(JV) -
For Ant=l to M Do 

L = T; 5ant = 0; 
For Positional to n Do 

Generate a random number 0 < p < 1; 
If (p > po) Then 

/* Diversification mode */ 
Using the values Ti^PosiUon-, Ji G L, apply a wheel and the 
makespan check to select the job Jk to schedule at 
current Position; 

Else 
/* Intensification mode */ 
Choose the job Jk with the highest value n^position, 
Ji e Ly that satisfies the makespan check, to schedule at 

current Position; 
End If 
Sant[Position] = Jk] L = L — {Jk}] 

End For 
Start the local search on Sant to improve it; 

End For 
Let S be the best schedule for the ^ d criterion computed by 

the ants; 
Tij = pnj, Vi, j = l..n; Ts[j]j = rs[jij + j^cds)^ ^ '̂ = 1-'^; 
If S improves Sbest for the ^ d criterion, set Sbest = S] 

End For 
Display Sbesty CmaxjSbest) and ^Ci(5be80; 

[T'kindt et al., 2002] 

Fig. 8.9. An ACQ algorithm for the F2\prmu\Lex(Cmax,C) problem 

several times on a set of instances. This yields to the conclusion that the 
distribution of these values follows a normal distribution with a standard 
deviation lower than 0.22%, i.e. 95% of the values generated by the heuristic 
on the same instance are within 0.22% of the average value. 

Other results 

Numerous neighbourhood or population based heuristics have also been pre
sented in the literature. [Neppalli et al., 1996] propose genetic algorithms for 
this problem. The most successful algorithm is obtained by considering that 
each chromosome of the population is evaluated by a convex combination of 
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the criteria Cmax and C with a weight equal to n for the first and equal to 1 
for the second. 
[Gupta et al., 2002] implement several neighbourhood heuristics: tabu search, 
simulated annealing and a two-level local search. Experimental results show 
that the genetic algorithm of [Neppalli et al., 1996] is dominated both in 
time and quality by the better proposed heuristic, which is the two-level lo
cal search. This algorithm takes as input data the solution calculated by the 
heuristic HGNWl and proceeds as follows. Starting with the current solution 
the operator NAPI {Non Adjacent Pairwise Interchange) is used to generate 
the high level neighbourhood, denoted by Vi. We actually only keep a fixed 
number h of solutions of this neighbourhood, which are chosen randomly. In 
the second step, we use for each retained solution of Vi, the operator API 
{Adjacent Pairwise Interchange) to calculate the low level neighbourhood, 
denoted by V2. We ehminate from each neighbourhood V2 the solutions dom
inated using a dominance condition and those which do not have an optimal 
makespan. Among the h solutions obtained (at most), we consider the best 
solution for the criterion C. Choice of the next current solution between 
the calculated one and the previous current solution, is made using a proce
dure which is similar to that obtained in the simulated annealing algorithms 
(probabilistic choice). Regarding the computational time, this heuristic is 
relatively slow compared to the heuristic HTGBl since it requires the run
ning of the heuristic HGNWl. Gupta, Hennig and Werner do not present 
experimental results to compare in terms of quality the two-level local search 
with HGNWl. [Gupta et al., 1999b] propose a tabu search algorithm and are 
mainly interested in a framework which enables us to determine the values 
of the parameters best adapted for this algorithm. Only comparisons with 
heuristics HCRl and HCR2 are presented. 

8.1.2 The F2\prmu\Fi{Cmax,C) problem 

[Nagar et al., 1995b] 

Nagar, Heragu and Haddock are interested in the problem where the crite
ria C^rnax and G are minimised using a convex combination. This problem is 
strongly ATP-hard because the lexicographical problem F2\prmu\Lex{Cmax^ 
C) is also. 

Nagar, Heragu and Haddock propose a greedy heuristic, denoted by HNHHl 
(figure 8.11). In the particular case where the job processing times are the 
same on the two machines, i.e. pi^i = pi^2^ Vi == 1, ...,n, this heuristic deter
mines the optimal schedule. 

Example. 
We consider a problem for which n = 10. 
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(i) Ci = C2 = 0 and 5̂  = 0. 
(ii) T = (Jio, Js, 0/9, J2, J i , Je, ^3,^7, J5,V4). 
5 = (Jio), Ci = 2 and C2 = 3, 
(iii) T = (Js, J9, J2, J i , Je, J3, J7, Js, J4). 
5 = (Jio, Js), Ci = 9 and C2 = 13, 
(iv) T = (J9, J2, J i , Je, J3, J7, J5, J4). 
5 = (Jio, Js, Jg), Ci = 19 and C2 = 21, 
(v) T = (J2, J i , Je, Js, J7, J5, J4). 
5' = (Jio, Js, Jg, J2), Ci = 25 and C2 = 33, 
( v i ) T = ( J e , J l , J 7 , J 3 , J 5 , J 4 ) . 
:S = (Jio, Js, Jg, J2, Je), Ci = 33 and C2 = 40, 
( v i i ) T = ( J i , J 3 , J 7 , J 5 , J 4 ) . 
S = (Jio, Js, Jg, J2, Je, J i ) , Ci = 3 8 and C2 = 50, 
( v i i i ) T = ( J 7 , J 5 , J 4 , J 3 ) . 
S = (Jio, Js, Jg, J2, Je, J i , J7), Ci = 51 and C2 = 56, 
( i x ) T = ( J 3 , J 5 , J 4 ) . 
S = (Jio, Js, Jg, J2, Je, J i , J7, J3), Ci = 58 and C2 = 69, 
(x) T = (J5, J4). We obtain the schedule 5 presented in figure 8.10. 

Ml Jio Jg I J9 I ^2 I ^6 I J] I h I ^3 I h I J4 

0 2 9 19 25 33 38 51 58 68 78 

M2 ^ . Mio Ms \h\\ ^2 \ h \ h \\ h m h "̂5 I 
3 13 21 33 40 50 56 69 78 88 

Cmax{S) = 88 and Ü(5) = 451 

Fig. 8.10. The schedule calculated by the heuristic HNHHl 

We notice that this solution is calculated independently from the weights of the 
criteria in the objective function. 

A branch-and-bound algorithm is also proposed by Nagar, Heragu and Had
dock. At each node a job is scheduled after the jobs already sequenced. A 
lower bound is calculated by using the linear combination of a lower bound 
on criterion Cmax and a lower bound on criterion C. 

[Sivrikaya-Serifoglu and Ulusoy, 1998] 

Sivrikaya-Serifoglu and Ulusoy are similarly interested in the F2\prmu\ 
Fe{Cmax^ C) problem for which they propose an heuristic, denoted by HSUl. 
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ALGORITHM HNHHl 
/* T is the set of jobs to schedule */ 
Step 1: /* Initialisation of the algorithm */ 

Ci = C2 = 0; 5 = 0; 
Step 2: /* Greedy phase */ 

While (T 7̂  0) Do 

Step 3: 

Sort T by increasing value of max(Ci + pi,i; C2) + Pi,2] 
Ci = Ci + P T [ I ] , I ; C2 = max(Ci;C2) + P T [ I ] , 2 ; 
S = S//{T[1]};T = T-{T[1]}; 

End While; _ 
P r i n t s , C;;,ax and C(5); 

[Nagar et al., 1995b] 

Fig. 8.11. An heuristic algorithm for the F2\prmu\Fe{Cmax,C) problem 

This a t t empts to sequence the jobs by a method which is close to the rule 
S P T applied on machine M i , and on machine M2 in the case of ties. As a 
second objective it tries to minimise the sum of the idle times on the second 
machine. The heuristic HSUl is presented in figure 8.13. In order to improve 
the result obtained by the heuristic HSUl , the algorithms 2-opt and 3-opt 
are used on the calculated schedule. 

Example. 
We consider the previous example with n = 10. 
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( i ) ^ = (Jio), C5.i = 2, C5,2 = 3, 
(ii) C 5 = 0, A; = 1, 5 = (Jio, J i ) , CsA = 7 and Cs,2 = 17, 
(iii) CS = {J2, J3, Je, Jsh k = S,S= (Jio, J i , Js), Cs^ = 14 and Cs,2 = 21, 
(iv) CS = {J2}, k = 2,S= (Jio, J i , Js, J2), CsA = 20 and Cs,2 = 29, 
(v) CS = {J3, Je}, k = 6,S = (Jio, J i , Js, J2, Je), CSA = 28 and Cs,2 = 36, 
(vi) CS = {Js}, k = 3,S= (Jio, J i , Js, J2, Je, J3), ^5,1 = 35 and C5.2 = 47, 
(vii) CS = {J4,J5,J9}, k = 9, S = (Jio, J i , Js, J2, Je, Js, J9), Cs,i = 45 and 
Cs,2 = 49, 
(viii) CS = 0, k = b, S = (Jio, J i , Js, J2, Je, Js, J9, Js), Cs,i = 55 and Cs,2 = 64, 
(ix) C 5 = 0, A; = 4, 5 = (Jio, J i , Js, J2, Je, Js, JQ, J S , J4), C^,! = 65 and Cs,2 = 75, 
(x) C»S = 0 and k = 7. We obtain the schedule 5 presented in figure 8.12. 

We notice that this solution is calculated independently of the weights of the crite
ria in the objective function. 

Sivrikaya-Serifoglu and Ulusoy also propose three branch-and-bound algo
ri thms. The only difference between these three algorithms is the branching 
scheme. The first branch-and-bound algorithm, denoted by ESUl and pre
sented in figure 8.14, constructs the schedules by placing, at each node, a 
job at the end of the partial sequence of jobs already scheduled. The second 
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M, 

C 
Jio 

) : 
J> TM TI h] ~n h 1 J5 

2 7 14 20 28 35 45 

J|o| 1 J. 1 h IA. 1 J6 J3 i i 

J4 1 J' 
55 65 

J5 1 1 ^̂  
78 

• J7 

0 3 17 21 29 36 47 49 64 75 83 
^ ( 5 ) = 424 and Cmax (S) = 83 

Fig. 8.12. The schedule calculated by the heuristic HSUl 

ALGORITHM HSUl 
/* T is the set of n jobs to schedule */ "~~ 
/* Cs,i is the completion time of the last job of S on Mi */ 
/* Cs,2 is the completion time of the last job of S on M2 */ 
Step 1: Let Jk be such that pk,i = min(pi,i); 

/* Break ties by choosing the job with the smallest value pi,2 */ 
T = T - { J f e } ; 5 = (Jfc); 
Cs,l = PkXi ^5,2 =Pfc,l +Pfc,2; 
While ( T y 0 ) Do 

CS = {Ji e T/pi,i < (Cs,2 - C5.1)}; 
I f ( C 5 = 0)Then 

Let Jfc be such that pk,i = min(pi,i); 

/* Break ties by choosing the job with the smallest */ 
/* value pi,2 */ 

Else 
Let Jfc be such that pfc,2 = min (pi,2); 

/* Break ties by choosing the job with the smallest */ 
/* value pi,i */ 

End If; 
5//{Jfc};T = T - { J f c } ; 

Step 2: 

Step 3: 

Cs,l = Cs,l -\-pk,l'y 
Csa = max(C5,i; Cs,2) + Pfc,2; 

End While; _ 
Print S and F(>{Cmax{S), C{S)); 

[Sivrikaya-Serifoglu and Ulusoy, 1998]" 

Fig. 8.13. An heuristic algorithm for the F2\prmu\Fe{CmaxyC) problem 

branch-and-bound algorithm constructs the schedules by placing, at each 
node, a job at the beginning of the part ial sequence. The third branch-and-
bound algorithm uses a mixed approach. At each node we associate a part ial 
schedule of the form (cr^, * , . . . , * , a ^ ) . a^ is the list of t he jobs sequenced 
at the beginning whereas a^ is the list of jobs sequenced at the end. At an 
odd depth node, we place a job at the end of the sequence a^. At an even 
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depth node, we place a job at the beginning of the sequence a^. The search 
strategy is the depth-first strategy. 
The lower bound for a node, in the algorithm ESUl, is given by: LB = 
aLBc^ax + ß^^'c where a and ß are the weights of the criteria in the objec
tive function. The lower bound of the criterion Cmaxi denoted by LBc^ax^ 
is obtained by applying algorithm ESJl ([Johnson, 1954]) on the set of un
scheduled jobs and by concatenating this sequence with the set of jobs already 
scheduled. The value of the criterion Cmax for this sequence is the value of 
the lower bound. Calculation of the lower bound of the criterion C, denoted 

n n 
by LB-^^ is a function of the index Da = /^,Pi,i — /'^Pi,2 presented by 

[Nagar et al., 1995b] and which indicates which is the most loaded machine. 
For a given problem, when Da < 0 we use the bound LB^ and in the op-
posite case, we use the bound LB^. We note a the sequence of jobs already 
scheduled and Ü the set of unscheduled jobs, k is the number of jobs in a. 
We have: 

n—k j k n—k 

LB± = C{a) + ^ max (X^Pr[il,i + 5I^<T[i],i; ̂ '^,2) + Y^PT[i],2 
j = l i= i i= l i= i 

with r the list of jobs of i? sorted according to the rule SPT on machine Mi. 
The second bound is defined by: 

n—k—l j 

LB^ = C{a)+ 5 ] {C,^,^Y.Pr'm) 

n—k—l n 

+ m a x (Ccx,2 + Yl ^^^^1,2; X ^ P i , l ) + Pr'ln-kl2 
i= l i= l 

with r ' the list of jobs of i? sorted according to the rule SPT on machine M2. 
These bounds are extensions of those proposed by [Ignall and Schräge, 1965]. 
The branch-and-bound algorithms proposed by Sivrikaya-Serifoglu and Ulu-
soy are compared through experimental results. They show that the algo
rithm ESUl is the most efficient and that it solves problems with up to 18 
jobs but no computational time is given. They are similarly interested in the 
efficiency of the heuristic HSUl with regard to the heuristic HNHHl and they 
show that HSUl improves the results of HNHHl by at least 6%. Besides, the 
heuristic appears to calculate solutions which are closer to the optimum in 
spite of not taking account of the weights of the objective function. This can 
only be explained by a weak dispersion of the set of non dominated criteria 
vectors. 
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ALGORITHM ESUl 
/* T is the set of n jobs to schedule */ 
/* a and ß are the weights of criteria */ 
Step 1: /* Initialisation of the algorithm */ 

Apply the heuristic HSUl on T to get the schedule S-ref; 
F.ref = aCma4S-ref) + ßC{S.ref); 

n n 

i=l i=l 
Create the root node so: <Jo = 0 ; OQ = T\ Q = {50}; 

Step 2: /* Main part of the branch-and-bound */ 
While (Q 7̂  0) Do 

Choose a node si in Q: Q = Q — {si}\ 
/* Choice done according to the search strategy */ 

For A; = 1 to \Qi\ Do 
Select a job Jj in f2: Q = Ü — {Jj}; 

Create a child node s^_,.\: crj^\ = ^i//{Jj} sind 

If (Da < 0) Then 

Else 

LB{s\l\) = aLBc^^Ml\) + ßLB^i4l\); 
End If; 
If (LB{s\l\) < Fjref) Then 

' Lf (^i+\ ^ 0) Then Q = Q + {^l^^}; 
Else 

End If; 

S.ref : 
F.ref = aCmax{S.ref) + ßC{S.ref); 

End If; 

End For; 
End While; 

Step 3: Print S-ref and F.ref; 

[Sivrikaya-Serifoglu and Ulusoy, 1998]" 

Fig. 8.14. An optimal algorithm for the F2\prmu\Fe(Cmax, C) problem 

[Yeh, 1999] 

Yeh is interested in the F2\prmu\Fe(Cmax, C) problem for which he proposes 
an improvement of the heuristic HNHHl and a branch-and-bound algorithm. 
The latter constructs progressively a schedule at each node by adding a job 
after the last scheduled job. A lower bound of the objective function is cal
culated from the linear combination of a bound for the criterion Cmax and 
a bound for the criterion C, The first is calculated in the same way as in 
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the algorithm ESUl whilst the second is an improvement of a bound of 
[Ignall and Schräge, 1965]. It is calculated by considering only the second 
machine and by sorting the jobs according to the rule SPT. A lower bound of 
the criterion C is then deduced to which is added the sum of the idle times 
obtained by applying Johnson's algorithm to these jobs. Experimental results 
show that the proposed branch-and-bound algorithm is limited to problems 
with up to 14 jobs. 

8.1.3 The F2 |p rmu, r i |F£(Cr r , ax ,C) problem 

[Chou and Lee, 1999] consider that jobs have release dates and propose a 
mixed integer program. They also present an heuristic, denoted by HCLl, 
which is similar to a filtered beam search procedure. The heuristic explores 
a tree where each node contains the schedule under construction and the set 
of unscheduled jobs. The branching scheme consists of scheduling a job after 
those already scheduled. For a given node, a filter is applied to keep only 
the interesting nodes. We note a the list of jobs scheduled at node s and i? 
the set of unscheduled jobs. For each job Ji G i?, the contribution to the 
objective function is given by Qi\ 

Qi = (max[max(Ci((7);ri) +pi,i -C2(c7);0] +^^,2) x (a|i?| +/?) 

with a the weight of the criterion C and ß the weight of the criterion Cmax-
Likewise, we define the smallest contribution of the job scheduled after Ji by: 

Ri = min (pj^2 + max (max[max(Ci(a); ri) + pi,i; Vj] + Pj,2 -

[max(max(Ci(c7);ri)+Pi,i;C2(a))+pi,2];0)) x ( a | ß | - l + /3) 

Chou and Lee use a weight fi for the filter defined by fi = Qi -\- Ri. The 
nodes created from node 5 are those for which the scheduled job Ji £ fi 
is of minimum weight fi. The heuristic HCLl is presented in figure 8.15. 
Experimental results on small instances show the efficiency of the heuristic. 

8.1.4 The F2\prmu\e{C/Cmax) problem 

[Sayin and Karabati, 1999] are interested in the determination of the set of 
strict Pareto optima for the criteria Cmax and C. This problem is shown to 
be AfV-haid in the strong sense. To determine these solutions they use a 
result of the e-constraint approach. 

Lemma 31 [Sayin and Karabati, 1999] 
A schedule S^ £ S is a strict Pareto optimum if and only if: 
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/* T is 
/* fi is 
Step 1: 

Step 2: 

Step 3: 

ALGORITHM HCLl ] 
the set of n jobs to schedule */ 
the weight of job Ji */ 

/* Initialisation of the algorithm */ 
Create the root node SQ: CTQ = 0 ; i7o = T; Q = {so}; 
Fref = OO; 
/* Main part of the search */ 
While (Q ^ 0) Do 1 

Enc 

Si is ) the last node in Q; 
Q = Q-{si}; 
L = {Jj e Qi/fj = min (/fc)}; 

For fe = 1 to \L\ Do 

Enc 
I Whi 

Create a child node s^\ ai = ai//{L[k]} and 
r?,̂  = Qi- {L[k]y, 
If [Q^ + 0) Then 

| Q = Q + K ' } ; 
Else 

Enc 
I For; 
le; 

I f (aC(af ) + /?Cmax(af )<F.e / )Then | 

End 
ilf; 

Sref — CTi] 

Fref = a C ( c r f ) + ßCmax{(T^); 

ilf; 

Print S-ref and Fjref; 

[Chou and Lee, 1999] 

Fig. 8.15. An heuristic algorithm for the F2\prmu,ri\Fe{Cmax, C) problem 

1. 3e e R"̂  such that S^ is an optimal solution of the problem (Pe); 
Min Cmax{S) 
subject to 

C{S) < 6 
SeS 

2. $S^ G S such that Cmax{S^) = Cmax{S^) and C{S^) < e. 

This lemma can easily be demonstrated by lemma 4 and 5 (chapter 3). Lemma 
31 is used in a general algorithm, denoted by ESKl (figure 8.16), for the 
determination of the set E. 
In order to solve the problems (Pg.) and (Q^o) presented in figure 8.16, 
Sayin and Karabati propose two branch-and-bound algorithms which are 
iteratively called. The algorithm ESKl is then implemented according to a 
scheme proposed by [Klein and Hannan, 1982] by integrating these two pro
cedures. This implementation implies that one node is not explored several 
times. The resulting algorithm is denoted by ESK2 (figure 8.17). A node 5 
of the search tree is defined by a partial schedule a of the jobs scheduled 
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ALGORITHM ESKl 
Step 1: /* Initialisation of the algorithm */ 

i = 1; ^ = 0; Ci = oo; 
End=FALSE; 

Step 2: /* Computation of the set E */ 
While (End=FALSE) Do 

Let 5° be a solution of the problem (Pe^): 
M i n Cmax{S) 
subject to 

C{S) < a 
SeS 

If (5° does not exist) Then 
I End=TRUE; 

Else 
Let 5* be a solution of the problem (Q50): 

Min C(5) 
subject to 

^max\^) = ^max\0 ) 

SeS 
E = E-\-{S'}; 

e, = C{S') - 1; 
End If; 

End While; 
Step 2: Print E: 

[Sayin and Karabati, 1999] 

Fig. 8.16. An optimal algorithm for the F2\prmu\e{C/Cmax) problem 

first and a set i? of the unscheduled jobs. Starting with 5, a node is cre
ated by adding at the end of cr a job of i?. We also associate with the node 
s a lower bound LBc^axi^) ^^ ^^^ criterion Cmaxt 

a lower bound LB-^{s) 
of the criterion C and an upper bound C^^^{s) of the criterion Cmax- The 
latter bound is the largest value of the criterion Cmax of ^n active schedule 
when a is fixed. It is defined by C^^^{s) = Cmax{o-//Jr{f2)) with J^(i?) the 
reverse sequence of Johnson's one on set i?. The lower bound LBc^axi^) 
is calculated using the algorithm ESJl on the set Q. It is defined by 
LBcrnaxi^) = Cmax{o'//J{^))' Concerning the lower bound of the criterion 
C, Sayin and Karabati use three existing bounds which are: the first bound 
proposed by [Delia Croce et al., 1996], that proposed by [VandeVelde, 1990] 
and that proposed by [Karabati and Kouvelis, 1993]. Besides, the branch-
and-bound algorithm updates a list, denoted by £?, of schedules which corre
spond to potentially non dominated criteria vectors. At each terminal node St 
of the tree, the algorithm adds to E the schedule at if this is not dominated 
by a schedule belonging to E, Likewise, all the schedules of E dominated 
by at are deleted from the list. Besides, Sayin and Karabati use the dom-
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inance condition proposed by [Delia Croce et al., 1996] for the F2\prmu\C 
problem which remains valid for the bicriteria problem. They similarly pro
pose dominance conditions based on theorem 22. At a node 5, the sequence 
5 of theorem 22 is defined by 5 = a. The sequence 5 is then compared to 
sequences u defined by: 

• a; = irJiJj ii S = nJjJi, with TT a sub-sequence and Jj and Jj two jobs, 
• a; = ESJl{ö) with ESJl the algorithm of [Johnson, 1954], 
• a; = SPTl{ö) with SPTl the rule SPT applied to machine Mi, 
• uj = SPT2{5) with SPT2 the rule SPT applied to machine M2. 

Two computational experiments are presented by Sayin and Karabati. In the 
first, the processing times are generated between 1 and 10 according to a 
uniform law. The results obtained show that the algorithm ESK2 can solve 
every problem with up to 22 jobs. The average number of non dominated 
criteria vectors lies between 1.5 and 2.1, which means that the criteria for 
these problems do not conflict. The second type of experiment concerns prob
lems for which the processing times are generated between 1 and 100. These 
problems appear to be more diSicult to solve because the algorithm ESK2 
cannot solve some problems comprising 20 jobs. 
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ALGORITHM ESK2 
/* T is the set of n jobs to schedule */ 
/* ESJl is the algorithm of [Johnson, 1954] */ 
/* Lf is the list of nodes used to solve the problem {Pei^i) */ 
/* L^ is the list of nodes used to solve the problem (Qs^) */ 
Step 1: /* Resolution of the problem (Pej) */ 

Step 2: 

Si = ESJliry, UBc = C(5i) ; C^y. = CmaxiSi); i = 1; £! = 0; 
Build the node SQ: ao = 0, ^o = T\ 
Lf = 0; Lf = {so}; 
/* Resolution of the problem (QsJ */ 
While (L? ^ 0) 

Let Sk be the last node in Lf; 

U {(LBcisk) > UBc) or (Cri;(sfc) < C^'L)) Then 
/* The node 5^ cannot lead to an optimal schedule for */ 
/ * ( P e , ) a n d ( Q . . ) w i t h i > z * / 
Lf = L?-{sk}; 

Else 
If {{LBcmaAsk) > C^L) or (LBcisk) > UB^)) Then 

/* The node Sk cannot lead to an optimal schedule */ 
/* for (Qs.) but may be a solution of a problem */ 
/ * ( P e , ) f o r i > z * / 

Lf = Lf-{skhLr = Lr + {skh 
Else 

/* We create child nodes */ 
Create the child nodes of Sfc and on each of these nodes 
apply dominance conditions; 
/* P{sk) is the set of remaining child nodes */ 
Lf = Lf-{sk} + P{sk); 

End If; 
End If; 
If {{sk is a leaf) and {Cmax{sk) = C^ax) 

and (C{sk) < UBc)) Then 
I UBc = C{ak); 

End If; 
End While; 

to follow on the next page 

Fig. 8.17. An optimal algorithm for the F2\prmu\e(C/Cmax) problem - (1) 
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ALGORITHM ESK2 (remainder) 
Step 3: /* Resolution of problem (Pei+i) */ 

While {L[ 7̂  0) Do 
Let Sk be the last node in Lf; 
If (LBcisk) > UB-c) Then 

/* The node Sk can not lead to an optimal */ 
/* schedule for {Pe^) and [Qs^) with j > i "^/ 
Lf = Lf- {sfc}; 

Else 
Lf (Lßc„„,(sfe) > UBcrr^a.) Thgn 

/* The node Sk cannot lead to an optimal solution for (Pei+i) */ 
/* but may be a solution of a problem {Qs^) for j > i"^/ 
Lf = Lf - {skh L%, = L%, - {sk}'. 

Else 
/* We create child nodes */ 
Create all the child nodes of Sfc and for each of those 
apply dominance conditions; 
/* P{sk) is the set of remaining child nodes */ 
Lf = Lf - {sk} ^-P{sky. 

End If; 
End If: 
If (sfc a leaf ) Then E = E^ {cifc}; 

End While; 
Lf {L%, ^ 0) Then 

I z = i + l; Goto Step 2; 
End If; 
Print E and Z(E); 

[Sayin and Karabati, 1999] 

Fig. 8.17. An optimal algorithm for the F2\prmu\€{C/Cmax) problem - (2) 
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8.1.5 The F2\prmu,di\i^{Cmax^Tmax) problem 

[Daniels and Chambers, 1990] are interested in the determination of the set 
of strict Pareto optima which is a A/'T^-hard problem because the F2\prmu, di\ 
Tmax problem is also. 

Daniels and Chambers propose a branch-and-bound algorithm, denoted by 
EDCl (figure 8.18), to determine the set E. Each node 5 of the tree consists of 
a list a of the jobs scheduled last, of a set i? of unscheduled jobs, of a lower 
bound LBcmax (^) of the criterion Cmax and of a lower bound LBr^ax (^) 
of the criterion Tmax- The lower bound LBc^^^{s) is obtained by applying 
Johnson's algorithm on the set i? and we have LBc^^^{s) = Cmax{J{^)//(^)' 
LBcmax (^) is the minimal value of the criterion Cmax for all schedules com
pleting with the sequence a. The lower bound LBxmax (^) is broken down into 
three bounds: 

LBT^.. is) = max (LB^^^^^ (a); 13^^^^ (ß); Lß|,^^^ (ß ) ) . 

The first lower hound is defined by: 

^ ^ T _ W = max(0; Ci{J{Ü)lla) - di) 

The second lower bound is obtained by sorting the jobs of i? according to the 
rule EDD. We thus obtain the list L. LBj>^^^{Q) is calculated by considering 
only the machine M2: 

i 

•^^L<.x(^) = °iax (0; min(pi,i) + max (^Pi,[jj,2 - dL[i])) 

The bound LBj^^^^{f2) is calculated by relaxing the disjunctive constraints 
on the machine M2. With L the list of jobs of i? sorted by increasing order 
of the values {di — Pi,2)? we have: 

LBrp 
J- max 

(ß) = max (0; max ( ^ p ^ b ) , ! + P L W , 2 - dL[{\)) 

Daniels and Chambers similarly present some rules to prune nodes in the 
search tree. We denote by Epart the set of the strict Pareto optima already 
obtained. A node s is pruned if: 

• 3x e Epart such that LBc^^^{s) > Cmax{x) and LBT^^^{S) > Tmax{x), 
i.e. if an element of Epart dominates 5, 

• LBTmaxi^) — Tmax{J{^)//cr) because in this case among all of the sched
ules ending with (j, the schedule J(i?)//cr minimises simultaneously the 
criteria (^rnax ana Imax-

Dominance conditions are also proposed. 
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Theorem 24 [Daniels and Chambers, 1990] 
V Pj,2 < n^in(pj,i;pi,2) CLnd di < dj, then a schedule S e E in which Jj 
precedes Ji does not exist. 

Theorem 25 [Daniels and Chambers, 1990] 
If Pi,i < ^^^{PjA'^Pi,2) CLfid di < dj, then a schedule S G E in which Jj 
precedes immediately Ji does not exist. 

Theorem 26 [Daniels and Chambers, 1990] 
Let P be a partial sequence containing at least three jobs. We denote by Ji 
and Jj, with Jj preceding Ji, the last two jobs added to P. P' is the sequence 

k 

obtained after permutation of Ji and Jj. We note Lk = /^J>p'[i\,2 ~ <̂ P'[fc)-

Ifmm{piX',Pj,2) < min{pjX',Pi,2) o>nd if 3k £ P\k j^ j , such that Lk > Lj, 
then a schedule S E E containing P as a sub-sequence does not exist. 

The child nodes of 5 are constructed by taking a job of i? and by putting it 
at the beginning of the sequence a. The next node to consider is the node 
with the smallest bound LBcmax- Experimental results show that the average 
number of calculated criteria vectors is between 1.4 and 2.7. Problems with 
20 jobs are solved on average in less than 70 seconds. The total number of 
optima calculated is low which means that, from a theoretical point of view 
the criteria do not conflict. 
Daniels and Chambers also propose an heuristic which approximates the 
set E. This heuristic, denoted by HDC3, was inspired by the algorithm of 
[VanWassenhove and Gelders, 1980] which solves the l\di\e(C/Lmax) prob
lem. This heuristic is composed of two modules. The first module causes a 
constant e to vary in a certain interval. For each value, the second module 
calculates a schedule which minimises the criterion Cmax under the constraint 
Tmax < e- The heuristic HDC3 is presented in figure 8.19. 

Example. 
We apply the heuristic HDC3. We consider a problem for which n = 10 and J = 0.5. 

i 
Pi,l 
Pi,2 
di 

1 
1 
4 

18 

2 
3 
7 

11 

3 
8 
9 

27 

4 
10 
6 

25 

5 
8 
2 

20 

(i) r = {Ji,J2,J3,J4, Js}, S = 0.5, Tmax{ESJl{T)) = 10, £ = 9.5, £ = 0 and 
/ , = 0 , Vi=l, . . . ,10. 
ii) e = 5, L = {J3, J4, Js}, k = 5,S= (J5), T = {Ji, J2, J3, J4}. 
iii) e = 4,L = {Ji, J3, J4}, k = 4, 5 = (J4, J5), T = {Ji, J2, J3}. 
iv) f = 3, L = {Ji, J2, J3}, k = 3,S= (J3, J4, Js), T = {Ji, J2}. 
y)e = 2,L = {Ji, J2}, k = 2,S= (J2, Ja, J4, J5), T = {Ji}. 
vi) e=l,L = {Ji}, k = l,S = (Ji, J2, Ja, J4, J5), T = 0. 
vii) We obtain the schedule 5 = (Ji, J2, J3, J4, J5) and Tmax{S) = 10 > e. 
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ALGORITHM EDCl 
/* T is the set of n jobs to schedule */ 
/* E is the set of strict Pareto optima */ 
/* ESJl is the algorithm of [Johnson, 1954] */ 
Step 1: /* Initialisation of the algorithm */ 

£; = 0; 
Create the root node: (JQ = 0 ; i?o = T; Q = {so}; 

Step 2: /* Main part of the branch-and-bound */ 
While (Q 7̂  0) Do 

Step 3: 

Select in Q the node Si with the lowest value LBcmax • 
Q = Q-{sih 

For fe = 1 to \Üi\ Do 
Choose a job Jj in Q such that {Jj}//(^i is not 
dominated: i? = i? — {Jj}; 
Create a child node ŝ _ \̂: G\_^^ = {Jj}//cri] ^l^i = üi — {Jj}; 

Compute LBcmax{s\%)] 

Compute LBTmax{4%y-> 
U{ixeE such that {LBcmax{si%) > (x) 

and LBTmaA4%) > Tma.{x))) Then 
• Lf (LBT^US%\) = Tma.{ESJl{n^^,)//a^^^,)) 

Th^E = E^ {E5Jl(r?l^\) / /c7l^\}; 
ElseQ = Q + {sl^\}; 
End If; 

End If: 
End For; 

End While; 
Print E; 

[Daniels and Chambers, 1990] 

Fig. 8.18. An optimal algorithm for the F2|prmu,di|#(Cmax,Tmax) problem 

/c = 5 and h = {J^}-
(viii) By reapplying the previous steps up to iteration (vi) we obtain S = 

(J i , ^2, «/a, Js, «74) and 
TmaxiS)=8<e. 

(ix) We set e = 7.5, and T = {Ji , J2, J3, J4, J5}. For ^ = 5, L = 0. So, there 
is no solution with Tmax < 7.5 for HDC3. The two non dominated solutions are 
{Jiy J21 J 3 , JAI J5) and ( J i , J2 , J 3 , J5 , J4)' 

Experimental results concerning the number of sequences evaluated by the 
heuristic HDC3 and the number of Pareto optima obtained, are presented. 
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/* T is 
/ * £ ; i s 

ru.^ 

ALGORITHM HDC3 
the set of n jobs to schedule */ 
the set of strict Pareto optima */ 
= 1, ...,n, is the set of jobs that cannot be put in position Ü */ 

/* ESJl is the algorithm of [Johnson, 1954] */ 
/* Ö G]0; 1 [ is an ordinary value */ 
Step 1: 

Step 2: 

Step 3: 

/* Initialisation of the algorithm */ 
C = J-max 

E = (D; 
/ , = 0 , V j = l, . . . ,n; 
/* Building a schedule */ 
For £ = n downto 1 Do 

End 

L = {Jie T, Ji ^ h/Y^VjA + Pia -di< e}; 
j€T 

/* L is the set of jobs that can be put in position ^ */ 
If (L = 0) Then 

Enc 

/* The solutions found are in £? */ 
Print E; 
END; 

I If; 
Let Jfc G L be such that Cfc,2(J(T)) = max(Ci,2(J(T))); 

S[i] = Jfc; 

for; 
/* We ev aluate the obtained schedule */ 
If (Tmax(S) > e) Then 

Let Jk be such that Tk(S) > e and Cfe,2(5) = max (Cj, 
Jj/Tj(S)>e^ 

Let q be the position in 5 of J^; 
Iq=Iq + {Jkh 

Else 

End 

E = E-{-{S}; 
e = Tmax{S) — S; 

I If; 
T = { J i ; . . . ; Jn}; 
Goto Step 2; 

[Daniels and Chambers, 1990] 

2 ) ; 

Fig. 8.19. An heuristic algorithm for the F2\prmu,di\e{Cmax/Tmax) problem 

8.1.6 The F2\prmu,di\H^{Cmaai,U) problem 

[Liao et al., 1997] are interested in the determination of the set of strict 
Pareto optima for the criteria Cmax and U. They do not show the complexity 
of this problem. Nevertheless, it is possible to show knowing the complexity of 
the F2\prmu,di\Lmax problem, that the bicriteria problem is strongly NV-
hard. 



266 8. Shop problems 

The algorithm proposed by Liao, Yu and Joe is a branch-and-bound algo
rithm, denoted by ELYJl. Each node 5 of the search tree is composed of a 
list (J of the jobs which are scheduled last, of a set i? of unscheduled jobs, of 
a lower bound LBc^ax (^) of the criterion Cmax and a lower bound LBjj{s) 
of the criterion U. The lower bound LBcmaxi^) î  obtained by applying al
gorithm ESJl of [Johnson, 1954] on the set Q and we have LBc^^^{s) = 
Cmax{J{^)//cr). LBc^^^{s) is the minimal value of the criterion Cmax for 
all schedules ending with the sequence a. The calculation of the lower bound 
LBjj{s) breaks down as follows. We have LBjj{s) = LBjjia)-\-LBjj{Q) with: 

L ß i { a ) = ^ C / , ( J ( ß ) / / a ) 
Ji£<J 

The lower bound LBjj related to the unscheduled jobs is defined by: 

LB^{Q) = max(L^^(ß);LjB^(ß)) 

To calculate the bound LB^{n), Liao, Yu and Joe breakdown the flowshop 
problem into a single machine problem which is denoted by l\pi = Pi^i^di = 
di —Pi,2\U. Moore's algorithm ([Moore, 1968]) is then applied to solve this 
problem. LB^{f2) is the value of the criterion U obtained for the reduced 
problem. 

The bound LB^{Q) is calculated by solving the \\ri = r = min(pj,i),pi = 

Pi,2^di\U problem. A modified version of Moore's algorithm can be used, 
by considering that the machines Mi and M2 are free sooner than the 
date r. The bounds which are presented are similar to those presented by 
[Daniels and Chambers, 1990]. 

Liao, Yu and Joe also present some rules to prune the search tree. We note 
Epart the set of strict Pareto optima already obtained during the exploration 
of the tree. A node s is pruned if: 

such that LBcmaxi^) > Cmax{x) and LBjj{s) > U{x). 
• LBjj{s) = U{ESJl{Q)//a), because the schedule ESJl{Q)//cr among all 

the schedules that end with cr, minimises simultaneously the criteria Cmax 
and U. 

The dominance conditions presented in the following theorems are used in 
the algorithm ELYJl. 

Theorem 27 [Liao et al, 1997] 
Let G' = JjJicr and a" = JiJjG, with a a sequence and Ji and Jj two jobs. 
The sequence a" dominates the sequence a' if the following three conditions 
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are verified: 
(i) Ui=0 in the schedule ESJl{Q - {Jj] - {Ji))//(j', 

(ii) mm{pi^i,pj^2) < min(pi,2,ft,i); 
{Hi) di < dj. 

Theorem 28 [Liao et al, 1997] 
Let a' = JjJiG and a" = JiJja, with a a sequence and Ji and Jj two jobs. 

The sequence a" dominates the sequence a' if the two following conditions 
are verified: 

(̂ ) in the schedule ESJl{Ü-{Jj}- {Ji})//(j', Ui = 0 and Uj = 1, 
(ii) min(pi,i,p^-,2) < min(pi,2,Pj,i). 

Theorem 29 [Liao et al, 1997] 
Let cr' = JjJia and G" = JiJja, with a a sequence and Ji and Jj two jobs. 
The sequence a" dominates the sequence a' if the following five conditions 
are verified: 

(i) Ui=0 in the schedule ESJl{Q - {Jj} - {Ji})//(j', 
{ii) Pi,i < Pi,2, 

{Hi) Pi^i<Pj,i, 
{iv) Pi,2 < Pj,2, 
{v) di < dj. 

The child nodes of s are constructed by taking a job of i? and adding it to the 
beginning of the sequence a. The next node to be processed is the node with 
the smallest value of the bound LBcmax- The algorithm ELYJl is presented 
in figure 8.20. 

Experimental results show that the proposed algorithm enables us to process 
problems with up to 30 jobs. Besides, the lower are the due dates di the 
more difficult are the problems to solve. Finally, the average number of non 
dominated criteria vectors is between 1.1 and 1.8. This means that the criteria 
Cmax a.nd U are not conflicting. 

8.1.7 The F2\prmu,di\#{Cmax,T) problem 

When the criteria considered are Cmax ^nd T, the determination of the set 
of strict Pareto optima is proposed by [Liao et al., 1997]. This problem can 
be shown to be strongly ATT^-hard. 

The algorithm proposed by Liao, Yu and Joe is a branch-and-bound algo
rithm, denoted by ELYJ2, which is very close to the algorithm ELYJl (figure 
8.20) for the F2\prmu,di\4J'{Cmax^U) problem. Each node s of the search 
tree comprises a list a of jobs scheduled last, a set i? of unscheduled jobs, 
a lower bound LBc^^x (^) ^f ^^e criterion Cmax and a lower bound LBj^{s) 
of the criterion T. The lower bound LBcmax (^) is obtained by applying the 
algorithm J of [Johnson, 1954] on the set i?, and we have: 
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ALGORITHM ELYJl 
/* T is the set of n jobs to schedule */ 
/* E is the set of strict Pareto optima */ 
/* J is the algorithm of [Johnson, 1954] */ 
Step 1: /* Initialisation of the algorithm */ 

£; = 0; 
Create the root node SQ: CTQ = 0 ; i?o = T; Q = {so}; 

Step 2: /* Main part of the branch-and-bound */ 
While (Q 7̂  0) Do 

Choose a node si with the lowest value of LBcmax ^^ Q; 
Q = Q-{sih 

Fbr A; = 1 to \Qi\ Do 
Select a job Jj in Ü such that JJCFI is not 
dominated: i? = i? — {J^}; 
Create a child node s^^\: 

al^\ = J , a , ; r 2{ | = ft-{J,}; 
Compute LBcmaÄSi^i)'^ 
Compute LJB^(S.^\) ; 

Ui^xeE such that {LBcmaÄs?^i) > Cmax{x) 

and LBjj{sf^^) > lJ{x)) ) Then 

Lf {LBjjisf^,) = Ü{J{n^^,)//af^,)) 
Th^E = E + {J{Q^^,)//cj\%y, 
ElseQ = 0 + {5l^\}; 
End If; 

End If: 
End For: 

End While: 
Step 3: Print E\ 

[Liao et al., 1997] 

Fig. 8.20. An optimal algorithm for the F2\prmu,di\#(CmaxyU) problem 

LBcmax (^) is the minimal value of criterion Cmax for all schedules ending 
with the sequence a. Calculation of the lower bound LBf{s) is as follows: 

LB^{s) = LBL{a) + LB^f2) 
with: 

LBLia)='£Ti{Jin)/M 
Ji€(T 

To calculate the bound LB^f^) we construct a dummy problem from the 
jobs of i?. The algorithm used is denoted by HLYJl, and is presented in figure 
8.21. 
The bounds presented are similar to those proposed for the F2\prmu^di\ 
#{Tmax->Cmax) problem by [Daniels and Chambers, 1990], Liao, Yu and Joe 
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ALGORITHM HLYJl 
/* Q' is the set of unscheduled jobs */ 
/* LI is the list of processing times pi,i, of jobs in i?', sorted by */ 
/* increasing value */ 
/* L2 is the list of processing times pi,2, of jobs in i?', sorted by */ 
/* increasing value */ 
/* D is the list of due dates dj, of jobs in i?', sorted by increasing value */ 
Let j£ G i? be such that p£,i +P£,2 = min(pi,i +Pi,2); 

Q'^=Q-{J^}^ 
Pi.i = PiA\ Pi,2 = Pi,2'4'i = di', 
Ci,2 =v'\,\ +Pi,2; 
LB^{Q) = max(0; Cl,2 - d'l)', 
Fbr z = 2 to |i7| Do 

p ,̂i = Ll[i - 1]; pj,2 = L2[i - 1]; d̂  = D[i - 1]; 

C-,2 = max(^p^-,i +Pi,2;5]]Pi,2 +Pi,i); 

L^|.(r2) = LB^{Q) + max(0; a,2 - c?-); 
End For; 

[Liao et al., 1997] 

Fig. 8.21. Calculation of the lower bound LB^{Q) 

also use a dominance condition on the criterion T to prune nodes in the 
search tree. 

Theorem 30 [Sen et al, 1989] 
Let S = niJiJj'K2 and S' = 'K\JjJiT^2 be two schedules with TTI and 7r2 

two sequences and Ji and Jj two jobs. S dominates 5 ' if the following three 
conditions are verified: 

(i) di < dj, 
(ii) Pi,2-di <Pj,2-dj, 

(Hi) pi^i < mm{pi^2]Pji)' 

The child nodes of 5 are built by taking a job of i? and adding it to the 
beginning of the sequence a. The next node to be processed is the node with 
the smallest value of the bound LBcmax- The algorithm ELYJ2 is presented 
in figure 8.22. 

Experimental results show that the algorithm ELYJ2 solves problems with 
up to 30 jobs. Besides, the lower are the due dates di the more difficult are 
the problems to solve. Finally, the average number of non dominated criteria 
vectors is between 1.2 and 3.1, which means that the criteria Cmax 

and T do 
not confiict so much. 
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ALGORITHM ELYJ2 
/* T is the set of n jobs to schedule */ 
/* E is the set of strict Pareto optima */ 
/* ESJl is the algorithm of [Johnson, 1954] */ 
Step 1: /* Initialisation of the algorithm */ 

E = iD; 
Create the root node SQ: ao = ^ ; ÜQ = T; Q • 

Step 2: /* Main part of the branch-and-bound */ 
While (Q 7̂  0) Do 

{^o}; 

Select the node Si with the lowest value LBcmax 
in Q: Q = Q - {si}] 

For A: = 1 to |/?i| Do 
Choose a job Jj in Q such that JJGI is not 
dominated: i? = Q — {Jj}; 
Create a child node ŝ _̂ \: crj_,_\ = {Jj}//en and 

Compute LBcmaxiSi+i)'^ 
Compute LBJT(S\^I); 

U{$xeE such that (LBcmaAs\%) > Cmax{x) 
and LBj.{s\%) > T(x))) Then 

• Lf {LB^{s\l\) = T{ESJl{ülp//all\)) 
ThenE = E + {J{ü^l\)//aZ\}; 
mseQ = Q-^{s\l\}; 
End If; 

End If: 
End For: 

End While: 
Step 3: Print E: 

[Liao et al., 1997] 

Fig. 8.22. An optimal algorithm for the F2\prmu,di\#{CmaxjT) problem 

8.2 m-machine flowshop problems 

In this section we consider flowshop problems where m machines are necessary 
to process the jobs. The latter use the machines in order of their index, i.e. 
Ml then M2, etc., up to Mm-

8.2.1 The F\prmu\Lex{Cmaai^C) problem 

[Selen and Hott, 1986] and [Wilson, 1989] solve this problem by using mixed 
integer programming. It is strongly jVP-hard because the particular case 
where m = 2 is also. 
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The model presented by [Selen and Hott, 1986] is based on the fact that for 
two jobs in j th and {j + l)th positions in a schedule 5, we have the following 
relation: 

Vfc = 1,..., m — 1 and \/j = 1,..., n — 1 

with XK the idle time on machine Mk before the processing of the j th job 
of 5, P[j]^k the processing time on machine M^ of the j t h job of 5, and W|^.^ 

the waiting time before machine Mk of the j th job of S (figure 8.23). 

M. 

M, 

Ik 

I k . . 

j * 
^ [ i - l ] ' 

^ w 

Wr-î ^^ 
Ü] 

^ W 

O+D* 

J* 

^ P 

Y k+1 

^ W (j+D* 

Fig. 8.23. Illustration of the variables 

This model, denoted by ESHl (figure 8.24) requires mn + n — m + 3 con
straints, 'n? 0-1 variables and 2mn + 1 integer variables. This model can be 
partially found in [Baker, 1974]. Firstly Selen and Hott calculate the optimal 
value of the criterion Cmax by using the mathematical model ESHl but with 
the makespan as the objective function. Next, they solve the bicriteria prob
lem using with the model ESHl. 

The model proposed by [Wilson, 1989] requires less variables but more con
straints. It is based on the fact that for a schedule S we have the following 
relation: 

5[j+i],fc+i > C[j^iik and 5[^-+i],;,+i > C[̂ -],fe+i 
Vfc = 1,..., m — 1 and j = 1,..., n — 1 

with S[j]^k the start time on machine Mk of the job in j th position in S and 
C[j]^k the completion time on machine Mk of the j th job of S. 

This model, denoted by EJWl (figure 8.25) requires: 2mn + n — m + 2 con
straints, 'n? 0-1 variables and m n + l integer variables. As for the model ESHl 
we must in a first step solve the mathematical problem that minimises the 
makespan, to know its optimal value. Next, they solve the bicriteria problem 
using the model EJWl. 
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Mathematical formulation ESHl 
Data: 

Variables: 

Objective: 

Constraints: 

n, the number of jobs, 
m, the number of machines, 
Pi J , 2 = 1, ...,n, J = 1, ...,m, the processing times of jobs, 
C'mox) the optimal value of criterion Cmax • 
Zi^j, boolean variable, equal to 1 if Ji is in position j and 
0 otherwise, 
X^j^, idle time on machine Mk before the start time 
of the job in position j , 
1 [̂̂ ], waiting time before machine Mk of the job in position j , 
C, value of the criterion. 
Minimise C 

n 
Y^Zi^j = l, Vj = l , . . . ,n, 
i=\ 

n 

^Zij = l, V2 = l , . . . , n , 

n n 

+W^f\ Vfc = 1 , . . . , m - l , j = l, ...,n- 1, 
n n 

i=l i = l 
n n 

fe=l j = l 
n i i n 

i = i fc=i fc=i j = i 

[Selen and Hott, 1986] 

Fig. 8.24. An MIP model for the F\prmu\Lex{CmaxjC) problem 

8.2 .2 T h e F\prmu\if^(Cmax,C) p r o b l e m 

[Gangadharan and R a j e n d r a n , 1994] 

Gangadharan and Rajendran are interested in minimising the criteria Cmax 
and C, and they restrict their study to the set of permutat ion schedules. No 
objective function is explicitly defined and the problem is to find a solution 
belonging to the set O defined by: 

/n __ / C/V/Q' zA 9 (^max(S) — Cmax(S ) • C(S) — C(S ) ^ Q"! 

^ ' min(Cmax{S);CmaxiS')) m m ( c ( 5 ) ; C ( 5 0 ) ~ 

The heuristic proposed is based on a simulated annealing method which is 
executed with two different initial sequences. The best solution calculated is 
retained. The general heuristic algorithm, denoted by H G R l , is presented in 



8.2 m-machine flowshop problems 273 

Mathematical formulation EJWl 
Data: n, the number of jobs, 

m, the number of machines, 
Pij, 2 = 1, ...,n, j = 1, ...,m, the processing times of jobs, 
C^ax 7 the optimal value of criterion Cmax • 

Variables: Zij, boolean variable, equal to 1 if Ji is in position j and 
0 otherwise, 
sf^j, start time on machine Mk of the job in position j^ 
C, value of the criterion. 

Objective: Minimise Ü 
n 

Constraints: y^^ij = 1» Vj = 1, ...,n, 
i = l 

n 

^Zij = 1, Vz = l , . . . , n , 

3 = 1 

sfi] = 0, 
n 

sfj-^i] = sy^ + ]^^i,iPi,i , Vj = 1, ...,n - 1, 
i = l 
n 

s[\|^ = sfi] + y^^»,ipi,fc, V/c = 1,..., m - 1, 

n 

s^j^^ > S[j^ + y^^Zijpi^k, Vj = 2,..., n and VA; = 1,..., m - 1, 

n 

sfj^i] > S[j^ + y^2;»,jPi,fc, yj = 1, ...,n - 1 and VA; = 2, ...,m, 
i=l 

n 

2=1 i = l 

[Wilson, 1989r 

Fig. 8.25. An MIP model for the F\prmu\Lex{Cmax,C) problem 

figure 8.26. The initial sequences are obtained by the heuristics HGR2 and 
HGR3, detailed below. 
The heuristic HGR2 only minimises the criterion Cmax (figure 8.27). It is 
based on a sorting procedure which uses the following indices: 

J2^ X P'. 
Ti = ^ ^ , Vi = l , . . . , n , and Öi = Yj^^d^ ^^ = 1 ' - ' 

'•̂  771 

*" ^ n 
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ALGORITHM HGRl 
/* HGR2: the heuristic for the F\prmu\Cmax problem */ 
/* HGR3: the heuristic for the F\prmu\C problem */ 
/* RS: the simulated annealing heuristic used by the authors */ 
Step 1: Apply HGR2 to obtain the schedule S; 

Apply RS to obtain the schedule R with S as the initial schedule; 
Step 2: Apply HGR3 to obtain the schedule 5 ' ; 

Apply RS to obtain the schedule R' with S' as the initial schedule; 
Step 3: /* We keep the best schedule */ 

Jf / ^max [rC) — Umax 
W C{K) - C{ß!) ^ ^. ^^^^ 

-^min{Cmax{R)\Cmax{R'))_ min{C{R)]C{R')) ~ ^ 
I Print R,Cmax{R) and C{R)] 

Else _ 
I Print Ä',Cmax(i?') andC(jR'); 

End If; 
[Gangadharan and Rajendran, 1994] 

Fig. 8.26. An heuristic algorithm for the F\prmu\#{Cmax,C) problem 

If Ti > {m-\-1)/2 then the processing t ime pij of job Ji increases globally 
when j increases. 

The jobs having a low value of the index T^, therefore lower values pij when 
j is closer to 1 than to m, will be placed at the beginning of the resulting 
schedule. Jobs having larger pij on the last machines than on the first will 
be placed at the end of the schedule. We notice here a characteristic of the 
algorithm which is similar to tha t of [Johnson, 1954] for the F2\prmu\Cmax 
problem (see also [Bonney and Gundry, 1976]). 

Step 1: 

Step 2: 

Step 3: 

Step 4: 
Step 5: 

ALGORITHM HGR2 | 
rn rn ^ 

Ti = Y^j X Pij/^Pij, Vi = 1,..., n; 
3=1 3=1 
m 

Oi = y ^ P i j , Vi = l, . . . ,n; 

Q' = {Ji/Ti>{m-\-l)/2}; 
Q" = {Ji/Ti<{m + l)/2}; 
Sort the jobs in Q' by increasing value of 6i; 
Sort the jobs in Q" by decreasing value of 6i; 
S = Q'llQ"; 
Print S and Cmax{S)\ 

[Gangadharan and Rajendran, 1994] 

Fig. 8.27. An heuristic algorithm for the F\prmu\Cmax problem 
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The heuristic HGR3 considers only the minimisation of criterion C. It is 
based on the results of [Rajendran and Chaudhuri, 1991]. Let a weight uji be 

771 

defined by uji = ^ ( m — j - j - l ) xpij, Wi = 1, ...,n. Rajendran and Chaudhuri 

show that by sorting the jobs by increasing order of weights a;̂ , we obtain a 
schedule which minimises the criterion C in an heuristic manner. This index 
is similar to the one defined by [Page, 1961]. 

Experimental results show that the heuristic HGRl is better than those 
proposed for the F\prmu\Cmax problem by [Ogbu and Smith, 1990] and 
[Ho and Chang, 1991]. Prom a theoretical point of view the definition of the 
set O may seem to be surprising regarding the bicriteria minimisation prob
lem. We can show that this set is a subset of the set of strict Pareto optima. 

Lemma 32 
We have OQE. 

Proof. 
We shall proceed by contradiction. Let us suppose that 35 € O such that S ^ E. 
S ^ E<F^3S' such that Cmax{S') < Cmax{S) and C{S') < C{S) with at least one 
strict inequality. 
_ Cma.iS) - CmaxiS') _^ Ü ( g - Ü(50 ^ ^̂  ^^.^^ coutradicts the fact 

min{Cmax{Sy, Cmax{S')) min{C{S); C{S')) 
that s e on 

Notice that the reciprocal is false. Let us consider an example where the set 
of solutions is reduced to two schedules S and S' such that Cmax{S) = 15, 
C{S) = 23, Cmax{S') = 14 and C{S') = 24. We then have O = {S'} and 
E = {5 ,5 '} . 

The problem addressed by [Gangadharan and Rajendran, 1994] is equivalent 
to the determination of a solution belonging to the subset O oi E. The heuris
tic HGRl gives an arbitrary solution belonging to the set O. 

[Rajendran, 1994] and [Rajendran, 1995] 

[Rajendran, 1995] proposes an heuristic which calculates a solution belonging 
to the set O of sequences defined by: 

O = { 5 / V 5 ' 9̂  5 , C^--(^)-^rnaAS') ^ C{S)-C{S') ^ Q| 
^ ' min[CmaAS);Cmax{S')) mm(c(5);C(50) 

This heuristic, denoted by HCR3, is based on a neighbourhood method 
having the same scheme as the heuristics HCRl and HCR2 presented by 
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[Rajendran, 1992] to solve the F2\prmu\Lex{CmaxiC) problem. The heuris
tic HCR3 is presented in figure 8.28. 

ALGORITHM HCR3 
/* T is the set of n jobs to schedule */ 
/* HCDSl is the algorithm of [Campbell et al., 1970] */ 
Step 1: Apply HCDSl to obtain the schedule S*; 

For 2 = 1 to (n - 1) Do 
Swap the jobs S*[i] and S*[i + 1] in S* to obtain S"; 
If {CmaxiS') < Cmax{S*)) Then 5* = 5'; 

End For; 
Step 2: Fbrr = l to |5*| Do 

m m 
Ds*[r] = /,PS*[r]J - /.PS*[r+l]j\ 

j=l 3=1 
Tn m 

^'s*[r] = I Z ( ^ - j + 1) X Ps*[rU - X l ( ^ - i + 1) X P5*[r+1],. 
j = l 3 = 1 

End For; 
L = {V^s*[i]>0}; 
Sort L by decreasing value of Di (break ties by choosing the job 
with the greatest value D^); 

Step 3: While (L ^ 0) Do 

S = S* with the jobs in zth and {i + l)th position swapped; 
If / CmaxjS) - CmaxjS*) (7(5) — (7(5*) ^. Then 
- min{Cmax{S);Cmax(S*)) min{C(Sy,C{S*)) ^ 

' S* =S; 
Goto Step 2; 

End If; 
L = L- {i}; 

End While; 
Step 4: Print 5*, Cmax (5*) and C(S*); 

[Rajendran, 1995J" 

Fig. 8.28. An heuristic algorithm for the F\prmu\if=(Cmax,C) problem 

Experimental results are presented and the heuristic HCR3 is compared 
with an heuristic proposed by [Ho and Chang, 1991] and which solves the 
F\prmu\Cmax problem. 

Rajendran broadens the heuristic HCR3 similarly to the problem with three 
criteria F\prmu\CmaxiC,I, where / is the sum of the idle times on all the 

m 
machines, i.e. I = 2_]^k with Ik the sum of idle times on machine Mk- The 

k=l 
heuristic obtained, denoted by HCR4, is identical to HCR3 except in the test 
of step 3 where we must read for HCR4: 
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"If ( r(S)-Crr 

minyCmax(S);Cn 
c(s)-c(s*) _̂  ns)-i(s*) ^ Q^ r^^^ ^ 

ax(S*)) min(c(S){C(S*)) iin(l(S);I(S*)) 

Comparisons with the heuristic of [Ho and Chang, 1991] are also presented 
and they show that HCR4 gives better results for the three criteria. 

[Rajendran, 1994] studies this problem when the processing times can be 
equal to zero. This constraint is not generally taken into account because it 
modifies calculation of the completion times of jobs on machines. 

^ • - 1 

M: 

M. J-1 

Cy.. 

M: 

0 

;̂ ^ 

a 

J. 

Cy-i 

-: Ji 

Cy 0 c. 
- case p. j=0 - - case p. j>0 -

Fig. 8.29. The influence of zero processing times 

Thus, to avoid idle times which are of no use, Rajendran authorises cases 
where dj < Cij-i (see figure 8.29). This implies on the other hand that 
the completion time of a job Ji is defined by Ci = max {Cij), to be able 

j = l , . . . , m 

to take account of the case where the last operations have zero duration. In 
order to solve this problem a modified version of the heuristic HCR3, de
noted by HCR5, is presented in figure 8.30. The diflFerences between these 
two heuristics are in the initialisation phase, where in HCR5 a variant of the 
heuristic HNEHl is used instead of the heuristic HCDSl, and in the calcula
tion of the indices Di and D^, 

Rajendran presents experimental results in which HCR5 is compared to the 
heuristic of [Ho and Chang, 1991]. This comparison is made on the criteria 
Cmax, C and / . As in the case where the processing times are strictly pos
itive, heuristic HCR5 gives better results than the heuristic presented by 
[Ho and Chang, 1991]. 

8.2.3 The F\prmUjdi\e{Cmax/Tmax) problem 

[Daniels and Chambers, 1990] propose an a posteriori algorithm which is a 
generalisation of the heuristic HDC3. Knowing a value e the heuristic, denoted 
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ALGORITHM HCR5 
/* T is the set of n jobs to schedule */ 
/* HNEHlb is a modified version of HNEHl: in the first phase jobs are */ 

m 
/* sorted by decreasing value of /"^Pij/rij, with */ 

i = i 
/* rii the number of operations of job J« which have not a zero */ 
/* processing time */ 
Step 1: Apply HNEHlb to obtain the schedule S*; 

For z = 1 to (n - 1) Do 
Swap the jobs S*[i] and S*[i + 1] in 5* to obtain 5 ' ; 
If iCmax{S') < Cmax{S*)) Then S* = S'; 

End For; 
Step 2: For r = 1 to \S*\ Do 

m m 

End For; 

m m 

^ ( m - j + l)PS*[r],i 5 Z ( ^ - J H- l)P5*[r+l],: 
1=1 1=1 

ms*[r] ^S*[r+1] 

L = {V/)5*[i i>0}; 
Sort L by decreasing value of Di (break ties by choosing the job 
with the greatest value D'i)\ 

Step 3: While (L «̂̂  0) Do 

S = S* with the jobs in ith and (i + l) th position swapped; 

Lf(-
(^max\^) (^max\^ ) + ^ g - . q . ? , . <o)Thga 

mm(C(5);C(5^*)) 

I Goto Step 2; 
End If; 
L=:L-{i}; 

End While; 
Step 4: Print 5%Cmax(5*) and C(5*); 

[Rajendran, 1994] 

Fig. 8.30. An heuristic algorithm for the F\pr'mu\if^{Cmax,C) problem 

by HDC4, searches the jobs Ji which can be scheduled in the last position, 
i.e. such tha t : 

^P^A + 5IPi,j -di<€ 
e^i 3=2 

For each candidate for the last position, the heuristic H N E H l is applied to 
the n — 1 remaining jobs. Thus a complete schedule is obtained for each can
didate. Amongst all these schedules, we retain the one which maximises the 
criterion Cmax- The corresponding candidate job is placed in the last position 
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of the schedule and the process is repeated until all the jobs are scheduled. If 
the final solution does not respect the constraint Tmax ^ ^ then the algorithm 
returns to the last sequenced job and a t tempts to place another candidate 
job. This back-tracking process is repeated until a feasible schedule is ob
tained or until all the candidate jobs have been tried in all the positions. The 
heuristic HDC4 is presented in figure 8.31. 

ALGORITHM HDC4 
/* T is the set of n jobs to schedule */ 
/* £7 is the set of strict Pareto optima */ 
/* -̂ £? 1 ^ ^ ^ ^? is the set of jobs which cannot be placed in position i */ 
/* HNEHl is the algorithm of [Nawaz et al., 1983] */ 
/* 6 G]0; 1 [ is an ordinary value */ 
Step 1: /* Initialisation of the algorithm */ 

e = Tmax{HNEHl{T))-6; 
E = i!}; 
/ , = 0 , V j = l, . . . ,n; 

Step 2: /* Building of a schedule */ 
For £ = n to 1 Do 

Step 3: 

L={Jie T, Ji ^ Ie/^Pj,i + YIP'^^ -di< €}; 
jer j=2 

/* L is the set of jobs that can be placed in position £ */ 
If (L = 0) Then 

/* The solutions found are in -E */ 
Return E] 
END; 

End If: 
Let Jfc G 1/ be such that: 

Ck,m{HNEHl{T) - {Jfc}) = m^{Ci,m{HNEHl{T) - {Ji})); 

S[i] = Jfc; 
T = T-{Jk}; 

End For: 
/* We evaluate the built schedule */ 
U (TmaxiS) > e) Then 

Let Jfc be such that Tk(S) > e and Ck,m(S) = max (Cj,m)\ 
Jj/TjiS)>e^ 

Let q be the position in S* of Jfc; 
Iq = Ig-h{Jk}; 

Else 
E = E-\-{S}] 

End If: 
T = { J i ; . . . ; Jn}', 
Goto Step 2; 

[Daniels and Chambers, 1990] 

Fig. 8.31. An heuristic algorithm for the F\prmu, di\e{Cmax/Tmax) problem 
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Daniels and Chambers present experimental results in which they compare 
the heuristic HDC4 to an enumeration method. The results show that the 
cardinality of the set of strictly non dominated criteria vectors increases in 
proportion to the number of machines. Moreover, they show that on average 
50% of the strict Pareto optima are calculated by HDC4. Nevertheless, as for 
the heuristic HDC3, the non strict but weak Pareto optima can be generated. 

8.2.4 The F\pij G [p..',Pij],prmu\Fi{Cmax,CC ) problem 

[Nowicki, 1993] is interested in a problem where the processing time of jobs 
have to be determined. Crashing time costs are measured by the criterion 
CC which is defined by: 

n m 

CC = / ^ / ^ "^ij^ij 

where Xij represents the compression of the operation Oij defined by 
Pi,j — Pij ~ ^iJ' [Nowicki and Zdrzalka, 1990] present a state-of-the-art sur
vey of such problems. The problem addressed by Nowicki is AfV-haid. 

For the particular two-machine problem, Nowicki proposes an approximation 
algorithm with the guaranteed performance of | . This algorithm is simi
lar to the one presented by [Nowicki and Zdrzalka, 1988]. We consider an 
initial compression vector x^ such that, \/i = l , . . . ,n,Vj = l , . . . ,m,x^j G 
[^'iPi,j ~P ]• Processing times being fixed, Johnson's algorithm gives an 
initial sequence of jobs. The second phase of this algorithm considers that 
this sequence is fixed and searches for a vector x which minimises the objec
tive function Fi{Cmax^CC ). This can be done by solving a linear program. 
Guaranteed performance of | is obtained ([Nowicki and Zdrzalka, 1988]) by 
considering x^j = (1 — Cij) x {p^j —p. .) where Cij is the normalisation to 1 

of the weight Wij. The worst case performance is reduced to | by considering 

< j = f^ij X (Pij -Rij) where /x^j = max(mm( — a'^'^ 

and a = 1 — pm/[p-\- \/p{rn — 1)]^ with p being the guaranteed performance 
of the sequencing algorithm. Nowicki shows that the bound of | is the low
est which we can possibly find. In the case m = 2, we have p = 1 because 
algorithm ESJl is an optimal algorithm. 
When the number of machines is not equal to two, algorithm ESJl can no 
longer be used to calculate a sequence. We suppose in the following that an 
heuristic, with a guaranteed performance of p is used. When the vector x^ is 
defined as previously for the performance | , Nowicki shows that the guaran
teed performance of the algorithm is equal to p^- (m — p)/{2p-\-2yJp{m — 1) — 
!)• 



8.2 m-machine flowshop problems 281 

8.2.5 T h e F\pij = Pi E [p^'^Pi],prmu\#{CmaxiCC ) problem 

[Cheng and Shakhlevich, 1999] address a particular flowshop problem where 
all the operations of a job have the same processing time, i.e. pij = Pi, Vz = 
1,..., n. We speak of a proportionated flowshop problem. Besides, the process
ing times are variables to be determined, and we have pi G [Poft]? Vi = 
1,..., n. The crashing time costs are measured by the criterion CC which is 

n 

defined by CC^ = ^ WiXi where Xi £ [0;^^ —p.] and it represents compres-
i= i _ 

sion of the job Jj, i.e. pi = p^ — Xi. Cheng and Shakhlevich are interested 
in the determination of the strict Pareto optima, which is a polynomially 
solvable problem. 

When processing times are fixed any permutation schedule minimises the 
criterion Cmax- Then, the optimal value of the criterion Cmax is given by: 

n 

Cmax = (m - 1) max {pi) + ^ p i 
z= l , . . . ,n ' ^ 

i = l 

Similarly, when compressions Xi are fixed, the optimal value of the criterion 
Cmax does not depend on the schedule. 

Cheng and Shakhlevich propose an a posteriori algorithm which is based on 
the enumeration of the extreme Pareto points of the polyhedron of the so
lutions in criteria space. We can model the problem with a linear program 
because the variables Xi take real values and because every schedule min
imises the criterion Cmax- The principle of the algorithm, denoted by ECSl, 
is the following. Knowing an extreme point of the trade-off curve, it is possi
ble to obtain the next extreme Pareto point by reducing the processing time 
of one or several jobs. Let 5^ be a solution defined by the processing times, 

i.e. s^ = [p\'i'P2'i" '\PnV ^^d let {Cmax\CC ) be the associated criteria 
vector. In s°, Ji is a job such that either pi < max (pj), or pi = max (pj) 

j = l , . . . , n j=l,...,n 

and 3Jk such that pk = Pi- Reduction by one unit of the processing time of Ji 
leads to a reduction by one unit of the value of the criterion Cmax 

of 5^. The 
ratio 5i, which is the trade-off between the two criteria, is defined by Si = Wi. 
It corresponds to an increase in criterion CC when the processing time Pi 
is decreased by one time unit. Let us now consider compression of all the 
longest jobs of s^. Let z be the maximum decrease of the longest processing 
times so that they remain the longest. We define L = {Ji/pi = max (pj)} 

j=l,...,n 

and SL = / ^ Wj/{m -{- \L\ — 1). From an extremity of the trade-off curve, 
jjeL 

obtained by solving the F\pij = Pi G [p.;Pi],prmu\Lex{Cmax^CC ) prob
lem, a series of compressions is performed to arrive at the other extremity of 
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the curve. For a given extreme Pareto point, the next extreme point is cal
culated by choosing the lowest ratio 5i or 5L and by maximum compressing 
the corresponding job(s). This smaller ratio corresponds to the slope of the 
facet of the polyhedron which is between the current extreme point and the 
next point calculated. Algorithm EC SI is presented in figure 8.32. Its t ime 
complexity is in 0 ( n l o g ( n ) ) . 

Example. 
We consider a scheduling problem for which n = 5 and m = 2. 

i 

Pi 
Pi 
Wi 

1 
3 
7 
1 

2 
5 
7 
1 

3 
4 
5 

ä 

4 
2 
4 
4 

5 
3 
4 
5 

( i ) p= [7 ;7 ;5 ;4 ;4 ]^ and (5 = [1; 1;3;4;5]^. 
p' = 7, L = {J i , J2}, Z = 2 and p'' = 5. 
6L = 2/3, z = 1, p = 0 and E = {(34; 0)}. 
(ii) g=l, 6i> SL. 

z = min(2; 2) = 2, p' = 5. 
E = E-{- {(28;4)}, p = [5;5;5;4;4]^, L' = {J3}, Z ' = 1 and Z = min(0; 1) = 0. 
L = {Ji , J2, J3}, SL = 5/4, p" = 4, SL = 00. 
(iii) g = 2,öi<dL-
z^ = 2,p= [3; 5; 5; 4; 4]^ and E = E + {(26; 6)}. 
JieL^L = {J2, J3}, 5L = 4/3 and Z = 0. 
p" = 4 and 2 = 2. 
(iv) p = 3, (52 < (5L. 

;2;2 = 0, L = {J3}, ^L = 3/2 and Z = 1. 
2 = 3. 

(v) p = 4, (53 > ^L. 

;. = 1, p ' = 4. 
E = E^ {(24; 9)}, p = [3;5;4;4;4]^, L' = {J4, J5}, Z ' = 1 and Z = 0. 
L = {J4, J5, J3}, SL = 3, y = 0 and SL = 00. 
(vi) g=:b, S3 < SL' 

zs = 0, L = {J4, J5}, JL = 3 and Z = 1. 
2 = 4. 

(vii) fi' = 6, (54 > 5L. 

^ = 1, p ' = 3. 
E = E + {(21; 18)}, p = [3; 5; 4; 3; 3]^, L' = 0, Z ' = 0 and Z = 0. 
1/ = {J4, J5}, SL = 3, p" = 0 and SL = 00. 
(viii) p = 7, (54 < ^L. 
;̂ 4 = 1, p = [3; 5; 4; 2; 3]^ and E = ^ + {(20; 22)}. 
J4 G L =4> L = {J5}, (5L = 5/2 and Z = 0. 
p " = 0 and 2 = 5 = n. 
(ix) We obtain therefore E = {(34; 0); (28; 4); (26; 6); (24; 9); (21; 18); (20; 22)}. 
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ALGORITHM ECSl 
/* We assume that wi < W2 < -- - < Wn "^ / 
/* We consider the solution of the Lex{Cmax,CC ) problem */ 
Pi=Pi, Vi = l , . . . ,n; 
öi = Wiy Vz = 1, ...,n; p ' = max (pj); /* individual ratio */ 

j=l,...,n 

L = {Ji/Pi = p '} ; Z = mm{p -p ); 
JiEL —* 

p" = max(pj); 

5L = y ^ Wi/(rn-\- \L\ — 1); /* Ratio of the longest jobs */ 

n 

i = 1; p = 0; C ^ L = (m - l y + ^ p , ; CC"^^^ = 0; 

While (i < n) Do 

If ((5i < 6L) Then /* We compress a single job */ 
Zi = Pi — p^; Pi = Pi — Zi\ 

^max ~~ ^max Zi\ \y\^ = ^ 0 0 ~r WiZi'^ 

If {Ji e L) Then 
L = L 

End If; 

{Ji}; ^L = ^Wj/(m+\L\ - 1 ) ; Z = m i n ( p ' - p j ) ; 

p" = max(p7); z = i + 1: 

Else /* We compress all the longest jobs */ 
z = min(Z,p' — p")\ p' = p' — z\ 
C^^lx = C^r^äx^ - (m + |L| - l)z', CC"^'^ = CC"^'~^^ -^ zj^ ^iJ 

JjEL 

E = E -\- {[Cmax]CC )}; 
/* We update the information */ 
Pj = Pj — z, \/Jj G L\ 
Ü = {Jj i L/pi = p '} ; Z' = min{p' - p ); 

jjeL J 
Z = mm{Z - z\ Z')] L = LUL';6L= ^ Wj/{m + \L\ - 1); 

Jj€L 

p" — maxfp,); 
J -^L 

If (Z = 0) Then 6L = oo; 
End If; 

End While; 
Print E\ 

[Cheng and Shakhlevich, 1999] 

Fig. 8.32. An optimal algorithm for the F |p i j = pi e \p.]Pi],prmu\#{Cmax,CC ) 
problem 
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Cheng and Shakhlevich extend the algorithm ECSl to cases where the crite
rion CC is defined as a convex or concave function. 

8.3 Jobshop and Openshop problems 

8.3.1 Jobshop problems 

Few multicriteria jobshop scheduling problems have been addressed in the lit
erature. [Huckert et al., 1980] study the J|di|FT(Cmax)C',/, T^axjC^) prob
lem which is strongly AT'P-hard. They propose an interactive algorithm which 
is inspired by the STEM method ([Benayoun et al., 1971]). This algorithm 
is clearly split into two modules as indicated in chapter 4. The first inter
acts with the decision maker by deducing a new TchebycheflF point z'^^^. 
The greedy heuristics are then carried out for the new scheduling problem 
obtained and the solution which is calculated is presented to the Decision 
maker. The interactive procedure stops at his command. 

[Deckro et al., 1982] study the J|di|GP(Cmaa;,Ü,S + T ) problem and they 
propose a mixed integer program to solve it. Regarding the multicriteria 
optimisation aspect they consider goal programming. The proposed model 
applies equally to the case where the operations require a certain number of 
machines on which they must be processed. 

8.3.2 The 02\\Lex{Cmax,C) problem 

When only the criterion Cmax is minimised the problem is solvable in poly
nomial time ([Gonzalez and Sahni, 1976]). We recall that the optimal value 
of the criterion Cmax is given by: 

n n 

C^max = max(y 'p i , i ; . max (pi,i +^^,2); Y\pi,2) 
* '̂  1=1,. . . .n ' ^ 
z = l i = l 

The minimisation problem of criterion C is strongly ATP-hard and from the 
complexity proof proposed by [Achugbue and Chin, 1982] it can be deduced 
that the 01\\Lex{Cmax'>C) problem is equally so. 

[Gupta and Werner, 1999] 

Gupta and Werner show that if the optimal value of the criterion Cmax is 
equal to max (pi,i + ^^,2), then an optimal schedule for the bicriteria prob-

i=l,. . . ,n 
lem can be obtained in polynomial time as follows. 
Let the job J^ be such that pr,i +Pr,2 = inax (pi^i + Pi,2)- Two schedules are 

i=l,. . . ,n 
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constructed by assigning, in the first one, the first operation of Jr on machine 
Ml and by assigning, in the second one, the first operation of Jr on machine 
M2. In the first case the jobs remaining to be scheduled are sequenced on 
machine M\ according to the rule SPT and the jobs are arbitrarily sequenced 
on machine M2. In the second case, we proceed in the same way but by con
sidering the second machine. 

The most difiicult problems to solve are those for which C^^LX — inax(y^pi^i; 
2 = 1 

n 
yjPi,2)' Gupta and Werner propose in this case an extension of the heuristic 
i= l _ 
HGNWl for the F2\prmu\Lex{Cmaxy C) problem. They differentiate between 

n n 
two symmetrical cases for which C^^a; — /^Pi, i and C^ax = /JPt ,2 ' The 

i= l i=\ 
extension of HGNWl in the first case considers the initial sequence of the 
jobs given by [Gonzalez and Sahni, 1976]'s algorithm for machine Mi. The 
first job of this sequence is assigned on the first machine. All the other first 
operations of the jobs are assigned on the second machine. The insertion 
principle of the heuristic HGNWl is applied next. As for the flowshop prob
lem the optimality test of the criterion Cmax for a partial sequence is carried 
out by scheduling the remaining jobs using the algorithm of [Johnson, 1954]. 
The sequence obtained is then concatenated on the two machines to the par
tial schedule and the makespan value obtained is compared to the value C^^^, 

[Kyparisis and Koulamas, 2000] 

Kyparisis and Koulamas study several particular cases for which the lexico
graphical problem is solvable in polynomial time. 

Lemma 33 [Kyparisis and Koulamas, 2000] 
The 02\\Lex{Cmax',C) problem is polynomially solvable with a complexity in 
0{n^) time if min (pi,i) > 2 x max (pi,2) • 

i=l,. . . ,n ' i=l,. . . ,n 

Lemma 34 [Kyparisis and Koulamas, 2000] 
The 02\\Lex{C'max^C) problem is polynomially solvable with a complexity in 
0(nlog(n)) time if 

max (pi,i +Pi,2) > max(y]Pi,2;y^Pi, i)-
1=1,...,n '̂ —' *—' i= l 2=1 

Lemma 35 [Kyparisis and Koulamas, 2000] 
The 02\\Lex{Cmax',C) problem is polynomially solvable with a complexity in 
0 ( n log (n)) time if 
(i) the number of jobs n is even. 
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ft 

(a) Vz = 1, . . . , - , P2i,l = P2z-1,2 and P2i-l,l = P2i,2 WÜh Pn+1,1 + Pn+1,2 = 

max (pi,i +Pi,2). 
2=1,. . . ,n 

Kyparisis and Koulamas propose several heuristics for the bicriteria problem 
for different configurations. 
When min (pi,i) > max {pi,2)i ^-e. machine Mi dominates machine M2, 

2=1,. . . ,n ' 2=1,. . . ,n 

an algorithm in 0 ( n log (n)) time with a worst case performance guarantee of 

1 H— is presented. 
n 

8.3.3 The 03\\Lex(Cmax,C) problem 

[Kyparisis and Koulamas, 2000] study a polynomial sub-problem of the three-
machine problem. The latter is strongly AfP — hard problem. 

Lemma 36 [Kyparisis and Koulamas^ 2000] 
The 03\\Lex{Cmax^C) problem is polynomially solvable with a complexity in 
0{n^) time if min (pi,i) > 2 x max (^2,2,^2,3). 

2=1,. . . ,n 2=1,. . . ,n 

Kyparisis and Koulamas also propose an heuristic in 0(nlog(n)) time for the 
case where min (pi,i) > max (^2,2,̂ 2,3)? ^-e. the machine Mi dominates 

2=1,. . . ,n ' 2=1,. . . ,n 

the machines M2 and M3. This heuristic is similar to that presented for 
the two-machine problem. Its worst case performance guarantee is equal to 
. , 2(n + 2) 

Wn + 1))-



9. Parallel machines problems 

9.1 Problems with identical parallel machines 

9.1.1 The P2\pmtn,di\e{Lmax/Cmax) problem 

[Mohri et al., 1999] are interested in a bicriteria scheduling problem where 
two machines are available to process n independent jobs that can be pre
empted at any (real) time. Each job Ji is defined by a processing time pi and 
a due date di. Without loss of generality we assume that di < d2 < .,. < dn-
The aim is to schedule the jobs in such a way that the makespan Cmax and 
the maximum lateness Lmax are minimised. By considering the e constraint 
approach they provide a characterisation of strictly non dominated criteria 
vectors. This problem is solvable in polynomial time. 

Firstly, Mohri, Masuda and Ishii tackle the P2\pmtn, di\Lmax problem which 
can be solved by iteratively solving P2\pmtn^ di\— problems using the proce
dure of [Sahni, 1979]. At each iteration, a P2\pmtn^di = di -i- L\— problem 
is solved: if a feasible solution to this problem exists, then a schedule for 
which the value of the maximum lateness criterion is equal to L exists. Oth
erwise, no such schedule exists. Starting with Sahni's procedure they show 
the following result. 

Lemma 37 [Mohri et al, 1999] 
The optimal value of the Lmax criterion for the P2\pmtn^di\Lmax problem 
is given by: 

- i i 

j=l j=k-\-l 
i-1 

j=k-\-l 

under the assumption that pi < di, Vz = 1, ...,n. 

This result is extended to the P2\pmtn,di\e{Lmax/Cmax) problem when the 
constraint on the makespan is fixed, i.e. when we have Cmax < e- In this case 
we have the following result. 
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Lemma 38 [Mohri et al, 1999] 
The optimal value of the Lmax criterion for the P2\pmtn, di^ Cmax < ^Lmax 
problem is denoted by L^ax- ^^ have: 

i i—1 

^max = max{L;;,„^; max ( y ' P j - « - ^ m i n ( 4 + V pj))}, 

under the assumption that Pi < di, Vi = 1,..., n. 

The resolution of the P2\pmtn^ di\€{Lmax/Cmax) problem with a fixed value 
e is similar to the resolution of the P2\pmtn, di\Lmax problem. The only dif
ference lies in the construction of the deadlines at each iteration. For the 
bicriteria problem we have di = mm{di + L; e), Vi = 1,..., n. Therefore, using 
Sahni's procedure, if we found a feasible schedule for these deadlines then a 
schedule exists for which the makespan is lower than e and the value of the 
maximum lateness is equal to L. 

Mohri, Masuda and Ishii propose a characterisation of the set E. They iden
tify a sufScient condition for the existence of a single strictly non dominated 
criteria vector. This condition can be seen as a consequence of the mathe
matical expression of L^ax-

Theorem 31 [Mohri et o/., 1999] 
i i—1 

Let F = max {J2Pi ' . P"^- Mk+ Yl Pj^)' ^f ^max > F - C^ax 
1=1,. . . ,n '̂ —' k=l,...,t—l ^—^ 

j=l j=k-\-l 

then there exists a single strictly non dominated criteria vector defined by 
[^max'') ^maxV' ^max ^^ ^^^ Optimal valuc of the makcspan for the P2\pmtn\ 
Cmax problem can be stated as follows ([McNaughton, 1959]): 

1 "" 

=1 

If the condition of theorem 31 does not hold the set E is contained, in the cri
teria space, in a line segment limited by the criteria vectors [C^aa;5 ^~Cmax]'^ 
and [C:^ax'') ^maxl'^^ where C:^^^ is the minimal value of the makespan of 
an optimal schedule for the Lrnax 

criterion. The value C:^ax ^^^ be ob
tained from the feasible schedule returned by Sahni's procedure for the 
P2\pmtn/di = di -{- L'!^^^\— problem. Besides, for any given criteria vec
tor [C; Z/]-̂  on the line segment a corresponding schedule is obtained using 
Sahni's procedure with di = min{di + L; C), Vi = 1,..., n. 
Example. 
We consider a problem for which n = 5. 

i 
Pi 
di 

1 
3 
5 

2 
7 

10 

3 
4 

12 

4 
8 

13 

5 
10 
15 
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(i) We have: 
Cmax = max{max(3; 7; 4; 8; 10); | ( 3 + 7 + 4 + 8 + 10)} = max{10; 16} = 16 and, 
L^ax = ^ max{3-5 ; 10-min(5 + 7; 1 0 ) - 5 ; 14-min(5 + 7+4 ; 10 + 4; 12)-min(5 + 
7;10) ;22-min(5 + 7 + 4 + 8;10 + 4 + 8;12 + 8 ;13) -min(5 + 7 + 4;10 + 4 ;12 ) ;32 -
min(5 + 7 + 4 + 8 + 10; 10 + 4 + 8 + 10; 12 + 8 + 10; 13 + 10; 15) - min(5 + 7 + 4 + 
8; 10+ 4 + 8 ; 12+ 8; 13)} 

= I m a x { - 2 ; - 5 ; - 8 ; - 3 ; 4} = 2. 
(ii) F = max{3; 10 - 5; 14 - min(5 + 7; 10); 22 - min(5 + 7 + 4; 10 + 4; 12); 32 -
min(5 + 7 + 4 + 8; 10 + 4 + 8; 12 + 8; 13)} 

= max{3; 5; 4; 10; 19} = 19. 
We do not have LJ^aa; = 2> F — C^ax = 19 — 16 = 3 and thus the set E is defined 
in the criteria space by a line segment. The first extremity of this line segment is 
[C'^ax'^F — a^axV — [16; 3]^. To get the second extremity we need to compute 
OX,ax^ which is done by applying Sahni's algorithm with dj = di + 2, Vi = 1,..., 5. 
The obtained schedule is presented in figure 9.1 and we have C^ax — 17. 

M, E J2 J3 J4 3 
0 3 10 14 15 17 

M , J. 

0 7 15 

Fig. 9 .1 . The schedule computed to obtain C^a 

The second extremity is therefore [17; 2]^ and the line segment is shown in figure 
9.2. 

^ m a x ^ 

3+ 

-H 1 • 
16 17 c 

max 

Fig . 9.2. The set E in criteria space 

This scheduling problem has a strong particularity when \E\ > 1, which 
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is to concentrate the strictly non dominated criteria vectors on a single line 
segment. Generally, the trade-off curve is piecewise linear, i.e. it is made up of 
several line segments. For the problem under consideration, the property can 
be established from lemma 38 where the mathematical expression of L^ax 
is a maximum of two terms. The first one is a constant, the optimal value 
^max^ whilst the second one is the equation of a hyperplan in R^ of the form 
a — € where a is a constant. 

9.1.2 The PS\pmtn, di\e{Lmax/Cmax) problem 

[Mohri et al., 1999] consider the extension to the three-machine case of the 
problem tackled in section 9.1.1. n independent jobs have to be processed 
and can be preempted at any (real) time. Each job Ji is defined by a process
ing time Pi and a due date di. Without loss of generality we assume that 
di < d2 < ... < cfn- As for the two-machine problem they provide a char
acterisation of the set of strict Pareto optima, by considering the problem 
^{Lmax/Cmax)' This problem is solvable in polynomial time. 

Firstly, Mohri, Masuda and Ishii tackle the P3|pmtn, di\Lmax problem which 
can be solved by iteratively solving P3\pmtn, di\— problems using the proce
dure of [Sahni, 1979]. Starting with Sahni's procedure they show the following 
result. 

Lemma 39 [Mohri et al., 1999] 
Under the assumption that pi < di, Vz = l,. . . ,n, the optimal value of the 
Lmax criterion for the PZ\pmtn,di\Lmax problem is given by: 

i i—1 

Lmax = i «laX {y^Pj - ^ i - u P ^ - S^f' + ^ ^ - 1 + Yl Pö))^ ^/^e^e 
z = l , . . . , n / L = 1 , . . , , Z — 1 

i 

Ei = min ( 4 - h V ] pj). 

Next, this result is extended to the PZ\pmtn, di\e{Lmax/Cmax) problem when 
the constraint on the makespan is fixed, i.e. when we have Cmax ^ -̂ In this 
case we have the following result. 

Lemma 40 [Mohri et al, 1999] 
i i—1 

Let Fl = max ( Y ^ f t - , min {Ek + Ek-\ + V Pj)) 
z=l,..,,n '̂ —' /c=l,...,i—1 '̂ —' 

i = l j=/c+l 
i 2—1 

and F2 = j n a x ( ^ P ^ - niin {Ek-i + ^ Pj)), 
j = l j=/c+l 

i 

where Ei = min {dk + T J Pj)- The optimal value of the Lmax criterion 
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for the P3\pmtnydi^Cmax < ^\Lmax problem is denoted by L^ax- Under the 
assumption that pi < di, Vz = 1, ...,n, we have: 

^max = niax {L*^ax'^ Fi - e; F2 - 2e). 

The resolution of the P3\pmtn, di\€{Lmax/Cmax) problem with a fixed value 
e is similar to the resolution of the P3\pmtn, di\Lmax problem. The only dif
ference lies in the construcüon of the deadlines at each iteration. For the 
bicriteria problem we have di = min{di +1^; e), Vi = 1,..., n. Therefore, using 
Sahni's procedure, if we found a feasible schedule for these deadlines then a 
schedule for which the makespan is lower than e and the value of the maxi
mum tardiness is equal to L exists. 

Mohri, Masuda and Ishii propose a characterisation of the set E. As for the 
two-machine case, they identify a sufficient condition for having \E\ = 1. 
However, this condition is more complicated for the three-machine problem. 

Theorem 32 [Mohri et al, 1999] 
V Ll^ax > F2- "^C^ax «^^ ̂ max > ^1 " C'maa: ^^en there exists a sin
gle strictly non dominated criteria vector defined by [C!^c^x''> ^maxV- ^max ^^ 
the optimal value of the makespan for the P3\pmtn\Cmax problem given by 
([McNaughton, 1959]): 

1 '^ 
Cmaa:=niax( max Pi]-^Pi). 

i=\ 

Mohri, Masuda and Ishii claim that if the condition of theorem 32 does not 
hold, the set E is contained in the criteria space in a piecewise linear part 
made up of two line segments. Unfortunately, this is not always true. In some 
situations, one of these two line segments corresponds to a set of criteria 
vectors with a Lmax value equal to Î Ĵ ^x- ^^ ^̂ ^̂  case, the concerned line 
segment corresponds to solutions which belong to the set WE and not E. 
We prove the following result. 

Theorem 33 
Let Fl and F2 be defined as in lemma 40- We have the four following cases: 

^' V L'^^ax < F2- '^C:;^ax ^'^d L%,^^ > Fl- C;;^^ then the set E defines 
in criteria space a single line segment with extreme points [C^^a.; F2 — 
^^^max] ^'^d [2 (^2 - L'^ax)'^ ^max] • 

^' If ^max > F2- 20;;,^^ and L*^^^ < Fi - C;;^^ then the set E defines 
in criteria space a single line segment with extreme points [C^ax5-^i ~ 
^max] ^^^ [^1 ~ ^*max'^ ^max] • 

3. IfL*^ax <F2- 2C;^ax <^rid L*^^^ <Fi- Q ^ ^ and Fi = F2 - C:^^^ then 
the set E defines in criteria space a single line segment with extreme 
points [C^ax'^Fi - C^^J'^ and [Fi - L*^^^; L^^^^f. 

4, If L ; , ^^ < F2- 2C^^^ and L^,^^ < Fi - C^:^^^ and Fi ^ F2 - C^^ax 
then the set E defines in criteria space two connected line segments with 
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extreme points [ Q , , ; m a x ( F i ; F 2 - C^,,) - C:,,J'^, [F2 - F i ; - F 2 ] ^ 
and [C^ax'') ̂ maxV') where C^^^, is the minimal value of the makespan 
of an optimal schedule for the Lmax criterion. The value C^^x ^^^ ^^ 
obtained from the feasible schedule returned by SahnVs procedure for the 
P3\pmtn,di = d̂  + i^maxl" problem. 

Proof. 

Prom lemma 40 we know that for a giv6n e value, L^ax = max{LJ^oa.;-^i 
—e; F2 — 2€}. We separate the proofs of the different cases. 
Case 1: If the condition of case 1 holds then the expression of L^ax is now 
Ltnax = max{LJ^oa;; ^2 — 2e}, since e > Ol^ax- This means that the different 
values of the criterion Lmax which correspond to strict Pareto optima are on a 
single line segment defined by [Cmax',P2 - ^C^ax]'^ 1 since L'!^ax < F2 - 2Cmax, 
and [^(^2 — ^macc);^max]^- The value e associated to L^ax is obtained when 
Lmax = F2 — 2e. 

Case 2: Is symetrical to case 1, since we have L^ax = max{LJ^ax; -^i ~" ^}-
Case 3: This case reduces to case 2. As F\ = F2 — C^ox? we have that Ve > C^ax 
Fl — e> F2 — 2e and thus we deduce that Ve > Cmaxj L^max = max{LJ^ax 5 -^i ~ ^}-
Case 4: If the condition of case 4 holds, then we have values of e such that L^ax < 
F2 — 2e and L^^x < Fi—e. The first extreme point in criteria space is obtained for 
€ = Cmax and due to the condition of case 4, we have the vector [Cmax '•> max(Fi — 
Cmax', F2-2C:!riax)]^ w h i c h CaU b c r e w r i t t e n as [Cmax',^^Fi] F2-Cmax)-CmaxV-

The second extreme point is obtained by considering that either Fi — Cmax > 
F2 - Cmax or Fl - Cmax < F2 - Cmax- Thus, increasing Cmax lets us be on a line 
segment until Fi — e = F2 — 2e. In this case we arrive at the second extreme point, 
defined by [F2 — Fi; — ̂ 2]^ . Continuing the increase in the value of the makespan 
will lead to the extreme point with a value of criterion Lmax equal to Lmax- To 
compute the corresponding value of the makespan, denoted by Cmax 5 we only have 
to apply Sahni's algorithm with di = di -{- L'^ax^ Vi = 1, ...,n. D 

For any given criteria vector [C; L]-^ on one of the two line segments a cor

responding schedule is obtained using Sahni's procedure with di = min(di + 
L ; C ) , V2 = l , . . . , n . 

Example, 
We consider a problem for which n = 5. 

i 
Pi 
di 

1 
3 
8 

2 
7 

10 

3 
4 

12 

4 
8 

13 

5 
10 
15 

(i) We have: 
C ; ; , , =max{max(3;7;4;8;10) ; i (3 + 7 + 4 + 8 + 10)} = m a x { 1 0 ; f } = f , 
F l = 8, F2 = min(8 + 7; 10) = 10, F3 = min(8 + 7 + 4; 10 -h 4; 12) = 12, 
F4 = min(8 + 7 + 4 + 8; 10 4- 4 + 8; 12 + 8; 13) = 13 and F5 = min(8 + 7 + 
4 + 8 + 10; 10 + 4 + 8 + 10; 12 + 8 + 10; 13 + 10; 15) = 15 and , 
Lmax = I max{3-8 ; 1 0 - 1 0 - 8 - 0 ; 1 4 - 1 2 - m i n ( 8 + 0 + 7;10 + 8 ) ; 2 2 - 1 3 - m i n ( 8 + 
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0+l l ;10 + 8 + 4;12 + 10);32-15-min(8 + 0-t-19;10 + 8 + 12;12-f 10 + 8;13 + 12)} 
= I max{-5; - 8 ; -13; -10; -80} = -f. 

(ii) Fl = max{3; 10 - 8 - 0; 14 - min(8 + 0 + 7; 10 + 8); 22 - min(8 + 0 + 11; 10 + 
8 + 4; 12 + 10); 32 - min(8 + 0 + 19; 10 + 8 + 12; 12 + 10 + 8; 13 + 12)} 

= max{3;2;-l;3;7} = 7, 
F2 = max{3; 10 - 0; 14 - min(0 + 7; 8); 22 - min(0 + 11; 8 + 4; 10); 32 - min(0 + 
19; 8 + 12; 10+ 8; 12)} 

= max{3; 10; 7; 12; 20} = 20. 
We have L*max = - | > î i -Cmax = 7 - f = - X and L*max = - | < ^2 -C^^ax = 
20—2^ = — I (case 1). Thus the set E is defined in the criteria space by a single line 
segment. The first end point of this line segment is [C^ax; -^2—2C^ax]^ = [T*' " ~ | 1 ^ ' 
The second end point is [|(F2 - L^nax)] L':;riaxf = [^; - | ] ^ . The shape of the set 
E in the criteria space is shown in figure 9.3. 

max' 

0 

-4/3 4-

-5/3 + 

32/3 65/6 

Fig. 9.3. The set E in criteria space 

9.1.3 The P2\di\Lex{Tmax,U) problem 

[Sarin and Hariharan, 2000] tackle the problem of scheduling n independent 
jobs on two parallel machines, when no preemption is allowed. The aim is to 
minimise the maximum tardiness and next the number of tardy jobs. Without 
loss of generality we assume that the jobs are such that di < d2 < ... < dn 
(break ties by indexing first the job with the smallest pi). As the P2\di\Tmax 
problem is AT'P-hard, the bicriteria problem is also. Sarin and Hariharan pro
pose an heuristic to solve the bicriteria problem. 

The first time, they only consider the minimisation of the Tmax criterion of 
and propose a heuristic. They recall that there exists an optimal schedule 
for this criterion in which, on each machine, the jobs are sequenced in the 
order given by the rule EDD. Starting with this result they build an initial 
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schedule by using the rule EDD-FAM, i.e. at each iteration the job with the 
smallest due date is assigned to the first available machine. This schedule 
is next improved by a neighbourhood procedure. Let us denote by T^ax 
(respectively T^ax) ^^^ value of the maximum tardiness restricted to the 
jobs scheduled on the first machine (respectively on the second machine). 
The improvement procedure can be broken down into two main steps. The 
first consists in trying to timeshift the interval [T^ax'i'^maxly •̂̂ - ^^ reduce 
T^ax ^^d T^ax of ^^^ same quantity. If no pairwise interchange can lead to 
this relocation then the first step is completed. In the second step we try to 
decrease the size of the interval [T^ax'')'^max] ^f ^^^ current solution. When 
no pairwise interchange can lead to this reduction then the second step is 
completed and we restart the first step. The heuristic stops when nothing 
can be done in both steps. Sarin and Hariharan provide numerous rules to do 
fruitful pairwise interchanges for these two steps. The outline of the heuristic 
is presented in figure 9.4. 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

~ ~ ~ J L L G O R I T H M HSHl ] 

Schedule the n jobs according to the rule EDD-FAM; 
CONTINUE=FALSE; 
/* Timeshift step */ 
While (there exists a two-job interchange leading to a timeshift) Do 

1 Using the theorem 2 of [Sarin and Hariharan, 2000] 
perform the two-job interchange identified; 

1 CONTINUE=TRUE; 
End While: 
/* Reduction step */ 
While (there exists an interchange leading to a reduction) Do 

Enc 
If (( 

Enc 

Try to increase mm(T^ax'')T^ax) and/or to decrease 
UlaKyl Ynax 1 •*• max ) f 

CONTINUE=TRUE; 
While: 

: J 0 N T I N U E = T R U E ) Then 
CONTINUE=FALSE; 
Goto Step 2; 

I If; 
Print the current schedule and the corresponding value of J-max'i 

[Sarin and Hariharan, 2000] 

Fig. 9.4. An heuristic algorithm for the P2\di\Tmax problem 

For the bicriteria problem Sarin and Hariharan provide an enumeration algo
rithm based on a branch-and-bound scheme. Let us denote by T^ax ^^^ max
imum tardiness value computed by the heuristic HSHl and by C f and Cl^ 
the completion times of the last jobs on the first and second machine respec
tively. Without loss of generality we assume that C^ > C^. The heuristic 
works by maintaining C^ + C ^ = C f + C^ where Cf^ and C ^ refer to the 
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completion times of last jobs on the first and second machines for a schedule 
under construction. At the first attempt, the heuristic sets Cf^ = C{^ — 1 
and C^^ = Cl^ + 1 and the problem becomes a feasability problem where for 
each job we introduce a deadline di = di -\- T^^^. Next a backward branch-
and-bound algorithm is applied. At the root node we branch from^the set 
of jobs that can be scheduled either at C^^ or C^^, i.e. such that di < C^^ 
or di < C2^. These jobs are the candidate jobs. A child node is created by 
scheduling a candidate job on a machine such that it does not violate its 
deadline. Possibly two nodes are created per job. Lower bounds and upper 
bounds on the criterion U are proposed by Sarin and Hariharan in order to 
shorten the search tree. At the end of the search the schedule with the lowest 
value of the criterion [/, if it exists, is retained and new values of C^^ and 
C^ are tested. More accurately, we set Cf = C^ - I and C|^ = C f + 1. 
When Ci^ — C2^ < 1 the heuristic stops and the schedule with the lowest 
value of the criterion U is returned. 

Computational experiments on the P2\di\Tmax and P2\di\Lex{Tmax, U) prob
lems are reported by Sarin and Hariharan. For the former, problems with up 
to 500 jobs are solved in a relatively short time. For the bicriteria problem, 
the heuristic seems quite limited in problem size since the time required to 
solve problems up to 100 jobs grows quickly. 

9.1.4 The P|di |#(C,C7) problem 

The minimisation of the criteria C and U onm identical machines has been 
tackled by [Ruiz-Torres et al., 1997] who tackle the enumeration of strict 
Pareto optima. As the P\di\U is AfV-haid the bicriteria problem is also and 
Ruiz-Torres, Enscore and Barton propose four heuristics to solve it. 

The four heuristics proceed by iterative improvements of seed schedules. For 
each one of the heuristics, two searches are done starting from two different 
schedules. The first initial schedule is obtained by applying the rule SPT-
FAM, i.e. at each iteration the job with the smallest processing time is as
signed to the first available machine. The second initial schedule is obtained 
by applying the heuristics of [Ho and Chang, 1995] for the P\di\U problem. 
For each one of the four heuristics, the neighbourhood of the current solu
tion is obtained by performing two-job permutations and single job insertions. 

The two first improvement heuristics are deterministic ones and are denoted 
by G-NS and Q-NS. 
The heuristic G-NS first performs a search starting with the first initial sched
ule. Among the whole neighbourhood of the current solution we consider so
lutions which have a lower value of the criterion U than the current solution. 
Among those neighbours we select the one with the lowest value of the crite
rion C. The solution retained is put in a set of potential strict Pareto optima. 
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if it is not dominated by a solution of this set. If some potential strict Pareto 
optima are dominated by this new solution, they are deleted from this set. 
The heuristic stops when no neighbour improves the current solution. Next, 
the heuristic G-NS performs the improvement of the second initial schedule. 
In this case, the choice of the solution for the next iteration is done by consid
ering in the neighbourhood of the current solution, the solutions which have 
a lower value of criterion C. Among those solutions we select the one with 
the smallest value of criterion U. Potential strict Pareto optima are added in 
the set computed at the first step. In each of the two runs, the heuristic G-
NS stops when no neighbour can be selected according to the rules of choice 
presented above. 
The heuristic Q-NS is similar to the heuristic G-NS except in the choice of 
the solution for the next iteration. When Q-NS starts with the first initial 
solution, which is optimal for the criterion C, a neighbour is better than 
the current solution if it has a lower value of the criterion U. Among those 
neighbours we select the one which has the lowest value of criterion U. Ties 
are broken in favour of the schedule with the lowest value of criterion C. 
When Q-NS starts with the second initial solution, the comparisons are done 
according to the C criterion. 

The two last heuristics are simulated annealing heuristics and are denoted 
by G-SA and Q-SA. They are similar to G-NS and Q-NS respectively, except 
in the acceptance test of a better neighbor which is done according to the 
simulated annealing scheme. Computational results show that the heuristics 
Q-SA and G-SA slightly outperform the heuristics G-NS and Q-NS. 

9.1.5 The P\pmtn\Lex{C^Cmax) problem 

[Leung and Young, 1989] are interested in a bicriteria scheduling problem 
where the n jobs can be preempted at any (real) time. The aim is to schedule 
them in such a way that the makespan Cmax and the average completion 
time C are minimised. More precisely, we search for a schedule S which is 
optimal for the lexicographical order Lex{C^ Cmax)- This problem is solvable 
in polynomial time. 

The bicriteria problem without preemption is AfV-haid. We denote by S^^ 
an optimal solution to the problem without preemption and S^ an opti
mal solution to the problem when the preemption is allowed. We then have 
c"" x(^^) — m+T* '̂ ^^^ inequality shows that use of preemption enables us 

to reduce the optimal value of the criterion Cmax for the Lex{C, Cmax) prob
lem. The algorithm proposed by Leung and Young uses a procedure which is 
proposed by [Sahni, 1979] to solve the P\pmtn,di\— problem. Without loss 
of generality we assume that n = rm with r € N, i.e. the number of jobs 
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is a multiple of the number of machines, and that pi < P2 < -- - < Pn- The 
proposed algorithm then schedules the (r — l)m jobs J i , J 2 , . . . , J(r-i)m stc-
cording to the rule SPT-FAM. The value of the criterion Cmax of an optimal 
schedule for the P\pmtn\Lex{C, Cmax) problem is given by: 

k 

C*^,,= max iJ2iCf+Pn-j+i)/k) 

where C^ is the completion time of the last job on machine Mj when the 
jobs J i , . . . , J(^r-i)m have been scheduled. Then, Sahni's procedure is used to 
solve the P\pmtn/di = C^^a.|— problem for the m last jobs. The proposed 
algorithm, denoted by ELYl, is presented in figure 9.5. Its complexity is in 
0(nlog(n)) time. 

Example. 
We consider a problem for which n = 6 and m = 2. 

i 
Pi 

1 
3 

2 
5 

3 
7 

4 
9 

5 
11 

6 
13 

(i) We have r = 3 and we schedule the jobs Ji, J2, J3 and J4 according to the rule 
SPT-FAM and we obtain the partial schedule presented in figure 9.6. 
(ii) C^ = 10, C^ = 14 and C;;,, = max((Ci^ +p6)/l; {Cf +P6 + Cl^ +P5)/2) 
= max(23; 24) = 24, 
(iii) We place the remaining jobs in the order Je then Js according to the procedure 
for the P\pmtn, di = 24|— problem. We obtain the schedule presented in figure 9.7. 

To solve an ordinary problem for which n ^ rm, n € N, it is possible to 
reduce to the case n = rm with r € N, by introducing dummy jobs with 
processing times equal to 0, and by using the algorithm ELYl. 

9.2 Problems with uniform parallel machines 

9.2.1 The Q\pi = p\e{fmaai/9max) problem 

[Tuzikov et al., 1998] study a scheduling problem where n jobs have to be 
scheduled on m machines Mj which have distinct processing speeds. The 
processing speed of machine Mj is denoted by kj and the processing time 
of Ji on Mj is equal to f̂ . The particularity of the problem is that all 
the jobs require the same processing time p. The aim is to minimise two 
maximum functions fmax and Qmax 

defined by fmax = «lax {^i{Ci)) and 
i = l , . . . , n 

9max = niax {^i{Ci))^ where ^i and ^i are increasing functions. Tuzikov, 
i=l,...,n 
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ALGORITHM ELYl 
/* We assume that pi < . . . < Pn */ 
Step 1: Schedule the jobs J i , . . . , J(r-i)m according to the rule SPT-FAM; 
Step 2: /* We compute the minimal value of criterion Cmax */ 

r - l 

Step 3: 

^J^ = y^Pj+(fc-i)m, Vj = l , . . . ,m; 

^max max 
fe = l , . . . , T l 

(£{C^+Pn-e+i)/k); 
e=i 

/* We apply the procedure of [Sahni, 1979] */ 
For k = n downto (n — m + 1) Do 

/* We schedule job Jk */ 
K = {j/C^ < C ; , , J ; 
Let ji eKhe such that Cf^ = max(Cf ) ; 

U{Pk<{C:^ax-C}',))ThBn 
/* Schedule last job Jk on machine Mj^ ^ 

Else 
L 

Cf^+Pk', 

iM , ^ = l , . . , Ü i - l ) } ; WCt-\-Pk 
If (L ^ 0) Then 

Let J2 G L; 
/* Schedule last job Jk on machine Mj2 

^32 Cj2 -\-Pk; 
Else 

Let J2 and js be such that C!, 
and Jj4 with CJ^G[CJ^;CJ^ 

max ^^32 
4 vvx.xx ^ ^ 4 

/* Schedule last job Jfc on machine Mj2 
/* for C*max - C^ time units */ 
/* Schedule last job Jk on machine Mj^ 

V 
-a 

End If; 
End If; 

End For; 

/* for pk - C^ax + Cjl time units */ 
cr,=cr,^Pk-
C M 

32 

•.-\-ct 

[Leung and Young, 1989] 

Fig. 9.5. An optimal algorithm for the P\'pmin\Lex{C^Cmax) problem 

Makhaniok and Manner propose an optimal polynomial t ime algorithm for 
the enumeration of the set of strict Pare to optima and which is based on the 
6-constraint approach. 

Firstly, they recall tha t the single criterion problem of minimising a maxi
mum function, for instance jmax-, is solvable in O(n^) time. As all jobs have 
the same processing t ime they are all equivalent except in their cost in the 
objective function. It is therefore possible to compute all the positional com-
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M, 

0 3 10 

M2 J, 

0 5 14 

Fig. 9.6. A partial schedule 

M, [JT J3 J6 J5 

0 3 10 13 24 

M2 J2 J4 h 
24 0 5 14 

C;;,, = 24andÜ=80 

Fig. 9.7. The schedule calculated by the algorithm ELYl 

pletion times on the machines. This can be achieved by starting with an 
arbitrary sequence of jobs and by applying the assignment rule ECT. This 
rule consists in assigning each job to the machine which completes it earlier. 
Thus we obtain C[i],...,(7[n] where C[u] refers to the completion time of the 
job in position u. Next it remains to assign jobs to positions in order to min
imise the criterion fmax- This can be done starting by the last position and 
by scheduling the job Ji such that ^i{C[n]) = min (^^(C[n])). This process 

is iterated until each job has been assigned to a position. 

To enumerate the set £", Tuzikov, Makhaniok and Manner solve iteratively 
the Q\pi >= p\e{fmax/gmax) and Q\pi = p\e{gmax/fmax) problems in order 
to exclude from consideration the weak but not strict Pareto optima. The 
algorithm, denoted by ETMMl, is presented in figure 9.8. The resolution of 
a problem Q\pi = p.fmax < Admax can be done by applying an algorithm 
similar to the one used in the single criterion case. This algorithm, denoted 
by ETMM2, is presented in figure 9.9. It requires 0{in?') time. Notice that 
the Q\pi 

— Pi 9max < A fmax problem can be solved by a slightly modified 
version of ETMM2, in which in the definition of the set C we consider a strict 
inequality and in which we swap the role of the functions ^i and 1?̂ . 
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Tuzikov, Makhaniok and Manner also show tha t there is a t most 0{n'^) strict 
Pare to optima. This is due to the fact tha t there is at most n? different ac
tive schedules. They are all obtained by scheduling the jobs in all the possible 
positions. This implies tha t the algorithm E T M M l requires 0{n^) t ime. 

ALGORITHM ETMMl 
Step 1: Solve the Q\pi = p\fmax and Q\pi 

— P\Qmax problems and let us 
denote by /* and g* the corresponding optimal values of the criteria; 
e i = r ; A; = ! ; £ ; = 0; 

Step 2: /* Enumeration of the set E */ 
Repeat Solve the Q\pi = p, fmax < ^i\gmax problem to obtain 

the schedule s^\ 
E = ^ + {s^}; 
€2 = gmax{s ) ; 
Solve the Q\pi = p,gmax < €2] fmax problem to obtain 
the schedule s' (if it exists, otherwise set s' = s^); 
Cl = Jmax\S ) \ 

Until (€2 = g*)\ 
Step 3: Print the set E\ 

[Tuzikov et al., 1998] 

Fig. 9.8. An optimal algorithm for the Q\pi = p\e{fmax/gmax) problem 

Example. 
We consider a problem for which n = 5, m = 2, p = 6, A;i = 1, A;2 = 3 and the 
functions ^i and ^i are defined as follows: 
^i{t) = t — di and ^i{t) = Wit, Vi = 1, ...,n, where Wi and di are respectively a 
weight and a due date attached to job Ji. These data are detailed below. 

i 
di 
Wi 

1 
6 
1 

2 
8 
2 

3 
12 
3 

4 
13 
4 

5 
16 
5 

(i) The algorithm ECT gives C[i] = [2; 4; 6; 6; 8]^, 
We obtain /* = max(8,12,18,16,10) = 18 and, 
g* = max(-4 , - 4 , - 6 , - 7 , - 8 ) = - 4 . 
(ii) 61 = 18, A; = 1, E = 0. 
Resolution of the Q\pi = 6, fmax < 18|pT 
ETMM2: 

C[,] = [2; 4; 6; 6; 8]^ and /X[i] = [2; 2; 2; 1; 2]^, 
i = 5, C = {Ji , J2}, Je = 0/2 is scheduled on M2 and C2 = 8, 
i = 4, C = {Ji , J3}, Ji = J3 is scheduled on Mi and C3 = 6, 
i = 3, C = {J i} , Je = Ji is scheduled on M2 and Ci = 6, 
z = 2, C = {J4}, Je = J4 is scheduled on M2 and C4 = 4, 

problem by using the algorithm 
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ALGORITHM ETMM2 
/* € is the upper bound on the fmax criterion */ 
Step 1: /* Computation of the positional completion times */ 

Cf =0, Vi = l,...,m; 
T = {Ji, . . . , Jn}; 
For i = lton Do 

Let £ be such that (Ce^ -bp/ke) = max_(Cj^ -hp/kj); 

Step 2: 
End For; 

-^p/ke; 
j=l,...,m 

/* Assignment of jobs to positions */ 
For i = n down to 1 Do 

LetC = {JueT/^u{C[^)<e}; 
Let Je e Che such that ^e(C[{\) = mm(^u(C[i])); 

Schedule job Je on machine Mfj,^^^ such that 
it completes at time C[i]] 
T = T-{Jeh 

End For; 
Step 3: Print the obtained schedule; 

[Tuzikov et al., 1998] 

Fig. 9.9. An optimal algorithm for the Q\pi = p, fmax < e\gmax problem 

2 = 1, C = {Js}, Je = Jb is scheduled on M2 and C5 = 2, 
fmax{s^) = 18 and gmax(s^) = max(0; —6;0; —8; —14) = 0. 

£; = {(18;0)} and 62 = 0. 
Resolution of the Q\pi = 6,pmax < 0\fmax problem by using a modified version of 
the algorithm ETMM2: 

C[,] = [2; 4; 6; 6; 8]^ and /.[,] = [2; 2; 2; 1; 2]^, 
i = b, C = {J3, J4, J5}, Je = J3 is scheduled on M2 and C3 = 8, 
z = 4, C = {J2, J4, J5}, Je = J2 is scheduled on Mi and C2 = 6, 
i = 3, C = {J4, J5}, Je = JA is scheduled on M2 and C4 = 6, 
i = 2, C = {Ji , J5}, J^ = Ji is scheduled on M2 and C\ = 4, 
i = 1, C = {J5}, «/€ = »/s is scheduled on M2 and C5 = 2, 
fmax{s') = max(4; 12; 24; 24; 10) = 24 and 

9max{s') = max(-2; - 2 ; - 4 ; - 7 ; -14) = - 2 . 
(iii) ei = 24, A; = 2. 
Resolution of the Q\pi = 6, fmax < 24\gmax problem by using the algorithm 
ETMM2: 

C[i] = [2; 4; 6; 6; 8]^ and /X[,] = [2; 2; 2; 1; 2]^, 
i = 5, C = {Ji , J2, J3}, ô£ = t/s is scheduled on M2 and Cs = 8, 
i = 4, C = {Ji , J2, J4}, J£ = 0/4 is scheduled on Mi and C4 = 6, 
z = 3, C = {Ji , J2}, J£ = J2 is scheduled on M2 and C2 — 6, 
z = 2, C = {Ji , J5}, J£ = Jb is scheduled on M2 and C5 = 4, 
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i = 1, C = {Ji}, Ji = Ji is scheduled on M2 and Ci = 2, 
fmax(s^) = 24 and 9max(s'^) = max(-4; - 2 ; -4 ; - 7 ; -12) = - 2 . 

E = {(18; 0); (24; -2)} and €2 = - 2 . 
Resolution of the Q|pi = Q,gmax < —2|/max problem by using a modified version 
of the algorithm ETMM2: 

C[i] = [2; 4; 6; 6; 8]^ and fi[^ = [2; 2; 2; 1; 2]^, 
i = 5, C = {J3, «/4, J5}, cT̂  = J3 is scheduled on M2 and C3 = 8, 
2 = 4, C = {J4, J5}, ô£ = J4 is scheduled on Mi and C4 = 6, 
z = 3, C = {J5}, Je = «/s is scheduled on M2 and C5 = 6, 
i = 2, C = {J2}, »/£ = J2 is scheduled on M2 and C2 = 4, 
z = 1, C = {Ji}, c/̂  = Ji is scheduled on M2 and Ci = 2, 
/max(sO = max(2; 8; 24; 24; 30) = 30 and 

9max{s') = max(-4; -4 ; -4 ; - 7 ; -10) = - 4 . 
(iv) €1 = 30, A; = 3. 
Resolution of the Q\pi = 6, fmax < 30|pmax problem by using the algorithm 
ETMM2: 

q, | = [2; 4; 6; 6; 8]^ and /X[,] = [2; 2; 2; 1; 2]^, 
i = 5, C = {Ji, J2, t/3}, Je = J3 is scheduled on M2 and C3 = 8, 
i = 4, C = {Ji, J2, J4, J5}, «/£ = J5 is scheduled on Mi and C5 = 6, 
2 = 3, C = {Ji, J2, J4}, t/̂  = J4 is scheduled on M2 and C4 = 6, 
i = 2, C = {Ji, J2}, Je = J2 is scheduled on M2 and C2 = 4, 
i = ly C = {Ji}, Ĵ  = Ji is scheduled on M2 and Ci = 2, 
/max(5^) = 30 and gmax{s^) = - 4 . 

£; = {(18;0);(24;-2);(30;-4)}. 
€2 = g* and the algorithm ETMMl stops after having found that no feasible solu
tion to the Q\pi = Q,gmax < —4|/max problem exists. 

9.2.2 The Q\pi = p\e{g/fmax) problem 

[Tuzikov et al., 1998] study a scheduling problem where n jobs have to be 
scheduled on m machines Mj which have distinct processing speeds denoted 
by kj. The particularity of the problem is that all the jobs require the same 
processing time p. The aim is to minimise two functions fmax and ^ defined by 

n 

fmax = max (^i(Ci)) and g = y^{^i{Ci)), where ^i and ^i are increasing 
i = l , . . . , n '̂ —^ 

i = l 

functions. Tuzikov, Makhaniok and Manner propose an optimal polynomial 
time algorithm for the enumeration of the set of strict Pareto optima. 

When only the criterion fmax is involved the problem is solvable in 0(71^) 
time by an algorithm presented in section 9.2.1. When only the criterion 'g is 
involved the problem can be solved in 0{n^) time by reduction to an assign
ment problem. Consider the positional completion times C[i] obtained using 
the rule ECT. The computation of a schedule can reduce to an assignment 
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problem in which jobs are assigned to positional completion times. Thus the 
minimisation of the criterion g can be done in O(n^) time when the positional 
completion times are known. The latter can be achieved in 0(nlog(m)) time. 

The algorithm, denoted by ETMM3, which is proposed to enumerate the 
set of strict Pareto optima, is similar to the algorithm ETMMl. The main 
difference lies in that the algorithm ETMM3 does not solve the two pos
sible e-constraint problems, thus generating weak but not strict Pareto op
tima. These non desired solutions are deleted at the end of the enumeration. 
The algorithm ETMM3 is presented in figure 9.10. At each iteration, the 
Q\pi = p^fmax < ^IV problem is reduced to an assignment problem. Due 
to the constraint on criterion fmax ? we set infinite costs when a job cannot 
occupy a position. As the maximum number of active schedules is at most 
n^, the algorithm ETMM3 requires 0{n^) time. 

ALGORITHM ETMM3 
Step 1: Solve the Q\pi = p\fmax and Q\pi = p\'g problems and let us 

denote /* and g* the corresponding optimal values of the criteria; 
/* /"^ refers to the value of the criterion fmax of the solution which 
gives g* */ 

6 = / + - 1; jb = 1; E = 0; 
/* Enumeration of the set E */ 
Repeat 

< e|p problem to obtain the schedule s^] 

Step 2: 

Solve the Q\pi = p, fn 
If {s^ exists) Then 

E = E + {s^}; 
€ ^̂^ Jmax\S )] 

End If; 
Until (s'̂  does not exist); 
Delete from the set E the solutions that are not strict Pareto optima; 

Step 3: Print the set E; 
[Tuzikov et al., 1998] 

Fig. 9.10. An optimal algorithm for the Q\pi = p\e(g/fmax) problem 

9.2.3 The Q\pmtn\e{C/Cmax) problem 

[Mc Cormick and Pinedo, 1995] study a scheduling problem where a process
ing speed kj is associated with each machine Mj. The aim is to minimise the 
maximum completion time of jobs and the average completion time of jobs. 
Preemption of jobs is authorised at any real value t (t £ M). We suppose 
that the jobs and machines are numbered such that pi <P2 ^ -- - ^ Pn and 
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kl > k2> ...> km-

The Q\pmtn\C problem can be solved optimally by the rule SRPT-FM. This 
rule consists of scheduling the jobs with the smallest remaining processing 
time on the fastest machine, among those available, preempting when neces
sary. 

The Q\pmtn\Cmax problem can be solved optimally by the rule LRPT-FM. 
This rule works differently to the rule SRPT-FM, since jobs having, at an 
instant t, the m most important processing times, are scheduled. Conversely 
to the previous algorithm the scheduled jobs can be preempted during a time 
greater than 0. 

To solve the bicriteria problem, McCormick and Pinedo determine the set of 
strict Pareto optima. To do this they consider the e-constraint approach and 
they solve the problem (Pe) defined by: 

Min C{s) 
with 

seS 

McCormick and Pinedo model this problem by a linear program. It shows 
that the set of solutions «S is a compact polyhedron in R. The criteria Cmax 
and C being increasing convex functions on 5, they reach their respective 
minimum. Moreover, the set E is included in the frontier of 5 , and is piece-
wise linear. We only have therefore to determine the set E to calculate the 
subset Eex of the extreme strict Pareto optima. McCormick and Pinedo pro
pose an algorithm to solve the (Pe) problem. This algorithm, denoted by 
EMPl, looks for a schedule s^ such that Cmax[s^) = ^ and C{s^) is the low
est possible. At a time ,̂ the rule SRPT-FM is applied except if unscheduled 
jobs can only complete at the date e. If this is the case the LRPT-FM rule is 
applied for these jobs. 

We recall that jobs and machines are numbered such that pi < P2 ^ • • • ̂  Pn 
and ki > k2> '" > km- Let us consider figure 9.11 where the jobs J i , J2 and 
J3 have been partially scheduled on machines Mi, M2 and M3. We define the 
processing capacities V}, Vj = 1, ...,m, for a given iteration of the algorithm 
by: 

m-j 

where Cj^ represents the completion time of the last job on machine Mj and 
CQ^ = e. If the rule LRPT-FM is applied at the next iteration for jobs Jn 
to Jn-j-\-i, these are processed in the capacities Vi to Vj. McCormick and 
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Pinedo define the notion of latency, denoted by gk, oia. set of k capacities Vj 
by: 

9k = {Vi-^... + Vk)- {Pn+Pn-l + . . . +Pn- /c+l ) 

V/c = 1,..., n, by setting Vj = 0, Vj > m. 

p M 
^ 4 

p M p M 

p M 
^ 3 

M, 

M, 

M3 

M4 

Ji h mMmmmm. 

h \r wm wM^^mmm 

J3 xr ' '̂1 

V, V3 

Fig. 9.11. A partial schedule and the corresponding processing capacities 

A necessary and sufficient condition for the existence of a solution to the 
problem is that when the algorithm is initiated, we have gk > 0, Vfc = 1,..., n. 
The algorithm EMPl uses the values gk as follows: if at an iteration for a set 
k the value gk equals 0, then the n-fc last jobs are scheduled according to the 
rule LRPT-FM. Otherwise, the algorithm applies the rule SRPT-FM. The 
job Ji with the lowest processing time pi is then scheduled on the machine 
Mj such that Cf = min (C^). In the case where several machines satisfy 

this condition, we choose that having the greatest processing speed kj. The 
duration x of job Ji on this machine is defined by: 

mm m(^0^_i-0^- ^Y.'^k-h - 1 ' k-

min (ge) 

) 

In the case where kj = km, "^^ have x = min(7^, Cfii - CJ^,^n-2+i)-
'J 

Pi 1, we have x = m i n ( f ,CJ^, - C f , _min (p^)). Likewise, if kj — k^ 
•J . , . 

If job Ji is not completed, we consider at the next iterations the remaining 
amount of job Ji. 
Figure 9.14 presents a simplified version of algorithm EMPl. McCormick and 
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Pinedo propose an implementation in 0{mn) t ime and which assures tha t the 
maximum number of preemptions is in 0{rnn). 

Example. 
We consider a problem for which n = 10, m = 2, /̂ i = 4, fe = 1 and e = 40. 

i 
Pi 

1 
2 

2 
4 

3 
6 

4 
8 

5 
10 

6 
12 

7 
14 

8 
16 

9 
18 

10 
20 

(i) C f = C^ = 0, C^ = 40, Vi = 160, V2 = 40. 
(ii) gi = 160 - 20 = 140, ^2 = 162, gs = 146, g^ = 132, flrg = 120, ge = 110, 
^7 = 102, ^8 = 96, P9 = 92, gio = 90. 
(iii) gk = 90, i = 1, Mj = Mi, x = min(40; 2/4; 90/2; 92/3) = 0.5. We obtain the 
partial schedule presented in figure 9.12. 
(iv) By applying the next iterations, we obtain the schedule presented in figure 9.13. 

Ml I J, 

M2 

0.5 

Fig. 9.12. A partial schedule 

Ml 

M, 

Ji h h J4 J5 h h h h 

h h J4 J5 6̂ h h h Jio 

Jio 

0.5 1.3 2.6 4.2 6.3 9.3 12 15.4 

Cmax = 23.1 and Ü = 93.7 

23.1 

Fig. 9.13. The schedule calculated by the algorithm EMPl 

McCormick and Pinedo present an algorithm, denoted by EMP2, for the 
enumeration of the set E^ which uses the algorithm E M P l . Let s be an 
extreme strict Pare to optimum. Starting with this solution we can cal
culate q{i) the number of jobs scheduled by the rule L R P T - F M before 
the job Ji, Wi = l , . . . , n . We set K{i) = q{i -\- 1) + 1, the number of 
the machine on which the job Ji is completed and a the number of the 
last job scheduled by the rule SRPT-FM, defined by cr + q(a + 1) = n. 
Li = {n — q{i),n — q{i) + 1 , . . . , n - ^ ( z + 1 ) — 1 = n — K,{i)} is the list of jobs 
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which have preempted the job J^. These jobs have been scheduled by the rule 
LRPT-FM. We set Si = ^ kj, Vz = 1 , . . , ( J , with M/' = {MjßJk G Li 

such that Jk is completed on Mj}. The lists Li depend on the values gk of 
each iteration. Schedule 5 of value (e, C) is an extreme strict Pareto optimum 
if and only if Ve > d > 0 the running of the algorithm EMPl for the value 
e — d does not lead to the same lists Li as those obtained during the con
struction of 5. This is equivalent to considering that the weaker the value of 
the desired Cmax is, the more likely the algorithm EMPl will apply the rule 
LRPT-FM. Jobs that, for a more important value of Cmaxi were scheduled by 
SRPT-FM will preempt other jobs and be scheduled by LRPT-FM. The next 
value of e' < e which is considered is obtained by calculation of the variations 
Agk of the latencies. This makes necessary the calculation of variations of the 
completion times of jobs in 5 scheduled by SRPT-FM. These latter variations 
are given by: 

^Ci = ( Si + ^ ( f e g ( i ) + e - fc«(i)+e)^C'i_e ) , Vz = 1, ..., (7 

We then obtain Vfc = 1,..., n — cr + 1: 

k 3-2 

^9k = ^ l^a + ^ ( f c « ( j _ i ) + a - kk^l-\.a)ACj-i-a 
a—K{j-l) a=0 

with j such that K{J — 1) < k < hi{j). Likewise we denote by Qkj the value 
of the latency when, applying the algorithm EMPl, we search to place job 
Jj according to the rule SRPT-FM: gk is the value gkj with j such that 
K{J — I) < k < K>{j). The value e' of the criterion Cmax of the next strict 
Pareto optimum to be determined is given by e' = e — min (--—). 

The algorithm EMP2 is presented in figure 9.15. Its complexity is in 0{m^n) 
time. 

We can show that the algorithm EMP2 only calculates the extreme strict 
Pareto optima in spite of the fact that weak, but non strict solutions can 
be obtained by using the e-constraint approach. For a fixed value e the so
lution determined by the algorithm EMPl is a strict Pareto optimum be
cause this is obtained by maximising Cmax (under the constraint Cmax < ^) 
to minimise C. This translates to the algorithm by alternatively applying 
the rules SRPT-FM and LRPT-FM. In other words, when we use the algo
rithm EMPl in EMP2 we obtain an extreme strict Pareto optimum. To show 
that the algorithm EMP2 does not determine solutions belonging to the set 
WE — Ey we just have to show that the initial solution determined by the 
rule SRPT-FM is a strict Pareto optimum, i.e. it is an optimal solution of the 
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ALGORITHM EMPl 

/* We assume that pi < ... < Pn and A;i > . . . > fcm*/ 
/* T is the set of remaining unscheduled jobs */ 
Step 1: /*Initialisation and feasibility test */ 

C f = 0, Vi = 1,..., m; C^ = e; 

Vj = ^{C^ - Q + i ) X kj^i^ \fj = 1, ...,m; 
e=o 

For i = l to n Do 
9i = {Vl-\- ... + Vi) - {pn -\-Pn-l + . . . +Pn- i+ l ) ; 
/*Vi = 0, Vi > m*/ 
Ci = 0; 
If (pi < 0) Then END; /* Unfeasible problem */ End If; 

End For 
Step 2: /* Main part of the algorithm */ 

While (|T| 7̂  0) Do 
Let gk = min (gi); 

i= l , . . . , |T | 
If {gk > 0) Then 

/* We use the rule SRPT-FM */ 
i = T[l]; 
Let Mi be the machine such that C^ = min (Cp ); 

/* Break ties by choosing the one with the greatest speed kj */ 
If (kj = km) Then X = min(CJ^i - C f , fr,9\j\)\ End If 
If (AJJ -km = l) Then 

• x = m i n ( C J ^ , - C f , | , ^ ^ ^ m m ^ J ^ , ) ) ; 

End If 
If {{kj -km^l) and (Â j ^ km)) Then 

min (p^) 
x - mm [Cj_i - Cj , —, — , , _ , 

J A/7 A/77J, ± A / j A/771, 

End If 
Schedule the job Ji in the time interval [Cj^; C}^ + x] 

-); 

If (a; = kjpi) Then T = T- {Ji}; Else p^ = p^ - —; End If: 
Kj 

Recompute Vj and f̂fc, Vj = 1, ...,m, Vfc = 1, ...,n; 
Else 

Use the rule LRPT-FM on the jobs Ji^i-fc+i, . . . , J\T\ ; 
T = T — {J|T|-fc+l, . . . , J\T\}] 
Recompute Vj and gk, Vj = 1, ...,7?2, V/c = 1, ...,n; 

End If 
End While; 

Step 3: Print the resulting schedule; 
[Mc Cormick and Pinedo, 1995] 

Fig. 9.14. An optimal algorithm for the Q\pmtn\e{C/Cmax) problem 
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ALGORITHM EMP2 

/* We assume that pi < ... < Pn and /ci > . . . > /cm */ 
/* ZE: the list of extreme strict Pareto optima in the criteria space */ 
/* w: the slope of the facet of the trade-off curve explored at a given iteration */ 
/* Li', list of jobs which have preempted job Ji */ 
Step 1: /* Initialisation of the algorithm */ 

Compute a solution s° using the rule SRPT-FM; 
€ = Cmax(s°); Qi =_0; Sji = n; 

w = Ö]CT = n] Lj = 0, q{j) = 0, K{J) = 1, Vj = 1,..., n; 
Step 2: While (w < oo) Do 

i-l 

ACi = ( Si + y^iKiiHe - K(i)^e)ACi-e ) , Vz = 1, ..., Cr; 

k 3-2 

Agk = X / '̂̂  "̂  2 J (^«0- l )+a - kk+l-[.a)ACj-l-a 
aGwO-l) a=0 

with j such that K{J — I) < k < n{j), VA; = 1,..., n — cr + 1; 
a = mm (-;—); 

k=i,...,(n-cT+iy Agk 
Let A;* be such that a* = ^^* ; 
Let j * be such that K{f - 1) < k* < «(i*); 
If if > 1) Then 

Lj*_i = Lj*-i -\-{n- k* -\-l,n- k* + 2 , . . . , n - ^(j*)}; 
L,* =Lj* - { n - r + l , n - r + 2 , . . . , n - g Ü * ) } ; 
If ( r = n - (J + 1) Then 

I cr = cr - 1; Compute Pn-^+i; 5jn-cT+i = cr; 
End If 
e = e - a * ; Ci = Ci + Ad, \fi = l , . . . ,n; 
^6 = ^6 + Age, Ve = 1,..., K{J* - 1) - 1; 
Compute pe, Ve = K(J* — 1),..., A;*; 
^ j e = r - l , Ve = / . ( r - l ) , . . . ,A ;* ; 
Compute a solution s° using the algorithm EMPl with 
the value e; 
ZE = ZE + {s°}; 

Else 
I It; = oo; 

End If 
End While 

Step 3: Print the list ZE\ 

[Mc Cormick and Pinedo, 199"5]" 

Fig. 9.15. An optimal algorithm for the Q\pmtn\Cmax'>C problem 



310 9. Parallel machines problems 

Q\pmtn\Lex{C^ Cmax) problem. The rule SRPT-FM is a necessary and suffi
cient condition for all optimal schedules for the criterion C. Let two schedules 
5̂  and 5^ be optimal for the criterion C. s^ and 5^ verify the rule SRPT-FM 
and as 5̂  ^ s'^ we deduce from this that at least two jobs Ji and Jk exist such 
that Pi — Pk' This implies that Cmax{s^) = Cmaxis'^)- We conclude there
fore from this that in criteria space there is only one point {Cmax{s)]C{s)) 
such that C{s) = min(C(5')). The rule SRPT-FM determines a schedule 

corresponding to this point and the solution which is found initially by the 
algorithm EMP2 is an extreme strict Pareto optimum. 

9.3 Problems with unrelated parallel machines 

9.3.1 The R\pij € [p..,Pij]\Fi{C,CC ) problem 

[Alidaee and Ahmadian, 1993] are interested in a scheduling problem where 
the processing times depend on the machine on which jobs are processed. 
Besides, these processing times are not data of the problem and we only have 
Pi,j ^ b oPij]? Vi = l,. . . ,n,Vj = l, . . . ,m. The exact values pij have to be 

determined and we minimise a linear combination of the criteria C and CC . 
The criterion CC is the total crashing time cost, defined by: 

n m 

with Wij the cost of a unit of compression time of job Ji on machine Mj. 
Xij is the number of compression time units of job Ji on Mj, which leads to 
Pi J = Pij — Xij. The complexity of this problem is open. 

When m = 1 and the criterion C is replaced by the criterion C , the prob
lem is solvable in polynomial time ([Vickson, 1980b]). As for the l\pi G 
[P--)Pi]\F'e{C,CC ) problem, an optimal schedule exists for the problem on 
unrelated machines in which all the jobs Ji are such that pij = p. . or Pij 
if Ji is processed on Mj. Determination of the exact processing times when 
the schedule is known on each machine, can be reduced to an assignment 
problem. Let Q be the matrix {mn x n) composed of n successive matrices 
P£ of dimension {m x n)^ where pe[i^j] is the maximum contribution to the 
objective function of job Ji if (̂  — 1) jobs are scheduled on Mj after Ji. If we 
consider the matrix Q as the cost matrix of an assignment problem, then the 
optimal solution of this problem gives an optimal assignment and sequencing 
of jobs on machines. Next, determination of the optimal processing times can 
be achieved according to the following rule: 
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Pi,j ~P • f̂ '^iJ ^ ^ ^^^ "^i ^^ processed on Mj, 

0 if Wij > k and Ji is processed on Mj, 

l^Pj^j otherwise. 

If Mj is the machine on which Ji is processed then k is the number of jobs 
processed after Ji. 

9.3.2 The ß|pmtn|€(F^(/rnax,M)/Cmaa;) problem 

[T'kindt et al., 2001] are interested in a scheduling problem connected with 
the production of glass bottles. The raw material is fused in several ovens 
and the molten glass produced is distributed to several moulding machines 
which process jobs simultaneously. The constraints associated with changing 
colour during production impose that the makespan is bounded by a date 
e. We denote by bi the quantity of glass associated with job Ji and kij the 
production rate when job Ji is processed on machine Mj. Preemption of jobs 
is authorised at any real time. We denote by Cmin the minimal completion 
time of the last jobs on the machines and we seek to minimise the maximal 
loading difference, i.e. the criterion Imax = Cmax — Cmin- Each glass unit 
of job Ji has a fixed price, denoted by pvi, which is independent from the 
production machines. The processing of job Ji on a machine Mj during one 
time unit, induces a production cost equal to Cij. Therefore, the production 
margin, denoted by rriij, saved for one time unit of processing of job Ji on 
machine Mj is equal to rriij = kijpvi — Cij. We want to maximise the actual 
profit, i.e. the criterion: 

n m 

where Pij = p ^ is the processing time of job Ji on Mj and Xij the associated 
quantity of glass. Calculation of a strict Pareto optimum for this problem can 
be achieved in polynomial time. 

When the value e of the period is fixed and when the weights of the crite
ria Imax and M are known, the algorithm proposed is similar to that pre
sented by [Lawler and LabetouUe, 1978] and [Cochand et al., 1989] for the 
R\pmtn\Lmax problem. Firstly, the assignment of jobs on machines is deter
mined by a linear program, denoted by ETBPl (figure 9.16). In the obtained 
solution splitting of jobs can occur, but it is possible to deduce a solution 
where only the preemption is authorised. This calculation can be done by 
solving a colouring problem in a bipartite graph. 

Characterisation of the set of strict Pareto optima is derived by calculating 
the set of strict Pareto optima which are extreme points in criteria space. 
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Mathematical formulation ETBPl 
Data: 

Variables: 

Objective: 

Constraints: 

n, number of jobs, 
m, number of machines, 
T, length of the scheduling period, 
&i, z = 1,..., n, quantity of glass associated to job Ji, 
a i , a 2 , parameters of the criteria, 
with a i + a2 = 1, a i and «2 > 0, 
kij, 2 = 1, ...,n, j = 1, ...,m, quantity of job Ji processed 
by machine Mj per time unit, 
mz,j, i = 1,..., n, j = 1,..., m, production margin saved 
while processing one glass unit of job Ji on 
machine Mj. 
Xijy i = 1, ...,n, j = 1, ...,m, quantity of job Ji assigned 
on machine Mj, 
Cj , j = 1,..., m, completion time of the last job on 
machine Mj, 
Ij, j = 1, ...,m, total idle time of machine Mj, 
Cmax, makespan of the schedule, 
Imax, maximum idle time. 

Minimise 
i=i j=i ni. 

+ OL2ln 

^ X i , j = hi, V i = 1,. . . , 
J = l 

m 

, Vi = 1, ...,n 
j = i 

i=i '^'^^ 
Cmax = Ij -\-Cj, \/j = l , . . . , m 

Imax > Ij, V j = 1, . . . , m 

t^max SI -̂  

a^ij e R" ,̂ Vi = l , . . . ,n, \/j = l , . . . ,m 
[T'kindt et al., 2001] 

Fig. 9.16. A linear program for the R\split\€{Fe{Imax,M)/Cmax) problem 

Knowing these extreme points we can deduce the analytical expressions of 
the facets of the trade-off curve and therefore characterise the set of strict 
Pareto optima. The algorithm, denoted by E T B P 2 , which enumerates the 
extreme strict Pareto opt ima is presented in figure 9.17. It proceeds in two 
phases: 

1. In the first phase we calculate the optimal solutions of the two lexico
graphical problems involving criteria Imax and — M minimisation prob
lems. 

2. In the second phase a new weights vector a for the criteria is calculated 
using the first two optima obtained. We determine the equation of the line 
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containing these two points to deduce the vector a. The new optimum 
calculated is added to the list of optima already obtained and the second 
phase is i terated with two new optima. 

ALGORITHM E T B P 2 
/* T: list of current non dominated criteria vectors (criteria space) */ 
/* ZE: final set of non dominated criteria vectors (criteria space) */ 
/* E\ final set of extreme strict Pareto optima (decision space) */ 
r Z' = [-'M{s%Ima.{s%''/; 

Etape 1 : Solve (P«) to obtain the assignment s^ with criteria vector z^ 
which has an optimal value of Imax and a minimal value of — M; 
Solve (Pa) to obtain the assignment s^ with criteria vector z^ 
which has an optimal value of — M and a minimal value of Imax] 
If {z^ = z^) Then 

ZE={z'}; 
Goto Step 3; 

End If; 
Step 2: 

Step 3: 

T = {z';z^); 
ZE = ^; 
While (|T| 7"̂  1) Do 

^0 = 
Z2 • ^2 

:T[2]; 

(; 
'5o 

l ) - ' •(5o + l'(5o + -
Solve {Pot) to obtain the assignment s with criteria vector 

If ((;^o ^ ^2) 3 ^ (^0 ^ ^1)) Then 

• T = T + {z% 
Sort vectors of T by increasing order of criterion 

Else 
ZE = ZE^-{z^y, 
T = T-{z^y, 

End If; 
End While; 
ZE = ZE-\-T[l]\ 
Delete from ZE all non extreme points in criteria space; 
For all vectors in ZE compute the corresponding schedules 
and put them in E\ 

[T'kindt et al., 2001J 

Fig. 9.17. An optimal algorithm for the R\pmtn\e{Fi{Imax',M)/Cmax) problem 

Experimental results show tha t the number of extreme strict Pare to opt ima 
increases in proportion to the number of machines and jobs. Besides, problems 
containing the largest number of these solutions are the squared problems, i.e. 
those for which n = m. In conclusion, T'kindt , Billaut and Proust extend the 
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algorithm ETBP2 to obtain an interactive algorithm which is more applicable 
in an industrial context. 



10. Shop problems with assignment 

10.1 A hybrid flowshop problem with three stages 

[Fortemps et al., 1996] are interested in a scheduling problem which occurs in 
the chemical industry, denoted by i JF3 , (P6,P3, l)|con5tr| F£{Cmax^j{Ti), 
5{VPI)), where constr translates a set of constraints described hereafter. 
The shop comprises three stages. Each job Ji is defined by a release date, 
and a due date. Each machine Mj also has an availability date, denoted by Rj. 

At the first stage, six identical machines process the jobs which require setup 
times which are independent of the sequence on each machine (constraint 
'^nsd)' Besides, the setup times require the intervention of a unique resource 
(a team of men), making it impossible to perform several preparations at the 
same time. This additional resource leads to the consideration that certain 
operations require several resources for their processing (constraint fixj ^). 
When an operation is completed, the resource is freed up when the operation 
is ready to be processed at the second stage, that is to say once the transporta
tion is finished. This constraint is denoted by block^^''^\ Finally, each machine 
Mj has an unavailability time period, denoted by unavailj — resumahle^^\ 
corresponding for example to a period for maintenance. 
At the second stage, three identical machines can process the jobs after leav
ing the first stage. At this stage, splitting of jobs is authorised (constraint 
split^'^^). The first two stages are connected by a network of pipes. Several 
pipes are connected by valves. Use of a valve at a time t for the transportation 
of a job Ji makes useless every pathway via this valve for transportation of 
a job J j , until transportation of Ji is finished. This constraint is denoted by 
pipe^^\ 
At the third stage, a single machine distributes the materials flow correspond
ing to each job to diff'erent receptacles. 

The field of constraints in the notation of the problem can take the expression: 
constr = rl \d\ \ Rj, S^^J^, fiXj ^, block^^''^^, pipe^'^^, unavailj —resumable^^^, 
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The aim is to compute a schedule that minimises a convex combination of 
three criteria. The criteria which are taken into account are: 

1. the makespan, denoted by Cmax? 
2. a penalty function 7 ( r i , . . . , T^) of job tardiness, 
3. a penalty function 5{VPI) which reflects violation of periods of machines 

unavailability at the first stage. The presence of this criterion is due 
to the complexity of the problem which led the authors to relax the 
unavailability constraints. 

Since the problem is A/'T^-hard, the algorithm proposed to solve it is an heuris
tic which proceeds in two phases. The first calculates a sequence L of jobs, 
which reflects the order in which the latter are introduced into the shop. The 
second phase does the calculation of the final schedule and the assignment of 
jobs on the resources at each stage. 
Two heuristics are proposed to determine the sequence L, The first is a simu
lated annealing algorithm and the second is a tabu search. The determination 
of this list is made by looking for a solution which minimises the convex com
bination of the criteria. The general idea of the assignment heuristic is to 
schedule the jobs as soon as possible on the machines at each stage, ac
cording to the rule FAM. These assignments are made whilst respecting the 
constraints at each stage. 

10.2 Hybrid flowshop problems with k stages 

10.2.1 The HFk, {PM^^^)^^^\\Fi{Cmax,C) problem 

[Riane et al., 1997] are interested in a scheduling problem where the shop 
has k stages and each stage £ contains M^^^ identical machines. The aim is 
to minimise the makespan and the sum of completion times. For this, Ri
ane, Meskens and Artiba minimise a convex combination of the criteria. This 
problem is ßfV-haid. 

Figure 10.1 presents a mixed linear integer program, denoted by ERMAl. 
Constraints (A) express the fact that the jobs must be processed at every 
stage. Constraints (B) imply that there is at most one job in position £ on 
each machine. Constraints (C) and (D) enable us to calculate the comple
tion times at each stage (both routing and disjunctive constraints on the 
machines). Finally, constraints (E) and (F) define the criteria Cmax and C to 
be minimised. 

Two tabu search heuristics are also proposed. The first randomly generates 
a sequence of jobs. Assignment at the first stage is made according to the 
rule FAM and the jobs are scheduled as soon as possible. We suppose that 
the assignments are made at the following stages using the same rule and by 
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Mathematical formulation ERMAl 
Data: 

Variables: 

Objective: 
Constraints: 

n, the number of jobs, 
k, the number of stages, 
M^^\ £ = 1,..., A;, the number of machines at stage £, 
p\ \ i = 1, ...,n,i = 1,...,/c, the processing time of job Ji 
at stage £, 
a, a = 0,..., 1, a weight. 

^i,j,u,v, hj = l , . . . ,n, u = 1,...,M^''\ V = 1,...,A;, 
boolean variable, equal to 1 if job Ji is processed in po
sition j on machine Mu at stage v, 0 otherwise, 
C | \ i = l , . . . ,n,^ = 1,...,A;, the completion time of job 
Ji at stage £, 
Cmax, the makespan. 
C, the sum of completion times. 
Minimise aC + (1 — a)Cmax 

M(^> n 

y ^ y^^Xi,e,m,v = 1, Vz = 1,..., n, Vv = 1,..., A; 
m = l £=1 

n 

5]l^i,^,m,^ < 1, Vm = 1,..., M(^> , VT; = 1,..., A;, 
i=l 

V ^ = l , . . . , n 
u n 

e=i j=i 

Vm = 1,..., M ( ^ \ Vt; = 1,..., k, Vi = 1,..., n, 
Vẑ  = 1, ...,n 

C f ' > Ci"-^) + P 1 ' " , Vi = l , . . . ,n, V ^ = 1,...,A: 
(^max ^ O^ ? V2 = I , ..., Tl 

^=E^i 
(fc) 

(A) 

(B) 

(C) 
(D) 
(E) 

(F) 

[Riane et al., 1997] 

Fig. 10.1. An MIP model for the HFk, (PM(^>)t=i||F£(Cmax,C) problem 

considering the sequence of jobs sorted in non decreasing order of comple
tion times at the previous stage. We apply a tabu search on the sequence of 
jobs of the first stage. The neighbourhood considered is obtained by permu
tations of any pair of jobs. For the second heuristic, the schedule is calcu
lated according to the same scheme. The only difference lies in the fact tha t 
the initial sequence used at the first stage is generated by the heuristic of 
[Campbell et al., 1970]. 



318 10. Shop problems with assignment 

10.2.2 The HFk,{PM^^^)^^^\\e(C/Cmaa^) problem 

[Riane et al., 1997] are interested in a scheduling problem where the shop is 
made up of k stages, each stage £ comprising M^̂ ^ identical machines. The 
aim is to minimise the makespan and the sum of the completion time. 
We consider minimisation of the criterion C under the constraint Cmax ^ •̂ 
Figure 10.2 presents a mixed linear integer program, denoted by ERMA2, 
which solves this problem. Constraints (A) express the fact that the jobs 
must be processed at every stage. Constraints (B) imply that there is at 
most one job in position (, on each machine. Constraints (C) and (D) enable 
us to calculate the completion time at each stage (both routing and disjunc
tive constraints on the machines). Constraints (E) and (F) define the criteria 
Cmax and C which are to be minimised. Finally, constraint (G) expresses the 
bound on the criterion Cmax for the solution sought. 

Three tabu search heuristics are presented for this problem. The principle of 
the first two is identical to that of the heuristic for the HFk^ (^'^^^^)?=ill 
Fi{Cma,x^C) problem. The third tabu algorithm improves an initial solution 
which is calculated by solving the Lex{Cmax^C) problem. 

10.2.3 The JfFfc,(PM(^)(0)^=1 | r f \ d f ^ | € ( C ^ a x / T ^ a x ) problem 

[Vignier et al., 1996] are interested in a problem where unavailability con
straints are imposed on the resources. The shop is made up of k stages, each 
stage £ containing M^^^ identical machines. Each machine has its own periods 
during which it is not available to process. The number of machines available 
at an instant t at stage £ is denoted by M^^\t) and we suppose that the 
machines have a "zig-zag" profile, i.e. M^^\t) € [M^̂ ^ - l]M^\ Wt (see 
[Sanlaville, 1992]). Each job Ji is defined by a release date at the first stage 
and a due date at the last stage. Preemption of jobs is forbidden except when 
a job cannot be completed before the start of the next unavailability period on 
the machine on which it is scheduled. We then speak of "resumable" machines 
(see [Lee et al., 1997]). The aim is to minimise the makespan knowing that 
the maximum lateness is bounded by a value e (constraint Tmax ^ 

e). This 

problem is equivalent to the problem HFk,{PM^^\t))^^-^\ r\^\d!l^^\Cmax, 

where a^ = d\ ^ + e,Vz = l,. . . ,n. 
To solve this problem a branch-and-bound procedure, inspired by the one 
proposed by [Brah and Hunsucker, 1991], is presented. At each node of the 
search tree we have to take two decisions: the next job to be scheduled and 
the machine to process it. Thus, at a given node, if the job Ji is scheduled 
on the same machine Mj as the job which was scheduled at the father node, 
then this node is a circular node. Otherwise, job Ji is scheduled on machine 
Mj_^i, and the node is a squared node. This procedure assumes that all the 
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Mathematical formulation ERMA2 

Data: n, the number of jobs, 
k, the number of stages, 
M^^\ i = 1,..., A;, the number of machines at stage ^, 
Pl\ i = 1, ...,n,£ = 1,..., k, the processing time of job Ji 
at stage £, 
e, an upper bound to criterion 

Variables: Xij^u,vy i-,3 = l , . . . ,n, u = 1,...,M^^\ v = 1,...,A;, 
boolean variable, equal to 1 if job Ji is processed in po
sition j on machine Mu of stage v^ 0 otherwise, 
CI , i = l , . . . ,n,^ = l,...,/c, the completion time of job 
Ji at stage £, 
Cmax, the makespan. 
C, the sum of completion times. 

Objective: Minimise C 
Constraints: 

y ^ ^Xi,£,rn,t; = 1, Vi = 1,..., n, Vt; = 1,..., k (A) 
Tn=l € = 1 

n 

X^Xi,£,nx,.; < 1, Vm = 1,..., M(^> , V-i; = 1,..., k, 

V ^ = l , . . . , n (B) 
n n 

Vm = 1,..., M*"*, Vv = 1,..., fc, Vi = 1, ...,n, 
V « = l , . . . , n (C) 

C< ' '>>Cf -^>+p l^ \Vz = l , . . . ,n, \/v=l,...,k (D) 
Cmax>Cf> ,V i = l , . . . ,n (E) 

ü=X:cf> (F) 
i=l 

Cmax ^ € (G) 

[Riane et al., 1997] 

Fig. 10.2. An MIP model for the HFk, {PM^^^)^^i\\e{C/Cma^) problem 

k 

machines are numbered from 1 to Y ^ M ^ ^ ^ by considering firstly machines 
e=i 

of stage 1, then those of stage 2, etc. 
To be more precise, a certain number of rules must be respected when con
structing nodes (see [Vignier, 1997] for a detailed description of these rules) 
to generate feasible solutions and to avoid redundant nodes in the search 
tree. At a node 5,;, we can associate a stage £ and a set, denoted by i?^, of 
unscheduled jobs at this stage. We therefore know a schedule of all the jobs at 
stages ix, Vw = 1,... , (̂ — 1). To verify at node 5-y, the constraint Tmax ^ c? we 
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use a test of feasibility based on a result given by [Horn, 1974]. This test can 
be achieved by solving the P\ri^pmtn, di\— problem. For stage ^, ^ = 1,..., fc, 
we set: 

r. = Ct 
and di 

-^\ Vi € üi^\ 

= d^y 
K 

- E 
u=e+] 

with Cf ̂  

(u) 
Pi , Vie 

' i 

ßW. 

Existence of a solution to the feasibility problem can be determined by con
structing a bipartite graph G and by verifying that a flow of value Y ] p\ ̂  

exists in this graph (see [Horn, 1974]). In order to take into account all the as
signments already done at stage i for node Sy, and the unavailability periods 
of the machines at stage £, we only have to take into account the release dates 
of machines as well as the start times and the end times of unavailabilty peri
ods on the machines when constructing the graph ([Drozdowski et al., 2000]). 
If a flow of value ^ J Pi ^o^s not exist in this graph, then node Sy is pruned. 

On the other hand, existence of such a flow does not guarantee that node Sy 
leads to a feasible solution. [Vignier et al., 1996] do not take account of jobs 
already scheduled at stage 5̂ ^̂  as mentionned above. They indicate that it 
is sufiicient to impose on each vertex of the graph minimum capacities which 
are functions of jobs already assigned in time periods. The two approaches 
are equivalent from a theoretical point of view. 
If node Sy is not pruned, then a lower bound on the criterion Cmax is calcu
lated. This bound is based on bounds LB J and LBM, initially proposed by 
[Brah and Hunsucker, 1991], and improved by [Portmann et al., 1996] and 
[Portmann et al., 1998]. If the lower bound at node Sy is greater than the 
global upper bound then node Sy is pruned. The search strategy used to 
shorten the search space is the depth first strategy: let 5^ be the node under 
consideration at an instant t, the next node to be processed is the child node 
of Sy with the lowest value of the lower bound (if there is one). The detailed 
algorithm, denoted by EVBPl, is presented in figure 10.3. 
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ALGORITHM EVBPl 
/* € is an upper bound to the maximum tardiness */ 
/* T is the set of n jobs to schedule */ 
Step 1: /* Initialisation of the algorithm */ 

Using an ordinary heuristic, compute an upper bound S-ref of value 

dl*> = (df> + e)- J2 Pi"^ ^» = 1' •••'«' v^ = 1' •••' ^; 
u=e-\-i 

Create the root node so: CTQ = 0 ; Q = {^o}; 
Step 2: /* Main part of the branch-and-bound */ 

While ( g 7̂  0) Do 
Choose a node Sv in Q by using the depth first search strategy; 
Q = Q- {si}\ n = f2i] 
I ^ t ; = 1 to \Üi\ Do 

Choose a job Jj in Ü and create a child node ŝ !J.\ taking 
account of the generation rules of the tree; 
Search a maximal flot ^ in the bipartite graph associated 

Step 3: 

i + l ' with s. 
If (<?= J2 v^P) Then 

Compute Lßcmax(5l+i); 
Lf {LBcrr.aAs%\) < Cma.-Vef) Then 

If {Oi+i ^ 0) Then Q =^ Q-\-s%\; 
Else 

I S.ref = (7i+i; Cmax.ref = LJ5c^, , (s l^\) ; 
End If; 

End If; 
End If; 

End For; 
End While; 
Print S-ref and Cmax-ref; 

[Vignier et al., 1996] 

Fig. 10.3. An optimal algorithm for the HFk, {PM^^\t))^=i\r^^\4^^\\e{Cm^^/Tma^) 
problem 



A. Notations 

A. l Notat ion of da ta and variables 

The notation of data and variables is now quite well normalised. We present 
in tables A.l and A.2 the set of notations used throughout the book for the 
data and the variables respectively. 

A.2 Usual notat ion of single criterion scheduling 
problems 

Two notations exist to refer to scheduling problems. The older has been 
proposed by [Conway et al., 1967]. But as it is not the more used in the 
literature we present the one introduced by [Graham et al., 1979] and later 
detained by [Blazewicz et al., 1996]. The notation is decomposed into three 
fields: a|/3|7. 
The field a directly refers to the typology presented in figure 1.1 and presents 
the structure of the scheduUng problem (table A.3). 
The field ß contains the set of constraints of the problem (table A.4). 
At last, in the field 7 we put the criteria to optimise (table A.5). Concerning 
a more detailled presentation of the different classical criteria in scheduling, 
the reader is referred to [Rinnooy Kan, 1976]. 
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Table A. l . Notation of data 

Notation 

rn m 
Ji 
rii 

m^^) (or M(^>) 
Mj 

Oij 

fi inj) 
Si (SiJ) 

Phj (orpl) 

Pi i (Pij) 
— * j j '-^ 

di (dij) 

di (dij) 

Wi (Wij) 

'^3 

^*>j 

^iJ 

^J 

Data of problems 
Meaning 

number of jobs. 
number of machines. 
job number i, z = 1,..., n. 
number of operations of job Ji, we often have rii = 7n, Vi, 
2 ^̂ ^ 1 , . . . , 71». 

number of machines at stage i. 
machine number j , j = 1,..., m. 
operation j of job Ji. 
release time of job Ji (respectively of operation Oij). 
desired start time of job Ji (respectively of operation 

processing time of operation dj. When there is only one 
operation per job we use the notation p». 
minimum processing time (respectively maximum) of op
eration Oij. When there is only one operation per job 
we use p. (respectively p j . This data is generaly used in 
problems in which the processing times are variables to 
determine. 
due date of job Ji (respectively of operation Oij) 
deadUne of job Ji (respectively of operation Oij). The 
job Ji (resp. the operation Oij) cannot complete after 
this date. 
weight associated to job Ji (respectively to operation 1 
Oij). 
production rate associated to machine Mj. This data is 
generaly used in uniform parallel machines scheduling 
problems. 
production rate associated to the processing of job Ji 
on machine Mj. This data is generally used in unrelated 
parallel machines scheduling problems. 
non sequence dependent setup time required before the 
processing of operation Oij. 
non sequence dependent removal time required after the 
processing of operation Oij. 
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Table A.2 . Notation of variables 

Variables of problems 
Notation 

Ci 

Ti 
Ei 
Li 
Ui 

Meaning 
start time of operation Oi,j. When there is only one operation 
per job, we use the notation U. 
completion time of operat;ion 0«,j. 
completion time of job Ji. d = max (Cij). 

tardiness of job Ji. We have Ti = max(0; d — di). 
earliness of job Ji. We have Ei = m2ix(0; di — d). 
lateness of job Ji. We have Li = d — di. 
is equal to 1 if Ci > di and 0 otherwise. 

Table A.3 . The field a 

Field a = aia2 
sub-field a i | 

Value 

1 ® 
P,Q,R 

F,J,0,X 

HF 
GO 
GJ 
{P,Q,R}MPM 

GMPM 

OMPM 

Meaning | 
single machine. 

identical, proportionnal or 
unrelated parallel machines. 

flowshop, jobshop, open-
shop, mixed shop. 
hybrid flowshop. 
general openshop. 
general jobshop. 
parallel machines (of type P 
or Q or R) with a general as
signment problem. 
shop problem with a general 
assignment problem. 
openshop problem with a 
general assignment problem. 

1 Value 
0 
1,2,3, 
etc. 

m 

sub-field a2 
Meaning 
the number of machines or 
pools is not fixed. 
the number of machines or 
stages is fixed and equal to 
1,2,3, etc. 
the number of machines or 
stages is unknown but fixed. 
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Table A.4. The field ß - (1) 

Value 
prec 

chains 

out — tree 

Vi 

PiJ = P 

di 
di unknown 

di 

split 

pmtn 

Field ß 
Meaning | 
there is general precedence 
constraints between opera
tions. 
there is precedence con
straints, which form a set of 
chains, between operations. 
there is precedence con
straints, which forms an out-
tree, between operations. 

jobs have distinct realease 
times. 
jobs have a common process
ing time. 

jobs have a due date. 
jobs have a due date which 
is to be determined. 
jobs have a deadline. 

the splitting of an operation 
into parts is allowed and sev
eral parts can be processed 
simultaneously. 
the operations can be inter
rupted and resumed later on 
any machine. 

1 Value 
tree 

in — tree 

sp —graph 

Si 

Pi ^ 
\Pi\Pi] 

\ di = d 
di = 
dunknown 

^JlJ2 

over 

no — wait 

Meaning 
there is precedence constraints, 
which forms a tree, between op
erations. 
there is precedence constraints, 
which forms an in-tree, be
tween operations. 
There is precedence con
straints, which forms a 
serie-parallel graph, between 
operations. 
jobs have desired start time. 

the processing times of jobs are 
variables to determine and be
long to the interval [p.; p j . 
jobs have a common due date. 
jobs have a common due date 
which is to be determined. 
there is a minimum time lag to 
satisfy between the last opera
tion of job Jji and the first op
eration of job Jj2. 
the overlapping of two consec
utive operations of a job is al
lowed. 

for each job, when an operation 
completes the next one must 
start. 

to follow 
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Value 
block 

batch 

p — batch 

blcg 

Rsd 
(Rnsd) 

nmit 

Table A.5. ' 

Fie ldTT 
Meaning | 
the shop has storage areas, 
with a limited capacity, be
tween the machines, which 
may leads an operation to be 
stored on a machine. 
the operations can be gath
ered into batches during 
their processing. 
the operations can be gath
ered into batches and are 
processed in parallel in each 
batch. 
the machines must complete 
their processing at the same 
time. 
there is a removal time after 
the processing of an opera
tion. This one depends (re
spectively does not depend) 
on the sequence of opera
tions on each machine. 
when a machine has started 
its processing, no idle time 
between operations is al
lowed^ 

rhe field ß - (2) 

second part) 
1 Value 

recrc 

s — batch 

permu or 
prmu 

unavailj 

^sd \^nsd) 

no — idle 

Meaning 
a job can be processed several 
times by the same machine. 

the operations can be gathered 
into batches and are processed 
in series in each batch. 
we consider the set of permu
tation schedules (only available 
for flowshop scheduling prob
lems). 
machine Mj can have unavail
ability periods, known in ad
vance. 
there is a setup time before 
the processing of an opera
tion. This time depends (re
spectively does not depend) on 
the sequence of operations on 
each machine. 
on each machine the processing 
of the operations is performed 
without idle time. 
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Table A.5. The field 7 

Field 7 | 
Criterion 
^max 

J-max 

J^max 

-tt/rnax 

J^ max 

i^^max 

J Ttxax 

C{C^) 

T (T") 

TJ {TT) 

Expression 
max {Ci) 

i = l , . , . , n 

max (max(Cz — di\ 0)) 

max (Ci — di) 

max ( max(di — C«; 0)) 
i = l , . . , , n ^ ' 

max (Ci — Ti) 
i = l , . . . , n 

max (max(si — ti;0)) 
i = l , . . . , n 

max (/i) 
i = l , . . . , n 

i = l i = l 

n n 

i = l i = l 
n n 

i = l i = l 
n n 

i = l z = l 

Meaning 
Makespan, or maximum completion time. 

Maximum tardiness of jobs. 

Maximum lateness of jobs. 

Maximum earliness of jobs. 

Maximum flow time of jobs. 

Maximum promptness of jobs. 

Generic maximum cost function. Generaly, 
it is assumed to be an increasing function 
of the completion times of jobs. 

(Weighted) Average completion time of 
jobs, or (weighted) average work-in-
process. 

(Weighted) Average tardiness of jobs. 

(Weighted) Number of late jobs. 

(Weighted) Average earliness of jobs. 

No criterion, it is a feasibility problem. 



B. Synthesis on multicriteria scheduling 
problems 

B. l Single machine Just- in-Time scheduling problems 

We present in this section the set of problems tackled in chapter 5. The 
first table details polynomially solvable problems, mentioning: the notation 
of the problem, the associated references and the resolution method as well as 
its complexity. The second table contains the set of A^T^-hard problems. We 
distinguish the notation of the problem, its exact theoretical complexity and 
the associated references. The third table presents the set of open problems, 
mentioning: the notation of the problem and the associated references. In 
each table, in the column Problem we indicate between brackets the page 
number in this book where the corresponding problem is tackled. 

POLYNOMIAL JUST-IN-TIME SCHEDULING PROBLEMS ON A SINGLE MACHINE 
P r o b l e m [page] 

^(Lmax/Pmax) [170] 
l\si,di,di - «i < Pi\ 
^(Lmax/Pmax) [170] 
l\di, seq\Ff(E,T) [147] 
l\pi = l,di\F^E,T) [147] 
l | d^ , cha in |F^ (£ ; ,T ) [147] 

[153] 
iMi = d> S\F^(E,T) 

[155] 
l\di = d,d unknown\F^(E,T) 

[171] 
Ti-lPi = l,di,nmit\e(Emax/U) 

[171] 
1 l\pi = l,di,nmit\e(E/U) 

[171] 
l\di,seq\F^(E^,T(^) [149] 

IMi = d > E P i . ^ i 
Pi\FAE'^,T^) [171] 
l |p i = l,di\F(Ei,Ti) [147] 
l\si,di,Wi ^ j,ai < sj <^ di < 
dj\ F(f(Tmax),9(Pmax)) 

[172] 
I jdi = d, A > M | F ^ ( t 7 ^ , A) [172] 
l\Pi = l,di,nmit\€(Fp(E,T)/U) 

[171] 
l\di unknown, nmit, A\Fg(E,T, A) 

[172] 
Ijd^ = d unknown^ 
nmit\FfCE,T,d) [155] 
l\d^ == d unknoivn^ nmity 
clas8es\Ff(E,T,lB, d) [156] 
l\di = d unknown^ nmit\ 
Fp(E,T,d,'C) [155] 
l |Pi € [v^^'i'Vi] n N, d̂  = d non 
restrictive\Fp (E, T, 'CC'^) [157] 

Reference 
[Hoogeveen, 1996] 

[Hoogeveen, 1996] 

[Garey et al., 1988] 
[Garey et al., 1988] 
[Garey et al., 1988] 
[Kanet, 1981a] 

[Bagchi et al., 1986] 

[Bector et al., 1988] 
[Webster et al., 1998] 
[Kondakci et al., 1997] 

[Kondakci et al., 1997] 

[Szwarc and Mukhopadhyay, 1995] 

[Ahmed and Sundararaghavan, 1990] 

[Garey et al., 1988] 
[Sidney, 1977] 

[Lakshminarayan et al., 1978] 
[De et al., 1991] 
[Kondakci et al., 1997] 

[Seidmann et al., 1981] 

[Panwalker et al., 1982] 

[Chen, 1996] 

[Panwalker et al., 1982] 

[Chen et al., 1997] 

iMethod &£ complex i ty 
Greedy Ö(n log(7i)) 

Greedy 0{n'^ log(n)) 

Greedy 0{n log(ri)) 
Greedy 0{n log(n)) 
Greedy 0 ( n log(n,)) 
Greedy 0{ri^) 

Polynomial branch-and-
bound 

Neighborhood 

Mixed integer programming 

Mixed integer programming 

Shifting {0{cn)^ c number 
of blocks) 
Greedy 

Greedy 0(n log(n.)) 
Greedy 0(n'^) 

Greedy 0(n log(n)) 
Greedy 
Mixed integer programming 

Greedy 0(n log(n,)) 

Dedicated 0(n log(n)) 

Dynamic programming 
O(n^) 
Dedicated 0(n log(ri)) 

Reduction to an assignment 
problem 0(n ) 
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AT-P-HARD JUST-IN-TIME SCHEDULING PROBLEMS ON A SINGLE MACHINE 
P r o b l e m [page] 
l\di,nmit\F^{E,T) 

[182] 
l\di\F^iE,T) 

[182] 
l\di = d,nmit\F,(E,T) [183] 
l\di = d < J2Piy-r^^H^\P'pCE,T) [183] 
l\di = d < S, nmit\F^(E, T) 

[184] 
l\3i,di\F,(P,T) [184] 
l\di,n.mit\€(E'^ /U) [184] 
l | d i | F ^ ( ß " , T ^ ) 

[184] 
l | r i , d i | F ^ ( £ ; " , T ^ ) 

[185] 
l | d i , n m t t | F ^ ( £ ; " , T ^ ) 

[173] 

l | d , = d > E P i , r t m i t | F A S " , T ^ ) [186] 
l |d^ = d > 53 Pi» ^sd'"'"^**'*-^^"***''l 
FICE"^,!^^) [186] 

l |d^ = d unfcnou»Ti, S g j , Timitl 
Fp(E^,Tl^) [186] 
l | d i , T i m i t | F ( £ ; i , T i ) [187] 
l |d i =d,nmit\Fg(j:Ef,j:Tf) [187] 
l | d i , r i m i t | F ( £ 7 , T , C) [187] 
l |d i =d,nmit\F(Ei,Ti) 

[187] 
l | d J F ^ ( £ ? , T , C ) [188] 

C o m p l e x i t y 
JVP-hard 

A/"P-hard 

JVP-hard 
/ / -P-hard 
/ / P - h a r d 

AT-P-hard 
ATP-hard 
strongly ATP-hard 

strongly ATP-hard 

strongly ATP-hard 

ATP-hard 
A/"P-hard 

A/"P-hard 

ATP-hard 
AT-P-hard 
/ / P - h a r d 
AT-P-hard 

A/"P-hard 

Reference 
[Fry and Leong, 1986] 
[Azizoglu et al., 1991] 
[Szwarc, 1993] 
[Kim and Yano, 1994] 
[Fry et al., 1996] 
[Sundararaghavan and Ahmed, 1984] 
[Bagchi et al., 1987a] 
[Bagchi et al., 1986] 
[Szwarc, 1989] 
[Koulamas, 1996] 
[Chand and Schneeberger, 1988] 
[Fry et al., 1987ai 
[Fry and Blackstone, 1988] 
[James and Buchanan, 1997] 
[James and Buchanan, 1998] 
[Yano and Kim, 1991] 
[Mazzini and Armentano, 2001] 
[Ow and Morton, 1988] 
[Ow and Morton, 1989] 
[Li, 1997] 
[Almeida and Centeno, 1998] 
[Liaw, 1999] 
[VandenAkker et al., 1998a] 
[Azizoglu and Webster, 1997] 

[Webster et al., 1998] 

[Gupta and Sen, 1983] 
[Bagchi et al., 1987a] 
[Dileepan and Sen, 1991] 
[Bagchi et al., 1987b] 
[Kubiak, 1993] 
[Fry et al., 1987b] 

OPEN JUST-IN-TIME SCHEDULING PROBLEMS ON A SINGLE MACHINE 
P r o b l e m 
l |d i unknown, •nmit\Ff(E°' ,T^) 
l | d i , T i m i t | F ^ ( L m a x , - - L m i T i ) 

l\di,nmit\Fp(C,Lmax - L^,i„,) 

[page] 
[189] 

[189] 

[1911 1 

Reference 
[Adamopoulos and Pappis, 
[Gupta and Sen, 1984] 
[Tegze and Vlach, 1988] 
[Liao and Huang, 1991] 
[Sen et aL, 1988] 

1996] 

B.2 Single machine problems 

In this section we present the set of problems tackled in chapter 7. The first 
table details polynomially solvable problems, mentioning: the notation of the 
problem, the associated references and the resolution method as well as its 
complexity. The second table contains the set oi AfV-haxd problems. We dis
tinguish the notation of the problem, its exact theoretical complexity and 
the associated references. The third table presents the set of open problems, 
mentioning: the notation of the problem and the associated references. 



B.2 Single machine problems 331 

POLYNOMIAL SINGLE MACHINE SCHEDULING PROBLEMS (1/2) 

P r o b l e m [page] | Reference | M e t h o d &£, complex i ty | 
Minimisa.tion of K increasing funct ions of the comple t ion t i m e s | 

l l l e f f ^ / f 2 f^ ) 
'' ^^ max f -f max ^ ^-'max ^ 

[219] 

[Hoogeveen, 1992b] Greedy in 0(71"^) for K = 2 and 1 
0 ( r i ^ ( ^ + l ) ~ 6 ) otherwise. 

Minimisa t ion of t h e average comple t ion t i m e | 
l\di\e(C/Lmax) 

[207] 
l\di\F,(Tmax,C) [214] 
l\\Lexifmax,C) [214] 
l\\<C/fmax) [207] 

l | s^ , pmtn, nmit\F£(C, P-max) 
[215] 

[Smith, 1956] 
[Heck and Roberts, 1972] 
[VanWassenhove and Gelders, 1980] 
[Nelson et al,, 1986] 
[Esswein et al., 2001] 
[Sen and Gupta , 1983] 
[Emmons, 1975a] 
[John, 1984] 
[Hoogeveen and VandeVelde, 1995] 
[Hoogeveen and van de Velde, 2001] 

Minimisa t ion of the ^veighted average c o m p 
IjPi = l,di\Lex{Tmax.C^) 

[220] 
l\pi = l , d i | L e x ( C ^ , T m a x ) 

[220] 
\\pi = l , r f i | e ( C " ' / T m a x ) 

[220] 
l\Pi z= l,di\Lex(C^,U) [220] 
l | p i = l , d i | L e x ( C / , C « ^ ) 

[220] 
IjPi = l , d i | F ^ ( C " ' , F ) 

[220] 
l iP i = l , d i | L e x ( C ^ , I 7 ^ ) 

[220] 
IjPi = l,di\Lex(U^ ,C^) 

[220] 
IjPi = l , d i | F ^ ( C ^ , C 7 ^ ) 

[220] 
Ijpi = l,di\Lex(C^,T) [220] 
l |Pi = l,di\Lex(T,C^) [220] 
IjPi = l , d i | F ^ ( C ^ , T ) 

[220] 
IjPi = l,di\Lex(C^,T^) 

[220] 
l | p i = l , d i | L e x ( T ^ , C ^ ) 

[220] 
l |p i = l,di\FgiC^,T^) 

[220] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 
[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 
[Chen and Bulfin, 1990] 
[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

Greedy 0(n, log(n)) 
Greedy 
Greedy 0 ( n ^ p log(ri)) 
Branch-and-Bound 

Branch-and-Bound | 
Greedy | 
Neighbourhood 0(n log(n)) 1 
Greedy | 
Neighbourhood 0(n log(n)) 1 

et ion t i m e | 
Reduction to an assignment 
problem O(n^) \ 
Greedy 0(n log(n.)) 1 

Reduction to an assignment 1 
problem 0(n ) \ 
Greedy 0(n log(n)) | 
Reduction to an assignment 1 
problem 0(n ) \ 
Reduction to an assignment 1 
problem 0(71*^) | 
Greedy 0(n, log(n)) 

Reduction to an assignment 1 
problem O(n^) \ 
Reduction to an assignment 1 
problem 0(n ) \ 
Greedy 0(7x log(n)) 
Greedy 0(n log(n)) | 
Reduction to an assignment 1 
problem 0(71"^) \ 
Greedy 0 ( n log(n)) 

Reduction to an assignment 
problem O(n^) 
Reduction to an assignment 
problem O(n^) 

Minimisa t ion of crashing t i m e costs 
l |Pi G [PiiPi],di\F£(Tmax, 
'CC'^) [216] 
1| Pi € [Pi\Pi]>di\e{Tmax/ 
'CC^) [217] 
l\Pi G [ P i ; P i ] | € ( / m a x / C C ^ ) 

[217] 
l |P i G [ p . ; P i ] | F ^ ( C , C C " ' ) 

[219] 
l |P i G [ p . ; P i ] n N | F ^ ( C , C C - ) 

[219] 

[Vickson, 1980b] 

[VanWassenhove and Baker, 1982] 

[VanWassenhove and Baker, 1982] 

[Vickson, 1980b] 

[Chen et al., 1997] 

Greedy 0(71'"^) 

Greedy 0(n'^) 

Greedy 0(71'"^) 

Reduction to an assignment 
problem 0(71^) 
Reduction to an assignment 
problem 0(71^) 

Mininnisation of tool changing costs 
l\classes^ orders^ SQ^\ 
Lex(SC,'Xc) [221] 
\\classesy commandes^ SQ^\ 
Lex(AC,^C) [221] 

[Gupta et al., 1997] 

[Gupta et al., 1997] 

Dedicated in 0(71 log(A4) with A4 
the number of orders. 
Dedicated 0 ( n ) 

Minimisa t ion of due date based criteria 
l\pi = l.dilLexiTmaxy"^) 

[222] 
l\pi = l.di\e(Ü/Tmax) 

[222] 
l\Pi = l,di\Lex(U^/Tmax) 

[222] 
l\pi = l , d i | 6 ( T m a x , ^ ^ ) 

[222] 
l\pi = l , d j L e x ( T r n a x , T ^ ) 

[222] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

Reduction to an assignment 
problem 0(71^) 
Reduction to an assignment 
problem 0(n ' ^ ) 
Reduction to an assignment 
problem O ( n ^ ) 
Reduction to an assignment 
problem 0(71^) 
Reduction to an assignment 
problem Q(n'^) 
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POLYNOMIAL SINGLE MACHINE SCHEDULING PROBLEMS (2/2) 
P r o b l e m [page] 
l\pi = l , d J c ( T ^ / T m a x ) 

[222] 
l\pi = 1, di\Lex(T, U) [222] 
l |p i = 1, di\Lex(U,T) 

[222] 

[222] 
l\pi = 1, di\Lex{T, U'^) 

[222] 
l\pi = 1, d J L e x ( L r ^ , T ) 

[222] 

1 [222] 
l\pi = 1, di|Leaj(C/, T ^ ) 

[222] 
l\Pi = 1, d J L e x ( T ^ , U) 

[222] 
1 l|p^ = l,di\F^(T^,U) 

[222] 
l |p i = l , c i j L e x ( T ^ , ^ ^ ) 

[222] 
l\Pi = l , d i | L e x ( I 7 ^ , T ^ ) 

[222] 

[222] 

Reference 
[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 
[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

[Chen and Bulfin, 1990] 

M e t h o d &£ c o m p l e x i t y 
Reduction to an assignment 
problem O(n^) 
Greedy 
Reduction to an assignment 
problem O(n^) 
Reduction to an assignment 
problem O(n^) 
Greedy 

Reduction to an assignment 
problem 0(n*^) 
Reduction to an assignment 
problem O(n^) 
Reduction to an assignment 
problem O(n^) 
Reduction to an assignment 
problem O(n^) 
Reduction to an assignment 
problem O(n^) 
Reduction to an assignment 
problem O(n^) 
Reduction to an assignment 
problem O(n^) 
Reduction to an assignment 
problem O(n^) 

ATP-HARD SINGLE MACHINE SCHEDULING PROBLEMS 
[page] I C o m p l e x i t y I Reference" 

Klinimisat ion of the average comple t ion t i m e 
l | d j , nmit\e{C/Emax) [226] I stronlgy ATP-hard [Azizoglu et aL, 1997] 
l\di\e(C/Emax) 

[226] 
stronlgy ATP-hard [Delia Croce and T'kindt, 2002] 

[Delia Croce and T'kindt, 2003] 
l\di\Lex(U, C) [227] [Emmons, 1975b] 
l\di\eiC/U) 

[227] 
ATP-liard [Nelson et al., 1986] 

[Kiran and Unal, 1991] 
l | c f J # ( C , T ) [222] [Lin, 1983] 
\\di,\e{C/U,Tmax) [227] [Nelson et al., 1986] 

Min imisa t ion of the \veiglited average connpletion tinne 
l\di\Lex{Lmax,C'^ 

[227] 
strongly ATP-hard [Chand and Schneeberger, 1984] 

[Hoogeveen, 1992a] 
l\di\e(C^/Lmax) strongly ATP-hard 

[228] 

[Smith, 1956] 
[Bansal, 1980] 
[Chand and Schneeberger, 1986] 
[Heck and Roberts, 1972] 
[Burns, 1976] 
[Miyazaki, 1981] 

l | d J F A C " ^ , T ^ ^ [228] strongly A/'T'-hard [VanWassenhove and Gelders, 1978] 
Min imisa t ion of crashing t i m e costs 

[223] 
weakly / / P - h a r d [Chen et al., 1997] 

iMi.Pi e [£.;Pi]nN|F^(c/-,cc"') 

mi-
weakly jVP-hard [Chen et al., 1997] 

l | d i , Pi e [£i;Pi] '"'NlF^CTmax.CC"') 
[226] 

weakly ATT -̂hard [Chen et al., 1997] 

Min imisa t ion of tool changing costs 
l\di,S,^]F{SC,Tmax) [229] I A/-p-hard [Bourgade et al., 1995] 
l | C . , ^ | F , ( C ^ , g C ) [229] [Barnes and Vanston, 1981] 

OPEN SINGLE MACHINE SCHEDULING PROBLEMS 
P r o b l e m [page] | Reference 

Min imisa t ion of t h e average comple t ion t i m e 
l\di\F,{C,E) [234] 1 [Pry and Leong, 1987] 

Min imisa t ion of crashing t i m e costs 
l |P i e [p^lPillF^CC'^.CC"') [234] 1 [Vickson, 1980a] 

Min imisa t ion of due da te based criteria 
l\di\Lex(JJ,Tma.x) 

[230] 
1 l\di,\e{U/Tmax) [233] 

[Shantikumar, 1983] 
[Gupta et al., 1999a] 
[Nelson et al., 1986] 
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B.3 Shop problems 

This section deals with the set of problems tackled in chapter 8. The first 
table present flowshop problems, mentioning: the notation of the problem, 
its complexity and the associated references. The last table is dedicated to 
jobshop and openshop problems. 

FLOWSHOP SCHEDULING PROBLEMS 
P r o b l e m [page] | C o m p l e x i t y | Reference 

NIinimisa.tion of m a x i m u m comple t ion t i m e s 
F2\prmu\Lex(Cmax,^) 

[235] 
F2\prmu\F^(Cmax,C!) 

[250] 
F2\ri,prmu\Ff(Cmax,^) [256] 
F2\prmu\e(C/Cmax) [256] 
F\prmu\Lex{Cmax f (^) 

[270] 
F | p r m t i | # ( C m a x , C ) 

[272] 
F2\prmu,di\#(Cmax,Tmax) [262] 
F\prmu,di\eiCmax/Tmax) [277] 
F2\prmu,di\#(Cmax,U) [265] 
F2\prmu,di\i^iCmax,T) [267] 

strongly ATP-hard 

strongly A^P-hard 

strongly ATP-hard 
strongly ATP-hard 
strongly ATP-hard 

strongly ATP-hard 

ATP-hard 
ATP-hard 
strongly ATP-hard 
strongly A/^P-hard 

[Rajendran, 1992] 
[Neppalli et al., 1996] 
[Gupta et al., 2001] 
[Gupta et al., 2002] 
[Gupta et al., 1999b] 
[T'kindt et al., 2003] 
[Nagar et al., 1995b] 
[Serifoglu and Ulusoy, 1998] 
[Yeh, 1999] 
[Chou and Lee, 1999] 
[Sayin and Karabat i , 1999] 
[Selen and Hott , 1986] 
[Wilson, 1989] 
[Gangadharan and Rajendran, 1994] 
[Rajendran, 1994] 
[Rajendran, 1995] 
[Daniels and Chambers, 1990] 
[Daniels and Chambers, 1990] 
[Liao et al., 1997] 
[Liao et al., 1997] 

Minimisa t ion of crashing t i m e costs 

'CC^) [280] 
^\PiJ = Pi e [PiiPi]yPrmu\ #{Cmax. 
lOC^) [281] 

Minimisat 
F\prmu, di,nmit\FfCE'^,T^) [176] 

ATP-hard 

V 

[Nowicki, 1993] 

[Cheng and Shakhlevich, 1999] 

on of Jus t - in -T ime criteria 
strongly ATP-hard | [Zegordi et al., 1995] 

JOBSHOP AND OPENSHOP SCHEDULING PROBLEMS 
P r o b l e m [page] 
J\\Frr(Cmax . C, I, Tmax . U) [284] 
J\\GP(Cmax.C,E + T) 
02\\Lex{CmaxyC) 

03\\Lex{Cmaxy C) 

[284] 

[284] 
[285] 

C o m p l e x i t y 
strongly ATP-hard 
strongly ATP-hard 
strongly ATP-hard 

strongly ATT^-hard 

Reference 
[Huckert et al., 1980] 
[Deckro et al., 1982] 
[Gupta and Werner, 1999] 
[Kyparisis and Koulamas, 2000] 
[Kyparisis and Koulamas, 2000] 

B.4 Parallel machines scheduling problems 

We present in this section the set of problems tackled in chapter 9. The 
following table summarizes the problems, mentioning: the notation of the 
problem, its complexity and the associated references. 
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PARALLEL MACHINES SCHEDULING PROBLEMS 
[page] I C o m p l e x i t y I Reference 

Q\Pi = P\^(fmax /9max) 
Mini in isat ion of increasing funct ions of t h e comple t ion t i m e s 

297] [Tuzikov et al., 1998] 
Q\Pi = Pl^jg/fmax) 302] [Tuzikov et aL, 1998] 

P 2 I 
Minimisa t ion of m a x i m u m comple t ion t i m e s 

v) 
P3\pmtn, di\€(Lmax / Cmax) 

[Mohri et al., 1999] 
[Mohri et al., 1999] 

P2\di\Lex(Tmax,U) [293] [Sarin and Hariharan, 2000] 
P\pmtn\Lex(C, Cmax) [296] [Leung and Young, 1989] 
Q\pmtn\e{C / Cmax) [303] [Mc Coi-mick and Pinedo, 1995] 
R\pmtn\€{F,iImax,-M)/Cmax) [311] [T'kindt et al., 2001] 

Minimisa t ion of crashing t i m e costs 
R\Pi,j ^[Pi^^-,Pi,j]\FgCC,CC^) [310] I Open [Alidaee and Ahmadian, 1993] 

unknown\Fp(T.'s, CC'^) 

[Alidaee and Ahmadian, 1993] 

tl69] 

P\dj^ = d non restrictive, 
nmit\Fp(E,T) [157] 

Min imisa t ion of Jus t - in -Time criteria 
[Sundararaghavan and Ahmed, 1984] 

P|d^ = d unknown^ nmit\Fj^{EyT) 
[159] 

[Emmons, 1987] 

Q\di = d unknown, nmit\F^{E,T) 
[188] 

Open [Emmons, 1987] 

strongly ATP-hard P\di 
t\fmax{E^,T^) 

restrictive, 
[178] 

[Li and Cheng, 1994] 

P\di 
nmi 

d unknown, 
t\Lex{Fp(E,T), Cmax) [162] 

Open [Emmons, 1987] 

P\di = d unkn 
Fp(E,T,d) 

y Pi = P» nmii\ 
[165] 

[Cheng and Chen, 1994] 

B.5 Shop scheduling problems with assignment 

We collect in this section the set of problems tackled in chapter 10. The table 
below summarizes the set of problems met, mentioning: the notation of the 
problem, its complexity and the associated references. 

HYBRID FLOWSHOP SCHEDULING PROBLEMS 
P r o b l e m [page] C o m p l e x i t y Reference 

Min imisa t ion of m a x i m u m comple t ion t i m e s 
H F f c , ( P M C ^ ) 5 ' _ l l | F ^ ( C m a x , C ) [316] 

HFfc , (PM(^) ) J '_T | |€(C/C7max) [318] 

HFk, iPM^'-) (t))J^i |rj^^ ,d^^^ 1 
<Cmax/Tmax) * * [318] 
H F 3 , ( P 6 , P 3 , l ) | cons t r |F£(C7m,ox. 
'i{Ti),delta{yPI)) [315] 

^ - P - h a r d 

ATP-hard 

ATP-hard 

ATP-hard 

[Riane et al., 1997] 

[Riane et al., 1997] 

[Vignier et al., 1996] 

[Fortemps et al., 1996] 



References 

[Achugbue and Chin, 1982] Achugbue, J. O. and Chin, F. Y. (1982). Scheduhngthe 
openshop to minimize mean flow time. SI AM Journal on Computing, 
11:665-679. 

[Adamopoulos and Pappis, 1996] Adamopoulos, G. L. and Pappis, C. P. (1996). 
ScheduUng jobs with different job-dependent earUness and tardiness 
penalties using the SLK method. European Journal of Operational Re
search, 88:336-344. 

[Ahmed and Sundararaghavan, 1990] Ahmed, M. S. and Sundararaghavan, P. S. 
(1990). Minimizing the weighted sum of late and early completion 
penalties in a single machine. HE Transactions, 22(3):288-290. 

[Alidaee and Ahmadian, 1993] Alidaee, B. and Ahmadian, A. (1993). Two paral
lel machine sequencing problems involving controllable job processing 
times. European Journal of Operational Research, 70:335-341. 

[Allen, 1981] Allen, J. F. (1981). An interval-based representation of temporal 
knowledge. In Proceedings of the IJCAI, Vancouver, Canada, pages 
221-226. 

[Almeida and Centeno, 1998] Almeida, M. T. and Centeno, M. (1998). A composite 
heuristic for the single machine early/tardy job scheduling problem. 
Computers and Operations Research, 25(7/8) :625-635. 

[Aloulou, 2002] Aloulou, M. (2002). Structure flexible d'ordonnancements ä perfor
mances controlees pour le pilotage d^atelier en presence de perturbations 
(in french). Phd thesis, Institut National Polytechnique de Lorraine, 
Nancy (France). 

[Aloulou et al., 2004] Aloulou, M., Kovalyov, M., and Portmann, M. (2004). Max
imization of single machine scheduling. Annals of Operations Research, 
129:21-32. 

[Aloulou and Portmann, 2003] Aloulou, M. A. and Portmann, M.-C. (2003). An 
efficient proactive reactive scheduling approach to hedge against shop 
floor disturbances. In Proceedings of the 1st Multidisciplinary Interna
tional Conference on Scheduling: Theory and Applications (MISTA ^03), 
Nottingham, UK, pages 337-362. 

[Alves and Climaco, 2000] Alves, M. J. and Climaco, J. (2000). An interactive 
method for 0-1 multiobjective problems using simulated annealing and 
tabu search. Journal of Heuristics, 6(3):385-403. 

[Aneja and Nair, 1979] Aneja, Y. P. and Nair, K. P. K. (1979). Bicriteria trans
portation problem. Management Science, 25:73-78. 

[Artigues et al., 2005] Artigues, C , Billaut, J . -C, and Esswein, C. (2005). Max
imization of solution flexibility for robust shop scheduling. European 
Journal of Operational Research, 165(2):314-328. 

[Artigues and Roubellat, 2000] Artigues, C. and Roubellat, F. (2000). A polyno
mial activity insertion algorithm in a multi-resource schedule with cu-



336 References 

mulative constraints and multiple modes. European Journal of Opera
tional Research, 127:294-316. 

[Ausiello et al., 1999] Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., 
Marchetti-Spaccamela, A., and Protasi, M. (1999). Complexity and 
Approximation: Combinatorial Optimization Problems and Their Ap-
proximability Properties. Springer, Heidelberg. 

[Aytug et al., 2005] Aytug, H., Lawley, M. A., McKay, K., Mohan, S., and Uzsoy, 
R. (2005). Executing production schedules in the face of uncertainties: 
A review and some future directions. European Journal of Operational 
Research, 161(1):86-110. 

[Azizoglu et al., 1991] Azizoglu, M., Kondakci, S. K., and Kirca, O. (1991). Bi-
criteria scheduling problem involving total tardiness and total earliness 
penalties. International Journal of Production Economics, 23:17-24. 

[Azizoglu et a l , 1997] Azizoglu, M., Kondakci, S. K., and Koksalan, M. (1997). 
Bicriteria scheduling: minimizing flowtime and maximum earliness on 
a single machine, pages 279-288. In [Climaco, 1997]. 

[Azizoglu and Webster, 1997] Azizoglu, M. and Webster, S. (1997). Scheduling job 
families about an unrestricted common due date on a single machine. 
International Journal of Production Research, 35:1321-1330. 

[Bagchi et al., 1987a] Bagchi, U., Chang, Y.-L., and Sullivan, R. S. (1987a). Min
imizing absolute and squared deviations of completion times with dif
ferent earliness and tardiness penalties and a common due date. Naval 
Research Logistics, 34:739-751. 

[Bagchi et al., 1986] Bagchi, U., Sullivan, R. S., and Chang, Y.-L. (1986). Mini
mizing mean absolute deviation of completion times about a common 
due date. Naval Research Logistics Quarterly, 33:227-240. 

[Bagchi et al., 1987b] Bagchi, U., Sullivan, R. S., and Chang, Y.-L. (1987b). Min
imizing mean squared deviation of completion times about a common 
due date. Management Science, 33(7):894-906. 

[Baglin et al., 2001] Baglin, G., Bruel, O., Garreau, A., and Greif, M. (2001). Man
agement Industriel et Logistique. Economica. 

[Baker, 1974] Baker, K. R. (1974). Introduction to sequencing and scheduling. John 
Wiley & Sons, New-York. 

[Baker and Scudder, 1990] Baker, K. R. and Scudder, G. D. (1990). Sequencing 
with earliness and tardiness penalties: a review. Operations Research, 
38(l):22-36. 

[Bansal, 1980] Bansal, S. P. (1980). Single machine scheduling to minimize 
weighted sum of completion times with secondary criterion - a branch 
and bound approach. European Journal of Operational Research, 
5(3):177-181. 

[Baptiste et al., 2001] Baptiste, P., Bloch, C , and Varnier, C. (2001). Ordonnance-
ment des lignes de traitement de surface (in french). In F. Roubellat 
and P. Lopez (Eds.): Ordonnancement de la production, Traite IC2, 
Hermes (Paris), 259-289. 

[Barnes and Vanston, 1981] Barnes, J. W. and Vanston, L. K. (1981). Scheduling 
jobs with linear delay penalties and sequence dependent setup costs. 
Operations Research, 29(1): 146-160. 

[Bartal et al., 2000] Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., 
and Stougie, L. (2000). Multiprocessor scheduling with rejection. SI AM 
Journal on Discrete Mathematics, 13:64-78. 

[Bector et al., 1988] Bector, C , Gupta, Y., and Gupta, M. (1988). Determina
tion of an optimal common due date and optimal sequence in a sin-



References 337 

gle machine job shop. International Journal of Production Research, 
26(4):613-628. 

[Benayoun et al., 1971] Benayoun, R., de Mongolfier, J., Tergny, J., and Laritchev, 
O. (1971). Linear programming with multiple objective functions: step 
method (STEM). Mathematical Programming, l(3):366-375. 

[Bentley and Wakefield, 1996] Bentley, R J. and Wakefield, J. P. (1996). An analy
sis of multiobjective optimization within genetic algorithms. Technical 
Report ENGPJB96, University of Huddersfield, Huddersfield, England. 

[Berge and Gouila-Houri, 1965] Berge, C. and Gouila-Houri, A. (1965). Program
ming, Games and Transportation Networks, vol. 1. Wiley, New York. 

[Bertel and Billaut, 2004] Bertel, S. and Billaut, J.-C. (2004). A genetic algorithm 
for an industrial multiprocessor flow shop scheduling problem with re
circulation. European Journal of Operational Research, 159:651-662. 

[Billaut et al., 2005] Billaut, J . -C, Moukrim, A., and Sanlaville, E., editors (2005). 
Flexibilite et robustesse en ordonnancement (in french). Hermes, Paris. 

[Billaut and Roubellat, 1996] Billaut, J.-C. and Roubellat, F. (1996). A new 
method for workshop real time scheduling. International Journal of 
Production Research, 34(6): 1555-1579. 

[Billaut et al., 1998] Billaut, J . -C, T'kindt, V., Richard, P., and Proust, C (1998). 
Three exact methods and an efficient heuristic for solving a bicrite-
ria flowshop scheduling problem. In Multiconference on Computational 
Engineering in Systems Applications (CESA^98), IMACS/IEEE, pages 
371-377, Nabeul-Hammamet, Tunisia. 

[Blazewicz et al., 1986] Blazewicz, J., Cellary, W., Slowinsky, R., and Weglarz, J. 
(1986). Scheduling under resource constraints: deterministic models. 
Baltzer Science Publishers. 

[Blazewicz et al., 1996] Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, C , and 
Weglarz, J. (1996). Scheduling Computer and Manufacturing Processes. 
Springer, Berlin. 

[Boldur, 1982] Boldur, G. (1982). L'analyse multicritere en perspective d'une 
theorie generale de la gestion des entreprises modernes (in french). 
R.A.I.R.O. Recherche Operationnelle/ Operations Research, 16(1):1-
19. 

[Bonney and Gundry, 1976] Bonney, M. C and Gundry, S. W. (1976). Solutions 
to the constrained flow-shop sequencing problem. Operations Research 
Quarterly, 27:869-883. 

[Bourgade et al., 1995] Bourgade, V., Aguilera, L. M., Penz, B., and Binder, Z. 
(1995). Probleme industriel d'ordonnancement bicritere sur machine 
unique : modelisation et aide ä la decision (in french). R.A.I.R.O.-
APII, 29(3):331-341. 

[Bowman, 1976] Bowman, V. J. (1976). On the relationship of the Tchebycheff 
norm and the efficient frontier of multiple-criteria objectives, pages 76-
85. In [Thiriez and Zionts, 1976]. 

[Brah and Hunsucker, 1991] Brah, S. A. and Hunsucker, J. L. (1991). Branch and 
bound algorithm for the flow shop with multiple processors. European 
Journal of Operational Research, 51:88-99. 

[Briand et al., 2005] Briand, C , La, H. T., and Erschler, J. (2005). A new suf
ficient condition of optimality for the two-machine flowshop problem. 
European Journal of Operational Research, 169(3):712-722. 

[Brightwell and Winkler, 1991] Brightwell, G. and Winkler, P. (1991). Counting 
linear extensions. Order, 8:225-242. 

[Brucker, 2004] Brucker, P. (2004). Scheduling Algorithms. Springer, Berlin. 



338 References 

[Brucker et al., 1999] Brucker, P., Drexl, A., Mohring, R., Neumann, K., and Pesch, 
E. (1999). Resource-constrainted project scheduling: Notation, classifi
cation, models and methods. European Journal of Operational Research, 
112:3-41. 

[Burns, 1976] Burns, R. N. (1976). ScheduUng to minimize the weighted sum of 
completion times with secondary criteria. Naval Research Logistics 
Quarterly, 23(1):125-129. 

[Campbell et al., 1970] Campbell, H. C , Dudek, R. A., and Smith, M. L. (1970). 
A heuristic algorithm for the n-job, m-machine sequencing problem. 
Management Science, 16:630-637. 

[Carlier, 1982] Carlier, J. (1982). The one machine sequencing problem. European 
Journal of Operational Research, 11:42-47. 

[Carlier and Chretienne, 1988] Carlier, J. and Chretienne, P. (1988). Problemes 
d'ordonnancement: modelisation /complexite / algorithmes (infrench). 
Masson, Paris. 

[Carlier and Latapie, 1991] Carlier, J. and Latapie, B. (1991). Une methode 
arborescente pour resoudre les problemes cumulatifs (in french). 
R.A.I.R.O. - Recherche Operationnelle / Operations Research, 
25(3) :311-340. 

[Chand and Schneeberger, 1984] Chand, S. and Schneeberger, H. (1984). Single 
machine scheduling to minimize weighted completion time with max
imum allowable tardiness. Technical report. University of Purdue, 
U.S.A. 

[Chand and Schneeberger, 1986] Chand, S. and Schneeberger, H. (1986). A note on 
the single machine scheduling problem with minimum weighted comple
tion time and maximum allowable tardiness. Naval Research Logistics 
Quarterly, 33(3):551-557. 

[Chand and Schneeberger, 1988] Chand, S. and Schneeberger, H. (1988). Single 
machine scheduling to minimize weighted earliness subject to no tardy 
jobs. European Journal of Operational Research, 34(2):221-230. 

[Chang et al., 2000] Chang, Y., Yeh, C , and Shen, C. (2000). A multiobjective 
model for passenger train services planning: application to taiwan's 
high-speed rail line. Transportation Research Part B: Policy and Prac
tice, 34:91-106. 

[Charnes and Cooper, 1961] Charnes, A. and Cooper, W. W. (1961). Management 
Models and Industrial Applications of Linear Programming. John Wiley 
& Sons, vols. I and II, New York. 

[Charnes et al., 1955] Charnes, A., Cooper, W. W., and Ferguson, R. O. (1955). 
Optimal estimation of executive compensation by linear programming. 
Management Science, 1(2): 138-151. 

[Chen and Bulfin, 1990] Chen, C.-L. and Bulfin, R. L. (1990). Scheduling unit 
processing time jobs on a single machine with multiple criteria. Com
puters and Operations Research, 17(1): 1-7. 

[Chen and Bulfin, 1993] Chen, C.-L. and Bulfin, R. L. (1993). Complexity of sin
gle machine, multi-criteria scheduling problems. European Journal of 
Operational Research, 70:115-125. 

[Chen and Bulfin, 1994] Chen, C.-L. and Bulfin, R. L. (1994). Complexity of mul
tiple machines, multi-criteria scheduling problems. In 3rd Industrial 
Engineering Research Conference (lERC 94), pages 662-665, Atlanta, 
U.S.A. 

[Chen, 1996] Chen, Z.-L. (1996). Scheduling and common due date assignment with 
earliness and tardiness penalties and batch delivery costs. European 
Journal of Operational Research, 93:49-60. 



References 339 

[Chen et al., 1997] Chen, Z.-L., Lu, W., and Tang, G. (1997). Single machine 
scheduhng with discretely controllable processing times. Operations 
Research Letters, 21:69-76. 

[Cheng, 1989] Cheng, T. C. E. (1989). A heuristic for common due-date assignment 
and job scheduling on parallel machines. Journal of the Operational 
Research Society, 40:1129-1135. 

[Cheng and Chen, 1994] Cheng, T. C. E. and Chen, Z.-L. (1994). Parallel-machine 
scheduling problems with earliness and tardiness penalties. Journal of 
the Operational Research Society, 45(6):685-695. 

[Cheng and Kahlbacher, 1992] Cheng, T. C. E. and Kahlbacher, H. G. (1992). The 
parallel-machine common due-date assignment and scheduling problem 
is NP-hard. Asia-Pacific Journal of Operational Research, 9:235-238. 

[Cheng and Shakhlevich, 1999] Cheng, T. C. E. and Shakhlevich, N. (1999). Pro
portionate flow shop with controllable processing times. Journal of 
Scheduling, 2:253-265. 

[Chou and Lee, 1999] Chou, F. D. and Lee, C. Y. (1999). Two-machine flowshop 
scheduling with bicriteria problem. Computers and Industrial Engineer
ing, 36(3):549-564. 

[Chretienne and Sourd, 2003] Chretienne, P. and Sourd, F. (2003). PERT schedul
ing with convex cost functions. Theoretical Computer Science, 292:145-
164. 

[Chu, 1992] Chu, C. (1992). A branch-and-bound algorithm to minimize total flow 
time with unequal release dates. Naval Research Logistics, 39:859-875. 

[Climaco, 1997] Climaco, J., editor (1997). Multicriteria Analysis. Springer-Verlag, 
Berlin. 

[Climaco et al., 1997] Climaco, J., Ferreira, C , and Captivo, E. (1997). Multicri
teria Integer Programming: an Overview of the Different Algorithmic 
Approaches, pages 248-258. In [Climaco, 1997]. 

[Cochand et al., 1989] Cochand, M., de Werra, D., and Slowinski, R. (1989). Pre
emptive scheduling with staircase and piecewise linear resource avail
ability. Zeitschrift fur Operations Research, 33:297-313. 

[Coello Coello, 1999] Coello Coello, C. A. (1999). A comprehensive survey of 
evolutionary-based multiobjective optimization techniques. Knowledge 
and Information Syst. An International Journal, l(3):269-308. 

[Connolly, 1990] Connolly, D. T. (1990). An improved annealing scheme for the 
QAP. European Journal of Operational Research, 46:93-100. 

[Conway et al., 1967] Conway, R. W., MaxweU, W. L., and Miller, L. W. (1967). 
Theory of scheduling. Addison- Wesley. 

[Cook, 1971] Cook, S. A. (1971). The complexity of theorem-proving procedures. 
In Third Annual ACM Symposium on Theory of Computing, pages 151-
158, ACM-press, New York. 

[Cowling, 2003] Cowling, P. (2003). A flexible decision support system for steel hot 
rolling mill scheduling. Computers & Industrial Engineering, 45:307-
321. 

[Cvetkovic and Parmee, 1998] Cvetkovic, D. and Parmee, I. (1998). Evolutionary 
design and multi-objective optimisation. In 6th European Congress on 
Intelligent Techniques and Soft Computing (EUFIT^98), pages 397-401, 
Aachen, Germany. 

[Czyzak and Jaszkiewicz, 1997] Czyzak, P. and Jaszkiewicz, A. (1997). Pareto Sim
ulated Annealing, pages 297-307. In [Pandel and Gal, 1997]. 

[Daniels and Chambers, 1990] Daniels, R. L. and Chambers, R. J. (1990). Multi-
objective flow-shop scheduling. Naval Research Logistics, 37:981-995. 



340 References 

[Davenport and Beck, 2000] Davenport, A. J. and Beck, J. C. (2000). A survey 
of techniques for scheduling with uncertainty, unpublished (available 
on web at http: //www. mie. utoronto. ca/staff/pro files/beck/ 
publications, html). 

[Davis and Kanet, 1993] Davis, J. S. and Kanet, J. J. (1993). Single machine 
scheduling with early and tardy completion costs. Naval Research Lo
gistics, 40:85-101. 

[De et al., 1991] De, P., Ghosh, J. B., and Wells, C. E. (1991). Scheduling to 
minimize weighted earliness and tardiness about a common due date. 
Computers and Operations Research, 18(5):465-475. 

[Deckro et al., 1982] Deckro, R. F., Herbert, J. E., and Winkofsky, E. P. (1982). 
Multiple criteria job-shop scheduling. Computers and Operations Re
search, 9(4):279-285. 

[Delia Croce et al., 1996] Delia Croce, P., Narayan, V., and Tadei, R. (1996). The 
two-machine total completion time flow shop problem. European Jour
nal of Operational Research, 90:227-237. 

[Delia Croce and T'kindt, 2002] Delia Croce, F. and T'kindt, V. (2002). A recov
ering beam search algorithm for the one-machine dynamic total com
pletion time scheduling problem. Journal of the Operational Research 
Society, 53(11):1275-1280. 

[Delia Croce and T'kindt, 2003] Delia Croce, P. and T'kindt, V. (2003). Improving 
the preemptive bound for the one-machine dynamic total completion 
time scheduling problem. Operations Research Letters, 31:142-148. 

[Demeulemeester and Herroelen, 2002] Demeulemeester, E. and Herroelen, W. 
(2002). Project scheduling - A Research Handbook, Vol.49 of Interna
tional Series in Operations Research and Management Science. Kluwer 
Academic Publishers, Boston. 

[Dileepan and Sen, 1988] Dileepan, P. and Sen, T. (1988). Bicriterion static 
scheduling research for a single machine. Omega, 16(l):53-59. 

[Dileepan and Sen, 1991] Dileepan, P. and Sen, T. (1991). Bicriterion jobshop 
scheduling with total flowtime and sum of squared lateness. Engineering 
Costs and Production Economic, 21:295-299. 

[Dorigo et al., 1999] Dorigo, M., Di Caro, C , and Gambardella, L. (1999). Ant 
algorithms for discrete optimization. Artificial Life, 5(3): 137-172. 

[Drozdowski et al., 2000] Drozdowski, M., Blazewicz, J., and Formanowicz, P. 
(2000). Scheduling preemptable tasks on uniform processors with lim
ited availability for maximum lateness criterion. In 7th International 
Workshop on Project Management and Scheduling (PMS 2000), pages 
118-120, Osnabrück, Germany. 

[Dyer et al., 1992] Dyer, J. S., Fishburn, F. C , Steuer, R. E., and Wallenius, J. 
(1992). Multiple criteria decision making, multiattribute utility theory: 
the next ten years. Management Science, 38(5):645-654. 

[Ehrgott, 1997] Ehrgott, M. (1997). Multiple Criteria Optimization: Classification 
and Methodology. PhD thesis. University of Kaiserslautern, Germany. 

[Ehrgott, 2000a] Ehrgott, M. (2000a). Approximation algorithms for combinator
ial multicriteria optimization problems. International Transactions in 
Operations Research, 7:5-31. 

[Ehrgott, 2000b] Ehrgott, M. (2000b). Multicriteria Optimization. Lecture Notes 
in Economics and Mathematical Systems, Springer-Verlag. 

[Ehrgott and Gandibleux, 2000] Ehrgott, M. and Gandibleux, X. (2000). A survey 
and annotated bibliography of multiobjective combinatorial optimiza
tion. OR Spektrum, 22:425-460. 



References 341 

[Eilon and Chowdhury, 1977] Eilon, S. and Chowdhury, I. E, (1977). Minimizing 
waiting time variance in the single machine problem. Management Sci
ence, 23:567-675. 

[Emmons, 1975a] Emmons, H. (1975a). A note on a scheduling problem with dual 
criteria. Naval Research Logistics Quarterly, 22(4):615-616. 

[Emmons, 1975b] Emmons, H. (1975b). One machine sequencing to minimize mean 
flow time with minimum number tardy. Naval Research Logistics Quar
terly, 22(4):585-592. 

[Emmons, 1987] Emmons, H. (1987). Scheduling to a common due date on parallel 
uniform processors. Naval Research Logistics, 34:803-810. 

[Erschler et al., 1983] Erschler, J., Fontan, G., Merce, C , and Roubellat, F. (1983). 
A new dominance concept in scheduling n jobs on a single machine with 
ready times and due dates. Operations research, 31(1): 114-127. 

[Erschler and Roubellat, 1989] Erschler, J. and Roubellat, F. (1989). An Approach 
for real time scheduling for activities with time and resource constraints. 
In [Slowinski and Weglarz, 1989]. 

[Esswein et al., 2005] Esswein, C , Billaut, J . -C, and Strusevich, V. A. (2005). 
Two-machine shop scheduling: compromise between flexibility and 
makespan value. European Journal of Operational Research, 167:796-
809. 

[Esswein et al., 2001] Esswein, C , T'kindt, V., and Billaut, J.-C. (2001). A poly
nomial time algorithm for solving a single machine bicriteria scheduling 
problem. Technical report, Laboratory of Computer Science, University 
of Tours (France). 

[Esteve et al., 2004] Esteve, B., Aubijoux, C , Chartier, A., and T'kindt, V. (2004). 
A recovering beam search algorithm for the single machine just-in-time 
scheduling problem. European Journal of Operational Research, 39:27. 

[Evans, 1984] Evans, G. W. (1984). An overview of techniques for solving multi-
objective mathematical programs. Management Science, 30(11):1268-
1282. 

[Fandel and Gal, 1997] Fandel, G. and Gal, T. (1997). Multiple Criteria Deci
sion Making. Lecture Notes in Economics and Mathematical Systems, 
Springer-Verlag, Berlin. 

[Fargier and Lamothe, 2001] Fargier, H. and Lamothe, J. (2001). Handling soft 
constraints in hoist scheduling problems: the fuzzy approach. Engi
neering Application of Artificial Intelligence, 14:387-399. 

[Faure, 1979] Faure, R. (1979). Precis de Recherche Operationnelle (in french). 
Dunod, Paris. 

[Fischer and Thompson, 1963] Fischer, H. and Thompson, L. (1963). Probabilistic 
learning Combinations of local job-shop scheduling rules. Prentice Hall, 
Englewood Cliffs, New Jersey. 

[Fisher, 1976] Fisher, M. L. (1976). A dual algorithm for the one-machine schedul
ing problem. Mathematical Programming, 11:458-481. 

[Fortemps et al., 1996] Fortemps, P., Ost, C , Pirlot, M., Teghem, J., and Tuyttens, 
D. (1996). Using metaheuristics for solving a production scheduling 
problem in a chemical firm: a case study. International Journal of 
Production Economics, 46-47:13-26. 

[Francis and White, 1974] Francis, R. L. and White, J. A. (1974). Facility Layout 
and Location: An Analytical Approach. Prentice-Hall. 

[Fry et al., 1987a] Fry, T. D., Armstrong, R. D., and Blackstone, R. H. (1987a). 
Minimizing weighted absolute deviation in single machine scheduling. 
HE Transactions, 19(4):445-450. 



342 References 

[Pry et al., 1996] Pry, T. D., Armstrong, R. D., Darby-Dowman, K., and Philipoom, 
P. R. (1996). A branch and bound procedure to minimize mean absolute 
lateness on a single processor. Computers and Operations Research, 
23(2):171-182. 

[Pry et al., 1989] Pry, T. D., Armstrong, R. D., and Lewis, H. (1989). A frame
work for single machine multiple objective sequencing research. Omega, 
17(6):595-607. 

[Pry and Blackstone, 1988] Pry, T. D. and Blackstone, R. H. (1988). Planning for 
idle time: a rationale for underutilization of capacity. International 
Journal of Production Research, 26(12):1853-1859. 

[Pry and Leong, 1986] Pry, T. D. and Leong, G. K. (1986). Bi-criterion single-
machine scheduling with forbidden early shipments. Engineering Costs 
and Production Science, 10(2): 133-137. 

[Pry and Leong, 1987] Pry, T. D. and Leong, G. K. (1987). A bi-criterion approach 
to minimizing inventory costs on a single machine when early shipments 
are forbidden. Computers and Operations Research, 14(5):363-368. 

[Pry et al., 1987b] Pry, T. D., Leong, G. K., and Rakes, T. R. (1987b). Single 
machine scheduling: a comparison of two solution procedures. Omega, 
15(4):277-282. 

[Pukuda, 1996] Pukuda, K. (1996). Note on new complexity clases SJ\fV, 
SV and CSV - an extension of the classes MV, co — J\fV and V. 
http://www.ifor.math.ethz.ch/stafF/fukuda/ENP_home/ENP_note.html. 

[Pukuda et al., 1997] Pukuda, K., Liebling, T., and Margot, P. (1997). Analysis 
of backtrack algorithms for listing all vertices and all faces of a convex 
polyhedron. Computational Geometry, 8:1-12. 

[Gabrel and Vanderpooten, 2002] Gabrel, V. and Vanderpooten, D. (2002). Enu
meration and interactive selection of efficient paths in a multiple criteria 
graph for scheduling an earth observing satellite. European Journal of 
Operational Research, 139:533-542. 

[Gandibleux and Preville, 1998] Gandibleux, X. and Preville, A. (1998). Potential 
efficient solutions generated by MOTS procedure on the 0/1 bi-objective 
knapsack problem compared with exact solutions. In Multiconference on 
Computational Engineering in Systems Applications (CESA ^98), lEEE-
SMC/IMACS, pages 291-300, Hammamet, Tunisia. 

[Gandibleux et al., 1997] Gandibleux, X., Mezdaoui, N., and Preville, A. (1997). 
A Tabu Search Procedure to Solve MultiObjective Combinatorial Opti
mization Problems, pages 291-300. Lecture Notes in Economics and 
Mathematical Systems, Springer-Verlag, Berlin. 

[Gangadharan and Rajendran, 1994] Gangadharan, R. and Rajendran, C. (1994). 
A simulated annealing heuristic for scheduling in a flowshop with bicri-
teria. Computers and Industrial Engineering, 27(1-4) :473-476. 

[Gardiner and Vanderpooten, 1997] Gardiner, L. R. and Vanderpooten, D. (1997). 
Interactive Multiple Criteria Procedures: Some Reflections, pages 290-
301. In [Climaco, 1997]. 

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers 
and intractability: a guide to the theory of AfV-Completeness. W.H. 
Preeman and Company. 

[Garey et al., 1988] Garey, M. R., Tarjan, R. E., and Wilfong, G. T. (1988). One-
processor scheduling with symmetric earliness and tardiness penalties. 
Mathematics of Operations Research, 13(2):330-348. 

[Gembicki, 1973] Gembicki, P. (1973). Vector Optimization for Control with Per
formance and Parameter Sensitivity Indices. PhD thesis. Case Western 
Reserve University, Cleveland, U.S.A. 



References 343 

[Geoffrion, 1968] GeofFrion, A. M. (1968). Proper efficiency and the theory of vec
tor maximization. Journal of Mathematical Analysis and Applications, 
22:618-630. 

[Geoffrion et al., 1972] Geoffrion, A. M., Dyer, J., and Feinberg, A. (1972). An 
interactive approach for multi-criterion optimization, with an appHca-
tion to the operation of an academic department. Management Science, 
19(4):357-368. 

[Giard, 1988] Giard, V. (1988). Gestion de la production (in french). Economica, 
Paris, 2nd edition. 

[Goldratt, 1997] Goldratt, E. (1997). The Critical chain. The North River Press 
PubUshing Corporation, Great Barrington. 

[Goldratt and Cox, 1984] Goldratt, E. M. and Cox, J. (1984). The goal. North 
River Press. 

[Gonzalez and Sahni, 1976] Gonzalez, S. and Sahni, T. (1976). Open shop schedul
ing to minimize finish time. Journal of the Association of Computation 
Machinery, 23:665-679. 

[Gordon et al., 2002a] Gordon, V., Proth, J.-M., and Chu, C. (2002a). Due date 
assignment and scheduling: SLK, TWK and other due date assignement 
models. Production Planning and Control, 13(2): 157-177. 

[Gordon et al., 2002b] Gordon, V., Proth, J.-M., and Chu, C. (2002b). A survey 
of the state-of-the-art of common due date assignment and scheduling 
research. European Journal of Operational Research, 139(1): 1-25. 

[Gordon et al., 2004] Gordon, V., Proth, J.-M., and Strusevich, V. (2004). Schedul
ing with due-date assignment. In [Leung, 2004], chapter 21. 

[Gotha, 1993] Gotha (1993). Les problemes d'ordonnancement (in french). 
R.A.I.R.O Recherche Operationnelle / Operations Research, 27(1):77-
150. 

[Graham et al., 1979] Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rin-
nooy Kan, A. H. G. (1979). Optimization and approximation in de
terministic sequencing and scheduling: a survey. Annals of Discrete 
Mathematics, 5:287-326. 

[Guitouni and Martel, 1997] Guitouni, A. and Martel, J.-M. (1997). Tentative 
guidelines to help choosing an appropriate MCDA method. European 
Journal of Operational Research, 109(2) :501-521. 

[Gupta et al., 1999a] Gupta, J., Hariri, A., and Potts, C. (1999a). Single-machine 
scheduling to minimize maximum tardiness with minimum number of 
tardy jobs. Annals of Operations Research, 92:107-123. 

[Gupta and Ramnarayanan, 1996] Gupta, J. and Ramnarayanan, R. (1996). Single 
facility scheduling with dual criteria: Minimizing maximum tardiness 
subjectto minimum number of tardy jobs. Production Planning and 
Control, 7:190-196. 

[Gupta, 1972] Gupta, J. N. D. (1972). Optimal scheduling in a multistage flowshop. 
AIIE Transactions, 4:238-243. 

[Gupta et al., 2002] Gupta, J. N. D., Hennig, K., and Werner, F. (2002). Local 
search heuristic for the two-stage flowshop problems with secondary 
criterion. Computers and Operations Research, 29(2): 113-149. 

[Gupta et al., 1997] Gupta, J. N. D., Ho, J. C , and VanderVeen, A. A. A. (1997). 
Single machine hierarchical scheduling with customer orders and mul
tiple job classes. Annals of Operations Research, 70:127-143. 

[Gupta et al., 2001] Gupta, J. N. D., NeppalU, V. R., and Werner, F. (2001). 
Minimizing total flow time in a two-machine flowshop problem with 
minimum makespan. International Journal of Production Economics, 
69(3):323-338. 



344 References 

[Gupta et al., 1999b] Gupta, J. N. D., Palanimuthu, N., and Chen, C.-L. (1999b). 
Designing a tabu search algorithm for the two-stage flowshop problem 
with secondary criterion. Production Planning and Control, 10(3):251-
265. 

[Gupta and Werner, 1999] Gupta, J. N. D. and Werner, F. (1999). On the solution 
of 2-machine flow and open shop scheduling problems with secondary 
criteria. In 15th ISPE/IEE International Conference on CAD/CAM, 
Robotics, and Factories of the Future, Aguas de Lindoia, Sao Paulo, 
Brasil. 

[Gupta and Sen, 1983] Gupta, S. K. and Sen, T. (1983). Minimizing a quadratic 
function of job lateness on a single machine. Engineering costs of Pro
duction Economic, 7(3): 187-194. 

[Gupta and Sen, 1984] Gupta, S. K. and Sen, T. (1984). Minimizing the range of 
lateness on a single machine. Journal of Operational Research Society, 
35:853-857. 

[Haimes et al., 1971] Haimes, Y., Ladson, L., and Wismer, D. (1971). On a bicri-
terion formulation of the problems of integrated system identification 
and system optimization. IEEE Transactions on Systems, Man and 
Cybernetics, 1:296-297. 

[Haimes et al., 1975] Haimes, Y. Y., Hall, W. A., and Preedman, H. T. (1975). Mul-
tiobjective Optimization in Water Resource Systems. Elsevier Scientific 
Publishing, Amsterdam. 

[Hall, 1986] Hall, N. G. (1986). Single-and multiple-processor models for mini
mizing completion time variance. Naval Research Logistics Quarterly, 
33:49-54. 

[Hall and Posner, 1991] Hall, N. G. and Posner, M. E. (1991). Earliness-tardiness 
scheduling problems, I: Weighted deviation of completion times about 
a common due date. Operations Research, 39:836-846. 

[Haouari and Fawzan, 2002] Haouari, M. and Fawzan, M. A. (2002). A bi-objective 
model for maximizing the quality in project scheduling. Technical Re
port 2002-14, DIMACS. 

[Hapke et al., 1998] Hapke, M., Jaszkiewicz, A., and Slowinski, R. (1998). Interac
tive analysis of multiple-criteria project scheduling problems. European 
Journal of Operational Research, 107:315-324. 

[Heck and Roberts, 1972] Heck, H. and Roberts, S. (1972). A note on the exten
sion of a result on scheduling with secondary criteria. Naval Research 
Logistics Quarterly, 19:59-66. 

[Herroelen et al., 1998a] Herroelen, W., De Reyck, B., and Demeulemeester, E. 
(1998a). Resource-constrained project scheduling: a survey. Computers 
and Operations Research, 25(4):279-302. 

[Herroelen et al., 1998b] Herroelen, W., Demeulemeester, E., and De Reyck, B. 
(1998b). A classification scheme for project scheduling. Kluwer Acad
emic, Dordrecht, Germany. 

[Herroelen et al., 2001] Herroelen, W., Demeulemeester, E., and De Reyck, B. 
(2001). A note on the paper "resource-constrainted project schedul
ing: notation, classification, models and methods" by brucker et al. 
European Journal of Operational Research, 128:679-688. 

[Herroelen and Leus, 2004] Herroelen, W. and Leus, R. (2004). Robust and reactive 
project scheduling: a review and classification of procedures. Interna
tional Journal of Production Research, 42(8): 1599-1620. 

[Herroelen and Leus, 2005] Herroelen, W. and Leus, R. (2005). Project scheduling 
under uncertainty: survey and research potentials. European Journal of 
Operational Research, 165(2):289-306. 



References 345 

[Ho and Chang, 1991] Ho, J. C. and Chang, Y.-L. (1991). A new heuristic for the 
n-job, 7n-machine flowshop problem. European Journal of Operational 
Research, 52:194-202. 

[Ho and Chang, 1995] Ho, J. C. and Chang, Y.-L. (1995). Minimizing the number 
of tardy jobs for m parallel machines. European Journal of Operational 
Research, 84:343-355. 

[Hoogeveen, 2005] Hoogeveen, H. (2005). Multicriteria scheduling. European Jour
nal of Operational Research, 167:592-623. 

[Hoogeveen and van de Velde, 2001] Hoogeveen, H. and van de Velde, S. (2001). 
Scheduling with target start times. European Journal of Operational 
Research, 129:87-94. 

[Hoogeveen, 1992a] Hoogeveen, J. A. (1992a). Single-Machine Bicriteria Schedul
ing. PhD thesis, CWI, Amsterdam, The Netherlands. 

[Hoogeveen, 1992b] Hoogeveen, J. A. (1992b). Single machine scheduling to 
minimize a function of K maximum cost criteria, pages 67-77. In 
[Hoogeveen, 1992a]. 

[Hoogeveen, 1996] Hoogeveen, J. A. (1996). Minimizing maximum promptness and 
maximum lateness on a single machine. Mathematics of Operations 
Research, 21(1):100-114. 

[Hoogeveen and VandeVelde, 1995] Hoogeveen, J. A. and VandeVelde, S. L. (1995). 
Minimizing total completion time and maximum cost simultaneously is 
solvable in polynomial time. Operations Research Letters, 17:205-208. 

[Hopcroft and UUman, 1979] Hopcroft, J. E. and UUman, J. D. (1979). Introduc
tion to automata theory, languages and computation. Addison-Wesley. 

[Horn, 1974] Horn, W. A. (1974). Some simple scheduling algorithms. Naval Re
search Logistics Quarterly, 21:177-185. 

[Huckert et al., 1980] Huckert, K., Rhode, R., Roglin, O., and Weber, R. (1980). On 
the interactive solution to a multicriteria scheduling problem. Zeitchrift 
fur Operations Research, 24:47-60. 

[Icmeli-Tukel and Rom, 1997] Icmeli-Tukel, O. and Rom, W. O. (1997). Ensuring 
quality in resource constrained project scheduling. European Journal 
of Operational Research, 103(3) :483-496. 

[Ignall and Schräge, 1965] Ignall, E. and Schräge, L. (1965). Application of the 
branch-and-bound technique to some flowshop problems. Operations 
Research, 13:400-412. 

[Jacquet-Lagreze et al., 1987] Jacquet-Lagreze, E., Meziani, R., and Slowinski, R. 
(1987). MOLP with an interactive assessment of a piecewise utility 
function. European Journal of Operational Research, 31(3):350-357. 

[James and Buchanan, 1997] James, R. J. W. and Buchanan, J. T. (1997). A 
neighbourhood scheme with a compressed solution space for the 
early/tardy scheduling problem. European Journal of Operational Re
search, 102:513-527. 

[James and Buchanan, 1998] James, R. J. W. and Buchanan, J. T. (1998). Per
formance enhancements to tabu search for the early/tardy scheduling 
problem. European Journal of Operational Research, 106:254-265. 

[Jaszkiewicz and Slowinski, 1997] Jaszkiewicz, A. and Slowinski, R. (1997). 
Outranking-Driven Search Over a Nondominated Set, pages 340-349. 
In [Pandel and Gal, 1997]. 

[Jensen and Hansen, 1999] Jensen, M. T. and Hansen, T. K. (1999). Robust solu
tions to job shop problems. In Proceedings of the Congress of Evolu
tionary Computation, vol.2, pages 1138-1144, Washington, U.S.A. 



346 References 

[John, 1984] John, T. C. (1984). Tradeoff solutions in single machine production 
scheduling for minimizing flow time and maximum penalty. Computers 
and Operations Research^ 16(5):471-479. 

[Johnson et al., 1988] Johnson, D., Yannakakis, M., and Papadimitriou, C. (1988). 
On generating all maximal independent sets. Information Processing 
Letters, 27:119-123. 

[Johnson, 1954] Johnson, S. M. (1954). Optimal two and three stage production 
schedules with set-up time included. Naval Research Logistics Quar
terly, 1:61-68. 

[Jolai Ghazvini, 1998] Jolai Ghazvini, F. (1998). Ordonnancement sous contrainte 
de groupage (in french). PhD thesis, Leibniz-Imag/INPG, Grenoble, 
Prance. 

[Jozefowska et al., 1994] Jozefowska, J., Jurisch, B., and Kubiak, W. (1994). 
Scheduling shops to minimize the weighted number of late jobs. Oper
ations Research Letters, 10:27-33. 

[Kaliszewski, 2000] Kaliszewski, I. (2000). Using trade-off information in decision
making algorithms. Computers and Operations Research, 27:161-182. 

[Kaminsky and Hochbaum, 2004] Kaminsky, P. and Hochbaum, D. (2004). Due-
date quotation models and algorithms. In [Leung, 2004], chapter 20. 

[Kanet, 1981a] Kanet, J. J. (1981a). Minimizing the average deviation of job com
pletion times about a common due date. Naval Research Logistics Quar
terly, 28(4):643-651. 

[Kanet, 1981b] Kanet, J. J. (1981b). Minimizing variation of flow time in single 
machine systems. Management Science, 27(12) :1453-1459. 

[Karabati and Kouvelis, 1993] Karabati, S. and Kouvelis, P. (1993). The permu
tation flow shop problem with sum-of-completion times performance 
criterion. Naval Research Logistics, 40:843-862. 

[Kawata et al., 2003] Kawata, Y., Morikawa, K., Takahashi, K., and Nakamura, N. 
(2003). Robustness optimisation of the minimum makespan schedules 
in a job shop. Int. J. Manufacturing Technology and Management, 5(1-
2): 1-9. 

[Kim and Yano, 1994] Kim, Y.-D. and Yano, C. A. (1994). Minimizing mean tardi
ness and earliness in single-machine scheduling problems with unequal 
due dates. Naval Research Logistics, 41:913-933. 

[Kiran and Unal, 1991] Kiran, A. and Unal, A. (1991). A single-machine problem 
with multiple criteria. Naval Research Logistics, 38:721-727. 

[Klein and Hannan, 1982] Klein, D. and Hannan, E. (1982). An algorithm for the 
multiple objective integer linear programming problem. European Jour
nal of Operational Research, (9):378-385. 

[Kolisch and Padman, 2001] Kolisch, R. and Padman, R. (2001). An integrated 
survey of deterministic project scheduling. Omega, 29:249-272. 

[Kondakci et al., 1997] Kondakci, S. K., Emre, E., and Koksalan, M. (1997). 
Scheduling of Unit Processing Time Jobs on a Single Machine, pages 
654-660. In [Pandel and Gal, 1997]. 

[Korhonen and Laakso, 1986] Korhonen, P. and Laakso, J. (1986). A visual inter
active method for solving the multicriteria problem. European Journal 
of Operational Research, 24(2):277-287. 

[Koulamas, 1996] Koulamas, C. (1996). Single-machine scheduling with time win
dows and earliness/tardiness penalties. European Journal of Opera
tional Research, 91:190-202. 

[Kubiak, 1993] Kubiak, W. (1993). Completion time variance minimization on a 
single machine is difficult. Operations Research Letters, 14:49-59. 



References 347 

[Kyparisis and Koulamas, 2000] Kyparisis, G. J. and Koulamas, C. (2000). Open 
shop scheduling with makespan and total completion time criteria. 
Computers and Operations Research, 27:15-27. 

[La, 2005] La, H. T. (2005). Utilisation d'ordres partiels pour la caracterisation de 
solutions robustes en ordonnancement (in french). Phd thesis, LAAS-
CNRS, Toulouse. 

[Lakshminarayan et al., 1978] Lakshminarayan, S., Lakshmanan, R., Papineau, 
R. L., and Rochette, R. (1978). Optimal single-machine scheduling 
with earliness and tardiness penalties. Operations Research, 26(6): 1079-
1082. 

[Lawler, 1973] Lawler, E. L. (1973). Optimal sequencing of a single machine subject 
to precedence constraints. Management Science, 19:544-546. 

[Lawler and Labetoulle, 1978] Lawler, E. L. and Labetoulle, J. (1978). On preemp
tive scheduling of unrelated parallel processors by linear programming. 
Journal of the Association of Computation Machinery, 25(4):612-619. 

[Lawler et al., 1989] Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., and 
Shmoys, D. B. (1989). Sequencing and scheduling: algorithms and com
plexity. Technical Report NFI 11.89/03, Eindhoven University of Tech
nology, Eindhoven, The Netherlands. 

[Lawler et al., 1975] Lawler, E. L., Rinnooy Kan, A. H. G., and Lageweg, B. (1975). 
Minimizing total costs in one-machine scheduling. Operations Research, 
23:908-927. 

[Lawrence, 1984] Lawrence, S. (1984). Resource constrained project scheduHng: an 
experimental investigation of heuristic scheduling techniques (supple
ment). Technical Report (http://mscmga.ms.ic.ac.uk/info.html). Grad
uate School of Industrial Administration, Carnegie-Mellon University, 
Pittsburgh, Pennsylvania. 

[Lee et al., 1997] Lee, C. Y., Lei, L., and Pinedo, M. (1997). Current trends in 
deterministic scheduling. Annals of Operations Research, 70:1-41. 

[Lee and Vairaktarakis, 1996] Lee, C. Y. and Vairaktarakis, G. L. (1996). Complex
ity of single machine hierarchical scheduling: A survey, pages 269-298. 
World Scientific Publishing Co., Singapore. 

[Lenstra et al., 1977] Lenstra, J.-K., Rinnooy Kan, A., and Brucker, P. (1977). 
Complexity of machine scheduling problems. Annals of Discrete Math
ematics, 1:343-362. 

[Leon et al., 1994] Leon, V. J., Wu, S. D., and Storer, R. H. (1994). Robust
ness measures and robust scheduling for job shops. HE Transactions, 
26(5):32-43. 

[Leung, 2004] Leung, J.-T., editor (2004). Handbook of Scheduling: Algorithms, 
Models and Performance Analysis. Chapman Sz Hall/CRC Computer 
and Information Science serie. Volume 1. 

[Leung and Young, 1989] Leung, J. Y. T. and Young, G. H. (1989). Minimizing 
schedule length subject to minimum flow time. SIAM Journal on Com
puting, 18(2):314-326. 

[Levine and Pomerol, 1986] Levine, P. and Pomerol, J.-C. (1986). Priam, an in
teractive program for chosing among multiple attribute alternatives. 
European Journal of Operational Research, 25(2):272-280. 

[Li and Cheng, 1994] Li, C. L. and Cheng, T. C. E. (1994). The parallel machine 
min-max weighted absolute lateness scheduling problem. Naval Re
search Logistics, 41:33-46. 

[Li, 1997] Li, G. (1997). Single machine earliness and tardiness scheduling. Euro
pean Journal of Operational Research, 96:546-558. 



348 References 

[Liao and Huang, 1991] Liao, C. J. and Huang, R. H. (1991). An algorithm for 
minimizing the range of lateness on a single machine. Journal of the 
Operational Research Society, 42(2): 183-186. 

[Liao et al., 1997] Liao, C. J., Yu, W. C , and Joe, C. B. (1997). Bicriterion schedul
ing in the two-machine flowshop. Journal of the Operational Research 
Society, 48:929-935. 

[Liaw, 1999] Liaw, C. F. (1999). A branch-and-bound algorithm for the single 
machine earliness and tardiness scheduling problem. Computers and 
Operations Research, 26:679-693. 

[Lin, 1983] Lin, K. S. (1983). Hybrid algorithm for sequencing with bicriteria. 
Journal of Optimization Theory and Applications, 39(1):105-124. 

[Liu and MacCarthy, 1996] Liu, J. L. and MacCarthy, B. L. (1996). The classifica
tion of FMS scheduling problems. International Journal of Production 
Research, 34(3):647-656. 

[Lofti et al., 1992] Lofti, V., Stewart, T., and Zionts, S. (1992). An aspiration-level 
interactive model for multiple criteria decision making. Computers and 
Operations Research, 19(7):671-681. 

[Lofti and Zionts, 1990] Lofti, V. and Zionts, S. (1990). AIM, aspiration-level in
teractive method for multiple criteria decision making; user's guide. 
Technical report. University of New York, Buffalo, U.S.A. 

[Lucie and Teodorovic, 1999] Lucie, P. and Teodorovic, D. (1999). Simulated an
nealing for the multi-objective aircrew rostering problem. Transporta
tion Research Part A: Policy and Practice, 33(1): 19-45. 

[Mac Carthy and Liu, 1993] Mac Carthy, B. L. and Liu, J. L. (1993). Adressing 
the gap in scheduling research: a review of optimization and heuristic 
methods in production scheduling. International Journal of Production 
Research, 31(l):59-79. 

[Martello and Toth, 1990] Martello, S. and Toth, P. (1990). Knapsack Problems: 
Algorithm and Computer Implementations. John Wiley &; Sons, Chich
ester, England. 

[Mazzini and Armentano, 2001] Mazzini, R. and Armentano, V. A. (2001). A 
heuristic for single machine scheduling with early and tardy costs. Eu
ropean Journal of Operational Research, 128:129-146. 

[Mc Cormick and Pinedo, 1995] Mc Cormick, S. T. and Pinedo, M. L. (1995). 
Scheduling n independant jobs on m uniform machines with both flow-
time and makespan objectives: a parametric analysis. ORSA Journal 
on Computing, 7(l):63-77. 

[McKay et al., 1998] McKay, K. N., Safayeni, F. R., and Buzacott, J. A. (1998). 
Job-shop scheduling theory: what is relevant? Interfaces, 18(4):84-90. 

[McNaughton, 1959] McNaughton, R. (1959). Scheduling with deadlines and loss 
functions. Management Science, 6:1-12. 

[Merce, 1987] Merce, C. (1987). Coherence des decisions en planification 
hierarchisee (in french), PhD thesis. University Paul Sabatier, 
Toulouse, France. 

[Merten and MuUer, 1972] Merten, A. and MuUer, M. (1972). Variance minimiza
tion in single machine sequencing problems. Management Science, 
18(5): 18-28. 

[Miettinen, 1994] Miettinen, K. (1994). On the Methodology of Multiobjective Op
timization with Applications. PhD thesis. University of Jyvaskyla, De
partment of Mathematics, Jyvaskyla, Finland. 

[Miettinen, 1999] Miettinen, K. (1999). Comparative evaluation of some interactive 
reference point-based methods for multi-objective optimisation. Journal 
of the Operational Research Society, 50:949-959. 



References 349 

[Miyazaki, 1981] Miyazaki, S. (1981). One machine scheduling problem with dual 
criteria. Journal of the Operational Research Society of Japan, 24(1) :37-
50, 

[Mohri et al., 1999] Mohri, S., Masuda, T., and Ishii, H. (1999). Bi-criteria schedul
ing problem on three identical parallel machines. International Journal 
of Production Economics, 60-61:529-536. 

[Monden, 1998] Monden, Y. (1998). Toyota Production System. Engineering and 
Management Press, Norcross, GA. 

[Moore, 1968] Moore, J. M. (1968). An n job, one machine sequencing algorithm for 
minimizing the number of late jobs. Management Science, 15(1): 102-
109. 

[Morton and Pentico, 1993] Morton, T. and Pentico, D. (1993). Heuristic schedul
ing systems. John Wiley Interscience, New York. 

[Mustafa and Goh, 1996] Mustafa, A. and Goh, M. (1996). Multicriterion models 
for higher education administration. Omega, 24(2): 167-178. 

[Nagar et al., 1995a] Nagar, A., Haddock, J., and Heragu, S. S. (1995a). Multi
ple and bicriteria scheduling: a literature survey. European Journal of 
Operational Research, 81:88-104. 

[Nagar et al., 1995b] Nagar, A., Heragu, S. S., and Haddock, J. (1995b). A branch-
and-bound approach for a two-machine flowshop scheduling problem. 
Journal of the Operational Research Society, 46:721-734. 

[Nawaz et al., 1983] Nawaz, M., Enscore, E., and Ham, I. (1983). A heuristic al
gorithm for the 771-machine, n-job flow-shop sequencing problem. Man
agement Science, 11:91-95. 

[Nelson et al., 1986] Nelson, R. T., Sarin, R. K., and Daniels, R. L. (1986). Schedul
ing with multiple performance measures: the one-machine case. Man
agement Science, 32(4):464-479. 

[Neppain et al., 1996] Neppalh, V. R., Chen, C. L., and Gupta, J. N. D. (1996). 
Genetic algorithms for the two-stage bicriteria flowshop problem. Eu
ropean Journal of Operational Research, 95:356-373. 

[NoUet et al., 1994] NoUet, J., Kelada, J., and Diorio, M. (1994). La gestion des 
operations et de la production. Gatan Morin. 

[Nowicki, 1993] Nowicki, E. (1993). An approximation algorithm for the 7n-machine 
permutation flow shop scheduling problem with controllable processing 
times. European Journal of Operational Research, 70:342-349. 

[Nowicki and Zdrzalka, 1988] Nowicki, E. and Zdrzalka, S. (1988). Two-machine 
flow shop scheduling problem with controllable processing times. Eu
ropean Journal of Operational Research, 34:208-220. 

[Nowicki and Zdrzalka, 1990] Nowicki, E. and Zdrzalka, S. (1990). A survey of re
sults for sequencing problems with controllable processing times. Dis
crete Applied Mathematics, 26:271-287. 

[Ogbu and Smith, 1990] Ogbu, F. A. and Smith, D. K. (1990). The application 
of simulated annealing algorithm to the solutions of the n/m/Cmax 
flowshop problem. Computers and Operations Research, 17(3):243-253. 

[Ogryczak, 1994] Ogryczak, W. (1994). A goal programming model of the reference 
point method. Annals of Operation Research, 51:33-44. 

[Ogryczak, 1997] Ogryczak, W. (1997). Preemptive Reference Point Method, pages 
156-167. In [Climaco, 1997]. 

[Olson et al., 1997] Olson, D. L., Mechitov, A., and Morshkovich, H. (1997). Com
parison of MCDM paradigms. In International Conference on Meth
ods and Applications on Multicriteria Decision Making (MAMDM'97), 
pages 323-326, Fucam, Mons, Belgique. 



350 References 

[Oulamara, 2001] Oulamara, A. (2001). Flowshops avec deterioration des täches 
et groupement des täches (in french). PhD thesis, University Joseph 
Fournier of Grenoble (Prance). 

[Ow and Morton, 1988] Ow, P. S. and Morton, T. E. (1988). Filtered beam search 
in scheduling. International Journal of Production Research^ 26(1) :35-
62. 

[Ow and Morton, 1989] Ow, P. S. and Morton, T. E. (1989). The single machine 
early/tardy problem. Management Science, 35(2): 177-190. 

[Page, 1961] Page, E. S. (1961). An approach to scheduling jobs on machines. 
Journal of Royal Statistical Society, B-23:484-492. 

[Panwalker and Rajagopalan, 1982] Panwalker, S. S. and Rajagopalan, R. (1982). 
A single machine sequencing problem with controllable processing 
times. European Journal of Operational Research, 59:298-302. 

[Panwalker et al., 1982] Panwalker, S. S., Smith, M. L., and Seidmann, A. (1982). 
Common due date assignment to minimize total penalty for the one 
machine scheduling problem. Operations Research, 30(2):391-399. 

[Papadimitriou, 1995] Papadimitriou, C. H. (1995). Computational Complexity. 
Addison Wesley. 

[Pinedo, 1995] Pinedo, M. (1995). Scheduling - Theory, Algorithms, and Systems. 
Prentice Hall, Englewood Cliffs. 

[Pinedo and Chao, 1999] Pinedo, M. and Chao, X. (1999). Operations Scheduling 
with applications in manufacturing and services. Mc Graw Hill, Boston. 

[Policella, 2005a] Policella, N. (2005a). Scheduling with uncertainty. A proactive 
approach using partial order schedules. Phd thesis. University of Rome, 
La Sapienza, Italy. 

[Policella, 2005b] Policella, N. (2005b). Scheduling with uncertainty: a proactive 
approach using partial order schedules. AI Communications, 18:165-
167. 

[Policella et al., 2004] Policella, N., Oddi, A., Smith, S. F., and Cesta, A. (2004). 
Generating robust partial order schedules. In Lecture Notes in Com
puter Science (LNCS), 3258, pages 496-511. 

[Port mann et al., 1996] Port mann, M. C , Vignier, A., Dardilhac, D., and Deza-
lay, D. (1996). Some hybrid flowshop scheduling by crossing branch 
and bound and genetic algorithms. In 5th International Workshop on 
Project Management and Scheduling (PMS^96), EURO, pages 186-189, 
Poznan, Poland. 

[Portmann et al., 1998] Portmann, M. C , Vignier, A., Dardilhac, D., and Deza-
lay, D. (1998). Some hybrid flowshop scheduling by crossing branch 
and bound and genetic algorithms. European Journal of Operational 
Research, 107:389-400. 

[Potts and Kovalyov, 2000] Potts, C. and Kovalyov, M. (2000). Scheduling with 
batching: A review. European Journal of Operational Research, 
120(2) :228-249. 

[Proust, 1992] Proust, C. (1992). Using Johnson's algorithm for solving flowshop 
scheduling problems. In Summer school on scheduling theory and its 
applications, INRIA/C3/C0METT, pages 297-342, Bonas, France. In
vited talk. 

[Ragatz and Mabert, 1984] Ragatz, G. L. and Mabert, V. A. (1984). A frame
work for the study of due date management in job shops. International 
Journal of Production Research, 22(4):685-695. 

[Rajendran, 1992] Rajendran, C. (1992). Two-stage flowshop scheduling problem 
with bicriteria. Journal of the Operational Research Society, 43(9) :871-
884. 



References 351 

[Rajendran, 1994] Rajendran, C. (1994). A heuristic for scheduling in flowshop 
and flowUne-based manufacturing cell with multi-criteria. International 
Journal of Production Research^ 32(11) :2541-2558. 

[Rajendran, 1995] Rajendran, C. (1995). Heuristics for scheduling in flowshop with 
multiple objectives. European Journal of Operational Research, 82:540-
555. 

[Rajendran and Chaudhuri, 1991] Rajendran, C. and Chaudhuri, D. (1991). A 
flowshop scheduling algorithm to minimize total flowtime. Journal of 
the Operational Research Society of Japan, 34:28-46. 

[Riane et al., 1997] Riane, F., Meskens, N., and Artiba, A. (1997). Bicriteria 
scheduling hybrid flowshop problems. In International Conference on 
Industrial Engineering and Production Management (IEPM^97), Fu-
cam, pages 34-43, Lyon, France. 

[Rinnooy Kan, 1976] Rinnooy Kan, A. H. G. (1976). Machine Scheduling Problems: 
Classification, complexity and computations. PhD thesis, NihofF, La 
Hague, The Netherlands. 

[Roy, 1976] Roy, B. (1976). From optimization to multicriteria decision aid: three 
main operational attitudes. In [Thiriez and Zionts, 1976], pages 130-
132. 

[Roy, 1985] Roy, B. (1985). Methodologie multicritere d^aide ä la decision (in 
french). Economica, Paris. 

[Roy, 1990] Roy, B. (1990). Decision aid and decision making. European Journal 
of Operational Research, 45:324-331. 

[Roy and Bouyssou, 1993] Roy, B. and Bouyssou, D. (1993). Aide multicritere ä la 
decision: methodes et cas (in french). Economica, Paris. 

[Ruiz-Torres et al., 1997] Ruiz-Torres, A. J., Enscore, E. E., and Barton, R. R. 
(1997). Simulated annealing heuristics for the average flow-time and 
the number of tardy jobs bi-criteria identical parallel machine problem. 
Computers and Industrial Engineering, 33(1-2) :257-260. 

[Saaty, 1986] Saaty, T. L. (1986). Axiomatic foundation of the analytic hierarchy 
process. Management Science, 32(7):841-855. 

[Sahni, 1979] Sahni, S. (1979). Preemptive scheduling with due dates. Operations 
Research, 27:925-934. 

[Sanlaville, 1992] Sanlaville, E. (1992). Conception et analyse d^algorithmes de liste 
en ordonnancement preemptif (in french). PhD thesis. University of 
Paris VI, Paris, France. 

[Sarin and Hariharan, 2000] Sarin, S. C. and Hariharan, R. (2000). A two machine 
bicriteria scheduling problem. International Journal of Production Eco
nomics, 65:125-139. 

[Sayin and Karabati, 1999] Sayin, S. and Karabati, S. (1999). A bicriteria approach 
to the two-machine flow shop scheduling problem. European Journal of 
Operational Research, 113:435-449. 

[Schonberger, 1982] Schonberger, J. (1982). Japanese manufacturing techniques: 
Nine hidden lessons in simplicity. The Free Press (New York). 

[Schwartz, 1967] Schwartz, L. (1967). Cours d^Analyse (in french). Hermann. 
[Seidmann et al., 1981] Seidmann, A., Panwalker, S. S., and Smith, M. L. (1981). 

Optimal assignment of due-dates for a single processor scheduling prob
lem. International Journal of Production Research, 19(4):393-399. 

[Selen and Hott, 1986] Selen, W. J. and Hott, D. D. (1986). A mixed integer goal-
programming formulation of a flowshop scheduling problem. Journal of 
the Operational Research Society, 37:1121-1128. 



352 References 

[Sen et al., 1989] Sen, T., Dileepan, P., and Gupta, J. N. D. (1989). The two-
machine flowshop scheduUng problem with total tardiness. Computers 
and Operations Research, 16:333-340. 

[Sen and Gupta, 1983] Sen, T. and Gupta, S. K. (1983). A branch-and-bound pro
cedure to solve a bicriterion scheduling problem. HE Transactions, 
15(l):84-88. 

[Sen et al., 1988] Sen, T., Raiszadeh, F. M. E., and Dileepan, P. (1988). A branch-
and-bound approach to the bicriterion scheduling problem involving 
total flowtime and range of lateness. Management Science, 34(2) :255-
260. 

[Serafini, 1987] Serafini, P. (1987). Some considerations about computational com
plexity for multi objective combinatorial problems. Lecture Notes in 
Economics and Mathematical Systems, 294:222-232. 

[Serifoglu and Ulusoy, 1998] Serifoglu, F. S. and Ulusoy, G. (1998). A bicriteria 
two-machine permutation flowshop problem. European Journal of Op
erational Research, 107:414-430. 

[Sevaux and Sorensen, 2004] Sevaux, M. and Sorensen, K. (2004). A genetic algo
rithm for robust schedules in a one-machine environment with ready 
times and due dates. 40R, 2(2): 129-147. 

[Shantikumar, 1983] Shantikumar, J. G. (1983). Scheduling n jobs on one ma
chine to minimize the maxium tardiness with minimum number tardy. 
Computers and Operations Research, 10(3):255-266. 

[Sidney, 1977] Sidney, J. B. (1977). Optimal single-machine scheduling with earli-
ness and tardiness penalties. Operations Research, 25(l):62-69. 

[Simon, 1977] Simon, J. (1977). On the difference between the one and the many. 
Proceedings ICALP 1977, Lecture Notes in Computer Sciences, 52:480-
491. 

[Sivrikaya-Serifoglu and Ulusoy, 1998] Sivrikaya-Serifoglu, F. S. and Ulusoy, G. 
(1998). A bicriteria two machine permutation flowshop problem. Eu
ropean Journal of Operational Research, 107:414-430. 

[Slowinski and Weglarz, 1989] Slowinski, R. and Weglarz, J., editors (1989). Ad
vances in project scheduling. Elsevier, Amsterdam. 

[Smith, 1956] Smith, W. E. (1956). Various optimizers for single-stage production. 
Naval Research Logistics Quarterly, 3(l):59-66. 

[Soland, 1979] Soland, R. M. (1979). Multicriteria optimization: a general charac
terization of efficient solutions. Decision Sciences, 10:27-38. 

[Sourd, 2005] Sourd, F. (2005). Optimal timing of a sequence of tasks with general 
completion costs. European Journal of Operational Research, 165:82-96. 

[Steuer, 1977] Steuer, R. (1977). An interactive multiple objective linear program
ming procedure. TIMS Studies in the Management Science, 6:225-239. 

[Steuer, 1986] Steuer, R. (1986). Multiple criteria optimization: theory, computa
tion and application. John Wiley, New York, U.S.A. 

[Steuer and Choo, 1983] Steuer, R. and Choo, E. (1983). An interactive weighted 
Tchebycheff procedure for multiple objective programming. Mathemat
ical Programming, 26:326-344. 

[Steuer and Wood, 1986] Steuer, R. and Wood, E. F. (1986). A multiple objective 
Markov reservoir release policy model. Technical report. University of 
Georgia Athens, U.S.A. 

[Stuztle, 1998] Stuztle, T. (1998). An ant approach to the flow shop problem. 
Proceedings of EUFIT'98, Aachen (Germany), pages 1560-1564. 

[Sundararaghavan and Ahmed, 1984] Sundararaghavan, P. S. and Ahmed, M. U. 
(1984). Minimizing the sum of absolute lateness in single-machine 



References 353 

and multimachine scheduling. Naval Research Logistics Quarterly, 
31(2):325-333. 

[Szwarc, 1989] Szwarc, W. (1989). Single-machine scheduling to minimize absolute 
deviation of completion times from a common due date. Naval Research 
Logistics, 36:663-673. 

[Szwarc, 1993] Szwarc, W. (1993). Adjacent orderings in single machine scheduUng 
with earliness and tardiness penalties. Naval Research Logistics, 40:229-
243. 

[Szwarc and Mukhopadhyay, 1995] Szwarc, W. and Mukhopadhyay, S. K. (1995). 
Optimal timing schedules in earliness-tardiness single machine sequenc
ing. Naval Research Logistics, 42:1109-1114. 

[Tamiz et al., 1999] Tamiz, M., Mirrazavi, S. K., and Jones, D. F. (1999). Exten
sions of pareto efficiency analysis to integer goal programming. Omega, 
27:179-188. 

[Tanaev et al., 1994a] Tanaev, V., Gordon, V., and Shafransky, Y. (1994a). 
Scheduling Theory. Single-Stage Systems. The Netherlands, kluwer edi
tion. 

[Tanaev et al., 1994b] Tanaev, V. S., Sotskov, Y. N., and Strusevich, V. A. (1994b). 
Scheduling Theory. Multi-Stage Systems. Kluwer, The Netherlands. 

[Tavares, 2002] Tavares, L. (2002). A review of the contribution of operational 
research to project management. European Journal of Operational Re
search, 136:1-18. 

[Teghem, 1996] Teghem, J. (1996). Programmation lineaire (in french). collection 
SMA, Ellipses, University of Bruxelles, Belgique. 

[Tegze and Vlach, 1988] Tegze, M. and Vlach, M. (1988). Improved bounds for the 
range of lateness on a single machine. Journal of Operational Research 
Society, 39:675-680. 

[Thiriez and Zionts, 1976] Thiriez, H. and Zionts, S., editors (1976). Multiple Cri
teria Decision Making. Springer, Berlin. 

[T'kindt et al., 2001] T'kindt, V., Billaut, J . -C, and Proust, C. (2001). Solving a 
bicriteria scheduling problem on unrelated parallel machines occurring 
in the glass bottle industry. European Journal of Operational Research, 
135(1) :42-49. 

[T'kindt et a l , 2005] T'kindt, V., Bouibede-Hocine, K., and Esswein, C. (2005). 
Counting and enumeration complexity with application to multicriteria 
scheduling. 4VR, 3(1):1-21. 

[T'kindt et al., 2003] T'kindt, V., Gupta, J. N. D., and Billaut, J.-C. (2003). Two-
machine flowshop scheduling problem with a secondary criterion. Com
puters and Operations Research, 30(4): 505-526. 

[T'kindt et al., 2002] T'kindt, V., Monmarche, N., Tercinet, F., and Laugt, D. 
(2002). An ant colony optimization algorithm to solve a 2-machine bi
criteria flowshop scheduling problem. European Journal of Operational 
Research, 142(2) :250-257. 

[Tuyttens et al., 1999] Tuyttens, D., Teghem, J., Fortemps, P., and Van Nieuwen-
huyse, K. (1999). Performance of the MOS A method for the bicriteria 
assignment problem. Journal of Heuristics, pages 295-310. 

[Tuzikov et al., 1998] Tuzikov, A., Makhaniok, M., and Manner, R. (1998). Bicrite-
rion scheduling of identical processing time jobs by uniform processors. 
Computers and Operations Research, 25(l):31-35. 

[Ulungu and Teghem, 1994] Ulungu, E. L. and Teghem, J. (1994). Multi-objective 
combinatorial optimization problems: A survey. Journal of Multi-
Criteria Decision Analysis, 3:83-104. 



354 References 

[Ulungu and Teghem, 1995] Ulungu, E. L. and Teghem, J. (1995). The two phases 
method: an efficient procedure to solve bi-objective combinatorial opti
mization problems. Journal on Foundations of Computers and Decision 
Sciences, 20(2): 149-165. 

[Ulungu and Teghem, 1997] Ulungu, E. L. and Teghem, J. (1997). Solving Multi-
Objective Knapsack Problem by a Branch-and-Bound Procedure, pages 
269-278. In [Climaco, 1997]. 

[Ulungu et al., 1995] Ulungu, E. L., Teghem, J., and Fortemps, P. (1995). Heuris
tics for Multi-Objective Combinatorial Optimization Problem by Simu
lated Annealing, pages 229-238. SCIence-TECHnics, Windsor, England. 

[Ulungu et al., 1999] Ulungu, E. L., Teghem, J., Fortemps, P., and Tuyttens, D. 
(1999). Mosa method: A tool for solving multi-objective combinator
ial optimization problems. Journal of Multicriteria Decision Analysis, 
8:221-236. 

[Ulungu et al., 1998] Ulungu, E. L., Teghem, J., and Ost, C. (1998). Efficiency of 
interactive multi-objective simulated annealing through a case study. 
Journal of the Operational Research Society, 49:1044-1050. 

[Vadhan, 1995] Vadhan, S. (1995). The complexity of counting. Thesis of Bachelor 
of Arts, Harvard College, Cambridge (USA), page 58. 

[Valiant, 1979a] Valiant, L. (1979a). The complexity of computing the permanent. 
Theoretical Computer Science, 8:189-201. 

[Valiant, 1979b] Valiant, L. (1979b). The complexity of enumeration and reliability 
problems. SI AM Journal on Computing, 8(3):410-421. 

[Van de Vonder et al., 2005] Van de Vonder, S., Demeulemeester, E., Herroelen, 
W., and Leus, R. (2005). The trade-off between stability and makespan 
in resource-constrained project scheduling. International Journal of 
Production Research, to appear. 

[VandenAkker et al., 1998a] VandenAkker, M., Hoogeveen, H., and VandeVelde, 
S. (1998a). A combined column generation and lagrangian relaxation 
algorithm for common due date scheduling. In 6th Workshop on Project 
Management and Scheduling (PMS^98), EURO, Istanbul, Turkey. 

[VandenAkker et al., 1998b] VandenAkker, M., Hoogeveen, H., and VandeVelde, S. 
(1998b). Combining column generation and lagrangean relaxation : an 
application to a single-machine common due date scheduling problem. 
Technical report, Department of Mathematics and Computing Science, 
Eindhoven University of Technology, Eindhoven, The Netherlands. 

[Vanderpooten, 1988] Vanderpooten, D. (1988). A multicriteria interactive proce
dure supporting a directed learning of preferences. In EURO IX, TIMS 
XXVIII, Paris, France. 

[Vanderpooten, 1990] Vanderpooten, D. (1990). L'approche interactive dans Vaide 
multicritere ä la decision (in french). PhD thesis. University of Paris 
IX, Dauphine, Paris, France. 

[Vanderpooten, 1992] Vanderpooten, D. (1992). Three basic conceptions underlying 
multiple criteria interactive procedures, pages 441-448. Springer-Verlag. 

[VandeVelde, 1990] VandeVelde, S. L. (1990). Minimizing the sum of the job com
pletion times in the two-machine flow shop by lagrangian relaxation. 
Annals of Operations Research, 26:257-268. 

[VanWassenhove and Baker, 1982] VanWassenhove, L. and Baker, K. R. (1982). A 
bicriterion approach to time/cost trade-offs in sequencing. European 
Journal of Operational Research, l l(l):48-54. 

[VanWassenhove and Gelders, 1978] VanWassenhove, L. and Gelders, L. F. (1978). 
Four solution techniques for a general one machine scheduling prob-



References 355 

lern: a comparative study. European Journal of Operational Research, 
2(4):281-290. 

[VanWassenhove and Gelders, 1980] VanWassenhove, L. and Gelders, L. F. (1980). 
Solving a bicriterion scheduling problem. European Journal of Opera
tional Research, 4:42-48. 

[Vickson, 1980a] Vickson, R, G. (1980a). Choosing the job sequence and processing 
times to minimize total processing plus flow cost on a single machine. 
Operations Research, 28(5): 115-167. 

[Vickson, 1980b] Vickson, R. G. (1980b). Two single machine sequencing prob
lems involving controllable job processing times. HE Transactions, 
12(3):158-162. 

[Vignier, 1997] Vignier, A. (1997). Contribution ä la resolution des problemes 
d^ordonnancement de type monogamme, multimachine (Flow-shop hy
bride) (in french). PhD thesis, E3i, University of Tours, Tours, Prance. 

[Vignier et al., 1996] Vignier, A., Billaut, J.-C., and Proust, C. (1996). Solving 
/u-stage hybrid flowshop scheduling problems. In Multiconference on 
Computational Engineering in Systems Applications (CESA 96), lEEE-
SMC/IMACS, pages 250-258, Lille, Prance. 

[Vignier et al., 1999] Vignier, A., Billaut, J.-C., and Proust, C. (1999). Les 
flowshop hybrides : etat de I'art (in french). R.A.I.R.O. Recherche 
Operationnelle/ Operations Research, 33(2): 117-183. 

[Vincke, 1976] Vincke, P. (1976). Une methode interactive en programmation 
lineaire ä plusieurs fonctions economiques (in french). Revue Francaise 
dlnformatique et de Recherche Operationnelle, 2:5-20. 

[Vincke, 1989] Vincke, P. (1989). Aide multicritere ä la decision (in french). Col
lection SMA, Ellipse, Paris, Prance. 

[Visee et al., 1998] Visee, M., Teghem, J., Pirlot, M., and Ulungu, E. (1998). Two-
phases method and branch and bound procedures to solve the bi-
objective knapsack problem. Journal of Global Optimization, 12:139-
155. 

[Viswanathkumar and Srinivasan, 2003] Viswanathkumar, G. and Srinivasan, G. 
(2003). A branch and bound algorithm to minimize completion time 
variance on a single processor. Computers & Operations Research, 
30:1135-1150. 

[VonNeumann and Morgenstern, 1954] VonNeumann, J. L. and Morgenstern, O. 
(1954). Theory of games and economic behavior. Wiley. 

[Warburton, 1983] Warburton, A. (1983). Quasiconcave vector maximization : 
Connectedness of the sets of Pareto-optimal and weak pareto-optimal 
alternatives. Journal of Optimization Theory and Applications, 40:537-
557. 

[Webster et al., 1998] Webster, S., Job, P. D., and Gupta, A. (1998). A genetic al
gorithm for scheduling job families on a single machine with arbitrary 
earliness/tardiness penalties and an unrestricted common due date. In
ternational Journal of Production Research, 36(9):2543-2551. 

[Wierzbicki, 1982] Wierzbicki, A. (1982). A mathematical basis for satisficing de
cision making. Mathematical modelling, 3:391-405. 

[Wierzbicki, 1990] Wierzbicki, A. (1990). The use of reference objectives in multi-
objective optimization, pages 468-486. In [Pandel and Gal, 1997]. 

[Wilhelm and Ward, 1987] Wilhelm, M. R. and Ward, T. L. (1987). Solving 
quadratic assignment problem by simulated annealing. HE Transac
tions, 19:107-119. 



356 Preface 

[Wilson, 1989] Wilson, J. M. (1989). Alternative formulations of a flow-shop 
scheduling problem. Journal of the Operational Research Society, 
40(4):395-399. 

[Wright, 2005] Wright, M. (2005). Scheduling fixtures for basketball new Zealand. 
Computers & Operations Research, to appear. 

[Wu et al., 1999] Wu, S. D., Byeon, E. S., and Storer, R. H. (1999). A graph-
theoretic decomposition of the job-shop scheduling problem to achieve 
scheduling robustness. Operations Research, 47(1):113-124. 

[Wu et al., 1993] Wu, S. D., Storer, R. H., and Chang, R-C. (1993). One-machine 
rescheduling heuristics with efficiency and stability as criteria. Com
puters and Operations Research, 20(1): 1-14. 

[Yano and Kim, 1991] Yano, C. A. and Kim, Y. D. (1991). Algorithms for a class 
of single machine weighted tardiness and earliness problems. European 
Journal of Operational Research, 52:167-178. 

[Yeh, 1999] Yeh, W. C. (1999). A new branch-and-bound approach for the 
n/2/flowshop/aF -h hCmax flowshop scheduling problem. Computers 
and Operations Research, 26:1293-1310. 

[Yu, 1978] Yu, P. (1978). Dynamic programming in finite-stage multicriteria deci
sion problems. Technical Report 118, School of Business, University of 
Kansas, U.S.A. 

[Yu, 1974] Yu, P. L. (1974). Cone convexity, cone extreme points and nondomi-
nated solutions in decision problems with multiobjectives. Journal of 
Optimization Theory and Applications, 14:319-377. 

[Yu and Seiford, 1981] Yu, P. L. and Seiford, L. (1981). Multistage decision prob
lems with multicriteria. 

[Yu and Zeleny, 1975] Yu, P. L. and Zeleny, M. (1975). The set of all nondominated 
solutions in linear cases and a multicriteria simplex method. Journal 
of Mathematical Analysis and Applications, 49:430-468. 

[Zegordi et al., 1995] Zegordi, S. H., Itoh, K., and Enkawa, T. (1995). A knowledge
able simulated annealing scheme for the early/tardy flow shop schedul
ing problem. International Journal of Production Research, 33(5): 1449-
1466. 

[Zionts, 1997] Zionts, S. (1997). Decision making: some experiences, myths and 
observations, pages 233-241. In [Pandel and Gal, 1997]. 

[Zionts and Wallenius, 1976] Zionts, S. and Wallenius, J. (1976). An interactive 
programming method for solving the multiple criteria problem. Man
agement Science, 22(6):652-663. 

[Zionts and Wallenius, 1983] Zionts, S. and Wallenius, J. (1983). An interactive 
multiple objective linear programming method for a class of underlying 
non linear utility functions. Management Science, 29(5):519-529. 



Index 

e-constraint approach, 72, 94, 96, 121 

Activity, 17 
AHP, 54 
Analytic Hierarchy Process, 54 
Ant Colony Optimisation, 247 
Assignment, 6, 287, 315 

Batch, 6, 10, 17, 157 
Branch-and-bound algorithm, 99, 155, 

175, 176, 182, 184-189, 191, 213, 214, 
227-230, 233, 234, 237, 241, 245, 247, 
251-258, 262, 266, 267, 294, 295, 318 

Car assembly, 7, 116 
Class 
- MVC, 35 
- P , 34 
- of complexity, 32 
- of schedules, 18 
Common due date, 137, 153, 155, 157, 

165, 169, 171, 173, 178, 183, 184, 
186, 189 

Complexity 
- of algorithms, 29 
- of counting problems, 40, 41, 127 
- of enumeration problems, 40, 43, 127 
- of problems, 32, 48, 100, 124 
- theory, 32 
Computer system, 7 
CON, 137 
Cone 
- convex, 60 
- polar semi-positive, 60 
Connectedness, 59 
Constraints, 9, 323 
Criteria, 6, 12, 323 
- convex combination of, 64, 93, 95, 

99, 101, 121 
- minimax, 13 
- minisum, 13 
- regular, 21 

Criteria vector 
- ideal, 76, 92 
- reference, 77, 87 
- Utopian, 77, 80, 83, 86, 92 

Decision 
- Making, 53 
- problem, 33 
Dominance set, 60 
Dynamic programming, 29, 157, 184, 

222, 223, 225, 226, 228, 229, 245 

E, 57, 58 
EDD, 21 
EDD-FAM, 22 
EDD-FM, 22 
Electroplating, 115 
EST, 22 
Evolutionary algorithms, 99 

Flexible Manufacturing System, 6 
Flowshop, 8 
Function 
- convex, 59 
- increasing, 70 
- quasi-convex, 59 

Gains matrix, 77 
General 
- jobshop, 9 
- openshop, 9 
- scheduling and assignment problems, 

9 
Geoffrion's theorem, 66 
Goal programming, 108, 110, 121, 171 
- archimedian, 110, 111 
- interactive, 110, 111 
- lexicographical, 110, 111 
- multicriteria, 110, 112 
- preemptive, 110 
- reference, 110, 112 



358 Index 

Goal-attainment approach, 86, 94, 97, 
105, 121 

Goals, 63 

Heuristic, 48 
Hoist scheduling problem, 6, 17, 115 
Hybrid flowshop, 9, 315 

Job, 5 
Jobshop, 8, 284 
Just-in-Time 
- criteria, 137 
- scheduling, 136, 139, 182 

Level curves, 68, 71, 75, 78, 81, 85, 96 
Lexicographical order, 91, 92, 94, 97, 

101, 122 
LRPT-FM, 22, 304 

Machine, 5 
Manufacture of bottles, 114 
MAUT, 54 
MCDA, 54 
MCDM, 54, 62 
Method 
- a posteriori, 63, 69, 71, 75, 78, 81, 

97, 119, 122, 171, 207, 214, 217, 219, 
220, 222, 226, 227, 233, 263, 265, 267, 
277, 281, 304, 312 

- a priori, 63, 69, 71, 119, 122, 207, 226 
- interactive, 63, 69, 71, 75, 78, 81, 97, 

107, 119, 122 
- to compute a Pareto optimum, 64, 

121 
MIP, 94 
Mixed Integer Programming, 94 
Mixed shop, 8 
MLP, 92 
Multiattribute Utility Theory, 54 
Multicriteria 
- assignment problem, 98 
- Decision Aid, 54, 118 
- Decision Making, 54 
- knapsack problem, 98, 99 
- linear programming, 92 
- optimisation, 114 
- scheduling problem, 118 
- travelling salesman problem, 98 

Nadir, 77 
Non restrictive due date, 137, 153, 155, 

157, 158, 171, 178, 187 
Non supported Pareto optima, 94, 96 
NOP, 137 

Notation 
- of data and variables, 323 
- of problems, 14, 16-18, 121, 323 

Openshop, 8, 284 
Openshop with general assignment, 9 
Operation, 5 
- mono-, 5 
- multi-, 5 
Operational Research, 98 
Optimal timing problem, 147 
Optimisation problem, 38 

Parallel machines, 9 
- identical, 8, 287 
- uniform, 8, 297 
- unrelated, 9, 310 
- with general assignment, 9 
Parametric approach, 70, 94, 97, 103, 

121 
Pareto optimum 
- proper, 58, 66, 93 
- strict, 57, 60, 70, 72, 74, 77, 79, 81, 

83, 86, 88, 91, 191, 262, 266, 275, 
280, 281, 311 

- weak, 57, 68, 73, 74, 80, 81, 87, 95 
Pareto-slack optimum 
- strict, 110 
- weak, 110 
Parsimonious reduction, 42, 43 
Planning, 113 
Point 
- ideal, 76, 92 
- reference, 77, 87 
- Tchebycheff, 77 
- Utopian, 77, 80, 83, 86, 92 
Polynomial 
- reduction, 35, 39, 228 
- Turing reduction, 38, 39 
PPW, 137 
PRE, 58 
Processing of cheques, 116 
Production, 113 
Project scheduling, 6, 7, 17 
Promptness, 138 
Proportionated flowshop, 281 

Reduction tree, 49 
Resource, 5 
Restrictive due date, 137, 158, 184, 187 

Satellite scheduling, 118 
Schedule 
- active, 19, 21 



Index 359 

- non delayed, 19 
- semi-active, 19 
- with insertion of machine idle times, 

18 
Search problem, 38 
Set 
- compact, 59 
- convex, 59 
- dominance, 60, 61 
- dominant, 18 
- Utopian, 109 
Shops with general assignment, 9 
Simulated annealing, 97, 176, 250, 272 
Single machine, 8 
Slack variable, 109 
SLK, 137 
Spatial complexity, 29 
Sports scheduling, 117 
SPT, 21 
SPT-FAM, 22 
SPT-FM, 22 
SRPT-FM, 22, 304 
Start times, 147, 149, 172, 182, 188 
Steel hot rolling mill scheduling, 115 
Supported Pareto optimum, 94 

Tabu, 98, 99, 176, 185, 250, 316, 318 

Task, 5 
TchebychefF 
- augmented weighted metric, 81, 82, 

121 
- metric, 76, 77, 94, 97, 105, 121 
- weighted metric, 79, 85, 86, 121 
Time complexity, 29 
Timetabling problems, 117 
Transport, 116 
Travelling salesman problem, 229 
Turing machine, 33-35 
TWK, 137 
Typology of problems, 14 

Utility function, 54, 62 

V-shaped schedule, 154, 161, 170 
Vector optimisation, 56 

WE, 57 
Weakly V-shaped schedule, 183 
Weights, 63 
- asymetrical, 138 
- symetrical, 138, 171, 186 
WSPT, 21 
WSPT-FAM, 22 
WSPT-FM, 22 




