

Multicriteria Scheduling

Second Edition

Vincent T’kindt
Jean-Charles Billaut

Multicriteria
Scheduling
Theory, Models
and Algorithms

Translated from French by Henry Scott

Second Edition
with 138 Figures
and 15 Tables

123

Associate Professor Vincent T’kindt,
Professor Jean-Charles Billaut

Université François-Rabelais de Tours
Laboratoire d’Informatique
64 avenue Jean Portalis
37200 Tours
France

Translator

Henry Scott

www.hgs-scientific-translations.co.uk

Cataloging-in-Publication Data

Library of Congress Control Number: 2005937590

ISBN-10 3-540-28230-0 2nd ed. Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28230-3 2nd ed. Springer Berlin Heidelberg New York
ISBN 3-540-43617-0 1st ed. Springer Berlin Heidelberg New York

This work is subject to copyright.All rights are reserved,whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks.
Duplication of this publication or parts thereof is permitted only under the provisions of the
German Copyright Law of September 9, 1965, in its current version, and permission for use must
always be obtained from Springer-Verlag.Violations are liable for prosecution under the German
Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2002, 2006
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.

Cover design: Erich Kirchner
Production: Helmut Petri
Printing: Strauss Offsetdruck

SPIN 11538080 Printed on acid-free paper – 42/3153 – 5 4 3 2 1 0

Preface to the second edition

It is a real pleasure for us to present the second edition of this book on multi-
criteria scheduling. In this preface we would like to introduce the reader with
the improvements made over the first edition. During the writing of the first
edition of this book we were focused on putting in it all the results, algorithms
and models necessary for the reader to tackle correctly the field of multicri-
teria scheduling, which is at the crossroad of several research domains: from
multicriteria optimisation to scheduling. Writing a second edition is a totally
different exercise since we concentrate more on refining, augmenting and, in
a sense, making growing the existing manuscript.

We received valuable comments that lead us to rewrite, more or less partially,
some chapters as Chapters 5 and 7. Besides, new significant research results
published since the first edition have been included into existing chapters of
that second edition. We review hereafter the most important changes.
Chapters 2 and 4 now include a survey on the complexity of counting and enu­
meration optimisation problems with application to multicriteria scheduling.
These two chapters provide theoretical tools for evaluating the complexity of
the enumeration of the set of strict Pareto optima. Chapter 4 also includes
new real-life applications of multicriteria scheduling.
Chapter 5 has been drastically revised and now provides a general unified
framework for Just-in-Time scheduling problems. Besides, classic optimal
timing algorithms, which calculate optimal start times of operations when
the jobs order is fixed, are now presented.
At last, chapter 6 is a new chapter dealing with robustness in multicriteria
scheduling. This research area has been subject to a growing interest in the
literature since the last ten years, notably when considering a criterion of
flexibility or robustness in addition to a classic scheduling criterion. Hence­
forth, the aim of some scheduling problems become to increase the robustness
of the calculated solution for its pratical use. Providing flexibility is a way to
ensure a certain robustness when unexpected events occur in the shop.
We hope that this new edition will become an important tool and a practical
guide for novice an senior researchers that work on multicriteria scheduling.

V. T'KINDT and J.-C. BILLAUT
Tours (Prance), October 15th 2005

Preface to the first edition

Prom Theory to Practice, there is a world, and scheduUng does not escape
this immutable rule.
For more than fifty years, theoretical researches on scheduling and complexity
theory have improved our knowledge on both a typology of academic prob­
lems, mainly involving a single criterion, and on their solving. Though this
work is far from being completed, a few famous books have been a major
breakthrough. The typology will be all the more useful as it takes more and
more realistic constraints into account. This is just a matter of time.
The relevance of some single criteria, their equivalence and their conflict have
been studied...
Yet, numerous genuine problems, even outside the realm of scheduling, do not
square with these single criterion approaches. For example, in a production
shop, minimising the completion time of a set of jobs may be as interesting as
retaining a maximum fragmentation of idle times on an easily damaged ma­
chine and minimising the storage of in-process orders. Moreover, even though
the optimal solutions to the F2\\Cmax yielded by S.M. Johnson's famous al­
gorithm are numerous, they are far from appearing equivalent to the decision
maker when their structure is analysed. A genuine scheduling problem, in
essence, involves multiple criteria.

Besides, more general books on Decision Aid in a multicriteria environment
have been published and a pool of researchers have long tackled the problem.
Undoubtedly, a synthesis book offering a state-of-the-art on the intersection
of both the fields of Scheduling and Multicriteria Decision Aid and providing
a framework for tackling multicriteria scheduling problems is a must.

I am most happy to present this book. It is divided in four parts: - the first
one deals with research on scheduling, now an important branch of opera­
tional research.
- the second one presents theories on Decision Aid and Multicriteria Optimi­
sation as well as a framework for the resolution of multicriteria scheduling
problems.

VIII Preface

- the third and fourth parts involve a tremendous work since they contain
state-of-the-arts on multicriteria scheduhng problems. Numerous works and
resolution algorithms are detailed.

In my opinion, this book will become a reference book for researchers working
on scheduling. Moreover, I am convinced it will help PhD students suitably
and quickly embark on a fascinating adventure in this branch of Operational
Research. May they be numerous in joining us...
I very warmly thank MM. Vincent T'kindt and Jean-Charles Billaut for their
tenacity in writing this significant book, and Springer-Verlag publishing for
entrusting them.

Professor C. PROUST
Tours (Prance), february 22th 2002

The authors are very grateful to all the people who have directly or indirectly
contributed to the birth of this book. Professor Christian Proust is at the root
of this research and is undoubtedly the grandfather of this book. We would also
like to thank the members of the research team "Scheduling and Control" of the
Laboratory of Computer Science of the University of Tours for creating a friendly
environment and thus for having promoted the emergence of this book. In this
vein, all the technical and administrative persons of the E3i school have also to be
thanked.
At last, we would like to thank Professor Jacques Teghem of the "Faculte Poly tech­
nique de Mons" for having provided excellent ideas and remarks which have helped
in improving this book.

Contents

1. Introduction to scheduling 5
1.1 Definition 5
1.2 Some areas of application 6

1.2.1 Problems related to production 6
1.2.2 Other problems 7

1.3 Shop environments 7
1.3.1 Scheduling problems without assignment 8
1.3.2 Scheduling and assignment problems with stages 8
1.3.3 General scheduling and assignment problems 9

1.4 Constraints 9
1.5 Optimality criteria 12

1.5.1 Minimisation of a maximum function: "minimax" cri­
teria 13

1.5.2 Minimisation of a sum function: "minisum" criteria . . . 13
1.6 Typologies and notation of problems 14

1.6.1 Typologies of problems 14
1.6.2 Notation of problems 16

1.7 Project scheduling problems 17
1.8 Some fundamental notions 18
1.9 Basic scheduling algorithms 21

1.9.1 Scheduling rules 21
1.9.2 Some classical scheduling algorithms 22

2. Complexity of problems and algorithms 29
2.1 Complexity of algorithms 29
2.2 Complexity of problems 32

2.2.1 The complexity of decision problems 33
2.2.2 The complexity of optimisation problems 38
2.2.3 The complexity of counting and enumeration problems 40

2.3 Application to scheduling 48

3. Multicriteria optimisation theory 53
3.1 MCDA and MCDM: the context 53

3.1.1 MultiCriteria Decision Making 54

X Contents

3.1.2 MultiCriteria Decision Aid 54
3.2 Presentation of multicriteria optimisation theory 55
3.3 Definition of optimality 57
3.4 Geometric interpretation using dominance cones 60
3.5 Classes of resolution methods 62
3.6 Determination of Pareto optima 64

3.6.1 Determination by convex combination of criteria 64
3.6.2 Determination by parametric analysis 70
3.6.3 Determination by means of the e-constraint approach . 72
3.6.4 Use of the Tchebycheff metric 76
3.6.5 Use of the weighted Tchebycheff metric 79
3.6.6 Use of the augmented weighted Tchebycheff metric . . . 81
3.6.7 Determination by the goal-attainment approach 86
3.6.8 Other methods for determining Pareto optima 91

3.7 Multicriteria Linear Programming (MLP) 92
3.7.1 Initial results 93
3.7.2 AppHcation of the previous results 93

3.8 Multicriteria Mixed Integer Programming (MMIP) 94
3.8.1 Initial results 94
3.8.2 Application of the previous results 95
3.8.3 Some classical algorithms 97

3.9 The complexity of multicriteria problems 100
3.9.1 Complexity results related to the solutions 100
3.9.2 Complexity results related to objective functions 101
3.9.3 Summary 106

3.10 Interactive methods 107
3.11 Goal programming 108

3.11.1 Archimedian goal programming I l l
3.11.2 Lexicographical goal programming I l l
3.11.3 Interactive goal programming I l l
3.11.4 Reference goal programming 112
3.11.5 Multicriteria goal programming 112

4. An approach to multicriteria scheduling problems 113
4.1 Justification of the study 113

4.1.1 Motivations 113
4.1.2 Some examples 114

4.2 Presentation of the approach 118
4.2.1 Definitions 118
4.2.2 Notation of multicriteria scheduling problems 121

4.3 Classes of resolution methods 122
4.4 Application of the process - an example 123
4.5 Some complexity results for multicriteria scheduling problems 124

Contents XI

5. Just-in-Time scheduling problems 135
5.1 Presentation of Just-in-Time (JiT) scheduling problems 135
5.2 Typology of JiT scheduling problems 136

5.2.1 Definition of the due dates 136
5.2.2 Definition of the JiT criteria 137

5.3 A new approach for JiT scheduling 139
5.3.1 Modelling of production costs in JiT scheduling for

shop problems 141
5.3.2 Links with objective functions of classic JiT scheduling 145

5.4 Optimal timing problems 147
5.4.1 The l\di,seq\Fe{f'',E^) problem 147
5.4.2 The Poo\prec, fi convex\ ^ ^ fi problem 149
5.4.3 The l\fi piecewise linear\Fi{Y^^ fi^ ^ . 7)̂ problem . . . 153

5.5 Polynomially solvable problems 153
5.5.1 The l\di = d> Y.Vi\F(>{E,f) problem 153
5.5.2 The l\di = d unknown^nmit\F£{E^T^d) problem 155
5.5.3 The l\pi C [pijpj HN, di = d non restrictive\Fe(E,T,

CC"^) problem ^ ._̂ 157
5.5.4 The P\di = d non restrictive^nmit\F£{E^T) problem . 157
5.5.5 The P\di = d unknown^ nmit\Fe{E^T) problem 159
5.5.6 The P\di = d unknown,pi = p,nmit\F(>{E, T^d)

problem 165
5.5.7 The R\pi^j € [Pi,j;Pij],cfi = d unknown\Fi{T,E,

CC"^) problem 169
5.5.8 Other problems 170

5.6 TVP-hard problems 173
5.6.1 The l\di, nmit\Fe(E'',T^)_pioblem 173
5.6.2 The F\prmu,di,nmit\Fe{E'^,T^) problem 176
5.6.3 The P\di = d non restrictive, nmit\fmax{E , T)

problem 178
5.6.4 Other problems 182

5.7 Open problems 188
5.7.1 The Q\di = d unknown, nmit\Fi{E,T) problem 188
5.7.2 Other problems 189

6. Robustness considerations 193
6.1 Introduction to flexibility and robustness in scheduling 193
6.2 Approaches that introduce sequential flexibility 195

6.2.1 Groups of permutable operations 195
6.2.2 Partial order between operations 197
6.2.3 Interval structures 199

6.3 Single machine problems 201
6.3.1 Stability vs makespan 201
6.3.2 Robust evaluation vs distance to a baseline solution... 202

XII Contents

6.4 Flowshop and jobshop problems 203
6.4.1 Average makespan of a neighbourhood 203
6.4.2 Sensitivity of operations vs makespan 203

6.5 Resource Constrained Project ScheduUng Problems (RCPSP) 204
6.5.1 Quality in project scheduling vs makespan 204
6.5.2 Stability vs makespan 205

7. Single machine problems 207
7.1 Polynomially solvable problems 207

7.1.1 Some l\di\C, /max problems 207
7.1.2 The l\si,pmtn,nmit\Fe{C^Pmax) problem 215
7.1.3 The l\pi € [pi;Piidi\Fe{Tmax.'CC^) problem 216
7.1.4 The l\pi e [pi',Piidi\Fe(C,CC'^) problem 219
7.1.5 Other problems 219

7.2 J\fV-hdiid problems_. 222
7.2.1 The l\di\T, C problem 222
7.2.2 The l\rupi £ [pi;pj H N\Fe{Cmax,CC^) problem 223

7.2.3 The l |n ,p i G [pi'.Pi] n N\Fe(Ü'^.CC'") problem 225
7.2.4 Other problems 226

7.3 Open problems .^ 230
7.3.1 The l\di\Ü,Tmax problem 230
7.3.2 Other problems 234

8. Shop problems 235
8.1 Two-machine flowshop problems 235

8.1.1 The F2\prmu\Lex{CmaxjC) problem 235
8.1.2 The F2\prmu\Fi{Cmax^ C)problem 250
8.1.3 The F2\prmu,ri\Fe{Cmax,C) problem 256
8.1.4 The F2\prmu\e{C/Cmax) problem 256
8.1.5 The F2\prmu,di\#{Cmax,Trnax) problem 262
8.1.6 The F2\prmu, di\#{Cmax,U) problem 265
8.1.7 The F2\prmu,di\#{Cmax^T) problem 267

8.2 m-machine flowshop problems 270
8.2.1 The F\prmu\Lex{Cmax2_C) problem 270
8.2.2 The F\prmu\#{Cmax,C) problem 272
8.2.3 The F\prmu,di\e{Cmax/Tmax) problem 277
8.2.4 The F\pij € [pij;Pi^j],prmu\Fe{Cmax, CC"^) problem. 280
8.2.5 The F\pi^j =Pie [2uPi],prmu\#{Cmax,'CC^) problem281

8.3 Jobshop and Openshop problems 284
8.3.1 Jobshop problems 284
8.3.2 The 02\\Lex{Cmax,C) problem 284
8.3.3 The 03\\Lex{Cmax,C) problem 286

Contents XIII

9. Parallel machines problems 287
9.1 Problems with identical parallel machines 287

9.1.1 The P2\pmtn,di\e{Lmax/Cmax) problem 287
9.1.2 The P3\pmtn,di\e{Lma^/Cmax) problem 290
9.1.3 The P2\di\Lex{Trriax, U) problem 293
9.1.4 The P|di |#(C,[/)^roblem 295
9.1.5 The P\pmtn\Lex{C, Cmax) problem 296

9.2 Problems with uniform parallel machines 297
9.2.1 The Q\pi = p\e{fmaxl9max) problem 297
9.2.2 The Q\pi = v\ei^/fmax) problem 302
9.2.3 The Q\vmtn\e{C/Cmax) problem 303

9.3 Problems with unrelated parallel machines 310
9.3.1 The R\pi^j € [^i^j,PißFt(C,'CC^) problem 310
9.3.2 The R\pmtn\e{Fi{Imax,'M)/Cmax) problem 311

10. Shop problems with assignment 315
10.1 A hybrid flowshop problem with three stages 315
10.2 Hybrid flowshop problems with k stages 316

10.2.1 The HFk, (PM(^))f^i||F^_(C^ax,C) problem 316
10.2.2 The HFk, lPM^^"^)\^^\\e{C/Crnax) problem 318

10.2.3 The HFk, {PM^^^(t))t^i | r f ,̂ d f ^ \e{Cmax/Tmax) prob­
lem 318

A. Notations 323
A.l Notation of data and variables 323
A.2 Usual notation of single criterion scheduling problems 323

B. Synthesis on multicriteria scheduling problems 329
B.l Single machine Just-in-Time scheduhng problems 329
B.2 Single machine problems 330
B.3 Shop problems 333
B.4 Parallel machines scheduling problems 333
B.5 Shop scheduling problems with assignment 334

References 335

Index 357

List of algorithms and mathematical
formulations

The algorithm EELl of [Lawler, 1973] 23
The algorithm EJMl of [Moore, 1968] 24
The algorithm ESJl of [Johnson, 1954] 24
The algorithm HCDSl of [Campbell et al., 1970] 25
The algorithm HNEHl of [Nawaz et a l , 1983] 26
The algorithm ESSl of [Sahni, 1979] 27
The algorithm EGTWl of [Garey et al., 1988] 148
The algorithm ECSl of [Chretienne and Sourd, 2003] 152
The algorithm EJKl of [Kanet, 1981a] 154
The algorithm EPSSl of [Panwalker et a l , 1982] 156
The mathematical formulation ECLTl of [Chen et a l , 1997] 158
The algorithm ESAl of [Sundararaghavan and Ahmed, 1984] 160
The algorithm EEMl of [Emmons, 1987] 162
The algorithm EEM2 of [Emmons, 1987] 164
The algorithm ECCl of [Cheng and Chen, 1994] 169
The algorithm HOMl of [Ow and Morton, 1988] 175
The algorithm HZIEl of [Zegordi et al., 1995] 178
The algorithm HLCl of [Li and Cheng, 1994] 180
The algorithm HLC2 of [Li and Cheng, 1994] 181
The mathematical formulation EFLRl of [Pry et al., 1987b] 188
The algorithm HEM3 of [Emmons, 1987] 190
The algorithm EWGl of [VanWassenhove and Gelders, 1980] 208
The algorithm EHVl of [Hoogeveen and van de Velde, 2001] 216
The algorithm ERVl of [Vickson, 1980b] 218
The mathematical formulation ECLT2 of [Chen et al., 1997] 220
The algorithm HGHPl of [Gupta et al., 1999a] 232
The algorithm HGHP2 of [Gupta et al., 1999a] 233
The algorithm HCRl of [Rajendran, 1992] 236
The algorithm ECRl of [Rajendran, 1992] 238
The algorithm EGNWl of [Gupta et al., 2001] 242
The algorithm HGNWl of [Gupta et al., 2001] 243
The algorithm HTGBl of [T'kindt et al., 2003] 246
The algorithm HTMTLl of [T'kindt et al., 2002] 249
The algorithm HNHHl of [Nagar et a l , 1995b] 252

XVI List of algorithms and mathematical formulations

The algorithm HSUl of [Sivrikaya-Serifoglu and Ulusoy, 1998] 253
The algorithm ESUl of [Sivrikaya-Serifoglu and Ulusoy, 1998] 255
The algorithm HCLl of [Chou and Lee, 1999] 257
The algorithm ESKl of [Sayin and Karabati, 1999] 258
The algorithm ESK2 of [Sayin and Karabati, 1999] 260
The algorithm EDCl of [Daniels and Chambers, 1990] 264
The algorithm HDC3 of [Daniels and Chambers, 1990] 265
The algorithm ELYJl of [Liao et al., 1997] 268
The algorithm HLYJl of [Liao et al., 1997] 269
The algorithm ELYJ2 of [Liao et a l , 1997] 270
The mathematical formulation ESHl of [Selen and Hott, 1986] 272
The mathematical formulation EJWl of [Wilson, 1989] 273
The algorithm HGRl of [Gangadharan and Rajendran, 1994] 274
The algorithm HGR2 of [Gangadharan and Rajendran, 1994] 274
The algorithm HCR3 of [Rajendran, 1995] 276
The algorithm HCR5 of [Rajendran, 1994] 278
The algorithm HDC4 of [Daniels and Chambers, 1990] 279
The algorithm ECSl of [Cheng and Shakhlevich, 1999] 283
The algorithm HSHl of [Sarin and Hariharan, 2000] 294
The algorithm ELYl of [Leung and Young, 1989] 298
The algorithm ETMMl of [Tuzikov et al., 1998] 300
The algorithm ETMM2 of [Tuzikov et al., 1998] 301
The algorithm ETMM3 of [Tuzikov et al., 1998] 303
The algorithm EMPl of [Mc Cormick and Pinedo, 1995] 308
The algorithm EMP2 of [Mc Cormick and Pinedo, 1995] 309
The mathematical formulation ETBPl of [T'kindt et al., 2001] 312
The algorithm ETBP2 of [T'kindt et a l , 2001] 313
The mathematical formulation ERMAl of [Riane et al., 1997] 317
The mathematical formulation ERMA2 of [Riane et a l , 1997] 319
The algorithm EVBPl of [Vignier et al., 1996] 321

Introduction

Scheduling theory first appears in the mid 1950s. Since then the problems
addressed become closer to industrial applications, thus increasing in com­
plexity. The layout of the shops taken into account are closer and closer to
those met in practice: we encounter shops where the machines are found in
different multiple copies, shops where an operation may require several re­
sources simultaneously, or with multipurpose machines, etc. At the same time
the embedded constraints are more and more concrete: many authors take
into account release dates, the preemption of the jobs, the resource availabil­
ities, etc.
Paradoxically, the literature shows that in the majority of the problems ad­
dressed, schedules are only evaluated by a single criterion. During the diflFerent
phases of planning different criteria can be considered. At a strategic level,
at the long term planning phase with several years in view, the objectives
concern minimising the costs related to the investment plans for materials,
finance, or personel, related to the choice of new directions, or the launching
of publicity campaigns. For tactical planning at the medium term phase with
several months in view, the objectives always focus on minimising the costs:
stock costs (supply or interruption of stocks), costs of getting supplies, costs
of modifying production capacity, launching costs, costs of modifying pro­
duction systems and certain commercial costs ([Merce, 1987], [Giard, 1988]).
At the short term planning phase (with the order of a week in view), or
scheduling phase, several objectives require the attention of the production
executive: above all he must consider the delays that satisfy the customer,
next, he must minimise the work-in-process costs in the shop, and finally he
must minimise the manufacturing costs related to the time spent to set up
the machines or idle periods of the machines. Therefore, a scheduling problem
involves multiple criteria.

Bernard Roy emphasises ([Roy, 1985]), that taking account of several criteria
enables us to propose to the decision maker a more realistic solution. This
still holds when solving scheduling problems in an applied context. Literature
is dedicated in abundance to the study of multicriteria problems, whatever
their field of application. Numerous theoretical works have been developed
on multicriteria decision making. The purpose of this book is to provide a

2 Introduction

survey, based on a proposed methodology, of the existing methods for solving
multicriteria scheduling problems, considering both methods of multicriteria
optimisation and scheduling fields.

This book is divided into five major parts each devoted to particular themes.
The first two chapters are devoted to the rudiments. Chapter 1 sets
out the scheduling problems as encountered in the literature. It presents
the shop layouts and the classic constraints and criteria. The notation used
throughout this book, as well as the notation of scheduling problems, based
on that of Graham, Lawler, Lenstra and Rinnooy Kan ([Graham et al., 1979]
[Blazewicz et al., 1996]) are provided. We present a new typology, as well as
several classifications. Chapter 2 reviews the basic concepts of the complex­
ity of algorithms and the complexity classes of problems.

The following two chapters are devoted to multicriteria decision making
and multicriteria optimisation, and introduce multicriteria scheduling prob­
lems. It opens up a new approach to the resolution of multicriteria scheduling
problems. Chapter 3 presents some important concepts related to method­
ologies of multicriteria decision aids. A large part of the difficulty in solving a
multicriteria problem is linked to the way in which the criteria are taken into
account. Optimisation techniques, which help in taking account of the criteria
are also presented. Chapter 4 presents an approach to the tackling of mul­
ticriteria scheduling problems. This approach is divided into three phases.
In the first phase the decision maker indicates what constraints define his
problem as well as the criteria to be taken into account. The second phase, of
taking account of criteria, consists in choosing a resolution approach, i.e. the
method which is going to be called upon to calculate a solution. The decision
maker also indicates the type of algorithm which he wants to implement: a
priori^ interactive or a posteriori algorithm. This phase enables an objective
function to be defined for the scheduling problem. The last phase consists
of solving the identified scheduling problem. Its resolution leads to the best
trade-off solution.

The next two chapters are chapters devoted to a particular thematic, what­
ever the configuration of the shop. In Chapter 5 we are concerned with
"Just-in-Time" scheduling problems. Both general considerations and tech­
nical issues are investigated in this chapter. Chapter 6 focuses on robustness
considerations in scheduling when multiple criteria are involved.

The next two chapters of this book are devoted to the presentation of mul­
ticriteria scheduling problems depending on the shop configuration. Chap­
ter 7 is devoted to single machine problems, which category of problems is
undoubtly the most addressed in the literature on multicriteria scheduling.

Introduction 3

Chapter 8 is devoted to shop problems, i.e., flowshop, jobshop and open-
shop problems.

The last two chapters are dedicated to the presentation of multicriteria
scheduling and assignment problems. Chapter 9 is devoted to multicriteria
parallel machines scheduling problems, whilst Chapter 10 is devoted to
multicriteria hybrid flowshop scheduling problems.

1. Introduction to scheduling

1.1 Definition

Scheduling problems are encountered in all types of systems, since it is nec­
essary to organise and/or distribute the work between many entities. We find
in every book in the literature a definition of a scheduling problem as well as
its principal components. Among these definitions we can quote the following
one [Carlier and Chretienne, 1988]:
"Scheduling is to forecast the processing of a work by assigning resources to
tasks and fixing their start times. [...] The different components of a schedul­
ing problem are the tasks, the potential constraints, the resources and the ob­
jective function. [...] The tasks must be programmed to optimise a specific
objective [...] Of course, often it will be more realistic in practice to consider
several criteria."

Another definition has been put forward by [Pinedo, 1995]:
"Scheduling concerns the allocation of limited resources to tasks over time.
It is a decision-making process that has as a goal the optimization of one or
more objectives."

A statement of scheduling problems can be found in [Gotha, 1993]. This ar­
ticle sets out the resolution approaches and the traditional scheduling prob­
lems. We can find in [Lee et al., 1997] a presentation of the current problems
as well as more recent resolution methods.

In the above definitions, the task (or operation) is the entity to schedule. In
this book we deal with jobs to schedule, each job is broken down into a series
of operations. When all the jobs contain only a single operation we speak of a
mono-operation problem. By contrast, we speak of a multi-operation problem.
The operations of a job may be connected by precedence constraints. In this
case the set of operations of a job and their precedence constraints define the
routing of this job.
We are also dealing with the resource or machine (this latter term is
more often used in the context of shop scheduling). We consider gener­
ally that the resources are of two types: renewable or consumable. Re­
newable resources become available again after use (machine, file, proces-

6 1. Introduction to scheduling

sor, personel, etc.), whereas non renewable resources disappear after use
(money, raw materials, etc.). Among the renewable resources we can dis­
tinguish between the disjunctive resources, which can only perform one op­
eration at a time and the cumulative resources which can process a lim­
ited number of operations simultaneously. The case of cumulative resources
is being studied more and more as for example in shop scheduling prob­
lems [Carlier and Latapie, 1991], in project scheduUng problems and in batch
scheduling problems ([Potts and Kovalyov, 2000]).
Frequently, to solve a scheduling problem, we are also caused to solve an
assignment problem, where it concerns in addition specifying the resources
to process the operations.

We can separate the criteria to optimise into two types: those relating to
completion time and those relating to costs. In the category of completion
time related criteria we find for example those which measure the completion
time of the whole schedule and those which measure tardiness of jobs in
relation to their due date. In the category of cost related criteria we may cite
those which represent cost of machine use and those which represent cost
allied to waiting time of operations before and/or after they are processed.

1.2 Some areas of application

Scheduling problems are encountered at all levels and in all sectors of activity.
Generally, we can distinguish between those of manufacturing production and
those in computer systems or project management.

1.2.1 Problems related to production

We encounter scheduling problems in Flexible Manufacturing Systems
(FMS). Numerous definitions of an PMS are found in the literature. For
[Liu and MacCarthy, 1996]: "i4n FMS comprises three principal elements:
computer controlled machine tools; an automated transport system and a com­
puter control system.'''' These problems are broadly covered in the literature
and most often in a well defined application class. Besides, this very broad
problem encompasses other problems related to Robotic Cell Scheduling and
Scheduling of Automated Guided Vehicles (AGV).

Equally, electroplating and chemical shops have their peculiarities in
scheduling problems. The latter are also called Hoist Scheduling Problems.
These shops are characterised by the presence of one or more travelling cranes
sharing the same physical area and which are ordered to transport the prod­
ucts for treatment in tanks. In general, the soaking time in a tank is bounded
by a minimum and a maximum {the interval processing time)., transport time

1.3 Shop environments 7

is not negligible and the operations must be carried out without waiting time.
These problems are very common in industry and the "simple" cases (mono-
robot, single batch tanks, etc.) have been well solved by now.

Scheduling problems in car production lines, so called Car Sequencing
Problems, are encountered in assembly shops where certain equipment (or
options) must be assembled in the different models of vehicles. These prob­
lems have constraints and peculiarities of their own. Knowing a sequence of
vehicles undergoing treatment, the problem is to determine the type of the
next vehicle programmed. We have to take account of a group of constraints
connected principally to the assembly options for these vehicles and to the
limited movement of the tools along the production Une.

1.2.2 Other problems

We encounter scheduling problems in computer systems. These problems
are studied in different forms by considering mono or multi processor systems,
with the constraints of synchronisation of operations and resource sharing. In
these problems, certain operations are periodic others are not, some are sub­
ject to due dates, others to deadlines. The objective is often to find a feasible
solution, i.e. a solution which satisfies the constraints. Literature abounds on
these problems. In fact, in spite of appearances they are very close to those
encountered in manufacturing systems ([Blazewicz et al., 1996]).

Timetable scheduling problems concern all educational establishments
or universities, since they involve timetabling of courses assuring the avail­
ability of teachers, students and classrooms. These problems are just as much
the object of studies.

Project scheduling problems comprise a vast literature. We are inter­
ested more generally in problems of scheduling operations which use several
resources simultaneously (money, personel, equipment, raw materials, etc.),
these resources being available in known amounts. In other words we deal with
the multi-resource scheduling problem with cumulative and non-renewable
resources ([Brucker, 2004],[Herroelen et al., 1998b],[Herroelen et al., 2001]).

1.3 Shop environments

When confronted with a scheduling problem, one has to identify it before
tackling it. Acknowledging that the problem is complicated and to know if it
is already solved in the literature, we must use a recognised notation. For that
purpose, shop "models" have been set up, which differ from each other by
composition and organisation of their resources. We denote by n the number

8 1. Introduction to scheduling

of jobs to schedule, by Ji the job number i, by n^ the number of operations
of job Ji, by Oi^j the operation j of job J^, by m the number of machines
and by Mk the machine number k. A complete synthesis of the notations is
given in appendix A.

1.3.1 Scheduling problems without assignment

The problem is to find a processing start time for each operation. Several
types of arrangement are traditionally encountered:

• single machine: Only a single machine is available for the processing of
jobs. It concerns a basic shop or one in which a single machine poses a
real scheduling problem. Besides, resolution of more complex problems is
often achieved by the study of single machine problems. We can find an
area of direct application in computing, if we think of the machine as the
single processor of the computer. The jobs to be processed are necessarily
mono-operation.

• flowshop (F): several machines are available in the shop. The characteris­
tic of this type of shop is that the jobs processed in it use machines in the
same order: they all have the same processing routing. In a permutation
flowshop we find in addition that each machine has the same sequence of
jobs: they cannot overtake each other.

• jobshop (J): several machines are available in the shop. Each job has a
route of its own, i.e. it uses the resources in its own order.

• openshop (O): several machines are available in the shop. The jobs do not
have fixed routings. They can, therefore, use the machines in any order.

• mixed shop (X): several machines are available in the shop. Some jobs
have their own routing and others do not.

1.3.2 Scheduling and assignment problems with stages

The machines are grouped in well defined stages and a machine belongs to
one stage only. In all cases the machines of a stage are capable of performing
the same operations. To carry out one operation it is necessary to choose
one among the available machines and, therefore, the problem is twofold, as­
signing one machine to each operation and sequencing the operations on the
machines. At each stage we can differentiate between the following configu­
rations:

• the machines are identical (P): an operation has the same processing time
on all the machines.

• the machines are uniform (Q): the processing time of an operation Oi,j
on the machine Mk is equal to Pi,j^k = Qi.jhk where qi^j is for example
a number of components in the operation Oi^j to be processed, and Vk is
the number of components which the machine Mk can process per unit of
time.

1.4 Constraints 9

• the machines are unrelated or even independent (R): the processing time
of the operation Oij on the machine Mk is equal to Pi,j,/c, and is a data
of the problem. Of course, just as the assignment of Oij is unknown, so is
its processing time.

Globally, "traditional" scheduling and assignment problems correspond to
the following configuration:

• parallel machines (P/Q/R): there is only one stage and the jobs are
mono-operation.

• hybrid flowshop (HF): all the jobs have the same production routing,
and therefore use the stages in the same order.

• general jobshop (GJ): each job has a route of its own.
• general openshop (GO): the jobs do not have a fixed routing.

It is easily possible to generalise these problems by supposing that each op­
eration can only use its own subset of the resources of the performing stage.

1.3.3 General scheduling and assignment problems

This is the most general case where we suppose that each operation has its
own set of machines on which it can be processed. No assumption is made
on these sets of resources. We can differentiate several cases:

• the jobs are mono-operations, and we are confronted by a problem of par­
allel machines with general assignment. We find these problems in
the literature ([Brucker, 2004]) under the name "Multi Purpose Machines
Scheduling Problems" (P /Q/R MPM SP).

• the jobs follow a processing order. It is difiicult in this case to distinguish
between flowshop and jobshop since the groups of machines used by these
jobs are not comparable. This is what is called shops with general as­
signment problems (" General Shop MPM SP").

• the jobs do not follow a fixed routing. This is the case in openshop with
general assignment problems ("Openshop MPM SP").

1.4 Constraints

A solution of a scheduling problem must always satisfy a certain number of
constraints, be they explicit or implicit. For example, in a flowshop problem it
is implicit that the jobs are processed according to the routing and therefore
an operation cannot start while its precedent remains uncompleted. On the
other hand, the occurrence of different release dates constitutes a constraint
which must be stated precisely. In this section we describe the explicit con-

10 1. Introduction to scheduling

straints encountered most frequently in scheduling. A summary is given in
appendix A.

There are several types of constraints related to the due dates. There are
those due dates which we do not wish to pass by, even if we tolerate to
completing afterwards. They correspond to an agreed commitment which is
negotiable. There are those due dates which are imperatives, also called dead­
lines, and which cannot be passed. Typically, they correspond to an unveiling
date when the manufacturer must present his product, or even the departure
date of the delivery lorry. These dates cannot be passed by: therefore, no
tardiness can be permitted. Problems where we encounter these constraints
are usually decision problems: these dates can or cannot be respected. When
we can, either we are satisfied with a feasible solution or in addition we try
to minimise a criterion.

Constraints relating to start times are equally various. Of course, there is
the release date of the product. Sometimes, it corresponds to the date of the
order. Equally, we can find a release date associated with a specific operation
of a job. This date can correspond to the arrival of supplies for the opera­
tion. Finally, it can happen that the start time of a particular operation is
imposed. In this case it is a matter of meeting with the customer for him to
witness the implementation of the operation which he regards as critical in
the manufacturing process. These two latter definitions correspond to prob­
lems rarely dealt with in the literature.

We list below some constraints met frequently in the literature.

• pmtn indicates that preemption is authorised. Here it is possible to forsee
interuption of an operation so that, possibly it can be taken up next by
another resource.

• split indicates that splitting is authorised. Here it is possible to forsee
splitting of the operation into lots, which can be performed on one or
several machines, possibly simultaneously.

• prec indicates that the operations are connected by precedence constraints.
This heading gives different particular cases according to the nature of the
constraints: prec to describe the most general case, tree, in-tree, out-
tree, chains and sp-graph (for series-parallel graph ; see [Pinedo, 1995]
or [Brucker, 2004]) to denote particular cases.

• batch indicates that the operations are grouped in batches. Two types of
batch constraints are differentiated in the literature: the first called some­
times s-batch concerns serial batches where the operations constituting a
batch are processed in sequence and the second of type p-batch concerns
parallel batches where the operations constituting a batch are processed
in parallel on a cumulative resource. In both cases, the completion time of
an operation is equal to the completion time of the batch. In the first case.

1.4 Constraints 11

the duration of the batch is equal to the sum of the processing times of the
operations which constitute it, whereas in the second case its duration is
equal to the longest processing time of the operations in the batch.

• no-wait indicates that the operations which constitute each job follow
each other without any waiting.

• p r m u (permutation) indicates that the operations occur on the machines
in the same order. In other words, they cannot overtake themselves (this
is true solely for flowshop problems).

• di = d indicates that all the due dates are identical. Likewise di — d for
the deadlines.

• Pi = P indicates that the processing times are all identical. We often en­
counter this constraint with p = 1.

• Snsd and Rnsd indicate that the setup and removal times on the resources
before and after each processing, respectively, must be taken into account.
These preparation times are independent of the sequence of operations.

• Ssd and Rsd indicate that the setup and removal times on the resources
before and after each processing, respectively, must be taken into account.
These preparation times are dependent of the sequence of operations.

• ai^,i2 indicates that a minimum time lag must be respected between
the jobs Jii and 7^2, if the jobs are mono-operation. Otherwise, we use
Ciii,ji,i2j2 ^o indicate a minimum time lag which must be respected between
the operation 0^^ j ^ and the operation Oi^j^- If ^̂ ^̂ value is positive, we
model, for example, a drying time between two successive operations, or
else a transport time. In the latter case the resource is available to process
the following operation during the transport. If this value is negative, it in­
dicates that it is possible to carry out an overlap, i.e. to start an operation
before its precedent in the routing is completely finished. Of course, this
is possible when a job is composed of lots of items and it is not necessary
to wait for the end of a lot on a machine to start the operation on the
following machine.

• blcg (balancing) is a constraint peculiar to parallel machine shops, trans­
lating the fact that the machines must complete processing of jobs which
are assigned to them at the same time. This constraint may be imposed
when it is necessary to change the type of manufacture on all the machines
simultaneously.

• block (blocking) is a constraint indicating that the shop has a limited stock
area between the machines. Then we note bk the stock capacity between
machine Mk and machine Mk-\.i*

• recre (recirculation) is a constraint which indicates that a job may be
processed several times on the same machine.

• unavailj translates the case where all the resources are not available all
the time, but only during well defined periods. It is a matter of timetables
translating periods of opening/closing of the factory, periods of planned
maintenance, of hohdays, etc. Two types of operations can be associated

12 1. Introduction to scheduling

with this problem: interruption and resumption of an operation as soon as
possible (unavailj-resumable) or else the operation is not started if it is
going to be interrupted (unavailj-nonresumable). In the latter case we
can have problems of unfeasibility.

We now state the difference between routing and precedence constraints:

• a routing is a document which precisely describes the set of operations
necessary for ending up with a final product: machine, processing time,
tools, particular conditions, etc. This routing contains, of course, the order
in which the operations must be processed, possibly with the help of a
precedence graph (in the case of non identical routings). Two successive
operations in a routing indicate a flow of material between machines or a
set of machines.

• precedence relations between operations indicate simply that the start of
an operation is conditioned by the end of all the preceding operations. No
notion of flow is attached, a priori, to this constraint and it may simply
be a matter of severe technological constraints. Two operations linked by
a precedence relation may correspond to two distinct jobs.

In computer systems this distinction does not really exist since the routing
of a job does not have a strong sense as in production systems. We have only
a set of operations to schedule knowing that these ones can be connected by
precedence constraints. Often it is assumed that these constraints are associ­
ated to communication times between the operations. We can also consider
the existence of a communication media, or server, thus inducing disjunctive
constraints.

1.5 Optimality criteria

In order to evaluate schedules we can use a certain number of criteria. Oc­
casionally we want a criterion to be close to a certain reference value. Here
we are at the frontier between the notions of criteria and constraints. If a
constraint represents a fact which definitely must be respected, optimising
a criterion allows rather a certain degree of freedom. For example, stating
that no job should be late regarding its due date leaves no margin in the
schedule calculation. We may even find a situation where no feasible sched­
ule exists. On the other hand, minimising the number of late jobs allows us
to guarantee that there will always be a solution even though to achieve this
certain operations might be late. Prom a practical point of view the difference
between a criterion and a constraint is only apparent to the decision maker
who initiates a schedule calculated by an algorithm.
Certain criteria are equivalent and that is why they are presented jointly:
minimising one or the other leads to the same optimal solution even if the
criterion value is not the same in the two cases. Some scheduling problems

1.5 Optimality criteria 13

have no criterion to be minimised. In this case we are deaUng with a feasi-
biUty problem, also called a decision problem: does a solution which satisfies
the constraints exist ?

We can classify criteria into two large families: '^minimaj^^ criteria, which
represent the maximum value of a set of functions to be minimised, and
''minisum!^ criteria, which represent a sum of functions to be minimised. A
summary of the criteria presented below is given in appendix A.

1.5.1 Minimisation of a maximum function: "minimax" criteria

We present "minimax" criteria which are most frequently met in the liter­
ature. The most traditional is without doubt the criterion measuring the
completion time of the whole jobs. This criterion is denoted by Cmax and is
called "makespan^\ We define Cmax = max (C^), with Ci being the comple-

i = l , . . . , n

tion time of the job J^. To simplify the notation, we write "max" for " max "
i = l , . . . , n

when there is no possible ambiguity. Cmax is the total length or duration of
a schedule, i.e. it is the completion time of the last scheduled job.

We also encounter other criteria based solely on the completion times of jobs,
such as criteria:

• -̂ max = max(Fi) with Fi = Ci — rf. the maximum time spent in the shop,
or even yet, the duration of resting, with r̂ the release date of the job Ji,

• -̂ max = max(//c): with Ik the sum of idle times on resource M/j.

Equally, we encounter in the literature criteria which are based on the due
dates d ,̂ Vz = 1, ...,n, of jobs. Notably, we find criteria:

• -̂ max = max(Li) with Li = d — di'. the maximum lateness,
• ^max = max(Ti) with Tj = max(0; Ci — di): the maximum tardiness,
• -E'max = max(£^j) with Ei = max(0; di — Ci): the maximum earliness.

Generally, fmax refers to an ordinary "minimax" criterion, which is a non
decreasing function of the completion times of jobs. This is not the case for
the criterion Emax-

1.5.2 Minimisation of a sum function: "minisum" cri ter ia

"Minisum" criteria are usually more difficult to optimise than "minimax"
criteria. This is confirmed from a theoretical point of view for certain spe-

n

cial problems ([Ehrgott, 1997]). We write "X]" for " ^ " when there is no

ambiguity. Among the minisum criteria, we meet criteria:

14 1. Introduction to scheduling

• C to designate ^J2^i ^^^^i- T^^^^ criterion represents the average com­
pletion time or total completion time of jobs.

• C to designate ^Y^WiCi^ ^ ^ J] WiCi or else "^WiCi. This criterion rep­
resents the average weighted completion time or total weighted completion
time of jobs.

• F to designate ^ S ^ i ^^ J2^i- Optimising this criterion is equivalent to
optimising the criterion C It is the same for the criterion F regarding to
the criterion C .

• T to designate ^J2'^i ^^ Z^^i- This criterion designates the average tar­
diness or total tardiness of jobs.

• T to designate ^^WiTi, vlJ^jX^^i^i ^^ S '^i^i- This criterion desig­
nates the average weighted tardiness or total weighted tardiness of jobs.

• i7 to designate ^ Ui which is the number of late jobs with Ui = 1 ii the
job Ji is late and 0 otherwise.

• U to designate ^^WiUi, ^ ^ ^WiUiOi Y^WiUi which is the weighted
number of late jobs.

• £̂ is the average earliness of jobs.
• E the average weighted earliness of jobs.

In a general way, / designates an ordinary "minisum" criterion which is usu­
ally a non decreasing function of the completion times of jobs. This is not
the case for criterion E.

1.6 Typologies and notat ion of problems

Concerning scheduling problems, we distinguish between their typology and
their notation. A typology is a classification of the problems according to
their nature. In scheduling it is usually based on the machines environment
and on the jobs particularities. A notation enables us to refer quickly to a
problem. Thus it is possible to construct a database of the set of problems
treated in the literature. The traditional notations in scheduling are clearly
based on existing typologies.

1.6.1 Typologies of problems

Different typologies of scheduling problems exist in the literature. We present
in figure 1.1a typology which generalises that of [Mac Carthy and Liu, 1993]
and which brings together the problems introduced in section 1.3.

Concerning scheduling problems, the objective is to determine a sequence on
each machine and a start time for each operation. In scheduling and assign­
ment problems with stages we can define, independently of each operation,
stages of machines. A machine belongs to only one stage. Then, we combine

1.6 Typologies and nota t ion of problems 15

Scheduling
Scheduling and

Assignment with
stages

General
Scheduling and

Assignment

Single Machine -4-

All the jobs
are mono-
operation

Non duplicated
machines

Flowshop Non duplicated

All the jobs
have the
same routing

Non duplicated Jobshop <-
• machines

All the jobs
have routings

Openshop <• Non duplicated
machines

- Parallel Machines <- Common sets of

All the jobs
are mono-
operation

Hybri^ Flowshop'

All the jobs
have the
same routing

General Jobshop

Parallel Machines
with General
Assignment

Common sets of machines
and all the jobs have the

e routing

All the jobs
are mono-
operation

All the jobs
have routings

-, . ^ . ^ Common sets of
General Openshop < :;i;^:dd^

Shop Problems with
Common sets of machines General Assignment
and all the jobs have

All the jobs
have routings

JDpenshop with
General Assignment

Fig. 1.1. Typology of scheduling problems (1)

each operation with a stage, and an operation can be processed by any ma­
chine of its stage. Therefore, we add an assignment problem to the initial
scheduling problem. We must then not only find a s tar t t ime for the oper­
ations but also an assignment of the operations on the machines. The same
is t rue for general scheduling and assignment problems where a set or pool of
machines is detailed for each operation. Of course, a machine may participate
in several pools. An operation may be processed by any machine in its pool.

The foregoing typology uses the machines environment and operations to dif­
ferentiate between problems. Other typologies exist ([Blazewicz et al., 1986]).
Notably, we can consider problems according to different characteristics (fig­
ure 1.2):

1. deterministic vs. stochastic. In the case where all the characteristics of
the problem (processing time of each operation, release dates, etc.) are
well known, we speak of a deterministic problem. Conversely, some of
these characteristics may be random variables of known probability law.
In this case we speak of a stochastic problem (see [Pinedo, 1995]).

2. unitary vs. repetitive. If the operations appear to be cyclical, we are deal­
ing with a repetitive problem. Conversely, if each operation corresponds
to a unique product the problem is said to be unitary.

3. static vs. dynamic. If all the da ta of the problem are known at the same
t ime we speak of a static problem. For some problems, a schedule may
have been calculated and being processed when new operations arrive in

16 1. Introduction to scheduling

the system. Then the foregoing schedule has to be re-established in "real
time". These problems are said to be dynamic.

Deterministic-

Stochastic

Unitary

Repetitive

Static

t
Dynamic

Fig. 1.2. Typology of scheduling problems (2)

These two typologies are complementary since it is possible to handle, for
example, a deterministic flowshop problem, whether it be unitary or static.
As we shall see in the following section, traditional notation of scheduling
problems are the mirror image of these typologies.

1.6.2 Nota t ion of problems

Two notations exist for referencing scheduling problems. Despite the fact
that the oldest was proposed by [Conway et al., 1967], the notation most
used in the literature was introduced by [Graham et al., 1979] (see a detailed
description in [Blazewicz et al., 1996]). This notation is divided into three
fields: a|/3|7.

Field a refers to the typology presented in figure 1.1 and describes the struc­
ture of the problem (see section 1.3). It breaks down into two fields: a = a ia2 .
The values of a i and a2 refer to the machines environment of the problem
and possibly to the number of available machines.

Field ß contains the explicit constraints of the problem. See section 1.4 for
some possible such constraints.

Field 7 contains the criterion/criteria to be optimised (see section 1.5). Con­
cerning a more complete presentation of the different possible criteria, the
interested reader may refer to [Rinnooy Kan, 1976]. This field is detailed in

1.7 Project scheduling problems 17

chapter 4 for the multicriteria case. Appendix A presents a summary of the
most current values which can take the fields a, /?, and 7.

[Vignier et al., 1999] propose an extension of the notation for hybrid flow-
shop problems. For these ones the field a breaks down as follows: a =

(a3af^)^ii. The values a^OTA ^ represent the configuration of each stage.
Other extensions of the notation exist. We can quote works, notably the one
of [Baptiste et al., 2001] who broaden the notation to hoist scheduling prob­
lems. When we address problems where machines are of the type ^^batch",
[Jolai Ghazvini, 1998] and [Oulamara, 2001] similarly propose an extension
of the notation.

1.7 Project scheduling problems

Project scheduling problems have been extensively studied in the literature.
They are usually separated from problems occuring in shop environments,
since they have their own particularities. Several papers review the literature
on project scheduling (see [Herroelen et al., 1998a], [Herroelen et al., 1998b],
[Brucker et al., 1999], [Kolisch and Padman, 2001], [Tavares, 2002]).

In project scheduling problems we consider the scheduling of a set of oper­
ations which are also called activities. Each operation has a processing time
and the operations are connected by precedence constraints. These ones are
usually represented by an "activity-on-the-node" network, where an edge
represents a finish-start precedence relationship between two operations. To
process the operations we distinguish between two situations.
When the operations can be performed without any resource, we meet two
classical problems in the literature. In the first one we have to compute a
schedule of the operations which minimises the completion time of the whole
project, also called makespan. In the second problem we associate to each
operation a cash flow value and we compute a schedule which maximises the
net present value of the project.
When operations require resources, we deal with a Resource-Constrained
Project Scheduling Problem (RCPSP). We can distinguish between the re­
newable resources, the non-renewable resources, the partially renewable re­
sources (these are renewable ones during a known time period) and the dou­
bly constrained resources (these are non-renewable resources with the added
limitation of consumption for known time periods). Besides, we associate to
each resource, whatever its type, a limited capacity per time unit and each
operation requires one or several resources in known amounts. In the basic
RCPSP we have only renewable resources and the problem is to minimise
the makespan. This problem is a generalisation of the jobshop scheduling
problem with makespan minimisation. We can consider extensions of this ba­
sic problem by allowing the preemption of operations, or by imposing time

18 1. Introduction to scheduling

lags between the processing of two consecutive operations. Another classical
extension of the basic RCPSP consists in defining for each operation a mini­
mum and a maximum processing time. This is related to the presence of at
least one non-renewable resource. The more we use of this resource to process
an operation, the lower is its processing time. Therefore, the exact processing
time of each operation has to be calculated. The aim is to minimise the total
requirement of the non-renewable resources, or if this total requirement is
limited, to minimise the makespan of the project. A presentation of other
classical models can be found in [Herroelen et al., 1998b].

Various extensions to the three-field notation presented in section 1.6.2 exist.
The two major are due to [Herroelen et al., 1998b] and [Herroelen et al., 2001]
for the first extension and [Brucker et al., 1999] for the second one.

1.8 Some fundamental notions

The notions which are presented in this section refer to the characterisation
of dominant sets for certain scheduling problems. We say that a subset of
schedules is dominant for a problem if and only if, whatever the data of the
problem, an optimal solution is contained in this subset. Definition 1 intro­
duces the notion of regular criterion in the case of a minimisation problem.

Definition 1
Let S be the set of solutions. A criterion Z is a regular criterion if and only
if Z is an increasing function of the completion times of jobs, i.e. if and only
if:

Vx,j/ € S, Ci{x) < Ci{y), Vi = 1, ...,n,
^Z{Cx{x),...,Cn{x))<Z{Ci{y),...,Cn{y))

For the criteria presented in section 1.5, we deduce the following result, which
is not difficult to prove.

Corollary 1
The criteria Cmax, C, C , Lmax, Tmax, T, T , U and U are regular. The
criteria Imaxj ^maxj E and E are not regular.

We distinguish four classes of schedules (figure 1.3). The schedules with in­
sertion of machine idle times constitute an interesting class for the minimi­
sation of certain non regular criteria. This is the case for many Just-in-Time
scheduling problems.

Definition 2
A schedule belongs to the class of schedules with insertion of machine idle
times if and only if before each scheduled operation, the machines are volun­
tarily left idle during a positive or null period.

1.8 Some fundamental notions 19

Fig. 1.3. Inclusion of classes of schedules

Some examples of schedules with insertion of machine idle times are presented
in figures 1.4a, 1.4b and 1.4c.

Definition 3
Let X G S be a schedule and Sx be the set of schedules having the same
sequences of operations on the machines as x. A schedule x belongs to the
class of semi-active schedules if and only if ßy G Sx such that Ci{y) < Ci{x),
Vi = 1, ...,n, with at least one strict inequality.

We note that the class of semi-active schedules is a subclass of the class of
schedules with insertion of machine idle times. We say that the semi-active
schedules are "left shifted". Figures 1.4b and 1.4c present some semi-active
schedules.

Definition 4
A schedule x e S belongs to the class of active schedules if and only if ßy £ S
such that Ci{y) < Ci{x), Vi = l,. . . ,n, with at least one strict inequality.

Active schedules are equally semi-active. Figure 1.4c presents an active sched­
ule. We say also that a schedule is active if it is impossible to start earlier the
processing of an operation without delaying another. We can note that the
definition of active schedules may be interpreted from a multicriteria point
of view: the class of active schedules is the set of solutions which are not
dominated for the n completion times Ci.

Definition 5
A schedule x E S belongs to the class of non delayed schedules if and only if
no operation is kept waiting while a machine is available to process it

Non delayed schedules are equally active schedules. Figure 1.4c presents a
non delayed schedule. One important result, presented in lemma 1, relates
regular criteria to the class of active schedules.

20 1. Introduction to scheduling

A P2|prec|C problem

Ji

J.

h
h
h
h

Pi

3

6

1

5

4

- data

M,

M2

J, AW: h J4

3£ h j ^

m
'

M
C„ -12

(a) A schedule with inserted
machine idle times

M,

M2

(b) A semi-active schedule

M,

Ma

h Vn M ^^^Ä^B

h \h\ h ^M

(c) A both active and non
delayed schedule

Fig. 1.4. Illustration of different classes of schedules

1.9 Basic scheduling algorithms 21

Lemma 1 [Baker, 1974]
For optimisation problems of a regular criterion, the set of active schedules
is dominant

Lemma 1 implies that the search for an optimal solution of the optimisation
problem of a regular criterion, may be limited to the set of active schedules.
For multicriteria problems this result remains equally true if we optimise
several regular criteria. However, it becomes invalid if at least one criterion
is not regular, since this is the case for some problems where criteria E and
T are minimised. This is the case in Just-in-Time scheduling.

1.9 Basic scheduling algorithms

This section is intended to present some of the basic scheduling algorithms
for single criterion problems. These algorithms are referred to through­
out the book. More complex algorithms can be found in books dedicated
to scheduling (see for instance [Tanaev et al., 1994a], [Tanaev et al., 1994b],
[Pinedo, 1995], [Blazewicz et al., 1996] and [Brucker, 2004]).

1.9.1 Scheduling rules

Several scheduling rules, optimal or heuristic, have been proposed in the
literature. They are very often used in heuristic applications to industrial
problems, given their simplicity and the little calculation time which they
require ([Morton and Pentico, 1993]). Among the most traditional rules, we
find the rule SPT which enables us to compute an optimal active schedule
for the 1\\C problem.
Rule SPT: {Shortest Processing Time first) sequences the jobs in increasing
order of their processing time.

The converse rule is the rule LPT {Longest Processing Time first). The 1\\C
problem is solved optimally with the rule WSPT.
Rule WSPT: (Weighted Shortest Processing Time first) sequences the jobs in
increasing order of their ratio pt/wi.

When we consider the due dates and the minimisation of criterion Lmax ? the
corresponding single machine problem denoted by l\di\Lmaxj can be solved
optimally by calculating an active schedule using the rule EDD.
Rule EDD: {Earliest Due Date first) sequences the jobs in increasing order
of their due date di.
We notice that this rule also solves the l|rfj|Tmaa; problem optimally.

Addition of the release dates r«, i = l,.. . ,n, of the jobs no longer enables
us to solve these problems optimally by simply considering an adaptation of

22 1. Introduction to scheduling

these rules. For example, the rule EST {Earliest Start Time first) sequences
the jobs in increasing order of their earliest start time, and breaks ties in
favour of the job with the smallest processing time. This rule does not solve
optimally the l | r i |C problem. Likewise, no simple sort based on the weights,
the processing times or the due dates, can solve optimally the l | r i |C and
l\ri^di\Lmax problems, since these problems aie AfV-haid.

Generalisation of these rules to parallel machines problems necessitates the
addition of a job assignment rule to the machines. In the case of identical ma­
chines, we generally use the assignment rule FAM {First Available Machine
first), which assigns a job to the first available machine. The rule SPT-FAM
solves optimally the P\\C problem by considering the jobs in the increasing
order of their processing time, and assigning them in turn to the earliest
available machine. The rules WSPT-FAM and EDD-FAM give way to the
respective heuristic algorithms for the P\\C and P\di\Lmax problems.
In the case of proportional machines, we often consider the assignment rule
FM {Fastest Machine first) which consists of assigning a job to the fastest
machine among those available. The rule SPT-FM solves optimally the Q\\C
problem. The rules WSPT-FM and EDD-FM give heuristic algorithms for
the Q\\C and Q\di\Lmax problems, respectively.

When preemption of jobs is authorised, the rule SPT-FM becomes SRPT-FM
{Shortest Remaining Processing Time on Fastest Machine first) and solves
optimally the Q\pmtn\C problem. It consists of scheduling the job with the
smallest remaining processing time, on the fastest machine among those avail­
able, preempting when necessary. The rule LRPT-FM optimally solves the
Q\pmtn\Cmax problem.

1.9.2 Some classical scheduling algorithms

Lawler's algorithm for the l\prec\fmax problem

Consider the problem where n jobs have to be scheduled on a single machine.
A set of precedence constraints between jobs is defined and no preemption
is allowed. Let fi be an increasing function of the completion time of Ji,
Vz = 1,..., n. The objective is to minimise the maximum cost function defined
by fmax = inax {fi{Ci)). [Lawler, 1973] proposes an optimal polynomial

i = l , . . . , n

time algorithm which iteratively schedules a job by starting from the last
position. At the first iteration the jobs that have no successor are candidates
and can therefore be scheduled in the last position. Notice that the completion
time of the last position is equal to P = pi +p2 + ••• +Pn- Thus, we schedule in
the last position the candidate job Ji which has the lowest cost Ci {P) among
the candidate jobs. By setting P = P — piwe can iterate this process for the

1.9 Basic scheduling algorithms 23

previous position. The complete algorithm, denoted by EELl, is presented in
figure 1.5.

ALGORITHM EELl
/* T is the set of jobs to schedule */
5 = 0;

n

i=i
For i = n down to 1 Do

F = {Ji eT/Ji has no successor in T};
If (F = 0) Then

I The problem is not feasible;
End If; _ _
Let Jee Fhe such that fe{P) = min {fk{P));

/* Break ties by choosing the job with the greatest processing time */
S={Je}//S;
T = T-{Jeh
Ce=_P;
P = P-pe',

End For;
Print 5;

[Lawler, IQTäT

Fig. 1.5. An optimal algorithm for the l\prec\fmax problem

Moore's algorithm for the l|di|f/ problem

Consider the problem where n jobs have to be scheduled on a single machine
and each job Ji has a due date di. No preemption is allowed. The objective
is to minimise the number of late jobs, denoted by U. [Moore, 1968] provides
an optimal polynomial time algorithm to solve this problem. It starts with
the schedule obtained by the rule EDD. Let Jk be the first tardy job in this
schedule, i.e. all jobs scheduled before are early or on time. Moore's algorithm
puts Jk on time by removing the preceding job with the greatest processing
time. The latter is scheduled late and is not considered anymore. This process
is iterated until we have no late jobs in the schedule, except those which have
been previously removed and voluntarily put late. The number of late jobs
is equal to the number of removed jobs. The algorithm, denoted by EJMl, is
presented in figure 1.6.

24 1. Introduction to scheduling

ALGORITHM EJMl
/* T is the set of jobs to schedule */
/* We assume that c?i < (̂ 2 < ... < ĉn */
S = (Ji, J2,..., Jn);
Tardy = 0;
While {3Je € S such that d > de) Do

Let k be such that Cs[k] > ds[k] and Vi < A;, Cs[i] < ds[i]':
Let j be such that j < k and P5[j] = max {ps[i])'i

i=l,...,k

S = S-{Jj};
Tardy = Tardy//{Jj};

jEnd While;
U=\Tardy\\ _
Print S//Tardy and [/;

[Moore, IQGST

Fig. 1.6. An optimal algorithm for the l|c?i|[7 problem

Johnson's algorithm for the F2\prmu\Cmax problem

Consider a two-machine flowshop problem where n jobs have to be scheduled.
They first have to be processed on machine Mi and next on machine M2.
As the makespan criterion is a regular criterion we are restricted to the set
of permutation schedules which is a dominant set. [Johnson, 1954] proposes
a sufiicient condition of optimality and derives an 0(nlog(n)) time optimal
algorithm. It proceeds by scheduling first the jobs such that pi^i < pi^2 ac­
cording to the increasing order of the Pi,i's. The remaining jobs are scheduled
last according to the decreasing order of the Pi,2's. This algorithm, denoted
by ESJl, is presented in figure 1.7. It is often also referred to as algorithm J.

ALGORITHM ESJl
7* T is the set of jobs to schedule */
Let U = {Jie T/pi,i < pi,2};
Let V = {Jie T/pi,i > pi,2};
Sort U by increasing values of the values pi,i;
Sort V by decreasing values of the values pi,2;
S = U//V;
^max ^̂ y^max\^)i
Print S and C:i:riax'',

[Johnson, 1954]

Fig. 1.7. An optimal algorithm for the F2\prmu\Cmax problem

1.9 Basic scheduling algorithms 25

Campbell, Dudek and Smith's heuristic for the F\prmu\Cmax prob­
lem

Consider a flowshop problem where n jobs have to be scheduled on m ma­
chines. The jobs have the same routing, and we assume that they are first
processed on machine Mi, next on machine M2, etc. Even if the set of per­
mutation schedules is not dominant for this problem, [Campbell et al., 1970]
restrict to this set and propose an heuristic to minimise the makespan crite­
rion. This algorithm proceeds by building (m—1) fictitious two-machine prob­
lems and by solving each one using Johnson's algorithm ([Johnson, 1954]).
Therefore at most (m — 1) distinct permutation schedules are built. The best
one regarding the m-machine problem is retained. This detailed heuristic,
denoted by HCDSl, is presented in figure 1.8.

ALGORITHM HCDSl
/* T is the set of jobs to schedule */
/* J refers to Johnson's algorithm */
For 7 =: 1 to (m - 1) Do

/* Building of a fictitious two-machine problem */
j m

Pi,i = ^Phk and p-,2 = XI ^*'^'
fc=l k=m—j-\-l

Let 5^ be the sequence obtained by algorithm ESJl on
the fictitious problem;

End For:
Let S^ be the schedule such that Cmax{S^) = min (Omax(»^))5

i= l , . . . , (m- l)

/* Notice that the makespan is calculated by considering the m machines */
Print S^ and Cmax(S^);

[Campbell et al., 1970]

Fig. 1.8. An heuristic algorithm for the F\prmu\Cmax problem

Nawaz, Enscore and Ham's heuristic for the F\prmu\Cmax problem

[Nawaz et al., 1983] consider the same permutation flowshop problem as the
one of Campbell, Dudek and Smith. They propose an heuristic based on a job-
insertion scheme. Initially, the jobs are sorted by decreasing sums of process-

771

ing times on the machines, i.e. by decreasing order of the values /]pi,j' The

heuristic considers only the two first jobs and retains the permutation sched­
ule, among the two possible ones, which has a minimal value of criterion
Cmax' This is the starting partial schedule. It next inserts the third job of

26 1. Introduction to scheduling

the initial sorting, by trying all the possible positions in the partial schedule.
The one which has a minimal makespan value is retained. This process is
iterated until all the jobs are scheduled. The heuristic is presented in figure
1.9. Other classical algorithms for flowshop scheduling problems can be found
in [Proust, 1992].

ALGORITHM HNEHl
/* T is the set of jobs to schedule */

m m

/* We assume that y jp i , i ^ ••• > Y^Pn.j */

Let S be the best permutation schedule among (Ji, J2) and (J2, Ji);
For i = 3ton Do

/* Insertion of job Ji */
Vfc = 1,..., |5| , 5̂ ^ is the partial schedule with job Ji inserted

in position k in S;
V£ = 1,..., \Sl let S^ be such that Cmax{S^) = _min {Cmax{S^))]

End For;
Print S and CmaxjS);

[Nawaz et aL, 1983]

Fig. 1.9. An heuristic algorithm for the F\prmu\Cmax problem

Sahni's algorithm for the P\pmtn/di\— problem

Consider a scheduling problem where n independent jobs have to be scheduled
on m parallel identical machines. Preemption of jobs is authorised but no job
can simultaneously be processed b^ more than one machine. Each job Ji
has associated with it a deadline di and the aim is to compute a feasible
schedule, if it exists. [Sahni, 1979] proposes an optimal algorithm to solve
this problem. This algorithm, denoted by ESSl, is presented in figure 1.10.
Notice that this problem can also be solved by reducing it to a network flow
problem ([Horn, 1974]).

1.9 Basic scheduling algorithms 27

ALGORITHM ESSl

/* We assume that rfi > ... > dn */
/* Cj^: the completion time of the last job on Mj
C f = 0,Vj = l , . . . ,m;
For i = 1 to n Do

/* We schedule job Ji */
Let L = {j/Cf < di}',
If ((L = 0) or (di - min(Cf) < pi)) Then

Print "No feasible schedule exists";
END

End if;
Let A; G L be such that Cjf = max-,eL(CJ^);
If (di - C f > Pi) Then

Vj: . ,m */

End For;

Else

/* Job Ji is entirely scheduled on Mj */

c^ cf + Pi\

End If;

/* Job Ji is processed by more than one machine */
Let Li = {j e L/di - Cf < Pi};
Let La = {j € L/di - Cf > pi};
Let a € 1/2 be such that C^ = maxj^LiiCi^);
Let /? 6 Li be such that Cp' = min^gii {Cj);
C^ = C^ + {pi-di+C^);
Cß = di]

Print the calculated schedule;
[Sahni, igTOf

Fig. 1.10. An optimal algorithm for the P\p7ntn,di\— problem

2. Complexity of problems and algorithms

This chapter presents an introduction to the theory of complexity. Decision
problems, optimisation problems, couting problems and enumeration prob­
lems are defined, and complexity classes associated to these problems are
introduced. These classes aim at qualifying the diSiculty of solving prob­
lems. We first start with some considerations on the complexity of solution
algorithms.

2.1 Complexity of algorithms

The complexity of an algorithm lies in estimating its processing cost in time
(time complexity) or in the required space memory (spatial complexity). Set
apart for certain particular algorithms, as for example dynamic programming
algorithms which usually take up a lot of memory space, spatial complexity
has been less considered than time complexity. In both cases it is possible
to propose a theoretical complexity and a practical complexity. Theoretical
complexity reflects an independent estimate on the machine which processes
the algorithm. It is less accurate than the practical complexity which enables
us to calculate the cost of the algorithm for a given computer. For the latter
case, time complexity is obtained using an estimation of the calculation time
for each instruction of the program. The advantage of theoretical complexity
is that it provides an estimation independent of the calculation time for the
machine.

In the remainder of this section we use the term complexity to refer to the time
complexity of an algorithm. This complexity is established by calculating the
number of iterations done by the algorithm during its processing. The number
of iterations depends on the size of the data, noted Length, and possibly the
magnitude of the largest element, noted Max, belonging to these data. If
the number of iterations is bounded by a polynomial function of Length
then the algorithm is of polynomial complexity. If this function is limited
by a polynomial of Max and Length, then we say that the algorithm is of
pseudo-polynomial complexity. In other cases the algorithm is said to be of
exponential complexity.

30 2. Complexity of problems and algorithms

More precisely, we can distinguish minimal, average, and maximal complex­
ities in order to translate complexity in the best case, the average case or
in the worst case respectively. These latter two actually are interesting and
the easiest to calculate is maximal complexity. On the other hand, average
complexity requires a statistical analysis of the processing of the algorithm
by function of the input data .

Example.
We can illustrate these notions by the example presented in figure 2.1. The maxi­
mum number of iterations is equal to n and the minimum number to 1. The average
complexity itself depends on the probability p that the element is found in a given
position. We suppose that this probability follows a uniform law, i.e. p = ^ . Thus,
the average complexity is equal to p(l + 2 + 3 + ... + n) = \^ = ^ ^ . We notice
that the calculation is only valid if we are sure that the element belongs to the list.
In the opposite case, the calculation of the average complexity is even more com­
plicated as it causes the law of generation of the elements of the list to intervene.

Search for an element belonging to a list
/* elt the searched element */
/* n is the list size */
/* list is the list of elements */
/* We assume that elt belongs to the list */
i = 0;
While {elt ^ list\i]) Do

z = i-h 1;
End While;

Fig. 2 .1 . Search for an element in a non sorted list

To calculate the complexity of an algorithm, it is possible either to count the
number of iterations, as we have done in the above example, or to break up
the algorithm into sub-algorithms of known complexity. In this latter case,
we can multiply or add the complexities according to the structure of the
program. By using the above example, we can propose an algorithm which
searches k elements in a list. Its average and maximal complexities are then of
the order of fe x n. In the case of spatial complexity, the calculation cannot be
performed on the algorithm itself -we cannot count the number of iterations-
but rather on the da ta it uses.

The theoretical complexity of an algorithm is usually a function of Max, of
Length and of addition and multiplying constants. Very often, we resume this
complexity by the expression of the term which gives its asymptotic value. For

2.1 Complexity of algorithms 31

example, if the maximal complexity of an algorithm is Max^ + a x Length + c,
we say that it is in 0{Max^ + Length). More precisely, the notation 0(6)
means that the complexity has an upper limit set by a linear function in b
whereas the notation 0(6) enables to specify that the complexity is equiv­
alent to 6. The simplification by the notation 0(6) may lead to paradoxical
situations. In effect, an algorithm A in 0{Max'^) may be slower than an
algorithm B in 0(2^^^) for certain problems. Let us take, for example a
scheduling problem where Max is the number of jobs n and let us suppose
that the complexity of the algorithm A is 2^^°^n^ and that of the algorithm
B is 2'^. It is then obvious that for n < 1000, the algorithm A causes more
iterations than the algorithm B. This remark does not imply that the theo­
retical complexity of an algorithm is lacking in interest. Indeed, algorithm A
remains more sensitive to the calculating machines than algorithm B since
between two machines of different power, algorithm B attaches little differ­
ence regarding the size of the largest problem it can solve, which is not the
case with algorithm A,

We give in table 2.1 the complexities of the best algorithms available to solve
some classical problems. Notice that for those examples the average complex­
ity is equal to the maximal complexity.

Table 2.1. Some types of algorithms and their complexity

Algorithm t o . . .
Search an element belonging
to a list of n elements
Add an element in a non
sorted list of n elements
Add an element in a sorted
list of n elements
Perform a dichotomic search
in an interval [min; max] of
integer values
Sort a list of n elements (fu-

1 sion sort)

Maximal
complexity

0(n)

0(1)

0{n)

0(log(max — min))

0(nlog(n))

The complexity of a well written algorithm may sometimes be improved to
the detriment of the spatial complexity: it is possible to reduce the compu­
tational time of an algorithm by increasing the size of the data. However,
such a step often leads to adding new functions uniquely dedicated to the
management of these data.
So, the equilibrium to find is between the size of the used data and the com­
plexity of the algorithm. It is clear that this complexity cannot be indefinitely

32 2. Complexity of problems and algorithms

broken down in order to get at the end an algorithm which complexity is null.
Solving a problem implies a minimum algorithmic complexity. But what is
the minimum algorithmic complexity required to solve a given problem ? The
algorithm provided in figure 2.1 solves the problem of searching an element in
a non sorted list in 0{n) time, which is equivalent to say that it is solvable in
a polynomial time of the size n. Can we guarantee that this is the case for any
problem, i. e. there always exists a polynomial time algorithm to solve it ? If
the answer to this vaste question is yes then all problems are easy to solve: we
just have to find the correct algorithm and solve it. Otherwise it means there
are some problems which are intractable: do not think about solving in poly­
nomial time these problems. In this case we are only able to solve small-size
problems; for the bigger one we should let the computer running for hundred
years ! Unfortunately we do not know the answer to the above question. This
is quite confusing: given a problem on which we try unsuccessfully to design
a polynomial time algorithm, must we continue in this way or should we give
up because such an algorithm does not exist? Complexity theory provides
useful elements to establish the complexity of problems. This theory assumes
that there are some problems which can be solved in polynomial time whilst
others cannot. Given this, complexity classes exist which help in deciding if
we must look for a polynomial time algorithm or not. This is the matter of
the next section.

2.2 Complexity of problems

Complexity theory proposes a set of results and methods to evaluate the
intrinsic complexity of the problems. A problem belongs to a class of com­
plexity, which informs us of the complexity of the "best algorithm" able to
solve it.
Hence, if a given problem is shown to belong to the class of "easy" problems
then it means that we are able to exhibit a polynomial time algorithm to
solve it. Usually this is a good news but unfortunately this does not often
happen for complex problems. Accordingly, if a problem belongs to the class
of hard problems, it cannot be solved in polynomial time which, said dif­
ferently, implies that for some instances the required CPU time to solve it
becomes "exponential".
Along the years, numerous complexity classes have been defined and can be
separated depending on the type of problems they address to. Basically we
distinguish between decision problems, search and optimisation problems,
and counting and enumeration problems. In this section we present these
kinds of problems and provide the existing complexity classes. Notice that
counting and enumeration problems are not often considered in the literature.

2.2 Complexity of problems 33

2.2.1 The complexity of decision problems

Complexity theory brings our attention to decision problems. Basically, the
complexity classes presented in this section have been firstly dedicated to
such problems. Complexity theory is based, at the roots, on language theory
and Turing machines but can be presented less formally in terms of algo­
rithms. The reader interested in a very detailed presentation of complexity
theory is referred to [Garey and Johnson, 1979] or [Papadimitriou, 1995].

Let us first define a decision problem .

Decision problem 77:
• Input data , or instances, noted I. The set of all the instances is noted

• Question such that for each instance I G D77, the answer R € {yes\ no).

The set of instances / for the problem 77, for which the answer to the question
is yes^ is noted Yn- It is possible to propose a grammar G equivalent to the
problem 77, by encoding all the instances by an encoding scheme e (see figure
2.2). For example, with the binary coding scheme all the terminal and non
terminal elements will be binary numbers. With set Y/j of the decision prob­
lem, we can associate a set of chains produced by the grammar: the language
7/(77, e). Thus, we have transformed the decision problem into a grammar. If
the answer to the question is yes for an instance, then the chain correspond­
ing to this instance belongs to the language L{n,e). In order to know this,
we propose a Turing machine. Taking the input chain, this machine exits in
an accepting state if the chain belongs to L(77, e). We see that for the deci­
sion problem this Turing machine is equivalent to a "^o/t'e" procedure which
returns true or false. The complexity of a decision problem thus depends on
the "best" Turing machine which we can propose. The encoding scheme used
influences equally the efiiciency of the proposable Turing machine. In general,
we consider a reasonable encoding, i.e. which does not pointlessly complicate
the obtained grammar. For all reasonable encoding schemes, the proposable
Turing machines are judged equivalent ([Garey and Johnson, 1979]).

Before introducing the classes of problems, we must define for the decision
problem 77 two functions: Length[I] and Max[I], with 7 € Dn- The func­
tion Length represents the size of the instance 7, i.e. the length of chains
produced by the grammar G. The function Max enables us to know the
magnitude of the instance 7. In general, we consider that this function re­
turns the magnitude of the largest integer, if it exists, occurring in 7. For
example, if 7 = {3; 4; 6; 8; 14}, we have Length[I] = 5 and Max[I] = 14.
The functions Length and Max are supposed to be calculable in polynomial
time. It is then possible to define several classes of problems according to
the difläculty in finding an answer to the decision problem. The definition

34 2. Complexity of problems and algorithms

Decision problem n

Answer Answer
Yas No

Solve (I)

Using an encoding
scheme e we can

provide a;
which corresponds
to the instances of

>

<

The existence of a
Turing machine is

J

Grammar G

We refer to UJ\,e) as the
language associated to the
chains produced by G and
which correspond to the

«ofYn

We search a Turing
machine able to
decide if a chain
produced by G
belongs to UJl,e)

V
I I I I I M I I I I I M I I

equivalent to the
existence of a
decision algorithm
for problem n I I I I I | T I I I I I I I

A Turing machine

Fig. 2.2. Decision/grammar duality problem

of these classes requires the notion of deterministic and non deterministic
Turing machines ([Hopcroft and Ullman, 1979]).

Definition 6
A decision problem U belongs to the class V if the following holds: an encoding
scheme e exists, such that for all instances I of 11, we can construct for
the corresponding grammar a one-tape deterministic Turing machine, capable
of checking if the chain corresponding to I belongs to the language. This is
equivalent to a ^^yes" answer to the decision problem U. In this case the
resolution time is a polynomial function of Length[I],

This definition does not prevent the number of possible solutions from being
exponential. We simply have the equivalence: a decision problem iJ is in 7̂ if
and only if an algorithm exists which enables us to calculate in polynomial
time a solution which has the answer yes. Not all decision problems belong to
the class V. A more general class exists, which is introduced in the following
definition.

Definition 7
A decision problem 77 belongs to the class AfV if a non deterministic poly­
nomial one-tape Turing machine exists which reaches an accepting state in
a finite number of iterations when it takes upon entry a chain of language
L{n, e). The number of iterations is upper bounded by a polynomial function
of Length.

2.2 Complexity of problems 35

A non deterministic polynomial one-tape Turing machine can be seen as
a Turing machine having two modules: a divination module allowing us to
construct a solution and an evaluation module capable of calculating if the
answer R is yes in a time which is a polynomial function of Length. Obviously,
we have V C J\fV. A conjecture in complexity theory which has never been
demonstrated to this day, rests on the non inclusion ofAfV in V. We suppose
in the following that V ^ ÄfV, which implies that decision problems which do
not belong to V exist. This leads to the definition of the class AfVC of AfV-
complete problems, which is a sub-class of ÄfV. For this we must introduce
the notion of polynomial reduction (or transformation), denoted by oc.

Definition 8
A polynomial reduction oc of a decision problem 11' towards a decision prob­
lem n is a function such that:

• V/' instance of U', a {!') is an instance of 11 and is calculable in polyno­
mial time.

• MI' instance of 11', the answer for the instance I' is yes for the problem
n' if and only if the answer for the instance oc (/') is yes for the problem

n.
This means that a deterministic one-tape Turing machine exists, which is
capable of calculating oc starting with a chain x generated by the grammar
G. Moreover, x € L{n',e') ^ a {x) € L{n,e).
If we consider two decision problems 77 and IT', 11' oc 11 means that the
problem IJ' reduces polynomially towards the problem 77, which implies that
n is at least as difficult to solve as 11'.
A polynomial reduction, or transformation, of a problem U' towards a prob­
lem 77 can be seen as a function (in the algorithmic sense) which:

1. solves 77', i.e. which is able to verify if an instance I' of 77' leads to an
answer yes.

2. to solve 77', transforms in polynomial time the instance 7' in an instance
7 of 77, and calls a resolution function of 77. The answer returned by this
last function is the answer to the problem 77'.

Definition 9
A problem U is MV-complete if and only if 11 £ MV and \in' G MV, 3 oc
such that n' oc n.

This definition implies that the class MVC of ATP-complete problems contains
the most difficult problems to solve. Indeed, if an A/^P-complete problem 77
is solvable in polynomial time, then all the problems of MV are so since all
reduce to 77, and therefore V = MV. We say that an ATP-complete problem
is solvable in polynomial time if and only if V=J\fV. The first problem to
have been demonstrated A/'P-complete is due to [Cook, 1971]. In practice, to
demonstrate that a problem 77 is A/'T^-complete, it is sufficient to demonstrate
either that:

36 2. Complexity of problems and algorithms

1. i7 G NV and that a polynomial reduction oc and an ATT^-complete prob­
lem n' exist such that i J ' a 77, or that

2. there exists an ATP-complete sub-problem 11' of 77. 77' is a sub-problem
of 77 if and only if:
• 77 and 77' have the same question.
• the set of instances of 77' is included in the set of instances of 77.
• the set of instances of 77' for which the answer is yes is included in the

set of instances of 77 for which the answer is yes.

In the class of A/^T^-complete problems we can distinguish two types of prob­
lems: problems ATP-complete in the weak sense (or ordinary sense) and prob­
lems A/'T'-complete in the strong sense.

Definition 10
A problem 11 is weakly MV-complete if it is MV-complete and if it is possi­
ble to find an algorithm to solve it such that its complexity is a polynomial
function of Max[I] and of Length[I], V7 instance of 11. We say then that 77
is solvable in pseudo-polynomial time.

If an A/''P-complete problem 77 is such that p a polynomial function of Length
exists, for which V7 instance of 77, Max[I] < p{Length[I]), then 77 cannot
be solved by a pseudo-polynomial time algorithm. Otherwise, this pseudo-
polynomial algorithm would be a polynomial algorithm, which contradicts
the fact that 77 is jVT^-complete. If such a polynomial p exists, then we say
that 77 is A/^'P-complete in the strong sense. If p does not exist, then 77 is
called a number problem.

More precisely, the definition of strong ATP-completeness can be introduced,
extending this result.

Definition 11
Let n be a decision problem and p a polynomial defined over a set of integer
values. We define lip the sub-problem of 11 which is such that:

1. The set of instances of lip, denoted by D^, is included in Dn-

2. yi eD^jj, Max[I] < p{Length\i]).

The problem 11 is AfV-complete in the strong sense if:

L n eNV.
2. A polynomial p exists such that Lip is MV-complete.

A decision problem 77 is weakly ATP-complete if we can show either that:

1. 77 is A/'P-complete and there exists an algorithm that solves it requiring
a computational time upper bounded by a polynomial of Max[I] and
Length[I] for every instance 7, or that

2. 77 is A/'P-complete and a polynomial reduction ex of 77 exists towards a
weakly ATT^-complete problem 77', or that

2.2 Complexity of problems 37

3. 77 is A/'T^-complete and iJ is a sub-problem of a weakly jVP-complete
problem.

It is diflFerent to show that a problem is strongly ATP-hard. As for proving
A/'P-completeness in the weak sense, suppose that we have a known strongly
AfV-couiplete problem U' and a polynomial time reduction oc such that 77' oc
77. It is not possible to conclude that 77 is strongly A/^P-complete for the
following reasons. We note D^ = {a {1')^!' G Dn'}- Two cases can occur:

1. A polynomial p exists such that V7 € DJj^ Max[I] < p{Length[I]).
2. A polynomial p does not exist such that V7 € 7>^, Max[I] < p{Length[I]),

In the first case, the corresponding problem 77p is necessarily strongly J\fV-
complete, otherwise we have found a polynomial time algorithm to solve
problem 77'.
In the second case, 77p is a number problem. Thus, we cannot decide if 77 is
strongly A/'P-complete. Therefore, to establish strong ATT^-completeness we
have to consider special reductions. A pseudo-polynomial reduction is one
such special reduction and is defined below.

Definition 12
A pseudo-polynomial reduction from a decision problem 77' towards a decision
problem 11 is a function ocs such that:

1. V7' G Dw, r G Yw if and only if ocs (7') G Yn-
2. (Xs can be calculated in polynomial time of Max[r] and Length[r].
3. It exists a polynomial qi such that MI' G Dn',

qi{Length[(Xs (7')]) > length'[r].
4' It exists a polynomial q2 such that V7' G Dn',

Max[(Xs (7')] < q2{Max'[riLength'[r]),

Conditions 3 and 4 of the above definition ensure that with the instances
built by (X5, 77p does not correspond to a number problem. Thus, it enables
us to prove that if problem 77' is strongly A/'P-complete, then problem 77 is
also.

To demonstrate that a decision problem 77 is strongly A/''P-complete, it is
thus sufficient to show that either:

1. 77 G Afp and that a strongly ATT^-complete problem 77' and that a
pseudo-polynomial transformation oCs exist such that 77' oCs 77, or that

2. 77 is ATP-complete and that a polynomial p exists such that V7 instance
of 77, Max[I] < p{Length[I]), or that

3. 77 G AfV possesses a strongly A/^P-complete sub-problem.

38 2. Complexity of problems and algorithms

2.2.2 The complexity of optimisation problems

We now turn to a more general class of problems for which the aim is not
to decide on the feasibility of an instance but to calculate a solution to that
one. These problems are generally referred to as search problems. A search
problem SP is more formally defined as follows.

Search problem SP:
• Input data, or instances, noted I. The set of instances is noted Dsp^
• A set of solutions 5/ for each instance / G Dsp^ defined by means of

the question.

An algorithm is said to solve a search problem if, given an instance / G Dsp^
it returns the answer "no" if Si is empty and otherwise returns a solution
s E Sj. A decision problem U can be considered as a particular search prob­
lem for which Sj = {yes} if / € l / j and 5/ = 0 otherwise.

However, we do not usually search for an arbitrary solution in 5/ but for a
solution which optimises a given objective function. In this case, the search
problem turns to an optimisation problem and the aim becomes to calculate
any optimal solution. Formally, an optimisation problem O is defined as fol­
lows.

Optimisation problem O:
• Input data, or instances, noted / . The set of instances is noted Do^
• For each instance / € Do, a set of optimal solutions 5 / , i.e. solutions

which optimise a given objective function (also called criterion).

An algorithm is said to solve an optimisation problem if, given an instance
/ G Do, it returns the answer ^^no^^ if 5 / is empty and otherwise returns an
optimal solution 5 G 5/ .

It is not difficult to associate a decision problem with an optimisation prob­
lem by searching for a solution which has a better value than a given bound
K. Henceforth, the question of the decision problem is '^Does a solution exist
with a criterion value lower than K ?', with K an input of the problem. If
this decision problem is A/'T^-complete, then at least so is the optimisation
problem. Starting from the results presented in section 2.2.1 it is possible to
derive straight complexity classes for optimisation problems. This is achieved
by using a generalisation of polynomial reductions: the polynomial Turing
reductions.

A polynomial Turing reduction OCT of a problem O towards a problem O',
from the algorithmic point of view, is an algorithm A which verifies the
following three properties:

2.2 Complexity of problems 39

1. A solves O, i.e. calculates for an instance / a solution of Sj if it exists.
2. A uses a procedure S which solves the problem 0\
3. If 5 solves the problem O' in polynomial time, then A solves O in poly­

nomial time.

The complexity of the procedure S is not important in defining the polyno­
mial Turing reduction. What matters is that if S is polynomial then A is
also. We notice that the notion of polynomial Turing reduction generalises
the notion of polynomial reduction in the sense that procedure S can be used
iteratively. In the remainder of this chapter we denote by OCT any polynomial
reduction or polynomial Turing reduction, if there is no ambiguity.

Definition 13
An optimisation problem O is J\fV-hard if another optimisation problem O'
AfV-hard and a polynomial Turing reduction ofO' towards O exist. The prob­
lem O is at least as difficult to solve as the problem O'.

This definition is also true if O' is an A^T^-complete decision problem, and
the reduction used a polynomial reduction. We say that an ATP-hard problem
cannot be solved in polynomial time unless V=NV.

An optimisation problem O is ATP-hard if we can show that:

1. A polynomial Turing reduction OCT and an ATT -̂hard optimisation prob­
lem O' exist such that O' OCT O.

2. A polynomial Turing reduction OCT (which is not a simple polynomial
reduction) and an ATT^-complete decision problem 11' exist such that
n' OCT O,

3. O contains an ATP-hard sub-problem.

Similarly we can demonstrate that a problem is weakly MV-hoxd. Besides,
we can deduce the following property.

Property 1
Let us consider two optimisation problems O and O'. If

1. yr instance of Do', 3 / an instance of Do such that Sj C Sp.
2. I can be constructed in polynomial time starting with V.

then a polynomial Turing reduction exists such that O' OCT O.

Considering strong A/'T^-hardness, similar results to those for proving strong
A^'P-completeness have to be stated. Thus polynomial Turing reductions
are not sufficient to prove strong A/'P-hardness, and similarly the notion of
pseudo-polynomial Turing reduction must be considered.

A/'T^-hardness is definitely a general complexity state, an AfV-hdud problem
being at least as hard as any problem in class ÄfV. The class of AfV-hdiid

40 2. Complexity of problems and algorithms

problems is not a class specifically dedicated to optimisation problems and
even decision problems can belong to it. For instance, the Kth largest subset
problem (see [Garey and Johnson, 1979] for a formal definition) is a decision
problem which cannot be proved to belong to class ÄfV but which can be re­
duced from Partition problem. Consequently, the Kth largest subset problem
is not A/'P-complete but AfV-haid.
The central question is whether an optimisation problem can belong to J\fV
or not. If so, it is straightforward that AfV-hard optimisation problems are
AT'P-complete and the complexity classes introduced for decision problems
are relevant for optimisation problems. But, the definition of class AfV im­
plies that given a solution, we are capable of checking in polynomial time if
it is optimal or not. Henceforth, except for polynomialy solvable problems,
there are few chance that an optimisation problem belongs to AfV since of­
ten this checking step is as hard as solving the optimisation problem itself.
This is the main reason why, in the literature, complexity of "hard" opti­
misation problems is often established in term of AfV-handness instead of
TVP-completeness. It is remarkable that for optimisation problems, notably,
the class MVO has been introduced to overcome that unsuitability of class
MV. A problem belongs to class MVO if any solution can be evaluated, ac­
cording to the criteria, in polynomial time. And we still have V C MVO,
Henceforth, it can be easily seen that a ATT -̂hard optimisation problem is
ATPO-complete. More formally, the completeness inside class MVO is, at
the lower level, defined by mean of an straigth extension of the polynomial
reduction introduced for class MV. Henceforth, a polynomial reduction be­
tween an optimisation problem O' towards an optimisation problem O can
be seen as an algorithm capable of changing, in a time bounded by a poly­
nomial of Lengthy every instance of V of O' into an instance / of O. Besides,
this reduction can also change in polynomial time any solution for instance
/ into a solution for instance / ' . A particular polynomial reduction, namely
the AP-reduction, already enables to define the completeness of class MVO
(see [Ausiello et al., 1999]). This reduction has been originally introduced in
the context of approximation algorithms.

2.2.3 The complexity of counting and enumeration problems

In terms of complexity, when we introduced the complexity classes dedicated
to decision or optimisation problems, we were only interested in deciding of
the feasibility or finding one solution. Not to count the number of solutions
to the problem, nor to enumerate them. In the literature we commonly dis­
tinguish between the problem of counting the number of solutions and the
problem of enumerating them. The latter is also referred to as a generation
problem. In this section we consider the counting and enumeration problems
associated to optimisation problems, even if we can also define versions asso­
ciated to decision problems. It is quite natural to think that the enumeration

2.2 Complexity of problems 41

of optimal solutions is at least as hard as the calculation of one optimal so­
lution. For instance, if the latter is a strongly A/^T^-complete problem, the
former is so. But, can the enumeration be even harder ? Is there any addi­
tional complexity classes dedicated to the enumeration of solutions?

And what about the counting problem? A trivial way to count the number
of solutions would be to solve the enumeration problem and to count the
number of calculated solutions. Henceforth, we can informally derive that
enumeration is at least as hard as counting, since when the enumeration is
performed the counting of solutions can be polynomially done whilst the con­
verse is false. We first focus on the complexity of counting problems before
considering the complexity of enumeration problems.

Let us define the counting problem, denoted by C, associated to an opti­
misation problem O as follows:
Counting problem C

• Input data, or instances, denoted by 7. The set of all the instances is
denoted by Do,
• Counting question: how many optimal solutions to the objective of prob­
lem O exist ?

A counting problem is basically different from a search, an optimisation or
even a decision problem since the outcome is not a solution or a state but
a number: counting problems are function problems whilst the other men-
tionned are set problems. [Valiant, 1979a] introduced a general complexity
class, which could merely be seen as the equivalent of class J\fV but for
counting problems. Besides, Valiant considered the counting problems asso­
ciated to decision problems. The following definition is a straight adaptation
of this class when dealing with counting problems associated to optimisation
problems.

Definition 14
Let e be any reasonable encoding scheme. A counting problem belongs to the
class # P if a non deterministic polynomial Turing machine^ with au auxiliary
output device, exists which prints the number of accepting states in a finite
number of iterations when it takes upon entry a chain of language L{0,e).
It is required that the number of iterations induced by the longest verification
of a solution is upper bounded by a polynomial function of Length.

Informally speaking, this definition states that a counting problem is # P if
the corresponding decision, search or optimisation problem belongs to ÄfV or
AfVO, as soon as any solution to the problem can be checked in polynomial
time. As in the case of class AfV it is possible to establish subclasses of
counting problems.

Definition 15 See for instance [Vadhan, 1995]
We denote by J^V C # P the class of polynomially solvable counting problems.

42 2. Complexity of problems and algorithms

Class # P is not assumed to be limited to class J^V. Among the counting
problems in # P there are those supposed to be "at least as hard as" all others
belonging to # P . Before formally introducing this, we define parsimonious
reductions.

Definition 16 See for instance [Ehrgott, 2000a]
A parsimonious reduction, denoted by occ, from a counting problem C^ to­
wards a counting problem C^ is a polynomial time reduction such that the
number of optimal solutions of every instance I of C^ is the same as the
number of optimal solutions of the instance occ {I) of C^.

Definition 17 [Valiant, 1979a]
A counting problem C is ^P-complete if C E # P ; and VC G # P , 3 occ
such that C occ C. The class of 4fP-complete problems is denoted by #PC.

It is clear from the above definition that the class of #P-complete prob­
lems contains the hardest counting problems, as it was the case for the class
of A/^PO-complete optimisation problems. For this reason, study of # P -
completeness for counting problems has attracted a lot of attention since
the seminal work of Valiant in 1979. A list of #P-complete problems is
notably given by [Vadhan, 1995], [Valiant, 1979a] and [Valiant, 1979b]. It
is remarkable that decision problems reduce to their counting counterpart
([Vadhan, 1995]), i.e, if a decision problem is ATP-complete then the asso­
ciated counting problem is A/'P-hard. More precisely it is #P-complete: as­
sume that for a A/'P-complete decision problem we could count in polynomial
time the number of "yes" answers, then we would have shown that V—MV.
However it appears difficult to establish the same links for A/'PO-complete
optimisation problems and their counting counterparts, since knowing the
number of solutions does not necessarily helps in finding one solution.

To achieve this general overview of #P-completeness, we point out that a
counting problem C is #P-hard if another #P-complete problem C reduces
to it by means of a polynomial Turing reduction, and if C has not been
shown to be in # P . Notice that if C can be shown to be in # P then it is
#P-complete. Also notice that to show a counting problem C is #P-complete
it is sufficient to show that there exists a parsimonious reduction occ and a
#P-complete counting problem C such that C occ C (class # P is closed
under parsimonious reductions). When considering counting problems asso­
ciated to known decision or optimisation problems it is often interesting to
first examine existing reductions between these problems in order to deter­
mine if they are parsimonious. For example, consider the decision version of
the classic knapsack problem, denoted by KP and the decision version of the
bicriteria shortest path problem, denoted by BSPP. [Serafini, 1987] proves
that BSPP is A/'P-complete by providing a polynomial reduction from KP
to BSPP. This reduction can be shown to be parsimonious and as the count­
ing problem associated to KP is #P-complete ([Ehrgott, 2000a]) then the

2.2 Complexity of problems 43

counting problem associated to BSPP is also #P-complete. [Simon, 1977]
observed that many polynomial reductions between search or optimisation
problems were already parsimonious and that, if not, alternative parsimo­
nious reductions can be built. By the way, the informal following statement
is often true in practice: "if an optimisation problem is A/'T^O-complete then
the associated counting problem is #P-complete". [Vadhan, 1995] presents
more complicated techniques for proving #P-completeness.
We now turn our attention to enumeration problems associated to opti­
misation problems. As already stated, enumeration is harder than counting.
"Harder" in the sense that even if we know the number of solutions in polyno­
mial time, calculating all of them may require an exponential time. But also
"harder" in the sense that even if we are able to compute a single solution
in polynomial time, maybe we are not able to calculate all of them due to
an exponential number of solutions and huge memory requirements. Hence­
forth, when dealing with complexity of enumeration problems we have to
take account of the time and space dimensions. Notice that like optimisation
problems, enumeration problems are set problems. We define the enumeration
problem, denoted by E, associated to an optimisation problem O as follows:
Enumeration problem E

• Input data, or instances, denoted by / . The set of all the instances is
denoted by Do-,
• Objective: Find all optimal solutions to the objective of problem O. We
refer to Si as the set of all these optimal solutions.

Several classes of complexity dedicated to enumeration problems have been
introduced in the literature by various authors, mainly in the case of enu­
meration problems associated to decision problems. We present hereafter the
extension of these classes of complexity to the case of enumeration problems
associated to optimisation problems.

Definition 18 [Fukuda, 1996]
An enumeration problem E belongs to the class £MV if for any instance
I, there exists an algorithm, which complexity is bounded by a polynomial
function of Length[I] and \Si\, capable of checking that any solution of set
SI can be evaluated in polynomial time.

The class SAfV introduced by Fukuda as extended in the above definition,
is a direct generalisation of class MVO. Notice that in the original definition
of Fukuda, class £MV is a generalisation of class MV which, translated in
terms of optimisation, would imply that we can check in polynomial time
that set SI is the correct outcome of problem E. However, from a practical
viewpoint, checking in polynomial time that set Si is the correct outcome of
problem E is often as hard as calculating this set. This implies that, often,
we would not be able to show that a problem belongs to class ZMV.
Fukuda also provides a generalisation of class V which requires first the def­
inition of a bipolynomial algorithm.

44 2. Complexity of problems and algorithms

Definition 19 [Fukuda, 1996]
An algorithm which solves an enumeration problem E is a bipolynomial al­
gorithm if and only if, for any instance I, it requires a number of iterations
bounded by a polynomial function of Length[I] and | 5 / | .

Definition 20 [Fukuda, 1996]
An enumeration problem E belongs to the class SV if there exists a bipoly­
nomial algorithm which solves it.

Notice that the above definition implies that some problems in £V cannot be
solved by a polynomial time algorithm in a similar sense of class V^ i.e. there
are enumeration problems E G £V for which we cannot provide the outcome
in polynomial time of only Length. Nevertheless we have V C £V.

Various works have been done to characterise classes inside £V and how it
is "easy" to solve an enumeration problem. [Johnson et al., 1988] introduce
different classes of complexity and first consider polynomial total time enu­
meration problems which are in fact exactly the problems inside class £V.
Next, they introduce the notion of incremental polynomial time algorithms.

Definition 21 [Johnson et al, 1988]
Consider an enumeration problem E and, for any instance I, let S be a subset
of SI, i.e. S C Sj. An algorithm for E is an incremental polynomial time
algorithm if, starting with S, it is capable of calculating a solution s G Si/S,
or to decide that S = Sj, with a time complexity bounded by a polynomial
function of Length[I] and \S\.

Definition 22 An enumeration problem E belongs to class IPT if and only
if there exists an incremental polynomial time algorithm which solves it.

Prom the above definition we can easily deduce that class IPT is a subclass
of £V since with an incremental polynomial time algorithm we can generate
SI with a time complexity bounded by a polynomial function of Length[I]
and |S/ | , for any instance / . Besides, we have VC IPT. In his works on the
complexity of counting problems. Valiant also introduces a particular class
of complexity for enumeration problems which is in fact a subclass of £V.

Definition 23 [Valiant, 1979a]
An enumeration problem E belongs to the class of V-enumerable problems
if and only if there exists an algorithm which solves it with time complex­
ity bounded by a function p{Length[I])\Si\ for any instance I, where p is a
polynomial function.

As function p{Length[I])\Si\ is a polynomial function of Length[I] and |S/ |
then we have VC 7^-enumerableC £V. Notice that the class of 7^-enumerable
problems is slightly more general than the class of problems, introduced by
[Johnson et al., 1988], which can be solved by a polynomial delay algorithm.

2.2 Complexity of problems 45

These problems, which form a class referred to as class W^ are solvable in
such a way that the time spent to output one solution is upper bounded
by a polynomial of n. Henceforth, any problem inside class PD is also V-
enumerable whilst the converse is not necessarily true. Johnson, Yannakakis
and Papadimitriou also define polynomial delay algorithms for a specified
order which are no more than algorithms that generates the outcome in a
specified order with a polynomial delay.

Up to now we have defined various classes of SV which gives only measure
of the time complexity of the enumeration problem. But the space dimension
has also to be taken into account. Consider an enumeration problem E G. £V
such that its time complexity depends on the size of the outcome | 5 j | for
each instance / . If | 5 / | becomes sufiiciently high for some instances / , then a
solution algorithm for E may require too much memory space to work. And
if it holds for any solution algorithm for E^ then problem E may become
practically unsolvable. This observation leads to the definition of a compact
algorithm.

Definition 24 [Fukuda, 1996]
An algorithm is compact for an enumeration problem E if it solves E us­
ing a memory space hounded by a polynomial function of Length[I] and
xnaxj^Si{Length[J]), for any instance I.

This definition enables to identify a particular class of £V: the class CSV.

Definition 25 [Fukuda, 1996]
An enumeration problem E belongs to the class CSV if there exists a compact
bipolynomial algorithm which solves it.

Prom the above definition it follows that VQ CSVQ SV. [Fukuda et al., 1997]
introduce the class of strongly 7^-enumerable problems, based on compact
linear-time algorithms where such an algorithm is a compact bipolynomial
algorithm with time complexity bounded by a linear function of | 5 / | .

Definition 26 [Fukuda et al, 1997]
An enumeration problem E belongs to the class of strongly V-enumerable
problems if and only if there exists a compact linear-time algorithm which
solves it.

Notice that in [Fukuda et al., 1997], the authors consider a slightly restricted
definition of a compact algorithm, by comparison to Definition 24, since they
define a compact algorithm as one having space complexity bounded by a
polynomial of Length, only. However, whatever the considered definition of a
compact algorithm, we have 7^Cstrongly 'P-enumerableC CSV and strongly
P-enumerableC 7^-enumerable.

46 2. Complexity of problems and algorithms

To complete this section, we need to introduce the class of the hardest prob­
lems of SMV, those supposed to be "at least as hard as" all others belonging
to £MV. We first define the notion of a bipolynomial reduction.

Definition 27 A bipolynomial reduction, denoted by OCB, from an enumer­
ation problem E^ towards an enumeration problem E'^ is a reduction which
time complexity is bounded by a polynomial ofLength[I] and |S'ocß(/)| for any
instance I of E^.

Fig. 2.3. The world of SAfV

Definition 28 An enumeration problem E is SAfV-complete if and only if
E G £NV, and \/E' G SNV, 3 a ^ such that E' ocß E. The class ofSMV-
complete problems is denoted by £MVC.

Henceforth, the notion of completeness in class £J\fV is defined by mean of
bipolynomial reductions which are no more than a straigth adaptation of
polynomial reductions to enumeration problems. We now state an important
result related to class SMVC.

Theorem 1 The class SMVC is not empty.

Proof.
We do the proof by contradiction. First we recall that a bipolynomial reduction OCB
from a problem E' toward a problem E is capable of changing in polynomial time
any instance / ' of E' into an instance / of E, the number of solutions 15/1 = |5// | ,

2.2 Complexity of problems 47

and any solution of Si can be changed into a unique solution of Si> in polynomial
time.
Assume that class SMVC is empty.
=^ V£; G SNV, 3E' such that ß (XB with E' (XB E.
Let us consider a problem E such that its associated counting problem C is # P -
complete and its associated optimisation problem O is ATPO-complete. We intro­
duce set Rp{E') = {reductions from E' towards E which are parsimonious but not
polynomial}. We have Rp{E') ^ 0 since problem C is #P-complete. The previous
statement implies:
\fE e SMV, 3E' such that V ocG Rp{E'), 31' instance of E' such that 3s G 5oc(//)
with s non convertible in polynomial time into a solution s' G Sji.
But here we have a contradiction with the fact that problem O is A/^PO-complete
since we can exhibit a polynomial reduction capable of changing in polynomial time
a solution of problem E into a solution of problem E' (the solutions of the enumer­
ation problems are all possible solutions of the associated optimisation problems).
Henceforth, class SMVC is necessarily non empty.D

Figure 2.3 summarizes the world of SMV. In this section, to prove the diffi­
culty of a problem we have suggested the use of reductions. For instance, to
show tha t a counting problem C^ is in J^V we can provide a parsimonious
reduction occ and another J^V counting problem C^ such tha t C^ occ C^.
For enumeration, we use the bipolynomial reduction. These reductions have
also been used to define the classes of complete problems.
However, it exists some links between an optimisation problem and its count­
ing and enumeration counterparts enabling us to quickly derive, in some cases,
the complexity of those problems.

P r o p e r t y 2 If an enumeration problem E belongs to class V then so is the
corresponding optimisation problem O, and the associated counting problem
belongs to class TV.

The following property states a powerful result which is a consequence of
theorem 1.

P r o p e r t y 3 / / an optimisation problem O is NVO-complete and has its
counting problem which is H^P-complete, then the associated enumeration
problem E is SMV-complete.

Proof.
As problem O G MVO it follows that any solution to an instance I can be checked
with a time bounded by a polynomial of Length[I] (see Section 2.2.2). From Defi­
nition 18, we conclude that problem E necessarily belongs to class SNV. Besides,
as problem O is A/^PO-complete we can exhibit another problem O' belonging to
MVO and a polynomial time reduction oc such that O' oc O. Assume, without loss
of generality, that the associated enumeration problem E' belongs to class SMVC

48 2. Complexity of problems and algorithms

(otherwise class SMVC would be empty, see Theorem 1). We now slightly transform
the reduction oc in order to obtain a bipolynomial reduction ocß. First, notice that
the instances of O (resp. O') are also the instances of E (resp. E'). Henceforth, for
any instance I' of E', oc (/') is an instance of E. The difference between problems O
and E is that the outcome of E is the whole set of optimal solutions. But, reduction
oc is capable of changing in polynomial time any solution of Scc{i') into a solution
of Sjf. Besides, as problem C is #P-complete we can state that there exists such a
reduction oc which is parsimonious. This implies that by making reduction oc chang­
ing all solutions of 5oc(j') into solutions of Sjf we obtain a bipolynomial reduction
OCß, since the time complexity becomes bounded by a polynomial of Length[I'] and

\So.(n\ = \Sr\n

As already done previously for counting problems, we can informally state
that often: ''if an optimisation problem is ÄfVO-complete then the associated
enumeration problem is f AT'P-complete". This follows the remark of Simons
related to polynomial reductions which often are, or can be transformed into,
parsimonious reductions. However, no formal proof of this statement has been
proposed.
Several techniques are available to show that an enumeration problem is
£J\fV-comp\ete and they are similar to those useable for optimisation prob­
lems. Accordingly, to show that an enumeration problem E is f A/'T^-complete
we can show that it is in SÄfV and there exists another fTVT^-complete prob­
lem E^ which bipolynomially reduces to it. Notice that this kind of proof
becomes straightforward if we can exhibit a parsimonious reduction between
the two corresponding optimisation problems.

2.3 Application to scheduling

Scheduling problems are optimisation problems. When we address a schedul­
ing problem, we must always look for its complexity, since this determines
the nature of the algorithm to implement. If the problem under consideration
belongs to the class P , we know that an exact polynomial algorithm exists to
solve it. In this case it is convenient to use or to perfect such an algorithm. By
contrast, if the problem is AT'P-hard, two alternatives are possible. The first
is to propose an approximated algorithm, therefore an heuristic one, which
calculates in polynomial time a solution which is as close as possible to the
optimal solution. The second is to propose an algorithm which calculates the
optimal solution of the problem, but for which the maximal complexity is
exponential. In this case, the challenge is to design an algorithm which can
solve problems of the largest possible size.

To calculate the complexity of scheduling problems, a certain amount of tra­
ditional results exist in the literature. They show the links between different

2.3 Application to scheduling 49

single criterion scheduling problems. We can represent them under the form of
trees of polynomial Turing reductions (see for example [Pinedo, 1995]) where
the vertices characterise the problems and where there is an arc between a
vertex A and vertex ^ if 4̂ OCT B. Such trees exist for types of problems
(figure 2.4), types of constraints (figure 2.5) and criteria (figure 2.6). In fig­
ure 2.4, the presence of an arc from A towards B means that a polynomial
Turing reduction exists from an A\ß\j problem towards the corresponding
^1/317 problem. In figure 2.5, the presence of an arc from A towards B means
that a polynomial Turing reduction exists from the a\A\^ problem towards
the corresponding a|-B|7 problem. Finally, in figure 2.6 the presence of an arc
from A towards B means that a polynomial Turing reduction exists from the
a 1/31A problem towards the corresponding a|/3|J5 problem.
For example, the arc between Cmax and I/max enables us to deduce that the
^1 l-̂ max problem is AT'P-hard given that the P | |Cmax problem is also. In figure
2.4, the arc of the problems {P, Q, i?} towards the problem HF means that
polynomial Turing reductions between these problems exist when the parallel
machines are of the same type as those appearing in the stages of machines
in workshop problems with assignment. Thus, there is a reduction of problem
Q towards the corresponding problem HF if at least one stage of the hybrid
flowshop contains proportional machines. It is the same for parallel machines
problems with general assignment towards corresponding shop problems.

J
i L

F
i L

1

i
0

N

1 ^ 1"
i L

1 Q 1"
i k

p L

frT L
vJJ p
i i

HF 1

/

V an L
\T

^ GMPM

1
«̂ -̂~̂

• I R M P M I
i L

•1 QMPMI
i L

J PMPM

\
w OMPM

Fig. 2.4. Reduction tree of the problems

50 2. Complexity of problems and algorithms

prec
Z

tree
Z

chain r.

1 0 k—n

1 ^̂ 1
di=d 1

\ i^lH PiJ=̂ 1
Fig. 2.5. Reduction tree of the constraints

1 Tw

^ Ic^ 1 1 T

j/i 1 C 1 Î Tiax

I
|Cmax

U^

S 1 U 1

r
Fig. 2.6. Reduction tree of the criteria

2.3 Application to scheduling 51

Thus, the reduction trees presented are usable only when we already know
the complexity of certain scheduUng problems. In order to complete the re­
sults presented in this section we therefore recall the complexity of certain
basic scheduling problems of the type a\\Z where Z refers to any criterion
(table 2.2).

Concerning the criteria E'max, ^ and E and whatever the structure of the
shop be, the problem is solvable in polynomial time when the insertion of
voluntary idle times before each job is authorised. Any schedule such that
jobs start after their due date di is an optimal schedule for these criteria.

Concerning single machine problems, the minimisation of a function fmax =
max {fi{Ci)) with fi an increasing function of the completion times is a

problem which is solvable in polynomial time. Consequently, the 1\\Z prob­
lems with Z e {Cmaxy Fmax.Tmax, Lmax) are equally so. Notice that any se­
quence is optimal for the l||Cmax problem. The 1||C and 1\\C problems are
solvable in polynomial time (see [Lawler et al., 1989]) and it is similar for the
l|di|i7 problem (see [Pinedo, 1995]). Without adding any constraints, the only
A/'P-hard 1\\Z problems, are the problems l|di|T in the weak sense, l|di|C/
in the weak sense and l\di\T in the strong sense (see [Lawler et al., 1989]).
As a consequence, all the a|di|T problems are so, whatever the value of a.

For parallel machines problems, the P||/max problem is strongly A/'P-hard
(see [Lawler et al., 1989] and [Pinedo, 1995]). It is similar for the P\\Z prob­
lems with Z e {Cmax, i^maxj^max, î max} (see [Brucker, 2004]). We note
also that to solve the i?m ||Cmax problem (the number of machines m
is fixed), a pseudo-polynomial time dynamic programming algorithm (see
[Lawler et al., 1989]) exists. Concerning the criterion C its minimisation re­
mains a polynomial time problem whatever the type of considered machines
(see [Pinedo, 1995]). On the other hand, the P\\C problem is strongly AfV-
hard (see [Brucker, 2004]). As for the Ä||Cmax problem a pseudo-polynomial
time dynamic programming algorithm exists to solve this problem when the
number of machines m is fixed (see [Lawler et al., 1989]).
Knowing that the a\di\Lmax problems with a G {P, Q, i?} are strongly AfV-
hard we deduce immediately from this that the same problems but with the
criteria t/, U and T are equally so. We note that a pseudo-polynomial time
dynamic programming algorithm exists to solve the Rm\di\U problem (see
[Pinedo, 1995] and [Lawler et al., 1989]).

Finally, we end this complexity survey of scheduling problems with fiow-
shop, jobshop and openshop problems. Beginning with the results presented
in [Tanaev et al., 1994b] and the reduction rules presented in this section,
we note that all these problems, without adding simplifying hypotheses
are strongly A/'T^-hard for the criteria studied. A comprehensive survey

52 2. Complexity of problems and algorithms

of the complexity of single criterion scheduling problems can be found at
www. mathemat ik . uni-osnabrueck. de/research/OR/class / .

Table 2.2. Complexity of single criterion problems

^max
i^ max
J- max
J^max
J max

c
c^
T
T^
U
U^

1
*
*
*
*
*
*
*

* * —
* * +

*
* * —

p
* * +
* * +
* * +
* * -f
* * -f

*
* * +
* * -f
* * -f
* * +
* * -|-

Q
* * - j -

* * +
* * +
* * -f
* * +

*
* * +
* * +
* * -f
* * +
* * +

R
* * -f-

* * +
* * +
* * +
* * 4-

*
* * +
* * +
* * +
* * +
* * +

F
* * +
* * +
* * +
* * -f
* * +
* * +
* * +
* * 4"
* * -f-

* * +
* * +

MF
* * -f
* * -f
* * -f
* * +
* * - f -

* * +
* * -f
* * +
* * +
* * +
* * +

J
* * +
* * +
* * -f
** +
* * +
* * +
* * +
* * +
* * +
* * +
* * -f

JG
* * +
* * - j -

* * +
* * 4-
* * 4-
* * +
* * 4-
* * 4-
* * 4-
* * 4-
* * 4"

o
* * 4-
* * 4-
* * 4-
* * 4-
* * 4-
* * 4-
* * 4-
* * 4-
* * 4-
* * 4"
* * 4-

OG
* * 4-
* * 4"
* * +
**4-
* * 4-
* * 4"
* * 4-
* * 4-
* * 4"
* * 4-
* * 4-

*: j \ H-noxa / * * —: weaKiy
/ * * +: strongly ATT^-hard

*-hard

3. Multicriteria optimisation theory

3,1 MCDA and MCDM: the context

Decision Making arises at all levels in firms. A firm may be described as a
"complex system", and we can make the following remarks ([Boldur, 1982]):

• A complex system can be broken down into sub-systems according to the
objectives of the first one (production sub-system, human resources man­
agement sub-system, etc.).

• The methods of management must be arranged in order to propose solu­
tions that fit the actual objectives.

• It is necessary to mix different disciplines such as Operational Research,
Management and Psychology in order to thoroughly understand and model
a complex system.

These remarks make apparent the complexity of the decision processes in the
firms. The desire to rationalise these processes to the extreme leads inevitably
to an aberration ([Roy, 1985]) as certain factors, which occur in real time,
cannot be taken into account in advance. The multicriteria decision domain
proposes a set of tools which enables to model the decision process more or
less faithfully ([Boldur, 1982]).

The representation of the decision process, or even simply the search for a
correct decision, is conditioned by diff'erent elements ([Zionts, 1997]):

• Well defined decisions do not exist all the time, sometimes only "orienta­
tions" exist.

• The decision maker is rarely a unique individual. Often there is a group of
people that take decisions.

• The set of possible decisions (or actions, or alternatives) is rarely fixed, but
tends to evolve in real time.

• Although the decision maker wants to choose the optimal decision, this
perhaps does not exist or else he is incapable of differentiating between a
good decision and the optimal solution.

Two particular domains, MultiCriteria Decision Making and MultiCriteria
Decision Aid, are found in the literature. The difference lies mainly in the
way to model the problems.

54 3. Multicriteria optimisation theory

3.1.1 MultiCriteria Decision Making

MultiCriteria Decision Making (MCDM), is a descriptive approach (see
[Roy and Bouyssou, 1993] and [Roy, 1990]) as it consists of describing the
problem:

• by defining the possible decisions,
• by defining the attributes (the consequences of these decisions) and the

evaluation criteria,
• by incorporating in a utility function / the set of retained criteria.

Finally, we choose the decision which maximises this function. This ap­
proach is based on a certain number of fundamental axioms ([Roy, 1985]
and [Roy and Bouyssou, 1993]):

• When the decision maker makes a decision he maximises, implicitly or
explicity, a utility function.

• An optimal decision exists in every situation.
• Two decisions which might be incomparable do not exist. We can make a

choice or a sort between every pair of decisions.
• Formally, the decision maker's preferences hinge upon two binary relations:

the preference P and the indifference / . Let us consider two decisions a and
6, either a is preferable to b (aPb), or b is preferable to a (bPa) or a and b
are indifferent {alb). These two relationships are transitive.

Different methods classified in the MCDM approach exist (see for example
[Olson et al., 1997] and [Guitouni and Martel, 1997]). Among the best known
and most used are:

• the methods relating to the MultiAttribute Utility Theory (MAUT, see
[VonNeumann and Morgenstern, 1954]) which use a stochastic approach.
These methods concern the problems where the different decisions are sub­
ject to uncertainty at the criteria level. Finally, these approaches assume
that the decision maker is alone.

• the Analytic Hierarchy Process method (AHP, [Saaty, 1986]), which clas­
sifies the criteria into groups using a hierarchical analysis in the form of a
tree. Each criterion has a weight inside the objective function and to fix
these weights the decision maker must compare each pair of criteria and
he must give a ratio that reflects his preference.

[Dyer et al., 1992] give a critical presentation of the works in the MultiCri­
teria Decision Making domain and break it down as shown in figure 3.1.

3.1.2 MultiCriteria Decision Aid

MultiCriteria Decision Aid (MCDA) is an approach known as construc­
tive ([Roy and Bouyssou, 1993] and [Roy, 1990]). It does not seek an optimal

3.2 Presentation of multicriteria optimisation theory 55

Case where the utility
fiinction is implicit

(but assumed to exist)
Interactive Methods

MAUT AHP

Case where the utility
fiinction is explicit

• (we search to set out
an approximation)

MCDM

Fig. 3.1. Analysis of the methods of type MCDM

solution but it enables to model the problem by taking account of the pref­
erences and experience of the decision maker. It concerns a flexible approach
([Roy, 1985]) which, by successive dialogues with the decision maker, enables
the analyst to propose some response elements (see figure 3.2). The decision
process represents in this figure the considerations of the decision maker. In
parallel, the decision aid process contains the set of elements highlighted by
the analyst to help the decision maker. Thus, from the outset of the question­
ing by the decision maker, the analyst can construct models of the problem
from which he can make a certain number of deductions. These contribute
to helping the decision maker to make an explicit choice and therefore make
a decision.
The basic axioms for MultiCriteria Decision Aid are the following:

• There are problems for which there is no optimal solution.
• The set of decisions may evolve during the course of the study.
• There is a strong interaction between the decision maker and the analyst.
• The decision maker's preferences may be expressed by means of four basic

relationships: the relationship of strict preference, of weak preference, of
indifference and of incomparability (these relationships are not necessarily
transitive).

More details are presented by [Roy, 1985] and [Roy and Bouyssou, 1993].

3.2 Presentation of multicriteria optimisation theory

Multicriteria Optimisation Theory occurs in the context of MCDA and
MCDM. Such theory provides results and methods for calculating best trade­
off solutions when the preferences of the decision maker are known.

56 3. Multicriteria optimisation theory

Questions
X

Phenomena

perception of
the

participants

c>
Explicit
choice

Decision

extraction

re-formulation by
the analyst and the

participapts

information

analysis/deductions
from the analyst

Fig. 3.2. Decision Process and Decision Aid

Prom a mathematical point of view, multicriteria optimisation problems are
a special case of vectors optimisation problems, defined by:

Min Z{x) with Z{x) = [Zi{x);...; ZK{x)f
subject to

xeS
S = {x/[gi{x);.,,;gM{x)f <0}

Traditionally we can distinguish four axes in the field of vectors optimisation:
cone dominance theory, the definition of efficiency, duality theory and the sta­
bility analysis of the set of efficient solutions. Cone dominance theory enables
us to define order relation in vectorial space on which the sets S and Z{S)
are defined. This leads therefore to the notion of efficiency (or Pareto opti-
mality). Duality theory proposes results which enable us to characterise the
eflScient solutions. Finally, stability analysis allows us to study the behaviour
of the set Z{S) when the definition of 5 depends on one or several parameters.

Multicriteria optimisation problems are vectors optimisation problems where
solutions space S and criteria space Z{S) are the vectorial euclidian spaces
of finite dimension, Q and K respectively, i.e. S C U9 and Z{S) C R^ with
1<Q,K <oo .

3.3 Definition of optimality 57

We firstly present definitions and basic results related to these problems.
Afterwards, we study these problems more particularly within the framework
of linear problems with real or integer variables defined by:

Min Cx
subject to

Ax = h

where C is the matrix of the criteria coefläcients of dimension {K xQ)^ A the
matrix of the constraint coefficients of dimension (M x Q) and h is the vector
of right-hand values dimension M, where M is the number of constraints.

3.3 Definition of optimality

Let S C M9 be the set of solutions and Z C R^ the image in the criteria
space of 5 by K criteria Zj. We consider that the order structure associated
w i t h R ^ is, Vx,2/€R^:

X <y <^ Xi<yi,\/i = l,..., K
x = y ^Xi=yu\li = l,..., K

This order defines a partial preorder, valid for K > 2. We may note that
for single criterion optimisation problems (ÜT = 1), the structure associated
with R is a total preorder, i.e. there is no incomparability between two solu­
tions. Thus in the single criterion case, the definition of an optimal solution is
straightforward. In the multicriteria case this definition is no longer trivial be­
cause a solution minimising simultaneously all the criteria rarely occurs. We
then use a more general definition of optimality: that of the Pareto optima.

Definition 29
X £ S is a weak Pareto optimum, also called a weakly efficient Solution, if
and only if$yeS such that Vi = 1, ...,i(r, Zi{y) < Zi{x). We note WE the
set of weak Pareto optima of S. The set WE defines in the criteria space the
trade-off curve, also called the efficiency curve.

This definition introduces a general class of Pareto optima, but other kinds
of Pareto optima exist. Definitions 30 and 31 concern subsets of WE.

Definition 30
X Q S is a strict Pareto optimum, also called an efficient solution or a strict
efficient solution, if and only if$yeS such that Vi = 1,..., iC, Zi{y) < Zi{x)
with at least one strict inequality. We note E the set of strict Pareto optima
of S and we have E C WE.

Notice that [Ehrgott, 2000b] introduces a slightly different definition of strict
Pareto optimality. Definitions 29 and 30 are illustrated in figure 3.3 where
the extreme Pareto optima correspond to extreme points of the polyhedron.

58 3. Multicriteria optimisation theory

Very often, we prefer to be interested in the set E rather than in the set WE^
as the latter may contain solutions which are of little interest to the decision
maker.

ẑ ,ẑ z2,ẑ ,z4,ẑ ,ẑ ,ẑ ,ẑ : weak Pareto optima
z2,ẑ ,ẑ ,ẑ ,ẑ : strict Pareto optima
2P,z\z^,z^: non strict Pareto optima
zP,z^,z^,z^,z^,z^: extreme weak Pareto optima
z\z^,z^,z^: extreme strict Pareto optima

Fig. 3.3. Illustration of weak and strict Pareto optima in the case where Z defines
a polyhedron

Definition 31 [Geoffrion, 1968]
Let x,y e S,y ^ X and ly = {i E [1\K]/Zi{y) < Zi{x)}. x G S is a proper
Pareto optimum , also called a proper efficient solution if and only if x is a
strict Pareto optimum and 3M > 0 such that
yyeS,y^x,Iyj^(l}=^

M i £ ly, (3j, I < j < K with Zj{x) < Zj{y)) such that
Zi{x)-Zi{y)
Zj{y)-Zj{x) -

We note PRE the set of the proper Pareto optima of S and we have PRE C
E.

These definitions are only valid if each criterion Zi can reach its minimal
value. We suppose that it is thus in the remainder of this book. We notice
that the wording of definition 31, which is illustrated in figure 3.4 in the
bier iter ia case, is redundant. Indeed, if there exists a value M > 0 as intro­
duced in this definition, then x^ is a strict Pareto optimum. In the particular
case of Multicriteria Linear Programming (MLP) and of Multicriteria Mixed
Integer Programming (MMIP) and if the number of constraints is finite, then
we have E = PRE ([Steuer, 1986]).

3.3 Definition of optimality 59

X is a proper Pareto optimum if and only if:
(a) there is no solution belonging to area (B),
(b) 3 M>0 such that, Vy eS* belonging to area (A)
minus Lj and L2: -l/w<M,
(c) 3 M>0 such that, Vy e S belonging to area (C)
minus LI and L2: -l/w<M,
with w the slope of the line containing x and y.

Fig. 3.4. Illustration of the definition of proper Pareto optima

An interesting result concerning the connectedness of the sets WE and E
is presented in [Warburton, 1983] in the general case of vectors optimisation
problems. We recollect at once some basic definitions.

Definition 32
A function f : W ^ R is convex if and only ifiz^.z^ eW, VA G [0; 1]
f{\z' + (1 - \)z^) < \f{z') + (1 - \)f[z^).

Definition 33
A function / : R"̂ —> R Z5 quasi-convex if and only ifWz^^z'^ € R"", VA €
]0;1[f{\z^ + (1 "" ^)^'^) ^ T^^^{f{^^)'',f{^'^))' ^t 5̂ strictly quasi-convex if
f^Xz' + (1 _ x)z^) < me.x{f{z'yj{z^)).

Definition 34
^ 5e^iS C R"" is convexifandonlyifMz^.z'^ GS^^XG [0 ;1] , XZ'^-\-(1-X)Z^ G

S.

Definition 35
A set S C R'̂ is compact if and only if it is closed and bounded.

Theorem 2 [Warburton, 1983]
LetaGZ and C{a) = nf^^L^{ai) with L'^{ai) = {x G S/Zi{x) < a j . IfS
is a convex and compact set we have the following results:

• If\/i — 1^...^K, Zi is a quasi-convex function, then the set WE is con­
nected. If moreover "ia € Zi{S) x . . . x ZK{S), C{a) is compact then WE
is not empty.

60 3. Multicriteria optimisation theory

• lf\/i = l^,..^K, Zi is a strictly quasi-convex function then the set E is
connected. If moreover Va € Zi{S) x . . . x ZK{S), C{a) is compact then E
is not empty.

Some similar results in the framework of Multicriteria Linear Programming
are presented in [Yu and Zeleny, 1975].

3.4 Geometric interpretation using dominance cones

We give here a brief idea of a geometric interpretation of the definitions
of Pareto optima in the case where the criteria are linear functions of the
form Zi{x) = c^x, Vi = l,...,ür. This interpretation is based on the use of
dominance cones.

Definition 36
AsetCc W^ is a cone if and only if\/xGC,\/aGR'^, ax GC. If moreover
C n —C = {0} with —C = {—x/x € C}, then C is pointed.

Definition 37
Let p vectors v' G R^ and C = {v e W/v = E L i ^i'^'^ ^i ^ 0};

• The vectors v^ are the generators of the cone C.
• Let i € [I'lP]' If there exists [Ai;...; Ai_i; A^+i; A^]^ > 0 such that v'^ =

YX=i^k^i ^k^^ ^hen v^ is a non essential generator (C can be generated
without the vector v^). Otherwise, v^ is an essential generator.

• The dimension of the cone C is equal to the number of linearly independent
vectors v'^.

We note in the remainder Cz the convex criteria cone generated by the gra­
dients c* of the criteria Zi. To introduce the notion of dominance set, it is
convenient to define the notion of semi-positive polar cone.

Definition 38
We note C^ the semi-positive polar cone generated by the generator vectors
of Cz and we have:

C | = { y € R V c ' y > 0 , V i = l , . . . , i ^ , [c iy ; . . . ; c^y]^0}U{0} .

Cf contains all the vectors of W^ making an angle lower than or equal
to 90 degrees with the generators of Cz- The dominance set at a point
X £ S is then defined by D-^ = {x} — C^ = {x € W^/x = x — y with
y e W,[c^y;...;c^y]^0 andc'y>0,\/ i = l,...,K}\J{x}.

A geometric representation is given in figure 3.5. In this figure, —C^ is rep­
resented at the point x.

Theorem 3 See for example [Steuer, 1986]
x^ E S is a strict Pareto optimum if and only if D^o OS = {x^}-

3.4 Geometrie interpretation using dominance cones 61

"^

Fig. 3.5. A dominance set

It is also possible to present a similar result for weak Pareto optima by con­
sidering D^o =x^ -C^ with C^ = {y € W/dy > 0, V z = 1,..., K} U {0}.

The more the angles between the different gradients d are important the
more C^ is reduced, which has a tendency to increase the number of strict
Pareto optima for a given problem. Let us consider a bicriteria problem. Let
c^ and c^, the two gradients of Zi and Z2, be the generators of the cone C^.
Figure 3.6 presents three cases. In case 1, the dominance set at the point x
is the open half-space below the line passing this point. This line is excluded
from Dx' In case 2, the dominance set at the point x is demarcated by a
quadrant whereas in case 3 this set is itself reduced to point x. We note thus
that in case 1, a point x has "little chance" of being a strict Pareto optimum
whereas in case 3 they all are. We note that the dominance cones constitute
not only a tool to geometrically interpret the notion of Pareto optimum in
the decision space, but equally they provide information on the number of
potential Pareto optima.

In criteria space, geometric interpretation is simplified given that the image
of the dominance set is the quadrant defined by the half-lines emerging from
Z{x) and parallel to the reference axes (figure 3.7).

62 3. Multicriteria optimisation theory

^

it
Case 1: ĉ and ĉ are colinears
and in the same direction

x̂ .

Case 2: ĉ and ĉ are orthogonals

• • •

• • •

V
Case 3: ĉ and ĉ are colinears
and in opposite directions

Fig. 3.6. Three cases for a bicriteria problem

3.5 Classes of resolution methods

Pareto optima correspond to "best trade-ofF' solutions between different con­
flicting criteria. Clearly it appears that only the decision maker can choose the
most satisfactory solution for his problem, among the set E (or WE), Tradi­
tionally, multicriteria optimisation problems are part of the MCDM approach
and with this heading we assume that when the decision maker chooses his
solution, he optimises a utility function, i.e. an aggregation function of the
criteria. This function is not known with certainty, but we assume that the
solution it optimises is a Pareto optimum. Among the solutions which we are
going to seek we can distinguish:

3.5 Classes of resolution methods 63

Fig. 3.7. Interpretation in criteria space

1. Solutions which are proper, strict or weak Pareto optima.
2. Among the Pareto optima, those which best satisfy the requirements of

the decision maker.

The analyst must propose a resolution algorithm for the multicriteria opti­
misation problem, i.e. an algorithm which will enable the decision maker to
choose his solution. For this he must take account of all the information at
his disposal: the decision maker may provide the weights of the criteria to the
resolution algorithm or he may give the goals to be attained, etc. Moreover,
the analyst knows that the resolution of a multicriteria optimisation problem
cannot be done without the intervention of the decision maker. A resolution
algorithm which does not enable the decision maker to intervene, can only
determine the whole Pareto optima set.
[Evans, 1984] presents three occasions where the decision maker can inter­
vene: before, during or after the resolution process. A general category of
methods can be associated to each of these occasions:

1. The methods enabling the decision maker to intervene before the resolu­
tion process are called a priori.

2. The methods enabling the decision maker to intervene during the course
of the resolution process are called interactive.

3. The methods enabling the decision maker to intervene after the resolution
process are called a posteriori.

64 3. Multicriteria optimisation theory

In the a priori methods, the resolution process cannot be performed with­
out the decision maker having provided a set of information, as for example
the value of the weights of the criteria for the minimisation of a linear com­
bination of criteria. Determination of the value of these parameters consti­
tutes a problem itself, which requires the use of a decision aid method. The
interested reader is referred particularly to [Roy, 1985], [Vincke, 1989] and
[Roy and Bouyssou, 1993].

In the interactive methods, the resolution process is iterative. Each iteration
provides the decision maker a solution, which is not necessarily a Pareto op­
timum. He then orients the process by providing, directly or indirectly, new
values for the parameters of the problem. For example, it may concern new
weightings for the linear combination, or improvement/damaging of certain
values of criteria in relation to the current solution. The process is then capa­
ble of calculating a new solution and the following iteration can begin. This
category of methods has been the object of numerous studies in the field
of multicriteria optimisation and more generally in the field of decision aid
([Vanderpooten, 1990]).

Finally, a posteriori methods aim to provide the decision maker with an
exhaustive set of Pareto optima, among which belongs the most satisfactory
solution. The set of Pareto optima suggested to the decision maker depends
on the properties of the solved problem.

3.6 Determination of Pareto optima

The solution adopted to the problem of taking into account the conflicting
criteria depends on the information which the decision maker can provide.
From the point of view of the analyst it is possible to classify the diff'erent
methods of determining Pareto optima by means of this information (figure
3.8).

The results presented in this section lead to an aggregation of criteria in one
or several more general criteria, by adding new parameters (weights, goals,
etc.) to the problem. Generally, the more interesting the results for these new
criteria are, the more difficult is their application (tuning of the parameters,
algorithmic complexity, etc.). The choice of a method necessitates therefore
a trade-off between the quality of the calculable solutions and the ease of its
application.

3.6.1 Determination by convex combination of criteria

A traditional result is proposed by [Geoffrion, 1968]. It concerns the minimi­
sation of a convex combination of criteria, for which the basic result is pre-

3.6
D

eterm
ination of P

areto optim
a

65

F
ig

. 3
.8

. A
 general typology of m

ulticriteria optim
isation

problem
s

66 3. Multicriteria optimisation theory

sented in theorem 4, also called "Geoffrion's theorem" in the remainder. It
concerns a necessary and sufficient condition for the determination of proper
Pare to optima.

T h e o r e m 4 [Geoffrion, 1968]
Let S he the convex set of the solutions and K criteria Zi convex onS. x^ is a

K

proper Pareto optimum if and only if 3a G R ^ , with ai G]0 ; 1 [and 2_\^'^ ~ ^^
i = l

such that x^ is an optimal solution of the problem {Pa)'

K

Min g{Z{x)) with g{Z{x)) = y^aiZi{x)
i=l

subject to
xeS

Proof.
I ^ I Let us show that if x^ is an optimal solution of (Poc) with a fixed, then x^ is
a proper Pareto optimum. For this, it is sufficient to show the existence of M > 0
such as it is presented in definition 31. Let us proceed by contradiction, i.e. suppose
that x^ is an optimal solution of (Pa) with a fixed, and that x^ is not a proper
Pareto optimum.
Then, VM > 0,3x^ ^ x^,x^ G «S and 3i G 4 i , where I^i = {i e [1;K]/Zi{x^) <
Zi{x^)}, such that:

Vj, l<j<K, with Z,(x°) < Zj{x'), we have f^j^ij I ^ f f) > ^ -

Let us write M = K x max (—^) and x^ a solution verifying the hypothese.
a,b=l,...,K \ab J

Note Ji = {j G [hK]/Zj{x^) < Zj{x^)}.
Vj G J i , Ziix"") - Zi{x^) >Mx {Zj{x^) - Z,(x°))
=> Zi(x°) - Zi{x^) >Kx max(—) x {Zj{x^) - Zj{x^)),'ij G Ji

a ,6 OLh

=^ Ziix^) - Ziix^) > K x ^ x (Zjix^) - Zj(x^)),\/j G Ji

=^ Zi(x^) - Zi{x^) > iJil X ^ X (Zj(x^) - ZAx^)),\/j G J i , since K > | J i |
OLi

=^ ^^{Zi{x') - Zi{x')) > ajiZjix') - Zj{x')),\/j G Ji

=> ^ Z i (x °) + a ,Z,(x°) > ^Zi{x') + ajZj{x'),yj G J i

=> Y;^^Z,(x')+Yl^jZj{x')>J2ff-M^^

^ ^ ajZj{x')> ^ a,Z,(x^) (A)
jeJiu{i} jeJiu{i}

Note J2 = {j G [l;i^]/Z,(x°) > Z , (x ')} .
We have Ji O J2 = 0 and Ji U J2 = [hK]. V^ G J2, we have aeZe{x^) >
aeZeix') (B) .

K K
(A) and (B) ^ ^ a i Z i (a ; °) > ^Jo^i-^iC^)) which contradicts the fact that rr° is

i=l i=l
an optimal solution of (Pa). ic° is therefore a proper Pareto optimum.

3.6 Determination of Pareto optima 67

I =» I Let us suppose that x^ is a proper Pareto optimum and let us show that
3a G]0; 1 [^ such that x^ is an optimal solution of (Pa).
x^ e PRE ^ 3M > 0 such that Vi = 1,..., /C the system (5*) should not have a
solution y E S.

^"^ ^ \ Zi{x') - Zi{y) >Mx {Zj(y) - Zj{x')) Wj = 1,..., KJ ^ i

fc^i.f Zi{y)<Zi(x'')
^^ ^ \ Ziix"") + M X Zjix"") > Zi{

Given that the criteria Zi are convex functions, we have the following result
K

([Berge and Gouila-Houri, 1965]): 3 A} > 0,Vi = l,...,K,^X) = 1, such that

we deduce from the system (5*), Vi = 1,..., i(", the following system (5 *):

(c'iJ>^iZi(y)<KZi(x°)

^^ > \ XiiZiix") + M X Zj(x°)) > *{Zi{y) + M x ZM), Wj = 1,..., K,j / i

with at least one strict inequality.
K

=^ Vi = l,...,K,ty e S such that XiZi{y) + J^ ^K^^(2/) + ^^jiv)) <

K

AiZi(x°)+ Y. AJ(Zi(:r°) + MZ,(:r'))

K K

^\/i^l,...,K,tyeS / Zi[y)^M ^ A}Z,(y) < Zi(x') + M ^ AJZ,.(x°)

3 = 1 i=l,i^j j = l j=l i=l,i^j j = l

i = i i = i , i ^ j j = i i = i , i ^ j

i+M ; ^ Aj ^

=^ 3aj / aj = ^~ '^^ , Vj = 1, ...,K, verifying that ^Z^J ~ ^^ ^^^ such

that yZ^J^jiy) — y^^J^ji^^) ^^v® ^o solution y E S, Therefore x^ is an optimal

solution of (Pa).n

68 3. Multicriteria optimisation theory

In theorem 4, the parameters a^ cannot be equal to zero because in the
opposite case, the generated solutions would not all be proper Pare to optima.
More precisely, we would obtain a necessary and sufßcient condition for the
determination of weak Pareto optima.

L e m m a 2
Let S be the convex set of solutions and K criteria Zi convexes on S, x^

is a weak Pareto optimum if and only if 3Q; G R ^ , with ai G [0; 1] and

Yli^i <̂ i = 1̂ ^'^c/i that x^ is an optimal solution of the problem {Pa)-

Proof.
I ^ I Let us suppose that x^ is an optimal solution of (Fa) with a G [0; 1]^ fixed
and let us show that x^ is a weak Pareto optimum. Let us proceed by contradiction,
i.e. we suppose that x^ is not a weak Pareto optimum.
Let us suppose that 3x^ such that Vi = 1,..., iC, Zi(x^) < Zi(x^). We have:
ai{Zi{x^) - Zi{x^)) < 0 because ai > 0, Vi = 1, ...,K

but as Y^ai = 1,3j such that a-,- > 0 =^ aj(Zj{x^) - Zj(x^)) < 0
i=l

K

=> ^ a i (Z i (x ') - Ziix"^)) < 0

K

=^ ^aiZi{x^) < ^aiZi{x^),
i=l i=l

which contradicts the fact that x^ is an optimal solution of (Pa), x^ is therefore a
weak Pareto optimum.
I =» I Let us suppose that x^ is a weak Pareto optimum and let us show that
3a G [0; 1]^ such that x^ is an optimal solution of (Pa).
x^ G WE <^$x^ eS such that Zi{x^) < Zi{x^), Vi = 1, . . . , i^ , by definition.
Given that the criteria Zi are convex functions, we have the following result
([Berge and Gouila-Houri, 1965]): 3a G E ^ with aj > 0,Vj = l,...,K and
K

y^g-/ = 1, such that we deduce from the previous inequalities that $x^ e S such

that Vi = l,...,K,aiZi{x^) < aiZi{x^)
K K

^tx^ eS such that Y^aiZi{x^) < ^aiZi^x^)

=> x^ is an optimal solution of (Pa)D

The level curves are a practical tool to geometrically illustrate diflFerent op­
timisation problems. Concerning the minimisation of a convex combination
of criteria, problem (P«) can be interpreted in the following manner: let
X= (a) = {x G 5 / X^il i OLiZi{x) = a with ai G]0 ; 1 [and J2i=i ^i = 1} t>e the
set of level curves in the decision space. We write L={a) = Z (X = (a)) . To solve
(Pa) is equivalent to determining the level curve of minimal value g* such tha t
L={g*) is tangential to Z in the criteria space (figure 3.9). L={g*)nZ defines
in the decision space a set of Pare to opt ima for the multicriteria problem.

3.6 Determination of Pareto optima 69

ai<a2<g*<a3<a4

Fig. 3.9. Geometrie interpretation of a problem (P«)

In the case of a priori methods, we must define a way to obtain the weights
of the criteria to use in the objective function. Within the field of a poste­
riori methods, we must conduct a parametric analysis by means of a. We
note A = {a = (a i ; . . . ; aK)/'^i^ on €]0; 1[and Yl,i=\ oti = 1}. The basic idea
consists of dividing A into v parts Ai such that A = U^^j^li. Each part Ai is
allocated a division OPTi of the set of Pareto optima such that Va^, a^ G yli,
if we note OPTi{a^) the set of the optimal solutions of (PaO and OPTi{a^)
the set of optimal solutions of (P^O then OPTi{a^) = OPTi{a^) = OPTi,
Within the field of interactive methods, we can iteratively vary, according
to the instructions of the decision maker, the value of the weights a^. These
instructions can be, according to the algorithm under consideration, new
weights, desired improvements, etc.

Theorem 4 and lemma 2 are only valid if the set S and the criteria Zi are
convex. If we suppose that the criteria are not convex functions, then only the
necessary condition remains valid: the optimal solutions of a problem (P«)
are (proper or weak) Pareto optima. Moreover, as we shall see in section 3.8
for Multicriteria Mixed Integer Programming, these results no longer allow
the full determination of the set of Pareto optima.

70 3. Multicriteria optimisation theory

3.6 .2 D e t e r m i n a t i o n b y parametr i c analys i s

An interesting result is proposed by [Soland, 1979], since it allows the cal­
culation of all the strict Pare to optima, while being simple to use. Before
presenting this result we recall the definition of a strictly increasing function.

Def in i t ion 39 See for example [Schwartz, 1967]
A function f: R ^ —> R is strictly increasing if and only if\fx, y G R ^ , x ^ y,
x<y=^f{x) <f{y).

T h e o r e m 5 [Soland, 1979]
Let GY be the set of strictly increasing functions from R ^ to R which are
lower bounded on Z, and g G Gy- x^ G S is a strict Pareto optimum if and
only if 36 G R ^ such that x^ is an optimal solution of the following problem

Min g{Z{x))
subject to

XGS

Z{x) < b

Proof.
I <= I Let us show that if x^ is an optimal solution of {P(g,b)) with g G Gy and b G M^
fixed, then x^ is a strict Pareto optimum. Let us proceed by contradiction, i.e. we
suppose that x° is not a strict Pareto optimum with this same vector b.
Then x^ G S exists such that Z{x^) < Z{x^) with Z{x'^) :^ Z{x^). As p is a
strictly increasing function on Z, we have g{Z{x^)) < g{Z(x^)). Moreover, as x° is
a solution of {P(g,b))j we have Z(x^) < 6, and therefore Z{x) < 6, which guarantees
that x^ equally satisfies the constraints of {P(g,b))' x^ is therefore also a solution of
{P(9,b)) and we thus arrive at a contradiction with the optimality hypothesis of x^
for {P(g,b))' x^ is therefore a strict Pareto optimum.
I => I Let g G Gy be fixed. Let us show that if x^ is a strict Pareto optimum then
b G R^ exists such that x^ is an optimal solution of {P(g,b))' We take b = Z{x^). Let
us proceed by contradiction to show that x^ is an optimal solution of the problem
(P(^^6)), i.e. we suppose that 3x^ G S satisfying the constraints of {P(g,b)) with
g{zlx^)) < g(Z{x^)). We have:

(g(Z(x')) < g{Z{x'))
\z{x^)<Z{x'')=b

As ^ is a strictly increasing function on Z^ this system implies that Z(x^) < Z{pcP)
with at least one criterion Zk such that Zk{x^) < Zk{x^), which contradicts the fact
that x^ is a strict Pareto optimum, x^ is therefore an optimal solution of problem

The problem (P(^^5)) is generic and simple to use since the function g is chosen
by the analyst. For example, we can choose to minimise a convex combina­
tion of criteria, which enables us to set a necessary and sufficient condition

3.6 Determination of Pareto optima 71

for the calculation of strict Pareto optima, even for non convex problems.

Geometrically, the problem {P{g,b)) can be interpreted by means of level
curves. Let S' = {x e S/Z{x) < 6}, X={a) = {x G S'/g{Z{x)) = a) and
L^{a) = Z[X={a)). Solving {P(g,b)) corresponds to determining the level
curve of minimal value g* such that L={g*) is tangential to Z^ in criteria
space (figure 3.10). L=,{g*)r]Z^ defines in decision space a set of strict Pareto
optima for the multicriteria problem.

ai<a2<g*

Fig. 3.10. Geometric interpretation of a problem iP(g,b))

Use of this result in the resolution of multicriteria problems depends on the
determination of the vector b when the function g is fixed. In an interactive
procedure or in an a posteriori procedure, we must iteratively vary the vector
b to obtain several Pareto optima. For example, we can start with an initial
vector which is composed of high values and next reduce these values either
according to the analyst's instructions (interactive algorithm) or according
to a reduction procedure which enables us to enumerate the set £?. In an a
priori method, it is sufficient to ask the decision maker for the bound values
bi.

72 3. Multicriteria optimisation theory

3 .6 .3 D e t e r m i n a t i o n by m e a n s of t h e €-constraint approach

The e-constraint approach is often used in the Uterature. It minimises a crite­
rion knowing tha t the others K — 1 are upper bounded ([Haimes et al., 1971]
and [Haimes et al., 1975]). Theorem 6, presented in [Soland, 1979], comes
from the results proposed in [Yu, 1974], and enable us to calculate strict
Pare to optima.

T h e o r e m 6 [Yu, 1974]
x^ e S is a strict Pareto optimum if and only if Vfc G [I'.K] 3e^ =
(e ^ ; . . . ;e-^_i;ej^_^i;.. . ; e ^) € R^~^ such that Z{x^) is the unique criteria
vector corresponding to the optimal solution of the following problem (P^k) ;

Min Zk{x)
subject to

xeS
Zi{x)<el yie[l;K],ij^k

Proof.
1 ^ I Let us suppose that x^ is a strict Pareto optimum and let us show that
\/k e [l;Kl 3e^ = (ef;... ;e^_i; e^+i; . . . ;e^) G R^"^ such that Z{x^) is the
unique criteria vector corresponding to the optimal solutions of the problem (P^k).
We take e^ = {Zi{x% . . . ; Zfc_i(x°); Zfc+i(a;°); . . . ; ZK{X^)\ VA; = 1,..., K. Let us
proceed by contradiction, to show that, \fk = 1,...,K, Z{x) is the unique criteria
vector corresponding to the optimal solutions of problem (P^k).
Let us suppose that 3k e [1; K] such that 3x^ G S optimal solution of (Pgfc), with
Z(x°) j^ Z{x^). We have:

r Zk(x') < Zfc(x°)
I Zi{x^) < e^ = Zi{x^) yi = 1,..., K,i:^k
[Z{x') ^ Z{x')

This system contradicts the fact that x^ is a strict Pareto optimum.
P ^ Let us suppose that \/k G [l;K],3e^ = (eSf;... ;efc_i;efc+i;... ie^) G R^~^
such that Z(x^), x^ G <S, is the unique criteria vector corresponding to the optimal
solutions of the problem (P^k) and we show that x^ is a strict Pareto optimum.
Let us proceed by contradiction, i.e. let us suppose that x^ is not a strict Pareto
optimum. Then, x^ e S exists such that Z{x^) < Z{x^) with Z{x^) 7̂ Z(x°). Let
us consider k G [1; K]. For all e^ G M^"^ such that Zi(3p) < e^ x fe. Vi = 1,..., K,
2 7̂ fc, xMs a solution of (P,fc) for Zi{x^) < Zi{x^) < et Moreover, Zk{x^) < Zk(x^)
implies that either Zk{x^) — Zk(x^), or Zk{x^) < Zk{x^) which contradicts in every
case the fact that Z{x^) is the unique criteria vector solution of (Pgfc).D

The result shown in theorem 6 is quite difficult to implement, notably because
of the constraint of uniqueness. In the case where this is not taken into
account, we have the following theorem.

T h e o r e m 7 [Miettinen, 1994]
Let x^ G S. If 3k G [1;^:] , and if3e^ = (e j ; . . . ; e ^ _ i ; e ^ ^ i ; . . . ; e | :) G R^-\
such that x^ is an optimal solution of the following problem {P^k);

3.6 Determination of Pareto optima 73

Min Zk{x)
subject to

XGS

then x^ is a weak Pareto optimum.

Proof.
Let us consider x^ e S, k e [1; K], and ê = (e j ; . . . ; efc_i; e^+i;...; e^) G R ^ " \
such that a;° is an optimal solution of problem (P^k). Let us proceed by contradic­
tion to show that x° is a weak Pareto optimum.
Let us suppose that 3x^ G S such that Z{x^) < Z(xP). We have therefore
Vi G [l;i^],z 7̂ k, Zi{x^) < Zi{x^) < ei, and x^ satisfies the constraints of (P^k).
As Zfc(x)̂ < Zk{x^), the optimality hypothesis of x° for (Pefc) is no longer verified
which is a contradiction, x^ is therefore a weak Pareto optimum.D

The reciprocal of theorem 7 is false. Let us consider a problem with three
criteria where the set Z contains the following criteria vectors:

Z^ = [3; 5; 5]"^ (non dominated)
Z^ = [4; 4; 6]^ (non dominated)
Z^ = [3; 5; 6]^ (weakly non dominated)
Z^ = [4; 5; 7]-^ (weakly non dominated)

It appears then that for all criteria Zk and all vectors e'̂ , Z^ will never be a
solution to problem {Pe^). To realise this it is sufficient to construct the three
possible problems {P^k) and to verify that Z"^ is never an optimal solution.
Nevertheless, when the convexity of the set S and of the criteria Zi is imposed,
it is possible to show that the condition of theorem 7 becomes a necessary
and sufficient condition.

Lemma 3
Let S be a convex set and K criteria Zi convex onS. x^ e S is a weak Pareto
optimum if and only if 3k E [1; K] and 3e^ = (e j ; . . . ; e^_i; ej^_^j;...; e^) G
R^~-^ such that x^ is an optimal solution of problem (Pek).

Proof
I <= I The proof is identical to that of theorem 7.
I => I Let us suppose that x^ is a weak Pareto optimum and let us show that 3 k E
[1; K] and ^e'̂ G R^~^ such that x^ is an optimal solution of the problem (P^k). We
proceed by contradiction by considering that Vfc, Ve'̂ , 3x^ such that x^ satisfies
the constraints of (P^k) and Zk{x^) < Zk{x^).
A solution x^ always exists which verifies the following system {S^k)y VA;, Ve'̂ >
[Zi{xy,...; Zfc_i(x°); Zk+i{xy,...; Zx(cc°)]^:

r Zk{x^) < Zfc(x°)
I Zi{x^) <ef= \/i = l,...,K,ii^k
{Zi{x'')<e'l ^i = l,...,KJ:f^k

74 3. Multicriteria optimisation theory

Let us take for example, Ci = Zi{x^), Vz = l,...,i^,z ^ k, because thus x^
remains a solution of the corresponding problem (P^k). As <S is a convex set

K

and Zi are convex functions on «S, we have: Va G [0;1]^, with Y^a^ = 1,

K

3x" G «S such that Z(x^) = ^ a j Z (a : ^) . We have therefore, Va G [0;1]^:
j=i

K

Therefore -^(x") < Z{x^) and a;° is dominated which is a contradict ion. D

The above results do not assume tha t the criterion to be minimised is fixed,
which is not necessarily practical from the point of view of their use in an
algorithm. A result similar to theorem 7, but more simple by assuming tha t
the criterion to be minimised is fixed, is proposed in the following lemma.

L e m m a 4
Let a criterion Zk, with k G [1; K], be fixed. If 3e^ = (ef ; . . . ; e^.^; e^.^^;. . . ;
e^) G R^"-^ such that x^ £ S is an optimal solution of the problem (Pefc),
then x^ is a weak Pareto optimum.

Proof.
We suppose that k is fixed. Let e^ = (c i ; . . . ; €fc_i; €fc_|_i;...; e^) G E^~^ such that
x° G «S is an optimal solution of the problem (P^k). Let us proceed by contradiction
to show that x° is a weak Pareto optimum. Pursuit of the proof is similar to that
of theorem 7.
Let us suppose that 3x^ G S such that Z{x^) < Z(xP). We have therefore on one
hand \/i G [l;iir],z ^ k,Zi{x^) < Zi{x^) < ef, which guarantees that x^ satisfies
the constraints of (Pgfc), and on the other hand Zk{x^) < Zk{x^), which contradicts
the optimality hypothesis of x° for (P^k). x^ is therefore a weak Pareto optimum.D

Lemma 4 shows, tha t when the criterion is fixed, the set of the calculable
Pare to opt ima is a subset of the set of the weak Pareto optima. By contrast
to theorem 7, the addition of convexity hypothesis to the set S and the
functions Zi does not guarantee tha t all the set WE is calculable. A counter
example is given in figure 3.11. Nevertheless, we can show tha t the subset of
WE which is calculable by lemma 4 contains the set E.

L e m m a 5
Let a criterion Zk, with k G [l ; i ^] ; be fixed. If x^ is a strict Pareto opti­
mum, then 3e^ = (e ^ ; . . . ; e^_^; ^k-\-i''> • • • 5 ^ K) ^ R^""^ such that x^ e S is an
optimal solution of problem (Pefc).

Proof.
We suppose that k is fixed. Let x^ be a strict Pareto optimum and let us show
that 3 e'^ such that x^ is an optimal solution of the problem (P^k). We take

3.6 Determination of Pareto optima 75

The set Z(S) is convex and reduced to
the segment [z ;̂z]̂. If the minimised
criterion is Zj subject to the constraint
Z2<e, hence Ve the points]ẑ ;ẑ] can
never be computed.

•^z2

Fig. 3.11. Counter example of the reciprocal of lemma 4 under convexity hypoth­
esis

e^ = [Zi(x^)\...; Zfc-i(x°); Zfc+i(x°);...; ZK{X^)]^. We proceed by contradiction
to show that x^ is an optimal solution of the defined problem (Pgfc), i.e. we suppose
that 3x'^ such that Zk[x^) < Zk(x^) and Zi{x^) < ej', Vi = 1, ...,K,i^ k.
We have the following system:

I Zk{x^) < Zki.x'')
\ Zi{x^) < Zi{x^) Vi = 1,...,K.ii^k

=> Z{x^) < Z(a;°)
We arrive at a contradiction with the fact that x^ is a strict Pareto optimum, x^ is
therefore an optimal solution of the problem (P^k) previously defined.D

Geometrically, the problem (P^k) can be interpreted by means of level curves.
Let k e [1; K] and ê = (ef;...; e^.^; e^^^;...; e^) G R^-\ Let us define
S^ = {xe S/Zi{x) < e^ Vi € [l;i^],i ^ fc}, X={a)^ = {x £ S^/Zk{x) = a}
and L={a)^ = Z(X=(a)^). To solve (P^k) is equivalent to determining the
level curve with the minimal level curve value a* such that L={a*)^ is tan­
gential to Z{S^) in the criteria space (figure 3.12). If V fc,3 S^ such that
L=={a*)^ n Z{S^) = {Z(a:*)} then x* is a strict Pareto optimum for the mul-
ticriteria problem.

The e-constraint approach has been used widely in the literature (see for ex­
ample [Steuer, 1986]) because it is easy to use in an interactive algorithm: the
decision maker can interactively specify and modify the bounds and analyse
the influence of these modifications on the final solution. In the context of
an algorithm which determines the set of strict Pareto optima, one of the re-

76 3. Multicriteria optimisation theory

ai<a2<g*

L=(g*)

Lia^)

Fig. 3.12. Geometric interpretation of a problem (P^k)

suits presented can be used to vary the upper bounds. For each fixed bound, a
weak Pareto opt imum is calculated by solving a problem (Pefc). [Steuer, 1986]
presents a result for the estimation of the local trade-oflFs between two criteria,
useable in the context of such an algorithm to vary these bounds. Another
advantage of the e-constraint approach lies in the fact tha t a t each itera­
tion, we retrieve a single criterion problem for which we can already know an
efficient resolution algorithm.

3.6.4 Use of the TchebychefF metric

To determine the Pareto optima it is possible to use a metric and to search
for "the closest possible" solution to a reference criteria vector. In this
section, we are interested in a particular metric: the Tchebycheff metric
([Bowman, 1976]). Before presenting this metric, as well as the related the­
orem, we recall some definitions linked to the reference points, or reference
criteria vectors. The following definition assumes that each criterion can reach
its minimal value.

Definition 40
y,id .yid. ^id]T is the ideal point, or ideal criteria vector if and only

3.6 Determination of Pareto optima 77

if zj^ = mm{Zi{x)),yi = 1,...,K. Generally, this vector does not correspond

to any feasible solution.

Definition 41
Let K vectors z^ = [z\\...', zi^Y verifying z\ = z^, Vi = 1,..., K. The gains
matrix^ noted G, is defined by Gj^i = z^Wi = l,...,Ä",Vj = l,...,ür. This
matrix is not necessarily unique.

Definition 42
Let G be the gains matrix. The nadir is a criteria vector, noted z^^, defined
by z'^^ = max (Gj^i), Vj = 1,..., K. We note that this point depends on the

gains matrix considered (when there are several of these).

Definition 43
z'^^ is a Utopian point, or Utopian criteria vector if and only if z'^^
dominates z^^, i.e. z^* < z^^ with at least one strict inequality. This point
does not correspond to any feasible solution.

Definition 44
Generally speaking we call reference point, or reference criteria vector
every vector z^^^ which is considered as an objective to reach. The objective
is to find the closest possible solution to this point, in the sense of a function
to be optimised. The points z'^^, ^^" and z'^^ are reference points.

The previous definitions are traditional and are often used in interactive
methods. To measure the distance of a solution from a reference point, we
use a metric, as for example that of Tchebycheff.

Definition 45 [Bowman, 1976]
Let z^ and z^ G M^. The Tchebycheff metric is a measure of the distance in
R^ between z^ and z^, defined by:

\\z^ -Z-\T= . m^'^{\z\-z\\).

To use this metric in the area of the determination of Pareto optima
([Bowman, 1976]), we use a special reference point which we call the Tcheby­
cheff point. Let z* G R^ such that z* is an optimal solution of the
minimisation problem of K criteria according to the lexicographical or­
der Zi -^ Z2 —̂ . . . -^ ZjC' This means that the vector z* is such that
z* = min {Zi{x)) with S' = {x G S'-^/Zi{x) = min {Zi{x'))} and

50 = 5 . VÖ = (0, Ö2,..., OK) e R^, (^* - e) is called a Tchebycheff point.

Theorem 8 [Bowman, 1976]
Ifx^eS is a strict Pareto optimum then 36* = (0, Ö2,.. . , 0^^) G R^ such
that x^ is an optimal solution of the following problem {Pe)'

78 3. Multicriteria optimisation theory

Min | |Z(a:)-(z*-ö*)||T
subject to

xeS

Proof.
For all x^ e S,$u > 0, u ^ 0, such that Z{x^) = Z{x^) + u because x° is a strict
Pareto optimum. Let us take ^i = 0 and 9* = -Zi{x^) + z* - zl -\- Zi(x°), \/i =
2,...,K.
We deduce from this that Vz = 2,..., K, Zi{x^) - {zt -0*) = Zi{x^) - zl - Zi{x^) +
z: - z*i + Ziix"")
^ Vi = l,...,K,Z,(:c°) - (z:-e:) = Zi(x°) -zi*.
Thus, we have:
\\Z{x°) - (z' - 0*)\\T = max (|Zi(:t°) - zt\; |Zx(a;°) - zt\;...; |Zi(^°) - z'^\)
i.e. \\Z{x°) - {z' - Ö')\\T = |Zi(x°) - zl\, and
\\Z{x') - (z- - r) | |T = . max {\Zi{x') - z* + ö*|)

= max(|Zi(xi) - «1*1; \Z2{x^) - ^2(3;°) - «Jf + ^i(a;°)|;. •.; \ZK{X^) - ZK{X°) - zl +
Mx°)\)
now, as Vx' € S,$u>Q,u ^ 0, such that ^(a;°) = Z{x^) + u, we have necessarily
u < 0
=̂ |Zi(x') - Zi{x°) - zl + Zi(x°)| = I - «i - zi» + Zi(x°)| > I - zl + Zi(x°)|
We obtain thus:
WZix") - (z* - r) | |T = max(|Zi(xi) - Zi*|; . j iax^(| - u< - Zj* + Zi(x°)|)) >

|Z:(x°)-zn = ll^(^°)-(2*-Ö*)||T.
Therefore, ö*exists such that x^ is an optimal solution of {Pe)S2

In theorem 8, the determination of a strict Pareto optimum is made by using
a Tchebycheff point (2:* — Ö). It is obvious that this point must not correspond
to any feasible solution of S otherwise the optimal solution of {PQ) would be
the point [z* —S) which is not necessarily a Pareto optimum. Geometrically,
the problem {PQ) can be interpreted by means of level curves (figure 3.13).
Let ^* and Ö be fixed, X=(a) = {a; G SI\Z{x) - (^* - 6>*)||T = a} and
L^[a) = Z(X=(a)). Solving {PQ) is equivalent to determining the level curve
of minimal value a* such that L=(a*) ^ 0. The solutions of X=(a*) are then
solutions of {PQ).

The use of this metric in a resolution algorithm is related to the position of
the Tchebycheff point (z* — G), In an interactive algorithm, we may suggest
to the decision maker a first solution corresponding to an initial Tchebycheff
point. The instructions he gives enable us next to vary this point and to
repeat the process, until a satisfactory solution is obtained. In an a posteriori
algorithm we must get a procedure enabling us to vary (^* — G) and eliminate
all the dominated solutions of the set of obtained solutions.

3.6 Determination of Pareto optima 79

a^<a2<g*

' L=(^)

Fig. 3.13. Geometrie interpretation of a problem (Pe)

3.6.5 Use of the weighted TchebychefF metric

When we consider that weights Â are associated with criteria, it is possible
to use a generalisation of the TchebychefF metric. In this case, we make use of
several results which are more interesting than that presented in the previous
section. We begin with the definition of the weighted TchebychefF metric.

Definition 46
Let z^ and z^ G R^. The weighted Tchebycheff metric is a weighted measure
of the distance in R^ between z^ and z^, defined by:

\\z^ - Z'^WTP = max {Xi\zl - zf\) with A G R^.

The principal result tied to the determination of Pareto optima is displayed
in theorem 9.

Theorem 9 [Bowman, 1976]
If x^ e S is a strict Pareto optimum then 3X G R^^ such that x^ is an
optimal solution of the following problem {P\):

80 3. Multicriteria optimisation theory

Min \\Z{X)-Z''^\\TP

subject to
XGS

with z'^^ G R ^ a Utopian point.

Proof.
Let x^ be a strict Pareto optimum and A G M+* defined by:

I Ai = 1 otherwise

with z'^* G M^ a fixed Utopian point. We have z^^ < Z{x)^ \fx E S with at least one
strict inequaUty, therefore \Zi(x^) — z^^\ = Zi(x^) — zf*, Vi = 1, . . . , i^ , from where
Xi\Zi{x^) - zf\ = 1 if Zi(x^) ^ zf, and 0 otherwise.
We deduce from this that ||Z(x°) - Z^'^TV = . max (Ai(Zi(x°) - zf)) < 1.

Let x^ G 5 , we have \\Z(x^) - Z'^'WTP = ._max (Xi{Zi{x^) - 2;̂ *))

= max I max J) /. -; max (Zi(x^) — z^*)]. As x^ is a strict
\i/ZiixO)jLzY'M^) - ^ i/Zi(xO)=zf)

Pareto optimum, Jx^ G S such that Zi{x^) < Zi{x^)^ Vz = 1,...,K, with
Z(x^) 7̂ Z{x^), and we deduce from this that 3i/Zi{x^) - zf > Zi{x^) - zf.
Whence ||-^(ic^) — ^ '̂̂ ^HTP > 1, and x^ is an optimal solution of {Px).n

Theorem 9 remains valid if we consider tha t x^ is a weak Pareto optimum.
Besides, the result shown in this theorem is a sufßcient condition and if we
are interested in its opposite, we can simply show tha t the calculable solu­
tions are weak Pare to optima.

L e m m a 6
Let A G M^^ and z'^^ G M^ he a Utopian point. If x^ E S is an optimal

solution of the problem (Px), then x^ is a weak Pareto optimum.

Proof.
Let us proceed by contradiction and suppose that x^ is an optimal solution of (FA)
and that it is not a weak Pareto optimum. Then, 3x^ G S such that Zi{x^) < Zi{x^),
\fi = l,...,K.
=^ Xi\Zi{x^) - zf\ < Ai|Zi(x°) - zf\ for Ai > 0 and zf < Zi{x), Vi = 1, . . . ,Ü:,
\/xeS
=> max {\i\Zi{x'^) - zf\) < max {\i\Zi{x'^) - zf\),

which contradicts the fact that x^ is an optimal solution of (Px)-^

Corollary 2 makes a synthesis of the results presented in lemma 6 and in
theorem 9 for the calculation of weak Pareto optima.

3.6 Determination of Pareto optima 81

Corollary 2
x^ G S is a weak Pareto optimum if and only if 3X G R^^ and z^* € R^ a

Utopian point, such that x^ is an optimal solution of the problem (PA)-

If we are only interested in the determination of strict Pareto optima, we can
then use the result presented in theorem 10.

Theorem 10 See [Teghem, 1996] in the case of MLP
x^ e S is a strict Pareto optimum if and only if 3X G R^^ and z'^^ G R^ a
Utopian point, such that x^ is an optimal solution of problem (P\) o,nd Z{xP)
is the unique optimal criteria vector.

Proof.
I => I The proof is identical to that of theorem 9 in which Z{x^) is also the unique
optimal criteria vector.
1 ^ I Let us suppose that 3A G R+« and z^^ G M^ a Utopian point, such that x° G «S
is an optimal solution of (PA) with Z{x^) the unique optimal criteria vector. Let us
show by contradiction that x^ is a strict Pareto optimum.
Let x^ eS such that Z{x^) < Z{x^) with Z{x^) ^ Z(x°)
^ \i{Zi{x^) - zf) < \i\Zi{x^) - zf), Vi = l,...,i^, with at least one strict
inequality
^ max {\i{Zi{x^) - zf)) < max {Xii.Ziix'^) - zf))

Two cases can appear:

• max {Xi{Zi(x) — z^*)) = max {Xi(Zi{x) — zt^)) and that contradicts the

uniqueness hypothesis of Z{x^)^
• max {Xi{Zi{x^) — z'^^)) < max {Xi{Zi{x^) — z'^*)) and that contradicts the

fact that x^ is an optimal solution of (PA)-

In every case we end up with a contradiction, which leads to the conclusion that
x^ is a strict Pareto optimum.D

Geometrically, the problem (PA) can be interpreted by means of level curves
(figure 3.14). Let ^^* and A be fixed, X=(a) = {x G S/\\Z{x) - ;^^*||TP = a}
and L^{a) = Z(X=(a)). To solve (PA) is equivalent to determining the level
curve of minimal value a* such that L^{a*) ^ 0. The solutions of X=(a*) are
then the solutions of (PA)-

This approach depends on the Utopian vector z'^* and the weights A .̂ An
example of its use in an a posteriori algorithm is of making z^* vary. For each
vector obtained, it is then necessary to conduct a parametric analysis of Ai
in order to obtain all the Pareto optima. In an interactive algorithm we use
the instructions of the decision maker to make z'^^ and A vary.

3.6.6 Use of the augmented weighted Tchebycheff metric

It is possible to use a still more general form of the Tchebycheff metric than
that presented in the previous section. The basic result yielded is interesting

82 3. Multicriteria optimisation theory

a^<a2<g*

z A
2]

L

•

k

' Lia,)

1

z

L LJg*)
^

^
P

z,

\ U(aj)

Fig. 3.14. Geometric interpretation of a problem (PA)

but difficult to apply in practice. Thus, we present at the end of this section
a more convenient result. At the outset we define the considered metric.

Definition 47
Let z^ and z^ G R^. The augmented weighted Tchebycheff metric is a
weighted measure of the distance in R^ between z^ and z^, defined by:

K

\\z^ - z'^Wrpa = . max (Ail 2;/ - zf\) + pY^l^i " ^i\
2=1 , . . . , J \ -*—'

i= l

with A G R+ and p G R̂ _ a low value.

The use of the augmented weighted Tchebycheff metric to calculate Pareto
optima leads us to the following theorem.

3.6 Determination of Pareto optima 83

T h e o r e m 11 See [Teghem, 1996] in the case of MLP
x^ e S is a strict Pareto optimum if and only if 3A G M^*; ^^* ^ ^^ ^

Utopian point and 3p € RÜj. a low value, such that x^ is an optimal solution
of the following problem (P(A,p)):

M m | | Z (x) - Z ^ * | | T p a
subject to

xeS

Proof.
I => I Let us suppose that x^ is a strict Pareto optimum and let us show that 3A G
R^*, ^^* G R^ a Utopian point and 3p G R+ such that x^ is an optimal solution of

Let z"* be fixed and such that z"* < z"^, i.e. Vx 6 S, zf < Zi{x). We define

A 6 R ? , by Xi = —-^ ^ for Zi{x°) ^ zf^^i = 1,..., K.

We have then Ai(Zi(x°) - zf) = 1, whence . max {Xi{Zi{x^) - zf)) = 1.

As x° is a strict Pareto optimum, Ja;^ G 5 such that Zi{x^) < Zi{x^), Vz = 1,..., ii '
with Z{X^) y^ Z(X^).
^ Vcĉ G iS, Z(a:^) ^ Z(x°), 3 j G {1,. . . , /i'} such that Zj{x^) > Zj{x^), whence
Xj{Zj{x')-zf)>Xj{Zj{x')-zr).
^ Xj{Zj{x') - zf) > 1
=^ . max (Xi{Zi(x^) - zf)) > 1 = . max (Ai(Zi(T°) - ^ f)) .

Let the value p defined by:

min (max (Xi(Zi(x) — zf)) — max (XiiZAx^) — zf)))

P< K

K p G R j and ordinary, otherwise.

Wx^ G <S, we distinguish two cases:

max (y"(Zi(x'^)-Zi(x)))
xes,z(x)^z(xO)^^^ ^ "^

K

if max (y^(Zi (x°) - ZJx)) > 0
Z = l

1. max (y^(Zi (x°) - Zdx))) > 0, and then
x€5,Z(x)#Z(xO) ^ - ^ ^ ^̂ ^

X£S,Z{X)T^Z(X^) T^

mm
x€5,Z(x)7^Z(x

K
p X ̂ (Z , (x °) - Zi{x') - zf + zf) <

i=l

min (max (Xi(Zi(x) — zf))— max (Xi(Zi(x^) — zf))]
5,Z(x)^Z(xO) Vi=l , . . . ,K ^ V V / ^ // i=l,...,K^ v v / * / / y

pf^(Z,(rr°) - zf) - pf2iM^') - ^i') < . max (A,(Z,(cr^) - zf))

84 3. Multicriteria optimisation theory

max (Xi(Zi(x^) — z^*))

K

=> j n a x (Ai(Zi(x°) - zf)) + p x ^ (Z i (x °) - zf) < . jnax^(Ai(Zi(x') -

zr))+px^{Mx')-zr)
=> | | Z (X °) - > | | T p a < \\Z(x') - z'^'Wrpa.

K

2. max (S^(Zi(x^) — Zi(x))) < 0, and in this case o eRt ordinary and
x € 5 , Z (x) / Z (x O) ^

then:
K

p X max „ (^ (Z i (x °) - Zi{x))) < 0
xG5,Z(x)7^Z(xO) f—̂

K

=^ p X 5^(Z,(x°) - Zi{x^) + ; . r - zf) < 0
i = l

^ p X Y.^Zi{x°) - zf) <px f^(^i(rr^) - zf)
i=l i = l

We have therefore max {Xi{Zi{x^) — z'^^)) — max {Xi{Zi{x^) — z'^^))
i=l,...,K i=l,...,K
K

+p max (y^(Zi(x°) - Zi{x))) < 0

x 6 5 , Z (x) ^ Z (x O) ' ^ '

=^ ||Z(X°) - Z^'WTva < \\Z[X^) - Z-'WTpa

Whence 3p, A, and z'^^ such that x^ is an optimal solution of (F(A,p)).
I ^ I Let us suppose that 3A G M+*, ;2̂ *̂ G M^ is a Utopian point and 3p G M+
such that x^ is an optimal solution of (P(A,p)) and let us show that x^ is a strict
Pareto optimum. We proceed by contradiction.
Let x^ G <S,x^ 7̂ rc°, such that Z{x^) < Z{x^) with Z(x^) ^ Z{x^).
Vz = 1,..., K, Zi(x^) - z'i^ < Zi{x^) - zf^ with at least one strict inequality.

r max {Xi{Zi{x^) - zf) < max {Xi{Zi{x^) - zf)

pf̂ (Z,(x̂) - zf) < pj^iZiiA - zt')
i=l i=l

Whence \\Z{x^) - z'^^Wrpa < \\Z{x^) - z'^^Wrpa, which contradicts the fact that x°
is an optimal solution of (P(;\^p)). x^ is therefore a strict Pareto optimum.D

The principal inconvenience of this metric is linked to the determination of
the parameter p. In the proof of the necessary condition of theorem 11, we
propose a method of regulating this parameter. Nevertheless, this method is
not usable in practice given tha t it requires the evaluation of an upper bound
which depends on the set S. [Steuer, 1986] notices tha t a numeric method
does not exist to deduce a value of p when z'^^ and A are fixed. In practice,
we have to consider the values between 10"^ and 10"^. The problem {P(^\^p))
can be interpreted by means of level curves (figure 3.15). Let z*,A and p
be fixed, X^{a) = {x G S/\\Z{x) - z'^^Tpa = a} and L={a) = Z{X={a)).

3.6 Determination of Pareto optima 85

Solving (P(A,p)) is equivalent to determining the level curve of minimal value
a* such that L={a*) ^ 0. The solutions of X=(a*) are then the solutions of

ai<a2<g*

»Lia)̂

Fig. 3.15. Geometric interpretation of a problem (P(A,p))

In figure 3.15 we have represented by means of broken lines the contour
generated by the weighted Tchebycheff metric. This enables us to visualise
the influence of the term p ^ ^ ^ j \Zi{x) — z'^*\ on the search for a strict Pareto
optimum in the case of a linear problem. The angles 9i and 62 are functions
of the value p and in the example we have ([Steuer, 1986]):

^ — -) , and 02 = tan-\ f)
A2 + p 1 - Al + p

= tan ^(:

86 3. Multicriteria optimisation theory

We thus notice that the greater the value p becomes the more important the
angles become. As we have seen in section 3.6.5, The use of the weighted
Tchebycheff metric can generate weak Pareto optima (several solutions be-

K

long to a line of a broken rectangle). The presence of the term pS2\Zi{x)—z'^^\
i=l

in the augmented metric will only lead to retaining, among the solutions ob­
tained by the weighted Tchebycheff metric, those which are strict Pareto.

A similar approach to that presented in this section consists of breaking down
the augmented weighted Tchebycheff metric into two criteria and defining a

K

lexicographical order. Let Ti = max (Ai|Zi(a:)—zj**|), andT2 = y^\Zi{x) —

z'!^^\ and the lexicographical order Ti -^ r2: among the solutions having an
optimal value of the criterion Ti, we choose the one having the lowest value
of T2. We note T̂ * the optimal value of the criterion Ti.

Theorem 12 See for example [Steuer, 1986]
x^ E S is a strict Pareto optimum if and only if 3X G R^^ and z^* € M^
a Utopian point such that x^ is an optimal solution of the following problem

MinT2
subject to

xeS
Ti = Ti*

The advantage of theorem 12 lies in the fact that we no longer have to em­
pirically fix a value p. Moreover, this approach only generates strict Pareto
optima. Using it is equivalent, in theory, to minimising initially a weighted
Tchebycheff metric (see corollary 2 and theorem 10). If several solutions
are then obtained we apply for a second time minimisation of the term
Yli=i \Zi{x) — z'-^^l to obtain a strict Pareto optimum and to remove the
non strict weak Pareto optima. In practice, we realise the minimisation of
the functions Ti and T2, according to a lexicographical order, at one go.

3.6.7 Determination by the goal-attainment approach

An approach which is similar to those using the TchebycheflF metrics is the
goal-attainment approach ([Gembicki, 1973] and [Wierzbicki, 1990]). This re­
quires the definition of a goal, for the criteria, and we search for the solu­
tion which best approaches this. The difference to the approaches based on
Tchebycheff metrics is in the way in which this solution is sought.

Theorem 13 [Gembicki, 1973], [Wierzbicki, 1990]
x^ e S is a weak Pareto optimum if and only if 3 z^^^ G R^ a reference

3.6 Determination of Pareto optima 87

point and w G R^^ a weights vector such that x^ is an optimal solution of

the following problem {P{z-^^f ̂ w))'

Max g{Z{x)) with g{Z{x)) = _min (— « ^ " ^ - Zi{x)))

subject to
xeS

Proof.
I =^ I Let us suppose that x^ is a weak Pareto optimum and let us show that 3z'^^^
and 3w such that x^ is an optimal solution of the problem (^(^r-e/.„,)). We take
^ref _ z{x^) and ordinary K; > 0. Let us proceed by contradiction to show that x^
is an optimal solution of the problem {P^z-^ef ̂ ^>^). Let 2;° G R be the value of the

objective function obtained for x^. We have z^ = min (— (z^^^^ — Zdx))). Let

us suppose that 3x^ ^ x^ e S and 3^^ G R such that:

' Z{x^) i- z^w < z^^f
z'>z'^

Which is equivalent to:

r Z(a:°) + z'^w < Zix"") (A)
{ Z{x^)-\-z^w<Z{x'^) (B)
[z^>z'' (C)

The inequality (A) implies that z^ = 0. The inequality (C) implies then that z^ > 0.
Finally, the inequality (B) implies that Z(x^) < Z{xP) which contradicts the fact
that x^ is a weak Pareto optimum, x^ is therefore an optimal solution of the problem

[W\ Let us suppose that ^z""^^^ G R^ and w^ G R+* such that a;° G iS is the
optimal solution of (̂ (̂̂ ^e/o ,^o)). Let us proceed by contradiction and suppose that
x^ is an optimal solution of (^(^re/o ^^o)), and x^ is not a weak Pareto optimum.

Note z^ = j n i n (- ^ « ^ ^ ° - Zi{x^))). Then, 3x'^ G S such that Zi{x^) < Zi{x^),

\/i = 1,...,K. Then, Vi = h...,K, Zi{x^) + z^w^ < Zi{x^) + ; ^ V and as
z^ < :;jö-«^^° - Zi{x^)) we have Zi{x^) + z^w^ < <^^°, and therefore x^ is a

s o l u t i o n o f {P(zrefO^^O^).

Vz, Zi{x^) < Zi(x°)

=> :^(zr'' - Z,(x')) > ^{zr'' - Z,{x')) for t . > 0

=^i^(zr''-z,{x'))>z\
i

which contradicts the fact that x° is an optimal solution of (P^^^^^/iy)).D

In section 3.6.6 we have seen tha t the consideration of two criteria Ti (of
maximum type) and T2 (of sum type) enables us to determine only strict

88 3. Multicriteria optimisation theory

Pareto optima. We were then concerned with a lexicographical problem. In
the goal-attainment approach area, we can show that the addition of a sub-
criterion of the sum type allows us to return to the problem {P{g,b)) presented
in the section 3.6.2.

Theorem 14
Let z'^^^ e M^ he a reference vector, w G R^^ a weights vector and {Pf^ref ^\)
the problem defined by:

Max h{Z{x)) with h{x) = ^ (— « ^ ^ - Zi{x)))

subject to

xeS

.jLt^'Ji^^'^''-'^™^-with z* = max(min (—(z^^^
xes \=i,...,K^Wi *

Problem {Pf^ref ^)) is equivalent to a parametric problem iP{g,b)) where
K

g{Z{x)) = ^^aiZi{x), ai > 0,Vz = l,...,iir, with ai = :^ and bi =

zl^^ -Wiz\ \fi = l,...,K,
Proof.

(i) We know that min (— « ^ ^ - Zi(x))) = z*
i=l,...,K Wi

^^^{zr^-Zi(x))>z\yi = h...,n
^ Zi{x) < z1^^ -WiZ*, Vi = l,...,n.
We note bi = z^^^ — wiz*, Vi = 1,..., n.

(ii) Maximising y~ (̂ — {z^^^ — Zi{x))) is equivalent to minimising 2_\ — Zi{x).
i=l * i=l

Knowing that it;» > 0, Vi = 1,..., n, the new objective function is strictly increasing.
Prom the points (i) and (ii) we deduce that the problem {Pf^r-ef ^\) is equivalent to

a problem (P(g^b)) with^(Z(x)) = 2_] — Zi{x) and 6f = z^^^ —wiz*."ii = 1,...,X.D
, Wi

Theorem 14 allows us to apply the results which are valid for the parametric
approach to the problem {PLvef ^))- Thus we deduce from this that the solu­
tion of this problem allows us to obtain a strict Pareto optimum and that all
these optima may be calculated by solving a problem {PLref ^))- The proof
theorem 14 shows equally that the maximisation of the criterion of type sum
is equivalent to a problem {Pa) (see section 3.6.1).

Lemma 7
Let z'^^^ € R^ a reference vector, w € R^^ a weights vector and {Pf^ref ^))
the problem defined by:

3.6 Determination of Pareto optima 89

Ma:cf2i^i<'^-Zii^)))
subject to

xeS

The problem {Pf^ref ^\) is equivalent to the problem (Pa) with ai = ^ ^ j ^ , Vi

_ ^ 1 1,..., K^ and w = > —
i=l

Proof.
Following from point (ii) of the proof of theorem 14.D

Lemma 7 leads to the conclusion that the solutions calculated are proper
Pareto optima and that it is not wise to solve {Pf^ref ^\) to calculate Pareto
optima when the convexity hypotheses have not been verified. A geometric in­
terpretation of the problem (P(^re/,y,)) is proposed in figure 3.16. Two cases
concerning the position of the point z^^-^can occur. In the first case, z'^^^
does not correspond to any feasible solution. The solution of (P(^re/.j^)) is
equivalent to projecting the point z'^^^ onto the trade-off curve in a direction
specified by the weights value Wi. In the second case, the result is identical
despite the fact that z'^^^ corresponds to one or more feasible solutions.

Fig. 3.16. Geometric interpretation of a problem (^(2^6/,̂ ,))

If we go to a more detailed analysis of the functioning of theorem 13, we
realise that the solution of the problem (P(^re/,j^)) does not solely depend
on the values z"^^^ and w. In fact, the significance of the weights w and of

90 3. Multicriteria optimisation theory

the reference vector z'^^^ depends on the relative position of this vector with
respect to the set ^ . A simple example is presented in figure 3.17. The set Z
is made up of the vectors z^ and z'^^ and the weights given by the decision
maker are ^ = [100; 10]^. In the first step, we suppose that the reference
point given by the decision maker is the point z'^^^^. The optimal solution
of the problem (P(2;re/,„;)) then corresponds to the vector z^, since we have
min(100x (5-20); 10x'(5-40))>min(100x (5-40); lOx (5-20)). Therefore,
we notice that this optimal solution minimises the distance to z"^^^^ for the
criterion Zi. Thus, the greater the weight Wi is the more we search for a solu­
tion minimising the criterion Zi, Let us now consider in the second step that
the decision maker gives the vector 2̂ ^̂ -̂ ^ as the reference point. The optimal
solution of the problem {P(zref^u})) corresponds now to the vector z'^ since we
have min(100x (60-20); 10 X (60-40)) <min(100x (60-40); 10 X (60-20)).
Interpretation in weight terms of wt is thus inverted: the lower the weight Wi
is the more we go in search of a solution minimising the criterion Zi. Thus,
it is difficult to tell the decision maker if an important value for Wi means
that Zi is an important criterion or of little importance, since this depends
on the position of the vector z'^^^ in relation to the set of solutions.

40.

20-L

^refZ

^refl

20 40

2refl=

7ref2=
=[5;5]T
[60;60]T

l/w=[100;10]T
zi=[20;40]T
z2=[40;20]T

Fig. 3.17. Meaning of the weights Wi regarding the position of z'^^^

This example shows well that following the position of the reference point
with respect to the set Z, the meaning of the weights can be radically dif­
ferent. This implies that for the decision maker who will fix the weights, the
importance of a criterion is diflScult to control. Use of the goal-attainment
approach therefore makes the role of the analyst a particular factor of this

3.6 Determination of Pareto optima 91

problem. To overcome this it is possible for example to stipulate that the
reference point should be a Utopian point.

3.6.8 Other methods for determining Pareto optima

Other methods for determining Pareto optima exist in the literature. For
example, it is possible to derive results using a different metric than the ones
presented in the previous sections. Principally, we present in this section
the approaches without any trade-off allowed where a lexicographical order
between the criteria is defined. Other methods enable us to determine existing
Pareto optima. We refer to [Ehrgott, 2000b] for a presentation of different
approaches such as the "max-ordering" approach or the global lexicographical
approach.

Use of a lexicographical order

A technique frequently used to minimise several criteria consists of defining
an optimisation order. This type of problem occurs when no trade-off between
the criteria is authorised. It concerns an optimisation problem according to
a lexicographical order, defined without any loss of generality by the criteria
indices, Zi —> Z2 -^ . . . —̂ ZK, and noted minLex{Z).
To determine an optimal solution x^ of miriLexiZ) is equivalent to finding a
solution x^ G S^ with

51 = {x^ e S/Zi{x^) = min(Zi(a;))},

52 = {̂ 0 G 5VZ2(xO) =''min(Z2(a;))}, . . . ,

S^ = {x'^ £S^-^/ZK{X^)= min {ZK{X))},

A necessary and sufficient condition for the existence of a solution of the
problem miriLexiZ) is that each criterion Zi is lower bounded on each subset
S'-^ and that 5 7̂ 0 ([Steuer, 1986]).

Property 4
1) Vx^ G 5^, 1 < fc < jFf, x^ is a weak Pareto optimum,
2) Vx° G S^ ^x^ is a strict Pareto optimum.

Proof.
1) Let us proceed by contradiction. We suppose that 3x^ G S such that Zj{x^) <
Zj{x^), \/j = 1,..., K. It is obvious that for j = I there is a contradiction with the
fact that x^ e S^ ^ S^. x° is therefore a weak Pareto optimum.
2) We must show that $x^ eS,x^ ^ x°, such that Zi{x^) < Zi{x^), Mi = 1, ...,K,
with at least one strict inequality. Two cases can arise:
• x^ ^S — S^'. Given that Z\(x^) = min(Zi(x)) < Zi(x^), x^ does not dominate

x^ therefore $x^ G <S — «Ŝ which dominates x^.
• 3 i G {1,...,K} such that x^ G S': Vj = l,...,i, Zj{x^) = Zj{x^) and Vj = z +

92 3. Multicriteria optimisation theory

l,...,i<r, Zj{x^) < Zj{x^) which impHes that we cannot have Zi(x^) < Zi{x^),
yi = 1,...,K, with at least one strict inequaUty.

Therefore x^ is a strict Pareto optimum.D

Use of a lexicographical order with goals

An approach derived from the problem miriLex is to consider that the criteria
are sorted according to the order Zi —> Z2 -> . . . -^ Z/^:, and that for every
criterion there is a goal to reach. Thus, we no longer search for the minimal
value for every criterion in the set 5% but we search for a solution which is
the closest to the goal we wish to reach. This problem, noted miriLexobj takes
shape as follows: let z'^^^ be a reference vector. Determination of an optimal
solution x^ of miriLexobj (Z) is equivalent to finding a solution x^ £ S^ with:

51 = {xO e 5/|Zi(xO) - z\'f\ = nnn(|Zi(a;) - z\'^\)],

52 = {xO e 5Vl^2(xO) - zl'f\ ="mm(|Z2(a;) - 2^^!))}, . . .

The definition of the above problem miriLexobjiZ) assumes that the distance
between the reference point z'^^^ and the set of vectors of Z is measured by
a metric Loo in R̂-

Property 5
jf ^ref ^̂ either the ideal point z'^^, or a Utopian point z'^^, then the problems
minLex{Z) and miuLexobji^) ^^^ equivalents.

Proof.
It is sufficient to show that for a set «S* minimisation of the term \Zj{x) — z^^^\ is
equivalent to minimisation of the criterion Zj{x). We have z^^^ = z'^'^ or z'^^^ = z'^*
=^ \Zj{x) — z'^^\ = Zj(x) — z^^' Thus, minimising Zj{x) — z^^^ is equivalent to
minimising Zj(x) since z^^ is a constant.D

By contrast to the problem minLexi^), membership to the set E of a solution
of the problem miniexobj cannot be guaranteed. Similarly, a solution x^ G
5*, Vi = 1,..., X — 1, can be a dominated solution.

3.7 Multicriteria Linear Programming (MLP)

The methods presented in the previous sections are valid without having
to suppose strong hypotheses on the structure of the criteria and on the
structure of the set of solutions. Nevertheless, some of the results presented
are simplified in the case of Multicriteria Linear Programming (MLP).

3.7 Multicriteria Linear Programming (MLP) 93

3.7.1 Initial results

We define an MLP model as follows:
Q

Min Zi, with Z\ — ̂ c] x j = c^x

Q

Min ZK, with ZK = ^ c j ^ ^ j = c^^

subject to

with A the coefficients matrix (M x Q) and 6 the constants vector of size
M. The set of solutions 5 is a polyhedron defined by the constraints of the
problem: it is therefore by definition convex. Moreover, each criterion Zi is
a linear function and therefore convex and Z is thus a convex polyhedron.
Before considering the application of the theorems addressed in section 3.6,
we shall present a few results on the connectedness of the sets E and WE.

Lemma 8
The set WE is connected.

Proof.
Direct application of theorem 2.D

Lemma 9 [Yu and Zeleny, 1975]
Let Eex be the set of the extreme points of the polyhedron S which are strict
Pareto optima. The set Eex is connected.

Given that each point x^ G E can be expressed by a convex combination of
points x^ G Eex^ we can deduce from lemma 9 that the set E is connected.

3.7.2 Application of the previous results

Theorem 4, presented in section 3.6.1, enables us to determine proper Pareto
optima in the general case by minimisation of a convex combination of cri­
teria. In the context of problems with real variables we shall see that this
theorem is slightly different. Let us return firstly to the definition of a proper
Pareto optimum. We have seen in section 3.3 that a proper Pareto optimum
was a strict Pareto optimum verifying the following condition:

94 3. Multicriteria optimisation theory

Properness condition: 3M > 0 such that
yy^x,yeS,iy(x)^ü=>

W iely, 3j, l<j<K with Zj{x) < Zj{y) such that z][f)Zzf^] < M
with Iy{x) = {ie [1;K]/Zi{y) < Zi{x)}.

We can show that for every Unear problem, every strict Pareto optimum is
proper (see [Steuer, 1986]). In other words, every strict Pareto optimum ver­
ifies the above properness condition and theorem 4 enables us to determine
the set E. By authorising weights a^ being equal to 0 in this theorem, we
obtain lemma 2. Given the paucity of parameters to regulate in the approach,
this is easier to use for the resolution of problems which can be modeled by
MLP. An obvious interest in theorem 4 (and in the results derived from it) is
to enable the design of a simple interactive algorithm causing only variations
on the weights.

Concerning the e-constraint approach the result presented in lemma 3 holds
since in the context of problems which can be modeled by MLP, the set of
solutions and the set of criteria vectors are convex sets. This result implies
therefore that the set WE can be determined by varying the value of k and of
the bounds e^. By contrast, even with the convexity hypotheses of S and the
criteria Z^, the reciprocals of lemmas 4 and 5 are not valid. In other words,
even for problems which can be modeled by MLP, the use of the e-constraint
approach, when the criterion to minimise is fixed, only enables us to reach a
subset W of WE. We have EQW.

Concerning the results related to the parametric analysis (theorem 5), to
the Tchebycheff metrics (theorems 8, 10 and 11), to the goal-attainment
approach (theorem 13) and to the lexicographical approach (section 3.6.8),
their application does not raise any problem in the context of linear problems
with real variables.

3.8 Multicriteria Mixed Integer Programming (MMIP)

3.8.1 Initial results

The absence of convexity hypotheses on Z implies that non supported solu­
tions appear. We thus distinguish for the problems which can only be modeled
by Multicriteria Mixed Integer Programming (MMIP) the supported Pareto
optima and the non supported Paneto optima. Figure 3.18 presents this dis­
tinction through an example. Set Z is the set of points represented and co{Z)
is the convex hull defined by Z, We have co{Z) = {z G R^/Va^ G [0;1],
X]i=i <^i = I5 ^iid Vz* e Z^z = Y^i^i OLiZ'^]. The point z^ corresponds to one

3.8 Multicriteria Mixed Integer Programming (MMIP) 95

or several non supported strict Pareto optima since z^ does not belong to the
border of co(Z). The point z^ represents non supported weak Pareto optima.

z \ z ,̂ T?, z :̂ supported strict Pareto optima
ẑ : non supported strict Pareto optimum
ẑ : supported weak Pareto optima
z"*: non supported weak Pareto optima

co(Z)

Fig. 3.18. Supported and non supported Pareto optima

We denote by WEs and EQ the weak supported Pareto and the strict sup­
ported Pareto optima, respectively. WEns and E^s denote the set of non
supported weak Pareto and the set of non supported strict Pareto optima,
respectively.

3.8.2 Application of the previous results

Geoffrion's theorem (theorem 4) proposes a result based on the minimisation
of a convex combination of criteria. This theorem is not suitable in the domain
of MMIP given that the set S is not convex. In this case we make use of a
degraded version of Geoffrion's theorem.

K
Theorem 15

Let OL € [0; 1]^ such that Y^aj = 1. If x^ G S is an optimal solution of the
i=l

problem (Pa) then x^ is a weak Pareto optimum. {Pa) is defined by:

K

Min g{Z{x)), with g{Z{x)) = } ^aiZi{x)

subject to
XGS

96 3. Multicriteria optimisation theory

Proof.
Identical to the proof of the sufficient condition of lemma 2.D

If we consider in theorem 15 non null weights, i.e. a G]0; 1 [^ , then the solu­
tions of (Pa) are strict Pareto optima. Theorem 15 shows that certain Pareto
optima cannot be calculated by minimising a convex combination of criteria.
In other words, whatever the chosen weights, certain Pareto optima will never
be solutions of (Pa)- These are the non supported Pareto optima. An illus­
tration is proposed in figure 3.19. The vectors z^ and z^ correspond to the
supported strict Pareto optima whereas z^ corresponds to a non supported
Pareto optimum.

K\^)

L.V)

Fig. 3.19. Geoffrion's theorem and non supported Pareto optima

To understand the notion of non supported Pareto optima we define a
set of level curves. We set X^{g^) = {x e ^/Yli=i^)^ji^) —9^} ^^^
Ltig') = Z{Xi{g')) with g' G M the minimal value such that X i n 5 7̂ 0.
Therefore, we note that Va* G [0; 1]^, the criteria vector z^ does not corre­
spond to any solution of (Pai). A direct consequence of this result is that
the resolution of non convex problems by convex combination of criteria does
not enable us to propose all the solutions x^ G WE to the decision maker. In
other words, solutions of potential interest cannot be proposed to him.

Concerning the e-constraint approach only lemma 3 cannot be applied since
the set S is not convex. Thus, the set of calculable solutions, even if the
criterion to minimise is not fixed is only a subset, denoted by W, of the set
WE. We still have ECW.

3.8 Multicriteria Mixed Integer Programming (MMIP) 97

Concerning the results related to the parametric analysis (theorem 5), to
the Tchebycheff metrics (theorems 8, 10 and 11) and to the goal-attainment
approach (theorem 13), their apphcation does not raise any problem in the
context of linear programs having integer variables. These approaches enable
us to determine the supported as well as the non supported Pareto optima.
Concerning the lexicographical approach (section 3.6.8), we have S^ C Es
whatever be the defined order of the criteria.

3.8.3 Some classical algorithms

Numerous algorithms, based on either an interactive method, or an a poste­
riori method, have been proposed in the literature. As a general rule, these
algorithms tend to separate the search for Pareto optima into two steps. In
the first step, we are interested in the supported Pareto optima and in the
second step in the non supported Pareto optima.

The algorithm of [Klein and Hannan, 1982] is among the most classical al­
gorithms. It enumerates the image of the set E in the criteria space. The
principle of the algorithm lies in the resolution of q single criterion problems.
The problem noted (Pi), of the minimisation of criterion Zi is solved at the
first step. We denote by s^ the solution which is obtained. The problem (P2)
is then constructed by adding to the problem (Pi) the disjunctive constraint
"Zi{x) < Zi[s^) - e or Z2{x) < ^2(5^) -e or ...or ZK{X) < ZK{S^) - e''

where e > 0, for example e = 1. The implementation of this constraint in
a mathematical model necessitates of course the addition of boolean vari­
ables. Klein and Hannan also propose an implementation of this algorithm.
An inconvenience of this approach lies in the fact that the criteria vectors
corresponding to weak Pareto optima can be generated as well.

Other algorithms, of a heuristic nature, have been proposed in the litera­
ture. [Ulungu et al., 1995] propose a generic simulated annealing algorithm
to approximate the set E. The characteristic of this algorithm lies in the ac­
ceptance test of a solution y belonging to the neighbourhood of the solution
X. Since the problem is multicriteria the authors use a convex combination F^
of the criteria to get an evaluation of the solutions. Knowing Fi{x) and Fi{y)
the solution y is kept according to the classic scheme of simulated anneal­
ing algorithms. The solutions of each iteration are stored as potential Pareto
optima. This heuristic is iterated several times for the different values of the
weights of the convex combination. The sets of solutions which are obtained
are then aggregated to obtain an approximation of the set E. Another heuris­
tic is proposed in which the evaluation function is the weighted Tchebycheff
metric. Other similar heuristics have been proposed by [Ulungu et al., 1999].
Equally, we can refer to the works of [Czyzak and Jaszkiewicz, 1997] who also
propose a generic simulated annealing algorithm.

98 3. Multicriteria optimisation theory

Besides, [Gandibleux et al., 1997] propose a tabu search algorithm which ap­
proximates the set E. At each iteration of the algorithm, the solutions y in
the neighbourhood of the current solution are evaluated by a metric Lp and
Lp. Upon reaching a single criterion evaluation of the solutions it is then pos­
sible to apply the scheme of a classic tabu algorithm. At each iteration among
the best M solutions y of the neighbourhood of x, we can add the solutions
which are not dominated to the set E under construction. The solutions of
this set can become dominated, and are therefore eliminated. The weights
of the metric L^ are updated at each iteration by a procedure described by
the authors. An application of this algorithm to a particular problem is also
presented.

A panorama of resolution algorithms for linear and non linear multicrite­
ria problems is addressed by [Climaco et al., 1997]. Besides, a state-of-the-
art of resolution algorithms and of Operational Research problems is pre­
sented by [Ulungu and Teghem, 1994]. They address for instance the mul­
ticriteria assignment problem, the multicriteria travelling salesman problem
or still yet the multicriteria knapsack problem. More recently, we find in
[Ehrgott and Gandibleux, 2000] a study of the multiciteria problems most
addressed in the literature of Operational Research. They tackle notably the
principal resolution algorithms.

[Tuyttens et al., 1999] address a bicriteria assignment problem. This prob­
lem, noted BAP, is AfV-hd^vd ([Serafini, 1987]) and is defined by:

n n

Min Zk{x), with Zk{x) = ^^ X^cf^-^ij, Vfc = 1,..., 2

subject to
n

^Xij = 1, Vz = l , . . . , n
n

Y^Xij = 1, Vj = l, . . . ,n

Xij e {0; 1}
The costs c!ij are assumed to be positive. Firstly, an improvement of an exact
algorithm described by [Ulungu and Teghem, 1995] to determine the set E
is proposed. This algorithm proceeds in two phases. In the first one, the set
of strict supported Pareto optima is calculated and in the second one, the
non supported strict Pareto optima are addressed. Besides, an improvement
of the simulated annealing procedure described by [Ulungu et al., 1999] is
proposed. Some experimental results show that the heuristic determines few
strict Pareto optima when n > 25. By contrast, these results show that the
improved version gives, on average, better results than the basic version.

3.8 Multicriteria Mixed Integer Programming (MMIP) 99

[Ulungu and Teghem, 1997] address a bier iter ia knapsack problem. This prob­
lem, noted BKSP, is defined by:

n

Max Zk{x), with Zk{x) = 2_\^f^j^ ^^ ~ ^»•••»^

subject to
n

Y^WjXj < W

Xj € {0; 1}

The costs c^, the weights Wj and W are assumed to be positive. This problem
is AfV-haxd and a branch-and-bound procedure is proposed to enumerate the
set E. The search tree constructed is a binary tree where at each node we
decide whether an object takes part or not in the contents of the knapsack.
This algorithm was inspired by the procedure of [Martello and Toth, 1990]
for the single criterion problem. Ulungu and Teghem also study the gen­
eralisation of their algorithm in the tricriteria case. The problem BKSP is
similarly addressed in [Visee et al., 1998] who propose two exact enumera­
tion algorithms of the set E, These two algorithms proceed in two phases. In
the first, the set of supported strict Pareto optima is calculated by solving
iteratively the single criterion knapsack problems where the objective func­
tion is a convex combination of two criteria. These problems are solved using
Martello and Toth's algorithm. The difference between the two algorithms
lies in the second phase where the set of non supported strict Pareto optima
is generated. The first algorithm uses an adaptation of a procedure proposed
by [Ulungu and Teghem, 1995] whereas the second uses an adaptation of the
Branch-and-Bound procedure proposed by [Ulungu and Teghem, 1997]. Sev­
eral experimental results show that the number of strict Pareto optima is
a function of the weights Wj and the capacity W and that the number of
non supported Pareto optima is largely greater than the number of sup­
ported Pareto optima. Comparisons show that the first algorithm can tackle
problems with up to 120 objects whereas the second is capable of tackling
problems with up to 500 objects. The problem BKSP is similarly solved by
[Gandibleux and Freville, 1998]. Initially, they propose dominance conditions
to reduce the search space. A tabu search algorithm to approximate the set
E is proposed next. This heuristic integrates the dominance conditions men­
tioned and is issued from the heuristic presented by [Gandibleux et al., 1997].

Among the methods for solving multicriteria optimisation problems we can
similarly refer to the evolutionary algorithms. [Bentley and Wakefield, 1996],
[Cvetkovic and Parmee, 1998] and [Coello Coello, 1999] show that the pro­
posed algorithms are generally of type a posteriori, and that they optimise:

• a linear combination of criteria,
• the criteria according to a lexicographical order.

100 3. Multicriteria optimisation theory

• an objective function linked to the goal-attainment approach,
• one of the criteria using the e-constraint approach.

3.9 The complexity of multicriteria problems

In this section we are interested in the complexity of certain types of multi-
criteria optimisation problems. Then, just as there are well known reduction
trees for the classic scheduling criteria (see chapter 2), we present some re­
duction results among different objective functions. These results are inde­
pendent of the structure of the problem. In the remainder of this section we
note S the set of solutions.

3.9.1 Complexity results related to the solutions

Firstly we define several basic multicriteria optimisation problems.

Let Ojy be the problem of determining one weak Pareto optimum. We set:
Ol^: Data: Let S be the set of solutions.

Objective: Find one solution x^ e S such that $x^ G «S\{a:^} such
that Z{x^) < Z{x^).

Let O^ be the problem of determining all the weak Pareto optima. We set:
O^: Data: Let S be the set of solutions.

Objective: Find all the solutions x^ e S such that $x^ ^ <5 \ {x^}
such that Z{x^) < Z{x^).

In the same way, we define O] the problem of determining one strict Pareto
optimum and Og the problem of determining all the strict Pareto optima.

Some works in the literature are interested in generating all the solutions of a
problem. These are called generation problems. Particular classes of complex­
ity have been defined for these problems. The interested reader is referred to
[?]. In the remaining discussion we do not consider these complexity classes
but only the classical ones ([Garey and Johnson, 1979]).

We first show two simple results.

Lemma 10
A polynomial Turing reduction OCT exists such that Oj^ OCT O] . A polynomial
Turing reduction OCT exists such that O^ OCT O^.

Proof.
Straightforward. D

3.9 The complexity of multicriteria problems 101

Lemma 11 concerns the relationship between the complexity of single cri­
terion and multicriteria problems. It shows that determination of any weak
Pareto optimum is a problem which is simpler than the simplest of its single
criterion problems.

Lemma 11
Let there be K criteria Zi and the K associated single criterion problems Oi.
For all criterion Zi, Vi = 1,...,^", a polynomial Turing reduction exists ar
such that O^ OCT Oi,

Proof.
Straightforward .D

Notice that for all the reductions presented in this section, the four condi­
tions of definition 12 hold. This means that all these reductions are pseudo-
polynomial reductions.

3.9.2 Complexity results related to objective functions

It is interesting to study the links, in terms of complexity, between the dif­
ferent kind of objective functions introduced in this chapter.

• In lemma 12 we are interested in the case where a lexicographical order
among the criteria is stated. We define the optimisation problem Oiex for
the order Lex{Zi,... ZK) as follows:

OLCX'- Data: Let S be the set of solutions.
Objective: Find a solution x^ e S such that. Vi = l,...,ür,
Zi{x^) = min {Zi{x')) with S' = {x G S'-^/Zi-i{x) =

min {Zi-i{x'))} and S^ = S.

Lemma 12
Let there be K criteria Zi and the associated optimisation problem OLCX • We
have Ol OCT OLCX o^f^d 0\ OQT OLCX whatever the order of criteria.

Proof.
Ol is the optimisation problem of the criterion Zi. Demonstration of Oi OCT OLCX
for the order Zi —> .. . ^^ ZK follows immediately from the property 1. It is the
same for the proof of Ol OCT OLCX whatever the order of criteria.D

• We are now interested in the optimisation problem in which we look for
the minimisation of a convex combination of the criteria. We define the op­
timisation problem Oe as follows:

102 3. Multicriteria optimisation theory

Of, Data: Let S be the set of solutions and a G [0; 1] ^ , such tha t
K

2 = 1

K

Objective: Find a solution s^ G S such tha t Y^a^Z^(5^) =
i = l

K

i=l

L e m m a 13
Let there be K criteria Zi and the associated optimisation problem Oe. We
have:

1. OiOCrOe, \/i = l,.,.,K,
2- OLCX O^T Oe, whatever the order among the criteria,
3. Ot^rOl.

Proof.
1) The algorithm A used to solve the problem d is defined by:

Algorithm A:
cxi = 1;
o^j = 0 , Vj = l , . . . ,K , j j^i;
Call S[av....;aK\s%

In this algorithm, the procedure S solves the problem Oe and returns the calculated
solution s*̂ .
We note that if this procedure has a polynomial time complexity, then the algo­
rithm A is equally so, which proves that Oi OCT Oe, Vi = 1,..., i^.

2) We suppose that the order is that defined by the indices, i.e. L e x (Z i , . . . , ZR)-
The algorithm A which we propose to solve OLCX , is close to that presented previ­
ously:

Algorithm A;
A = i;
/ 3 , = 0 , \/j = 2,...,K;
C3nS[ßu...;ßK;s'];
FoTi = 2toKDo

OLi = 1 ;

a i = 0 , \fj = l,...,K,i^j;
Call S\aM...:arc:s^]:
6 = Zi{s') - Zi{s^y,
Ä = i;
ßj=ßjxS, Vj = l , . . . , z - 1 ;

. CanS[ßi;...;ßK;s^];
End for;

In this algorithm the procedure S solves a version of the problem Oe where the
weights are positive but not normalised to 1. If we know how to solve this problem,
then we also know how to solve the problem Oe- Algorithm A solves the problem
OLCX given that at each iteration we calculate the weights in such a way that the
value of the previously minimised criterion is not increased. The value Ö represents

3.9 The complexity of multicriteria problems 103

the largest improvement of the criterion in hand and modification of the weights ßi
guarantee that we are not enabling trade-offs with the previous criteria. We notice
that if the procedure S has a polynomial time complexity, then the algorithm A is
equally so, which proves OLCX OCT Oe-

3)The algorithm A presented below solves the problem Ot.

Algorithm A;
Call F = S[ai, a 2 , . . . , a x] ;
/* F contains the set of weak Pareto optima sorted in ascending order

K

of values ^S^aiZi */

Return F (l) ;

S* is a procedure which solves the problem 02, and sorts the weak Pareto optima
K

found by increasing order of values y^ajZ^.D

• Concerning the parametric approach, few results exist due to the generic
form of theorem 5. We define the optimisation problem Op as follows:

Op: Data: Let S be the set of solutions, k = [fei;...; kxY ^ vector of
K constants and a strictly increasing function ^̂ : R'̂ ^ R,
Objective: Find a solution x^ ^ S such tha t g{Z{x^)) —
min(^(Z(:r '))) subject to Z{x^) < [fci; . . . ; UKY.
x'£S

L e m m a 14
Let there he K criteria Zi and the associated optimisation problem Op. We
have Ol OCT Op.

Proof.
Deduced from property 1 and theorem 5.D

• In the next lemma we are interested in the e-contraint approach. We suppose
tha t the criterion Zi is minimised and we define the problem Oe as follows:

Oe : Data: Let S be the set of solutions and K — 1 constants Cj, Vj =
2 , . . . , i r ,
Objective: Find a solution x^ £ S such tha t Zi{x^) = min(Zi(a; '))

x'^S
subject to Zj{x^) < Cj, \Jj = 2, , . . , K.

L e m m a 15
Let there be K criteria Zi and the associated optimisation problem O^ We
have:

i . Ol OCT O,,
2. OeOCrO}.

104 3. Multicriteria optimisation theory

Proof.
1) We introduce a resolution algorithm A for the problem Oi.

Algorithm A;
kj = oo, Vj = 1,...,K]
CanS[k2]...;kK;s%

The procedure S used in this algorithm solves the problem Oe- We therefore have
Ol OCT Oe. The value kj can be initiated eventually with an upper bound on the
criterion Zj, Vj = 2,..., K.

2) Let the resolution algorithm A for the problem Oe be defined as follows:

Algorithm A;
Call S[a]\
Min = oo;
For (all s € a) do

• U{Zj{s) < Ej, \/j = 2, . . . ,X and Zi{s) < Min) Then
s* = s;
Min = Zi(s);

End If;
End For;

Procedure S solves the problem 0 } . We note that if procedure S has a polynomial
time complexity, then the number of elements in a is bounded by a polynomial of
Long which is the length of the instance. In this case, the algorithm A is equally
polynomial.D

A special link also exists between the problem Oiex and the problems O^,
where 01 refers to the problem Oe in which we minimise the criterion Zi
instead of the criterion Zi.

L e m m a 16
If all the problems 01, Vi = 1,..., ÜT, are polynomially solvable, then the prob­
lem OLCX «̂S equally so whatever the order of the criteria under consideration.
Conversely, if a problem Oiex, for a fixed order, is MV-hard then at least
one of the problems 0\ is MV-hard.

Proof.
The proof is based on the existence of a polynomial Turing reduction. Let us sup­
pose, without loss of generality, that the lexicographical order is that defined by
the indices, i.e. Lex{Zi,..., ZK)- We introduce an algorithm A which solves the
corresponding problem OLBX and which is defined as follows:

Algorithm A:
kj = oo, Vj = 1,...,J^;
Fgri = 1 K Do

Call S[ki;...; fc_i; fc+i;...; kK] i] s%
ki = Zi(5°);

End For;

The procedure S used in this algorithm solves the problem 01. We notice that if
all the problems 01 are polynomially solvable, running of the procedure S can be

3.9 The complexity of multicriteria problems 105

realised in polynomial time and the algorithm A is polynomially solvable. Con­
versely, if the problem OLBX is A/'P-hard then at least one running of the procedure
S cannot be done in polynomial time.
Besides, we deduce that this reasoning is valid whatever the order among the cri­
teria in the lexicographical order.D

We denote by Di the decision problem associated with the criterion Z^, de­
fined as follows:

Di : Data: Let S be the set of solutions and D a value,
Question: Does a solution x^ G S exist such that Zi{x^) < D ?

If it appears to be difBcult to establish a general reduction of the problems
Oi, for z 7̂ 1, towards the problem Oe, we can show that such reductions
exist if we consider the decision problems Di.

Lemma 17
Let there be K criteria Zi and the associated optimisation problem Oe- We
have Di ocr Oe, Vi = 2,..., K.

Proof.
To solve a problem A , for a fixed index i, i.e. to provide an answer True or False,
it is sufficient to consider the following algorithm A:

Algorithm A:
Cj = oo, Vj = 2, ...,K, j ^i]
ei = D-
Call 5[e2;... \eK\s^\answer]\

5 is a procedure which solves Oe and which returns a solution s° if answer =
True.U

• Concerning the Tchebycheff metric approaches and the goal-attainment
approach, it appears to be difficult to propose polynomial Turing reductions
given the parameters used in these approaches. If we denote the minimisation
problems of the Tchebycheff metrics by Or, Orp and Orpat we can simply
show that polynomial Turing reductions exist such that Oj (XT OT^ Oj OCT
OTP and Oj OCT Oxpa- The same is true for the goal-attainment approach,
the problem of which is denoted by O«.
All the reductions stated in this section are polynomial Turing reductions
which are not sufficient to show strong ATP-hardness reducibility, since we
need pseudo-polynomial reductions. However, we can easily prove the follow­
ing result.

Corollary 3
The polynomial Turing reductions introduced in lemma 12, 13, 14, 15, 16 and
17 are also pseudo-polynomial reductions.

Proof.
The result can be shown by simply applying the definition 12. As the reductions

106 3. Multicriteria optimisation theory

considered are polynomial Turing reductions, the conditions 1 and 2 are verified.
Besides, notice that for all these reductions Length'[I'] = Length[ocT (/')] ^^^
Max[r] = Max[(XT {I')], V/'. Therefore, the conditions 3 and 4 are also verified.D

3.9.3 Summary

The set of reductions shown in the previous section is summarised in figure
3.20.

M e a n s t h a t a
polynomia 1 Turing
reduction exists from
the problem A towards
the problem B

D2 ... DK

Fig. 3.20. Polynomial reductions tree

These results are especially interesting to study the complexity of multicrite­
ria problems when we know this of single criterion problems. Moreover, they
show that the multicriteria problems are likely to be J\fV-haxd given that
they are at least as difficult as the single criterion problems. For example,
the decision problem associated with the bicriteria shortest path problem in
a graph ([Serafini, 1987]), is A/'P-complete whilst the single criterion prob­
lems are not. The same is true for the decision problem associated with the
bicriteria assignment problem.

Concerning the study of theoretical results for the complexity of multicri­
teria problems, we can refer to [Ehrgott, 2000b] who studies certain prob­
lems for which the set of solutions S is defined in the following way: let

3.10 Interactive methods 107

E = {e i ; . . . ; CAT} be a set of elements and S = {s/s C E}. The complexity
of bicriteria problems where the criteria are functions of form "max" or " J^"
is studied using the e-constraint approach. It is shown that the problems
composed of one or two criteria of the form " ^ " are the most difficult to
solve.

3.10 Interactive methods

Interactive methods have been the object of numerous works since the 1970s.
Their interest is in allowing the decision maker to lead the resolution process.
This avoids the problems connected to the incomparability of Pareto optima.
An interactive method proceeds by iterations. Each iteration comprises two
phases ([Steuer, 1986] and [Gardiner and Vanderpooten, 1997]):

1. A dialogue phase where a solution is presented to the decision maker.
2. A calculation phase where the method uses the instructions of the decision

maker to calculate a new solution.

The final solution held by the decision maker must be a Pareto optimum.
When we perfect an interactive algorithm, we must pay attention to its con­
vergence towards a final solution. Two cases can occur: the convergence of the
algorithm can be shown mathematically or the convergence depends on the
behaviour of the decision maker. In the first case we can show that the algo­
rithm will run no more than k iterations. Then, the decision maker must have
retained a solution before the end of the process. For the second type of algo­
rithm it is not possible to restrict the number of iterations since the conver­
gence depends on the behaviour of the decision maker. For example, he may
reject a solution initially and accept it several iterations later ([Vincke, 1989]).
A typology of interactive methods is proposed in [Vanderpooten, 1992]. This
typology refiects the different types of convergence. We can distinguish:

1. The search oriented methods which depend on the hypothesis which
the decision maker cannot change his mind about during the resolu­
tion process. The objective is to converge towards the solution which the
decision maker wants. This convergence then depends uniquely on the
method used to obtain this solution and may be limited.

2. The learning oriented methods which depend on the hypothesis which the
wishes of the decision maker can evolve during the resolution process. At
one given iteration, these methods must, beginning with the information
provided by the decision maker at the time of the previous iterations, try
to determine the solution of the current iteration. We can classify these
methods as "one shot methods".

3. The mixed methods which combine the search and learning phases.

108 3. Multicriteria optimisation theory

[Gardiner and Vanderpooten, 1997] show that historically the learning ori­
ented methods are more recent than the search oriented methods. They sim­
ilarly propose a panorama of the principal existing interactive methods.

Another typology is proposed by [Steuer, 1986] in the case of problems which
can be modeled by linear programming. By contrast to the typology proposed
by [Vanderpooten, 1992], the one presented by Steuer classifies the interactive
methods according to the implemented techniques. We distinguish:

1. The methods which proceed by reducing the solutions set. With each
iteration, constraints on the values of the criteria are added. The set of
solutions to consider with the following iteration is thus reduced.

2. The methods which proceed by reducing the set of possible weights for
the criteria. In these methods we assume that a weight is assigned to each
criterion. With each iteration the set of possible values of these weights
is reduced according to decision maker's instructions.

3. The methods which proceed by reducing the criteria cone. This cone is
reduced with each iteration. If the number of iterations is not limited
then the cone converges towards a unique vector c. That brings us back
to transforming the multicriteria problem into a single criterion problem
for which the optimal solution is the Pareto optimum acceptable by the
decision maker.

4. The methods which proceed by navigating in the set of solutions. With
each iteration a solution is retained by the decision maker who next indi­
cates the new search direction to calculate the next solution. For example,
this research direction may be calculated by improvements on the criteria
which the decision maker wishes, related to the current solution.

We do not aim to presente a complete state-of-the-art of interactive methods.
We simply present in table 3.1 a summary of the most classical methods.
Equally, we mention the existence of interactive software, as for example the
NIMBUS software ([Miettinen, 1999]).

3.11 Goal programming

The origins of goal programming return us to [Charnes et al., 1955] and
[Charnes and Cooper, 1961]. The special feature of this programming is in
the statement of goals for each criterion to best satisfy. Thus, we do not seek
to optimise directly the criteria as in traditional mathematical programming.
To illustrate the principle of goal programming we introduce the problem
(Pobj) defined by:

3.11 Goal programming 109

Table 3.1. Summary of some interactive methods

R e f e r e n c e II III C o n t e x t

Benayoun et al., 1971]
Geoffrion et al., 1972]

[Roy, 1976]
[Zionts and Wallenius, 1976] and
[Zionts and Wallenius, 1983]
;Vincke, 1976]
Steuer, 1977]
Steuer and Wood, 1986]
Wierzbicki, 1990] and
[Wierzbicki, 1982]
;Steuer and Choo, 1983]
Korhonen and Laakso, 1986]
Levine and Pomerol, 1986]
Jacquet-Lagreze et al., 1987]
Vanderpooten, 1988]
[Lofti and Zionts, 1990] and
"Lofti et al., 1992]
Jaszkiewicz and Slowinski, 1997]
Ulungu et al., 1998]
Alves and Climaco, 2000]
Kaliszewski, 2000]

X
X

X
X
X

X
X

X

X

X

X

X
X

X

X
X
X

X

X
X

X

X

X

X

X

MLP
MLP

MLP

MLP uniquely
MLP uniquely

Discrete problems

X Discrete problems

X
X

Discrete problems
MMIP
MMIP

X

I:
III:

Method by reduction of the set
of solutions
Method by reduction of the cri­
ter ia cone
Search oriented method
Mixed method

B : Method by reduction of the set
of weights

D : Method by navigation

II: Learning oriented method

Criterion I: Zi{x)
Criterion II: Z2{x)
Criterion III: Z3{x)
subject to

xeS

Objective: Zi (x) < 61
Objective: Z2{x) = 62
Objective: Zslx) £ [bf'.bf]

where the three objectives of (Pobj) represent three categories of objective
which can be encountered. In the problem (Pobj), the objective of criterion
I shows that a solution with a low value Zi is searched, if possible a value
which is smaller than 61. The objective of criterion II forces calculation of a
solution which the value of the criterion Z2 is equal to 62 while in the case
of criterion III the value of the criterion Z3 has to belong to the interval
[63̂ ; 63^]. The criteria objectives define in the criteria space the Utopian set,
noted U. li Z nU ^ ^ then Vx such that Z{x) e ZOU, x is a. solution of the
problem, and in this case dominated solutions can exist which are solutions
of the problem (Pobj)- But we can have ZnU = ^ and in this case, we must
determine a solution for which the criteria vector is "as close as possible", in
the sense of a function which remains to be defined, of the Utopian set. For
that, we transform the problem (Pobj) into a problem (Psiack) by introduc­
ing positive slack variables df and/or d~ and supplementary constraints to
translate the objectives of each criterion.

110 3. Multicriteria optimisation theory

For the objective imposed on the criterion Zi, we will introduce a slack vari­
able dl and the constraint Zi (x) — d'l < 61.

For the objective imposed on the criterion Z2, we will introduce the slack
variables d^ and d2 and the constraint Z2{x) — ^2" + c!J =62-

For the objective imposed on the criterion Z3, we will introduce the slack
variables ^3" and d^ and the two following constraints: Zs{x) + d^ > 63̂ and
Zs{x)-dt<bf.

In the problem {Psiack)^ these are then the slack variables which are opti­
mised. There exist several types of problems (Psiack) which distinguish them­
selves by the way in which the slack variables are optimised. Traditionally
we find:

1. Archimedian problems. We speak similarly of archimedian goal program­
ming.

2. Preemptive or lexicographical problems. We speak similarly oi preemptive
or lexicographical programming.

3. Interactive problems, which are a mixture of archimedian and lexico­
graphical problems. Similarly, we speak of interactive goal programming.

4. Reference point problems, which are particular lexicographical problems.
Similarly, we speak of goal programming by reference.

5. Problems with multiple functions. Similarly, we speak of multicriteria goal
programming.

In goal programming, the notion of Pareto optima is not defined for the
problem {Pobj) but for the problem (Psiack) ([Steuer, 1986]). A solution to
the problem (Psiack) is a couple (x, d) where x G S and d is the vector of the
p slack variables, each component of which can be noted di.

Definition 48
Let (x, d^) be a solution of the problem (Psiack)- x e S is a strict Pareto-slack
optimum, called also an efficient-slack or a strict efficient-slack solution, if
and only if${y,dy),y £ S, such that Vi = 1, ...,p, d^ < df with at least one
strict inequality. We note Esiack the set of strict Pareto-slack optima.

It is possible to state a similar definition for the notion of weak Pareto-
slack optimum. The set of weak Pareto-slack optima is noted WEgiack- The
solutions of the problems (Psiack) presented in the following sections, are
generally Pareto-slack optima. They are not necessarily Pareto optima for
the criteria of the problem (Pobj)- That is equivalent to saying that a solution
of a problem modeled in the form of a goal program can be dominated by
another solution. To avoid this problem, different works study the possibilty
of reconstructing a Pareto optimum for the criteria under consideration from

3.11 Goal programming 111

the optimal solution of the problem (Pobj)- The interested reader may refer
notably to [Tamiz et al., 1999]. We shall now present different types of goal
programming.

3.11.1 Archimedian goal programming

When trade-offs between different objectives are allowed and when the
weights can be defined by the decision maker, then we can use archimedian
goal programming. In this case, the problem (Psiack) is written in the form:

subject to
xeS
Zi{x)-dt <bi
Z2{x)-dj +d2 =&2

(C) { Zs{x) + d^>bf
Zs{x)-dt <bf
dj- > 0 , Vz = l,. . . ,3
d- > 0 , Vi = 2,..., 3

In general, we suppose that the weights a^ are positive. For this problem,
it is possible to apply Geoffrion's theorem to show that the resolution of
the problem {Psiack) enables to calculate a weak or a strict Pareto-slack
optimum following the value of the weights. If the set S is not convex, then
the solution of the problem (Psiack) does not enable us to determine non
supported Pareto-slack optima.

3.11.2 Lexicographical goal programming

When it is not possible to compensate between different objectives, we can
use lexicographical goal programming. We then define a lexicographical order
between the objectives. Let us suppose in our example that this order is that
of the criteria indices. The problem (Psiack) is written then in the form:

TTtiriLex (df, ^2" 4- d^, cJj + d^)
subject to

(C)

The solution of the problem (Psiack) is a strict Pareto-slack optimum.

3.11.3 Interactive goal programming

Interactive goal programming intervenes when we can define classes of ob­
jectives such that it is possible to define a strict order between these classes
and such that only trade-offs are allowed between criteria of the same class.

112 3. Multicriteria optimisation theory

For example, for the problem {Pobj) introduced previously we can define two
classes. The first groups the slack variables associated to objectives I and IL
We note / i the convex combination of the slack variables associated with this
class. The second class groups the slack variables associated to objective III
and we note /2 the convex combination of these slack variables. We consider
the lexicographical order given by the indices of the classes. The problem
{Psiack) is written then in the form:

minLex{fij2)
subject to

(C)

The problem (Psiack) is solved traditionally by an interactive algorithm. At
the first step, the decision maker provides the classes, the order of the classes
and the weights. The problem {Psiack) is therefore solved and the solution ob­
tained is presented to the decision maker who can modify the weights and/or
the classes and/or the order between the classes. A new solution is calculated
and the process is repeated until the desired solution is reached. Besides, if
the set S is bounded, then each optimal solution of the problem (Psiack) is a
weak or strict Pareto-slack optimum (see for example [Steuer, 1986]).

3.11.4 Reference goal programming

This type of goal programming, is inspired by the methods using reference
points, and was proposed by [Ogryczak, 1994]. More exactly, the objective
function of the problem (Psiack) is broken down in the same way as in the
problem of the minimisation of an augmented weighted Tchebycheff metric
according to a lexicographical order (see theorem 12). The problem (Psiack)
is then written in the form:

minLex(Ti,T2)
subject to

(C)

Ogryczak shows that every solution of this problem is a strict Pareto optimum
for the criteria of the problem (Pobj)- The extension of this model to a problem
by lexicographical reference is presented in [Ogryczak, 1997].

3.11.5 Multicriteria goal programming

As for interactive goal programming problems the decision maker defines
classes of objectives and provides the weights for each objective. Convex com­
binations fi for each class are also constructed. The solution of the problem
(Psiack) returns us to determining the set of the strict Pareto-slack optima.

4. An approach to multicriteria scheduling
problems

4.1 Justification of the study

4.1.1 Motivations

In the context of production, the planning phase is broken down hierarchically
into different levels: strategic, tactical and operational. The production plan
at the tactical level determines the quantities of products to make by time
period. Its objectives are:

• to satisfy the customers' requirements, that is to say to supply the customer
with the product he wants, in the desired quantity and at the desired date,

• to balance continuously the existing resources and the resources necessary
for production, by avoiding underloading as well as overloading,

• to ensure production at lowest cost or at least with maximum profitability.

Next, at the operational level, the established plan must be followed as best
as it can. This is not without bringing up some coherence problems, allied
to the fact that the first module handles aggregated information, and the
second detailled information. Scheduling has as principal objectives:

• to minimise work-in-process in the shop,
• to have high respect for the planned and promised delivery dates given to

the customers,
• and to optimise the shop resources.

By its very nature therefore, a scheduling problem in the context of produc­
tion is very often multicriteria. RCPSP may also involve several criteria of
time and cost type ([Herroelen et al., 1998a] and [Hapke et al., 1998]) as for
example:

• the respect of delivery dates,
• the cost related to the duration of an activity when this duration belongs

to an interval and has to be fixed.

Examples of such problems are time/cost trade-off problems. As a general
rule, and as [Roy, 1985] points out, taking several criteria into account enables

114 4. An approach to multicriteria scheduling problems

us to provide the decision maker with a more realistic solution. Some concrete
examples are presented in section 4.1.2.

DiflFerent states-of-the-art of multicriteria scheduling can be found in the lit­
erature (see [Dileepan and Sen, 1988], [Pry et al., 1989], [Hoogeveen, 1992a],
[Nagar et al., 1995a] and [Hoogeveen, 2005]). Analysis of these works under­
lines:

• the necessity of knowing the results of the domain of multicriteria opti­
misation to understand well the difficulties related to taking into account
conflicting criteria,

• the need for a typology enables us to formalise the different types of prob­
lems and to unify the notation of these problems,

• the need for a knowledge of the results on single criterion scheduling prob­
lems.

Application of multicriteria optimisation constitutes a field of activity which
has been little explored until today.

4.1.2 Some examples

Many scheduling problems in the production domain involve several criteria.
We find in the literature numerous works dealing with a category of problems
which correspond well to a situation: the need to produce "Just-in-Time".
This need translates into two wishes, one is not to deliver to the client late,
the other is not to store the finished products. To produce "Just-in-Time" is
therefore a trade-off between producing slightly late and not too early. Nu­
merous definitions of "Just-in-Time" scheduling exist in the literature. These
works are presented in chapter 5.

We now present some scheduling problems corresponding to practical situa­
tions, whatever their application field.

Manufacture of bottles
A factory manufactures glass bottles the colours of which are selected in
advance at the planning phase ([T'kindt et al., 2001]). A furnace containing
the molten glass of a given colour, serves several different forming machines.
These machines are fitted-^ith several moulds, allowing several types of bot­
tles to be made, which correspond to several orders. Changing a mould on
a machine takes a negligible time compared to the production time, thus
allowing the changeover from one product to another in hidden time. The
manufacture of a product by a machine creates a profit which can be mea­
sured. One of the objectives is therefore, given the production horizon, to
assign the jobs to the machines, in order to maximise the total profit. On
the other hand, change of colour in the furnace affects the set of machines
which it serves, and this change can only occur when all the machines have

4.1 Justification of the study 115

completed their current production. In order not to allow the machines to be
inactive for a too long time, which creates a prohibitive cost, we desire that
the machines should cease production within a limited timeframe. A second
criterion aims therefore to assign the jobs in order to minimise the greatest
difference of workload between two machines. The decision maker wishes to
find the better trade-off between the total profit and the greatest idle time
of the machines.

Electroplating and chemical industry
This category of problems returns us to the Hoist Scheduling Problem in the
literature. A certain number of tanks containing chemicals are available for
the galvanisation treatment of items. Arrival of the items in the shop is cyclic.
These items pass from one tank to another by means of a transportation ro­
bot (or a pool of robots) usually suspended above the tanks. The processing
time, or soaking time, of the items in the tanks is a variable of the problem.
Indeed, the chemical engineers give a minimum and maximum duration for
each soaking, thus leaving complete freedom for the analyst to calculate the
best durations. The basic problem is to seek a minimum cycle time, i.e. a
minimum value of the makespan criterion. Nevertheless, two factors force us
to consider this problem from the multicriteria point of view. Firstly, prac­
ticalities show that scheduling of the movement of the tranportation robots
(handling and placing of the items into the tanks) is the most difficult part to
determine to efficiently minimise the cycle time. Next, for most of the tanks
(therefore the chemicals baths) respecting the minimum soaking time is the
only vital consideration. In practice we can sometimes exceed the maximum
soaking time if it enables us to better manage movements of the robots. Thus,
the problem becomes bier iter ia when we want to minimise the cycle time and,
for example, a weighted sum of overtaking the soaking times compared to the
authorised maximum soaking times ([Fargier and Lamothe, 2001]).

Steel hot rolling mill industry
The steel hot rolling mill problem consists in producing steel coils starting
from steel slabs ([Cowling, 2003]). In this problem the shop can be decom­
posed into two parts: a huge slabyard in which the steel slabs are stored
waiting to be processed by the rolling mill, and the rolling mill in itself. Each
slab has particular characteristics and can be used to process several kinds of
steel coils. When a slab has been selected to be processed, it is transported
by cranes up to the rolling mill and introduced into a furnace in which it is
subjected to a high temperature. After the furnace, the hot steel slab passes
into a series of rolls that submit it to high pressures in order to achieve the
desired width, thickness and hardness for the steel coil. Notice that to each
shift of processed orders is associated an ideal sequencing shape which take
account of additional constraints related, for instance, to the furnace and the
fact that we cannot make varying its temperature has we want. One of the

116 4. An approach to multicriteria scheduling problems

desire of the planner is to reduce the changes of pressure settings between
two consecutive produced coils because this can severely alters their quality.
Besides, has the rolls are in contact with hot steel they are quickly worn and
must be replaced by new rolls. Accordingly the production of coils is planned
by shifts of a few hours. There are also a certain number of additional con­
straints. The aim is to sequence the steel coils in order to maximise the value
of the coils rolled in the sequence, to minimise the changes in characteristics
between two consecutive coils, to minimise the number of non-essential crane
movements and to minimise the deviation from the ideal sequencing shape.

Car assembly
Car production lines create multicriteria scheduling problems for the sub­
contractors. This is especially true for car seats. The manufacturer and the
assembler of cars are synchronised and the sequencing of a vehicle on the pro­
duction line automatically instructs the manufacturer to produce seats. This
stipulates a limited time for their delivery. This problem is a Just-in-Time
scheduling problem since early production of a seat creates for the assembler
additional storage costs (higher than storage costs of an engine). Conversely,
late delivery of seats causes the assembly line to halt. The vehicle in question
must then be repositioned to the front of the line, which causes additional
production costs.

Processing of cheques
The organisation of a processing centre, dedicated to perform operations on
cheques (debit, credit, printing, etc.) is similar to a production centre. More
precisely, it can be represented as a three-stage hybrid flowshop problem,
where the jobs pass several times through the same stage (recirculation). We
can associate two due dates to each job. The first relates to the completion
time of an operation of the routing which transfers data to customers. The
second relates to the completion time of the last operation of the jobs. If this
date is not respected, delivery of the cheques is delayed by a whole day, which
creates a cost proportional to the amount of money delayed. Two different
criteria are associated with these due dates. The first is that of the maximum
tardiness, to be minimised in order to limit upsetting the customers, and the
second is the weighted number of late jobs where the associated weight is the
cost incurred by the delay ([Bertel and Billaut, 2004]). These two criteria do
not have the same importance for the firm, which wants above all to minimise
the second and only then the first.

Scheduling problems related to transport
Numerous planning and scheduling problems occur when dealing with trans­
portation of goods or passengers. Among others, the aircrew rostering prob­
lem can be seen as a multicriteria problem ([Lucie and Teodorovic, 1999]).
This problem arises when dealing with the scheduling of crews to flights in

4.1 Justification of the study 117

air transport. Assume there is a set of flights to do and a set of predefined
rotations, a rotation being a sequence of flights. Knowing a set of pilots we
have to assign them to rotations without violating constraints related to the
air security and the skill of the pilot. For example, a pilot only flies one type of
aircraft, his monthly flying time is limited to 85 hours, the number of takeoffs
per month is limited to 90, etc. Besides, each day a pilot stays in a foreign
country, he has a foreign per diem allowance. The aim is to minimise two
criteria. The first one is the average relative deviation per pilot between the
real and ideal monthly flight time and the second one is the average absolute
deviation per pilot between the real and ideal number of foreign per diem
allowances during the month.
Another application in transport scheduling is related to passenger train ser­
vices planning in high-speed rail lines ([Chang et al., 2000]). This problem
occurs when dealing with inter-city transportation, where we have a lot of
train stations and a possibly huge quantity of passengers. Given a set of sta­
tions the aim is to determine stop-schedules in order to satisfy the constraints
of the problem and to minimise the criteria. A stop-schedule is a sequence of
stations at which a train must stop. We also have to determine the minimal
number of trains required to satisfy the stop-schedules. Two criteria are min­
imised: the total operating cost for the planning horizon and the passenger's
total travel time loss for the planning horizon.

Timetabl ing problems
In academic administration, the resources usually are students, faculties,
staff, facilities, equipment, finances and time. Resource allocation problems
refers to the determination of the levels of certain resources to be allo­
cated among a number of competing activities. For the allocation of cer­
tain resources, specific names are given such as, for instance, scheduling
or timetabling, when dealing with the allocation of courses, timeslot, ex­
aminations and classrooms. The research addressing these problems (see
[Mustafa and Goh, 1996]) propose the use of goal programming, heuristics
and interactive methods.

Spor ts scheduling
Sports scheduling is a particular area of scheduling theory which is closely
related to timetabling problems: the aim in sports scheduling is usually to
set a timetable of matches in a tournament or a championship. This kind of
problem being hardly constrained it can be sometimes interesting to relax
constraints into objectives, by the way leading to a multicriteria scheduling
problem. [Wright, 2005] presents the particular case of the National Basket­
ball League (NBL) of New Zealand. Ten basket teams meet twice in home
and away matches, leading for each team to eighteen matches in a season. As
only fifteen week-ends are available to play the matches, all teams have at
least one week-end with two matches, which does not simplify the problem

118 4. An approach to multicriteria scheduling problems

because additional constraints exist on these "doubling up" week-ends (the
two teams that meet in a doubling up week-end must meet away and must
not be located too far from each other). Other constraints are also described.
Due to the complexity of the problem and the way a timetable is built by
the NBL, most of the hard constraints are relaxed into objectives which are
equal to 0 when the original related constraint is met. This leads to a total
of twenty criteria minimised in a convex combination reflecting the total cost
of constraint violation.

Satellite scheduling
Satellites are rare and costly resources that must accomplish defined tasks.
One example of a multicriteria satellite scheduling problem is provided by
[Gabrel and Vanderpooten, 2002] who focus on the scheduling of an earth
observing satellite. Such a satellite has to daily process a series of photos
of the earth according to a daily plan. This plan has to be calculated in
order to fuUfil a set of contraints: each photo must be taken in a given time
window due to the satellite track, set-up times exist between two photos, the
satellite can only take photos in the daylight, etc. Besides, the problem is
so much constrained that, often, some photos cannot be done. Henceforth,
the scheduling problem also concerns the choice of the photos to process.
Three criteria are to be considered: (i) maximise the demand satisfaction,
(ii) maximise the sum of the priorities of the scheduled photos, (iii) minimise
the number of used camera. Gabrel and Vanderpooten solve this problem
by enumerating all strict Pareto optimal paths in a tricriteria graph. This
cannot be done in polynomial time. It is also interesting to notice that this
problem can be modelled as a single machine problem (the satellite) with n
jobs (the photos), time windows, set-up times and with a rejection cost (see
for instance [Bartal et al., 2000]).

4.2 Presentation of the approach

4.2.1 Definitions

We now present a breakdown of the multicriteria scheduling problems by set­
ting out the different phases which are more linked to Multicriteria Decision
Aid, Multicriteria Optimisation, or Scheduling.

Definition 49
We call a multicriteria scheduling problem the problem which consists
of computing a Pareto optimal schedule for several conflicting criteria. This
problem can be broken down into three sub-problems:

1. modelling of the problem, whose resolution leads to the determination
of the nature of the scheduling problem under consideration as well as the
definition of the criteria to be taken into account,

4.2 Presentation of the approach 119

2. taking into account of criteria, whose resolution leads to indication
of the resolution context and the way in which we want to take into ac­
count the criteria. The analyst finalises a decision aid module for the
multicriteria problem, also called a module for taking account of criteria,

3. scheduling, whose resolution leads us to find a solution of the problem.
The analyst finalises an algorithm for solving the scheduling problem, also
called a resolution module for the scheduling problem.

Modelling of the problem ([Roy, 1985]) is done with the decision maker,
and consists on one hand of defining what are the relevant criteria which
have to be taken into account. We assume that these criteria are conflicting
that is to say that minimising one criterion is not equivalent to minimising
another. On the other hand, we define at this phase the environment where
the scheduling problem occurs, that is to say the set of resources available
to carry out these jobs (it may concern machines and personel in the case
of a shop, or another kind of resource), and the manner in which the shop
is organised. We identify in some way the nature of the scheduling problem.
Finally, we define the particular constraints of the problem: authorised pre­
emption or not, release dates, etc. All this interactive process is done when a
company wants to solve a scheduling problem. The analyst and the decision
maker work together to define the problem, so that the analyst can draw up
a model.

A large part of the difficulty in solving a multicriteria problem lies in the
taking account of the criteria. During this phase, the decision maker
provides the information concerning his perception of the criteria: firstly he
states whether or not he authorises trade-offs between the criteria. If this is
not so, he indicates the order in which the criteria should be optimised. On
the other hand, if trade-oflFs are allowed, he indicates whether it is possible
to associate a weight to the criteria if this has any sense, and he gives the
weights eventually; he indicates the objectives to achieve for each criterion if
he knows them; etc. Next, he arranges the choice of the method indicating
whether he wants an algorithm which will give him a unique solution, taking
into account the supplied information, or whether he prefers to intervene in
the resolution procedure. The latter case occurs when he is not sure how to
answer the questions. Finally, he might wish to see all the possible solutions
in order to retain the one which interests him. These choices will automati­
cally direct the respective method to an a priori^ interactive or a posteriori
algorithm. The information gathered on the problem at this phase and the
way in which the decision maker is able and wishes to tackle it will allow the
analyst to choose an appropriate resolution approach, whatever should be
his choice: a linear combination of criteria, a parametric approach or another
method. The result is the form of the objective function of the scheduling
problem for which a resolution algorithm must be proposed. This phase will
usually lead the analyst to finalise a module to take account of the criteria.

120 4. An approach to multicriteria scheduling problems

that is to say an algorithm which will perform the interactions asked for by
the decision maker (launching an interactive procedure, a posteriori proce­
dure, etc.).

Scheduling has as objective to provide a schedule which optimises the objec­
tive function which was defined at the previous stage. The obtained solution
is a Pareto optimum for the mult icr iter ia scheduling problem. The analyst
has therefore to finalise a scheduling module that will solve the scheduling
problem resulting from the previous stages.

It is important to emphasise that [Faure, 1979] already advised the thorough
breaking down of the tasks. He stated what was and what was not the compe­
tence of the operational researcher. He eventually advised that the problems
should be tackled from a multicriteria point of view, by means of multicrite-
ria analysis. Therefore, the approach which we present is not new: it simply
proposes to effect these concepts by means of Decision Aid for the resolution
of multicriteria scheduling problems.

Figure 4.1 presents the breakdown of multicriteria scheduling problems as it
was developed in definition 49.

Information from
the decison maker

Information from
on

c

Information from
the decison maker on maker K

Information from
the decison maker

Modelling of the problem
. The problem is defined

(criteria, constraints, etc.)

Taking account of criteria

Definition of the resolution context

Definition of the shape of the objective function

v1

The resolution method -a
priori, interactive or a
posteriori- is chosen

The scheduling problem
alßlY is defined

the decison maker j y i
N Resolution of the resulting scheduling problem (find

a Pareto optimum)

Fig. 4 . 1 . A framework for solving multicriteria scheduling problems

4.2 Presentation of the approach 121

4.2.2 Notation of multicriteria scheduling problems

At the phase of taking account of criteria, and following the information
which it sets out, the analyst chooses a resolution approach for the schedul­
ing problem and thus defines a scheduling problem. Taking account of the
diversity of the methods of determining Pareto optima (see chapter 3), the
functions to optimise for the scheduling problem can take different forms.
Each one translates a method of determining a Pareto optimum. The crite­
ria do not change and they correspond to those defined during the phase of
modelling of the problem.

A multicriteria scheduling problem, after the modelling phase, can be noted
in a general way by using the three-field notation, where the field 7 contains
the list of criteria: a|/3|Zi, Z2 , . . . , ZK- The scheduling problem produced by
the phase of taking account of the criteria may equally be noted by means
of the three fields, where only field 7 is spread. We define the following new
functions for this field:

• Z if the objective is to minimise the unique criterion Z (single criterion
problem). It concerns the well known case, i.e, Z may be Cmax^ Tmaxi ^tc.

• ^^ (Z i , . . . , ZK) if the objective is to minimise a linear convex combination
of the K criteria. For example, this case can agree if the decision maker
can allocate a weight to each criterion.

• e{Zu/Zi,..., Zu-i-iZu^i,..., ZK)^ indicates that only the criterion Zu is
minimised, subject to all the other criteria being upper bounded by known
values. This case is distinguished from the the previous case because the
function to be minimised is Zu and this criterion is not subject to any
bound constraint. The analyst is in the area of the e-constraint approach.

• P (Z i , . . . , ZK) indicates a non decreasing function of the criteria to min­
imise, if we suppose that all the criteria are upper bounded by known
values. In this case, the analyst is in the area of parametric analysis.

• FT{ZI, . . . , ZK) indicates an objective function which is the expression of
a distance to a known ideal solution. The distance is calculated by using
the Tchebycheff metric. This ideal solution must not be reachable.

• FTP{ZI, . . . , ZK) indicates an objective function which is the expression of
a distance to a known ideal solution. The distance is calculated by using the
weighted Tchebycheff metric. This ideal solution must not be reachable.

• FrpaiZi,,.., ZK) indicates an objective function which is the expression
of a distance to a known ideal solution. The distance is calculated by using
the augmented weighted Tchebycheff metric. This ideal solution must not
be reachable.

• F s (Z i , . . . , ZK) indicates a very particular function which takes into ac­
count a known ideal solution to find the sought solution. The analyst is in
the area of the goal-attainment approach.

• GP(Zi, Z2 , . . . , ZK), if there are goals to reach for each criterion in the
scheduling problem (goal programming). The problem is not to optimise

122 4. An approach to multicriteria scheduling problems

the criteria, but to find a solution which satisfies the goals, even if this
solution does not correspond to a Pareto optimum.

• Lea;(Zi, Z2 , . . . , ZK) indicates that the decision maker does not authorise
trade-offs between the criteria. The order in which the criteria are given is
related to their importance, the most important being in first place. The
analyst uses the lexicographical order and optimises the criteria one after
the other.

• # (Z i , Z 2 , . . . ,Zi^) indicates the enumeration problem of all the Pareto
optima. Therefore we associate uniquely to this problem an a posteriori
resolution algorithm which does not use any of the aggregation methods
presented in chapter 3.

Among these approaches the most encountered in the literature are the Fe,
Lex, GP and # approaches.

4.3 Classes of resolution methods

We have seen (figure 4.1) that the analyst has to solve three problems in
order to propose a resolution algorithm to the decision maker. According to
the answers he receives he will create one resolution algorithm rather than
another. We can distinguish three cases:

1. The decision maker desires a unique solution from the tool provided for
him. In other words he chooses an a priori method. In this case the
algorithm which the analyst produces is composed of a module which
selects the value of the parameters, which enables to obtain an instance
of a scheduling problem. The parameters are the input of the second
module, which is responsible for the resolution of the scheduling problem.
The solution obtained is returned to the decision maker.

2. The decision maker would like to intervene in the resolution of the
scheduling problem. In other words he chooses an interactive method.
In this case, the first module of the algorithm will discuss with him to
determine and at each iteration the new search direction, and next the
second module will solve the scheduling problem and return the calcu­
lated solution. If he wishes to pursue the search, a new search direction
is pointed out and the process is repeated.

3. Finally, if the decision maker prefers to choose the solution within a set
of Pareto optima, he positions himself in the a posteriori area. The first
module will cause the parameters of the objective function to vary in
order that the second should be able to calculate the whole set of Pareto
optima. This set is returned to the decision maker.

Figure 4.2 represents the three methods of searching for a solution, with the
two phases which constitute them.

4.4 Application of the process - an example 123

Algorithms based on an
a priori method

Algorithms based on an
interactive method

Algorithms based on an
a posteriori method

Module which takes
into account the criteria

value of the parameters

Module which solves
the scheduling problem

a Pareto optimum

Module which takes
into account the criteria

value of the
parameters

a Pareto
optimum

Module which solves
the scheduling problem

a Pareto optimum

Module which takes
into account the criteria

value of the
parameters

a Pareto
optimum

Module which solves
the scheduling problem

a set of Pareto optima

Fig. 4.2. Breakdown of the resolution methods for multicriteria problems

4.4 Application of the process - an example

Let us suppose that when modelling the problem, the decision maker brings
up a three-stage hybrid flowshop problem, each stage having identical ma­
chines (see for instance "Processing of cheques", section 4.1.2). The jobs have
different release dates and different due dates. The first objective to be identi­
fied is the criterion U and the second is the criterion Tmax- The multicriteria
scheduling problem addressed can be denoted by HF3, (PM(^))f^i|ri,di|Cr,
Tmax' Next, we can find several possible situations.

First situation:
The decision maker wishes to see all the strict Pareto optima of the problem,
in order to choose the one which best suits him. The analyst is therefore
directed to an a posteriori method.
For this he can solve, for example, the problem:

HF3, {PM^'))l^^\rudi\e{ir/Tmax)
with a large value for e at the start, then smaller and smaller values. This
leads finally to the enumeration of all the weak Pareto optima.
The analyst can also solve the problem:

By making the weights of the linear combination vary, he can enumerate all
the supported strict Pareto optima. Next, he can look for the non supported
optima using another method.
He can also propose an enumeration method of type branch-and-bound or of
type dynamic programming. He then solves the problem:

i?F3, (PMW)l^ilr i ,di |#(t7" ' , r„„^)

124 4. An approach to multicriteria scheduling problems

Second situation:
The analyst has convinced the decision maker that the enuneration of all the
strict Pareto optima would be long and of little interest, because of the huge
number of solutions.
The decision maker would like therefore that the cost of the proposed solution
is the closest possible to a cost {U ^T^^^) that he manages to fix empiri­
cally. The analyst goes therefore for an a priori method and the problem to
solve is the problem:

HF3,{PM('))l^,\ri,di\FT{Tr,Trnax)
or else of the type FTP(. ..) or Fxpai* • •) if ^^^ intended solution is not reach­
able. Otherwise, he may solve the problem:

Third situation:
The decision maker not knowing how to tackle his problem, wishes to be
helped to identify the Pareto optimum which best suits him. The analyst
therefore sets up an interactive algorithm.
At the start he solves, for example, the problem:

HF3, {PMW)j^,\rudi\Fe{ir,Tma.)
then he modifies the weights using the new search direction given by the
decision maker at each iteration. Remember that by this method, only the
supported Pareto optima are able to be proposed.
The analyst can equally solve the problem:

ifF3,(PM(^))f^i |n,d, |P(C7",r^a.)
by making vary the bounds fixed for the criteria, depending on the orienta­
tions of the decision maker.

4.5 Some complexity results for multicriteria scheduling
problems

In this section we go back to the complexity theory but applied to multi-
criteria scheduling problems. We consider these problems in the light of the
complexity classes presented in chapter 2 and the reductions provided in
chapter 3. We first consider the complexity of multicriteria scheduling prob­
lems in terms of ATP-hardness before turning our attention to the complexity
of the counting and enumeration of Pareto optima.

We have seen that a multicriteria problem is ATP-hard if the calculation of
a weak Pareto optimum is an J\fV-hend problem. Moreover, for a problem
with K criteria, it is sufficient that the optimisation of a single criterion is
AfV-haid for the multicriteria problem to be so. [Chen and Bulfin, 1993] are
equally interested in such results since they set the rules which enable us to
deduce the complexity of bicriteria scheduling problems beginning with the

4.5 Some complexity results for multicriteria scheduling problems 125

corresponding single criterion problems. The mult icr iter ia problems under
consideration by this study are the problems:

• where a lexicographical order among the criteria is defined,
• where the criteria are aggregated by a linear combination,
• where all the Pareto optima are generated.

In section 3.9 we have demontrated several reductions among the general
problems. It is possible to consider new reductions in the framework of certain
classic criteria in scheduling.

Lemma 18
For all Z\ € {Cmax-,Lmax^C^C ^U^U ^T^T } there exist a polynomial Tur­
ing reduction such that:

1, a\ß\Lex{Zi,C) (XT a\ß\Lex{Zi,C^),
2, a\ß\Lex{ZuTJ (XT a\ß\Lex{ZuT^),
3, a\ßi\LexlZi,U) (XT a\ß\Lex\Zi,U'').

Proof.
It is possible to solve an a\ß\Lex{Zi,C) problem by using an algorithm for the cor­
responding a\ß\Lex(Zi, C) problem, by setting Vi = 1, Vi = 1, ...,n. The solution
returned is optimal for criterion Zi and minimises criterion C. We can use similar
reasoning to prove the two other reductions.D

Other more interesting reductions can be considered among certain criteria.

Lemma 19
For all Zi G {Cmax^C,C } there exist a polynomial Turing reduction such
that:

1. a\ß\Lex{ZuC) OCT a\ß\Lex{ZuT),
2. a\ß\Lex{ZuC^) OCT a\ß\Lex{Zi,f^),
3. a\ß\Lex{Zi,Cmax) OCT a\ß\Lex{Zi,Lmax)'

Proof.
It is possible to solve an a\ß\Lex{Zi,C) problem by using an algorithm for the
corresponding a\ß\Lex{Zi,T) problem, by setting di = 0, Vz = l,...,n because
criterion Zi does not take the due dates into account. Similar reasoning is useable
to prove the two other reductions.D

Lemma 20
For all Z\ G {Cmax^C^C } there exist a polynomial Turing reduction such
that:

1. a\ß\Lex{Zi,Lmax) OCT a\ß\Lex{Zi,T),
2. a\ß\Lex{Zi,Lmax) OCT a\ß\Lex{Zi,U).

126 4. An approach to multicriteria scheduling problems

Proof.
The two reduction proofs being similar we can^how the first uniquely.
If we only consider the criteria Lmax and T we can show (see for example
[Brucker, 2004]) the existence of a polynomial Turing reduction of the criterion
Lmax towards the criterion T. This reduction rests on the fact a schedule s exists
such that Lmax{s) < k a and only if an optimal schedule s' exists for the crite­
rion T (by considering d'i = di -\- k) in which no job is late. We use this result to
show the existence of a reduction of the a\ß\Lex{Zi,Lmax) problem towards the
a\ß\Lex{Zi,T) problem.
We consider the resolution algorithm of a a\ß\Lex{Zi, Lmax) problem as follows:

Algorithm A;
k = max (dj)]

di = di — k, Vi = 1,..., n;
Cal l5[(i ; ; . . . ;d ; ;5°] ;
While (T(s°) > 0) Do

k= min (Ti(s°));

di = di — k, Vi = 1,..., n;
C a l l 5 [d i ; . . . ; < ; 5 °] ;

End While;

The procedure S solves the a\ß\Lex{Zi,T) problem and returns the calculated so­
lution s°. This solution satisfies the optimality constraint for the criterion Zi, since
it is not based on the due dates. Therefore, it is also a solution which satisfies the
constraints of the a\ß\Lex{Z\^Lmax) problem.
The number of iterations produced by the algorithm 4̂ is a unique function of the
number of jobs given that: (i) the value k is at each iteration a lower bound on the
minimal value of the criterion Lmax, (ii) at each iteration the number of late jobs
decreases, (iii) the maximal number of late jobs is equal to n. If the procedure S is
polynomial, then the algorithm A is also.D

The results of lemma 18, 19 and 20 are summarised in the reduction trees
presented in figures 4.3 and 4.4.

Lexi.Zi.C"") Lex{Zi,T") Lex{ZuU"")

Lex{Zi,C) Lex{Zi,T) Lex{Zi,U)

VZl G {CmaxtL
max 5 T'max j C^ T^

Fig. 4.3. Reductions for a lexicographical minimization (1)

The complexity of bicriteria scheduling problems on a single machine has
been considered by [Hoogeveen, 1992a], [Chen and Bulfin, 1993] and next

4.5 Some complexity results for multicriteria scheduling problems 127

Lex{Zi,T")

LexiZuC"") Lex{ZuT) Lex{Zi,U)

Lex {Z\,C) Lex (Zi, Lmax)

LeXyZ\, Omax)

VZi G {Cmax^C.'C^}

Fig. 4.4. Reductions for a lexicographical minimization (2)

[Lee and Vairaktarakis, 1996] who draw up state-of-the-art surveys. The
complexity of bicriteria problems on multiple machines is addressed by
[Chen and Bulfin, 1994]. The polynomial reductions presented in section 3.9
show that knowledge of the complexity of lexicographical multicriteria prob­
lems is as important as that of single criterion problems, when we want to
study the complexity of a multicriteria problem. By way of illustration, we
give in tables 4.1, 4.2 and 4.3 some complexity results for bicriteria scheduling
problems on a single machine of the type Lex, F^, and e-contraint.

Table 4.1. Complexity of scheduling problems of type l||Lex(Zi, Z2)

Zi

J^max

•i^ max

Jmax

c
c^ T
T-
U
U"'

Z2
-L/max

—
—
*
*
*
**

* * +
0
**

J-max

—

*
*
*
**

* * +
0
**

Qmax

*
*
*
*
*
**

* * +
**
**

c
*
*
*

—
—
**

* * -f
**
**

C"
* * +

**
* * -l-

—
—
**

* * +
* * +
* * +

T
" Ö "

**
**
*
**
—
—
**
**

r"̂
~cr"

**
* * -f

*
**
—
—

* * +
* * +

u
~~ö~

0
* * —

*
*
**

* * -f
—
—

^ .
**
**
**
*
**
**

* * -f
—
—

^ / **: yv /^-nara / * * —: weaKiy j \ /^-r
/ * * -f: strongly A/'P-hard / O: open

A glance at the literature shows that when solving multicriteria scheduling
problems we are often interested in enumerating or counting the number of

128 4. An approach to multicriteria scheduling problems

Table 4.2. Complexity of scheduhng problems of type l\\e{Zi/Z2)

Zi

-L/max

J- max

c
C"'
T

r-
u
c/-

J-^max

—
—
*

* * - } -

**
* * -h

0
**

J-max

—

*
0
**

* * -l-

0
**

c
*
*

—
—
**

* * -h

0
**

Z2

c^
0

o
—
—
**

* * +
0
**

T
**
**
**
**
—
—
**
**

T"

* * +
* * 4-
* * - j -

* * +
—
—

* * +
* * +

U
~~Ö~

o
**
**
**

* * -f
—
—

c/"
**
**

* * +
* * +

**
* * 4-

—
—

*: P / **: AfV-haid / * * —: weakly AT'P-hard
/**-!-: strongly J\fV-haid / O: open

Table 4.3. Complexity of scheduling problems of type l\\Fe(Zi,Z2)

Zi

-L/rnax

J- max

c
c^ T

[jZ

•L/max

—

—
—

J- max

—
—
—
—

C
*
*

—
—

Z2
C^

* * +
**
—
—

T
**
**
**
**

T -

* * +
* * +
* * -f
* * -f

u
~ö~

Ü

**

* * +
**

* * +

u^ \
**
**
**
**
**

* * +
*: V I **: ATP-hard / * * —: weakly AT'P-hard

/ * * +: strongly ATP-hard / O: open

strict Pareto optima. Thus, it becomes necessary to consider the complexity
classes provided in section 2.2.3 to evaluate the complexity of solving multi-
criteria scheduling problems ([T'kindt et al., 2005]). We first provide general
results and next give tables which summarize the complexity of multicriteria
scheduling problems tackled in the literature. But first of all, we define the
problems under consideration, which is a key point for the remainder of this
section.
Basically, we can either solve a multicriteria scheduling problem in criteria
space or in solution space. The first solution approach, namely the descriptive
approach, consists in counting or enumerating the set of non dominated crite­
ria vectors whilst the second one, namely the constructive approach, consists
in counting or enumerating the Pareto optima. Intuitively, we guess that the
second version of a multicriteria scheduling problem is harder than the first
one since more "solutions" are involved. Often in the literature we are inter­
ested in solving the descriptive version of a multicriteria scheduling problem
by enumerating one strict Pareto optimum per non dominated criteria vector.
Let us first introduce instrumental definitions.

4.5 Some complexity results for multicriteria scheduling problems 129

The optimisation problem O associated to a multicriteria scheduling problem
consists in calculating a single strict Pareto optimal schedule with respect to
the criteria (and it is any strict Pareto optimal schedule). The counting prob­
lem C associated to the above problem O consists in counting the number
of strict Pareto optimal schedules. At last, the enumeration problem E as­
sociated to problem O consists in enumerating all the strict Pareto optima.
All these problems are constructive problems. Whenever necessary we will
consider their descriptive version, using the same notation if this raises no
ambiguity.

Let us first consider a simple bier iter ia problem, referred to as F2\di =
d, unknown d\Ü^ d. Calculating a single strict Pareto optimal schedule can be
done in polynomial time, or equivalently problem O belongs to class V. This
is a direct consequence of the fact that the strict Pareto optimal schedule
associated to the non dominated criteria vector with C7 = 0 can be calcu­
lated in polynomial time since in this case problem O is equivalent to solving
the F2\\Cmax problem, which is polynomial ([Johnson, 1954]), and setting
d = C^cix' Besides, it is clear that the descriptive counting version of this
bicriteria problem belongs to class J^V since the number of non dominated
criteria vectors is exactly equal to (n +1). The complexity of the constructive
enumeration of this set is stated in the following lemma.

Lemma 21 The constructive enumeration problem associated to the F2\di =
d, unknown d\Ü,d problem is £J\fV-complete.

Proof.
Jozefowska et al. ([Jozefowska et al., 1994]) exhibited a polynomial reduction from
the PARTITION problem towards the F2\di = d, unknown d,d = D,Ü = e\-
problem with particular values of D and e and such that the (n — e)th job com­
pletes at time D on machine 2. Let us refer to this particular problem as F2p. The
proposed reduction is parsimonious and as the counting version of PARTITION
is #P-complete ([Garey and Johnson, 1979]) we deduce that counting the number
of feasible solutions to the F2p problem is #P-complete. According to property
3 (see section 2.2.3) we deduce that the enumeration of those feasible solutions is
£^A/''P-complete.
It is remarkable that the set of solutions of F2p is a subset of the set of strict Pareto
optima for criteria d and Ü which leads to the result that the enumeration of all
the strict Pareto optima is also (^A/^P-completcD

Starting from this example problem several remarks can be derived. First, the
descriptive counting problem is in J^V due to the property that the number
of distinct values for criteria Ü is equal to (n + 1) and that to each of these
values there exists a non dominated criteria vector. Even if this property is
quite strong, a weaker one can be stated for classic scheduling criteria.

130 4. An approach to multicriteria scheduling problems

Property 6 For any discrete bicriteria scheduling problem involving two cri­
teria among Cmax, Tmax, Lmax, C, C'^, T and T^, the number of non dom­
inated criteria vectors is upper bounded by /{Lengthy Max), where f is a
polynomial function of Length and Max.

Proof.
We separate the proof into two parts.
1) Assume that among the two criteria at least one is the Cmax, Tmax or Lmax
criterion. Remind that Cmax = maxi<i<n(Ci), L

max — maxi<j<7i,(Ci di) and
Tmax = maxi<j<n(max(0; Cj — di)). An upper bound on the worst value of such
a criterion for a strict Pareto optimum is given by X]r=i S^i^*»i' which is the
sum of the processing times of the n jobs on the m machines. Conversely, a lower
bound on the best value for a strict Pareto optimum is given by — 5̂ 7=1 ^T=i P^J-
Henceforth for a given criterion the range of values that it can take is comprised
in [— J^^^i S ^ i PiJ'-> Sr=i S ^ i Pij] ^^^ ^ these three criteria can only take dis­
crete values inside this interval, it follows that the number of non dominated criteria
vectors is upper bounded by 2 x X^̂ ^̂ YyjLiPiJ = f {Length, Max).
2) Now assume that the two criteria are sum criteria, i.e. C, C^, T and f^.
Remind that C = YT.^^Ci, C"" = Y17=i'^iCh f = X;r=i max(0;ft - di) and
jjw _ ^^^^ ^^ max:(0; d — di). Based on the same reasonning than in the first part
of the proof we can derive that for a given criterion the range of values it can take
is comprised in [0; n x Ylll=i '^k SILi S ^ i ^«.il' with Wk = \vci case of criteria C
and T. As all these four criteria can only take discrete values inside this interval,
it follows that the number of non dominated criteria vectors is upper bounded by
n * E L i f̂e EILi E ,^ i Pi.3 = f {Length, Max).D

A similar straigthforward property can be established in the particular case
of the number of tardy jobs criterion.

Property 7 For any discrete bicriteria scheduling problem involving crite­
rion Ü, the number of non dominated criteria vectors is upper bounded by
(n + 1) = f {Length), where f is a polynomial function of Length. In case
of the weighted number of tardy jobs criterion, denoted by Ü"^, the number
of non dominated criteria vectors is upper bounded by (n +1) maxi<i<n Wi =
g{Length, Max) where g is a polynomial function of Length and Max.

Proof.
Similar to that of property 6.D

Let us consider again the example problem, for which the calculation of a sin­
gle strict Pareto optimum is achieved by solving an e-constrained problem,
namely the F2\di = d, unknown d\e{d/Ü), which consists in imposing the
desired value of criterion Ü and calculating the minimal value of the common
due date d. As this problem is A/^T^O-complete, the constructive enumeration

4.5 Some complexity results for multicriteria scheduling problems 131

problem cannot be solved in polynomial time. But it is clear that, for a bicrite-
ria scheduling problem, if the calculation of each non dominated criteria vec­
tor can be done in polynomial time, for instance by solving an e-constrained
problem, and if the number of such vectors is upper bounded by f{n) with /
a polynomial function, then counting the number of non dominated criteria
vectors is in class J^V and the associated descriptive enumeration problem is
in V. Moreover, if the number of non dominated criteria vectors cannot be
shown to be upper bounded by f{n) then we can conclude that the descrip­
tive enumeration problem belongs to class £V. Caution must be taken when
showing that the calculation of each strict Pareto optimum can be achieved in
polynomial time: some well-known approaches do not enable us to calculate
all these optima. For instance, minimising a convex combination of multiple
criteria on a non convex problem leads only to the calculation of the subset
of supported strict Pareto optima. Henceforth, even if this problem can be
polynomially solved we cannot conclude that the descriptive enumeration of
all strict Pareto optima is in class £V.
It is remarkable that in the literature on multicriteria scheduling involving
enumeration problems, always the descriptive enumeration problem is con­
sidered. And it is usually solved by calculating to each non dominated criteria
vector a strict Pareto optimum. It means that we solve a problem potentially
harder than the descriptive enumeration problem since we not only output a
set of criteria vectors but a set of criteria vectors and a set of schedules. To
complete this section we provide in Tables 4.4 and 4.5 synthesizes of complex­
ity results for some descriptive multicriteria scheduling problems tackled in
the literature. In both tables the first column contains the problem notation
and the three following columns contain the complexity of the problem of
calculating a single Pareto optimum, the counting problem and the enumera­
tion problem respectively. In column O the method used to calculate a single
Pareto optimum is indicated in parenthesis. Lex refers to the lexicographic
method, e to the e-constrained method, Fe to the convex combination method,
GP to the goal programming method. FT to the Tchebycheff method and #
to a basic enumerative method. The fifth column presents some additional
information about the cardinality of the set of strictly non dominated criteria
vectors and the sixth column gives references dealing with the problem.

132
4.

A
n approach to m

ulticriteria scheduling problem
s

o

•g CO

3 d Co

bJO

Ö

o

o
 o

8

3

k".
Q

)
>

Q
)

>

+ + +
^

^

+ + + + ^
 "̂

 ^
 ^

 5
£

^
0

0
|V

I V
I V

I V
I

V
I

V
I V

I V
I V

I V
I

s
S

§
^ V

I
V

I

^
q

b
sjlsjls)

N)
t

s
j

ls
iN

N
N

o
o o o

o

a
C

i
o

O

i
O

)
0>

0>

0
Ö

X

C
 P

W
^

A

13

m
 s:

:3
(0

Ö

2

:3
-.

CQ

r
i

-0
13

13
no

a

c
fi

;:
CO

C
O

(Ö

C

O

X

X

X

X

0
Ü

 ü

S

^
^ S

J
3

^<l
tsi

_
_

_
_

_
_

_
_

_
_

'
^

'
r

f
'

^
_

_
'

^
a

f
if

i.f
ip

.p
.f

s
.^

p
.p

.^
p

.
p.

^
f

ip
.

p.
^

^
K

K

 K

^
P̂

^

fip
.p

.p
.fi^

fi.
p.

^
f

^
p

.

V
I

•«
•.»

•«
«H

H

-̂

•-.

-̂

•* 73̂

-ê

^
^

^
H

^

r^

^
rn'

rn'
I

|

II
II

II
rn

l i^' II
II

II
II I

1

0
.

0
,

0
,

—

—

a
,e

.ö
.ö

.—

—

—

{v
,

C
O

^
0

^

o

cy o

4.5
S

om
e com

plexity results for m
ulticriteria scheduling problem

s
133

CO

s O

bO

•g CO

c3

:3
ö (P

Co

bO

Ö

o

o

00
N

0> O

)

II (0
00

^ CD

•5 I
<

 5

00
"

.2

rH
w

2

OQ
 CQ

r

CO
 CO

 (d

(H

00
§

iH

'^ T3
Co

0
S

^

•o
k

'

0 J
>

"
0>

?
C

-1
s

3*
lO

'O

^

5
rH

Co

g

0)
.M

C

S
^

^ ^
2

^

CO CI
CO 00

0>
O

O

O

i
0>

O

O

O
)

rH
 CS CS

T
H

Co
Co

Co
g

4

i
4J

4J
;3

Q)
Q

)
Q)

^

2:
"̂

o

o

8fe

jr
<

_
«5

,

<
^

Q
 fc <:

-I
O

0

•*
C

I
"*̂

'^

CD
iH

Trt

W

00
CD

CO

 Q
)

g

g
s

JS^
Co 0

Ö

Ü

S
.5

Q
)

^
0

Co
CD

&
 ti 2L 2-5.2.5. j^

CD

Co
S

Co
!>

>> Ö

S
Co

:s >

I
c7

S
 S

^

S
S

2
^

©

J" (0
(0

(ij ^
^

Ŷ

g

(0
«

u
 "-I

M

3
(

«
3

3
f

lJ
f

l)
j;

«5
N

^ t^ 2
S

<^ Ö

^
0>

05
„

""•
is

Ü
o

o>
:

J
^ ^

_
"^

'^
'S

(fl
-3

I>

§
IS

13

®

*
-g

fi
to

4
.

4
.

:
=

t
o

*

"m

O

<B

2
®

U

*

•fi
0

0
ä

iS

i$
a

Q

J
J

N

33
Q

Ü

O

Ü

k \^
\^ ^ --̂

^ (i-^ ^ ^

^ ^
ko

to

V

)
to

CO
 ^ ^ ^
^ ^

CU
O

l
C

li
&

C

U

CU

II:
^

H
: ^

It: =t}:

k)
<

J
O

O

0

0
0

0
^

(i-
P«

p
.

N ^ ̂
 ^

C
O

C

O

IX
C

U

&5

0.
f̂

^

0.
^

to

to

^

^ ^
t

o
t

o
t

o
t

o
t

o
t

o
r

^
t

o
t

o
t

o
^

r
^

t
^

^

P̂
 ^

S

^
P̂

p.
p. o

' p.
P̂

^
^

^
^

^
to

to r? to to

p.
P̂

^
^

to

to

Cu

Qu

C
X

d
iC

L
iC

U
O

u
C

U
C

L
C

U

^
^

=
tt:=

t}:=
tt:=

tt=
tt:=

tt:=
tl:=

W
;

fc,
fe,

fe,
6

,
li,

C
i,

fc.

O

tj
o

<ü

0

0
0

0
p.

P̂

p.
P̂

3
3

3
3

3
'

^
^

'
^

.
o

3
3

o
3

?
?

?
0

0
0

^
0

^
>

:
^

^
^

^
^

^
^

^

Q
U

(I4
C

U

C
li

^
^

^
4fc

r
P> ^

p.

d
^

d
t

C
X

d
i

O
U

d
i

C
U

Q
u

^ ^ *
* C

y 0 p 0

f«

|53 -I h
N

^

—

c
ift'

—

f^

c3 3

A
l

A
l

Ih
-

10 10 l;:.

3

- s
ll^

0

T3
13

T3
0}

"13
13

•«
•«

•«
^ 1^' S

 l::; Ih 10
^

•«
•«

•e
'ö

'«
'«

'«
'«

ID

-
1

0

«
3

b

10 O
l^ h

5
'

ö
|^

H

H

H

H
 N

tJ

+

e
0

t3
0

—

,
iM

S

S

S

S

 .-S
 '^

'^.
0

Es 0
0

g |;̂
' 10

e
.

. lO

a
-^

-^
T

»
.

H

H

-

•̂

^
0

134 4. An approach to multicriteria scheduling problems

Table 4.4 presents results for problems in which computing a single strictly
non dominated criteria vector can be achieved in polynomial time. All
the problems presented are polynomial in their optimisation, counting and
enumeration versions. Notice that for P{2,3}|pmtn,di| Lmax^Cmax and
Q\pmtn\C, Cmax problems, the set of strictly non dominated criteria vec­
tors is continuous and piecewise linear, thus either reduced to the empty set,
to a single element set or to an infinite set. Accordingly the considered opti­
misation, counting and enumeration problems are related to the calculation
of the strictly non dominated criteria vectors that are extreme points of the
tradeoff curve.
Table 4.5 presents results for problems in which calculating a single strict
Pareto optimum is a A/^T^O-complete problem (referred to as AfVOC in the
first column). Concerning the counting problems we were not able to establish
either their completeness or to prove that they are polynomially solvable. Be­
sides, notice that even though the enumeration problems cannot be solved in
polynomial time, we do not state that they are £J\fV-complete since no formal
proofs are provided. For some of the problems mentioned, the calculation of
a single strict Pareto optimum is achieved by minimising a convex combina­
tion of criteria (referred to as Fe in the first column). As previously noted in
this section, this approach does not allow calculating all strict Pareto optima
since some are not minima of the convex combination whatever the weights.
However, it is clear that if minimising a convex combination of criteria is
not a polynomial problem, then there is no opportunity for the enumeration
problem to be solvable in polynomial time.

5. Just-in-Time scheduling problems

5.1 Presentation of Just-in-Time (JiT) scheduling
problems

One of the classical objectives in shop scheduling is linked to the respect of
the due dates which attend, for example, the meetings with customers on
the delivery dates of the manufactured products. For numerous problems,
the criterion used in this case is a measure of the tardiness of the finished
products, as for example the average tardiness^ the maximum tardiness or
yet the number of late jobs. Nevertheless, even though for example, storage
of products means a non negligible cost, it is necessary to optimise, at least,
just as well a criterion linked to the earliness of jobs.
Historically, interest in JiT for manufacturing appeared after the second world
war in the Toyota company factories (described in [Pinedo and Chao, 1999]).
In the context of vehicles production, a certain number of components are
produced by subcontractors. The JiT scheduling problem appears for the
latter since the subcontracted parts must be delivered at the moment of the
vehicle assembly. A late delivery leads to the halt of the assembly line be­
cause it is necessary to withdraw the vehicle concerned in order to be able to
reposition it at the head of the line. This means a penalty for the customer.
Conversely, manufacture of the subcontracted parts in advance means a stor­
age charge for the subcontractor which may not be negligible. This is notably
the case, nowadays, for car seats for which storage costs are very high. More
generally, we note that a JiT scheduling problem appears when the due dates
have to be respected and when parts do not have a negligible storage cost.

Contrary to mass production, where a stock of finished products is built up,
JiT production consists of regulating manufacture. In terms of stocks, the
objective is to plan the regular arrival of the materials which are necessary
for the manufacture of the products. We wish to reduce not only the interme­
diate stocks but equally the stock of finished products. In this situation, we
want to calculate a plan such that all these products are manufactured just
at the moment when they have to be used. In scheduling terms the objective
is therefore to calculate a schedule such that the finished products (or jobs)
should be available "Just-in-Time". We must therefore optimise, at least, a

136 5. Just-in-Time scheduling problems

measure of the tardiness of the jobs as well as a measure of their earliness. For
the latter we distinguish two categories of criteria: those which measure the
earliness of a job in relation to a desired start time and those which measure
this earUness in relation to a due date. In the first case, we only consider
that processing a job earlier than necessary will disrupt the supply chain of
raw materials, which leads to disruption of stock levels and which therefore
must be penalised. For the second category of criteria we only consider that
stocks of finished product generate a cost which we want to reduce. When
the difference between the due date and the desired start time for each job
is equal to the total processing time of the job, we can then show that these
two categories of criteria are equivalent.

Literature on JiT scheduling problems addresses essentially single machine
and parallel machines problems. The objective of this chapter is to present a
set of significant works in the domain.
We first present a typology of such problems as dealt with in the literature,
and next provide a general model of Just-in-Time shop scheduling problems.
We conclude this chapter by providing a literature review of major works.

5.2 Typology of J iT scheduling problems

The literature contains numerous works on JiT scheduling problems and
several states-of-the-art surveys have been published (see among others
[Baker and Scudder, 1990], [Hall and Posner, 1991], [Gordon et al., 2002a],
[Gordon et al., 2002b] and more recently [Kaminsky and Hochbaum, 2004]
and [Gordon et al., 2004]). The JiT scheduling problems can be separated
according to the definition of their due dates and the optimised criteria.

5.2.1 Definition of the due dates

The due dates often result from a choice made by the decision maker and
constitute a data for the analyst. In this case, we consider that these dates
are fixed. Conversely, problems occur for which the due date of a job or an
order result in negotiations between the decision maker and his customer.
In this case, the decision maker must set up an algorithm which returns a
schedule and a due date taking account of other jobs already scheduled. We
consider then that the due date is unknown. If the date which is calculated
is far from that desired by the customer, then a reduction of the order price
may be suggested, and therefore a compromise solution is looked for. On the
other hand, the more the due dates are spaced the greater is the probability
that the order will be delivered on time. Thus, for the decision maker, the
problem is to find a trade-off between the cost created by a potential delay
and a non negligible storage cost. Besides, we encounter problems for which

5.2 Typology of JiT scheduling problems 137

each job has its own due date. We speak of a problem with arbitrary due
dates. Conversely, we speak of a problem with common due date. We distin­
guish between two cases. A common due date is said to be non restrictive if
increasing it does not enable us to compute a schedule with a lower value of
the objective function. Otherwise, the common due date is said to be restric-

n
tive. For single machine problems ii d> T^Pi then the due date d is clearly

non restrictive.
We notice that the problems with an unknown common due date are equiv­
alent to the problems with a fixed and non restrictive common due date.
In other words, the optimal solutions of these two problems are the same
schedule and same objective value, the sole difference being the value of the
common due date.

Determination of due dates is a crucial point in JiT production. In fact, fixing
too many close dates can lead to disturbance of product stocks since few jobs
can be completed at their due date. Conversely, fixing the dates too far apart
can lead to a reduction in production of the factory. Determination of these
due dates is generally done by the decision maker, alone or during the course
of negotiations with his customers, before solving the scheduling problem.
The analyst must then just calculate a schedule of jobs so that they are
completed JiT. For the definition of due dates, we encounter different models
([Ragatz and Mabert, 1984]). Amongst the most classic, can be found the
model CON (CONstant flow allowance model) in which we consider that all
the jobs have a common due date. When all the due dates are different, we
encounter in the literature the model SLK {SLacK) which considers that all
the jobs Ji are such that di = ri-\-pi-{• q where pi represents the sum of the
processing times of the operations of job Ji and q a common tail. This case can
occur when the due dates are fixed by the decision maker who then proceeds
to use the value of criterion C as an estimation of the value q. In the model
TWK {Total WorK content) the due dates are defined by di = ri -\- kpi^
Vi = l,. . . ,n, where fc is a positive integer. In the model NOP {Number of
operations) these dates are defined by di = r̂ + fen^, Vz = 1, ...,n, where k
is a positive integer and Ui the number of operations of job Ji. Finally, the
model PPW {Processing-Plus-Wait) combines models SLK and TWK since
di = ri-{- kpi + g. Vi = 1,..., n, where fc is a positive integer and q a common
tail which can be negative. Very often, the dates di are considered as unknown
because k and q are variables to be determined.

5.2.2 Definition of the JiT criteria

Solving a JiT scheduling problem necessitates at least the optimisation of
a criterion related to the tardiness of jobs and a criterion related to their
earliness. As we have previously commented, two categories of problems

138 5. Just-in-Time scheduling problems

are encountered. In the first, the earliness of jobs is defined by relation to
the due dates. We consider then that the earliness of job Ji is defined by
Ei = ma.x{0] di — Ci). The maximum earliness is denoted by Emax- In the
second type of problem, the earliness of jobs is defined by relation to a de­
sired start time si. We speak then of the promptness of job J^, which is
defined by Pi = max(0;5i —ti). The maximum promptness is denoted by
Pjnax' Basically, these problems are encountered when the start time of a job
can induce costly disturbances of stocks of raw materials. For problems for
which di = Si-\- pi^ Vi = 1,..., n, we have Pi = Ei.

For the majority of problems which are considered in the literature, only
criteria linked to earliness and tardiness of jobs are optimised. Very often,
the objective function does not constitute a regular criterion, and thus we
are led to consider schedules with insertion of voluntary idle times before
the operations. This means that we can delay the processing of jobs so that
they complete on time, to the detriment of the storage costs of semi-finished
products. Thus, for certain problems we also consider the minimisation of
a criterion reflecting these storage costs. It mainly concerns the criterion C
minimisation of which leads to minimising the inventory costs.

The diversity of problems leads to a large number of objective functions.
Furthermore, a precise definition of a Just-in-Time schedule does not exist.
These two reasons have favoured the appearance of numerous models with
different objective functions. Table 5.1 presents a summary of the principal
objective functions considered in the literature. The first column of the ta­
ble shows the objective function and the second states whether this function
corresponds to a regular criterion. If this is not the case, it means that it
is necessary to consider the class of schedules with idle time insertion when
solving the problem in order to compute an optimal solution. Nevertheless,
in certain works the constraint '^no-machine idle time" (nmit) is imposed in
spite of the fact that the objective function is not regular. Justification of
this hypothesis is connected with prohibitive costs occuring when a machine
becomes inactive.

Certain equivalences exist between different objective functions. For exam­
ple, we have E -\-T = Yl\Li\ because Ei -{• Ti = \Li\. Similarly, we have
Li = Ef+T^ which enables us to deduce that the objective functions a'^Lf
and a Yli^f + ^?) ^^^ ^^^ same. For some problems, each job Ji has a unit
earliness penalty, denoted by a^, and a unit tardiness penalty, denoted by ßi.
These penalties are the weights in the objective function. We distinguish the
following cases:

1. The weights are asymetrical, i.e. 3i,i = 1, . . . ,n,ai ^ ßi.
2. The weights are symetrical, i.e. Vi = 1, . . . ,n,ai = /J .̂

5.3 A new approach for JiT scheduling 139

3. The weights do not depend on the jobs, i.e. Mi = l, . . . ,n,a^ = a and

ßi = ß.
4. The weights depend on the jobs, i.e. 3i,j^ i ^ j , i^j = 1,..., n, a^ ^ aj or

ßi^ßi-

Table 5.1. Summary of the principal types of JiT objective functions

Objective function
E 4 - T
aE-\-ßT

E'-^r
{E-\-TY

n n

i = l jf=z-f 1
n n

1=1 j=i-\-l

i=l

n n

i=l i=l
max {ai\Li\)

i= l , . . . , n
max{g{Emax), h{Tmax)) with g and h two increas­
ing functions

max {g{Ei),h{Ti)) with g and h two convex
i=l,...,n
functions
oE-^ßTi-^fd
oE-j-ßT + jC
oE -h ßT -\- 7max(0, di - A) with A a due date

Z/^+r
C/" + jd
£/" + 7max(0, dj — ^) with A a due date

Regular criterion
No
No

No
No

No

No

No

No

No

No

No

No

No
No
No

No
Yes
Yes

5.3 A new approach for J iT scheduling

JiT scheduling problems occur in the context of JiT production. This evident
fact implies that the roots of JiT scheduling have to be searched in the
abundant Uterature on JiT production which has been the subject of a lot of

140 5. Just-in-Time scheduling problems

studies and is now well defined. Among others, [NoUet et al., 1994] describe a
JiT production system as a system which "processes and delivers finish goods
just-in-time to be sold, components just-in-time to be assembled into finished
goods and materials bought just-in-time to be converted into components".
In a JiT production system quality and productivity have to be improved at
all stages of the industrial system. This implies reducing wastings and taking
account of human factors ([Nollet et al., 1994]). Under the term "wasting",
Nollet et al. gather a series of elements:

1. Wasting due to overproduction which induces useless storage costs, in­
creased human requirements, etc. This can be reduced by producing just
what is needed and by satisfying the lead times.

2. Wasting due to waitings caused by machine breakdowns for instance.
3. Wasting due to useless transportation and material handling, for in­

stance, when two resources are too far from each other.
4. Wasting due to a failing or badly prepared production process.
5. Wasting due to the storage of in-process or finished goods. This is a

crucial point of a JiT policy.
6. Wasting due to production flaws, which can be limited by increasing the

efficiency of the production process (this is related to the concept of total
quality in JiT philosophy).

Another way to define briefly the JiT philosophy, complementary to that of
Nollet et al., is given by [Baglin et al., 2001]: each product must ideally be
processed on a "chain of machines". This means that when a job enters the
shop it has to be processed ideally by the machines without waiting time,
as if they were available for it alone. This is the smoothing of the job flow.
Clearly, each machine must also have a smooth flow of jobs to process in
order to be made cost-effective.

All the above elements are production based, but in this book we only focus
on the scheduling component of the production system. Henceforth, only a
subset of these elements concerns scheduling. Firstly, the notion of "chain of
machines" can be easily translated into the "no-wait" constraint of classic
scheduling theory. However, in the case of "sufficiently closed" due dates,
imposing the no-wait constraint may result in increasing the tardiness of
products, i.e. customer dissatisfaction. Consequently, we may be allowed to
violate this constraint and thus have increased in-process storage costs in or­
der to limit the tardiness in producing orders. This means strictly processing
products on a "chain of machines" is a concept that may conflict with that
of limiting wastes due to the storage of in-process products. Limiting wasting
caused by the storage of materials is, as quoted by Nollet et al., a key point in
JiT production system. Storage is related to three distinct elements of pro­
duction: the raw materials, the in-process and subcontracted components,
and the finished products. The aim is, henceforth, to improve the quality
and productivity at each level where we encounter these elements in order to

5.3 A new approach for JiT scheduling 141

reduce the induced storage costs and answering as much as possible the lead
times ([Schonberger, 1982]).

Firstly, consider the case of raw materials. The need in raw materials is of­
ten evaluated at a mid-term planning level, ie. far away from the scheduling
phase. Starting from the routings and the decomposition of a product, the re­
quired raw materials and components are often ordered independently of the
scheduling phase. Hence, during the Material Requirements Planning phase
in a MRP system, we decide of which materials will be made available in
the shop, in which quantity and at which time. As in this phase we do not
have an accurate view of what will be the real operations schedule, materials
are usually made available in the shop before the start of such a schedule
(or sufficiently early before an operation, requiring materials, starts). Thus,
the calculation of a schedule in a JiT environment can be achieved without
having to accurately take account of the need in raw materials.
The situation for in-process and subcontracted components is different, no­
tably for work in-process components because they induce storage constraints
and costs which are directly related to the operations schedule. This is also
the case for finished products. It follows that, when calculating a JiT sched­
ule, the limitation of work in-process and finished products storage must be
taken into account. As a consequence lead times are reduced and the prod­
ucts tend to be produced on a "chain of machines".

In the remainder of this section we develop a mathematical formulation of
the costs to be minimised when calculating a JiT schedule and show how this
formulation includes the different costs functions optimised in the literature
on JiT scheduling (see section 5.2).

5.3.1 Modelling of production costs in JiT scheduling for shop
problems

Consider a job Ji that has be processed on a set of m machines, following
a sequence TT̂ = (7ri(l); 77 (̂2); ...;7ri(m)) with 7ri{k) the number of the fc-th
machine which processes Ji. Whenever sequences TTJ. Vi = l,. . . ,n, are fixed
we face a jobshop or flowshop problem whilst if determining these sequences
is a part of the problem, then we face an openshop problem.
We assume that Ji can be decomposed into, at most, qi equal-size sublots.
This assumption enables us to be more general than in classic scheduling
where jobs are often indivisible, z.e. ĝ = 1, Vz = 1, ...,n. Besides, in the case
of divisible jobs, i.e. qi > 1, Vz = 1, ...,n, the lead times can be reduced by
enabling lot-streaming. This consists in tranferring any sublot of an opera­
tion to the next machine without waiting for the completion of the whole
operation (see figure 5.1). All sublots of the same job must be sequentially
processed on any given machine, and between two of these sublots voluntary

142 5. Just-in-Time scheduling problems

idle times can be inserted if this helps in reducing the costs. For simplic­
ity purpose we assume that all operations are decomposed into 6 equal-size
sublots, where S has to be calculated in order to minimise the costs. We also
make use of the following additional notations:

Quantity
Si .

M^iU-\-i

Time

Work
in-process

Quantity

Stock level

di
Tipie

Finished
product

Fig. 5.1. Evolution of stock levels for a given job Ji with 4 equal-size sublots

Data:

7i

ßi

-^iij) : unit storage cost of work in-processes between machines
M^.(^) andM^.(j-4.i),
: unit storage cost of finish products,
: the cost, per sublot, for the decomposition of job Ji into sublots,
: unit cost for completing job Ji tardy (penalty costs).

Variables:
fij{t) : number of elements of job Ji produced by M;r.(j) from time 0

to t in the work in-process storage area which follows M^T-Q),

5.3 A new approach for JiT scheduling 143

fij{t) : number of elements of job Ji consumed by M7r.(j) from time 0
to t in the work in-process storage area which precedes M^^(^j^,

Uj^k • s tart ing t ime of the fc-th sublot of job Ji on machine M;r.(j).

The total cost induced by a job Ji comprises the cost for the storage of work
in-processes, the storage of finished products, the cost for the decomposition
into sublots and the cost for delivering Ji tardy.

L e m m a 22
The total cost of job Ji when produced Just-in-Time is defined by:

Zi = ßiTi + 6Xi - KiQiT + hiiqiti^^,(rn),6 + f^iQi^^^^i^^^ + i^iQiEi

with T a high value, j ^ ' ^ ^ = 0 and ^^^^^^ = K^.

Proof.
The cost Zi is defined as the sum of three costs: the cost for delivering job Ji tardy,
defined by ßiTi, the cost for decomposing job Ji into sublots, defined by SXi, and
the cost for storing Ji. For the latter, we refer to figure 5.1 to have an illustration
of the evolution of stock levels, even though on this figure these evolutions are as­
sumed to be continuous. We now focus on the calculation of the storage costs. We
have

Zi = ßiTi + 5Xi + Ki E f = o {ff,.,ir.)it) - / r , . a m + l) (<))

+Er="/ 7-^ '̂ (ELO (//:..Ü)(*) - fUi+iM)
with /i^,7ri(m+i)(0 t^® number of finished products of Ji consumed from time 0
to t. Here we assume that the stock of finished products is emptied instantaneously
on the last machine either at the due date di, or at the completion time of Ji if
Ji is tardy. As T,J=o fi,'rriU)(^) = T,f=ofi,7ri(j)(^)y ^y rearranging the sums in the
previous formulae and setting 7^ = 0 and 7^* "̂̂ ^ = /^i, we have

Zi = ßiTi H- 6Xi — Ki J2t=0 /*>i(m+l)(0

By replacing XlLo fi,7riim+i)(i) by its formulation, i.e. qi{T-ti^^^(rn),ö - ^''l^^^^ -
Ei) we obtain the formulation given in the lemma.D

It is interesting to notice tha t the cost function Zi is independent from the
consumption of elements in the storage areas. In the following lemma we
define accurately the functions ffT^.tj)-

L e m m a 2 3

We have E L O C Ü) (0 = " ^ ^ ^ ^ - f E L I kMJhk + 1^-

Proof.
Calculating the mathematical expression of the term X^^^Q ff-K mi^) ^^ equivalent

144 5. Just-in-Time scheduling problems

M, TTiO)

tity

^Qi

A 6
<7f,
<5"

Stock level

[^\ B A B A B A
Time

Fig. 5.2. The production function ff^.tj) of a given job Ji with 4 equal-size sublots

to calculate the area below the stock level curve if we only consider the stock sup­
plying and not the consumption of elements by machine M^^(j_|.i) (see figure 5.2
for an example). This area can be decomposed into two kinds of areas: areas A and
areas B. The sum of areas A is exactly equal to iU) . The sum of areas B is
dependent on the starting times of each sublots and we have

2

+ f{U,7ri(j),2 -t.

+ ...
J

6

6
_ Pi,niU)

_ ^iPi>^iU)

_2i£^5i(2)(i4.2 + ... + ^)

~ 2 T^ ^ 2

D

By put t ing Lemma 23 into Lemma 22 we can to s tate the total scheduling
cost of job Ji,

Corol lary 4
The total scheduling cost of job Ji when produced Just-in-Time is defined by

Zi = ßiTi + 5\i + KiQiEi + /^i^i^''"^^"^ + l^iqiti^7ri(m),6
. S i V ^ m /TT,

5 Z^j=l\li

2(5 Z ^ j = l V H

5.3 A new approach for JiT scheduling 145

In the next section we study the particularization, of the production cost
given in the above corollary, to several shop configurations. We also show
the links with existing objective functions in classic Just-in-Time scheduling
literature.

5.3.2 Links with objective functions of classic JiT scheduling

In the previous section the scheduling cost of a job Ji in a workshop has been
stated. Table 5.2 provides particularizations of this cost to given shop envi­
ronments. Whenever necessary simplifications of notation have been made in
this table. The first column contains the shop environment and the indication
of lot-streaming. The second column contains the mathematical formulation
of the cost Zi stated in Corollary 4 and the third column contains a func­
tion which minimisation is equivalent to the minimisation of Zi. Notice that
the configurations without lot-streaming are equivalent to lot-streaming with
qi = 5 = 1. It \s remarkable that once the lot-streaming is possible the
mathematical formulation of the scheduling cost Zi of job Ji is not a linear
function, since the term 5 is a variable to calculate. Besides, the formulations
for the single machine environment can be straightly adapted to some parallel
machines environments.

Table 5.2. Particularizations of the scheduling cost of a job Ji

Shop environment Mathematical formulation Optimisation equivalence

2-machine flowshop ßiTi + Xid + mqiEi

(lot-streaming) + ^ (E L I *i.2.fe - E L I *i,i,fc)

5— 2^fc=l *i,2,fc + 25

+ -̂ 2T" (Pi,2 — Pi , l) + l^iQiti,2,S
2-machine flowshop

(no lot-streaming)

Single machine

(lot-streaming)

Single machine

(no lot-streaming)

PiTi-^-Xi-hKiQiEi

ßiTi -\- Xi5 -{- KiQiEi
_.JliSiV^<5 f , 1 »^iQiPi

-hKiQiti^S

ßiTi-{-\i-[-KiEi-h ^ ^

ßiTi-\-KiqiEi-\--fi(Ci,2-

ßiTi -\- KiEi

-Cia)

We are now ready to study the links between the modelling provided in sec­
tion 5.3.1 and the objective function encountered in the literature on JiT
scheduling (see table 5.1, page 139).
The objective functions E + T, a E + ^ T and E " + T^ of table 5.1 are ob­
tained by linear combination of the Z^'s in the case of single machine envi­
ronments without lot-streaming. The two first functions are particular cases

146 5. Just-in-Time scheduling problems

of the last one. For shop problems, or even the single machine problem with
lot-streaming, these three functions do not completely fit with the objective
of scheduling the jobs Just-in-Time. For instance, the objective function ob­
tained by linear combination of the Z^'s in the case of the 2-machine flowshop
problem without lot-streaming is E^+jf^ + C'̂ —^^^^^ liCi^i, As indicated in
table 5.1 the objective function E " + T^ + C'^, or special cases, is sometimes
minimised in a single machine environment without lot-streaming. The main
argument, found in the literature, for minimising the weighted sum of comple­
tion times criteria is that it reduces the average presence time in the shop of a
job, which in turns tends to reduce the average storage time. This is partially
true when the lot-streaming is enabled for the single machine problem and for
the flowshop problem. Even when lot-streaming is disabled for the flowshop
problem the sum of the ZiS is not exactly equivalent to minimise the sum of
weighted earliness, tardiness and completion times. Similar comments hold
for the objective functions a E -1- /3T + 7d and a E + /3T + 7 max(0, di - A)
of table 5.1 in the case of an unknown common due date d or in the case
of unknown due dates di which have to be as close as possible to a desired
common due date A,
Similarly, the objective functions aX;r=i ^ f + /^Er=i Tf and YA^^ a iE?+
Z^iLi ßi^t of table 5.1 are obtained by linear combination of the Z^'s power
2, only in the case of single machine environments without lot-streaming.
But for other shop environment or when lot-streaming is allowed, minimising
these two functions does not completely reflects the objective of JiT schedul­
ing. Similar comments can be done for the (E + T)^ objective function of
table 5.1.
Another important class of objective functions of table 5.1 are those related
to the difference between completion times. For instance the problem of min­
imising the Completion Time Variance (CTV) consists in minimising the
objective function E r = i (^ i " C)^ of table 5.1. [Merten and MuUer, 1972]
have introduced this problem in the context of computing systems with large
data files for which often the response time to a user's request is strongly
dependent on the time required to access or retrieve the file referenced by
the user. But it is also recognized that the CTV problem has application
to JiT scheduling since it leads to make the jobs staying approximately the
same time in the shop. So, the production is smoothed (see for instance
[Viswanathkumar and Srinivasan, 2003]). But this intuitive argument seems
not to clearly hnk this objective function to JiT philosophy. Another, more
convincing, argument lies to the fact that the CTV objective function can be
seen as a special case of Y^=\ ^t ^^^^ an unknown common due date d = C
in the case of a single machine problem without lot-streaming. But for the

objective functions Er=i EU+i \^' ' ^jl ^̂ ^̂ ^^=1 Ej l i+iC^i " Cj)^ of
table 5.1 the links with JiT philosophy are less clear.
To conclude this analyse, we only point out that the objective function
maxi=i,...,n(A|Li|) of table 5.1 is exactly equal to maxi^i^^.^nC-^i) for a sin-

5.4 Optimal timing problems 147

gle machine problem without lot-streaming but with symetric weights, i.e.
ßi = Ki, Vz = l,. . . ,n. Again, for other shop configurations this objective
function does not fully apply the JiT philosophy.
The links between the remaining objective functions of table 5.1 and JiT
philosophy are not straightforward.

5.4 Optimal timing problems

The objective functions minimised in JiT scheduling are interesting because
they have a direct practical meaning, but also they are often non regular
functions (see chapter 1 for a formal definition of a regular function). Con­
sequently, the set of active schedules, or even semi-active schedules, is not
dominant. This implies that sometimes it is interesting, from the viewpoint
of the objective function, to insert voluntary idle times before the starting of
a job on a machine. Along the years, several authors have thus focused on
the optimal timing problem, i.e. on the problem of determining the optimal
start time of each job, when the sequences of jobs on the machines are known.
Often, when the sequencing problem on each machine is solved, the optimal
timing problem can be solved in polynomial time. We review in this section
some of the major optimal timing problems. These problems are referred in
the three-field notation of scheduling problems by adding the constraint seq
in field ß.

5.4.1 The l\duseq\Fi{f'^,Ef^) problem

The works of [Garey et al., 1988] concern several JiT problems. The authors
n

show that the l\di\Fe{T,'E) problem with Fe{T,^) = T+ 'E = ^\Ci - di\ is
2 = 1

AfV-hdiid. They are then interested in solving this problem when the sequence
of jobs is imposed, denoted by l\di,seq\F£{T,E), and proposing an optimal
algorithm with an average complexity in 0 (n log (n)).
The jobs are placed iteratively in order of the imposed sequence. We note
CTj-i the partial sequence obtained at the iteration i — 1. Let Ji be the job
to be inserted in the iteration i. If Cmax{o'i-i) + Pi < dt then the job Ji
starts at the date di — pi and an idle time is inserted before Ji. Otherwise,
if Cmaxif^i-i) +Pi > di then the job Ji is processed just after the sequence
CTi-i. We then try to timeshift part of the sequence ai = <Ji-i//{Ji}. We
define a block by a maximum set of consecutive jobs, and we denote by Bk
the last block of CTJ (figure 5.3). If most of the jobs in Bk are late then it is
interesting to shift Bk to the left until this is no longer the case or until Bk
could no longer be timeshifted.

148 5. Just-in-Time scheduling problems

B. B, k-l B,.

Fig. 5.3. Definition of a block

ALGORITHM EGTWl
/* a: the schedule under construction */ '
/* We assume that the jobs sequence is (J i , J2, J3, . . . , Jn) */
a = 0;
For i = 1 to n do

If (di —pi> Cmax{cr)) Then
Schedule the job Ji at time U = di — pi]
a = a//{Ji}]

Else
^(<^); Schedule the job Ji at time U = Cmax \

<T = <7//{Jih
Let Bk be the last block of cr;
Let r be the number of jobs Ji E Bk / Ci — di > 0;
If (r > (| ß f c | - r)) T h e n

Let 6 = min (d — di):
JieBk/Ci>di^

Let u bet the starting time of the first job of Bk',
Let TT be the completion time of the last job of Bk-i (0 if A; = 1);
Vj G Bk, tj = tj — min((5;u — n);

End If;
End If;

End For;
[Carey et aL, 1988]

Fig. 5.4. An optimal algorithm to calculate start times of jobs

The principle of this algorithm, denoted by E G T W l , is presented in figure 5.4.

Example.
We consider a scheduling problem for which n = 5. The job sequence is that of the
indices.

i
Pi
di

1
2
8

2
4

10

3
3

14

4
5

18

5
2

19

(i) a = 0, di —pi = 6 > 0 and the job J i is scheduled at time h = 6.
(ii) (7 = (J i) , Cmax{cr) = 8, d2—p2 = 6 < 8 and the job J2 is scheduled at the date
t2 = 8. r = 1 = \Bk\ — r and we perform a timeshift with a — (J i , J2), 6 = 2, u = 6
and TT = 0. We have ti = 4 and 2̂ = 6.
(iii) a = (J i , J2), Cmax{(y) = 10, da — Pa = H > 10 and the job J3 is scheduled at
time ts = 11.
(iv) a = (J i , J2, J3), Cmax(o') = 14, d4—p4 = 13 < 14 and the job J4 is scheduled at
t imei4 = 14. r = 1 = \Bk\ — r and we perform a timeshift with a = (J i , J2, Js, J4),

5.4 Optimal timing problems 149

6 = 1, u = 11 and TT = 10. We have ts = 10 and t4 = 13.
(v) a = (Ji, J2, ^3, «/4), Cmaxicr) = ISyd^—pb = 17 < 19 and the job J5 is scheduled
at time U = IS. r = 1 < \Bk\ — r = 4 and we do not perform a timeshift.

We obtain the schedule presented in figure 5.5, and y^l-C'il = 4.

Jo

4 6 10 13 18 20

Fig. 5.5. The schedule calculated by the algorithm EGTWl

Next, Garey, Tarjan and Wilfong show that the l\pi = l,di\T -\- E problem
can be solved by this algorithm. Finally, they are interested in adding con­
straints to the l\di\T + E problem like time windows for each job or chain
precedence constraints. In these two configurations they propose generalisa­
tions of the algorithm EGTWl.

For the l\di\Fi{E ,T) problem, the calculation of the start times of jobs
when the sequence is fixed is addressed by [Szwarc and Mukhopadhyay, 1995].
This problem is polynomially solvable and the authors propose an algorithm
based on a breakdown of the sequence into blocks. When di^i — di < Pi
then jobs Ji and J^+i belong to the same block. Besides, it is only necessary
to insert idle time between two blocks. The algorithm starts by building an
active schedule, i.e. all the jobs are processed without idle time. Using the
inequality mentioned above jobs are grouped into blocks. Then the blocks
are timeshifted from the left to the right, starting with the first block. The
proposed algorithm is in 0{cn) where c is the number of blocks and experi­
mental results show that for problems up to 500 jobs the average calculation
time is lower than 2 seconds. Besides, for this size of problem, this algorithm
is almost 30 times faster than that proposed by [Davis and Kanet, 1993].

5.4.2 The Poo|prec, fi convex\ J2i fi problem

This scheduling problem has been considered by [Chretienne and Sourd, 2003]
which naively does not looks like an optimal timing problem. However, as we
will see, by particularizing suitably the cost functions and the precedence
constraints we get an optimal timing problem for a class of Just-in-Time
scheduling problems. Chretienne and Sourd provide first theoretical insights

150 5. Just-in-Time scheduling problems

and a general algorithm which we briefly present here. First, notice that each
job Ji is defined by a desired start time 5 ,̂ a processing time pi and a cost
function fi{t).
The general algorithm follows the same line than algorithm EGTWl. Jobs
are sorted according to their rank in the graph of precedence constraints and
scheduled in this order. Again, the notion of block is considered here and
defined as a set of jobs in which for each job, either its start time coincides
with the completion time of another job in this set, or its completion time
coincides with the start time of another job in this set. When a new job is
added in a partial schedule it is either scheduled at its desired start time if
possible, or scheduled at the end of the block B with which it conflicts. Hence­
forth, block B is enlarged and next the question becomes to left timeshift or
not the new block B, Let tß be the start time of that block, i.e. the low­
est start time of the jobs in B. First, if there does exist t < tß such that
S j i € ß •̂ (̂̂) "̂ S j i € ß fii^ß) the block is not left timeshifted. Otherwise, let
fß be the ideal start time at which the contribution of block B is minimal. B
is left timeshifted until either we met t*ß or, as in the algorithm EGTWl, we
met another block B'. In that case the new block B is defined by B = BUB'.
Then we try to left timeshift the new block B if necessary to minimise the
total cost. But there is also a third case that can occur when shifting a block:
it can be split into several blocks. This occurs when a sub-block b of block B
is on-time whilst the remaining block B — b still needs to be left timeshifted
in order to decrease its total cost. It is due to the fact that in the problem,
jobs can be processed in parallel and clearly this event cannot occur in the
problem tackled by Carey, Tarjan and Wilfong.
Notice that this algorithm is polynomial as far as we are capable of comput­
ing in polynomial time the ideal start times t*ß. This is implied by the fact
that the cost functions fi are convex functions.

This general algorithm is particularized to various special cases as the
scheduling problem with the cost functions fi being linear earliness-tardiness
costs. The problems with particular precedence constraints like tree and
chains are also investigated. We focus on the problem with linear earliness-
tardiness costs since the corresponding problem, referred to as Poo\si\Fi{E^,
r ^) , enables to solve a class of optimal timing problems depending on how
the precedence constraints are set.
For this problem we assume that each job Ji is defined by a desired start
time Si, a processing time pi, a unitary earliness cost a^ and a unitary tar­
diness cost ßi. The cost induced by job Ji in the schedule is defined by
fi = ai max(0, Si — U) + ßi max(0, t̂ — Si). As each job has only one oper­
ation, this cost is equivalent to aiEi + ßiTi. We first introduce theoretical
notions useful for the algorithm.
To each block B, let G be the associated graph of precedence constraints
with processing times on the arcs. We denote by r{B) the spanning active

5.4 Optimal timing problems 151

equality tree associated to B, i.e. the spanning tree on G in which all arcs are
active, i.e. if we delete an arc the two created sub-blocks B^ and B'^ are con­
flicting: one must be timeshifted in order to decrease its contribution to the
objective function, by the way increasing the contribution of the other block.
Notice that the spanning active equality tree of a block does not need to be
computed at each iteration of the algorithm since it is only updated when
merging two blocks: for two merged blocks B and B^ the spanning tree of the
new block B = BUB^ is equal to r{B) Ur{B') . We now must describe how
are calculated the ideal start times t*ß for the particular earliness-tardiness
cost functions. First notice that the cost functions fi are piecewise linear
functions, each one admitting a single breakpoint. Thus, we define to each
block B a set of singular points tf defined by tf = Sj -\-tB— tj, \/Jj € B, and
each singular point corresponds to a change in the slope of at least one job of
block B. By the way in each spanning active equality tree r{B) we maintain
on the arcs slopes: for a given arc {i,j) the slope £ij corresponds to the unit
time contribution to the total cost of the jobs associated to nodes that follows
node j in r{B). We also denote by £{B) the slope of block B which can be
interpreted as the unit time contribution to the total cost of the jobs in B.
For instance if B is made up of one early job Ji and one tardy job Jj, we have
£{B) = ai + ßj. A consequence is that all the singular points of a block are
the breakpoints of the cost function of the block, i.e. its contribution to the
total cost. The ideal start time tß of a block B is then the breakpoint which
leads to the minimum cost and the left timeshift of the block is done from
one breakpoint to the next one unless we meet the ideal start time of the
block or we meet another block. In the latter case we merge the two blocks
and left timeshift the new block if it is not at its ideal start time (its slope is
negative). Another case may occur when meeting a breakpoint: the current
block must be split into two sub-blocks since one sub-block is on-time (the
slope of an arc in the graph r{B) is negative). Among the two blocks, the one
with the positive slope is next left timeshifted. The details of the algorithm,
denoted by ECSl, are given in figures 5.6 and 5.7.
Chretienne and Sourd show that it can be implemented in 0(nmax(n, M))-
time with M the number of precedence constraints. When the graph of
the precedence constraints is a tree graph the complexity of the algorithm
ECSl becomes 0(n^)-time. The time complexity can again be reduced to
0 (n log(n)) in case the precedence graph is of type chain.

The algorithm ECSl is of a very high importance for solving optimal timing
problems in Just-in-Time scheduling problems. It can be applied to a large
number of problems as far as all jobs are made up of a single operation.
Besides, the presence of release dates and deadlines can be easily taken into
account by introducing appropriate dummy jobs in the graph of precedence
constraints (see [Esteve et al., 2004] for an apphcation).

152 5. Just-in-Time scheduling problems

ALGORITHM ECSl (1)
/* ^ : the set of precedence constraints */
/* S: the set of jobs ranked according to their rank in the graph of the

precedence constraints */
b = 0] // b is the number of blocks
ti = +oo,Vz = 1, ...,n;
While 5 9̂ 0 do

/ / We create a new block with only job Js[i]
6 = 6+1 ;
Bb = {Js[l]}i
If (V(i,5[l]) e A,ss[i] > ti+pi)) Then

/ / Job Js[i] is on-time
Schedule the job Js[i] at time ^^[i] = ss[i];
iB,=aS[l];
S = S-{S[l]h

Else
/ / Job Js[i] is not on-time
iB,=ßS[l];
S = S-{S[1]};
While {3B such that i{B) < 0) Do

End While:
End If;

End While;

Let B be a block with £{B) < 0] // B is not on-time
Left timeshift block B until one the following event occurs:

1) 3Ji G ß , such that Ji starts at time Si.
II We change the slopes in the current block
^^l i{B) = IL(B) - Oii - ßi\
Call update_tree(ß, i, —on — ßi)\

2) 3B', Jj G BandJi G B' such that tj =ti-\-pi.
II We merge blocks B and B'
Let Jj G BandJi G B^ be such that tj = U -\-pi\
Call upda te_ t ree (ß j / (ß ')) ;
Call update-tree(ß',i/(J5));
G = GuG'U{(iJ)};
B = ByjB'\ i{B) = £{B) + i{By,

r{B) = r{B)ur{B')u{{ij)};
6 = 6—1; Renumber the blocks consecutively;

3) 3{iJ) G r{B) such that £ij < 0.
/ / We split block B between jobs Ji and Jj
Let B = B'U B" where B" is the block defined by the

jobs following Jj in G]
Separate r{B) and G accordingly in sub-graphes;
i{B") = £ij'A{B')=£{B)-iiy,
Call update_tree(ß',i ,-^(B"));
Call update_tree(ß ' ' j , -^(ß ')) ;
6 = 6 + 1 ; Renumber the blocks consecutively;

[Chretienne and Sourd, 2003]

Fig. 5.6. _An_ optimal algorithm to calculate start times of jobs for the
Poo\si\Fi{E°',T^) problem

5.5 Polynomially solvable problems 153

ALGORITHM ECSl (2)
Procedure update-tree(B,i,(5);

Set i visited;
For (j unvisited such that iij < 0 or £j^i < 0 in r{B)) Do

I If (j, i)eA Then £j,i = £j,i + S;
I Call update_tree(B,2,<5);

End For;
[Chretienne and Sourd, 20Q3J

Fig. 5.7. The procedure update.tree of algorithme ECSl

5.4.3 T h e l\fi piecewise linear\F£(^^ fi^^^j Ij) problem

[Sourd, 2005] considers the problem in which all jobs are already sequenced
on a single machine, without loss of generality, in the order (Ji , J2, •••,»/n)-
Each job Ji is defined by a processing time pi and a cost function fi which
is piecewise linear with a number of segments that may be greater than two.
Therefore, this problem generalises the earliness-tardiness problem for which
the cost functions have only two segments. Besides, we assume that each in­
serted idle times j induces a cost mesured by a cost function Ij. The aim is to
solve the optimal timing problem by minimising ^ ^ fi + J2j ^3 • -̂ ^ outlined
by Sourd, functions fi enable to model a certain number of real situations as
for instance the presence of time windows in which jobs must be processed:
if a job cannot be processed in a certain time period then the corresponding
cost fi is set to +00 during this period.

Unfortunately the problem is shown to be AT'P-hard in the weak sense. Sourd
proposes a dynamic programming algorithm to solve the problem which com­
plexity is 0{n^UB) time, with UB an upper bound on the makespan value of
the optimal schedule. The algorithm also works when the problem is no more
defined as a single machine problem but as a general scheduling problem with­
out resource constraint and with a tree precedence graph. Next, more partic­
ular problems are considered as for instance the earliness-tardiness problem
around a common due date or the problem with convex cost functions.

5.5 Polynomially solvable problems

5.5.1 The l\di = d> ^ p i | F £ (E , T) problem

[Kanet, 1981a] is interested in a JiT problem where the objective is to deter­
mine a schedule which minimises the deviation of the completion times of jobs
in relation to a due date. This problem is noted l\di = d > ^pi\Fe{E^T)
with Fi{E^T) = E -i- T. The common due date is non restrictive. This
problem is solvable in polynomial time and Kanet proposes the algorithm.

154 5. Just-in-Time scheduling problems

denoted by EJKl and presented in figure 5.8. The maximum complexity of
this algorithm is in Oin?).

ALGORITHM EJKl
/* T: the set of n jobs to schedule */
/* 4- the sequence of jobs scheduled early or on-time */
/* R: the sequence of jobs scheduled tardy */
A = R = 0i
setA = 1;
For i = 1 to n Do

Let Jk be such that pk = max(pi);

li(setA=l) Then
I A = A//{Jk};

Else
I R={Jk}//R;

End If:
T = T-{Jkh
setA = 1 — setA;

End For;
S = A//R',
Compute the start time of jobs in S in such a way that the last job
of A completes at time d and that the first job of R starts at time d;

[Kanet, 1981a]

Fig. 5.8. An optimal algorithm for the l\di = d> J]pi|F£(E,T) problem

The resolution of this problem is based on the fact that the set of V-shaped
schedules is dominant. We say that a schedule is V-shaped if the set of jobs
Ji such that Ci < d are ordered according to the rule LPT and if the set of
jobs Ji such that Ci > d are ordered according to the rule SPT. Kanet also
shows that it is sufficient to consider the schedules without the addition of
voluntary idle time after processing of the first job, the latter being able to
start at a date greater than 0. In the example of figure 5.9 we note that no
permutation of jobs can reduce the value of the criterion E+T. It is sufficient
to consider the permutation of the jobs Ji and Jj and to deduce that it does
not decrease the value of the objective function.

Fig. 5.9. An example of a V-shaped schedule

5.5 Polynomially solvable problems 155

Example.
We consider a scheduling problem for which n
algorithm EJKl.

5 and d = 18. We apply the

i
Pi

1
2

2
4

3
3

4
5

5
2

(i) A = R = 0, setA= 1,
(ii) k = 4,A = (J4), il = 0, set A = 0,
(iii) A; = 2 , A = (J4), Ä = (J2), set^ = 1,
(iv) k = 3,A = (J4, J3), Ä = (J2), 5et^ = 0,
(v) k = l, A=(J4,J3), i ? = (J i , J2), seM = l,
(vi) A; = 5, ^ = (J4, J3, J5), i^ = («71,̂ 2), 5eM = 0.
We obtain the schedule presented in figure 5.10.

i

J4

I 1
J3 J5

3 16

J. J2

20 24
d=18

f2\Li\ = 15

Fig. 5.10. The schedule calculated by the algorithm EJKl

A similar problem is tackled by [Bagchi et al., 1986] who are interested in
the l\di = d > 5\Fi{T,^) problem with F^(T,'E) =T + E. We suppose that
the jobs are such that pi > p2 > . . . >Pn and we define S = pi+ps-i-.. .-\-pn
if n is odd and 5 = p2 + P4 + • • • + Pn otherwise. This is the limit value of
d so that it should not be restrictive. To solve this problem we can use a
polynomial enumeration algorithm based on a branch-and-bound algorithm.
Besides, Bagchi, Sullivan and Chang show through two examples that this
problem is equivalent to a P2| |C problem, which is solvable in polynomial
time.

5.5.2 The l\di = d unknown^nmit\Fi{E^T^d) problem

[Panwalker et al., 1982] study a JiT problem where all the jobs have the same
unknown due date d which is also to be minimised. This problem isjdenoted
by l\di = d unknown, nmü\Fe(E, T, d), with Fi(E, T, d) = oE + 0T-h ^nd.
Given that the common due date d is to be determined, an optimal solu­
tion for this problem exists which contains no voluntary idle time. When
7 > ß the problem is very simple to solve since the reduction of one time
unit of d enables us to modify the value of the objective function from at least
n/3 —717 < 0- An optimal solution is obtained therefore by setting d* =0 and

156 5. Just-in-Time scheduling problems

by classifying the jobs according to the rule SPT. When 7 < /3, an optimal
solution exists in which the date d coincides with the completion time of a job
in position k. More precisely, we have k = f^T^p^l • An optimal algorithm in
0(nlog(n)) time, denoted by EPSSl, is proposed by Panwalker, Smith and
Seidmann to solve the whole problem (figure 5.12).

Example.
We consider a problem for which n = 5, a = 4, /? = 5 and 7 = 8.

i
Pi

1
2

2
4

3
3

4
5

5
2

(i) k = 2,
(ii) -Ki = nj + {i — l)a, Vi = 1,2 and TT« = (n + 1 — i)ß, Wi = 3,..., 5,

position i
TTi

1
15

2
19

3
15

4
10

5
5

/ = (2,1,3,4,5) and J = (Ji, J5, J3, J2, J4).
(iii) d* = 4 and we obtain the schedule presented in figure 5.11.

0 2 4 7 11 16
Fe(E,T,d) = 178

Fig. 5.11. The schedule calculated by the algorithm EPSSl

Step 1:
Step 2:

Step 3:

ALGORITHM EPSSl '

A; = m a x (0 ; r ^ ^ ^ l) ; ~ ~ "
Vi = 1,..., A;, TTi = 717 + (z — l)a ;
Vz = A; + 1,..., n, TTj = (n 4-1 — z)/̂ 5
/* TTi is the weight of the job scheduled in position i */
/ is the list of positions sorted by decreasing value of m;
J is the list of jobs sorted using the rule SPT;
Build the optimal schedule S* such that the job J[i] is assigned
in position I[i], Vi = 1,..., n;
d* = C[fc] ; /*C[o]=0*/ _

[Panwalker et al., 1982]

Fig. 5.12. An optimal algorithm for the l\di
lem

: d unknown, nniit\F£(E, T, d) prob-

5.5 Polynomially solvable problems 157

Extension to other connected problems is also studied. For example, addition
of the term 5C to the objective function leads to a problem which is solvable
in polynomial time. Panwalker, Smith and Seidmann also study the case
with distinct due dates di. An extension in the case where the jobs can
be grouped into classes is studied by [Chen, 1996]. The treated problem is
noted l\di = d unknown^nmit,classes\Fe(E,T,B,d). All the jobs have a
common due date d to be determined, and are delivered in batches after
being processed on the machine. The delivery date of the job Ji is noted Di.
All the early jobs are delivered in a single batch to the date d, i, e. are such
that Di = d. The criterion B represents the number of batches which are
delivered after this date. Chen proposes for this problem an optimal dynamic
programming algorithm, of which time complexity is in 0{n^).

5.5.3 T h e l\pi C [pr,Pi]nN,di = d non restrictive\Fi(E,T, CC)
problem

This problem, with Fe(E,T,CC^) = oE -\- 0T -{- 'CC^, is tackled by
[Chen et al., 1997]. The processing time pi of each job Ji is a variable to
determine. Additional assumptions are made:

1. Vj = l,...,n,Vi = l , . . . , n , P i - ü . =pj - p ,
—I J —J

n

2. the crashing time cost criterion is defined by CC^ = 2^Ci{pi —pi) where
Ci is an increasing penalty function.

Chen, Lu and Tang first show that there exist an optimal schedule in which
the /ith job completes at time d, with h = l-^ßg]- Next they propose to
reduce the problem to an assignment problem, by introducing costs Vi^k of
scheduling the job Ji to the position k. We have:

min {{k - l)a{p + j) + Ci{pi -p - j)}
3=0,...,{pi-p) - * - *

Vi,k
If fc < /i, i.e. job Ji is early or on-time,

min {(n - A; + l)ß{p + j) + Ci{pi -p - j)}
j = 0 , . . . , (p i - p .) - * - *

If fc > /i, i.e. job Ji is tardy.

Notice that in both cases we can deduce, from the value of j which gives the
minimum, the value of the exact processing time pi if job Ji is scheduled in
position k: Pi = p. -\- j . When the costs Vi^k are computed the problem can
be reduced to an assignment problem, that can be solved in 0{n^) time. A
model of this problem, denoted by ECLTl, is introduced in figure 5.13.

5.5.4 T h e P\di = d non restrictive^nmit\Fi{E^T) problem

[Sundararaghavan and Ahmed, 1984] study a scheduling problem for which
the jobs have the same due date, denoted by d, which is non restrictive. The

158 5. Just-in-Time scheduling problems

Mathematical formulation ECLTl

/*VA; = l,...,/i,Vz = l , . . . ,n, */
/* Vi,k = min {{k - l)a(p + j) + CiCp^ -p - j)} */

J=0, . . . , (Pi -£ .) -* -*
/* VA; = /i + 1,..., n, Vi = 1,..., n, */
/* Vi^k = ^ min {(n - k-\- l)ß{p + j) + aip^ - p - j)} */

Data: n, the number of jobs,
fi.fc, i = Ij .-.J n, A; = 1,..., n, the cost of assigning the job Ji
to position k.

Variables: t/i,fc, ^ = 1, •••? n, m = 1,..., n, boolean variable, equal to 1 if
job Ji is assigned in position k and 0 otherwise.

n n
Objective: Minimise /^y^^i,fc2/i,fc

i = l fc=l
n

Constraints: /^y i ,k = 1, Vz = 1,...,n
fc=i

n

^t / i , fc = 1, VA;= l , . . . ,n

2/t,fc G {0; 1}, Vi = 1,..., n, Vfc = 1,..., n

Fig. 5.13. An MIP model for the l\pi G [p.;pj fl N,di

d non restricbive\Fi{E,T,CC) problem

aim is to minimise the criteria E and T via a convex combination Fi{E,T)
with Fe{E^T) = E -\-T. Insertion of voluntary idle time before each job is
forbidden when the machines have star ted to process the jobs. This problem
is solvable in polynomial time.

If 5 is an optimal solution for the non restrictive problem, then \ni — nk\ <
1̂ Vi, fc = 1,... , m, with rij the number of jobs processed by machine Mj and

771

y^rij = n. In the case where m = 1, the hypothesis d non restrictive can be

j=i
verified easily ([Bagchi et al., 1986]). In the general case m > 2, we can verify

a posteriori tha t the due date d is restrictive if Vj = 1, ...,m,cJ — ^ J P A J H ^ 0
i= l

with Aj the list of the Vj early or on-time jobs on Mj in an optimal sched­
ule. The proposed algorithm, denoted by ESAl , is presented in figure 5.15.
It generalises tha t proposed for the single machine problem, denoted by
l\di = d,nmit\F£{E^T). A V-shaped schedule is constructed by assigning
and sequencing the jobs iteratively on the machines.

Example.
We consider a problem for which n = 10, m = 2 and di = d = 37, Vi = 1,..., 10.

5.5 Polynomially solvable problems 159

i
Pi

1
20

2
18

3
16

4
14

5
12

6
10

7
8

8
6

9
4

10
2

(i) We place the m first jobs early on the machines, i.e.

i^i = 0, R2 = 0.
(ii) Js is tardy on Mi and J4 is tardy on M2.
Al = (Ji), A2 = (J2),
Ri = (Ja), R2 = («/4).
(iii) We repeat the process until we obtain
Al = (Ji, J5, J9), A2 = (</2,«/s, Jio),
Ri = {J71 Jz)-> R2 — {JS^JA)'
(iv) The due date d is non restrictive because d = 37 > max(36; 30). We obtain the
schedule shown in figure 5.14.

Ml /:

M2 '\

1
Ji

1

h

2
J5 J9

1 33

2

h
5 3

JiO

5

J7

h

J3

45

J4

43

61

57

d=37

F^(E,T) = 92

Fig. 5.14. The schedule calculated by the algorithm ES Al

5.5.5 The P\di = d unknown^nmit\Fi{E^T) problem

[Emmons, 1987] is interested in a more general problem than the one_tackled
by [Sundararaghavan and Ahmed, 1984] where Fe(E,T) = oE + 0T, This
problem is solvable in polynomial time ([De et al., 1991]).

When m = 1, [Kanet, 1981a] proposes an optimal polynomial algorithm for
an equivalent problem. Besides, [Hall, 1986] shows that in the cases m = 1
and a =/3 = 1, we have:

E + T = ^ l a - d\ = Jy{j - 1) X p[j^ + 2^J X Pin-j^i]
i=l j = l

with d = C[y], V the number of early or on-time jobs, u the number of tardy
jobs and p[j] the processing time of the job in position j . The previous for­
mula is valid when the set of early jobs and the set of tardy jobs have been

160 5. Just-in-Time scheduling problems

ALGORITHM ESAl
/* We assume that pi > . . . > Pn */
/* Aj is the list of early or on-time jobs on Mj */
/* Rj is the list of tardy jobs on Mj */
Step 1: /* We determine the lists Aj and Rj */

k=l]
For z = 1 to n Do

If (z < m) Then
/* The job Ji is the first scheduled job on Mi */
Ai = {Ji}; Ri = 0;

Else

End If;

Lf(

Else

^ f c | - l < | i ? f c |) T h e n
/* The job Ji is scheduled early on Mk */
Ak = Ak//{Ji}; k = k-\-l;

/* The job Ji is scheduled tardy on Mk */
Rk = {Ji}//Rk; k = k-\-l]

End If;

If (A; > m) Then
\ k = l;

End If;
End For;

Step 2: /* We check that the due date d is non restrictive */
/* and we locate in time the jobs */
All the sequences Rj start ai t = d;
For j = 1 to m Do

\Aj\

U{d<J2pAj[k])ThBn
k=l

Print "The due date is restrictive";
END;

Else
l^il

Aj starts at time t = d— yZP^j[^1'
fc=i

End If;
End For; _ _

Step 3; Print the resulting schedule and E -{-T;

[Sundararaghavan and Ahmed, 1984]

Fig. 5.15. An optimal algorithm for the P\di = d non restrictive, nniit\ Fe{E,T)
problem

5.5 Polynomially solvable problems 161

determined. In the case of parallel machines, Hall shows that :

m Vk Uk

with Vk the number of early and on-time jobs assigned to M/e, Uk the num­

ber of tardy jobs assigned to Mk and p^i the processing t ime of the job in

position j on M^, Besides, we have d = Ch^ = C?^i = . . . = CP^i with

Cr^ 1 the completion t ime of the job in position Vj on M j , Vj = l , . . . , m .

[Emmons, 1987] shows tha t when the weights a and ß are different we have:

k=i S = i j= i /

Thus, when the sets of tardy and early jobs on each machine are fixed, the
optimal schedule is a V-shaped one on each machine.

In order to solve the problem when a ^ ß^ [Emmons, 1987] proposes an al­
gorithm, denoted by E E M l (figure 5.16), based on tha t of [Hall, 1986]. The
principal difference between the former algorithm and algorithm ESAl lies
in the choice of the assignment in a set Aj or Rj. In algorithm E E M l this
choice is made by taking account of the weights a and ß.

Example.
We consider a problem for which n = 10, m-

i
Pi

1
20

2
18

3
16

4
14

5
12

6
10

7
8

8
6

9
4

10
2

(i) We place the m first jobs early on the machines, i. e.
Al = (J i) , A2 = (J2),
ß i = 0 , R2 = 0.
(ii) Job J3 is tardy on Mi and job J4 is tardy on M2. We obtain:
Al = (J i) , A2 = (J2),
Ri = (J3), R2 = (J4)'
(iii) Job Js is early on Mi and job JQ is early on M2. We obtain:
Al = (J l , J5) , ^2 = (J2,J6),
Ri = (J3), R2 = (J4).
(iv) Job Jr is tardy on Mi and job Js is tardy on M2. We obtain:
Al = (J i , J5) , A2 = (J2, Je),
Ri = {Jr, J3), R2 = (Js, J4).
(v) Job Jg is tardy on Mi and job Jio is tardy on M2. We obtain:
Al = (J i , J5), A2 = (J2, Je),
Ri — (J9, J7, J3), R2 = (Jio, Js, J4).

162 5. Just-in-Time scheduling problems

ALGORITHM EEMl
/* We assume that pi > .. .>Pn "^f
/* Aj is the list of early or on-time jobs on Mj */
/* Rj is the list of tardy jobs on Mj */
Step 1: /* We compute the lists Aj and Rj */

k=l]
For i = 1 to n Do

If (i < m) Then
/* The job Ji is the first scheduled job on Mi */
Ai = {Ji}; Ri = 0;

Else

End If;

If ((l^fcl - 1) X a < \Rk\ X ß) Then
/* The job Ji is scheduled early on Mk */
Ak = Ak//{Jiy, k = k-\-l;

Else
/* The job Ji is scheduled tardy on Mk */
Rk = {Ji}//Rk] k = k'^l;

End If:

U{k>m) Then

End If:
Enf For:

Step 2: /* We locate in time the lists */
\Ai\

"^^ i "f^jY^p^^y^
All the sequences Rj start at t = d;
For j = 1 to m Do

Aj starts at time t = d— /^PAiik]]
fc=i

End For:
Step 3: Print the resulting schedule, aE + ßT and d]

[Emmons, 1987]

Fig. 5.16. An optimal algorithm for the P\di = d unknown, nmit\ Fe{E,T) prob­
lem

(vi) The due date d is given by d = max(32; 28) = 32. We obtain the schedule
presented in figure 5.17.

Emmons is also interested in the P\di = d unknown^ nmit\ Lex{Fi{E,T),
Cmax) problem with Fi{E, T) = aE + ßT. He justifies taking account of the
criterion Cmax a.t the second level by the fact tha t several optimal sched­
ules for the objective function Fe{E,T) but with different makespan values
exist. Once the lists Aj and Rj have been calculated, other optimal sched­
ules obtained by producing permutat ions of jobs between sets Aj and Rj
can exist. In order to solve the tricriteria problem, Emmons proposes an al-

5.5 Polynomially solvable problems 163

Ml

^
4

Ji

h

Js
20 32

h
22

h h
36

Jio h
34 40

44

h

h

s ^

54

60

:̂;:V '̂>

d=32

Fe(E,T) = 164

Fig. 5.17. The schedule calculated by the algorithm EEMl

gorithm which improves the schedule obtained by the algorithm EEMl. It
is based on a particular aggregation operator. Let us consider two lists Li
and L2 of m jobs. The aim is to aggregate Li and L2 in order to create
a third list, denoted by Z/3, composed of m fictitious jobs. The aggregation
process consists of taking from Li the job with the largest processing time
and from L2 the job with the smallest processing time. These two jobs are
aggregated in X3 and are deleted from the lists Li and Z/2. This process is re­
peated until the initial lists are empty. An example is presented in figure 5.18.

J,

h
h
h
J4

h

J'l

J'2

J'3

Pi
4

7

9

15

12

8

19

17

19

X
i

Fig. 5.18. An example of aggregation of jobs

The algorithm proposed by Emmons, denoted by EEM2, is presented in fig­
ure 5.19.

164 5. Just-in-Time scheduling problems

ALGORITHM EEM2

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Apply the algorithm EEMl. Let 5" be the obtained schedule;
/* We now reduce to a fictitious problem such that n = rm. */
/* Ai and Ri are the lists calculated in algorithm EEMl */
ki = max (\Ai\) ; k2 = max {\Ri\) ;

i = l , . . . , m i = l , . . . , m

Add, if necessary, fictitious jobs Jn+jy with Pn+j = 0,
in the lists Ai in such a way that | ^ i | = A;i, Vi = 1, ...,m;
Add, if necessary, fictitious jobs Jn-^-j-, with Pn+j = 0,
in the lists Ri in such a way that \Ri\ = fe, Vz = 1,..., m;
/* We build the lists to aggregate */
Let A = (üij) be the matrix of dimension m x (fci + fe)
such that aij is the number of the jobs assigned in position j
on the machine Mi]
\/i •= 1,..., k\,Ei = [ai,i] 02,i ; . . . ; am.i]'^]
Vz = 1,..., fe, Fi = [ai,fci+i; a2,fci+i; • • •; am,fci+*] 5
/* We aggregate the lists Fi */
Fi = [0;...;Of;
For i = 1 to A;2 Do

I Aggregate F/_i and Fi to obtain F/;
End For:
/* We aggregate the lists F« */
E'o = [0;...;Of;
For i = 1 to Âi Do

I Aggregate Ei^i and Ei to obtain F^;
End For:
/* Building of the schedule S^ */
For 2 = 1 to m Do

The jobs aggregated to compute F^^ [i] are scheduled
on Mi in the order of their fusion;
The jobs considered to compute F^.^ [i] are next
scheduled on Mi, following their aggregation order;

End For:
/* The obtained schedule is denoted S^ */
Print S ' \ a F + 0T and the value d;

[Emmons, 1987]

Fig. 5.19. An optimal algorithm for the P\di = d unknown, nmit\
Lex{Fe{E,T),Cmax) problem

Example.
We consider a problem for which n 10, m = 2, a = 4 and / ?= 1.

i
Pi

1
20

2
18

3
16

4
14

5
12

6
10

7
8

8
6

9
4

10
2

(i) The schedule obtained by the algorithm EEMl is the one presented in the
previous example. The criterion Cmax has a value of 60 for this schedule, ki =
\Ai\ = \A2\ = 2 and /c2 = |-Ri| = I-R2I = 3. So, we do not add a dummy job,
(ii) The matrix A is defined by:

A =

5.5 Polynomially solvable problems 165

1 5 9 7 3
2 6 10 8 4

El = [l , 2 r , E 2 = [5,6F
Fi = [9 ,10 r ,F2 = [7 , 8 r , F 3 = [3,4F.
(iii) We aggregate the lists Fi and we obtain:
Fi = [11,12]^, Fi = [13,14]^ and F^ = [15,16]^ with:

i
Pi

11
2

12
4

13
10

14
10

15
24

16
26

(iv) We aggregate the lists Ei and we obtain:
Ei = [17,18]^ and E'2 = [19,20]^ with:

i
Pi

17
18

18
20

19
30

20
30

(v) In order to calculate E2, Ji is aggregated with Je and J2 is aggregated with
J5. We therefore find on Mi J2 then J5 and on M2, Ji then JQ. Next, by doing the
same thing with F3, we go backwards and we find Jg, Js then J3 on Mi, and Jio,
J7 and J4 on M2. The obtained schedule is presented in figure 5.20.

1

2 5;

h
)

J,
)

J5

20

2

J6

2

J9

36

J,o

3^ t

Js

J7

42

A \2

h

h
5(

58

• > • ; • - • " ••

d=32

C™„x = 58, Fi{E,T) = 164

Fig. 5.20. Schedule calculated by the algorithm EEM2

5.5.6 The P\di = d unknown,pi = p,nmit\Fi(E, T,d) problem

[Cheng and Chen, 1994] study a scheduling problem where the jobs have a
common due date which is to be determined. Besides, the processing times
are all supposed to be equal to a value p. The aim is to compute a schedule
which minimises the objective function Ft{E, T, d) = aE + ßT + jnd. This
problem is solvable in polynomial time.

We recall that when m = 1, the problem with ordinary processing times is
solved by an optimal polynomial algorithm ([Panwalker et al., 1982]). The

166 5. Just-in-Time scheduling problems

single machine problem addressed by Panwalker, Smith and Seidmann is
broadened to m machines by [Cheng, 1989], who proposes an heuristic to
solve it. The latter is AfV-haid (see [Cheng and Kahlbacher, 1992]). For the
problem with equal processing times, and when 7 > /3, we reduce to the
minimisation of criterion C.

Lemma 24
If 1 ^ ß, then the optimal value of the due date d, denoted by d*, is d* = 0 .
The P\di = d unknown, pi = p\F£{E,T,d) problem is then reduced to the
P\Pi = P\C problem.

Proof.
Let S* be the optimal solution and d* be the corresponding due date. Let us suppose
that d* > 0 and consider another solution_defined by S" = S* and d' = d* — 1.
Then we_have: Fe{E,T,d){S\d*) - Fz{E,T\d)(S\d') _

= aE{S\d*) + ßT{S\d*J_ + ^nd* - aEj,S\d') - ßT{S\d') - jnd'
Because d' < d*, we have aE{S*,d*) > aE{S*,d'). On the other hand, ^nd* -
^nd' = -fu. We have similarly 0T{S\d*) < 0T{S\d'), but ß{T{S\d')-T{S\d*))
<ßn< 7n. Thus, Fe(E,T,d)(S\d*) - Fe{E,T,d){S\d') > 0. Then, the solution
defined by S' = S* and d' = d* — 1 is not worse than that defined by S* and d*.
Therefore an optimal solution exists for which d* = 0.
In this case E = 0 and the criterion T is equivalent to the criterion C. The problem
reduces to the P\pi = p\C problem, which is polynomially solvable.D

To solve the P\di = d unknown,pi = p\F£{E, T, d) problem in the case where
7 < /3, Cheng and Chen use the results for the l\di = d,pi = p, nmit\F£{E, T)
problem. For the single machine problem, a schedule is defined completely
by the starting time SQ of the sequence of jobs. The starting time which
corresponds to an optimal schedule is given by:

nß
SQ = max(0; d — uxp) with u = \ -]

Lemma 25 [Cheng and Chen, 1994]
For the l\di = d unknown,pi = p,nmit\Fi{E,T,d) problem we have:

1. Fe{E,T,d) is a decreasing function on d when de [0;r xp],
2. Fi{E, r , d) is an increasing function on d when d G]r x p; +oo[;

withr=\^^^^l

Regarding the parallel machines problem, an optimal schedule which verifies
l^i — %| < I5 Vz, j = 1,..., m, with ni the number of jobs assigned on machine
M(> exists. This implies that two groups of machines exist. The group A
gathers together the (m — h) first machines (Mi to Mm-h) which process k
jobs each. The group B gathers together the h last machines (M^-Zi+i to
Mm) which process {k + 1) jobs each. We have k = [^J and n = km + h.
Knowing that all the jobs have the same characteristics, they can be split

5.5 Polynomially solvable problems 167

indifferently into two sets NA and NB • The first contains the jobs processed
on machines of group A and the second those processed on machines of group
B. Let ST A and STB be the start times of the first jobs on each machine of
the group A and of the group B respectively. If SQ is the start time of the
sequence of jobs on machine Mj, we have SQ = 5 T A , Vj G A, and SQ = STBI

Vj € B.

Theorem 16 [Cheng and Chen, 1994]

Let VA = I , ^ I; rB = \- ^7-5 ^ I, dA=rAXp and dB = VB x p.

dA (respectively dB) is the optimal due date obtained by considering only
jobs scheduled on machines of group A (respectively B). We set similarly

d\ = UA X P CLTid d'ß = UB X p with UA = \ ;̂ 1 cbnd UB = \ ^-1 • If
a-\- p a-\r p

dB = dA+p then two cases occur:

• First case: d\ > dA- If rA < —7 ^ , then there is an optimal schedule

for which d* = dB and ST A = STB = 0. Otherwise d* = dA and ST A =
STB = 0.

• Second case: d'^ = dA. If rA < ^ ^ \ ! ' ^ ^ " ^ ^ then an optimal schedule
^ ^ ^ ^ - h{a + ß)

exists for which d* —dB, ST A = p and STB — 0. Otherwise d* = dA and
STA = STB = 0.

If dA = dB, then there is an optimal schedule in which d* = dA and STA =
STB = 0.

The algorithm proposed by Cheng and Chen, denoted by ECCl, is presented
in figure 5.23.

Example.
We consider a problem for which m = 5, n = 21, and pi = 1, Vi = 1,..., n. We study
two instances.

• Let us consider in the first instance a = 20, /? = 30 and 7 = 2. We obtain then
k = 4,h = l,A = {Mi,... ,M4}, B = {Ms}, rA = 3, r s = 3, UA = 3, UB = 3 ,
C/A = 3, dß = 3, d^ = 3 and d'ß = 3. The case dA = dß of theorem 16 is verified
(figure 5.21), therefore d* = 3.

• Let us now suppose that a = 20, ß = 60 and 7 = 2. We have then TA = 3,
rB = 4, UA = 3, UB = 4, dA = 3, dß = 4, d^ = 3 and dß = 4. Case dA+p = dß
of theorem 16 is verified. Moreover d^ = dA and rA < 3.225. We deduce from this
that an optimal schedule exists such that d* = dß = 4, STA = 1 and STB = 0
(figure 5.22).

168 5. Just-in-Time scheduling problems

M,

M,

M3

M,

M,

dA=dB=3

Fe(E,T,d) = 636

Fig. 5.21. Case where dA = ds

M,

M3

M4

M3

'̂̂ ^ ̂^ ^

-. -- s ^' -' '̂

dA=dB=4

Fe{E,T,d) = 828

Fig. 5.22. Case where dA + p = ds

5.5 Polynomially solvable problems 169

ALGORITHM ECCl
/* Initialisation of the algorithm */

k = I — I; h = n — km:
m

A= {Mi,...,Mm-h}] B= {Mm-h-f-l,--

Step 1:

Step 2:

Step 3:

Step 4:

,Mm}]

UA
kß ritLMv

a-\- p a + p
dA = rAX p\ dß =rB X p ;
dA =UAXp; d'ß = UB xp;
/* Assignment of jobs on machines */
Partition the set J in m sub-sets iVi, . . . , Nm such that:
\Nj\ = k, Vj e [l , m - / i] , and \Nj\ = k-{-l,\/j e [m - / i + l ,m];
The jobs of set Nj are assigned on machine M,, \/j = 1,..., m;
/* Computation of the start times and of the due date d* */
If {{h = 0) or {dB = dA)) Then

I d* = dA] STX = ST^ = 0; END;
End If;
If (dA > dA) Then

m(a-j-ß)J
d* = dß't ST A ST^ = 0; END;

Else

Else
I d* = dA] STX = ST^ = 0; END;

End If;

If (r A <
h{k + l)ß - nj

) Then

Else

h{ai-ß)
d* = ds'i
5 T l = p ; ^ T ^ = 0;END;

I d* = dA] STX = ST^ = 0; END;
End If;

End If;
Print the resulting schedule, d* and the value of the objective
function;

[Cheng and Chen, IQQJT

Fig. 5.23. An optimal algorithm for the P\di = d unknown,pi = p\Fe{E,T,d)
problem

5.5 .7 T h e R\pij G [p. . ; P i j] , d i = d unknown\Fi{T,E, CC)

p r o b l e m

[Alidaee and Ahmadian, 1993] are interested in a Just-in-Time scheduling
problem where the processing times are not da ta of the problem, and where
we have pij G [p. . ;P i j] , Vi = 1,..., n, Vj = 1,..., m. Besides, all the jobs have
the same due date d which has to be determined. The aim is to minimise

170 5. Just-in-Time scheduling problems

the function Fe{T.'S.ÜC^) = a T + !E + ÜC"^. This problem is solvable in
polynomial time.

For the single machine problem ([Panwalker and Rajagopalan, 1982]) we
know that:

• the optimal due date d* coincides with the completion time of a job,
• the set of V-shaped schedules is dominant,
• an optimum sequence of jobs exist such that. Vi = 1,..., n, p^ = p. or p^.

These results can be extended to the case where m is ordinary. Moreover,
an optimal due date d* exists which coincides with the completion time of
a job on each machine. The parallel machines problem can be reduced to
a transportation problem solvable in 0{n^). This problem is obtained by
considering the set of possible assignments of jobs on machines and for all
positions. Moreover, when the sequences of jobs on machines are known,
the determination of the optimal processing times is done according to the
following rule:
If Ji is scheduled on Mj and is tardy then:

- p.. if Wij < ßk,

if 'Wij > ßk.

If Ji is scheduled on Mj and is early or on-time then:

'̂'•̂ [0 ' iiwi^j>a{k-l).

with k the number of jobs processed after Ji if this is scheduled on Mj.

5.5.8 Other problems

• [Hoogeveen, 1996] is interested in two problems where the earliness of
the jobs is expressed in relation to desired start times. These problems are
denoted by l\si,di,Si G [di - Pi\di],nmit\t{Lmax/Pmax) and l\si,di,Si G
[di — Pi\di]\e{Lmax/Pmax)' Hoogevccn shows that these two problems are
solvable in polynomial time whereas in the case where the data Si and di are
arbitrary (with Si < di) these problems become AT'P-hard in the strong sense.
The difference between the two problems is that in the first one insertion of
voluntary idle time before each job is forbidden. In both cases, minimisation
of the criterion Pmax brings us back to maximising the real start times. Thus,
Hoogeveen shows that the constraint Pmax < ^ brings us back to imposing
release dates defined by r̂ = 5̂ — e,V2 = l,. . . ,n. We obtain then a prob­
lem that can be denoted by l\ri,di,ri G [di — pi — e;di — e],ß\Lm,ax with
ß G {0,nmit}. To solve these two problems, two optimal algorithms based
on greedy methods are proposed. The algorithm which solves the l\si,di,Si G
[di — Pi'idi],nmit\e{Lmax/Pmax) problem with e fixed is of time complexity

5.5 Polynomially solvable problems 171

0(nlog(n)) whereas that without the constraint nmit is in Oin^ log(n)). Fol­
lowing this, Hoogeveen proposes a determination algorithm of the set E when
the insertion of voluntary idle time is forbidden. This algorithm iteratively
modifies the parameter e of the l\si^di^Si G [di —pi]di\,nmü\e{Lmax/Pmax)
problem and each iteration calls the algorithm which solves it. The latter
only determines strict Pareto optima. Thus the set E can be calculated com­
pletely. Moreover, Hoogeveen shows that the number of strict Pareto optima
is at most equal to n.

• [Bector et al., 1988] are interested in the l\di = d,d unknown\ Fi{E^T)
problem, with Fi{E,T) = E+ T and restrict their study to the set of sched­
ules with no insertion of voluntary idle time after the start of processing of
the first job. Remember that a classical result ([Webster et al., 1998], see sec­
tion 5.2.1) states that solving problems with an unknown common due date
is equivalent to solving problems with a fixed and non restrictive common
due date. The distinction between these two types of problems is important
for the decision maker because of the difference in the value of the date d.
[Bector et al., 1988] propose a goal programming model of the problem with
unknown date d and deduce some properties for an optimal schedule. Notably,
they show that in such a schedule, the common due date d is equal to the
completion time of the job in position r in the sequence with ^ <r< f + 1.
This result has been shown in part by [Francis and White, 1974] and Bector,
Gupta and Gupta propose a more complete proof. Moreover, they show that
the set of V-shaped schedules is dominant for this problem and then propose
an optimal algorithm which starting from an initial V-shaped sequence, pro­
ceeds by permutations of jobs to obtain an optimal V-shaped sequence.

• [Kondakci et al., 1997] consider the l\pi = l ,di, nmit\e{E/U), l\pi =
l,di,nmit\e{Emax/U) and l\pi == l,di,nmit\e{Fi{E,T)/U) problems with
Fe{E,T) = E + T, and for which the insertion of voluntary idle time before
each job is forbidden. To solve these problems, they propose a mixed inte­
ger program which is that of the assignment problem, with the criterion U
inserted as a constraint. Enumeration of the set of weak Pareto optima is
solved by considering firstly that the value of the criterion U corresponds to
an optimal solution of a single criterion problem with E, Emax or E -\- T^
depending on the considered problem. The bicriteria problem is then solved
and at each iteration the value of the upper bound of the criterion U is re­
duced by one and the bicriteria problem is solved once again.

• [Ahmed and Sundararaghavan, 1990] study the minimisation problem of
the weighted earliness and tardiness when the weights are symetrical, depen­
dent on the jobs and are equal to the processing times. We also assume that
all the jobs have the same non restrictive due date. The problem addressed is

172 5. Just-in-Time scheduling problems

n

denoted by l|d, = d> Y.Pi\Ft{E^,T^) with Fe(E^,T^) = Y^Pi{Ei + T,).
i=l

We can show that the set of schedules without insertion of voluntary idle
time except before the first job is dominant. To solve this problem a greedy
algorithm is proposed which sorts at the first step jobs according to the rule
LPT. n schedules Si are next obtained by timeshifting the sequence of jobs so
that the ith job of the schedule Si completes at time d. The optimal schedule
is the one having the minimal objective function value.

• [Garey et al., 1988] study a particular JiT problem in which the jobs have
unit processing times. This problem is denoted by l\pi = l^di\F{Ei,Ti) with
F{Ei^Ti) = max (E'^+Tj). To solve this problem Garey, Tarjan and Wilfong

propose an optimal algorithm in 0(nlog(n)) time which uses an algorithm
for the l\pi = l,di,F{Ei,Ti) < D\— problem. To determine the optimal
value D* of the objective function, for the original problem, the algorithm
proceeds by binary search on an interval [Dnj^Dub]- This algorithm can be
used to solve the problem with arbitrary processing times. In this case, its
time complexity is in 0(71^).

• When the earliness of the jobs is defined in relation to a desired start time,
[Sidney, 1977] is interested in a problem where the start times and the due
dates are agreeable. The problem addressed is noted l\si,di,Si < Sj <=^ di <
dj\F{f{Tmax), 9{Pmax)) "^ith F{f{Tmax), 9 (Pmax)) = TOCiax{f{Tmax), 9(Pmax))'

The functions / and 9 are taken to be continuous and increasing on R and
Pmax refers to the maximum promptness of jobs. The treated problem is
thus analogous to that tackled by [Hoogeveen, 1996]. According to Sidney,
this approach can be used in project scheduling problems in the chemical
industry. Sidney moreover supposes that the dates Si and di are agreeable,
i.e. \/i,j = l , . . . ,n, 5̂ < 5̂ 4=> di < dj. To solve this problem, he proposes
an optimal algorithm which proceeds in two steps. An optimal sequence of
jobs is obtained by sorting them in increasing order of start times Si. Next,
an algorithm is applied to determine the real start times from the sequence.
This problem is taken up by [Lakshminarayan et al., 1978] who show that

it is possible to improve the algorithm which determines the real start times
when the sequence is fixed. They then show that the complexity of the gen­
eral algorithm is in 0(nlog(n)) time whereas for Sidney it is in 0{ri^).

• Few JiT scheduling problems with more than two criteria have been ad­
dressed in the literature. [Seidmann et al., 1981] consider a tricriteria prob­
lem in which the due dates are unknown but must be as close as possible to a
common due date. The problem is noted l\di unknown,nmit,A\Fi{E,T,A)
with Fe(E,T,Ä.) = oE + 0T + 7 Ä The criterion Ä is defined by Ä =

5.6 AfV'hard problems 173

n

y]max(0;dj — A), where A is a due date which we do not wish to pass

by. We suppose besides that insertion of voluntary idle time on the machine
is forbidden. To solve this problem Seidmann, Panwalker and Smith propose
an optimal algorithm in 0(nlog(n)). The jobs are numbered according to
the rule SPT. The optimal due dates di are then calculated in the following
manner, Vz = 1,..., n:

di= { 3=1

min(^; Y ^ j) otherwise
j = i

A similar problem, but with a common known due date and criteria U
and A, is tackled by [De et al., 1991]. The problem is denoted by l\di =
d,A\Fe{Ü'^,Ä) with FiiTJ"^,Ä) = TT + jÄ, We define M = Yl ^^ ^^^

threshold value A such that the problem is restricted or not. li A < M then
the problem is so and ATP-hard. In this case. De, Ghosh and Wells propose
an heuristic based on a relaxation of a model of the problem, li A> M then
the problem is not restricted and solvable in polynomial time. An optimal
algorithm is proposed by the authors.

5.6 A/'P-hard problems

5.6.1 T h e l\di,nmit\Fi{E'^,T^) problem

[Ow and Morton, 1988] and [Ow and Morton, 1989] consider the weighted
early/tardy problem with no voluntary idle times insertion. They propose
sequencing rules to solve the problem. Ow and Morton show that any adjacent
pair of jobs (Jt^Jj) such that Ji immediately precedes Jj in the optimal
sequence, must satisfy the following condition: Vij{si) > Vj^i{sj) with 5̂ =
di—t—pi the slack of job J^, t being the earliest time the machine is available
for processing this job, and

T='iAsi)={

(ßi
Pi
ßi

if Si < 0,

foti + ßi\
Si if 0 < 5i < Pj,

Pi V PiPj J
otherwise.

Pi

174 5. Just-in-Time scheduling problems

Then, a priority can be associated to each job Ji by comparison with a dummy
n

job with average processing t ime p = /^^Pi - The linear priority rule, denoted

by LIN-ET, for job Ji is defined by:

(ßi
Pi

Vi{si)

if Si < 0,

Pi \ Pll^P J

^ otherwise.
Vi

with k a given parameter , tha t should reflect the average number of jobs tha t
may conflict at each t ime a sequencing decision is to be made. The priority
rule depends on the slack of job J^. The first extreme situation occur when
job Ji is tardy, i.e. 5̂ < 0, and the priority rule is then W S P T . The second
extreme situation occurs when job Ji is early, with Si > kp, and the priority
rule is then W L P T . The piecewise Unear function Vi{si) corresponding to
LIN-ET is shown in figure 5.24.

4Pi(Si)

Fig. 5.24. LIN-ET priority rule

ßi
-kp. However, using this rule, We can notice tha t Vi(si) = 0 <^ 5̂ -

ai 4- ßi
the problem of jobs conflicting can make the obtained sequence far from the
optimal solution. To avoid this problem, Ow and Morton propose another
priority rule, denoted by EXP-ET, defined as follows:

Vi{si)

ßi
—exp
Pi

5.6 AfV'haid problems 175

Siiai+ßiY

OtiP
if 0 < S i < ^ ^ f c p ,

OLi-\- ßi
3

^''Ks-"(w))'^s;fi^'<''^*
The parameter k controls the time at which the priority of a job increases.
The algorithm tha t implements the priority rules is presented in figure 5.25.

ALGORITHM HOMl
/* A; is a given parameter, for instance A; = 3 if n = 8 or 15, /;; = 5 if n = 25 */
T — {Ji , J2,..., Jn};

n

i = l

^ = 0;
5 = 0;
While T 9̂ 0 Do

Fbr Ji G T Do
Si ^^ CLi L j9i ^

Compute Vi{si)', /* depending on LIN-ET or EXP-ET priority rule */
End For;
Let Jk e T/Vk{sk) = maxVi{si);

S = S//{Jkh
T = T-{Jkh
t = t-^Pk]

End While;
[Ow and Morton, 1988] and [Ow and Morton, i9S9]~

Fig. 5.25. An heuristic algorithm for the l\di,nmit\Fi(E°',T) problem.

Then, Ow and Morton propose several versions of a filtered beam search pro­
cedure to solve the problem. This method is a t runcated branch-and-bound
algorithm, because only a certain number of branches of the search tree are
explored. Experimental results show tha t the average deviation between the
best solution and the best lower bound comprises between 5% and 10%.
[Li, 1997] proposes for this problem a neighbouring heuristic which uses a
set of n operators fc-NAPI (fc = 0,.. . , n — 1) where fc-NAPI refers to the op­
erator realising the permutat ions of two jobs separated by k jobs. Starting
with an initial sequence calculated by means of an heuristic based on the
rule E X P - E T , the operator 0-NAPI is applied until no further improvement
can be achieved. The operator 1-NAPI is applied next, then the operator
2-NAPI, etc. Li also proposes a branch-and-bound procedure for which the
lower bound is the sum of two bounds LBi and LB2, valid for the single crite-

ß Q;

rion problems T and E . Each of these boundaries is obtained by solving a
lagrangean relaxation model (relaxation of constraints defining the variables
Ti and Ei). The primal problem for each bound is solved either using the rule

176 5. Just-in-Time scheduling problems

WSPT or the rule WLPT. The corresponding dual problem is next solved by
applying a perturbation algorithm of the langrangean coefficients which does
not modify the sequence calculated for the primal problem. Experimental
results show that the branch-and-bound procedure solves all the problems
with up to 25 jobs in less than 100 seconds. Besides, the proposed heuristic
is compared with that presented by [Ow and Morton, 1989] and the results
show that the first mentioned is the most successful (in time and quality).
[Liaw, 1999] proposes algorithms which are very close to those of [Li, 1997],
Firstly, he provides a neighbouring heuristic in 0{n'^) time, which improves
the schedule calculated using the rule EXP-ET. The neighbouring operators
considered diff̂ er from fc-NAPI and no comparison with Li's heuristic is pre­
sented. Liaw also proposes a lower bound calculated according to an identical
step to that used by Li. The principal difference lies in the two sub-problems
considered to calculate LBi and LB2. Experimental results show that the
lower bound proposed by Liaw is better than that proposed by Li. Neverthe­
less, concerning the branch-and-bound procedure the experimental results
show that it is appreciably equivalent to that of Li.
[Almeida and Centeno, 1998] are similarly interested in the l\di, nmit\Fe{E ,
T) problem and propose an heuristic which iteratively uses tabu search,
simulated annealing and local search heuristics. These ones use three neigh­
bouring operators: API, fc-NAPI and a particular operator. Starting with
an initial solution obtained by applying the rule EXP-ET, the heuristics are
successively applied according to a particular scheme. Diversification is intro­
duced by means of a random selection step of a solution in the neighbourhood
of the current solution. Experimental results only show that the proposed
heuristic produces better results than the meta-heuristics used alone.

5.6.2 The F\prmu,di,nmit\Fi{E ,T) problem

[Zegordi et al., 1995] study a Just-in-Time flowshop scheduling problem and
consider that the insertion of voluntary idle time before each job is forbidden.
This problem is strongly AfV-haid because the corresponding single machine
problem is also.

Zegordi, Itoh and Enkawa propose a simulated annealing heuristic, denoted
by HZIEl, the peculiarity of which lies in the neighbourhood operator. They
use the definition of a priority function ([Ow and Morton, 1989]) for a single
machine problem and they extend it to a m-machine problem. Let 5 be a
permutation schedule. We define a lower bound for the earliest start time of
the job in ith position on the machine Mm in S by:

m—1 i—1

^ '•**'' k=l j = l

5.6 ATP-hard problems 177

An upper bound on the algebraic earliness is then ss[i] = ds[i] — {ts[i],m +
P5[i],m)) Vz = l,. . . ,n. Generalisation of the priority functions of Ow and
Morton, denoted by P ^ o and P|j^i, can be stated as follows:

V i _ 2 n P^ -7i;cri ^Sli]{wsii]+hs[i]) yi - 2, ...,n, I^sii] - ^S[i\ — —
yS[i-l],m

V,- - 1 „ 1 pB _ ssii\{ws[i\ + hs[i\)
Vt - 1,...,n - 1, P^j,] - — wsii]

FS[i-{-l],m

The more P^^^-^ is important, the more it is interesting to permutate jobs in
zth and (z — l)th position in 5. Conversely, the more P^u] is important the
more it can be interesting to permutate jobs in zth and (z + l)th position. For
example, if the bound on the algebraic earliness for position i is positive, then
we estimate that the job in this position is late. We have then P|j^i > P^o
and we prefer to permutate jobs in position i and (i — 1).
At a given iteration of the algorithm, we get a solution S from which we
search for the best neighbour S\ For this, it is sufficient to calculate the
values of the priority functions. Amongst all the values of the priorities P|jo
and P^^i we search for the greatest value. The corresponding permutation to
this is then done and we obtain the schedule S'. Zegordi, Itho and Enkawa
state that it is possible to consider the exact values of the algebraic earliness
by setting ss[i] = dsm — Csm^ Vi = l,. . . ,n. The priority functions will be
thus more realistic but more costly in terms of the calculation time necessary
to obtain the values Cs[i]' The heuristic HZIEl is presented in figure 5.26.

Concerning regulation of the temperature, Zegordi, Itoh and Enkawa refer
to [Connolly, 1990]. An initial schedule S is randomly generated. A random
permutation of jobs is performed in S and the variation A of the objective
function is memorised. The initial schedule is then restored and a new per­
mutation is performed. This process is repeated 50 times. The minimal value
Amint and the maximal value Amax which result from these permutations
are then obtained. The initial temperature To and the final temperature T/
are defined by:

•»771271 •

At a given temperature, Zegordi, Itho and Enkawa consider that no permu­
tation is able to improve the current solution if all the values of the priority
functions are negative. A new value of the temperature is then calculated by

the formula T,+i = ^ - - j ^ with ß = ^ ^ and M = 5 0 ^ ^ ^ ^ ^ ^ . Two

stopping conditions are presented:

• There are two temperature changes without modification of the current
solution.

178 5. Just-in-Time scheduling problems

ALGORITHM HZIEl
Step 1: /* Initialisation of the algorithm */

Generate randomly a schedule S;
Compute To and T/;

S* = S;
Compute the priorities Pg^^ and Pg^^;

Step 2: /* Main part */
While (a stopping criterion is not verified) Do

End

While (there exists a positive priority value) Do

End

Search the best neighbour iS";

If (Af > 0) Then
S = S';
Compute the priorities P^^ and Ps[i]'^

Else

End If;

P = .^..
Choose randomly a number x in the interval [0; 1];
If (x < p) Then

Compute the priorities Pg^^^ and P/f^j;
End If;

If (E"(5*) + T\S*) - E^'iS) - T\S) > 0) Then
\ S* = S;

End If;
While;

1+/3T'
While;

Step 3: Print S*, E"" and T^;
[Zegordi et aL, 1995]

Fig. 5.26. An heuristic algorithm for the F\prmu,di,nmit\Fe{T ,E) problem

• The number of permutations performed is greater than M.

Experimental results show that the heuristic HZIEl is more efficient than
simulated annealing algorithms proposed by [Wilhelm and Ward, 1987] and
[Connolly, 1990]. However, the latter are not adapted to resolution of the
Just-in-Time problem.

.——in —-7i>.
5.6.3 T h e P\di = d non restrictive^nmit\fmax(E , T) problem

[Li and Cheng, 1994] are interested in a Just-in-Time scheduling problem
where all the jobs have the same due date which is not restrictive. The

5.6 ATP-hard problems 179

aim is to determine a schedule which minimises an objective function defined
^y fmax{E ,T) = max {wi{Ei-\-Ti)) == max (t(;i|Li|). We areonly inter-

i = l , . . . , n i=l,. . . ,Ti

ested in the set of schedules without insertion of voluntary idle times, except
before the first job assigned on each machine.
Li and Cheng show that the problem is strongly ATP-hard and present a
greedy heuristic, denoted by HLCl. The jobs are grouped by decreasing order
of their weights Wi and are placed iteratively on machine Mj which minimises
\Li\. The algorithm is presented in figure 5.29. The worst case ratio of this
heuristic is given by / ^ f f V/mao: < 2m.

Example.
We consider a problem for which n = 10, m = 2 and d = 40.

i
Pi
Wi

1
2
20

2
4
19

3
6
18

4
8
17

5
10
16

6
12
15

7
14
14

8
16
13

9
18
12

10
20
11

(i) L = {J i , . . . , Jio},
(ii) We schedule the m first jobs on the machines and we obtain the partial schedule
presented in figure 5.27.

M,

M,

38

Jo

36
d=40

Fig. 5.27. A partial schedule

Xi =2, yi=y2 = 0, X2 = 4,
(iii) We schedule the remaining jobs and we obtain the schedule presented in figure
5.28.

An improvement of this heuristic can be obtained by recalculating the start
time of the first job on each machine. For this an ideal common due date
dj for all jobs scheduled on machine Mj, is calculated by considering that
the sequence of jobs is fixed. Let Sj be the sequence of jobs processed on
Mj. The due date dj
Wi{dj -Ci) = Wi'{Ci>

is such that 3Ji e S^
-dj) = max {wk\Ck

j/Ci < dj,3Ji> G Sj/Ci' > dj and
dj\). The new start time of the

first job on machine Mj is then increased by rf — dj, i.e. the sequence Sj is

180 5. Just-in-Time scheduling problems

M,

M ,

'10

22 32 38 52 72

J. J-,

14 56 28 36

d=40

J max ^̂ ^ öoZ

Fig. 5.28. The schedule calculated by the heuristic HLCl

ALGORITHM HLCl
— Xj is the time at which machine Mj starts to process */

/* the jobs assigned on it */
/* d -h yj is the time at which machine Mj completes to process */
/* the jobs assigned on it */
Step 1: /* Initialisation of the algorithm */

L — {Ji sorted by decreasing value oiwi)\
For 2 = 1 to m Do

J f c -L [l] ;
Assign job Jfc on machine Mi such that Ck = d\
Xi =pk] Vi = 0;

L = L-{Jk};
End For;

Step 2: /* ScheduHng of the n — m remaining jobs */
For i = 1 to (n — m) Do

• Jk = L[l];
Let machine Mj be such that Xj is minimum;
Let machine Mjf be such that yjf is minimum;
If {{yjf -\-pk <Xj) or {d- Xj < pk)) Then

Job Jk is scheduled last on machine Mjf;
Vf = Vj' -^Vk\

Else
Job Jk is scheduled first on machine Mj ;
Xj = Xj -\- Pk]

End If:
L = L-{Jkh

End For;
Step 3: Print the resulting schedule and fmax{E , T);

[Li and Cheng, 1994]

Fig. 5.29. An heuristic algorithm for the P\di
nmü\fmax{E , T) problem

d non restrictive,

5.6 ATP-hard problems 181

timeshifted. The heuristic, denoted by HLC2, is presented in figure 5.30. Its
complexity is in 0{mn'^) t ime.

ALGORITHM HLC2
/* Sj is the sequence of jobs processed on machine Mj */
/* tj is the start time of the first job on machine Mj */
Step 1: Compute a schedule s using the heuristic HLCl;
Step 2: For ?' = 1 to m Do

Sequence again the jobs Ji processed on Mj and
such that Ci < d, by decreasing value of Wi]

End For;
Step 3: /* We compute the new start times of machines */

For j = ltom Do
/* We compute the ideal due date for this machine */
Z = oo;
Fbr i = 1 to \Sj\ Do

• For fe = i + l to | 5 . | Do
^/ ^ i'^Sj [i] Csj [i\ + wsj [k] Csj [k]) ^

{wSj[i]-\-WSj[k])
U{ws,m\Cs.[i]-d'\<Z)Th^

End If;
End For;

dj = d\ Z = wsj[i\ X \Csj[i\ - d'\;

End For;
/* The jobs processed on Mj are timeshifted */
tj = tj -{- d — dj;

End For;
Step 4: Print the resulting schedule and the value of the objective function;

[Li and Cheng, 1994]

Fig. 5.30. An heuristic algorithm for the P\di
fmax (E^ , T"^) problem

d non restrictive, nmit\

Li and Cheng propose next a lower bound on the value of the objective
function, which is used to measure the performance of the heuristic HLC2.
Experimental results show tha t with m fixed, the average ratio f^^^'^/LB
decreases when the number of jobs increases. Conversely, when n is fixed the
average ratio increases proportionally with the number of machines.

Regarding the multicriteria approach used by Li and Cheng to tackle the
Just-in-Time scheduling problem, we notice tha t the objective function con­
sidered is a particular case of an objective function produced from the goal-
a t ta inment approach (see chapter 3). In fact, it is suSicient to consider the

objective function min {—{bi — \Li\)) with Wi = ^ and bi = 0, Vz = 1,... , n.
i = l , . . . , n Vi *

182 5. Just-in-Time scheduling problems

This implies that for each job, we associate a criterion defined by \Li\ and
that one or several weak Pareto optima for these n criteria are determined.

5.6.4 Other problems

• The problem which is considered in the literature as the basis of JiT
scheduling problems is denoted by l\di\Fe{T, E). It is AfV-hand because the
l|(ii|T problem is so. [Szwarc, 1993] studies the sequencing of two jobs if
they have to be performed consecutively and with no idle time between the
two processings. The original problem may break down into blocks where
the jobs of a block are scheduled consecutively and two successive blocks
are separated by an idle time. The sufficient conditions proposed are then
used to sequence the jobs within the blocks. Szwarc proposes a branching
scheme, useable in a branch-and-bound procedure, which does not consider
schedules dominated by the previous conditions. He considers similarly the
particular case where di = d, \/i = l,. . . ,n. Besides, [Azizoglu et al., 1991]
propose for the l\di, nmit\Fe{T, E) problem, an adaptation of the heuristic

presented by [Ow and Morton, 1989] for the l\di^nmit\Fe{E^,T) problem.
A branch-and-bound procedure is similarly proposed and experimental re­
sults show that in the more favourable configurations problems with up to
20 jobs can be solved.
|Kim_and Yano, 1994] tackle the l\di\Fi(E,T) problem, with Fi(E,T) =
E -\- T, and propose heuristics and an exact algorithm to solve it. We re­
call that when the sequence of jobs is known, calculation of start times can
be realised in 0(nlog(n)) by an algorithm proposed by [Garey et al., 1988]
(see algorithm EGTWl). In the case where only two jobs Ji and Jj have to
be sequenced, with di < dj^ Kim and Yano show that if they confiict {i.e.
dj — di < pj) then:

1. Ji is scheduled before Jj if di -\-pj — dj < dj +Pi — di and Jj is scheduled
before Ji otherwise (figure 5.31, case a).

2. If the jobs are scheduled before di then Ji preceeds Jj if pi > pj and Jj
preceeds Ji otherwise (figure 5.31, case b).

3. If the jobs are scheduled after max(di — p^, dj — pj) then Ji preceeds Jj
lipi < Pj and Jj preceeds Ji otherwise (figure 5.31, case c).

These results can be used as dominance conditions in a branch-and-bound
procedure even if they are particular cases of earlier results presented by
[Szwarc, 1993]. Kim and Yano propose next two lower bounds and a branch-
and-bound algorithm. To calculate an upper bound they apply the algorithm
for the calculation of start times EGTWl beginning with the sequences ob­
tained by several priority rules. Experimental results show that the exact
algorithm is limited to problems containing around 20 jobs.
This problem is taken up again by [Fry et al., 1996] who propose a branch-
and-bound procedure based on a breakdown of the problem into blocks. Ex-

5.6 A/'P-hard problems 183

< >

dj+Pi-d;

-case a-

-case b-

j

-case c-

Pî Pj

d. d

Pj>Pi

Fig. 5.31. Different configurations for sequencing two jobs

perimental results show that this algorithm solves problems with up to 25
jobs.
When the insertion of voluntary idle times before every job is forbidden (con­
straint nmit), [Fry and Leong, 1986] propose an integer linear program to
solve the problem.

• The common due date problem, denoted by l\di = d,nmit\Fe{T,E)^ has
been studied by [Sundararaghavan and Ahmed, 1984]. The due date d may
be restrictive which implies that the problem addressed is A/'P-hard, because
the l\di = d < ^ p i , n m z t | Fz{T,E) problem is also. The set of weakly V-
shaped schedules is dominant. A schedule is said to be weakly V-shaped if all
the jobs Ji such that Ci < d, are sorted according to the rule LPT and if all
the jobs Ji such that U > d, are sorted according to the rule SPT (see figure
5.32). AH the V-shaped schedules are also weakly V-shaped. Notice that if
the common due date concides with the completion time of a job then weakly
V-shaped schedules are also V-shaped schedules.

Fig. 5.32. An example of a weakly V-shaped schedule

184 5. Just-in-Time scheduling problems

Sundararaghavan and Ahmed propose an heuristic based on a greedy method,
n

inspired by the algorithm proposed by [Kanet, 1981b] for the case d > /]pi'
i=l

For the problem with a restrictive common due date denoted by l\di =
d < ^pi,nmit\F£{T,E), [Bagchi et al., 1987a] propose a branch-and-bound
procedure. Notice that the notion of restrictive common due date is stated
in [Bagchi et al., 1986] who are interested in the l\di = d < 5^nmit\Fc{T^E)
problem with JF>(T, E) = T + ^ . The bound 5 is defined by 5 = pi + ps +
. . . + Pn if ^ is odd and 5 = P2 + P4 + • • • + Pn if not (by supposing that
Pi ^ • • • ̂ Pn)- This quantity represents the value of the date d below which

n
the problem is restrictive. Clearly, we have 5 < /^^Pi-

We suppose that all optimal schedules are such that the start time of the
sequence, noted to, is equal to 0. To solve this problem, Sundararaghavan
and Ahmed propose a branch-and-bound procedure. [Szwarc, 1989] takes up
this problem again and studies the case where the date to is fixed in advance
and equal to 0. He is interested in properties of this problem and proposes
necessary conditions for a schedule to be optimal. He provides next a branch-
and-bound procedure which makes use of the conditions previously shown to
prune nodes in the search tree. The value of the initial upper bound is calcu­
lated by the heuristic of [Sundararaghavan and Ahmed, 1984]. Experimental
results show that the algorithm can solve problems with at least 25 jobs. Fi­
nally, Szwarc is interested in the case where the start time of the sequence is
not fixed. He shows, with the help of an example, that contrary to the claims
of [Bagchi et al., 1986], optimal schedules exist for which to is not equal 0.

• When the earliness is measured in comparison with desired start times,
|Kou]amas, 1996] studies the l\su di\Fi(T,'P) problem for which Fe{T,T) =
T -\- P, Koulamas shows that this problem is A/^P-hard and proposes seven
heuristics to solve it as well as an optimal algorithm based on an enumera­
tion method. Dominance conditions allowing the enumeration algorithm to
be more efiicient are also described. Experimental results show that two of
the heuristics produce results which are close to the optimal solution.

[Chand and Schneeberger, 1988] deal with a particular case of the l\di^nmü\
e{E /U) problem where the objective is to minimise the criterion E under
the constraint [/ < 0, z.e. f/ = 0. Chand and Schneeberger show that for
this problem, minimisation of the criterion E is equivalent to minimisation
of the criterion C . They deduce that the problem addressed is A/'T^-hard
and propose an heuristic based on the algorithm of [Smith, 1956] for the
l\di^Lmax = 0|C problem. A dynamic programming algorithm to calculate
an optimal solution is presented and the experimental results show the efii-
ciency of these algorithms.

5.6 ATP-hard problems 185

• The l\di\Fi{E^,T) problem is the generalisation of the basic JiT schedul­
ing problem. This problem is strongly AfV-haid given that the l|di|T prob­
lem is also. To calculate an optimal solution, [Pry et al., 1987a] consider the
class of schedules with insertion of voluntary idle times, which is dominant for
this problem. An heuristic based on an improvement algorithm of an initial
sequence by permutation of jobs is proposed. It enables only the calculation
of a jobs sequence. Insertion of idle times before each job is next realised
by solving a mathematical program. [Fry and Blackstone, 1988] take up this
problem again in the context of the method of production organisation '^Op­
timised Production Technology" (see for example [Goldratt and Cox, 1984]).
They propose a mixed integer linear program for the single machine schedul­
ing problem. The design of tabu search algorithms for this problem is studied
by [James and Buchanan, 1997] and [James and Buchanan, 1998]. They pro­
pose different implementations of two different approaches. In the first the
algorithm calculates a sequence then solves the mathematical model proposed
by [Pry et al., 1987a] to obtain a schedule. The second approach considers a
particular coding of sequences. Por each calculated solution an heuristic is
used to deduce a feasible schedule.

• When jobs have distinct release times the problem is noted l\ri^di\Fe{E ,

T) and is strongly ^fV-ha.rd. [Yano and Kim, 1991] consider a special case
n

where the objective function is defined by Fi{E^^T) = y^{aiEi + ßiTi)
1 = 1

where a^ and ßi are functions of the processing times. They propose five
heuristics and a branch-and-bound algorithm.
[Mazzini and Armentano, 2001] deal with the general problem with ordinary
weights and propose a greedy heuristic and a local search heuristic. The for­
mer computes a schedule by assigning to each job Ji a priority which is equal
to di —pi if Vi -\-pi < di and r̂ otherwise. At each iteration the unscheduled job
with the lowest priority value is inserted in the partial schedule under con­
struction. This insertion is done in order to minimize the cost generated in the
objective function. Conflicts with already scheduled jobs are solved according
to the rules presented by Mazzini and Armentano. After having scheduled all
the jobs, a procedure to compute optimal idle times between jobs is used. The
greedy heuristic requires 0{n^) time. The local search heuristic uses as an
initial schedule the solution of the greedy heuristic. The neighbourhood oper­
ator applied during the search is the Adjacent Pairwise Interchange operator
(API): at each iteration the heuristic permutates two adjacent jobs and then
recomputes the optimal idle times for the new sequence obtained. To decide
if a swap of two jobs can lead to a decrease in the value of the objective
function, Mazzini and Armentano propose a generalisation of a result pre­
sented by [Ow and Morton, 1988]. This one states a necessary condition to
have precedences between jobs in an optimal schedule. Some computational
experiments show that the local search heuristic does not improve so much

186 5. Just-in-Time scheduling problems

the schedule computed by the greedy heuristic. The average improvement is
around 0.3%.

• [VandenAkker et al., 1998a] and [VandenAkker et al., 1998b] are interested
in the previous problem when we have di = d>Y^pj, Vz = 1,..., n. The prob-

lem addressed is therefore denoted by l\di = d > Y^pj,nmit\Fi{E ,T).
This problem is AfV-haid because the problem with symetrical weights is so
(see [Hall and Posner, 1991]). Van den Akker, Hoogeveen and Van de Velde
notice that in some optimal schedules, the common due date d coincides with
the completion time of a job. The jobs completing before the date d must
be sorted by decreasing order of the values ^ whereas those completing af­
ter the date d must be sorted by increasing order of the values |^. To solve
this problem an exact algorithm combining the lagrangean relaxation and a
method of columns generation is proposed. Experimental results show that
problems with up to 125 jobs are solved in less than 8 minutes.
[Azizoglu and Webster, 1997] consider this problem when families of jobs are
defined. When two jobs belonging to two different families are processed
consecutively, a setup time must be considered. Thus, we attribute to
each family a setup time supposed to be independent of the other fam­
ilies. The problem addressed by the authors can be denoted by l\di =

Q; g

d>J2Piy *5'sd,nmit,classes\Fi{E ,T). Azizoglu and Webster present some
properties which enable the determination of an optimal schedule. These
properties are generalisations of results presented in [Hall and Posner, 1991]
in the case where the weights of the criteria are symetrical {i.e. a^ = /3i,
\/i = l , . . . ,n) and if there is only a single jobs class. As for the the prob­
lem without setup times ([VandenAkker et al., 1998a]), Azizoglu and Web­
ster show notably that an optimal schedule exists such that the due date d
coincides with the completion time of a job. Moreover, they show that an
optimal schedule exists in which the jobs completed before the date d must
be sorted by decreasing order of the values ^ whereas those completing after
the date d must be sorted by increasing order of values ^. A branch-and-
bound procedure using the properties introduced, to reduce the size of the
search tree, is then presented. An heuristic based on a filtered beam search is
also proposed. Experimental results show that the exact algorithm can solve
problems with 20 jobs in less than 15 minutes.
[Webster et al., 1998] tackle a similar problem where the due date d is
unknown, i.e. is a variable to be determined. This problem is denoted
by l\di = d unknown, Ssd,'f^'nnit\Fe{E ,T) and is AfV-haid because the
l\di = d> Y^Pi\ Ylwi{Ti-\-Ei) problem is also (see [Hall and Posner, 1991]).
Webster, Job and Gupta remind us that for this problem, insertion of vol­
untary idle times before execution of the jobs is not necessary in order
to calculate an optimal solution. To solve it they propose a genetic algo­
rithm which they compare to the branch-and-bound procedure presented by
[Azizoglu and Webster, 1997]. The computation time allocated to the exact

5.6 AfV-haid problems 187

algorithm is one hour maximum. The experimental results show that the ge­
netic algorithm produces better results than the truncated branch-and-bound
procedure.

• [Gupta and Sen, 1983] are interested in the l\di,nmit\F{Ei,Ti) problem
n

with F{Ei,Ti) = ^{Ei-VTif. To solve it they propose a branch-and-bound

procedure where each node is evaluated by a lower bound which is calculated
using the SPT rule and a neighbouring algorithm. Secondly, an heuristic is
presented. This heuristic is the branch-and-bound algorithm in which certain
nodes are not explored. The choice of non explored nodes is made according
to the following step: consider a constant y > 0 and Xk the number of nodes
generated to obtain the fcth complete sequence (corresponding to a leaf of the
tree). The heuristic terminates the exploration of the tree when Xk-^\ > Yxk-
Some experimental results show that the heuristic is very successful (in both
quality and time).
[Bagchi et al., 1987b] are interested in this problem when all the jobs have
the same due date which has to be determined. The problem obtained is
denoted by l\di — d,nmit\F{Ei^ Ti). Two cases can be distinguished, i.e.

n
the problem with d > / ^ P i (non restrictive case) and the problem with

i=l
n

d < 2 j P i (restrictive case). For each case a branch-and-bound procedure
i=l

which calculates the optimal schedule and due date is proposed. Dominance
conditions are also presented and they allow the second problem to be solved

n

efficiently. Gupta and Sen show that in the case where d = ^/^P^ their

algorithm is faster than that proposed by [Eilon and Chowdhury, 1977].
• [Dileepan and Sen, 1991] consider in the l\di,nmü\F{E,T, C) problem

n
with F(E,T,C) = (1 - a) ^ (i ?) + aC and propose a branch-and-bound

i= i
procedure. Experimental results show that their algorithm is faster than that

n
of [Gupta and Sen, 1983] who solve the l |di |y^(L?) problem.

• [Bagchi et al., 1987a] study the l\di = d,nmit\Fe{^Ef, Y^Tf) problem
and distinguish restrictive and non restrictive problems, i.e. problems for

n n

which d > 2^ Pi ^^d ^ < z2^^' ^^ ^^^ ^^^^ ^^ ^^^^ problem they propose a
2 = 1 2 = 1

branch-and-bound procedure which takes into account dominance conditions

188 5. Just-in-Time scheduling problems

to prune nodes in the search tree. Some experimental results are also pre­
sented.

• Accounting for a criterion linked to the storage costs of semi-finished prod­
ucts is studied by [Fry et al., 1987b] who are interested in the l\di\Fi{C^ T, E)
problem. This problem is J\fV-ha.id because the l|(ii|T problem is also. They
propose a branch-and-bound procedure which uses dominance conditions at
each node of the search tree. Besides, the insertion of idle times between each
job is realised by solving a linear program. This model, denoted by EFLRl,
is presented in figure 5.33. It is solved at each node of the tree by considering
only jobs which have already been sequenced. Experimental results show that
the branch-and-bound procedure solves problems with up to 15 jobs.

Mathematical formulation EFLRl
Data:

Variables:

Objective:

Constraints:

n, the number of jobs,
a,/5,7, the criteria weights,
s{i)y i — 1,..., n, the number of the job in position i,
Pi, i = 1, ...,n, the processing time of job Ji,
di, i = 1, ...,n, the due date of job 3%.
6i, i=l,...,n, length of the idle time inserted before job Ji ,
Ci, i = 1, ...,n, the completion time of job Jj,
£ î, 2 = 1, ...,n, the earliness of job J»,
Ti, i = 1, ...,n, the tardiness of job Ji.

n

Minimise ^{aEs(i) + ßTs(i) + 7^5(0)

Cs(i) — T(^s(i-i) + Es(i-i) — 6s(i) = ds(i-i) +Ps(i), Vz = 1, ...,n
-Cs(i) -\-Ts(i) - Es(i) = -ds(i), V2= l,...,n
Ts(o) = Es(o) = ^s(o) = 0
Es(i) > 0, Vi = l,...,n
T,(i)>0, Vi=l , . . . ,n
^s(i) > 0, Vi = l,...,n

Fig. 5.^3^ Â mathematical model for the calculation of start times for the
l\di\Fe{C,T,E) problem

5.7 Open problems

Few JiT scheduling problems have an open complexity and often we are
concerned with very particular problems.

5.7.1 The Q\di = d unknown^ nmit\Fi{E^T) problem

[Emmons, 1987] is interested in a Just-in-Time scheduling problem where the
machines Mj have different processing speeds denoted by kj. The time nee-

5.7 Open problems 189

essary to process job Ji on Mj is |^ . The complexity of this problem is open.

The objective function Fe{E^T) = aE + ßT can be rewritten in the form

J2{J2^ ^(^- 1) ^ + £ ^ X ̂ P[n-e.-^ihj^ ^ . ^ j ^ ^̂ ^j^^ number of early
j = l e=l ^̂ ' e=l ^̂ '
and on-time jobs assigned to Mj, Uj the number of tardy jobs assigned to Mj
and p[e]j the processing time of the job assigned to position e on Mj. The

common due date d is then defined by cJ = max
^•yPMAy The algorithm
e=l -̂

proposed by Emmons, denoted by HEM3, solves the problem by considering
the jobs in decreasing order of their processing time and by assigning them
to the machines, in such a way as to load them in proportion to their process­
ing speed. This algorithm is a generalisation of the algorithm EEMl which
solves the problem on identical machines. The algorithm HEM3 is presented
in figure 5.35.
Example.
We consider a problem for which n = 1 0 , m = 2, a = 4 and ß = 1.

1 2 i
Pi

1
20

2
18

3
16

4
14

5
12

6
10

7
8

8
6

9
4

10
2 Kj

(z) Al = (Ji), A2 = (J2), Ri = 0, Ä2 = 0.
(ii) 1̂ = 1, 2̂ = 1

Ai = {JuJ3), A2 = {J2), Ä1=0, i?2 = 0.
(in) 1̂ = 2, ̂2 = 1

Al =(Jl,J3), ̂ 2 = (J2,J4), i?l=0, R2=9.
(iv) 1̂ = 1, 2̂ = 1

Ai = (Ji,J3), A2 = {J2,J4), Rl = (J5), R2 = t
{v) ̂ 1 = 1, 2̂ = 2

Al = (Ji, J3), A2 = (J2, J4), îi = (J5), Ä2 = (Je).
(i;z) After the last iteration of the algorithm we obtain:
Al = (Ji, J3), A2 = (J2, J4), Ri = (J9,t/7, J5), R2 = (Jio, Js, t/e)-
(i;n) d = max(36/3; 32/1) = 32. We obtain the schedule presented in figure 5.34.

5.7.2 Other problems

• [Adamopoulos and Pappis, 1996] tackle the l\di unknown^ nmit\Fi{E ,T)
problem. They consider moreover that the weights of earliness and tardiness
are functions of job processing times. To solve this problem, they propose
four branch-and-bound procedures. Each of these is adapted to a particular
definition of the weights. The due dates di are calculated according to the
model SLK.

190 5. Just-in-Time scheduling problems

M.

M.

1

2 J2

Ji J3

60/3 80/3

J4

18

Tf J7 J5

100/3 108/3 120/3

•̂ 10

;
1 Js
34 40

h
50

d=32

Fe(E,T) = 3U/3

Fig. 5.34. The schedule calculated by the algorithm HEM3

ALGORITHM HEM3

/* We assume that pi > . . . > Pn */
/* Aj is the list of early jobs on Mj */
/* Rj is the list of tardy jobs on Mj */
Step 1: /* We compute the lists Aj and Rj */

For 2 = 1 to n Do
If (z < m) Then

/* Job Ji the first one scheduled on Mi */
Ai = {Ji}; Ri = 0]

Else
Let h be such that a{\Ae^ \ - l)/ke^ = min ia{\Ae\ - l)/ke);

Let £2 be such that ß\Re^\/ke^ = _min {f3\Ri\/ke);

If {a{\Ae,\- l)lki, < ß\Re,\/ke,) T h e T
/* Job Ji is scheduled early on M^̂ */
Ae,=AeJ/{Jih

Else
/* Job Ji is scheduled tardy on Mi^ */

End If
End If

End For
Step 2: /* We schedule the lists */

d- max
j=l,...,m

(E^); Kj

All the sequences Rj start at time t = d;
For j = 1 to m Do

Aj starts at time t = d— y^pA^m/kj;
fc=i

End For _ _
Step 3: Print the resulting schedule, aE + ßT and d]

[Emmons, 1987]

Fig. 5.35. An heuristic algorithm for the Q\di = d unknown, nmit\Fe{E,T) prob­
lem

5.7 Open problems 191

• Minimisation of the largest deviation between the algebraic lateness leads
to the determination of a JiT schedule. The l\di^ nmü\ Fe{Lmax^Lmin) prob­
lem with Fe{Lmax^Lmin) = Lmax — Lmin and Lmin = «lin {Li) is treated

i = l , . . . , n

by [Gupta and Sen, 1984]. They only consider the set of semi-active sched­
ules which is not dominant for this problem and propose a branch-and-bound
procedure to solve it. An improvement of the bounds used in this problem is
proposed by [Tegze and Vlach, 1988].
[Liao and Huang, 1991] propose for this problem an algorithm in 0(n^plog(n))

n

time where p = / J Pi- The special feature of this algorithm is in the fact that
i=l

it concerns an a posteriori algorithm for the l\di,nmit\e{—Lmin/L>max) prob­
lem which chooses among the calculated solutions the strict Pareto optimum
which minimises Lmax - Lmin-
Accounting for a criterion linked to the the work-in-process minimisation is
studied by [Sen et al., 1988] who are interested in the l|cfi, nmit\F^{C^ Lmax —
Lmin) problem. They propose a branch-and-bound procedure to enumerate
the set of strict Pareto optima. Given that a convex combination is minimised,
this algorithm only determines the set of supported strict Pareto optima. Ex­
perimental results which are presented show that for a problem with 9 jobs
the average number of supported strict Pareto optima is between 5.2 and 8.3
for an average computation time between 2.4 and 38.1 seconds.

6. Robustness considerations

6.1 Introduction to flexibility and robustness in
scheduling

Scheduling is generally seen as a function with known inputs. For instance,
the set of available machines is supposed to be known and the processing
times of operations are supposed to be fixed. The model used for solving the
problem is supposed to be the most suitable model - even if it is often a model
corresponding to a simplified version of the problem ([McKay et al., 1998]).
However, it is well known that real-word scheduling problems usually are very
different from the mathematical models studied by researchers in academia
([Pinedo, 1995]).
Sometimes, the scheduler does not take care of the real application of its
schedule, because this schedule is only used for simulating reasons. But in a
real-world context, jobs arrive continuously, machines can break down, op­
erators may be absent, critical tools may already been used, raw materials
deliveries can be delayed, preferences of operators are not taken into account,
processing times are not perfectly known, etc. When the schedule has to be
applied the probability to process this schedule exactly as planned is very
low.
In such a context, it is clear that decision makers have to react in real time
to modify the proposed schedule, in order to always have a feasible solu­
tion and the notion of "quality" of a schedule can be discussed. The quality
of a schedule is valid before the schedule becomes on line, but on line, the
problem is to maintain a feasible solution, without blocking problems and if
possible with a good quality. We can notice that an optimal schedule can be
modified very quickly in a real time context, and can lead finally to a very
bad solution, if this apparently optimal schedule was very sensitive to the
perturbations that occur. On the other hand, a schedule with a "not so bad"
value of the objective function may lead to a "not so bad" solution even after
some unexpected events, if it was not too sensitive to the perturbations. This
is the reason why searching for a compromise between the quality and the
robustness of a schedule takes all the sense.

194 6. Robustness considerations

When the scheduler does not take uncertainty into account when build­
ing a solution, the proposed solution is called a predictive schedule and
the solution approach a predictive approach. In order to deal with uncer­
tainty, [Davenport and Beck, 2000] separate solution approaches into two cat­
egories: proactive approaches that take account of some knowledge of uncer­
tainty, and reactive approaches for which the schedule is revised in real time,
each time an unexpected event occurs. [Herroelen and Leus, 2005] distinguish
five approaches in project scheduling, considering also stochastic scheduling,
scheduling under fuziness and sensitivity analysis as possible approaches.
The aim of proactive scheduling is to make the schedule more robust. Several
definitions ([Davenport and Beck, 2000]) have been proposed for robustness
in the hterature. Among others, [Billaut et al., 2005] state that a schedule is
robust if its quality is little sensitive to data uncertainties and to unexpected
events, and for [Leon et al., 1994] a robust schedule is one that is likely valid
under a wide variety of disturbances. [Davenport and Beck, 2000] conclude
that when dealing with uncertainty, it is very likely to employ both proactive
and reactive techniques.
Robustness is related to flexibility, that can be seen as a freedom given in
real time to the decision maker, allowing him to repair the schedule if an
unexpected event or a non modeled constraint makes it infeasible. Flexibil­
ity can take several aspects ([Billaut et al., 2005]). The temporal flexibility
allows a decision maker to start an operation earlier or latter, the sequencing
flexibility allows the decision maker to modify or to define its own sequence
of operations on a machine, the assignment flexibility allows to modify the
assignment of an operation to another resource and finally the mode flexibility
allows to modify the execution mode of an operation (overlapping, preemp­
tion, setup considerations, etc.) in real time.

When considering robust scheduling problems, one difiiculty is to define a
measure of the robustness or of the flexibility that is proposed in real time.
Some approaches in the literature associate two measures to a schedule: a
measure for the robustness or the flexibility, that has to be maximized and a
measure for the quality of a schedule. The measure of the quality is generally
a classical objective function in scheduling like makespan or maximum late­
ness. We focus in this chapter on the approaches in the literature dealing with
robustness and consider more than one criterion. Other approaches dealing
with a single criterion concerning robustness, flexibility, or stability are not
presented here. The interested reader can refer to the more recent surveys of
[Aytug et al., 2005] and [Herroelen and Leus, 2005].

Some of the approaches presented in this chapter propose sequential flexibility
by characterizing a set of solutions. Since these approaches does not explicitly
make any assumption on which uncertainties are considered and how, they
are not really "proactive methods". But since the aim of these methods is to

6.2 Approaches that introduce sequential flexibihty 195

propose to the decision maker some possible decisions related to the sequence
of operations, respecting a given quality of the final solution, and with the
concern to provide robustness, these methods are not only "predictive" ones.
Section 6.2 presents approaches that aim at characterizing a set of solutions
for some scheduling problems. Section 6.3 presents approaches that deal with
single machine problems. Section 6.4 focuses on flowshop and jobshop prob­
lems whilst Section 6.5 deals with resource constrained project scheduling
problems.

6.2 Approaches that introduce sequential flexibihty

6.2.1 Groups of permutable operations

[Artigues et al., 2005] consider a general shop scheduling problem where n
operations have to be scheduled on m machines, rrii denotes the machine al­
located to the processing of operation O«. Each operation Oi has a release date
ri and a due date di and there are precedence relations between some pairs
of operations. Instead of a sequence of operations, the authors associate to
each machine a sequence of groups of operations where the operations within
a group are totally permutable ([Erschler and Roubellat, 1989]). Hence, the
problem is to assign each operation to mutually exclusive ordered groups, so-
called the ordered group assignment problem. An ordered group assignment,
denoted by 77, defines on each machine M^, a sequence gk.ii" ">9k,uk oi Uk
groups where Uk ^ 'rik, the number of operations processed on Mk verifying

Uk J^k

U, 9k,T = {Oi\mi = Mk} and n gk,r = 0-
r = l r = l
Let g{i) denote the group that contains operation Oi. We have \g{i)\ > 1.
We assume that on each machine Mjt, any operation belonging to a group
gk,r has to start after the completion of any operation belonging to group
gk,T-i' In terms of the disjunctive graph, this means that all disjunctive arcs
are oriented from gk,T-i to gk^r-
Let us consider an example with 8 operations: 1 ^ 2 , 3 ^ 4 , 5 ^ 6 and 7 ^ 8 ;
operations 1, 3, 6 and 8 are processed on machine Mi, operations 2, 4, 5 and
7 are processed on machine M2; all the processing times are unitary, all the
release dates are equal to 0 and all the due dates are equal to 4.
The sequence of groups that is represented in figure 6.1 enables to character­
ize 16 schedules, without enumerating them: for any order of the operations
inside each group, the precedence constraints and the due dates are answered.

To evaluate a given ordered group assigment 77, a worst-case earliest comple­
tion time is associated to each operation. The worst-case earliest completion
time Q^ is the maximum earliest completion time of operation Oi among all
the semi-active schedules characterized by 77". Artigues et al. show that all
the worst case earliest completion times can be determined by longest path

196 6. Robustness considerations

QMS
1 1,3 1 6,8 1

1 5,7 1 2,4 1

Fig. 6.1. Example of a sequence of groups

computations in a graph associated with an ordered group assignment. They
provide the steps to build this graph.

The flexibility of an ordered group assignment is intuitively related to the
total number of groups, denoted by #Gps. They also propose, as a measure
of flexibility, the number of characterized sequences, denoted by #Seq. The
quality of an ordered group assignment is given by the quality of the worst
characterized schedule. Thus, if the flexibility increases (the number of groups
decreases), the number of characterized sequences increases and the quality
of the worst characterized schedule decreases. In practice, it is necessary to
reach a compromise between the proposed flexibility and the quality of the
worst characterized solution. To tackle this multicriteria scheduling problem,
the authors use the e-constraint approach assuming that the objective is to
maximize the flexibility, respecting a threshold value on the quality.

The authors propose some algorithms for single machine problems. For solv­
ing jobshop problems, a branch-and-bound algorithm is used to optimally
solve the classical J||Cmaa; problem. Then, a heuristic algorithm is proposed
to build groups on machines, starting from the known optimal solution, i.e.
given the optimal sequence of jobs on each machine. A maximum deviation A
on the makespan value is given, which leads to the definition of deadlines for
all jobs and then algorithms for single machine problems are used iteratively.
Artigues et al. notice that for problems with n > m, a high level of flexibility
can be reached for an acceptable increase of the worst case makespan.

[Esswein et al., 2005] tackle three classical two-machine shop problems: the
F2\\Cmax, the J2\\Cmax and the 02\\Cmax problems. A measure for the flex­
ibility is proposed:

2n-#Gps
^ 2n-2

so that if all the operations are assigned to the same group, the flexibility
is equal to 100% (one group per machine), and if there is only one oper­
ation per group (no flexibihty), (j) is equal to 0%. The authors search for
a compromise between the flexibility and the worst characterized schedule.

6.2 Approaches that introduce sequential flexibihty 197

Heuristic algorithms with interesting worst-case performance ratio are pro­
posed to solve these problems. For the flowshop problem, one interesting
result is that a heuristic algorithm enables to provide high flexibility even if
the upper bound on the quality is set to the optimal makespan value.

The presented concept of ordered group assignment is equivalent to the con­
cept of ordered assignment introduced by [Wu et al., 1999].
It can be noticed that this concept of groups of permutable operations
has been implemented in a real time workshop scheduling software package
ORDO^, used now in more than 60 companies ([Billaut and Roubellat, 1996]).

6.2.2 Partial order between operations

[Aloulou, 2002] considers a single machine environment where release times
are associated to the operations. In order to propose not only a single solution
to the decision maker, but a set of solutions, Aloulou proposes to characterize
a set of solutions 5 by a partial order between operations. Two criteria are
associated to measure the quality of a partial order. Since it is not possible
to enumerate all the characterized solutions, only the quality of the best
characterized solution and of the worst characterized solution for both criteria
are determined ([Aloulou et al., 2004]). We denote by Z^^'^'iS) and Z^^^'^iS)
the value of the best and the worst characterized solution for criterion Z^,
1 < f c < 2 .
Finally, the performance of a partial order between operations is a function of
these four parameters plus the coordinates of the Utopian point (minimimum
of each criterion when considered separately, denoted by Z^ and Z2). Figure
6.2 illustrates the definition of the quality of a set of solutions.

Z2

Utopian point

y m a x

r^min

Z2
A/f *

•

•

•

•

•

•

•
1
1
1
1
1
1

1

1

1
1

zr zr zr
Zi

Fig. 6.2. Quality of a set of solutions characterized by a partial order of operations

A measure of the performance of a solution S is given by the following rela­
tions.

198 6. Robustness considerations

D{S) = aDiiS) + {1 - a)D2{S)

^k ^k

with a and ßk real parameters belonging to the interval [0,1].
The smaller the value D{S) the best the solution 5.

The ideal measure of the sequential flexibility is the number of characterized
solutions, i.e. the number of "linear extensions of a partially ordered set",
but this problem is #P-complete as shown by [Brightwell and Winkler, 1991].
Thus, Aloulou measures the sequential flexibility by the number of non-
oriented edges in the transitive graph representing the partial order, i.e. the
number of non fixed precedences. This measure is denoted by Zseqfiex • A s a
measure for the temporal flexibility, Aloulou proposes to compute the mean
slack, where the slack is determined with the worst possible starting time for
each operation. This measure is denoted by Ztempfiex-
[Aloulou, 2002] provides a genetic algorithm to find solutions that minimize
a linear combination of D{S)^ Zseqfiex and Ztempfiex-

[Policella, 2005a, Policella, 2005b] considers a resource constrained project
scheduling problem with minimum and maximum time lags. The aim is to
propose a set of solutions with an implicit and compact representation of
this set. The author introduces a partial order schedule (VOS), i.e. a set of
feasible solutions to a scheduling problem that can be represented by a graph
with the activity on nodes and with arcs to represent the constraints between
activities, such that any "time feasible" schedule defined by the graph is also
a "feasible" schedule. The makespan of a VÖS is defined as the makespan
of its earliest start schedule, where each activity is scheduled to start at its
earliest start time.

Some metrics are proposed to compare VOS [Policella et al., 2004]. Two met­
rics give an evaluation of the flexibility and one measure gives an evaluation
of the stability of the solutions found.
The first measure for evaluating the flexibility is Zseqfiex (as defined in
[Aloulou and Portmann, 2003]). The second metric is based on the slacks
associated to the activities:

stackfiex i^ H xnx(n-l)

with ti and Ci the starting time and the completion time of activity z, H the
horizon time and n the number of activities. d{tl, t2) is the distance between
the two time points ti and ^2- This metric characterizes the fluidity of a

6.2 Approaches that introduce sequential flexibihty 199

solution, i.e. its availability to absord temporal variation in the execution of
activities. The higher the value of Zslack flex the higher the probability of
localized changes.
To measure the stability, [Policella et al., 2004] introduce a third measure,
called disruptibility, denoted by Zdisrup and defined by:

1 v ^ sli
^disrup — / . • / • A \ n^numn^Ai)

1 = 1

with sli the slack of activity i (difference between latest and earliest starting
times) and num{i, Ai) a. function that returns the number of activities that
are shifted in the process if activity i is shifted to the right for Ai time units.
For solving the problem, [Policella et al., 2004] propose several heuristic al­
gorithms. The more efficient is called the two-step ESTA^ procedure (for
Earliest Start Time Algorithm with a post processing phase), that first com­
putes a solution and then translates it into a flexible VOS.

6.2.3 Interval s t ruc tures

[La, 2005] considers the l\ri^di\Lmax problem and aims at proposing a set
of solutions to the decision maker. An interval [ri,di] is associated to each
operation Oi and an interval structure is defined based on [Allen, 1981]'s
relations. Let us consider two intervals A and B, during(A,B) is true if and
only if rß < r^ < d^ < dß. A top of an interval structure is an interval T
such that for all A, Aliens' relation during (A, T) never holds. Given a top Tai
a T-pyramid Pa is a set of intervals A such that during(T, A) holds.
[Erschler et al., 1983] show that a set of dominant sequences is composed by
sequences such that:

• the tops of intervals are sequenced in the r̂ increasing order {di in case of
equality),

• before the first top of interval, are sequenced the operations that belong to
the first T-pyramid in the ri non decreasing order,

• after the last top of interval, are sequenced the operations that belong to
the last T-pyramid in the di non decreasing order,

• between two tops T^ and Tk^i are sequenced first the operations that
belong to Pk and not to P/e+i in the di non decreasing order ; then the
operations that belong to Pk O Pk-\-i in an arbitrary order ; and finally the
operations that belong to P/c+i but not to Pk^ in the r̂ non decreasing
order.

Figure 6.3 illustrates an interval structure for the following example: n = 6
operations, release dates r = (2,1,0,6,4,8), due dates d = (3,5,10,7,9,11).
The tops of this interval structure are operations Ti = 1, T2 = 4 and T3 = 6,
and the T-pyramids are Pi = {2,3}, P2 = {3,5} and P3 = 0. This inter­
val structure characterizes the following sequences: (3,2,1,5,4,6), (3,2,1,4,5,6),

200 6. Robustness considerations

(3,1,2,5,4,6), (3,1,2,4,5,6), (2,1,3,5,4,6), (2,1,3,4,5,6), (1,2,3,5,4,6), (1,2,3,4,5,6),
(2,1,5,4,3,6), (2,1,4,5,3,6), (1,2,5,4,3,6), and (1,2,4,5,3,6).

H — I — I — h H — \ — h
9 10 11 0 1 2 3 4 5 6 7

^ — I — \ — h
3 4 5 6 7 8 9

Fig. 6.3. Illustration of an interval structure
10 11

La proposes one measure for the flexibility and two measures for the quality.
The flexibility is equal to the number of characterized sequences, which is
equal to 119=1 (^ + 1)"̂ ^ with P the number of pyramids and riq the number
of operations different from a top, that belong exactly to q pyramids. For the
example, Ylq=.i{Q + l)""" = (1 + 1)^ x (2 + l) i x (3 + 1)^ = 4 x 3 x 1 = 12
sequences.
Two measures are associated to each operation: its best possible lateness and
its worst possible lateness, both computed in 0 (n log n). The quality of a set
of solutions is measured by the maximum of the best possible lateness for
all the operations, denoted by max(L^^") and by the worst possible lateness,
denoted by max(L^^'^).
A branch-and-bound algorithm is proposed to characterize a set of solutions.
Problems with 100 operations are solved in less than two seconds on the av­
erage, and enable to characterize up to 10^^ sequences.

A base of an interval structure is an interval B such that for all A, Allen's rela­
tion during(B, A) never holds. Given a base Ba, a ^-pyramid Pa related to Ba
is the set of intervals A such that during(A,B)a holds. [Briand et al., 2005]

6.3 Single machine problems 201

use the concept of 6-pyramid to characterize a subset of optimal sequences for
the F2\\Cmax problem. Two interval structures are defined: an interval struc­
ture with the jobs such that pi^i < pi^2' an interval [pi,i,Pi,2] is associated to
these jobs; and an interval structure with the jobs such that pi^i > pi^2' an
interval [pi,2,Pi,i] is associated to these jobs. A huge number of solutions are
characterized in polynomial time, including all the Johnson's sequences.

This characterization can be considered as robust since the interval structures
do not change if the relative order of the processing times pi,i, pi^2 remains
unchanged.

6,3 Single machine problems

6.3.1 Stability vs makespan

[Wu et al., 1993] address the problem of rescheduling jobs after a disruption
has occurred on the single machine of the system. Heads and tails are asso­
ciated to each operation. As a consequence of this disruption, a particular
operation has an additional and unforeseen processing time. Two conflicting
scheduling objectives are considered: (1) to minimize the makespan and (2)
at the same time to minimize the system impact due to the disruption.
The authors assume that the machine returns to service at time to- A subset
of jobs denoted by iV' have to be rescheduled. The original schedule is de­
noted by SQ.

The makespan criterion is obtained by totally rescheduling the jobs of N\
after an updating of ready times: r̂ = max(ri, to), for any operation i oi N'.
A new schedule Sm is computed by using the algorithm of [Carlier, 1982].
Two measures are proposed for the system impact criterion. In order to min­
imize the deviation from the original sequence, operations of N^ are right-
shifted, using up idle times each time it is possible. We denote by Sr the
right-shift schedule.
The first measure for the system impact criterion is the average absolute start
time diff'erences from the original schedule 5o. We denote by U the starting
time of operation i in the first schedule and f/ in the new schedule S. The
total start-time deviation is given by:

DoiS)=^\t^-U\
i£N'

The second measure is based on the right-shift schedule Sr- The total start-
time deviation is given by:

Dr{S)=J2\ti-t'i\
ieN'

202 6. Robustness considerations

The authors search for the set of efficient schedules and use a Unear com­
bination of criteria to explore the frontier. They propose two sets of local
search heuristics: pairwise swapping methods and local search based on ge­
netic algorithms. All these methods are comparable in terms of quality, but
one pairwise swapping method requires the least computation time. Results
show that the stability can be improved significantly with little sacrifice in
efficiency (measured by the makespan).

6.3.2 Robust evaluation vs distance to a baseline solution

[Sevaux and Sorensen, 2004] study a single machine problem in which the
objective is to minimize the total weighted number of late jobs, denoted by
l|r-, |[/. They propose a genetic algorithm to solve this problem in its standard
version, thus using a fitness value f{S) equal to the sum of the weights of the
late jobs in solution S. This evaluation is called "the quality of a solution":

n

f{S) = ^wjUj

Then, they propose to obtain robust schedules. Assuming that the solution S
has been obtained with problem data P , that represents the characteristics of
the jobs, the fitness can be denoted by / (S , P) . The solution S is implemented
on a modified set of data, denoted by P^, and evaluated by / (5 , Pi). A weight
Ci is associated to the set of data Pi according to its importance and m
denotes the number of derived data sets to evaluate.
The fitness function is replaced by a "robust evaluation function" denoted
by f*{S) and defined by:

1 = 1

This function measures the quality robustness. The robustness of a solution is
defined by the authors as "a property of a solution that is similar to a given
baseline solution x^, i.e. for which the distance to the baseline solution is
small". The distance between two schedules can be interpreted as the number
of changes that have to be made to the first schedule to turn it into the second
one, a change being an insertion of a job into the schedule, a deletion of a
job or the substitution of a job by another one.
The robustness of a solution is measured by two objectives: the quality ro­
bustness and a small distance to the initial solution. The decision maker
searches for a compromise solution for these two measures. The genetic algo­
rithm proposed by Sevaux and Sorensen generates non dominated solutions
that improve both criteria iteratively.

6.4 Flowshop and jobshop problems 203

6.4 Flowshop and jobshop problems

6.4.1 Average makespan of a neighbourhood

[Jensen and Hansen, 1999] consider a jobshop environment with makespan
minimization. They define the neighbourhood of a jobshop schedule 5, de­
noted by Afis)^ as the set of all the feasible schedules that can be created
from s by interchanging two consecutive operations on the same machine.
Notice that s G Af{s). The robustness of a schedule 5, denoted by R{s), is
defined by a weighted average makespan of the schedules in the neighbour­
hood of s. The weight function w{s, 5') reflects the expected probabilities of
encountering schedule 5' in J\f{s). The robustness of schedule s is defined by

This objective function can be seen as the agregation of the criteria of the
makespan of neighbour schedules, including the makespan of 5, that is also
to minimize.
Jensen and Hansen propose a genetic algorithm to solve the problem. When
the fitness is evaluated, the makespan is calculated for the original schedule 5,
and for a number of its neighbours. The objective value on which the fitness
is based is set to the mean of these calculated makespans. The acceptance of
new individuals is defined as follows. Individual s is replaced by its offspring
o if Cmax{o) < Cmax(s) + {Cmax{s) - LB)5, with LB a trivial lower bound
and (5 < 1 a given value.
Tests are conducted on classical instances of the jobshop literature: some in­
stances of [Lawrence, 1984] and the well-known instance FTIO of
[Fischer and Thompson, 1963]. Jensen and Hansen show that it is possible
to limit the number of makespan evaluations by choosing a random subset
of neighbours in M{s)^ and to obtain robust solutions in a more reasonable
computation time.

6.4.2 Sensitivity of operations vs makespan

[Kawata et al., 2003] consider the classical jobshop problem referred to as
J\\Cmax' They notice that in general, many minimum makespan schedules
exist and they propose to select the best solution among the optimal ones.
They assume that the optimal makespan value is known and they consider
only active schedules. The authors denote by Ej the sensitivity of operation
j , and by Wj the set of operations which start time will be delayed if the
completion time of operation Oj is delayed by one time unit. The sensitivity
is defined by Ej = \Wj\.

204 6. Robustness considerations

The robustness of a schedule is defined by i? = max Ej. This definition impUes

that the smaller the value of R the more robust the associated schedule. The
authors propose a branch-and-bound algorithm to find a schedule with an
optimal makespan value and then with an optimal robustness value, i.e. they
solve the J\\Lex{Cmax,R) problem. The proposed method can only solve
problems with up to 10 jobs and 5 machines.

6.5 Resource Constrained Project Scheduling Problems
(RCPSP)

Concerning robust and reactive resource constrained project scheduling prob­
lems, [Herroelen and Leus, 2004] propose a review and a classification of the
procedures. Two types of robustness measures are presented: the solution ro­
bustness, related to the insensitivity of the activity start times to changes in
the input data; and the quality robustness, related to the insensitivity of the
schedule performance. However, most of the described approaches focus on a
single criterion.

6.5.1 Quality in project scheduling vs makespan

[Icmeli-Tukel and Rom, 1997] explain that most of the studies in RCPSP
literature consider as an objective function the makespan minimization or
the Net Present Value maximization. They notice that the problems deci­
sion makers are facing are more complicated than those studied in the project
scheduling literature. They indicate that generally, the objective is to max­
imize the quality, where the quality is measured by the degree to which a
project's outcome conforms to the customer's requirements and the degree
to which the project completes within budget and on schedule. Their objec­
tive is then to eliminate the reworking associated with incorrectly completed
activities.
Icmeli-Tukel and Rom explain that many activities of a project need to be
totally or partially reworked to achieve the full customer satisfaction. This
rework requires additional resources, usually in the form of overtime, that
is more expensive than regular time. This creates an additional cost called
the reworked cost. Of course, the rework can also have some impacts on
the project duration. They consider that the total amount of reworked time
and of reworked cost are bounded. They propose two mixed integer linear
programs, that are solved by using OSL software. The objective function is
defined by Z = Qi + Q25 where Qi and Q2 represent the proportion of the
total reworked time used and of the total reworked cost used, respectively.
These variables cannot really be considered as criteria, gathered into a linear
combination since they are not confiicting. The computational experiments

6.5 Resource Constrained Project Scheduling Problems (RCPSP) 205

conducted by the authors show that one model performs better than the
other.

[Haouari and Fawzan, 2002] tackle the same problem. They define the quality
of a schedule by three factors: the performance, the conformance to specifica­
tions and the robustness of the design. They consider that the performance
is indicated in the makespan measure of the schedule. The conformance to
specifications consists in respecting activities requirements, resource capaci­
ties and precedence constraints. The robustness of the design is the degree to
which the planned schedule could be achieved as intended even if undesirable
conditions occur.
Haouari and Al-Fawzan define the robustness of a schedule as its ability to
cope with small increases in the duration of some activities. The problem is
modeled as a bi-objective problem. They define sk as the slack of activity O^,
i.e. the amount of time an activity can slip without causing a project duration
increase. A weight wi is associated to each activity and the robustness of a
schedule is given hy R = Ylo eü'^i^^i^ ^^^^ ^ ^^^ ^̂ ^ ^^ activities. The 7-
field of the problem notation is {R,Cmax) with R to maximize and Cmax to
minimize. The authors propose several versions of a Tabu search algorithm
to approximate the set of efiicient solutions.

6.5.2 Stability vs makespan

[Van de Vonder et al., 2005] propose a heuristic to generate stable solutions
to the RCPSP. A weight Wi is associated to each activity O^. This weight
denotes a relative cost of starting the activity one time unit earlier or later.
Stability is measured as the weighted sum of deviations between planned and
actual activity start times. Instead of building a semi-active schedule, gen­
erating stable schedules consists in introducing idle times between activities,
in order to absord uncertainty during the process, like a duration increase.
The proposed solution procedure works as follows. The problem is solved
to optimality for makespan minimization, using the branch-and-bound pre­
sented by [Demeulemeester and Herroelen, 2002]. The project due date is
fixed to ^C^ax ^^^ the float floati of each activity Oi is computed. Let
ti{BB) denotes the start time of activity Oi in the optimal solution and
ti{S) the starting time of activity Oi in the solution under construction. We
have ti{S) = ti{BB) + a^ x floati, and a^ is called a float factor. In or­
der to build feasible solutions, i.e. without resource conflicts, the insertion
procedure presented by [Artigues and Roubellat, 2000] is used to determine
interesting float factors. This heuristic is called RFDFF by the authors.
Then, Demeulemeester and Herroelen consider the critical chain approach of
[Goldratt, 1997] who introduces some buffers in order to protect the project
due date from variability in the critical chain activities. This method is de­
noted by CC/BM in the paper.

206 6. Robustness considerations

The authors propose computational experiments to investigate whether it
is advantageous to protect a schedule only for makespan performance or
also for stability. They study the impact of a lot of parameters (number
of activities, weighting parameters, ...) and conclude that the advantage of
the two scheduling approaches depends on the project characteristics.

7. Single machine problems

7.1 Polynomially solvable problems

7.1.1 Some l|rfi|C,/max problems

In this section we provide various results for single machine problems involv­
ing criteria C and fmax'> where fmax refers to a maximum increasing function
of completion times. We first focus on the l|di|e(C/Lmax) problem since cri­
terion Lmax is a particular case of the function fmax- Next we briefly review
the results available for the general l|<ii|e(C//max) problem.

The l |di|C, Lmax problem

The early paper met in the literature is due to [Smith, 1956], and deals with
a particular case of the l|di|e(C/I/max) problem where Lmax = 0 is imposed.
The algorithm of [Smith, 1956] is extended to the l|di|e(C/Lmax) problem by
[Heck and Roberts, 1972], who propose an a priori algorithm. An a posteriori
algorithm for this problem is provided by [VanWassenhove and Gelders, 1980].
This algorithm represents a major step in multicriteria scheduling and it has
led to numerous similar, exact or heuristic, algorithms. Its principle is as
follows. For a fixed value e, a strict Pareto optimum is determined using a
greedy algorithm which combines the rules SPT and EDD. The constraint
Lmax < e is equivalent to imposing deadUnes on jobs, and so, the algorithm
proceeds backward, starting from the last position. At each position, a list
of eligible jobs is calculated and among this one the SPT/EDD priority rule
is applied to select the job to schedule. The next value e is deduced from
the built schedule. The a posteriori algorithm, denoted by EWGl, is pre­
sented in figure 7.1 and requires, as shown by Van Wassenhove and Gelders,

n
0{in? log(n)p) time with p = /^Jpi-

Example.
We consider a problem for which n = 5.

i
Pi
di

1
3

23

2
5

22

3
6

24

4
7

22

5
9

18

208 7. Single machine problems

ALGORITHM EWGl
/* T is the set of jobs to schedule */
/* We assume that pi < P2 ^ • • • ̂ Pn */
Step 1: /* Initialisation of the algorithm */

n

/* Initialisation of the deadlines */
di = di •{- e, Vi = 1,..., n;
End=FALSE; E = 0;

Step 2: /* Computation of the set E */
While (End=FALSE) Do

• L = T;S = $;
/* We use a modified version of the rule SPT */
While ((End=FALSE) and (L 9̂ 0)) Do

F = {Jie L/di > Y^ pkh
Jk^L

If (F = 0) Then End=TRUE;
Else

Let Ji G F be such that pi = max(pfc);
JfcEF

/* Break ties by choosing the job */
/* with the greatest due date */
S = {Ji}/IS;
L = L- {Ji};

End if:
End While;
If (L = 0) Then

E = E + {S};
€ = Lmax{o) — 1;

di = di -\- e, Vi = 1,..., n;
End=FALSE;

End if;

Step 3:
End While;
Print E;

[VanWassenhove and Gelders, 1980]"

Fig. 7 .1 . An a posteriori algorithm for the l\di\e(C/Lmax) problem

(i) e = 30, di = [53; 52; 54; 52; 48]^, End=FALSE and E = 0.
(ii) L = {Ji , J2, J3, J4, J5}, Si = 0.
F = {Ji,J2, J3, J4, J5}, 2 = 5, Ä = (J5).
F={Ji, J2, J3, J4}, i = 4, Ä = (J4, J5).
F = {Ji , J2, Ja}, z = 3, 5i = (Ja, J4, J5).
F = {Ji , J2}, i = 2, Ä = (J2, Ja, J4, J5).
F = {J i} , 2 = 1, 5i = (J i , J2 , Ja , J4 , J5) , End=TRUE, Lmax(5) = 12 and
C(5i) = 76.
F = { (J i , J 2 , J a , J 4 , J 5) } .
End=FALSE, e = 11, di = [34; 33; 35; 33; 29]^.

7.1 Polynomially solvable problems 209

(iii) L = {Ji, J2, J3, ^4, Js}, S2 = 0.
F = {Ji, J2, J3, J4}, i = 4, 52 = (J4).
F={J i , J2 , J3 , J5} , i = 5, 52 = (J5,J4).
F = {Ji, J2, Ja}, 2 = 3, 52 = (Ja, J5, J4).
F = {Ji, J2}, i = 2, 52 = (J2, Ja, J5, J4).
F = {Ji}, i = 1, 52 = (Ji, J2, Ja, J5, J4), End=TRUE, Lmax(52) = 8 and
C(52) = 78.
E = {(Ji, J2, Ja, J4, J5); (Ji, J2, Js^Jb, J4)}.
End=FALSE,€ = 7, Ä = [30; 29; 31; 29; 25]^.
(iv)L = {Ji,J2,J3,J4,J5}, 5a = 0.
F = {Ji,Ja}, z = 3, 53 = (J3).
F — {Ji, J2, J4, J5}, i = 5, 53 = (J5, J3).
F = {Ji, J2, J4}, z = 4, 53 = (J4, Js, J3).
F = {Ji, J2}, z = 2, 53 = (J2, J4, Js, J3).
F = {Ji}, i = 1, 5a = (Ji, J2, J4, Js, Ja), End=TRUE, Lmax(53) = 6 and
C(53) = 80.
E = {(Ji, J2, J3, J4, Js); (Ji, J2, J3, Js, J4); (Ji, J2, J4, Js, J3)}.
End=FALSE,e = 5, di = [28; 27; 29; 27; 22]^.
(v)L = {Ji,J2,J3,J4,Js}, 54 = 0.
End=TRUE, L ^ i/}.

Experimental results show that for a problem having 50 jobs there may be
up to 29 strict Pareto optima.
Prom step (iv) of the above example, it appears that schedules of set E are
quite similar from one Pareto optimum to the next one. Let's take the two
first ones, namely sequences (Ji , J2, J3, J4, J5) and (Ji , J25^37 Js? J4)- They
only differ by job J5 which, giving the Lmax value in the first schedule, is
scheduled earlier in the second one. The same remark holds for job J4 be­
tween the second and third schedules. This yields the conclusion that, in the
EWGl algorithm, when calculating one strict Pareto optimum few changes
must been done from the one calculated at the previous iteration. [John, 1984]
provides results in this vein, however we present here more accurate results.
They provide mathematical insights on the enumeration problem.
We first define an instrumental notation: we write Ji y Jj iff {pi > pj) or
{Pi = Pj and di > dj). Besides, we denote by a^^^ the schedule builds by the
EWGl algorithm at the fcth iteration of Step 2, and Nj ^ refers to the set of
unscheduled jobs when choosing a job for position j of a^^^ (it is exactly the
set L in figure 7.1), whilst Rj = X^̂ ^̂ (fc) Pi- Consider that we are building

a sequence a^^^ in the EWGl algorithm. Then, we define the slack of job Ji
if scheduled in position j as the gap before meeting its deadline:

G('̂ >(i)=| ^P-Rf^ ifJi€7Vf
^ \ — 00 otherwise

the value d\ ^ is the value of the deadline of job Ji at the fcth iteration of

210 7. Single machine problems

Step 2 in the EWGl algorithm. A negative slack Gj \i) indicates that job

Ji cannot be scheduled in position j in a^^\ Let us define 5- ^ as the set

of jobs Ji with a positive gap Gj \i) and it is clear that 5J ^ is the set of

candidate jobs for position j in schedule a^^^ in the EWGl algorithm (it is

exactly the set F in figure 7.1). We now define the slack of schedule a^^^ as

follows: first, we define Â ^ as the slack of the job scheduled in position j in

a^^\ ie, \f^ = Gf\a^^\j)). Accordingly, the slack Â ^̂ of schedule a^^^ is

defined by Â '̂ ^ = mini<j<n(AJ ^). It is clear that jobs giving the slack of a
given schedule are those which yield the maximum lateness value, equal to
(e-A^'^)).
In the EWGl algorithm, schedule a^^'^^^ is built from schedule a^^^ by de­
creasing the job slacks, hence yielding to a change in the positions in a^^^
with a slack value of A '̂̂ .̂ Assume that different positions in sequence a^^\
noted Qu and called critical positions, are such that X% = X^^\ All jobs

Qu

in a critical position in a^^^ are scheduled earlier in a^^'^^\ Let us refer to
Q^^^ as the set of these critical positions and we refer to qi ^ as the maximal
critical position in Q^^\ We now define the target position associated to a
critical position, the former corresponding in a^^^ to the best candidate for
being scheduled in (j(^+i) in the critical position.

Definition 50 The target position, denoted hylu\ associated to the critical
position qi is the index that satisfies the three conditions:

3. v / e {lll^^ + l;...;qi'^-l}, aW(t) ^ 8^% or (aW(i) e S%, crW(e^) •<
Qu \ Qu

Qu /

Condition 1 of the above definition states that the job in a target position can
be scheduled in the corresponding critical position. Condition 2 implies that
the target position is not itself a critical position and condition 3 implies that
if there is another candidate job for a critical position it cannot be scheduled
in the critical position in a^^'^^\

We denote by li ^ the minimal target position in a^^^. Notice that each posi­
tion Qu has at most one associated lu and if there exists one position QU
with no associated target position, then schedule a^^^ is the last strict Pareto
optimum calculated by the EWGl algorithm.

P r o p e r t y 8 In a^^\ \/qi^^ G Q^^\ \/i G {li^^ + l]...]qi^^}, a^^^^) y

7.1 Polynomially solvable problems 211

Proof.
We show the result exhibiting a contradiction. Assume that there exists a po­
sition JQ e {li^^ + 1;...;^!^^} such that job a^^\li^^) y cT^^\jo). Using defini­
tion 50, we know that cT^''\li^^) can be scheduled in position qi ^ in a^^\ Since
we have d\ ^ — Rj < d] ^ — Rj_i, Vi = l , . . . ,n, Vj = l, . . . ,n, we know that

can be scheduled in all positions u < qu\ including jo. But job jo has
been assigned to this position, which means that either {P(rW(jQ) > P„(k)(iW)) or

(P<r('^Hjo) = Pa('^)(ii^^) ^^^ ^^^(^Hjo) ^ l̂̂ (fc)(iL*'>)̂ ' ^^^^ contradicts the assumption

ih8it(j^^\li''^)>-a^^\jo)n

P r o p e r t y 9 Letj be a position which is not critical in a^^^ • ̂ f^j = N.

then,a^^^^\j) = (j^^\j).

(k)

Proof.
Straight forward. D

We are now ready to s ta te how to build the strict Pareto opt imum cr̂ ^^+i)
making rearrangements on a^^^.

T h e o r e m 17 Schedule cr̂ '̂ "̂ ^̂ is obtained from schedule a^^^ only by ex­

changing in a^^^ jobs in positions [x, ...,^*] where x ^̂ the minimal position

of the jobs scheduled in a higher position in a^^'^^^ than in a^^\ We have

Proof.
We prove the result by showing how can be built ö-(̂ +i> by using a^^ and starting
from the last position. Remember that Vi = 1, ...,n, d̂ = di — Â '̂ ^ — 1.
Consider the last position, and assume without loss of generality that g* < n. We
have Nn = Nn = {1, . . . ,n} . Hence, as position n is not a critical position and
thanks to property 9, the same job is scheduled in position n both in schedules a^^^
and a^^'^^\ and we have -^(^-1) = -^(n-i)- Using the same argument for positions
(n - 1) to # ^ + 1, we prove that a^^-^^\i) = ^(^^(i), Vz G {qi^^ + 1, . . . ,n} .
In the second part of the proof, we consider jobs scheduled in positions x^ "">Q* •
First consider that x = I* • We start with position qi ^ and assume that the crit­
ical position corresponding to that position is qv . Due to definition 50 and since
q^^^ = ql \ job a^^\lv) is scheduled in position qi ^ in a^^^^K Remember that
cT^^Hqi'"^) y (J^^Hli^^), which yields Ä^^+'^ > R^'^l, . Therefore, set 5^^+'^

contains a subset of S^ L) plus job cr^^\qi) . Without loss of generality, as-
(qv - 1)

sume that either position (qv — 1) is not a critical position either (qv —1) = li
(otherwise apply the same reasoning and consider position (qi — 2)). We have two
different possible configurations: either G^^\qv — 1) ^ ^ Ik) or not. In the latter

case, assume that there exists a job JTT, scheduled in cr^^"^ in a position in {1,. . . , /I ^},

212 7. Single machine problems

such that JTT is the greatest job in S^ ("|̂) . Therefore it is scheduled in a^^'^^^ in

position {qi —1). Hence, we can update x a-nd set x — min(r^'^^(7r); x), with r^^'^{n)
the position of job JTT in a^^\ That process can be iterated until position x £̂ nd it is
straightforward that schedule a^^^^^ may be different from a^^"^ between positions x
and qi \ When considering a critical position qw in {x,..., Q'* } two situations can
occur. Either job a^^\lw) has not already been scheduled in a^^'^^'^ in a position
greater than gi, , either it was also the target position of another critical position
^x > Q'u; • In the former case, exactly the same reasoning than previously can be
applied for position q^ (i.e. job a^^\lw) is scheduled in cr̂ '̂ "̂ ^̂ in this position).
In the latter case, another job J^ such that J^x -< (j^^\lw) -< cr^^\qw) is scheduled
in position qi, ^ in a^'^^^\ and x = min('r^^HM);x)> with r^^\ij.) the position of job
J ^ i n a (^) .
For the third part of the proof, we only need to consider positions from (x — 1) down
to 1. We can easily check that no job scheduled in a^^' in a position greater than
or equal to x is scheduled in cr̂ '̂ "''̂ ^ in a position lower than x? since otherwise we
would violate the previous definition of x as a job scheduled in a smallest position
than X in <^^^^ would need to be scheduled after position x in a^^'^^K Hence, it fol­
lows that -^L^i) = -^Li i) - Property 9 yields the conclusion that Vj = 1,..., (x — 1),
^(fc+i)^^-^ = cr^^\j) which gives the last part of the proof.D

It is interesting to notice tha t the proof of the above theorem gives a way to
compute the value x when building schedule (j^^+^\ We can also derive tha t
each job in a critical position in a strict Pareto optimum a^^^, is scheduled
earlier in any other strict Pare to optimum a^^^ with k' > k. Henceforth,
from theorem 17 it appears tha t start ing from a^^^ we can build the next
strict Pare to opt imum a^^'^^'^ by applying Step 2 of the algorithm EWGl
only between positions x ^^^ qi . A modified version of this algorithm is
proposed by [Esswein et al., 2001].

Example.
Let us consider the previous example in which we applied algorithm EWGl al­
gorithm. Three strict Pareto optima have been found: a^^^ = (J i , J2, Ja, «/4, Js),
cr^'^^ = (J i , «/2, Js, Jby JA) and a^^^ = (J i , J2, J4, J5, Jz)- Notice that Ji ^ J2 < Jz <
JA -< J5.
Assume that we have already calculated cr̂ ^̂ and we want to build (7^^\ The slacks
are given in the following table.

i
5
4
3
2
1

1

23
32
39
45
50

2

22
31
38
44
—00

3

24
33
40
—00

—00

4

22
31
—00

—00

—00

5 1
18
—00 1
—00 1
—00 1
—00 1

pn
18
31
40
44

1 50
The slack of a^^^ is equal to Â ^̂ = 18 = e - Lmax{(J^^^)-

7.1 Polynomially solvable problems 213

There is only one critical position q{ ' since there is only one position with a
slack equal to 18, i.e. q'^^ = qi^^ = 5 and Q^^^ = {qi^H. Notice that S^]l =

{Ji , «/2, JZ.JA, J S } - By applying definition 50 the target position associated to q^'

is equal to l\' — l);^ = A since job J (i) = JA G S^^^ has the largest processing

time. The interested reader can check property 8. The examination of the proof of
theorem 17 shows that x = ^1^^ = ^i^^ As /l^^ + 1 = q^*^ sequence cr̂ ^̂ is built from
(7̂ ^̂ by swapping jobs in positions /; ^ and qi in (T^^\

The same reasoning can next be applied on a^2) to deduce a^^\

From the previous results we can derive a result, differently proved by
[Hoogeveen and VandeVelde, 1995].

T h e o r e m 18 The number of strictly non dominated criteria vectors is at

most equal to ^ 2 + 1? ^^^ ^^^ hound is tight.

Proof.
For a given schedule G^^\ we define for each job Ji a maximal position r^lx{i) at
which it can be scheduled, i.e. Vj > Tinaxii), Gj (i) < 0. Besides, Vz = l , . . . ,n,

VnJ J> AC, Tmaxx'^) S: 'rmax\'^) •

Notice that if there exists more than one critical position equal to 1, a^^^^^ does not
exist and a^^^ is the schedule with the smallest C value among all feasible schedules.
It can be generalized in the following way: if there exists a position j G {1, ...,n}
such that there is more than j maximal positions Tmax{i) lower than or equal to
j , schedule cr^^'^^^ does not exist. Hence to guarantee that a^'^^^^ exists we have to
check that Z7=i ^mix W > (1 + 2 + ... + n) = ^ ^ i ^ .
To determine the maximum number of strictly non dominated criteria vectors, we
need to compute the greatest value of k such that a^^^ exists but not a^^'^^K Let
us start with Tr^äx(i) = n, \/i = l , . . . ,n, which means that Y^^=i'^rnax{i) = n^-
As at least one job, which is in a critical position, has a maximal position that is
decreased while building a^'^'^^^ from cr^^K Assume that in the worst case exactly
one maximal position is decreased by one unit. We have '^^P~'^) < YH^=
S r = i '^r^ax{i) — k-{-l = n^ — k-\-l and the maximal k value is achieved for '^\^~^) 4-1.
To prove that this bound is tight, consider any instance with two jobs where pi < p2
and di > d2' The only two sequences correspond to strictly non dominated criteria
vectors and we have 2(l) /2 + l = 2.

The above theorem leads to the conclusion that the algorithm EWGl has not a
pseudo-polynomial time complexity, since the numuber of strict Pareto optima cal­
culated by this algorithm is bounded by '^^^~^) -\. i . Consequently, the algorithm
EWGl requires 0{n^ log(n)) time.D

[Nelson et al., 1986] also study this enumeration problem for which they pro­
pose a branch-and-bound algorithm which determines a subset of the set of

214 7. Single machine problems

weak Pareto optima. Dominance conditions are used to improve the efficiency
of the algorithm.

[Sen and Gupta, 1983] study a similar problem which involves the minimisa­
tion of criteria C and Tmax- They are implicitly interested in the determina­
tion of weak Pareto optima, because they seek to determine the optimal solu­
tions for the l\di\Ft{T^^^,C) problem with F^(r„,ax,C) = aT^ax + (1 - a) C
and a € [0; 1]. In order to solve it. Sen and Gupta propose a branch-and-
bound algorithm which enumerates the set of solutions minimising all the
possible convex combinations of the criteria. Following the results presented
in chapter 3, we deduce that the calculated solutions belong to the set WEQ.

T h e l|di|C,/max problem

[Emmons, 1975a] is interested in the minimisation of the criteria C and /max
via the l||I/ea;(/inax,C') problem. To solve this, Emmons proposes a greedy
algorithm based on the algorithm of [Lawler, 1973] for the l\prec\fmax prob­
lem.
[John, 1984] studies the l||6(C//max) problem for which he proposes an al­
gorithm which determines the set E, This algorithm starts with an optimal
sequence for the l||Lex(C,/max) problem. Initially, we set e to the value of
the fmax criterion of this solution minus 1. To compute one strict Pareto op­
timum, a l||e(C//max) problem with e fixed is solved. Under the assumption
that fmax is a reversible function, this problem can be reduced to a l |di|C
problem, which is polynomially solved by Smith's backward algorithm (see
[VanWassenhove and Gelders, 1980]). After the current solution has been
computed, the value e is updated to the value of the fmax criterion found
and the procedure is iterated. John provides results to improve the compu­
tation of the current strict Pareto optima, knowing the one computed at the
previous iteration. Prom one strict Pareto optima to the other, only parts of
the sequences are changed by permutations of jobs. This may reduce the prac­
tical average complexity. John shows that the complexity of this algorithm is
in 0{in?X) with X being the number of strict Pareto optima. He also shows
that X <\{n^- l){pmax -Pmin) if n is even and that X < \n^(pmax -Pmin)
otherwise, with pmax = niax {pi) and pmin = min (pi).

i = l , . . . , n i = l , . . . , n

[Hoogeveen and VandeVelde, 1995] are also interested in this problem. They
propose an algorithm based on a greedy method to determine a strict Pareto
optimum when e is fixed and they next describe an a posteriori algorithm
which determines the set E by making e vary. Classically, this approach en­
ables us to determine a subset of the set WE. Nevertheless, Hoogeveen and
Van de Velde show that the a posteriori algorithm does not generate the weak
Pareto optima which are not strict. Similarly, they show that the cardinality

7.1 Polynomially solvable problems 215

of the set E is at most n{n — l) /2 + 1. This upper bound is clearly more
precise than that proposed by [John, 1984].

7.1.2 The l\si,pmtn,nmit\Fi{C,Pmaix) problem

In the previous section regular maximum criteria have been investigated to­
gether with the total completion time criterion. The case of a particular non
regular criterion is considered by [Hoogeveen and van de Velde, 2001]: the
maximum promptness. To any job Ji let Si be the associated desired start­
ing time, which can merely seen as a release date that can be violate at a
certain cost. Let Pi{cr) = Si — ti{a) be the promptness of job Ji in a given
schedule cr, and Pmax = TocidiXi<i<n{Pi) is the maximum promptness. This
criterion is minimised simultaneously with criterion C via a convex combina­
tion aC -\- {1 — a)Pmax • Preemption of jobs is allowed but not the insertion of
voluntary idle times between jobs except before the first job of the exchange.

Hoogeveen and van de Velde study the enumeration of the optimal solutions
of the above objective function for all values of a (in fact only one optimal
solution per a value is calculated). This corresponds to the enumeration of
the supported strict Pareto optima. In fact, this enumeration is achieved by
an algorithm which iteratively solves l\si^pmtn,nmit\e{C/Pma,x) problems
and obtains a set of strict Pareto optima which comprises the supported
ones. This algorithm works in a way similar to algorithm EWGl. First, the
l\si,nmit\Pmax problem is solved by the MTST rule: ^^schedule at each time
t the job with the smallest desired starting time^^. Let P^ax ^^^ ^^^^ ^e the
obtained criteria values which constitute the first Pareto optimum calculated.
For any value e > P^^ax^ ^^^ corresponding e-constraint problem is equivalent
to the l\ri = Si — e^pmtn\C problem which can be polynomially solved by
applying the SRPT rule: ^'schedule at any time t the job with the smallest
remaining processing time among those available^^. This leads to a new Pareto
optimum. The main question is how to obtain the set of e values such that the
solution of the corresponding e-contraint problems are the supported strict
Pareto optima. The solution algorithm proposed by Hoogeveen and van de
Velde calculates a bigger set of e values, i.e. for some e value in this set the
corresponding optimal solution is a non supported optimum. However, they
do not provide information on the fact that their algorithm enumerates or
not the whole set of strict Pareto optima. The basic idea on which is based
the algorithm is that, starting from a previously calculated strict Pareto
optimum cr, it is necessary to increase e of such a quantity that there is an
interchange of two jobs in a. If this does not occur the optimal solution of
the €-constraint problem cannot be a supported strict Pareto optimum. The
detained algorithm, denoted by EHVl, is presented in figure 7.2.
Hoogeveen and van de Velde show that there is at most n(n—l)-f-l supported
strict Pareto optima. As the SRPT rule requires 0{n'^) time, the EHVl al-

216 7. Single machine problems

ALGORITHM EHVl
/* T is the set of jobs to schedule */
Step 1: /* Initialisation of the algorithm */

Apply rule MTST to solve the l\pmtn\Pmax problem and let
Pmax be the optimal solution value;

Apply rule SPT to solve the 1 HC problem and let P^£, be the Pmax
value of the calculated solution;

e = P* '
*- •'• m a x ?

TT = 0; tti = + 0 0 , Vi = 1,. . . , n ;
End=FALSE; Es = 0;

Step 2: /* Computation of the set Eg */
While (End=FALSE) Do

Apply rule SRPT to solve the l\pmtn,ri = max(0, Si — e)|C
problem and let a be the optimal schedule;

Es = EsU {a};
Let Jfc be the job that starts at time TT in a;
/* We compute the minimal increase in e to get the next

strict Pareto optimum */
If (Jfc is a preempted job) Then

Ofc = Pfc(7r) where Pki^r) is the length of the portion of
job Jfc that starts at time TT;

7r = Ck{<7);
Else

f̂c = {Jj/sj - e> tk{cr) and pj > pk};
ük = mmj.^rp^i^Sj - e - tfc(cr));
7r = Cfc(cr);

End if;
If (TT < YJ^^^ Pi) Then Goto Step 2;
e = minj=i,...,n(aj) -h e;
If (e = PmTx) Then End=TRUE;

End While;
Step 3: Remove from Es the non supported solutions;

Print Es\
[Hoogeveen and van de Velde, 200if

Fig. 7.2. An a posteriori algorithm for the \\si^pmtn^nmit\Fi{C^Pmax) problem

gorithm requires 0{n^) t ime. They also show tha t the problem without pre­
emption but with a > 0.5 can be solved in O(n^) time.

7.1 .3 T h e l\pi G [pAPi],di\Fi{Tmaa^,CC) p r o b l e m

[Vickson, 1980b] is interested in a bicriteria scheduling problem where the
processing times of jobs are decision variables. This problem is denoted by
l|Pi ^ [v_]Pi]',di\Fi{Tmax^CC). The criterion CC is called the crashing
time costs criterion and represents the weighted sum of the slack of processing

n
times in relation to the maximum allowed times, i.e. CC^ = ^ K ; ^ ^ ^ with

7.1 Polynomially solvable problems 217

Xi G [0;Pi —p.]. The variable Xi represents the amount of compression of job
Ji for which the processing time is equal to pi — p^ — xi. Notice that the

expression oTmax + ßCC is equivalent to the expression Tmax + CC , We
consider here therefore that F^ (Tmax ? CC) = Tmax

+ CC , This type of
criterion has an application, for example, in hoist scheduling problems where
the soaking times of the items, assimilated with the processing times, are
not determined in advance. In project scheduling problems we also find an
application of such a criterion. The second criterion studied by Vickson is the
criterion Tmax which is formulated for these problems by:

i

TmaxiS) = .^ax^(max(0; J2^Ps[j] " ^sij]) - dsii]))-

where S[i] refers to the ith job in schedule S. To solve the bicriteria prob­
lem, Vickson proposes a mixed integer program and a polynomial algorithm,
denoted by ERVl (figure 7.4), which requires 0{'n?) time. A sequence of
jobs is initially obtained by applying the rule EDP and by considering that
Pi = Pn ^^ = l,. . . ,n. We have therefore CC = 0 and a compression en­
abling us to reduce the value of the criterion Tmax^ increases the value of the
criterion CC . The algorithm ERVl initiates therefore a series of compres­
sions such that the reduction of Tmax from one time unit compensates the
increase of the criterion CC .

Example.
We consider a problem for which n = 4.

i

Pi
Pi

Wi

di

1
1
3
1
3

2
2
4
0
4

3
3
5
4

10

4
1
3
2

12

(i) S = (Ji,J2, J3, JA) and pi = [3; 4; 5; 3]^.
Tmax = 3, CC"" = 0 and Fe{Tmax,'CC^) = 3.
k = 2.
(ii) The solution S is not optimal.
(iii) j = 2 , 6j = 2 , Tiax = 0_aild 6j < (Tmax - Tlax)'

Pi = [3; 2;5;3]^, Tmax = 1, CC"" = 0 and Fe(Tmax,CC^) = 1.
(iv) The solution S is optimal because Vj' < k/pj > p., Wj > 1. The schedule S is

presented in figure 7.3 and J- max + CC =1.

[VanWassenhove and Baker, 1982] are interested in the l\pi G [p.;Pi],c!i|

^{Tmax/CC) problem for which they propose a greedy algorithm which
determines the set of strict Pareto optima. The complexity of this algo­
rithm is in 0(71^) time. It is then extended to the more general case of a
criterion fmax defined by fmax = i^ax {gi{Ci)). The functions gi{t) are

218 7. Single machine problems

J.

0 3 5 10 13

Fig. 7.3. The schedule calculated by the algorithm ERVl

ALGORITHM ERVl
/* T is the set of jobs to schedule */
/* We assume that c/i < (̂ 2 < • • • < <̂n */
/* p. , minimum processing time of job Ji, Vi = 1, ...,n */
/* p^, maximum processing time of job J j , Vi = 1, ...,n */
Step 1: /* Initialisation of the algorithm */

Pi =Pi, Vi = l , . . . , n ;

5 = (J i , J 2 , . . . , Jn); Tmax = m a x (0 ;
i= l , . . , ,n

Let Jk be such that max(0; Ck — dk) — Tmax]
/* Break ties by choosing the job with the smallest value d */

Step 2: /* We check if the current solution is optimal */
If {(Tmax = 0) or (pi = p., Mi = 1,..., k)) Then

I Goto Step 4;
End If;
If {{Tmax > 0) and {wi > 1, Vi = 1,..., k such that pi > p.)) Then

/* The decrease oiTmax from one time unit does not */
/* compensate the increase of CC */
Goto Step 4;

End If:
Step 3: /* Improvement of the schedule */

Let Jj be such that j < k, pj > p., Wj = min {wi);
~J i=l,...,k,pi>p^.

^3 = Pj ~ 2 •' /* Maximum compression */

T^a,x= max (max(0;Ci-c/ i)) ;
If {Sj < {Tmax - Tiax)) T h c U

/* We do a maximum compression of job Jj */
Pj = p . ; Tmax = Tmax - Sj] CC^ = CC"" + Wjdj\

Else
/* We reduce criterion Tmax until T^^ax */
Pj "^ Pj ~ \-i-max ~ J-max)r J-max = -l-max'i

O G = G G "{- Wj\Imax — J-max)\

Let Jk be such that max(0; Ck — dk) — Tmax]
/* Break ties by choosing the job with the smallest value d */

End If:
Goto Step 2;
X f l l l t u 5 1 max 5 O O 5 Step 4:

. d i) ; C C ^ = 0;

[Vickson, IQSQbT

Fig. 7.4. An optimal algorithm for the l\pi 6 boPil?di\Fi{Tmax',CC'") problem

file:///-i-max

7.1 Polynomially solvable problems 219

assumed to be non decreasing and such that an order of jobs verifying
9i{t) > 92{t) > . . . > gn{t), yt>0 exists.

7.1.4 T h e l\pi G [pr,Pi],di\Fi{C,CC) problem

[Vickson, 1980b] studies the minimisation problem of criteria C and CC via
the l\pi € [p.;Pj]\Fi{C,CC) problem and shows that this problem can be
reduced to an assignment problem solvable in 0{n^) time.
[Chen et al., 1997] consider the problem with integer processing times, de­
noted by l\pi e [p.;Pi] n N\Fe{C,'CC^), The criterion ÜC^ is defined by

n

CC = 2_]^iiPi ~Pi) where Ci is an increasing cost function. Chen, Lu and
2 = 1 _ _

Tang also assume that Vi,j, 1 < z,j < n^p^ — p. = Pj — P- They propose
to reduce the problem to an assignment problem by introducing costs Vi^k
of scheduling job Ji in position k in the schedule. More precisely, Vi^k is the
contribution to the objective function of job Ji if it is scheduled in position
k. We have:

Vi^k = min {(n - fc + l)(p + j) + aip^ - p - j)}.

Notice that we can deduce, from the value of j which gives the minimum,
the value of the exact processing time pi if job Ji is scheduled in position k:
p^ —p-\-j. When the costs Vi^k ai"^ computed the problem can be reduced to
an assignment problem that can be solved in 0{n^) time. A integer program,
denoted by ECLT2, of this problem is introduced in figure 7.5.

7.1.5 Other problems

Minimisation of K increasing functions of the completion times

[Hoogeveen, 1992b] studies the general problem of the minimisation of K
functions of the completion times, denoted by fT^ax ^^^ assumed to be
increasing. We have fma,x{>^) = max f]{Cj{S)) with f] being also in-

j = l , . . . , n •' -f

creasing functions. Hoogeveen proposes an a posteriori algorithm for the
l|k(/max//max' " ^ fmax) problem and distinguishes both bicriteria and mul-
ticriteria cases.
First case: K = 2. Hoogeveen shows that a modification of the algorithm of
[Lawler, 1973] enables us to solve the problem optimally when the bound e
is fixed. The complexity of the algorithm is in 0{'n?) time and the number of
strict Pareto optima is at most n{n —1)/2 + 1 . He then proposes an algorithm
which determines the set E in 0{n'^) time.

220 7. Single machine problems

/ * Vi,k =

Data:

Variables:

Objective:

Constraints:

Mathematical formulation ECLT2
,n,\/i = l , . . . ,n, V

min {(n - A; + l)(p + j) + Ci(pi -p - j)} */

n, the number of jobs,
Vi^ki i = 1, •.., n, A; = 1,..., n, the cost of assigning the job Ji
to position k.
yi,k, ^ = 1, ...,n, A; = 1, ...,n, boolean variable, equal to 1 if
job Ji is assigned to position k, and 0 otherwise.

Minimise ^^i;i ,fc2/i ,fc
i = l fe=l

n

Y^yi,k = 1, Vi = l , . . . ,n
fc—1

n

^2/i,fc = 1, VA;= l , . . . ,n

yi,fc e {0; 1}, Vij= j ^ ..., n, Vfe = 1,..., n

Fig. 7.5. An MIP model for the l\pi e \p.;Pi]nN\Fe{C,CC) problem

Second case: K > 2. In the general case with K criteria, the cardinality of the
set E is at most {n{n — l) /2 +1)^~^ . The algorithm proposed by Hoogeveen
to determine this set is an extension of the one proposed for the case K = 2.
Its algorithmic complexity is in 0{n^^^^^^~^) time when K >3.

Minimisation of the average weighted completion time

[Chen and Bulfin, 1990] study some bier iter ia scheduling problems with unit
processing times. This kind of study sometimes enables us to find com­
plexity results for some problems. Sometimes, it is possible to find an ap­
plication of such problems in computing systems, or even more according
to Chen and Bulfin, in car production shops as for example with Toy­
ota (see [Monden, 1998]). Chen and Bulfin are interested in the l\pi =
l,di\Lex{C^,Z2) problems with Z2 G {r,T^,C7,C7'^,rmax}, for which they
propose greedy algorithms, in 0(nlog(n)) time, based on the rule WSPT.

Moreover, Chen and Bulfin study the l\pi = l,di\e{C / Tm&x) problem
for which they propose an algorithm which enumerates the set E, The
l\pi = l,di\Fe{C^, Z2) problems with Z2 G {T,T^,!7,17^} are similarly ad­
dressed. Chen and Bulfin state that the algorithm of [Aneja and Nair, 1979],
which enables us to solve a bicriteria assignment problem, can be easily mod­
ified to solve these problems. Thus, they propose to determine the set E
whereas the approach Fe only enables us to compute solutions of the set
Es in the case where the solutions set is not convex. Chen and Bulfin also

7.1 Polynomially solvable problems 221

tackle the l\pi = l^di\Lex{Z\^C) problems with Zi e {T ^U^U jT^ax}?
and show how to reduce these problems to an assignment problem solvable in
0{n^) time. For the l\pi = l,di\Lex{T^C) problem they propose a greedy
algorithm in 0(nlog(n)) time.

Minimisation of tool changing costs

• [Gupta et al., 1997] study a problem in which M. customer orders are
taken into account. Each one of these orders, denoted by Oj, Vj = 1,..., A^,

M

is composed of rij jobs. The number of jobs to schedule is equal to n = /]nj.

Moreover, we suppose that k predefined classes of jobs Bi exist and that
\Oj n Be\ = 1, \fj = 1, ...,jV(,V^ = 1, ...,fc. Each order contains exactly one
job of each class. Moreover, the processing of two jobs J[i] and J[i-fi] {J[i]
refers to the job in position i) belonging to different classes induces a setup
cost, denoted by 5C[i]ji_|_i], depending on the class of J[i+i] and which is
equal to the corresponding setup time. The aim is to minimise two criteria:

- The cost of changing tools which is defined by SC = y^SC[i-.i]^[i]. We

notice that the minimisation of this criterion leads to the minimisation of
criterion Cmax,

M
- The carrying cost, which is defined by AC = ^^ max (0; Ci — Ce). Such

T ^ JiyJi€Oj

a cost may appear, for example, when partial processing of an order implies
that it is stored waiting for the complete processing of the order.

Gupta, Ho and Vanderveen consider that trade-offs between the criteria
AC and SC are forbidden, because a lexicographical order Lex{SC,AC)
is defined between these criteria. The problem addressed is denoted by
l\classeSj orders, Ssd\Lex{SC, AC). An optimal schedule for the criterion SC
is such that all the jobs in the same class are processed consecutively and the
minimisation of the criterion AC leads then to schedule classes on one hand,
and the jobs within these classes on the other hand. An optimal algorithm
in 0 (n log(A^)) time is proposed.

• [Gupta et al., 1997] are next interested in the opposite lexicographical prob­
lem, that is to say in the l\classes, orders, Ssd\Lex{AC, SC) problem. Gupta,
Ho and Vanderveen show that an optimal schedule for the criterion AC is
such that all the jobs belonging to the same order are processed consecutively.
Among all these jobs the first to be carried out is the one having the greatest
sum of processing and setup times. The aim becomes therefore the determi­
nation of a sequence of orders as well as the jobs completing these orders, in

222 7. Single machine problems

a way that the criterion SC is minimised. This problem can be reduced to a
particular case of the travelling salesman problem for which they propose an
optimal algorithm in 0{n) time.

Minimisation of due date based criteria

[Chen and Bulfin, 1990] are interested in problems where the jobs have unit
processing times. They consider the l\pi = l,di\Lex{T ^Z]) problems, with
Zl e {Ü.Ü'"} and theJL|p^= l,di|Lex(!7,Z|) and l\pi = l , d i | L e x (f r , Z |)
problems with Zf = {T, T } which they model as an assignment problem
solvable in 0{n^) time. Chen and Bulfin also study the l\pi = 1, di\Lex{Ty Z])
problems for which they propose an optimal greedy algorithm. Besides, they
state that for the l\pi = 1, di\Fe{U, Zf) and l\pi = 1, di\F£{U , Zf) problems,
the algorithm of [Aneja and Nair, 1979] can be modified easily to determine
the set E. In fact, only the solutions of the set Eg can be determined. Chen
and Bulfin are also interested in the minimisation of the criterion T^ax via
the l\pi = 1, di\Lex{Tmax, Zf) problems, with Zf = {C/, C/ , T }, which they
reduce to an assignment problem. Likewise for l\pi = l,di|6(Z2/Tmax) prob­
lems.

7.2 A/'P-hard problems

7.2.1 The l | d i | T , C problem

This problem has been tackled by [Lin, 1983] who proposes an a posteriori
algorithm. This problem is J\fV-haid because the l\di\T is also. Lin proposes
dominance conditions between jobs, which are valid in all strict Pareto sched­
ules. To determine the set E, a dynamic programming algorithm which in­
tegrates these dominance conditions is described. This algorithm is based on
the multicriteria dynamic programming algorithm introduced by [Yu, 1978]
and [Yu and Seiford, 1981]. At each phase j , Vj = 1, ...,n, we deal with the
set, or state e^, of the considered j jobs. Therefore, there are at each phase
j , j possibilities or decisions Xj, to schedule a job in the first position in the
set ej. We note T the set of the n jobs to be scheduled and we define for each
decision Xj G ej a criteria vector rj{ej,Xj) by:

rj{ej,Xj) = [max (^ Pk-^Pj- dj,0); X^ PA: + Pjf-
Jk^T—Cj Jk^T—Cj

We can therefore define the recurrence function by:
^jiej.Xj) = min {Fj-i{ej - {xj},Xk))+ rj{ej,Xj).

Xk£ej — {xj}

This function is therefore a vector which is composed of the values of the
criteria T and C of the best schedule having the job Xj in the first position of

7.2 AfV-haid problems 223

the set ej. We set Fo(0,0) = [0; 0]^ and we search the criteria vectors which
are not dominated among the vectors Fn{T, Jk), "iJk ^ T.

Example.
We consider a problem for which n = 4.

i
Pi
di

1
1
2

2
2
7

3
3
5

4
4
6

(i) At phase 1, we consider all the possibilities of scheduling a job in last position.
We have therefore:

ei

Xl

n (e i , x i)
i^i(ei,a;i)

{^1}
9

Ji
[8; 10]^
[8; 10]^

{J2}
8

J2
[3; 10]^
[3; 10]^

Us}
7

Ja
[5; 10]^
[5; 10]^

{^4}
6

J4
[4; 10]-̂
[4; 10]^

(ii) After having calculated phases 2, 3 and 4 we obtain strictly non dominated
solutions [5; 20]^ and [4; 21]^. Each result corresponds to a sequence:

• (Ji, J2,0/3, J4) for which T = 5 and C = 20. We notice that it is also an optimal
solution for the 1||C problem,

• («/i, «/a, J2, «74) for which T = 4 and C = 21. It is also an optimal solution for the
11 |T problem.

The set of solutions in criteria space is represented in figure 7.6. The non dominated
criteria vectors are indicate in the figure using small circles.

Experimental results presented by Lin show that for a problem with 12 jobs
the maximum computational time is under 5 seconds and the maximum num­
ber of strict Pareto optima is about 96.

7.2.2 T h e l\ri,pi G [p.;Pi] n N | F £ (C ^ a x , C C) problem

This problem with integer controllable processing times has been tack­
led by [Chen et al., 1997]. The processing times are defined as follows: (i)
Pi ^ [P.'^Pi] n N, and (ii) Vi,; ft - p = p- - p = k.
This problem is shown to be jv 7^-hard by reduction from the knapsack prob-

n
lem. The criterion CC^ is defined by CC^ = ^ ^ ^ (f t — p i) . When the

processing times are known the problem is polynomially solvable by using
the rule Shortest Ready Time first Thus the major difficulty lies in comput­
ing the optimal values of the processing times. To this purpose, Chen, Lu and
Tang provide a dynamic programming algorithm of which the time complex­
ity is in 0{kntmax) where tmax is an upper bound on the optimal Cmax value.

224 7. Single machine problems

.C

Fig. 7.6. The set of criteria vectors

defined by tmax = max (r^) -f / Pi- Without loss of generality assume that
i = l , . . . , n ^—^

1 i=l
^1 < ^2 ^ ••• < ^n- F{j^t) is the value of the objective function when con­
sidering only the sub-sequence (l , . . . , j) with a makespan value equal to t.
We have F{j,t) = min l^'iÜ',^)}, Vj = 2,...,n, Vt = 0,„.,tmax' The

i=l , . . . , (A;+l)

function gi{j^t) is the value of the objective function for the sub-sequence
(1, . . . , j) , with a makespan equal to t and if the job Jj has a processing time
equal to pj = {p. +i — 1). Therefore we have:

QiU^t)

F{j

GO

1,^

+Cj{p. + i

{p.+i
-3

1))

1) if t > Vj + p. -{- i — 1

otherwise
-J

Notice that from the value of i which gives the minimum value of F (j , t) we
can deduce the value of pj. The initial conditions of the recurrence relation
are as follows, Vt = 0,..., tmax'

nht) = <

fci(pi) iit>ri-j-pi
ci{p^-hi-l)iiri-^p^-}-i-l=t

and i = l,...,fc
00 ii t < ri -\- p

7.2 AfV-haid problems 225

Besides, pi = g^ + z - 1 if F (l , t) = ci{p^ + i - 1), \/i = l,...,fc + 1. The

optimal solution is obtained by computing min (F(n,t) +1) .
t=U,.. . ^tmax

7.2.3 The l\ri,pi G [p.',Pi]nN\Fi{U ,CC) problem

This problem with integer controllable processing times has been tack­
led by [Chen et al., 1997]. The processing times are defined as follows: (i)
Pi ^ \Pi'^Pi\ nN , and (ii) Vi, j Pi-P-= Pj -p. = k.
First the special case with a common due date is shown to be ÄfV-haid.
Chen, Lu and Tang propose a dynamic programming algorithm which re­
quires 0{nkdjnax) time, where dmax = niax (di). Before presenting this al-

i=l,. . . ,n
gorithm, they show that an optimal schedule exists such that: (i) each tardy
job is scheduled after all the early and on-time jobs, (ii) all early or on-time
jobs are ordered according to the rule EDD, and (iii) For each tardy job Ji
we have pi = p^. At each phase we decide to schedule a job early (or on-time),
or tardy. All the early and on-time jobs are scheduled according to ^he rule
EDD. So, without loss of generality, we assume that di < ... < dn- F{j,t) is
the value of the objective function when considering only the sub-sequence
(1, . . . , j) and when the jobs Ji such that Ci < di do not complete after time
t. We have, Vj = 2, ...,n, Wt = 0,...,dmax'

mt) = {

min{ min (F{j-l,t-{p -j-i - 1))
z=l,...,(fc+l) -J

+Cj{p.+i-l));
F{j-l,t)^Cj{pj)-^wj} iit<dj

00 otherwise

To deduce the value of the processing time p^, Vj = 2,..., n, from the previous
recurrence relation, we have to distinguish different cases:

Pj

Pj iit< dj and F (j , t) = F(j - 1, t) + Cj{pj) + Wj
L d F (i , 0 = F (i - l , t - (p . + 2 - l))

•i-Cj{p. + z - 1), and i = 1,..., {k + 1)

p.-^i-liit<dj andF(j ,^) = F{j -l,t - {p.+i-1))

_ - J

[Pj otherwise

The initial conditions are the following, Vt = 0, ...,cJmaa;*

{ ^^1+^1(^1) ift = 0
ci{p^+ i - 1) if di >t = p^-i- i - 1 Bind i = 1,..., fc + 1
00 otherwise

Besides, the value of pi is given by:

226 7. Single machine problems

Pl if ^ (M) ='"^1 +Ci(Pi)
^ o r F (l , t) = Ci(pi)

^^ ^ o r F (l , t) = oo
p^ + i — 1 if F (l , t) = ci(g + i — 1) and i = 1, ...,fc

The optimal solution is obtained by computing min (i^(n, t) + t).
t=0,...,dmax

Chen, Lu and Tang also tackle the l\di,pi e [p.;Pi] D N\F£{Tmax^ CC)
problem that they show to be A/'P-hard. They provide a pseudo-polynomial
time algorithm based on the dynamic programming algorithm for the prob­
lem with the U criterion. Firstly, we compute T^^a: ^^e optimal value of
criterion Tmax computed by the rule EDD with pi = p^, Vz = l,. . . ,n. By
setting Wi = oo. Mi = 1, ...,n and performing a binary search in the interval
[0; T^^^] it is possible to solve optimally the problem with the Tmax criterion.
For each value z G [0; T^ax]^ fictitious due dates d̂ = d̂ + z, \/i = 1,..., n, are
computed and the corresponding U problem is solved. If its optimal solu­
tion has no tardy jobs, then an optimal solution exists, for the Tmax problem,
such that Tmax < z.

7.2.4 Other problems

Minimisation of the average completion time

• [Azizoglu et al., 1997] study the l\di,nmit\e{C/Ema,x) problem which is
strongly AfV-haid since the l\di,nmit\Lex{Ema,x,C) problem is also (see
[Hoogeveen, 1992a]). Azizoglu, Kondakci and Koksalan propose an a priori
algorithm and restrict the search for a Pareto optimum to the class of sched­
ules with insertion of machine idle times. Dominance conditions are presented
and used in an heuristic which approximates the set WE.
Notice that when the nmit constraint is disabled the bicriteria problem, re­
ferred to as l\di\e{C/Emax), remains strongly A/'T^-hard and reduces to the
l | r i |C problem with ri = di — e — pi, Vz = 1,..., n, and e is the bound on the
Emax criterion. It is possible to design an a posteriori algorithm which main
line is similar to that of algorithm EWGl, except that changing the e value
results in shifting all the release dates and no more the deadlines. Besides, to
enumerate all strict Pareto optima it is necessary to consider all integer values
of e within the time interval [0; Emax{SPT)] where Emax{SPT) refers to the
value of the maximum earliness criterion in the schedule computed using the
SPT rule. The l | r i |C problem has been extensively studied in the literature.
Recently, [Delia Croce and T'kindt, 2002] proposed a recovering beam search
algorithm which is, to the best of our knowledge, the most efiicient heuristic
for this problem. Reported computational results show that this heuristic is
close to the lower bound calculated by using the rule SRPT {Shortest Re­
maining Processing Time first). Notice that this bound has been seriously

7.2 AT^-hard problems 227

improved by [Delia Croce and T'kindt, 2003]. By using the improved lower
bound and the heuristic it is, henceforth, possible to calculate a tight time
interval containing the optimal C value. This latter can be calculated using
the efficient branch-and-bound algorithm proposed by [Chu, 1992].
A lower approximation of the trade-off curve can be obtained by iteratively
calculating the SRPT lower bound (or its improved version), denoted by
LB^^ for all integer values e G \f)\Emax{SPT)\. Similarly, it is possible to
obtain an upper approximation by using the above quoted recovering beam
search algorithm to calculate upper bounds UB^. It is interesting to no­
tice that, Ve, e' > m\ni<i<n{di — Pi), we have LB^ = LB^ + n(e' — e) and
UB' = UB'' +n{e'-€).

• [Emmons, 1975b] studies the l\di\Lex{U, C) problem which has been shown
to be jVT^-hard by [Chen and Bulfin, 1993]. Emmons considers firstly the al­
gorithm of [Moore, 1968] for the l|c!i|{7 problem and shows that this algo­
rithm is not optimal for the bicriteria problem. He proposes then a branch-
and-bound algorithm and shows that the dominance conditions enable us to
prune nodes in the search tree.

• The enumeration of the Pareto optima for the criteria C and U is stud­
ied by [Nelson et al., 1986] who propose an a posteriori algorithm for the
l\di\e{C/U) problem. This algorithm is a branch-and-bound algorithm which
determines a subset of the set of weak Pareto optima. This algorithm proceeds
by determining iteratively a value e, and then by minimising the criterion C
under the constraint U < e. Every level of the search tree contains solu­
tions such that this constraint is verified for the same value e. Besides, they
present dominance conditions which they use to reduce the search space. Nel­
son, Sarin and Daniels propose similarly two heuristics based on the previous
optimal algorithm, i.e. truncated branch-and-bound algorithms, which ap­
proximate a subset of WE. The problem of enumerating the Pareto optima
is taken up again by [Kiran and Unal, 1991] who propose general conditions
for calculating these optima. These conditions are notably related to proper­
ties of the sequence obtained by applying the SPT rule and Smith's algorithm
for the l\di\e{C/Lmax) problem.

• [Nelson et al., 1986] study the l|di|e(C/C/, Tmax) problem for which they
propose a branch-and-bound algorithm which determines a subset of the set
of weak Pareto optima. To increase the efficiency of this algorithm and to
reduce the search space. Nelson, Sarin and Daniels use dominance conditions.

Minimisation of the average weighted completion time

• [Chand and Schneeberger, 1984] propose a dynamic programming algo-

228 7. Single machine problems

'7^=^\ rithm to solve the l\di\Lex{Lmaix,C) problem. They show similarly that
this problem is TVP-hard. Its complexity is also studied by [Hoogeveen, 1992a]
who shows its strongly ATP-hardness.

• [Smith, 1956] studies a particular case of the l|cfi|e(C /Lmax) problem
because he is interested in the minimisation of the criterion C under
the constraint Lmax = 0. This problem is strongly AfV-ha>Yd since the
l\di\Lex{Lma,x^C) problem is also. Smith proposes an algorithm based
on the rules EDD and WSPT, which he conjectures as being optimal.
[Emmons, 1975a] shows by a counter example that this conjecture is false.
This problem is taken up again by [Bansal, 1980] who proposes a branch-
and-bound algorithm to determine the optimal solution, if it exists.
[Chand and Schneeberger, 1986] show that for a certain number of problems
and if a solution with Lmax = 0 exists, the algorithm proposed by Smith
is optimal. This is the case notably for problems where the weights Wi are
defined by Wi = f{pi), with a decreasing function / .
[Heck and Roberts, 1972] study the general problem of the minimisation of
criterion C under the constraint Lmax < e- This problem is strongly ÄfV-
hard due to the fact that: (i) when e is fixed it reduces to the 1 |di|(7 problem,
and (ii) the l|(ii|C problem is strongly ATT -̂hard ([Lenstra et al., 1977]). To
solve this problem they propose an heuristic based on a result presented
in [Smith, 1956]. [Burns, 1976] also proposes an heuristic based on a neigh­
bourhood method. Following this [Miyazaki, 1981] returns to this problem
and shows that it exists a polynomial reduction from the l\di^Lmax ^ ^\ —
problem towards the l|di|— (or l|d^, Lmaa; = 0|—) problem. Thus, we are led
back to the problem which was studied by [Smith, 1956]. Miyazaki proposes
then conditions to improve a sequence by permutation of adjacent jobs. A
neighbourhood heuristic, which uses the heuristic of [Smith, 1956] to obtain
an initial sequence is presented. The complexity of the proposed heuristic is
in 0{n^) time. The experimental results demonstrate its efficiency in com­
parison with the heuristics proposed by [Smith, 1956] and [Burns, 1976]. No
comparison is made with either the heuristic of [Heck and Roberts, 1972] or
the branch-and-bound algorithm of [Bansal, 1980].

• [VanWassenhove and Gelders, 1978] are interested in the minimisation of
the criteria C and T via the l|d^| Fi{C ,T) problem which is strongly
J\fV-ha,id given that the l|<ii|T is also. They propose dominance conditions
based on a result demonstrated by [Lawler et al., 1975] and four resolution
algorithms. The first three are branch-and-bound algorithms which only dif­
fer by the lower bound used at each node. In the first algorithm the lower
bound of a node is calculated by solving a transportation problem applied
to unscheduled jobs at this node. Van Wassenhove and Gelders show how
to construct the transportation cost matrix. In the second proposed branch-
and-bound algorithm, the lower bound of each node is calculated by solving

7.2 AfV-haid problems 229

an assignment problem applied to the unscheduled jobs at the current node.
If the unscheduled job Ji is placed in the non occupied position j then it
is possible to get a lower bound Cij of the contribution to the objective
function of the job Ji. These bounds are used as costs Cij when solving
the assignment problem. Dominance conditions shown by Van Wassenhove
and Gelders are also used. For the third algorithm a method proposed by
[Fisher, 1976] to calculate the lower bounds is used. These bounds are cal­
culated by a dynamic programming algorithm. Finally, Van Wassenhove and
Gelders propose a dynamic programming algorithm, which solves the initial
problem and uses the dominance condition presented. Experimental results
show that this algorithm is faster but requires more memory space than the
branch-and-bound algorithms. They speculate that for problems with more
than 40 jobs the algorithm which combines a branch-and-bound algorithm
and a dynamic programming algorithm is more efficient than the others.

Minimisation of tool changing costs

• [Bourgade et al., 1995] are interested in an industrial scheduling problem
related to the production of glass packaging. The aim of this problem is to
determine a schedule which minimises the maximum tardiness Tmax and the
total tool changing costs on the machine. These costs, denoted by 5C[i_i]ji]
with [i] the job in the ith position, are assumed to be dependent on the se­
quence. The problem tackled is denoted by l|di, Ssd\F{SC, Tmax)- Bourgade,
Aguilera, Penz and Binder propose a mixed integer program and two possible
definitions of the objective function F are considered:

F(5C,rmax) = 5̂ -aE =̂l̂ p̂"""̂ '̂ '̂ -̂'̂ --̂
and F{SC, T^ax) = ^ + max (O; (T^ax - T^ax) x (1 + ^)) ,

with T^ax ^he optimal value of the criterion Tmax for the l|c?i|rmax problem.
The l\Ssd\SC problem is ATT^-hard, since it reduces to the travelUng salesman
problem and then the bicriteria problem is also: it is sufficient to consider
a = 0 in the first function and o; = — 1 in the second. In order to solve these
two problems Bourgade, Aguilera, Penz and Binder propose a branch-and-
bound algorithm. Experimental results show that the solutions obtained by
minimisation of the first objective function F can be dominated solutions.

• [Barnes and Vanston, 1981] tackle a similar problem, which is denoted by
MSsd\Fe{SC,C). This one is A/'T^-hard. Barnes and Vanston show that it
can reduce to the travelling salesman problem and they propose an heuristic
which uses the rule "choice of the closest unvisited town" to calculate a
schedule. They also propose two optimal algorithms. The first is a branch-
and-bound algorithm and the second is a dynamic programming algorithm.
The latter uses a lower bound for each decision to reduce the search space.

230 7. Single machine problems

Experimental results show that the dynamic programming algorithm is faster
than the branch-and-bound algorithm. These results show moreover that the
relative deviation between the heuristic and the optimal solution is on average
0.66%.

7.3 Open problems

7.3.1 The l\di\Ü,Tmaa^ problem

[Shantikumar, 1983] is the first who tackled the minimisation of criteria
Ü and Tmax while solving the l\di\Lex{Ü,Tmax) problem. He proposes a
heuristic and a branch-and-bound algorithm in which dominance conditions
are used to prune nodes in the search tree. Each node is evaluated by a
lower bound, the calculation of which depends on the algorithm presented by
[Moore, 1968] for the l|(ii|i7 problem. No experimental result is presented by
Shantikumar, however later works done by [Gupta et al., 1999a] show that
this exact algorithm is not capable of solving problems with more than 30
jobs in size. Later on, [Gupta and Ramnarayanan, 1996] propose a heuristic
algorithm based on Moore's algorithm for the l|di|l7 problem, and an inter­
change improving procedure.

Up to now the complexity of the l\di\Lex{Ü,Tmax) problem is open but
assumed to be non polynomial by [Gupta et al., 1999a] who propose a branch-
and-bound algorithm to solve it. It is based on several results given below.
The first theorem is trivial and states that once the sets of on-time and tardy
jobs have been fixed (so the value of criterion Ü is determined), the Tmax
criterion is minimised by applying twice the EDD rule.

Theorem 19 [Gupta et al, 1999a]
There exists an optimal schedule in which on-time jobs are sequenced in EDD

order, and tardy jobs are sequenced in EDD order.

The next theorem states a result that can be used to fix a job in the last
position of the sequence. Notice that this result is close to the one used by
Shanthikumar to build his constructive heuristic.

Theorem 20 [Gupta et al, 1999a]
For a given partition of the jobs into a set E of on-time jobs and a set T of

tardy jobs, let Ji £ E and Jj eT be two jobs such that di = vcidiyij^^Eidk) and
dj = maxj^eT(cf/c)- U ^i ^ Y^^=iPk ihen there exists an optimal schedule in
which job Ji is sequenced last. Otherwise, there exists an optimal schedule in
which job Jj is sequenced last.

In the remainder we assume, without loss of generality, that jobs are num­
bered according to the EDD order, i.e. di < d2 < ... < dn- From theorem 20

7.3 Open problems 231

it follows that if dn > Yl^=i Pk then there exists an optimal schedule in which
job Jn is scheduled last. By applying this remark repeatedly we can reduce
the set of jobs to be scheduled. This procedure is applied in a preprocessing
phase which also reduces the size of the instance by trying to determine jobs
which necessarily early of tardy. Let E (resp. T) be the set of early (resp.
tardy) jobs in the schedule, denoted by 5, given by Moore's algorithm for
the l|di|i7 problem. The two following results are applied:

1. Let Jj G E and 5 ' be the schedule obtained by applying theorem 19 on
sets E//{Jj} and T U {Jj}. If Ü{S) ^ Ü{S') then job Jj is necessarily
on-time.

2. Let Jj € T and 5 ' be the schedule obtained by applying theorem 19 on
sets E U {Jj} and T//{Jj}. If Ü{S) ^ Ü{S') then job Jj is necessarily
late.

Henceforth, by applying the whole preprocessing phase we can reduce the
problem size by deriving the set of jobs LP that are scheduled last, the set of
jobs E^ that are necessarily early and the set of jobs T° that are necessarily
late. The set of remaining jobs is denoted by N^.

Starting from this partitioning of the initial set of jobs, a branch-and-bound
process is applied. Each node of the search tree represents a partition of the
set of jobs since, thanks to theorem 19, it is possible to derive the sequencing
of jobs inside each set of early or tardy jobs. Henceforth, from a node s two
child nodes are created by selecting a job Jh G N^ and assigning it either in
E' or in ^ ^ The root node s is defined by E' =E^,T' = T^ and N^ = N^.
The choice of the job Jh to branch from depends on the calculation of the
lower and upper bounds provided by the authors.

The lower bound proposed by Gupta, Hariri and Potts is based on a re­
laxation, at a node s, of the subproblem defined by set AT*. The idea is to
partition iV*, and eventually change the due dates of some jobs, into two
sets E" and T' such that we can prove this partition is optimal for the modi­
fied instance. The relaxation is based on an unproved result provided by the
authors.

Property 10 [Gupta et al, 1999a]
Let n' he the smallest index, where 0 <n^ <\N^\ such that

dn' + T^Ln'^iPk < dj, Vj = n' + 1,..., lAT̂ I, with do = 0.

Ln any schedule with the minimum number of tardy jobs, jobs J^'+i,..., J|iv«|
must be on-time.

The details of the lower bound, denoted by HGHPl, are given in figure 7.7.
This bound requires 0(nlog(n)) time. At each node an upper bound is also
calculated in 0{n'^) time by applying algorithm HGHP2 (figure 7.8). Notice
that for a given node, HGHPl is run before HGHP2.

232 7. Single machine problems

ALGORITHM HGHPl
/* N^ is the set of unscheduled jobs, numbered from 1 to |Ar*| */
/* We assume that di < d2 < ... < d\M^\ */
Step 1: /* Initialisation of the algorithm */

Find n' according to property 10 on AT*;
E = {Jn'+i,. . . , J|iv«|};
£; = T = 0; t = 0;
di = oo, Vi = 1, ...,n;

Step 2: /* Computation of the sets E and T */
Fbr (i = 1 to n') Do

t = t-\-pj', E = EU{Jj}]
If (t > dj) Then

I Let Ji £ E such that pi = maxj^e£?(Pfc);
I di = dj; t = t-pi] E = E-{Ji}; T = TU{Ji}]

End If:
End For

Step 3: /* Computation of the sets E' and T' */
di = di^ ^Ji G T^;

Order T = {Jji,.. . , Jj^} such that dj^ < ... < dj^\
Let the index 1 < z < ^ be such that t + J^^^iPj^ < ein';

Step 4: /* Calculation of the lower bound on the Tmax */
/* using the modified due dates d'i */
LB = Tmax{EDD{T')/t)\ /* EDD{T') starts at time t */
Return LB

[Gupta et al., 1999a]

Fig. 7.7. A lower bound for the l\di\Lex{U,Tmax) problem

Gupta , Hariri and Pot t s also present four dominance conditions, used to
prune nodes of the search tree, one of which being due to [Shantikumar, 1983],
These four conditions are given below.

T h e o r e m 21
A node s is dominated and thus pruned if one on the following condition
holds:

1. ([Shantikumar, 1983]) 3Jj G T^, 3Jk £ E^ such that pj < pk, dj < dk,

and dj — pj >dk—pk'

2. 3Jj € T^, 3Jk G E^ such thatpj < pk, dj < dk, and J2i=iPi ^ ^hi V/i =
l,.. . ,fc.

3. 3Ji, Jk ET^, 3Jj € E^ such that pi < pj, dj <di<dk and dj > dk—pk-
4. 3Ji G T^, 3Jj,Jk G E^ such that pi < pk, di < dk < dj and di > dj —pj.

When applying these conditions special care must be taken to jobs have the
same values of processing times or due dates. Besides, at each node obtained

7.3 Open problems 233

ALGORITHM HGHP2
Step 1: /* Initialisation */

Retreive from HGHPl T, E, E and the d-'s;
Apply iteratively theorem 20 on ^ U £? and T

to build sequence 5;
UB = TmaxiS);

Step 2: /* Improvement of the current seed sequence */
Let Jh be such that Th = Tmax (S)

(break ties by choosing the job with the smallest rank in 5);
If {d'h 7̂ +0O and d^ > dn) Then

Let Jk E: E he the job such that dk = d^;
E = EU {Jh}\{Jkh T = TU {Jk}\{Jhh
Apply iteratively theorem 20 on EU E and T to obtain S]
If (all jobs of EU E cannot be scheduled on-time) Then

I UB'= -\-oo]
End If;
If {UB' < UB) Then

I UB = UB';
Goto Step 2;
End If;

End if;
Step 3: Return UB:

[Gupta et al., 1999a]

Fig. 7.8. An upper bound for the l\di\Lex{U,Tmax) problem

by assigning job Jh to set E^ or T^ they are applied with jobs in N^ assuming
that they will be assumed in T* or E*, respectively.

Gupta, Hariri and Potts conduct intensive testings to evaluate the eflBciency
of their branch-and-bound algorithm. They also compare it to their imple­
mentation of the branch-and-bound algorithm of [Shantikumar, 1983].

The obtained results show that the latter is limited to problems with up to 30
jobs whilst the proposed branch-and-bound algorithm is capable of solving to
optimality problems with up 100 jobs. From the results it appears that, for
most values of n, between one third and one half of the problems are solved
after the preprocessing at the root node. Additional testings show that the
second dominance condition presented previously is the most efficient one
and gives very good results.

[Nelson et al., 1986] study the more general problem which is denoted by
l|(ii|e([//rmax) for which they propose a branch-and-bound algorithm to de­
termine a subset of the set of weak Pareto optima. An heuristic is proposed
which enables us to determine a subset of the set of weak Pareto optima.

234 7. Single machine problems

7.3.2 Other problems

Minimisation of the average completion time

[Pry and Leong, 1987] study the l\di\Fe{E,C) problem for which they pro­
pose a mixed integer program. Experimental results show that the optimal
solution can be determined in less than 100 seconds for problems with 10
jobs.

Minimisation of crashing time costs

[Vickson, 1980a] studies the l\pi G [p.'',Pi]\Fi{C ,CC) problem. Vickson
does not present a study of its complexity but he speculates that this
is A/'P-hard, in contrast to the l\pi € [goP^]! Fi{C,CC^) and l\pi €

\p'',Pi]^di\F£{Tma,x,CC) problems. Vickson proposes a branch-and-bound
algorithm and a greedy heuristic based on the rule WSPT. One case study
shows that the heuristic is capable of sequencing and calculating the optimal
processing time of certain jobs. For other jobs, we have to use the branch-
and-bound algorithm.

8. Shop problems

8.1 Two-machine flowshop problems

In this section we are interested in multicriteria flowshop scheduling prob­
lems with two machines. Each job Ji is processed on the machine M\ for a
duration p^^i, then on the machine M2 for a duration ^^,2- In this context, the
multicriteria scheduling problem which is addressed the most in the literature
involves the minimisation of the criteria C and Cmax- Different scheduling
problems are derived according to the form of the considered objective func­
tion.

8.1.1 The F2\prmu\Lex{Cmax^C) problem

[Rajendran, 1992]

This problem is strongly ÄfV-hdiid ([Chen and Bulfin, 1994]) and Rajendran
proposes two heuristics and one exact algorithm to solve it. These two heuris­
tics, denoted by HCRl and HCR2, use the algorithm ESJl of [Johnson, 1954]
to obtain an optimal initial sequence for the criterion Cmax- Next they per­
form adjacent job permutations which are chosen by two indicators Di and
-D ,̂ generally defined for a sequence 5 and a position r by:

Ds[r] = PS[r],l +P5[r] , 2 - P 5 [r + l] , l - P 5 [r + 1] , 2

^S[r] = 2p5[^],i 4-p5[rl ,2 " 2p5[r+l] , l - P 5 [r + l l , 2

The aim of these permutations is to reduce the value of the criterion C of
the schedule S. The next job to be permutated is determined according to
these indicators. The heuristic HCRl uses the indicator Di and ties between
several jobs are broken using D^. The heuristic HCR2 uses the indicator Z)̂
and ties between several jobs are broken using Di. The heuristic HCRl is
presented in figure 8.1 and the heuristic HCR2 is similar. We frequently refer
in the literature to the best schedule calculated by HCRl and HCR2.

Example.
We consider a problem for which n = 10 and we apply the heuristic HCRl.

236 8. Shop problems

ALGORITHM HCRl
/* T is the set of the n jobs to schedule */
/* ESJl is the algorithm of [Johnson, 1954] for the F2\'prmu\Cmax problem */
Step 1: Apply algorithm ESJl to obtain the schedule 5;
Step 2: Let k be the index in S such that

k fc—1 u u—1

r = l r = l r = l r = l

For r = 1 to n Do
If (r = A; — 1) or (r = fc) or (r = n) Then

Ds[r] = - 1 ;
D'sir] = - 1 ;

Else

End If;

Ds[r] = PS[r],l + PS[r],2 " P5[r+l] , l - PS[r-^l],2\

^S[r] = 2p5[r],l + P 5 [r] , 2 " 2p5[r+l] , l - P 5 [r + 1] , 2 ;

End For;
L = {r/Ds[r] > 0};
Sort L by decreasing order of values Di (break ties by choosing
the job with the greatest value D^);

Step 3: While (L ^ 0) Do
r = L[l];
S' = S after permutation of jobs in positions r and (r + 1);
If {{Cmax{S') = Cmax(S)) and {C{S') < C{S))) Then

I 5 = 6";
I Goto Step 2;

End If;
L = L-{r};

End While;
Step 4: Print 5, Cmax(5) and C(5);

[Rajendran, 1992]

Fig. 8 .1 . An heuristic algorithm for the F2\prmu\Lex{Cmax,C) problem

i
Pi,l
Pi,2

1
5
10

2
6
8

3
7
11

4
10
10

5
10
9

6
8
7

7
13
5

8
7
4

9
10
2

10
2
1

(i) The schedule obtained by the algorithm ESJl is S = (J i , J2, Ja, J4, J5,«/6, J?,
Js^Jg, Jio) and we have C^ox = Cmax{S) = 79 and C(S) = 521.
A; = 10.
(ii) Calculation of the initial indicators

r
^S\r]

^SH

1
1
0

2
-4
-5

3
-2
-5

4
1
1

5
4
6

6
-3
-8

7
7
13

8
-1
-4

9
-1
-1

10
-1
-1

L — {JJIJ^.JA:-, Jl}'

(iii) S = (J l , J2, J3, J4, J5, Je, Js, J7, J9, Jio), Cmax{S) = 79 = C^
521.
J/ = {J5, J4, J l}-

and C{S') =

8.1 Two-machine flowshop problems 237

(iv) S"_= (Ji, J2, Ja, t/45 Je, J5, J7, Js, J9, Jio), Cmax{S') = 79 = C^ax and C(S '̂) =
519<C(5).
We set therefore S = S' and we still have A; = 10.
(v) Calculation of the indicators

r
Ds\r]

^ S H

1
1
0

2
- 4
- 5

3
- 2
- 5

4
5
7

5
- 4
- 6

6
1

- 2

7
7

13

8
- 1
- 4

9
- 1
- 1

10
- 1
- 1

L = {J7, J4, Ji, Js}
We apply the heuristic HCRl until it halts and we obtain the schedule S which is
presented in figure 8.2.

M,

(

M2

J,
)

h h h h J4 J7 1 Js 1 J9
5 11 19 26 36 46 59 66

J, h h h J5 J4 1 h 1 k

J,o
76 78

h ho]
15 23 30 41 50 60 65 70 78 79

Cmax(5) = 79 = C;;ax and Ü(5) = 511

Fig. 8.2. The schedule calculated by the heuristic HCRl

Rajendran also proposes a branch-and-bound algorithm to determine an op­
timal solution. Every node includes a list a of n' scheduled jobs, a set i? of
n — n' unscheduled jobs and two lower bounds. The first bound is an evalu­
ation of the value of the criterion Cmax knowing that jobs in a are already
scheduled. The second bound is an evaluation of the value of the criterion
C, Rajendran uses the bounds of [Ignall and Schräge, 1965] to calculate this
lower bound.
The lower bound on the criterion Cmax is calculated by sorting on each ma­
chine the jobs in i? by increasing order of their processing times. With these
two independent orders we can thus define dummy jobs such that the dummy
job number k the fcth processing time on both machines. The sequence ob­
tained is concatenated at the end of sequence a and the lower bound of the
criterion Cmax is obtained by calculating the value of the criterion Cmax of
this schedule. This evaluation is obviously a lower bound whereas it is possible
to obtain an exact evaluation in polynomial time of the value of the crite­
rion Cmax a-t each node. It is sufiicient to concatenate a with the sequence
obtained by applying the algorithm ESJl on the set i? and to calculate the
value of the criterion Cmax of this new schedule.
This implies that the branch-and-bound algorithm, denoted by ECRl, pro­
posed by Rajendran (figure 8.3) can preserve a node after evaluation whereas

238 8. Shop problems

this does not enable us afterwards to obtain a schedule with an optimal
makespan. The search strategy used is the best first strategy.

ALGORITHM ECRl
/* T is the set of n jobs to schedule */
Step 1: /* Initialisation of the algorithm */

Apply heuristic HCRl to obtain the schedule 5 ' ;
Apply heuristic HCR2 to obtain the schedule S";
/* Initialisation of the upper bound */
If {C{S') < Ü(5")) Then

I S.ref = S';
Else

I S.ref = 5";
End If; _ _
Cmax-ref = Cmax{S-ref); Cref = C{Sjref);
Create the root node SQ: CTQ = 0 ; QQ = T\ Q = {so};

Step 2: /* Main part of the branch-and-bound */
While (Q 7̂ 0) Do

Choose the node si with the lowest value of LB-Q in Q;

Fb r / c= 1 to \Qi\ Do
Select a job Jj in Ü: Q = Q — {Jj};
Create a child node sf^-^: a^^^ = cTi//{Jj}; f^i^i = Oi - {Jj};

Compute LBcmax («1+1) and L%(s^^ \) ; _
Lf ({LBcma.{s^^^i) < Cmax-ref) and {LBä{s%\) < Cref))
Then

Lf (r?l^\ 7̂ 0) Then Q = Q + {s\%};
Else

End If:

S.ref :
C.ref = C{S.refy,

End If;

End For;
End While;

Step 3: Print Sjref, Cmax-ref and Cref]

[Rajendran, 1992]

Fig. 8.3. An optimal algorithm for the F2\prmu\Lex{Cmax^C) problem

The heuristic H C R l has the advantage of being optimal if min (pz,i) >

max (pi,2)- This configuration corresponds to the case where the machine

M l dominates the machine M2. Before proving the optimality of the algo­
r i thm H C R l in this case we introduce preliminary results in lemma 26, 27
and 28 .

8.1 Two-machine flowshop problems 239

L e m m a 26
Let T be a set of n jobs Ji such that min (pi,i) > max (pi,2)- A schedule

S is optiuicil for the CTitevioTi Cmax
if and only if S is such that Ps[n],2 =

min (pi,2).

i = l , . . . , n

Proof.
n

Under the hypothesis min (pi,i) > max (pi,2) we have Cmax(S) = Y^Pi,! +
i = l , . . . , n i=l,...,n ^-^

i=l

Ps[n],2' Thus a schedule S is optimal for the criterion Cmax if and only ii ps[n],2 =
min (pi,2).ü

1=1,...,n

Proof of lemma 26 also shows tha t there are at least (n — 1)! equivalent
optimal solutions for the criterion Cmax-
L e m m a 27
Under the hypothesis min (pi,i) > max (pi,2), every permutation done by

i=l,...,n ' i = l , . . . , n
the heuristics HCRl and HCR2 leads to an optimal schedule for the criterion
^max'

Proof
After having obtained an optimal schedule S for the criterion Cmax by using the
algorithm ESJl , the heuristics HCRl and HCR2 search for the value k such that

k k-l

y^pg[i],i - y^P5[i],2 be a maximum. Given that, Vz = 1, ...,n,ps[i\,i - Ps[i\,2 > 0,
i = l i = l

we have k = n. Because these heuristics forbid permutations with the kth. job -
Rajendran shows that this can only lead to increase the criterion Cmax - we there­
fore deduce the result.D

L e m m a 28
Under the hypothesis min {pi,i) > max {pi,2), a^ optimal schedule for

i = l , . . . , n ' 2=1,. . . ,n

the single criterion C is obtained by scheduling the jobs in increasing order

ofPiA-

Proof.
In every schedule S we necessarily have Cs[i],2 = Cs[i],i +Ps[i],2? Vi = 1, ...,n. We
deduce immediately from this that minimisation of the criterion C is equivalent

n

to minimisation of 'y2ps[i],i- This sum is minimised by applying the rule SPT on

machine Mi, which leads to the result,D

L e m m a 29
Under the h

putes the optimal solution of the problem F2\prmu\Lex{Cmax^ C).

Under the hypothesis min (pi,i) > max (pi,2); the heuristic HCRl com-
i = l , . . . , n ' i = l , . . . , n

240 8. Shop problems

Proof.
Initially, the heuristic HCRl uses the algorithm ESJl to obtain an optimal sequence
S for the criterion Cmax- From lemma 27, we know that all the permutations
performed on the sequence S will not modify its optimality for the criterion Cmax -
These permutations are based on the indicator Ds[r]' If Ds[r] > 0 then we must
permutate the jobs in_position r and r + 1 to try to get a schedule having a lower
value of the criterion C. When a better sequence is found, all the coefficients Di are
recalculated and we examine whether new permutations are needed. The sequence
calculated by the algorithm ESJl can be broken down into two sub-sequences u
and V (see different implementations of ESJl recalled in [Proust, 1992]) such that
u = {Ji/pi,i < Pi,2} and V = {Ji/pi,2 < Pi,i}- ^^ ^^^ beginning, u is sorted by
increasing order of values pi,i and v by decreasing order of values pi,2. Prom lemma
28, we can_deduce that the list u must not be modified if we wish to minimise the
criterion C. Therefore, no permutation that could do HCRl on the list u will be
retained, and HCRl can only do permutations on the list v.
At an arbitrary iteration, let there be two consecutive jobs Ji and Jj in the list v.
We recall that Di = pi,i +pi,2 —PjA —Pja- If Pi,2 > Pj,2, then two cases can occur:

• Pi,i ^ Pi,i then Di >0 and these two jobs are permutated. We then find a lower
value of the criterion C (lemma 28),

• Pi,i < PjA 2ind Di > 0 the permutation of Ji and Jj does not lead to a lower
value of the criterion C (lemma 28) and therefore the sequence is not retained.

Besides, if pi,2 < Pj,2, then we have already performed a permutation of Ji and
Jj which has allowed the criterion C to be minimised: therefore it is not of in­
terest to permutate these two jobs again. With lemma 27, we deduce that HCRl
will reorder the list v in increasing order of the values pi,i, without modifying the
last job of V. The heuristic respects lemma 26 and 28 and therefore solves the
F2\prmu\Lex{Cmax,C) problem optimally.D

Experimental results show tha t the algorithm E C R l is limited to problems
with up to 15 jobs.

[Gupta e t al . , 2001]

Gupta , Neppali and Werner propose nine heuristics and one optimal algo­
r i thm to solve the F2\prmu\Lex(Cmax^C) problem. They study two partic­
ular cases for which an optimal schedule can be constructed in polynomial
time:

1. We suppose tha t Vi = l , . . . , n , pi^i < pi^2 and Vz,j = l , . . . , n , i ^ j ,
Pi,i < Pj,i => Pi,2 < Pj,2' Then an optimal schedule can be obtained by
sorting the jobs in increasing order of the values pi,2-

2. If min (pi,i) > max (^^,2)7 then an optimal schedule can be obtained
i = l , . . . , n ' j—l,...,n

by sorting the jobs in increasing order of the values pi^i and by sequencing
the job with the smallest pi,2 in the last position.

With regard to the first case, the proof is deduced from the fact tha t the
rule S P T which is applied to the processing times on the second machine

8.1 Two-machine flowshop problems 241

independently minimises the criteria C and Cmax- With regard to the second
case, we find a similar result to that shown in lemma 29.
The optimal algorithm, denoted by EGNWl, proposed by Gupta, NeppaUi
and Werner proceeds by enumeration. The dominated sequences are elimi­
nated by using a result derived from the following theorem.

Theorem 22 [Gupta, 1972]
We denote by uj, 5 and n three partial sequences. Let us consider two se­
quences üJTT and OTT. If Cmaxi^) < Crnax{S) and C{(JJ) < C{5), then we have
Cmax{(^7r) < CmaxiSir) and C{U'K) < C{67T).

This result can be particularised and used as a dominance condition in a
branch-and-bound algorithm. In this case we make use of the following the­
orem.

Theorem 23 [Gupta, 1972]
We denote by u and TT two partial sequences and Ji and Ji two jobs. Let us
consider two sequences ujJiJjTc and uJjJin. If Cmaxi^JiJj) ^ Cmaxi^JjJi)
and Cmaxi^Ji) + Cmaxi^JiJj) < Cmaxi^Jj) + Cjnaxi^JjJi), then wc havc
Cmaxi^JiJj^) < Cmaxd^JjJi'^) CL'^d C{LüJiJj7r) < C{ujJjJi7r).

The algorithm EGNWl proceeds by enumerating for every position of the
sequence the jobs which can be placed in it. Certain jobs are eliminated if,
at a given position, they cannot lead to an optimal schedule for the criterion
Cmax- If a partial sequence is dominated using theorem 23 then the corre­
sponding node is pruned. The algorithm is presented in figure 8.4.

The nine heuristics also presented by Gupta, Neppalli and Werner are greedy
algorithms and neighbourhood algorithms. Experimental results show that on
average one of these heuristics, denoted by HGNWl, dominates the others.
This heuristic proceeds by inserting a job into a partial sequence at each iter­
ation. All possible insertion positions are tested, leading thus to several new
sequences. The best sequence is retained for the next iteration. The heuristic
HGNWl is presented in figure 8.5. Its complexity is in 0{n'^) time.

Example.
We consider the earlier example, i.e. for which n = 10.

i
Pi,l
Pi,2

1
5

10

2
6
8

3
7

11

4
10
10

5
10
9

6
8
7

7
13
5

8
7
4

9
10
2

10
2
1

(i) The schedule calculated by algorithm J is S* = (Ji, J2 , . . . , Jio) with C^ax = 79
and C{S*) = 521. We set S = (Ji) and position = 1.
(ii) For J2 we construct the sequences S^'^ = (J2, Ji) and S^'^ = (Ji, J2)-
For J3 we construct the sequences 5^'° = (J3, Ji) and 5^'^ = (Ji, J3).
For J4 we construct the sequences 5^'° = (J4, Ji) and 5^'^ = (Ji, J4)v
For Jio we construct the sequences S^^'^ = (Jio, Ji) and 5^°'̂ = (Ji, Jio).
r _ fo2,0 o2, l c3,0 c3 , l o4,0 o4, l q5,0 o5, l 06,0 06,1 c7 , l 08,0 c8,l"l

242 8. Shop problems

ALGORITHM EGNWl
/* T is the set of n jobs to schedule */
/* ESJl is the algorithm of [Johnson, 1954] */
/* C'^ax is the optimal value of criterion Cmax */
Step 1: /* Initialisation of the algorithm */

G = {(Ji) ;(J2); . . . ; (Jn)};
Level = 1;

Step 2: /* Enumeration of the set of possible schedules */
While (Level ^ n) Do

Step 3:

/* We check if we can eliminate sequences using
theorem 23 */
U($cr eG such that \a\ = Level) Then

Among the sequences of length Level + 1 of G apply
theorem 23 to eliminate dominated sequences;
Level = Level + 1;

End If:
Let a he a sequence of G such that |<j| = Level;
G = G-{a};
Ü = T-(j]
For z = 1 to \n\ Do

• CTi = Cj//{Q\i]};

/* We test the value of the criterion Cmax */

If (max(YJ PJA + Cmax{ESJl{n - {/?[i]}));

Ca,,2 + Y^ Pi,2) < Cmax) Then
jen-{n[i\}

I G = G + {ai};
End If:

End For:
End While:
Apply theorem 23;
Print G[llCmax{G[l]) and C(G[1]);

[Gupta et al., 2001]

Fig. 8.4. An optimal algorithm for the F2\prmu\Lex{Cm,ax,C) problem

We have 5^'" = 5^ ' ' and C (5 ^ ' V M ^ 2 , J3, • • . , J?, Jg, Jio)) = 500 < C\ We up­
date S'*. _
We take S = S^'^ because C(5®'°) is minimum,
(iii) We iterate and we obtain the schedule S* presented in figure 8.6.

Experimental results show similarly tha t H G N W l is better than H C R l and
HCR2. Comparisons with the optimal algorithm E G N W l are presented for
problems with up to 10 jobs, and show tha t the heuristic H G N W l is on av­
erage 0.6% of the optimal solution for the criterion C.

8.1 Two-machine flowshop problems 243

ALGORITHM HGNWl
/* T is the set of n jobs to schedule */
/* ESJl is the algorithm of [Johnson, 1954] */
/* S[j) is a sub-sequence of S containing the j first jobs */
/* S(position-j] is a sub-sequence of S containing the (position — j) last jobs */
Step 1: /* Initialisation of the algorithm */

~ ~ S* = ESJliT);

5' = 6'*[l];
position = 1;

Step 2: /* We build a schedule */
While (position < n) Do

• For Ji e (T- S) Do
For j = 0 to position Do

ion—j] J

End For;
End For:
L = {S'^^/Cma.(S'^'//ESJl(T - 5^'0) = C;aa.}\
Let S""^ be such that C(S''^y/ESJl(T - 5^'^)) =
min C(S^'^//ESJl(T-S^'%

If (Ü(6 ' ^ ' 7 /E5J1(T - 5^'^)) < C(S*)) Then
I 5 * = 5 ^ ' 7 / E 5 J l (T - 5 ^ ' ^) ;

End If; _ _
Let 5^'^ be such that 0(5^'^) = min C(S^'^)\

5 = 5'^'^;
position = position + 1;

End while;
Step 3: Print S\Cmax(S'') and C(5*);

[Gupta et aL, 2001]

Fig. 8.5. An heuristic algorithm for the F2\prniu\Lex(CmaxiC) problem

M,

(
J2

) (
~h~\ J,
5 13 1

h lii

J5 ~F["Tl
8 28 36 4:

J. J5 J_L

J4

i 53

1 ^3

J7

J4

6
J9

6

J7

7
J.o

6 7

J9

8

j[J
0 14 18 28 37 44 55 65 71 78 79

Cmax (5*) == 79 and CCS'*) = 489

Fig. 8i6. The schedule calculated by the heuristic HGNWl

244 8. Shop problems

[T'kindt e t al . , 2003]

T'kindt , Gup ta and Billaut propose an heuristic, denoted by H T G B l , to
solve the F2\prmu\Lex{Cmax^ C) problem, which is an extension of tha t pre­
sented by [Nagar et al., 1995b] and next by [Billaut et a l , 1998]. The heuris­
tic H T G B l proceeds in two steps: in the first step a schedule is constructed
by a greedy algorithm while in the second this schedule is improved by a
local search. The greedy step adapts the functionning of the rule S P T to
the flowshop problem, by placing at each iteration the job having the lowest
completion t ime on machine M2, and such tha t at least one optimal schedule
exists for the criterion Cmax s tart ing with the sequence of jobs already sched­
uled. The complexity of this phase is in 0{n^) time. The second phase of the
heuristic proceeds by permutat ing the jobs by the operator fe-NAPI. For a
given position i in the sequence, the permutat ion with the job in position
fc + z is carried out. The heuristic H T G B l is presented in figure 8.8.

Example.
We consider the earlier example, i.e. for which n = 10.

i
Pi,l
Pi,2

1
5

10

2
6
8

3
7

11

4
10
10

5
10
9

6
8
7

7
13
5

8
7
4

9
10
2

10
2
1

We uniquely apply the greedy step of the heuristic HTGBl.
(i) ^ = 0, 5 = 0 and L = (Jio, Js, J9, J2, J i , Je, J3, J7, Js, J4).
The job Jio cannot be put in the first position because an optimal schedule for the
criterion Cmax, which starts with this job, does not exist.
5 = (J 8) .
(ii) t = 4 and L = (Jio, J9, J2, J i , Je, J3, J?, Js, J4).
The jobs Jio and Jg cannot be put in the second position.
5 = (J 8 , J 2) .
(iii) t = 8 and L = (Jio, J9, Je, J i , J7, J3, J5, J4).
The jobs Jio and Jg cannot be put in the third position.
S = (Js, J2, Je).
(iv) t = 7 and L = (Jio, Jg, J i , Js, J7, Js, J4).
The jobs Jio and Jg cannot be put in the fourth position.
S = (Js, J2, Je, Ji)-
(v) t = 12 and L = (Jio, Jg, J7, Js, J4, Ja).
The jobs Jio and Jg cannot be put in the fifth position.
S = (Js, J2, Je, J i , J7).
(vi) t = 5 and L = (Jio, Jg, J3, Js, J4).
The jobs Jio and Jg cannot be put in the sixth position.
S = (Js, J2, Je, J i , J7, J3).
(vii) t = 11 and L = (Jio, Jg, Js, J4).
The jobs Jio and Jg cannot be put in the seventh position.
S = (Js, J2, Je, J i , J7, Js, Js).
(viii) t = 10 and L = (Jio, Jg, J4).
The jobs Jio and Jg cannot be put in the eighth position.
S = (Js, J2, Je, J i , J7, Js, Js, J4).
(ix) t = 10 and L — (Jio, J9).

8.1 Two-machine flowshop problems 245

The job Jio cannot be put in the ninth position.
S = (Js, J21 JQ-, Ji-, J7-, Jz-t Jbi JA-, J9)'
(x) We obtain the schedule S presented in figure 8.7.

M,

(
h

) -

h \h J. h pr 1 5̂ 1 J4 J9 J,o
J 13 21 26 39 46 56 66 76 78

•U 1 h h J, 1 Uli 1 ^3 1 J 5 h J9 j j
11 21 28 38 44 57 66 76 78 79

Cnzax(^) = 79 and C{S) = 498

Fig. 8.7. The schedule calculated by the heuristic HTGBl

The local search phase does not improve the solution S.

T'kindt, Gupta and Billaut also study several exact methods and propose a
mixed integer programming model, a dynamic programming algorithm and
a branch-and-bound algorithm. The latter is the most successful. For each
node, an exact evaluation of the criterion Cr̂ iaa; is carried out. The lower
bounds for the criterion C are based on a lagrangean relaxation and the
linear relaxation of the program. These bounds are adapted to the bicrite-
ria problem because they integrate the optimality constraint of the criterion
Cmax' Besides which, the authors show that the dominance conditions for
the F2\prmu\C problem are not necessarily valid for the bicriteria problem.
Therefore, they adapt certain existing conditions and propose a new generic
condition.

In the following lemma, we denote by T the set of jobs to be scheduled,
C (LV) the sum of the completion times of the jobs of sequence a;, if they are
scheduled after sequence TT.

Lemma 30 [T'kindt et al, 2003]
Let us consider two partial sequences TT and a. We denote by u = T — a and
u' = T — TT. Let A be a value such that A < C (a;') — C (a;).
IfCmax{(TllJ{w)) - C^„ , and Cmaxii^ 11JW)) = C*^ax andC{a)-C{'K) <
A, then a dominates T^.

To obtain the value Zi of lemma 30 we can calculate a lower bound LB of
the term C (u') and an upper bound UB of the term C (a;). We note then
A = LB - C/i5. T'kindt, Gupta and Billaut use the heuristics SPT on Mi,

246 8. Shop problems

ALGORITHM HTGBl
/* T is the set of jobs to schedule */
/* ESJl is the algorithm of [Johnson, 1954] */
/* C^ax is the optimal value of criterion Cmax */
Step 1: /* Initialisation of the algorithm */

t = 0; 5 = 0; C*max = Cmax{ESJl(T)); L = T;
Step 2: /* Greedy step */

While (Ly^iD) Do

Step 3:

Sort L by increasing values of max(t;pi,i) -\- pi,2 (break ties
by choosing the job with the lowest value Pi,i);
/* [i] is the ith job in the list L */
bool = FALSE] z = 1;
While {{bool = FALSE) and (i < |L|)) Do

t{i) = max(t -p[i],i ,0) +P[i\,2\
/* Cmax{S\t): makespan of the schedule S if M2 is only */
/* availalDle at time ^ */

If {Cmax{ESJl{L - {J[i]})|t(i)) +

JjGS

I bool=TRUE; k = i]
Else

I i = i + l;
End If;

End While:

,) Then

S = 5//{J[fc]}; L = L- {J[,]}; t = t{k);
End While:
/* Improvement step */
i = l;
While {i<n) Do

j = i + 1;
While {j < n) Do

5 ' is obtained by per mutating S[i] and S[j] in S]
If ((Cn.ax(^0 = C:^ax) and (C(5') < C(5))) Then

I S = S';i = l',j = i + l;
Else

h ' = j +1;
End If:

End While:
z = i 4 - 1 ;

End While:
Step 4: Print 5, Ol^aaa, and C(5);

[T'kindt et al., 2003]

Fig. 8.8. An heuristic algorithm for the F2\prmu\Lex{Cmax,C) problem

8.1 Two-machine flowshop problems 247

SPT on M2 and the greedy phase of the heuristic HTGBl to construct partial
sequences.

Experimental results show that the heuristic HTGBl is better than the
heuristic HGNWl both in quaUty and time. Besides, the proposed branch-
and-bound algorithm solves problems containing up to 35 jobs in the most
difficult cases.

[T'kindt et al., 2002]

T'kindt, Monmarche, Tercinet and Laugt investigate the effectiveness of Ant
Colony Optimisation algorithms (AGO) on this problem. The basic idea of
these algorithms comes from the ability of ants to find shortest paths from
their nest to food locations. Considering a combinatorial optimisation prob­
lem, an ant iteratively builds a solution of the problem. This constructive
procedure is conducted using at each step a probability distribution that cor­
responds to the pheromone trails in real ants. Once a complete solution has
been computed, pheromone trails are updated according to the quality of the
best solution built ([Dorigo et al., 1999]).
Hence, cooperation between ants is performed with the common structure
that is the shared pheromone matrix. Due to the simple structure of a so­
lution to the lexicographical problem, which reduces to a sequence of jobs,
the pheromone matrix is a job-position matrix defined as follows: Let r be
this matrix and Tij the probability of having job Ji at position j in a good
schedule for the C criterion. Tij is referred to as the pheromone trails and
higher is this value higher is the probability to have job Ji in position j
in a good solution for the bicriteria problem. Each ant of the nest builds
a feasible solution starting from position 1 and going onwards. For a given
position, the most suitable job for position j is chosen according to either
the intensification mode or the diversification mode. We note po the selection
probability of being in one of these two modes. Let a be the subsequence of
the j — 1 first scheduled jobs. In the intensification mode, an ant chooses as
the most suitable job for position j , the one with the highest value of Tij
such that it exists at least one optimal schedule for the makespan beginning
with cr//{Ji}. This makespan check can be done using Johnson's algorithm
for the F2\\Cmax problem. Let S be the schedule obtained by applying this
algorithm on the set of jobs not in cr//{ J^}. If the value of the makespan
for the schedule (^//{Ji}//S is equal to the optimal value, then it exists at
least one optimal schedule for the makespan that begins with subsequence
cr//{Ji}. In the diversification mode, an ant uses a wheel process to select
the most suitable job. This procedure is the same than in classic genetic
algorithms except that only a job satisfying the makespan check described
before, can be chosen.

248 8. Shop problems

When an ant has built a complete schedule, a local search is applied. This
one is performed as follows. For each position j of the schedule, compute n—j
schedules by applying the 1-API, 2-API, ..., (n —j)-API operators, where the
fc-API operator is defined as follows: consider a fixed value fc, a schedule S
and a position i < n — k in this schedule. After applying the fc-API operation
on S at position i we obtain a schedule 5 ' where the jobs in position i and
i -\- k in S have been exchanged. Among the calculated schedules plus the
starting one, keep the schedule that has an optimal value of the makespan
and the lowest value for the total completion time criterion. Therefore, con­
sider position j + 1. This local search has an overall 0{n^) time complexity.
After all the schedules have been built by the ants, the best one is kept and
the pheromone matrix is updated using the evaporation and enforcement
processes. The former decreases the pheromone trails by setting them to p%
of their previous value whilst the latter increases the pheromone trails that
correspond to the schedule kept at the current iteration. The heuristic ter­
minates if the number of iterations exceeds the total number of iterations
allowed.

Using a local search algorithm within the AGO heuristic reinforces the con­
vergence of the algorithm since few different schedules may be considered at
the end of each iteration. To regulate the use of diversification and intensifica­
tion processes the scheme of classic AGO heuristics is modified by the authors
which consider that diversification is preferred at the beginning of the solu­
tion process whilst intensification is preferred at the end. That principle is
equivalent to the acceptance probability controlling in Simulated Annealing
search. In the proposed heuristic, it means that the selection probability po
is no longer fixed along the solution process. Let N be the total number of
iterations before stopping. At an iteration fc, the selection probability is de­
fined by po = iog(;v) • Hence, for an ant lower is the value po and higher is the
chance to choose a job at position j using the diversification mode. A straight
consequence is that it is no longer necessary to initially generate randomly
the pheromone trails: as diversification is enforced at the beginning of the res­
olution, it is sufficient to consider equal initial values for the Tij 's. As in the
AGO heuristic proposed by Stutzle ([Stuztle, 1998]), the values Tij belong
to an interval [rmin'', Tmax] to avoid pheromone trails from being negligible.
The heuristic, denoted by HTMTLl (figure 8.9), requires 0{n^) time. Gom-
putational experiments show that heuristic HTMTLl strongly outperforms
heuristic HTGBl in quaUty but requires more calculation time.
T'kindt, Monmarche, Tercinet and Laugt also experimentally study the sta­
bility of their heuristic, i.e. when run several times on the same instance what
is the distribution of the C criterion ? Is the set of the obtained values nar­
rowed ? A statistical analysis is conducted and Fischer's coefficient, which
is a measure of the degree of flattening of a frequency curve near its mode,
is calculated on the values of the C criterion calculated by the heuristic run

8.1 Two-machine flowshop problems 249

ALGORITHM HTMTLl
/* Let T be the set of jobs to schedule */
/* Let N be the number of iterations and M the number of ants */
Step 1: p = 0.9; Tmax = jz^;

Tmin ^̂ Tmax/0\ Tij = Tmaxt VZ, J = i..Tl]Dbest = («^ij «̂ 2j • • • j »^njj

Step 2: For Iteration=l to N Do

Step 3:

Po
log(Jteratzon)

- log(JV) -
For Ant=l to M Do

L = T; 5ant = 0;
For Positional to n Do

Generate a random number 0 < p < 1;
If (p > po) Then

/* Diversification mode */
Using the values Ti^PosiUon-, Ji G L, apply a wheel and the
makespan check to select the job Jk to schedule at
current Position;

Else
/* Intensification mode */
Choose the job Jk with the highest value n^position,
Ji e Ly that satisfies the makespan check, to schedule at

current Position;
End If
Sant[Position] = Jk] L = L — {Jk}]

End For
Start the local search on Sant to improve it;

End For
Let S be the best schedule for the ^ d criterion computed by

the ants;
Tij = pnj, Vi, j = l..n; Ts[j]j = rs[jij + j^cds)^ ^ '̂ = 1-'^;
If S improves Sbest for the ^ d criterion, set Sbest = S]

End For
Display Sbesty CmaxjSbest) and ^Ci(5be80;

[T'kindt et al., 2002]

Fig. 8.9. An ACQ algorithm for the F2\prmu\Lex(Cmax,C) problem

several times on a set of instances. This yields to the conclusion that the
distribution of these values follows a normal distribution with a standard
deviation lower than 0.22%, i.e. 95% of the values generated by the heuristic
on the same instance are within 0.22% of the average value.

Other results

Numerous neighbourhood or population based heuristics have also been pre­
sented in the literature. [Neppalli et al., 1996] propose genetic algorithms for
this problem. The most successful algorithm is obtained by considering that
each chromosome of the population is evaluated by a convex combination of

250 8. Shop problems

the criteria Cmax and C with a weight equal to n for the first and equal to 1
for the second.
[Gupta et al., 2002] implement several neighbourhood heuristics: tabu search,
simulated annealing and a two-level local search. Experimental results show
that the genetic algorithm of [Neppalli et al., 1996] is dominated both in
time and quality by the better proposed heuristic, which is the two-level lo­
cal search. This algorithm takes as input data the solution calculated by the
heuristic HGNWl and proceeds as follows. Starting with the current solution
the operator NAPI {Non Adjacent Pairwise Interchange) is used to generate
the high level neighbourhood, denoted by Vi. We actually only keep a fixed
number h of solutions of this neighbourhood, which are chosen randomly. In
the second step, we use for each retained solution of Vi, the operator API
{Adjacent Pairwise Interchange) to calculate the low level neighbourhood,
denoted by V2. We ehminate from each neighbourhood V2 the solutions dom­
inated using a dominance condition and those which do not have an optimal
makespan. Among the h solutions obtained (at most), we consider the best
solution for the criterion C. Choice of the next current solution between
the calculated one and the previous current solution, is made using a proce­
dure which is similar to that obtained in the simulated annealing algorithms
(probabilistic choice). Regarding the computational time, this heuristic is
relatively slow compared to the heuristic HTGBl since it requires the run­
ning of the heuristic HGNWl. Gupta, Hennig and Werner do not present
experimental results to compare in terms of quality the two-level local search
with HGNWl. [Gupta et al., 1999b] propose a tabu search algorithm and are
mainly interested in a framework which enables us to determine the values
of the parameters best adapted for this algorithm. Only comparisons with
heuristics HCRl and HCR2 are presented.

8.1.2 The F2\prmu\Fi{Cmax,C) problem

[Nagar et al., 1995b]

Nagar, Heragu and Haddock are interested in the problem where the crite­
ria C^rnax and G are minimised using a convex combination. This problem is
strongly ATP-hard because the lexicographical problem F2\prmu\Lex{Cmax^
C) is also.

Nagar, Heragu and Haddock propose a greedy heuristic, denoted by HNHHl
(figure 8.11). In the particular case where the job processing times are the
same on the two machines, i.e. pi^i = pi^2^ Vi == 1, ...,n, this heuristic deter­
mines the optimal schedule.

Example.
We consider a problem for which n = 10.

8.1 Two-machine flowshop problems 251

i
PiA
Pi,2

1
5

10

2
6
8

3
7

11

4
10
10

5
10
9

6
8
7

7
13
5

8
7
4

9
10
2

10
2
1

(i) Ci = C2 = 0 and 5̂ = 0.
(ii) T = (Jio, Js, 0/9, J2, J i , Je, ^3,^7, J5,V4).
5 = (Jio), Ci = 2 and C2 = 3,
(iii) T = (Js, J9, J2, J i , Je, J3, J7, Js, J4).
5 = (Jio, Js), Ci = 9 and C2 = 13,
(iv) T = (J9, J2, J i , Je, J3, J7, J5, J4).
5 = (Jio, Js, Jg), Ci = 19 and C2 = 21,
(v) T = (J2, J i , Je, Js, J7, J5, J4).
5' = (Jio, Js, Jg, J2), Ci = 25 and C2 = 33,
(v i) T = (J e , J l , J 7 , J 3 , J 5 , J 4) .
:S = (Jio, Js, Jg, J2, Je), Ci = 33 and C2 = 40,
(v i i) T = (J i , J 3 , J 7 , J 5 , J 4) .
S = (Jio, Js, Jg, J2, Je, J i) , Ci = 3 8 and C2 = 50,
(v i i i) T = (J 7 , J 5 , J 4 , J 3) .
S = (Jio, Js, Jg, J2, Je, J i , J7), Ci = 51 and C2 = 56,
(i x) T = (J 3 , J 5 , J 4) .
S = (Jio, Js, Jg, J2, Je, J i , J7, J3), Ci = 58 and C2 = 69,
(x) T = (J5, J4). We obtain the schedule 5 presented in figure 8.10.

Ml Jio Jg I J9 I ^2 I ^6 I J] I h I ^3 I h I J4

0 2 9 19 25 33 38 51 58 68 78

M2 ^ . Mio Ms \h\\ ^2 \ h \ h \\ h m h "̂5 I
3 13 21 33 40 50 56 69 78 88

Cmax{S) = 88 and Ü(5) = 451

Fig. 8.10. The schedule calculated by the heuristic HNHHl

We notice that this solution is calculated independently from the weights of the
criteria in the objective function.

A branch-and-bound algorithm is also proposed by Nagar, Heragu and Had­
dock. At each node a job is scheduled after the jobs already sequenced. A
lower bound is calculated by using the linear combination of a lower bound
on criterion Cmax and a lower bound on criterion C.

[Sivrikaya-Serifoglu and Ulusoy, 1998]

Sivrikaya-Serifoglu and Ulusoy are similarly interested in the F2\prmu\
Fe{Cmax^ C) problem for which they propose an heuristic, denoted by HSUl.

252 8. Shop problems

ALGORITHM HNHHl
/* T is the set of jobs to schedule */
Step 1: /* Initialisation of the algorithm */

Ci = C2 = 0; 5 = 0;
Step 2: /* Greedy phase */

While (T 7̂ 0) Do

Step 3:

Sort T by increasing value of max(Ci + pi,i; C2) + Pi,2]
Ci = Ci + P T [I] , I ; C2 = max(Ci;C2) + P T [I] , 2 ;
S = S//{T[1]};T = T-{T[1]};

End While; _
P r i n t s , C;;,ax and C(5);

[Nagar et al., 1995b]

Fig. 8.11. An heuristic algorithm for the F2\prmu\Fe{Cmax,C) problem

This a t t empts to sequence the jobs by a method which is close to the rule
S P T applied on machine M i , and on machine M2 in the case of ties. As a
second objective it tries to minimise the sum of the idle times on the second
machine. The heuristic HSUl is presented in figure 8.13. In order to improve
the result obtained by the heuristic HSUl , the algorithms 2-opt and 3-opt
are used on the calculated schedule.

Example.
We consider the previous example with n = 10.

i
Pi,l
Pi,2

1
5

10

2
6
8

3
7

11

4
10
10

5
10
9

6
8
7

7
13
5

8
7
4

9
10
2

10
2
1

(i) ^ = (Jio), C5.i = 2, C5,2 = 3,
(ii) C 5 = 0, A; = 1, 5 = (Jio, J i) , CsA = 7 and Cs,2 = 17,
(iii) CS = {J2, J3, Je, Jsh k = S,S= (Jio, J i , Js), Cs^ = 14 and Cs,2 = 21,
(iv) CS = {J2}, k = 2,S= (Jio, J i , Js, J2), CsA = 20 and Cs,2 = 29,
(v) CS = {J3, Je}, k = 6,S = (Jio, J i , Js, J2, Je), CSA = 28 and Cs,2 = 36,
(vi) CS = {Js}, k = 3,S= (Jio, J i , Js, J2, Je, J3), ^5,1 = 35 and C5.2 = 47,
(vii) CS = {J4,J5,J9}, k = 9, S = (Jio, J i , Js, J2, Je, Js, J9), Cs,i = 45 and
Cs,2 = 49,
(viii) CS = 0, k = b, S = (Jio, J i , Js, J2, Je, Js, J9, Js), Cs,i = 55 and Cs,2 = 64,
(ix) C 5 = 0, A; = 4, 5 = (Jio, J i , Js, J2, Je, Js, JQ, J S , J4), C^,! = 65 and Cs,2 = 75,
(x) C»S = 0 and k = 7. We obtain the schedule 5 presented in figure 8.12.

We notice that this solution is calculated independently of the weights of the crite­
ria in the objective function.

Sivrikaya-Serifoglu and Ulusoy also propose three branch-and-bound algo­
ri thms. The only difference between these three algorithms is the branching
scheme. The first branch-and-bound algorithm, denoted by ESUl and pre­
sented in figure 8.14, constructs the schedules by placing, at each node, a
job at the end of the partial sequence of jobs already scheduled. The second

8.1 Two-machine flowshop problems 253

M,

C
Jio

) :
J> TM TI h] ~n h 1 J5

2 7 14 20 28 35 45

J|o| 1 J. 1 h IA. 1 J6 J3 i i

J4 1 J'
55 65

J5 1 1 ^̂
78

• J7

0 3 17 21 29 36 47 49 64 75 83
^ (5) = 424 and Cmax (S) = 83

Fig. 8.12. The schedule calculated by the heuristic HSUl

ALGORITHM HSUl
/* T is the set of n jobs to schedule */ "~~
/* Cs,i is the completion time of the last job of S on Mi */
/* Cs,2 is the completion time of the last job of S on M2 */
Step 1: Let Jk be such that pk,i = min(pi,i);

/* Break ties by choosing the job with the smallest value pi,2 */
T = T - { J f e } ; 5 = (Jfc);
Cs,l = PkXi ^5,2 =Pfc,l +Pfc,2;
While (T y 0) Do

CS = {Ji e T/pi,i < (Cs,2 - C5.1)};
I f (C 5 = 0)Then

Let Jfc be such that pk,i = min(pi,i);

/* Break ties by choosing the job with the smallest */
/* value pi,2 */

Else
Let Jfc be such that pfc,2 = min (pi,2);

/* Break ties by choosing the job with the smallest */
/* value pi,i */

End If;
5//{Jfc};T = T - { J f c } ;

Step 2:

Step 3:

Cs,l = Cs,l -\-pk,l'y
Csa = max(C5,i; Cs,2) + Pfc,2;

End While; _
Print S and F(>{Cmax{S), C{S));

[Sivrikaya-Serifoglu and Ulusoy, 1998]"

Fig. 8.13. An heuristic algorithm for the F2\prmu\Fe{CmaxyC) problem

branch-and-bound algorithm constructs the schedules by placing, at each
node, a job at the beginning of the part ial sequence. The third branch-and-
bound algorithm uses a mixed approach. At each node we associate a part ial
schedule of the form (cr^, * , . . . , * , a ^) . a^ is the list of t he jobs sequenced
at the beginning whereas a^ is the list of jobs sequenced at the end. At an
odd depth node, we place a job at the end of the sequence a^. At an even

254 8. Shop problems

depth node, we place a job at the beginning of the sequence a^. The search
strategy is the depth-first strategy.
The lower bound for a node, in the algorithm ESUl, is given by: LB =
aLBc^ax + ß^^'c where a and ß are the weights of the criteria in the objec­
tive function. The lower bound of the criterion Cmaxi denoted by LBc^ax^
is obtained by applying algorithm ESJl ([Johnson, 1954]) on the set of un­
scheduled jobs and by concatenating this sequence with the set of jobs already
scheduled. The value of the criterion Cmax for this sequence is the value of
the lower bound. Calculation of the lower bound of the criterion C, denoted

n n
by LB-^^ is a function of the index Da = /^,Pi,i — /'^Pi,2 presented by

[Nagar et al., 1995b] and which indicates which is the most loaded machine.
For a given problem, when Da < 0 we use the bound LB^ and in the op-
posite case, we use the bound LB^. We note a the sequence of jobs already
scheduled and Ü the set of unscheduled jobs, k is the number of jobs in a.
We have:

n—k j k n—k

LB± = C{a) + ^ max (X^Pr[il,i + 5I^<T[i],i; ̂ '^,2) + Y^PT[i],2
j = l i= i i= l i= i

with r the list of jobs of i? sorted according to the rule SPT on machine Mi.
The second bound is defined by:

n—k—l j

LB^ = C{a)+ 5] {C,^,^Y.Pr'm)

n—k—l n

+ m a x (Ccx,2 + Yl ^^^^1,2; X ^ P i , l) + Pr'ln-kl2
i= l i= l

with r ' the list of jobs of i? sorted according to the rule SPT on machine M2.
These bounds are extensions of those proposed by [Ignall and Schräge, 1965].
The branch-and-bound algorithms proposed by Sivrikaya-Serifoglu and Ulu-
soy are compared through experimental results. They show that the algo­
rithm ESUl is the most efficient and that it solves problems with up to 18
jobs but no computational time is given. They are similarly interested in the
efficiency of the heuristic HSUl with regard to the heuristic HNHHl and they
show that HSUl improves the results of HNHHl by at least 6%. Besides, the
heuristic appears to calculate solutions which are closer to the optimum in
spite of not taking account of the weights of the objective function. This can
only be explained by a weak dispersion of the set of non dominated criteria
vectors.

8.1 Two-machine flowshop problems 255

ALGORITHM ESUl
/* T is the set of n jobs to schedule */
/* a and ß are the weights of criteria */
Step 1: /* Initialisation of the algorithm */

Apply the heuristic HSUl on T to get the schedule S-ref;
F.ref = aCma4S-ref) + ßC{S.ref);

n n

i=l i=l
Create the root node so: <Jo = 0 ; OQ = T\ Q = {50};

Step 2: /* Main part of the branch-and-bound */
While (Q 7̂ 0) Do

Choose a node si in Q: Q = Q — {si}\
/* Choice done according to the search strategy */

For A; = 1 to \Qi\ Do
Select a job Jj in f2: Q = Ü — {Jj};

Create a child node s^_,.\: crj^\ = ^i//{Jj} sind

If (Da < 0) Then

Else

LB{s\l\) = aLBc^^Ml\) + ßLB^i4l\);
End If;
If (LB{s\l\) < Fjref) Then

' Lf (^i+\ ^ 0) Then Q = Q + {^l^^};
Else

End If;

S.ref :
F.ref = aCmax{S.ref) + ßC{S.ref);

End If;

End For;
End While;

Step 3: Print S-ref and F.ref;

[Sivrikaya-Serifoglu and Ulusoy, 1998]"

Fig. 8.14. An optimal algorithm for the F2\prmu\Fe(Cmax, C) problem

[Yeh, 1999]

Yeh is interested in the F2\prmu\Fe(Cmax, C) problem for which he proposes
an improvement of the heuristic HNHHl and a branch-and-bound algorithm.
The latter constructs progressively a schedule at each node by adding a job
after the last scheduled job. A lower bound of the objective function is cal­
culated from the linear combination of a bound for the criterion Cmax and
a bound for the criterion C, The first is calculated in the same way as in

256 8. Shop problems

the algorithm ESUl whilst the second is an improvement of a bound of
[Ignall and Schräge, 1965]. It is calculated by considering only the second
machine and by sorting the jobs according to the rule SPT. A lower bound of
the criterion C is then deduced to which is added the sum of the idle times
obtained by applying Johnson's algorithm to these jobs. Experimental results
show that the proposed branch-and-bound algorithm is limited to problems
with up to 14 jobs.

8.1.3 The F2 |p rmu, r i |F£(Cr r , ax ,C) problem

[Chou and Lee, 1999] consider that jobs have release dates and propose a
mixed integer program. They also present an heuristic, denoted by HCLl,
which is similar to a filtered beam search procedure. The heuristic explores
a tree where each node contains the schedule under construction and the set
of unscheduled jobs. The branching scheme consists of scheduling a job after
those already scheduled. For a given node, a filter is applied to keep only
the interesting nodes. We note a the list of jobs scheduled at node s and i?
the set of unscheduled jobs. For each job Ji G i?, the contribution to the
objective function is given by Qi\

Qi = (max[max(Ci((7);ri) +pi,i -C2(c7);0] +^^,2) x (a|i?| +/?)

with a the weight of the criterion C and ß the weight of the criterion Cmax-
Likewise, we define the smallest contribution of the job scheduled after Ji by:

Ri = min (pj^2 + max (max[max(Ci(a); ri) + pi,i; Vj] + Pj,2 -

[max(max(Ci(c7);ri)+Pi,i;C2(a))+pi,2];0)) x (a | ß | - l + /3)

Chou and Lee use a weight fi for the filter defined by fi = Qi -\- Ri. The
nodes created from node 5 are those for which the scheduled job Ji £ fi
is of minimum weight fi. The heuristic HCLl is presented in figure 8.15.
Experimental results on small instances show the efficiency of the heuristic.

8.1.4 The F2\prmu\e{C/Cmax) problem

[Sayin and Karabati, 1999] are interested in the determination of the set of
strict Pareto optima for the criteria Cmax and C. This problem is shown to
be AfV-haid in the strong sense. To determine these solutions they use a
result of the e-constraint approach.

Lemma 31 [Sayin and Karabati, 1999]
A schedule S^ £ S is a strict Pareto optimum if and only if:

8.1 Two-machine flowshop problems 257

/* T is
/* fi is
Step 1:

Step 2:

Step 3:

ALGORITHM HCLl]
the set of n jobs to schedule */
the weight of job Ji */

/* Initialisation of the algorithm */
Create the root node SQ: CTQ = 0 ; i7o = T; Q = {so};
Fref = OO;
/* Main part of the search */
While (Q ^ 0) Do 1

Enc

Si is) the last node in Q;
Q = Q-{si};
L = {Jj e Qi/fj = min (/fc)};

For fe = 1 to \L\ Do

Enc
I Whi

Create a child node s^\ ai = ai//{L[k]} and
r?,̂ = Qi- {L[k]y,
If [Q^ + 0) Then

| Q = Q + K ' } ;
Else

Enc
I For;
le;

I f (aC(af) + /?Cmax(af)<F.e /)Then |

End
ilf;

Sref — CTi]

Fref = a C (c r f) + ßCmax{(T^);

ilf;

Print S-ref and Fjref;

[Chou and Lee, 1999]

Fig. 8.15. An heuristic algorithm for the F2\prmu,ri\Fe{Cmax, C) problem

1. 3e e R"̂ such that S^ is an optimal solution of the problem (Pe);
Min Cmax{S)
subject to

C{S) < 6
SeS

2. $S^ G S such that Cmax{S^) = Cmax{S^) and C{S^) < e.

This lemma can easily be demonstrated by lemma 4 and 5 (chapter 3). Lemma
31 is used in a general algorithm, denoted by ESKl (figure 8.16), for the
determination of the set E.
In order to solve the problems (Pg.) and (Q^o) presented in figure 8.16,
Sayin and Karabati propose two branch-and-bound algorithms which are
iteratively called. The algorithm ESKl is then implemented according to a
scheme proposed by [Klein and Hannan, 1982] by integrating these two pro­
cedures. This implementation implies that one node is not explored several
times. The resulting algorithm is denoted by ESK2 (figure 8.17). A node 5
of the search tree is defined by a partial schedule a of the jobs scheduled

258 8. Shop problems

ALGORITHM ESKl
Step 1: /* Initialisation of the algorithm */

i = 1; ^ = 0; Ci = oo;
End=FALSE;

Step 2: /* Computation of the set E */
While (End=FALSE) Do

Let 5° be a solution of the problem (Pe^):
M i n Cmax{S)
subject to

C{S) < a
SeS

If (5° does not exist) Then
I End=TRUE;

Else
Let 5* be a solution of the problem (Q50):

Min C(5)
subject to

^max\^) = ^max\0)

SeS
E = E-\-{S'};

e, = C{S') - 1;
End If;

End While;
Step 2: Print E:

[Sayin and Karabati, 1999]

Fig. 8.16. An optimal algorithm for the F2\prmu\e{C/Cmax) problem

first and a set i? of the unscheduled jobs. Starting with 5, a node is cre­
ated by adding at the end of cr a job of i?. We also associate with the node
s a lower bound LBc^axi^) ^^ ^^^ criterion Cmaxt

a lower bound LB-^{s)
of the criterion C and an upper bound C^^^{s) of the criterion Cmax- The
latter bound is the largest value of the criterion Cmax of ^n active schedule
when a is fixed. It is defined by C^^^{s) = Cmax{o-//Jr{f2)) with J^(i?) the
reverse sequence of Johnson's one on set i?. The lower bound LBc^axi^)
is calculated using the algorithm ESJl on the set Q. It is defined by
LBcrnaxi^) = Cmax{o'//J{^))' Concerning the lower bound of the criterion
C, Sayin and Karabati use three existing bounds which are: the first bound
proposed by [Delia Croce et al., 1996], that proposed by [VandeVelde, 1990]
and that proposed by [Karabati and Kouvelis, 1993]. Besides, the branch-
and-bound algorithm updates a list, denoted by £?, of schedules which corre­
spond to potentially non dominated criteria vectors. At each terminal node St
of the tree, the algorithm adds to E the schedule at if this is not dominated
by a schedule belonging to E, Likewise, all the schedules of E dominated
by at are deleted from the list. Besides, Sayin and Karabati use the dom-

8.1 Two-machine flowshop problems 259

inance condition proposed by [Delia Croce et al., 1996] for the F2\prmu\C
problem which remains valid for the bicriteria problem. They similarly pro­
pose dominance conditions based on theorem 22. At a node 5, the sequence
5 of theorem 22 is defined by 5 = a. The sequence 5 is then compared to
sequences u defined by:

• a; = irJiJj ii S = nJjJi, with TT a sub-sequence and Jj and Jj two jobs,
• a; = ESJl{ö) with ESJl the algorithm of [Johnson, 1954],
• a; = SPTl{ö) with SPTl the rule SPT applied to machine Mi,
• uj = SPT2{5) with SPT2 the rule SPT applied to machine M2.

Two computational experiments are presented by Sayin and Karabati. In the
first, the processing times are generated between 1 and 10 according to a
uniform law. The results obtained show that the algorithm ESK2 can solve
every problem with up to 22 jobs. The average number of non dominated
criteria vectors lies between 1.5 and 2.1, which means that the criteria for
these problems do not conflict. The second type of experiment concerns prob­
lems for which the processing times are generated between 1 and 100. These
problems appear to be more diSicult to solve because the algorithm ESK2
cannot solve some problems comprising 20 jobs.

260 8. Shop problems

ALGORITHM ESK2
/* T is the set of n jobs to schedule */
/* ESJl is the algorithm of [Johnson, 1954] */
/* Lf is the list of nodes used to solve the problem {Pei^i) */
/* L^ is the list of nodes used to solve the problem (Qs^) */
Step 1: /* Resolution of the problem (Pej) */

Step 2:

Si = ESJliry, UBc = C(5i) ; C^y. = CmaxiSi); i = 1; £! = 0;
Build the node SQ: ao = 0, ^o = T\
Lf = 0; Lf = {so};
/* Resolution of the problem (QsJ */
While (L? ^ 0)

Let Sk be the last node in Lf;

U {(LBcisk) > UBc) or (Cri;(sfc) < C^'L)) Then
/* The node 5^ cannot lead to an optimal schedule for */
/ * (P e ,) a n d (Q . .) w i t h i > z * /
Lf = L?-{sk};

Else
If {{LBcmaAsk) > C^L) or (LBcisk) > UB^)) Then

/* The node Sk cannot lead to an optimal schedule */
/* for (Qs.) but may be a solution of a problem */
/ * (P e ,) f o r i > z * /

Lf = Lf-{skhLr = Lr + {skh
Else

/* We create child nodes */
Create the child nodes of Sfc and on each of these nodes
apply dominance conditions;
/* P{sk) is the set of remaining child nodes */
Lf = Lf-{sk} + P{sk);

End If;
End If;
If {{sk is a leaf) and {Cmax{sk) = C^ax)

and (C{sk) < UBc)) Then
I UBc = C{ak);

End If;
End While;

to follow on the next page

Fig. 8.17. An optimal algorithm for the F2\prmu\e(C/Cmax) problem - (1)

Step 4:

8.1 Two-machine flowshop problems 261

ALGORITHM ESK2 (remainder)
Step 3: /* Resolution of problem (Pei+i) */

While {L[7̂ 0) Do
Let Sk be the last node in Lf;
If (LBcisk) > UB-c) Then

/* The node Sk can not lead to an optimal */
/* schedule for {Pe^) and [Qs^) with j > i "^/
Lf = Lf- {sfc};

Else
Lf (Lßc„„,(sfe) > UBcrr^a.) Thgn

/* The node Sk cannot lead to an optimal solution for (Pei+i) */
/* but may be a solution of a problem {Qs^) for j > i"^/
Lf = Lf - {skh L%, = L%, - {sk}'.

Else
/* We create child nodes */
Create all the child nodes of Sfc and for each of those
apply dominance conditions;
/* P{sk) is the set of remaining child nodes */
Lf = Lf - {sk} ^-P{sky.

End If;
End If:
If (sfc a leaf) Then E = E^ {cifc};

End While;
Lf {L%, ^ 0) Then

I z = i + l; Goto Step 2;
End If;
Print E and Z(E);

[Sayin and Karabati, 1999]

Fig. 8.17. An optimal algorithm for the F2\prmu\€{C/Cmax) problem - (2)

262 8. Shop problems

8.1.5 The F2\prmu,di\i^{Cmax^Tmax) problem

[Daniels and Chambers, 1990] are interested in the determination of the set
of strict Pareto optima which is a A/'T^-hard problem because the F2\prmu, di\
Tmax problem is also.

Daniels and Chambers propose a branch-and-bound algorithm, denoted by
EDCl (figure 8.18), to determine the set E. Each node 5 of the tree consists of
a list a of the jobs scheduled last, of a set i? of unscheduled jobs, of a lower
bound LBcmax (^) of the criterion Cmax and of a lower bound LBr^ax (^)
of the criterion Tmax- The lower bound LBc^^^{s) is obtained by applying
Johnson's algorithm on the set i? and we have LBc^^^{s) = Cmax{J{^)//(^)'
LBcmax (^) is the minimal value of the criterion Cmax for all schedules com­
pleting with the sequence a. The lower bound LBxmax (^) is broken down into
three bounds:

LBT^.. is) = max (LB^^^^^ (a); 13^^^^ (ß); Lß|,^^^ (ß)) .

The first lower hound is defined by:

^ ^ T _ W = max(0; Ci{J{Ü)lla) - di)

The second lower bound is obtained by sorting the jobs of i? according to the
rule EDD. We thus obtain the list L. LBj>^^^{Q) is calculated by considering
only the machine M2:

i

•^^L<.x(^) = °iax (0; min(pi,i) + max (^Pi,[jj,2 - dL[i]))

The bound LBj^^^^{f2) is calculated by relaxing the disjunctive constraints
on the machine M2. With L the list of jobs of i? sorted by increasing order
of the values {di — Pi,2)? we have:

LBrp
J- max

(ß) = max (0; max (^ p ^ b) , ! + P L W , 2 - dL[{\))

Daniels and Chambers similarly present some rules to prune nodes in the
search tree. We denote by Epart the set of the strict Pareto optima already
obtained. A node s is pruned if:

• 3x e Epart such that LBc^^^{s) > Cmax{x) and LBT^^^{S) > Tmax{x),
i.e. if an element of Epart dominates 5,

• LBTmaxi^) — Tmax{J{^)//cr) because in this case among all of the sched­
ules ending with (j, the schedule J(i?)//cr minimises simultaneously the
criteria (^rnax ana Imax-

Dominance conditions are also proposed.

8.1 Two-machine flowshop problems 263

Theorem 24 [Daniels and Chambers, 1990]
V Pj,2 < n^in(pj,i;pi,2) CLnd di < dj, then a schedule S e E in which Jj
precedes Ji does not exist.

Theorem 25 [Daniels and Chambers, 1990]
If Pi,i < ^^^{PjA'^Pi,2) CLfid di < dj, then a schedule S G E in which Jj
precedes immediately Ji does not exist.

Theorem 26 [Daniels and Chambers, 1990]
Let P be a partial sequence containing at least three jobs. We denote by Ji
and Jj, with Jj preceding Ji, the last two jobs added to P. P' is the sequence

k

obtained after permutation of Ji and Jj. We note Lk = /^J>p'[i\,2 ~ <̂ P'[fc)-

Ifmm{piX',Pj,2) < min{pjX',Pi,2) o>nd if 3k £ P\k j^ j , such that Lk > Lj,
then a schedule S E E containing P as a sub-sequence does not exist.

The child nodes of 5 are constructed by taking a job of i? and by putting it
at the beginning of the sequence a. The next node to consider is the node
with the smallest bound LBcmax- Experimental results show that the average
number of calculated criteria vectors is between 1.4 and 2.7. Problems with
20 jobs are solved on average in less than 70 seconds. The total number of
optima calculated is low which means that, from a theoretical point of view
the criteria do not conflict.
Daniels and Chambers also propose an heuristic which approximates the
set E. This heuristic, denoted by HDC3, was inspired by the algorithm of
[VanWassenhove and Gelders, 1980] which solves the l\di\e(C/Lmax) prob­
lem. This heuristic is composed of two modules. The first module causes a
constant e to vary in a certain interval. For each value, the second module
calculates a schedule which minimises the criterion Cmax under the constraint
Tmax < e- The heuristic HDC3 is presented in figure 8.19.

Example.
We apply the heuristic HDC3. We consider a problem for which n = 10 and J = 0.5.

i
Pi,l
Pi,2
di

1
1
4

18

2
3
7

11

3
8
9

27

4
10
6

25

5
8
2

20

(i) r = {Ji,J2,J3,J4, Js}, S = 0.5, Tmax{ESJl{T)) = 10, £ = 9.5, £ = 0 and
/ , = 0 , Vi=l, . . . ,10.
ii) e = 5, L = {J3, J4, Js}, k = 5,S= (J5), T = {Ji, J2, J3, J4}.
iii) e = 4,L = {Ji, J3, J4}, k = 4, 5 = (J4, J5), T = {Ji, J2, J3}.
iv) f = 3, L = {Ji, J2, J3}, k = 3,S= (J3, J4, Js), T = {Ji, J2}.
y)e = 2,L = {Ji, J2}, k = 2,S= (J2, Ja, J4, J5), T = {Ji}.
vi) e=l,L = {Ji}, k = l,S = (Ji, J2, Ja, J4, J5), T = 0.
vii) We obtain the schedule 5 = (Ji, J2, J3, J4, J5) and Tmax{S) = 10 > e.

264 8. Shop problems

ALGORITHM EDCl
/* T is the set of n jobs to schedule */
/* E is the set of strict Pareto optima */
/* ESJl is the algorithm of [Johnson, 1954] */
Step 1: /* Initialisation of the algorithm */

£; = 0;
Create the root node: (JQ = 0 ; i?o = T; Q = {so};

Step 2: /* Main part of the branch-and-bound */
While (Q 7̂ 0) Do

Step 3:

Select in Q the node Si with the lowest value LBcmax •
Q = Q-{sih

For fe = 1 to \Üi\ Do
Choose a job Jj in Q such that {Jj}//(^i is not
dominated: i? = i? — {Jj};
Create a child node ŝ _ \̂: G_^^ = {Jj}//cri] ^l^i = üi — {Jj};

Compute LBcmax{s\%)]

Compute LBTmax{4%y->
U{ixeE such that {LBcmax{si%) > (x)

and LBTmaA4%) > Tma.{x))) Then
• Lf (LBT^US%\) = Tma.{ESJl{n^^,)//a^^^,))

Th^E = E^ {E5Jl(r?l^\) / /c7l^\};
ElseQ = Q + {sl^\};
End If;

End If:
End For;

End While;
Print E;

[Daniels and Chambers, 1990]

Fig. 8.18. An optimal algorithm for the F2|prmu,di|#(Cmax,Tmax) problem

/c = 5 and h = {J^}-
(viii) By reapplying the previous steps up to iteration (vi) we obtain S =

(J i , ^2, «/a, Js, «74) and
TmaxiS)=8<e.

(ix) We set e = 7.5, and T = {Ji , J2, J3, J4, J5}. For ^ = 5, L = 0. So, there
is no solution with Tmax < 7.5 for HDC3. The two non dominated solutions are
{Jiy J21 J 3 , JAI J5) and (J i , J2 , J 3 , J5 , J4)'

Experimental results concerning the number of sequences evaluated by the
heuristic HDC3 and the number of Pareto optima obtained, are presented.

8.1 Two-machine flowshop problems 265

/* T is
/ * £ ; i s

ru.^

ALGORITHM HDC3
the set of n jobs to schedule */
the set of strict Pareto optima */
= 1, ...,n, is the set of jobs that cannot be put in position Ü */

/* ESJl is the algorithm of [Johnson, 1954] */
/* Ö G]0; 1 [is an ordinary value */
Step 1:

Step 2:

Step 3:

/* Initialisation of the algorithm */
C = J-max

E = (D;
/ , = 0 , V j = l, . . . ,n;
/* Building a schedule */
For £ = n downto 1 Do

End

L = {Jie T, Ji ^ h/Y^VjA + Pia -di< e};
j€T

/* L is the set of jobs that can be put in position ^ */
If (L = 0) Then

Enc

/* The solutions found are in £? */
Print E;
END;

I If;
Let Jfc G L be such that Cfc,2(J(T)) = max(Ci,2(J(T)));

S[i] = Jfc;

for;
/* We ev aluate the obtained schedule */
If (Tmax(S) > e) Then

Let Jk be such that Tk(S) > e and Cfe,2(5) = max (Cj,
Jj/Tj(S)>e^

Let q be the position in 5 of J^;
Iq=Iq + {Jkh

Else

End

E = E-{-{S};
e = Tmax{S) — S;

I If;
T = { J i ; . . . ; Jn};
Goto Step 2;

[Daniels and Chambers, 1990]

2) ;

Fig. 8.19. An heuristic algorithm for the F2\prmu,di\e{Cmax/Tmax) problem

8.1.6 The F2\prmu,di\H^{Cmaai,U) problem

[Liao et al., 1997] are interested in the determination of the set of strict
Pareto optima for the criteria Cmax and U. They do not show the complexity
of this problem. Nevertheless, it is possible to show knowing the complexity of
the F2\prmu,di\Lmax problem, that the bicriteria problem is strongly NV-
hard.

266 8. Shop problems

The algorithm proposed by Liao, Yu and Joe is a branch-and-bound algo­
rithm, denoted by ELYJl. Each node 5 of the search tree is composed of a
list (J of the jobs which are scheduled last, of a set i? of unscheduled jobs, of
a lower bound LBc^ax (^) of the criterion Cmax and a lower bound LBjj{s)
of the criterion U. The lower bound LBcmaxi^) î obtained by applying al­
gorithm ESJl of [Johnson, 1954] on the set Q and we have LBc^^^{s) =
Cmax{J{^)//cr). LBc^^^{s) is the minimal value of the criterion Cmax for
all schedules ending with the sequence a. The calculation of the lower bound
LBjj{s) breaks down as follows. We have LBjj{s) = LBjjia)-\-LBjj{Q) with:

L ß i { a) = ^ C / , (J (ß) / / a)
Ji£<J

The lower bound LBjj related to the unscheduled jobs is defined by:

LB^{Q) = max(L^^(ß);LjB^(ß))

To calculate the bound LB^{n), Liao, Yu and Joe breakdown the flowshop
problem into a single machine problem which is denoted by l\pi = Pi^i^di =
di —Pi,2\U. Moore's algorithm ([Moore, 1968]) is then applied to solve this
problem. LB^{f2) is the value of the criterion U obtained for the reduced
problem.

The bound LB^{Q) is calculated by solving the \\ri = r = min(pj,i),pi =

Pi,2^di\U problem. A modified version of Moore's algorithm can be used,
by considering that the machines Mi and M2 are free sooner than the
date r. The bounds which are presented are similar to those presented by
[Daniels and Chambers, 1990].

Liao, Yu and Joe also present some rules to prune the search tree. We note
Epart the set of strict Pareto optima already obtained during the exploration
of the tree. A node s is pruned if:

such that LBcmaxi^) > Cmax{x) and LBjj{s) > U{x).
• LBjj{s) = U{ESJl{Q)//a), because the schedule ESJl{Q)//cr among all

the schedules that end with cr, minimises simultaneously the criteria Cmax
and U.

The dominance conditions presented in the following theorems are used in
the algorithm ELYJl.

Theorem 27 [Liao et al, 1997]
Let G' = JjJicr and a" = JiJjG, with a a sequence and Ji and Jj two jobs.
The sequence a" dominates the sequence a' if the following three conditions

8.1 Two-machine flowshop problems 267

are verified:
(i) Ui=0 in the schedule ESJl{Q - {Jj] - {Ji))//(j',

(ii) mm{pi^i,pj^2) < min(pi,2,ft,i);
{Hi) di < dj.

Theorem 28 [Liao et al, 1997]
Let a' = JjJiG and a" = JiJja, with a a sequence and Ji and Jj two jobs.

The sequence a" dominates the sequence a' if the two following conditions
are verified:

(̂) in the schedule ESJl{Ü-{Jj}- {Ji})//(j', Ui = 0 and Uj = 1,
(ii) min(pi,i,p^-,2) < min(pi,2,Pj,i).

Theorem 29 [Liao et al, 1997]
Let cr' = JjJia and G" = JiJja, with a a sequence and Ji and Jj two jobs.
The sequence a" dominates the sequence a' if the following five conditions
are verified:

(i) Ui=0 in the schedule ESJl{Q - {Jj} - {Ji})//(j',
{ii) Pi,i < Pi,2,

{Hi) Pi^i<Pj,i,
{iv) Pi,2 < Pj,2,
{v) di < dj.

The child nodes of s are constructed by taking a job of i? and adding it to the
beginning of the sequence a. The next node to be processed is the node with
the smallest value of the bound LBcmax- The algorithm ELYJl is presented
in figure 8.20.

Experimental results show that the proposed algorithm enables us to process
problems with up to 30 jobs. Besides, the lower are the due dates di the
more difficult are the problems to solve. Finally, the average number of non
dominated criteria vectors is between 1.1 and 1.8. This means that the criteria
Cmax a.nd U are not conflicting.

8.1.7 The F2\prmu,di\#{Cmax,T) problem

When the criteria considered are Cmax ^nd T, the determination of the set
of strict Pareto optima is proposed by [Liao et al., 1997]. This problem can
be shown to be strongly ATT^-hard.

The algorithm proposed by Liao, Yu and Joe is a branch-and-bound algo­
rithm, denoted by ELYJ2, which is very close to the algorithm ELYJl (figure
8.20) for the F2\prmu,di\4J'{Cmax^U) problem. Each node s of the search
tree comprises a list a of jobs scheduled last, a set i? of unscheduled jobs,
a lower bound LBc^^x (^) ^f ^^e criterion Cmax and a lower bound LBj^{s)
of the criterion T. The lower bound LBcmax (^) is obtained by applying the
algorithm J of [Johnson, 1954] on the set i?, and we have:

268 8. Shop problems

ALGORITHM ELYJl
/* T is the set of n jobs to schedule */
/* E is the set of strict Pareto optima */
/* J is the algorithm of [Johnson, 1954] */
Step 1: /* Initialisation of the algorithm */

£; = 0;
Create the root node SQ: CTQ = 0 ; i?o = T; Q = {so};

Step 2: /* Main part of the branch-and-bound */
While (Q 7̂ 0) Do

Choose a node si with the lowest value of LBcmax ^^ Q;
Q = Q-{sih

Fbr A; = 1 to \Qi\ Do
Select a job Jj in Ü such that JJCFI is not
dominated: i? = i? — {J^};
Create a child node s^^\:

al^\ = J , a , ; r 2{ | = ft-{J,};
Compute LBcmaÄSi^i)'^
Compute LJB^(S.^\) ;

Ui^xeE such that {LBcmaÄs?^i) > Cmax{x)

and LBjj{sf^^) > lJ{x))) Then

Lf {LBjjisf^,) = Ü{J{n^^,)//af^,))
Th^E = E + {J{Q^^,)//cj\%y,
ElseQ = 0 + {5l^\};
End If;

End If:
End For:

End While:
Step 3: Print E\

[Liao et al., 1997]

Fig. 8.20. An optimal algorithm for the F2\prmu,di\#(CmaxyU) problem

LBcmax (^) is the minimal value of criterion Cmax for all schedules ending
with the sequence a. Calculation of the lower bound LBf{s) is as follows:

LB^{s) = LBL{a) + LB^f2)
with:

LBLia)='£Ti{Jin)/M
Ji€(T

To calculate the bound LB^f^) we construct a dummy problem from the
jobs of i?. The algorithm used is denoted by HLYJl, and is presented in figure
8.21.
The bounds presented are similar to those proposed for the F2\prmu^di\
#{Tmax->Cmax) problem by [Daniels and Chambers, 1990], Liao, Yu and Joe

8.1 Two-machine flowshop problems 269

ALGORITHM HLYJl
/* Q' is the set of unscheduled jobs */
/* LI is the list of processing times pi,i, of jobs in i?', sorted by */
/* increasing value */
/* L2 is the list of processing times pi,2, of jobs in i?', sorted by */
/* increasing value */
/* D is the list of due dates dj, of jobs in i?', sorted by increasing value */
Let j£ G i? be such that p£,i +P£,2 = min(pi,i +Pi,2);

Q'^=Q-{J^}^
Pi.i = PiA\ Pi,2 = Pi,2'4'i = di',
Ci,2 =v'\,\ +Pi,2;
LB^{Q) = max(0; Cl,2 - d'l)',
Fbr z = 2 to |i7| Do

p ,̂i = Ll[i - 1]; pj,2 = L2[i - 1]; d̂ = D[i - 1];

C-,2 = max(^p^-,i +Pi,2;5]]Pi,2 +Pi,i);

L^|.(r2) = LB^{Q) + max(0; a,2 - c?-);
End For;

[Liao et al., 1997]

Fig. 8.21. Calculation of the lower bound LB^{Q)

also use a dominance condition on the criterion T to prune nodes in the
search tree.

Theorem 30 [Sen et al, 1989]
Let S = niJiJj'K2 and S' = 'K\JjJiT^2 be two schedules with TTI and 7r2

two sequences and Ji and Jj two jobs. S dominates 5 ' if the following three
conditions are verified:

(i) di < dj,
(ii) Pi,2-di <Pj,2-dj,

(Hi) pi^i < mm{pi^2]Pji)'

The child nodes of 5 are built by taking a job of i? and adding it to the
beginning of the sequence a. The next node to be processed is the node with
the smallest value of the bound LBcmax- The algorithm ELYJ2 is presented
in figure 8.22.

Experimental results show that the algorithm ELYJ2 solves problems with
up to 30 jobs. Besides, the lower are the due dates di the more difficult are
the problems to solve. Finally, the average number of non dominated criteria
vectors is between 1.2 and 3.1, which means that the criteria Cmax

and T do
not confiict so much.

270 8. Shop problems

ALGORITHM ELYJ2
/* T is the set of n jobs to schedule */
/* E is the set of strict Pareto optima */
/* ESJl is the algorithm of [Johnson, 1954] */
Step 1: /* Initialisation of the algorithm */

E = iD;
Create the root node SQ: ao = ^ ; ÜQ = T; Q •

Step 2: /* Main part of the branch-and-bound */
While (Q 7̂ 0) Do

{^o};

Select the node Si with the lowest value LBcmax
in Q: Q = Q - {si}]

For A: = 1 to |/?i| Do
Choose a job Jj in Q such that JJGI is not
dominated: i? = Q — {Jj};
Create a child node ŝ _̂ \: crj_,_\ = {Jj}//en and

Compute LBcmaxiSi+i)'^
Compute LBJT(S\^I);

U{$xeE such that (LBcmaAs\%) > Cmax{x)
and LBj.{s\%) > T(x))) Then

• Lf {LB^{s\l\) = T{ESJl{ülp//all\))
ThenE = E + {J{ü^l\)//aZ\};
mseQ = Q-^{s\l\};
End If;

End If:
End For:

End While:
Step 3: Print E:

[Liao et al., 1997]

Fig. 8.22. An optimal algorithm for the F2\prmu,di\#{CmaxjT) problem

8.2 m-machine flowshop problems

In this section we consider flowshop problems where m machines are necessary
to process the jobs. The latter use the machines in order of their index, i.e.
Ml then M2, etc., up to Mm-

8.2.1 The F\prmu\Lex{Cmaai^C) problem

[Selen and Hott, 1986] and [Wilson, 1989] solve this problem by using mixed
integer programming. It is strongly jVP-hard because the particular case
where m = 2 is also.

8.2 m-machine flowshop problems 271

The model presented by [Selen and Hott, 1986] is based on the fact that for
two jobs in j th and {j + l)th positions in a schedule 5, we have the following
relation:

Vfc = 1,..., m — 1 and \/j = 1,..., n — 1

with XK the idle time on machine Mk before the processing of the j th job
of 5, P[j]^k the processing time on machine M^ of the j t h job of 5, and W|^.^

the waiting time before machine Mk of the j th job of S (figure 8.23).

M.

M,

Ik

I k . .

j *
^ [i - l] '

^ w

Wr-î ^^
Ü]

^ W

O+D*

J*

^ P

Y k+1

^ W (j+D*

Fig. 8.23. Illustration of the variables

This model, denoted by ESHl (figure 8.24) requires mn + n — m + 3 con­
straints, 'n? 0-1 variables and 2mn + 1 integer variables. This model can be
partially found in [Baker, 1974]. Firstly Selen and Hott calculate the optimal
value of the criterion Cmax by using the mathematical model ESHl but with
the makespan as the objective function. Next, they solve the bicriteria prob­
lem using with the model ESHl.

The model proposed by [Wilson, 1989] requires less variables but more con­
straints. It is based on the fact that for a schedule S we have the following
relation:

5[j+i],fc+i > C[j^iik and 5[^-+i],;,+i > C[̂ -],fe+i
Vfc = 1,..., m — 1 and j = 1,..., n — 1

with S[j]^k the start time on machine Mk of the job in j th position in S and
C[j]^k the completion time on machine Mk of the j th job of S.

This model, denoted by EJWl (figure 8.25) requires: 2mn + n — m + 2 con­
straints, 'n? 0-1 variables and m n + l integer variables. As for the model ESHl
we must in a first step solve the mathematical problem that minimises the
makespan, to know its optimal value. Next, they solve the bicriteria problem
using the model EJWl.

272 8. Shop problems

Mathematical formulation ESHl
Data:

Variables:

Objective:

Constraints:

n, the number of jobs,
m, the number of machines,
Pi J , 2 = 1, ...,n, J = 1, ...,m, the processing times of jobs,
C'mox) the optimal value of criterion Cmax •
Zi^j, boolean variable, equal to 1 if Ji is in position j and
0 otherwise,
X^j^, idle time on machine Mk before the start time
of the job in position j ,
1 [̂̂], waiting time before machine Mk of the job in position j ,
C, value of the criterion.
Minimise C

n
Y^Zi^j = l, Vj = l , . . . ,n,
i=\

n

^Zij = l, V2 = l , . . . , n ,

n n

+W^f\ Vfc = 1 , . . . , m - l , j = l, ...,n- 1,
n n

i=l i = l
n n

fe=l j = l
n i i n

i = i fc=i fc=i j = i

[Selen and Hott, 1986]

Fig. 8.24. An MIP model for the F\prmu\Lex{CmaxjC) problem

8.2 .2 T h e F\prmu\if^(Cmax,C) p r o b l e m

[Gangadharan and R a j e n d r a n , 1994]

Gangadharan and Rajendran are interested in minimising the criteria Cmax
and C, and they restrict their study to the set of permutat ion schedules. No
objective function is explicitly defined and the problem is to find a solution
belonging to the set O defined by:

/n __ / C/V/Q' zA 9 (^max(S) — Cmax(S) • C(S) — C(S) ^ Q"!

^ ' min(Cmax{S);CmaxiS')) m m (c (5) ; C (5 0) ~

The heuristic proposed is based on a simulated annealing method which is
executed with two different initial sequences. The best solution calculated is
retained. The general heuristic algorithm, denoted by H G R l , is presented in

8.2 m-machine flowshop problems 273

Mathematical formulation EJWl
Data: n, the number of jobs,

m, the number of machines,
Pij, 2 = 1, ...,n, j = 1, ...,m, the processing times of jobs,
C^ax 7 the optimal value of criterion Cmax •

Variables: Zij, boolean variable, equal to 1 if Ji is in position j and
0 otherwise,
sf^j, start time on machine Mk of the job in position j^
C, value of the criterion.

Objective: Minimise Ü
n

Constraints: y^^ij = 1» Vj = 1, ...,n,
i = l

n

^Zij = 1, Vz = l , . . . , n ,

3 = 1

sfi] = 0,
n

sfj-^i] = sy^ +]^^i,iPi,i , Vj = 1, ...,n - 1,
i = l
n

s[\|^ = sfi] + y^^»,ipi,fc, V/c = 1,..., m - 1,

n

s^j^^ > S[j^ + y^^Zijpi^k, Vj = 2,..., n and VA; = 1,..., m - 1,

n

sfj^i] > S[j^ + y^2;»,jPi,fc, yj = 1, ...,n - 1 and VA; = 2, ...,m,
i=l

n

2=1 i = l

[Wilson, 1989r

Fig. 8.25. An MIP model for the F\prmu\Lex{Cmax,C) problem

figure 8.26. The initial sequences are obtained by the heuristics HGR2 and
HGR3, detailed below.
The heuristic HGR2 only minimises the criterion Cmax (figure 8.27). It is
based on a sorting procedure which uses the following indices:

J2^ X P'.
Ti = ^ ^ , Vi = l , . . . , n , and Öi = Yj^^d^ ^^ = 1 ' - '

'•̂ 771

*" ^ n

274 8. Shop problems

ALGORITHM HGRl
/* HGR2: the heuristic for the F\prmu\Cmax problem */
/* HGR3: the heuristic for the F\prmu\C problem */
/* RS: the simulated annealing heuristic used by the authors */
Step 1: Apply HGR2 to obtain the schedule S;

Apply RS to obtain the schedule R with S as the initial schedule;
Step 2: Apply HGR3 to obtain the schedule 5 ' ;

Apply RS to obtain the schedule R' with S' as the initial schedule;
Step 3: /* We keep the best schedule */

Jf / ^max [rC) — Umax
W C{K) - C{ß!) ^ ^. ^^^^

-^min{Cmax{R)\Cmax{R'))_ min{C{R)]C{R')) ~ ^
I Print R,Cmax{R) and C{R)]

Else _
I Print Ä',Cmax(i?') andC(jR');

End If;
[Gangadharan and Rajendran, 1994]

Fig. 8.26. An heuristic algorithm for the F\prmu\#{Cmax,C) problem

If Ti > {m-\-1)/2 then the processing t ime pij of job Ji increases globally
when j increases.

The jobs having a low value of the index T^, therefore lower values pij when
j is closer to 1 than to m, will be placed at the beginning of the resulting
schedule. Jobs having larger pij on the last machines than on the first will
be placed at the end of the schedule. We notice here a characteristic of the
algorithm which is similar to tha t of [Johnson, 1954] for the F2\prmu\Cmax
problem (see also [Bonney and Gundry, 1976]).

Step 1:

Step 2:

Step 3:

Step 4:
Step 5:

ALGORITHM HGR2 |
rn rn ^

Ti = Y^j X Pij/^Pij, Vi = 1,..., n;
3=1 3=1
m

Oi = y ^ P i j , Vi = l, . . . ,n;

Q' = {Ji/Ti>{m-\-l)/2};
Q" = {Ji/Ti<{m + l)/2};
Sort the jobs in Q' by increasing value of 6i;
Sort the jobs in Q" by decreasing value of 6i;
S = Q'llQ";
Print S and Cmax{S)\

[Gangadharan and Rajendran, 1994]

Fig. 8.27. An heuristic algorithm for the F\prmu\Cmax problem

8.2 ?n-machine flowshop problems 275

The heuristic HGR3 considers only the minimisation of criterion C. It is
based on the results of [Rajendran and Chaudhuri, 1991]. Let a weight uji be

771

defined by uji = ^ (m — j - j - l) xpij, Wi = 1, ...,n. Rajendran and Chaudhuri

show that by sorting the jobs by increasing order of weights a;̂ , we obtain a
schedule which minimises the criterion C in an heuristic manner. This index
is similar to the one defined by [Page, 1961].

Experimental results show that the heuristic HGRl is better than those
proposed for the F\prmu\Cmax problem by [Ogbu and Smith, 1990] and
[Ho and Chang, 1991]. Prom a theoretical point of view the definition of the
set O may seem to be surprising regarding the bicriteria minimisation prob­
lem. We can show that this set is a subset of the set of strict Pareto optima.

Lemma 32
We have OQE.

Proof.
We shall proceed by contradiction. Let us suppose that 35 € O such that S ^ E.
S ^ E<F^3S' such that Cmax{S') < Cmax{S) and C{S') < C{S) with at least one
strict inequality.
_ Cma.iS) - CmaxiS') _^ Ü (g - Ü(50 ^ ^̂ ^^.^^ coutradicts the fact

min{Cmax{Sy, Cmax{S')) min{C{S); C{S'))
that s e on

Notice that the reciprocal is false. Let us consider an example where the set
of solutions is reduced to two schedules S and S' such that Cmax{S) = 15,
C{S) = 23, Cmax{S') = 14 and C{S') = 24. We then have O = {S'} and
E = {5 ,5 '} .

The problem addressed by [Gangadharan and Rajendran, 1994] is equivalent
to the determination of a solution belonging to the subset O oi E. The heuris­
tic HGRl gives an arbitrary solution belonging to the set O.

[Rajendran, 1994] and [Rajendran, 1995]

[Rajendran, 1995] proposes an heuristic which calculates a solution belonging
to the set O of sequences defined by:

O = { 5 / V 5 ' 9̂ 5 , C^--(^)-^rnaAS') ^ C{S)-C{S') ^ Q|
^ ' min[CmaAS);Cmax{S')) mm(c(5);C(50)

This heuristic, denoted by HCR3, is based on a neighbourhood method
having the same scheme as the heuristics HCRl and HCR2 presented by

276 8. Shop problems

[Rajendran, 1992] to solve the F2\prmu\Lex{CmaxiC) problem. The heuris­
tic HCR3 is presented in figure 8.28.

ALGORITHM HCR3
/* T is the set of n jobs to schedule */
/* HCDSl is the algorithm of [Campbell et al., 1970] */
Step 1: Apply HCDSl to obtain the schedule S*;

For 2 = 1 to (n - 1) Do
Swap the jobs S*[i] and S*[i + 1] in S* to obtain S";
If {CmaxiS') < Cmax{S*)) Then 5* = 5';

End For;
Step 2: Fbrr = l to |5*| Do

m m
Ds*[r] = /,PS*[r]J - /.PS*[r+l]j\

j=l 3=1
Tn m

^'s*[r] = I Z (^ - j + 1) X Ps*[rU - X l (^ - i + 1) X P5*[r+1],.
j = l 3 = 1

End For;
L = {V^s*[i]>0};
Sort L by decreasing value of Di (break ties by choosing the job
with the greatest value D^);

Step 3: While (L ^ 0) Do

S = S* with the jobs in zth and {i + l)th position swapped;
If / CmaxjS) - CmaxjS*) (7(5) — (7(5*) ^. Then
- min{Cmax{S);Cmax(S*)) min{C(Sy,C{S*)) ^

' S* =S;
Goto Step 2;

End If;
L = L- {i};

End While;
Step 4: Print 5*, Cmax (5*) and C(S*);

[Rajendran, 1995J"

Fig. 8.28. An heuristic algorithm for the F\prmu\if=(Cmax,C) problem

Experimental results are presented and the heuristic HCR3 is compared
with an heuristic proposed by [Ho and Chang, 1991] and which solves the
F\prmu\Cmax problem.

Rajendran broadens the heuristic HCR3 similarly to the problem with three
criteria F\prmu\CmaxiC,I, where / is the sum of the idle times on all the

m
machines, i.e. I = 2_]^k with Ik the sum of idle times on machine Mk- The

k=l
heuristic obtained, denoted by HCR4, is identical to HCR3 except in the test
of step 3 where we must read for HCR4:

8.2 m-machine flowshop problems 277

"If (r(S)-Crr

minyCmax(S);Cn
c(s)-c(s*) _̂ ns)-i(s*) ^ Q^ r^^^ ^

ax(S*)) min(c(S){C(S*)) iin(l(S);I(S*))

Comparisons with the heuristic of [Ho and Chang, 1991] are also presented
and they show that HCR4 gives better results for the three criteria.

[Rajendran, 1994] studies this problem when the processing times can be
equal to zero. This constraint is not generally taken into account because it
modifies calculation of the completion times of jobs on machines.

^ • - 1

M:

M. J-1

Cy..

M:

0

;̂ ^

a

J.

Cy-i

-: Ji

Cy 0 c.
- case p. j=0 - - case p. j>0 -

Fig. 8.29. The influence of zero processing times

Thus, to avoid idle times which are of no use, Rajendran authorises cases
where dj < Cij-i (see figure 8.29). This implies on the other hand that
the completion time of a job Ji is defined by Ci = max {Cij), to be able

j = l , . . . , m

to take account of the case where the last operations have zero duration. In
order to solve this problem a modified version of the heuristic HCR3, de­
noted by HCR5, is presented in figure 8.30. The diflFerences between these
two heuristics are in the initialisation phase, where in HCR5 a variant of the
heuristic HNEHl is used instead of the heuristic HCDSl, and in the calcula­
tion of the indices Di and D^,

Rajendran presents experimental results in which HCR5 is compared to the
heuristic of [Ho and Chang, 1991]. This comparison is made on the criteria
Cmax, C and / . As in the case where the processing times are strictly pos­
itive, heuristic HCR5 gives better results than the heuristic presented by
[Ho and Chang, 1991].

8.2.3 The F\prmUjdi\e{Cmax/Tmax) problem

[Daniels and Chambers, 1990] propose an a posteriori algorithm which is a
generalisation of the heuristic HDC3. Knowing a value e the heuristic, denoted

278 8. Shop problems

ALGORITHM HCR5
/* T is the set of n jobs to schedule */
/* HNEHlb is a modified version of HNEHl: in the first phase jobs are */

m
/* sorted by decreasing value of /"^Pij/rij, with */

i = i
/* rii the number of operations of job J« which have not a zero */
/* processing time */
Step 1: Apply HNEHlb to obtain the schedule S*;

For z = 1 to (n - 1) Do
Swap the jobs S*[i] and S*[i + 1] in 5* to obtain 5 ' ;
If iCmax{S') < Cmax{S*)) Then S* = S';

End For;
Step 2: For r = 1 to \S*\ Do

m m

End For;

m m

^ (m - j + l)PS*[r],i 5 Z (^ - J H- l)P5*[r+l],:
1=1 1=1

ms*[r] ^S*[r+1]

L = {V/)5*[i i>0};
Sort L by decreasing value of Di (break ties by choosing the job
with the greatest value D'i)\

Step 3: While (L «̂̂ 0) Do

S = S* with the jobs in ith and (i + l) th position swapped;

Lf(-
(^max\^) (^max\^) + ^ g - . q . ? , . <o)Thga

mm(C(5);C(5^*))

I Goto Step 2;
End If;
L=:L-{i};

End While;
Step 4: Print 5%Cmax(5*) and C(5*);

[Rajendran, 1994]

Fig. 8.30. An heuristic algorithm for the F\pr'mu\if^{Cmax,C) problem

by HDC4, searches the jobs Ji which can be scheduled in the last position,
i.e. such tha t :

^P^A + 5IPi,j -di<€
e^i 3=2

For each candidate for the last position, the heuristic H N E H l is applied to
the n — 1 remaining jobs. Thus a complete schedule is obtained for each can­
didate. Amongst all these schedules, we retain the one which maximises the
criterion Cmax- The corresponding candidate job is placed in the last position

8.2 m-machine flowshop problems 279

of the schedule and the process is repeated until all the jobs are scheduled. If
the final solution does not respect the constraint Tmax ^ ^ then the algorithm
returns to the last sequenced job and a t tempts to place another candidate
job. This back-tracking process is repeated until a feasible schedule is ob­
tained or until all the candidate jobs have been tried in all the positions. The
heuristic HDC4 is presented in figure 8.31.

ALGORITHM HDC4
/* T is the set of n jobs to schedule */
/* £7 is the set of strict Pareto optima */
/* -̂ £? 1 ^ ^ ^ ^? is the set of jobs which cannot be placed in position i */
/* HNEHl is the algorithm of [Nawaz et al., 1983] */
/* 6 G]0; 1 [is an ordinary value */
Step 1: /* Initialisation of the algorithm */

e = Tmax{HNEHl{T))-6;
E = i!};
/ , = 0 , V j = l, . . . ,n;

Step 2: /* Building of a schedule */
For £ = n to 1 Do

Step 3:

L={Jie T, Ji ^ Ie/^Pj,i + YIP'^^ -di< €};
jer j=2

/* L is the set of jobs that can be placed in position £ */
If (L = 0) Then

/* The solutions found are in -E */
Return E]
END;

End If:
Let Jfc G 1/ be such that:

Ck,m{HNEHl{T) - {Jfc}) = m^{Ci,m{HNEHl{T) - {Ji}));

S[i] = Jfc;
T = T-{Jk};

End For:
/* We evaluate the built schedule */
U (TmaxiS) > e) Then

Let Jfc be such that Tk(S) > e and Ck,m(S) = max (Cj,m)\
Jj/TjiS)>e^

Let q be the position in S* of Jfc;
Iq = Ig-h{Jk};

Else
E = E-\-{S}]

End If:
T = { J i ; . . . ; Jn}',
Goto Step 2;

[Daniels and Chambers, 1990]

Fig. 8.31. An heuristic algorithm for the F\prmu, di\e{Cmax/Tmax) problem

280 8. Shop problems

Daniels and Chambers present experimental results in which they compare
the heuristic HDC4 to an enumeration method. The results show that the
cardinality of the set of strictly non dominated criteria vectors increases in
proportion to the number of machines. Moreover, they show that on average
50% of the strict Pareto optima are calculated by HDC4. Nevertheless, as for
the heuristic HDC3, the non strict but weak Pareto optima can be generated.

8.2.4 The F\pij G [p..',Pij],prmu\Fi{Cmax,CC) problem

[Nowicki, 1993] is interested in a problem where the processing time of jobs
have to be determined. Crashing time costs are measured by the criterion
CC which is defined by:

n m

CC = / ^ / ^ "^ij^ij

where Xij represents the compression of the operation Oij defined by
Pi,j — Pij ~ ^iJ' [Nowicki and Zdrzalka, 1990] present a state-of-the-art sur­
vey of such problems. The problem addressed by Nowicki is AfV-haid.

For the particular two-machine problem, Nowicki proposes an approximation
algorithm with the guaranteed performance of | . This algorithm is simi­
lar to the one presented by [Nowicki and Zdrzalka, 1988]. We consider an
initial compression vector x^ such that, \/i = l , . . . ,n,Vj = l , . . . ,m,x^j G
[^'iPi,j ~P]• Processing times being fixed, Johnson's algorithm gives an
initial sequence of jobs. The second phase of this algorithm considers that
this sequence is fixed and searches for a vector x which minimises the objec­
tive function Fi{Cmax^CC). This can be done by solving a linear program.
Guaranteed performance of | is obtained ([Nowicki and Zdrzalka, 1988]) by
considering x^j = (1 — Cij) x {p^j —p. .) where Cij is the normalisation to 1

of the weight Wij. The worst case performance is reduced to | by considering

< j = f^ij X (Pij -Rij) where /x^j = max(mm(— a'^'^

and a = 1 — pm/[p-\- \/p{rn — 1)]^ with p being the guaranteed performance
of the sequencing algorithm. Nowicki shows that the bound of | is the low­
est which we can possibly find. In the case m = 2, we have p = 1 because
algorithm ESJl is an optimal algorithm.
When the number of machines is not equal to two, algorithm ESJl can no
longer be used to calculate a sequence. We suppose in the following that an
heuristic, with a guaranteed performance of p is used. When the vector x^ is
defined as previously for the performance | , Nowicki shows that the guaran­
teed performance of the algorithm is equal to p^- (m — p)/{2p-\-2yJp{m — 1) —
!)•

8.2 m-machine flowshop problems 281

8.2.5 T h e F\pij = Pi E [p^'^Pi],prmu\#{CmaxiCC) problem

[Cheng and Shakhlevich, 1999] address a particular flowshop problem where
all the operations of a job have the same processing time, i.e. pij = Pi, Vz =
1,..., n. We speak of a proportionated flowshop problem. Besides, the process­
ing times are variables to be determined, and we have pi G [Poft]? Vi =
1,..., n. The crashing time costs are measured by the criterion CC which is

n

defined by CC^ = ^ WiXi where Xi £ [0;^^ —p.] and it represents compres-
i= i _

sion of the job Jj, i.e. pi = p^ — Xi. Cheng and Shakhlevich are interested
in the determination of the strict Pareto optima, which is a polynomially
solvable problem.

When processing times are fixed any permutation schedule minimises the
criterion Cmax- Then, the optimal value of the criterion Cmax is given by:

n

Cmax = (m - 1) max {pi) + ^ p i
z= l , . . . ,n ' ^

i = l

Similarly, when compressions Xi are fixed, the optimal value of the criterion
Cmax does not depend on the schedule.

Cheng and Shakhlevich propose an a posteriori algorithm which is based on
the enumeration of the extreme Pareto points of the polyhedron of the so­
lutions in criteria space. We can model the problem with a linear program
because the variables Xi take real values and because every schedule min­
imises the criterion Cmax- The principle of the algorithm, denoted by ECSl,
is the following. Knowing an extreme point of the trade-off curve, it is possi­
ble to obtain the next extreme Pareto point by reducing the processing time
of one or several jobs. Let 5^ be a solution defined by the processing times,

i.e. s^ = [p\'i'P2'i" '\PnV ^^d let {Cmax\CC) be the associated criteria
vector. In s°, Ji is a job such that either pi < max (pj), or pi = max (pj)

j = l , . . . , n j=l,...,n

and 3Jk such that pk = Pi- Reduction by one unit of the processing time of Ji
leads to a reduction by one unit of the value of the criterion Cmax

of 5^. The
ratio 5i, which is the trade-off between the two criteria, is defined by Si = Wi.
It corresponds to an increase in criterion CC when the processing time Pi
is decreased by one time unit. Let us now consider compression of all the
longest jobs of s^. Let z be the maximum decrease of the longest processing
times so that they remain the longest. We define L = {Ji/pi = max (pj)}

j=l,...,n

and SL = / ^ Wj/{m -{- \L\ — 1). From an extremity of the trade-off curve,
jjeL

obtained by solving the F\pij = Pi G [p.;Pi],prmu\Lex{Cmax^CC) prob­
lem, a series of compressions is performed to arrive at the other extremity of

282 8. Shop problems

the curve. For a given extreme Pareto point, the next extreme point is cal­
culated by choosing the lowest ratio 5i or 5L and by maximum compressing
the corresponding job(s). This smaller ratio corresponds to the slope of the
facet of the polyhedron which is between the current extreme point and the
next point calculated. Algorithm EC SI is presented in figure 8.32. Its t ime
complexity is in 0 (n l o g (n)) .

Example.
We consider a scheduling problem for which n = 5 and m = 2.

i

Pi
Pi
Wi

1
3
7
1

2
5
7
1

3
4
5

ä

4
2
4
4

5
3
4
5

(i) p= [7 ;7 ;5 ;4 ;4]^ and (5 = [1; 1;3;4;5]^.
p' = 7, L = {J i , J2}, Z = 2 and p'' = 5.
6L = 2/3, z = 1, p = 0 and E = {(34; 0)}.
(ii) g=l, 6i> SL.

z = min(2; 2) = 2, p' = 5.
E = E-{- {(28;4)}, p = [5;5;5;4;4]^, L' = {J3}, Z ' = 1 and Z = min(0; 1) = 0.
L = {Ji , J2, J3}, SL = 5/4, p" = 4, SL = 00.
(iii) g = 2,öi<dL-
z^ = 2,p= [3; 5; 5; 4; 4]^ and E = E + {(26; 6)}.
JieL^L = {J2, J3}, 5L = 4/3 and Z = 0.
p" = 4 and 2 = 2.
(iv) p = 3, (52 < (5L.

;2;2 = 0, L = {J3}, ^L = 3/2 and Z = 1.
2 = 3.

(v) p = 4, (53 > ^L.

;. = 1, p ' = 4.
E = E^ {(24; 9)}, p = [3;5;4;4;4]^, L' = {J4, J5}, Z ' = 1 and Z = 0.
L = {J4, J5, J3}, SL = 3, y = 0 and SL = 00.
(vi) g=:b, S3 < SL'

zs = 0, L = {J4, J5}, JL = 3 and Z = 1.
2 = 4.

(vii) fi' = 6, (54 > 5L.

^ = 1, p ' = 3.
E = E + {(21; 18)}, p = [3; 5; 4; 3; 3]^, L' = 0, Z ' = 0 and Z = 0.
1/ = {J4, J5}, SL = 3, p" = 0 and SL = 00.
(viii) p = 7, (54 < ^L.
;̂ 4 = 1, p = [3; 5; 4; 2; 3]^ and E = ^ + {(20; 22)}.
J4 G L =4> L = {J5}, (5L = 5/2 and Z = 0.
p " = 0 and 2 = 5 = n.
(ix) We obtain therefore E = {(34; 0); (28; 4); (26; 6); (24; 9); (21; 18); (20; 22)}.

8.2 m-machine flowshop problems 283

ALGORITHM ECSl
/* We assume that wi < W2 < -- - < Wn "^ /
/* We consider the solution of the Lex{Cmax,CC) problem */
Pi=Pi, Vi = l , . . . ,n;
öi = Wiy Vz = 1, ...,n; p ' = max (pj); /* individual ratio */

j=l,...,n

L = {Ji/Pi = p '} ; Z = mm{p -p);
JiEL —*

p" = max(pj);

5L = y ^ Wi/(rn-\- \L\ — 1); /* Ratio of the longest jobs */

n

i = 1; p = 0; C ^ L = (m - l y + ^ p , ; CC"^^^ = 0;

While (i < n) Do

If ((5i < 6L) Then /* We compress a single job */
Zi = Pi — p^; Pi = Pi — Zi\

^max ~~ ^max Zi\ \y\^ = ^ 0 0 ~r WiZi'^

If {Ji e L) Then
L = L

End If;

{Ji}; ^L = ^Wj/(m+\L\ - 1) ; Z = m i n (p ' - p j) ;

p" = max(p7); z = i + 1:

Else /* We compress all the longest jobs */
z = min(Z,p' — p")\ p' = p' — z\
C^^lx = C^r^äx^ - (m + |L| - l)z', CC"^'^ = CC"^'~^^ -^ zj^ ^iJ

JjEL

E = E -\- {[Cmax]CC)};
/* We update the information */
Pj = Pj — z, \/Jj G L\
Ü = {Jj i L/pi = p '} ; Z' = min{p' - p);

jjeL J
Z = mm{Z - z\ Z')] L = LUL';6L= ^ Wj/{m + \L\ - 1);

Jj€L

p" — maxfp,);
J -^L

If (Z = 0) Then 6L = oo;
End If;

End While;
Print E\

[Cheng and Shakhlevich, 1999]

Fig. 8.32. An optimal algorithm for the F |p i j = pi e \p.]Pi],prmu\#{Cmax,CC)
problem

284 8. Shop problems

Cheng and Shakhlevich extend the algorithm ECSl to cases where the crite­
rion CC is defined as a convex or concave function.

8.3 Jobshop and Openshop problems

8.3.1 Jobshop problems

Few multicriteria jobshop scheduling problems have been addressed in the lit­
erature. [Huckert et al., 1980] study the J|di|FT(Cmax)C',/, T^axjC^) prob­
lem which is strongly AT'P-hard. They propose an interactive algorithm which
is inspired by the STEM method ([Benayoun et al., 1971]). This algorithm
is clearly split into two modules as indicated in chapter 4. The first inter­
acts with the decision maker by deducing a new TchebycheflF point z'^^^.
The greedy heuristics are then carried out for the new scheduling problem
obtained and the solution which is calculated is presented to the Decision
maker. The interactive procedure stops at his command.

[Deckro et al., 1982] study the J|di|GP(Cmaa;,Ü,S + T) problem and they
propose a mixed integer program to solve it. Regarding the multicriteria
optimisation aspect they consider goal programming. The proposed model
applies equally to the case where the operations require a certain number of
machines on which they must be processed.

8.3.2 The 02\\Lex{Cmax,C) problem

When only the criterion Cmax is minimised the problem is solvable in poly­
nomial time ([Gonzalez and Sahni, 1976]). We recall that the optimal value
of the criterion Cmax is given by:

n n

C^max = max(y 'p i , i ; . max (pi,i +^^,2); Y\pi,2)
* '̂ 1=1,. . . .n ' ^
z = l i = l

The minimisation problem of criterion C is strongly ATP-hard and from the
complexity proof proposed by [Achugbue and Chin, 1982] it can be deduced
that the 01\\Lex{Cmax'>C) problem is equally so.

[Gupta and Werner, 1999]

Gupta and Werner show that if the optimal value of the criterion Cmax is
equal to max (pi,i + ^^,2), then an optimal schedule for the bicriteria prob-

i=l,. . . ,n
lem can be obtained in polynomial time as follows.
Let the job J^ be such that pr,i +Pr,2 = inax (pi^i + Pi,2)- Two schedules are

i=l,. . . ,n

8.3 Jobshop and Openshop problems 285

constructed by assigning, in the first one, the first operation of Jr on machine
Ml and by assigning, in the second one, the first operation of Jr on machine
M2. In the first case the jobs remaining to be scheduled are sequenced on
machine M\ according to the rule SPT and the jobs are arbitrarily sequenced
on machine M2. In the second case, we proceed in the same way but by con­
sidering the second machine.

The most difiicult problems to solve are those for which C^^LX — inax(y^pi^i;
2 = 1

n
yjPi,2)' Gupta and Werner propose in this case an extension of the heuristic
i= l _
HGNWl for the F2\prmu\Lex{Cmaxy C) problem. They differentiate between

n n
two symmetrical cases for which C^^a; — /^Pi, i and C^ax = /JPt ,2 ' The

i= l i=\
extension of HGNWl in the first case considers the initial sequence of the
jobs given by [Gonzalez and Sahni, 1976]'s algorithm for machine Mi. The
first job of this sequence is assigned on the first machine. All the other first
operations of the jobs are assigned on the second machine. The insertion
principle of the heuristic HGNWl is applied next. As for the flowshop prob­
lem the optimality test of the criterion Cmax for a partial sequence is carried
out by scheduling the remaining jobs using the algorithm of [Johnson, 1954].
The sequence obtained is then concatenated on the two machines to the par­
tial schedule and the makespan value obtained is compared to the value C^^^,

[Kyparisis and Koulamas, 2000]

Kyparisis and Koulamas study several particular cases for which the lexico­
graphical problem is solvable in polynomial time.

Lemma 33 [Kyparisis and Koulamas, 2000]
The 02\\Lex{Cmax',C) problem is polynomially solvable with a complexity in
0{n^) time if min (pi,i) > 2 x max (pi,2) •

i=l,. . . ,n ' i=l,. . . ,n

Lemma 34 [Kyparisis and Koulamas, 2000]
The 02\\Lex{C'max^C) problem is polynomially solvable with a complexity in
0(nlog(n)) time if

max (pi,i +Pi,2) > max(y]Pi,2;y^Pi, i)-
1=1,...,n '̂ —' *—' i= l 2=1

Lemma 35 [Kyparisis and Koulamas, 2000]
The 02\\Lex{Cmax',C) problem is polynomially solvable with a complexity in
0 (n log (n)) time if
(i) the number of jobs n is even.

286 8. Shop problems

ft

(a) Vz = 1, . . . , - , P2i,l = P2z-1,2 and P2i-l,l = P2i,2 WÜh Pn+1,1 + Pn+1,2 =

max (pi,i +Pi,2).
2=1,. . . ,n

Kyparisis and Koulamas propose several heuristics for the bicriteria problem
for different configurations.
When min (pi,i) > max {pi,2)i ^-e. machine Mi dominates machine M2,

2=1,. . . ,n ' 2=1,. . . ,n

an algorithm in 0 (n log (n)) time with a worst case performance guarantee of

1 H— is presented.
n

8.3.3 The 03\\Lex(Cmax,C) problem

[Kyparisis and Koulamas, 2000] study a polynomial sub-problem of the three-
machine problem. The latter is strongly AfP — hard problem.

Lemma 36 [Kyparisis and Koulamas^ 2000]
The 03\\Lex{Cmax^C) problem is polynomially solvable with a complexity in
0{n^) time if min (pi,i) > 2 x max (^2,2,^2,3).

2=1,. . . ,n 2=1,. . . ,n

Kyparisis and Koulamas also propose an heuristic in 0(nlog(n)) time for the
case where min (pi,i) > max (^2,2,̂ 2,3)? ^-e. the machine Mi dominates

2=1,. . . ,n ' 2=1,. . . ,n

the machines M2 and M3. This heuristic is similar to that presented for
the two-machine problem. Its worst case performance guarantee is equal to
. , 2(n + 2)

Wn + 1))-

9. Parallel machines problems

9.1 Problems with identical parallel machines

9.1.1 The P2\pmtn,di\e{Lmax/Cmax) problem

[Mohri et al., 1999] are interested in a bicriteria scheduling problem where
two machines are available to process n independent jobs that can be pre­
empted at any (real) time. Each job Ji is defined by a processing time pi and
a due date di. Without loss of generality we assume that di < d2 < .,. < dn-
The aim is to schedule the jobs in such a way that the makespan Cmax and
the maximum lateness Lmax are minimised. By considering the e constraint
approach they provide a characterisation of strictly non dominated criteria
vectors. This problem is solvable in polynomial time.

Firstly, Mohri, Masuda and Ishii tackle the P2\pmtn, di\Lmax problem which
can be solved by iteratively solving P2\pmtn^ di\— problems using the proce­
dure of [Sahni, 1979]. At each iteration, a P2\pmtn^di = di -i- L\— problem
is solved: if a feasible solution to this problem exists, then a schedule for
which the value of the maximum lateness criterion is equal to L exists. Oth­
erwise, no such schedule exists. Starting with Sahni's procedure they show
the following result.

Lemma 37 [Mohri et al, 1999]
The optimal value of the Lmax criterion for the P2\pmtn^di\Lmax problem
is given by:

- i i

j=l j=k-\-l
i-1

j=k-\-l

under the assumption that pi < di, Vz = 1, ...,n.

This result is extended to the P2\pmtn,di\e{Lmax/Cmax) problem when the
constraint on the makespan is fixed, i.e. when we have Cmax < e- In this case
we have the following result.

288 9. Parallel machines problems

Lemma 38 [Mohri et al, 1999]
The optimal value of the Lmax criterion for the P2\pmtn, di^ Cmax < ^Lmax
problem is denoted by L^ax- ^^ have:

i i—1

^max = max{L;;,„^; max (y ' P j - « - ^ m i n (4 + V pj))},

under the assumption that Pi < di, Vi = 1,..., n.

The resolution of the P2\pmtn^ di\€{Lmax/Cmax) problem with a fixed value
e is similar to the resolution of the P2\pmtn, di\Lmax problem. The only dif­
ference lies in the construction of the deadlines at each iteration. For the
bicriteria problem we have di = mm{di + L; e), Vi = 1,..., n. Therefore, using
Sahni's procedure, if we found a feasible schedule for these deadlines then a
schedule exists for which the makespan is lower than e and the value of the
maximum lateness is equal to L.

Mohri, Masuda and Ishii propose a characterisation of the set E. They iden­
tify a sufScient condition for the existence of a single strictly non dominated
criteria vector. This condition can be seen as a consequence of the mathe­
matical expression of L^ax-

Theorem 31 [Mohri et o/., 1999]
i i—1

Let F = max {J2Pi ' . P"^- Mk+ Yl Pj^)' ^f ^max > F - C^ax
1=1,. . . ,n '̂ —' k=l,...,t—l ^—^

j=l j=k-\-l

then there exists a single strictly non dominated criteria vector defined by
[^max'') ^maxV' ^max ^^ ^^^ Optimal valuc of the makcspan for the P2\pmtn\
Cmax problem can be stated as follows ([McNaughton, 1959]):

1 ""

=1

If the condition of theorem 31 does not hold the set E is contained, in the cri­
teria space, in a line segment limited by the criteria vectors [C^aa;5 ^~Cmax]'^
and [C:^ax'') ^maxl'^^ where C:^^^ is the minimal value of the makespan of
an optimal schedule for the Lrnax

criterion. The value C:^ax ^^^ be ob­
tained from the feasible schedule returned by Sahni's procedure for the
P2\pmtn/di = di -{- L'!^^^\— problem. Besides, for any given criteria vec­
tor [C; Z/]-̂ on the line segment a corresponding schedule is obtained using
Sahni's procedure with di = min{di + L; C), Vi = 1,..., n.
Example.
We consider a problem for which n = 5.

i
Pi
di

1
3
5

2
7

10

3
4

12

4
8

13

5
10
15

9.1 Problems with identical parallel machines 289

(i) We have:
Cmax = max{max(3; 7; 4; 8; 10); | (3 + 7 + 4 + 8 + 10)} = max{10; 16} = 16 and,
L^ax = ^ max{3-5 ; 10-min(5 + 7; 1 0) - 5 ; 14-min(5 + 7+4 ; 10 + 4; 12)-min(5 +
7;10) ;22-min(5 + 7 + 4 + 8;10 + 4 + 8;12 + 8 ;13) -min(5 + 7 + 4;10 + 4 ;12) ;32 -
min(5 + 7 + 4 + 8 + 10; 10 + 4 + 8 + 10; 12 + 8 + 10; 13 + 10; 15) - min(5 + 7 + 4 +
8; 10+ 4 + 8 ; 12+ 8; 13)}

= I m a x { - 2 ; - 5 ; - 8 ; - 3 ; 4} = 2.
(ii) F = max{3; 10 - 5; 14 - min(5 + 7; 10); 22 - min(5 + 7 + 4; 10 + 4; 12); 32 -
min(5 + 7 + 4 + 8; 10 + 4 + 8; 12 + 8; 13)}

= max{3; 5; 4; 10; 19} = 19.
We do not have LJ^aa; = 2> F — C^ax = 19 — 16 = 3 and thus the set E is defined
in the criteria space by a line segment. The first extremity of this line segment is
[C'^ax'^F — a^axV — [16; 3]^. To get the second extremity we need to compute
OX,ax^ which is done by applying Sahni's algorithm with dj = di + 2, Vi = 1,..., 5.
The obtained schedule is presented in figure 9.1 and we have C^ax — 17.

M, E J2 J3 J4 3
0 3 10 14 15 17

M , J.

0 7 15

Fig. 9 .1 . The schedule computed to obtain C^a

The second extremity is therefore [17; 2]^ and the line segment is shown in figure
9.2.

^ m a x ^

3+

-H 1 •
16 17 c

max

Fig . 9.2. The set E in criteria space

This scheduling problem has a strong particularity when \E\ > 1, which

290 9. Parallel machines problems

is to concentrate the strictly non dominated criteria vectors on a single line
segment. Generally, the trade-off curve is piecewise linear, i.e. it is made up of
several line segments. For the problem under consideration, the property can
be established from lemma 38 where the mathematical expression of L^ax
is a maximum of two terms. The first one is a constant, the optimal value
^max^ whilst the second one is the equation of a hyperplan in R^ of the form
a — € where a is a constant.

9.1.2 The PS\pmtn, di\e{Lmax/Cmax) problem

[Mohri et al., 1999] consider the extension to the three-machine case of the
problem tackled in section 9.1.1. n independent jobs have to be processed
and can be preempted at any (real) time. Each job Ji is defined by a process­
ing time Pi and a due date di. Without loss of generality we assume that
di < d2 < ... < cfn- As for the two-machine problem they provide a char­
acterisation of the set of strict Pareto optima, by considering the problem
^{Lmax/Cmax)' This problem is solvable in polynomial time.

Firstly, Mohri, Masuda and Ishii tackle the P3|pmtn, di\Lmax problem which
can be solved by iteratively solving P3\pmtn, di\— problems using the proce­
dure of [Sahni, 1979]. Starting with Sahni's procedure they show the following
result.

Lemma 39 [Mohri et al., 1999]
Under the assumption that pi < di, Vz = l,. . . ,n, the optimal value of the
Lmax criterion for the PZ\pmtn,di\Lmax problem is given by:

i i—1

Lmax = i «laX {y^Pj - ^ i - u P ^ - S^f' + ^ ^ - 1 + Yl Pö))^ ^/^e^e
z = l , . . . , n / L = 1 , . . , , Z — 1

i

Ei = min (4 - h V] pj).

Next, this result is extended to the PZ\pmtn, di\e{Lmax/Cmax) problem when
the constraint on the makespan is fixed, i.e. when we have Cmax ^ -̂ In this
case we have the following result.

Lemma 40 [Mohri et al, 1999]
i i—1

Let Fl = max (Y ^ f t - , min {Ek + Ek-\ + V Pj))
z=l,..,,n '̂ —' /c=l,...,i—1 '̂ —'

i = l j=/c+l
i 2—1

and F2 = j n a x (^ P ^ - niin {Ek-i + ^ Pj)),
j = l j=/c+l

i

where Ei = min {dk + T J Pj)- The optimal value of the Lmax criterion

9.1 Problems with identical parallel machines 291

for the P3\pmtnydi^Cmax < ^\Lmax problem is denoted by L^ax- Under the
assumption that pi < di, Vz = 1, ...,n, we have:

^max = niax {L*^ax'^ Fi - e; F2 - 2e).

The resolution of the P3\pmtn, di\€{Lmax/Cmax) problem with a fixed value
e is similar to the resolution of the P3\pmtn, di\Lmax problem. The only dif­
ference lies in the construcüon of the deadlines at each iteration. For the
bicriteria problem we have di = min{di +1^; e), Vi = 1,..., n. Therefore, using
Sahni's procedure, if we found a feasible schedule for these deadlines then a
schedule for which the makespan is lower than e and the value of the maxi­
mum tardiness is equal to L exists.

Mohri, Masuda and Ishii propose a characterisation of the set E. As for the
two-machine case, they identify a sufficient condition for having \E\ = 1.
However, this condition is more complicated for the three-machine problem.

Theorem 32 [Mohri et al, 1999]
V Ll^ax > F2- "^C^ax «^^ ̂ max > ^1 " C'maa: ^^en there exists a sin­
gle strictly non dominated criteria vector defined by [C!^c^x''> ^maxV- ^max ^^
the optimal value of the makespan for the P3\pmtn\Cmax problem given by
([McNaughton, 1959]):

1 '^
Cmaa:=niax(max Pi]-^Pi).

i=\

Mohri, Masuda and Ishii claim that if the condition of theorem 32 does not
hold, the set E is contained in the criteria space in a piecewise linear part
made up of two line segments. Unfortunately, this is not always true. In some
situations, one of these two line segments corresponds to a set of criteria
vectors with a Lmax value equal to Î Ĵ ^x- ^^ ^̂ ^̂ case, the concerned line
segment corresponds to solutions which belong to the set WE and not E.
We prove the following result.

Theorem 33
Let Fl and F2 be defined as in lemma 40- We have the four following cases:

^' V L'^^ax < F2- '^C:;^ax ^'^d L%,^^ > Fl- C;;^^ then the set E defines
in criteria space a single line segment with extreme points [C^^a.; F2 —
^^^max] ^'^d [2 (^2 - L'^ax)'^ ^max] •

^' If ^max > F2- 20;;,^^ and L*^^^ < Fi - C;;^^ then the set E defines
in criteria space a single line segment with extreme points [C^ax5-^i ~
^max] ^^^ [^1 ~ ^*max'^ ^max] •

3. IfL*^ax <F2- 2C;^ax <^rid L*^^^ <Fi- Q ^ ^ and Fi = F2 - C:^^^ then
the set E defines in criteria space a single line segment with extreme
points [C^ax'^Fi - C^^J'^ and [Fi - L*^^^; L^^^^f.

4, If L ; , ^^ < F2- 2C^^^ and L^,^^ < Fi - C^:^^^ and Fi ^ F2 - C^^ax
then the set E defines in criteria space two connected line segments with

292 9. Parallel machines problems

extreme points [Q , , ; m a x (F i ; F 2 - C^,,) - C:,,J'^, [F2 - F i ; - F 2] ^
and [C^ax'') ̂ maxV') where C^^^, is the minimal value of the makespan
of an optimal schedule for the Lmax criterion. The value C^^x ^^^ ^^
obtained from the feasible schedule returned by SahnVs procedure for the
P3\pmtn,di = d̂ + i^maxl" problem.

Proof.

Prom lemma 40 we know that for a giv6n e value, L^ax = max{LJ^oa.;-^i
—e; F2 — 2€}. We separate the proofs of the different cases.
Case 1: If the condition of case 1 holds then the expression of L^ax is now
Ltnax = max{LJ^oa;; ^2 — 2e}, since e > Ol^ax- This means that the different
values of the criterion Lmax which correspond to strict Pareto optima are on a
single line segment defined by [Cmax',P2 - ^C^ax]'^ 1 since L'!^ax < F2 - 2Cmax,
and [^(^2 — ^macc);^max]^- The value e associated to L^ax is obtained when
Lmax = F2 — 2e.

Case 2: Is symetrical to case 1, since we have L^ax = max{LJ^ax; -^i ~" ^}-
Case 3: This case reduces to case 2. As F\ = F2 — C^ox? we have that Ve > C^ax
Fl — e> F2 — 2e and thus we deduce that Ve > Cmaxj L^max = max{LJ^ax 5 -^i ~ ^}-
Case 4: If the condition of case 4 holds, then we have values of e such that L^ax <
F2 — 2e and L^^x < Fi—e. The first extreme point in criteria space is obtained for
€ = Cmax and due to the condition of case 4, we have the vector [Cmax '•> max(Fi —
Cmax', F2-2C:!riax)]^ w h i c h CaU b c r e w r i t t e n as [Cmax',^^Fi] F2-Cmax)-CmaxV-

The second extreme point is obtained by considering that either Fi — Cmax >
F2 - Cmax or Fl - Cmax < F2 - Cmax- Thus, increasing Cmax lets us be on a line
segment until Fi — e = F2 — 2e. In this case we arrive at the second extreme point,
defined by [F2 — Fi; — ̂ 2]^ . Continuing the increase in the value of the makespan
will lead to the extreme point with a value of criterion Lmax equal to Lmax- To
compute the corresponding value of the makespan, denoted by Cmax 5 we only have
to apply Sahni's algorithm with di = di -{- L'^ax^ Vi = 1, ...,n. D

For any given criteria vector [C; L]-^ on one of the two line segments a cor­

responding schedule is obtained using Sahni's procedure with di = min(di +
L ; C) , V2 = l , . . . , n .

Example,
We consider a problem for which n = 5.

i
Pi
di

1
3
8

2
7

10

3
4

12

4
8

13

5
10
15

(i) We have:
C ; ; , , =max{max(3;7;4;8;10) ; i (3 + 7 + 4 + 8 + 10)} = m a x { 1 0 ; f } = f ,
F l = 8, F2 = min(8 + 7; 10) = 10, F3 = min(8 + 7 + 4; 10 -h 4; 12) = 12,
F4 = min(8 + 7 + 4 + 8; 10 4- 4 + 8; 12 + 8; 13) = 13 and F5 = min(8 + 7 +
4 + 8 + 10; 10 + 4 + 8 + 10; 12 + 8 + 10; 13 + 10; 15) = 15 and ,
Lmax = I max{3-8 ; 1 0 - 1 0 - 8 - 0 ; 1 4 - 1 2 - m i n (8 + 0 + 7;10 + 8) ; 2 2 - 1 3 - m i n (8 +

9.1 Problems with identical parallel machines 293

0+l l ;10 + 8 + 4;12 + 10);32-15-min(8 + 0-t-19;10 + 8 + 12;12-f 10 + 8;13 + 12)}
= I max{-5; - 8 ; -13; -10; -80} = -f.

(ii) Fl = max{3; 10 - 8 - 0; 14 - min(8 + 0 + 7; 10 + 8); 22 - min(8 + 0 + 11; 10 +
8 + 4; 12 + 10); 32 - min(8 + 0 + 19; 10 + 8 + 12; 12 + 10 + 8; 13 + 12)}

= max{3;2;-l;3;7} = 7,
F2 = max{3; 10 - 0; 14 - min(0 + 7; 8); 22 - min(0 + 11; 8 + 4; 10); 32 - min(0 +
19; 8 + 12; 10+ 8; 12)}

= max{3; 10; 7; 12; 20} = 20.
We have L*max = - | > î i -Cmax = 7 - f = - X and L*max = - | < ^2 -C^^ax =
20—2^ = — I (case 1). Thus the set E is defined in the criteria space by a single line
segment. The first end point of this line segment is [C^ax; -^2—2C^ax]^ = [T*' " ~ | 1 ^ '
The second end point is [|(F2 - L^nax)] L':;riaxf = [^; - |] ^ . The shape of the set
E in the criteria space is shown in figure 9.3.

max'

0

-4/3 4-

-5/3 +

32/3 65/6

Fig. 9.3. The set E in criteria space

9.1.3 The P2\di\Lex{Tmax,U) problem

[Sarin and Hariharan, 2000] tackle the problem of scheduling n independent
jobs on two parallel machines, when no preemption is allowed. The aim is to
minimise the maximum tardiness and next the number of tardy jobs. Without
loss of generality we assume that the jobs are such that di < d2 < ... < dn
(break ties by indexing first the job with the smallest pi). As the P2\di\Tmax
problem is AT'P-hard, the bicriteria problem is also. Sarin and Hariharan pro­
pose an heuristic to solve the bicriteria problem.

The first time, they only consider the minimisation of the Tmax criterion of
and propose a heuristic. They recall that there exists an optimal schedule
for this criterion in which, on each machine, the jobs are sequenced in the
order given by the rule EDD. Starting with this result they build an initial

294 9. Parallel machines problems

schedule by using the rule EDD-FAM, i.e. at each iteration the job with the
smallest due date is assigned to the first available machine. This schedule
is next improved by a neighbourhood procedure. Let us denote by T^ax
(respectively T^ax) ^^^ value of the maximum tardiness restricted to the
jobs scheduled on the first machine (respectively on the second machine).
The improvement procedure can be broken down into two main steps. The
first consists in trying to timeshift the interval [T^ax'i'^maxly •̂̂ - ^^ reduce
T^ax ^^d T^ax of ^^^ same quantity. If no pairwise interchange can lead to
this relocation then the first step is completed. In the second step we try to
decrease the size of the interval [T^ax'')'^max] ^f ^^^ current solution. When
no pairwise interchange can lead to this reduction then the second step is
completed and we restart the first step. The heuristic stops when nothing
can be done in both steps. Sarin and Hariharan provide numerous rules to do
fruitful pairwise interchanges for these two steps. The outline of the heuristic
is presented in figure 9.4.

Step 1:

Step 2:

Step 3:

Step 4:

~ ~ ~ J L L G O R I T H M HSHl]

Schedule the n jobs according to the rule EDD-FAM;
CONTINUE=FALSE;
/* Timeshift step */
While (there exists a two-job interchange leading to a timeshift) Do

1 Using the theorem 2 of [Sarin and Hariharan, 2000]
perform the two-job interchange identified;

1 CONTINUE=TRUE;
End While:
/* Reduction step */
While (there exists an interchange leading to a reduction) Do

Enc
If ((

Enc

Try to increase mm(T^ax'')T^ax) and/or to decrease
UlaKyl Ynax 1 •*• max) f

CONTINUE=TRUE;
While:

: J 0 N T I N U E = T R U E) Then
CONTINUE=FALSE;
Goto Step 2;

I If;
Print the current schedule and the corresponding value of J-max'i

[Sarin and Hariharan, 2000]

Fig. 9.4. An heuristic algorithm for the P2\di\Tmax problem

For the bicriteria problem Sarin and Hariharan provide an enumeration algo­
rithm based on a branch-and-bound scheme. Let us denote by T^ax ^^^ max­
imum tardiness value computed by the heuristic HSHl and by C f and Cl^
the completion times of the last jobs on the first and second machine respec­
tively. Without loss of generality we assume that C^ > C^. The heuristic
works by maintaining C^ + C ^ = C f + C^ where Cf^ and C ^ refer to the

9.1 Problems with identical parallel machines 295

completion times of last jobs on the first and second machines for a schedule
under construction. At the first attempt, the heuristic sets Cf^ = C{^ — 1
and C^^ = Cl^ + 1 and the problem becomes a feasability problem where for
each job we introduce a deadline di = di -\- T^^^. Next a backward branch-
and-bound algorithm is applied. At the root node we branch from^the set
of jobs that can be scheduled either at C^^ or C^^, i.e. such that di < C^^
or di < C2^. These jobs are the candidate jobs. A child node is created by
scheduling a candidate job on a machine such that it does not violate its
deadline. Possibly two nodes are created per job. Lower bounds and upper
bounds on the criterion U are proposed by Sarin and Hariharan in order to
shorten the search tree. At the end of the search the schedule with the lowest
value of the criterion [/, if it exists, is retained and new values of C^^ and
C^ are tested. More accurately, we set Cf = C^ - I and C|^ = C f + 1.
When Ci^ — C2^ < 1 the heuristic stops and the schedule with the lowest
value of the criterion U is returned.

Computational experiments on the P2\di\Tmax and P2\di\Lex{Tmax, U) prob­
lems are reported by Sarin and Hariharan. For the former, problems with up
to 500 jobs are solved in a relatively short time. For the bicriteria problem,
the heuristic seems quite limited in problem size since the time required to
solve problems up to 100 jobs grows quickly.

9.1.4 The P|di |#(C,C7) problem

The minimisation of the criteria C and U onm identical machines has been
tackled by [Ruiz-Torres et al., 1997] who tackle the enumeration of strict
Pareto optima. As the P\di\U is AfV-haid the bicriteria problem is also and
Ruiz-Torres, Enscore and Barton propose four heuristics to solve it.

The four heuristics proceed by iterative improvements of seed schedules. For
each one of the heuristics, two searches are done starting from two different
schedules. The first initial schedule is obtained by applying the rule SPT-
FAM, i.e. at each iteration the job with the smallest processing time is as­
signed to the first available machine. The second initial schedule is obtained
by applying the heuristics of [Ho and Chang, 1995] for the P\di\U problem.
For each one of the four heuristics, the neighbourhood of the current solu­
tion is obtained by performing two-job permutations and single job insertions.

The two first improvement heuristics are deterministic ones and are denoted
by G-NS and Q-NS.
The heuristic G-NS first performs a search starting with the first initial sched­
ule. Among the whole neighbourhood of the current solution we consider so­
lutions which have a lower value of the criterion U than the current solution.
Among those neighbours we select the one with the lowest value of the crite­
rion C. The solution retained is put in a set of potential strict Pareto optima.

296 9. Parallel machines problems

if it is not dominated by a solution of this set. If some potential strict Pareto
optima are dominated by this new solution, they are deleted from this set.
The heuristic stops when no neighbour improves the current solution. Next,
the heuristic G-NS performs the improvement of the second initial schedule.
In this case, the choice of the solution for the next iteration is done by consid­
ering in the neighbourhood of the current solution, the solutions which have
a lower value of criterion C. Among those solutions we select the one with
the smallest value of criterion U. Potential strict Pareto optima are added in
the set computed at the first step. In each of the two runs, the heuristic G-
NS stops when no neighbour can be selected according to the rules of choice
presented above.
The heuristic Q-NS is similar to the heuristic G-NS except in the choice of
the solution for the next iteration. When Q-NS starts with the first initial
solution, which is optimal for the criterion C, a neighbour is better than
the current solution if it has a lower value of the criterion U. Among those
neighbours we select the one which has the lowest value of criterion U. Ties
are broken in favour of the schedule with the lowest value of criterion C.
When Q-NS starts with the second initial solution, the comparisons are done
according to the C criterion.

The two last heuristics are simulated annealing heuristics and are denoted
by G-SA and Q-SA. They are similar to G-NS and Q-NS respectively, except
in the acceptance test of a better neighbor which is done according to the
simulated annealing scheme. Computational results show that the heuristics
Q-SA and G-SA slightly outperform the heuristics G-NS and Q-NS.

9.1.5 The P\pmtn\Lex{C^Cmax) problem

[Leung and Young, 1989] are interested in a bicriteria scheduling problem
where the n jobs can be preempted at any (real) time. The aim is to schedule
them in such a way that the makespan Cmax and the average completion
time C are minimised. More precisely, we search for a schedule S which is
optimal for the lexicographical order Lex{C^ Cmax)- This problem is solvable
in polynomial time.

The bicriteria problem without preemption is AfV-haid. We denote by S^^
an optimal solution to the problem without preemption and S^ an opti­
mal solution to the problem when the preemption is allowed. We then have
c"" x(^^) — m+T* '̂ ^^^ inequality shows that use of preemption enables us

to reduce the optimal value of the criterion Cmax for the Lex{C, Cmax) prob­
lem. The algorithm proposed by Leung and Young uses a procedure which is
proposed by [Sahni, 1979] to solve the P\pmtn,di\— problem. Without loss
of generality we assume that n = rm with r € N, i.e. the number of jobs

9.2 Problems with uniform parallel machines 297

is a multiple of the number of machines, and that pi < P2 < -- - < Pn- The
proposed algorithm then schedules the (r — l)m jobs J i , J 2 , . . . , J(r-i)m stc-
cording to the rule SPT-FAM. The value of the criterion Cmax of an optimal
schedule for the P\pmtn\Lex{C, Cmax) problem is given by:

k

C*^,,= max iJ2iCf+Pn-j+i)/k)

where C^ is the completion time of the last job on machine Mj when the
jobs J i , . . . , J(^r-i)m have been scheduled. Then, Sahni's procedure is used to
solve the P\pmtn/di = C^^a.|— problem for the m last jobs. The proposed
algorithm, denoted by ELYl, is presented in figure 9.5. Its complexity is in
0(nlog(n)) time.

Example.
We consider a problem for which n = 6 and m = 2.

i
Pi

1
3

2
5

3
7

4
9

5
11

6
13

(i) We have r = 3 and we schedule the jobs Ji, J2, J3 and J4 according to the rule
SPT-FAM and we obtain the partial schedule presented in figure 9.6.
(ii) C^ = 10, C^ = 14 and C;;,, = max((Ci^ +p6)/l; {Cf +P6 + Cl^ +P5)/2)
= max(23; 24) = 24,
(iii) We place the remaining jobs in the order Je then Js according to the procedure
for the P\pmtn, di = 24|— problem. We obtain the schedule presented in figure 9.7.

To solve an ordinary problem for which n ^ rm, n € N, it is possible to
reduce to the case n = rm with r € N, by introducing dummy jobs with
processing times equal to 0, and by using the algorithm ELYl.

9.2 Problems with uniform parallel machines

9.2.1 The Q\pi = p\e{fmaai/9max) problem

[Tuzikov et al., 1998] study a scheduling problem where n jobs have to be
scheduled on m machines Mj which have distinct processing speeds. The
processing speed of machine Mj is denoted by kj and the processing time
of Ji on Mj is equal to f̂ . The particularity of the problem is that all
the jobs require the same processing time p. The aim is to minimise two
maximum functions fmax and Qmax

defined by fmax = «lax {^i{Ci)) and
i = l , . . . , n

9max = niax {^i{Ci))^ where ^i and ^i are increasing functions. Tuzikov,
i=l,...,n

298 9. Parallel machines problems

ALGORITHM ELYl
/* We assume that pi < . . . < Pn */
Step 1: Schedule the jobs J i , . . . , J(r-i)m according to the rule SPT-FAM;
Step 2: /* We compute the minimal value of criterion Cmax */

r - l

Step 3:

^J^ = y^Pj+(fc-i)m, Vj = l , . . . ,m;

^max max
fe = l , . . . , T l

(£{C^+Pn-e+i)/k);
e=i

/* We apply the procedure of [Sahni, 1979] */
For k = n downto (n — m + 1) Do

/* We schedule job Jk */
K = {j/C^ < C ; , , J ;
Let ji eKhe such that Cf^ = max(Cf) ;

U{Pk<{C:^ax-C}',))ThBn
/* Schedule last job Jk on machine Mj^ ^

Else
L

Cf^+Pk',

iM , ^ = l , . . , Ü i - l) } ; WCt-\-Pk
If (L ^ 0) Then

Let J2 G L;
/* Schedule last job Jk on machine Mj2

^32 Cj2 -\-Pk;
Else

Let J2 and js be such that C!,
and Jj4 with CJ^G[CJ^;CJ^

max ^^32
4 vvx.xx ^ ^ 4

/* Schedule last job Jfc on machine Mj2
/* for C*max - C^ time units */
/* Schedule last job Jk on machine Mj^

V
-a

End If;
End If;

End For;

/* for pk - C^ax + Cjl time units */
cr,=cr,^Pk-
C M

32

•.-\-ct

[Leung and Young, 1989]

Fig. 9.5. An optimal algorithm for the P\'pmin\Lex{C^Cmax) problem

Makhaniok and Manner propose an optimal polynomial t ime algorithm for
the enumeration of the set of strict Pare to optima and which is based on the
6-constraint approach.

Firstly, they recall tha t the single criterion problem of minimising a maxi­
mum function, for instance jmax-, is solvable in O(n^) time. As all jobs have
the same processing t ime they are all equivalent except in their cost in the
objective function. It is therefore possible to compute all the positional com-

9.2 Problems with uniform parallel machines 299

M,

0 3 10

M2 J,

0 5 14

Fig. 9.6. A partial schedule

M, [JT J3 J6 J5

0 3 10 13 24

M2 J2 J4 h
24 0 5 14

C;;,, = 24andÜ=80

Fig. 9.7. The schedule calculated by the algorithm ELYl

pletion times on the machines. This can be achieved by starting with an
arbitrary sequence of jobs and by applying the assignment rule ECT. This
rule consists in assigning each job to the machine which completes it earlier.
Thus we obtain C[i],...,(7[n] where C[u] refers to the completion time of the
job in position u. Next it remains to assign jobs to positions in order to min­
imise the criterion fmax- This can be done starting by the last position and
by scheduling the job Ji such that ^i{C[n]) = min (^^(C[n])). This process

is iterated until each job has been assigned to a position.

To enumerate the set £", Tuzikov, Makhaniok and Manner solve iteratively
the Q\pi >= p\e{fmax/gmax) and Q\pi = p\e{gmax/fmax) problems in order
to exclude from consideration the weak but not strict Pareto optima. The
algorithm, denoted by ETMMl, is presented in figure 9.8. The resolution of
a problem Q\pi = p.fmax < Admax can be done by applying an algorithm
similar to the one used in the single criterion case. This algorithm, denoted
by ETMM2, is presented in figure 9.9. It requires 0{in?') time. Notice that
the Q\pi

— Pi 9max < A fmax problem can be solved by a slightly modified
version of ETMM2, in which in the definition of the set C we consider a strict
inequality and in which we swap the role of the functions ^i and 1?̂ .

300 9. Parallel machines problems

Tuzikov, Makhaniok and Manner also show tha t there is a t most 0{n'^) strict
Pare to optima. This is due to the fact tha t there is at most n? different ac­
tive schedules. They are all obtained by scheduling the jobs in all the possible
positions. This implies tha t the algorithm E T M M l requires 0{n^) t ime.

ALGORITHM ETMMl
Step 1: Solve the Q\pi = p\fmax and Q\pi

— P\Qmax problems and let us
denote by /* and g* the corresponding optimal values of the criteria;
e i = r ; A; = ! ; £ ; = 0;

Step 2: /* Enumeration of the set E */
Repeat Solve the Q\pi = p, fmax < ^i\gmax problem to obtain

the schedule s^\
E = ^ + {s^};
€2 = gmax{s) ;
Solve the Q\pi = p,gmax < €2] fmax problem to obtain
the schedule s' (if it exists, otherwise set s' = s^);
Cl = Jmax\S) \

Until (€2 = g*)\
Step 3: Print the set E\

[Tuzikov et al., 1998]

Fig. 9.8. An optimal algorithm for the Q\pi = p\e{fmax/gmax) problem

Example.
We consider a problem for which n = 5, m = 2, p = 6, A;i = 1, A;2 = 3 and the
functions ^i and ^i are defined as follows:
^i{t) = t — di and ^i{t) = Wit, Vi = 1, ...,n, where Wi and di are respectively a
weight and a due date attached to job Ji. These data are detailed below.

i
di
Wi

1
6
1

2
8
2

3
12
3

4
13
4

5
16
5

(i) The algorithm ECT gives C[i] = [2; 4; 6; 6; 8]^,
We obtain /* = max(8,12,18,16,10) = 18 and,
g* = max(-4 , - 4 , - 6 , - 7 , - 8) = - 4 .
(ii) 61 = 18, A; = 1, E = 0.
Resolution of the Q\pi = 6, fmax < 18|pT
ETMM2:

C[,] = [2; 4; 6; 6; 8]^ and /X[i] = [2; 2; 2; 1; 2]^,
i = 5, C = {Ji , J2}, Je = 0/2 is scheduled on M2 and C2 = 8,
i = 4, C = {Ji , J3}, Ji = J3 is scheduled on Mi and C3 = 6,
i = 3, C = {J i} , Je = Ji is scheduled on M2 and Ci = 6,
z = 2, C = {J4}, Je = J4 is scheduled on M2 and C4 = 4,

problem by using the algorithm

9.2 Problems with uniform parallel machines 301

ALGORITHM ETMM2
/* € is the upper bound on the fmax criterion */
Step 1: /* Computation of the positional completion times */

Cf =0, Vi = l,...,m;
T = {Ji, . . . , Jn};
For i = lton Do

Let £ be such that (Ce^ -bp/ke) = max_(Cj^ -hp/kj);

Step 2:
End For;

-^p/ke;
j=l,...,m

/* Assignment of jobs to positions */
For i = n down to 1 Do

LetC = {JueT/^u{C[^)<e};
Let Je e Che such that ^e(C[{\) = mm(^u(C[i]));

Schedule job Je on machine Mfj,^^^ such that
it completes at time C[i]]
T = T-{Jeh

End For;
Step 3: Print the obtained schedule;

[Tuzikov et al., 1998]

Fig. 9.9. An optimal algorithm for the Q\pi = p, fmax < e\gmax problem

2 = 1, C = {Js}, Je = Jb is scheduled on M2 and C5 = 2,
fmax{s^) = 18 and gmax(s^) = max(0; —6;0; —8; —14) = 0.

£; = {(18;0)} and 62 = 0.
Resolution of the Q\pi = 6,pmax < 0\fmax problem by using a modified version of
the algorithm ETMM2:

C[,] = [2; 4; 6; 6; 8]^ and /.[,] = [2; 2; 2; 1; 2]^,
i = b, C = {J3, J4, J5}, Je = J3 is scheduled on M2 and C3 = 8,
z = 4, C = {J2, J4, J5}, Je = J2 is scheduled on Mi and C2 = 6,
i = 3, C = {J4, J5}, Je = JA is scheduled on M2 and C4 = 6,
i = 2, C = {Ji , J5}, J^ = Ji is scheduled on M2 and C\ = 4,
i = 1, C = {J5}, «/€ = »/s is scheduled on M2 and C5 = 2,
fmax{s') = max(4; 12; 24; 24; 10) = 24 and

9max{s') = max(-2; - 2 ; - 4 ; - 7 ; -14) = - 2 .
(iii) ei = 24, A; = 2.
Resolution of the Q\pi = 6, fmax < 24\gmax problem by using the algorithm
ETMM2:

C[i] = [2; 4; 6; 6; 8]^ and /X[,] = [2; 2; 2; 1; 2]^,
i = 5, C = {Ji , J2, J3}, ô£ = t/s is scheduled on M2 and Cs = 8,
i = 4, C = {Ji , J2, J4}, J£ = 0/4 is scheduled on Mi and C4 = 6,
z = 3, C = {Ji , J2}, J£ = J2 is scheduled on M2 and C2 — 6,
z = 2, C = {Ji , J5}, J£ = Jb is scheduled on M2 and C5 = 4,

302 9. Parallel machines problems

i = 1, C = {Ji}, Ji = Ji is scheduled on M2 and Ci = 2,
fmax(s^) = 24 and 9max(s'^) = max(-4; - 2 ; -4 ; - 7 ; -12) = - 2 .

E = {(18; 0); (24; -2)} and €2 = - 2 .
Resolution of the Q|pi = Q,gmax < —2|/max problem by using a modified version
of the algorithm ETMM2:

C[i] = [2; 4; 6; 6; 8]^ and fi[^ = [2; 2; 2; 1; 2]^,
i = 5, C = {J3, «/4, J5}, cT̂ = J3 is scheduled on M2 and C3 = 8,
2 = 4, C = {J4, J5}, ô£ = J4 is scheduled on Mi and C4 = 6,
z = 3, C = {J5}, Je = «/s is scheduled on M2 and C5 = 6,
i = 2, C = {J2}, »/£ = J2 is scheduled on M2 and C2 = 4,
z = 1, C = {Ji}, c/̂ = Ji is scheduled on M2 and Ci = 2,
/max(sO = max(2; 8; 24; 24; 30) = 30 and

9max{s') = max(-4; -4 ; -4 ; - 7 ; -10) = - 4 .
(iv) €1 = 30, A; = 3.
Resolution of the Q\pi = 6, fmax < 30|pmax problem by using the algorithm
ETMM2:

q, | = [2; 4; 6; 6; 8]^ and /X[,] = [2; 2; 2; 1; 2]^,
i = 5, C = {Ji, J2, t/3}, Je = J3 is scheduled on M2 and C3 = 8,
i = 4, C = {Ji, J2, J4, J5}, «/£ = J5 is scheduled on Mi and C5 = 6,
2 = 3, C = {Ji, J2, J4}, t/̂ = J4 is scheduled on M2 and C4 = 6,
i = 2, C = {Ji, J2}, Je = J2 is scheduled on M2 and C2 = 4,
i = ly C = {Ji}, Ĵ = Ji is scheduled on M2 and Ci = 2,
/max(5^) = 30 and gmax{s^) = - 4 .

£; = {(18;0);(24;-2);(30;-4)}.
€2 = g* and the algorithm ETMMl stops after having found that no feasible solu­
tion to the Q\pi = Q,gmax < —4|/max problem exists.

9.2.2 The Q\pi = p\e{g/fmax) problem

[Tuzikov et al., 1998] study a scheduling problem where n jobs have to be
scheduled on m machines Mj which have distinct processing speeds denoted
by kj. The particularity of the problem is that all the jobs require the same
processing time p. The aim is to minimise two functions fmax and ^ defined by

n

fmax = max (^i(Ci)) and g = y^{^i{Ci)), where ^i and ^i are increasing
i = l , . . . , n '̂ —^

i = l

functions. Tuzikov, Makhaniok and Manner propose an optimal polynomial
time algorithm for the enumeration of the set of strict Pareto optima.

When only the criterion fmax is involved the problem is solvable in 0(71^)
time by an algorithm presented in section 9.2.1. When only the criterion 'g is
involved the problem can be solved in 0{n^) time by reduction to an assign­
ment problem. Consider the positional completion times C[i] obtained using
the rule ECT. The computation of a schedule can reduce to an assignment

9.2 Problems with uniform parallel machines 303

problem in which jobs are assigned to positional completion times. Thus the
minimisation of the criterion g can be done in O(n^) time when the positional
completion times are known. The latter can be achieved in 0(nlog(m)) time.

The algorithm, denoted by ETMM3, which is proposed to enumerate the
set of strict Pareto optima, is similar to the algorithm ETMMl. The main
difference lies in that the algorithm ETMM3 does not solve the two pos­
sible e-constraint problems, thus generating weak but not strict Pareto op­
tima. These non desired solutions are deleted at the end of the enumeration.
The algorithm ETMM3 is presented in figure 9.10. At each iteration, the
Q\pi = p^fmax < ^IV problem is reduced to an assignment problem. Due
to the constraint on criterion fmax ? we set infinite costs when a job cannot
occupy a position. As the maximum number of active schedules is at most
n^, the algorithm ETMM3 requires 0{n^) time.

ALGORITHM ETMM3
Step 1: Solve the Q\pi = p\fmax and Q\pi = p\'g problems and let us

denote /* and g* the corresponding optimal values of the criteria;
/* /"^ refers to the value of the criterion fmax of the solution which
gives g* */

6 = / + - 1; jb = 1; E = 0;
/* Enumeration of the set E */
Repeat

< e|p problem to obtain the schedule s^]

Step 2:

Solve the Q\pi = p, fn
If {s^ exists) Then

E = E + {s^};
€ ^̂^ Jmax\S)]

End If;
Until (s'̂ does not exist);
Delete from the set E the solutions that are not strict Pareto optima;

Step 3: Print the set E;
[Tuzikov et al., 1998]

Fig. 9.10. An optimal algorithm for the Q\pi = p\e(g/fmax) problem

9.2.3 The Q\pmtn\e{C/Cmax) problem

[Mc Cormick and Pinedo, 1995] study a scheduling problem where a process­
ing speed kj is associated with each machine Mj. The aim is to minimise the
maximum completion time of jobs and the average completion time of jobs.
Preemption of jobs is authorised at any real value t (t £ M). We suppose
that the jobs and machines are numbered such that pi <P2 ^ -- - ^ Pn and

304 9. Parallel machines problems

kl > k2> ...> km-

The Q\pmtn\C problem can be solved optimally by the rule SRPT-FM. This
rule consists of scheduling the jobs with the smallest remaining processing
time on the fastest machine, among those available, preempting when neces­
sary.

The Q\pmtn\Cmax problem can be solved optimally by the rule LRPT-FM.
This rule works differently to the rule SRPT-FM, since jobs having, at an
instant t, the m most important processing times, are scheduled. Conversely
to the previous algorithm the scheduled jobs can be preempted during a time
greater than 0.

To solve the bicriteria problem, McCormick and Pinedo determine the set of
strict Pareto optima. To do this they consider the e-constraint approach and
they solve the problem (Pe) defined by:

Min C{s)
with

seS

McCormick and Pinedo model this problem by a linear program. It shows
that the set of solutions «S is a compact polyhedron in R. The criteria Cmax
and C being increasing convex functions on 5, they reach their respective
minimum. Moreover, the set E is included in the frontier of 5 , and is piece-
wise linear. We only have therefore to determine the set E to calculate the
subset Eex of the extreme strict Pareto optima. McCormick and Pinedo pro­
pose an algorithm to solve the (Pe) problem. This algorithm, denoted by
EMPl, looks for a schedule s^ such that Cmax[s^) = ^ and C{s^) is the low­
est possible. At a time ,̂ the rule SRPT-FM is applied except if unscheduled
jobs can only complete at the date e. If this is the case the LRPT-FM rule is
applied for these jobs.

We recall that jobs and machines are numbered such that pi < P2 ^ • • • ̂ Pn
and ki > k2> '" > km- Let us consider figure 9.11 where the jobs J i , J2 and
J3 have been partially scheduled on machines Mi, M2 and M3. We define the
processing capacities V}, Vj = 1, ...,m, for a given iteration of the algorithm
by:

m-j

where Cj^ represents the completion time of the last job on machine Mj and
CQ^ = e. If the rule LRPT-FM is applied at the next iteration for jobs Jn
to Jn-j-\-i, these are processed in the capacities Vi to Vj. McCormick and

9.2 Problems with uniform parallel machines 305

Pinedo define the notion of latency, denoted by gk, oia. set of k capacities Vj
by:

9k = {Vi-^... + Vk)- {Pn+Pn-l + . . . +Pn- /c+l)

V/c = 1,..., n, by setting Vj = 0, Vj > m.

p M
^ 4

p M p M

p M
^ 3

M,

M,

M3

M4

Ji h mMmmmm.

h \r wm wM^^mmm

J3 xr ' '̂1

V, V3

Fig. 9.11. A partial schedule and the corresponding processing capacities

A necessary and sufficient condition for the existence of a solution to the
problem is that when the algorithm is initiated, we have gk > 0, Vfc = 1,..., n.
The algorithm EMPl uses the values gk as follows: if at an iteration for a set
k the value gk equals 0, then the n-fc last jobs are scheduled according to the
rule LRPT-FM. Otherwise, the algorithm applies the rule SRPT-FM. The
job Ji with the lowest processing time pi is then scheduled on the machine
Mj such that Cf = min (C^). In the case where several machines satisfy

this condition, we choose that having the greatest processing speed kj. The
duration x of job Ji on this machine is defined by:

mm m(^0^_i-0^- ^Y.'^k-h - 1 ' k-

min (ge)

)

In the case where kj = km, "^^ have x = min(7^, Cfii - CJ^,^n-2+i)-
'J

Pi 1, we have x = m i n (f ,CJ^, - C f , _min (p^)). Likewise, if kj — k^
•J . , .

If job Ji is not completed, we consider at the next iterations the remaining
amount of job Ji.
Figure 9.14 presents a simplified version of algorithm EMPl. McCormick and

306 9. Parallel machines problems

Pinedo propose an implementation in 0{mn) t ime and which assures tha t the
maximum number of preemptions is in 0{rnn).

Example.
We consider a problem for which n = 10, m = 2, /̂ i = 4, fe = 1 and e = 40.

i
Pi

1
2

2
4

3
6

4
8

5
10

6
12

7
14

8
16

9
18

10
20

(i) C f = C^ = 0, C^ = 40, Vi = 160, V2 = 40.
(ii) gi = 160 - 20 = 140, ^2 = 162, gs = 146, g^ = 132, flrg = 120, ge = 110,
^7 = 102, ^8 = 96, P9 = 92, gio = 90.
(iii) gk = 90, i = 1, Mj = Mi, x = min(40; 2/4; 90/2; 92/3) = 0.5. We obtain the
partial schedule presented in figure 9.12.
(iv) By applying the next iterations, we obtain the schedule presented in figure 9.13.

Ml I J,

M2

0.5

Fig. 9.12. A partial schedule

Ml

M,

Ji h h J4 J5 h h h h

h h J4 J5 6̂ h h h Jio

Jio

0.5 1.3 2.6 4.2 6.3 9.3 12 15.4

Cmax = 23.1 and Ü = 93.7

23.1

Fig. 9.13. The schedule calculated by the algorithm EMPl

McCormick and Pinedo present an algorithm, denoted by EMP2, for the
enumeration of the set E^ which uses the algorithm E M P l . Let s be an
extreme strict Pare to optimum. Starting with this solution we can cal­
culate q{i) the number of jobs scheduled by the rule L R P T - F M before
the job Ji, Wi = l , . . . , n . We set K{i) = q{i -\- 1) + 1, the number of
the machine on which the job Ji is completed and a the number of the
last job scheduled by the rule SRPT-FM, defined by cr + q(a + 1) = n.
Li = {n — q{i),n — q{i) + 1 , . . . , n - ^ (z + 1) — 1 = n — K,{i)} is the list of jobs

9.2 Problems with uniform parallel machines 307

which have preempted the job J^. These jobs have been scheduled by the rule
LRPT-FM. We set Si = ^ kj, Vz = 1 , . . , (J , with M/' = {MjßJk G Li

such that Jk is completed on Mj}. The lists Li depend on the values gk of
each iteration. Schedule 5 of value (e, C) is an extreme strict Pareto optimum
if and only if Ve > d > 0 the running of the algorithm EMPl for the value
e — d does not lead to the same lists Li as those obtained during the con­
struction of 5. This is equivalent to considering that the weaker the value of
the desired Cmax is, the more likely the algorithm EMPl will apply the rule
LRPT-FM. Jobs that, for a more important value of Cmaxi were scheduled by
SRPT-FM will preempt other jobs and be scheduled by LRPT-FM. The next
value of e' < e which is considered is obtained by calculation of the variations
Agk of the latencies. This makes necessary the calculation of variations of the
completion times of jobs in 5 scheduled by SRPT-FM. These latter variations
are given by:

^Ci = (Si + ^ (f e g (i) + e - fc«(i)+e)^C'i_e) , Vz = 1, ..., (7

We then obtain Vfc = 1,..., n — cr + 1:

k 3-2

^9k = ^ l^a + ^ (f c « (j _ i) + a - kk^l-\.a)ACj-i-a
a—K{j-l) a=0

with j such that K{J — 1) < k < hi{j). Likewise we denote by Qkj the value
of the latency when, applying the algorithm EMPl, we search to place job
Jj according to the rule SRPT-FM: gk is the value gkj with j such that
K{J — I) < k < K>{j). The value e' of the criterion Cmax of the next strict
Pareto optimum to be determined is given by e' = e — min (--—).

The algorithm EMP2 is presented in figure 9.15. Its complexity is in 0{m^n)
time.

We can show that the algorithm EMP2 only calculates the extreme strict
Pareto optima in spite of the fact that weak, but non strict solutions can
be obtained by using the e-constraint approach. For a fixed value e the so­
lution determined by the algorithm EMPl is a strict Pareto optimum be­
cause this is obtained by maximising Cmax (under the constraint Cmax < ^)
to minimise C. This translates to the algorithm by alternatively applying
the rules SRPT-FM and LRPT-FM. In other words, when we use the algo­
rithm EMPl in EMP2 we obtain an extreme strict Pareto optimum. To show
that the algorithm EMP2 does not determine solutions belonging to the set
WE — Ey we just have to show that the initial solution determined by the
rule SRPT-FM is a strict Pareto optimum, i.e. it is an optimal solution of the

308 9. Parallel machines problems

ALGORITHM EMPl

/* We assume that pi < ... < Pn and A;i > . . . > fcm*/
/* T is the set of remaining unscheduled jobs */
Step 1: /*Initialisation and feasibility test */

C f = 0, Vi = 1,..., m; C^ = e;

Vj = ^{C^ - Q + i) X kj^i^ \fj = 1, ...,m;
e=o

For i = l to n Do
9i = {Vl-\- ... + Vi) - {pn -\-Pn-l + . . . +Pn- i+ l) ;
/*Vi = 0, Vi > m*/
Ci = 0;
If (pi < 0) Then END; /* Unfeasible problem */ End If;

End For
Step 2: /* Main part of the algorithm */

While (|T| 7̂ 0) Do
Let gk = min (gi);

i= l , . . . , |T |
If {gk > 0) Then

/* We use the rule SRPT-FM */
i = T[l];
Let Mi be the machine such that C^ = min (Cp);

/* Break ties by choosing the one with the greatest speed kj */
If (kj = km) Then X = min(CJ^i - C f , fr,9\j\)\ End If
If (AJJ -km = l) Then

• x = m i n (C J ^ , - C f , | , ^ ^ ^ m m ^ J ^ ,)) ;

End If
If {{kj -km^l) and (Â j ^ km)) Then

min (p^)
x - mm [Cj_i - Cj , —, — , , _ ,

J A/7 A/77J, ± A / j A/771,

End If
Schedule the job Ji in the time interval [Cj^; C}^ + x]

-);

If (a; = kjpi) Then T = T- {Ji}; Else p^ = p^ - —; End If:
Kj

Recompute Vj and f̂fc, Vj = 1, ...,m, Vfc = 1, ...,n;
Else

Use the rule LRPT-FM on the jobs Ji^i-fc+i, . . . , J\T\ ;
T = T — {J|T|-fc+l, . . . , J\T\}]
Recompute Vj and gk, Vj = 1, ...,7?2, V/c = 1, ...,n;

End If
End While;

Step 3: Print the resulting schedule;
[Mc Cormick and Pinedo, 1995]

Fig. 9.14. An optimal algorithm for the Q\pmtn\e{C/Cmax) problem

9.2 Problems with uniform parallel machines 309

ALGORITHM EMP2

/* We assume that pi < ... < Pn and /ci > . . . > /cm */
/* ZE: the list of extreme strict Pareto optima in the criteria space */
/* w: the slope of the facet of the trade-off curve explored at a given iteration */
/* Li', list of jobs which have preempted job Ji */
Step 1: /* Initialisation of the algorithm */

Compute a solution s° using the rule SRPT-FM;
€ = Cmax(s°); Qi =_0; Sji = n;

w = Ö]CT = n] Lj = 0, q{j) = 0, K{J) = 1, Vj = 1,..., n;
Step 2: While (w < oo) Do

i-l

ACi = (Si + y^iKiiHe - K(i)^e)ACi-e) , Vz = 1, ..., Cr;

k 3-2

Agk = X / '̂̂ "̂ 2 J (^«0- l)+a - kk+l-[.a)ACj-l-a
aGwO-l) a=0

with j such that K{J — I) < k < n{j), VA; = 1,..., n — cr + 1;
a = mm (-;—);

k=i,...,(n-cT+iy Agk
Let A;* be such that a* = ^^* ;
Let j * be such that K{f - 1) < k* < «(i*);
If if > 1) Then

Lj*_i = Lj*-i -\-{n- k* -\-l,n- k* + 2 , . . . , n - ^(j*)};
L,* =Lj* - { n - r + l , n - r + 2 , . . . , n - g Ü *) } ;
If (r = n - (J + 1) Then

I cr = cr - 1; Compute Pn-^+i; 5jn-cT+i = cr;
End If
e = e - a * ; Ci = Ci + Ad, \fi = l , . . . ,n;
^6 = ^6 + Age, Ve = 1,..., K{J* - 1) - 1;
Compute pe, Ve = K(J* — 1),..., A;*;
^ j e = r - l , Ve = / . (r - l) , . . . ,A ;* ;
Compute a solution s° using the algorithm EMPl with
the value e;
ZE = ZE + {s°};

Else
I It; = oo;

End If
End While

Step 3: Print the list ZE\

[Mc Cormick and Pinedo, 199"5]"

Fig. 9.15. An optimal algorithm for the Q\pmtn\Cmax'>C problem

310 9. Parallel machines problems

Q\pmtn\Lex{C^ Cmax) problem. The rule SRPT-FM is a necessary and suffi­
cient condition for all optimal schedules for the criterion C. Let two schedules
5̂ and 5^ be optimal for the criterion C. s^ and 5^ verify the rule SRPT-FM
and as 5̂ ^ s'^ we deduce from this that at least two jobs Ji and Jk exist such
that Pi — Pk' This implies that Cmax{s^) = Cmaxis'^)- We conclude there­
fore from this that in criteria space there is only one point {Cmax{s)]C{s))
such that C{s) = min(C(5')). The rule SRPT-FM determines a schedule

corresponding to this point and the solution which is found initially by the
algorithm EMP2 is an extreme strict Pareto optimum.

9.3 Problems with unrelated parallel machines

9.3.1 The R\pij € [p..,Pij]\Fi{C,CC) problem

[Alidaee and Ahmadian, 1993] are interested in a scheduling problem where
the processing times depend on the machine on which jobs are processed.
Besides, these processing times are not data of the problem and we only have
Pi,j ^ b oPij]? Vi = l,. . . ,n,Vj = l, . . . ,m. The exact values pij have to be

determined and we minimise a linear combination of the criteria C and CC .
The criterion CC is the total crashing time cost, defined by:

n m

with Wij the cost of a unit of compression time of job Ji on machine Mj.
Xij is the number of compression time units of job Ji on Mj, which leads to
Pi J = Pij — Xij. The complexity of this problem is open.

When m = 1 and the criterion C is replaced by the criterion C , the prob­
lem is solvable in polynomial time ([Vickson, 1980b]). As for the l\pi G
[P--)Pi]\F'e{C,CC) problem, an optimal schedule exists for the problem on
unrelated machines in which all the jobs Ji are such that pij = p. . or Pij
if Ji is processed on Mj. Determination of the exact processing times when
the schedule is known on each machine, can be reduced to an assignment
problem. Let Q be the matrix {mn x n) composed of n successive matrices
P£ of dimension {m x n)^ where pe[i^j] is the maximum contribution to the
objective function of job Ji if (̂ — 1) jobs are scheduled on Mj after Ji. If we
consider the matrix Q as the cost matrix of an assignment problem, then the
optimal solution of this problem gives an optimal assignment and sequencing
of jobs on machines. Next, determination of the optimal processing times can
be achieved according to the following rule:

9.3 Problems with unrelated parallel machines 311

Pi,j ~P • f̂ '^iJ ^ ^ ^^^ "^i ^^ processed on Mj,

0 if Wij > k and Ji is processed on Mj,

l^Pj^j otherwise.

If Mj is the machine on which Ji is processed then k is the number of jobs
processed after Ji.

9.3.2 The ß|pmtn|€(F^(/rnax,M)/Cmaa;) problem

[T'kindt et al., 2001] are interested in a scheduling problem connected with
the production of glass bottles. The raw material is fused in several ovens
and the molten glass produced is distributed to several moulding machines
which process jobs simultaneously. The constraints associated with changing
colour during production impose that the makespan is bounded by a date
e. We denote by bi the quantity of glass associated with job Ji and kij the
production rate when job Ji is processed on machine Mj. Preemption of jobs
is authorised at any real time. We denote by Cmin the minimal completion
time of the last jobs on the machines and we seek to minimise the maximal
loading difference, i.e. the criterion Imax = Cmax — Cmin- Each glass unit
of job Ji has a fixed price, denoted by pvi, which is independent from the
production machines. The processing of job Ji on a machine Mj during one
time unit, induces a production cost equal to Cij. Therefore, the production
margin, denoted by rriij, saved for one time unit of processing of job Ji on
machine Mj is equal to rriij = kijpvi — Cij. We want to maximise the actual
profit, i.e. the criterion:

n m

where Pij = p ^ is the processing time of job Ji on Mj and Xij the associated
quantity of glass. Calculation of a strict Pareto optimum for this problem can
be achieved in polynomial time.

When the value e of the period is fixed and when the weights of the crite­
ria Imax and M are known, the algorithm proposed is similar to that pre­
sented by [Lawler and LabetouUe, 1978] and [Cochand et al., 1989] for the
R\pmtn\Lmax problem. Firstly, the assignment of jobs on machines is deter­
mined by a linear program, denoted by ETBPl (figure 9.16). In the obtained
solution splitting of jobs can occur, but it is possible to deduce a solution
where only the preemption is authorised. This calculation can be done by
solving a colouring problem in a bipartite graph.

Characterisation of the set of strict Pareto optima is derived by calculating
the set of strict Pareto optima which are extreme points in criteria space.

312 9. Parallel machines problems

Mathematical formulation ETBPl
Data:

Variables:

Objective:

Constraints:

n, number of jobs,
m, number of machines,
T, length of the scheduling period,
&i, z = 1,..., n, quantity of glass associated to job Ji,
a i , a 2 , parameters of the criteria,
with a i + a2 = 1, a i and «2 > 0,
kij, 2 = 1, ...,n, j = 1, ...,m, quantity of job Ji processed
by machine Mj per time unit,
mz,j, i = 1,..., n, j = 1,..., m, production margin saved
while processing one glass unit of job Ji on
machine Mj.
Xijy i = 1, ...,n, j = 1, ...,m, quantity of job Ji assigned
on machine Mj,
Cj , j = 1,..., m, completion time of the last job on
machine Mj,
Ij, j = 1, ...,m, total idle time of machine Mj,
Cmax, makespan of the schedule,
Imax, maximum idle time.

Minimise
i=i j=i ni.

+ OL2ln

^ X i , j = hi, V i = 1,. . . ,
J = l

m

, Vi = 1, ...,n
j = i

i=i '^'^^
Cmax = Ij -\-Cj, \/j = l , . . . , m

Imax > Ij, V j = 1, . . . , m

t^max SI -̂

a^ij e R" ,̂ Vi = l , . . . ,n, \/j = l , . . . ,m
[T'kindt et al., 2001]

Fig. 9.16. A linear program for the R\split\€{Fe{Imax,M)/Cmax) problem

Knowing these extreme points we can deduce the analytical expressions of
the facets of the trade-off curve and therefore characterise the set of strict
Pareto optima. The algorithm, denoted by E T B P 2 , which enumerates the
extreme strict Pareto opt ima is presented in figure 9.17. It proceeds in two
phases:

1. In the first phase we calculate the optimal solutions of the two lexico­
graphical problems involving criteria Imax and — M minimisation prob­
lems.

2. In the second phase a new weights vector a for the criteria is calculated
using the first two optima obtained. We determine the equation of the line

9.3 Problems with unrelated parallel machines 313

containing these two points to deduce the vector a. The new optimum
calculated is added to the list of optima already obtained and the second
phase is i terated with two new optima.

ALGORITHM E T B P 2
/* T: list of current non dominated criteria vectors (criteria space) */
/* ZE: final set of non dominated criteria vectors (criteria space) */
/* E\ final set of extreme strict Pareto optima (decision space) */
r Z' = [-'M{s%Ima.{s%''/;

Etape 1 : Solve (P«) to obtain the assignment s^ with criteria vector z^
which has an optimal value of Imax and a minimal value of — M;
Solve (Pa) to obtain the assignment s^ with criteria vector z^
which has an optimal value of — M and a minimal value of Imax]
If {z^ = z^) Then

ZE={z'};
Goto Step 3;

End If;
Step 2:

Step 3:

T = {z';z^);
ZE = ^;
While (|T| 7"̂ 1) Do

^0 =
Z2 • ^2

:T[2];

(;
'5o

l) - ' •(5o + l'(5o + -
Solve {Pot) to obtain the assignment s with criteria vector

If ((;^o ^ ^2) 3 ^ (^0 ^ ^1)) Then

• T = T + {z%
Sort vectors of T by increasing order of criterion

Else
ZE = ZE^-{z^y,
T = T-{z^y,

End If;
End While;
ZE = ZE-\-T[l]\
Delete from ZE all non extreme points in criteria space;
For all vectors in ZE compute the corresponding schedules
and put them in E\

[T'kindt et al., 2001J

Fig. 9.17. An optimal algorithm for the R\pmtn\e{Fi{Imax',M)/Cmax) problem

Experimental results show tha t the number of extreme strict Pare to opt ima
increases in proportion to the number of machines and jobs. Besides, problems
containing the largest number of these solutions are the squared problems, i.e.
those for which n = m. In conclusion, T'kindt , Billaut and Proust extend the

314 9. Parallel machines problems

algorithm ETBP2 to obtain an interactive algorithm which is more applicable
in an industrial context.

10. Shop problems with assignment

10.1 A hybrid flowshop problem with three stages

[Fortemps et al., 1996] are interested in a scheduling problem which occurs in
the chemical industry, denoted by i JF3 , (P6,P3, l)|con5tr| F£{Cmax^j{Ti),
5{VPI)), where constr translates a set of constraints described hereafter.
The shop comprises three stages. Each job Ji is defined by a release date,
and a due date. Each machine Mj also has an availability date, denoted by Rj.

At the first stage, six identical machines process the jobs which require setup
times which are independent of the sequence on each machine (constraint
'^nsd)' Besides, the setup times require the intervention of a unique resource
(a team of men), making it impossible to perform several preparations at the
same time. This additional resource leads to the consideration that certain
operations require several resources for their processing (constraint fixj ^).
When an operation is completed, the resource is freed up when the operation
is ready to be processed at the second stage, that is to say once the transporta­
tion is finished. This constraint is denoted by block^^''^\ Finally, each machine
Mj has an unavailability time period, denoted by unavailj — resumahle^^\
corresponding for example to a period for maintenance.
At the second stage, three identical machines can process the jobs after leav­
ing the first stage. At this stage, splitting of jobs is authorised (constraint
split^'^^). The first two stages are connected by a network of pipes. Several
pipes are connected by valves. Use of a valve at a time t for the transportation
of a job Ji makes useless every pathway via this valve for transportation of
a job J j , until transportation of Ji is finished. This constraint is denoted by
pipe^^\
At the third stage, a single machine distributes the materials flow correspond­
ing to each job to diff'erent receptacles.

The field of constraints in the notation of the problem can take the expression:
constr = rl \d\ \ Rj, S^^J^, fiXj ^, block^^''^^, pipe^'^^, unavailj —resumable^^^,

316 10. Shop problems with assignment

The aim is to compute a schedule that minimises a convex combination of
three criteria. The criteria which are taken into account are:

1. the makespan, denoted by Cmax?
2. a penalty function 7 (r i , . . . , T^) of job tardiness,
3. a penalty function 5{VPI) which reflects violation of periods of machines

unavailability at the first stage. The presence of this criterion is due
to the complexity of the problem which led the authors to relax the
unavailability constraints.

Since the problem is A/'T^-hard, the algorithm proposed to solve it is an heuris­
tic which proceeds in two phases. The first calculates a sequence L of jobs,
which reflects the order in which the latter are introduced into the shop. The
second phase does the calculation of the final schedule and the assignment of
jobs on the resources at each stage.
Two heuristics are proposed to determine the sequence L, The first is a simu­
lated annealing algorithm and the second is a tabu search. The determination
of this list is made by looking for a solution which minimises the convex com­
bination of the criteria. The general idea of the assignment heuristic is to
schedule the jobs as soon as possible on the machines at each stage, ac­
cording to the rule FAM. These assignments are made whilst respecting the
constraints at each stage.

10.2 Hybrid flowshop problems with k stages

10.2.1 The HFk, {PM^^^)^^^\\Fi{Cmax,C) problem

[Riane et al., 1997] are interested in a scheduling problem where the shop
has k stages and each stage £ contains M^^^ identical machines. The aim is
to minimise the makespan and the sum of completion times. For this, Ri­
ane, Meskens and Artiba minimise a convex combination of the criteria. This
problem is ßfV-haid.

Figure 10.1 presents a mixed linear integer program, denoted by ERMAl.
Constraints (A) express the fact that the jobs must be processed at every
stage. Constraints (B) imply that there is at most one job in position £ on
each machine. Constraints (C) and (D) enable us to calculate the comple­
tion times at each stage (both routing and disjunctive constraints on the
machines). Finally, constraints (E) and (F) define the criteria Cmax and C to
be minimised.

Two tabu search heuristics are also proposed. The first randomly generates
a sequence of jobs. Assignment at the first stage is made according to the
rule FAM and the jobs are scheduled as soon as possible. We suppose that
the assignments are made at the following stages using the same rule and by

10.2 Hybrid flowshop problems with k stages 317

Mathematical formulation ERMAl
Data:

Variables:

Objective:
Constraints:

n, the number of jobs,
k, the number of stages,
M^^\ £ = 1,..., A;, the number of machines at stage £,
p\ \ i = 1, ...,n,i = 1,...,/c, the processing time of job Ji
at stage £,
a, a = 0,..., 1, a weight.

^i,j,u,v, hj = l , . . . ,n, u = 1,...,M^''\ V = 1,...,A;,
boolean variable, equal to 1 if job Ji is processed in po­
sition j on machine Mu at stage v, 0 otherwise,
C | \ i = l , . . . ,n,^ = 1,...,A;, the completion time of job
Ji at stage £,
Cmax, the makespan.
C, the sum of completion times.
Minimise aC + (1 — a)Cmax

M(^> n

y ^ y^^Xi,e,m,v = 1, Vz = 1,..., n, Vv = 1,..., A;
m = l £=1

n

5]l^i,^,m,^ < 1, Vm = 1,..., M(^> , VT; = 1,..., A;,
i=l

V ^ = l , . . . , n
u n

e=i j=i

Vm = 1,..., M (^ \ Vt; = 1,..., k, Vi = 1,..., n,
Vẑ = 1, ...,n

C f ' > Ci"-^) + P 1 ' " , Vi = l , . . . ,n, V ^ = 1,...,A:
(^max ^ O^ ? V2 = I , ..., Tl

^=E^i
(fc)

(A)

(B)

(C)
(D)
(E)

(F)

[Riane et al., 1997]

Fig. 10.1. An MIP model for the HFk, (PM(^>)t=i||F£(Cmax,C) problem

considering the sequence of jobs sorted in non decreasing order of comple­
tion times at the previous stage. We apply a tabu search on the sequence of
jobs of the first stage. The neighbourhood considered is obtained by permu­
tations of any pair of jobs. For the second heuristic, the schedule is calcu­
lated according to the same scheme. The only difference lies in the fact tha t
the initial sequence used at the first stage is generated by the heuristic of
[Campbell et al., 1970].

318 10. Shop problems with assignment

10.2.2 The HFk,{PM^^^)^^^\\e(C/Cmaa^) problem

[Riane et al., 1997] are interested in a scheduling problem where the shop is
made up of k stages, each stage £ comprising M^̂ ^ identical machines. The
aim is to minimise the makespan and the sum of the completion time.
We consider minimisation of the criterion C under the constraint Cmax ^ •̂
Figure 10.2 presents a mixed linear integer program, denoted by ERMA2,
which solves this problem. Constraints (A) express the fact that the jobs
must be processed at every stage. Constraints (B) imply that there is at
most one job in position (, on each machine. Constraints (C) and (D) enable
us to calculate the completion time at each stage (both routing and disjunc­
tive constraints on the machines). Constraints (E) and (F) define the criteria
Cmax and C which are to be minimised. Finally, constraint (G) expresses the
bound on the criterion Cmax for the solution sought.

Three tabu search heuristics are presented for this problem. The principle of
the first two is identical to that of the heuristic for the HFk^ (^'^^^^)?=ill
Fi{Cma,x^C) problem. The third tabu algorithm improves an initial solution
which is calculated by solving the Lex{Cmax^C) problem.

10.2.3 The JfFfc,(PM(^)(0)^=1 | r f \ d f ^ | € (C ^ a x / T ^ a x) problem

[Vignier et al., 1996] are interested in a problem where unavailability con­
straints are imposed on the resources. The shop is made up of k stages, each
stage £ containing M^^^ identical machines. Each machine has its own periods
during which it is not available to process. The number of machines available
at an instant t at stage £ is denoted by M^^\t) and we suppose that the
machines have a "zig-zag" profile, i.e. M^^\t) € [M^̂ ^ - l]M^\ Wt (see
[Sanlaville, 1992]). Each job Ji is defined by a release date at the first stage
and a due date at the last stage. Preemption of jobs is forbidden except when
a job cannot be completed before the start of the next unavailability period on
the machine on which it is scheduled. We then speak of "resumable" machines
(see [Lee et al., 1997]). The aim is to minimise the makespan knowing that
the maximum lateness is bounded by a value e (constraint Tmax ^

e). This

problem is equivalent to the problem HFk,{PM^^\t))^^-^\ r\^\d!l^^\Cmax,

where a^ = d\ ^ + e,Vz = l,. . . ,n.
To solve this problem a branch-and-bound procedure, inspired by the one
proposed by [Brah and Hunsucker, 1991], is presented. At each node of the
search tree we have to take two decisions: the next job to be scheduled and
the machine to process it. Thus, at a given node, if the job Ji is scheduled
on the same machine Mj as the job which was scheduled at the father node,
then this node is a circular node. Otherwise, job Ji is scheduled on machine
Mj_^i, and the node is a squared node. This procedure assumes that all the

10.2 Hybrid flowshop problems with k stages 319

Mathematical formulation ERMA2

Data: n, the number of jobs,
k, the number of stages,
M^^\ i = 1,..., A;, the number of machines at stage ^,
Pl\ i = 1, ...,n,£ = 1,..., k, the processing time of job Ji
at stage £,
e, an upper bound to criterion

Variables: Xij^u,vy i-,3 = l , . . . ,n, u = 1,...,M^^\ v = 1,...,A;,
boolean variable, equal to 1 if job Ji is processed in po­
sition j on machine Mu of stage v^ 0 otherwise,
CI , i = l , . . . ,n,^ = l,...,/c, the completion time of job
Ji at stage £,
Cmax, the makespan.
C, the sum of completion times.

Objective: Minimise C
Constraints:

y ^ ^Xi,£,rn,t; = 1, Vi = 1,..., n, Vt; = 1,..., k (A)
Tn=l € = 1

n

X^Xi,£,nx,.; < 1, Vm = 1,..., M(^> , V-i; = 1,..., k,

V ^ = l , . . . , n (B)
n n

Vm = 1,..., M*"*, Vv = 1,..., fc, Vi = 1, ...,n,
V « = l , . . . , n (C)

C< ' '>>Cf -^>+p l^ \Vz = l , . . . ,n, \/v=l,...,k (D)
Cmax>Cf> ,V i = l , . . . ,n (E)

ü=X:cf> (F)
i=l

Cmax ^ € (G)

[Riane et al., 1997]

Fig. 10.2. An MIP model for the HFk, {PM^^^)^^i\\e{C/Cma^) problem

k

machines are numbered from 1 to Y ^ M ^ ^ ^ by considering firstly machines
e=i

of stage 1, then those of stage 2, etc.
To be more precise, a certain number of rules must be respected when con­
structing nodes (see [Vignier, 1997] for a detailed description of these rules)
to generate feasible solutions and to avoid redundant nodes in the search
tree. At a node 5,;, we can associate a stage £ and a set, denoted by i?^, of
unscheduled jobs at this stage. We therefore know a schedule of all the jobs at
stages ix, Vw = 1,... , (̂ — 1). To verify at node 5-y, the constraint Tmax ^ c? we

320 10. Shop problems with assignment

use a test of feasibility based on a result given by [Horn, 1974]. This test can
be achieved by solving the P\ri^pmtn, di\— problem. For stage ^, ^ = 1,..., fc,
we set:

r. = Ct
and di

-^\ Vi € üi^\

= d^y
K

- E
u=e+]

with Cf ̂

(u)
Pi , Vie

' i

ßW.

Existence of a solution to the feasibility problem can be determined by con­
structing a bipartite graph G and by verifying that a flow of value Y] p\ ̂

exists in this graph (see [Horn, 1974]). In order to take into account all the as­
signments already done at stage i for node Sy, and the unavailability periods
of the machines at stage £, we only have to take into account the release dates
of machines as well as the start times and the end times of unavailabilty peri­
ods on the machines when constructing the graph ([Drozdowski et al., 2000]).
If a flow of value ^ J Pi ^o^s not exist in this graph, then node Sy is pruned.

On the other hand, existence of such a flow does not guarantee that node Sy
leads to a feasible solution. [Vignier et al., 1996] do not take account of jobs
already scheduled at stage 5̂ ^̂ as mentionned above. They indicate that it
is sufiicient to impose on each vertex of the graph minimum capacities which
are functions of jobs already assigned in time periods. The two approaches
are equivalent from a theoretical point of view.
If node Sy is not pruned, then a lower bound on the criterion Cmax is calcu­
lated. This bound is based on bounds LB J and LBM, initially proposed by
[Brah and Hunsucker, 1991], and improved by [Portmann et al., 1996] and
[Portmann et al., 1998]. If the lower bound at node Sy is greater than the
global upper bound then node Sy is pruned. The search strategy used to
shorten the search space is the depth first strategy: let 5^ be the node under
consideration at an instant t, the next node to be processed is the child node
of Sy with the lowest value of the lower bound (if there is one). The detailed
algorithm, denoted by EVBPl, is presented in figure 10.3.

10.2 Hybrid flowshop problems with k stages 321

ALGORITHM EVBPl
/* € is an upper bound to the maximum tardiness */
/* T is the set of n jobs to schedule */
Step 1: /* Initialisation of the algorithm */

Using an ordinary heuristic, compute an upper bound S-ref of value

dl*> = (df> + e)- J2 Pi"^ ^» = 1' •••'«' v^ = 1' •••' ^;
u=e-\-i

Create the root node so: CTQ = 0 ; Q = {^o};
Step 2: /* Main part of the branch-and-bound */

While (g 7̂ 0) Do
Choose a node Sv in Q by using the depth first search strategy;
Q = Q- {si}\ n = f2i]
I ^ t ; = 1 to \Üi\ Do

Choose a job Jj in Ü and create a child node ŝ !J.\ taking
account of the generation rules of the tree;
Search a maximal flot ^ in the bipartite graph associated

Step 3:

i + l ' with s.
If (<?= J2 v^P) Then

Compute Lßcmax(5l+i);
Lf {LBcrr.aAs%\) < Cma.-Vef) Then

If {Oi+i ^ 0) Then Q =^ Q-\-s%\;
Else

I S.ref = (7i+i; Cmax.ref = LJ5c^, , (s l^\) ;
End If;

End If;
End If;

End For;
End While;
Print S-ref and Cmax-ref;

[Vignier et al., 1996]

Fig. 10.3. An optimal algorithm for the HFk, {PM^^\t))^=i\r^^\4^^\\e{Cm^^/Tma^)
problem

A. Notations

A. l Notat ion of da ta and variables

The notation of data and variables is now quite well normalised. We present
in tables A.l and A.2 the set of notations used throughout the book for the
data and the variables respectively.

A.2 Usual notat ion of single criterion scheduling
problems

Two notations exist to refer to scheduling problems. The older has been
proposed by [Conway et al., 1967]. But as it is not the more used in the
literature we present the one introduced by [Graham et al., 1979] and later
detained by [Blazewicz et al., 1996]. The notation is decomposed into three
fields: a|/3|7.
The field a directly refers to the typology presented in figure 1.1 and presents
the structure of the scheduUng problem (table A.3).
The field ß contains the set of constraints of the problem (table A.4).
At last, in the field 7 we put the criteria to optimise (table A.5). Concerning
a more detailled presentation of the different classical criteria in scheduling,
the reader is referred to [Rinnooy Kan, 1976].

324 A, Notations

Table A. l . Notation of data

Notation

rn m
Ji
rii

m^^) (or M(^>)
Mj

Oij

fi inj)
Si (SiJ)

Phj (orpl)

Pi i (Pij)
— * j j '-^

di (dij)

di (dij)

Wi (Wij)

'^3

^*>j

^iJ

^J

Data of problems
Meaning

number of jobs.
number of machines.
job number i, z = 1,..., n.
number of operations of job Ji, we often have rii = 7n, Vi,
2 ^̂ ^ 1 , . . . , 71».

number of machines at stage i.
machine number j , j = 1,..., m.
operation j of job Ji.
release time of job Ji (respectively of operation Oij).
desired start time of job Ji (respectively of operation

processing time of operation dj. When there is only one
operation per job we use the notation p».
minimum processing time (respectively maximum) of op­
eration Oij. When there is only one operation per job
we use p. (respectively p j . This data is generaly used in
problems in which the processing times are variables to
determine.
due date of job Ji (respectively of operation Oij)
deadUne of job Ji (respectively of operation Oij). The
job Ji (resp. the operation Oij) cannot complete after
this date.
weight associated to job Ji (respectively to operation 1
Oij).
production rate associated to machine Mj. This data is
generaly used in uniform parallel machines scheduling
problems.
production rate associated to the processing of job Ji
on machine Mj. This data is generally used in unrelated
parallel machines scheduling problems.
non sequence dependent setup time required before the
processing of operation Oij.
non sequence dependent removal time required after the
processing of operation Oij.

A.2 Usual notation of single criterion scheduling problems 325

Table A.2 . Notation of variables

Variables of problems
Notation

Ci

Ti
Ei
Li
Ui

Meaning
start time of operation Oi,j. When there is only one operation
per job, we use the notation U.
completion time of operat;ion 0«,j.
completion time of job Ji. d = max (Cij).

tardiness of job Ji. We have Ti = max(0; d — di).
earliness of job Ji. We have Ei = m2ix(0; di — d).
lateness of job Ji. We have Li = d — di.
is equal to 1 if Ci > di and 0 otherwise.

Table A.3 . The field a

Field a = aia2
sub-field a i |

Value

1 ®
P,Q,R

F,J,0,X

HF
GO
GJ
{P,Q,R}MPM

GMPM

OMPM

Meaning |
single machine.

identical, proportionnal or
unrelated parallel machines.

flowshop, jobshop, open-
shop, mixed shop.
hybrid flowshop.
general openshop.
general jobshop.
parallel machines (of type P
or Q or R) with a general as­
signment problem.
shop problem with a general
assignment problem.
openshop problem with a
general assignment problem.

1 Value
0
1,2,3,
etc.

m

sub-field a2
Meaning
the number of machines or
pools is not fixed.
the number of machines or
stages is fixed and equal to
1,2,3, etc.
the number of machines or
stages is unknown but fixed.

326 A. Notations

Table A.4. The field ß - (1)

Value
prec

chains

out — tree

Vi

PiJ = P

di
di unknown

di

split

pmtn

Field ß
Meaning |
there is general precedence
constraints between opera­
tions.
there is precedence con­
straints, which form a set of
chains, between operations.
there is precedence con­
straints, which forms an out-
tree, between operations.

jobs have distinct realease
times.
jobs have a common process­
ing time.

jobs have a due date.
jobs have a due date which
is to be determined.
jobs have a deadline.

the splitting of an operation
into parts is allowed and sev­
eral parts can be processed
simultaneously.
the operations can be inter­
rupted and resumed later on
any machine.

1 Value
tree

in — tree

sp —graph

Si

Pi ^
\Pi\Pi]

\ di = d
di =
dunknown

^JlJ2

over

no — wait

Meaning
there is precedence constraints,
which forms a tree, between op­
erations.
there is precedence constraints,
which forms an in-tree, be­
tween operations.
There is precedence con­
straints, which forms a
serie-parallel graph, between
operations.
jobs have desired start time.

the processing times of jobs are
variables to determine and be­
long to the interval [p.; p j .
jobs have a common due date.
jobs have a common due date
which is to be determined.
there is a minimum time lag to
satisfy between the last opera­
tion of job Jji and the first op­
eration of job Jj2.
the overlapping of two consec­
utive operations of a job is al­
lowed.

for each job, when an operation
completes the next one must
start.

to follow

A.2 Usual notation of single criterion scheduling problems 327

Value
block

batch

p — batch

blcg

Rsd
(Rnsd)

nmit

Table A.5. '

Fie ldTT
Meaning |
the shop has storage areas,
with a limited capacity, be­
tween the machines, which
may leads an operation to be
stored on a machine.
the operations can be gath­
ered into batches during
their processing.
the operations can be gath­
ered into batches and are
processed in parallel in each
batch.
the machines must complete
their processing at the same
time.
there is a removal time after
the processing of an opera­
tion. This one depends (re­
spectively does not depend)
on the sequence of opera­
tions on each machine.
when a machine has started
its processing, no idle time
between operations is al­
lowed^

rhe field ß - (2)

second part)
1 Value

recrc

s — batch

permu or
prmu

unavailj

^sd \^nsd)

no — idle

Meaning
a job can be processed several
times by the same machine.

the operations can be gathered
into batches and are processed
in series in each batch.
we consider the set of permu­
tation schedules (only available
for flowshop scheduling prob­
lems).
machine Mj can have unavail­
ability periods, known in ad­
vance.
there is a setup time before
the processing of an opera­
tion. This time depends (re­
spectively does not depend) on
the sequence of operations on
each machine.
on each machine the processing
of the operations is performed
without idle time.

328 A. Notations

Table A.5. The field 7

Field 7 |
Criterion
^max

J-max

J^max

-tt/rnax

J^ max

i^^max

J Ttxax

C{C^)

T (T")

TJ {TT)

Expression
max {Ci)

i = l , . , . , n

max (max(Cz — di\ 0))

max (Ci — di)

max (max(di — C«; 0))
i = l , . . , , n ^ '

max (Ci — Ti)
i = l , . . . , n

max (max(si — ti;0))
i = l , . . . , n

max (/i)
i = l , . . . , n

i = l i = l

n n

i = l i = l
n n

i = l i = l
n n

i = l z = l

Meaning
Makespan, or maximum completion time.

Maximum tardiness of jobs.

Maximum lateness of jobs.

Maximum earliness of jobs.

Maximum flow time of jobs.

Maximum promptness of jobs.

Generic maximum cost function. Generaly,
it is assumed to be an increasing function
of the completion times of jobs.

(Weighted) Average completion time of
jobs, or (weighted) average work-in-
process.

(Weighted) Average tardiness of jobs.

(Weighted) Number of late jobs.

(Weighted) Average earliness of jobs.

No criterion, it is a feasibility problem.

B. Synthesis on multicriteria scheduling
problems

B. l Single machine Just- in-Time scheduling problems

We present in this section the set of problems tackled in chapter 5. The
first table details polynomially solvable problems, mentioning: the notation
of the problem, the associated references and the resolution method as well as
its complexity. The second table contains the set of A^T^-hard problems. We
distinguish the notation of the problem, its exact theoretical complexity and
the associated references. The third table presents the set of open problems,
mentioning: the notation of the problem and the associated references. In
each table, in the column Problem we indicate between brackets the page
number in this book where the corresponding problem is tackled.

POLYNOMIAL JUST-IN-TIME SCHEDULING PROBLEMS ON A SINGLE MACHINE
P r o b l e m [page]

^(Lmax/Pmax) [170]
l\si,di,di - «i < Pi\
^(Lmax/Pmax) [170]
l\di, seq\Ff(E,T) [147]
l\pi = l,di\F^E,T) [147]
l | d^ , cha in |F^ (£ ; ,T) [147]

[153]
iMi = d> S\F^(E,T)

[155]
l\di = d,d unknown\F^(E,T)

[171]
Ti-lPi = l,di,nmit\e(Emax/U)

[171]
1 l\pi = l,di,nmit\e(E/U)

[171]
l\di,seq\F^(E^,T(^) [149]

IMi = d > E P i . ^ i
Pi\FAE'^,T^) [171]
l |p i = l,di\F(Ei,Ti) [147]
l\si,di,Wi ^ j,ai < sj <^ di <
dj\ F(f(Tmax),9(Pmax))

[172]
I jdi = d, A > M | F ^ (t 7 ^ , A) [172]
l\Pi = l,di,nmit\€(Fp(E,T)/U)

[171]
l\di unknown, nmit, A\Fg(E,T, A)

[172]
Ijd^ = d unknown^
nmit\FfCE,T,d) [155]
l\d^ == d unknoivn^ nmity
clas8es\Ff(E,T,lB, d) [156]
l\di = d unknown^ nmit\
Fp(E,T,d,'C) [155]
l |Pi € [v^^'i'Vi] n N, d̂ = d non
restrictive\Fp (E, T, 'CC'^) [157]

Reference
[Hoogeveen, 1996]

[Hoogeveen, 1996]

[Garey et al., 1988]
[Garey et al., 1988]
[Garey et al., 1988]
[Kanet, 1981a]

[Bagchi et al., 1986]

[Bector et al., 1988]
[Webster et al., 1998]
[Kondakci et al., 1997]

[Kondakci et al., 1997]

[Szwarc and Mukhopadhyay, 1995]

[Ahmed and Sundararaghavan, 1990]

[Garey et al., 1988]
[Sidney, 1977]

[Lakshminarayan et al., 1978]
[De et al., 1991]
[Kondakci et al., 1997]

[Seidmann et al., 1981]

[Panwalker et al., 1982]

[Chen, 1996]

[Panwalker et al., 1982]

[Chen et al., 1997]

iMethod &£ complex i ty
Greedy Ö(n log(7i))

Greedy 0{n'^ log(n))

Greedy 0{n log(ri))
Greedy 0{n log(n))
Greedy 0 (n log(n,))
Greedy 0{ri^)

Polynomial branch-and-
bound

Neighborhood

Mixed integer programming

Mixed integer programming

Shifting {0{cn)^ c number
of blocks)
Greedy

Greedy 0(n log(n.))
Greedy 0(n'^)

Greedy 0(n log(n))
Greedy
Mixed integer programming

Greedy 0(n log(n,))

Dedicated 0(n log(n))

Dynamic programming
O(n^)
Dedicated 0(n log(ri))

Reduction to an assignment
problem 0(n)

330 B. Synthesis on multicriteria scheduling problems

AT-P-HARD JUST-IN-TIME SCHEDULING PROBLEMS ON A SINGLE MACHINE
P r o b l e m [page]
l\di,nmit\F^{E,T)

[182]
l\di\F^iE,T)

[182]
l\di = d,nmit\F,(E,T) [183]
l\di = d < J2Piy-r^^H^\P'pCE,T) [183]
l\di = d < S, nmit\F^(E, T)

[184]
l\3i,di\F,(P,T) [184]
l\di,n.mit\€(E'^ /U) [184]
l | d i | F ^ (ß " , T ^)

[184]
l | r i , d i | F ^ (£ ; " , T ^)

[185]
l | d i , n m t t | F ^ (£ ; " , T ^)

[173]

l | d , = d > E P i , r t m i t | F A S " , T ^) [186]
l |d^ = d > 53 Pi» ^sd'"'"^**'*-^^"***''l
FICE"^,!^^) [186]

l |d^ = d unfcnou»Ti, S g j , Timitl
Fp(E^,Tl^) [186]
l | d i , T i m i t | F (£ ; i , T i) [187]
l |d i =d,nmit\Fg(j:Ef,j:Tf) [187]
l | d i , r i m i t | F (£ 7 , T , C) [187]
l |d i =d,nmit\F(Ei,Ti)

[187]
l | d J F ^ (£ ? , T , C) [188]

C o m p l e x i t y
JVP-hard

A/"P-hard

JVP-hard
/ / -P-hard
/ / P - h a r d

AT-P-hard
ATP-hard
strongly ATP-hard

strongly ATP-hard

strongly ATP-hard

ATP-hard
A/"P-hard

A/"P-hard

ATP-hard
AT-P-hard
/ / P - h a r d
AT-P-hard

A/"P-hard

Reference
[Fry and Leong, 1986]
[Azizoglu et al., 1991]
[Szwarc, 1993]
[Kim and Yano, 1994]
[Fry et al., 1996]
[Sundararaghavan and Ahmed, 1984]
[Bagchi et al., 1987a]
[Bagchi et al., 1986]
[Szwarc, 1989]
[Koulamas, 1996]
[Chand and Schneeberger, 1988]
[Fry et al., 1987ai
[Fry and Blackstone, 1988]
[James and Buchanan, 1997]
[James and Buchanan, 1998]
[Yano and Kim, 1991]
[Mazzini and Armentano, 2001]
[Ow and Morton, 1988]
[Ow and Morton, 1989]
[Li, 1997]
[Almeida and Centeno, 1998]
[Liaw, 1999]
[VandenAkker et al., 1998a]
[Azizoglu and Webster, 1997]

[Webster et al., 1998]

[Gupta and Sen, 1983]
[Bagchi et al., 1987a]
[Dileepan and Sen, 1991]
[Bagchi et al., 1987b]
[Kubiak, 1993]
[Fry et al., 1987b]

OPEN JUST-IN-TIME SCHEDULING PROBLEMS ON A SINGLE MACHINE
P r o b l e m
l |d i unknown, •nmit\Ff(E°' ,T^)
l | d i , T i m i t | F ^ (L m a x , - - L m i T i)

l\di,nmit\Fp(C,Lmax - L^,i„,)

[page]
[189]

[189]

[1911 1

Reference
[Adamopoulos and Pappis,
[Gupta and Sen, 1984]
[Tegze and Vlach, 1988]
[Liao and Huang, 1991]
[Sen et aL, 1988]

1996]

B.2 Single machine problems

In this section we present the set of problems tackled in chapter 7. The first
table details polynomially solvable problems, mentioning: the notation of the
problem, the associated references and the resolution method as well as its
complexity. The second table contains the set oi AfV-haxd problems. We dis­
tinguish the notation of the problem, its exact theoretical complexity and
the associated references. The third table presents the set of open problems,
mentioning: the notation of the problem and the associated references.

B.2 Single machine problems 331

POLYNOMIAL SINGLE MACHINE SCHEDULING PROBLEMS (1/2)

P r o b l e m [page] | Reference | M e t h o d &£, complex i ty |
Minimisa.tion of K increasing funct ions of the comple t ion t i m e s |

l l l e f f ^ / f 2 f^)
'' ^^ max f -f max ^ ^-'max ^

[219]

[Hoogeveen, 1992b] Greedy in 0(71"^) for K = 2 and 1
0 (r i ^ (^ + l) ~ 6) otherwise.

Minimisa t ion of t h e average comple t ion t i m e |
l\di\e(C/Lmax)

[207]
l\di\F,(Tmax,C) [214]
l\\Lexifmax,C) [214]
l\\<C/fmax) [207]

l | s^ , pmtn, nmit\F£(C, P-max)
[215]

[Smith, 1956]
[Heck and Roberts, 1972]
[VanWassenhove and Gelders, 1980]
[Nelson et al,, 1986]
[Esswein et al., 2001]
[Sen and Gupta , 1983]
[Emmons, 1975a]
[John, 1984]
[Hoogeveen and VandeVelde, 1995]
[Hoogeveen and van de Velde, 2001]

Minimisa t ion of the ^veighted average c o m p
IjPi = l,di\Lex{Tmax.C^)

[220]
l\pi = l , d i | L e x (C ^ , T m a x)

[220]
\\pi = l , r f i | e (C " ' / T m a x)

[220]
l\Pi z= l,di\Lex(C^,U) [220]
l | p i = l , d i | L e x (C / , C « ^)

[220]
IjPi = l , d i | F ^ (C " ' , F)

[220]
l iP i = l , d i | L e x (C ^ , I 7 ^)

[220]
IjPi = l,di\Lex(U^ ,C^)

[220]
IjPi = l , d i | F ^ (C ^ , C 7 ^)

[220]
Ijpi = l,di\Lex(C^,T) [220]
l |Pi = l,di\Lex(T,C^) [220]
IjPi = l , d i | F ^ (C ^ , T)

[220]
IjPi = l,di\Lex(C^,T^)

[220]
l | p i = l , d i | L e x (T ^ , C ^)

[220]
l |p i = l,di\FgiC^,T^)

[220]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]
[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]
[Chen and Bulfin, 1990]
[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

Greedy 0(n, log(n))
Greedy
Greedy 0 (n ^ p log(ri))
Branch-and-Bound

Branch-and-Bound |
Greedy |
Neighbourhood 0(n log(n)) 1
Greedy |
Neighbourhood 0(n log(n)) 1

et ion t i m e |
Reduction to an assignment
problem O(n^) \
Greedy 0(n log(n.)) 1

Reduction to an assignment 1
problem 0(n) \
Greedy 0(n log(n)) |
Reduction to an assignment 1
problem 0(n) \
Reduction to an assignment 1
problem 0(71*^) |
Greedy 0(n, log(n))

Reduction to an assignment 1
problem O(n^) \
Reduction to an assignment 1
problem 0(n) \
Greedy 0(7x log(n))
Greedy 0(n log(n)) |
Reduction to an assignment 1
problem 0(71"^) \
Greedy 0 (n log(n))

Reduction to an assignment
problem O(n^)
Reduction to an assignment
problem O(n^)

Minimisa t ion of crashing t i m e costs
l |Pi G [PiiPi],di\F£(Tmax,
'CC'^) [216]
1| Pi € [Pi\Pi]>di\e{Tmax/
'CC^) [217]
l\Pi G [P i ; P i] | € (/ m a x / C C ^)

[217]
l |P i G [p . ; P i] | F ^ (C , C C " ')

[219]
l |P i G [p . ; P i] n N | F ^ (C , C C -)

[219]

[Vickson, 1980b]

[VanWassenhove and Baker, 1982]

[VanWassenhove and Baker, 1982]

[Vickson, 1980b]

[Chen et al., 1997]

Greedy 0(71'"^)

Greedy 0(n'^)

Greedy 0(71'"^)

Reduction to an assignment
problem 0(71^)
Reduction to an assignment
problem 0(71^)

Mininnisation of tool changing costs
l\classes^ orders^ SQ^\
Lex(SC,'Xc) [221]
\\classesy commandes^ SQ^\
Lex(AC,^C) [221]

[Gupta et al., 1997]

[Gupta et al., 1997]

Dedicated in 0(71 log(A4) with A4
the number of orders.
Dedicated 0 (n)

Minimisa t ion of due date based criteria
l\pi = l.dilLexiTmaxy"^)

[222]
l\pi = l.di\e(Ü/Tmax)

[222]
l\Pi = l,di\Lex(U^/Tmax)

[222]
l\pi = l , d i | 6 (T m a x , ^ ^)

[222]
l\pi = l , d j L e x (T r n a x , T ^)

[222]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

Reduction to an assignment
problem 0(71^)
Reduction to an assignment
problem 0(n ' ^)
Reduction to an assignment
problem O (n ^)
Reduction to an assignment
problem 0(71^)
Reduction to an assignment
problem Q(n'^)

332 B. Synthesis on multicriteria scheduling problems

POLYNOMIAL SINGLE MACHINE SCHEDULING PROBLEMS (2/2)
P r o b l e m [page]
l\pi = l , d J c (T ^ / T m a x)

[222]
l\pi = 1, di\Lex(T, U) [222]
l |p i = 1, di\Lex(U,T)

[222]

[222]
l\pi = 1, di\Lex{T, U'^)

[222]
l\pi = 1, d J L e x (L r ^ , T)

[222]

1 [222]
l\pi = 1, di|Leaj(C/, T ^)

[222]
l\Pi = 1, d J L e x (T ^ , U)

[222]
1 l|p^ = l,di\F^(T^,U)

[222]
l |p i = l , c i j L e x (T ^ , ^ ^)

[222]
l\Pi = l , d i | L e x (I 7 ^ , T ^)

[222]

[222]

Reference
[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]
[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

[Chen and Bulfin, 1990]

M e t h o d &£ c o m p l e x i t y
Reduction to an assignment
problem O(n^)
Greedy
Reduction to an assignment
problem O(n^)
Reduction to an assignment
problem O(n^)
Greedy

Reduction to an assignment
problem 0(n*^)
Reduction to an assignment
problem O(n^)
Reduction to an assignment
problem O(n^)
Reduction to an assignment
problem O(n^)
Reduction to an assignment
problem O(n^)
Reduction to an assignment
problem O(n^)
Reduction to an assignment
problem O(n^)
Reduction to an assignment
problem O(n^)

ATP-HARD SINGLE MACHINE SCHEDULING PROBLEMS
[page] I C o m p l e x i t y I Reference"

Klinimisat ion of the average comple t ion t i m e
l | d j , nmit\e{C/Emax) [226] I stronlgy ATP-hard [Azizoglu et aL, 1997]
l\di\e(C/Emax)

[226]
stronlgy ATP-hard [Delia Croce and T'kindt, 2002]

[Delia Croce and T'kindt, 2003]
l\di\Lex(U, C) [227] [Emmons, 1975b]
l\di\eiC/U)

[227]
ATP-liard [Nelson et al., 1986]

[Kiran and Unal, 1991]
l | c f J # (C , T) [222] [Lin, 1983]
\\di,\e{C/U,Tmax) [227] [Nelson et al., 1986]

Min imisa t ion of the \veiglited average connpletion tinne
l\di\Lex{Lmax,C'^

[227]
strongly ATP-hard [Chand and Schneeberger, 1984]

[Hoogeveen, 1992a]
l\di\e(C^/Lmax) strongly ATP-hard

[228]

[Smith, 1956]
[Bansal, 1980]
[Chand and Schneeberger, 1986]
[Heck and Roberts, 1972]
[Burns, 1976]
[Miyazaki, 1981]

l | d J F A C " ^ , T ^ ^ [228] strongly A/'T'-hard [VanWassenhove and Gelders, 1978]
Min imisa t ion of crashing t i m e costs

[223]
weakly / / P - h a r d [Chen et al., 1997]

iMi.Pi e [£.;Pi]nN|F^(c/-,cc"')

mi-
weakly jVP-hard [Chen et al., 1997]

l | d i , Pi e [£i;Pi] '"'NlF^CTmax.CC"')
[226]

weakly ATT -̂hard [Chen et al., 1997]

Min imisa t ion of tool changing costs
l\di,S,^]F{SC,Tmax) [229] I A/-p-hard [Bourgade et al., 1995]
l | C . , ^ | F , (C ^ , g C) [229] [Barnes and Vanston, 1981]

OPEN SINGLE MACHINE SCHEDULING PROBLEMS
P r o b l e m [page] | Reference

Min imisa t ion of t h e average comple t ion t i m e
l\di\F,{C,E) [234] 1 [Pry and Leong, 1987]

Min imisa t ion of crashing t i m e costs
l |P i e [p^lPillF^CC'^.CC"') [234] 1 [Vickson, 1980a]

Min imisa t ion of due da te based criteria
l\di\Lex(JJ,Tma.x)

[230]
1 l\di,\e{U/Tmax) [233]

[Shantikumar, 1983]
[Gupta et al., 1999a]
[Nelson et al., 1986]

B.4 Parallel machines scheduling problems 333

B.3 Shop problems

This section deals with the set of problems tackled in chapter 8. The first
table present flowshop problems, mentioning: the notation of the problem,
its complexity and the associated references. The last table is dedicated to
jobshop and openshop problems.

FLOWSHOP SCHEDULING PROBLEMS
P r o b l e m [page] | C o m p l e x i t y | Reference

NIinimisa.tion of m a x i m u m comple t ion t i m e s
F2\prmu\Lex(Cmax,^)

[235]
F2\prmu\F^(Cmax,C!)

[250]
F2\ri,prmu\Ff(Cmax,^) [256]
F2\prmu\e(C/Cmax) [256]
F\prmu\Lex{Cmax f (^)

[270]
F | p r m t i | # (C m a x , C)

[272]
F2\prmu,di\#(Cmax,Tmax) [262]
F\prmu,di\eiCmax/Tmax) [277]
F2\prmu,di\#(Cmax,U) [265]
F2\prmu,di\i^iCmax,T) [267]

strongly ATP-hard

strongly A^P-hard

strongly ATP-hard
strongly ATP-hard
strongly ATP-hard

strongly ATP-hard

ATP-hard
ATP-hard
strongly ATP-hard
strongly A/^P-hard

[Rajendran, 1992]
[Neppalli et al., 1996]
[Gupta et al., 2001]
[Gupta et al., 2002]
[Gupta et al., 1999b]
[T'kindt et al., 2003]
[Nagar et al., 1995b]
[Serifoglu and Ulusoy, 1998]
[Yeh, 1999]
[Chou and Lee, 1999]
[Sayin and Karabat i , 1999]
[Selen and Hott , 1986]
[Wilson, 1989]
[Gangadharan and Rajendran, 1994]
[Rajendran, 1994]
[Rajendran, 1995]
[Daniels and Chambers, 1990]
[Daniels and Chambers, 1990]
[Liao et al., 1997]
[Liao et al., 1997]

Minimisa t ion of crashing t i m e costs

'CC^) [280]
^\PiJ = Pi e [PiiPi]yPrmu\ #{Cmax.
lOC^) [281]

Minimisat
F\prmu, di,nmit\FfCE'^,T^) [176]

ATP-hard

V

[Nowicki, 1993]

[Cheng and Shakhlevich, 1999]

on of Jus t - in -T ime criteria
strongly ATP-hard | [Zegordi et al., 1995]

JOBSHOP AND OPENSHOP SCHEDULING PROBLEMS
P r o b l e m [page]
J\\Frr(Cmax . C, I, Tmax . U) [284]
J\\GP(Cmax.C,E + T)
02\\Lex{CmaxyC)

03\\Lex{Cmaxy C)

[284]

[284]
[285]

C o m p l e x i t y
strongly ATP-hard
strongly ATP-hard
strongly ATP-hard

strongly ATT^-hard

Reference
[Huckert et al., 1980]
[Deckro et al., 1982]
[Gupta and Werner, 1999]
[Kyparisis and Koulamas, 2000]
[Kyparisis and Koulamas, 2000]

B.4 Parallel machines scheduling problems

We present in this section the set of problems tackled in chapter 9. The
following table summarizes the problems, mentioning: the notation of the
problem, its complexity and the associated references.

334 B. Synthesis on multicriteria scheduling problems

PARALLEL MACHINES SCHEDULING PROBLEMS
[page] I C o m p l e x i t y I Reference

Q\Pi = P\^(fmax /9max)
Mini in isat ion of increasing funct ions of t h e comple t ion t i m e s

297] [Tuzikov et al., 1998]
Q\Pi = Pl^jg/fmax) 302] [Tuzikov et aL, 1998]

P 2 I
Minimisa t ion of m a x i m u m comple t ion t i m e s

v)
P3\pmtn, di\€(Lmax / Cmax)

[Mohri et al., 1999]
[Mohri et al., 1999]

P2\di\Lex(Tmax,U) [293] [Sarin and Hariharan, 2000]
P\pmtn\Lex(C, Cmax) [296] [Leung and Young, 1989]
Q\pmtn\e{C / Cmax) [303] [Mc Coi-mick and Pinedo, 1995]
R\pmtn\€{F,iImax,-M)/Cmax) [311] [T'kindt et al., 2001]

Minimisa t ion of crashing t i m e costs
R\Pi,j ^[Pi^^-,Pi,j]\FgCC,CC^) [310] I Open [Alidaee and Ahmadian, 1993]

unknown\Fp(T.'s, CC'^)

[Alidaee and Ahmadian, 1993]

tl69]

P\dj^ = d non restrictive,
nmit\Fp(E,T) [157]

Min imisa t ion of Jus t - in -Time criteria
[Sundararaghavan and Ahmed, 1984]

P|d^ = d unknown^ nmit\Fj^{EyT)
[159]

[Emmons, 1987]

Q\di = d unknown, nmit\F^{E,T)
[188]

Open [Emmons, 1987]

strongly ATP-hard P\di
t\fmax{E^,T^)

restrictive,
[178]

[Li and Cheng, 1994]

P\di
nmi

d unknown,
t\Lex{Fp(E,T), Cmax) [162]

Open [Emmons, 1987]

P\di = d unkn
Fp(E,T,d)

y Pi = P» nmii\
[165]

[Cheng and Chen, 1994]

B.5 Shop scheduling problems with assignment

We collect in this section the set of problems tackled in chapter 10. The table
below summarizes the set of problems met, mentioning: the notation of the
problem, its complexity and the associated references.

HYBRID FLOWSHOP SCHEDULING PROBLEMS
P r o b l e m [page] C o m p l e x i t y Reference

Min imisa t ion of m a x i m u m comple t ion t i m e s
H F f c , (P M C ^) 5 ' _ l l | F ^ (C m a x , C) [316]

HFfc , (PM(^)) J '_T | |€(C/C7max) [318]

HFk, iPM^'-) (t))J^i |rj^^ ,d^^^ 1
<Cmax/Tmax) * * [318]
H F 3 , (P 6 , P 3 , l) | cons t r |F£(C7m,ox.
'i{Ti),delta{yPI)) [315]

^ - P - h a r d

ATP-hard

ATP-hard

ATP-hard

[Riane et al., 1997]

[Riane et al., 1997]

[Vignier et al., 1996]

[Fortemps et al., 1996]

References

[Achugbue and Chin, 1982] Achugbue, J. O. and Chin, F. Y. (1982). Scheduhngthe
openshop to minimize mean flow time. SI AM Journal on Computing,
11:665-679.

[Adamopoulos and Pappis, 1996] Adamopoulos, G. L. and Pappis, C. P. (1996).
ScheduUng jobs with different job-dependent earUness and tardiness
penalties using the SLK method. European Journal of Operational Re­
search, 88:336-344.

[Ahmed and Sundararaghavan, 1990] Ahmed, M. S. and Sundararaghavan, P. S.
(1990). Minimizing the weighted sum of late and early completion
penalties in a single machine. HE Transactions, 22(3):288-290.

[Alidaee and Ahmadian, 1993] Alidaee, B. and Ahmadian, A. (1993). Two paral­
lel machine sequencing problems involving controllable job processing
times. European Journal of Operational Research, 70:335-341.

[Allen, 1981] Allen, J. F. (1981). An interval-based representation of temporal
knowledge. In Proceedings of the IJCAI, Vancouver, Canada, pages
221-226.

[Almeida and Centeno, 1998] Almeida, M. T. and Centeno, M. (1998). A composite
heuristic for the single machine early/tardy job scheduling problem.
Computers and Operations Research, 25(7/8) :625-635.

[Aloulou, 2002] Aloulou, M. (2002). Structure flexible d'ordonnancements ä perfor­
mances controlees pour le pilotage d^atelier en presence de perturbations
(in french). Phd thesis, Institut National Polytechnique de Lorraine,
Nancy (France).

[Aloulou et al., 2004] Aloulou, M., Kovalyov, M., and Portmann, M. (2004). Max­
imization of single machine scheduling. Annals of Operations Research,
129:21-32.

[Aloulou and Portmann, 2003] Aloulou, M. A. and Portmann, M.-C. (2003). An
efficient proactive reactive scheduling approach to hedge against shop
floor disturbances. In Proceedings of the 1st Multidisciplinary Interna­
tional Conference on Scheduling: Theory and Applications (MISTA ^03),
Nottingham, UK, pages 337-362.

[Alves and Climaco, 2000] Alves, M. J. and Climaco, J. (2000). An interactive
method for 0-1 multiobjective problems using simulated annealing and
tabu search. Journal of Heuristics, 6(3):385-403.

[Aneja and Nair, 1979] Aneja, Y. P. and Nair, K. P. K. (1979). Bicriteria trans­
portation problem. Management Science, 25:73-78.

[Artigues et al., 2005] Artigues, C , Billaut, J . -C, and Esswein, C. (2005). Max­
imization of solution flexibility for robust shop scheduling. European
Journal of Operational Research, 165(2):314-328.

[Artigues and Roubellat, 2000] Artigues, C. and Roubellat, F. (2000). A polyno­
mial activity insertion algorithm in a multi-resource schedule with cu-

336 References

mulative constraints and multiple modes. European Journal of Opera­
tional Research, 127:294-316.

[Ausiello et al., 1999] Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V.,
Marchetti-Spaccamela, A., and Protasi, M. (1999). Complexity and
Approximation: Combinatorial Optimization Problems and Their Ap-
proximability Properties. Springer, Heidelberg.

[Aytug et al., 2005] Aytug, H., Lawley, M. A., McKay, K., Mohan, S., and Uzsoy,
R. (2005). Executing production schedules in the face of uncertainties:
A review and some future directions. European Journal of Operational
Research, 161(1):86-110.

[Azizoglu et al., 1991] Azizoglu, M., Kondakci, S. K., and Kirca, O. (1991). Bi-
criteria scheduling problem involving total tardiness and total earliness
penalties. International Journal of Production Economics, 23:17-24.

[Azizoglu et a l , 1997] Azizoglu, M., Kondakci, S. K., and Koksalan, M. (1997).
Bicriteria scheduling: minimizing flowtime and maximum earliness on
a single machine, pages 279-288. In [Climaco, 1997].

[Azizoglu and Webster, 1997] Azizoglu, M. and Webster, S. (1997). Scheduling job
families about an unrestricted common due date on a single machine.
International Journal of Production Research, 35:1321-1330.

[Bagchi et al., 1987a] Bagchi, U., Chang, Y.-L., and Sullivan, R. S. (1987a). Min­
imizing absolute and squared deviations of completion times with dif­
ferent earliness and tardiness penalties and a common due date. Naval
Research Logistics, 34:739-751.

[Bagchi et al., 1986] Bagchi, U., Sullivan, R. S., and Chang, Y.-L. (1986). Mini­
mizing mean absolute deviation of completion times about a common
due date. Naval Research Logistics Quarterly, 33:227-240.

[Bagchi et al., 1987b] Bagchi, U., Sullivan, R. S., and Chang, Y.-L. (1987b). Min­
imizing mean squared deviation of completion times about a common
due date. Management Science, 33(7):894-906.

[Baglin et al., 2001] Baglin, G., Bruel, O., Garreau, A., and Greif, M. (2001). Man­
agement Industriel et Logistique. Economica.

[Baker, 1974] Baker, K. R. (1974). Introduction to sequencing and scheduling. John
Wiley & Sons, New-York.

[Baker and Scudder, 1990] Baker, K. R. and Scudder, G. D. (1990). Sequencing
with earliness and tardiness penalties: a review. Operations Research,
38(l):22-36.

[Bansal, 1980] Bansal, S. P. (1980). Single machine scheduling to minimize
weighted sum of completion times with secondary criterion - a branch
and bound approach. European Journal of Operational Research,
5(3):177-181.

[Baptiste et al., 2001] Baptiste, P., Bloch, C , and Varnier, C. (2001). Ordonnance-
ment des lignes de traitement de surface (in french). In F. Roubellat
and P. Lopez (Eds.): Ordonnancement de la production, Traite IC2,
Hermes (Paris), 259-289.

[Barnes and Vanston, 1981] Barnes, J. W. and Vanston, L. K. (1981). Scheduling
jobs with linear delay penalties and sequence dependent setup costs.
Operations Research, 29(1): 146-160.

[Bartal et al., 2000] Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J.,
and Stougie, L. (2000). Multiprocessor scheduling with rejection. SI AM
Journal on Discrete Mathematics, 13:64-78.

[Bector et al., 1988] Bector, C , Gupta, Y., and Gupta, M. (1988). Determina­
tion of an optimal common due date and optimal sequence in a sin-

References 337

gle machine job shop. International Journal of Production Research,
26(4):613-628.

[Benayoun et al., 1971] Benayoun, R., de Mongolfier, J., Tergny, J., and Laritchev,
O. (1971). Linear programming with multiple objective functions: step
method (STEM). Mathematical Programming, l(3):366-375.

[Bentley and Wakefield, 1996] Bentley, R J. and Wakefield, J. P. (1996). An analy­
sis of multiobjective optimization within genetic algorithms. Technical
Report ENGPJB96, University of Huddersfield, Huddersfield, England.

[Berge and Gouila-Houri, 1965] Berge, C. and Gouila-Houri, A. (1965). Program­
ming, Games and Transportation Networks, vol. 1. Wiley, New York.

[Bertel and Billaut, 2004] Bertel, S. and Billaut, J.-C. (2004). A genetic algorithm
for an industrial multiprocessor flow shop scheduling problem with re­
circulation. European Journal of Operational Research, 159:651-662.

[Billaut et al., 2005] Billaut, J . -C, Moukrim, A., and Sanlaville, E., editors (2005).
Flexibilite et robustesse en ordonnancement (in french). Hermes, Paris.

[Billaut and Roubellat, 1996] Billaut, J.-C. and Roubellat, F. (1996). A new
method for workshop real time scheduling. International Journal of
Production Research, 34(6): 1555-1579.

[Billaut et al., 1998] Billaut, J . -C, T'kindt, V., Richard, P., and Proust, C (1998).
Three exact methods and an efficient heuristic for solving a bicrite-
ria flowshop scheduling problem. In Multiconference on Computational
Engineering in Systems Applications (CESA^98), IMACS/IEEE, pages
371-377, Nabeul-Hammamet, Tunisia.

[Blazewicz et al., 1986] Blazewicz, J., Cellary, W., Slowinsky, R., and Weglarz, J.
(1986). Scheduling under resource constraints: deterministic models.
Baltzer Science Publishers.

[Blazewicz et al., 1996] Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, C , and
Weglarz, J. (1996). Scheduling Computer and Manufacturing Processes.
Springer, Berlin.

[Boldur, 1982] Boldur, G. (1982). L'analyse multicritere en perspective d'une
theorie generale de la gestion des entreprises modernes (in french).
R.A.I.R.O. Recherche Operationnelle/ Operations Research, 16(1):1-
19.

[Bonney and Gundry, 1976] Bonney, M. C and Gundry, S. W. (1976). Solutions
to the constrained flow-shop sequencing problem. Operations Research
Quarterly, 27:869-883.

[Bourgade et al., 1995] Bourgade, V., Aguilera, L. M., Penz, B., and Binder, Z.
(1995). Probleme industriel d'ordonnancement bicritere sur machine
unique : modelisation et aide ä la decision (in french). R.A.I.R.O.-
APII, 29(3):331-341.

[Bowman, 1976] Bowman, V. J. (1976). On the relationship of the Tchebycheff
norm and the efficient frontier of multiple-criteria objectives, pages 76-
85. In [Thiriez and Zionts, 1976].

[Brah and Hunsucker, 1991] Brah, S. A. and Hunsucker, J. L. (1991). Branch and
bound algorithm for the flow shop with multiple processors. European
Journal of Operational Research, 51:88-99.

[Briand et al., 2005] Briand, C , La, H. T., and Erschler, J. (2005). A new suf­
ficient condition of optimality for the two-machine flowshop problem.
European Journal of Operational Research, 169(3):712-722.

[Brightwell and Winkler, 1991] Brightwell, G. and Winkler, P. (1991). Counting
linear extensions. Order, 8:225-242.

[Brucker, 2004] Brucker, P. (2004). Scheduling Algorithms. Springer, Berlin.

338 References

[Brucker et al., 1999] Brucker, P., Drexl, A., Mohring, R., Neumann, K., and Pesch,
E. (1999). Resource-constrainted project scheduling: Notation, classifi­
cation, models and methods. European Journal of Operational Research,
112:3-41.

[Burns, 1976] Burns, R. N. (1976). ScheduUng to minimize the weighted sum of
completion times with secondary criteria. Naval Research Logistics
Quarterly, 23(1):125-129.

[Campbell et al., 1970] Campbell, H. C , Dudek, R. A., and Smith, M. L. (1970).
A heuristic algorithm for the n-job, m-machine sequencing problem.
Management Science, 16:630-637.

[Carlier, 1982] Carlier, J. (1982). The one machine sequencing problem. European
Journal of Operational Research, 11:42-47.

[Carlier and Chretienne, 1988] Carlier, J. and Chretienne, P. (1988). Problemes
d'ordonnancement: modelisation /complexite / algorithmes (infrench).
Masson, Paris.

[Carlier and Latapie, 1991] Carlier, J. and Latapie, B. (1991). Une methode
arborescente pour resoudre les problemes cumulatifs (in french).
R.A.I.R.O. - Recherche Operationnelle / Operations Research,
25(3) :311-340.

[Chand and Schneeberger, 1984] Chand, S. and Schneeberger, H. (1984). Single
machine scheduling to minimize weighted completion time with max­
imum allowable tardiness. Technical report. University of Purdue,
U.S.A.

[Chand and Schneeberger, 1986] Chand, S. and Schneeberger, H. (1986). A note on
the single machine scheduling problem with minimum weighted comple­
tion time and maximum allowable tardiness. Naval Research Logistics
Quarterly, 33(3):551-557.

[Chand and Schneeberger, 1988] Chand, S. and Schneeberger, H. (1988). Single
machine scheduling to minimize weighted earliness subject to no tardy
jobs. European Journal of Operational Research, 34(2):221-230.

[Chang et al., 2000] Chang, Y., Yeh, C , and Shen, C. (2000). A multiobjective
model for passenger train services planning: application to taiwan's
high-speed rail line. Transportation Research Part B: Policy and Prac­
tice, 34:91-106.

[Charnes and Cooper, 1961] Charnes, A. and Cooper, W. W. (1961). Management
Models and Industrial Applications of Linear Programming. John Wiley
& Sons, vols. I and II, New York.

[Charnes et al., 1955] Charnes, A., Cooper, W. W., and Ferguson, R. O. (1955).
Optimal estimation of executive compensation by linear programming.
Management Science, 1(2): 138-151.

[Chen and Bulfin, 1990] Chen, C.-L. and Bulfin, R. L. (1990). Scheduling unit
processing time jobs on a single machine with multiple criteria. Com­
puters and Operations Research, 17(1): 1-7.

[Chen and Bulfin, 1993] Chen, C.-L. and Bulfin, R. L. (1993). Complexity of sin­
gle machine, multi-criteria scheduling problems. European Journal of
Operational Research, 70:115-125.

[Chen and Bulfin, 1994] Chen, C.-L. and Bulfin, R. L. (1994). Complexity of mul­
tiple machines, multi-criteria scheduling problems. In 3rd Industrial
Engineering Research Conference (lERC 94), pages 662-665, Atlanta,
U.S.A.

[Chen, 1996] Chen, Z.-L. (1996). Scheduling and common due date assignment with
earliness and tardiness penalties and batch delivery costs. European
Journal of Operational Research, 93:49-60.

References 339

[Chen et al., 1997] Chen, Z.-L., Lu, W., and Tang, G. (1997). Single machine
scheduhng with discretely controllable processing times. Operations
Research Letters, 21:69-76.

[Cheng, 1989] Cheng, T. C. E. (1989). A heuristic for common due-date assignment
and job scheduling on parallel machines. Journal of the Operational
Research Society, 40:1129-1135.

[Cheng and Chen, 1994] Cheng, T. C. E. and Chen, Z.-L. (1994). Parallel-machine
scheduling problems with earliness and tardiness penalties. Journal of
the Operational Research Society, 45(6):685-695.

[Cheng and Kahlbacher, 1992] Cheng, T. C. E. and Kahlbacher, H. G. (1992). The
parallel-machine common due-date assignment and scheduling problem
is NP-hard. Asia-Pacific Journal of Operational Research, 9:235-238.

[Cheng and Shakhlevich, 1999] Cheng, T. C. E. and Shakhlevich, N. (1999). Pro­
portionate flow shop with controllable processing times. Journal of
Scheduling, 2:253-265.

[Chou and Lee, 1999] Chou, F. D. and Lee, C. Y. (1999). Two-machine flowshop
scheduling with bicriteria problem. Computers and Industrial Engineer­
ing, 36(3):549-564.

[Chretienne and Sourd, 2003] Chretienne, P. and Sourd, F. (2003). PERT schedul­
ing with convex cost functions. Theoretical Computer Science, 292:145-
164.

[Chu, 1992] Chu, C. (1992). A branch-and-bound algorithm to minimize total flow
time with unequal release dates. Naval Research Logistics, 39:859-875.

[Climaco, 1997] Climaco, J., editor (1997). Multicriteria Analysis. Springer-Verlag,
Berlin.

[Climaco et al., 1997] Climaco, J., Ferreira, C , and Captivo, E. (1997). Multicri­
teria Integer Programming: an Overview of the Different Algorithmic
Approaches, pages 248-258. In [Climaco, 1997].

[Cochand et al., 1989] Cochand, M., de Werra, D., and Slowinski, R. (1989). Pre­
emptive scheduling with staircase and piecewise linear resource avail­
ability. Zeitschrift fur Operations Research, 33:297-313.

[Coello Coello, 1999] Coello Coello, C. A. (1999). A comprehensive survey of
evolutionary-based multiobjective optimization techniques. Knowledge
and Information Syst. An International Journal, l(3):269-308.

[Connolly, 1990] Connolly, D. T. (1990). An improved annealing scheme for the
QAP. European Journal of Operational Research, 46:93-100.

[Conway et al., 1967] Conway, R. W., MaxweU, W. L., and Miller, L. W. (1967).
Theory of scheduling. Addison- Wesley.

[Cook, 1971] Cook, S. A. (1971). The complexity of theorem-proving procedures.
In Third Annual ACM Symposium on Theory of Computing, pages 151-
158, ACM-press, New York.

[Cowling, 2003] Cowling, P. (2003). A flexible decision support system for steel hot
rolling mill scheduling. Computers & Industrial Engineering, 45:307-
321.

[Cvetkovic and Parmee, 1998] Cvetkovic, D. and Parmee, I. (1998). Evolutionary
design and multi-objective optimisation. In 6th European Congress on
Intelligent Techniques and Soft Computing (EUFIT^98), pages 397-401,
Aachen, Germany.

[Czyzak and Jaszkiewicz, 1997] Czyzak, P. and Jaszkiewicz, A. (1997). Pareto Sim­
ulated Annealing, pages 297-307. In [Pandel and Gal, 1997].

[Daniels and Chambers, 1990] Daniels, R. L. and Chambers, R. J. (1990). Multi-
objective flow-shop scheduling. Naval Research Logistics, 37:981-995.

340 References

[Davenport and Beck, 2000] Davenport, A. J. and Beck, J. C. (2000). A survey
of techniques for scheduling with uncertainty, unpublished (available
on web at http: //www. mie. utoronto. ca/staff/pro files/beck/
publications, html).

[Davis and Kanet, 1993] Davis, J. S. and Kanet, J. J. (1993). Single machine
scheduling with early and tardy completion costs. Naval Research Lo­
gistics, 40:85-101.

[De et al., 1991] De, P., Ghosh, J. B., and Wells, C. E. (1991). Scheduling to
minimize weighted earliness and tardiness about a common due date.
Computers and Operations Research, 18(5):465-475.

[Deckro et al., 1982] Deckro, R. F., Herbert, J. E., and Winkofsky, E. P. (1982).
Multiple criteria job-shop scheduling. Computers and Operations Re­
search, 9(4):279-285.

[Delia Croce et al., 1996] Delia Croce, P., Narayan, V., and Tadei, R. (1996). The
two-machine total completion time flow shop problem. European Jour­
nal of Operational Research, 90:227-237.

[Delia Croce and T'kindt, 2002] Delia Croce, F. and T'kindt, V. (2002). A recov­
ering beam search algorithm for the one-machine dynamic total com­
pletion time scheduling problem. Journal of the Operational Research
Society, 53(11):1275-1280.

[Delia Croce and T'kindt, 2003] Delia Croce, P. and T'kindt, V. (2003). Improving
the preemptive bound for the one-machine dynamic total completion
time scheduling problem. Operations Research Letters, 31:142-148.

[Demeulemeester and Herroelen, 2002] Demeulemeester, E. and Herroelen, W.
(2002). Project scheduling - A Research Handbook, Vol.49 of Interna­
tional Series in Operations Research and Management Science. Kluwer
Academic Publishers, Boston.

[Dileepan and Sen, 1988] Dileepan, P. and Sen, T. (1988). Bicriterion static
scheduling research for a single machine. Omega, 16(l):53-59.

[Dileepan and Sen, 1991] Dileepan, P. and Sen, T. (1991). Bicriterion jobshop
scheduling with total flowtime and sum of squared lateness. Engineering
Costs and Production Economic, 21:295-299.

[Dorigo et al., 1999] Dorigo, M., Di Caro, C , and Gambardella, L. (1999). Ant
algorithms for discrete optimization. Artificial Life, 5(3): 137-172.

[Drozdowski et al., 2000] Drozdowski, M., Blazewicz, J., and Formanowicz, P.
(2000). Scheduling preemptable tasks on uniform processors with lim­
ited availability for maximum lateness criterion. In 7th International
Workshop on Project Management and Scheduling (PMS 2000), pages
118-120, Osnabrück, Germany.

[Dyer et al., 1992] Dyer, J. S., Fishburn, F. C , Steuer, R. E., and Wallenius, J.
(1992). Multiple criteria decision making, multiattribute utility theory:
the next ten years. Management Science, 38(5):645-654.

[Ehrgott, 1997] Ehrgott, M. (1997). Multiple Criteria Optimization: Classification
and Methodology. PhD thesis. University of Kaiserslautern, Germany.

[Ehrgott, 2000a] Ehrgott, M. (2000a). Approximation algorithms for combinator­
ial multicriteria optimization problems. International Transactions in
Operations Research, 7:5-31.

[Ehrgott, 2000b] Ehrgott, M. (2000b). Multicriteria Optimization. Lecture Notes
in Economics and Mathematical Systems, Springer-Verlag.

[Ehrgott and Gandibleux, 2000] Ehrgott, M. and Gandibleux, X. (2000). A survey
and annotated bibliography of multiobjective combinatorial optimiza­
tion. OR Spektrum, 22:425-460.

References 341

[Eilon and Chowdhury, 1977] Eilon, S. and Chowdhury, I. E, (1977). Minimizing
waiting time variance in the single machine problem. Management Sci­
ence, 23:567-675.

[Emmons, 1975a] Emmons, H. (1975a). A note on a scheduling problem with dual
criteria. Naval Research Logistics Quarterly, 22(4):615-616.

[Emmons, 1975b] Emmons, H. (1975b). One machine sequencing to minimize mean
flow time with minimum number tardy. Naval Research Logistics Quar­
terly, 22(4):585-592.

[Emmons, 1987] Emmons, H. (1987). Scheduling to a common due date on parallel
uniform processors. Naval Research Logistics, 34:803-810.

[Erschler et al., 1983] Erschler, J., Fontan, G., Merce, C , and Roubellat, F. (1983).
A new dominance concept in scheduling n jobs on a single machine with
ready times and due dates. Operations research, 31(1): 114-127.

[Erschler and Roubellat, 1989] Erschler, J. and Roubellat, F. (1989). An Approach
for real time scheduling for activities with time and resource constraints.
In [Slowinski and Weglarz, 1989].

[Esswein et al., 2005] Esswein, C , Billaut, J . -C, and Strusevich, V. A. (2005).
Two-machine shop scheduling: compromise between flexibility and
makespan value. European Journal of Operational Research, 167:796-
809.

[Esswein et al., 2001] Esswein, C , T'kindt, V., and Billaut, J.-C. (2001). A poly­
nomial time algorithm for solving a single machine bicriteria scheduling
problem. Technical report, Laboratory of Computer Science, University
of Tours (France).

[Esteve et al., 2004] Esteve, B., Aubijoux, C , Chartier, A., and T'kindt, V. (2004).
A recovering beam search algorithm for the single machine just-in-time
scheduling problem. European Journal of Operational Research, 39:27.

[Evans, 1984] Evans, G. W. (1984). An overview of techniques for solving multi-
objective mathematical programs. Management Science, 30(11):1268-
1282.

[Fandel and Gal, 1997] Fandel, G. and Gal, T. (1997). Multiple Criteria Deci­
sion Making. Lecture Notes in Economics and Mathematical Systems,
Springer-Verlag, Berlin.

[Fargier and Lamothe, 2001] Fargier, H. and Lamothe, J. (2001). Handling soft
constraints in hoist scheduling problems: the fuzzy approach. Engi­
neering Application of Artificial Intelligence, 14:387-399.

[Faure, 1979] Faure, R. (1979). Precis de Recherche Operationnelle (in french).
Dunod, Paris.

[Fischer and Thompson, 1963] Fischer, H. and Thompson, L. (1963). Probabilistic
learning Combinations of local job-shop scheduling rules. Prentice Hall,
Englewood Cliffs, New Jersey.

[Fisher, 1976] Fisher, M. L. (1976). A dual algorithm for the one-machine schedul­
ing problem. Mathematical Programming, 11:458-481.

[Fortemps et al., 1996] Fortemps, P., Ost, C , Pirlot, M., Teghem, J., and Tuyttens,
D. (1996). Using metaheuristics for solving a production scheduling
problem in a chemical firm: a case study. International Journal of
Production Economics, 46-47:13-26.

[Francis and White, 1974] Francis, R. L. and White, J. A. (1974). Facility Layout
and Location: An Analytical Approach. Prentice-Hall.

[Fry et al., 1987a] Fry, T. D., Armstrong, R. D., and Blackstone, R. H. (1987a).
Minimizing weighted absolute deviation in single machine scheduling.
HE Transactions, 19(4):445-450.

342 References

[Pry et al., 1996] Pry, T. D., Armstrong, R. D., Darby-Dowman, K., and Philipoom,
P. R. (1996). A branch and bound procedure to minimize mean absolute
lateness on a single processor. Computers and Operations Research,
23(2):171-182.

[Pry et al., 1989] Pry, T. D., Armstrong, R. D., and Lewis, H. (1989). A frame­
work for single machine multiple objective sequencing research. Omega,
17(6):595-607.

[Pry and Blackstone, 1988] Pry, T. D. and Blackstone, R. H. (1988). Planning for
idle time: a rationale for underutilization of capacity. International
Journal of Production Research, 26(12):1853-1859.

[Pry and Leong, 1986] Pry, T. D. and Leong, G. K. (1986). Bi-criterion single-
machine scheduling with forbidden early shipments. Engineering Costs
and Production Science, 10(2): 133-137.

[Pry and Leong, 1987] Pry, T. D. and Leong, G. K. (1987). A bi-criterion approach
to minimizing inventory costs on a single machine when early shipments
are forbidden. Computers and Operations Research, 14(5):363-368.

[Pry et al., 1987b] Pry, T. D., Leong, G. K., and Rakes, T. R. (1987b). Single
machine scheduling: a comparison of two solution procedures. Omega,
15(4):277-282.

[Pukuda, 1996] Pukuda, K. (1996). Note on new complexity clases SJ\fV,
SV and CSV - an extension of the classes MV, co — J\fV and V.
http://www.ifor.math.ethz.ch/stafF/fukuda/ENP_home/ENP_note.html.

[Pukuda et al., 1997] Pukuda, K., Liebling, T., and Margot, P. (1997). Analysis
of backtrack algorithms for listing all vertices and all faces of a convex
polyhedron. Computational Geometry, 8:1-12.

[Gabrel and Vanderpooten, 2002] Gabrel, V. and Vanderpooten, D. (2002). Enu­
meration and interactive selection of efficient paths in a multiple criteria
graph for scheduling an earth observing satellite. European Journal of
Operational Research, 139:533-542.

[Gandibleux and Preville, 1998] Gandibleux, X. and Preville, A. (1998). Potential
efficient solutions generated by MOTS procedure on the 0/1 bi-objective
knapsack problem compared with exact solutions. In Multiconference on
Computational Engineering in Systems Applications (CESA ^98), lEEE-
SMC/IMACS, pages 291-300, Hammamet, Tunisia.

[Gandibleux et al., 1997] Gandibleux, X., Mezdaoui, N., and Preville, A. (1997).
A Tabu Search Procedure to Solve MultiObjective Combinatorial Opti­
mization Problems, pages 291-300. Lecture Notes in Economics and
Mathematical Systems, Springer-Verlag, Berlin.

[Gangadharan and Rajendran, 1994] Gangadharan, R. and Rajendran, C. (1994).
A simulated annealing heuristic for scheduling in a flowshop with bicri-
teria. Computers and Industrial Engineering, 27(1-4) :473-476.

[Gardiner and Vanderpooten, 1997] Gardiner, L. R. and Vanderpooten, D. (1997).
Interactive Multiple Criteria Procedures: Some Reflections, pages 290-
301. In [Climaco, 1997].

[Garey and Johnson, 1979] Garey, M. R. and Johnson, D. S. (1979). Computers
and intractability: a guide to the theory of AfV-Completeness. W.H.
Preeman and Company.

[Garey et al., 1988] Garey, M. R., Tarjan, R. E., and Wilfong, G. T. (1988). One-
processor scheduling with symmetric earliness and tardiness penalties.
Mathematics of Operations Research, 13(2):330-348.

[Gembicki, 1973] Gembicki, P. (1973). Vector Optimization for Control with Per­
formance and Parameter Sensitivity Indices. PhD thesis. Case Western
Reserve University, Cleveland, U.S.A.

References 343

[Geoffrion, 1968] GeofFrion, A. M. (1968). Proper efficiency and the theory of vec­
tor maximization. Journal of Mathematical Analysis and Applications,
22:618-630.

[Geoffrion et al., 1972] Geoffrion, A. M., Dyer, J., and Feinberg, A. (1972). An
interactive approach for multi-criterion optimization, with an appHca-
tion to the operation of an academic department. Management Science,
19(4):357-368.

[Giard, 1988] Giard, V. (1988). Gestion de la production (in french). Economica,
Paris, 2nd edition.

[Goldratt, 1997] Goldratt, E. (1997). The Critical chain. The North River Press
PubUshing Corporation, Great Barrington.

[Goldratt and Cox, 1984] Goldratt, E. M. and Cox, J. (1984). The goal. North
River Press.

[Gonzalez and Sahni, 1976] Gonzalez, S. and Sahni, T. (1976). Open shop schedul­
ing to minimize finish time. Journal of the Association of Computation
Machinery, 23:665-679.

[Gordon et al., 2002a] Gordon, V., Proth, J.-M., and Chu, C. (2002a). Due date
assignment and scheduling: SLK, TWK and other due date assignement
models. Production Planning and Control, 13(2): 157-177.

[Gordon et al., 2002b] Gordon, V., Proth, J.-M., and Chu, C. (2002b). A survey
of the state-of-the-art of common due date assignment and scheduling
research. European Journal of Operational Research, 139(1): 1-25.

[Gordon et al., 2004] Gordon, V., Proth, J.-M., and Strusevich, V. (2004). Schedul­
ing with due-date assignment. In [Leung, 2004], chapter 21.

[Gotha, 1993] Gotha (1993). Les problemes d'ordonnancement (in french).
R.A.I.R.O Recherche Operationnelle / Operations Research, 27(1):77-
150.

[Graham et al., 1979] Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rin-
nooy Kan, A. H. G. (1979). Optimization and approximation in de­
terministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics, 5:287-326.

[Guitouni and Martel, 1997] Guitouni, A. and Martel, J.-M. (1997). Tentative
guidelines to help choosing an appropriate MCDA method. European
Journal of Operational Research, 109(2) :501-521.

[Gupta et al., 1999a] Gupta, J., Hariri, A., and Potts, C. (1999a). Single-machine
scheduling to minimize maximum tardiness with minimum number of
tardy jobs. Annals of Operations Research, 92:107-123.

[Gupta and Ramnarayanan, 1996] Gupta, J. and Ramnarayanan, R. (1996). Single
facility scheduling with dual criteria: Minimizing maximum tardiness
subjectto minimum number of tardy jobs. Production Planning and
Control, 7:190-196.

[Gupta, 1972] Gupta, J. N. D. (1972). Optimal scheduling in a multistage flowshop.
AIIE Transactions, 4:238-243.

[Gupta et al., 2002] Gupta, J. N. D., Hennig, K., and Werner, F. (2002). Local
search heuristic for the two-stage flowshop problems with secondary
criterion. Computers and Operations Research, 29(2): 113-149.

[Gupta et al., 1997] Gupta, J. N. D., Ho, J. C , and VanderVeen, A. A. A. (1997).
Single machine hierarchical scheduling with customer orders and mul­
tiple job classes. Annals of Operations Research, 70:127-143.

[Gupta et al., 2001] Gupta, J. N. D., NeppalU, V. R., and Werner, F. (2001).
Minimizing total flow time in a two-machine flowshop problem with
minimum makespan. International Journal of Production Economics,
69(3):323-338.

344 References

[Gupta et al., 1999b] Gupta, J. N. D., Palanimuthu, N., and Chen, C.-L. (1999b).
Designing a tabu search algorithm for the two-stage flowshop problem
with secondary criterion. Production Planning and Control, 10(3):251-
265.

[Gupta and Werner, 1999] Gupta, J. N. D. and Werner, F. (1999). On the solution
of 2-machine flow and open shop scheduling problems with secondary
criteria. In 15th ISPE/IEE International Conference on CAD/CAM,
Robotics, and Factories of the Future, Aguas de Lindoia, Sao Paulo,
Brasil.

[Gupta and Sen, 1983] Gupta, S. K. and Sen, T. (1983). Minimizing a quadratic
function of job lateness on a single machine. Engineering costs of Pro­
duction Economic, 7(3): 187-194.

[Gupta and Sen, 1984] Gupta, S. K. and Sen, T. (1984). Minimizing the range of
lateness on a single machine. Journal of Operational Research Society,
35:853-857.

[Haimes et al., 1971] Haimes, Y., Ladson, L., and Wismer, D. (1971). On a bicri-
terion formulation of the problems of integrated system identification
and system optimization. IEEE Transactions on Systems, Man and
Cybernetics, 1:296-297.

[Haimes et al., 1975] Haimes, Y. Y., Hall, W. A., and Preedman, H. T. (1975). Mul-
tiobjective Optimization in Water Resource Systems. Elsevier Scientific
Publishing, Amsterdam.

[Hall, 1986] Hall, N. G. (1986). Single-and multiple-processor models for mini­
mizing completion time variance. Naval Research Logistics Quarterly,
33:49-54.

[Hall and Posner, 1991] Hall, N. G. and Posner, M. E. (1991). Earliness-tardiness
scheduling problems, I: Weighted deviation of completion times about
a common due date. Operations Research, 39:836-846.

[Haouari and Fawzan, 2002] Haouari, M. and Fawzan, M. A. (2002). A bi-objective
model for maximizing the quality in project scheduling. Technical Re­
port 2002-14, DIMACS.

[Hapke et al., 1998] Hapke, M., Jaszkiewicz, A., and Slowinski, R. (1998). Interac­
tive analysis of multiple-criteria project scheduling problems. European
Journal of Operational Research, 107:315-324.

[Heck and Roberts, 1972] Heck, H. and Roberts, S. (1972). A note on the exten­
sion of a result on scheduling with secondary criteria. Naval Research
Logistics Quarterly, 19:59-66.

[Herroelen et al., 1998a] Herroelen, W., De Reyck, B., and Demeulemeester, E.
(1998a). Resource-constrained project scheduling: a survey. Computers
and Operations Research, 25(4):279-302.

[Herroelen et al., 1998b] Herroelen, W., Demeulemeester, E., and De Reyck, B.
(1998b). A classification scheme for project scheduling. Kluwer Acad­
emic, Dordrecht, Germany.

[Herroelen et al., 2001] Herroelen, W., Demeulemeester, E., and De Reyck, B.
(2001). A note on the paper "resource-constrainted project schedul­
ing: notation, classification, models and methods" by brucker et al.
European Journal of Operational Research, 128:679-688.

[Herroelen and Leus, 2004] Herroelen, W. and Leus, R. (2004). Robust and reactive
project scheduling: a review and classification of procedures. Interna­
tional Journal of Production Research, 42(8): 1599-1620.

[Herroelen and Leus, 2005] Herroelen, W. and Leus, R. (2005). Project scheduling
under uncertainty: survey and research potentials. European Journal of
Operational Research, 165(2):289-306.

References 345

[Ho and Chang, 1991] Ho, J. C. and Chang, Y.-L. (1991). A new heuristic for the
n-job, 7n-machine flowshop problem. European Journal of Operational
Research, 52:194-202.

[Ho and Chang, 1995] Ho, J. C. and Chang, Y.-L. (1995). Minimizing the number
of tardy jobs for m parallel machines. European Journal of Operational
Research, 84:343-355.

[Hoogeveen, 2005] Hoogeveen, H. (2005). Multicriteria scheduling. European Jour­
nal of Operational Research, 167:592-623.

[Hoogeveen and van de Velde, 2001] Hoogeveen, H. and van de Velde, S. (2001).
Scheduling with target start times. European Journal of Operational
Research, 129:87-94.

[Hoogeveen, 1992a] Hoogeveen, J. A. (1992a). Single-Machine Bicriteria Schedul­
ing. PhD thesis, CWI, Amsterdam, The Netherlands.

[Hoogeveen, 1992b] Hoogeveen, J. A. (1992b). Single machine scheduling to
minimize a function of K maximum cost criteria, pages 67-77. In
[Hoogeveen, 1992a].

[Hoogeveen, 1996] Hoogeveen, J. A. (1996). Minimizing maximum promptness and
maximum lateness on a single machine. Mathematics of Operations
Research, 21(1):100-114.

[Hoogeveen and VandeVelde, 1995] Hoogeveen, J. A. and VandeVelde, S. L. (1995).
Minimizing total completion time and maximum cost simultaneously is
solvable in polynomial time. Operations Research Letters, 17:205-208.

[Hopcroft and UUman, 1979] Hopcroft, J. E. and UUman, J. D. (1979). Introduc­
tion to automata theory, languages and computation. Addison-Wesley.

[Horn, 1974] Horn, W. A. (1974). Some simple scheduling algorithms. Naval Re­
search Logistics Quarterly, 21:177-185.

[Huckert et al., 1980] Huckert, K., Rhode, R., Roglin, O., and Weber, R. (1980). On
the interactive solution to a multicriteria scheduling problem. Zeitchrift
fur Operations Research, 24:47-60.

[Icmeli-Tukel and Rom, 1997] Icmeli-Tukel, O. and Rom, W. O. (1997). Ensuring
quality in resource constrained project scheduling. European Journal
of Operational Research, 103(3) :483-496.

[Ignall and Schräge, 1965] Ignall, E. and Schräge, L. (1965). Application of the
branch-and-bound technique to some flowshop problems. Operations
Research, 13:400-412.

[Jacquet-Lagreze et al., 1987] Jacquet-Lagreze, E., Meziani, R., and Slowinski, R.
(1987). MOLP with an interactive assessment of a piecewise utility
function. European Journal of Operational Research, 31(3):350-357.

[James and Buchanan, 1997] James, R. J. W. and Buchanan, J. T. (1997). A
neighbourhood scheme with a compressed solution space for the
early/tardy scheduling problem. European Journal of Operational Re­
search, 102:513-527.

[James and Buchanan, 1998] James, R. J. W. and Buchanan, J. T. (1998). Per­
formance enhancements to tabu search for the early/tardy scheduling
problem. European Journal of Operational Research, 106:254-265.

[Jaszkiewicz and Slowinski, 1997] Jaszkiewicz, A. and Slowinski, R. (1997).
Outranking-Driven Search Over a Nondominated Set, pages 340-349.
In [Pandel and Gal, 1997].

[Jensen and Hansen, 1999] Jensen, M. T. and Hansen, T. K. (1999). Robust solu­
tions to job shop problems. In Proceedings of the Congress of Evolu­
tionary Computation, vol.2, pages 1138-1144, Washington, U.S.A.

346 References

[John, 1984] John, T. C. (1984). Tradeoff solutions in single machine production
scheduling for minimizing flow time and maximum penalty. Computers
and Operations Research^ 16(5):471-479.

[Johnson et al., 1988] Johnson, D., Yannakakis, M., and Papadimitriou, C. (1988).
On generating all maximal independent sets. Information Processing
Letters, 27:119-123.

[Johnson, 1954] Johnson, S. M. (1954). Optimal two and three stage production
schedules with set-up time included. Naval Research Logistics Quar­
terly, 1:61-68.

[Jolai Ghazvini, 1998] Jolai Ghazvini, F. (1998). Ordonnancement sous contrainte
de groupage (in french). PhD thesis, Leibniz-Imag/INPG, Grenoble,
Prance.

[Jozefowska et al., 1994] Jozefowska, J., Jurisch, B., and Kubiak, W. (1994).
Scheduling shops to minimize the weighted number of late jobs. Oper­
ations Research Letters, 10:27-33.

[Kaliszewski, 2000] Kaliszewski, I. (2000). Using trade-off information in decision­
making algorithms. Computers and Operations Research, 27:161-182.

[Kaminsky and Hochbaum, 2004] Kaminsky, P. and Hochbaum, D. (2004). Due-
date quotation models and algorithms. In [Leung, 2004], chapter 20.

[Kanet, 1981a] Kanet, J. J. (1981a). Minimizing the average deviation of job com­
pletion times about a common due date. Naval Research Logistics Quar­
terly, 28(4):643-651.

[Kanet, 1981b] Kanet, J. J. (1981b). Minimizing variation of flow time in single
machine systems. Management Science, 27(12) :1453-1459.

[Karabati and Kouvelis, 1993] Karabati, S. and Kouvelis, P. (1993). The permu­
tation flow shop problem with sum-of-completion times performance
criterion. Naval Research Logistics, 40:843-862.

[Kawata et al., 2003] Kawata, Y., Morikawa, K., Takahashi, K., and Nakamura, N.
(2003). Robustness optimisation of the minimum makespan schedules
in a job shop. Int. J. Manufacturing Technology and Management, 5(1-
2): 1-9.

[Kim and Yano, 1994] Kim, Y.-D. and Yano, C. A. (1994). Minimizing mean tardi­
ness and earliness in single-machine scheduling problems with unequal
due dates. Naval Research Logistics, 41:913-933.

[Kiran and Unal, 1991] Kiran, A. and Unal, A. (1991). A single-machine problem
with multiple criteria. Naval Research Logistics, 38:721-727.

[Klein and Hannan, 1982] Klein, D. and Hannan, E. (1982). An algorithm for the
multiple objective integer linear programming problem. European Jour­
nal of Operational Research, (9):378-385.

[Kolisch and Padman, 2001] Kolisch, R. and Padman, R. (2001). An integrated
survey of deterministic project scheduling. Omega, 29:249-272.

[Kondakci et al., 1997] Kondakci, S. K., Emre, E., and Koksalan, M. (1997).
Scheduling of Unit Processing Time Jobs on a Single Machine, pages
654-660. In [Pandel and Gal, 1997].

[Korhonen and Laakso, 1986] Korhonen, P. and Laakso, J. (1986). A visual inter­
active method for solving the multicriteria problem. European Journal
of Operational Research, 24(2):277-287.

[Koulamas, 1996] Koulamas, C. (1996). Single-machine scheduling with time win­
dows and earliness/tardiness penalties. European Journal of Opera­
tional Research, 91:190-202.

[Kubiak, 1993] Kubiak, W. (1993). Completion time variance minimization on a
single machine is difficult. Operations Research Letters, 14:49-59.

References 347

[Kyparisis and Koulamas, 2000] Kyparisis, G. J. and Koulamas, C. (2000). Open
shop scheduling with makespan and total completion time criteria.
Computers and Operations Research, 27:15-27.

[La, 2005] La, H. T. (2005). Utilisation d'ordres partiels pour la caracterisation de
solutions robustes en ordonnancement (in french). Phd thesis, LAAS-
CNRS, Toulouse.

[Lakshminarayan et al., 1978] Lakshminarayan, S., Lakshmanan, R., Papineau,
R. L., and Rochette, R. (1978). Optimal single-machine scheduling
with earliness and tardiness penalties. Operations Research, 26(6): 1079-
1082.

[Lawler, 1973] Lawler, E. L. (1973). Optimal sequencing of a single machine subject
to precedence constraints. Management Science, 19:544-546.

[Lawler and Labetoulle, 1978] Lawler, E. L. and Labetoulle, J. (1978). On preemp­
tive scheduling of unrelated parallel processors by linear programming.
Journal of the Association of Computation Machinery, 25(4):612-619.

[Lawler et al., 1989] Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., and
Shmoys, D. B. (1989). Sequencing and scheduling: algorithms and com­
plexity. Technical Report NFI 11.89/03, Eindhoven University of Tech­
nology, Eindhoven, The Netherlands.

[Lawler et al., 1975] Lawler, E. L., Rinnooy Kan, A. H. G., and Lageweg, B. (1975).
Minimizing total costs in one-machine scheduling. Operations Research,
23:908-927.

[Lawrence, 1984] Lawrence, S. (1984). Resource constrained project scheduHng: an
experimental investigation of heuristic scheduling techniques (supple­
ment). Technical Report (http://mscmga.ms.ic.ac.uk/info.html). Grad­
uate School of Industrial Administration, Carnegie-Mellon University,
Pittsburgh, Pennsylvania.

[Lee et al., 1997] Lee, C. Y., Lei, L., and Pinedo, M. (1997). Current trends in
deterministic scheduling. Annals of Operations Research, 70:1-41.

[Lee and Vairaktarakis, 1996] Lee, C. Y. and Vairaktarakis, G. L. (1996). Complex­
ity of single machine hierarchical scheduling: A survey, pages 269-298.
World Scientific Publishing Co., Singapore.

[Lenstra et al., 1977] Lenstra, J.-K., Rinnooy Kan, A., and Brucker, P. (1977).
Complexity of machine scheduling problems. Annals of Discrete Math­
ematics, 1:343-362.

[Leon et al., 1994] Leon, V. J., Wu, S. D., and Storer, R. H. (1994). Robust­
ness measures and robust scheduling for job shops. HE Transactions,
26(5):32-43.

[Leung, 2004] Leung, J.-T., editor (2004). Handbook of Scheduling: Algorithms,
Models and Performance Analysis. Chapman Sz Hall/CRC Computer
and Information Science serie. Volume 1.

[Leung and Young, 1989] Leung, J. Y. T. and Young, G. H. (1989). Minimizing
schedule length subject to minimum flow time. SIAM Journal on Com­
puting, 18(2):314-326.

[Levine and Pomerol, 1986] Levine, P. and Pomerol, J.-C. (1986). Priam, an in­
teractive program for chosing among multiple attribute alternatives.
European Journal of Operational Research, 25(2):272-280.

[Li and Cheng, 1994] Li, C. L. and Cheng, T. C. E. (1994). The parallel machine
min-max weighted absolute lateness scheduling problem. Naval Re­
search Logistics, 41:33-46.

[Li, 1997] Li, G. (1997). Single machine earliness and tardiness scheduling. Euro­
pean Journal of Operational Research, 96:546-558.

348 References

[Liao and Huang, 1991] Liao, C. J. and Huang, R. H. (1991). An algorithm for
minimizing the range of lateness on a single machine. Journal of the
Operational Research Society, 42(2): 183-186.

[Liao et al., 1997] Liao, C. J., Yu, W. C , and Joe, C. B. (1997). Bicriterion schedul­
ing in the two-machine flowshop. Journal of the Operational Research
Society, 48:929-935.

[Liaw, 1999] Liaw, C. F. (1999). A branch-and-bound algorithm for the single
machine earliness and tardiness scheduling problem. Computers and
Operations Research, 26:679-693.

[Lin, 1983] Lin, K. S. (1983). Hybrid algorithm for sequencing with bicriteria.
Journal of Optimization Theory and Applications, 39(1):105-124.

[Liu and MacCarthy, 1996] Liu, J. L. and MacCarthy, B. L. (1996). The classifica­
tion of FMS scheduling problems. International Journal of Production
Research, 34(3):647-656.

[Lofti et al., 1992] Lofti, V., Stewart, T., and Zionts, S. (1992). An aspiration-level
interactive model for multiple criteria decision making. Computers and
Operations Research, 19(7):671-681.

[Lofti and Zionts, 1990] Lofti, V. and Zionts, S. (1990). AIM, aspiration-level in­
teractive method for multiple criteria decision making; user's guide.
Technical report. University of New York, Buffalo, U.S.A.

[Lucie and Teodorovic, 1999] Lucie, P. and Teodorovic, D. (1999). Simulated an­
nealing for the multi-objective aircrew rostering problem. Transporta­
tion Research Part A: Policy and Practice, 33(1): 19-45.

[Mac Carthy and Liu, 1993] Mac Carthy, B. L. and Liu, J. L. (1993). Adressing
the gap in scheduling research: a review of optimization and heuristic
methods in production scheduling. International Journal of Production
Research, 31(l):59-79.

[Martello and Toth, 1990] Martello, S. and Toth, P. (1990). Knapsack Problems:
Algorithm and Computer Implementations. John Wiley &; Sons, Chich­
ester, England.

[Mazzini and Armentano, 2001] Mazzini, R. and Armentano, V. A. (2001). A
heuristic for single machine scheduling with early and tardy costs. Eu­
ropean Journal of Operational Research, 128:129-146.

[Mc Cormick and Pinedo, 1995] Mc Cormick, S. T. and Pinedo, M. L. (1995).
Scheduling n independant jobs on m uniform machines with both flow-
time and makespan objectives: a parametric analysis. ORSA Journal
on Computing, 7(l):63-77.

[McKay et al., 1998] McKay, K. N., Safayeni, F. R., and Buzacott, J. A. (1998).
Job-shop scheduling theory: what is relevant? Interfaces, 18(4):84-90.

[McNaughton, 1959] McNaughton, R. (1959). Scheduling with deadlines and loss
functions. Management Science, 6:1-12.

[Merce, 1987] Merce, C. (1987). Coherence des decisions en planification
hierarchisee (in french), PhD thesis. University Paul Sabatier,
Toulouse, France.

[Merten and MuUer, 1972] Merten, A. and MuUer, M. (1972). Variance minimiza­
tion in single machine sequencing problems. Management Science,
18(5): 18-28.

[Miettinen, 1994] Miettinen, K. (1994). On the Methodology of Multiobjective Op­
timization with Applications. PhD thesis. University of Jyvaskyla, De­
partment of Mathematics, Jyvaskyla, Finland.

[Miettinen, 1999] Miettinen, K. (1999). Comparative evaluation of some interactive
reference point-based methods for multi-objective optimisation. Journal
of the Operational Research Society, 50:949-959.

References 349

[Miyazaki, 1981] Miyazaki, S. (1981). One machine scheduling problem with dual
criteria. Journal of the Operational Research Society of Japan, 24(1) :37-
50,

[Mohri et al., 1999] Mohri, S., Masuda, T., and Ishii, H. (1999). Bi-criteria schedul­
ing problem on three identical parallel machines. International Journal
of Production Economics, 60-61:529-536.

[Monden, 1998] Monden, Y. (1998). Toyota Production System. Engineering and
Management Press, Norcross, GA.

[Moore, 1968] Moore, J. M. (1968). An n job, one machine sequencing algorithm for
minimizing the number of late jobs. Management Science, 15(1): 102-
109.

[Morton and Pentico, 1993] Morton, T. and Pentico, D. (1993). Heuristic schedul­
ing systems. John Wiley Interscience, New York.

[Mustafa and Goh, 1996] Mustafa, A. and Goh, M. (1996). Multicriterion models
for higher education administration. Omega, 24(2): 167-178.

[Nagar et al., 1995a] Nagar, A., Haddock, J., and Heragu, S. S. (1995a). Multi­
ple and bicriteria scheduling: a literature survey. European Journal of
Operational Research, 81:88-104.

[Nagar et al., 1995b] Nagar, A., Heragu, S. S., and Haddock, J. (1995b). A branch-
and-bound approach for a two-machine flowshop scheduling problem.
Journal of the Operational Research Society, 46:721-734.

[Nawaz et al., 1983] Nawaz, M., Enscore, E., and Ham, I. (1983). A heuristic al­
gorithm for the 771-machine, n-job flow-shop sequencing problem. Man­
agement Science, 11:91-95.

[Nelson et al., 1986] Nelson, R. T., Sarin, R. K., and Daniels, R. L. (1986). Schedul­
ing with multiple performance measures: the one-machine case. Man­
agement Science, 32(4):464-479.

[Neppain et al., 1996] Neppalh, V. R., Chen, C. L., and Gupta, J. N. D. (1996).
Genetic algorithms for the two-stage bicriteria flowshop problem. Eu­
ropean Journal of Operational Research, 95:356-373.

[NoUet et al., 1994] NoUet, J., Kelada, J., and Diorio, M. (1994). La gestion des
operations et de la production. Gatan Morin.

[Nowicki, 1993] Nowicki, E. (1993). An approximation algorithm for the 7n-machine
permutation flow shop scheduling problem with controllable processing
times. European Journal of Operational Research, 70:342-349.

[Nowicki and Zdrzalka, 1988] Nowicki, E. and Zdrzalka, S. (1988). Two-machine
flow shop scheduling problem with controllable processing times. Eu­
ropean Journal of Operational Research, 34:208-220.

[Nowicki and Zdrzalka, 1990] Nowicki, E. and Zdrzalka, S. (1990). A survey of re­
sults for sequencing problems with controllable processing times. Dis­
crete Applied Mathematics, 26:271-287.

[Ogbu and Smith, 1990] Ogbu, F. A. and Smith, D. K. (1990). The application
of simulated annealing algorithm to the solutions of the n/m/Cmax
flowshop problem. Computers and Operations Research, 17(3):243-253.

[Ogryczak, 1994] Ogryczak, W. (1994). A goal programming model of the reference
point method. Annals of Operation Research, 51:33-44.

[Ogryczak, 1997] Ogryczak, W. (1997). Preemptive Reference Point Method, pages
156-167. In [Climaco, 1997].

[Olson et al., 1997] Olson, D. L., Mechitov, A., and Morshkovich, H. (1997). Com­
parison of MCDM paradigms. In International Conference on Meth­
ods and Applications on Multicriteria Decision Making (MAMDM'97),
pages 323-326, Fucam, Mons, Belgique.

350 References

[Oulamara, 2001] Oulamara, A. (2001). Flowshops avec deterioration des täches
et groupement des täches (in french). PhD thesis, University Joseph
Fournier of Grenoble (Prance).

[Ow and Morton, 1988] Ow, P. S. and Morton, T. E. (1988). Filtered beam search
in scheduling. International Journal of Production Research^ 26(1) :35-
62.

[Ow and Morton, 1989] Ow, P. S. and Morton, T. E. (1989). The single machine
early/tardy problem. Management Science, 35(2): 177-190.

[Page, 1961] Page, E. S. (1961). An approach to scheduling jobs on machines.
Journal of Royal Statistical Society, B-23:484-492.

[Panwalker and Rajagopalan, 1982] Panwalker, S. S. and Rajagopalan, R. (1982).
A single machine sequencing problem with controllable processing
times. European Journal of Operational Research, 59:298-302.

[Panwalker et al., 1982] Panwalker, S. S., Smith, M. L., and Seidmann, A. (1982).
Common due date assignment to minimize total penalty for the one
machine scheduling problem. Operations Research, 30(2):391-399.

[Papadimitriou, 1995] Papadimitriou, C. H. (1995). Computational Complexity.
Addison Wesley.

[Pinedo, 1995] Pinedo, M. (1995). Scheduling - Theory, Algorithms, and Systems.
Prentice Hall, Englewood Cliffs.

[Pinedo and Chao, 1999] Pinedo, M. and Chao, X. (1999). Operations Scheduling
with applications in manufacturing and services. Mc Graw Hill, Boston.

[Policella, 2005a] Policella, N. (2005a). Scheduling with uncertainty. A proactive
approach using partial order schedules. Phd thesis. University of Rome,
La Sapienza, Italy.

[Policella, 2005b] Policella, N. (2005b). Scheduling with uncertainty: a proactive
approach using partial order schedules. AI Communications, 18:165-
167.

[Policella et al., 2004] Policella, N., Oddi, A., Smith, S. F., and Cesta, A. (2004).
Generating robust partial order schedules. In Lecture Notes in Com­
puter Science (LNCS), 3258, pages 496-511.

[Port mann et al., 1996] Port mann, M. C , Vignier, A., Dardilhac, D., and Deza-
lay, D. (1996). Some hybrid flowshop scheduling by crossing branch
and bound and genetic algorithms. In 5th International Workshop on
Project Management and Scheduling (PMS^96), EURO, pages 186-189,
Poznan, Poland.

[Portmann et al., 1998] Portmann, M. C , Vignier, A., Dardilhac, D., and Deza-
lay, D. (1998). Some hybrid flowshop scheduling by crossing branch
and bound and genetic algorithms. European Journal of Operational
Research, 107:389-400.

[Potts and Kovalyov, 2000] Potts, C. and Kovalyov, M. (2000). Scheduling with
batching: A review. European Journal of Operational Research,
120(2) :228-249.

[Proust, 1992] Proust, C. (1992). Using Johnson's algorithm for solving flowshop
scheduling problems. In Summer school on scheduling theory and its
applications, INRIA/C3/C0METT, pages 297-342, Bonas, France. In­
vited talk.

[Ragatz and Mabert, 1984] Ragatz, G. L. and Mabert, V. A. (1984). A frame­
work for the study of due date management in job shops. International
Journal of Production Research, 22(4):685-695.

[Rajendran, 1992] Rajendran, C. (1992). Two-stage flowshop scheduling problem
with bicriteria. Journal of the Operational Research Society, 43(9) :871-
884.

References 351

[Rajendran, 1994] Rajendran, C. (1994). A heuristic for scheduling in flowshop
and flowUne-based manufacturing cell with multi-criteria. International
Journal of Production Research^ 32(11) :2541-2558.

[Rajendran, 1995] Rajendran, C. (1995). Heuristics for scheduling in flowshop with
multiple objectives. European Journal of Operational Research, 82:540-
555.

[Rajendran and Chaudhuri, 1991] Rajendran, C. and Chaudhuri, D. (1991). A
flowshop scheduling algorithm to minimize total flowtime. Journal of
the Operational Research Society of Japan, 34:28-46.

[Riane et al., 1997] Riane, F., Meskens, N., and Artiba, A. (1997). Bicriteria
scheduling hybrid flowshop problems. In International Conference on
Industrial Engineering and Production Management (IEPM^97), Fu-
cam, pages 34-43, Lyon, France.

[Rinnooy Kan, 1976] Rinnooy Kan, A. H. G. (1976). Machine Scheduling Problems:
Classification, complexity and computations. PhD thesis, NihofF, La
Hague, The Netherlands.

[Roy, 1976] Roy, B. (1976). From optimization to multicriteria decision aid: three
main operational attitudes. In [Thiriez and Zionts, 1976], pages 130-
132.

[Roy, 1985] Roy, B. (1985). Methodologie multicritere d^aide ä la decision (in
french). Economica, Paris.

[Roy, 1990] Roy, B. (1990). Decision aid and decision making. European Journal
of Operational Research, 45:324-331.

[Roy and Bouyssou, 1993] Roy, B. and Bouyssou, D. (1993). Aide multicritere ä la
decision: methodes et cas (in french). Economica, Paris.

[Ruiz-Torres et al., 1997] Ruiz-Torres, A. J., Enscore, E. E., and Barton, R. R.
(1997). Simulated annealing heuristics for the average flow-time and
the number of tardy jobs bi-criteria identical parallel machine problem.
Computers and Industrial Engineering, 33(1-2) :257-260.

[Saaty, 1986] Saaty, T. L. (1986). Axiomatic foundation of the analytic hierarchy
process. Management Science, 32(7):841-855.

[Sahni, 1979] Sahni, S. (1979). Preemptive scheduling with due dates. Operations
Research, 27:925-934.

[Sanlaville, 1992] Sanlaville, E. (1992). Conception et analyse d^algorithmes de liste
en ordonnancement preemptif (in french). PhD thesis. University of
Paris VI, Paris, France.

[Sarin and Hariharan, 2000] Sarin, S. C. and Hariharan, R. (2000). A two machine
bicriteria scheduling problem. International Journal of Production Eco­
nomics, 65:125-139.

[Sayin and Karabati, 1999] Sayin, S. and Karabati, S. (1999). A bicriteria approach
to the two-machine flow shop scheduling problem. European Journal of
Operational Research, 113:435-449.

[Schonberger, 1982] Schonberger, J. (1982). Japanese manufacturing techniques:
Nine hidden lessons in simplicity. The Free Press (New York).

[Schwartz, 1967] Schwartz, L. (1967). Cours d^Analyse (in french). Hermann.
[Seidmann et al., 1981] Seidmann, A., Panwalker, S. S., and Smith, M. L. (1981).

Optimal assignment of due-dates for a single processor scheduling prob­
lem. International Journal of Production Research, 19(4):393-399.

[Selen and Hott, 1986] Selen, W. J. and Hott, D. D. (1986). A mixed integer goal-
programming formulation of a flowshop scheduling problem. Journal of
the Operational Research Society, 37:1121-1128.

352 References

[Sen et al., 1989] Sen, T., Dileepan, P., and Gupta, J. N. D. (1989). The two-
machine flowshop scheduUng problem with total tardiness. Computers
and Operations Research, 16:333-340.

[Sen and Gupta, 1983] Sen, T. and Gupta, S. K. (1983). A branch-and-bound pro­
cedure to solve a bicriterion scheduling problem. HE Transactions,
15(l):84-88.

[Sen et al., 1988] Sen, T., Raiszadeh, F. M. E., and Dileepan, P. (1988). A branch-
and-bound approach to the bicriterion scheduling problem involving
total flowtime and range of lateness. Management Science, 34(2) :255-
260.

[Serafini, 1987] Serafini, P. (1987). Some considerations about computational com­
plexity for multi objective combinatorial problems. Lecture Notes in
Economics and Mathematical Systems, 294:222-232.

[Serifoglu and Ulusoy, 1998] Serifoglu, F. S. and Ulusoy, G. (1998). A bicriteria
two-machine permutation flowshop problem. European Journal of Op­
erational Research, 107:414-430.

[Sevaux and Sorensen, 2004] Sevaux, M. and Sorensen, K. (2004). A genetic algo­
rithm for robust schedules in a one-machine environment with ready
times and due dates. 40R, 2(2): 129-147.

[Shantikumar, 1983] Shantikumar, J. G. (1983). Scheduling n jobs on one ma­
chine to minimize the maxium tardiness with minimum number tardy.
Computers and Operations Research, 10(3):255-266.

[Sidney, 1977] Sidney, J. B. (1977). Optimal single-machine scheduling with earli-
ness and tardiness penalties. Operations Research, 25(l):62-69.

[Simon, 1977] Simon, J. (1977). On the difference between the one and the many.
Proceedings ICALP 1977, Lecture Notes in Computer Sciences, 52:480-
491.

[Sivrikaya-Serifoglu and Ulusoy, 1998] Sivrikaya-Serifoglu, F. S. and Ulusoy, G.
(1998). A bicriteria two machine permutation flowshop problem. Eu­
ropean Journal of Operational Research, 107:414-430.

[Slowinski and Weglarz, 1989] Slowinski, R. and Weglarz, J., editors (1989). Ad­
vances in project scheduling. Elsevier, Amsterdam.

[Smith, 1956] Smith, W. E. (1956). Various optimizers for single-stage production.
Naval Research Logistics Quarterly, 3(l):59-66.

[Soland, 1979] Soland, R. M. (1979). Multicriteria optimization: a general charac­
terization of efficient solutions. Decision Sciences, 10:27-38.

[Sourd, 2005] Sourd, F. (2005). Optimal timing of a sequence of tasks with general
completion costs. European Journal of Operational Research, 165:82-96.

[Steuer, 1977] Steuer, R. (1977). An interactive multiple objective linear program­
ming procedure. TIMS Studies in the Management Science, 6:225-239.

[Steuer, 1986] Steuer, R. (1986). Multiple criteria optimization: theory, computa­
tion and application. John Wiley, New York, U.S.A.

[Steuer and Choo, 1983] Steuer, R. and Choo, E. (1983). An interactive weighted
Tchebycheff procedure for multiple objective programming. Mathemat­
ical Programming, 26:326-344.

[Steuer and Wood, 1986] Steuer, R. and Wood, E. F. (1986). A multiple objective
Markov reservoir release policy model. Technical report. University of
Georgia Athens, U.S.A.

[Stuztle, 1998] Stuztle, T. (1998). An ant approach to the flow shop problem.
Proceedings of EUFIT'98, Aachen (Germany), pages 1560-1564.

[Sundararaghavan and Ahmed, 1984] Sundararaghavan, P. S. and Ahmed, M. U.
(1984). Minimizing the sum of absolute lateness in single-machine

References 353

and multimachine scheduling. Naval Research Logistics Quarterly,
31(2):325-333.

[Szwarc, 1989] Szwarc, W. (1989). Single-machine scheduling to minimize absolute
deviation of completion times from a common due date. Naval Research
Logistics, 36:663-673.

[Szwarc, 1993] Szwarc, W. (1993). Adjacent orderings in single machine scheduUng
with earliness and tardiness penalties. Naval Research Logistics, 40:229-
243.

[Szwarc and Mukhopadhyay, 1995] Szwarc, W. and Mukhopadhyay, S. K. (1995).
Optimal timing schedules in earliness-tardiness single machine sequenc­
ing. Naval Research Logistics, 42:1109-1114.

[Tamiz et al., 1999] Tamiz, M., Mirrazavi, S. K., and Jones, D. F. (1999). Exten­
sions of pareto efficiency analysis to integer goal programming. Omega,
27:179-188.

[Tanaev et al., 1994a] Tanaev, V., Gordon, V., and Shafransky, Y. (1994a).
Scheduling Theory. Single-Stage Systems. The Netherlands, kluwer edi­
tion.

[Tanaev et al., 1994b] Tanaev, V. S., Sotskov, Y. N., and Strusevich, V. A. (1994b).
Scheduling Theory. Multi-Stage Systems. Kluwer, The Netherlands.

[Tavares, 2002] Tavares, L. (2002). A review of the contribution of operational
research to project management. European Journal of Operational Re­
search, 136:1-18.

[Teghem, 1996] Teghem, J. (1996). Programmation lineaire (in french). collection
SMA, Ellipses, University of Bruxelles, Belgique.

[Tegze and Vlach, 1988] Tegze, M. and Vlach, M. (1988). Improved bounds for the
range of lateness on a single machine. Journal of Operational Research
Society, 39:675-680.

[Thiriez and Zionts, 1976] Thiriez, H. and Zionts, S., editors (1976). Multiple Cri­
teria Decision Making. Springer, Berlin.

[T'kindt et al., 2001] T'kindt, V., Billaut, J . -C, and Proust, C. (2001). Solving a
bicriteria scheduling problem on unrelated parallel machines occurring
in the glass bottle industry. European Journal of Operational Research,
135(1) :42-49.

[T'kindt et a l , 2005] T'kindt, V., Bouibede-Hocine, K., and Esswein, C. (2005).
Counting and enumeration complexity with application to multicriteria
scheduling. 4VR, 3(1):1-21.

[T'kindt et al., 2003] T'kindt, V., Gupta, J. N. D., and Billaut, J.-C. (2003). Two-
machine flowshop scheduling problem with a secondary criterion. Com­
puters and Operations Research, 30(4): 505-526.

[T'kindt et al., 2002] T'kindt, V., Monmarche, N., Tercinet, F., and Laugt, D.
(2002). An ant colony optimization algorithm to solve a 2-machine bi­
criteria flowshop scheduling problem. European Journal of Operational
Research, 142(2) :250-257.

[Tuyttens et al., 1999] Tuyttens, D., Teghem, J., Fortemps, P., and Van Nieuwen-
huyse, K. (1999). Performance of the MOS A method for the bicriteria
assignment problem. Journal of Heuristics, pages 295-310.

[Tuzikov et al., 1998] Tuzikov, A., Makhaniok, M., and Manner, R. (1998). Bicrite-
rion scheduling of identical processing time jobs by uniform processors.
Computers and Operations Research, 25(l):31-35.

[Ulungu and Teghem, 1994] Ulungu, E. L. and Teghem, J. (1994). Multi-objective
combinatorial optimization problems: A survey. Journal of Multi-
Criteria Decision Analysis, 3:83-104.

354 References

[Ulungu and Teghem, 1995] Ulungu, E. L. and Teghem, J. (1995). The two phases
method: an efficient procedure to solve bi-objective combinatorial opti­
mization problems. Journal on Foundations of Computers and Decision
Sciences, 20(2): 149-165.

[Ulungu and Teghem, 1997] Ulungu, E. L. and Teghem, J. (1997). Solving Multi-
Objective Knapsack Problem by a Branch-and-Bound Procedure, pages
269-278. In [Climaco, 1997].

[Ulungu et al., 1995] Ulungu, E. L., Teghem, J., and Fortemps, P. (1995). Heuris­
tics for Multi-Objective Combinatorial Optimization Problem by Simu­
lated Annealing, pages 229-238. SCIence-TECHnics, Windsor, England.

[Ulungu et al., 1999] Ulungu, E. L., Teghem, J., Fortemps, P., and Tuyttens, D.
(1999). Mosa method: A tool for solving multi-objective combinator­
ial optimization problems. Journal of Multicriteria Decision Analysis,
8:221-236.

[Ulungu et al., 1998] Ulungu, E. L., Teghem, J., and Ost, C. (1998). Efficiency of
interactive multi-objective simulated annealing through a case study.
Journal of the Operational Research Society, 49:1044-1050.

[Vadhan, 1995] Vadhan, S. (1995). The complexity of counting. Thesis of Bachelor
of Arts, Harvard College, Cambridge (USA), page 58.

[Valiant, 1979a] Valiant, L. (1979a). The complexity of computing the permanent.
Theoretical Computer Science, 8:189-201.

[Valiant, 1979b] Valiant, L. (1979b). The complexity of enumeration and reliability
problems. SI AM Journal on Computing, 8(3):410-421.

[Van de Vonder et al., 2005] Van de Vonder, S., Demeulemeester, E., Herroelen,
W., and Leus, R. (2005). The trade-off between stability and makespan
in resource-constrained project scheduling. International Journal of
Production Research, to appear.

[VandenAkker et al., 1998a] VandenAkker, M., Hoogeveen, H., and VandeVelde,
S. (1998a). A combined column generation and lagrangian relaxation
algorithm for common due date scheduling. In 6th Workshop on Project
Management and Scheduling (PMS^98), EURO, Istanbul, Turkey.

[VandenAkker et al., 1998b] VandenAkker, M., Hoogeveen, H., and VandeVelde, S.
(1998b). Combining column generation and lagrangean relaxation : an
application to a single-machine common due date scheduling problem.
Technical report, Department of Mathematics and Computing Science,
Eindhoven University of Technology, Eindhoven, The Netherlands.

[Vanderpooten, 1988] Vanderpooten, D. (1988). A multicriteria interactive proce­
dure supporting a directed learning of preferences. In EURO IX, TIMS
XXVIII, Paris, France.

[Vanderpooten, 1990] Vanderpooten, D. (1990). L'approche interactive dans Vaide
multicritere ä la decision (in french). PhD thesis. University of Paris
IX, Dauphine, Paris, France.

[Vanderpooten, 1992] Vanderpooten, D. (1992). Three basic conceptions underlying
multiple criteria interactive procedures, pages 441-448. Springer-Verlag.

[VandeVelde, 1990] VandeVelde, S. L. (1990). Minimizing the sum of the job com­
pletion times in the two-machine flow shop by lagrangian relaxation.
Annals of Operations Research, 26:257-268.

[VanWassenhove and Baker, 1982] VanWassenhove, L. and Baker, K. R. (1982). A
bicriterion approach to time/cost trade-offs in sequencing. European
Journal of Operational Research, l l(l):48-54.

[VanWassenhove and Gelders, 1978] VanWassenhove, L. and Gelders, L. F. (1978).
Four solution techniques for a general one machine scheduling prob-

References 355

lern: a comparative study. European Journal of Operational Research,
2(4):281-290.

[VanWassenhove and Gelders, 1980] VanWassenhove, L. and Gelders, L. F. (1980).
Solving a bicriterion scheduling problem. European Journal of Opera­
tional Research, 4:42-48.

[Vickson, 1980a] Vickson, R, G. (1980a). Choosing the job sequence and processing
times to minimize total processing plus flow cost on a single machine.
Operations Research, 28(5): 115-167.

[Vickson, 1980b] Vickson, R. G. (1980b). Two single machine sequencing prob­
lems involving controllable job processing times. HE Transactions,
12(3):158-162.

[Vignier, 1997] Vignier, A. (1997). Contribution ä la resolution des problemes
d^ordonnancement de type monogamme, multimachine (Flow-shop hy­
bride) (in french). PhD thesis, E3i, University of Tours, Tours, Prance.

[Vignier et al., 1996] Vignier, A., Billaut, J.-C., and Proust, C. (1996). Solving
/u-stage hybrid flowshop scheduling problems. In Multiconference on
Computational Engineering in Systems Applications (CESA 96), lEEE-
SMC/IMACS, pages 250-258, Lille, Prance.

[Vignier et al., 1999] Vignier, A., Billaut, J.-C., and Proust, C. (1999). Les
flowshop hybrides : etat de I'art (in french). R.A.I.R.O. Recherche
Operationnelle/ Operations Research, 33(2): 117-183.

[Vincke, 1976] Vincke, P. (1976). Une methode interactive en programmation
lineaire ä plusieurs fonctions economiques (in french). Revue Francaise
dlnformatique et de Recherche Operationnelle, 2:5-20.

[Vincke, 1989] Vincke, P. (1989). Aide multicritere ä la decision (in french). Col­
lection SMA, Ellipse, Paris, Prance.

[Visee et al., 1998] Visee, M., Teghem, J., Pirlot, M., and Ulungu, E. (1998). Two-
phases method and branch and bound procedures to solve the bi-
objective knapsack problem. Journal of Global Optimization, 12:139-
155.

[Viswanathkumar and Srinivasan, 2003] Viswanathkumar, G. and Srinivasan, G.
(2003). A branch and bound algorithm to minimize completion time
variance on a single processor. Computers & Operations Research,
30:1135-1150.

[VonNeumann and Morgenstern, 1954] VonNeumann, J. L. and Morgenstern, O.
(1954). Theory of games and economic behavior. Wiley.

[Warburton, 1983] Warburton, A. (1983). Quasiconcave vector maximization :
Connectedness of the sets of Pareto-optimal and weak pareto-optimal
alternatives. Journal of Optimization Theory and Applications, 40:537-
557.

[Webster et al., 1998] Webster, S., Job, P. D., and Gupta, A. (1998). A genetic al­
gorithm for scheduling job families on a single machine with arbitrary
earliness/tardiness penalties and an unrestricted common due date. In­
ternational Journal of Production Research, 36(9):2543-2551.

[Wierzbicki, 1982] Wierzbicki, A. (1982). A mathematical basis for satisficing de­
cision making. Mathematical modelling, 3:391-405.

[Wierzbicki, 1990] Wierzbicki, A. (1990). The use of reference objectives in multi-
objective optimization, pages 468-486. In [Pandel and Gal, 1997].

[Wilhelm and Ward, 1987] Wilhelm, M. R. and Ward, T. L. (1987). Solving
quadratic assignment problem by simulated annealing. HE Transac­
tions, 19:107-119.

356 Preface

[Wilson, 1989] Wilson, J. M. (1989). Alternative formulations of a flow-shop
scheduling problem. Journal of the Operational Research Society,
40(4):395-399.

[Wright, 2005] Wright, M. (2005). Scheduling fixtures for basketball new Zealand.
Computers & Operations Research, to appear.

[Wu et al., 1999] Wu, S. D., Byeon, E. S., and Storer, R. H. (1999). A graph-
theoretic decomposition of the job-shop scheduling problem to achieve
scheduling robustness. Operations Research, 47(1):113-124.

[Wu et al., 1993] Wu, S. D., Storer, R. H., and Chang, R-C. (1993). One-machine
rescheduling heuristics with efficiency and stability as criteria. Com­
puters and Operations Research, 20(1): 1-14.

[Yano and Kim, 1991] Yano, C. A. and Kim, Y. D. (1991). Algorithms for a class
of single machine weighted tardiness and earliness problems. European
Journal of Operational Research, 52:167-178.

[Yeh, 1999] Yeh, W. C. (1999). A new branch-and-bound approach for the
n/2/flowshop/aF -h hCmax flowshop scheduling problem. Computers
and Operations Research, 26:1293-1310.

[Yu, 1978] Yu, P. (1978). Dynamic programming in finite-stage multicriteria deci­
sion problems. Technical Report 118, School of Business, University of
Kansas, U.S.A.

[Yu, 1974] Yu, P. L. (1974). Cone convexity, cone extreme points and nondomi-
nated solutions in decision problems with multiobjectives. Journal of
Optimization Theory and Applications, 14:319-377.

[Yu and Seiford, 1981] Yu, P. L. and Seiford, L. (1981). Multistage decision prob­
lems with multicriteria.

[Yu and Zeleny, 1975] Yu, P. L. and Zeleny, M. (1975). The set of all nondominated
solutions in linear cases and a multicriteria simplex method. Journal
of Mathematical Analysis and Applications, 49:430-468.

[Zegordi et al., 1995] Zegordi, S. H., Itoh, K., and Enkawa, T. (1995). A knowledge­
able simulated annealing scheme for the early/tardy flow shop schedul­
ing problem. International Journal of Production Research, 33(5): 1449-
1466.

[Zionts, 1997] Zionts, S. (1997). Decision making: some experiences, myths and
observations, pages 233-241. In [Pandel and Gal, 1997].

[Zionts and Wallenius, 1976] Zionts, S. and Wallenius, J. (1976). An interactive
programming method for solving the multiple criteria problem. Man­
agement Science, 22(6):652-663.

[Zionts and Wallenius, 1983] Zionts, S. and Wallenius, J. (1983). An interactive
multiple objective linear programming method for a class of underlying
non linear utility functions. Management Science, 29(5):519-529.

Index

e-constraint approach, 72, 94, 96, 121

Activity, 17
AHP, 54
Analytic Hierarchy Process, 54
Ant Colony Optimisation, 247
Assignment, 6, 287, 315

Batch, 6, 10, 17, 157
Branch-and-bound algorithm, 99, 155,

175, 176, 182, 184-189, 191, 213, 214,
227-230, 233, 234, 237, 241, 245, 247,
251-258, 262, 266, 267, 294, 295, 318

Car assembly, 7, 116
Class
- MVC, 35
- P , 34
- of complexity, 32
- of schedules, 18
Common due date, 137, 153, 155, 157,

165, 169, 171, 173, 178, 183, 184,
186, 189

Complexity
- of algorithms, 29
- of counting problems, 40, 41, 127
- of enumeration problems, 40, 43, 127
- of problems, 32, 48, 100, 124
- theory, 32
Computer system, 7
CON, 137
Cone
- convex, 60
- polar semi-positive, 60
Connectedness, 59
Constraints, 9, 323
Criteria, 6, 12, 323
- convex combination of, 64, 93, 95,

99, 101, 121
- minimax, 13
- minisum, 13
- regular, 21

Criteria vector
- ideal, 76, 92
- reference, 77, 87
- Utopian, 77, 80, 83, 86, 92

Decision
- Making, 53
- problem, 33
Dominance set, 60
Dynamic programming, 29, 157, 184,

222, 223, 225, 226, 228, 229, 245

E, 57, 58
EDD, 21
EDD-FAM, 22
EDD-FM, 22
Electroplating, 115
EST, 22
Evolutionary algorithms, 99

Flexible Manufacturing System, 6
Flowshop, 8
Function
- convex, 59
- increasing, 70
- quasi-convex, 59

Gains matrix, 77
General
- jobshop, 9
- openshop, 9
- scheduling and assignment problems,

9
Geoffrion's theorem, 66
Goal programming, 108, 110, 121, 171
- archimedian, 110, 111
- interactive, 110, 111
- lexicographical, 110, 111
- multicriteria, 110, 112
- preemptive, 110
- reference, 110, 112

358 Index

Goal-attainment approach, 86, 94, 97,
105, 121

Goals, 63

Heuristic, 48
Hoist scheduling problem, 6, 17, 115
Hybrid flowshop, 9, 315

Job, 5
Jobshop, 8, 284
Just-in-Time
- criteria, 137
- scheduling, 136, 139, 182

Level curves, 68, 71, 75, 78, 81, 85, 96
Lexicographical order, 91, 92, 94, 97,

101, 122
LRPT-FM, 22, 304

Machine, 5
Manufacture of bottles, 114
MAUT, 54
MCDA, 54
MCDM, 54, 62
Method
- a posteriori, 63, 69, 71, 75, 78, 81,

97, 119, 122, 171, 207, 214, 217, 219,
220, 222, 226, 227, 233, 263, 265, 267,
277, 281, 304, 312

- a priori, 63, 69, 71, 119, 122, 207, 226
- interactive, 63, 69, 71, 75, 78, 81, 97,

107, 119, 122
- to compute a Pareto optimum, 64,

121
MIP, 94
Mixed Integer Programming, 94
Mixed shop, 8
MLP, 92
Multiattribute Utility Theory, 54
Multicriteria
- assignment problem, 98
- Decision Aid, 54, 118
- Decision Making, 54
- knapsack problem, 98, 99
- linear programming, 92
- optimisation, 114
- scheduling problem, 118
- travelling salesman problem, 98

Nadir, 77
Non restrictive due date, 137, 153, 155,

157, 158, 171, 178, 187
Non supported Pareto optima, 94, 96
NOP, 137

Notation
- of data and variables, 323
- of problems, 14, 16-18, 121, 323

Openshop, 8, 284
Openshop with general assignment, 9
Operation, 5
- mono-, 5
- multi-, 5
Operational Research, 98
Optimal timing problem, 147
Optimisation problem, 38

Parallel machines, 9
- identical, 8, 287
- uniform, 8, 297
- unrelated, 9, 310
- with general assignment, 9
Parametric approach, 70, 94, 97, 103,

121
Pareto optimum
- proper, 58, 66, 93
- strict, 57, 60, 70, 72, 74, 77, 79, 81,

83, 86, 88, 91, 191, 262, 266, 275,
280, 281, 311

- weak, 57, 68, 73, 74, 80, 81, 87, 95
Pareto-slack optimum
- strict, 110
- weak, 110
Parsimonious reduction, 42, 43
Planning, 113
Point
- ideal, 76, 92
- reference, 77, 87
- Tchebycheff, 77
- Utopian, 77, 80, 83, 86, 92
Polynomial
- reduction, 35, 39, 228
- Turing reduction, 38, 39
PPW, 137
PRE, 58
Processing of cheques, 116
Production, 113
Project scheduling, 6, 7, 17
Promptness, 138
Proportionated flowshop, 281

Reduction tree, 49
Resource, 5
Restrictive due date, 137, 158, 184, 187

Satellite scheduling, 118
Schedule
- active, 19, 21

Index 359

- non delayed, 19
- semi-active, 19
- with insertion of machine idle times,

18
Search problem, 38
Set
- compact, 59
- convex, 59
- dominance, 60, 61
- dominant, 18
- Utopian, 109
Shops with general assignment, 9
Simulated annealing, 97, 176, 250, 272
Single machine, 8
Slack variable, 109
SLK, 137
Spatial complexity, 29
Sports scheduling, 117
SPT, 21
SPT-FAM, 22
SPT-FM, 22
SRPT-FM, 22, 304
Start times, 147, 149, 172, 182, 188
Steel hot rolling mill scheduling, 115
Supported Pareto optimum, 94

Tabu, 98, 99, 176, 185, 250, 316, 318

Task, 5
TchebychefF
- augmented weighted metric, 81, 82,

121
- metric, 76, 77, 94, 97, 105, 121
- weighted metric, 79, 85, 86, 121
Time complexity, 29
Timetabling problems, 117
Transport, 116
Travelling salesman problem, 229
Turing machine, 33-35
TWK, 137
Typology of problems, 14

Utility function, 54, 62

V-shaped schedule, 154, 161, 170
Vector optimisation, 56

WE, 57
Weakly V-shaped schedule, 183
Weights, 63
- asymetrical, 138
- symetrical, 138, 171, 186
WSPT, 21
WSPT-FAM, 22
WSPT-FM, 22

