
PRINCIPLES OF
SEQUENCING AND
SCHEDULING

PRINCIPLES OF
SEQUENCING AND
SCHEDULING

Kenneth R. Baker

Tuck School of Business

Dartmouth College

Hanover, New Hampshire

Dan Trietsch

College of Engineering

American University of Armenia

Yerevan, Armenia

A JOHN WILEY & SONS, INC. PUBLICATION

Copyright C© 2009 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as

permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior

written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to

the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,

fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission

should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,

NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in

preparing this book, they make no representations or warranties with respect to the accuracy or

completeness of the contents of this book and specifically disclaim any implied warranties of

merchantability or fitness for a particular purpose. No warranty may be created or extended by sales

representatives or written sales materials. The advice and strategies contained herein may not be suitable

for your situation. You should consult with a professional where appropriate. Neither the publisher nor

author shall be liable for any loss of profit or any other commercial damages, including but not limited to

special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our

Customer Care Department within the United States at (800) 762-2974, outside the United States at

(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may

not be available in electronic formats. For more information about Wiley products, visit our web site at

www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Baker, Kenneth R., 1943 –

Principles of sequencing and scheduling / Kenneth R. Baker, Dan Trietsch.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-470-39165-5 (cloth)

1. Production scheduling. I. Trietsch, Dan. II. Title.

TS157.5.B35 2009

658.5′3–dc22 2008041829

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

CONTENTS

Preface xiii

1 Introduction 1

1.1 Introduction to Sequencing and Scheduling, 1

1.2 Scheduling Theory, 3

1.3 Philosophy and Coverage of the Book, 6

References, 8

2 Single-Machine Sequencing 10

2.1 Introduction, 10

2.2 Preliminaries, 11

2.3 Problems Without Due Dates: Elementary Results, 15

2.3.1 Flowtime and Inventory, 15

2.3.2 Minimizing Total Flowtime, 16

2.3.3 Minimizing Total Weighted Flowtime, 19

2.4 Problems with Due Dates: Elementary Results, 21

2.4.1 Lateness Criteria, 21

2.4.2 Minimizing the Number of Tardy Jobs, 24

2.4.3 Minimizing Total Tardiness, 25

2.4.4 Due Dates as Decisions, 29

2.5 Summary, 31

References, 31

Exercises, 32

v

vi CONTENTS

3 Optimization Methods for the Single-Machine Problem 34

3.1 Introduction, 34

3.2 Adjacent Pairwise Interchange Methods, 36

3.3 A Dynamic Programming Approach, 37

3.4 Dominance Properties, 43

3.5 A Branch and Bound Approach, 47

3.6 Summary, 53

References, 55

Exercises, 55

4 Heuristic Methods for the Single-Machine Problem 57

4.1 Introduction, 57

4.2 Dispatching and Construction Procedures, 58

4.3 Random Sampling, 63

4.4 Neighborhood Search Techniques, 66

4.5 Tabu Search, 70

4.6 Simulated Annealing, 72

4.7 Genetic Algorithms, 74

4.8 The Evolutionary Solver, 75

4.9 Summary, 79

References, 81

Exercises, 81

5 Earliness and Tardiness Costs 86

5.1 Introduction, 86

5.2 Minimizing Deviations from a Common Due Date, 88

5.2.1 Four Basic Results, 88

5.2.2 Due Dates as Decisions, 93

5.3 The Restricted Version, 94

5.4 Asymmetric Earliness and Tardiness Costs, 96

5.5 Quadratic Costs, 99

5.6 Job-Dependent Costs, 100

5.7 Distinct Due Dates, 101

5.8 Summary, 104

References, 105

Exercises, 105

6 Sequencing for Stochastic Scheduling 108

6.1 Introduction, 108

6.2 Basic Stochastic Counterpart Models, 109

6.3 The Deterministic Counterpart, 115

6.4 Minimizing the Maximum Cost, 117

6.5 The Jensen Gap, 122

6.6 Stochastic Dominance and Association, 123

CONTENTS vii

6.7 Using Risk Solver, 127

6.8 Summary, 132

References, 134

Exercises, 134

7 Safe Scheduling 137

7.1 Introduction, 137

7.2 Meeting Service-Level Targets, 138

7.3 Trading Off Tightness and Tardiness, 141

7.4 The Stochastic E/T Problem, 145

7.5 Setting Release Dates, 149

7.6 The Stochastic U-Problem: A Service-Level Approach, 152

7.7 The Stochastic U-Problem: An Economic Approach, 156

7.8 Summary, 160

References, 161

Exercises, 162

8 Extensions of the Basic Model 165

8.1 Introduction, 165

8.2 Nonsimultaneous Arrivals, 166

8.2.1 Minimizing the Makespan, 169

8.2.2 Minimizing Maximum Tardiness, 171

8.2.3 Other Measures of Performance, 172

8.3 Related Jobs, 174

8.3.1 Minimizing Maximum Tardiness, 175

8.3.2 Minimizing Total Flowtime with Strings, 176

8.3.3 Minimizing Total Flowtime with Parallel Chains, 178

8.4 Sequence-Dependent Setup Times, 181

8.4.1 Dynamic Programming Solutions, 183

8.4.2 Branch and Bound Solutions, 184

8.4.3 Heuristic Solutions, 189

8.5 Stochastic Models with Sequence-Dependent Setup Times, 190

8.5.1 Setting Tight Due Dates, 191

8.5.2 Revisiting the Tightness/Tardiness Trade-off, 192

8.6 Summary, 195

References, 196

Exercises, 197

9 Parallel-Machine Models 200

9.1 Introduction, 200

9.2 Minimizing the Makespan, 201

9.2.1 Nonpreemptable Jobs, 202

9.2.2 Nonpreemptable Related Jobs, 208

9.2.3 Preemptable Jobs, 211

viii CONTENTS

9.3 Minimizing Total Flowtime, 213

9.4 Stochastic Models, 217

9.4.1 The Makespan Problem with Exponential Processing

Times, 218

9.4.2 Safe Scheduling with Parallel Machines, 220

9.5 Summary, 221

References, 222

Exercises, 223

10 Flow Shop Scheduling 225

10.1 Introduction, 225

10.2 Permutation Schedules, 228

10.3 The Two-Machine Problem, 230

10.3.1 Johnson’s Rule, 230

10.3.2 A Proof of Johnson’s Rule, 232

10.3.3 The Model with Time Lags, 234

10.3.4 The Model with Setups, 235

10.4 Special Cases of The Three-Machine Problem, 236

10.5 Minimizing the Makespan, 237

10.5.1 Branch and Bound Solutions, 238

10.5.2 Heuristic Solutions, 241

10.6 Variations of the m-Machine Model, 243

10.6.1 Ordered Flow Shops, 243

10.6.2 Flow Shops with Blocking, 244

10.6.3 No-Wait Flow Shops, 245

10.7 Summary, 247

References, 248

Exercises, 249

11 Stochastic Flow Shop Scheduling 251

11.1 Introduction, 251

11.2 Stochastic Counterpart Models, 252

11.3 Safe Scheduling Models with Stochastic Independence, 258

11.4 Flow Shops with Linear Association, 261

11.5 Empirical Observations, 262

11.6 Summary, 267

References, 268

Exercises, 269

12 Lot Streaming Procedures for the Flow Shop 271

12.1 Introduction, 271

12.2 The Basic Two-Machine Model, 273

12.2.1 Preliminaries, 273

12.2.2 The Continuous Version, 274

CONTENTS ix

12.2.3 The Discrete Version, 277

12.2.4 Models with Setups, 279

12.3 The Three-Machine Model with Consistent Sublots, 281

12.3.1 The Continuous Version, 281

12.3.2 The Discrete Version, 284

12.4 The Three-Machine Model with Variable Sublots, 285

12.4.1 Item and Batch Availability, 285

12.4.2 The Continuous Version, 285

12.4.3 The Discrete Version, 287

12.4.4 Computational Experiments, 290

12.5 The Fundamental Partition, 292

12.5.1 Defining the Fundamental Partition, 292

12.5.2 A Heuristic Procedure for s Sublots, 295

12.6 Summary, 295

References, 297

Exercises, 298

13 Scheduling Groups of Jobs 300

13.1 Introduction, 300

13.2 Scheduling Job Families, 301

13.2.1 Minimizing Total Weighted Flowtime, 302

13.2.2 Minimizing Maximum Lateness, 304

13.2.3 Minimizing Makespan in the Two-Machine Flow

Shop, 306

13.3 Scheduling with Batch Availability, 309

13.4 Scheduling with a Batch Processor, 313

13.4.1 Minimizing the Makespan with Dynamic

Arrivals, 314

13.4.2 Minimizing Makespan in the Two-Machine

Flow Shop, 315

13.4.3 Minimizing Total Flowtime with Dynamic

Arrivals, 317

13.4.4 Batch-Dependent Processing Times, 318

13.5 Summary, 320

References, 321

Exercises, 322

14 The Job Shop Problem 325

14.1 Introduction, 325

14.2 Types of Schedules, 328

14.3 Schedule Generation, 333

14.4 The Shifting Bottleneck Procedure, 337

14.4.1 Bottleneck Machines, 338

14.4.2 Heuristic and Optimal Solutions, 339

x CONTENTS

14.5 Neighborhood Search Heuristics, 342

14.6 Summary, 345

References, 346

Exercises, 347

15 Simulation Models for the Dynamic Job Shop 349

15.1 Introduction, 349

15.2 Model Elements, 350

15.3 Types of Dispatching Rules, 352

15.4 Reducing Mean Flowtime, 354

15.5 Meeting Due Dates, 357

15.5.1 Background, 357

15.5.2 Some Clarifying Experiments, 362

15.5.3 Experimental Results, 364

15.6 Summary, 369

References, 370

16 Network Methods for Project Scheduling 372

16.1 Introduction, 372

16.2 Logical Constraints and Network Construction, 373

16.3 Temporal Analysis of Networks, 376

16.4 The Time/Cost Trade-off, 381

16.5 Traditional Probabilistic Network Analysis, 385

16.5.1 The PERT Method, 385

16.5.2 Theoretical Limitations of PERT, 389

16.6 Summary, 393

References, 394

Exercises, 395

17 Resource-Constrained Project Scheduling 398

17.1 Introduction, 398

17.2 Extending the Job Shop Model, 399

17.3 Extending the Project Model, 405

17.4 Heuristic Construction and Search Algorithms, 407

17.4.1 Construction Heuristics, 408

17.4.2 Neighborhood Search Improvement Schemes, 410

17.4.3 Selecting Priority Lists, 412

17.5 Summary, 414

References, 415

Exercises, 415

18 Safe Scheduling for Projects 418

18.1 Introduction, 418

18.2 Stochastic Balance Principles For Activity Networks, 420

18.2.1 The Assembly Coordination Model, 420

18.2.2 Balancing a General Project Network, 426

CONTENTS xi

18.2.3 Additional Examples, 428

18.2.4 Hierarchical Balancing, 434

18.3 Crashing Stochastic Activities, 436

18.4 Summary, 439

References, 441

Exercises, 441

Appendix A Practical Processing Time Distributions 445

A.1 Important Processing Time Distributions, 445

A.1.1 The Uniform Distribution, 445

A.1.2 The Exponential Distribution, 446

A.1.3 The Normal Distribution, 447

A.1.4 The Lognormal Distribution, 447

A.1.5 The Parkinson Distribution, 449

A.2 Increasing and Decreasing Completion Rates, 450

A.3 Stochastic Dominance, 451

A.4 Linearly Associated Processing Times, 452

References, 458

Appendix B The Critical Ratio Rule 459

B.1 A Basic Trade-off Problem, 459

B.2 Optimal Policy for Discrete Probability Models, 461

B.3 A Special Discrete Case: Equally Likely Outcomes, 463

B.4 Optimal Policy for Continuous Probability Models, 463

B.5 A Special Continuous Case: The Normal Distribution, 467

B.6 Calculating d + γ E(T) for the Normal Distribution, 469

References, 470

Appendix C Integer Programming Models for Sequencing 471

C.1 Introduction, 471

C.2 The Single-Machine Model, 472

C.2.1 Sequence-Position Decisions, 472

C.2.2 Precedence Decisions, 473

C.2.3 Time-Indexed Decisions, 473

C.3 The Flow Shop Model, 475

References, 477

Name Index 479

Subject Index 483

PREFACE

This textbook provides an introduction to the concepts, methods, and results of

scheduling theory. It is written for graduate students and advanced undergraduates

who are studying scheduling, as well as for practitioners who are interested in the

knowledge base on which modern scheduling applications have been built. The

coverage assumes no background in scheduling, and for stochastic scheduling topics,

we assume only a familiarity with basic probability concepts. Among other things,

our first appendix summarizes the important properties of the probability distributions

we use.

We view scheduling theory as practical theory, and we have made sure to em-

phasize the practical aspects of our topic coverage. Thus, we provide algorithms that

implement some of the solution concepts we describe, and we cover the use of spread-

sheet models to calculate solutions to scheduling problems. Especially when tackling

stochastic scheduling problems, we must balance the need for tractability and the

need for realism. Thus, we stress heuristics and simulation-based approaches when

optimization methods and analytic tools fall short. We also provide many examples

in the text along with computational exercises among our end-of-chapter problems.

Coverage of the Text

The material in this book can support a variety of course designs. An introductory-

level course covering only deterministic scheduling can draw from Chapters 1–5,

8–10, 12–14, 16, and 17. A one-quarter course that covers both deterministic and

stochastic topics can use Chapters 1–11 and possibly 15. Our own experience suggests

that the entire book can support a two-quarter sequence, especially with supplemen-

tary material we provide on the Internet.

xiii

xiv PREFACE

The book contains three appendices. The first reviews the salient properties of

well-known probability distributions, as background for our coverage of stochastic

models. It also covers some specialized topics on which some of our advanced

coverage is based. The second appendix includes background derivations related

to the “critical ratio rule,” which arises frequently in safe scheduling models. Our

third appendix is an introduction to the formulation of sequencing models as integer

programs, which represents a long-neglected subject that ought to be revisited in the

research literature.

Our coverage is substantial compared to other scheduling textbooks, but it is not

encyclopedic. Our goal is to enable the reader to delve into the research literature (or

in some cases, the consulting literature) with enough background to appreciate the

contributions of state-of-the-art papers.

For the reader who is interested in a more comprehensive link to the research

literature than our text covers, we provide a set of Web-based Research Notes. The

Research Notes represent unique material that expands the book’s coverage and

builds an intellectual bridge to the research literature on sequencing and scheduling.

In organizing the text, we wanted to proceed from simple to complex and to maintain

technological order. As much as possible, each new result is based only on previous

coverage. As a secondary guiding principle, the text minimizes any discussion of

connections between models, thus keeping the structure simple. Scheduling theory

did not develop along these same lines, however, so research-oriented readers may

wish to look at the bigger picture without adhering to these principles with the same

fidelity. One purpose of our Research Notes is to offer such a picture. Another purpose

is to provide some historical background. We also mention open research questions

that we believe should be addressed by future research. Occasionally, we provide

more depth on topics that are not sufficiently central to justify inclusion in the text

itself. Finally, for readers who will be reading research papers directly from the

source, we occasionally need to discuss topics that aren’t crucial to the text but that

arise frequently in the literature.

Historical Background

This book is an updated version of Baker’s text, so some historical background is

appropriate at the outset. Introduction to Sequencing and Scheduling (ISS) was pub-

lished by John Wiley & Sons in 1973 and became the dominant textbook in scheduling

theory. A generation of instructors and graduate students relied on that book as the

key source of information for advanced work in sequencing and scheduling. Later

books stayed abreast of developments in the field, but as references in journal articles

would indicate, most of those books were never treated as fundamental to the study

of scheduling.

Sales of ISS slowed by 1980, and Wiley eventually gave up the copyright. Al-

though they found a publishing house interested in buying the title, Baker took back

the copyright. For several years, he provided generous photocopying privileges to

instructors who were still interested in using the material, even though some of it had

become outdated. Finally, in the early 1990s, Baker revised the book. The sequel was

PREFACE xv

Elements of Sequencing and Scheduling (ESS), self-published in 1992 and expanded

in 1995. Less encyclopedic than its predecessor, ESS was rewritten to be readable and

accessible to the student while still providing an intellectual springboard to the field

of scheduling theory. Without advertising sales reps, and without any association with

a textbook publishing house, ESS sold several hundred copies in paperback through

2007. Another generation of advanced undergraduate and graduate students used the

book in courses, while other graduate students were simply assigned the book as re-

quired reading for independent studies or qualifying exams. Current research articles

in scheduling continue to cite ISS and/or ESS as the source of basic knowledge on

which today’s research is being built.

Perhaps the most important topic not covered in ESS was stochastic scheduling.

With the exception of the chapter on the job shop simulations, almost all the coverage

in ESS dealt with deterministic models. In the last 15 years, research has focused

as much on stochastic models as on deterministic models, and stochastic scheduling

has become a significant part of the field. But traditional approaches to stochastic

scheduling have their limitations, and new approaches are currently being developed.

One important line of work introduces the notion of safe scheduling, an approach

pioneered by Trietsch and others, more recently extended in joint work by Baker and

Trietsch. This book updates the coverage of ESS and adds coverage of safe scheduling

as well as traditional stochastic scheduling. Because the new material comes from

active researchers, the book surpasses competing texts in terms of its timeliness.

And because the book retains the readability of its earlier versions, it should be the

textbook of choice for instructors of scheduling courses. Finally, its title reinforces

the experiences of two generations of students and scholars, providing a thread that

establishes this volume as the latest update of a classic text.

Acknowledgments

We wish to acknowledge Lilit Mazmanyan of the American University of Armenia

for her assistance with many detailed aspects of the book’s preparation. We also

wish to acknowledge a set of reviewers who provided guidance to our editors as

well as anonymous comments and suggestions to us. This set includes Edwin Cheng

(The Hong Kong Polytechnic University), Zhi-Long Chen (University of Maryland),

Chung-Yee Lee (Hong Kong University of Science and Technology), Michael Mag-

azine (University of Cincinnati), Stephen Powell (Dartmouth College), and Scott

Webster (Syracuse University).

Kenneth R. Baker

Dan Trietsch

Hanover, New Hampshire

Yerevan, Armenia

1
INTRODUCTION

1.1 INTRODUCTION TO SEQUENCING AND SCHEDULING

Scheduling is a term in our everyday vocabulary, although we may not always have

a good definition of the term in mind. Actually, it’s not scheduling that is a common

concept in our everyday life, rather it is schedules. A schedule is a tangible plan or

document, such as a bus schedule or a class schedule. A schedule usually tells us

when things are supposed to happen; it shows us a plan for the timing of certain

activities and answers the question, “If all goes well, when will a particular event

take place?” Suppose we are interested in when dinner will be served or when a bus

will depart. In these instances, the event we are interested in is the completion of a

particular activity, such as preparing dinner, or the start of a particular activity such

as a bus trip. Answers to the “when” question usually come to us with information

about timing. Dinner is scheduled to be served at 6:00 pm, the bus is scheduled to

depart at 8:00 am, and so on. However, an equally useful answer might be in terms of

sequence rather than timing: that is, dinner will be served as soon as the main course

is baked, or the bus will depart right after cleaning and maintenance are finished.

Thus, the “when” question can be answered by timing or by sequence information

obtained from the schedule.

If we take into account that some events are unpredictable, then changes may occur

in a schedule. Even then, the schedule is useful: by letting passengers know when the

bus is due to leave, we help them plan their own schedules. Thus, we may say that the

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

1

2 INTRODUCTION

bus leaves at 8:00 am unless it is delayed for cleaning and maintenance, or we may

leave the condition implicit and just say that the bus is scheduled to leave at 8:00 am.

If we make allowances for uncertainty when we schedule cleaning and maintenance,

then passengers can trust that the bus will leave at 8:00 am with some confidence.

In turn, they may schedule their own time buffer when planning their arrival at the

station. Using a time buffer (or safety time) helps us cope with uncertainty.

Intuitively, we think of scheduling as the process of generating the schedule,

although we seldom stop to consider what the details of that process might be. In fact,

although we think of a schedule as something tangible, the process of scheduling

seems quite intangible, until we consider it in some depth. We often approach the

problem in two steps: sequencing and scheduling. In the first step, we plan a sequence

or decide how to select the next task. In the second step, we plan the start time, and

perhaps the completion time, of each task. The determination of safety time is part

of the second step.

Preparing a dinner or doing the laundry are good examples of everyday scheduling

problems. They involve tasks to be carried out, the tasks are well specified, and

particular resources are required—a cook and an oven for dinner preparation, a

washer and a dryer for laundry. Scheduling problems in industry have a similar

structure: they contain a set of tasks to be carried out and a set of resources available

to perform those tasks. Given tasks and resources, together with some information

about uncertainties, the general problem is to determine the timing of the tasks while

recognizing the capability of the resources. This problem usually arises within a

decision-making hierarchy in which scheduling follows some earlier, more basic

decisions. Dinner preparation, for example, typically requires a specification of the

menu items, recipes for those items, and information on how many portions will be

needed. In industry, analogous decisions are usually said to be part of the planning

function. Among other things, the planning function might describe the design of

a company’s products, the technology available for making and testing the required

parts, and the volumes to be produced. In short, the planning function determines the

resources available for production and the tasks to be scheduled.

In the scheduling process, we need to know the type and the amount of each

resource so that we can determine when the tasks can feasibly be accomplished.

When we specify the resources, we effectively define the boundary of the scheduling

problem. In addition, we describe each task in terms of such information as its

resource requirement, its duration, the earliest time at which it may start, and the

time at which it is due to complete. In general, the task duration is uncertain, but

we may want to suppress that uncertainty when stating the problem. We should also

describe any technological constraints (precedence restrictions) that exist among the

tasks. Information about resources and tasks defines a scheduling problem. However,

finding a solution is often a fairly complex matter, and formal problem-solving

approaches are helpful.

Formal models help us first to understand the scheduling problem and then to find

a good solution. For example, one of the simplest and most widely used models is

the Gantt chart, which is an analog representation of a schedule. In its basic form,

the Gantt chart displays resource allocation over time, with specific resources shown

SCHEDULING THEORY 3

Resource 1

Resource 2

Resource 3

Time

1

2

3 2

1

1

2

1

4 3

4 3

4

FIGURE 1.1 A Gantt chart.

along the vertical axis and a time scale shown along the horizontal axis. The basic

Gantt chart assumes that processing times are known with certainty, as in Figure 1.1.

A chart such as Figure 1.1 helps us to visualize a schedule and its detailed el-

ements because resources and tasks show up clearly. With a Gantt chart, we can

discover information about a given schedule by analyzing geometric relationships.

In addition, we can rearrange tasks on the chart to obtain comparative information

about alternative schedules. In this way, the Gantt chart serves as an aid for measur-

ing performance and comparing schedules as well as for visualizing the problem in

the first place. In this book, we will examine graphical, algebraic, spreadsheet, and

simulation models, in addition to the Gantt chart, all of which help us analyze and

compare schedules. In essence, models help us formalize the otherwise intangible

process we call scheduling.

Many of the early developments in the field of scheduling were motivated by

problems arising in manufacturing. Therefore, it was natural to employ the vocabulary

of manufacturing when describing scheduling problems. Now, although scheduling

work is of considerable significance in many nonmanufacturing areas, the terminology

of manufacturing is still frequently used. Thus, resources are usually called machines

and tasks are called jobs. Sometimes, jobs may consist of several elementary tasks

called operations. The environment of the scheduling problem is called the job

shop, or simply, the shop. For example, if we encountered a scheduling problem

faced by underwriters processing insurance policies, we could describe the situation

generically as an insurance “shop” that involves the processing of policy “jobs” by

underwriter “machines.”

1.2 SCHEDULING THEORY

Scheduling theory is concerned primarily with mathematical models that relate to

the process of scheduling. The development of useful models, which leads in turn to

solution techniques and practical insights, has been the continuing interface between

4 INTRODUCTION

theory and practice. The theoretical perspective is also largely a quantitative approach,

one that attempts to capture problem structure in mathematical form. In particular,

this quantitative approach begins with a description of resources and tasks and with

the translation of decision-making goals into an explicit objective function.

Ideally, the objective function should consist of all costs that depend on schedul-

ing decisions. In practice, however, such costs are often difficult to measure, or

even to completely identify. The major operating costs—and the most readily

identifiable—are determined by the planning function, while scheduling-related costs

are difficult to isolate and often tend to appear fixed. Nevertheless, three types of

decision-making goals seem to be prevalent in scheduling: turnaround, timeliness,

and throughput. Turnaround measures the time required to complete a task. Timeli-

ness measures the conformance of a particular task’s completion to a given deadline.

Throughput measures the amount of work completed during a fixed period of time.

The first two goals need further elaboration, because although we can speak of

turnaround or timeliness for a given task, scheduling problems require a performance

measure for the entire set of tasks in a schedule. Throughput, in contrast, is already a

measure that applies to the entire set. As we develop the subject of scheduling in the

following chapters, we will elaborate on the specific objective functions that make

these three goals operational.

We categorize the major scheduling models by specifying the resource configu-

ration and the nature of the tasks. For instance, a model may contain one machine

or several machines. If it contains one machine, jobs are likely to be single stage,

whereas multiple-machine models usually involve jobs with multiple stages. In either

case, machines may be available in unit amounts or in parallel. In addition, if the

set of jobs available for scheduling does not change over time, the system is called

static, in contrast to cases in which new jobs appear over time, where the system is

called dynamic. Traditionally, static models have proved more tractable than dynamic

models and have been studied more extensively. Although dynamic models would

appear to be more important for practical application, static models often capture the

essence of dynamic systems, and the analysis of static problems frequently uncovers

valuable insights and sound heuristic principles that are useful in dynamic situa-

tions. Finally, when conditions are assumed to be known with certainty, the model is

called deterministic. On the other hand, when we recognize uncertainty with explicit

probability distributions, the model is called stochastic.

Two kinds of feasibility constraints are commonly found in scheduling problems.

First, there are limits on the capacity of machines, and second, there are technological

restrictions on the order in which some jobs can be performed. A solution to a

scheduling problem is any feasible resolution of these two types of constraints, so

that “solving” a scheduling problem amounts to answering two kinds of questions:

� Which resources should be allocated to perform each task?
� When should each task be performed?

In other words, a scheduling problem gives rise to allocation decisions and sequencing

decisions. From the start, the scheduling literature has relied on mathematical models

SCHEDULING THEORY 5

for these two kinds of decision problems. In more recent developments, referred to

as safe scheduling, the models recognize service levels as well. Safe scheduling may

also involve the decision to accept a job or reject it in the first place, so that when

we make commitments to customers, we can be confident that their jobs will finish

within the time allowed. An alternative approach to safe scheduling minimizes the

expected economic cost of a schedule, including the cost of tardiness and the cost of

safety time. Instead of specifying a service level in advance, this approach determines

economic service levels as part of the solution.

The need to account for safety time also has important implications for sequencing

decisions. As an example of the economic approach to safe scheduling, consider a hub

airport that serves several cities (Trietsch, 1993). Instead of providing direct flights

for all pairs of cities, incoming flights from each city are directed to the hub, and

passengers then take outgoing flights to their destinations. Flights are interrelated be-

cause they feed each other with passengers. Ideally, all incoming flights should arrive

at about the same time and all outgoing flights should leave at about the same time.

In practice, however, sufficient time gaps must be maintained between aircraft when

landing or taking off, so both sequencing decisions and timing decisions are neces-

sary. In sequencing, we must account for the fact that different incoming flights have

different variances: in general, higher variance implies the need for more safety time,

so flights with high variance should be scheduled to arrive earlier. Thus, sequencing

decisions may be quite different from those obtained by deterministic models. Fur-

thermore, sequencing in this case is not necessarily about the final order in which

aircraft will arrive but about the best plan from which to deviate later, when we correct

for various random events, including stochastic departure delays at the originating

airports of the incoming flights, emergencies (such as low fuel) forcing the need to

expedite some landings in favor of others, and so on. Very tight schedules are likely to

lead to higher disruption costs but loose schedules have higher safety time cost. The

challenge is to schedule all incoming and outgoing flights so as to minimize the total

expected time cost of passengers and equipment plus the disruption cost that occurs if

feeding flights are late or if aircraft are forced to wait too long for permission to land.

Traditionally, many scheduling problems have been viewed as problems in opti-

mization subject to constraints—specifically, problems in allocation and sequencing.

Sometimes, scheduling is purely allocation (e.g, choosing the product mix with lim-

ited resources), and in such cases mathematical programming models are usually

appropriate for determining optimal decisions. These general techniques are de-

scribed in many available textbooks and are not emphasized in our coverage. At other

times, scheduling is purely sequencing. In these cases, the problems are unique to

scheduling theory and account for much of our emphasis in the chapters that follow.

The theory of scheduling also includes a variety of methodologies. Indeed, the

scheduling field has become a focal point for the development, application, and

evaluation of combinatorial procedures, simulation techniques, and heuristic solution

approaches. The selection of an appropriate method depends mainly on the nature

of the model and the choice of objective function. In some cases, it makes sense to

consider alternative techniques. For this reason, it is important to study methodologies

as well as models.

6 INTRODUCTION

A useful perspective on the relation of scheduling problems and their solution

techniques comes from developments in a branch of computer science known as

complexity theory. The notion of complexity refers to the computing effort required by

a solution algorithm. Computing effort is described by order-of-magnitude notation.

For example, suppose we use a particular algorithm to solve a problem of size n.

(Technically, n denotes the amount of information needed to specify the problem.)

The number of computations required by the algorithm is typically bounded from

above by a function of n. If the order of magnitude of this function is polynomial as

n gets large, then we say the algorithm is polynomial. For instance, if the function

has order of magnitude n2, denoted O(n2), then the algorithm is polynomial. On the

other hand, if the function is O(2n), then the algorithm is nonpolynomial (in this

case, exponential). Other things being equal, we prefer to use a polynomial algorithm

because as n grows large, polynomial algorithms are ultimately faster.

A class of problems called NP-complete problems includes many well-known and

difficult combinatorial problems. These problems are equivalent in the sense that

if one of them can be solved by a polynomial algorithm, then so can the others.

However, many years of research by mathematicians and computer scientists has not

yielded a polynomial algorithm for any problem in this class, and the conjecture is

that no such algorithm exists. Optimization problems as difficult as these, or even

more difficult, are called NP-hard problems. The usefulness of this concept, which

applies to many scheduling problems, is that if we are faced with the need to solve

large versions of an NP-hard problem, we know in advance that we may not be able

to find optimal solutions with available techniques. We might be better off to use a

heuristic solution procedure that has a more modest computational requirement but

does not guarantee optimality. NP-hard instances exist for which it would take less

time to actually perform the work in the shop (using any reasonable sequence) than to

solve the problem optimally on the fastest available computer. Therefore, the reliance

on heuristics is often the rule in practice, rather than the exception. Finally, some

solution procedures involve simulation. Although simulation is inherently imprecise,

it can produce nearly optimal solutions that are completely satisfactory for practical

purposes. In that respect, simulation is conceptually similar to the use of heuristics.

We will have occasion to refer to the computational complexity of certain algo-

rithms. We will also mention that certain problems are known to be NP-hard. This is

relevant information for classifying many of the problems we introduce, but the de-

tails of complexity theory are beyond the scope of our main coverage. For a thorough

introduction to the subject, see Garey and Johnson (1979).

1.3 PHILOSOPHY AND COVERAGE OF THE BOOK

Scheduling now represents a body of knowledge about models, techniques, and in-

sights related to actual systems. If we think of scheduling as including pure allocation

problems, the formal development of models and optimization techniques for mod-

ern scheduling theory probably began in the years preceding World War II. Formal

articles on properties of specialized sequencing problems gained recognition in the

PHILOSOPHY AND COVERAGE OF THE BOOK 7

1950s, and textbooks on the subject date from the 1960s. An early collection of

relevant papers is Muth and Thompson (1963), and the seminal work in the field

is Conway, Maxwell, and Miller (1967). Articles and textbooks, not to mention the

demand for solving scheduling problems in government and industry, stimulated even

more books in the field during the 1970s and 1980s. The better known examples are

Coffman (1976) and French (1982), in addition to the first precursor of this volume,

Baker (1974). All these focused on deterministic models, and the few stochastic

models they covered did not include safety time. Eventually, additional perspectives

were compiled by Morton and Pentico (1993), focusing on heuristic methods, and by

Pinedo (2001), addressing stochastic models. Now the field of deterministic schedul-

ing is well developed, and there is a growing literature on stochastic scheduling, but

work on safe stochastic scheduling is more recent—with few contributions until the

last decade or so (Baker and Trietsch, 2007).

With this perspective as background, we can think of scheduling knowledge as

a tree. Around 1970, it was possible to write a textbook on scheduling that would

introduce a student to this body of knowledge and, in the process, examine nearly

every leaf. In a reasonable length text, it was possible to tell the student “everything

you always wanted to know” about scheduling. But over the last three decades the

tree has grown considerably. Writing a scheduling text and writing a scheduling

encyclopedia are no longer similar tasks.

This material is a text. The philosophy here is that a broad introduction to schedul-

ing knowledge is important, but it is no longer crucial to study every leaf on the tree. A

student who prepares by examining the trunk and the major branches will be capable

of studying relevant leaves thereafter. This book addresses the trunk and the major

branches: it emphasizes basic knowledge that will prepare the reader to delve into

more advanced sources with a firm sense of the scope of the field and the major

findings within it. Thus, our first objective is to provide a sound basis in deterministic

scheduling, because it is the foundation of all scheduling models. As such, the book

can be thought of as a new edition of its precursors, Baker (1974) and Baker (2005).

But we also have a new objective: to present the emerging theory of safe scheduling

and to anticipate the future directions in which it may develop. There are growing

concerns after half a century of intensive development, that scheduling theory has

not yet delivered its full promise. One reason for this shortcoming could be the fact

that most scheduling models do not address safety time. For this reason, we believe

that our second objective is an important one.

Our pedagogical approach is to build from specific to general. In the early chapters,

we begin with basic models and their analysis. That knowledge forms the foundation

on which we can build a broader coverage in later chapters, without always repeating

the details. The priority is on developing insight, through the use of specific models

and logical analyses. In the early chapters we concentrate on deterministic scheduling

problems, along with a number of optimal and heuristic solution techniques. That

foundation is followed by a chapter introducing stochastic scheduling and another

chapter with our initial coverage of safe scheduling. Thereafter, we address safe

scheduling issues as extensions of the deterministic models, in the spirit of building

from the specific to the general.

8 INTRODUCTION

We approach the topic of scheduling with a mathematical style. We rely on math-

ematics in order to be precise, but our coverage does not pursue the mathematics

of scheduling as an end in itself. Some of the results are presented as theorems and

justified with formal proofs. The idea of using theorems is not so much to emphasize

mathematics as it is simply to draw attention to key results. The use of formal proofs

is intended to reinforce the importance of logical analysis in solving scheduling prob-

lems. Similarly, certain results are presented in the form of algorithms. Here, again,

the use of algorithms is not an end in itself but rather a way to reinforce the logic of

the analysis. Scheduling is not mainly about mathematics, nor is it mainly about algo-

rithms; but we use such devices to develop systematic knowledge and understanding

about the solution of scheduling problems.

The remainder of this book consists of 17 chapters. Chapter 2 introduces the basic

single-machine model, deals with static sequencing problems under the most simpli-

fying set of assumptions, and examines a variety of scheduling criteria. By the end of

Chapter 2, we will have encountered some reasonably challenging sequencing prob-

lems, enough to motivate the study of general-purpose optimization methodologies in

Chapter 3 and heuristic methods in Chapter 4. In Chapter 5, the discussion examines

a variation of the single-machine model that has been the subject of intensive study

and that also happens to be highly relevant for safe scheduling. Chapter 6 introduces

stochastic models, and in Chapter 7, we introduce the most basic safe scheduling

models. In Chapter 8, we relax several of the elementary assumptions and analyze

the problem structures that result.

The second section of the book deals with models containing several machines.

Chapter 9 examines the scheduling of single-stage jobs with parallel machines, and

Chapters 10 and 11 examine the flow shop model, which involves multistage jobs

and machines in series. Chapter 12 takes a look at the details of workflow in the

flow shop. Chapter 13 treats the case where it is more economical to batch jobs into

groups, or families, and sequence among groups and within groups in two separate

steps. Chapter 14 is an overview of the most widely known scheduling model, the

job shop, which also contains multistage jobs but which does not have the serial

structure of the flow shop. Chapter 15 discusses simulation results for job shops. To a

large extent, the understanding of models, techniques, and insights, which we develop

in the preceding chapters, is integrated in the study of the job shop. Similarly, the

knowledge developed in studying this material builds the integrative view necessary

for success in further research and application in the field of scheduling.

In the third section of the book, we focus on nonmanufacturing applications

of scheduling. Chapter 16 covers the basic project scheduling model. Chapter 17

discusses the resource-constrained project scheduling model, and Chapter 18 extends

safe scheduling considerations to project scheduling.

REFERENCES

Baker, K.R. (1974). Introduction to Sequencing and Scheduling, Wiley, Hoboken, NJ.

Baker, K.R. (2005). Elements of Sequencing and Scheduling, Tuck School of Business,

Hanover, NH.

REFERENCES 9

Baker, K.R. and D. Trietsch (2007). Safe scheduling, Chapter 5 in Tutorials in Operations

Research (T. Klastorin, ed.), INFORMS, pp. 79–101.

Coffman, E.G. (1976). Computer and Job-shop Scheduling Theory, Wiley, Hoboken, NJ.

Conway, R.W., W.L. Maxwell, and L.W. Miller (1967). Theory of Scheduling, Addison-Wesley,

Reading, MA.

French, S. (1982). Sequencing and Scheduling, Ellis Horwood, Ltd., Chichester, UK.

Garey, M.R. and D.S. Johnson (1979). Computers and Intractability: A Guide to the Theory

of NP-Completeness, Freeman, San Francisco.

Morton, T.E. and D.W. Pentico (1993). Heuristic Scheduling Systems, Wiley, Hoboken, NJ.

Muth J.F. and G.L. Thompson (1963). Industrial Scheduling, Prentice Hall, Englewood Cliffs,

NJ.

Pinedo, M. (2001). Scheduling: Theory, Algorithms, and Systems, Prentice Hall, Upper Saddle

River, NJ.

Trietsch, D. (1993). Scheduling flights at hub airports, Transportation Research, Part B

(Methodology) 27B, 133–150.

2
SINGLE-MACHINE SEQUENCING

2.1 INTRODUCTION

The pure sequencing problem is a specialized scheduling problem in which an or-

dering of the jobs completely determines a schedule. Moreover, the simplest pure

sequencing problem is one in which there is a single resource, or machine, and all

processing times are deterministic. As simple as it is, however, the one-machine case

is still very important. The single-machine problem illustrates a variety of scheduling

topics in a tractable model. It provides a context in which to investigate many differ-

ent performance measures and several solution techniques. It is therefore a building

block in the development of a comprehensive understanding of scheduling concepts.

In order to completely understand the behavior of a complex system, it is vital to

understand its parts, and quite often the single-machine problem appears as a part

of a larger scheduling problem. Sometimes, it may even be possible to solve the

imbedded single-machine problem independently and then to incorporate the result

into the larger problem. For example, in multiple-operation processes, a bottleneck

stage may exist, and the treatment of the bottleneck by itself with single-machine

analysis may determine the properties of the entire schedule. At other times, the level

at which decisions must be made may dictate that resources should be treated in the

aggregate, as if jobs were coming to a single facility.

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

10

PRELIMINARIES 11

In addition to the limitation to a single machine, the basic problem is characterized

by these conditions:

C1. There are n single-operation jobs simultaneously available for processing (at

time zero).

C2. Machines can process at most one job at a time.

C3. Setup times for the jobs are independent of job sequence and are included in

processing times.

C4. Job descriptors are deterministic and known in advance.

C5. Machines are continuously available (no breakdowns occur).

C6. Machines are never kept idle while work is waiting.

C7. Once an operation begins, it proceeds without interruption.

Under these conditions, there is a one-to-one correspondence between a sequence

of the n jobs and a permutation of the job indices 1, 2, . . . , n. The total number of

distinct solutions to the basic single-machine problem is therefore n!, which is the

number of different sequences of n elements. Whenever a schedule can be completely

characterized by a permutation of integers, it is called a permutation schedule, which is

a classification that extends beyond single-machine cases. In describing permutation

schedules, it is helpful to use brackets to indicate position in sequence. Thus [5] = 2

means that the fifth job in sequence is job 2. Similarly, d[1] refers to the due date of

the first job in sequence.

After covering some preliminaries in Section 2.2, we review the elementary se-

quencing results in Section 2.3 for problems containing no due dates, and in Section

2.4 for problems involving due dates. The chapter is organized to show how differ-

ences in the choice of a criterion often lead to differences in the optimal schedule.

Later, we examine several general-purpose methodologies that can be applied to

single-machine problems.

2.2 PRELIMINARIES

In dealing with job attributes for the single-machine model, it is useful to distinguish

between information that is known in advance and information that is generated

as the result of scheduling decisions. Information that is known in advance serves

as input to the scheduling process, and we usually use lowercase letters to denote

this type of data. Three basic pieces of information that help to describe jobs in the

single-machine case are:

Processing time (p j) The amount of processing required by job j

Release date (r j) The time at which job j is available for processing

Due date (d j) The time at which the processing of job j is due to be

completed

12 SINGLE-MACHINE SEQUENCING

Under condition C3 the processing time p j generally includes both direct processing

time and facility setup time. The release date can be thought of as an arrival time—the

time when job j appears at the processing facility—and in the basic model, the

assumption in condition C1 is that r j = 0 for all jobs. Due dates may not be pertinent

in certain problems, but meeting them is a common scheduling concern, and the basic

model can shed some light on objectives oriented to due dates.

Information that is generated as a result of scheduling decisions represents output

from the scheduling function, and we usually use capital letters to denote this type of

data. Scheduling decisions determine the most fundamental piece of data to be used

in evaluating schedules:

Completion time (C j) The time at which the processing of job j is finished

Quantitative measures for evaluating schedules are usually functions of job comple-

tion times. Two important quantities are:

Flowtime (F j) The time job j spends in the system: F j = C j − r j

Lateness (L j) The amount of time by which the completion time of job j exceeds

its due date: L j = C j − d j

These two quantities reflect two kinds of service. Flowtime measures the response

of the system to individual demands for service and represents the interval a job

waits between its arrival and its departure. (This interval is sometimes called the

turnaround time.) Lateness measures the conformity of the schedule to a given due

date and takes on negative values whenever a job is completed early. Negative lateness

represents earlier service than requested; positive lateness represents later service than

requested. In many situations, distinct penalties are associated with positive lateness,

but no benefits are associated with negative lateness. Therefore, it is often helpful to

work with a quantity that measures only positive lateness:

Tardiness (T j) The lateness of job j if it fails to meet its due date, or zero otherwise:

T j = max{0, L j }

Schedules are generally evaluated by aggregate quantities that involve informa-

tion about all jobs, resulting in one-dimensional performance measures. Measures of

schedule performance are usually functions of the set of completion times in a sched-

ule. For example, suppose that n jobs are to be scheduled. Aggregate performance

measures that might be defined include the following:

Total flowtime: F =

n∑

j=1

F j

Total tardiness: T =

n∑

j=1

T j

PRELIMINARIES 13

Maximum flowtime: Fmax = max
1≤ j≤n

{F j }

Maximum tardiness: Tmax = max
1≤ j≤n

{T j }

Number of tardy jobs, or the total unit penalty: U =

n∑

j=1

δ(T j),

where δ(x) = 1 if x > 0 and δ(x) = 0 otherwise

Maximum completion time: Cmax = max
1≤ j≤n

{C j }

Under our basic assumptions, Cmax = Fmax = �p j , and this quantity is also known

as the makespan. (These three performance measures may not be identical, however,

under a different set of assumptions.)

With this notation, it is convenient to refer to the minimization of total flowtime as

the F-problem, and similarly for the T -problem, the Cmax-problem, and so on. Total

flowtime, for example, is simply the sum of each of the job flowtimes. In this type of

function, each job makes a direct contribution to the performance measure, because

each individual flowtime is part of the sum. On the other hand, for the Fmax-problem,

some jobs may make only an indirect contribution to the performance measure. That

is, job j may not be scheduled so that it attains the largest flowtime, but its scheduling

may cause the delay of the job that does.

Instead of total flowtime, we could just as easily take mean flowtime as a perfor-

mance measure. The mean value is simply the total value divided by the number of

jobs, or F/n. Similarly, total tardiness could be scaled by 1/n to yield mean tardiness,

and U could be scaled to yield the proportion of jobs tardy.

Each of these measures is a function of the set of job completion times, so that

their general form is

Z = f (C1, C2, . . . , Cn)

Furthermore, these quantities belong to an important class of performance measures

called regular measures. A performance measure Z is regular if

(a) the scheduling objective is to minimize Z , and

(b) Z can increase only if at least one of the completion times in the schedule

increases.

More formally, suppose that Z = f (C1, C2, . . . , Cn) is the value of the measure that

characterizes schedule S and that Z ′ = f (C ′
1, C ′

2, . . . , C ′
n) represents the value of the

same measure under some different schedule S′. Then Z is regular as long as the

following condition holds:

Z ′ > Z implies that C ′
j > C j for some job j

14 SINGLE-MACHINE SEQUENCING

The aggregate measures introduced above are all regular measures, as are many

important scheduling criteria, and we will deal mainly with regular measures. The

definition is significant because it is usually desirable to restrict attention to a limited

set of schedules called a dominant set. To verify that a set D is a dominant set of

schedules for regular measures of performance, we can use the following reasoning.

1. Consider an arbitrary schedule S (which contains completion times C j) that is

excluded from D.

2. Show that there exists a schedule S′ in D, in which C ′
j ≤ C j for all j .

3. Therefore Z ′ ≤ Z for any regular measure, and so S′ is at least as good as S.

4. Hence, in searching for an optimal schedule, it is sufficient to consider only

schedules in D.

For example, condition C6 could be relaxed to allow idle time, but inserted idle time

would never lead to a schedule that is better than the best permutation schedule. We

prove this property to illustrate the four-step reasoning given above.

� Theorem 2.1 In the basic single-machine problem with a regular performance

measure, schedules without inserted idle time constitute a dominant set.

Proof. Let S represent a schedule containing inserted idle time. In particular, suppose

that under S the machine is idle for some interval (a, b).

Let S′ represent a schedule that is identical to S through time a, and in which all

the processing that occurs in S after time b is moved earlier in time by an amount

b − a > 0. Then any job j for which C j ≤ a under schedule S will have C ′
j = C j

under S′. Also, any job j for which C j > a under S will have C ′
j = C j − (b − a)

under S′. Hence, C ′
j ≤ C j for all j .

It follows that Z ′ ≤ Z for any regular measure of performance, so that removing

inserted idle time can never lead to poorer performance. Therefore, schedules without

idle time constitute a dominant set.

Similarly, it is possible to show that in the basic single-machine problem, the set

of permutation schedules is a dominant set for any regular measure of performance.

In other words, condition C7 could be relaxed, allowing jobs to be preempted, but

preemption would never lead to a schedule that is better than the best permutation

schedule. The proof of this claim—reiterated below as Theorem 2.2—also follows

the four-step argument of Theorem 2.1.

� Theorem 2.2 In the basic single-machine problem with a regular performance

measure, schedules without preemption constitute a dominant set.

As a consequence of these two theorems, it follows that conditions C6 and C7

need not be stated as explicit assumptions in the single-machine problem with regular

performance measures, because they characterize dominant sets of schedules under

assumptions C1 to C5.

PROBLEMS WITHOUT DUE DATES: ELEMENTARY RESULTS 15

2.3 PROBLEMS WITHOUT DUE DATES: ELEMENTARY RESULTS

2.3.1 Flowtime and Inventory

Sometimes, the costs associated with scheduling decisions involve service to cus-

tomers, as reflected by their time spent in the system, and the scheduling objective

is rapid turnaround. In other situations, the costs involve investment in system re-

sources, as reflected by the behavior of in-process inventories, and the scheduling

objective is to maintain low inventory levels. The intimate relation between these two

objectives can be illustrated in the basic single-machine model.

The time spent by a job in the system is its flowtime, and the “rapid turnaround”

objective can be interpreted as minimizing total flowtime. The “low inventory” ob-

jective can be interpreted as minimizing the average number of jobs in the system.

Let J (t) denote the number of jobs in the system at time t , and let J be the time

average of the J (t) function. For the basic single-machine model, the behavior of J (t)

is easy to visualize. At time zero, n jobs are in the system, so J (0) = n. There is no

change in J (t) until the completion of the first job, which occurs at time F[1] = p[1].

Then J (t) drops to (n − 1) and remains there until the completion of the second job,

which occurs at time F[2] = p[1] + p[2]. Continuing in this manner, we can see that

J (t) is a decreasing step function over the entire length of the schedule, as shown in

Figure 2.1. Also, the length of the schedule is equal to Fmax = p1 + p2 + . . . + pn ,

which is independent of the sequence in which the jobs are processed. For the interval

[0, Fmax], consider the sum

A = np[1] + (n − 1)p[2] + · · · + 2p[n−1] + p[n]

This sum is just the area under the J (t) function, expressed as the sum of the vertical

strips in Figure 2.1. Thus, J = A/Fmax.

Now recall that

F = F[1] + F[2] + · · · + F[n]

J(t)

n

n−1

n−2

2

1

 . . . tp[2] p[3] p[n−1] p[n]p[1]

FIGURE 2.1 The J (t) function.

16 SINGLE-MACHINE SEQUENCING

J(t)

n

n−1

n−2

2

1

. . . tp[2] p[3] p[n−1] p[n]p[1]

FIGURE 2.2 An alternative view of the J (t) function.

This sum is also equal to A, expressed as the sum of the horizontal strips shown

in Figure 2.2. Thus, F = A. Combining and rearranging these two relations, the

algebraic result is

A = F = JFmax

Since Fmax is a given constant, J is directly proportional to F . As a result, the job

sequence that minimizes F (total flowtime) simultaneously minimizes J (average in-

process inventory). Whether the vantage point is one of optimizing customer service

or minimizing in-process inventory levels, the problem is the same: find the sequence

that minimizes F .

This relation between flowtime and inventory extends well beyond the single-

machine sequencing problem. It arises in the dynamic environment (where jobs

arrive over time), in infinite-horizon models (where new work arrives continually),

in probabilistic systems (where processing times are uncertain), and in situations

where the inventory costs may vary among jobs. Much of the theoretical work in

scheduling has been directed to the total flowtime problem and its generalizations.

What might at first seem to be undue emphasis on the turnaround criterion is not

really so restrictive, in light of this relation between flowtime and inventory, because

total flowtime actually encompasses a broader range of scheduling-related costs.

2.3.2 Minimizing Total Flowtime

Consider the J (t) graph and the problem of minimizing total flowtime, F . An equiv-

alent problem is that of minimizing the area under the J (t) function. The selection

of a sequence can be interpreted as the construction of a path on the J (t) graph

from the point (0, n) to the point (Fmax, 0). The path consists of n vectors with given

slopes, −1/p j . Figure 2.3 shows the J (t) graph for one such sequence, along with

the corresponding Gantt chart.

Clearly, the area can be minimized by placing the steepest slope to the left,

then the next steepest slope, and so on. This configuration amounts to sequencing

PROBLEMS WITHOUT DUE DATES: ELEMENTARY RESULTS 17

. . .21 3 n

J(t)

n

n−1

n−2

2

1

. . . tp[2] p[3] p[n −1] p[n]p[1]

n−1

FIGURE 2.3 The J (t) function for a schedule and its Gantt chart.

the processing times in nondecreasing order. Sequencing the jobs in nondecreasing

order of processing times is known as shortest processing time (SPT) sequencing,

for obvious reasons, but it is also known by a variety of other names, such as

shortest operation time and shortest imminent operation. Theorem 2.3 formalizes the

optimality of SPT, and its proof illustrates a useful technique, called the method of

adjacent pairwise interchange.

� Theorem 2.3 Total flowtime is minimized by shortest processing time (SPT)

sequencing (p[1] ≤ p[2] ≤ . . . ≤ p[n]).

Proof. Consider a sequence S that is not the SPT sequence. That is, somewhere

in S there must exist a pair of adjacent jobs, i and j , with j following i , such that

pi > p j . Now construct a new sequence, S′, in which jobs i and j are interchanged in

sequence and all other jobs finish at the same time as in S. The situation is depicted in

Figure 2.4, where B denotes the set of jobs preceding jobs i and j in both schedules,

and A denotes the set of jobs following i and j in both schedules. We use the notation

k ∈ A when job k is a member of set A. In addition, p(B) denotes the total processing

time for the jobs in set B, that is, the point in time at which job i begins in S and at

S

Jobs in B

p(B)

Jobs in A

S´

Jobs in B Jobs in A

i j

ij

p(B)

FIGURE 2.4 A pairwise interchange of adjacent jobs.

18 SINGLE-MACHINE SEQUENCING

which job j begins in S′. Also, we temporarily adopt the notation Fk(S) to represent

the flowtime of job k under schedule S.

We first show that
∑n

j=1 Fk is smaller under S′ than under S.

n∑

j=1

Fk(S) =
∑

k∈B

Fk(S) + Fi (S) + F j (S) +
∑

k∈A

Fk(S)

=
∑

k∈B

Fk(S) + (p(B) + pi) + (p(B) + pi + p j) +
∑

k∈A

Fk(S)

n∑

j=1

Fk(S′) =
∑

k∈B

Fk(S′) + F j (S′) + Fi (S′) +
∑

k∈A

Fk(S′)

=
∑

k∈B

Fk(S′) + (p(B) + p j) + (p(B) + p j + pi) +
∑

k∈A

Fk(S′)

By construction,

∑

k∈B

Fk(S) +
∑

k∈A

Fk(S) =
∑

k∈B

Fk(S′) +
∑

k∈A

Fk(S′)

Therefore,

n∑

k=1

Fk(S) −

n∑

k=1

Fk(S′) = pi − p j > 0.

In words, the interchange of jobs i and j reduces the value of F . Therefore,

any sequence that is not an SPT sequence can be improved with respect to F by

interchanging an adjacent pair of jobs. It follows that the SPT sequence itself must

be optimal.

The essence of this argument is a proof by contradiction. First, we assume that

some non-SPT sequence is “optimal.” Then we show with a pairwise interchange of an

adjacent pair of jobs that a strict improvement can be made in this “optimal” sequence.

Therefore, we conclude that it is impossible for a non-SPT sequence to be optimal.

It is also instructive to interpret the logic as a proof by construction.

1. Begin with any non-SPT sequence.

2. Find a pair of adjacent jobs i and j , with j following i , such that pi > p j .

3. Interchange jobs i and j in sequence, thereby improving the performance

measure.

4. Return to Step 2 iteratively, improving the performance measure each time,

until eventually the SPT sequence is constructed.

The validity of either argument is not affected by ties—that is, by the existence of a

pair of jobs with pi = p j . Moreover, the method of adjacent pairwise interchange is

useful in other situations, as we shall see later on.

PROBLEMS WITHOUT DUE DATES: ELEMENTARY RESULTS 19

Another perspective on Theorem 2.3 may be helpful. We can express the sum of

the flowtimes as

n∑

j=1

F j =

n∑

j=1

j∑

i=1

p[i] =

n∑

j=1

(n − j + 1)p[j] (2.1)

This last sum can be viewed as the scalar product of two vectors with given

elements—one containing the integers 1, 2, . . . , n in descending order and the other

containing the processing times in order of sequence. It is well known that in order

to minimize such a scalar product, one sequence should be decreasing (or at least

nonincreasing) and the other should be increasing (or at least nondecreasing). Since

the terms (n − j + 1) are already decreasing, the minimum is achieved by taking the

p j in nondecreasing order.

Associated with Theorem 2.3 are several related properties. First, by virtue of the

relationship between flowtime and inventory, SPT sequencing minimizes J as well

as F . Second, if the waiting time of job j is defined as the time it spends in the system

prior to the start of its processing, then SPT minimizes total waiting time. Third, SPT

minimizes the maximum waiting time. Finally, SPT also minimizes total completion

time.

2.3.3 Minimizing Total Weighted Flowtime

In a common variation of the F-problem, jobs do not have equal importance. One

way of distinguishing the jobs is to assign a value or weight, w j , to each job and

to incorporate these weights into the performance measure. The weighted version of

total flowtime is total weighted flowtime, defined by

Fw =

n∑

j=1

w j F j

where we can think of weights as unit delay costs. We shall specifically examine the

extensions of the flowtime–inventory relation and the optimality of SPT.

In the presence of weights, it is natural to define holding costs to be proportional to

the value of in-process inventory. Job j contributes w j to the value of total in-process

inventory while it awaits completion, and we can define a function V (t) to be the

total value of inventory in the system at time t . The V (t) function is a step function,

but unlike J (t), this step function decreases in steps of w j rather than steps of 1.

Figure 2.5 depicts V (t). If V denotes the time average of V (t) over the processing

interval, we can again derive two expressions for the area under the V (t) graph.

Summing vertical strips in a manner similar to that of Figure 2.1, we obtain

A =

n∑

j=1

p[j]

n∑

i= j

w[i] = VFmax

20 SINGLE-MACHINE SEQUENCING

V(t)

t

•wj

w[n]

p[1] p[2] p[n−1] p
[n]p[3] . . .

w[n]+w[n−1]

FIGURE 2.5 The V (t) function.

Summing horizontal strips in a manner similar to that of Figure 2.2, we obtain

A =

n∑

j=1

w j F j = Fw

If we now equate the two expressions for A, we obtain the generalized

flowtime–inventory relation:

Fw = VFmax

Observing that Fmax is a constant, we conclude that V is directly proportional to Fw

and that the sequence which minimizes one minimizes the other.

Having seen that the optimal rule for minimizing total flowtime is shortest-first

sequencing, we should expect that the optimal rule for the total weighted flowtime

should be a weighted version of SPT. As before, the nature of the optimal rule can

be deduced from the graphical model. In this case, we seek a path on the V (t) graph

that connects the point (0,
∑n

j=1 w j) with the point (Fmax, 0). This time, the vectors

that make up the path have slopes of −w j/p j , and to minimize the area under V (t),

we again place the steepest slope first. In effect, the optimal rule is shortest weighted

processing time (SWPT) sequencing, stated formally below.

� Theorem 2.4 Total weighted flowtime is minimized by SWPT sequencing

(p[1]/w[1] ≤ p[2]/w[2] ≤ . . . ≤ p[n]/w[n]).

A proof by the method of adjacent pairwise interchange is analogous to the proof

of Theorem 2.3.

The optimality of SWPT for the Fw -problem may seem at first to be a specialized

scheduling result. However, an examination of the vast literature on industrial engi-

neering, operations research, information systems, and related fields will reveal that

PROBLEMS WITH DUE DATES: ELEMENTARY RESULTS 21

the sequencing model with a weighted flowtime objective is a rich model indeed. A

specialized bibliography on the model has been compiled by Rau (1973).

Lastly, note that SPT and SWPT represent different sequences in general, so when

the job set contains unequal weights, SWPT minimizes Fw and V but not necessarily

the mean number of jobs in the system or the total flowtime.

2.4 PROBLEMS WITH DUE DATES: ELEMENTARY RESULTS

2.4.1 Lateness Criteria

Recall that job lateness is defined as L j = C j − d j , or the discrepancy between the

due date of a job and its completion time. A somewhat remarkable result is that

minimum total lateness is achieved by SPT.

� Theorem 2.5 Total lateness is minimized by SPT sequencing.

Proof. By definition,

L =

n∑

j=1

L j =

n∑

j=1

(C j − d j) =

n∑

j=1

(F j − d j) =

n∑

j=1

F j −

n∑

j=1

d j = F −

n∑

j=1

d j

The last term is the sum of the given due dates and is therefore a constant. Because

L differs from F by a constant that is independent of sequence, the sequence that

minimizes L must be the sequence that minimizes F , and this sequence is given by

SPT.

This result is somewhat remarkable because a sequencing rule that ignores due

date information is optimal for a due date oriented criterion. However, another in-

terpretation of the result might be that L is only superficially a due date oriented

performance measure.

Instead of using SPT, an intuitive approach to meeting due dates might well be

to sequence the jobs according to some measure of due date urgency. One obvious

measure of urgency for a given job is the time until its due date. Sequencing the jobs by

earliest due date (EDD) cannot guarantee, however, that L will be minimized, because

only SPT guarantees that. Instead, we can show that EDD sequencing minimizes the

maximum lateness in the schedule.

� Theorem 2.6 Maximum lateness and maximum tardiness are minimized by

earliest due date (EDD) sequencing (d[1] ≤ d[2] ≤ . . . ≤ d[n]).

Proof. We again employ the method of adjacent pairwise interchange (see Figure

2.4). Consider a sequence S that is not the EDD sequence. That is, somewhere in S

22 SINGLE-MACHINE SEQUENCING

there must exist a pair of adjacent jobs, i and j , with j following i , such that di > d j .

Now construct a new sequence, S′, in which jobs i and j are interchanged, and all

other jobs complete at the same time as in S. Then

L i (S) = p(B) + pi − di L j (S′) = p(B) + p j − d j

L j (S) = p(B) + pi + p j − d j L i (S′) = p(B) + p j + pi − di

from which it follows that L j (S) > L i (S′) and L j (S) > L j (S′). Hence,

L j (S) > max{L i (S′), L j (S′)}

Let L AB = max{Lk |k ∈ A or k ∈ B}, and note that L AB is the same under both S

and S′. Then

Lmax(S) = max{L AB, L i (S), L j (S)} ≥ max{L AB, L i (S′), L j (S′)} = Lmax(S′)

In other words, the interchange of jobs i and j does not increase the value of Lmax, and

may actually reduce (improve) it. Therefore, an optimal sequence can be constructed

as follows.

1. Begin with an arbitrary non-EDD sequence.

2. Find a pair of adjacent jobs i and j , with j following i , such that di > d j .

3. Interchange jobs i and j .

4. Return to Step 2 iteratively until an EDD sequence is constructed. At each

iteration, Lmax either remains the same or is reduced. Because an EDD se-

quence can be reached from any other sequence in this manner, there can be

no other sequence with a value of Lmax lower than that corresponding to EDD

sequencing.

Again, ties do not disturb the logic. A similar argument establishes that EDD mini-

mizes Tmax, beginning with the inequality

Tmax(S) = max{0, Lmax(S)} ≥ max{0, Lmax(S′)} = Tmax(S′).

A second measure of urgency for a given job is the time until its due date less the

time required to process it. This urgency measure is called slack time and, at time

t , the slack time of job j is represented as (d j − t − p j). In particular, among jobs

with identical due dates, the longest is most urgent. Slack time may appear to be a

more sophisticated quantification of urgency than the due date alone. Nevertheless,

there is little to be said for optimality of minimum slack time (MST) sequencing in

the single-machine problem. Its only general property involves a mirror image of

Theorem 2.6, which is of questionable usefulness in this situation.

PROBLEMS WITH DUE DATES: ELEMENTARY RESULTS 23

� Theorem 2.7 Among schedules with no idle time, the minimum job lateness

is maximized by minimum slack time (MST) sequencing (d[1] − p[1] ≤ d[2] − p[2]

≤ . . . ≤ d[n] − p[n]).

Proof. The proof is a mirror image of the proof of Theorem 2.6 and utilizes an

adjacent pairwise interchange argument. Observe that Lmin is not a regular measure

of performance; hence the need, in Theorem 2.7, to restrict consideration to schedules

without inserted idle time.

An important variation of the basic model involves the designation of both a pri-

mary and a secondary measure of performance. The primary measure is the dominant

criterion, but if there are alternative optima with respect to the primary measure, we

then want to identify the best sequence among those alternatives with respect to a

secondary measure.

For example, suppose that a tardiness-based measure (such as Tmax) is the primary

measure and that several sequences are considered “perfect” because they contain no

tardy jobs. Furthermore, suppose that F is the secondary measure. Then, to construct

a perfect sequence that minimizes F , we can employ a result known as Smith’s Rule:

Job i may be assigned the last position in sequence only if

(S1) di ≥

n∑

j=1

p j , and

(S2) pi ≥ pk among all jobs k such that dk ≥

n∑

j=1

p j

This rule should seem quite logical, for if some other job were to come last in

sequence, then there would be room for improvement. If (S1) is violated, then total

tardiness can be reduced by shifting some job that satisfies (S1) to the last position. If

(S1) holds but (S2) is violated, then F can be reduced, without increasing tardiness,

by interchanging the last job with a job that satisfies (S2). Once Smith’s Rule has

identified the last among n jobs, there remain (n − 1) jobs to which the rule can

be applied. If we continue in this fashion, the rule eventually constructs an optimal

sequence, working backwards.

� Example 2.1 Consider a problem containing n = 5 jobs, as described in the

table.

Job j 1 2 3 4 5

p j 1 2 3 4 5

d j 9 13 11 15 10

It is not hard to verify (using EDD) that a perfect sequence exists. The only job

that satisfies (S1) is job 4, which is placed last. At the next stage, jobs 2 and 3 both

24 SINGLE-MACHINE SEQUENCING

AA ABBBB

Early jobs Late jobs

FIGURE 2.6 The form of a sequence that minimizes U .

satisfy (S1), and job 3 is chosen to be fourth, according to (S2). Next, jobs 1, 2, and 5

all satisfy (S1), and job 5 is chosen to be third. Finally, job 2 is chosen to be second,

leaving job 1 to be first. In this manner, Smith’s Rule generates a perfect sequence

with F = 38. In contrast, EDD yields F = 42.

2.4.2 Minimizing the Number of Tardy Jobs

If the EDD sequence should yield zero tardy jobs, or should it yield exactly one tardy

job, then it is an optimal sequence for U . If it yields more than one tardy job, however,

the EDD sequence may not be optimal. An efficient algorithm for the general case is

given below. The solution method assumes a particular form for an optimal sequence,

shown in Figure 2.6.

The form is as follows:

� First, a set (B) of early jobs, in EDD order.
� Then, a set (A) of late jobs, in any order.

The early jobs are assumed to be in EDD order without loss of generality because

if any sequence (or subsequence) of jobs has no tardiness, then by Theorem 2.6 we

know that the EDD sequence for those jobs must have no tardiness.

Algorithm 2.1 Minimizing U

Step 1. Index the jobs using EDD order and place all jobs in B. Let set A be empty.

Step 2. Calculate the completion times of jobs in B. If no job in B is late, stop: B must

be optimal. Otherwise, identify the first late job in B. Suppose that turns out to be

the kth job in sequence.

Step 3. Identify the longest job among the first k jobs in sequence. Remove that job

from B and place it in A. Return to Step 2.

Next, we illustrate the implementation of the algorithm with an example.

� Example 2.2 Consider a problem containing n = 5 jobs, as described in the

table.

Job j 1 2 3 4 5

p j 1 7 6 4 3

d j 2 8 9 10 12

PROBLEMS WITH DUE DATES: ELEMENTARY RESULTS 25

In the example, the jobs are already indexed by EDD, as required in Step 1 of

the algorithm. In Step 2, job 3 is found to be the first late job. In Step 3, the longest

job in the sequence up to and including job 3 is job 2; thus, job 2 is removed from

B and placed in A. In the next pass at Steps 2 and 3, job 3 is removed from B and

placed in A. Thereafter, no tardy jobs remain in B. The algorithm therefore yields

two optimal sequences: 1-4-5-2-3 and 1-4-5-3-2, corresponding to the two different

ways of sequencing the late jobs.

The weighted version of the U -problem, in which the objective is to minimize

Uw =
∑n

j=1 w jδ(T j), is NP-hard and requires a general solution method such as we

describe in Chapter 3.

2.4.3 Minimizing Total Tardiness

The performance objective of “meeting job due dates” is one of the scheduling criteria

most frequently encountered in practical problems. While meeting due dates is only

a qualitative goal, it usually implies that time-dependent penalties are assessed on

late jobs but that no benefits derive from completing jobs early. This interpretation

leads naturally to the tardiness measure as a quantification of the scheduling objec-

tive, and a fundamental sequencing problem is the minimization of total tardiness.

The difficulty of dealing with this measure, and with most other tardiness-based

performance measures, arises from the fact that tardiness is not a linear function of

completion time. This means that finding optimal solutions often requires that we

draw on general techniques of combinatorial optimization. Furthermore, because of

the complexities of combinatorial methods, there is apt to be more attention paid to

efficient heuristic techniques. In the next chapter, we shall discuss general-purpose

combinatorial optimization techniques and demonstrate their application to the total

tardiness criterion. Here, we examine how much progress we can make with simpler

techniques.

A logical first approach to the tardiness problem is to analyze an adjacent pairwise

interchange. Consider a schedule S, in which jobs i and j are adjacent in sequence,

and the schedule S′ that is identical to S except that jobs i and j are interchanged

(see Figure 2.4). We seek conditions that will tell us which job should appear earlier

in the sequence. Rather than comparing T for both sequences, it suffices to compare

the contributions to T that come from jobs i and j , because the total contributions of

the other jobs are the same in both sequences. Thus, let

Ti j = Ti (S) + T j (S) = max{p(B) + pi − di , 0} + max{p(B) + pi + p j − d j , 0}

and

T j i = T j (S′) + Ti (S′) = max{p(B) + p j − d j , 0} + max{p(B) + pi + p j − di , 0}

where, as before, p(B) denotes the time at which job i or job j can be started.

To begin, let us assume that pi ≥ p j and di ≥ d j . When the processing times and

due dates of jobs i and j are ordered similarly, as in this assumption, we say that

the processing time and due date parameters are agreeable. (Formally, two sets of

26 SINGLE-MACHINE SEQUENCING

parameters, u j and v j are agreeable if ui < u j implies vi ≤ v j .) For the time being,

we shall refer to the case of agreeable processing times and due dates as Case 1.

Case 1.1. p(B) + pi ≤ di .

Ti j = max{p(B) + pi + p j − d j , 0}

T j i = max{p(B) + p j − d j , 0} + max{p(B) + p j + pi − di , 0}

Note that Ti j is at least as large as the first maximum in T j i (because pi ≥ 0) and

at least as large as the second (because di ≥ d j). Therefore, if one or both of the

maxima in T j i are zero, we will have Ti j ≥ T j i . Now suppose that neither term in T j i

is zero. Then

Ti j − T j i = (p(B) + pi + p j − d j) − (p(B) + p j − d j) − (p(B) + p j + pi − di)

Ti j − T j i = −p(B) − p j + di ≥ −p(B) − pi + di ≥ 0

Therefore, Case 1.1 yields Ti j ≥ T j i , so it is preferable to have job j precede job i .

Case 1.2. di < p(B) + pi .

Ti j = p(B) + pi − di + p(B) + pi + p j − d j

T j i = max{p(B) + p j − d j , 0} + p(B) + p j + pi − di

Ti j − T j i = p(B) + pi − d j − max{p(B) + p j − d j , 0}

If the maximum in the last term is zero, then the condition specifying Case 1.2 implies

that Ti j ≥ T j i ; and if the maximum in the last term is positive,

Ti j − T j i = p(B) + pi − d j − (p(B) + p j − d j) = pi − p j ≥ 0

Therefore, Case 1.2 yields Ti j ≥ T j i , so it is preferable to have job j precede job i .

These two cases reveal that when the processing times and the due dates are

agreeable, the shorter job (or, equivalently, the job with the earlier due date) should

come first. We state this partial result more formally as follows.

� Theorem 2.8 If processing times and due dates are agreeable for all pairs of

jobs, then total tardiness (T) is minimized by SPT sequencing with ties broken by

EDD (or, equivalently, by EDD with ties broken by SPT).

Proof. The proof follows directly from adjacent pairwise interchange analysis, with

the same interpretation as in the proof of Theorem 2.6.

Furthermore, although Theorem 2.8 assumes that all pairs of jobs have agreeable

parameters, it can be shown that if any two jobs are agreeable then they should be

sequenced by EDD/SPT even if some other jobs are sequenced between them. Now

PROBLEMS WITH DUE DATES: ELEMENTARY RESULTS 27

we turn to the more complicated situation, where the parameters are not agreeable.

Let pi ≥ p j and di < d j .

Case 2.1. p(B) + pi ≤ di .

Ti j = max{p(B) + pi + p j − d j , 0}

T j i = max{p(B) + pi + p j − di , 0} ≥ Ti j

Therefore, Case 2.1 yields T j i ≥ Ti j , so it is preferable to have job i (the job with the

earlier due date) precede job j .

Case 2.2. di < p(B) + pi .

Case 2.2.1. p(B) + pi + p j ≤ d j .

Ti j = p(B) + pi − di

T j i = p(B) + p j + pi − di ≥ Ti j

Therefore, Case 2.2.1 yields T j i ≥ Ti j , so it is preferable to have job i (the job with

the earlier due date) precede job j .

Case 2.2.2. p(B) + p j ≤ d j < p(B) + pi + p j .

Ti j = p(B) + pi − di + p(B) + pi + p j − d j

T j i = p(B) + p j + pi − di

Ti j − T j i = p(B) + pi − d j

Therefore, Case 2.2.2 yields the result that it is preferable to have job i (the job with

the earlier due date) precede job j unless p(B) + pi > d j , in which case job j (the

shorter job) may precede job i .

Case 2.2.3. d j < p(B) + p j .

Ti j = p(B) + pi − di + p(B) + pi + p j − d j

T j i = p(B) + p j − d j + p(B) + p j + pi − di

Ti j − T j i = pi − p j ≥ 0

Therefore, Case 2.2.3 yields Ti j ≥ T j i , so it is preferable to have job j (the shorter

job) precede job i .

We can now combine the various subcases and conclude that, for Case 2, job i

may come first except when

p(B) + pi > d j

28 SINGLE-MACHINE SEQUENCING

in which case job j should come first. In fact, we can combine Case 2 with Case 1

and restate the result as follows.

� Theorem 2.9 If jobs i and j are the candidates to begin at time t , then the job

with the earlier due date should come first, except if

t + max{pi , p j } > max{di , d j }

in which case the shorter job should come first.

This decision rule is specific—it provides a choice between any pair of candidate

jobs—but the outcome may depend on t . That is, the rule could choose job i in favor

of job j early in the schedule but job j in favor of job i late in the schedule. More

importantly, the rule does not tell us whether jobs i and j should come early in the

schedule or late in the schedule. Thus, the decision rule is a weaker result than those

in Theorems 2.3–2.7 because it does not sequence the jobs unambiguously.

We can look at this result from another perspective. Suppose we define the modified

due date of job j at time t to be

d ′
j = max{d j , t + p j }

In words, the modified due date is either the original due date or else the earliest time

at which the job could possibly be completed, whichever is later. The modified due

date is a dynamic quantity, because it may change as time passes. Therefore, if we

give priority to the job with the earliest modified due date, then the choice between

jobs i and j may be different early in the schedule than it is late in the schedule. The

modified due date (MDD) priority rule is consistent with the prescriptions of Cases

1 and 2: if jobs i and j are the candidates to begin at time t , then the job with the

earlier modified due date should come first.

Again, the MDD rule is weaker than such rules as SPT and SWPT. It tells us that if

we examined an optimal sequence, we would find that each pair of jobs is sequenced

consistently with MDD; however, starting at time zero and sequencing the jobs by

MDD may not produce an optimal schedule. To put it another way, the MDD rule

represents a necessary condition for optimality, but it is not a sufficient condition.

We conclude our treatment of the T -problem with some specialized results con-

cerning optimal sequences.

� If the EDD sequence produces no more than one tardy job, it yields the minimum

value of T .
� If all jobs have the same due date, then T is minimized by SPT sequencing.
� If it is impossible for any job to be on time in any sequence, then T is minimized

by SPT sequencing.
� If SPT sequencing yields no jobs on time, then it minimizes T .

PROBLEMS WITH DUE DATES: ELEMENTARY RESULTS 29

The weighted version of the total tardiness problem is even more difficult to solve

than the T -problem, which itself is NP-hard, and we postpone its discussion until we

examine more general methods of solution.

2.4.4 Due Dates as Decisions

Normally, we treat due dates as given parameters. This approach reflects the premise

that in many realistic circumstances the due date is determined by the customer—or

by a higher planning level in the hierarchy—and becomes part of the specification of

the job to be carried out, just like the processing time. Often, however, the producer

can set the due date, or at least influence it. We might appropriately think of the due

date as a matter of negotiation between the producer and the customer. Nevertheless,

a reasonable model of the due date as a negotiated parameter would introduce much

more complexity. A simple step in this direction is to treat the due date as a decision

variable, possibly subject to some constraint that represents a proxy for the negotiation

process.

Suppose that the due date can be selected at the job’s release date (r j). The selection

of the due date represents a target for the flow allowance, or the amount of time that

the job will spend in the system. We might select due dates according to one of the

following rules.

CON: Constant flow allowance: d j = r j + γ .

SLK: Equal slack flow allowance: d j = r j + p j + β.

TWK: Total work flow allowance: d j = r j + αp j .

where each rule contains a single tightness parameter (γ , β, or α) that must be

specified. For equal release dates, however, any one of these due date rules will result

in agreeable due dates and processing times. By Theorem 2.8, it follows that SPT

(which will be equivalent to EDD) minimizes total tardiness.

When due dates are completely discretionary, it is not difficult to minimize total

tardiness: for any schedule we could select the due dates to be loose enough that no

job would be late. However, in an environment where due dates can be selected, it

seems reasonable to seek the tightest due dates possible. Tight due dates correspond

to short flow allowances and thus represent commitments to customers that orders

will be filled promptly. Of course, such commitments would be meaningless if there

were no hope that they could be met. Therefore, we impose the constraint that no job

is allowed to be tardy, and we examine how to set the due dates so they are as tight

as possible.

To measure the tightness of a set of due dates, we use the sum of the due dates, or

D =

n∑

j=1

d j

The problem becomes one of minimizing D, subject to the requirement that C j ≤ d j .

30 SINGLE-MACHINE SEQUENCING

In principle, we can easily find an optimal solution to this problem. For any sched-

ule, the tightest possible set of due dates is obviously given by d j = C j . Therefore,

D can be minimized by minimizing the sum of the completion times, or equivalently,

total flowtime. Since we know by Theorem 2.3 that this is accomplished by SPT,

our solution can be found by constructing an SPT schedule of the jobs, computing

the completion time of each job in this schedule, and setting the due date of each

job equal to its completion time. This optimal solution requires that the due date of

each job depend on specific information about every other job in the schedule, which

we refer to as a full information base. A more practical approach is to rely on such

rules as CON, SLK, and TWK, in which the selection of a due date depends only on

information about the job itself (its release date and its processing time) and on a tight-

ness parameter. Next, we might ask whether one of those three limited-information

rules is best.

It is possible to show that for any set of n jobs, CON due dates are dominated by

either SLK or TWK due dates. That is, D will never be larger under SLK or TWK

than it is under CON.

� Example 2.3 Consider a problem containing n = 3 jobs, as described in the

table below, with r j = 0 for all jobs.

Job j 1 2 3

p j 1 2 16

Suppose our problem consisted of just the first two jobs. Then the tightness

parameters would be selected as follows:

CON: γ = 3, for which D = 6.

SLK: β = 1, for which D = 5.

TWK: α = 1.5, for which D = 4.5.

In this case, the optimal (full-information) value is D = 4. When our problem consists

of all three jobs, the results are as follows:

CON: γ = 19, for which D = 57.

SLK: β = 3, for which D = 28.

TWK: α = 1.5, for which D = 28.5.

Here, the optimal (full-information) value is D = 23. Our two examples demonstrate

that either TWK or SLK can be the best of the three rules. The examples also

illustrate the fact that CON is always dominated. A computational study (see Baker

and Bertrand, 1981) suggests that TWK tends to be the best rule most of the time,

and that its advantage grows with larger problem sizes and with variability among

REFERENCES 31

processing times. Therefore, in practice, a good approach is to use TWK and adjust

α by trial and error to maintain the shop due date performance on target.

2.5 SUMMARY

The single-machine model is fundamental in the study of sequencing and scheduling.

It is considered a rather simple scheduling problem because it does not have distinct

sequencing and resource allocation dimensions. Nevertheless, as the T -problem be-

gins to illustrate, the sequencing problem itself may sometimes be fairly complicated.

Even in this fundamental type of problem, the set of feasible solutions can be quite

large, and the determination of an optimum can be a formidable task. In some special

cases, optima can be found readily, most notably in the minimization of Fw , Tmax, and

U ; but in general, it may be necessary to resort to general purpose methodologies,

such as those described in the next chapter.

Several important scheduling objectives can be illustrated in the single-machine

model, and these often give rise to a variety of solution strategies. Graphical and

algebraic methods have been used to prove the optimality of SWPT for total weighted

flowtime and the optimality of EDD for maximum tardiness, respectively. In those

cases, knowledge of an optimal pairwise job ordering allows the optimal sequence

to be constructed with a simple sorting mechanism. A more intricate construction

is required to minimize the number of tardy jobs. For more complicated criteria,

including total tardiness, we need to use general-purpose methodologies, although in

cases where the parameters are agreeable, the solution may be found more easily.

These observations underscore the significance of the single-machine model in

our understanding of scheduling decisions. Also, as we noted at the beginning of this

chapter, the solution of practical scheduling problems can make direct use of these

results in certain situations or at least build on this basic understanding in approaching

more complicated situations.

REFERENCES

Baker, K.R. and J.W.M. Bertrand (1981). A comparison of due date selection rules, AIIE

Transactions 13, 123–131.

Maxwell, W.L. (1970). On the generality of the equation L = λW , Operations Research 18,

172–174.

Moore, J.M. (1968). An n job, one machine sequencing algorithm for minimizing the number

of late jobs, Management Science 15, 102–109.

Rau, J.G. (1973). Selected comments concerning optimization theory for functions of permu-

tations, in Symposium on the Theory of Scheduling and Its Applications (S. E. Elmaghraby,

ed.), Springer-Verlag, New York.

Smith, W.E. (1956). Various optimizers for single stage production, Naval Research Logistics

Quarterly 3, 59–66.

32 SINGLE-MACHINE SEQUENCING

EXERCISES

2.1. Prove that in the basic single-machine problem, schedules without preemption

constitute a dominant set (Theorem 2.2).

2.2. An obvious definition of longest processing time (LPT) sequencing is

p[1] ≥ p[2] ≥ · · · ≥ p[n]

In general, LPT exhibits properties that are antithetical to those of SPT. In

particular, assuming a schedule with no idle time, prove the following:

a. LPT maximizes F .

b. LPT maximizes J .

c. LPT maximizes L .

d. LPT maximizes total waiting time.

2.3. Use an adjacent pairwise interchange argument to prove that SWPT minimizes

Fw ; that is prove Theorem 2.4.

2.4. A single-machine facility operates around the clock and faces the problem of

sequencing the production work for the six customer orders described in the

table below.

Order 1 2 3 4 5 6

Hours 20 27 16 6 15 24

a. What production sequence will minimize the total flowtime of these orders,

assuming all six arrived at the same time? What is the total flowtime in this

schedule?

b. Suppose that customer orders 2 and 6 are considered three times as important

as the rest. What production sequence would you propose?

c. Now suppose you wish to use a due date setting rule to assign due dates to

the various orders in part (a). Find the sum of the due dates under the CON,

SLK, and TWK rules. Compute how close each result is to the optimal sum

of due dates.

2.5. The following problem involves the sequencing of one machine.

Operation j A B C D E F

Processing time p j 12 2 6 14 8 13

Due date d j 41 4 44 16 35 30

EXERCISES 33

The manager mainly wants to minimize the maximum lateness but also wants

to reduce the number of late operations.

a. What sequence do you suggest? Justify your choice.

b. Calculate Lmax and U for your solution.

c. Is this result optimal for one of these measures? For both? Explain.

2.6. The least-cost testing sequence problem. An item is subjected to a series of n

tests (e.g., hardness, weight, and length). Associated with the ith test are two

known constants: Ki , the cost per item of carrying out the ith test, and Ri , the

probability of rejecting the item on the ith test. The tests are independent in

the sense that they may be run in any order, and the constants Ki and Ri are

independent of test order. For a given sequence of tests, an item is subjected to

each test in the sequence in turn as long as the tests accept the item; if an item is

rejected by any test, no further tests are performed. Determine the test sequence

that minimizes the total expected cost of testing an item.

2.7. The following sequence might be called the VIP sequence:

w[1] ≥ w[2] ≥ · · · ≥ w[n]

Suppose that a scheduling objective is to minimize Fw and that weighting factors

are assigned according to processing times. Show that:

a. If w j = αp j (weighting factors are directly proportional to processing times),

then all sequences are equivalent.

b. If w j = αp
β

j , where β > 0, then VIP is optimal when β > 1, but it is the

worst sequence when 0 < β < 1. Discuss specifically the case when β = 0.

c. If p j = p (all processing times are equal), then VIP is optimal.

2.8. Prove the following.

a. If the EDD sequence produces no more than one tardy job then it yields the

optimal value of T .

b. If all jobs have the same due date, then T is minimized by SPT sequencing.

c. If all jobs have the same processing time, then T is minimized by EDD

sequencing.

d. If it is impossible for any job to be on time in any sequence, then T is

minimized by SPT sequencing.

e. If SPT yields no jobs on time, then it minimizes T . How would you break

ties in this case?

f. An optimal solution to the T -problem must satisfy the MDD rule.

g. To minimize T , any two jobs with agreeable processing times and due dates

must be in SPT/EDD sequence (as prescribed by Theorem 2.8) even if some

other jobs are inserted between them.

3
OPTIMIZATION METHODS FOR THE
SINGLE-MACHINE PROBLEM

3.1 INTRODUCTION

In the previous chapter, we explored fundamental performance measures for the

single-machine problem and observed that different scheduling procedures were

appropriate for different measures. In the T-problem, we encountered a relatively

simple problem statement for which the determination of an optimal sequence was

not a simple matter. Although we made some progress toward the solution of the

T-problem with adjacent pairwise interchange methods, we deferred discussion of a

complete solution until we could examine more powerful optimization techniques. In

this chapter we introduce some general-purpose optimization methods for sequencing

and scheduling problems and illustrate their application to the T-problem.

As a general setting, suppose that a cost function, denoted gj(t), is incurred when

job j completes at time t. We assume only that gj(t) is nondecreasing. Typical schedul-

ing problems involve minimizing the maximum gj(t) value (the maximum cost prob-

lem) or minimizing the sum of gj(t) values (the total cost problem). We first examine

the solution of the maximum cost problem.

Let P represent the total processing time of the jobs to be scheduled. Obviously,

P is equal to the completion time of the last job. The following result identifies the

job that should be placed last.

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

34

INTRODUCTION 35

S

. . .

S'

. . .

i j

j i

Ci'C'j

CjCi

FIGURE 3.1 Inserting job i into the last position.

� Theorem 3.1 When the objective is to minimize the maximum cost, job i may

be assigned the last position in sequence if gi(P) ≤ gk(P) for all jobs k �= i.

Proof. Suppose S is an optimal schedule that does not conform to the theorem, as

depicted in Figure 3.1, and adapt the notation so that gi(S) denotes the cost for job

i in schedule S. Let j denote the last job in sequence, and let G(S) denote the maximum

cost among jobs other than i and j. Then, for schedule S,

gi (S) ≤ g j (S)

gmax(S) = max{g j (S), G(S)}

Construct schedule S′ by inserting job i into the last position. Let G(S′) be defined

analogously to G(S). As a result,

gi (S′) ≤ g j (S) g j (S′) ≤ g j (S) G(S′) ≤ G(S)

Hence, gmax(S′) = max{gi(S
′), gj(S

′), G(S′)} ≤ max{gj(S), G(S)} = gmax(S), and

schedule S′ is no worse than schedule S.

The solution algorithm implied by Theorem 3.1 is straightforward. We compute

P and find the job with minimum cost at time P. This job is assigned the last position

in sequence. Removing this job from consideration, we reapply the procedure to the

remaining (n − 1) jobs, and we continue until all jobs have been sequenced.

As a familiar example, suppose the cost function takes the special form gj(t) =

max{0, t – dj}. This special case corresponds to the Tmax-problem. The algorithm

proceeds by computing P and finding the minimum value of gj(P) = max{0, P − dj}.

Clearly, the job with the largest dj will attain the minimum value, so it may be placed

last. Continuing in this fashion, we construct the EDD sequence, from the end of the

schedule to the beginning.

Theorem 3.1, along with the accompanying algorithm, provides a straightforward

means of finding a solution to the maximum cost problem. For each position in

36 OPTIMIZATION METHODS FOR THE SINGLE-MACHINE PROBLEM

sequence, the algorithm must find the minimum value of gj(P); thus, the computational

effort is O(n2) to construct an optimal sequence.

The rest of this chapter is mainly devoted to the total cost problem. Although

the techniques we cover are general, we shall use the T-problem to illustrate their

application.

3.2 ADJACENT PAIRWISE INTERCHANGE METHODS

We have seen that an adjacent pairwise interchange argument can prove the optimality

of certain sequencing rules (e.g., SWPT minimizes Fw or EDD minimizes Tmax).

The thrust of the adjacent pairwise interchange argument may be stated as follows:

a sequence is sought for which all adjacent pairwise interchanges lead to poorer

performance; this will be an optimal sequence. It is important to recognize, however,

that there are limitations to this approach.

Suppose that the single-machine problem is concerned with minimizing Z and that

a sequence S is found for which all adjacent pairwise interchanges lead to an increase

in Z. Does this information imply that S is the optimal sequence? The answer, as we

have seen, is certainly yes when Z is F, and S corresponds to SPT sequencing, but

the answer is not always yes.

� Example 3.1 Consider the following three-job problem, with the criterion of

minimizing total tardiness.

Job j 1 2 3

pj 1 2 3

dj 4 2 3

The optimal sequence is 2-1-3, with T = 3. However, if all six sequences are

examined, the complete set of solutions can be depicted as in Figure 3.2, where each

sequence is linked to those sequences that can be obtained from it by an adjacent

pairwise interchange.

1-3-2

2-1-3

1-2-3

T=5

T=3

T=4

3-1-2

T=4

2-3-1

T=4

3-2-1

T=5

FIGURE 3.2 Feasible sequences for the three-job example.

A DYNAMIC PROGRAMMING APPROACH 37

Note that for sequence 3-1-2 all (two) adjacent pairwise interchanges lead to an

increase in T , yet 3-1-2 is not an optimal sequence. This example shows that the

adjacent pairwise interchange property will not be sufficient to identify optimal se-

quences in the T-problem, but might lead only to identification of a local optimum. In

the previous chapter we observed a clue as to why this local optimality might arise:

in general, the result of an adjacent pairwise interchange between a given pair of jobs

may depend on where in the sequence the interchange occurs. In particular, the deci-

sion rule that emerges involves the time at which the interchange occurs. By contrast,

the decision rule that emerges from an adjacent pairwise interchange in the F-problem

involves only a comparison of the processing times of the jobs being interchanged.

The adjacent pairwise interchange method is sufficient to prove optimality for only

a limited class of sequencing rules. For sequencing rules that employ only information

about individual jobs in constructing a sequence, a crucial property involves the

transitivity of the optimal job ordering. (An ordering relation R between two jobs

is transitive whenever iRj and jRk implies iRk.) For such rules as SWPT, EDD, and

MST, the optimal sequence is characterized by a transitive pairwise ordering of the

jobs. In the case of the measure T , however, we can conclude only that the optimal

sequencing rule (whatever it might be) is not transitive.

These observations point to a simple way of using adjacent pairwise interchange

methods in solving new sequencing problems. We first analyze an interchange and

derive a condition that specifies how two jobs should be ordered. If this condition

turns out to be transitive, the ordering will indeed be optimal. Otherwise, a more

complicated approach will be needed to locate an optimum.

3.3 A DYNAMIC PROGRAMMING APPROACH

A regular measure of performance, Z, is a function of job completion times, and when

the function is additive, we can write

Z =

n
∑

j=1

g j (C j)

For example, if Z is total tardiness, then

g j (C j) = max{0, C j − d j }

As another example, if Z is weighted number of late jobs, then

g j (C j) = w jδ(max{0, C j − d j })

When Z has an additive form, as in these examples, we can find an optimal sequence

with a dynamic programming approach. Dynamic programming is a general opti-

mization technique for making sequential decisions. Here, for example, we have to

decide which job comes first, which comes second, and so on. Dynamic programming

38 OPTIMIZATION METHODS FOR THE SINGLE-MACHINE PROBLEM

applies to problems that can be partitioned into subproblems, each involving a subset

of the decisions, in such a way that the following optimality principle holds: suppose

we have already made the first k decisions (optimally or not), then the remaining

(n − k) decisions can be optimized by considering only the subproblem that involves

them. For example, suppose we wish to find the shortest driving route from San

Francisco to New York. If we are contemplating a route that goes through Chicago,

then regardless of how we got there, we will have to follow the shortest path from

Chicago to New York if the route we are contemplating is to achieve the optimal

distance. The optimality principle is satisfied in sequencing (in other words, a se-

quencing problem can be partitioned appropriately) whenever the objective function is

additive.

To apply dynamic programming for our sequencing problem, let J denote some

subset of the jobs and let p(J) denote the total time required to process the jobs in set

J. For convenience, we use (J − j) to denote the set J with the element j removed.

Suppose that a sequence has been constructed in which the jobs in set J precede all

other jobs. Let

G(J) = the minimum cost for the subproblem consisting of the jobs in set J

Next, suppose that job j is assigned the last position in this subset, so that it

completes at time p(J), as shown in Figure 3.3.

Given that job j comes last, the value of G(J) is the sum of two terms, the cost

incurred by job j and the minimum cost incurred by the remaining jobs. This latter

term, which we can write as G(J − j), is the optimal value obtained by solving the

subproblem involving only the jobs in set (J − j). If we compare all possible jobs

j that could come last in set J and select the best one, we shall find the minimum cost

for the set J. In symbols,

G(J) = min
j∈J

{g j [p(J)] + G(J − j)} (3.1)

where

G(φ) = 0 (3.2)

and φ denotes the empty subset.

j

Set J

…

Other jobs

p(J)

FIGURE 3.3 The form of a sequence in dynamic programming.

A DYNAMIC PROGRAMMING APPROACH 39

Finally, let X denote the set of all jobs. Because the cost function G is defined on

subsets of jobs, the minimum total cost can be written G(X), where

G(X) = min
j∈X

{g j [p(X)] + G(X − j)} (3.3)

At each stage, the function G(J) measures the total cost contributed by the jobs in

set J, when set J occurs at the beginning of the schedule and is sequenced optimally.

The recursion relation (3.1) indicates that in order to calculate the value of G for any

particular subset of size k, we first have to know the value of G for subsets of size

(k − 1). Therefore, the procedure begins with the value of G for a subset of size zero,

from (3.2). Then, using (3.1), we can calculate the value of G for all subsets of size 1,

then the value of G for all subsets of size 2, and so on. In this manner, the procedure

considers ever larger sets J, ultimately using (3.3) to determine which job should be

scheduled last. The optimal value of Z is G(X). If we keep track of where minima

in (3.1) occur at each stage, then, after finding G(X), we can reconstruct the optimal

sequence.

� Example 3.2 Consider the following four-job problem, with the criterion of

minimizing total tardiness.

Job j 1 2 3 4

pj 5 6 9 8

dj 9 7 11 13

The essential dynamic programming calculations are displayed in Table 3.1.

To illustrate these calculations, consider the set J = {1, 2, 4} that is encountered

at Stage 3. For this set p(J) = 19, the total processing time for the jobs in this set. If

job 1 comes last in the set, then its tardiness is g1(19) = 10, and for the remaining

jobs, G{2, 4} = 1 from Stage 2. Thus, the total contribution from this set, when job 1

comes last, is 11. An adjacent column indicates that if job 2 comes last, then g2(19)

= 12 and G({1, 4}) = 0, totaling 12; and if job 4 comes last, g4(19) = 6 and G({1,

2}) = 2, totaling 8. The minimum of these three totals is 8, which is designated as

G(J) in the table; this is achieved when job 4 comes last, as indicated by the column

in which G(J) is shown.

To reconstruct the optimal sequence in the example, note that at Stage 4 the lowest

tardiness is achieved when job 3 comes last. Since this leaves jobs 1, 2, and 4 to be

sequenced, we examine the set {1, 2, 4} that was evaluated at Stage 3. Here, as we

have seen in detail, the calculations show that job 4 should come last in this set; thus

job 4 should occupy the next to last position in the optimal sequence. Continuing in

this fashion, we construct the optimal sequence, 2-1-4-3, for which the total tardiness

is G(X) = 25.

The number of subsets considered by the dynamic programming procedure is

2n, since that is the total number of subsets of n elements. Finding G(J) for each

40 OPTIMIZATION METHODS FOR THE SINGLE-MACHINE PROBLEM

TABLE 3.1

Stage 1

J {1} {2} {3} {4}
p(J) 5 6 9 8

j ∈ J 1 2 3 4

gj[p(J)] 0 0 0 0

G(J − j) 0 0 0 0

G(J) 0 0 0 0

Stage 2

J {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
p(J) 11 14 13 15 14 17

j ∈ J 1 2 1 3 1 4 2 3 2 4 3 4

gj[p(J)] 2 4 5 3 4 0 8 4 7 1 6 4

G(J − j) 0 0 0 0 0 0 0 0 0 0 0 0

G(J) 2 3 0 4 1 4

Stage 3

J {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}
p(J) 20 19 22 23

j ∈ J 1 2 3 1 2 4 1 3 4 2 3 4

gj[p(J)] 11 13 9 10 12 6 13 11 9 16 12 10

G(J − j) 4 3 2 1 0 2 4 0 3 4 1 4

G(J) 11 8 11 13

Stage 4

J {1, 2, 3, 4}
p(J) 28

j ∈ J 1 2 3 4

gj[p(J)] 19 21 17 15

G(J − j) 13 11 8 11

G(J) 25

Optimal sequence: 2-1-4-3
∑

Tj = 25

subset J involves a minimization over all possible jobs that could come last, so

the computational effort required for dynamic programming grows in proportion

to n2n. In this respect, dynamic programming is typical of many general-purpose

procedures for combinatorial optimization, in that the effort required to solve the

problem grows at an exponential rate with increasing problem size. This trait makes

dynamic programming an inefficient procedure for finding optimal sequences in some

of the simple problems we have examined. For example, when Fw is the criterion, we

A DYNAMIC PROGRAMMING APPROACH 41

could employ dynamic programming with

g j (t) = w j t

Also, when U is the criterion, we could employ dynamic programming with

g j (t) = 1 if t > d j

= 0 if t ≤ d j

But in both instances it is computationally more efficient to use the specialized

results developed in Chapter 2. In particular, the Fw-problem and the U-problem can

be solved by algorithms that require no more computational effort than is required

to sort n numbers. (The most efficient procedure for sorting has a computational

requirement that grows at a rate that is asymptotically proportional to n log n.) On

the other hand, for problems in which efficient optimizing procedures have not been

developed, such as minimizing total weighted tardiness or weighted number of tardy

jobs, dynamic programming may be a reasonable approach.

Although the computational demands of dynamic programming grow at an ex-

ponential rate with increasing problem size, the approach is still more efficient than

complete enumeration of all feasible sequences, for the computational effort of com-

plete enumeration grows with the factorial of the problem size. Because dynamic

programming considers certain sequences only indirectly, without actually evalu-

ating them explicitly, the technique is sometimes called an implicit enumeration

technique. Although it is more efficient than complete enumeration, the fact that

its computational requirement exhibits exponential growth places a premium on the

ability to curtail the dynamic programming calculations whenever possible. Such a

strategy is described in the next section.

In the exposition above, we organized the dynamic programming calculations by

treating the subsets in the order of their size: computing G(J) for all subsets of size k,

then all subsets of size (k + 1), and so on until reaching the subset of size n. Although

this might be the most natural way to organize the calculations, other schemes are

also possible. In fact, the most convenient way to implement dynamic programming

on a computer uses an alternative scheme. The only requirement is that at the time

we treat set J, we should already have treated all the subsets of J.

For computer implementation, we assign each subset a label. We can think of this

label as the sum of the labels of all jobs in the subset, where each job has its own

label. To ensure that the label of a subset will tell us unambiguously which jobs are

contained in the subset, we use binary notation. Specifically, the label for job k is

2k−1. For example, in a four-job problem, there are 16 subsets, including the empty

subset, as listed in Table 3.2.

Note that the binary representation allows us to translate sets into labels and labels

into sets. For the set {1, 2, 4}, for example, the label is just the sum of the individual

job labels 20, 21, 23, or 11. The label 11, when converted to binary notation (1011),

reveals that jobs 1, 2, and 4 are members of the subset.

42 OPTIMIZATION METHODS FOR THE SINGLE-MACHINE PROBLEM

TABLE 3.2

Subset Label Binary

φ 0 0000

{1} 1 0001

{2} 2 0010

{1, 2} 3 0011

{3} 4 0100

{1, 3} 5 0101

{2, 3} 6 0110

{1, 2, 3} 7 0111

{4} 8 1000

{1, 4} 9 1001

{2, 4} 10 1010

{1, 2, 4} 11 1011

{3, 4} 12 1100

{1, 3, 4} 13 1101

{2,3,4} 14 1110

{1, 2, 3, 4} 15 1111

In a computer program, we store the value of G(J) at a location with an address

equal to the label of J. In the basic recursion (3.1), we want quick access to the

value of G(J − j). Knowing the label of J, we can obtain the label of (J − j) simply

by subtracting the label of job j, or 2j−1. This quick-access lookup for the value of

G(J − j) lies at the heart of the calculations. It is imbedded in a minimization loop

that determines the choice of j that yields G(J).

An outer loop provides a scheme for generating all the subsets. Let b(i) take on

the value 1 or 0 to reflect that job i is in or out of the subset. Start with b(i) = 0 for

all i. To generate the next set, the loop proceeds as follows.

� Find the smallest integer j for which b(j) = 0. (If all b(i) = 1, then stop: all

subsets have been generated.)
� Set b(j) = 1.
� For all i < j, set b(i) = 0.

In effect, the b-vector contains the binary representation of the label of set J, and we

could add the labels of the jobs in J to compute the label for J. However, it is simpler

to maintain the label of the set being treated by simply adding 2i−1 whenever b(i) is

switched from 0 to 1 and subtracting 2i–1 whenever b(i) is switched from 1 to 0.

In summary, the computer implementation of dynamic programming requires

two efficient devices, a scheme for labeling subsets and an algorithm for generating

subsets. The labeling scheme provides efficient access to the value for a previously

treated subset, while the generating algorithm ensures that all subsets are treated in a

suitable order.

DOMINANCE PROPERTIES 43

3.4 DOMINANCE PROPERTIES

In the previous chapter, we encountered dominance properties involving schedules.

We saw that schedules without preemption and without inserted idle time constitute

a dominant set. Restricting attention to the dominant set reduces the number of

alternatives—and therefore the computational effort—involved in searching for an

optimal solution.

Now, we examine dominance properties involving jobs. For the Tw-problem, a

simple dominance property is illustrated by the following result.

� Theorem 3.2 Suppose that Tw is the measure of performance and that there

exists a job k for which dk ≥ p(X). Then job k may be assigned the last position in

sequence.

Proof. Let S represent a schedule in which job k is not the last job. Construct

schedule S′ by removing job k and inserting it in the last position in sequence. Under

the hypothesis of the theorem, the shift does not increase the tardiness of job k.

Moreover, all other jobs complete as early or earlier after the shift, so the tardiness

of all jobs is no greater in schedule S than in schedule S′. Thus, the total weighted

tardiness in any schedule will not become larger as a result of assigning job k to the

last position.

Theorem 3.2 states that it is sufficient for job k to follow all other jobs. This result

defines a dominant set of sequences, in which k is the last job. In effect, the problem

is reduced in size, for it remains only to determine how to assign the first (n − 1)

positions to the remaining (n − 1) jobs. If we were enumerating sequences, this result

would cut the search effort by a factor of n.

Another type of dominance property involves a relationship between a specific pair

of jobs. Such a result states that it is sufficient for job i to follow job j, or equivalently,

for job j to precede job i. If we were enumerating sequences, this result would cut

the search effort by a factor of 2, and in combination, several such results could have

a major impact. Some useful dominance properties of this type have been developed

for the T-problem. Recall from the previous section that p(J) represents the sum of

processing times in set J and that X denotes the set of all jobs. Let

Ai = the set of jobs that have been shown to follow job i in an optimal sequence,

sometimes called the after set

A′
i = the complement of set Ai , defined as A′

i = X − Ai

Bi = the set of jobs that have been shown to precede job i in an optimal sequence,

sometimes called the before set

The first result gives conditions under which job i precedes job j in an optimal

sequence.

44 OPTIMIZATION METHODS FOR THE SINGLE-MACHINE PROBLEM

� Theorem 3.3 In the T-problem, there is an optimal schedule in which job j

follows job i if one of the following conditions is satisfied:

(a) pi ≤ pj and di ≤ max{dj, p(Bj) + pj};

(b) di ≤ dj and dj ≥ p(A′
i) − pj;

(c) dj ≥ p(A′
i).

Condition (a) generalizes Theorem 2.8. Condition (c) generalizes Theorem 3.2 and

holds for the Tw-problem as well. Conditions (a) and (b) extend to the Tw-problem if

we also require wi ≥ wj. We can prove condition (a) by interchanging jobs i and j.

Also, we can prove conditions (b) and (c) by shifting job j to a position immediately

after job i.

When we encounter a pair of jobs i and j that satisfies the conditions of Theorem

3.3, we can add job i to Bj and add job j to Ai. Each condition is based in part on

information about the sets Bj or Ai. Initially, these sets may be taken to be empty. If one

of the conditions holds for the pair of jobs i and j, then the sizes of Bj and Ai increase.

This increase, in turn, may make it possible to satisfy the conditions for additional

job pairs, and thus for the size of the original problem to be reduced even further.

We collect the dominance information systematically in a dominance matrix D.

The generic element of D is dij = 1 if job j follows job i, and dij = 0 otherwise. Two

quantities that appear in Theorem 3.3 are denoted as follows:

Qi = p(A′
i) and R j = p j + p(B j)

Also, let
∣

∣A j

∣

∣ and
∣

∣B j

∣

∣ denote the sizes of the sets Aj and Bj, respectively. Then a

computational display for collecting the dominance information is shown in Table 3.3

as an expanded D-matrix. The matrix is filled in by testing pairs of jobs to determine

whether one of the conditions in Theorem 3.3 holds. Each time one of the conditions

succeeds, Ai and Bj are updated.

Once the matrix is filled in, it may be possible to reduce the size of the problem.

If
∣

∣B j

∣

∣ = n − 1, then job j may be assigned the last position in sequence, and n can

TABLE 3.3

Job j

d11 d12 . . . d1n Q1 |A1|

d21 d22 . . . d2n Q2 |A2|

.

Job i

.

dn1 dn2 . . . dnn Qn |An|

R1 R2 . . . Rn

|B1| |B2| . . . |Bn |

DOMINANCE PROPERTIES 45

effectively be reduced by 1. If
∣

∣A j

∣

∣ = n − 1, then job j may be assigned the first

position in sequence, and n can similarly be reduced by 1. (In this case, the problem

that remains is reformulated by subtracting pj from each due date.) When no more of

these reductions are possible, we invoke an optimization procedure.

As it happens, dynamic programming is well suited to finding an optimal se-

quence in the presence of dominance properties. Thus, we assume that a domi-

nance matrix has been determined, and we next wish to exploit that information

in dynamic programming. Basically, this means that we want to carry out the dy-

namic programming calculations, but instead of examining all 2n subsets, we want to

limit consideration to undominated subsets. As we saw in the previous section, the

key elements for computer implementation are a labeling scheme and a generation

procedure.

The labeling scheme consists of a mechanism for assigning labels to jobs; then

the label for a particular subset is simply the sum of the labels for the jobs contained

in the subset. Suppose we renumber the jobs so that i < j whenever dij = 1; that is,

whenever job i dominates job j. Let Nj denote the set of jobs with a lower number

than job j:

N j = {i |i < j }

Let Lj denote the label for job j, and let L(S) denote the sum of labels for the jobs

contained in set S. Then

L j = L(N j) − L(B j ∩ N j) + 1

In words, we sum the labels of all jobs numbered lower than j. Then we subtract

the labels of all jobs in this set that dominate j. Then we add one. (If we had no

dominance properties available, this scheme would reduce to the binary labeling

scheme described in the previous section.)

The generation algorithm is only slightly modified from the one introduced for

the basic form of dynamic programming. Recall that we renumber the jobs so that

i < j whenever job i dominates job j. The main loop proceeds as follows.

� Find the smallest integer j for which b(j) = 0. (If all b(i) = 1, then stop: all

subsets have been generated.)
� Set b(j) = 1.
� For i < j, if b(i) = 1 and J ∩ Ai = φ, set b(i) = 0.

Here the only difference from the basic form of dynamic programming lies in the

condition J ∩ Ai = φ. As we examine set J, we normally compute G(J) from (3.1)

by considering all subsets in which one job is removed from J. In the presence of

dominance properties, however, we can limit ourselves to removing only those jobs

that do not dominate other jobs in J.

46 OPTIMIZATION METHODS FOR THE SINGLE-MACHINE PROBLEM

� Example 3.3 Consider a five-job problem with the criterion of minimizing

total tardiness, in which we encounter the following dominance matrix:

D =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

— 0 1 0 0

0 — 0 0 1

0 0 — 0 0

0 0 0 — 1

0 0 0 0 —

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Specifically, the matrix shows three dominance relations: job 3 follows job 1 and

job 5 follows job 2 and job 4. The labeling scheme yields the labels shown in order

below:

Job j 1 2 3 4 5

Lj 1 2 3 7 5

Then the generation algorithm produces the subsets J in the following order:

Subset Label Indicator

φ 0 00000

{1} 1 00001

{2} 2 00010

{1, 2} 3 00011

{1, 3} 4 00101

{1, 2, 3} 6 00111

{4} 7 01000

{1, 4} 8 01001

{2, 4} 9 01010

{1, 2, 4} 10 01011

{1, 3, 4} 11 01101

{1, 2, 3, 4} 13 01111

{2, 4, 5} 14 11010

{1, 2, 4, 5} 15 11011

{1, 2, 3, 4, 5} 18 11111

First, note that there are 15 feasible subsets, including the empty set. Without dom-

inance properties, the list would contain 25 or 32 subsets. In addition, the labels are

not all consecutive: in particular, labels 5, 12, 16, and 17 are missing. (We say that

such a labeling is not compact.) In a computer implementation, this means that space

would have to be reserved for 19 values of G(J), even though only 15 of them would

ever be used. Although the gaps in this example do not present much of a difficulty,

larger problems may have several wide gaps.

Once the labeling scheme is carried out, the size of the maximum label predicts how

much computer storage capacity will be needed in order to find the optimal solution

A BRANCH AND BOUND APPROACH 47

by dynamic programming. The computational effort required to solve the problem

is, however, driven mainly by the number of feasible subsets. The advantage of using

the dominance conditions is therefore to reduce the computational requirement, but

there is usually a substantial reduction in storage capacity as well.

3.5 A BRANCH AND BOUND APPROACH

A useful method for solving many combinatorial problems is a general-purpose

strategy known as branch and bound. As its name implies, the approach consists of

two fundamental procedures. Branching is the process of partitioning a large problem

into two or more subproblems, and bounding is the process of calculating a lower

bound on the optimal solution of a given subproblem.

The branching procedure replaces an original problem by a set of new problems

that are

(a) mutually exclusive and exhaustive subproblems of the original,

(b) partially solved versions of the original, and

(c) smaller problems than the original.

Furthermore, the subproblems can themselves be partitioned in a similar fashion.

As an example of a branching procedure, let P(0) denote a single-machine sequencing

problem containing n jobs. The problem P(0) can be partitioned into n subproblems,

P(1), P(2), . . . , P(n), by assigning the last position in sequence. Thus, P(1) is the

same problem, but with job 1 fixed in the last position; P(2) is similar, but with job 2

fixed in the last position; and so on. Clearly, these subproblems are smaller than P(0)

because only (n − 1) positions remain to be assigned, and obviously each P(i) is a

partially solved version of P(0). In addition, the set of subproblems P(i) is a mutually

exclusive and exhaustive partition of P(0) in the sense that if each P(i) is solved, the

best of these n solutions will represent an optimal solution to P(0). Therefore, the

P(i) satisfy conditions (a), (b), and (c) above.

Next, each of the subproblems can be partitioned (see Figure 3.4). For instance,

P(2) can be partitioned into P(12), P(32), . . . , P(n2). In P(12), jobs 1 and 2 occupy the

last two positions of the sequence in that order; and in P(32), jobs 3 and 2 occupy the

last two positions. Therefore, the second-level partition P(i2) bears the same relation

to P(2) as the first-level partition P(i) bears to P(0). That is, the partitions at each

level satisfy conditions (a), (b), and (c). At level k, then, each subproblem contains

k fixed positions and can be further partitioned into (n − k) subproblems, which form

part of level (k + 1). If this branching procedure were to be carried out completely,

there would be n! subproblems at level n, each corresponding to a distinct feasible

solution to the original problem. In other words, exhaustive pursuit of the branching

tree would be equivalent to complete enumeration of all sequences. The function of

the bounding process is to provide a means for curtailing this enumeration.

The bounding procedure calculates a lower bound on the solution to each sub-

problem generated in the branching process. Suppose that at some intermediate stage

48 OPTIMIZATION METHODS FOR THE SINGLE-MACHINE PROBLEM

. . .

.

. . .

. . .
.
.
.

P (0)

P (2)

P (32)

P (n)P (1)

P (12) P (n2)

P (s)

FIGURE 3.4 A branching scheme for single-machine problems.

a complete solution has been obtained that has an associated performance measure

Z. Suppose also that a subproblem encountered in the branching process has an asso-

ciated lower bound b > Z. Then the subproblem need not be considered any further

in the search for an optimum. That is, no matter how the subproblem is resolved,

the resulting solution can never have a value better than Z. When such a subprob-

lem is found, its branch is said to be fathomed. By not branching any further from

fathomed branches, the enumeration process is curtailed because feasible solutions

of a fathomed subproblem are evaluated implicitly rather than being constructed

explicitly.

A complete solution that allows branches to be fathomed is called a trial solution.

It may be obtained at the very outset by applying a heuristic procedure (i.e., a

suboptimal method capable of obtaining good solutions with limited computational

effort); or it can be obtained in the course of the tree search, perhaps by pursuing the

tree directly to the bottom as rapidly as possible.

We can now illustrate how these concepts are applied in the T-problem, once we

introduce some convenient notation. Let s denote a partial sequence of jobs from

among the n jobs originally in the problem. Also, let js denote the partial sequence

in which s is immediately preceded by job j. We can treat s as an ordered set of jobs,

so that

s ′ = the complement of s

p(s ′) =
∑

j∈s ′

p j

A BRANCH AND BOUND APPROACH 49

Let P(s) represent a subproblem at level k in the branching tree, where k ≤ n. This

subproblem will be the original problem P(0) with the last k positions in sequence

assigned, where s specifies the positions. Associated with P(s) is a value, vs, which

is the contribution of assigned jobs to total tardiness. That is,

vs =
∑

j∈s

T j

The Tj values in this sum can be calculated because the completion time of each job

in the partial sequence s is known even though the complete sequence has not yet

been determined.

Normally, the branching process partitions P(s) into (n − k) subproblems. Each

subproblem, P(js), is constructed by selecting some job j to be last in s′, where j can

be chosen (n − k) distinct ways. Because the completion time of job j in the partial

sequence js is p(s′), the value associated with P(js) is

v js = max{0, p(s ′) − d j } + vs

Subproblem P(s) may be treated as a single-machine sequencing problem con-

taining (n − k) jobs. This means, in particular, that Theorem 3.2 may be invoked: if

there exists a job i in s′ such that di ≥ p(s′), then it is sufficient in solving P(s) to let

job i come last. In this situation, we need not partition P(s) into (n − k) subproblems.

Instead, we can partition P(s) into just one subproblem, P(is). Thus, it may be possible

to exploit dominance properties within the branching tree so that some branches are

avoided. Curtailing the branching process with dominance properties is sometimes

called elimination.

In the bounding process, we seek a means of calculating a lower bound bs on the

total tardiness cost associated with any completion of the partial sequence s. One way

of calculating a bound is obvious:

bs = vs (3.4)

A slightly stronger bound can be obtained by pursuing the fact that some job in s′

must be completed at p(s′). We may use

bs = vs + min
j∈s ′

{max[0, p(s ′) − d j]} (3.5)

More complicated procedures may be employed for calculating even stronger

lower bounds. In fact, the most successful computational advances for solving the

T-problem involve a careful analysis of the computational costs and benefits of using

complex lower bounds.

Once bs is calculated, it may be possible to determine whether a completion of

the subproblem P(s) might lead to an optimum. Suppose a trial solution is available

with a total cost of Z. When we compare Z and bs, if bs < Z, then a completion of s

50 OPTIMIZATION METHODS FOR THE SINGLE-MACHINE PROBLEM

could possibly be optimal. Therefore, the subproblems P(js) must be constructed and

examined. On the other hand, if bs ≥ Z, then no completion of the partial sequence

s could ever achieve a total tardiness less than Z, so its completions need not be

enumerated in the search for an optimum. In this case, the branch corresponding to s

is fathomed, and the search is somewhat shortened.

The branch and bound algorithm maintains a list of all subproblems that have not

been eliminated by dominance properties and whose own subproblems have not yet

been generated. These are called active subproblems. At any stage of the algorithm it

is sufficient to solve all active subproblems to determine an optimal solution to P(0).

In the following version of the algorithm, the active list is ranked by lower bound,

smallest first. At each stage, the first subproblem on the active list is replaced by its

own subproblems. This strategy is equivalent to continuing the branching process

from the subproblem with the lowest bound, wherever that may be in the branching

tree. The algorithm terminates when a trial solution appears at the head of the active

list, because then no other subproblem could lead to a better solution. Also, in this

form of the algorithm, no trial solution is obtained until the branching process itself

reaches the bottom of the branching tree at some stage.

Algorithm 3.1 Branch and Bound

Step 1. (Initialization) Place P(0) on the active list. The value associated with this

node is v0 = 0 and p(φ) =
∑n

j=1 p j .

Step 2. Remove the first subproblem, P(s), from the active list. Let k denote the

number of jobs in the partial sequence s. If k = n, stop: the complete sequence

s is optimal. Otherwise, test Theorem 3.2 for P(s). If the property holds, go to

Step 3; otherwise, go to Step 4.

Step 3. Let job j be the job with the latest due date in s′. Create the subproblem P(js)

with

p(js) = p(s ′) − p j , v js = vs, and b js = vs

Place P(js) on the active list, ranked by its lower bound. Return to Step 2.

Step 4. Create (n − k) subproblems P(js), one for each j in set s ′. For P(js), let

p(js) = p(s ′) − p j , v js = vs + p(s ′) − d j , and b js = v js

Now place each P(js) on the active list, ranked by its lower bound. Return to

Step 2.

Algorithm 3.1 invokes three important options, all of which are open to some

scrutiny. First, the algorithm employs the lower bounds given in Eq. (3.4). An obvious

alternative is to use Eq. (3.5).

A second option involves the use of a trial solution. At any stage, the best trial

solution yet found can be used in reducing the list of active subproblems. First, no

subproblem need ever be placed below the trial solution on the active list, for such a

A BRANCH AND BOUND APPROACH 51

subproblem can never lead to an optimum. Second, whenever a complete sequence

is placed on the active list, all subproblems with greater bounds can be discarded.

However, no trial solution can be encountered until the branching process has reached

level n. An obvious alternative is to obtain a trial solution in Step 1. For instance, if

the branch and bound approach is used in the T-problem, then an initial trial solution

can be obtained using the MDD decision rule, as described in Chapter 2.

A third option involves the branching tactic itself—that is, the selection of the

subproblem with the smallest bound as the candidate for further branching. This tactic

is known as jumptracking, because the branching process tends to jump from one part

of the branching tree to another at successive stages in the algorithm. An alternative is

a tactic known as backtracking, in which the branching process first proceeds directly

to level n along some path to obtain a trial solution. Then the algorithm retraces that

path upward until it reaches a level on which unsolved subproblems remain. It selects

one of these and again proceeds toward level n along a single path. The process may

actually reach another trial solution or it may fathom the branch it pursues by utilizing

the value of the on-hand trial solution. In either case, the algorithm again backtracks

up to the first level at which an unfathomed branch remains and then proceeds toward

level n.

The characteristics of jumptracking and backtracking are considerably different.

Backtracking maintains relatively few subproblems on the active list at any one time,

while jumptracking tends to construct a fairly large active list. This is a disadvantage

for jumptracking, mainly because each time it places a subproblem on the ranked list,

it must search the list to determine exactly where on the list to place the subproblem.

This searching may become quite time consuming in problems of moderate size. (This

disadvantage may be remedied somewhat by clearing the list below any trial solution

that is placed on it.) In addition, the list size requirement may restrict computerized

versions of the algorithm when storage capacity does not readily accommodate a

large list. On the other hand, an advantage in jumptracking is that the trial solutions it

encounters tend to be very close to optimal, while the early trial solutions obtained by

backtracking may be relatively poor. Thus, jumptracking usually does less branching

in total, and this feature may compensate for its larger time per branch. Jumptracking

branches from every subproblem that has a bound less than the value of an optimal

sequence, and it may also generate some nonoptimal trial solutions. Backtracking

may, in addition, branch from several subproblems that have bounds greater than the

optimal value and may also generate very many nonoptimal trial solutions.

In addition to the trade-offs associated with the choice of branching tactics, there

are trade-offs associated with other choices. For example, the lower bound in (3.5)

is stronger than the bound in (3.4) and would be more effective in curtailing the

branching process, yet there are more calculations involved in computing the stronger

bounds. Similarly, we can eliminate branches that violate the conditions of Theorem

3.3, again at the expense of additional computations. Also, starting the algorithm

initially with a good trial solution can curtail the branching process considerably, yet

more effort must be invested to obtain a better initial trial solution. In many respects,

Algorithm 3.1 is a general prototype for a whole array of branch and bound methods,

and the specific choice of tactics might be described as something of an art.

52 OPTIMIZATION METHODS FOR THE SINGLE-MACHINE PROBLEM

� Example 3.4 Consider the following five-job problem, with the criterion of

minimizing total tardiness.

Job j 1 2 3 4 5

pj 4 3 7 2 2

dj 5 6 8 8 17

The branching tree for this example problem is displayed in Figure 3.5. The lower

bound vs for each subproblem is entered just below the corresponding node in the

figure. The order of branching is indicated by the number that appears just above the

corresponding node. Initially, the tree consists of P(0), with v0 = 0 and p(φ) = 18. At

Step 2, the initial problem is removed from the active list and subsequently replaced

by P(1), P(2), P(3), P(4), and P(5). As shown in the figure, v1 = 13, v2 = 12, v3 = 10,

v4 = 10, and v5 = 1. The jumptracking strategy calls for branching next from P(5),

since it is first on the active list. At the next stage, P(35) and P(45) both have the

lowest bound on the active list, and the tie between them is broken arbitrarily in favor

of the latter, so that the subproblems of P(45) are created. At this point, P(35) is alone

P(12435)

P(2435)

P(354)

P(45)P(54)P(53)

P(5)P(4)P(3)P(2)P(1)

P(0)

110101213

9911121010

151718101213161819111314

1112

11

7
5 1

2368

4

9

10

P(15) P(25) P(35)

P(153) P(253) P(453) P(154) P(254) P(135) P(235) P(435) P(145) P(245) P(345)

P(1435)

FIGURE 3.5 The branching tree for the example problem.

SUMMARY 53

TABLE 3.4

Subproblem Bound

P(12435) 11 Trial solution

P(453) 11

P(25) 11

P(1435) 12

P(235) 12

P(15) 12

P(2) 12

P(135) 13

P(253) 13

P(1) 13

P(153) 14

P(345) 15

P(354) 16

P(245) 17

P(254) 18

P(145) 18

P(154) 19

at the head of the active list and so its subproblems are generated next. Thereafter,

the active list contains three subproblems with lower bounds of 10: P(3), P(4), and

P(435). In this type of situation, it is a good idea to break ties by branching from

the problem that is closest to being completely solved, in this case, P(435). In other

words, priority is given to the subproblem with the largest k. Eventually, at the 10th

branching iteration, the tree reaches the trial solution P(12435) for which v12435 =

11. At this point, the trial solution is first on the active list, since k is being used as a

tie breaker; therefore, the algorithm terminates in Step 2. In effect, all branches have

been fathomed at this stage, for the active list contains the 17 subproblems shown in

Table 3.4. The optimal sequence 1-2-4-3-5 has a total tardiness equal to 11.

3.6 SUMMARY

Challenging combinatorial optimization problems are encountered even in the sim-

plest of scheduling problems. The previous chapter and Theorem 3.1 dealt with the

relatively few situations in which we can easily characterize or construct the optimal

solution. However, for most tardiness-based criteria, we must call on general-purpose

techniques. Nevertheless, the methodologies described in this chapter contain many

optional features that can determine their effectiveness in a given implementation.

Some of these options are reviewed below.

The dynamic programming approach (Section 3.3) is a highly flexible implicit

enumeration strategy that can be applied directly to many single-machine sequencing

problems. Although no important design options arise in applying the technique

to a given class of problems, an intriguing question is how to develop an efficient

54 OPTIMIZATION METHODS FOR THE SINGLE-MACHINE PROBLEM

computer code for the algorithm. Because the computational demands of dynamic

programming grow exponentially with problem size, it is particularly crucial to use

an efficient code, even for moderate-sized problems. We discussed a strategy based

on a labeling scheme and a set-generation algorithm, but other strategies exist. We

left open the question of how to identify alternative optima when they occur.

Dominance properties (Section 3.4) provide conditions under which certain po-

tential solutions can be ignored. By exploiting dominance properties, the extensive

calculations required by dynamic programming can be curtailed substantially. Based

on this strategy, solution algorithms for the Tw-problem have been successful on

problems of up to 30 jobs (Schrage and Baker, 1978). Considering the improvements

in CPU performance since these results were obtained, a speedup matched by mem-

ory and storage capacity improvements, we might expect dynamic programming to

handle about up to roughly 40 jobs on a modern personal computer.

The branch and bound approach (Section 3.5) illustrates how implementing an

optimization technique can require a good deal of judgment. This judgment must be

exercised in the choice of a lower bound calculation, the potential use of an initial trial

solution, the incorporation of complicated dominance checks, and the specification

of a branching mechanism. In spite of the existence of these options, and the fact that

they cannot be evaluated independently, branch and bound approaches have met with

success in the solution of a wide variety of problems. For example, the T-problem

has been attacked with branch and bound techniques that have been successful on

problems as large as 500 jobs (Szwarc et al., 2001).

No comparable results are available for the Tw-problem, however. As it turns

out, NP-hard problems belong to two broad classes: NP-hard in the strong sense

(or the strict sense) and NP-hard in the ordinary sense. (Usually, the qualifier is

used only for the former.) For the latter category, optimal solutions can be obtained

by algorithms that are pseudopolynomial. As the term suggests, pseudopolynomial

algorithms perform as efficiently as polynomial ones in practice, but fail to meet the

strict formal definition of a polynomial algorithm. For example, a pseudopolynomial

algorithm may be polynomial in the total processing time but not in the number of

processing times, which is typically the relevant measure of problem size. If that

total processing time is small enough, the pseudopolynomial algorithm will perform

efficiently. The existence of a pseudopolynomial solution usually implies that we can

solve practical instances of the problem without prohibitive computational demands.

Conversely, problems for which we can efficiently solve large instances—say, hun-

dreds of jobs—are typically pseudopolynomial. This is the case for the T-problem,

which has been shown to be pseudopolynomial by Lawler (1977). The Tw-problem,

in contrast, is known to be NP-hard in the strong sense.

Now, armed with some general optimization capabilities, we can investigate more

complex problems in sequencing and scheduling. Ideally, we try to analyze the special

structure of the problem and deduce the form of an optimal solution. However,

sequencing and scheduling problems are notoriously difficult, and although we can

make some progress with this type of analysis, we will often find its power is limited.

When our analysis does not completely solve the problem, we can rely on such

general techniques as dynamic programming or branch and bound.

EXERCISES 55

REFERENCES

Elmaghraby, S.E. (1968). The one-machine sequencing problem with delay costs, Journal of

Industrial Engineering 19, 105–108.

Emmons, H. (1969). One-machine sequencing to minimize certain functions of job tardiness,

Operations Research 17, 701–715.

Lawler, E.L. (1973). Optimal sequencing of a single machine subject to precedence constraints,

Management Science 19, 544–546.

Lawler, E.L. (1977). A “pseudopolynomial” algorithm for sequencing jobs to minimize total

tardiness, Annals of Discrete Mathematics 1, 331–342.

Mitten, L.G. (1970). Branch and bound methods: general formulation and properties, Opera-

tions Research 18, 24–34.

Rau, J.G. (1971). Minimizing a function of permutations of n integers, Operations Research

19, 237–239.

Rinnooy Kan, A.H.G., J.K. Lenstra, and B.J. Lageweg (1975). Minimizing total costs in one

machine scheduling, Operations Research 23, 908–927.

Schrage, L.E. and K.R. Baker (1978). Dynamic programming solution of sequencing problems

with precedence constraints, Operations Research 26, 444–449.

Shwimer, J. (1972). On the n-job, one-machine, sequence-independent scheduling problem

with tardiness penalties: a branch and bound solution, Management Science 18, 301–313.

W. Szwarc, A. Grosso, and F. Della Croce (2001). Algorithmic paradoxes of the single machine

total tardiness problem, Journal of Scheduling 4, 93–104.

EXERCISES

3.1. Consider the problem of minimizing the maximum weighted tardiness. Describe

the optimal sequence in the following special cases.

a. All jobs have the same due date.

b. Weights and due dates are agreeable. In other words, wi > wj implies

di ≤ dj.

3.2. The following six jobs await sequencing on one machine.

Job j 1 2 3 4 5 6

Processing time pj 12 2 6 14 8 13

Due date dj 41 4 44 16 35 30

Cost factor cj 3 5 2 4 3 5

When job j completes at time t, the cost function takes the following form:

f j (t) = c j [max{0, t − d j }]
2

Find the optimal sequence for minimizing the maximum value of fj(t).

56 OPTIMIZATION METHODS FOR THE SINGLE-MACHINE PROBLEM

3.3. Use dynamic programming to minimize U in the following example.

Job j 1 2 3 4 5

pj 1 6 4 7 3

dj 2 7 8 13 15

3.4. Formulate the problem of minimizing Tmax as a dynamic programming problem

by writing the appropriate recursion relations.

3.5. Describe how to identify multiple optima (assuming they exist) when using

dynamic programming to solve the T-problem.

3.6. Solve the following T-problem by branch and bound.

Job j 1 2 3 4

pj 5 6 9 8

dj 9 7 11 13

a. Use Eq. (3.5) to compute bounds.

b. Use Eq. (3.4) to compute bounds.

3.7. Consider the example T-problem from Section 3.5.

Job j 1 2 3 4 5

pj 4 3 7 2 2

dj 5 6 8 8 17

Show which branches of the tree can be fathomed by using condition (a) of

Theorem 3.3. Discuss the pros and cons of including this condition in the

analysis.

3.8. Prove Theorem 3.3.

4
HEURISTIC METHODS FOR THE
SINGLE-MACHINE PROBLEM

4.1 INTRODUCTION

In earlier chapters, we studied the basic single-machine sequencing model, paying

particular attention to the variations that arise for different objective functions. For

some objective functions, such as total flowtime, we saw that an optimal solution

can be obtained by a procedure as simple as sorting the jobs. For other objective

functions, such as total weighted tardiness, no simple solution procedure is available,

and we have to resort to more general techniques of combinatorial optimization.

As mentioned earlier, the computational effort required to solve problems using

combinatorial procedures grows remarkably fast as the size of the problem increases.

Suppose, for instance, that a computer application for the dynamic programming

algorithm allows us to generate and evaluate 1,000,000 subsets per second. Then

the solution of a 25-job problem would consume roughly half a minute of computer

time; but a 35-job problem would take roughly 9 hours to solve, and a 45-job problem

would take over a year. If we need a quick answer to a 45-job problem, the dynamic

programming approach will hardly be suitable. In the case of branch and bound

algorithms, we cannot guarantee a better performance because it is impossible to

predict the computational effort precisely: it depends on the parameters in each

specific problem.

Although it would be difficult to designate any one problem size as typical of

practical problems, we believe that the ability to solve problems containing 30–50

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

57

58 HEURISTIC METHODS FOR THE SINGLE-MACHINE PROBLEM

jobs is usually sufficient for most practical needs. (Additional jobs are likely to be

scheduled at a later time.) But we may also encounter the single-machine model

as a component of more complex problems involving such features as precedence

constraints, multiple machines, or multiple operations per job. The ability to solve

30-job single-machine problems does not imply that we can solve optimally for

30 jobs in more complex problems. In multimachine models, single-machine sub-

models may have to be solved repeatedly, perhaps as many as 2n times. Therefore, it is

important to assess the computational demands of an optimizing technique whenever

its use is contemplated. When those demands are substantial, we may want to con-

sider suboptimal methods, or heuristic procedures, which are capable of obtaining

good solutions with limited computational effort. In contrast to such methodologies

as dynamic programming or branch and bound, these techniques do not guarantee

that an optimum will be found, yet they are relatively simple and effective.

In this chapter, we introduce some generic heuristic procedures that have proved

useful in solving scheduling problems. We describe their application to deterministic

single-machine problems, but mainly for illustration: the same procedures can be

adapted to stochastic single-machine problems, as well as a variety of other scheduling

problems. In later chapters, when we deal with more complicated models, we will

refer to these techniques.

Because heuristic procedures do not reliably produce optimal schedules, it is

logical to ask just how suboptimal they might be. In an experimental setting, a

researcher might attempt to answer this question by solving several problems using

a heuristic procedure and trying to estimate either the frequency with which optimal

solutions are produced or the average deviation from optimality. Such performance

measures give us some insight into the reliability of a particular procedure. In this

chapter, we illustrate how heuristic procedures can be evaluated taking that approach.

4.2 DISPATCHING AND CONSTRUCTION PROCEDURES

As we noted earlier, some of the simplest solution methods require only that the jobs

be sorted. For example, in the F-problem, sorting the jobs according to SPT produces

an optimal sequence. Actually, at the time the machine becomes idle, it is not really

necessary to sort all of the waiting jobs—we need only identify the shortest waiting

job and schedule that one to be next. More specifically, we use the term sorting to

describe the use of a ranking scheme with the property that the relative ranking of two

jobs does not change with time. In other words, sorting involves static priorities. In

addition, if a new job is added to a sorted set, the relative ranking of the original jobs

does not change. To determine whether the new job should be the next one scheduled,

we do not have to re-sort the entire set of jobs—we need only compare the new job

to the current job with highest priority.

More generally, we use the term dispatching to describe a procedure that uses a de-

cision rule to select the next job each time the machine becomes free. Dispatching in-

cludes dynamic as well as static sorting rules. To illustrate a dynamic version, consider

DISPATCHING AND CONSTRUCTION PROCEDURES 59

the T-problem. A simple yet effective heuristic rule ranks jobs by the MDD criterion.

Recall from Chapter 2 that the modified due date of job j at time t is defined by

d ′
j (t) = max{d j , t + p j } (4.1)

We also saw there that if jobs i and j are the candidates to begin at time t , then the

job with the earlier modified due date should come first. We then noted that if we use

the rule as a dispatching procedure, we may not obtain the optimal solution.

� Example 4.1 Consider a problem containing n = 3 jobs with known process-

ing times and due dates.

Job j 1 2 3

pj 8 9 12

dj 15 13 10

d ′
j (0) 15 13 12

Suppose that MDD is implemented as a dispatching procedure for the three-job

problem in Example 4.1. At time t = 0, the modified due dates are given by d ′
j (0),

so the ranking of the jobs at time zero is 3-2-1. Therefore, job 3 is selected to be

first and completes at time 12. The next decision takes place at time t = 12, and the

scheduling problem appears as follows:

Job j 1 2

pj 8 9

dj 15 13

d ′
j (12) 20 21

Here, the modified due dates are given by d ′
j (12), and the rule selects job 1 before

job 2, which reverses the ranking of the two jobs at time zero. The final sequence is

3-1-2, with T = 23, which happens to be suboptimal.

As the example illustrates, it is not necessary for a dispatching procedure to rank

all the jobs each time a decision arises, because the ranking is subject to change over

time. All we need is a selection of the most urgent job. A sorting rule is easier to

implement when it is static, because the jobs need to be ranked only once. In actual

practice, a static sorting rule typically permits the use of a physical label with a

number on it for each job, representing a relatively simple way to convey scheduling

priorities. A dynamic rule, such as MDD, requires repeated reranking of the jobs,

but the computations are modest. In actual practice, such a rule does not lend itself

easily to physical labels, but a computerized decision-support system can update the

priorities easily.

60 HEURISTIC METHODS FOR THE SINGLE-MACHINE PROBLEM

For another dynamic dispatching example, we turn to the more complex

Tw-problem. A heuristic approach is to generalize MDD to the weighted mod-

ified due date rule (WMDD), defined as nondecreasing order of the quantity

max{d j − t, p j }/w j . Dispatching by this rule involves sorting the jobs and selecting

the job with the smallest weighted modified due date as the next job. The sequence

is dynamic, because the dispatching criterion depends on t .

One useful way to judge heuristics is to trace their behavior in special cases and

to check that they reduce to good decision rules. For example, if all weights are

equal, then WMDD reduces to the MDD rule. Also, if all due dates are zero, WMDD

reduces to SWPT, which is optimal when all jobs must be late. However, unlike

MDD, WMDD is not guaranteed to sequence even two jobs optimally.

� Example 4.2 Consider a problem containing n = 2 jobs with known process-

ing times, due dates, and weights.

Job j 1 2

pj 2 5

dj 8 6

wj 3 2

For job 1, the weighted modified due date is calculated as 8/3 = 2.7. For job 2 the

calculation is 6/2 = 3. Thus, by the WMDD heuristic, job 1 should precede job 2,

leading to a total weighted tardiness of 2. The opposite sequence, by contrast, has no

tardiness.

The desired sequencing can be detected in two ways. One is by trial and error. The

other is by invoking a test based on an exact generalization of MDD. Suppose that

jobs i and j are considered for the next two positions (without any other job inserted

between them) and let s+
j = max{(d j − p j − t, 0}. If

pi

w i

(

1 −
s+

j

pi

)

≤
p j

w j

(

1 −
s+

i

p j

)

(4.2)

then i can precede j with at most the same total weighted tardiness. When we apply

this test for the sequence 1-2 in Example 4.2, the test fails:

2

3

(

1 −
1

2

)

>
5

2

(

1 −
6

5

)

This result indicates that job 2 should precede job 1 if both of them are to be scheduled

in the next two positions. Note that the test can be applied to the first two jobs in any

proposed sequence, taking t = 0. For later pairs of jobs, however, we need to know

the value of t .

DISPATCHING AND CONSTRUCTION PROCEDURES 61

A construction procedure, like a dispatching procedure, builds a schedule from

scratch, normally adding jobs to the schedule one at a time, but it does not necessarily

add the jobs in order from earliest to latest. For example, one logical way to construct

a schedule in the T-problem is to choose a job to be last in sequence. Because we

know what time the last job will complete, we can select the job that will incur the

least amount of tardiness when it finishes last. What remains is a problem consisting

of (n − 1) jobs, which we can resolve the same way. This approach is sometimes

called a “greedy” procedure, in that it makes the next selection in the most favorable

way, without regard to the consequences that might arise later in the algorithm.

(A greedy algorithm could also focus on choosing the first job in sequence, but in

tardiness-related problems, the last-to-first structure is often more productive.)

In this particular application of a greedy procedure, we make k comparisons when

there are k jobs left to be scheduled. Thus, the computational effort is O(n2). An

illustration follows.

� Example 4.3 Consider a problem containing n = 5 jobs with known process-

ing times and due dates.

Job j 1 2 3 4 5

pj 2 3 1 6 4

dj 12 4 7 10 6

In this example, we know that the last job in sequence will complete at time 16.

The job that would have the smallest tardiness if it were to complete at 16 is job 1.

Once we assign job 1 to be last, we know that the fourth job will complete at time 14.

Among the unscheduled jobs, the smallest tardiness at time 14 would occur for job 4,

so we assign it to be fourth. Continuing in this fashion, the algorithm constructs the

sequence 2-5-3-4-1, with a total tardiness of T = 10.

In the special case of the T-problem, the greedy algorithm reduces to a familiar

device for static dispatching, namely, the EDD rule. In more complicated problems,

greedy algorithms may not be as recognizable, but they tend to provide at least

adequate results and are sometimes surprisingly effective. (For example, in this case,

MDD yields T = 8, which happens to be optimal.)

Another widely used construction procedure is the insertion procedure, which

works as follows. Consider the subproblem consisting of just jobs 1 and 2. Optimize

their sequence (by comparing the alternatives 1-2 and 2-1). Next, keeping the relative

order of the first two jobs fixed, find the best location in which to insert job 3. In other

words, if 1-2 is the better of the two-job alternatives, consider the three alternatives

3-1-2, 1-3-2, and 1-2-3. If 2-1 is the better of the two-job alternatives, consider the

three alternatives 3-2-1, 2-3-1, and 2-1-3. At stage k, we obtain a solution to the k-job

subproblem consisting of the first k jobs. Then at stage (k + 1), we keep the relative

order of the first k jobs fixed in that sequence and consider inserting job (k + 1) into

each of the (k + 1) possible positions. We select the best of these (k + 1) alternatives

for consideration at the next stage, and we stop when we have generated the best

62 HEURISTIC METHODS FOR THE SINGLE-MACHINE PROBLEM

n-job alternative. The insertion procedure usually requires a computational effort of

O(n3).

As an illustration, we use the data in Example 4.3. At the initial stage, we compare

the two-job sequences 1-2 and 2-1:

Job j 1 2

Tj 0 1

Job j 2 1

Tj 0 0

Based on this comparison, we retain the partial sequence 2-1 and next consider

where to insert job 3:

3-2-1 (T = 0) 2-3-1 (T = 0) 2-1-3 (T = 0)

Here, we arbitrarily break the tie in favor of the first sequence encountered, 3-2-1. At

the next stage, we have four partial sequences to consider:

4-3-2-1 (T = 6) 3-4-2-1 (T = 6)

3-2-4-1 (T = 0) 3-2-1-4 (T = 2)

Here, we retain the partial sequence 3-2-4-1 and examine five ways to convert it to a

complete sequence:

5-3-2-4-1 (12) 3-5-2-4-1 (12) 3-2-5-4-1 (10)

3-2-4-5-1 (12) 3-2-4-1-5 (10)

Thus, the insertion procedure generates a solution with T = 10, producing two se-

quences that achieve this value. (As mentioned earlier, however, this value is not

optimal.)

We turn now to the question of how well these procedures perform. One approach

to answering this question involves a comparison of heuristic procedures using a

common set of test problems. For the purposes of illustration, we use a set of twelve

20-job Tw-problems selected from a testbed developed by Rinnooy Kan, Lenstra,

and Lageweg (1975). These test problems, reproduced in Table A at the end of the

chapter, are known to be relatively difficult to optimize.

These test problems were solved with a variety of dispatching procedures, includ-

ing a random dispatching mechanism. The same problems were also solved using

the greedy and insertion procedures. For the WMDD dispatching rule, we also tested

the improvement available by meeting the condition of Eq. (4.2). For each problem,

the experiment recorded the ratio of the heuristic solution to the optimal solution.

Three performance measures were tallied: a count of the number of times the opti-

mum was found, the average ratio of the heuristic solution to the optimal solution,

and the maximum solution ratio. The results are summarized in Table 4.1. As the

RANDOM SAMPLING 63

TABLE 4.1

Algorithm

Optimizing

Frequency

Average

Ratio

Maximum

Ratio

Random 0 of 12 1.86 2.51

SPT 0 of 12 1.67 2.90

MST 0 of 12 1.49 1.79

EDD 0 of 12 1.46 1.77

SWPT 0 of 12 1.35 1.96

Greedy 0 of 12 1.22 1.39

Insertion 0 of 12 1.20 1.44

WMDD 4 of 12 1.02 1.10

WMDD + correction 5 of 12 1.02 1.10

table clearly shows, most basic dispatching procedures were not especially effective

in solving the Tw-problem. WMDD was the clear winner, followed by the greedy and

insertion techniques. A decent heuristic usually gets within 10% of the optimum, and

a really good one reliably gets within 1–2%. So WMDD is a decent heuristic, but

there is still room for testing other kinds of heuristic approaches. In addition, WMDD

applies only to the Tw-problem, so we must study additional heuristics if we want to

tackle other objective functions.

The combination of WMDD and the correction of Eq. (4.2) is not a pure dispatching

or construction procedure, because it involves revisiting earlier decisions after later

ones reveal they could be improved. Indeed, the correction step is a rudimentary

example of a search technique. Search techniques, such as those we describe in

later sections, are fundamentally different from construction procedures. Whereas

construction methods start from scratch and build one schedule, search procedures

assume that a solution has already been built, and they examine a series of alternative

solutions in an effort to find improvements.

4.3 RANDOM SAMPLING

It may seem surprising to speak of random sampling methods in connection with

deterministic scheduling problems. However, random sampling has been employed

directly in other combinatorial settings and may provide a viable solution strategy

for many scheduling problems.

The essence of a sampling procedure is easy enough to describe. Using some

random device, construct and evaluate N sequences and identify the best sequence

in the sample. We can view random sampling as a solution method that lies on a

continuum between a specialized heuristic procedure and an optimizing procedure.

Many heuristic procedures, such as the greedy algorithm described earlier, generate

one sequence, while an optimizing procedure, such as branch and bound, enumerates

all n! sequences, at least implicitly. A random sampling procedure constructs some

64 HEURISTIC METHODS FOR THE SINGLE-MACHINE PROBLEM

intermediate number of sequences and selects the best one. The design of a sampling

scheme must resolve two tactical questions:

1. How do we specify a particular device for carrying out sampling?

2. How do we draw conclusions about the best sequence in the sample?

Much of the literature on sampling techniques has attempted to provide some insight

into the answers to these questions, which we next explore in a little more detail.

It is not easy to draw substantive conclusions about the best sequence found in the

sample. The ideal information is the likelihood that a sample contains an optimum or

the distance from optimality. Unfortunately, these relationships are generally known

only qualitatively: a larger sample is more likely than a smaller sample to contain

an optimum, and the best sequence in a larger sample also tends to be closer to the

optimal value. But without quantitative information about these relationships, there

is virtually no logical way to select a sample size. In principle, there is a certain

probability p that on a particular trial a specified sampling procedure will construct

an optimum for a given problem. Therefore, because sampling is essentially done

with replacement, the probability that an optimum will be found in a sample of size

N is
[

1 − (1 − p)N
]

. The difficulty is to estimate p.

In the basic single-machine problem there is perhaps one situation in which we can

draw a quantitative conclusion. Suppose that a sequence is constructed by assigning

the first position in sequence, then the second, and so on. In order to assign the

first sequence position, suppose that a random device is used and that each job

is assigned to this position with probability 1/n. After this assignment, suppose

that each remaining job is assigned to second position with probability 1/(n − 1).

If we continue in this manner, then we will assign each position by an equally

likely selection device. In this structure, all of the n! sequences are equally likely

to be included in the sample. If the optimum is unique, then p = 1/n!, so in this

procedure we can conclude that the best sequence in a sample of size N is an

optimum with probability
[

1 − (1 − 1/n!)N
]

. On the subject of how close to optimal

the best sequence in the sample may be, it is still not possible to provide quantitative

conclusions. In order to suggest the kind of behavior that might occur, a set of

random sampling experiments was conducted with the 20-job test problems. Three

different sample sizes were tested and the results are shown in Table 4.2 and compared

with the random dispatching and the greedy algorithm from Table 4.1. (The random

dispatching procedure is equivalent to random sampling with a sample size of N = 1.)

Table 4.2 shows that solution efficiency improves with sample size, which we

should have expected. We also observe that the sampling procedure is not nearly

as effective as the greedy heuristic even for a sample size of 500, which involves a

computational effort much greater than that of the greedy heuristic.

More generally, we should think in terms of selection devices that are not equally

likely, and we should recognize that such mechanisms might yield a value of p much

larger than 1/n!. The following is an example of a simple method for performing

biased random sampling. We begin by ordering the jobs according to some ranking

rule. To assign the first position in sequence, we select the job in jth position on the

RANDOM SAMPLING 65

TABLE 4.2

Algorithm

Optimizing

Frequency

Average

Ratio

Maximum

Ratio

Random 0 of 12 1.86 2.51

Sampling (N = 20) 0 of 12 1.59 2.08

Sampling (N = 100) 0 of 12 1.51 1.90

Sampling (N = 500) 0 of 12 1.41 1.72

Greedy 0 of 12 1.22 1.39

ordered list with probability p1 j (j = 1, 2, . . . , n). These probabilities are “biased”

in the sense that they favor the first job on the list to the second, the second to the

third, and so on. Next, we remove the assigned job from the list, and we assign the

second position by selecting the job in jth position on the updated ordered list with

probability p2 j (j = 1, 2, . . . , n − 1). In this approach, we use a discrete distribution

pk j at the kth stage. A typical approach would use a set of pk j values that follow a

truncated geometric distribution. In this case the selection device corresponds to

pk j = π j Qk, j = 1, 2, . . . , n + 1 − k

where Qk is simply a normalizing constant. With this structure, the first job on the

ordered list has the highest probability of being selected, the second job has the second

highest probability, and so on. In addition, the probabilities decrease in a geometric

manner, but the nature of the decrease can be controlled by selecting the parameter

π . For example, if there are five jobs and we set π = 0.8, then the probabilities are

j 1 2 3 4 5

pk j 0.297 0.238 0.190 0.152 0.122

A larger value of π would make the jobs early on the list more likely to be selected,

while a smaller π would distribute the selection probabilities more equally. Thus, we

can bias the random selection process of the basic sampling method toward a given

job ordering and thereby improve the efficiency of the sampling. For the 20-job test

problems, Table 4.3 compares some biased sampling plans with the equally likely

plan described in Table 4.2.

The results suggest that biased random sampling improves on pure random sam-

pling. In other words, the intelligent choice of a job ordering and a bias in the

randomization are worth more than a large amount of sampling. In Table 4.3, the

performance of random sampling with a sample size of 500 was virtually matched by

the performance of biased sampling with a sample size of only 20. In fact, with SWPT

as the initial ordering, the biased sampling procedure was even better on average.

In short, random sampling is a procedure for obtaining good solutions to combina-

torial problems with simple, straightforward logic and limited computational effort.

In more complicated problems, both in and out of the scheduling field, sampling

techniques have provided effective heuristic procedures. However, as the results in

66 HEURISTIC METHODS FOR THE SINGLE-MACHINE PROBLEM

TABLE 4.3

Algorithm

Optimizing

Frequency

Average

Ratio

Maximum

Ratio

Sampling (N = 500) 0 of 12 1.41 1.72

Sampling (π = 0.8, N = 20; MST) 0 of 12 1.46 1.76

Sampling (π = 0.8, N = 20; EDD) 0 of 12 1.42 1.62

Sampling (π = 0.8, N = 20; SWPT) 0 of 12 1.30 1.82

Sampling (π = 0.8, N = 100; SWPT) 0 of 12 1.25 1.60

Sampling (π = 0.8, N = 500; SWPT) 0 of 12 1.21 1.53

Greedy 0 of 12 1.22 1.39

our next computational experiments suggest, sampling is not always competitive with

other general-purpose heuristic procedures. Its virtues are ease of implementation and

flexibility. The flexibility derives from many tactical options. These options include

the initial ordering of the jobs for biased sampling, the selection of a probability

distribution for assigning probabilities to positions, and the determination of sample

size. The art of applying random sampling lies in specifying these tactics in order

to arrive at an effective sampling procedure. Different tactics may perform well in

different types of problems, so it may take some experimentation to determine the

tactics that are best suited to any particular application. Finally, random sampling

is potentially useful in combination with other heuristics. For example, each ran-

dom sample could be subjected to the insertion heuristic; this combination can only

improve on the basic sampling procedure.

4.4 NEIGHBORHOOD SEARCH TECHNIQUES

The basic elements in the neighborhood search approach are the concept of a neigh-

borhood of a solution and a mechanism for generating neighborhoods. The generating

mechanism is a method of taking one sequence as a seed and systematically creating

a collection of related sequences. For example, the adjacent pairwise interchange

operation might serve as a generating mechanism. If the seed sequence were 1, 2,

3, . . . , n, then any of the following sequences could be formed by a single adjacent

pairwise interchange:

2, 1, 3, 4, . . . , n − 2, n − 1, n

1, 3, 2, 4, . . . , n − 2, n − 1, n
...

1, 2, 3, 4, . . . , n − 1, n − 2, n

1, 2, 3, 4, . . . , n − 2, n, n − 1

This is a list of (n − 1) distinct sequences, called the neighborhood of the seed

sequence, for this particular generating mechanism.

NEIGHBORHOOD SEARCH TECHNIQUES 67

It is not difficult to envision other methods of generating neighborhoods. The

last-insertion mechanism inserts the last job of the seed into other positions. In this

case, if the seed sequence were 1, 2, 3, . . . , n, the neighborhood of the seed would be

n, 1, 2, . . . , n − 1

1, n, 2, . . . , n − 1
...

1, 2, 3, . . . , n, n − 1

which is again a list of (n − 1) sequences.

The choice of a generating mechanism determines the size of the neighborhood.

For example, a neighborhood could be generated by all pairwise interchanges, not

just the adjacent ones. This pairwise interchange neighborhood contains a list of

n(n − 1)/2 sequences. A generalization of the last insertion neighborhood described

above is to insert the job in sequence position i into position j , where j �= i . In this

insertion neighborhood there are n(n − 1) sequences. In general, given a seed and a

generating mechanism, any sequence that can be formed from the seed by a single

application of the generating mechanism is defined to be in the neighborhood of the

seed. In this context, a search algorithm requires the specification of a generating

mechanism. A general description of a neighborhood search algorithm is given next.

Algorithm 4.1 Neighborhood Search

Step 1. Obtain a sequence to be an initial seed and evaluate it with respect to the

performance measure.

Step 2. Generate and evaluate all the sequences in the neighborhood of the seed.

If none of the sequences is better than the seed with respect to the performance

measure, stop. Otherwise proceed.

Step 3. Select one of the sequences in the neighborhood that improved the performance

measure. Let this sequence be the new seed. Return to Step 2.

Within this general framework, we must specify certain tactical options:

1. A method of obtaining the initial seed

2. A generating mechanism

3. A method of selecting a particular sequence to be the new seed

� Example 4.4 Consider a problem containing n = 5 jobs with known process-

ing times and due dates.

Job j 1 2 3 4 5

pj 2 3 1 6 4

dj 12 7 4 10 6

68 HEURISTIC METHODS FOR THE SINGLE-MACHINE PROBLEM

TABLE 4.4

Stage 1

Seed: 1-2-3-4-5 T = 14

Neighborhood: 2-1-3-4-5 T = 14

1-3-2-4-5 T = 12 ∗selection

1-2-4-3-5 T = 19

1-2-3-5-4 T = 12

Stage 2

New seed: 1-3-2-4-5 T = 12

Neighborhood: 3-1-2-4-5 T = 12

1-2-3-4-5 T = 12

1-3-4-2-5 T = 15

1-3-2-5-4 T = 10 ∗selection

Stage 3

New seed: 1-3-2-5-4 T = 10

Neighborhood: 3-1-2-5-4 T = 10

1-2-3-5-4 T = 12

1-3-5-2-4 T = 10

1-3-2-4-5 T = 12

Search terminates with T = 10

Suppose again that the objective is to minimize T , and that the tactical options are

handled as follows.

1. The initial seed is the sequence 1-2-3-4-5.

2. The generating mechanism is adjacent pairwise interchanges.

3. The first improvement in the neighborhood becomes the new seed.

Table 4.4 traces the implementation of Algorithm 4.1 on the five-job example. The

initial sequence, 1-2-3-4-5, attains the value T = 14. An improvement occurs in the

first neighborhood, and the sequence 1-3-2-4-5 (with T = 12) becomes the new seed

by virtue of being the first improvement in the neighborhood. Again, an improvement

is found in the search of the new neighborhood, and the new seed is the sequence 1-3-2-

5-4, with T = 10. Next, a search of the new neighborhood produces no improvement,

and the search procedure terminates.

The search procedure of Algorithm 4.1 always terminates with a solution that is a

local optimum with respect to the given neighborhood structure. Unfortunately, there

is no general way to know whether the terminal sequence is also a global optimum.

For example, in the T-problem, sorting by MDD can reveal whether a solution is

locally optimal with respect to the adjacent pairwise interchange neighborhood, but

NEIGHBORHOOD SEARCH TECHNIQUES 69

not whether the solution is globally optimal. Similarly, in the Tw-problem, satisfying

Eq. (4.2) is equivalent to local optimality but not global optimality. As in other kinds

of search procedures, it is possible to augment the basic algorithm and improve its

chances of finding a global optimum in a number of ways, for example:

1. Generate several sequences to serve as initial seed. Employ the full search

procedure for each initial seed, and take the best terminal sequence found.

2. In each neighborhood, keep track of all sequences that improve on the seed.

Use each of these as a seed for a new neighborhood.

3. Choose a generating mechanism that creates large neighborhoods.

Although these and other augmentation methods are eminently logical, they still

cannot offer a guarantee that a global optimum will be found. Nevertheless, a few

experimental studies have indicated that even the fundamental version of the neigh-

borhood search algorithm is fairly reliable as a general purpose heuristic procedure.

As an illustration, Algorithm 4.1 was applied to the 20-job test problems, with

adjacent pairwise interchange (API) neighborhoods, and then with all pairwise inter-

change (PI) neighborhoods. It was also tested with last-insertion (LI) neighborhoods

and all-insertion (AI) neighborhoods. Finally, the algorithm was initialized with two

procedures, the greedy algorithm and the insertion algorithm. In Table 4.5, the neigh-

borhood and the initial seed are indicated in parentheses, along with a summary of

results. In each case, the first improvement in the neighborhood identified the new

neighborhood.

The neighborhood search procedure was especially effective when it invoked the

larger neighborhoods. As the table shows, the LI neighborhood had little impact, and

the API neighborhood achieved modest gains. The PI and AI neighborhoods, which

are O(n2) in size, provided more effective performance. No single combination

dominated the others in this experiment, although the best value for each of the three

tabulated performance criteria was obtained by starting with the greedy algorithm.

TABLE 4.5

Algorithm

Optimizing

Frequency

Average

Ratio

Maximum

Ratio

Greedy 0 of 12 1.22 1.39

NS(API, Greedy) 0 of 12 1.089 1.26

NS(PI, Greedy) 10 of 12 1.003 1.04

NS(LI, Greedy) 0 of 12 1.21 1.39

NS(AI, Greedy) 9 of 12 1.0004 1.004

Insertion 0 of 12 1.20 1.44

NS(API, Insertion) 2 of 12 1.078 1.22

NS(PI, Insertion) 9 of 12 1.001 1.007

NS(LI, Insertion) 0 of 12 1.20 1.44

NS(AI, Insertion) 3 of 12 1.009 1.04

70 HEURISTIC METHODS FOR THE SINGLE-MACHINE PROBLEM

The neighborhood search technique generally appears to be a promising heuristic

procedure for solving sequencing problems. Several options exist, however, including

efficient methods of finding an initial seed, selecting a generating mechanism, and

proceeding to a new seed. In the context of these open issues, the implementation of

a neighborhood search procedure remains very much an art.

4.5 TABU SEARCH

The basic neighborhood search procedure is sometimes called a descent technique,

because each new seed represents a lower value of the objective function (assuming

that the objective is to minimize). If we were to graph the value of the objective

function for the seed as a function of the seed number, the graph would be a decreasing

function. In a large problem, the decrease might be rapid in the early stages of the

search but much slower toward the end of the search, as in Figure 4.1.

One of the problems of neighborhood search procedures is their tendency to

become “trapped” at local optima. It is eminently sensible, of course, to follow a path

of ever-improving solutions, but such a path may not lead to a global optimum. At

times it might be desirable to try a new seed that is worse than the old seed, as a

means of escaping the trap and finding a path to an optimal solution. The flexibility

to occasionally move to a worse solution is a feature of tabu search procedures.

In its basic form, a tabu search procedure can be viewed as a modified form

of neighborhood search. Each time a neighborhood is generated and a new seed

selected, we call the change from one seed to the next a move. A move is defined by

the mechanism that generates neighborhoods and by the rule for selecting a solution

in the neighborhood. In tabu search, the custom is to select the best value of the

objective function in the neighborhood.

At the outset, a tabu search procedure operates much like a neighborhood search.

Instead of stopping when a local optimum is encountered, however, a tabu search

strategy accepts a new seed, even if its solution value is worse than that of the current

seed. Of course, when the new seed is worse than the previous seed, the procedure

could cycle indefinitely. To avoid this type of cycling, we designate a move back

Objective

function

Seed number

FIGURE 4.1 Improvement of the objective function in neighborhood search.

TABU SEARCH 71

to the previous seed as tabu. In the same spirit, we might also designate a move

back to the second or third previous seeds as tabu. In other words, we keep a list of

tabu moves, a list that may be longer in length than one move. At each stage, the

procedure selects the best solution from those in the neighborhood that are not on the

tabu list.

Different possibilities exist for designating a move as tabu. Conceptually, the most

straightforward is to keep sequences on the tabu list and thus prohibit a return to a

previously encountered sequence. The tabu list is finite and generally fairly small. In

some applications, a list size of one has been reasonably effective, but the original

expositions of tabu search tended to recommend lists as long as seven moves. More

recently, researchers have been experimenting with dynamic list sizes.

Whereas the neighborhood search procedure contains a built-in device for

termination—the discovery of a local optimum—tabu search must have a termi-

nation rule imposed. Usually, the number of moves is fixed at the outset to assure

a certain level of computational effort. An alternative stopping rule is to limit the

number of consecutive moves at which no improvement occurs. For purposes of

comparison, the tabu search procedure was applied to the 20-job test problems with

the neighborhoods and initial solutions illustrated earlier. The length of the tabu list

was set at seven. The termination conditions were either (1) three consecutive seeds

in which the tardiness increased, or (2) seven consecutive seeds without an improve-

ment in the best solution yet found. The results are compared with neighborhood

search in Table 4.6.

As the table shows, tabu search performed about as well as neighborhood search

in each case. In fact, for the large neighborhoods, the solutions obtained by tabu

search matched those obtained by the neighborhood search exactly. The size of the

neighborhood again seemed to have a major influence on the quality of the heuristic

solution, with the PI neighborhoods leading to optimal solutions in a majority of cases.

TABLE 4.6

Algorithm

Optimizing

Frequency

Average

Ratio

Maximum

Ratio

Tabu (API, Greedy) 0 of 12 1.087 1.26

NS(API, Greedy) 0 of 12 1.089 1.26

Tabu (PI, Greedy) 10 of 12 1.003 1.04

NS(PI, Greedy) 10 of 12 1.003 1.04

Tabu (LI, Greedy) 0 of 12 1.21 1.38

NS(LI, Greedy) 0 of 12 1.21 1.39

Tabu (AI, Greedy) 9 of 12 1.0004 1.004

NS(AI, Greedy) 9 of 12 1.0004 1.004

Tabu (PI, Insertion) 9 of 12 1.001 1.007

NS(PI, Insertion) 9 of 12 1.001 1.007

Tabu (AI, Insertion) 3 of 12 1.0087 1.04

NS(AI, Insertion) 3 of 12 1.0087 1.04

72 HEURISTIC METHODS FOR THE SINGLE-MACHINE PROBLEM

4.6 SIMULATED ANNEALING

Tabu search overcomes one of the problems of neighborhood search—the local

optimum trap. Advocates of tabu search usually recommend an aggressive philosophy

in the selection of a new seed. According to this philosophy, the best non-tabu

solution in the neighborhood should always be selected. In terms of the graph in

Figure 4.1, this tactic tends to bring the curve down as steeply as possible at each

stage. An alternative philosophy is to bring the curve down slowly. This approach is

characteristic of simulated annealing procedures.

Annealing is a term borrowed from the physical sciences. The term refers to a

process of cooling material slowly, until the material reaches a stable (frozen) state.

Early in this process, at high temperatures, particles in the material will sometimes

change to higher-energy states, but at low temperatures such behavior is much less

likely. At very low temperatures, particles virtually always move to lower-energy

states whenever the opportunity arises. Eventually, the movement toward low-energy

states leads to freezing.

In simulated annealing, we can think of each stage of the search as being carried

out under a lower temperature than that which occurred at the previous stage. The

value of the objective function is analogous to the temperature of the material being

cooled. Early in the search (at high temperatures) there is some flexibility to move to

a worse solution; but later in the search (at lower temperatures) less of this flexibility

exists. Thus, the value of the objective function tends to fluctuate widely at the start

of the search, but hardly at all toward the end of the search, as in Figure 4.2.

To make this procedure more precise, suppose we are interested in minimizing the

value of an objective function Z , and we employ the logic of a neighborhood search.

At stage i the objective function is Z i , corresponding to the Z-value for the ith seed.

The procedure selects randomly from the solutions in the neighborhood of the ith

seed. When the jth neighbor is generated, with objective function value Z j , it may or

may not become the next seed. If Z j < Z i , then, as in the standard descent method,

the jth neighbor becomes the next seed. On the other hand, if Z j ≥ Z i , there is still

some chance that the jth neighbor will become the next seed, even though it is worse

than the current seed. Let �Z = Z j − Z i . Then the probability that the jth neighbor

Objective

function

Seed number

FIGURE 4.2 Improvement of the objective function with simulated annealing.

SIMULATED ANNEALING 73

at stage i becomes the next seed is

qi j = min{1, e−�Z/T (i)}

where T (i) denotes the temperature at stage i . Two features of this probability function

are important. First, the probability decreases as temperature decreases, other things

being equal. Thus, as the search proceeds, there is a decreasing probability of moving

to a worse solution. Second, the probability that a candidate will be selected to be

the next seed is always 1 if there is improvement in the objective function; but if the

objective function increases, then the probability varies inversely with the increase.

Finally, the search procedure requires a temperature schedule. After sampling

from the neighborhood of the seed a specified number of times, we reduce the

temperature and continue the search. For example, the temperature schedule may

follow a geometric pattern, with T (i + 1) = πT (i), where 0 < π < 1 and T (1) equal

to the mean processing time.

For purposes of illustration, simulated annealing was used to solve the 20-job test

problems, with the two larger neighborhoods (PI and AI). The temperature schedule

followed a geometric pattern with π = 0.9 and 40 stages. At this computational

effort, the performance of simulated annealing was roughly comparable to the other

heuristic solutions. (By comparison, the neighborhood search procedure with PI

neighborhoods converges after an average of 16 stages, on this test data.) Then

additional runs were made with 80 stages. The results are reported in Table 4.7.

Clearly, the performance of simulated annealing is sensitive to the planned compu-

tational effort, as measured here by the number of stages in the temperature schedule.

In addition, simulated annealing seemed to work more effectively in conjunction with

PI neighborhoods than with AI neighborhoods.

This experiment was based on a very simple version of the simulated annealing

procedure. Obviously, there are alternative parametric designs with different values

of π and different numbers of stages. Alternative structural designs exist as well. In

TABLE 4.7

Algorithm

Optimizing

Frequency

Average

Ratio

Maximum

Ratio

NS(AI, Greedy) 9 of 12 1.0004 1.004

NS(PI, Greedy) 10 of 12 1.003 1.04

Annealing (40; PI, Greedy) 1 of 12 1.018 1.06

Annealing (40; AI, Greedy) 1 of 12 1.016 1.08

Annealing (80; PI, Greedy) 9 of 12 1.004 1.04

Annealing (80; AI, Greedy) 3 of 12 1.010 1.06

NS(PI, Insertion) 9 of 12 1.001 1.007

NS(AI, Insertion) 3 of 12 1.009 1.04

Annealing (80; PI, Insertion) 8 of 12 1.001 1.01

Annealing (80; AI, Insertion) 4 of 12 1.008 1.02

74 HEURISTIC METHODS FOR THE SINGLE-MACHINE PROBLEM

some implementations, several new seeds are generated at each temperature, with a

certain “equilibrium” condition dictating when to proceed to a lower temperature.

4.7 GENETIC ALGORITHMS

A genetic algorithm (GA) may be viewed as a neighborhood search procedure that

has similarities to several heuristics we have covered but also a radically different

logic. Normally, a GA maintains a list of b promising solutions at each stage, and

algorithmic iterations aim to generate better ones by searching a special type of

neighborhood. Rather than define a neighbor by changing a single sequence, a GA

combines two existing sequences, selecting some features from one and the remainder

from the other. (In principle, a GA can combine more than two existing sequences,

but here we illustrate the concept using exactly two.) Because new candidates can be

viewed as offspring of the existing ones, the terminology is borrowed from evolution

and genetics. Thus, in each generation, we start with b parents (sequences), which

are the fittest (best performing) survivors of former generations (iterations). Pairs

of parents are selected—typically at random—to produce offspring. Each parent

contributes genes (subsequences) to the offspring, and mutations (random changes)

may also occur. The algorithm usually terminates after a prespecified number of

generations, but other stopping rules can be imposed. The fittest of all survivors in

the last generation is selected as the solution.

Algorithm 4.2 Genetic Algorithm

Step 1. Choose the population size b > 2 and the number of generations, K . Select b

initial schedules by other heuristics (such as random search). Let k = 0.

Step 2. Increase k by 1. Generate at least b/2 offspring of pairs of individuals.

(Offspring may be subject to random mutations.)

Step 3. Evaluate the offspring. If k < K , select the best b schedules out of all parents

and offspring and return to Step 2. If k = K , stop (the best schedule found so far

is the solution).

Within this general framework, we must answer certain tactical questions:

1. How do we obtain the first generation of schedules?

2. How do parents generate offspring?

3. How do we match parents for breeding?

The first generation of schedules can be generated randomly or by implementing

one of the heuristic procedures described earlier in Section 4.2. For example, we

could create b schedules by implementing b different dispatching procedures.

In sequencing problems, the simplest mechanism for generating offspring follows

one parent for the first few jobs and takes the remaining jobs in the same order as

in the other parent. The last few jobs cannot simply be copied from the other parent,

THE EVOLUTIONARY SOLVER 75

however, because that could cause duplications of jobs in the new sequence and

omissions of other jobs. Therefore, a complementary offspring can be constructed in

which the last few jobs are copied from one parent and the first jobs appear in the

same sequence as in the other parent. Some schemes use both offspring, which may

then be referred to as a son and a daughter. The number of jobs to select from each

parent is a secondary design choice. We can set this parameter randomly, or we can

generate all possible offspring based on this mechanism. In addition, following the

analog of evolution, a GA allows random mutations, which are created by performing

a small number of random insertions in the creation of an offspring.

The matching of parents can be random, or some systematic procedure can be

adopted. For example, the best parent can be matched with the bth best parent, the

second best with the (b − 1)st best parent, and so on. Alternatively, the best and second

best parents can be matched, then the third and fourth best, and so on. In nature, the

very best survivors may have more than their proportional share of matches, and this

feature can also be emulated.

GA implementations used for research are usually described openly, but commer-

cial codes are often proprietary. In the next section, we introduce a proprietary varia-

tion on the GA approach that happens to be conveniently available to users of Excel.

4.8 THE EVOLUTIONARY SOLVER

Most of the algorithms we discuss, both optimization algorithms and heuristic algo-

rithms, require specialized computer code for implementation. As yet, there are very

few “off the shelf” codes available, although the Internet may become a source in the

future. Nevertheless, one widely used platform for calculations and algorithms is the

electronic spreadsheet, Excel in particular. In this section, we describe an Excel-based

approach to heuristic solution of sequencing problems.

For the purposes of illustration, we work with Example 4.4, a T-problem containing

five jobs.

Job j 1 2 3 4 5

pj 2 3 1 6 4

dj 12 7 4 10 6

In a spreadsheet implementation, we create modules for the problem data, the job

sequence, the measure of performance, and the relevant calculations. Figure 4.3 shows

a typical layout for the model. Borrowing from the terminology of optimization, the

key parts of the model are:

� The problem data (Cells C4:G6)
� The objective function (Cell B8)
� The decision variables (the sequence in the range C11:G11)
� The relevant constraints (to be specified later)

76 HEURISTIC METHODS FOR THE SINGLE-MACHINE PROBLEM

FIGURE 4.3 Spreadsheet layout for the T-problem example.

The decisions in this model appear as the highlighted cells in row 11, and any per-

mutation of the integers 1–5 can be entered here. Based on the sequence, we find the

processing times in row 12 by some kind of a lookup procedure, referencing the data

cells. In our example, the formula in cell C12 is INDEX(C4:G5,2,C$11),

and this formula is copied to the right. Then the completion times in row 13 are calcu-

lated as we would by hand, by adding the current processing time to the completion

time of the previous job in sequence.

The due dates in row 14 are obtained by referencing the data cells. In our example,

the formula in cell C14 is INDEX(C4:G6,3,C$11), and this formula is

copied to the right. In row 15, we calculate the tardiness of each job. For example, the

formula in cell C15 is MAX(0,C13-C14), and this formula is copied to the right.

The objective function in cell B8 calculates the sum of the tardiness values, using the

formula SUM(C15:G15).

The optimization problem corresponding to our example is to choose the sequence

in row 11 to minimize the value of the performance measure in cell B8. The software

is Premium Solver. Briefly, Premium Solver is an upgraded version of the solver that

comes with Excel. Premium Solver contains four different algorithms, one of which

is the Evolutionary Solver, an advanced genetic algorithm that applies to many other

types of problems but is specifically well suited to sequencing problems. To invoke

the algorithm, we select Premium Solver from the add-ins tab, which brings up the

Solver Parameters window shown in Figure 4.4.1

1We illustrate the user interface for version 8.0 of the software. Newer versions have these same capabilities,

although the user interface has been altered.

THE EVOLUTIONARY SOLVER 77

FIGURE 4.4 Initial Solver window.

By specifying the necessary information, we ask Solver to

� Set Cell B8
� Equal to a Minimum
� By Changing Variable Cells (C11:G11)
� Subject to constraints

We build the Solver model in steps by selecting Objective, Variables, and Constraints

and each time clicking the Add button. When we select Objective and click Add,

the Add Objective window appears. We then enter B8 as the objective function

cell and select the Min option, as shown in Figure 4.5. When we click OK, we

return to the Solver Parameters window, which will be updated to reflect the new

information.

Next, we proceed to the Add Variable Cells window and specify the range of the

decision variables, as shown in Figure 4.6. Again, we click OK to return to the Solver

Parameters window.

FIGURE 4.5 Specifying the objective for the example model.

78 HEURISTIC METHODS FOR THE SINGLE-MACHINE PROBLEM

FIGURE 4.6 Specifying the variables in the example model.

Next, we proceed to the Add Constraint window, as shown in Figure 4.7. The cell

reference corresponds to the range of decision variables, and the pull-down window

in the middle allows us to select “dif” for the alldifferent constraint. This constraint

ensures that the decision variable cells will comprise a legitimate permutation (in

this case, a permutation of the integers 1–5.) In other words, the decision cells

must correspond to a feasible sequence. Then we click OK to return to the Solver

Parameters window.

The Solver Parameters window has now been updated to reflect the problem state-

ment, but we must take one more step. We select the Evolutionary Solver as the solu-

tion algorithm by making a selection on the pull-down menu, as shown in Figure 4.8.

The Evolutionary Solver will search for the best solution it can find, and its

effectiveness is influenced by several user-determined parameters that are specified

after clicking the Options button in the Solver Parameters window. The most important

of these parameters set the stopping and convergence conditions that control the

termination of the search. A good generic set of parameters would be the following.

Population size = 100.

Mutation rate = 7.5% (the default value).

Convergence = 0.01% (the default value).

Tolerance = 0.

FIGURE 4.7 Imposing a constraint in the example model.

SUMMARY 79

FIGURE 4.8 Choosing the Evolutionary Solver.

Maximum time without improvement = 15 seconds.

Maximum search time = 30 seconds.

Other parameters (the number of feasible solutions, the number of subproblems, and

the number of iterations) should be set to large numbers so as not to impede the search.

With these settings, the search will continue until one of the stopping conditions is met:

� The search has been underway for 30 seconds.
� No improvement has been encountered in the last 15 seconds.
� Ninety-nine percent of the 100 best solutions found are within 0.01% of each

other.

The time limits can be adjusted according to the user’s patience, but we have found

that runs of roughly one minute produce good results for sequencing problems up to

20 jobs. In fact, optimal or near-optimal solutions are usually found in far less time.

In our five-job example, the Evolutionary Solver converges rapidly to a total tardiness

value of 7, obtained by the sequence 3-5-2-1-4. For the set of 20-job problems in

Table A, the Evolutionary Solver (running with a 30-second time limit) produced

optimal solutions in 10 out of the 12 problems, with an average ratio of 1.00008 and

a maximum ratio of 1.0006.

4.9 SUMMARY

Challenging combinatorial optimization problems are encountered even in the sim-

ple single-machine scheduling problem. Earlier, we discussed the relatively few

cases in which general optimal solutions are known. For other cases, including most

80 HEURISTIC METHODS FOR THE SINGLE-MACHINE PROBLEM

tardiness-based criteria, general-purpose optimization techniques must be brought

to bear on the problem. Nevertheless, such techniques require a great deal of com-

putational effort for even medium-sized problems, and in stochastic problems, the

computational demands can be an order of magnitude greater. In situations where

this effort is prohibitive, heuristic methods are appropriate.

For scheduling problems with straightforward structure, dispatching and construc-

tion procedures offer a way to build good schedules quickly. Dispatching procedures

are sometimes effective, but it is often difficult to devise a logical dispatching rule for

any given objective. For example, the Uw-problem offers a simple, yet challenging

single-machine problem for which there does not seem to be a reliable dispatching

rule. The greedy and insertion algorithms, which do not have to be tailored to a

particular objective function, tend to be more robust than dispatching procedures, yet

they still require modest computational effort.

Random sampling, particularly biased random sampling, is an alternative approach

to solving combinatorial scheduling problems. Although their performance in most

sequencing problems is unremarkable, they can be adapted to many different types

of problems and their tactical choices can be refined for the situation at hand.

The neighborhood search procedure embodies a simple but effective concept for

solving sequencing problems. Its primary tactical options include the initializing

phase (to obtain the first seed), the choice of a mechanism for generating neigh-

borhoods, and a rule for determining the new seed. With a certain amount of “fine

tuning” for these options, neighborhood search procedures can be reasonably effec-

tive at finding near-optimal solutions, as our brief experiments with the Tw-problem

suggest. In addition, the neighborhood search approach is flexible and can be adapted

to a variety of problem structures.

The neighborhood search procedure also provides a framework for more sophisti-

cated search algorithms, such as tabu search and simulated annealing, that overcome

the local-optimality trap. These other heuristic procedures have their own tactical

options, and much remains to be learned about how those options should be chosen.

We draw attention to the options in each of these techniques for two reasons.

First, in the gap between the concept of a solution methodology and its implementa-

tion, many important details need to be specified, even for the basic single-machine

problem. Moreover, these details can influence performance in a significant way.

Second, the treatment of more complicated models often includes a suggestion

that a particular optimization technique or a particular heuristic strategy is suit-

able for a given scheduling problem. On these occasions, we should be sensitive

to the fact that implementation itself may involve a host of significant questions,

even after the general methodology is selected, and resolving those questions is a

computational art.

Various combinations of procedures sometimes work effectively. For example,

when we studied the insertion procedure, we assumed the jobs were ordered arbitrar-

ily, but they might as well have been ordered by a sorting or dispatching heuristic,

such as MDD. The result is a combined heuristic that usually works better than the

insertion heuristic alone. The idea of running several heuristics and selecting the

EXERCISES 81

best outcome is also used frequently and becomes especially attractive in a parallel-

processor computing environment.

Now, armed with a variety of both heuristic and optimizing capabilities, we can

proceed to more complex problems in sequencing and scheduling.

REFERENCES

Baker, K.R. and J.W.M. Bertrand (1982). A dynamic priority rule for scheduling against

due-dates, Journal of Operations Management 3, 37–42.

Glover, F. (1989). Tabu search—Part I, ORSA Journal on Computing 1, 190–203.

Kanet, J.J. and X. Li (2004). A weighted modified due date rule for sequencing to minimize

weighted tardiness, Journal of Scheduling 7, 261–276.

Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi (1983). Optimization by simulated annealing,

Science 220, 671–680.

Morton, T.E. and D.W. Pentico (1993). Heuristic Scheduling Systems, Wiley, Hoboken, NJ.

Potts, C.N. and L.N. Van Wassenhove (1991). Single machine tardiness sequencing heuristics,

IIE Transactions 23, 346–354.

Rachamadugu, R.M.V. (1987). A note on the weighted tardiness problem, Operations Research

35, 450–452.

Rinnooy Kan, A.H.G., J.K. Lenstra, and B.J. Lageweg (1975). Minimizing total costs in one

machine scheduling, Operations Research 23, 908–927.

Van Laarhoven, P.J.M. and E.H.L. Aarts (1987). Simulated Annealing: Theory and Applica-

tions, Reidel, Dordrecht, The Netherlands.

EXERCISES

4.1. Solve the following 10-job T-problem using heuristic procedures.

Job j 1 2 3 4 5 6 7 8 9 10

pj 32 26 7 55 98 80 41 23 24 100

dj 162 168 153 234 230 184 212 172 156 164

a. Find a solution using the best dispatching rule among SPT, EDD, and MDD.

b. Find a solution using the greedy heuristic procedure.

c. Find a solution using the insertion procedure.

d. Find a solution using a neighborhood search procedure (adjacent pairwise

interchanges), initialized by a sequence that takes the jobs in EDD order.

e. Find a solution using a neighborhood search procedure (last-insertion neigh-

borhoods), initialized by a sequence that takes the jobs in EDD order.

82 HEURISTIC METHODS FOR THE SINGLE-MACHINE PROBLEM

4.2. Computer-based approach to Exercise 4.1. Solve the following 10-job T-

problem using heuristic procedures.

Job j 1 2 3 4 5 6 7 8 9 10

pj 32 26 7 55 98 80 41 23 24 100

dj 162 168 153 234 230 184 212 172 156 164

a. Find a solution using a neighborhood search procedure (adjacent pairwise

interchanges), initialized by a sequence that takes the jobs in EDD order.

b. Find a solution using a neighborhood search procedure (all-insertion neigh-

borhoods), initialized by a sequence that takes the jobs in EDD order.

c. Find a solution using a neighborhood search procedure (all pairwise inter-

changes), initialized by a sequence that takes the jobs in EDD order.

d. Find a solution using a tabu search procedure, initialized by a sequence that

takes the jobs in EDD order.

e. Find a solution using a simulated annealing procedure, initialized by a se-

quence that takes the jobs in EDD order.

f. Find a solution using random sampling, initialized by a sequence that takes

the jobs in EDD order, and terminated so that the computational effort is

roughly equal to the average computational effort in part (c).

4.3. Software-based approach to Exercise 4.1. Solve the following 10-job T-problem

using the Evolutionary Solver.

Job j 1 2 3 4 5 6 7 8 9 10

pj 32 26 7 55 98 80 41 23 24 100

dj 162 168 153 234 230 184 212 172 156 164

4.4. Solve the following 10-job Uw-problem using heuristic procedures.

Job j 1 2 3 4 5 6 7 8 9 10

pj 58 49 90 38 44 42 68 61 10 4

dj 88 175 197 115 109 152 128 135 155 105

wj 3 7 9 4 5 6 7 1 3 8

a. Find a solution using the best dispatching rule among SWPT, EDD, and

WMDD.

b. Find a solution using the greedy heuristic procedure.

c. Find a solution using the insertion procedure.

d. Find a solution using a neighborhood search procedure (adjacent pairwise

interchanges), initialized by a sequence that takes the jobs in EDD order.

EXERCISES 83

4.5. Software-based approach to Exercise 4.4. Solve the following 10-job Uw-

problem using the Evolutionary Solver.

Job j 1 2 3 4 5 6 7 8 9 10

pj 58 49 90 38 44 42 68 61 10 4

dj 88 175 197 115 109 152 128 135 155 105

wj 3 7 9 4 5 6 7 1 3 8

4.6. Solve the following 10-job Tw-problem using heuristic procedures.

Job j 1 2 3 4 5 6 7 8 9 10

pj 58 49 90 38 44 42 68 61 10 4

dj 88 175 197 115 109 152 128 135 155 105

wj 3 7 9 4 5 6 7 1 3 8

a. Find a solution using the best dispatching rule among SWPT, EDD, and

WMDD.

b. Find a solution using the greedy heuristic procedure.

c. Find a solution using the insertion procedure.

d. Find a solution using a neighborhood search procedure (adjacent pairwise

interchanges), initialized by a sequence that takes the jobs in EDD order.

4.7. Software-based approach to Exercise 4.4. Solve the following 10-job Tw-

problem using the Evolutionary Solver.

Job j 1 2 3 4 5 6 7 8 9 10

pj 58 49 90 38 44 42 68 61 10 4

dj 88 175 197 115 109 152 128 135 155 105

wj 3 7 9 4 5 6 7 1 3 8

4.8. Suppose that an equally likely mechanism is used for generating a random

sample of sequences when there are eight jobs. How many sequences must be

evaluated in order to yield a probability of 1
2

that an optimum will be found

in the sample (assuming that a unique optimum exists)? How many sequences

must be evaluated in complete enumeration?

84 HEURISTIC METHODS FOR THE SINGLE-MACHINE PROBLEM

TABLE A. Twelve Test Problems for the Tw-Problem

pi = 90 91 92 94 95 95 96 97 98 99

99 99 100 101 102 103 104 104 104 105

di = 657 754 940 289 204 941 686 509 621 103

356 462 909 790 290 26 7 540 680 0

wi = 8 13 15 8 5 7 12 15 8 8

11 5 14 13 15 6 7 14 12 13

90 94 94 94 96 97 97 98 99 100

101 102 102 103 103 104 104 105 106 107

107 195 673 921 0 298 430 500 697 256

513 478 644 0 0 267 622 859 60 271

7 11 15 14 15 9 12 15 10 14

8 12 12 6 14 8 12 13 10 11

89 91 93 94 94 95 95 96 97 97

97 98 98 99 99 100 100 101 101 112

40 171 9 368 464 68 441 867 0 521

978 639 740 14 976 730 959 811 908 20

9 9 7 6 10 6 10 13 8 5

14 6 8 15 14 6 10 10 5 8

87 90 92 93 98 98 98 98 99 99

99 100 100 101 101 102 102 103 106 113

969 1041 363 258 415 494 1340 1366 242 986

1139 215 736 270 714 593 1350 619 1263 976

10 13 6 6 6 12 13 6 5 5

10 12 12 6 9 7 14 12 5 12

93 96 98 98 99 101 101 101 102 102

102 104 104 104 105 105 106 107 109 109

1365 1076 1269 1324 1334 387 496 1100 279 351

755 376 1068 1349 444 1380 457 380 871 1138

13 5 5 12 10 6 8 12 10 8

15 8 6 8 11 10 14 11 9 10

86 93 93 94 96 97 98 99 100 100

101 101 102 102 103 103 104 104 110 113

544 1193 1304 940 1207 407 721 318 220 873

223 889 236 1185 465 1392 691 932 364 774

14 11 8 6 12 14 12 13 13 15

7 12 14 10 10 5 8 11 10 8

55 68 70 73 77 78 85 86 89 89

92 93 94 94 98 108 126 138 143 170

109 169 1039 1158 1107 0 767 993 643 667

75 612 780 816 721 555 1166 529 0 1237

10 9 7 6 13 9 12 15 14 10

6 8 12 13 12 5 13 8 8 6

EXERCISES 85

TABLE A. (Continued)

pi = 51 71 71 76 81 81 81 90 94 98

107 107 110 112 115 116 117 119 142 148

di = 0 0 365 646 516 873 932 326 87 0

254 613 783 0 0 1169 326 0 382 1150

wi = 15 11 7 11 9 10 14 6 10 8

6 10 9 6 14 14 9 11 9 13

74 74 82 85 86 96 99 103 108 110

112 115 119 123 124 126 127 129 139 142

290 595 415 0 0 555 894 1183 80 362

229 0 232 0 231 864 785 0 0 1001

7 5 10 14 11 8 13 6 9 13

12 6 5 9 13 10 9 5 10 11

60 71 71 76 81 82 93 104 108 108

108 109 113 115 116 118 118 120 122 145

404 394 534 308 778 917 482 472 702 803

1142 1115 811 1191 672 1139 1329 710 534 591

7 13 15 11 15 7 13 10 15 8

5 7 15 7 5 5 11 8 12 13

53 58 69 75 75 83 89 91 93 97

97 99 105 114 117 123 123 133 137 138

508 740 663 1097 1194 764 663 711 831 543

815 511 1032 424 786 816 823 489 587 521

9 7 8 12 9 7 14 9 15 14

10 15 14 10 14 14 8 7 5 8

68 79 80 86 89 94 96 97 100 105

106 109 109 112 118 119 120 124 127 135

437 521 678 841 746 520 610 1112 772 566

928 472 910 499 498 1084 617 1153 1120 974

7 5 13 7 6 7 12 12 12 8

8 8 12 9 15 6 12 5 14 10

5
EARLINESS AND TARDINESS COSTS

5.1 INTRODUCTION

In earlier chapters, we examined the basic single-machine model with regular mea-

sures of performance, which are nondecreasing in job completion times. Most of the

literature on scheduling theory, and therefore much of our understanding of schedul-

ing problems, relates to such regular measures as total flowtime, number of tardy jobs,

and total tardiness. The total tardiness criterion, in particular, has been a standard way

of measuring conformance to due dates, although it ignores the consequences of jobs

completing early and penalizes only those jobs that finish late. However, this empha-

sis began to change with the growing interest in just-in-time (JIT) production, which

espouses the notion that earliness—as well as tardiness—should be discouraged. In a

JIT scheduling environment, a job that completes early must be held in inventory until

its due date, whereas a job that completes after its due date may disrupt a customer’s

operations. Therefore, an ideal schedule is one in which all jobs finish exactly on their

assigned due dates. Of course, JIT encompasses a much broader set of principles than

those relating to due dates, but scheduling models with both earliness and tardiness

(E/T) costs address a fundamental scheduling dimension of the JIT approach.

In this chapter, we examine the implications of the E/T criterion in the basic

single-machine model. The goal of finishing all jobs exactly on their due dates can

be translated into a scheduling objective in which a job incurs a cost related to the

deviation between its completion time and its due date. Let E j and T j represent the

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

86

INTRODUCTION 87

earliness and tardiness, respectively, of job j . These quantities are defined as

E j = max {0, d j − C j } = (d j − C j)
+

T j = max {0, C j − d j } = (C j − d j)
+

Assuming that the cost functions are linear, we associate with each job a unit earliness

cost α j > 0 and a unit tardiness cost β j > 0. The basic E/T objective function for a

schedule S can then be written as f (S), where

f (S) =

n
∑

j=1

[α j (d j − C j)
+ + β j (C j − d j)

+]

or, in light of the definitions given above,

f (S) =

n
∑

j=1

(α j E j + β j T j)

In some formulations of the E/T problem, due dates are given, whereas in others,

the problem is to optimize the due dates and the job sequence simultaneously. Some

of the simplest results for E/T problems have been derived for models in which all

jobs have a common due date. A more general model allows distinct due dates, but as

we shall see, solutions to problems with distinct due dates appear to be intrinsically

different from solutions to problems with a common due date. In a similar vein,

some models prescribe identical costs, but others permit differences among jobs or

differences between the earliness cost and the tardiness cost.

With so many variations of the E/T problem, it is sometimes difficult to sort

out exactly which results apply to which variations. However, a useful organizing

principle is to think in terms of two main models: one with a common due date and

one with distinct due dates. In these initial models, earliness and tardiness costs are

symmetric, and they are the same for all jobs. Each of the two main models supports

more elaborate assumptions, such as the following.

� Treating due dates as decisions may capture the practice in some shops of setting

due dates internally, as targets to guide the progress of shop floor activities.
� Allowing asymmetric earliness and tardiness costs allows us to reflect different

economic consequences for earliness than for tardiness.
� Imposing different costs for different jobs allows us to distinguish among jobs

and/or customers.

The primary role of earliness and tardiness cost functions is to guide solutions

toward the target of meeting all due dates exactly. A perfect schedule—one in which

all due dates are exactly met—is not difficult to recognize, but it may be difficult to

88 EARLINESS AND TARDINESS COSTS

achieve. However, it may not be obvious how to compare imperfect schedules. Differ-

ent cost functions can be seen as suggestions for measuring suboptimal performance

when only the ideal has been well specified. In principle, modeling the economic

implications more accurately can provide us with more realistic models, but typically

the price is reduced tractability.

5.2 MINIMIZING DEVIATIONS FROM A COMMON DUE DATE

5.2.1 Four Basic Results

An important special case in the family of E/T problems involves minimizing the

sum of absolute deviations of the job completion times from a common due date. In

particular, the objective function can be written

f (S) =

n
∑

j=1

|C j − d| =

n
∑

j=1

(E j + T j) (5.1)

where in the latter form, it is understood that the due dates are identical. With the

objective function in that form, it is clear that earliness and tardiness are penalized at

the same rate for all jobs. We refer to this case, where d j = d and α j = β j = 1, as

the basic E/T problem.

At the outset, we give a somewhat simplified characterization of the optimal

solution. Ideally, we would like to construct the schedule so that the due date is, in

some sense, in the middle of the jobs. If d is too tight, then it is not possible to fit

enough jobs in front of d, because no job can start before time zero. Thus, for a

given set of jobs we might discover that d is too tight; this gives rise to the restricted

version of the problem. Otherwise, d is not too tight, giving rise to the unrestricted

version. For example, if the due date is larger than the time required to process all

jobs, then we have the flexibility to place any of the jobs in front of d, so the problem

is unrestricted. Later, we shall see how to determine a more precise boundary between

the restricted and unrestricted versions.

We first consider the unrestricted version of the problem. As an initial step, we

look for dominance properties. For the unrestricted version, three important properties

hold, and we can establish each one using a proof by contradiction.

� Theorem 5.1 In the basic E/T problem, schedules without inserted idle time

between successive jobs constitute a dominant set.

Proof. Suppose that there exists an optimal schedule S with an idle interval of length

t between consecutive jobs i and j , with j following i . Suppose that job i is early

(Ci < d). Then total cost can be reduced if we shift job i (and any jobs that precede

it) later by an amount �t , where �t ≤ min{t, d − Ci }. If primes denote values after

the shift, then for all jobs k, we have T ′
k = Tk and E ′

k ≤ Ek (with a strict inequality

MINIMIZING DEVIATIONS FROM A COMMON DUE DATE 89

for at least one job). Similarly, suppose job j is tardy (C j > d). Then total cost can

be reduced if we shift job j (and any jobs that follow it) earlier by an amount �t ,

where �t ≤ min{t, C j − d}. Because of the common due date, any schedule must

have either job i early or job j tardy, so we have shown how to improve schedule S.

Therefore, S cannot be an optimal schedule.

Theorem 5.1 allows us to consider only schedules in which jobs are contiguous,

but it does not allow us to assume that the first job starts at time zero. We can describe

a schedule by specifying a sequence of the jobs and a start time for the first job in

sequence, after which processing will be continuous. In principle, this means that the

search for an optimum must consider n! different sequences and for each sequence,

the best start time.

� Theorem 5.2 In the basic E/T problem, jobs that complete on or before the

due date can be sequenced in LPT order, and jobs that start on or after the due date

can be sequenced in SPT order.

Proof. Suppose S denotes an optimal schedule in which some adjacent pair of early

jobs is not in LPT order. Then a pairwise interchange of these two jobs will reduce the

total earliness cost and leave the total tardiness cost unchanged. Likewise, if S is an

optimal schedule containing an adjacent pair of jobs that starts late and that violates

SPT order, then an adjacent pairwise interchange will reduce the total tardiness cost

and leave the total earliness cost unchanged. In either case, S cannot be an optimal

schedule.

Theorem 5.2 specifies how to sequence the jobs that complete early and how to

sequence the jobs that start late. In principle, there could also be a single job that

starts before the due date and completes after the due date—that is, a straddling job.

The following result, however, shows that schedules with a straddling job need not

be considered.

� Theorem 5.3 In the basic E/T problem, an optimal schedule exists in which

some job completes exactly at the due date.

Proof. Suppose S is an optimal schedule in which job i starts before the due date and

completes after it. In symbols,

Ci − pi < d < Ci

Let b denote the number of early jobs in sequence, and let a denote the number of

tardy jobs. Suppose that a > b. Consider shifting the entire schedule earlier so that

job i completes exactly at time d. In other words, all jobs will complete earlier by

an amount �t = Ci − d > 0. Then the increase in earliness cost is b �t , while the

decrease in tardiness cost is a �t . The net impact on total cost is (b − a)�t , which is

negative. On the other hand, suppose that b ≥ a. In this case, shift the entire schedule

90 EARLINESS AND TARDINESS COSTS

later so that job i starts exactly at time d. In other words, �t = d − (Ci − pi) > 0.

This time the impact on total cost is (a − b)�t , which is nonpositive. In either case,

therefore, we can find a schedule with the property of the theorem that is at least as

good as S.

As a consequence of Theorem 5.3, we may schedule each job either entirely

before the due date or entirely after it. This means that a solution can be partitioned

into two sets of jobs, an early set, which includes the one job precisely on time,

and a tardy set. Once the membership in the two sets is known, the sequence of

the jobs within each set can be determined by Theorem 5.2. The resulting schedule

is sometimes called a V-shaped sequence, because except for ties, the first set is

sequenced in decreasing order of processing times, and the second is processed in

increasing order of processing times. We can also refer to it as an LPT/SPT sequence.

Once we know how jobs are assigned to the early set and the tardy set, sequencing

the jobs is straightforward. Therefore, the search for an optimum need only consider

the 2n ways of forming sets, instead of all n! sequences. Even if we know the optimal

job sequence, Theorem 5.3 is critical. Without it, we would have a potentially infinite

number of schedules to evaluate because the starting time of the first job in sequence

would remain unresolved. Theorem 5.3 allows us to limit our attention to those

schedules in which some job’s completion time falls precisely at the due date—that

is, to a finite set. As we shall see, these three properties generalize when we examine

problems that are more complicated.

The detailed analysis of this problem demonstrates that many optimal solutions

may exist. Let B represent the set of jobs completing on or before the due date, and let

b denote the number of jobs in B, or the cardinality of B, denoted |B|. Similarly, let A

represent the set of jobs completing after the due date, and let a = |A|. Furthermore,

let Bi denote the index of the ith job in B, and let Ai denote the index of the ith job

in A. The earliness cost for job Bi is the sum of the processing times of all jobs in B

that complete later. In symbols,

EBi = pB(i+1) + pB(i+2) + · · · + pBb

where EBb = 0. The total cost for the jobs in B then becomes

CB =

b
∑

i=1

EBi =

b
∑

i=1

[pB(i+1) + pB(i+2) + · · · + pBb]

With some algebraic manipulation, this sum can be rewritten

CB = 0pB1 + 1pB2 + · · · + (b − 2)pB(b−1) + (b − 1)pBb (5.2)

Similarly, the total cost for the jobs in A is

CA = apA1 + (a − 1)pA2 + · · · + 2pA(a−1) + 1pAa (5.3)

MINIMIZING DEVIATIONS FROM A COMMON DUE DATE 91

The objective function is the sum of CB and CA, and the processing times are given.

When a and b are known, this sum of products is minimized by matching the smallest

coefficient in the sum with the largest processing time, the next smallest coefficient

with the next largest processing time, and so on, with ties broken arbitrarily. Thus,

the smallest coefficient is zero and appears only in CB . Therefore, the longest job

is assigned to B and, in light of Theorem 5.2, appears first in sequence. The next

smallest coefficient is 1, appearing in both CB and CA. This means that one of the

next two longest jobs can be assigned to A, as its last job, and the other to B, as

its second job. Continuing in this fashion, we ultimately find that the shortest job is

either the last job in B or the first job in A. At intermediate stages, there are two ways

to assign each pair of jobs that must be split between the sets A and B. (If n is even,

we can create a fictitious additional job with zero processing time to complete the

last pair.) Thus, the total number of potentially optimal schedules is 2r , where

r = (n − 1)/2 if n is odd

= n/2 if n is even

(Actually, this observation assumes that the processing times are unique. If there are

ties, the number of optimal schedules is even greater.) The implied procedure for

constructing optimal schedules is as follows.

Algorithm 5.1 Solving the Basic E/T Problem

Step 1. Assign the longest job to set B.

Step 2. Find the next two longest jobs. Assign one to B and one to A.

Step 3. Repeat Step 2 until there are no jobs left, or until there is one job left, in which

case assign this job to either A or B. Finally, order the jobs in B by LPT and the

jobs in A by SPT.

Next, we provide an example that illustrates the application of Algorithm 5.1.

� Example 5.1 Consider the jobs described in the following table, with a given

common due date of d = 24.

Job j 1 2 3 4 5 6

p j 1 3 4 6 7 9

Following the first step of Algorithm 5.1, we assign job 6 to B. Then we split jobs

4 and 5 between A and B, and we split jobs 2 and 3 between A and B. Lastly, we

assign job 1 to either A or B. The eight resulting schedules, each with total cost of

30, are listed in Table 5.1. Only four distinct sequences appear in the list of optimal

schedules. Those occur because of the choice in Step 3 to assign the last job either to

the end of B or the beginning of A. In either case, the sequence is the same, but the

schedule is different. (The total processing time in set B is affected by this choice.)

92 EARLINESS AND TARDINESS COSTS

TABLE 5.1

Jobs in Set B Jobs in Set A Sequence Time for Set B Start Time

6531 24 653124 21 3

653 124 653124 20 4

6521 34 652134 20 4

652 134 652134 19 5

6431 25 643125 20 4

643 125 643125 19 5

6421 35 642135 19 5

642 135 642135 18 6

Finally, the start time of the schedule is the difference between the due date and the

total processing time in B.

In light of the fact that there can be many optimal schedules in the basic E/T

problem, we might be interested in a secondary measure of performance. In particular,

suppose the secondary objective is to minimize the total processing time in set B.

In Algorithm 5.1, this is accomplished by assigning the shorter job to B each time

Step 2 is executed and if n is even, by assigning the shortest job to A in Step 3. We

refer to this implementation as Algorithm 5.1∗, which can be implemented to run in

O(n log n) time.

Two insights emerge from this discussion. First, the implementation of Algorithm

5.1∗ dictates the values of a and b. In particular, if n is even, we can minimize the

sum of (5.2) and (5.3) by taking b = a; if n is odd, we take b = a + 1. A more formal

statement follows.

� Theorem 5.4 In the basic E/T problem, an optimal schedule exists in which

job [b] completes at time d, where b = ⌈n/2⌉ and ⌈x⌉ denotes the smallest integer

greater than or equal to x .

This result has another application. Suppose that the sequence of jobs is given and

not necessarily optimal. Then Theorems 5.1 and 5.3 hold for schedules containing

the given job sequence, and we can use Theorem 5.4 to determine which job should

complete exactly at the due date.

Assume for convenience that the jobs are indexed in SPT order, with pn as the

longest processing time. When we implement Algorithm 5.1∗, the total processing

time in set B can be written

� = pn + pn−2 + pn−4 + · · · (5.4)

In other words, we calculate � by taking the jobs in longest-first order and summing

every other processing time.

The significance of � relates to the definition of the restricted and unrestricted

versions of the problem. The definition of the unrestricted version given earlier was

MINIMIZING DEVIATIONS FROM A COMMON DUE DATE 93

vague in that it was based on the notion that the due date should not be too tight.

Now that we have developed (5.4), we can be more precise. The value of � in (5.4)

is the smallest value of d consistent with an unrestricted version of the problem. In

other words, the problem is unrestricted for d ≥ � and restricted for d < �. When

the problem is restricted, Algorithm 5.1 may not produce an optimal schedule. When

the problem is unrestricted, Algorithm 5.1∗ guarantees an optimal schedule.

We can see from Table 5.1 that in our example, � = 18. Given the job set in

this example, if the common due date were d = 18, the problem would still be

unrestricted, and Algorithm 5.1∗ would produce an optimal schedule. For d = 17, or

anything lower, the problem would be restricted.

Algorithm 5.1∗ thus achieves a feasible unrestricted solution whenever one exists.

But this variation of Algorithm 5.1 maximizes the idle time before starting the first

job, and thus maximizes the makespan, Cmax. To prepare the machine for the next set

of jobs, however, it may be safer as a secondary objective to minimize the makespan.

Let Algorithm 5.1∗∗ be defined by reversing all the optional choices of Algorithm

5.1∗—that is, we select the longer job for B in Step 2 and assign the shortest job

to B in Step 3 if n is even (yielding b = a + 2 rather than b = a). Instead of (5.4),

Algorithm 5.1∗∗ yields

�∗∗ = pn + pn−1 + pn−3 + · · ·

If d ≥ �∗∗, Algorithm 5.1∗∗ yields an unrestricted solution and achieves the minimal

makespan as a secondary objective. If � < d < �∗∗, then the E/T problem is unre-

stricted; but minimizing the secondary objective becomes NP-hard (in the ordinary

sense). In Example 5.1, as long as the due date is 21 or more, Algorithm 5.1∗∗ solves

the E/T problem optimally. In Table 5.1, the solution of Algorithm 5.1∗∗ is in the first

row and that of Algorithm 5.1∗ in the last. For d = 24, the former yields Cmax = 33

and the latter Cmax = 36. Finally, when n is even, Algorithms 5.1∗ and 5.1∗∗ yield

two distinct b values, n/2 and 1 + n/2. This implies that for any sequence (optimal

or not), it does not matter if job [1 + n/2] completes exactly on the due date or

starts exactly on the due date. Indeed, this job can even straddle the due date without

compromising optimality.

5.2.2 Due Dates as Decisions

One variation of the basic E/T problem treats the due date as a decision variable. As

we discussed in conjunction with the T-problem in Section 2.4.4, this formulation

involves the objective of choosing the due date to be as tight as possible. Treating

the due date as a decision in the E/T problem is equivalent to solving the unrestricted

version of the basic problem by Algorithm 5.1∗. Suppose we solve a particular

unrestricted version with given due date d1. Consider the problem consisting of the

same set of jobs but a due date of d2 > d1. We can solve this second problem simply

by taking the solution for d1 and shifting the entire schedule later by (d2 − d1). As

long as d1 and d2 give rise to unrestricted versions of the problem, then the optimal

values of their E/T objective functions must be the same. In other words, the optimal

94 EARLINESS AND TARDINESS COSTS

Optimal

Total

Cost

Δ Due date

FIGURE 5.1 Optimal total cost as a function of the due date.

total cost in an unrestricted instance of the basic problem is constant as the due date

is varied.

As for the restricted version, which we shall examine in the next section, it is very

similar to the unrestricted version. Every feasible solution to the restricted version

is also a feasible solution to the unrestricted version consisting of the same jobs and

a sufficiently later due date. (The reverse is not true, however.) In fact, if we start

with a restricted version and increase the value of the due date d, we find that the

optimal total cost is nonincreasing in d. Furthermore, as we noted earlier, the optimal

total cost eventually levels off when d is large enough to give rise to the unrestricted

version. In short, we can think of the relationship between the optimal total cost and

the due date as depicted by the graph in Figure 5.1. As the graph shows, � is the

smallest value of d at which the optimal total cost attains its minimum.

If d is a decision variable, then one way to find an optimal solution is to set d = �

and then utilize Algorithm 5.1∗. Thus, faced with a problem in which d is a decision,

we find a solution by solving the unrestricted version of the basic E/T problem.

5.3 THE RESTRICTED VERSION

The restricted version of the problem occurs when d < �. In that case, Theorems 5.1

and 5.2 still hold, but Theorem 5.3 does not: the optimal solution may contain a

straddling job. It turns out that V-shaped schedules still constitute a dominant set.

(This is not as obvious as it was in the unrestricted version. In a V-shaped schedule,

the shortest job may be the last job to complete on or before the due date, the first

job to start on or after the due date, or a straddling job.) Finally, Theorem 5.4 does

not hold either, because it requires Theorem 5.3.

In the restricted version of the problem, it is tempting to assume that the schedule

should start at time zero. This seems logical at first because the restricted version

arises when the due date is too tight. We would prefer to place b selected jobs in

set B, but sufficient time is not available prior to the due date. It makes sense that

the schedule would then be compressed toward time zero. Nevertheless, this intuitive

argument fails.

THE RESTRICTED VERSION 95

� Example 5.2 Consider a problem containing n = 5 jobs with known process-

ing times and a given due date of d = 5.

Job j 1 2 3

p j 1 1 10

There are six schedules with zero start time, and the minimum cost is 14, achieved

by the sequences 123 and 213. However, if the start time of either schedule is delayed

until time 3, then the cost drops to 11. As this example shows, it may be optimal to

have a delay at the start of the schedule. It can be shown that an optimal schedule

always exists in which either (1) the schedule starts at time zero, or (2) some job

completes exactly at the due date.

No simple way exists, comparable to the matching procedure in Algorithm 5.1, to

find an optimal solution to the restricted version of the basic E/T problem. Indeed, the

restricted version is NP-hard. Nevertheless, a pseudopolynomial solution algorithm

based on dynamic programming is capable of solving problems containing several

hundred jobs in modest amounts of computer time.

Although no simple technique exists for finding an optimum, a remarkably effec-

tive heuristic is available. The procedure builds a V-shaped schedule that starts at

time zero. This means that the maximum completion time equals the sum of the job

processing times. At each stage of the procedure, let L denote the amount of time

available before the due date, and let R denote the amount of time available after the

due date. As shown in Figure 5.2, we initially have

L = d and R =

n
∑

j=1

p j − d

From this starting point, we fill the positions in the job sequence from both ends toward

the middle. Taking the jobs in longest-first order, we use the following decision rule:

If L > R, assign the next job to the first available position in sequence.

If L ≤ R, assign the next job to the last available position in sequence.

When we assign job j to the first position in sequence, we subtract p j from L; when

we assign job j to the last position in sequence, we subtract p j from R.

Early jobs

L R

•pj
Late jobs

d

FIGURE 5.2 Layout for the heuristic procedure.

96 EARLINESS AND TARDINESS COSTS

TABLE 5.2

L R Assignment Sequence

L = 90 R = 83 Place job 6 first 6XXXXX

L = 37 R = 83 Place job 5 last 6XXXX5

L = 37 R = 33 Place job 4 first 64XXX5

L = −11 R = 33 Place job 3 last 64XX35

L = −11 R = 22 Place job 2 last 64X235

L = −11 R = 12 Place job 1 last 641235

� Example 5.3 Consider the following six-job example, with d = 90.

Job j 1 2 3 4 5 6

p j 1 10 11 48 50 53

The step-by-step construction of the sequence is detailed in Table 5.2. The se-

quence constructed by the procedure, 6-4-1-2-3-5, yields a total cost of 198.

We can add a simple test to this procedure that will sometimes identify a situation

where the total cost can be reduced by delaying the start of the schedule. Let e denote

the number of jobs that finish before the due date. Equivalently, (n − e) is the number

of jobs that finish on or after the due date. Suppose we delay the start of the schedule

by a small amount, �t . Then e jobs will have their costs reduced by �t , and (n − e)

jobs will have their costs increased by �t . The delay leads to a reduction in the total

cost if

e �t > (n − e)�t

Algebraically, this is equivalent to the condition e > n/2. Thus, if more than half the

jobs are early, then the start of the schedule should be delayed, at least long enough

to make the last early job complete exactly at the due date.

Suppose we invoke this test in our example for the sequence 632145, which is a

V-shaped alternative to the heuristic solution in the example above, but with a total

cost of 210. In this solution, there are four jobs that complete before the due date of

90, so that e > n/2. The fourth job in sequence, job 1, finishes at time 75 when the

schedule starts at time zero. Therefore, a delay of 15 is desirable: it reduces the total

cost to 180, which is optimal for this example.

5.4 ASYMMETRIC EARLINESS AND TARDINESS COSTS

A generalization of the basic model derives from the notion that earliness and tardiness

should be penalized at different rates. As noted earlier, α may represent a holding cost

while β represents a tardiness cost. These costs are likely to be different, especially

ASYMMETRIC EARLINESS AND TARDINESS COSTS 97

because α tends to be determined by endogenous factors whereas β tends to be

exogenous. In particular, let

f (S) =

n
∑

j=1

(αE j + βT j)

This problem is in many respects a straightforward generalization of the basic E/T

problem. Again, it gives rise to a restricted version as well as an unrestricted version. In

the unrestricted version, an optimal solution has the following properties, generalizing

Theorems 5.1–5.3:

1. There is no inserted idle time.

2. Jobs that complete on or before the due date should be sequenced in LPT order

and jobs that start late should be sequenced in SPT order.

3. One job completes at time d.

These results are again straightforward to prove by contradiction. As a result of

Theorem 5.3, it again follows that an optimal schedule is V-shaped.

Next, the components of the objective function, analogous to (5.2) and (5.3), are

the total cost for B and the total cost for A,

CB = 0pB1 + αpB2 + · · · + (b − 2)αpB(b−1) + (b − 1)αpBb (5.5)

CA = aβpA1 + (a − 1)βpA2 + · · · + 2βpA(a−1) + βpAa (5.6)

The objective function is the sum of CB and CA, and the processing times are given.

This sum of products can be minimized by matching the smallest coefficient in the

sum with the largest processing time, the next smallest coefficient with the next largest

processing time, and so on, with ties broken arbitrarily. An alternative statement of

the algorithm, with a precise tie-breaking mechanism, is given as Algorithm 5.2. This

procedure finds an optimal schedule and minimizes the total processing time in set

B. Thus, it is analogous to Algorithm 5.1∗.

Algorithm 5.2 Solving the E/T Problem with Different Earliness

and Tardiness Costs

Step 1. Initially, sets B and A are empty, and the jobs are in LPT order.

Step 2. If α|B| < β(1 + |A|) then assign the next job to B; otherwise, assign the next

job to A.

Step 3. Repeat Step 2 until all jobs have been scheduled. Finally, order the jobs in B

by LPT and the jobs in A by SPT.

If α|B| = β(1 + |A|), the algorithm allocates the next job to A. If we allocate

such jobs to B instead, we obtain a version that is analogous to Algorithm 5.1∗∗. As

98 EARLINESS AND TARDINESS COSTS

TABLE 5.3

|B| |A| α β α|B| β(1 + |A|) Outcome

0 0 5 2 0 2 Assign job 6 to B

1 0 5 2 5 2 Assign job 5 to A

1 1 5 2 5 4 Assign job 4 to A

1 2 5 2 5 6 Assign job 3 to B

2 2 5 2 10 6 Assign job 2 to A

2 3 5 2 10 8 Assign job 1 to A

an illustration, consider Example 5.1, with d = 24, and suppose that α = 5 and β =

2. Again, the SPT ordering is as follows.

Job j 1 2 3 4 5 6

p j 1 3 4 6 7 9

The steps in Algorithm 5.2 are listed in Table 5.3.

As a result of applying the algorithm, jobs 6 and 3 are assigned to B, and jobs 1,

2, 4, and 5 are assigned to A. All processing times are distinct, and the decision rule

in Step 2 of the algorithm encounters no equalities, so only one optimal schedule can

be produced. The sequence 631245, with a start time of 11, yields a total cost of 84.

As in the basic E/T problem, two additional results apply. First, we can restate

Theorem 5.4 more generally.

� Theorem 5.4a In the basic E/T problem with unit earliness cost α and unit

tardiness cost β, an optimal schedule exists in which the bth job in sequence completes

at time d, where b = ⌈nβ/(α + β)⌉.

In our example, the theorem implies that b = ⌈12/7⌉ = 2, as we observe in Ta-

ble 5.3. When ⌈nβ/(α + β)⌉ = nβ/(α + β), the alternative version of the algorithm

would produce b = ⌈nβ/(α + β)⌉ + 1, and job [nβ/(α + β) + 1] can straddle the

due date.

The second result involves the total processing time for set B in the optimal

schedule. Let

� = pB1 + pB2 + · · · + pB(b−1) + pBb (5.7)

As before, the problem is unrestricted for d ≥ �. Recall that in the simpler problem

with α = β, we can calculate � in (5.4) directly from given parameters, before

solving the problem. Here, in the case of different earliness and tardiness costs, we

cannot compute � in advance. We must solve the problem in order to calculate � in

(5.7). In our example, jobs 6 and 3 make up set B; therefore, � = 13. For d < 13,

this problem corresponds to the restricted version.

QUADRATIC COSTS 99

TABLE 5.4

α = β α �= β

Problem Average Number of Average Number of

Size Error Optima Error Optima

n = 8 0.40% 10 1.52% 5

n = 10 0.24% 9 0.84% 5

n = 12 0.26% 4 0.66% 7

n = 15 0.32% 4 0.07% 10

In the restricted version of the problem, Theorems 5.1 and 5.2 still hold, and

V-shaped schedules constitute a dominant set. We can also generalize the decision

rule described in the previous section: instead of the condition L > R, we now use

αL > βR. In addition, we can generalize the condition that indicates delaying the

start of the schedule to e > nβ/(α + β).

To suggest how effective the heuristic might be, it was tested on two sets of

randomly generated problems, one with α = β and the other with α �= β. First, job

processing times were generated, and the solution to the unrestricted version was

obtained, thus allowing � to be calculated. Next, a due date was randomly sampled

between �/2 and �. The resulting problem was solved optimally and by the heuristic

method. This process was repeated for each of 20 problems for each problem size

in both sets of test problems. Table 5.4 summarizes the computational results for the

160 problems, where average error represents the percent deviation of the heuristic

method from the optimum, averaged over the 20 replications. The main observations

are (1) that the average error is usually below 1%, and (2) that the heuristic finds an

optimal solution roughly one-third of the time.

5.5 QUADRATIC COSTS

In some cases, large deviations from the due date are highly undesirable, and it might

be more appropriate to use squared deviations from the common due date as the

performance measure. Thus, consider the objective function

f (S) =

n
∑

j=1

(C j − d)2 =

n
∑

j=1

(

E2
j + T 2

j

)

(5.8)

This objective is the quadratic analog of the absolute deviation criterion in (5.1).

Moreover, suppose that d is a decision variable. If the values of the completion times

C j were known, then the best choice of d for minimizing f (S) would be the mean

completion time,

µ =
1

n

n
∑

j=1

C j

100 EARLINESS AND TARDINESS COSTS

With this choice of the due date, we would rewrite the objective function as

f (S) =

n
∑

j=1

(C j − µ)2

which, except for a factor of n, is the definition of the completion-time variance. When

the due date is given, the reasoning of Section 5.2.2 applies. As long as the problem

is unrestricted, the optimal schedule assigns completion times so that their mean is

equal to the given due date. Therefore, the unrestricted version of the quadratic E/T

problem is equivalent to minimizing the variance of completion times.

In spite of its equivalence to the completion-time variance problem, the quadratic

E/T problem is not easily solved. For the unrestricted problem with objective function

(5.8), Theorems 5.1 and 5.2 hold, but µ need not coincide with any completion time, so

Theorems 5.3 and 5.4 do not hold. Only enumerative approaches have been developed

for this problem, and some progress has been made with heuristic procedures. In fact,

the most successful heuristic solutions have been obtained using neighborhood search

techniques, where the neighborhoods are generated by pairwise interchanges.

5.6 JOB-DEPENDENT COSTS

An obvious direction for generalization is to permit each job to have its own costs α j

and β j . Specifically, the objective function takes the form

f (S) =

n
∑

j=1

(α j E j + β j T j)

When α j = β j , the tardiness cost matches the earliness cost for any particular job, but

the costs may differ among jobs. Even the unrestricted version of this case is NP-hard.

However, a pseudopolynomial solution algorithm based on dynamic programming is

capable of solving problems containing several hundred jobs in modest amounts of

computer time.

In the more general case where α j �= β j , versions of Theorems 5.1–5.3 hold, so

an optimal solution has the following properties.

1. There is no inserted idle time.

2. Jobs that complete on or before the due date can be sequenced in nonincreasing

order of the ratio p j/α j , and jobs that start late can be sequenced in nonde-

creasing order of the ratio p j/β j , thus forming an LWPT/SWPT sequence.

3. One job completes at time d.

We can again restate Theorem 5.4 more generally, to specify a condition for b.

� Theorem 5.4b In the basic E/T problem with unit earliness costs α j and

unit tardiness costs β j , an optimal schedule exists in which the bth job in sequence

DISTINCT DUE DATES 101

completes at time d, where b is the smallest integer satisfying the inequality

∑

i∈B

(αi + βi) ≥

n
∑

j=1

β j

As in the unrestricted version of the basic E/T problem, the search for an optimal

schedule must enumerate the set of schedules consistent with these properties. How-

ever, no property analogous to the matching property is available to speed up this

search. In principle, all 2n dominant sets must be examined.

5.7 DISTINCT DUE DATES

The general E/T problem contains different due dates in the job set. This feature tends

to make it more difficult to determine a minimum-cost schedule than in the problems

discussed thus far. However, if the due dates are treated as decision variables, the

problem turns out to be relatively easy to solve. When the due dates are completely

flexible, we can select any sequence we wish (using a secondary objective) and set

d j = C j . In addition, if we choose total flowtime F as the secondary objective, we can

trade off total E/T costs with total flowtime, using the following objective function:

f (S) =

n
∑

j=1

(αE j + βT j + γ F j)

The solution is given by SPT, with the schedule starting at time zero. This solution also

minimizes D = �d j (which is typically the objective when due dates are decisions,

as in Section 2.4.4).

In the general case, we assume that due dates are given and distinct and that the

objective function is

f (S) =

n
∑

j=1

(α j E j + β j T j)

This problem is NP-hard even in the symmetric case with identical costs. Moreover,

Theorems 5.1 and 5.2 do not extend to this case. In particular, inserted idle time may

be desirable. Although the best sequence without inserted idle time is not necessarily

the best sequence after allowing idle time, the search for an optimal schedule can

be decomposed into two subproblems: (1) finding a good job sequence and (2)

scheduling inserted idle time. The second step involves scheduling the start times of

all jobs, and we next examine this problem in more detail.

Consider the scheduling problem for a given job sequence, and assume that the

jobs are numbered by sequence position. A schedule can be partitioned into blocks,

which are sets of contiguous jobs in the schedule. Idle time is inserted between blocks

102 EARLINESS AND TARDINESS COSTS

but not within blocks. We can think of the schedule as if jobs were made available (or

released) to the shop intermittently, in groups. The groups correspond to the blocks,

and the time at which a block is permitted to start is called its release date. In an

optimal schedule, the last job in any block cannot be early and the first job in a block

cannot be tardy unless it starts at time zero (which can happen only in the first block).

The procedure begins by assigning the first job to the first block and scheduling it

to complete at its due date, or, if this is not feasible, to start at time zero. Jobs are then

considered in the order in which they appear in the given sequence. If job j is early

when appended to the existing block, then it is rescheduled to complete at its due

date, thus starting a new block. Otherwise, job j is appended to the existing block,

starting when job (j − 1) completes. At this stage, if we can achieve a better total

cost by shifting all jobs in the block earlier, we do so. This shift is possible only if we

have inserted idleness, or a gap, between the previous block and the current block. (If

the current block starts at time zero, then it has a gap of zero.) If the gap between the

blocks is consumed (becomes zero) before the block’s cost is minimized, we merge

the blocks. Any further shift now applies to the merged block. We can characterize

an optimal release date of a block by adapting Theorem 5.4b to apply only to the jobs

inside the block. Because the due dates are distinct, instead of requiring the bth job to

finish precisely on time, we now require at most (b − 1) jobs to be strictly early and

at most (n − b) jobs to be strictly tardy. (To satisfy both conditions, at least one job

would have to be precisely on time.) A block that cannot satisfy this adapted condition

must start as soon as possible: it should be merged with the previous block—which

then must satisfy the same condition—or start at time zero.

� Example 5.4 Consider the following 10-job example, with unit earliness cost

α = 1 and unit tardiness cost β = 3.

Job j 1 2 3 4 5 6 7 8 9

p j 1 4 3 6 2 7 6 2 5

d j 4 6 7 10 28 31 35 38 40

We take the jobs in numbered order, which is also the EDD sequence. Job 1 is due at

time 4, so it can avoid costs by starting at 3. Job 2 cannot follow job 1 and complete

on time, so we schedule it immediately following job 1, leading to completion at time

8. The cost of jobs 1 and 2 is 1 × 0 + 3 × 2 = 6.

We examine the possibility of starting job 1 earlier. If it starts at time 2, its earliness

cost is 1, but job 2 starts at time 3, completes at 7, and incurs a cost of 3. The total

cost for the two-job block is 4, an improvement. If the block starts at time 1, its cost

drops to 2, and if the block starts at time zero, its total cost rises to 4. So we keep

jobs 1 and 2 as a block starting at time 1.

Next, consider job 3. Added to the block, job 3 completes at time 9, and the

three-job block incurs a cost of 8. If the block starts at time zero, its total cost drops

to 7, so we start the schedule at time zero. No further shifting is possible.

DISTINCT DUE DATES 103

Next, consider job 4, which can start at time 8 and complete at time 14, making it

late by 4. No shifting is possible. Job 5 could start at time 14, but it would then be

quite early, so we start a new block consisting of job 5 alone, starting at time 26.

Next, consider job 6. Added to the second block, job 6 completes at time 35. The

total cost for the second block is then 12, and we probe for cost reduction by starting

the block earlier. We can shift the block to start as early as time 22, in which case job

6 completes at its due date, and the block incurs total cost of 4.

Next, consider job 7. Added to the second block, job 7 completes at time 37. We

can shift the block 2 time units earlier to minimize the total cost in the block.

Next, consider job 8, which would be early if appended to the second block. We

start a third block at time 36, allowing job 8 to complete at its due date.

Finally, consider job 9. Added to the third block, job 9 completes at time 43. The

third block can be shifted earlier to reduce the total cost incurred by its jobs, but when

the block is shifted earlier by one time unit, the time gap between the second and

third blocks disappears. Those two blocks become merged, and no shift to an earlier

start can reduce total costs.

The full schedule consists of two blocks, one starting at time zero with job 1, and

the second starting at time 19 with job 5. Jobs 1–4 constitute the first block, in which

the jobs are processed without inserted idle time, so the block completes at time 14.

Jobs 5–9 constitute the second block, in which the jobs are processed without inserted

idle time, completing at time 41. In the second block, four of the five jobs are early

or on time, satisfying the condition of Theorem 5.4a. This condition does not apply

to the first block because it could not be shifted earlier than time zero.

For the special case of symmetric and identical costs (α j = α = β = β j), it is

computationally easy to decide how far back to push a block. At each stage, the

procedure tries to maintain b > a, where b denotes the number of nontardy jobs

in the block, and a denotes the number of tardy jobs in the block. When job j is

added at the end of the block, if b > a or if the schedule starts at time zero, then

no improvement is possible at this stage. Otherwise, job j , along with the preceding

jobs in its block, should be shifted earlier until one of three possibilities occurs:

(1) the start of the entire schedule is shifted back to time zero, (2) some job in the

block completes exactly at its due date, or (3) the inserted idle time following the

previous block is squeezed to zero and the blocks are merged. When one of these

three conditions is encountered, we proceed to the scheduling of job (j + 1), and

we stop when all jobs are scheduled. An algorithm for scheduling inserted idle time

for a given sequence can be implemented in polynomial time, even when the costs

are not symmetric and identical, although a slightly more efficient implementation is

possible in the special case. The computational efficiency is relevant because such a

procedure must be incorporated into a routine that searches for the optimal sequence.

Given that the idle time can easily be optimized for a specified job sequence, the

task remaining is to locate the best sequence. Branch and bound approaches to finding

the optimal sequence have demonstrated the capability to solve problems containing

at least 20 jobs, but larger problems are sometimes difficult to handle. Computational

tests on small problems indicate that a neighborhood search heuristic yields solutions

that average within 2% of optimum.

104 EARLINESS AND TARDINESS COSTS

5.8 SUMMARY

The earliness/tardiness problem has received considerable attention as JIT concepts

have become more prominent in practice. The E/T problem represents a departure

from most basic single-machine models because it involves a performance measure

that is not regular. In the major results we have covered, we can discern two classes

of problems. One class involves a common due date for all jobs; the other class

accommodates different due dates. Solutions to the model with common due dates

involve certain key features, namely, V-shaped schedules and no idle time between

jobs, as described by Theorems 5.1 and 5.2.

It is worth contemplating how these properties might provide guidance for schedul-

ing in complex systems with E/T criteria. The desirability of avoiding inserted idle

time suggests that dispatching procedures can be effective. (Dispatching procedures

allow a scheduling decision to be made in real time when a machine becomes idle,

rather than in advance.) The optimality of V-shaped sequences presents some diffi-

culties, however, because it calls for a changeover from longest-first dispatching to

shortest-first dispatching. Furthermore, during the first phase, we should skip some

long jobs and allocate them to the second phase. The optimal dispatching rule can

therefore be viewed as a dynamic priority scheme that changes dramatically during

processing. In contrast, static sequencing rules such as SPT or EDD have unchanging

relative priorities. Thus, the lesson we draw is that E/T criteria with common due

dates are likely to require relatively sophisticated dispatching procedures.

In addition, it is important to distinguish between the restricted and unrestricted

versions of the common due date problem. In the unrestricted version (or equivalently,

the version in which the due date is a decision), the due date coincides with a job

completion time, and a specific decision rule determines the optimal location of the

due date in any job sequence, as described by Theorems 5.3 and 5.4. However, the

restricted version of the problem does not have these properties and is therefore more

difficult to solve. If this result has a practical lesson, it may point to the difficulty of

finding a good schedule when the due date is relatively tight. In other words, costs will

be lower—and finding an optimum will be easier—if we can operate in a situation

where the due date is not restrictive. Although this principle is not surprising, it

suggests that in setting a due date, a scheduler should consider where the boundary

lies between a restrictive due date and a nonrestrictive one.

The second, more important class of problems has distinct due dates. Problems in

this class are intrinsically more difficult to solve, and few effective techniques have

been established. Solving these problems involves two steps: sequencing the jobs

and determining inserted idle time, where the best allocation of idle time depends

on the job sequence. In general, it appears that inserting idle time is not a complex

problem for a given sequence, but only branch and bound techniques, or some form

of enumerative search, can be effective at finding the optimal sequence. The lesson

from this class of problems may be that dispatching procedures—even sophisticated

ones—do not provide the best hope for effective solutions. This observation suggests

that in the presence of due dates and nonregular measures of performance, we must

either plan idle time explicitly or negotiate earlier deliveries with reduced costs.

EXERCISES 105

Compared to regular performance measurements, the E/T problem may provide a

more realistic modeling of the true economic implications of scheduling decisions.

Similarly, stochastic models that are based on the E/T problem can include a more

realistic accounting of the economic implications of randomness. Indeed, this analysis

leads to the specification of safety time. In the next two chapters, we develop this

idea further.

REFERENCES

Bagchi, U., Y. Chang, and R. Sullivan (1987). Minimizing absolute and squared deviations of

completion times with different earliness and tardiness penalties and a common due date,

Naval Research Logistics Quarterly 33, 227–240.

Baker, K.R. and G.D. Scudder (1990). Sequencing with earliness and tardiness penalties: a

review, Operations Research 38, 22–36.

Cheng, T.C.E. (1984). Optimal due date determination and sequencing of n jobs on a single

machine, Journal of Operational Research Society 35, 433–437.

De, P., J. Ghosh, and C. Wells (1989). A note on the minimization of mean squared deviation

of completion times about a common due date, Management Science 35, 1143–1147.

Fry, T., R. Armstrong, and J. Blackstone (1987). Minimizing weighted absolute deviation in

single machine scheduling, IIE Transactions 19, 445–450.

Hall, N. and M. Posner (1991). Earliness–tardiness scheduling problems, I: weighted deviation

of completion times about a common due date, Operations Research 39, 836–846.

Hall, N., W. Kubiak, and S. Sethi (1991). Earliness–tardiness scheduling problems, II: deviation

of completion times about a restrictive common due date, Operations Research 39, 847–856.

Hassin, R. and M. Shani (2005). Machine scheduling with earliness, tardiness and non-

execution penalties, Computers & Operations Research 32, 683–705.

Kanet, J. (1981). Minimizing the average deviation of job completion times about a common

due date, Naval Research Logistics Quarterly 28, 643–651.

Kanet, J. (1981). Minimizing variation of flow time in single machine systems, Management

Science 27, 1453–1459.

Raghavachari, M. (1986). A V-shape property of optimal schedule of jobs about a common

due date, European Journal of Operations Research 23, 401–402.

Sundararaghavan, P. and M. Ahmed (1984). Minimizing the sum of absolute lateness in single-

machine and multimachine scheduling, Naval Research Logistics Quarterly 31, 325–333.

Szwarc, W. (1989). Single machine scheduling to minimize absolute deviation of completion

times from a common due date, Naval Research Logistics Quarterly 36, 663–673.

Szwarc, W. and S.K. Mukhopadhyay (1995). Optimal timing schedules in earliness–tardiness

single machine sequencing, Naval Research Logistics Quarterly 42, 1109–1114.

EXERCISES

5.1. Prove that V-shaped schedules comprise a dominant set for the restricted version

of the basic E/T problem.

106 EARLINESS AND TARDINESS COSTS

5.2. Consider the following 10-job E/T problem with a common due date that is also

a decision variable.

Job j 1 2 3 4 5 6 7 8 9 10

p j 32 26 7 55 98 80 41 23 24 100

a. Take α j = β j = 1. Find an optimal sequence that makes the due date as

small as possible.

b. Repeat (a) when α j = 2 and β j = 4.

5.3. Consider the following five-job E/T problem with a due date as a decision.

Job j 1 2 3 4 5

p j 1 6 4 7 3

α j 5 7 2 4 3

β j 1 2 8 6 5

Find an optimal solution by enumerating the nondominated schedules.

5.4. Generalize the E/T problem with a common due date by incorporating a uni-

modal loss function—that is, a function that attains a minimum at a point that

we call the due date and is monotone nonincreasing (nondecreasing) before

(after) the due date. For example, the quadratic-loss model is a special case of

this generalization. Prove that an optimal solution for this generalized model is

V-shaped, both for the restricted and unrestricted versions. (Hint: If a sequence

is not V-shaped, it must contain a consecutive subset of three jobs such that the

longest one is between two shorter ones. Show that the existence of such a set

leads to contradiction.)

5.5. Suppose that the due date is a decision and that there is a disincentive for

choosing the due date to be loose. In particular, a due date penalty is added to

the objective function of the basic E/T problem. The objective function to be

minimized takes the following form:

f (S) =

n
∑

j=1

(E j + T j + γ d)

where 0 < γ < 1.

a. Show that Theorems 5.1–5.3 hold for this problem.

b. Find the analogy to Theorem 5.4 for this problem.

5.6. Consider the unrestricted version of basic E/T problem with job-dependent

earliness and tardiness penalties and a common due date. Suppose that the

EXERCISES 107

penalties are all symmetric, α j = β j . Construct a four-job example for which

an optimal solution contains no job finishing late.

5.7. Consider the basic E/T problem with due dates as decisions, and suppose that

the due dates follow the SLK rule. (See Chapter 2.) That is, each job has equal

slack, so the form of the due date for job j is d j = p j + k.

a. Find an expression for the sum of earliness and tardiness in the form of a

scalar product that can be minimized by matching the smallest coefficient

with the largest processing time, the second smallest coefficient with the next

largest processing time, and so on.

b. Find the optimal value of k.

c. Now suppose that the due dates follow the CON rule. That is, each job has

the same flow allowance, or d j = k. Repeat (a) and (b) for this case, and

show that, for any given set of processing times, the optimal value of the

objective function is the same for CON and SLK.

6
SEQUENCING FOR
STOCHASTIC SCHEDULING

6.1 INTRODUCTION

As we discussed in Chapter 2, the basic single-machine sequencing model is charac-

terized by seven conditions:

C1. There are n single-operation jobs simultaneously available for processing (at

time zero).

C2. Machines can process at most one job at a time.

C3. Setup times for the jobs are independent of job sequence and are included in

processing times.

C4. Job descriptors are deterministic and known in advance.

C5. Machines are continuously available (no breakdowns occur).

C6. Machines are never kept idle while work is waiting.

C7. Once an operation begins, it proceeds without interruption.

Such conditions, which help us analyze the problem, may also restrict the applicability

of the model. Specifically, by adopting conditions C4 and C5, we limit ourselves to

deterministic models, with all parameters assumed to be known. In this chapter, we

explore a relaxation of condition C4, allowing processing times to be random. We

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

108

BASIC STOCHASTIC COUNTERPART MODELS 109

assume that condition C5 remains unchanged. However, if we relax C5 and allow

machine breakdowns, the effect is ultimately quite similar to relaxing C4 because

the time required to process a job becomes uncertain. When processing times are

random, the problem that results is called a stochastic scheduling problem.

As discussed in Chapter 2, conditions C6 and C7 are inconsequential for regular

performance measures in the deterministic version of the basic model—that is, in-

serted idle time and job preemption provide no advantage. However, preemption can

sometimes be advantageous in the stochastic case, potentially making the stochastic

problem more difficult to solve. For that reason, we continue to require C7 as we

begin our analysis of stochastic scheduling problems.

If we relax condition C4, we permit due dates and job weights to be uncertain,

as well as processing times, but such models have limited practical significance.

Therefore, we treat due dates and weights as deterministic. As a consequence, the

EDD sequence is well defined (except for ties). In contrast, the SPT sequence is not

well defined, because processing times are not known in advance. However, it is still

possible to order jobs by nondecreasing expected processing times. This sequence is

known as shortest expected processing time (SEPT). Similarly, the shortest weighted

expected processing time (SWEPT) sequence is also well defined.

Historically, stochastic scheduling analysis has focused on the same performance

measures considered in deterministic scheduling (F, T , Lmax, Tmax, U , etc.) and has

sought to minimize their expected values. Thus, typical stochastic models aim to

minimize E(F), E(T), E(Lmax), E(Tmax), E(U), and so on. We refer to such models as

stochastic counterparts of the corresponding deterministic problems. For example,

the stochastic counterpart of the F-problem is a stochastic scheduling problem in

which the objective function is the expected total flowtime, E(F). More generally,

for deterministic models that seek to minimize the total cost or the maximum cost,

stochastic counterparts seek to minimize the expected total cost or the expected

maximum cost.

In this chapter, we first discuss counterpart models and how to use simulation to

solve them. In addition to analyzing stochastic counterparts of deterministic problems,

we also examine the potential usefulness of deterministic counterparts. In other

words, we explore whether the deterministic representation can tell us something

about the solution to a stochastic problem. Next, we turn our attention to sequencing

rules for performance measures based on the maximum cost and the total cost.

This discussion highlights the tendency of the deterministic counterpart to produce

optimistic performance measurements, and we address this bias in more detail. To

support optimal sequencing decisions, we then introduce the concept of stochastic

dominance and association.

6.2 BASIC STOCHASTIC COUNTERPART MODELS

We begin our coverage of stochastic scheduling with an examination of stochastic

counterpart problems. Recall from our introductory comments that the objective in

such problems is the expected value of a performance measure such as total flowtime,

110 SEQUENCING FOR STOCHASTIC SCHEDULING

maximum tardiness, total cost, and the like. To help clarify the nature of stochastic

counterpart models, we explore a numerical example.

� Example 6.1 Consider a problem containing n = 5 jobs with stochastic pro-

cessing times. The due date and expected processing time for each job are shown in

the following table.

Job j 1 2 3 4 5

E(pj) 3 4 5 6 7

dj 8 5 15 20 12

Suppose that two factors influence these processing times, the weather and the quality

of raw materials. Each factor has two equally likely conditions (Good and Bad), so

together they define four states of nature: GG (when both conditions are Good), GB,

BG, and BB. Each job has a different processing time under each state of nature, as

follows:

State Job j 1 2 3 4 5

GG pj 2.6 3.5 3.8 3.2 6.4

GB pj 2.8 3.9 4.4 5.5 6.6

BG pj 3.2 4.1 5.6 6.5 7.4

BB pj 3.4 4.5 6.2 8.8 7.6

Assume that the four states are equally likely, and suppose we are interested in total

tardiness as a measure of performance. We begin by examining the EDD sequence,

2-1-5-3-4. As a first step, we reorder the columns of the given data set to produce

Table 6.1.

Next, we calculate the job completion times for each state, as shown in Table 6.2.

From these results, we can compute the tardiness of each job for each state, as

shown in Table 6.3.

TABLE 6.1

Sequence 2 1 5 3 4

State Processing Times

GG 3.5 2.6 6.4 3.8 3.2

GB 3.9 2.8 6.6 4.4 5.5

BG 4.1 3.2 7.4 5.6 6.5

BB 4.5 3.4 7.6 6.2 8.8

BASIC STOCHASTIC COUNTERPART MODELS 111

TABLE 6.2

State Completion Times

GG 3.5 6.1 12.5 16.3 19.5

GB 3.9 6.7 13.3 17.7 23.2

BG 4.1 7.3 14.7 20.3 26.8

BB 4.5 7.9 15.5 21.7 30.5

As Table 6.3 shows, the total tardiness in the sequence depends on which state

occurs, and the value of total tardiness ranges from a low of 1.8 to a high of 20.7.

Taking into account the fact that the four states are equally likely, we can calculate

the mean tardiness as 11.1 by taking the average of the figures in the last column.

We could make similar calculations for several other expected-value performance

measures, giving rise to the results shown in Table 6.4, all for the EDD sequence.

In Table 6.4, we can recognize the expected tardiness value of 11.1, and we can

see the expected value of the other six listed performance measures. Of course, if a

different sequence is selected, then all these results can change. Thus, the example

gives rise to seven stochastic counterpart problems, each aiming to minimize the

relevant value in the last row of the table.

In stochastic counterpart models, it is convenient to assume that processing times

are statistically independent. In words, independence means that the processing time

realized for one of the jobs does not depend on which processing time is realized for

any of the other jobs. Without this assumption, it is seldom possible to find analytic

solutions that hold in general. In our coverage, however, we want to develop practical

and flexible approaches to stochastic scheduling, so we do not limit ourselves by

requiring independence. For instance, in Example 6.1, we assumed independent

factors that influenced all processing times in the same direction, but the resulting

processing times were not independent—they were correlated. Only the small size of

our example enabled us to enumerate the states of nature and calculate the required

expected values.

In relaxing condition C4, we assume that processing times are random variables

with given distributions. In the basic stochastic scheduling model, there are n such

random variables, and they may be statistically dependent or independent. To model

TABLE 6.3

State Tardiness Total

GG 0.0 0.0 0.5 1.3 0.0 1.8

GB 0.0 0.0 1.3 2.7 3.2 7.2

BG 0.0 0.0 2.7 5.3 6.8 14.8

BB 0.0 0.0 3.5 6.7 10.5 20.7

Average 11.1

112 SEQUENCING FOR STOCHASTIC SCHEDULING

TABLE 6.4

Scenario F Cmax L Lmax T Tmax U

GG 57.9 19.5 −2.1 1.3 1.8 1.3 2.0

GB 64.8 23.2 4.8 3.2 7.2 3.2 3.0

BG 73.2 26.8 13.2 6.8 14.8 6.8 3.0

BB 80.1 30.5 20.1 10.5 20.7 10.5 3.0

Average 69.0 25.0 9.0 5.5 11.1 5.5 2.8

dependent variables merely requires the ability to simulate them, which is neither

conceptually difficult nor computationally demanding. To implement the model, we

adopt the technique of sample-based optimization. With this technique, we draw a

sample and work with it as if it is a perfect representation of reality. Technically,

we generate an r × n table of processing times resembling Table 6.1, where r is the

sample size, or the number of scenarios, and n is the number of jobs. Row i contains

n sampled processing times, one for each job. Column j includes r scenarios for the

processing time of job j . (In Table 6.1, sampling was unnecessary because we were

able to enumerate all four possible scenarios.)

In our second example, processing times are independent, but we can illustrate the

simulation approach.

� Example 6.2 Consider a problem containing n = 5 jobs with stochastic pro-

cessing times. The expected processing time for each job is shown in the following

table. These match the values in Example 6.1.

Job j 1 2 3 4 5

E(pj) 3 4 5 6 7

dj 8 5 15 20 12

Here, we assume that the processing times follow a uniform distribution with a range

of 4. In other words, the processing time for job 1 is uniformly distributed between

1 and 5, the processing time for job 2 is uniformly distributed between 2 and 6, and

so on.

For the purposes of illustration, we work with a sample of 10 scenarios. One pass

at sampling from independent uniform distributions gives us the realizations shown

in Table 6.5.

At the top of the table, we calculate the average of the 10 processing time real-

izations for each of the jobs, mainly as a check on the accuracy of the sampling. For

example, job 1 has an average processing time of 2.984 in the sample, very close to

its expectation of 3. The other averages are also close to their expectations.

We refer to the data in the scenarios as the stored sample. The basic idea of

sample-based optimization is to find scheduling decisions that are optimal for the

BASIC STOCHASTIC COUNTERPART MODELS 113

TABLE 6.5

Job 1 2 3 4 5

Average 2.984 3.891 5.122 6.195 7.280

Scenario

1 3.710 4.086 3.152 4.689 6.589

2 2.390 2.197 6.395 5.965 7.699

3 4.317 4.263 6.232 5.616 8.468

4 1.138 4.117 5.879 7.325 5.566

5 2.836 2.564 6.144 7.793 8.124

6 2.686 3.734 3.439 7.770 6.325

7 2.533 4.915 5.287 4.745 8.160

8 2.610 2.850 4.546 4.833 8.683

9 3.394 5.721 5.591 6.741 5.102

10 4.229 4.460 4.557 6.477 8.081

stored sample. To the extent that simulation mimics reality, the sample represents the

range of possible realizations, and the optimization approach selects the sequence that

works best for the sample. By increasing the sample size r , we can approximate the

true optimal solution as precisely as we may wish. (Normally, a sample of size 10 is

too small for the precision we seek, but a sample of 1000 is reliable enough for many

applications.) We can even view the data in Example 6.1 as a special case of a stored

sample in which the scenarios happen to be exhaustive. With this interpretation, a

stored sample is operationally equivalent to a list of equally likely scenarios that

represent possible random outcomes.

Starting with the stored sample, we can explore the problem numerically. For

example, suppose we adopt total flowtime as a measure of performance and begin

with the sequence 1-2-3-4-5, which is also the SEPT sequence. For each of the

10 scenarios, we fix this sequence and compute the flowtime of each job under each

scenario, as shown in Table 6.6. From these values, we compute the resulting value

of F , shown in the right-hand column of the table.

Next, we find the average value, 65.522, which is shown at the top of the right-hand

column in Table 6.6. In this column, as in the previous table, we display an average

at the top.

Having evaluated the objective function for the sequence 1-2-3-4-5, our task is

now to examine other job sequences and find the one that minimizes F . That search

may be tedious, but it is at least straightforward. It turns out that the value of 65.522 is

the minimum possible value for this stored sample, indicating that the sequence 1-2-

3-4-5 is optimal for F . As with deterministic scheduling problems, we can sometimes

streamline the search for an optimal schedule, as we discuss below.

Our main point is that simulation (conveniently implemented, e.g., in a spread-

sheet) is an appropriate general tool for solving stochastic counterpart problems, even

though it relies on numerical calculations rather than analytic results. Later in this

chapter, we describe a software alternative for implementing simulations of this type.

114 SEQUENCING FOR STOCHASTIC SCHEDULING

TABLE 6.6

Job 1 2 3 4 5 F

Scenario Flowtimes 65.522

1 3.710 7.796 10.948 15.637 22.225 60.317

2 2.390 4.587 10.982 16.947 24.646 59.553

3 4.317 8.581 14.813 20.428 28.897 77.036

4 1.138 5.255 11.134 18.459 24.026 60.012

5 2.836 5.400 11.544 19.336 27.460 66.575

6 2.686 6.420 9.859 17.629 23.954 60.548

7 2.533 7.448 12.735 17.480 25.641 65.838

8 2.610 5.460 10.006 14.839 23.522 56.437

9 3.394 9.115 14.706 21.447 26.549 75.211

10 4.229 8.689 13.246 19.722 27.804 73.690

In some cases, however, analytic results are available, sparing us the need to use

sample-based optimization.

Consider the stochastic counterpart of the F-problem. In other words, processing

times are random, and the objective is to minimize the expected value of total flow-

time. We can also consider the related problem of minimizing the expected value of

total lateness, because of the algebraic relationship between flowtime and lateness.

� Theorem 6.1 E(F) and E(L) are minimized by shortest expected processing

time (SEPT) sequencing (E(p[1]) ≤ E(p[2]) ≤ ... ≤ E(p[n])).

Proof. We first prove the theorem for E(F). Repeating Eq. (2.1),

n
∑

j=1

F j =

n
∑

j=1

j
∑

i=1

p[i] =

n
∑

j=1

(n − j + 1)p[j]

If we interpret p[j] as a random variable, this equation remains valid. Thus, the total

flowtime is a weighted sum of random processing times (with deterministic weights).

Therefore,

E(F) = E

n
∑

j=1

F j

 =

n
∑

j=1

E(F j) =

n
∑

j=1

(n − j + 1)E(p j)

By the same argument that we used as an alternative proof for Theorem 2.3, this

sum is minimized by SEPT. To prove the result for E(L), note that Theorem 2.5 still

holds—that is, L = F − D so E(L) = E(F) − D (where D = �d j).

Theorem 6.1 shows how to solve two particular stochastic counterpart models

optimally, but it does not say that total flowtime and total lateness are minimized by

THE DETERMINISTIC COUNTERPART 115

SEPT in every scenario. Rather, we proved that SEPT minimizes them on average.

In the 10 scenarios of Example 6.2, sequences other than SEPT are optimal. (In the

first scenario, for example, F is minimized by the sequence 3-1-2-4-5.) But such an

observation is made in hindsight, and we cannot rely on hindsight for sequencing

decisions, so SEPT is the best we can do ex ante, before the realizations are revealed.

Thus, the theorem tells us that in Example 6.1, the sequence 1-2-3-4-5 is optimal for

minimizing E(F), and it is not necessary to resort to sample-based optimization.

Using the same approach, we can also solve the weighted versions of these two

problems, as stated in Theorem 6.2. We emphasize that Theorems 6.1 and 6.2 do not

require stochastic independence.

� Theorem 6.2 E(Fw) and E(Lw) are minimized by shortest weighted ex-

pected processing time (SWEPT) sequencing (E(p[1])/w[1] ≤ E(p[2])/w[2] ≤ · · · ≤

E(p[n])/w[n]).

Now consider the stochastic counterpart of minimizing maximum lateness, as

approached by sample-based optimization. For every row in the stored sample, EDD

is an optimal sequence. But this is true for any processing time outcomes—that is, we

could sequence the jobs by EDD irrespective of their processing time realizations. In

fact, this would be true for an exhaustive stored sample.

� Theorem 6.3 E(Lmax) and E(Tmax) are minimized by earliest due date (EDD)

sequencing (d[1] ≤ d[2] ≤ · · · ≤ d[n]).

In other words, EDD sequencing remains optimal when our model contains

stochastic processing times.

6.3 THE DETERMINISTIC COUNTERPART

Consider how we might use a deterministic sequencing model in a stochastic environ-

ment. The most obvious way is to use the mean processing times, E(p j), in place of

p j . That is, we can approach the stochastic problem by substituting expected values

for random variables and proceeding as if the problem were deterministic. We refer

to the resulting model as the deterministic counterpart.

For instance, take the deterministic counterpart in Example 6.1. The first step is

to suppress all randomness and treat processing times as if they were deterministic,

with values equal to their expectations. This gives rise to the following data set:

Job j 1 2 3 4 5

pj 3 4 5 6 7

dj 8 5 15 20 12

116 SEQUENCING FOR STOCHASTIC SCHEDULING

TABLE 6.7

Objective F Cmax L Lmax T Tmax U

EDD 69 25 9 5 11 5 3

Suppose we construct the EDD sequence, 2-1-5-3-4, and calculate the determinis-

tic values of the seven performance measures of interest. We obtain the values shown

in Table 6.7. Some of these values happen to match those in Table 6.4, but some do

not. For example, the tardiness in the deterministic counterpart is T = 11, which does

not quite match the expected tardiness of 11.1 that we obtained in Table 6.3. Thus, as

the example shows, the deterministic counterpart may not generate a value equal to

the expected performance measure in the original stochastic problem. This compari-

son raises an interesting question, however. When does the deterministic counterpart

generate a correct expected value? And related to that, when is the optimal sequence

for the deterministic counterpart also optimal for the stochastic problem? Although

these are not always easy questions to answer, the deterministic counterpart is often

used in practice because it simplifies the analysis.

In Examples 6.1 and 6.2, the solution to the deterministic counterpart of the total

flowtime problem is F = 65, for the sequence 1-2-3-4-5. Here, the deterministic

counterpart provides the optimal sequence, and the value of its objective is equivalent

to that of the true expected value. In fact, this result is imbedded in the proof of

Theorem 6.1, which tells us how to sequence optimally. Part of that proof used the

following equality:

E(F) =

n
∑

j=1

(n − j + 1) E(p[j])

This formula states that the optimal expected total flowtime can be calculated as the

objective function for the corresponding deterministic counterpart, which is F = 65

in the example. To reach this result using the sample-based optimization of Example

6.2, we would need a sample size much larger than 10. (When we repeated the

analysis with a random sample of size 1000, the estimated value of the objective

function was 64.982, which is within 0.03% of the theoretical value.)

With regard to Theorem 6.3 and the optimization of E(Lmax) and E(Tmax), the

result is different. In these problems, the deterministic counterpart may not provide

an optimal value of the objective function. Consider the results for Example 6.1

and compare Tables 6.4 and 6.7. As we noted, the EDD sequence yields E(Lmax) =

5.5, whereas in the deterministic counterpart, EDD yields Lmax = 5. Based on this

comparison, it might intuitively seem as if the deterministic counterpart should yield

an objective function no greater than that in the original stochastic problem, but

that is not the case for all objectives. In Table 6.4, we found E(U) = 2.8, whereas

Table 6.7 yields a deterministic counterpart with U = 3.0. These examples illustrate

that we cannot always rely on the deterministic counterpart to produce solutions to

MINIMIZING THE MAXIMUM COST 117

stochastic scheduling problems, although it happens to be valid for the F-problem

and the L-problem.

6.4 MINIMIZING THE MAXIMUM COST

In this section, we examine the stochastic counterpart of the Tmax-problem, or its

more general form, minimizing the expected maximum cost. (Recall the problem

described in Section 3.1.) At the outset, keep in mind that the expected maximum

cost is not necessarily identical to the maximum expected cost. However, minimizing

the latter objective appears to be easier. For minimizing the maximum expected cost,

Z = max{E(g1(C1)), E(g2(C2)), . . . , E(gn(Cn))}, the solution is given by a direct

generalization of Theorem 3.1.

� Theorem 6.4 When the objective is to minimize the maximum expected cost,

job i may be assigned the last position in sequence if E(gi (P)) ≤ E(gk(P)) for all

jobs k �= i , where P denotes the time to complete all jobs.

Proof. By assumption, processing times do not depend on the job sequence (condi-

tion C2), so the distribution of P does not depend on the sequence. Because gi is

nondecreasing, E(gi (t)) is also nondecreasing in t . Therefore, we can replace gi (P)

by E(gi (P)) for all i and apply the reasoning in the proof of Theorem 3.1.

Now consider the following special case:

g j (C j) = 1 if C j > d j

= 0 if C j ≤ d j

Here, we have

Pr{C j > d j } = Pr{job j is tardy} = E(g j (C j))

This set of relationships proves the following corollary of Theorem 6.4.

Corollary 6.1 The EDD sequence minimizes the maximum tardiness probability.

As another way of looking at this result, suppose we define the service level for

job j as Pr{C j ≤ d j }, the probability that the job is on time. Then Corollary 6.1 also

states that the EDD sequence maximizes the minimum service level.

To exploit Theorem 6.4, we still need a procedure to implement the result of the

theorem as it applies to sequencing, and we can use the sample-based optimization

approach. To solve an instance with a stored sample, we initially take P as the sum

of the n elements in each row. If we calculate gi (P) for each job in each row, then

the average of these results estimates E(gi (P)). At the first scheduling stage, we can

select the job with the minimal average and schedule it last. At the next scheduling

118 SEQUENCING FOR STOCHASTIC SCHEDULING

stage, P is reduced for each row by the processing time of the job that has just

been scheduled. To illustrate this procedure in a numerical example, we introduce the

following form of the cost function gi (t):

g j (t) = δ(t − d j)(a j + b j (t − d j))

where a j , b j ≥ 0 and a j + b j > 0; δ(x) = 1 if x > 0, and δ(x) = 0 otherwise. Equiv-

alently, g j (T j) = δ(T j)(a j + b j T j). By selecting the parameters a j and b j appropri-

ately, we can produce a variety of models. For example, if aj = 0 and b j > 0 for all

j , then the cost is equal to a job’s weighted tardiness. If b j = 0 and a j > 0 for all

j , then the cost is equal to a job’s weight if it is tardy. The special case b j = 0 and

a j = 1 for all j corresponds to the U-problem.

� Example 6.3 Consider a problem containing n = 5 jobs with stochastic pro-

cessing times. The due date and expected processing time for each job are shown in

the following table.

Job j 1 2 3 4 5

E(pj) 3 4 5 6 7

dj 8 5 15 20 12

Furthermore, the processing time distributions are the same as in Example 6.1, with

four equally likely states of nature.

State Job j 1 2 3 4 5

GG pj 2.6 3.5 3.8 3.2 6.4

GB pj 2.8 3.9 4.4 5.5 6.6

BG pj 3.2 4.1 5.6 6.5 7.4

BB pj 3.4 4.5 6.2 8.8 7.6

In addition, the parameters of the cost function g j (T j) = δ(T j)(a j + b j T j) are given

in the following table.

Job j 1 2 3 4 5

aj 2.0 3.0 4.0 5.0 1.0

bj 0.8 0.4 0.1 0.2 0.3

The analysis for the stochastic data of Example 6.3 is summarized in Table 6.8.

Each section of the table shows the cost for every relevant job and state combination.

Once a job is placed in the sequence, it is no longer under consideration for subsequent

stages.

MINIMIZING THE MAXIMUM COST 119

TABLE 6.8

Job j 1 2 3 4 5

Stage 1 (Select Job 4 as [5])

GG 11.2 8.8 4.5 0.0 3.3

GB 14.2 10.3 4.8 5.6 4.4

BG 17.0 11.7 5.2 6.4 5.4

BB 20.0 13.2 5.6 7.1 6.6

Expected 15.6 11.0 5.0 4.8 4.9

Stage 2 (Select Job 5 as [4])

GG 8.6 7.5 4.1 N/A 2.3

GB 9.8 8.1 4.3 N/A 2.7

BG 11.8 9.1 4.5 N/A 3.5

BB 13.0 9.7 4.7 N/A 3.9

Expected 10.8 8.6 4.4 N/A 3.1

Stage 3 (Select Job 3 as [3])

GG 3.5 5.0 0.0 N/A N/A

GB 4.5 5.4 0.0 N/A N/A

BG 5.9 6.2 0.0 N/A N/A

BB 6.9 6.6 0.0 N/A N/A

Expected 5.2 5.8 0.0 N/A N/A

Stage 4 (Select Job 1 as [2])

GG 0.0 3.4 N/A N/A N/A

GB 0.0 3.7 N/A N/A N/A

BG 0.0 3.9 N/A N/A N/A

BB 0.0 4.2 N/A N/A N/A

Expected 0.0 3.8 N/A N/A N/A

Stage 5 (Select Job 2 as [1])

GG N/A 0.0 N/A N/A N/A

GB N/A 0.0 N/A N/A N/A

BG N/A 0.0 N/A N/A N/A

BB N/A 0.0 N/A N/A N/A

Expected N/A 0.0 N/A N/A N/A

The last of these stages is trivial, because only one job remains. The procedure is

the same at each stage—only the set of jobs under consideration changes. As shown

in Table 6.8, the optimal sequence is 2-1-3-5-4. At each stage, the choice is based

on the minimum expected cost in the bottom row, and this value is shown in bold.

The maximum of these values (4.8) gives the optimal value of max{E(gi (P))}. By

way of comparison, the optimal sequence in the deterministic counterpart is different

120 SEQUENCING FOR STOCHASTIC SCHEDULING

(2-1-3-4-5), and the maximum cost is 4.9. (For that sequence, the value of the

maximum expected cost is also 4.9.) But we still don’t know the optimal value of the

expected maximum cost.

We can identify the optimal sequence for both expected maximum cost and max-

imum expected cost in one special case. This case occurs when all the cost functions

are ordered such that for any two jobs, i and k, and for all t ≥ 0, either gi (t) ≥ gk(t)

or gk(t) ≥ gi (t). In other words, no two cost functions intersect each other. When

the functions are ordered, their order dictates the optimal sequence. We have already

encountered a special case of this result in the optimality of EDD for Tmax and Lmax.

More generally, we have the following dominance property.

� Theorem 6.5 Consider two jobs, i and k. If gi (t) ≥ gk(t) for any t ≥ 0 and

the objective is to minimize the expected maximum cost, then there exists an optimal

sequence in which job i precedes job k.

Proof. Assume an optimal solution exists in which job k precedes job i and other

jobs are possibly sequenced between them. For any set of n nonnegative processing-

time realizations, we obtain gi (Ci) ≥ gk(Ci) ≥ gk(Ck). The first inequality holds by

the hypothesis of the theorem; the second inequality holds because job i completes

after job k by assumption. If we insert job k after job i , letting C ′
k and C ′

i denote

the completion times after this resequencing, then C ′
k = Ci and C ′

i < Ci . It follows

that gk(C ′
k) ≤ gi (Ci) and gi (C

′
i) ≤ gi (Ci), so the objective function cannot increase.

Because that is true for any possible set of realizations, the result does not depend on

the processing time distributions.

Corollary 6.2 Consider two jobs, i and k. If gi (t) ≥ gk(t) for any t ≥ 0 and the

objective is to minimize the maximum expected cost, then there exists an optimal

sequence in which job i precedes job k.

Corollary 6.2 holds because the proof of the theorem also implies that the maxi-

mum expected value cannot be larger in another sequence. But, unless all cost func-

tions are ordered, it would be a mistake to assume that the same sequence minimizes

both objective functions. An example helps to underscore this point.

� Example 6.4 Consider the scheduling of two jobs, 1 and 2, with random

processing times and with the following generic cost function parameters:

Job j 1 2

dj 0 2

aj 0 0

bj 0.7 2

MINIMIZING THE MAXIMUM COST 121

The processing time distributions of the two jobs are independent and identically

distributed as follows:

State Job j 1 2 Probability

A pj 1 1 0.5

B pj 2 2 0.5

There are two possible sequences, 1-2 and 2-1. For each possible sequence,

there are four equally likely configurations of the processing times for jobs 1

and 2: AA, AB, BA, and BB. If we make the required calculations, we find the

following:

Sequence 1-2 has a maximum expected cost of 2.

Sequence 1-2 has an expected maximum cost of 2.175.

Sequence 2-1 has a maximum expected cost of 2.1.

Sequence 2-1 has an expected maximum cost of 2.1.

Thus, for minimizing the maximum expected cost, the optimal sequence is 1-2, and

the optimal value is 2. However, for minimizing the expected maximum cost, the

optimal sequence is 2-1, and the optimal value is 2.1. Example 6.4 demonstrates the

following proposition.

Proposition 6.1 The sequences that minimize the maximum expected cost and the

expected maximum cost are not necessarily identical.

Although the optimal sequences need not be identical, a useful relationship exists

between them. We state it here but defer the proof until the next section.

� Theorem 6.6 Suppose S1 and S2 are two sequences (not necessarily distinct)

that minimize the maximum expected cost and the expected maximum cost, respec-

tively. Let ZL and ZU denote the maximum expected cost and the expected maximum

cost of S1. Then Z2, the objective function value of S2, satisfies ZL ≤ Z2 ≤ ZU .

For instance, in Example 6.4, ZL = 2.0 ≤ Z2 = 2.1 ≤ ZU = 2.175. The problem

of minimizing the expected maximum cost does not satisfy the optimality principle,

and therefore we cannot solve it by dynamic programming. Theorem 6.6, however,

allows us to use a branch and bound approach, with ZL and ZU providing lower and

upper bounds for partial sequences.

122 SEQUENCING FOR STOCHASTIC SCHEDULING

6.5 THE JENSEN GAP

In Example 6.1, we saw that the expected value of a maximum is at least as large as

the maximum of the component expected values. This is a special case of a general

rule, known as Jensen’s inequality. For convenience in notation, let

E[h(g)] = E[h(g1(C1), g2(C2), . . . , gn(Cn))]

and let

h[E(g)] = h[E(g1(C1)), E(g2(C2)), . . . , E(gn(Cn))]

For now, let h denote the maximum function, and with this notation, the example

indicates that E(max{g}) ≥ max{E(g)}. Generally, Jensen’s inequality states that for

any random variable X and any convex function h, we always have E(h(X)) ≥

h(E(X)). In words: for a convex function, the expected value of the function is at

least as large as the function evaluated at the expected value. Thus, imagine that

we estimate the expected value of a complicated convex function of some random

variable by substituting the expected value of the random variable and then evaluating

the function. The calculations may be simpler, but our estimate would be biased

downward. The maximum function is convex, so the result discussed above is an

instance of the convex case. Because T j is defined by max{0, Cj − dj}, the same rule

applies for the T-problem.

For any function h, convex or not, we refer to the difference E(h(g)) − h(E(g)) as

the Jensen gap. In stochastic instances of the Tmax-problem and the Lmax-problem, the

objective function value often exceeds the value in the deterministic counterpart and

cannot fall below it, so it has a nonnegative Jensen gap. In the single-machine problem

with Cmax, L , or F objectives, the objective function of the stochastic problem and

the objective function of the deterministic counterpart are always the same. This

agreement corresponds to a zero Jensen gap, which occurs when h is linear.

In the E(U) case of Example 6.1, we observed a negative Jensen gap under EDD:

the stochastic objective function is E(U) = 3.0; whereas the deterministic counterpart

is U = 2.8. This case illustrates that the Jensen gap does not have to be nonnegative

in scheduling problems. (The sign of the Jensen gap can be positive or negative for

the U-problem because the objective is associated with a step function, which is not

convex.)

With this background, we are ready to prove Theorem 6.6.

Proof of Theorem 6.6. By Jensen’s inequality, ZL ≤ ZU . For the same reason, Z2 is

at least equal to the maximum expected cost of S2, which, in turn, is bounded from

below by ZL (due to the optimality of S1). Therefore, ZL ≤ Z2. As for ZU , it is

a feasible expected maximum cost, so it must be an upper bound on the minimum

expected maximum cost.

STOCHASTIC DOMINANCE AND ASSOCIATION 123

6.6 STOCHASTIC DOMINANCE AND ASSOCIATION

The expected value of a sum is equal to the sum of its component expected values. That

is, E(�g j (C j)) = �E(g j (C j)). Cast in terms of the previous section, the sum function

is linear, so its Jensen gap must be zero. Its additive structure enables us to use dynamic

programming to find solutions to stochastic problems when the objective function is

a sum. A difficulty arises, however, in generalizing dominance conditions from the

deterministic case to the stochastic case. Ideally, the most convenient generalization

would be to adopt the deterministic counterpart—that is, we would like to use E(p j)

instead of p j in the various dominance conditions. However, this approach turns out

to be unreliable.

� Example 6.5 Consider the problem of sequencing two jobs with stochastic

processing times and the objective of minimizing expected total tardiness.

Job j 1 2

dj 2.99 3

E(pj) 1.99 2

The processing time distributions of the two jobs are distributed as follows:

State Job j 1 2 Probability

A pj 1 2 0.99

B pj 100 2 0.01

If we replace p j by E(p j), the two jobs have agreeable parameters. In the determin-

istic counterpart, therefore, we apply condition (a) of Theorem 3.3 and sequence job 1

first. This yields T = 0 with probability 0.99 and 196 otherwise, so that E(T) = 1.96.

But if we reverse the sequence, T = 0.01 with probability 0.99 and 99 otherwise,

so E(T) = 0.99, or roughly half the value for the opposite sequence. Example 6.5

demonstrates the following.

Proposition 6.2 The stochastic T-problem and its deterministic counterpart may

not be optimized by identical sequences, and dominance conditions that apply for the

deterministic counterpart are not necessarily valid in the stochastic case.

To summarize, we can use general combinatorial optimization methods to solve

for the optimal sum of expected values, and the result will also minimize the expected

value of the sum. However, because deterministic dominance relationships may not

apply, we should expect these methods to take longer in the stochastic case than in

the deterministic case. For this reason, we would like to identify circumstances under

which counterpart dominance rules would still hold.

124 SEQUENCING FOR STOCHASTIC SCHEDULING

FX

E(X)

FIGURE 6.1 Depicting the expected value as an area above the cdf.

When E(p1) ≤ E(p2) we say that p1 is (weakly) smaller than p2 by expectation.

We also write p1 ≤ex p2. Example 6.5 demonstrates that p1 ≤ex p2 is not sufficient to

generalize deterministic dominance rules requiring p1 ≤ p2, because the worst-case

realization of p1 could be larger than that of p2. However, stochastic ordering relation-

ships exist that preclude a worst-case reversal. We say that one random variable, X , is

stochastically smaller than another, Y (denoted X ≤st Y), if Pr{X ≤ t} ≥ Pr{Y ≤ t}

for any t . This implies that the cdf of X , FX (t), is at or above the cdf of Y , FY (t).

That is, FX ≥ FY everywhere. We also refer to this relationship as stochastic dom-

inance, and if it applies to several pairs of random variables, we say that they are

stochastically ordered (because the dominance relationship is transitive). Stochastic

dominance is a strong relationship in the sense that ≤st implies ≤ex. A useful way to

visualize this relationship is to recall that the expected value of a nonnegative random

variable is given by the area above its cdf below 1 and to the right of the origin (see

Figure 6.1). However, if FX ≥ FY , then the area above FX cannot exceed the area

above FY . Therefore, the expected value of X cannot exceed the expected value of Y .

The definition of ≤st does not require statistical independence. For example, let

X and Y be two independent and identically distributed (iid) random variables, and

let Z be any nonnegative random variable (including the degenerate case, in which

Z = 0 with certainty). Then X ≤st Y + Z and X ≤st X + Z . The first relationship

holds between independent random variables. When Z = 0 with certainty, we have

that independent and identically distributed random variables X and Y are each

stochastically smaller than the other. But in the second relationship, X and X + Z

are statistically dependent because of a common element shared by the two random

variables. When random variables are positively correlated as a result of common

causes of variation affecting more than one of them in the same direction, they satisfy

the definition of associated random variables. Random variables are associated if

the correlation between any positive nondecreasing functions of each is nonnegative.

Independent random variables are associated, but negatively correlated ones are not.

Association may arise not only by adding the same random variable to two or more

independent random variables, but also by multiplying two or more positive random

variables by the same positive element.

We introduce associated processing times because, in practical settings, common

causes of variation often affect more than one job in the same direction. For example,

if a regular worker is faster than the replacement and the regular worker will be sick

tomorrow with some positive probability, then for scheduling purposes, a positive

dependence is introduced among all of tomorrow’s processing times. As another

STOCHASTIC DOMINANCE AND ASSOCIATION 125

example, if the quality of a particular tool deteriorates, then the jobs that require

it may all take longer. In general, various causes are likely to introduce positive

dependence among different subsets of jobs.

When processing times behave as associated random variables, the completion-

time variance is higher than for independent random variables, for all but the first

job. For independent random variables, the variance of a sum equals the sum of the

variances. But, by definition, two associated random variables have a nonnegative

covariance, and the variance of a sum with positive covariance is higher than the

sum of the variances. So, in effect, the independence assumption is optimistic for

the variance of a completion time. Finally, if two jobs have processing times that are

associated, then their costs are also associated because the cost functions are non-

decreasing. This relation, in turn, implies that the variance of performance measures

based on processing times that are associated random variables is also higher than

the variance for independent processing times.

Two nonnegative random variables, X and Y , are linearly associated if there exist

four independent nonnegative random variables, R, S, Z , and B, and two nonnegative

parameters, α and β, such that X = (R + αZ)B and Y = (S + βZ)B. If we set

α = β = 0 and B = 1 with certainty, then X = R, Y = S, and they are independent

by assumption (and thus associated). At the other extreme, if R and S are 0 with

certainty, then X and Y are proportional (and thus associated). Here, B models a

multiplicative bias shared by X and Y , whereas Z represents any additive element

they may share. In what follows, we assume linear association. Furthermore, we treat

the special case α = β = 1. Less restrictive assumptions may suffice, but this one is

simple to present yet still more realistic than the independence assumption.

� Theorem 6.7 If X and Y are linearly associated, that is, X = (R + Z)B and

Y = (S + Z)B, where R, S, Z , and B are independent nonnegative random variables

and E(B) > 0, then X ≤st Y if and only if R ≤st S; and X ≤ex Y if and only if

R ≤ex S.

Theorem 6.7 allows us to generalize existing results based on statistical indepen-

dence to the case of linearly associated random variables. For example, it can be

shown that if p1 ≤st p2, where p1 and p2 are independent, then Pr{p1 ≤ p2} ≥ 0.5.

We can extend that result to stochastically ordered, linearly associated random vari-

ables. Furthermore, if p1 ≤st p2 then E[(p1 − t)+] ≤ E[(p2 − t)+]. To demonstrate

this inequality, consider that E[(p j − t)+] is the area above the cdf of job j and below

1 to the right of t (Figure 6.2). Because the cdf of the stochastically smaller random

variable is above the other, the relevant area must be smaller. This argument, as stated,

is correct for S and T , but it is inherited by X and Y through linear association. So,

informally, it is a good bet to assume that p1 ≤ p2 in this case. However, Example 6.5

demonstrates that it is not necessarily a good bet when all we know is that p1 ≤ex p2.

The relationship in that case was by expectation, but without stochastic dominance.

Example 6.5 is predicated on the fact that the worst-case performance of p1 was

worse than the worst-case performance of p2. But when the two processing times are

stochastically ordered, such a worst-case reversal cannot happen.

126 SEQUENCING FOR STOCHASTIC SCHEDULING

E[(p2−t)+]−E[(p1−t)+]

t

F2

F1

E[(p1−t)+]

FIGURE 6.2 E((p1 − t)+) and E((p2 − t)+) as areas.

� Theorem 6.8 For linearly associated processing times that are stochastically

ordered, if expected processing times and due dates are agreeable for all pairs of jobs,

then the expected total tardiness E(T) is minimized by SEPT sequencing with ties

broken by EDD (or, equivalently, by EDD with ties broken by SEPT).

Proof. Assume temporarily that processing times are independently distributed. Let

job i and job j satisfy the conditions such that pi ≤st p j and max{di , d j } = d j .

Denote min{pi , p j } by a and max{pi , p j } by b. By Theorem 2.9, EDD is guaranteed

to be optimal (job i should precede job j) unless

t + b > d j

Therefore, it is sufficient to show that SEPT is optimal even if the condition is

satisfied, so henceforth we assume b > d j − t . Consider three mutually exclusive

and exhaustive cases, each with two random outcomes, as follows:

Case 1: a ≥ d j − t .

Case 2: di − t < a < d j − t .

Case 3: a ≤ di − t .

Outcome 1: pi = a.

Outcome 2: p j = a.

In each case, with hindsight, we would schedule the two jobs according to SEPT

for Outcome 1 and according to LEPT (longest expected processing time) for

Outcome 2. Table 6.9 lists the gain by scheduling job j first under both outcomes

(the negative numbers indicate losses).

Because we assume independence, it can be shown that the conditions implied by

the three cases do not violate stochastic dominance. Therefore, in all cases,

USING RISK SOLVER 127

TABLE 6.9

Outcome 1 Outcome 2

Case 1 −(b − a) b − a

Case 2 −(b − a) b − d j + t < b − a

Case 3 −(b − di + t) b − d j + t ≤ b − di + t

� by stochastic dominance, E(b|Outcome1) ≥ E(b|Outcome2), whereas

E(a|Outcome1) ≤ E(a|Outcome2);
� it follows that the expected gain by scheduling job j first under Outcome 2 is at

most equal to the loss under Outcome 1;
� Pr{Outcome1} ≥ Pr{Outcome2}.

In conclusion, the event that LEPT is optimal has at most the same probability and at

most the same relative gain, so the expected value associated with it cannot exceed

that of SEPT/EDD. To complete the proof, it remains to show that the theorem holds

when processing times are linearly associated and not independent. This requires the

dominance properties we used to remain valid, which is assured by Theorem 6.7.

Although Theorem 6.8 generalizes one dominance condition subject to a relatively

strong assumption, even with this assumption in place, it remains difficult to general-

ize other deterministic dominance conditions. For example, generalizing Theorem 3.2

requires that a job will not be tardy with probability one. Hence, we are still left with

the conclusion that the optimal solution to stochastic problems will always take

significantly longer to find than the solution to their deterministic counterparts.

6.7 USING RISK SOLVER

In the previous chapter, we introduced an Excel-based approach for solving determin-

istic sequencing problems, using the Evolutionary Solver. In this section, we extend

our solution capability to stochastic problems by integrating Risk Solver, an Excel

add-in for Monte Carlo simulation.

� Example 6.6 Consider a problem containing n = 5 jobs with stochastic pro-

cessing times and known due dates. For each job, the processing time follows a

lognormal distribution with mean value as given in the table and a standard deviation

of 0.6.

Job j 1 2 3 4 5

pj 2 3 1 6 4

dj 12 7 4 10 6

128 SEQUENCING FOR STOCHASTIC SCHEDULING

FIGURE 6.3 Spreadsheet layout for the deterministic counterpart.

The first step in building a suitable model in Excel is to construct the spreadsheet

for the deterministic counterpart, as discussed in Section 5.7. The deterministic model

is shown in Figure 6.3, with two rows that are redundant for the deterministic problem.

Rows 5 and 7 contain the same data—mean processing times for the jobs. Row 6

contains the standard deviations, which would not apply in the deterministic case.

However, in converting to the stochastic model, we use row 7 to hold probabilistic

outcomes. In other words, the entries in row 7 behave like random variables in the

stochastic case.

The next step is to incorporate probabilistic features into the model, using Risk

Solver. Once Risk Solver has been installed, it provides a specialized set of command

buttons on its ribbon, as shown in Figure 6.4.1

We first convert the processing time in cell C7 to a random sample by selecting

the Continuous button and from its pull-down menu, choosing the Lognormal icon.

The window that is displayed next provides an opportunity to specify the parameters

of the distribution, so as shown in Figure 6.5, we designate cell addresses C5 and C6

for the mean and standard deviation, respectively. When we close this window, we

click Yes to confirm the new information.

Next, we copy the formula from C7 to the range D7:G7. As shown in Figure 6.4,

this step places probabilistic outcomes in each of the cells of row 7, and from these

1We illustrate the user interface for version 8.0 of the software. Newer versions have these same capabilities,

although the user interface has been altered.

USING RISK SOLVER 129

FIGURE 6.4 Spreadsheet layout for Monte Carlo simulation.

outcomes, the spreadsheet computes the resulting tardiness (24.77 in cell B10). If we

press the F9 key, the simulation is redone, with a new set of outcomes drawn for the

processing times.

The next step is to specify an output for the simulation. In this example, we are

interested in the tardiness outcome in B10. When we run a simulation, we generate

a large number of observations of the value in this cell, each one based on a new

sample of processing times. With the cursor on B10, we select the Statistic button,

and on its pull-down menu, we choose the icon for the Mean. Then we click on cell

D10. Although the immediate result is that N/A appears in cell D10, this cell will

ultimately contain the (estimated) mean tardiness.

To prepare the simulation run, we click on the Simulate button and choose Run

Once from its pull-down menu. Then we click on the Options icon and set the

simulation parameters. The key choices appear in the General box (Figure 6.6),

where we specify 1000 trials, 1 simulation to run, and a random seed of 123. Choosing

Latin Hypercube as the Sampling Method makes the run more efficient; otherwise,

the default choices are typically sufficient. After clicking on OK, we are ready to run

the simulation.

To run the simulation, we click on the Simulation icon. If the icon is on (lighted),

then clicking on this icon simply turns it off. If we click on the off icon, the simula-

tion runs—virtually instantaneously—and the Excel status bar displays the message,

“Simulation finished successfully.” The mean tardiness appears in cell D10. In our

130 SEQUENCING FOR STOCHASTIC SCHEDULING

FIGURE 6.5 Specifying the parameters of the stochastic processing time.

example, that value is 22.07. Thus far, the model implements a Monte Carlo analysis

for a given sequence and estimates the expected value of the objective function.

The value obtained in cell D10 is an estimate of the mean tardiness for the sequence

2-4-5-1-3. This estimate is subject to sampling error, which becomes smaller as the

number of trials becomes larger. A standard measure of the precision in this estimate

is the confidence interval for the mean. Risk Solver allows this value to be computed

along with the estimated mean, but in a different cell. To place this value in the

spreadsheet, we first make sure that the cursor is on cell B10. Next, we select the

Statistic button, and on its pull-down menu we choose the icon for the CIMean. Then

we click on cell G10. As shown in Figure 6.7, the simulation run produces a value

of 0.22 for this statistic, indicating that there is a 95% chance that the true mean lies

within 0.22 of the estimated value, 22.07. In this case, the confidence interval is about

1% of the estimate (on either side), which is perhaps less precision than we’d like. If

we repeat the simulation with a sample size of 10,000, we see the confidence interval

drop to 0.07 for an estimated value of 22.10 (or about 0.3% on either side). This level

of precision is adequate for our purposes, so we keep the sample size set at 10,000.

USING RISK SOLVER 131

FIGURE 6.6 Specifying the simulation parameters.

Having fine tuned the simulation parameters, we can search for a sequence that

minimizes the expected tardiness. Our search tool is the Evolutionary Solver, which

we introduced in the previous chapter and for which we provided a default set of

search parameters. In this example, we specify the objective function cell as D10

(the estimate of the mean tardiness), which we want to minimize. The decision

variables appear in row 13, and we impose the requirement that they satisfy the

alldifferent constraint. One new step is needed: we must choose a setting in Solver

that indicates we are optimizing with a simulation. (This setting usually appears in the

Model specifications, but varies in different versions of Premium Solver.) Running

the Evolutionary Solver produces the sequence 3-5-2-1-4, with an estimated mean

tardiness of 7.18.

Integrating Risk Solver with the Evolutionary Solver creates a powerful search

tool for solving stochastic scheduling problems. We refer to the respective User’s

Guides for additional detail.

132 SEQUENCING FOR STOCHASTIC SCHEDULING

FIGURE 6.7 Displaying the results of the simulation on the spreadsheet.

6.8 SUMMARY

When we think about what makes a sequencing problem difficult to solve, in light of

our coverage in previous chapters, we might conclude that some problems are difficult

because of variation in the data. Problems in which all jobs have the same weight

and require the same processing time are easily solved. In those cases, either EDD or

Algorithm 2.1 can solve all our basic problems (F , T , Lmax, Tmax, U). Difficulties in

finding an optimal sequence arise when parameters are not identical—that is, when

variation is present.

Viewed from this perspective, stochastic problems compound solution difficulties

by introducing another source of variation. Consider the following objectives that are

relatively easy to optimize in the deterministic case: F , Fw , L , Lmax, Tmax, and U .

� For Fw (and therefore also for F and L), we can use the deterministic counterpart

to find an optimal solution optimal in the stochastic case—that is, by replacing

p j by its expected value.
� For Lmax and Tmax, ideas developed for the deterministic models in Chapter 2

can be applied in the stochastic case, but we cannot rely on the deterministic

counterpart to give us the objective function value.

SUMMARY 133

� The U-problem resists simple generalization of the deterministic optimal ap-

proach.
� Finally, for problems such as T and Tw that are already NP-hard in the

deterministic case, stochastic variation compounds the computational diffi-

culty of finding optimal solutions by dynamic programming or branch and

bound.

In this chapter, we developed several results that reveal the similarities and the

differences between deterministic and stochastic models. In some instances, we saw

that stochastic dominance is sufficient to retain some of the dominance properties

characteristic of deterministic models, but in other cases, even stochastic dominance

is insufficient. For this reason, we should not expect methods such as branch and

bound and dynamic programming to solve stochastic problems of the same size that

they can handle in the deterministic case.

We also showed that in some cases the deterministic approach may be less applica-

ble. For example, dynamic programming cannot handle the maximum cost problem.

Given such difficulties in the stochastic environment, it is important to identify

efficient solutions, or at least partial solutions, where they exist, and that has been

the main thrust of the chapter. For problems that are beyond the reach of the meth-

ods we have introduced thus far, it remains important to develop practical heuristic

approaches.

To handle general processing time distributions that are not necessarily statis-

tically independent, we introduced sample-based optimization and showed how to

compare sequences numerically. This approach is inherently more time consuming

than the use of deterministic counterparts, but it remains practical and can be im-

plemented in a spreadsheet. Nevertheless, sample-based optimization is intrinsically

a heuristic approach because a sample cannot always represent a model perfectly.

Furthermore, the use of large samples is an additional computational burden. For

instance, suppose we have a stochastic problem that we wish to solve by sample-

based optimization with a sample of 1000 (roughly 210) using dynamic program-

ming. Then, every function evaluation takes 1000 times longer than would be the

case in the deterministic counterpart. If we assume the computational requirement

in dynamic programming is roughly proportional to 2n , then a given computational

effort will solve for 10 fewer jobs in the stochastic case than in the determinis-

tic counterpart. For example, if 25 deterministic jobs can be sequenced in half a

minute of computation time, only 15 stochastic jobs can be sequenced in the same

time. A similar reduction in tractable problem size occurs with branch and bound

approaches.

The availability of user-friendly simulation software, such as Risk Solver, expands

the set of models that we can analyze with a simulation approach. Thus, if we

can determine an optimal sequence easily but encounter computational difficulty in

evaluating the optimal value of the objective, we can enlist the help of Risk Solver

to make the evaluation easier. More importantly, we can integrate Risk Solver with

134 SEQUENCING FOR STOCHASTIC SCHEDULING

the Evolutionary Solver to produce a flexible and effective heuristic procedure for

solving stochastic sequencing problems.

REFERENCES

Esary, J.D., F. Proschan, and D.W. Walkup (1967). Association of random variables, with

applications, Annals of Mathematical Statistics 38, 1466–1474.

Gutjahr, W.J, A. Hellmayr, and G.Ch. Pflug (1999). Optimal stochastic single-machine-

tardiness scheduling by stochastic branch-and bound, European Journal of Operational

Research 117, 396–413.

Hodgson, T.J. (1977). A note on single machine sequencing with random processing times,

Management Science 23, 1144–1146.

Moore, J.M. (1968). An n job, one machine sequencing algorithm for minimizing the number

of late jobs, Management Science 15, 102–109.

Ross, S.M. (1996). Stochastic Processes, 2nd ed., Wiley, Hoboken, NJ.

Trietsch, D. (2005). The effect of systemic errors on optimal project buffers, International

Journal of Project Management 23, 267–274.

EXERCISES

6.1. Consider a problem containing n = 5 jobs with stochastic processing times.

The randomness in the processing times can adequately be represented by three

states of nature: Good, Normal, and Bad, with probabilities of 0.2, 0.5, and 0.3,

respectively.

State Job j 1 2 3 4 5

Good pj 5 3 7 6 8

Normal pj 7 6 8 10 12

Bad pj 9 12 10 15 14

dj 10 22 40 31 25

a. Find the minimum value of the expected total flowtime, along with the

sequence that achieves it. Compare the optimal value with that of the deter-

ministic counterpart.

b. Find the minimum value of the expected maximum tardiness, along with

the sequence that achieves it. Compare the optimal value with that of the

deterministic counterpart.

c. Find the minimum value of the expected number of jobs tardy. Compare the

optimal value with that of the deterministic counterpart.

EXERCISES 135

6.2. Consider a problem containing n = 5 jobs with stochastic processing times,

each of which follows a normal distribution with known mean and standard

deviation.

State Job j 1 2 3 4 5

1 µj 17 20 24 25 30

2 σ j 3 4 2 5 3

dj 60 80 70 50 90

a. Find the minimum value of the expected total flowtime, along with the

sequence that achieves it. Compare the optimal value with that of the deter-

ministic counterpart.

b. Find the minimum value of the expected maximum tardiness, along with

the sequence that achieves it. Compare the optimal value with that of the

deterministic counterpart.

6.3. Shown below is a stored sample of 10 observations for the processing times of

n = 5 jobs in a sequencing problem.

Job j 1 2 3 4 5

dj 60 80 70 50 90

Job 1 Job 2 Job 3 Job 4 Job 5

Sample 1 17.79 23.80 19.74 26.90 32.63

Sample 2 15.65 18.34 25.40 14.98 26.80

Sample 3 22.59 18.62 21.75 25.53 30.56

Sample 4 15.29 20.98 22.85 31.80 33.86

Sample 5 15.56 20.39 24.09 22.45 28.16

Sample 6 19.00 18.05 20.28 25.71 28.99

Sample 7 18.00 19.16 20.75 25.02 30.86

Sample 8 18.37 19.06 25.86 24.14 23.24

Sample 9 14.35 14.68 22.69 26.55 24.73

Sample 10 16.61 22.99 20.99 26.12 28.43

a. Find the minimum value of the expected maximum tardiness, along with the

sequence that achieves it.

b. Find the minimum value of the maximum expected tardiness, along with the

sequence that achieves it.

c. Find the minimum value of the expected number of jobs tardy.

136 SEQUENCING FOR STOCHASTIC SCHEDULING

6.4. Show that SWEPT is optimal for minimizing E(Fw).

6.5. Consider a problem containing n = 5 jobs with stochastic processing times. The

randomness in the processing times can adequately be represented by three states

of nature: S1, S2, and S3, with probabilities of 0.3, 0.4, and 0.3, respectively.

State Job j 1 2 3 4 5

S1 pj 5 3 7 6 8

S2 pj 7 6 8 10 12

S3 pj 9 12 10 15 14

dj 10 22 40 31 25

In addition, the parameters of the cost function g j (T j) = δ(T j)(a j + b j T j) are

given in the following table.

Job j 1 2 3 4 5

aj 2.0 3.0 4.0 5.0 1.0

bj 0.6 0.3 0.1 0.4 0.3

a. Find the minimum value of the expected maximum cost.

b. Compare the value in (a) with that of the deterministic counterpart.

6.6. Generalize Theorem 6.8 by showing that any two stochastically ordered, linearly

associated jobs with agreeable due dates must be in the prescribed sequence even

if some other jobs are inserted between them.

6.7. Consider a problem containing n = 5 jobs with stochastic processing times,

each of which follows a normal distribution with known mean and standard

deviation.

Job j 1 2 3 4 5

µj 17 20 24 25 30

σ j 3 4 2 5 3

dj 60 80 70 50 90

a. Find the minimum value of the expected maximum tardiness, along with

the sequence that achieves it. Use Risk Solver and Evolutionary Solver to

produce a solution.

b. Find the minimum value of the maximum expected tardiness, along with the

sequence that achieves it. Does the sequence match the sequence in (a)?

7
SAFE SCHEDULING

7.1 INTRODUCTION

In Chapter 6, our coverage of stochastic scheduling was confined to stochastic coun-

terparts of models with regular performance measures. Indeed, those models are

the most prominent subjects in the literature on stochastic scheduling. However, the

typical stochastic model misses an important part of the problem: it fails to account

for safety time. To use an analogy, imagine that we attempted to build stochastic

inventory models by relying only on deterministic analysis of average behavior and

making no provisions for safety stock. Just as safety stocks are vital to practical

inventory policies, safety time is vital to practical scheduling policies. However, the

optimal determination of safety time has no counterpart in deterministic scheduling.

Safe scheduling departs from the dominant paradigm in stochastic scheduling by

considering safety time explicitly.

In stochastic inventory theory there are two general ways to determine safety

stocks—by meeting service-level constraints explicitly or by minimizing the ex-

pected total costs due to holding and shortage and deriving service-level constraints

implicitly. We can use analogous approaches in safe scheduling. To use service-level

constraints, we replace the deterministic definition of “on time” by a stochastic one.

Define the service level for job j as Pr{C j ≤ d j }, the probability that job j com-

pletes by its due date. We sometimes denote this probability SL j . Let b j denote

a given target for the service level. Then the form of a service-level constraint for

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

137

138 SAFE SCHEDULING

job j is

SL j = Pr{C j ≤ d j } ≥ b j

We say that job j is stochastically on time if its service-level constraint is met;

otherwise, the job is stochastically tardy. A complete sequence is called stochastically

feasible (or just feasible, when the context is clear) if all jobs are stochastically on time.

The use of service-level constraints is simple and popular in practice. For example, to

meet the 8:00 am scheduled departure of the North bus, a prospective traveler might

choose a service-level target of, say, 95%, and then allow a sufficient time buffer to be

stochastically on time. However, relying on arbitrary service levels may yield inferior

economic results. For instance, depending on the costs involved and the distribution

of the travel time to the station, the 95% target may be suboptimal; we may be better

off to require 90%, or perhaps 99%. So we should reserve the service-level approach

to cases where it is difficult to estimate the relevant costs.

The alternative to arbitrary service-level constraints is to explicitly consider eco-

nomic factors. If we can model the true economic costs of various decisions and

outcomes, we can then look for a schedule that minimizes the expected total cost.

Because that objective includes the cost of creating a buffer as well as the cost of

failing to meet due dates, the solution automatically yields optimal safety. Often,

however, there are practical problems of acquiring good cost data, especially when

some cost elements are subjective. When costs are hard to identify, we fall back on

the service-level approach.

Both alternatives allow us to incorporate considerations of safety, but they do

not specify the scheduling problem completely. As a result, there are two major

formulations of the safe scheduling problem. One formulation treats due dates (and

possibly release dates) as given and determines which jobs to accept, which to reject,

and how to sequence the accepted jobs. The other formulation treats due dates and

release dates as decisions and adjusts these parameters in the process of minimizing

expected total cost. Typically, when due dates and release dates are decisions, we

assume that all jobs will be processed, but we can accommodate the accept/reject

decision as well. In either case, optimal safety time is a by-product of the analysis.

Considering the two approaches to acknowledging safety in conjunction with the

two problem formulations, we obtain four combinations, which we examine in the

following sections. We discuss the service-level approach with due dates as decisions

in Section 7.2 and the trade-off between tardiness and due date tightness in Section

7.3. In Section 7.4, we examine the stochastic version of the E/T problem, and in

Section 7.5, we introduce the possibility of setting release dates. In Section 7.6, we

discuss the service-level approach to the stochastic counterpart of the U-problem,

and we introduce the economic approach to the same problem in Section 7.7.

7.2 MEETING SERVICE-LEVEL TARGETS

In this section, we assume that a sequence is given, and we limit consideration to the

optimal determination of due dates. Recall from Chapter 2 (Section 2.4.4) that when

MEETING SERVICE-LEVEL TARGETS 139

we can set due dates, we generally wish them to be as tight as possible—that is, we

wish to minimize

D =

n
∑

j=1

d j

while maintaining feasibility. Suppose now that we have a given sequence and a

set of constraints of the form SL j ≥ b j . (For convenience, assume that the jobs

are sequenced in numbered order.) Then the problem is to minimize D subject

to stochastic feasibility. An analytic solution is conceptually straightforward: for

each job, set the due date d j to the smallest possible value consistent with the

service-level constraint. In other words, choose d j to be the smallest value for which

Pr{C j ≤ d j } ≥ b j . Because the sequence is known, the completion time of the jth

job is the sum of the first j processing times. For instance, when processing times

are stochastically independent, the probability distribution for C j is described by the

convolution of the probability distributions for the first j processing times.

� Example 7.1 Consider a problem containing n = 5 jobs with stochastic pro-

cessing times and service level targets as described in the following tables.

Job j 1 2 3 4 5

E(p j) 1 2 3 4 5

σ j 0.1 0.2 0.3 0.4 0.5

The processing times are independent, each drawn from a normal distribution with

the mean and standard deviation shown in the table.

Job j 1 2 3 4 5

b j 90% 50% 80% 70% 90%

The optimal due dates can be determined individually for each job. The relevant

calculations are shown in Table 7.1, and we elaborate on the details for job 4.

Job 4 has a mean completion time equal to the sum of the first four processing

times, or 10. To find the variance of its completion time, we sum the variances of the

first four jobs, obtaining 0.30. The corresponding standard deviation is the square root

of this figure, or about 0.548. Job 4 has a service-level target of 70%, corresponding to

a z-value of 0.524 in the standard normal distribution. Thus, we can meet the service

level by setting d4 = 10 + 0.524(0.548) = 10.287. As the table shows, the sum of

the five optimally calculated due dates is D = 36.681.

Alternatively, suppose that we approach this type of problem by using a stored

sample. For job j , the sum of the first j processing times in each row of the stored

sample yields C j for the corresponding scenario. We store the value in a separate

column and sort the column in ascending order. Let C j (k) denote the value of the

140 SAFE SCHEDULING

TABLE 7.1

Sequence 1 2 3 4 5

µj 1 2 3 4 5

σ j 0.1 0.2 0.3 0.4 0.5

bj 0.9 0.5 0.8 0.7 0.9

Variance 0.01 0.04 0.09 0.16 0.25

Cumulative 0.01 0.05 0.14 0.30 0.55

Square root 0.100 0.224 0.374 0.548 0.742

Cumulative mean 1 3 6 10 15

z-Value 1.282 0.000 0.842 0.524 1.282 �d

Due date 1.128 3.000 6.315 10.287 15.950 36.681

kth element in this sorted list. Now suppose that we set d j = C j (k), for some integer

k. As a result, in (k − 1) rows, job j is not tardy, in one row (namely, k) job j

completes exactly on time, and in the remaining (r − k) rows, job j is not strictly

early. Therefore, the service-level constraint is satisfied by setting

d j = C j (⌈b jr⌉) (7.1)

where ⌈x⌉ denotes the smallest integer greater than or equal to x . Furthermore, any

earlier due date violates stochastic feasibility, and any later due date is not as tight as

possible.

� Example 7.2 Consider a problem containing n = 5 jobs, with service-level

targets and expected processing times as shown in the following table.

Job j 1 2 3 4 5

E(p j) 3.0 4.0 5.0 6.0 7.0

b j 90% 60% 50% 80% 60%

Each job has a different processing time under four states of nature, as follows:

State Job j 1 2 3 4 5

GG p j 2.6 3.5 3.8 3.2 6.4

GB p j 2.8 3.9 4.4 5.5 6.6

BG p j 3.2 4.1 5.6 6.5 7.4

BB p j 3.4 4.5 6.2 8.8 7.6

TRADING OFF TIGHTNESS AND TARDINESS 141

TABLE 7.2

Sequence 1 2 3 4 5

Processing Times

GG 2.6 3.5 3.8 3.2 6.4

GB 2.8 3.9 4.4 5.5 6.6

BG 3.2 4.1 5.6 6.5 7.4

BB 3.4 4.5 6.2 8.8 7.6

Completion Times

GG 2.6 6.1 9.9 13.1 19.5

GB 2.8 6.7 11.1 16.6 23.2

BG 3.2 7.3 12.9 19.4 26.8

BB 3.4 7.9 14.1 22.9 30.5

⌈

b jr
⌉

4 3 2 4 3 Total

dj 3.4 7.3 11.1 22.9 26.8 71.5

Because the stored sample contains only r = 4 rows, the service level of 80%

or 90% corresponds to the largest completion time (⌈b jr⌉ = 4), the service level of

60% corresponds to ⌈b jr⌉ = 3, and a service level of 50% corresponds to ⌈b jr⌉ = 2.

Suppose that jobs are sequenced by SEPT (1-2-3-4-5). The due dates corresponding

to the given service-level targets are shown in Table 7.2, leading to D = 71.5.

Thus far, we have assumed that the job sequence is given. The more compli-

cated problem is to find the sequence that minimizes D. No algorithms have been

developed to find the optimal solution, but several heuristic methods have proved

effective in computational tests. The SEPT priority rule is simple and effective, but

improvements can be achieved using neighborhood search techniques, which reliably

generate solutions quite close to optimal.

7.3 TRADING OFF TIGHTNESS AND TARDINESS

A more challenging problem involves the trade-off between tight due dates and

tardiness performance. To illustrate the trade-off, assume that all jobs go to the same

customer, feeding an assembly operation. In this case, performance is largely dictated

by the completion time Cmax of the last job in the schedule. Internally, our scheduling

system assigns a common due date d to the set of jobs, to help guide the progress

of work in the system. We would like the due date to be tight, but we also want to

avoid tardiness. If we set the due date to zero, we would incur substantial tardiness,

but to avoid tardiness we would need a very large due date. An objective function

that balances these two goals is the following:

H (d) = d + γ E(max{0, Cmax − d}) = d + γ E(T)

142 SAFE SCHEDULING

where γ is a prespecified weighting factor. To solve this problem, we compute an

optimal service level (SL) and then set the due date so that the optimal service level

is achieved.

� Theorem 7.1 Suppose the objective is to minimize d + γ E(T) for a given set

of jobs. Then, if γ ≤ 1, we should set d = 0. Otherwise, it is optimal to set d equal

to the smallest possible value that satisfies the condition

SL = Pr{Cmax ≤ d} ≥ (γ − 1)/γ

Proof. The proof of Theorem 7.1 follows the critical fractile reasoning discussed in

Appendix B. Here, we show how to adapt the discrete form of that result to prove the

theorem, assuming for convenience that Cmax is an integer. The other forms presented

in Appendix B would also apply.

Suppose that we choose a due date of d, and then we observe a completion time

of C . In retrospect, we can ask whether it would be desirable to have increased

d by one initially. A unit increase in d would reduce tardiness if the job finished

late—that is, if Cmax > d. Thus, the net effect on the objective function would be

1 − γ (Pr{Cmax > d}) or, equivalently, 1 − γ [1 − F(d)]. It follows that we should

increase the due date as long as this expected incremental cost drops; that is, while

(1 − γ)[1 − F(d)] < 0

or, after rearranging,

F(d) < (γ − 1)/γ

This condition can never be met if γ ≤ 1, so in that case, we should never increase

the due date, and the optimal due date is zero. Otherwise, we should increase the due

date until

F(d) ≥ (γ − 1)/γ

In other words, we should set d equal to the smallest value for which this inequality

holds, which proves the theorem.

Thus, to find a solution, we need the probability distribution of the makespan,

which is independent of the job sequence. The critical fractile of this distribution (the

value at which the cdf equals or exceeds (γ − 1)/γ) gives us the optimal due date.

Nevertheless, the distribution of the makespan is an n-fold convolution and may not

always be tractable. We use the normal distribution for illustration.

� Example 7.3 Consider a problem containing n = 5 jobs with stochastic pro-

cessing times as described in the following table.

Job j 1 2 3 4 5

E(p j) 1 2 3 4 5

σ j 0.1 0.2 0.3 0.4 0.5

TRADING OFF TIGHTNESS AND TARDINESS 143

The processing times are independent, each drawn from a normal distribution with

the mean and standard deviation shown in the table. Take the parameter γ = 10.

In the example, the makespan is the sum of five processing times: it therefore

follows a normal distribution with a mean (15) equal to the sum of the individual

means and a variance (0.55) equal to the sum of the individual variances. The first step

is to compute the optimal due date. Given γ = 10, the critical ratio is (10 − 1)/10 =

0.90, corresponding to the z-value 1.282. We calculate the optimal due date as follows,

using z∗ to denote the standard normal variate corresponding to the critical fractile.

d∗ = µ + z∗σ = 15 + 1.282 × (0.55)0.5 = 15.950

Next, we calculate the optimal value of the objective function using formula (B.17)

of Appendix B.

H (d∗) = d∗ + γ E(T) = µ + γ σϕ(z∗) = 16.302

The calculations for the example are summarized in Table 7.3.

As a comparison, consider the naı̈ve choice of a due date equal to the expected

makespan, or d = 15. The objective function would be µ + γ σϕ(0) = 17.958. Thus,

the provision of 0.95 units of safety time improves the objective function by over 9%

compared to the naı̈ve policy.

A generalization of the trade-off problem treats each job as having a due date and

potentially incurring tardiness. The generalized objective is to minimize

n
∑

j=1

d j + γ

n
∑

j=1

E(T j) = D + γ E(T)

As in the case of a common due date, we can determine the optimal values of the

service levels from a critical fractile.

TABLE 7.3

Job j 1 2 3 4 5

E(pj) 1 2 3 4 5

σ j 0.1 0.2 0.3 0.4 0.5

γ 10 z-Value 1.282

Critical fractile 0.9 phi(z) 0.1755

Variance 0.010 0.040 0.090 0.160 0.250

Cumulative 0.010 0.050 0.140 0.300 0.550

Square root 0.100 0.224 0.374 0.548 0.742

Cumulative mean 1 3 6 10 15

Due date 15.950 Objective 16.302

144 SAFE SCHEDULING

� Theorem 7.2 Suppose the objective is to minimize D + γ E(T) for a given

sequence. Then, if γ ≤ 1, we should set all due dates to 0. Otherwise, for job j , it is

optimal to set d j equal to the smallest value that satisfies the condition

SL j = Pr{C j ≤ d j } ≥ (γ − 1)/γ

Proof. The objective function is additive, and each job makes a separate contribution

to E(T) and to D. Changing d j affects the contributions from job j , but not the

contributions of any other job. Therefore, we can decompose the objective into

components that depend on only one job. Each component can then be optimized by

applying the reasoning of Theorem 7.1.

� Example 7.4 Revisit Example 7.3 but adopt the generalized objective of

minimizing D + γ E(T).

Job j 1 2 3 4 5

E(p j) 1 2 3 4 5

σ j 0.1 0.2 0.3 0.4 0.5

The processing times are independent, each drawn from a normal distribution with

the mean and standard deviation shown in the table. Take the parameter γ = 10.

In this instance, we again have (γ − 1)/γ = 0.9, so as before, the optimal service

level is 90%, and the corresponding z-value is 1.282. From this value, we can calculate

the due date for each of the five jobs, as shown in Table 7.4. We then use formula

(B.17) to compute the optimal contribution each job makes to the objective function.

In the example, the optimal value of the objective function is 38.487.

TABLE 7.4

Job j 1 2 3 4 5

E(pj) 1 2 3 4 5

σ j 0.1 0.2 0.3 0.4 0.5

γ 10 z-Value 1.282

Critical fractile 0.9 phi(z) 0.1755

Variance 0.010 0.040 0.090 0.160 0.250

Cumulative 0.010 0.050 0.140 0.300 0.550

Square root 0.100 0.224 0.374 0.548 0.742

Cumulative mean 1 3 6 10 15

z-Value 1.282 1.282 1.282 1.282 1.282

Normal pdf 0.175 0.175 0.175 0.175 0.175

Due date 1.128 3.287 6.480 10.702 15.950 Total

d + γ E(T) 1.175 3.392 6.657 10.961 16.302 38.487

THE STOCHASTIC E/T PROBLEM 145

Theorem 7.2 assumes that the job sequence is given. In the generalized problem,

the ultimate objective is to find the sequence that minimizes D + γ E(T). The optimal

sequence is not always easy to find, but SEPT is often a good heuristic. Moreover,

the following result describes a special case in which SEPT is known to be optimal.

� Theorem 7.3 Suppose the objective is to minimize D + γ E(T). If all process-

ing times are stochastically ordered, then SEPT is optimal.

Proof. We use an adjacent pairwise interchange argument. Consider a sequence

containing adjacent jobs i and k, in that order, where job k is stochastically smaller

than job i . We compare the sequence formed by interchanging jobs i and k. The

later of the two jobs contributes the same amount to the objective function in either

sequence. Let d∗
i and d∗

k be the respective due dates satisfying Theorem 7.3 for the

earlier job. Our task is to show that d∗
k + γ E(Tk) ≤ d∗

i + γ E(Ti). A key observation

is that Ck ≤st Ci (because if X ≤st Y then X + Z ≤st Y + Z for any Z ; here, Z

represents the processing time of the jobs preceding i and k). By definition, the cdf of

a stochastically smaller distribution yields the minimal d for any desired service level,

so d∗
k ≤ d∗

i . E(Tk) and E(Ti) are given by the tail areas of the respective distributions

above the cdfs (Fk(x) and Fi (x)) and below 1 to the right of d∗
k and d∗

i . Because Fk(x) is

monotone nondecreasing, if we replace the part of the tail representing E(Tk) between

d∗
k and d∗

i by a rectangle of width (d∗
i − d∗

k) and height 1/γ , we obtain an upper

bound for E(Tk). By stochastic dominance, the remainder of the tail—to the right of

d∗
i —cannot exceed E(Ti), so E(Tk) ≤ E(Ti) + (d∗

i − d∗
k)/γ . Multiplying through by

γ we obtain γ E(Tk) ≤ γ E(Ti) + d∗
i − d∗

k ; that is, d∗
k + γ E(Tk) ≤ d∗

i + γ E(Ti).

Corollary 7.1 Suppose the objective is to minimize D subject to service-level

constraints Pr{C j ≤ d j } ≥ b. If all processing times are stochastically ordered, then

SEPT is optimal.

In these last two results, we see a pattern that seems to occur in connection with

safe scheduling models: a general problem is difficult to solve, but a solution is much

easier to find if processing times are stochastically ordered. Stochastic ordering

is evidently a key boundary case in the computational complexity of stochastic

scheduling problems.

7.4 THE STOCHASTIC E/T PROBLEM

In this section, we consider the stochastic version of the E/T problem. The unit

earliness cost α and the unit tardiness cost β apply to the difference between each

job’s completion time (C j) and its due date (d j). Thus, we let

f (S) =

n
∑

j=1

(α max{0, d j − C j } + β max{0, C j − d j })

146 SAFE SCHEDULING

If we allow jobs to have different unit costs, the objective function can be expressed

as

E[f (S)] =

n
∑

j=1

[α j E(E j) + β j E(T j)]

with due dates treated as decisions. The optimal choice of due dates is again deter-

mined by the critical fractile rule, as stated in the following result.

� Theorem 7.4 Assume all jobs are processed with no inserted idle time and the

objective is to minimize the expected total E/T cost. Then, for any given sequence,

the optimal due date of job j corresponds to a service level of β j/(α j + β j). That is,

it is optimal to set dj to the smallest value that satisfies the condition

Pr{C j ≤ d j } ≥ β j/(α j + β j)

The proof resembles the proof of Theorems 7.1 and 7.2 and will not be repeated

here. (See Appendix B for details.) For a given job sequence, we apply Theorem 7.4

separately to all jobs and thereby minimize the expected total E/T cost. However, it is

algebraically challenging to apply the theorem unless we assume that the processing

times follow a tractable probability distribution, such as the normal. Furthermore,

the theorem does not completely solve our problem: although we can set the due

dates optimally, no efficient procedure is yet known for determining the optimal job

sequence.

For some insight into a heuristic sequencing approach, assume that the processing

times follow independent normal distributions. Let the processing time of the jth job

in sequence have mean µj and variance σ 2
j . Then, because the processing times are

independent, we can calculate the mean (m j) and variance (s2
j) of the completion

time for job j as follows:

m j = µ1 + µ2 + · · · + µ j

s2
j = σ 2

1 + σ 2
2 + · · · + σ 2

j

where the completion time variance depends on the job sequence. We define the

standard normal variate z j = (d j − m j)/s j , and we use an asterisk to denote optimal

values. Thus, for example, z∗
j = (d∗

j − m j)/s j is the zj-value that satisfies Theo-

rem 7.4. In symbols,

z∗
j = �−1[β j/(α j + β j)]

That is, a safety time of (z∗
j s j) must yield a service level of β j/(α j + β j), and we

don’t really need m j and s j to calculate z∗
j . Instead, we can calculate it directly from

the cdf of the standard normal, setting the cumulative probability equal to the critical

THE STOCHASTIC E/T PROBLEM 147

ratio. We then obtain

d∗
j = E(C j) + z∗

j s j = m j + z∗
j s j

Using the algebra of normal distributions (see (B.12) in Appendix B), we can then

write

E[f (S)] =

n
∑

j=1

[(α j + β j)s jϕ(z∗
j)] (7.2)

In the spirit of the deterministic counterpart, suppose that we also consider setting

due dates equal to expected completion times:

d j = E(C j) = m j

These due dates are equivalent to using safety times of zero. Drawing on the algebra

of normal distributions once more, we can show that the expected E/T cost for

job j is (α j + β j)s jϕ(0). To compute this quantity, we just replace z∗
j by 0 in Eq.

(7.2). Therefore, the expected-value approach reduces to finding a sequence that

minimizes

E[f (S)] =

n
∑

j=1

(α j + β j)s jϕ(0)

Under (7.2), the expected E/T cost associated with job j , (αj + β j)sjϕ(z∗
j), cannot

exceed (α j + β j)s jϕ(0) because ϕ(z) is maximized at z = 0. The two ways of setting

due dates may lead to different optimal sequences, and unless α j = β j for all j , they

lead to different objective function values. To illustrate the analysis thus far, we look

at an example with just two jobs.

� Example 7.5 Consider a problem containing n = 2 jobs, in which the pro-

cessing times of the jobs follow independent normal distributions, and the objective

is to minimize total expected E/T penalty.

Job j 1 2

µ j 10 10

σ j 3 4

α j 3 9

β j 27 36

148 SAFE SCHEDULING

Here, (α1 + β1) = 30 and (α2 + β2) = 45. The optimal service levels are as

follows:

For job 1, β1/(α1 + β1) = 27/30 = 0.9 (corresponding to z1 = 1.282)

For job 2, β2/(α2 + β2) = 36/45 = 0.8 (corresponding to z2 = 0.842)

We solve for the best sequence by complete enumeration. For the sequence 1-2,

we have s1 = 3 and s2 = (32 + 42)1/2 = 5. Thus,

f (S) =

n
∑

j=1

(α j + β j)s jϕ(z j) = 30(3)ϕ(1.282) + 45(5)ϕ(0.842)

= 30(3)(0.1755) + 45(5)(0.2800) = 78.79

For the sequence 2-1, we have s2 = 4 and s1 = (32 + 42)1/2 = 5. Thus,

f (S) =

n
∑

j=1

(α j + β j)s jϕ(z j) = 45(4)ϕ(0.842) + 30(5)ϕ(1.282)

= 45(4)(0.2800) + 30(5)(0.1755) = 76.72

Accordingly, we select the sequence 2-1 and set the due dates as follows:

d2 = 10 + 4(0.842) = 13.368

d1 = 20 + 5(1.282) = 26.410

Most likely, we should complete job 2 around time 10 and job 1 around time

20. But if we follow the deterministic counterpart and set the due dates equal to the

expected completion times of 10 and 20 for this sequence, the expected total cost

would be 131.65. However, without safety times, the opposite sequence (1-2) would

be better, with an expected total cost of 125.67, or still about 70% above optimal.

The implication is that the expected-value approach leads to excessive cost and can

mislead the search for an optimal sequence.

Although no known optimizing algorithm exists short of complete enumeration,

the sequencing problem for (7.2) can be solved very effectively by a sorting heuristic.

In particular, we sort by nondecreasing ratio of σ 2
j /(α j + β j)ϕ(z∗

j), with ties broken

in favor of the smallest σ j . This heuristic is often optimal for small n.

For large n, a special property applies. A heuristic is asymptotically optimal if, as

n grows large, the relative difference between the heuristic solution and the optimum

becomes negligible. More formally, let f (S∗) denote the objective function value

with the optimal sequence, S∗, and let f (SH) be the value associated with a heuristic.

We say that the heuristic is asymptotically optimal if, in the limit as n → ∞, [f (S∗) −

f (SH)]/f (S∗) → 0. That turns out to be the case for the sorting heuristic.

Furthermore, for independent processing times, the heuristic is asymptotically

optimal even if the jobs are not distributed normally. This result follows from the

SETTING RELEASE DATES 149

fact that, for large n, the central limit theorem holds, and nearly all completion times

are normally distributed. Among all possible sorting rules, only those consistent

with the sorting rule are asymptotically optimal. The tie breaker is not necessary

for asymptotic optimality but it is useful because, for the normal distribution, if the

heuristic rule is consistent with nondecreasing σ j , then it is optimal.

Because asymptotic optimality does not require normal processing times, the

heuristic sorting rule is effective for any processing time distribution. Furthermore,

we can use the sorting heuristic to find an initial seed, and then perform neighborhood

searches on the first few jobs (say, 5 to 10) to see if an even better sequence can be

found. For subsequent jobs, we can rely on the asymptotic optimality of the heuristic.

We can use this sorting rule as a crude heuristic even when jobs are not statistically

independent. To estimate job parameters for that purpose, we use their marginal

distributions. After the sequence is determined, we can set the due dates using the

critical fractile rule, which does not require statistical independence or normality.

Although the use of marginal distributions is not theoretically correct, this method

can at least generate a reasonable seed for a neighborhood search.

7.5 SETTING RELEASE DATES

Consider the stochastic E/T problem with a common due date, as it is a special case

that can teach us something about the more general case with distinct due dates. This

problem is characterized by random processing times, but in other ways, it is identical

to the deterministic problem. Thus, a logical first approach is to adopt the features of

the deterministic counterpart, wherever possible. The deterministic solution builds on

Theorems 5.1, 5.2, and 5.3. These three results state: (1) inserted idle time provides

no benefit, (2) a V-shaped schedule is optimal, and (3) one job completes at the

due date. In the stochastic case, of course, we would not expect the last condition

to hold, but we might hope the other properties apply. However, as we might guess

from examples with the normal distribution, V-shaped schedules may not be optimal

because they do not account for variance. The remaining question involves inserted

idle time. Unfortunately, we may encounter limited success relying on this feature

of the deterministic counterpart to solve the stochastic problem. To illustrate, we

consider an example with a common due date and identical earliness and tardiness

costs among the jobs.

� Example 7.6 Consider the following three-job instance with a common due

date and identical costs for earliness and tardiness.

Job j 1 2 3

E(p j) 3.4 1 1

d j 10 10 10

α j 1 1 1

β j 1 1 1

150 SAFE SCHEDULING

The processing times depend on which of two states of nature occur, as described in

the following table.

State Job j 1 2 3 Probability

S1 p j 1 1 1 0.2

S2 p j 4 1 1 0.8

In this instance, p1 is a random variable, but the other two jobs have deterministic

processing times. In the deterministic counterpart, job 1 comes first, and the other

jobs follow in either order. The optimal schedule begins at time 5.6, so that the second

job completes at time 10, and the total E/T cost is 2.

Now suppose we implement the sequence 1-2-3 in the stochastic case. If we start

job 1 at time 5.6, the expected total cost is 3.52. If we explore other starting times,

we find that starting job 1 at time 5.0 leads to an expected total cost of 3.4, which is

the best objective for this sequence. If we schedule job 1 last, the best we can do is

to start the schedule at time 8, leading to an expected total cost of 4.4.

Next, we explore the possibility of inserting idle time in the sequence 1-2-3.

Suppose we start the schedule at time 5 but constrain the second job from starting

earlier than time 9. In other words, when job 1 completes at time 6 (which occurs

with probability 0.2), the machine is idle until time 9, when job 2 starts. This schedule

achieves an expected total cost of 2.6, which is better than we could achieve with no

inserted idle time.

This example reveals a complicating factor in stochastic problems with E/T crite-

ria: it may be helpful to allow inserted idle time between jobs, even though (for the

case of a common due date) such idle time would not be beneficial in the deterministic

counterpart. Thus, we must pay attention to the general case in which inserted idle

time is permitted.

As Example 7.6 shows, inserted idle time can be beneficial in the stochastic case.

The constraint on the start time for the second job is essentially a release date, r j , for

job j . If the machine is available before r j , the machine must wait to start job j ; but

if the machine becomes free after r j , the job can start immediately.

It is not always necessary to assign an explicit release date to each job. We may

start a search for optimal release dates under the assumption that each job has its own

release date, but it is ultimately sufficient to describe a schedule by specifying only

release dates that have a positive probability of actually delaying a job. We refer to

such release dates as active. A release date that is not active is redundant because it

never causes a machine to wait.

As discussed in Section 5.7, release dates define blocks. A block is a sequence of

jobs processed without delay. If no release date is specified for a job, it is in the same

block as the preceding job. (The only exception would be for the first job: if no release

date is specified for the first job, then processing starts at time 0.) In the stochastic

case, adjacent blocks may be processed with or without a gap between them, but the

expected size of the gap is positive. In the optimal schedule for Example 7.6, we

SETTING RELEASE DATES 151

place job 1 first in sequence and take r2 = 9. Job 1 thus belongs to block 1, whereas

the other two jobs make up block 2 and the expected gap is 0.2 × 3 = 0.6.

Suppose we are given a set of jobs with distinct due dates and E/T costs, and

suppose further that the job sequence is given. The task then is to set release dates

that minimize the total expected E/T cost. It is possible to show that the total ex-

pected E/T cost is a convex function of the release dates. Essentially, we need to

search for the best combination of release dates to minimize this total expected

penalty.

When we use a stored sample, we can find the best combination of release dates by

a numerical search, because the problem is convex and thus not difficult in practice.

� Example 7.7 Consider a problem containing n = 5 jobs with stochastic pro-

cessing times. The due date and expected processing time for each job are shown in

the following table.

Job j 1 2 3 4 5

E(p j) 3 4 5 6 7

d j 8 5 17 20 12

The probability distributions are based on four equally likely states of nature.

State Job j 1 2 3 4 5

GG p j 2.6 3.5 3.8 3.2 6.4

GB p j 2.8 3.9 4.4 5.5 6.6

BG p j 3.2 4.1 5.6 6.5 7.4

BB p j 3.4 4.5 6.2 8.8 7.6

The earliness and tardiness costs are given in the next table.

Job j 1 2 3 4 5

α j 2 1 2 1 4

β j 5 4 3 3 1

If the jobs are sequenced by EDD (2-1-5-3-4), the optimal release dates are given

in Table 7.5.

TABLE 7.5

Job j 2 1 5 3 4

rj 0 3.9 0 13.0 0

152 SAFE SCHEDULING

In this solution, release dates of zero allow the job to start as soon as the machine

is available. Thus, jobs 2, 5, and 4 may start as soon as the machine is ready for

them. Job 1 waits until job 2 is finished and follows immediately if job 2 completes at

time 3.9 or later. (These completion times correspond to states GB, BG, and BB.) On

the other hand, if job 2 completes at time 3.5 (state GG), then the machine remains

idle—and job 1 must wait—until time 3.9. In this situation, we say that job 1 has an

active release date, meaning that the release date constrains the start of job 1 in at

least one scenario. Similarly, job 3 is assigned an active release date, although it does

not correspond to a possible completion time of job 5.

Our model determines optimal release dates for a given sequence, but we still do

not have an efficient algorithm for finding the best sequence. For the time being, a

heuristic procedure, such as a neighborhood search algorithm, represents the state of

the art for finding the optimal sequence.

As a footnote to our discussion of release dates, we can show that inserted idle time

is never beneficial for minimizing D + γ E(T). In general, inserted idle time cannot

help when the delayed release is associated with a cost that exceeds the earliness

penalty, and this is automatically the case for D + γ E(T).

7.6 THE STOCHASTIC U-PROBLEM: A SERVICE-LEVEL APPROACH

Our safe scheduling models have so far treated due dates as decision variables. In those

models, we can analyze how the due date should be chosen, but little progress has

been made in finding optimal sequences. We turn next to a different set of problems,

in which due dates are given. A basic problem in this set would be the minimization of

expected tardiness. However, E(T) is still a challenging objective function and little

progress has been made on this problem, with or without service-level considerations.

On the other hand, some progress has been made in the minimization of E(U).

In Chapter 2, we presented the U-problem as one of postponing the jobs assigned

to set A so that jobs in set B can be completed on time. Because jobs in A are late, they

can be postponed indefinitely without altering the number of late jobs. Thus, we may

equivalently consider jobs in A to be rejected, and Algorithm 2.1 can be viewed as

a procedure for minimizing the number of rejected jobs in the deterministic version

of the problem. Accordingly, we treat the stochastic U-problem as a problem of

accepting or rejecting jobs. The stochastic U-problem with service-level constraints

calls for minimizing |A| subject to stochastic feasibility of the accepted jobs. The

general version of this problem is known to be NP-hard.

One complication that arises in the stochastic U-problem relates to the sequenc-

ing of the on-time jobs—those in set B. In Algorithm 2.1, we could rely on EDD

sequencing of set B, but the optimality of EDD does not generalize to the stochastic

case, as the following example demonstrates.

� Example 7.8 Consider the problem of sequencing two jobs with stochastic

processing times and with the following parameters.

THE STOCHASTIC U-PROBLEM: A SERVICE-LEVEL APPROACH 153

Job j 1 2

d j 5.0 6.0

b j 0.5 0.9

E(p j) 1 3.5

Job 1 has a deterministic processing time, but job 2 has a processing time that follows

a uniform distribution on the interval (1, 6).

Because p1 = 1 ≤ p2, the processing times are stochastically ordered (p1 ≤st p2).

Figure 7.1a describes the situation for the EDD sequence. Two vertical segments

with height 1, occurring at times 0 and 1, mark the start and finish of job 1. The

uncertainty in C2 is represented by a linear cdf. Finally, the two service-level re-

quirements are represented by vertical bars with heights b j at the respective due

dates d j . Clearly, job 1 exceeds its service-level requirement because its cdf reaches

a height of 1 prior to d1. But job 2 fails to meet its requirement because by d2 its cdf

does not reach the height of b2. Figure 7.1b demonstrates, however, that if we inter-

change the jobs and sequence against EDD order, then both service-level constraints

are met.

Figure 7.1 is an example of a predictive Gantt chart. In a regular Gantt chart,

jobs are always depicted as rectangles, and job 1 is depicted this way in Figure 7.1a

because its start and finish times are not uncertain. The height of its rectangle is equal

to 1, and we can interpret the vertical line at time 1 as the cdf of C1. The same job

appears in Figure 7.1b, but in that case, its start time and finish time are uncertain

and represented by cdfs. The area between the start cdf and the completion cdf of

job 1 is the same in both figures and equals the expected processing time of the job.

The horizontal line at the top of the figure can be interpreted as part of the cdf of the

start time of the activity. As the figure demonstrates, a predictive Gantt chart shows

the probability of completion as a function of time (because it involves cdfs) and can

also be used to check whether particular service levels are met.

Probability

of

completion Job 1

cdf

Job 1

cdfJob 2

cdf

Job 2

cdf

b2

b1

b2

b1

d1 d2 Time

d1 d2 Time

(a)

Probability

of

completion

(b)

FIGURE 7.1 Graph for Example 7.1: (a) sequence 1-2 and (b) sequence 2-1.

154 SAFE SCHEDULING

Example 7.8 proves the following proposition.

Proposition 7.1 A stochastically feasible set is not necessarily feasible in EDD

sequence, and the stochastic infeasibility of EDD may occur even if processing times

are stochastically ordered.

To make progress, we need a procedure for determining whether a feasible se-

quence exists for any subset of accepted jobs. As it happens, a relatively simple

procedure is available. This feasibility check resembles the backward sequencing of

Theorems 3.1 and 6.4. It starts by checking whether any job would satisfy its service-

level constraint if scheduled last. (The distribution of the last job’s completion time

can be determined because it does not depend on the job sequence.) Any such job

may be scheduled last and removed from further consideration. The procedure is then

repeated for the remaining jobs. Because the procedure is constructive, it builds a

sequence from back to front and yields a feasible sequence whenever the set of jobs

is feasible.

Next, we must imbed the feasibility check in the logic for accepting or rejecting

jobs. If the jobs are stochastically ordered, we can use the logic of Algorithm 2.1,

using the feasibility check in place of EDD sequencing.

Algorithm 7.1 Minimizing U with Service-Level Constraints and

Stochastically Ordered Jobs

Step 1. Sequence the jobs by SEPT (ties may be broken arbitrarily) and place all jobs

in the unresolved set, so that sets A and B are empty.

Step 2. Tentatively add the first unresolved job to B and apply the feasibility check.

If the result is feasible, record the sequence and add the job to B permanently.

Otherwise add the job to A.

Step 3. If the unresolved set is not empty, return to Step 2. Otherwise, stop. The last

recorded sequence of the jobs in B is optimal.

Algorithm 7.1 does not require stochastic independence: it applies for linearly

associated processing times as well. To illustrate the application of the algorithm, we

find the solution to an example as described below (with stochastically ordered and

linearly associated processing times).

� Example 7.9 Consider a problem containing n = 5 jobs. The due date and

expected processing time for each job are shown in the following table.

Job j 1 2 3 4 5

E(p j) 6.0 8.0 10.0 12.0 14.0

d j 17.0 16.0 34.0 40.0 25.0

THE STOCHASTIC U-PROBLEM: A SERVICE-LEVEL APPROACH 155

Each job has a different processing time under four states of nature, as follows:

State Job j 1 2 3 4 5

1 p j 3.9 5.6 7.0 8.4 9.8

2 p j 5.3 7.2 9.0 10.8 12.6

3 p j 6.7 8.8 11.0 13.2 15.4

4 p j 8.1 10.4 13.0 15.6 18.2

The service-level targets for the jobs are shown in the following table.

Job j 1 2 3 4 5

b j 90% 60% 50% 80% 60%

In Step 1, all jobs are unresolved, and the SEPT order is 1-2-3-4-5. When we

consider the set {1}, we find that job 1 meets its target service level because it is

certain to complete by its due date (d1 = 17.0), so in Step 2, we add job 1 to set B.

When we consider the set {1, 2}, we find that job 1 cannot meet its target if it follows

job 2 (as per EDD), but job 2 meets its target if it follows job 1. Therefore, in Step

2, we add job 2 to B and record the sequence 1-2. As we continue through the SEPT

list, jobs 1, 2, 3, and 4 are each feasible, so they are added to B consecutively. After

we add job 4, we record the sequence produced by the feasibility check, 1-2-4-3. But

tentatively adding job 5 leads to infeasibility—no job can be feasibly scheduled in

the last position. Therefore, job 5 is rejected, and the optimal solution is |A| = 1.

Suppose we tried to use Algorithm 2.1, which relies on EDD sequencing of the

jobs in set B. The EDD sequence is 2-1-5-3-4. Job 2 is added to B, but job 1 is rejected

(in the second position) and therefore job 5 becomes feasible and is also added to set

B. Then job 3 is added, but job 4 cannot be feasibly added after job 3, so job 4 is

assigned to A, leaving only three jobs in B (2, 5, and 3). As shown above, the optimal

number of jobs in B is 4.

Proposition 7.1 leaves us with the question of whether special cases exist in which

we can rely on the EDD sequence for the stochastically on-time jobs. The answer is

that such cases do exist. For example, suppose that all jobs have the same service-

level target—that is, b j = b. In that case, a set of jobs is feasible if each one has a

service level no lower than b. But as we saw in Corollary 6.1, the EDD sequence

maximizes the minimum service level, so it will generate a sequence, if one exists,

in which each service level meets or exceeds b. In other words, if a feasible sequence

exists, the EDD sequence will be feasible.

We can generalize this condition to agreeable parameters. For any two jobs i and

k, if di ≤ dk and bi ≥ bk , then these parameters are said to be agreeable. When every

pair of jobs has agreeable due dates and service-level targets, the EDD sequence

generates a feasible sequence if one exists.

156 SAFE SCHEDULING

Although we can rely on the EDD sequence for the set of jobs in B in the case

of agreeable parameters, we also require that the processing times be stochastically

ordered if Algorithm 7.1 is to be successful.

� Theorem 7.5 For stochastically ordered and linearly associated processing

times, if the service-level constraints and the due dates are agreeable, then the number

of jobs that must be rejected to meet all service-level constraints is minimized by

Algorithm 2.1, substituting E(p j) for p j .

Proof. For the time being, assume that processing times are independent. If all jobs are

stochastically feasible, the theorem holds, so assume at least one job is stochastically

tardy. Therefore, during the execution of Algorithm 2.1, we encounter infeasibility

at least once. Whenever this happens, consider two cases. In Case 1, the longest job

by expectation in the infeasible set is the last one. Therefore, we know with certainty

that to achieve feasibility for the other jobs in the subset, it is sufficient to reject this

one. We also know, by an argument similar to that in the proof of Theorem 6.8, that

it is the best bet for minimizing the necessary rejections among the jobs that follow

the subset. In Case 2, the longest job by expectation is not last. To complete the proof

for independent processing times, it remains to show that rejecting this job renders

the last job feasible. We leave this part of the proof as an exercise. The final step is to

remove the independence assumption and extend these results to linearly associated

jobs by invoking Theorem 6.7.

Here is a summary of the results known for the problem of maximizing the

number of stochastically independent on-time jobs with service-level constraints.

The problem is NP-hard in general. However, if we know that the processing times

are stochastically ordered, then we can find solutions with Algorithm 7.1. If we

also know that due dates and service-level targets are agreeable, then we can find

solutions with Algorithm 2.1, which is slightly simpler. In both cases, the result

extends to linearly associated processing times.

7.7 THE STOCHASTIC U-PROBLEM: AN ECONOMIC APPROACH

As discussed in the previous section, we can treat the stochastic U-problem as a

problem of accepting or rejecting jobs. Whereas the service-level approach calls

for minimizing |A| subject to stochastic feasibility, the economic approach involves

specifying the costs for various outcomes and then minimizing an objective corre-

sponding to expected total cost. If we can capture the relevant costs, then the objective

function in the economic approach may reflect reality better than traditional summary

measures such as U.

In the stochastic case, we can distinguish between a job that is rejected intentionally

and a job that is tardy by chance. That is, we may accept a job with the intention

of completing it on time, but the stochastic nature of its processing time (and the

processing times of earlier jobs) may result in tardiness in spite of our intention. This

THE STOCHASTIC U-PROBLEM: AN ECONOMIC APPROACH 157

structure leads to a more elaborate model: every job that is completed early or on

time represents a reward of RE , a tardy job generates a reward of RT < RE , and the

reward for rejecting a job is RR . We require

RE > RR > RT (7.3)

Our objective is to maximize the expected total reward. The assumption in (7.3) is

economically sound: if RR were not strictly higher than RT , we would gain nothing

by rejecting a job—that is, we would actually process all jobs even if they were

in A because the reward would be at least as good as rejecting them. Similarly,

if RR were not strictly lower than RE, we would reject all jobs right away. By

subtracting RR from all rewards, we change the total reward by a constant, but

the optimal sequence does not change. Therefore, without loss of generality, we may

assume that RE > 0, RR = 0, and RT < 0. After this adjustment, any optimal solution

must be nonnegative because by rejecting all jobs, we can guarantee a total reward

of zero.

The new objective function is additive, so it can be optimized by dynamic pro-

gramming. To facilitate the incorporation of explicit rejection decisions, we turn to

the service-level approach and derive a constraint that all accepted jobs must satisfy.

As introduced earlier, let SL j denote the probability that job j is on time. Then the

expected reward E(R j) for job j when it is accepted becomes

E(R j) = RE SL j + RT (1 − SL j)

This contribution is not positive unless

E(R j) = RE SL j + RT (1 − SL j) > 0

or

SL j > −RT /(RE − RT) (7.4)

The right-hand side of this inequality serves as a legitimate probability because

RT < 0. Furthermore, rejecting any job can only help reduce the tardiness of other

jobs, so the optimal solution cannot call for accepting any job whose expected reward

is negative. Therefore, if (7.4) is violated for any accepted job at any sequence

position, that sequence cannot be optimal. The condition in (7.4) is necessary for

each job, but not sufficient for optimality. In practice, these constraints are not likely

to be tight except for jobs that are sequenced at the end of the schedule. In other words,

it may be suboptimal to accept an early job whose service level barely satisfies its

target as given by (7.4). Although the direct result of accepting such a job would be

a positive expected reward for the job, the consequence may be to reduce the service

levels of later jobs and indirectly lead to a net loss.

158 SAFE SCHEDULING

� Example 7.10 Consider a problem containing n = 5 jobs, with accept/reject

decisions possible. The reward for completing a job on time is RE = 20 and the

penalty for completing a job late is RT = −10. Due dates and expected processing

time for each job are shown in the following table.

Job j 1 2 3 4 5

E(p j) 3.0 4.0 5.0 6.0 7.0

d j 7.8 7.5 17.0 20.0 12.0

Each job has a different processing time under four states of nature, as follows.

State Job j 1 2 3 4 5

GG p j 2.6 3.5 3.8 3.2 6.4

GB p j 2.8 3.9 4.4 5.5 6.6

BG p j 3.2 4.1 5.6 6.5 7.4

BB p j 3.4 4.5 6.2 8.8 7.6

A plausible heuristic procedure for this problem is to fix the sequence and enu-

merate the possible rejections. We illustrate this procedure using the EDD sequence

2-1-5-3-4. When we compare the 32 possible combinations of job rejections, we dis-

cover that the maximum expected total reward is 65. In this example, it is optimal to

accept two jobs that are tardy in one of the states. The calculations for this sequence

are summarized in the spreadsheet of Figure 7.2. (In the spreadsheet calculation, an

accept decision of zero signifies rejection. For each rejected job, the corresponding

processing times and reward are set to zero.)

We can also construct examples showing that it may not be optimal to arrange the

accepted jobs in EDD sequence. (For example, consider a case with two jobs in which

only the first job is stochastic and by sequencing it first we risk tardiness in both.)

Therefore, in general, it is still necessary to search among the possible sequences for

an optimal solution.

No optimization algorithm for this problem has been developed and tested, but

we can produce good solutions using the Evolutionary Solver (see Chapter 4). On

a spreadsheet, the Evolutionary Solver can be implemented with a stored sample,

using the layout shown in Figure 7.2. Alternatively, for continuous distributions, the

Evolutionary Solver can be combined with Risk Solver, as discussed in Chapter 6.

This approach appears to be the state of the art for solving the stochastic U-problem

with an economic approach.

A somewhat different example is presented next, in which we allow jobs to be

rejected, but the criterion is still the maximization of expected reward. Here, we deal

with a stored sample of r = 1000 (not shown).

THE STOCHASTIC U-PROBLEM: AN ECONOMIC APPROACH 159

FIGURE 7.2

� Example 7.11 Consider a problem containing n = 30 jobs with stochastic

processing times as described in the following table.

Job j 1 2 3 · · · 30

E(p j) 1 1 1 · · · 1

σ j 0.3 0.3 0.3 · · · 0.3

d j 1 2 3 · · · 30

The processing times are independent and identically distributed, each drawn from

a lognormal distribution with mean 1 and standard deviation 0.3, as indicated. Each

job has a due date equal to its job number, so that when the jobs are sequenced in

numbered order, they are also in the EDD sequence. A stored sample with r = 1000

is the basis for analysis.

Table 7.6 summarizes the results of a simulation study of this 30-job problem.

Because the jobs are identical in every important way except their due dates, a simple

pairwise interchange argument shows that if it is optimal to reject k jobs, then they

should be the first k jobs in sequence. This choice maximizes the slack for the

160 SAFE SCHEDULING

TABLE 7.6

k E[U]

Standard

Deviation Reward 1

Standard

Deviation Reward 2

Standard

Deviation

0 14.42 10.79 83.64 161.80 −565.45 647.21

1 4.93 7.50 216.09 112.43 −5.66 449.74

2 1.31 3.81 260.34 57.17 201.35 228.69

3 0.28 1.59 265.82 23.88 253.27 95.50

4 0.04 0.55 259.34 8.30 257.36 33.21

5 0.00 0.15 249.94 2.29 249.74 9.16

6 0.00 0.03 239.99 0.47 239.98 1.90

7 0.00 0.00 230.00 0.00 230.00 0.00

remaining (n − k) jobs and thus minimizes the probability that they will be tardy.

In the first three columns of the table, we report k (the number rejected), the mean

number of tardy jobs U, and the standard deviation of U. We see that the total number

of rejected and tardy jobs is minimized for k = 3, and that the standard deviation of

U decreases rapidly in k. A closer look at the tardy jobs would reveal that a job that

takes much longer than expected early in the sequence can cause tardiness in other

jobs later. When safety time is increased by rejecting more jobs, this effect is limited,

and the outcome becomes more predictable. The next two columns show the mean

and standard deviation of the total expected reward when RE = 10 and RT = −5,

as a function of k. The optimum is obtained for k = 3. The last two columns give

the mean and standard deviation of the total expected reward when RE = 10 and

RT = −50. In this latter case, the optimum is obtained for k = 4.

7.8 SUMMARY

In this chapter, we introduced safe scheduling and discussed four general types of

models that can be called safe. Using an analogy to stochastic inventory theory, we

identified two approaches to sizing time buffers: meeting service-level constraints or

minimizing the expected value of total economic cost. We considered each of these

approaches with two options for actually achieving safety: (1) specifying sufficiently

large due dates or (2) rejecting jobs whose inclusion would violate safety require-

ments. Similarly, we considered the option of setting release dates with sufficient

safety time built in. The combination of the economic approach and due date setting

can be viewed as the stochastic counterpart of deterministic models with E/T costs. In

our coverage of this combination, we discussed models that involve due date setting

under the assumption that machines will not be kept idle when work is available, and

we discussed models that involve setting release dates (which can force machines

to idle). Most of our results do not require stochastic independence, although it is

typically convenient to assume independence for tractability. In practice, solving for

dependent cases requires the use of stored samples.

REFERENCES 161

Historically, the stochastic counterpart of the E/T model has been the basis for most

existing research on the economic approach to safe scheduling. In this connection, it

can be shown that the stochastic E/T problem is a special case of balancing due date

tightness and expected tardiness. Other recent work on the deterministic E/T problem

includes the option to reject jobs at a constant penalty in addition to the piecewise

linear E/T penalty, thus combining the two approaches that we have considered only

separately.

Finally, we point out one important feature of the stochastic models in Chapters

6 and 7: the scheduling decisions are essentially made at the start of the problem,

with information about probability distributions for random variables. Later, when

one or more of those random variables are realized, no opportunity exists to revisit

the scheduling decisions. In some applications, we can imagine the possibility of

waiting until random variables are observed and then rescheduling in some way.

Such dynamic models tend to be difficult to analyze and are beyond the scope of our

coverage. Static models, however, can always serve as a heuristic basis for dynamic

decisions, providing a base plan that we can dynamically update later. For instance,

airport schedules are always published in advance so they are static, but the actual

sequence of arrivals and departures is subject to dynamic decisions.

REFERENCES

Akker, J.M. van den and J.A. Hoogeveen (2008). Minimizing the number of late jobs in a

stochastic setting using a chance constraint, Journal of Scheduling 11, 59–69.

Baker, K.R. and D. Trietsch (2007). Safe scheduling, Chapter 5 in Tutorials in Operations

Research (T. Klastorin, ed.), INFORMS, November 2007.

Baker, K.R. and D. Trietsch (2009). Safe scheduling: setting due dates in single-machine

problems, European Journal of Operational Research 196, 69–77.

Balut, S.J. (1973). Scheduling to minimize the number of late jobs when set-up and processing

times are uncertain, Management Science 19, 1283–1288.

Cai, X. and S. Zhou (1996). Scheduling stochastic jobs with asymmetric earliness and tardiness

penalties, Naval Research Logistics 44, 531–557.

Dodin, B. (1996). Determining the optimal sequences and the distributional properties of

their completion times in stochastic flow shops, Computers and Operations Research 23,

829–843.

Kise, H. and T. Ibaraki (1983). On Balut’s algorithm and NP-completeness for a chance

constrained scheduling problem, Management Science 29, 384–388.

Portougal, V. and D. Trietsch (1998). Makespan-related criteria for comparing schedules

in stochastic environments, Journal of the Operational Research Society 49, 1188–

1195.

Portougal, V. and D. Trietsch (2006). Setting due dates in a stochastic single machine environ-

ment, Computers & Operations Research 33, 1681–1694.

Soroush, H.M. and L.D. Fredendall (1994). The stochastic single machine scheduling prob-

lem with earliness and tardiness costs, European Journal of Operational Research 77,

287–302.

162 SAFE SCHEDULING

Soroush, H.M. (1999). Sequencing and due-date determination in the stochastic single machine

problem with earliness and tardiness costs, European Journal of Operational Research 113,

450–468.

Trietsch, D. (1993). Scheduling flights at hub airports, Transportation Research, Part B

(Methodology) 27B, 133–150.

Trietsch, D. and K.R. Baker (2008). Minimizing the number of tardy jobs with stochastically-

ordered processing times, Journal of Scheduling 11, 71–73.

Yano, C.A. (1987). Setting planned leadtimes in serial production systems with tardiness costs,

Management Science 33, 95–106.

Yano, C.A. (1987). Planned leadtimes for serial production systems, IIE Transactions 19,

300–307.

EXERCISES

7.1. Consider a problem containing n = 5 jobs with stochastic processing times,

each of which follows a normal distribution with known mean and standard

deviation. In addition, job due dates are decision variables.

State Job j 1 2 3 4 5

µ j 17 20 24 25 30

σ j 3 4 2 5 3

a. Find the optimal sequence and the optimal due dates for minimizing D +

γ E(T) when γ = 2.

b. Repeat (a) for γ = 10.

7.2. Consider a problem containing n = 5 jobs. The expected processing time for

each job is shown in the following table.

Job j 1 2 3 4 5

E(p j) 6.0 8.0 10.0 12.0 14.0

Assume that four equally likely states of nature exist, with the processing time

realizations shown below.

State Job j 1 2 3 4 5

1 p j 4.1 5.6 7.0 8.4 9.8

2 p j 5.3 7.2 9.0 10.8 12.6

3 p j 6.4 8.8 11.0 13.2 15.4

4 p j 8.2 10.4 13.0 15.6 18.2

EXERCISES 163

a. Suppose all service levels are 50%. Find the sequence and the individual due

dates that minimize D.

b. Suppose all service levels are 75%. Find the sequence and the individual due

dates that minimize D.

c. Suppose that jobs 1 and 4 have service levels of 75% and that the other

service levels are 50%. Find the sequence and the individual due dates that

minimize D.

7.3. Prove that inserted idle time is never beneficial for minimizing D + γ E(T).

(Hint: For γ ≤ 1, the result is trivial; for γ > 1, use Theorem 7.2 and the

observation that the expected tardiness is depicted as a wedge area in a predictive

Gantt chart.)

7.4. Consider a problem containing n = 5 jobs with stochastic processing times

and due dates as decisions. The randomness in the processing times can be

represented adequately by three states of nature: Good, Normal, and Bad, with

probabilities of 0.2, 0.5, and 0.3, respectively.

State Job j 1 2 3 4 5

Good p j 5 3 7 6 8

Normal p j 7 6 8 10 12

Bad p j 9 12 10 15 14

The earliness and tardiness costs are given in the next table.

Job j 1 2 3 4 5

αj 2 1 2 1 4

β j 5 4 3 3 1

Find the optimal sequence and the optimal job due dates for minimizing the

expected E/T cost with no idling.

7.5. Consider the problem of minimizing the number of jobs that violate chance

constraints with stochastically ordered processing times (but without constraints

on the magnitudes of the chance constraints).

a. Suppose we perform the feasibility check and find that a subset of size

(n − k − 1) is infeasible. Give an example to show that removing the largest

job from this subset can be suboptimal even if as a result it becomes possible

to schedule a job in position n − k − 2.

b. Suppose that during the feasibility procedure we can sequence more than one

job in the last position among the not-yet-sequenced jobs. Suppose further

that as a secondary objective we wish to maximize the minimal expected

reward of all accepted jobs. How would you select the job? Explain if and

164 SAFE SCHEDULING

how your method will achieve the desired effect. Will it also maximize the

expected total reward?

7.6. Consider the problem of minimizing D subject to stochastic feasibility. For n

independent stochastic jobs we say that the service-level constraints b j and the

processing times p j are agreeable if b j > bk implies E(p j) ≤ E(pk).

a. Construct a counterexample to show that when service levels and processing

times are agreeable, SEPT may not minimize D.

b. Prove that when service levels and processing times are agreeable, and the

processing times are stochastically ordered, SEPT minimizes D.

7.7. For the stochastic E/T problem, no efficient optimizing algorithm is known. The

purpose of this exercise is to prove the proposition that no transitive sorting algo-

rithm can solve the problem optimally. Consider three normally-distributed jobs

with (α1 + β1)ϕ(z∗
1) = (α2 + β2)ϕ(z∗

2) = 1, (α3 + β3)ϕ(z∗
3) = 5, σ 2

1 = σ 2
2 = 1,

and σ 2
3 = 22. Any transitive sorting rule must sequence identical jobs consec-

utively, because they have the same values. To prove that no such rule exists,

show that the optimal sequence places job 3 between the two identical jobs.

8
EXTENSIONS OF THE BASIC MODEL

8.1 INTRODUCTION

The basic single-machine model provides an opportunity to study a variety of schedul-

ing criteria as well as a number of solution techniques. These themes have been central

to the coverage in the preceding chapters. The assumptions of the basic model are

highly specific, however, and for the results and insights to be of some general value,

the assumptions must be extended to more complicated and realistic situations. We

have already taken this route with respect to some assumptions. This chapter deals

with additional models in which the assumptions of the basic model are relaxed.

We introduced the basic model with seven assumptions, two of which turned out

to be derived conditions for regular measures. The assumptions were:

C1. There are n single-operation jobs simultaneously available for processing

(at time zero).

C2. Machines can process at most one job at a time.

C3. Setup times for the jobs are independent of job sequence and are included in

processing times.

C4. Job descriptors are deterministic and known in advance.

C5. Machines are continuously available (no breakdowns occur).

C6. Machines are never kept idle while work is waiting.

C7. Once an operation begins, it proceeds without interruption.

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

165

166 EXTENSIONS OF THE BASIC MODEL

In our coverage of stochastic models, we relaxed C4 and explored the implications

of scheduling with uncertain information. We also encountered a situation in which

it becomes desirable to violate C6. In this chapter, we examine variations of the basic

model with a special focus on conditions C1, C3, C6, and C7.

We can generalize condition C1 in several ways. For instance, the jobs to be

scheduled may not all be available simultaneously. Instead, jobs may become avail-

able intermittently and therefore have different release dates. This pattern gives rise

to a dynamic version of the single-machine model, in contrast to the static ver-

sion prescribed by the original assumptions. Problems with nonsimultaneous arrivals

are discussed in Section 8.2. Condition C6—which we questioned in the previous

chapter—and condition C7—which turned out to be implicit in the basic model—must

both be revisited in the case of nonsimultaneous arrivals.

Another generalization of C1 occurs when precedence restrictions exist among

sets of jobs. Such constraints express technological requirements or management

policies and give rise to sets of related jobs. In this case, jobs with predecessors

are not truly available for processing at time zero. Problems with related jobs are

discussed in Section 8.3.

Condition C3 can be generalized by allowing sequence-dependent setup times.

This situation arises when the setup time is not a constant for each job but depends

on the previous job in sequence. Such a model relies on the “traveling salesperson

problem,” which is treated in detail in Section 8.4. In Section 8.5, we turn our attention

to stochastic versions of the traveling salesperson problem.

8.2 NONSIMULTANEOUS ARRIVALS

The static version of a single-machine problem refers to the situation in which all jobs

are simultaneously available for processing. Many sequencing problems, however,

require models that accommodate different release dates. For example, jobs may

occur in response to customer demands that appear over time. Alternatively, the

single-machine model may represent a bottleneck facility, and the arrival of jobs to

that facility may be staggered due to upstream operations.

When release dates are different, the set of available tasks changes over time, giving

rise to a dynamic version of the single-machine model. An immediate consequence

of allowing different release dates is the need to reexamine the questions of inserted

idle time (condition C6) and job preemption (condition C7). To illustrate the role two

factors play, consider the two-job example shown below.

� Example 8.1 Consider a problem containing n = 2 jobs, with a criterion of

total job tardiness. In addition, let r j denote the release date of job j .

Job j 1 2

r j 0 1

p j 5 2

d j 7 4

NONSIMULTANEOUS ARRIVALS 167

(a)

(b)

(c)

8

3 71

1 3

75

1 2

12

12

1

FIGURE 8.1 Three schedules for the two-job example.

Only one sequence satisfies conditions C6 and C7 by avoiding all inserted idle

time and preemption; that is the sequence 1–2 (see Figure 8.1a). That sequence has

a total tardiness of 3.

When inserted idle time is permitted, the sequence 2–1 (Figure 8.1b) yields a total

tardiness of 1. Furthermore, if a job can be preempted and later resumed from the

point in its processing at which the interruption occurred, then a total tardiness of

zero can be achieved, as shown in Figure 8.1c.

The type of preemption illustrated in Figure 8.1c is called the preempt–resume

mode. In this mode, the total processing time required by job j is always p j and

this amount is unaffected by the number of times the job is interrupted. When the

preempt–resume mode applies, inserted idle time can never be beneficial; hence, in

deterministic problems, schedules without inserted idle time constitute a dominant

set for all regular measures.

The opposite extreme is the case in which a job must be restarted each time

it is interrupted. This type of preemption is called the preempt–repeat mode. The

difference between the two modes of processing is reflected in the way that scheduling

decisions are made. In a preempt–repeat mode, no advantage exists in starting a job

unless it can be completed. In deterministic situations, then, jobs might as well

be scheduled as if no preemption is permitted, and schedules without preemption

constitute a dominant set.

When the preempt–resume mode applies, properties associated with basic transi-

tive rules are essentially unchanged. Consider, for example, the dynamic version of

the Tmax-problem. The optimal rule is: keep the machine assigned to the available

job with the earliest due date. The machine is assigned at completion times and at

release dates as follows:

� At each job completion, examine the set of available jobs and assign the machine

to process the job with the earliest due date.
� At each job release, compare the due date of the newly available job with the

due date of the job currently being processed. If the due date of the new job is

tighter, allow the new job to preempt the job being processed; otherwise, simply

add the new job to the set of waiting jobs.

168 EXTENSIONS OF THE BASIC MODEL

In this case, the key information on which scheduling decisions are based—that is,

the due date—does not change over time. By contrast, consider the dynamic version

of the F-problem in preempt–resume mode. The optimal rule is: keep the machine

assigned to the available job with minimum remaining processing time. The key

information in this case is a job’s remaining processing time, which changes while it

is being processed. Thus, a job may enter the system with a large processing time (and

correspondingly low priority), but after some partial processing it will have a smaller

remaining processing time (and higher priority). This dynamic sequencing rule is

known as shortest remaining processing time (SRPT) sequencing. In preempt–resume

mode, the dynamic adaptation of EDD or SPT requires no look-ahead features,

even though jobs are released intermittently. At each decision point (a completion

time or a release date), the necessary information is obtained from only the current

set of available jobs. As a result, the actual scheduling decisions can be made at

chronologically ordered points in time, and each time on the basis of current status.

Such a decision-making structure is called dispatching, and its significance lies in the

fact that dispatching is easier to implement than decision-making based on look-ahead

information.

A further consideration arises in the dynamic application of SPT to minimize F .

Intuitively, one might think that the rule should apply for stochastic processing times

as well. Indeed, it does when the remaining expected processing times are monotone

decreasing as processing progresses, which is often the case. But processing time

distributions exist for which the information that a job has been processed for a

relatively long period implies that it is expected to take even longer from now on

(see Appendix A). In such cases, we may have to preempt a job when its remaining

expected processing time exceeds that of a waiting job. Thus, we obtain a more

sophisticated form of dispatching where in addition to completions and releases, we

have to add a new type of decision point to the rule: switch jobs when the remaining

expected time of the current job exceeds the shortest expected time of a waiting job.

When the preempt–repeat mode applies, dispatching procedures are no longer

sufficient. As we noted earlier, permutation schedules constitute a dominant set

for deterministic processing times. Although inserted idle time may be desirable,

the choice of a job permutation uniquely determines the allocation of idle time. A

given permutation may imply that the machine is held idle when work is waiting, a

situation that amounts to using look-ahead information. Such an approach would be

more complicated than dispatching.

In short, a crucial feature of the dynamic single-machine model is the nature

of job preemption. If processing can be carried out in preempt–resume mode, then

some of the scheduling rules for optimal sequencing in the static problem can be

extended. In particular, transitive job orderings can sometimes be adapted as optimal

dispatching procedures, and inserted idle time is not a concern. On the other hand, if

processing requires preempt–repeat mode, then inserted idle time can be helpful, but

the comparison of permutation schedules to find an optimum becomes more difficult.

Even problems that are relatively simple in the basic model require the use of general-

purpose optimization techniques under preempt–repeat mode. In what follows, we

shall assume that the preempt–repeat mode applies unless otherwise specified.

NONSIMULTANEOUS ARRIVALS 169

8.2.1 Minimizing the Makespan

In the basic single-machine model, the schedule length, or makespan, is always equal

to the sum of the processing times. In the dynamic model, the makespan may include

idle time. The objective of minimizing the makespan, Cmax, also denoted M , is related

to the throughput of the schedule. Because throughput is defined as the amount of

work completed per unit time, and because the amount of work in the n-job model is

fixed, we maximize throughput by minimizing the makespan.

In the dynamic version of the model, it is not difficult to show that M is minimized

by a dispatching rule that always schedules the available job with the earliest release

date (ERD), breaking ties arbitrarily. (The optimality of this rule extends to cases

with stochastic processing times.) This type of rule belongs to the family of nondelay

dispatching procedures, which never permit a delay (via inserted idle time) when the

machine becomes available and work is waiting. In the dynamic model, any nondelay

procedure will create a schedule consisting of one or more blocks (similar to the

blocks discussed in Chapter 5). The first job in a block begins at its release date, but

subsequent jobs in the block may be delayed past their own release dates. The first

job also has the minimum release date in the block. The last job in a block completes

before the release date of any job that appears later in the schedule.

An interesting generalization of the dynamic makespan problem involves the case

in which each job has a given delivery time, q j , in addition to a processing time

and a release date. The delivery takes place immediately after the job completes, and

deliveries can be done in parallel. The makespan is determined in this case by the latest

delivery among the n jobs. Another interpretation of this model is possible. Think of

all jobs as requiring three operations. The first and third operations are carried out

in departments where the resources are plentiful, and no resource constraints apply.

In effect, the jobs can be performed in parallel in these departments. The second

operation occurs at a bottleneck facility, where the jobs must be processed one at

a time. The problem is specified by a triplet (r j , p j , q j) for each job j , where r j

denotes the processing time of the first operation, p j the second operation and q j

the third operation. (Sometimes, these parameters are called the head, body, and tail

of each job.) The objective is to minimize the makespan of the three-department

schedule.

The problem we have posed is NP-hard, but it is revealing to examine a simple

heuristic solution method. Consider the nondelay dispatching procedure that always

selects the available job with the largest tail, q j . (For the time being, we refer to this

as the LT procedure.) The LT procedure is an intuitively appealing one. Obviously,

we prefer to schedule jobs with large tails early and jobs with short tails later. The

procedure follows this guideline in a nondelay mode, as described below.

Algorithm 8.1 The Largest Tail (LT) Procedure

Step 1. Initially, let t = 0.

Step 2. If there are no unscheduled jobs at time t , set t equal to the minimum release

date among unscheduled jobs; otherwise, proceed.

170 EXTENSIONS OF THE BASIC MODEL

Step 3. Find job j with the largest q j among unscheduled jobs available at time t .

Schedule job j to begin at time t .

Step 4. Increase t by p j . If all n jobs are scheduled, stop; otherwise, return to Step 2.

The makespan generated by the LT procedure can be written as follows:

M = ri +

k
∑

j=i

p j + qk (8.1)

for some job i that initiates a block, and for some job k in the block called the critical

job. (For convenience, we assume that the jobs are renumbered according to their

sequence in the solution.) If it turns out that qk ≤ q j for all jobs j from i to k, then

M is optimal. Otherwise, it is possible that M can be improved.

� Example 8.2 Consider a five-job problem in which each job is characterized

by a release date, a processing time, and a delivery time, as shown in the table.

Job j 1 2 3 4 5

r j 0 2 3 0 6

p j 2 1 2 3 2

q j 5 2 6 3 1

At time t = 0, the LT procedure chooses between jobs 1 and 4, and selects 1.

When job 1 completes at time t = 2, the procedure chooses between jobs 4 and 2,

and selects 4. Continuing in this fashion, the procedure builds the sequence 1-4-3-2-

5, with a makespan of M = 13. This schedule contains only one block, initiated by

job 1. In addition, the maximum completion time of 13 occurs for job 3. Thus, in

(8.1), we have i = 1 and k = 3. However, the optimality condition is not satisfied,

because q3 > q1 and q3 > q4. This means that the optimal makespan may be less

than 13, because the optimality condition is sufficient but not necessary.

This model is symmetric: we could just as easily solve the reversed problem (in

which jobs enter the third department first and complete in the first department);

the optimal makespan will be the same. The implication of symmetry is that the LT

procedure should be executed twice: once for the original problem and once for the

reversed problem. In our numerical example, the application of the LT procedure to

the reversed problem yields a makespan of M = 12. (As it turns out, this is not an

optimal solution, either.)

Thus, Algorithm 8.1 uses an intuitive decision rule to construct a schedule, and

in some cases it is possible to confirm the optimality of this schedule by means of a

special condition. The condition fails if the critical job has a tail longer than some job

that appears earlier in the same block. To find an optimal solution to the problem, a

general optimization method is required. Existing computational evidence suggests

that branch and bound methods work quite well.

NONSIMULTANEOUS ARRIVALS 171

8.2.2 Minimizing Maximum Tardiness

In the basic single-machine model, Lmax (or Tmax) is minimized by EDD sequencing.

It is natural to ask whether a nondelay implementation of EDD is optimal in the

dynamic model. It turns out that the dynamic version of the Lmax-problem is NP-

hard, and the problem itself is essentially equivalent to the makespan problem studied

in the previous section. To see this equivalence, suppose that we are given the release

dates, processing times, and due dates for each of n jobs, with the objective of

minimizing maximum lateness:

Lmax = max{C j − d j }

Next, denote by dmax the maximum of the due dates in the job set, and consider the

makespan problem created by taking q j = dmax − d j . We can write

Lmax = max{C j − d j } = max{C j − (dmax − q j)} = max{C j + q j } − dmax

Clearly, in searching for an optimal schedule, we can ignore the constant dmax; what

remains is the minimization of the makespan in the head–body–tail problem. Thus,

the analysis of the optimal schedule for that problem carries over to the minimization

of Lmax. In fact, we can use any constant d in the role of dmax.

� Example 8.3 Consider a five-job Lmax-problem in which we are given the

release date, processing time, and due date for each job.

Job j 1 2 3 4 5

r j 0 2 3 0 6

p j 2 1 2 3 2

d j 6 9 5 8 10

The transformation given by q j = 11 − d j yields Example 8.2, in the previous

section.

From this perspective, we can see that the LT procedure is equivalent to the

nondelay implementation of EDD because the largest tail corresponds to the smallest

due date. Furthermore, the sufficient condition for optimality applies. We state the

result formally below.

� Theorem 8.1 In the dynamic Lmax-problem, a nondelay implementation of

the EDD rule yields

Lmax = ri +

k
∑

j=i

p j − dk

172 EXTENSIONS OF THE BASIC MODEL

for some job i that initiates a block, and for some job k in the same block, where the

jobs are numbered in order of appearance in the schedule. If dk ≥ d j for all jobs j

from i to k, then Lmax is optimal.

Proof. The formula for Lmax is obvious, so we address the last sentence of the

theorem. Consider the relaxed problem in which we eliminate all jobs except those

from i to k in the final sequence. Next, set the release dates of the remaining jobs

equal to ri . This relaxed problem is essentially a basic single-machine problem, with

ri serving as time 0. Because it is a relaxation of the original problem, its optimal

Lmax is no larger than the optimal solution to the original problem. But its optimal

Lmax is attained by the EDD sequence, which will place job k last and result in no

change to its lateness. Now, the original problem and the relaxed problem have equal

objective function values, so the solution to the original must be optimal.

The effectiveness of Algorithm 8.1 for minimizing Lmax can sometimes be

enhanced by exploiting symmetry, as mentioned earlier, and solving the reversed

problem (where the tail comes first and the head follows the body). Specifically, the

algorithm should be implemented twice, once for the original problem and once for

the reversed problem. However, even with enhancements such as this, the nonde-

lay implementation of EDD remains a heuristic procedure and does not guarantee

optimality.

In general, locating an optimal schedule may require a branch and bound proce-

dure. The standard approach would be to search in the tree of permutation schedules.

Suppose that a partial sequence at level k corresponds to a specific assignment of

the first k jobs in sequence. (This branching structure complements the structure

introduced in Chapter 3, which focused on the last k jobs.) The associated subprob-

lem requires the nonpreemptive sequencing of the remaining (n − k) jobs, but an

excellent lower bound for this problem is represented by the value obtained by using

preempt–resume EDD scheduling (which can never do worse than preempt–repeat

scheduling). The preempt–resume solution is constructed by using a one-pass dis-

patching rule, and this calculation can be made quite efficiently. Finally, in the

stochastic counterpart, any look-ahead approach would be difficult, but at least we

can implement the nondelay EDD rule without any detailed information on the pro-

cessing time distributions.

8.2.3 Other Measures of Performance

In general, whenever the preempt–resume version of the problem can be solved

readily, the branch and bound approach should be considered seriously for the

preempt–repeat version. However, it may be possible to make additional improve-

ments by exploiting special structure. Indeed, it is possible to solve the Lmax prob-

lem for hundreds of jobs in this way. The dynamic U-problem and the dynamic

T-problem represent another level of difficulty, however, because the corresponding

preempt–resume solution is not obvious.

NONSIMULTANEOUS ARRIVALS 173

Turning now to heuristic solution procedures, the following property gives a

sufficient condition for a certain nondelay schedule to be optimal.

� Theorem 8.2 In the dynamic Lmax-problem, suppose that the nondelay imple-

mentation of EDD yields a sequence of the jobs in EDD order. Then this nondelay

schedule is optimal.

Proof. Without loss of generality, we assume that the schedule contains just one

block. Consider the relaxed problem generated by setting all release dates equal to

zero. The optimal solution to the relaxed problem is given by the EDD sequence.

Constraining the release dates to their original values does not disturb the feasibility

of this sequence, so it must be optimal for the original problem, too.

Theorem 8.2 is slightly weaker than Theorem 8.1 for the Lmax-problem, but an

analogous theorem applies for SPT in the F-problem and for SWPT in the Fw -

problem. Two slightly more restrictive results, involving EDD and SPT, follow from

corresponding versions of Theorem 8.2.

� Theorem 8.3 In the dynamic Lmax-problem, if the release dates and due dates

are agreeable, then the nondelay implementation of EDD is optimal.

� Theorem 8.4 In the dynamic F-problem, if the release dates and processing

times are agreeable, then the nondelay implementation of SPT is optimal.

For the dynamic F-problem, we might expect that the nondelay adaptation of SPT

performs quite well, even when the hypothesis of Theorem 8.4 does not hold. There

are, however, alternative heuristic procedures available. One alternative is a rule that

always chooses the job that will complete earliest. This is sometimes called the first

off first on (FOFO) rule. Note that the FOFO rule may be considered an adaptation of

the SPT principle to the dynamic model. Also, FOFO is not a dispatching procedure

because it may use look-ahead information: the job that will complete earliest may

not be available at the time the machine becomes free. An additional alternative is to

give priority to the job with the smallest sum of earliest start time r j and earliest finish

time r j + p j . This rule, which amounts to choosing the job with minimal (2r j + p j),

seems to be the best of the three heuristic procedures, in limited testing.

For the dynamic T-problem, we can follow the logic behind Theorem 8.2 to the

following result.

� Theorem 8.5 In the dynamic T-problem, if the release dates, processing times,

and due dates are all agreeable, then the nondelay implementation of MDD is optimal.

Again, we might expect the nondelay adaptation of MDD to perform quite well,

even when the hypothesis of Theorem 8.5 does not hold. If we are interested in

obtaining optimal solutions to the dynamic T-problem, a branch and bound approach

174 EXTENSIONS OF THE BASIC MODEL

is appropriate, although the computational effort might be greater than for the static

version.

The dynamic U-problem is NP-hard but can be solved efficiently in the case of

agreeable release dates and due dates. (In practice, due dates are often agreeable with

release dates, as, for example, when due dates are set by the rules CON, SLK, or

TWK.) The solution procedure generalizes Algorithm 2.1. Recall from that previous

discussion that we can partition the optimal schedule into two sets, B (in which all

jobs are on time) followed by A (in which all jobs are late).

Algorithm 8.2 Minimizing U (Dynamic Version with Agreeable Parameters)

Step 1. Order the jobs by ERD, and place all jobs in B. Let set A be empty.

Step 2. Compute the completion times of jobs in B. If no jobs in B are late, then stop:

B must be optimal. Otherwise, identify the first late job in B. Suppose this job is

the kth job in sequence.

Step 3. Remove one job from B so that the latest completion time among the first

(k − 1) jobs will be minimized. Place this job in A, and return to Step 2.

This description leaves Step 3 a little vague. In order to find the job indicated, two

observations are helpful. First, we need to consider only the last block in the schedule.

Second, if we were to remove the last job (say, job u) from the block, the reduction

of the latest completion time for the jobs in B would be pu . For any other job j in the

block, the reduction would equal the smaller of p j or the minimum waiting time (i.e.,

the difference between release date and start time) among jobs (j + 1) through u.

From this information we can identify the job creating the largest reduction as the

one to remove in Step 3.

8.3 RELATED JOBS

In the basic single-machine model, the only type of constraint is the resource capacity

constraint represented by a single processor. Another type of constraint in some

scheduling problems is a technological restriction, which specifies the admissible

sequence of two jobs. Such constraints create a set of related jobs and reduce the set

of feasible solutions. However, this does not necessarily mean that optimal solutions

can be found more readily.

Each technological restriction on the sequence of a job pair is called a precedence

constraint. The notation i → j denotes the fact that job i precedes job j . In other

words, job j is not permitted to begin until job i is complete. When i → j , job i is

said to be a predecessor of job j , and job j is a successor of job i . Job i is also called

a direct predecessor of job j if no job k exists such that i → k → j . In words, if job

i is a direct predecessor of job j then it is permissible for jobs i and j to be adjacent,

in that order, in the schedule.

As an example, consider the computer programs submitted for processing by

a payroll department. Program A reads daily employee time cards, sorts the

information, and updates the monthly records that are maintained in a database.

RELATED JOBS 175

Program B reads from the database and prints out paychecks. On the last day of

the month, both programs are submitted, but B cannot be run until A is complete.

Therefore, A → B.

To illustrate the effect of adding precedence constraints to a sequencing problem,

consider the F-problem with three jobs, a, b and c, and suppose that pa < pb < pc.

Then, without precedence constraints, the optimal sequence is clearly a-b-c. Now

suppose we impose one precedence constraint, c → a. Although job b “ought” to

follow job a and precede job c on the basis of its processing time, it is not immediately

clear in this situation whether sequence c-a-b or sequence b-c-a is most desirable.

(We can, however, rule out the sequence c-b-a with a simple adjacent pairwise

interchange.) Thus, the existence of precedence constraints can complicate even

the simplest scheduling problems. With more than three jobs and more than one

precedence constraint, the problem is considerably more difficult to solve.

In the following sections, we examine the effects of adding precedence constraints

in situations where the performance measure would normally lead us to sort the

jobs, but where precedence constraints may conflict with the order dictated by sort-

ing. We illustrate the concepts for the Tmax-problem and the F-problem, but further

generalization of the concepts is possible.

8.3.1 Minimizing Maximum Tardiness

Suppose we are dealing with related jobs in a dynamic model, where we are given

release dates, processing times, and due dates. If the objective is to minimize Lmax

(or Tmax), then, on the basis of the precedence constraints, we can make some simple

revisions in the given data that may help us find a solution.

Let i and j denote two related jobs, with i → j . Suppose, in the given data,

that we have r j < ri + pi . In spite of this information, we know that in any feasible

schedule job j cannot start any earlier than the completion time of job i because of

the precedence constraint. Therefore, we can reset r j = ri + pi . In a complementary

fashion, suppose that we are given di > d j − p j . Then, we can reset di = d j − p j .

This revision is allowable because even by making the due date of job i tighter,

we will not directly affect the maximum lateness. Specifically, after the revision we

obtain

L i = Ci − di = Ci − (d j − p j) ≤ (C j − p j) − (d j − p j) = C j − d j = L j

Therefore, the lateness (or tardiness) of job i will still not be larger than the lateness

(or tardiness) of job j.

The net effect of this revision is as follows. If job i is a predecessor of job j , then

either the given information contains agreeable release dates and due dates consistent

with the precedence constraint, or else we can easily revise the parameters of jobs i

and j so that agreeability occurs. We can then proceed as if there were no precedence

constraint, although we may still need to call on a general-purpose solution procedure.

When all release dates are zero, it is sufficient to revise only the due dates. In

fact, a consistent scheme is to reset the due date of job i equal to the minimum

176 EXTENSIONS OF THE BASIC MODEL

due date among its successors, if that minimum is lower than di . Thereafter, we can

create an optimal schedule by applying the EDD rule with the revised due dates while

respecting precedence constraints.

For the general criterion of minimizing the maximum cost with zero release dates,

we based the solution algorithm for the single-machine model on Theorem 3.1. If

precedence constraints exist, we amend the statement of the theorem slightly: when

the objective is to minimize the maximum penalty, job i may be assigned the last

position in sequence if job i has no unscheduled successors and gi (P) ≤ g j (P) for all

jobs j �= i without unscheduled successors. Theorem 6.4, which adapts Theorem 3.1

to the stochastic case, can also be extended this way.

8.3.2 Minimizing Total Flowtime with Strings

For the F-problem, we begin with an observation that resolves the conflict between

sorting and precedence constraints. Suppose that we have a single relevant precedence

constraint i → j and that p j ≤ pi . That is, job i precedes job j , but j is shorter than i ,

and hence preferable to i for the F criterion. In this situation, an optimal sequence

exists in which jobs i and j are adjacent, in that order. To see why this result holds,

imagine that instead the optimal sequence had some job k between i and j . Job k

would have to satisfy pk ≤ pi or pk ≥ p j . In the first case, it would be at least as

good to place k in front of i ; in the second case, it would be at least as good to place

k after j . Thus, it is not advantageous to have an intervening job between i and j .

We next consider the sequencing of job strings. A string is a set of jobs that must

appear together (contiguously) and in a fixed order. The sequencing problem for job

strings is one of sequencing these special job sets. Suppose the problem consists of

s strings and that

nk = number of jobs in string k(1 ≤ k ≤ s)

pk j = processing time of job j in string k(1 ≤ j ≤ nk)

From the given information we define

pk =

nk
∑

j=1

pk j = total processing time in string k

Also, let

F(k, j) = flowtime of job j in string k

F(k) = F(k, nk) = flowtime of string k

First, if the objective is to minimize total string flowtime, that is,
∑s

k=1 Fk , then the

strings may each be treated as pseudojobs, yielding an optimal sequence characterized

RELATED JOBS 177

by a string-based version of SPT. In particular, the optimal string sequence is given

by p[1] ≤ p[2] ≤ · · · ≤ p[s].

On the other hand, if the objective is to minimize total job flowtime, that is,
∑s

k=1

∑nk

j=1 Fk j , then in general a different sequence is optimal, as stated in the

following theorem.

� Theorem 8.6 In the single-machine problem with job strings, total flowtime

is minimized by sequencing the strings in the order

p[1]

n[1]

≤
p[2]

n[2]

≤ · · · ≤
p[s]

n[s]

Proof. Define a quantity qk j to represent the processing time in string k that follows

job j , that is, a residual processing time.

qk j =

nk
∑

i= j+1

pki

where qk j is understood to be zero when j = nk . Note that qk j is given. Hence,

F =

s
∑

k=1

nk
∑

j=1

F(k, j) =

s
∑

k=1

nk
∑

j=1

F(k) −

nk
∑

i= j+1

pki

=

s
∑

k=1

nk
∑

j=1

[F(k) − qk j]

=

s
∑

k=1

nk
∑

j=1

F(k) −

s
∑

k=1

nk
∑

j=1

qk j

Note that the last double sum is a constant, independent of sequence. Consequently,

minimizing F is equivalent to minimizing the first double sum, which is

s
∑

k=1

nk
∑

j=1

F(k) =

s
∑

k=1

nk Fk

But minimizing this sum corresponds to minimizing total weighted flowtime for the

strings, where the weighting factor associated with string k is just nk . Hence, by

Theorem 2.4, the optimal string sequence must be in nondecreasing order of the

ratio pk/nk .

The concept of a job string may seem restrictive because it requires a collection

of jobs to be processed in a specific sequence. However, the concept helps structure

178 EXTENSIONS OF THE BASIC MODEL

situations where the string requirement is not strictly necessary. For example, recall

the situation where sorting and precedence conflict. In particular, job i directly

precedes job j and p j ≤ pi . Then, as we saw earlier, we may assume that jobs i and

j appear together in sequence, so we can treat (i, j) as a string for the purpose of

constructing an optimal schedule.

As another example, there may be a contiguity constraint, under which a collection

of jobs must be performed together but without specification of their sequence. This

structure arises in scheduling groups of jobs, where each group represents a product

family. Each family must be performed contiguously because they share a common

major setup or perhaps a common resource. In this situation, the collection of jobs

within a group can be ordered optimally (by SPT) and then the ordered set (augmented

by the group setup time, if it applies) can be treated as a string for the purpose of

sequencing all the groups, at which point Theorem 8.6 applies.

The significance of Theorem 8.6 extends even further. Define a job module to be

a set S of jobs such that for each pair of jobs i and j in the set, no job k exists outside

the set that satisfies i → k → j . In words, a job module is a set of jobs that could

feasibly be sequenced contiguously. Furthermore, the notation s → t , where s and t

are strings, implies that each job in string s precedes every job in string t . Suppose that

a job module consists of two strings, u and v , with u → v and pv/nv ≤ pu/nu . (This

is a situation in which the precedence constraint between strings conflicts with the

sorting of strings.) Then, for minimizing total flowtime, an optimal sequence exists

in which strings u and v are adjacent, in that order. Furthermore, the two strings u

and v can then be treated as a single string, and it may be possible to reapply the

result to this new string and some other string.

For certain precedence structures, this modular approach to building a job sequence

can lead us to an optimal schedule. In the next section, we examine the details of this

approach.

8.3.3 Minimizing Total Flowtime with Parallel Chains

A chain is a special precedence structure in which each job has at most one direct

predecessor and one direct successor. The jobs in a chain do not necessarily have

to be sequenced contiguously, although it is permissible to do so; this flexibility

distinguishes a chain from a string. Suppose that a job set consists of several chains

in parallel. As a result of Theorem 8.6, this job structure can be sequenced by the

following algorithm.

Algorithm 8.3 Parallel-Chains Algorithm for F

Step 1. Initially, each job is a string.

Step 2. Find a pair of strings, u and v , such that u directly precedes v and pv/nv ≤

pu/nu . Replace the pair by the string (u, v). Then repeat this step. When no such

pair can be found, proceed to Step 3.

Step 3. Sort the strings in nondecreasing order of p/n.

RELATED JOBS 179

1 2 3

4

5 6

7 8 9

10 4 6

5

7 1

8 4 7

123

4

56

78 9

20/3

5

4

6 7

(a) (b)

FIGURE 8.2 The example problem in (a) and after applying Step 2 in (b).

If no precedence constraints exist, then Step 2 produces no two-job strings, and

Step 3 is equivalent to SPT. Otherwise, Step 2 identifies string-pairs for which sorting

and precedence conflict and also reconciles the conflict. Finally, when we reach

Step 3, sorting and precedence are no longer in conflict, at least for the strings that

exist at that stage, and the sort prescribed by Step 3 produces an optimal sequence.

� Example 8.4 Consider the F-problem with n = 9 jobs shown in Figure 8.2a,

where the processing time for each job is shown above the corresponding node in the

network.

Five precedence constraints are shown as arcs in the network; these form parallel

chains. Step 2 first combines jobs 1 and 2 into a string and then combines the string

(1, 2) and job 3 into a single string. Jobs 5 and 6 are similarly combined, and so are jobs

7 and 8. When Step 2 is complete we have five strings and one precedence constraint:

string (7, 8) precedes job 9. This precedence constraint, however, is consistent with

nondecreasing p/n order. The five strings are shown in Figure 8.2b, with the value

of ps/ns shown above the node corresponding to string s. Step 3 sorts the five strings

into the optimal sequence 5-6-4-7-8-1-2-3-9, with F = 245.

These concepts can most generally be extended to series–parallel precedence

structures. A network N exhibits series–parallel structure if it consists of a single

node or if N can be partitioned into two subnetworks N1 and N2 which are themselves

series–parallel and where one of the following conditions is satisfied:

� N1 is in series with N2 (for every pair (i, j) with i ∈ N1 and j ∈ N2, we have

i → j); or
� N1 is in parallel with N2 (for every pair (i, j) with i ∈ N1 and j ∈ N2, we have

that i and j are not related).

� Example 8.5 Consider the F-problem with n = 8 jobs and the network struc-

ture shown in Figure 8.3, where the processing time for each job is shown above the

corresponding node in the network.

180 EXTENSIONS OF THE BASIC MODEL

1 4 6 8

2 3

5 7

5

7 5

34 7

8 2

FIGURE 8.3 An eight-job example.

Series–parallel structures can be described by a decomposition tree. In this type of

tree there are two kinds of nodes. Nodes without successors correspond to individual

jobs and are numbered accordingly. Other nodes have two successors and correspond

to a partition of a network or a subnetwork. These decomposition nodes are designated

S or P, depending on whether the appropriate partition is series or parallel. Figure 8.4

displays a decomposition tree for Example 8.5, thus demonstrating that it has a

series–parallel precedence structure.

In order to find optimal sequences for series–parallel structured job sets, the solu-

tion algorithm processes nodes N in the decomposition tree for which the subnetworks

N1 and N2 have previously been processed. If the decomposition for N is of the se-

ries type, then N is processed by forming the string (N1, N2). If the decomposition

is of the parallel type, then N is processed by applying Algorithm 8.3 to the parallel

chains N1 and N2. In either case, the jobs contained in N are formed into an optimal

sequence.

S

S

1

P

S

S

P

P

3

2

7

6

5

4

8

FIGURE 8.4 A decomposition tree for the example in Figure 8.3.

SEQUENCE-DEPENDENT SETUP TIMES 181

To demonstrate this procedure, we list the steps involved in sequencing the jobs

in the example.

Subnetwork Pair Type Resolution

4, 5 Parallel (4, 5)

6, 7 Parallel (7, 6)

2, 3 Series (2-3)

(4, 5), (7, 6) Series (4, 5-7, 6)

(2, 3), (4, 5-7, 6) Parallel (4, 5-7, 2-3, 6)

1, (4, 5-7, 2-3, 6) Series (1-4, 5-7, 2-3, 6)

(1-4, 5-7, 2-3, 6), 8 Series (1-4, 5-7, 2-3, 6-8)

The first two string pairs are resolved by SPT sequencing of the job pairs. The next

two string pairs are resolved by their series structure: job 3 must follow job 2, and job

module (7, 6) must follow (4, 5). At this stage the p/n values are 6 for string (2-3),

4 for job 4, 5 for string (5-7), and 7 for job 6. Algorithm 8.3 then forms the sequence

(4-5-7-2-3-6). Finally, jobs 1 and 8 are added according to their series relationships

with the subnetwork already sequenced. The result is the optimal sequence 1-4-5-7-

2-3-6-8 with F = 186.

Job sets in which series–parallel structures apply can thus be optimized efficiently

by exploiting the parallel-chains algorithm in combination with the decomposition

tree. Furthermore, no more general case of precedence structure is known that yields

an efficient algorithm of the type described above. For general precedence structures,

we would apparently need to employ a general-purpose solution procedure. For

example, we could use dynamic programming, but with precedence constraints in the

role of dominance conditions.

8.4 SEQUENCE-DEPENDENT SETUP TIMES

In many realistic problems, setup times depend on the type of job just completed as

well as on the type about to be processed. In those situations, it is not valid to absorb

the setup time for a job in its processing time, and explicit modifications must be

made. The time interval in which job j occupies the machine is expressed si j + p j ,

where i is the job that precedes j in sequence, si j is the setup time required for job

j after job i is completed, and p j is the amount of direct processing time required to

complete job j .

Setup times that are sequence dependent are commonly found where a single

facility produces several different kinds of items, or where a multipurpose machine

carries out an assortment of tasks. The use of a single system to produce different

chemical compounds may require that some amount of cleansing be carried out

between process runs on different compounds, to ensure that tolerably low impurity

182 EXTENSIONS OF THE BASIC MODEL

levels are maintained. Sometimes, the extent of the cleansing depends on both the

chemical most recently processed and the chemical about to be processed. Similar

setup properties can be found in the production of different colors of paint, strengths

of detergent, and blends of fuel. The same observations apply to certain assembly

lines where retooling, inspection, or rearrangement of work stations could represent

the setup activity.

In the basic single-machine problem the makespan, M , is a constant. With

sequence-dependent setups, however, the makespan depends on which sequence is

chosen:

F[1] = s0,[1] + p[1]

F[2] = F[1] + s[1],[2] + p[2]

...
...

F[n−1] = F[n−2] + s[n−2],[n−1] + p[n−1]

F[n] = F[n−1] + s[n−1],[n] + p[n]

where state 0 corresponds to an initial state, usually an idle state. Also, if we define

the state (n + 1) as a terminal state (perhaps identical to state 0), then the schedule

makespan becomes

M = F[n] + s[n],[n+1] =

n+1
∑

j=1

s[j−1],[j] +

n
∑

j=1

p j

The second summation is a constant, so the problem of minimizing makespan is

equivalent to minimizing the first summation. This sum represents the total nonpro-

ductive time in the full sequence, beginning and ending in the idle state.

The type of structure represented by this makespan problem is often interpreted

as a traveling salesperson problem (TSP). In the classical formulation, a sales-

person must visit clients in each of n cities. The salesperson wishes to choose

a tour that goes to each city exactly once and returns to the point of origin.

Given the distances between all pairs of cities, the salesperson’s task is to find

the tour with minimum total travel distance. In the sequencing problem, si j (the

setup time for job j when it immediately follows job i) corresponds to the dis-

tance between city i and city j . Although the literal version of the TSP involves a

symmetric distance matrix (si j = s j i), that need not be the case in the sequencing

problem.

� Example 8.6 Consider scheduling a process line that manufactures four types

of gasoline: racing fuel, premium, regular, and unleaded. The matrix of setup times,

si j , is shown in Table 8.1. In a full production cycle, during which one batch is

devoted to each product, the amount of nonproductive time (i.e., setup time) depends

on the sequence in which these fuels are produced.

SEQUENCE-DEPENDENT SETUP TIMES 183

TABLE 8.1

Product (1) (2) (3) (4)

Racing (1) — 30 50 90

Premium (2) 40 — 20 80

Regular (3) 30 30 — 60

Unleaded (4) 20 15 10 —

The total amount of setup time differs in each of the six distinct sequences that

include all four products, as listed below.

Sequence Setup Time

1-2-3-4-1 30 + 20 + 60 + 20 = 130

1-2-4-3-1 30 + 80 + 10 + 30 = 150

1-3-2-4-1 50 + 30 + 80 + 20 = 180

1-3-4-2-1 50 + 60 + 15 + 40 = 165

1-4-2-3-1 90 + 15 + 20 + 30 = 155

1-4-3-2-1 90 + 10 + 30 + 40 = 170

The TSP is NP-hard, but state-of-the-art algorithms are capable of solving very

large problems, with thousands of cities. Although the solutions of really large

instances rely on parallel processing and can consume years of CPU time, prob-

lems with hundreds of cities can be solved on personal computers. In the following

subsections we limit our investigation to basic solution approaches for the TSP.

To reinforce the concepts of Chapters 3 and 4, we examine two optimizing

approaches—dynamic programming and branch and bound—as well as some simple

heuristic procedures.

The following discussions assume that if an idle state is required in the formulation

of the problem, it has already been included in the si j matrix. Also, for convenience,

we use the terminology of the classical problem and refer to cities and distance rather

than to jobs and setup time.

8.4.1 Dynamic Programming Solutions

With some slight modifications, the dynamic programming approach can be adapted

to solve the TSP. The important structural modification is that a solution must cor-

respond to a complete cycle, in which the tour returns to its starting point. Let J

denote a subset of the n cities and choose a city i arbitrarily and designate it as the

origin of the tour. Now let X denote the set of all cities, excluding i . The optimal

tour can be interpreted as consisting of the sets {i}, S, {k}, J, {i}. In other words, the

tour begins at city i , proceeds to the cities in set S, visits a particular city k, then

proceeds to the cities in set J , and finally returns to i . Sets S and J have no elements

in common, and neither contains k or i . Also, if J contains c cities, then S must

184 EXTENSIONS OF THE BASIC MODEL

contain (n − c − 2) cities. With this structure, an optimal tour can be described by

the principle of optimality. Consider the portion of the tour that starts at city k and

returns to i . This portion must be the shortest possible path from city k that passes

through the cities in J and finishes at city i . (If this were not the case, the tour could

not be optimal.) Now define

f (k, J) = the length of the shortest path from city k that passes through

the cities in J and finishes at city i

Then the length of the optimal tour is given by

f (i, X) = min
j∈X

[si j + f (j, X − { j})]

where, in general,

f (k, J) = min
j∈J

[sk j + f (j, J − { j})]

and where

f (k, φ) = ski

By using these recursion relations we can construct the optimal tour by first con-

sidering sets J of size 1, then sets J of size 2, and so on, until enough information

has been accumulated to calculate f (i, X). Table 8.2 displays the calculations for the

4 × 4 matrix of Table 8.1, yielding an optimal processing sequence (as indicated in

the original table) of 1-2-3-4-1.

This dynamic programming approach to the traveling salesperson problem is

similar to the general dynamic programming approach presented in Chapter 3. The

only major difference in the structure of this formulation is that the function at the

heart of the recursion has two arguments instead of one.

8.4.2 Branch and Bound Solutions

An alternative optimization approach is the technique of branch and bound. In fact,

one of the earliest research studies on branch and bound (Little, Murty, Sweeny, and

Karel, 1963) dealt with solving the TSP. This approach is worth examining in detail

because it helps illustrate the flexibility inherent in branch and bound methods.

The branching scheme creates two subproblems at all levels, one subproblem

containing a specific element of the si j matrix constrained to be part of the solution,

and the other subproblem prohibiting that same element. For example, a partition

of the original problem might require the (1, 3) element to be in the tour of one

subproblem and prohibit the (1, 3) element in the complementary subproblem.

Lower bounds for a given si j matrix may be calculated by a method called re-

duction. Since any feasible solution contains exactly one element in each row, it is

SEQUENCE-DEPENDENT SETUP TIMES 185

TABLE 8.2

Let i = 1

Stage 1

f (2, φ) = 40

f (3, φ) = 30

f (4, φ) = 20

Stage 2

f (2, {3}) = 20 + 30 = 50 f (2, {4}) = 80 + 20 = 100

f (3, {2}) = 30 + 40 = 70 f (3, {4}) = 60 + 20 = 80

f (4, {2}) = 15 + 40 = 55 f (4, {3}) = 10 + 30 = 40

Stage 3

f (2, {3, 4}) = min{20 + 80, 80 + 40} = 100

f (3, {2, 4}) = min{30 + 100, 60 + 55} = 115

f (4, {2, 3}) = min{15 + 50, 10 + 70} = 65

Stage 4

f (1, {2, 3, 4}) = min{30 + 100, 50 + 115, 90 + 65} = 130

Optimal tour: 1-2-3-4-1

Distance: 130

possible to subtract a constant from any row without altering the relative desirability

of any feasible solution. In effect, this subtraction reduces the length of all tours by the

same constant and, in particular, does not affect which of the feasible tours is optimal.

In the reduction process, we subtract the minimum element from each row. Then,

similarly, we can subtract the minimum element from each column. The matrix that

emerges has at least one zero element in every row and in every column, and the sum

of the subtraction constants serves as a lower bound on the optimal solution because

this distance must be part of any feasible tour. To illustrate these steps specifically,

consider the TSP (denoted P) associated with the matrix in Table 8.3a.

TABLE 8.3

(a) (b) (c)

P P (reduced) P (reduced)

— 4 8 6 8 — 0 4 2 4 — 04 4 2 4

5 — 7 11 13 0 — 2 6 8 05 — 2 6 8

11 6 — 8 4 7 2 — 4 0 7 2 — 4 02

5 7 2 — 2 3 5 0 — 0 3 5 02 — 00

10 9 7 5 — 5 4 2 0 — 5 4 2 04 —

186 EXTENSIONS OF THE BASIC MODEL

Reduction. By subtracting the minimum element in each row, the original matrix is

reduced to the one shown in Table 8.3b. The sum of the elements subtracted is 20,

which is a lower bound on the optimal solution. At this point, we have at least one

zero in every column as well, as required.

Branching. The algorithm next partitions the problem by forcing one of the zero

elements to be part of the tour on one branch and prohibiting the same element on the

other branch. To decide which zero element to choose, one logical method is to select

the element that, when prohibited, would permit the largest possible reduction in the

matrix. Therefore, we label each zero element with the sum of the minimum element

remaining in its row and the minimum element remaining in its column, as shown

in Table 8.3c. This rule selects element (2, 1). The original problem is partitioned

into two subproblems: P(21), which contains the (2, 1) element, and P(*21), which

prohibits the (2, 1) element.

Bounding. The reduction procedure can now be applied to each subproblem. Since

the (2, 1) element is part of the tour in P(21), the (1, 2) element must be prohibited

if the solution is to form a complete tour. In addition, we can also eliminate elements

(2, j) for j �= 1 and elements (i, 1) for i �= 2. The matrix that results (Table 8.4a)

can be reduced to the matrix shown in Table 8.4b (by subtracting 2 from the second

column and 2 from the first row), which has a bound of 24. Meanwhile, P(*21) can be

reduced to the matrix shown in Table 8.4c, which has a bound of 25 (as we anticipated

from the label on the (2, 1) element in the reduced matrix for P).

At the next stage, either subproblem could be partitioned further. Suppose the

strategy is always to partition the subproblem that is closest to being fully solved.

(In Chapter 3 we called this strategy backtracking.) Under this strategy, P(21) is

partitioned next. As indicated by Table 8.4b, several zero elements are equally desir-

able according to the selection rule. Such ties can be broken arbitrarily. Therefore, let

element (5, 4) be the basis for the next partition. Thus we partition P(21) into subprob-

lems P(21, 54) and P(21, *54), which can both be reduced. These two subproblems

(shown in Table 8.5a, b) have bounds of 26.

TABLE 8.4

(a) (b) (c)

P(21) P(21) P(∗21)

— — 4 2 4 — — 2 02 2 — 04 4 2 4

0* — — — — 0* — — — — — — 04 4 6

— 2 — 4 0 — 02 – 4 00 4 2 — 4 02

— 5 0 — 0 — 3 02 — 00 02 5 00 — 00

— 4 2 0 — — 2 2 02 — 2 4 2 04 —

SEQUENCE-DEPENDENT SETUP TIMES 187

TABLE 8.5

(a) (b)

P(21, 54) P(21, ∗54)

— — 00 — 00 — — 2 0 2

0* — — — — 0* — — — —

— 00 — — 00 — — — 4 0

— 3 03 — — — 3 0 — 0

— — — 0* — — 0 0 — —

The list of unsolved problems and their lower bounds becomes

P(21, 54) (26)

P(21, *54) (26)

P(*21) (25)

Once again, we partition the problem that is closest to being fully solved. In P(21,

54), the desirable zero element is (4, 3). The list becomes

P(21, 54, 43) (26)

P(21, 54, *43) (29)

P(21, *54) (26)

P(*21) (25)

The problem P(21, 54, 43) is essentially fully solved because only one feasible tour

includes the elements (2, 1), (5, 4), and (4, 3). The complete tour must be 2-1-5-4-3-2,

a solution with a value of 26. The fact that a trial solution has been found with a

tour of length 26 allows two other branches of the tree to be fathomed. In particular,

no completion of P(21, 54, *43) or of P(21, *54) can possibly improve on this trial

solution, because their bounds are already at or above 26. The tree structure at this

stage is shown in Figure 8.5. Below each node is the corresponding lower bound,

designated “F” if the node has been fathomed.

One subproblem, P(*21), remains. Proceeding from this subproblem, we can find

a new trial solution (1-2-3-5-4-1) with a value of 25, and the solution tree that results

is shown in Figure 8.6. Now, all unsolved subproblems have bounds of 26 or more, so

no feasible solution can be better than the trial solution. The trial solution is therefore

an optimum.

Although the branching tree encountered in the TSP differs from the permutation

tree illustrated in Chapter 3, it does illustrate the general characteristics: at each level,

it replaces a problem with (two) mutually exclusive and exhaustive subproblems,

and these subproblems are smaller, partially solved versions of the original. The

calculation of lower bounds is accomplished in this tree via reduction, which identifies

188 EXTENSIONS OF THE BASIC MODEL

P

21 *21

21,54 21,*54

21,54,43 21,54,*43

20

24

26 26F

26 29F

25

FIGURE 8.5 The partial tree for the example problem.

distances that are unavoidable in any feasible solution. The solution procedure could

be enhanced with alternative methods of obtaining bounds. For example, an alternative

is to solve the assignment problem associated with the matrix: that is, choose n

elements from the matrix, with exactly one element in each row and exactly one

in each column, such that their sum is a minimum. (The optimal solution to the

assignment problem can be found with a polynomial algorithm, but that solution

produces only a bound because it does not guarantee that the optimal assignment

corresponds to a tour.)

*21,23,12,35

P

21 *21

21,54 21,*54

21,54,43 21,54,*43

*21,*23 *21,23

*21,23,*12 *21,23,12

*21,23,12,*35

20

24

26 26F

26 29F

29F

25

25

31F 25

29F 25

FIGURE 8.6 The final tree for the example problem.

SEQUENCE-DEPENDENT SETUP TIMES 189

8.4.3 Heuristic Solutions

A fairly simple greedy procedure for the traveling salesperson problem is known as

the “closest unvisited city” algorithm, in which the sequence is constructed by the

greedy approach of always selecting the closest city not yet visited. (In terms of the

sequencing model, this rule amounts to dispatching according to the shortest setup

time.) In the problem of Table 8.3a, for example, suppose that city 5 is the origin.

The closest city to the origin, corresponding to the minimum element in row 5, is

city 4. Excluding city 5, the closest to 4 is city 3. The closest unvisited city to 3

is 2 and the closest to 2 is 1. The heuristic procedure thus constructs the sequence

5-4-3-2-1-5, which has a tour length of 26. Had this sequence been known at the

outset of the backtracking scheme depicted in Figure 8.6, the branches corresponding

to subproblems P(21, 54) and P(21, *54) could have been fathomed as soon as they

were created, improving the speed with which an optimum would have been located.

The heuristic procedure need not be evaluated only in terms of its usefulness as

part of a branch and bound scheme—it is important in its own right. Although the

closest unvisited city algorithm cannot guarantee optimal solutions, its importance

may lie in its ability to generate good solutions rapidly in problems where the cost of

implementing an optimum-seeking method is prohibitive.

Several variations of this heuristic procedure have been developed that preserve

the essence of the closest unvisited city approach. The first variation involves an

interpretation of “closest.” If the original si j matrix (Table 8.4a) is used in the

calculations, then absolute distances are used to identify a closest city. Alternatively,

if the reduced si j matrix (Table 8.4b) is used, then relative distances identify a closest

city. A second variation involves a look-ahead feature that permits a closest unvisited

pair of cities to be added to the tour. Under this variation, we again choose the origin

arbitrarily. Then, instead of examining the paths from the origin to (n − 1) other

cities, we evaluate the paths from the origin to (n − 1)(n − 2) ordered pairs of cities,

and we add to the tour the pair associated with minimum distance. The third variation

involves several applications of the algorithm: instead of choosing the origin city once,

arbitrarily, we apply the procedure n times, each time using a different city as the

origin. Then we take the best of the n tours as the solution. This variation follows the

principle that a heuristic procedure is often strengthened by the opportunity to choose

among several solutions. These three variations in fact describe eight closest unvisited

city algorithms, as listed in Table 8.6. Tests on randomly generated problems suggest

that the closest unvisited city algorithm produces solutions within 10% of optimum

for n ≤ 20, but that performance of the algorithm deteriorates when considerable

variability appears in the elements of the si j matrix.

The insertion procedure is an alternative heuristic approach. We begin with a

randomly selected pair of cities, constituting a tour of length 2. Then a third city is

inserted to minimize the resulting three-city tour; then a fourth city is inserted, and

so on, until a complete tour has been constructed. Suppose, for example, that the

method is applied to the problem in Table 8.3a, with the cities taken in numbered

order. The “seed” pair 1-2 forms a two-city tour. A three-city tour is selected by

evaluating the tours 3-1-2 and 1-3-2. (The latter has the shorter tour.) A four-city

190 EXTENSIONS OF THE BASIC MODEL

TABLE 8.6

Algorithm Variations

1 Absolute distances, no look-ahead, arbitrary origin

2 Absolute distances, no look-ahead, all origins

3 Absolute distances, look-ahead, arbitrary origin

4 Absolute distances, look-ahead, all origins

5 Relative distances, no look-ahead, arbitrary origin

6 Relative distances, no look-ahead, all origins

7 Relative distances, look-ahead, arbitrary origin

8 Relative distances, look-ahead, all origins

tour is formed by inserting job 4 somewhere in the three-city tour. In other words,

a tour is selected from among 4-1-3-2, 1-4-3-2, and 1-3-4-2. At the last stage, a full

tour is selected from among four candidates, producing a tour of length 26. Just as

the closest unvisited city algorithm is sensitive to which city is designated as origin,

the insertion procedure is sensitive to which pair of cities is designated as initial seed

and to the order in which jobs are considered for insertion. Heuristic rules for these

facets of the algorithm have not been thoroughly developed, but we could repeat the

algorithm several times, each time beginning with a different seed pair.

The general-purpose search methods described in Chapter 3 can also be employed

in the TSP. Indeed, search methods are often tested on the TSP in order to confirm

their effectiveness.

8.5 STOCHASTIC MODELS WITH SEQUENCE-DEPENDENT

SETUP TIMES

In this section, we explore stochastic versions of the TSP, and for simplicity, we

assume that random variables in the model are independent. (Some of our results

extend to linearly associated processing times, as discussed in Appendix A.) Perhaps

the simplest stochastic version of the TSP contains random processing times but

deterministic setup times. In that case, the length of a tour has two components—a

deterministic component (the sum of the setup times in the tour) and a stochastic

component (the sum of the processing times). The deterministic component can be

minimized by solving the corresponding TSP, thereby identifying the sequence with

the smallest mean tour length because the mean of the stochastic component is known.

A more challenging problem arises when the setup times are stochastic as well

as sequence dependent. Assume for the moment that the processing times are de-

terministic. Under these conditions, the length of a tour again decomposes into a

deterministic component and a stochastic component. The deterministic component

corresponds to the sum of the processing times (which is constant), and the stochastic

component corresponds to the sum of the setup times. In this model, we can minimize

the mean tour length by solving the TSP using the mean setup times. Stated another

way, the stochastic and deterministic counterparts of the TSP are identical, and thus

the Jensen gap is zero.

STOCHASTIC MODELS WITH SEQUENCE-DEPENDENT SETUP TIMES 191

If we want to look beyond the mean of the tour length, the problem contains

a new twist. The sequence that minimizes the mean of the tour length may not

minimize the variance of the tour length. In the models of Chapter 7, this feature

does not arise because the variance of the makespan is constant when the processing

time distributions are independent. With sequence-dependent setups, however, the

variance of the tour length depends on the sequence. If we think of an array in which

element (i, j) is the variance of the time required to travel from city i to city j , then

the variance of the tour length equals the sum of n values from this array, but not all

of them. This feature leads us to new considerations in sequencing.

We could permit processing times, as well as setup times, to be stochastic. This

version of the problem does not present any new analytic challenges, because the

means and variances of completion times are still obtained as sums of individual

means and variances. Thus, to focus on the challenging part of the model, we will

simplify matters and assume that processing times are known. In what follows, we

revisit the basic safe scheduling models of Chapter 7, but now with setup times that

are sequence dependent and stochastic.

8.5.1 Setting Tight Due Dates

For the purpose of illustration, we first consider one of the easier problems in safe

scheduling, namely, setting due dates to meet given service levels.

� Example 8.7 Consider the scheduling of n = 3 jobs with sequence-dependent

setup times. The facility is already set up to process job 1 first. Then, after the other

two jobs are completed, the facility will be in its desired final state. Processing times

are deterministic, and each job takes one time unit. In addition, each possible setup

time follows a normal distribution. The following two arrays describe the distribution

parameters:

Mean time from i to j Standard deviation of time from i to j

To To

1 2 3 1 2 3

1 — 40 45 1 — 6 9

From 2 0 — 60 From 2 0 — 8

3 0 50 — 3 0 12 —

The task is to set due dates so that the service levels for job 2 and job 3 are at least

75%.

In Example 8.7, there are two possible sequences: 1-2-3-1 and 1-3-2-1. For se-

quence 1-2-3-1, we need to calculate the mean and variance of the completion time

of jobs 2 and 3. Job 2 completes after job 1 is processed, the changeover from job 1 to

job 2 is made, and job 2 is processed. The time for these three events has mean 42 and

variance 36 (standard deviation 6). Then, job 3 completes after two additional events,

the changeover to job 3 and the run time for job 3. The time for all five events has mean

103 and variance 100 (standard deviation 10). A service level of 75% corresponds

192 EXTENSIONS OF THE BASIC MODEL

TABLE 8.7

Service Level 75% z-Value 0.6745

Sequence 1-2-3-1

Event Run 1 Setup 2 Run 2 Setup 3 Run 3

Mean time 1 40 1 60 1

Variance 0 36 0 64 0

Mean completion 1 41 42 102 103

Cumulative variance 36 36 100 100

Due date 46.05 109.74 155.79

Sequence 1-3-2-1

Event Run 1 Setup 3 Run 3 Setup 2 Run 2

Mean time 1 45 1 50 1

Variance 0 81 0 144 0

Mean completion 1 46 47 97 98

Cumulative variance 81 81 225 225

Due date 53.07 108.12 161.19

to a standard normal z-value of 0.6745. Therefore, the due dates that achieve the

required service level are d2 = 46.05 and d3 = 109.74, for a total of 155.79. These

calculations are summarized in Table 8.7, which also shows analogous calculations

for sequence 1-3-2-1. The latter sequence has a larger sum of due dates at 161.19.

In Example 8.7, we can find the optimal sequence because there are only two

sequences to enumerate. In a large problem, however, an enumerative approach might

be prohibitive. More importantly, perhaps, our analysis requires the distribution of

each completion time. In general, it is very difficult to derive convolutions of this type,

unless the individual distributions are normal distributions. For that reason, we use

normal distributions for the purposes of illustration. In large problems, we can invoke

the central limit theorem for all but the first few completion times and use normal

distributions as close approximations to the convolutions we need. (If we also take

processing times as stochastic, the accuracy of the normal approximation is likely to

be improved.) We use the term “nearly optimal” for these solutions, as a reminder that

claims of optimality are based on accepting the normal approximation for large n.

In the stochastic models we studied in earlier chapters, we had another approach

to finding optimal sequences—the use of a stored sample. However, in the stochastic

TSP it is difficult to use a stored sample because for an n-city problem, we need

n(n − 1) potential setup times for each scenario. This approach could be practical for

relatively small n values, in which case we might use a generic heuristic such as a

neighborhood search. The difficulty arises for large n. In what follows, we presume

that we want to obtain solutions for large n, so we rely on the normal assumption and

develop nearly optimal solutions.

8.5.2 Revisiting the Tightness/Tardiness Trade-off

In Chapter 7, we described a scenario in which all jobs go to the same customer,

feeding an assembly operation. Performance is dictated by the makespan, because

STOCHASTIC MODELS WITH SEQUENCE-DEPENDENT SETUP TIMES 193

only when all jobs are complete can the customer’s operation proceed. Internally, our

scheduling system assigns a common due date d to the set of jobs, to help guide the

progress of work in the system. Our problem, then, is to determine a common due date

for n jobs, and we examined two formulations. In the first, the problem was simply

to set a tight due date that would meet a given service level. In the second problem,

we optimized a trade-off objective, d + γ E(T), and derived the optimal due date as a

by-product. In the context of Chapter 7, these two problems were very similar because

the makespan distribution was independent of job sequence. In the present context,

we must consider the effect of the sequence on the makespan distribution because the

two objectives may lead to different sequences. However, if a stochastically minimal

sequence exists, then it is optimal for both objectives.

� Theorem 8.7 Let b = (γ − 1)/γ and suppose a sequence exists that yields

a stochastically minimal makespan distribution. Then this sequence is optimal for

minimizing d subject to a service-level constraint SL = b and for minimizing d +

γ E(T).

Proof. Let the stochastically minimal distribution be indexed by 0 and let 1 be the

index of any other distribution. Let d∗
0 and d∗

1 denote the respective due dates for which

the desired SL is obtained. By definition, the cdf of a stochastically minimal makespan

distribution yields the minimal d for any SL, so d∗
1 ≥ d∗

0 , which proves the first part of

the theorem. E(T0) and E(T1) are given by the tail areas of the respective distributions

above the cdf and below 1 to the right of d∗
0 and d∗

1 . Because the cdf F0(x) is monotone

nondecreasing, we can replace the part of the tail representing E(T0) between d∗
0 and

d∗
1 by a rectangle with width (d∗

1 − d∗
0) and height 1/γ and thereby obtain an upper

bound for E(T0). The remainder of the tail—to the right of d∗
1 —cannot exceed E(T1)

(by stochastic dominance), so E(T0) ≤ E(T1) + (d∗
1 − d∗

0)/γ . Multiplying through by

γ we obtain γ E(T0) ≤ γ E(T1) + d∗
1 − d∗

0 ; that is, d∗
0 + γ E(T0) ≤ d∗

1 + γ E(T1).

To demonstrate the complications induced by stochastic setup times, we consider

a related problem: maximizing the service level of the makespan with a given due

date. (For example, imagine that our task is to collect n passengers and deliver them

to the terminal in time to catch a flight.) In the context of Chapter 7, that problem

would be meaningless: for any given due date, the service level would be a constant

given by the cdf of the makespan; but with sequence-dependent setups, it is more

challenging. Again, if a stochastically minimal tour exists, it would also be optimal

for this problem. In general, we must find the tour with the highest cdf for the given

due date. To minimize d subject to a service-level constraint, we look for the first cdf

that achieves the given service level. Thus, the problems are related but not identical.

In Example 8.7, for any due date below 113, we should select sequence 1-3-2-1;

and for any later due date, we should select sequence 1-2-3-1. When minimizing d

subject to a service-level constraint, the same selections would be made below and

above SL = 0.841, respectively.

194 EXTENSIONS OF THE BASIC MODEL

For the objective function d + γ E(T), recall from Theorem 7.2 that it is optimal

to set d equal to the smallest possible value that satisfies the condition

SL = Pr{Cmax ≤ d} ≥ (γ − 1)/γ

where Cmax represents the length of the tour in a TSP. Once again, we assume that

the processing times follow normal distributions. Referring to (B.17), the objective

function takes the following specific form for the optimal due date:

H (d) = d + γ E(T) = µ + σγϕ(k∗)

where µ and σ denote the mean and standard deviation of the tour length. The form

of this function reveals immediately that optimization involves trading off the mean

and standard deviation of the tour length. We can illustrate the trade-off with the data

in Example 8.7.

In the example, there are only two sequences. Sequence 1-2-3-1 has the larger

mean (103) and the smaller variance (100). Sequence 1-3-2-1 has the smaller mean

(98) and the larger variance (225). Thus, the preferred sequence under the objective

in (8.2) depends on the value of γ . For the purposes of illustration, take γ = 4.

Table 8.8 shows the relevant calculations, leading to the following objective function

values:

H (1-2-3-1) = 115.71

H (1-3-2-1) = 117.07

TABLE 8.8

4.0Gamma 0.75Ratio

k-Value 0.674

1-2-3-1Sequence phi(k) 0.3178

3Run3Setup2Run2Setup1RunEvent

1601401timeMean

0640360Variance

10242411completionMean 103

1003636varianceCumulative 100

dateDue Objective109.74 115.71

1-3-2-1Sequence

2Run2Setup3Run3Setup1RunEvent

1501451timeMean

01440810Variance

9747461completionMean 98

2258181varianceCumulative 225

dateDue Objective108.12 117.07

SUMMARY 195

Sequence 1-2-3-1 is optimal in this case, although the opposite would be true for γ

values below about 2.6.

8.6 SUMMARY

Generalizations of the basic single-machine model extend its applicability but lead

to new difficulties in obtaining solutions. In some cases, the optimal solution to

a problem involving the basic model can be directly adapted to the generalized

model. At other times, however, a direct adaptation is not possible, and new solution

approaches are required.

Dynamic models, in which jobs become available intermittently, require that as-

sumptions regarding job preemption be carefully scrutinized. If jobs can be processed

in a preempt–resume mode, no idle time need ever be inserted in a schedule, and

dispatching procedures can be employed. On the other hand, if the preempt–repeat

mode applies, or if preemption is prohibited, then inserted idle time can be justified,

and look-ahead procedures become useful in determining schedules. Moreover, even

simple sequencing problems in the latter model appear to require general-purpose

techniques for finding optimal schedules, and the branch and bound approach appears

to be quite effective whenever the corresponding preempt–resume problem is easily

solved. Nevertheless, dispatching is especially useful in stochastic environments and

practitioners often prefer to avoid inserted idle time.

The generalization of SPT sequencing to strings and chains suggests that optimal

rules may sometimes involve properties of job modules rather than the properties of

individual jobs. In the Fw -problem with series–parallel precedence constraints, we

also saw the need for a decomposition tree as a preliminary step in implementing the

optimal sequencing procedure. When considering the stochastic counterpart models

without preemption, the Fw -problem is still simple to extend by replacing each

processing time by its expectation.

Sequence-dependent setup times create difficulties even in the makespan problem,

but state-of-the-art algorithms can cope with problems containing thousands of cities.

Nonetheless, progress with other performance measures has been limited in models

containing sequence-dependent setups. For example, little progress has been made

on problems with due dates and sequence-dependent setups.

We introduced stochastic processing and setup times into the TSP and analyzed

some of the safe scheduling problems that arise. The problem of identifying the

optimal sequence given a safe scheduling objective function is the subject of ongoing

research. Preliminary results suggest that the deterministic counterpart solution is

often a solid basis for safe scheduling, provided we include appropriate safety time

in the schedule. Furthermore, it is often possible to use the deterministic solution as

a building block for the identification of even better tours.

While the assumptions cited in Chapter 2 may have seemed somewhat restrictive,

the array of extensions considered in this chapter enrich the basic model and demon-

strate that its usefulness is actually quite broad. One aspect of condition C1 that was

preserved throughout, however, was the availability of only a single machine. In the

196 EXTENSIONS OF THE BASIC MODEL

remaining chapters, we investigate more general models in which several machines

are present.

REFERENCES

Ahmadi, R. and U. Bagchi (1990). Lower bounds for the single-machine scheduling problem,

Naval Research Logistics 37, 967–979.

Applegate, D.L., R.E. Bixby, V. Chvatal, and W.J. Cook (2007). The Traveling Salesman

Problem, Princeton University Press, Princeton, NJ.

Baker, K.R. and Z. Su (1974). Sequencing with due-dates and early start times to minimize

maximum tardiness, Naval Research Logistics Quarterly 21, 171–176.

Carlier, J. (1982). The one machine sequencing problem, European Journal of Operational

Research 11, 42–47.

Chandra, R. (1979). On n/1/F̄ dynamic deterministic problems, Naval Research Logistics

Quarterly 26, 537–544.

Chu, C. (1992). A branch-and-bound algorithm to minimize total tardiness with different

release dates, Naval Research Logistics Quarterly 39, 265–283.

Chu, C. (1992). Efficient heuristics to minimize total flow time with release dates, Operations

Research Letters 12, 321–330.

Chu, C. and M.-C. Portmann (1992). Some new efficient methods to solve the n/1/ri/
∑

Ti

scheduling problem, European Journal of Operational Research 58, 404–413.

Gapp, W., D.S. Mankekar, and L.G. Mitten (1965). Sequencing operations to minimize in-

process inventory costs, Management Science 11, 476–484.

Gavett, J.W. (1965). Three heuristic rules for sequencing jobs to a single production facility,

Management Science 11, B166–B176.

Hodgson, T.J. (1977). A note on single machine sequencing with random processing times,

Management Science 23, 1144–1146.

John, T.C. and Y.B. Wu (1987). Minimum number of tardy jobs in single-machine scheduling

with release dates—an improved algorithm, Computers and Industrial Engineering 12,

223–230.

Jonker, R. and T. Volgenant (1983). Transforming asymmetric into symmetric traveling salse-

man problems, Operations Research Letters 2, 161–163.

Karg, R. and G.L. Thompson (1964). A heuristic approach to solving travelling salesman

problems, Management Science 10, 225–248.

Kise, H., T. Ibaraki, and H. Mine (1978). A solvable case of the one-machine scheduling

problem with ready and due-times, Operations Research 26, 121–126.

Lageweg, B.J., J.K. Lenstra, and A.H.G. Rinnooy Kan (1976). Minimizing maximum lateness

on one machine: computational experience and some applications, Statistica Neerlandica

30, 25–41.

Laporte, G. (1992). The traveling salesman problem: an overview of exact and approximate

algorithms, European Journal of Operational Research 59, 231–247.

Laporte, G., F.V. Louveaux, and H. Mercure (1992). The vehicle routing problem with stochas-

tic travel times. Transportation Science 26, 161–170.

EXERCISES 197

Lawler, E.L. (1973). Optimal sequencing of a single machine subject to precedence constraints,

Management Science 19, 544–546.

Lawler, E.L. (1978). Sequencing jobs to minimize total weighted completion time subject to

precedence constraints, Annals of Discrete Mathematics 2, 75–90.

Little, J.D.C., K.G. Murty, D.W. Sweeny, and C. Karel (1963). An algorithm for the traveling

salesman problem, Operations Research 11, 972–989.

McMahon, G. and M. Florian (1975). On scheduling with release dates and due dates to

minimize maximum lateness. Operations Research 23, 475–482.

Monma, C.L. and J.B. Sidney, (1979). Sequencing with series–parallel precedence constraints,

Mathematics of Operations Research 4, 215–224.

Monma, C.L. (1981). Sequencing with general precedence constraints, Discrete Applied Math-

ematics 3, 137–150.

Morton, T.E. and B.G. Dharan (1978). Algoristics for single-machine sequencing with prece-

dence constraints, Management Science 24, 1011–1020.

Portougal, V. and D. Trietsch (2001). Stochastic scheduling with optimal customer service,

Journal of the Operational Research Society 52, 226–233.

Potts, C.N. (1980). Analysis of a heuristic for one machine sequencing with release dates and

delivery times, Operations Research 28, 1436–1441.

Sidney, J.B. (1975). Decomposition algorithms for single machine sequencing with precedence

relations and deferral costs, Operations Research 23, 283–298.

EXERCISES

8.1. Construct an example to show each of the following properties for the dynamic

single-machine model.

a. When no preemption is permitted, EDD sequencing does not guarantee

minimum Tmax.

b. When no preemption is permitted, SPT sequencing does not guarantee min-

imum F .

c. In preempt–resume mode, shortest weighted remaining processing time (the

dynamic analogy of SWPT) does not guarantee minimum Fw .

8.2. Give a complete solution to the F problem with jobs a, b, and c and a single

precedence constraint.

8.3. Eight jobs are to be processed at a single machine. The processing times and

due dates are given below.

Job j 1 2 3 4 5 6 7 8

p j 2 3 2 1 4 3 2 2

d j 5 4 13 6 12 10 15 19

198 EXTENSIONS OF THE BASIC MODEL

Furthermore, the following precedence relationships must be satisfied:

2 → 6 → 3

1 → 4 → 7 → 8

Determine the sequence that will minimize the maximum lateness subject to the

given precedence restrictions.

8.4. Develop a sequencing rule that will minimize Fw for the single-machine problem

with job strings.

8.5. Consider the set of nine jobs depicted in Figure 8.7. Prove that the precedence

structure is series–parallel. (Hint: When partitioning to two sets N1 and N2 it

is sufficient to find one partition that satisfies one of the conditions and then

consider each of its parts in the same manner.)

1

2

6
7

3

4

5

8

9

FIGURE 8.7

8.6. In the optimal solution to the TSP for the matrix shown below (which includes

the matrix in Table 8.3), does the optimal tour for the matrix in Table 8.3 appear

intact as part of the larger optimum?

— 4 8 6 8 2

5 — 7 11 13 4

11 6 — 8 4 3

5 7 2 — 2 5

10 9 7 5 — 2

8 4 3 6 5 —

8.7. Find a solution to the TSP in the previous exercise using the closest unvisited

city procedure with the following:

a. Absolute distances, no look-ahead, and city 2 as the origin.

b. Relative distances, no look-ahead, and city 2 as the origin.

c. Absolute distances, look-ahead, and city 5 as the origin.

EXERCISES 199

8.8. Consider a noncyclic problem of sequencing n jobs with sequence-dependent

setup time such that the machine starts at some initial state and has to be left at

some specified final state. Describe an equivalent TSP model. Similarly, show

that any cyclic TSP model could be formulated as an instance of this noncyclic

problem. (That is, show that the two problems are mathematically equivalent.)

8.9. Consider scheduling families of contiguous jobs when each family has a major

family setup time. In other words, each family is scheduled once, as a batch of

jobs processed in sequence and preceded by a single family setup. The family

setup times are not sequence dependent.

a. Show how to minimize the total flowtime while taking the setup times into

account.

b. Repeat (a) for the total weighted flowtime.

9
PARALLEL-MACHINE MODELS

9.1 INTRODUCTION

In general, scheduling requires both sequencing and resource allocation decisions.

When there is only one resource, the allocation of that resource is completely de-

termined by sequencing decisions. As a consequence, in the single-machine model,

no distinction exists between sequencing and resource allocation. To appreciate that

distinction we must examine models with more than one machine. Scheduling theory

covers three basic types of multimachine models: parallel systems, serial (flow shop)

systems, and hybrid (job shop) systems. In parallel systems, jobs consist of one oper-

ation, as in the single-machine model; but in flow shops and job shops, the structure of

jobs is more complicated. This chapter treats the case of parallel machines, whereas

the following chapters introduce the other multimachine models.

A simple setting in which we can investigate the effects of parallelism is the

problem of scheduling single-operation jobs in the presence of several parallel ma-

chines. As in the basic model, n jobs are simultaneously available at time zero. We

also have m parallel machines available for processing, and we assume that a job

can be processed by at most one machine at a time. In the basic parallel-machine

model, the machines are identical and the jobs are unrelated. When we address

the fundamental performance measures in this setting, solutions reflect resource

parallelism.

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

200

MINIMIZING THE MAKESPAN 201

9.2 MINIMIZING THE MAKESPAN

In the basic single-machine model, the makespan is equal to a constant for any

sequence of n given jobs, so the makespan problem needs no analysis. In the static

parallel-machine model, the sequence of jobs on any particular machine is immaterial;

thus, the makespan problem is purely one of allocating jobs to machines. However,

the makespan problem is still very challenging.

The simplest makespan problem arises when the jobs are unrelated and we permit

preemption. With preemption allowed, the processing of a job may be interrupted

and the remaining processing can be completed subsequently, perhaps on a different

machine. The formula for the minimum makespan, M∗, is given by

M∗ = max

n
∑

j=1

p j/m, max j {p j }

 (9.1)

It should not be hard to see why this result holds: the formula states that either the

work is allocated evenly among the machines, or else the length of the longest job

determines the makespan. A method of constructing an optimal schedule follows.

Algorithm 9.1 Minimizing M with m Parallel, Identical Machines

Step 1. Select some job to begin on machine 1 at time zero.

Step 2. Choose any unscheduled job and schedule it as early as possible on the same

machine. Repeat this step until the machine is occupied beyond time M∗ or until

all jobs are scheduled.

Step 3. Reassign the processing scheduled beyond M∗ to the next machine instead,

starting at time zero. Return to Step 2.

This problem does not have a unique solution, and the construction method in

Algorithm 9.1 produces only one of many optimal schedules. In particular, the method

makes no attempt to minimize the number of preemptions.

� Example 9.1 Consider a makespan problem with m = 3 machines in which

we wish to schedule the following eight jobs.

Job j 1 2 3 4 5 6 7 8

pj 1 2 3 4 5 6 7 8

From Eq. (9.1), M∗ = 12. The schedule in Figure 9.1 results from the application

of Algorithm 9.1 to this eight-job set (in numerical order). The schedule shown in

Figure 9.1 achieves the optimal makespan of 12 and involves preemptions of jobs 5

and 7. In this instance, it would not be difficult to construct a schedule that achieves

202 PARALLEL-MACHINE MODELS

mch 1

mch 2

mch 3

12

1 2

8

65

3 4 5

7

7

FIGURE 9.1 An optimal schedule for the eight-job example.

the optimal makespan with no preemptions at all. In general, however, minimizing

the number of preemptions in an optimal schedule is a challenging problem.

9.2.1 Nonpreemptable Jobs

If we prohibit job preemption, then the problem of minimizing the makespan is NP-

hard in the strong sense. (The two-machine case, however, is not quite as difficult

and can be solved by a pseudopolynomial algorithm.) Therefore, the determination of

optimal schedules for the makespan requires such general-purpose methods as branch

and bound or dynamic programming. In the case of branch and bound, it is not easy

to obtain tight lower bounds; in the case of dynamic programming, the number of

states tends to be extremely large for m ≥ 3. Thus, general-purpose techniques have

not had much success except on relatively small problems.

Although optimal solutions to the makespan problem are difficult to obtain, some

heuristic procedures perform quite well. A plausible way to build a schedule in

practice is as follows. First, construct a list of the jobs, in some order. Then, remove

the first job from the list and place it in the schedule as early as possible. Next, repeat

this step without changing the existing partial schedule, each time removing the first

job on the list and placing it in the schedule to start at the earliest feasible time. We

can think of this procedure, called list scheduling, as a dispatching mechanism for

real-time decisions. That is, the list could represent a queue of waiting jobs. As some

job finishes and its machine becomes free, the first job in the queue gets assigned to

the free machine.

For deterministic processing times, the optimal schedule can always be produced

by some list-scheduling procedure. In other words, given any schedule, some list

could have produced it. Unfortunately, there is no obvious way to order the list so that

it produces the optimal makespan. However, we at least know that to search for an

optimal schedule, we can limit attention to list schedules—that is, to n! possibilities.

The number of dominant schedules is thus no larger with parallel machines than it

would be for a complicated single-machine problem. As a consequence, we can use

neighborhood searches to sequence the list, or many of the other heuristic procedures

covered in Chapter 4. The same idea applies to heuristic solutions of the stochastic

counterpart.

MINIMIZING THE MAKESPAN 203

No known ordering of the list can reliably produce optimal makespans. Thus,

any simple ordering rule will sometimes produce suboptimal results. This raises the

question of how poor the performance of a list-scheduling procedure might be. A

performance guarantee is a bound on the performance of a particular solution method.

In the case of makespan problems, it is an upper bound on the suboptimality of the

makespan produced by a given heuristic procedure.

More formally, let M denote the makespan produced by the heuristic procedure

(in this case, list scheduling), and let M∗ denote the optimal makespan. A typical

performance guarantee might take the form

M = rM∗

In this case, r > 1 (sometimes called an error bound) represents an upper bound on

the ratio of the heuristic solution to the optimal solution. Thus, the performance of

the heuristic procedure, as measured by this ratio, is guaranteed to be no worse than r

for any instance of the problem. For list scheduling, the following result provides a

performance guarantee.

� Theorem 9.1 List scheduling for unrelated, nonpreemptable jobs yields a

makespan satisfying M/M∗ ≤ 2 − 1/m.

Proof. Consider a schedule produced by a list-scheduling procedure that achieves a

makespan of M . Let k denote a job that finishes at time M , so that job k starts at time

M − pk . At this point, all m machines must have been occupied continuously since

time zero, and the amount of completed work must have been at most all the work in

the set of jobs, exclusive of job k. Hence,

m(M − pk) ≤

n
∑

j=1

p j − pk

Algebraic rearrangement yields

M ≤

n
∑

j=1

p j

m
+

pk(m − 1)

m
(9.2)

From (9.1), we know that M∗ is at least as large as
∑n

j=1 p j/m and at least as large

as pk . It follows that

M ≤ M∗ + M∗(m − 1)/m

or, more simply, M/M∗ ≤ 2 − 1/m.

Theorem 9.1 gives us an error bound on the result produced by an arbitrary list-

scheduling procedure: the makespan cannot be as poor as twice the optimal value.

However, this is merely an upper bound. By constructing schedules in a few examples,

204 PARALLEL-MACHINE MODELS

we could discover that the actual makespan produced by a list-scheduling procedure

will often be much closer to the optimum than this bound suggests, and we might

wonder whether Theorem 9.1 is too pessimistic. As it happens, there are cases in

which the performance of a list-scheduling procedure is as poor as the bound in

Theorem 9.1.

� Example 9.2 Consider a makespan problem with m = 4 machines in which

we wish to schedule the following seven jobs.

Job j 1 2 3 4 5 6 7

pj 3 3 3 1 1 1 4

When the list is ordered numerically, the list-scheduling procedure produces the

schedule shown in Figure 9.2, with a makespan of M = 7. It should not be difficult

to see that the optimal solution has a makespan of M = 4. The performance ratio is

exactly 2 − 1/m, and similar examples can be constructed for other values of m.

As this example demonstrates, not only does Theorem 9.1 provide an upper bound

on the performance ratio, but no tighter upper bound is possible. For this reason,

we refer to the formula in Theorem 9.1 as a worst-case performance ratio or, more

simply, as a worst-case bound. Furthermore, under a mild condition on the processing

times, worst-case performance is likely only when (n/m) is small, as we show next.

Let pmax denote the largest processing time in the set, so that (9.2) implies

M − M∗ ≤ pmax(m − 1)/m (9.3)

Suppose that we generate the processing times so that in the limit as n → ∞,

pmax/
∑

p j → 0 (in words, no job by itself dominates the total processing time).

We then say that the processing times satisfy the regularity condition. For in-

stance, if jobs are sampled independently from some distribution with a finite vari-

ance, the regularity condition is satisfied. Recall from Chapter 7 that a heuristic is

2

1 7

4

3

5 6

7

FIGURE 9.2 A list schedule for the seven-job example.

MINIMIZING THE MAKESPAN 205

asymptotically optimal if, in the limit as n → ∞, the difference between the heuristic

solution and the optimum becomes relatively negligible (i.e., r → 1).

� Theorem 9.2 List scheduling is asymptotically optimal for the parallel-

machine makespan problem with unrelated, nonpreemptable jobs that satisfy the

regularity condition.

Proof. We must show that in the limit as n → ∞, (M − M∗)/M∗ → 0. From (9.3),

we have pmax(m − 1)/m ≥ (M − M∗), and from (9.1) we have
∑

p j/m ≤ M∗. The

ratio of these inequalities implies that (M − M∗)/M∗ ≤ pmax(m − 1)/
∑

p j . But

pmax/
∑

p j → 0 by the regularity condition, so (M − M∗)/M∗ → 0.

When processing times are independent with finite variances, the asymptotic

optimality result in Theorem 9.2 also holds for the stochastic counterpart. This is

true because as n → ∞, the coefficient of variation of the total processing time on

each machine tends to zero. Even if processing times are not independent, any list is

asymptotically optimal if we use it for dispatching decisions. Asymptotic optimality is

important because it is increasingly used as an indicator of heuristic quality. Typically,

sequencing problems are easy for small n and difficult for large n. However, when

we discover a heuristic procedure that is computationally easy to implement and yet

asymptotically optimal, we have a valuable result. In practical terms, we can solve

the problem as follows:

� For small n, use some form of implicit or even explicit enumeration.
� For medium n, start with an asymptotically optimal heuristic and use it as a seed

for a neighborhood search.
� For large n, skip the neighborhood search or limit it to the first few jobs on the

list.

When we introduced asymptotic optimality in Chapter 7, we linked it to a specific

heuristic procedure. In that case, asymptotic optimality was also instrumental in

selecting the heuristic. In contrast, Theorems 9.1 and 9.2 apply to a list schedule

with any ordering. Thus, asymptotic optimality does not discriminate among list-

scheduling heuristics for the parallel-machine makespan problem. However, some

orderings tend to perform better than others. From the proofs of Theorems 9.1

and 9.2, we can infer that it is desirable to make the last job (“job k”) relatively

short. To this end, an effective heuristic procedure is list scheduling according to

the longest processing time (LPT). In Example 9.2, LPT list scheduling produces

an optimal makespan. For LPT list scheduling, an improved performance guarantee

exists.

� Theorem 9.3 In the parallel-machine makespan problem with unrelated,

nonpreemptable jobs, LPT list scheduling yields a makespan satisfying M/M∗ ≤

4/3 − 1/3m.

206 PARALLEL-MACHINE MODELS

Proof. If n ≤ 2m, then it is not hard to see that LPT yields the optimal sequence.

Therefore, the theorem must be true in that case. Henceforth, we assume that n > 2m,

and for convenience, we assume that the jobs are indexed by LPT, so job n starts last

and pn is the shortest processing time. Consider two cases.

Case 1 (job n finishes last): Our task is equivalent to showing that

M − M∗

M∗
≤

m − 1

3m

If we replace M − M∗ by an upper bound and M∗ by a lower bound and still

show that the inequality holds, the theorem must be true because such bounds

can only increase the left-hand side. In Eq. (9.2), we can substitute pn for pk and

obtain

M ≤

∑n
j=1 p j

m
+ pn

m − 1

m

However,
∑

p j/m is a valid lower bound on M∗, so M ≤ M∗ + pn(m − 1)/m.

Rearranging terms, we obtain our upper bound on M − M∗:

M − M∗ ≤ pn

m − 1

m

Because n > 2m, at least one machine must process three or more jobs, each requiring

at least pn . Thus, we can use 3pn as our lower bound on M∗. Therefore, an upper

bound on (M − M∗)/M∗ is given by (m − 1)/3m, thus completing the proof for

Case 1.

Case 2 (some other job finishes last): Let k be the index of the job that finishes

last, and denote the makespan of the first k jobs in the LPT schedule by M(k). For

optimal values, M∗(n) ≥ M∗(k), and in general, M(n) ≥ M(k), although in this case

M(n) = M(k).

Case 2a: If k ≤ 2m, then (as mentioned earlier) LPT is optimal. Therefore, M(k) =

M∗(k), so we have M(n) = M(k) = M∗(k) ≤ M∗(n). Therefore, M(n) is optimal,

and the theorem holds.

Case 2b: If k > 2m, then Case 1 holds for the first k jobs so M(k)/M∗(k) ≤

4/3 − 1/3m. Because M(n) = M(k), we have M(n)/M∗(n) = M(k)/M∗(n).

Because M∗(n) ≥ M∗(k), we have M(k)/M∗(n) ≤ M(k)/M∗(k). Combining

these results we finally obtain M(n)/M∗(n) = M(k)/M∗(n) ≤ M(k)/M∗(k) ≤

4/3 − 1/3m.

The following brief table compares the error bounds for list scheduling

(Theorem 9.1) and LPT list scheduling (Theorem 9.3), for different numbers of

machines.

MINIMIZING THE MAKESPAN 207

Machines m 2 3 4 5 10 20

List scheduling 1.50 1.67 1.75 1.80 1.90 1.95

LPT scheduling 1.17 1.22 1.25 1.27 1.30 1.32

Obviously, the specification of LPT ordering improves the worst-case performance

of list scheduling dramatically.

An even more effective heuristic than LPT is available, but it requires somewhat

more computational effort. Suppose we are given a possible value M of the makespan,

and we wish to determine whether we can construct a schedule that is consistent with

this value. We might use a heuristic procedure known as first-fit decreasing (FFD).

The first step in FFD is to order the jobs according to LPT. At each stage, we attempt to

assign the first job on the list to the first machine on which the job will fit. Specifically,

we add the job to the existing partial schedule so that it completes on or before M . If

no such machine exists, the procedure fails. If such a machine does exist, we remove

the job from the LPT list and add it to the existing partial schedule. Then, we repeat

this process until all jobs have been scheduled or until a failure occurs.

The FFD routine is an intuitively appealing procedure for determining whether a

makespan of M is valid for a given set of jobs. It is only a heuristic procedure because it

may sometimes fail when a feasible schedule actually exists. (In computational terms,

determining whether M is valid is no easier than solving the makespan problem

itself.) However, FFD serves our heuristic purposes as an efficient device for testing

the validity of a particular trial value.

In the multifit algorithm, we search for the smallest feasible value of M , using FFD

to test each trial value. This search can be conducted in an interval between the lower

bound on M , which is given by (9.1), and an upper bound on M , which could be

as simple as max[2
∑n

j=1 p j/m, max j {p j }], although any feasible solution is likely

to provide a better upper bound. It can be shown that the multifit algorithm yields a

makespan satisfying M/M∗ ≤ 72/61, or about 1.18. This bound is tighter than that

of LPT for m > 2 and almost as tight for m = 2. However, it does not follow that

multifit will always produce a better makespan than LPT.

� Example 9.3 Consider a makespan problem with m = 3 machines in which

we wish to schedule the following nine jobs.

Job j 1 2 3 4 5 6 7 8 9

pj 3 3 3 2 2 2 2 2 2

The makespan generated by LPT is M = 7, which turns out to be optimal. The

multifit algorithm, by contrast, fails to build a feasible schedule for any trial makespan

less than M = 8 (yielding M/M∗ = 1.14). Therefore, in this instance, the multifit

208 PARALLEL-MACHINE MODELS

algorithm does not perform as well as LPT. However, it makes sense to use LPT first,

to at least find an upper bound, and then use the multifit algorithm to see whether a

better makespan can be achieved. This combined procedure is asymptotically optimal

and also performs relatively well for small n.

Theorems 9.1 and 9.3 provide performance guarantees for increasingly more

detailed heuristic procedures for identical parallel machines and unrelated jobs. Ad-

ditional results have been developed for uniform machines, a case in which job j has

a processing time of p j on the first machine and a processing time of p j/si on the ith

machine. In other words, we can think of si as the relative speed of machine i . For

uniform machines (without preemption) it makes more sense to schedule according

to the time a job will complete than the time it can start; otherwise, we may schedule

a long job on a slow machine and increase the makespan unnecessarily. With this

interpretation, a list schedule assigns the next job on the list to the machine that could

finish it first. Identifying the corresponding machine, however, requires looking ahead

to determine when a faster machine will be available. With this look-ahead refine-

ment in place, the performance ratio for LPT list scheduling on uniform machines is

19/12 or about 1.58. Even naive dispatching (assigning the next job on the list to the

first available machine, regardless of speed) is still asymptotically optimal, as long

as processing times are finite on all machines. The proof of Theorem 9.2 fails only

for the more general case of unrelated machines, where each machine processes each

job at a different speed.

9.2.2 Nonpreemptable Related Jobs

If there are precedence relations among the jobs, we say the problem involves related

jobs, as explained in Section 8.3. When we add precedence relations to the makespan

problem with parallel machines, we do not make the problem any easier—it remains

NP-hard. It comes as no surprise, then, that we have results only for special cases. In

this section, we focus on results that provide additional perspective on the makespan

problem without precedence relations.

The first special case requires that the precedence relations take the form of an

assembly tree. In an assembly tree (sometimes called an intree), no job has more

than one direct successor. Furthermore, in such a tree, the final job—the job without

any successors—is called a terminal job. In addition, let p j = 1 for all jobs, so that

we have unit-length tasks. For this special case, we can solve the makespan problem

with an algorithm consisting of a labeling phase followed by a scheduling phase.

Algorithm 9.2 Minimizing M with an Assembly Tree and Unit-Length Jobs

(Labeling Phase)

Step 1. Assign the label zero to the terminal job.

Step 2. Suppose labels 1, 2, . . . , j − 1 have been assigned. Assign the label j to all

jobs with no unlabeled successors.

Step 3. Repeat Step 2 until labels have been assigned to all jobs.

MINIMIZING THE MAKESPAN 209

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

17 14 11 8 5 2 1

16 13 10 7 4

15 12 9 6 3

7

FIGURE 9.3 An example of implementing Algorithm 9.2.

The scheduling phase is essentially a list-scheduling procedure, with jobs in non-

increasing label order to the extent the precedence constraints allow. The labeling

phase assigns to each job j a label equal to the length of time required to process

the jobs that follow job j on the (unique) path connecting job j and the terminal

job. Then, when the scheduling phase places the jobs with the largest labels into the

schedule, it essentially gives priority to the jobs that initiate the longest paths in the

remaining tree. See Figure 9.3 for an illustration. In the figure, job 1 receives the label

0, jobs 2–4 are labeled 1, 5–7 are labeled 2, 8–11 are labeled 3, 12–16 are labeled 4,

and job 17 receives the highest label, 5. In the scheduling phase, job 17 is processed

on one of the machines in the first period, and we can select any two additional jobs

with label 4, except job 13 (which is not yet feasible), and so on. The longest path is

often called the critical path. This interpretation echoes the result for the case without

precedence relations. Although that problem was NP-hard, the LPT heuristic proved

to be very effective. We can interpret the LPT heuristic as giving priority to the job

that initiates the longest path in the remaining network of jobs. Thus, the two solution

algorithms are structurally similar.

Algorithm 9.2 provides an optimal schedule when the problem contains unit-

length jobs and a tree structure. Although a tree has just one terminal job, we can

apply the algorithm to the scheduling of several trees by creating a dummy terminal

job to serve as successor to the terminal jobs of each of the trees. If we assign the

210 PARALLEL-MACHINE MODELS

label zero to the dummy job, then each label represents the work remaining on the

direct path from the node until completion (including the node itself).

We can also solve the makespan problem in the case of arbitrary precedence

structure and two machines. Again, the algorithm is a list-scheduling procedure, with

jobs ordered by label number. The labeling procedure also exhibits a longest-path

flavor, but its precise tie-breaking mechanism accounts for its optimizing properties.

The key to the algorithm is the notion of lexicographic ordering of two sequences. By

lexicographic we essentially mean the order in which two sequences, interpreted as

words, would appear in a dictionary. More formally, suppose we have sequences L =

(L1, L2, ..., Lr) and H = (H1, H2, ..., Hs). Then we say that L is lexicographically

smaller than H if either

1. L j = H j for j ≤ i − 1 and L i < Hi , or

2. L j = H j for 1 ≤ j ≤ r and r < s.

In other words, L is lexicographically smaller than H if their elements agree up to

the (j − 1)st element, but the jth element of L is smaller than the jth element of H .

Alternatively, L is lexicographically smaller than H if L is shorter than H , and the

two sequences agree up to the length of L . The labeling phase of the procedure is

shown below as Algorithm 9.3. We assume a single terminal job.

Algorithm 9.3 Minimizing M with Two Machines, Related Jobs, and

Unit-Length Jobs

Step 1. Assign the label zero to the terminal job.

Step 2. Suppose the first (j − 1) labels have been assigned. Consider each job whose

successors all have labels. For job k, let L(k) denote the sequence of labels, in

nonincreasing order, belonging to its direct successors. Choose the job with the

lexicographically smallest L(k) and assign it label j .

Step 3. Repeat Step 2 until labels have been assigned to all jobs.

Figure 9.4 provides an illustration. In this case each job has a unique label, so it

is convenient to refer to jobs by their labels. After allocating the label zero to the

terminal job, only job 1 can be labeled. Next, both jobs 2 and 3 could be labeled.

For job 2 the list of immediate successors is (1) and for job 3 it is (1, 0); (1, 0) is

lexicographically larger than (1), so job 2 is selected. When comparing jobs 3 and

4—which are both ready to be labeled after 2—the lists are (1, 0) and (2, 1), thus

dictating the order, and so on.

Although Algorithm 9.3 generalizes the longest-path notion of Algorithm 9.2 to

arbitrary precedence relations, this generalization provides optimal schedules only

for two machines and only for unit-length jobs. Beyond two machines, no further

generalization seems possible, even with unit-length jobs. With regard to the number

of machines, the makespan problem is NP-hard for m ≥ 3, even for sets of unit-length

jobs, and the corresponding worst-case bound is given by Theorem 9.4 (which we

present without proof).

MINIMIZING THE MAKESPAN 211

0

3

1

5

6

4

2

7

7 6 5 3 1 0

4 2

6

FIGURE 9.4 An example of implementing Algorithm 9.3.

� Theorem 9.4 For the m-machine makespan problem with nonpreemptable

jobs, arbitrary precedence relations, and m machines, Algorithm 9.3 yields a

makespan satisfying M/M∗ ≤ 2 − 2/m.

9.2.3 Preemptable Jobs

We can apply some of the results for nonpreemptable jobs in problems containing

preemptable jobs. The key is to think of each job as a chain of unit-length jobs. (Recall

from Chapter 8 that each job in a chain has at most one direct predecessor and one

direct successor.) Figure 9.5a shows an example containing a set of related jobs with

different processing times, to be scheduled on two machines. Each job corresponds

to a node in the figure, and next to each node is the job’s processing time. Figure 9.5b

represents the same job set incorporating the chain structure. Specifically, jobs 5, 6,

and 7 are represented by chains, and in this case the chains are of length two.

If there were no preemption, then we could construct a schedule from Figure 9.5a.

In this case, it would not be hard to see that an optimal makespan on two machines

has length M = 7. In order to build a schedule from Figure 9.5b, we use Algorithm

9.3, which we know is optimal for unit-length jobs on two machines. The resulting

schedule appears in Figure 9.6, with a makespan of M = 6.

Clearly, the opportunity to preempt jobs creates some useful flexibility, and we

should generally expect that the optimal makespan will be no worse if jobs are pre-

emptable than if the jobs are nonpreemptable. The question that remains is whether

schedules like the one shown in Figure 9.6 are in fact optimal when jobs are pre-

emptable. The answer is that a shorter schedule than the one in Figure 9.6 is possible.

212 PARALLEL-MACHINE MODELS

1 2 1 2 33

4 4

5 6 7 52

51

62

61

72

71

2 2 2

1 1 1

1 1 1

1 1 1

1 1 1

11

(a) (b)

FIGURE 9.5 A seven-job example in (a) and its preemptable representation in (b).

mch 1

mch 2

51

61

71

52

62

72

4 1

2

3

6

FIGURE 9.6 A schedule for the job set in Figure 9.5b.

In order to find this schedule, we return to Figure 9.5b and replace each node with

a chain of half-unit-length jobs. We then use Algorithm 9.3 to construct a schedule.

The resulting makespan is M = 5.5, as shown in Figure 9.7.

For a two-machine problem, assume that we are given related jobs with integer

processing times. Then, to find the optimal makespan for the preemptable version of

the problem, we can apply Algorithm 9.3 to the set of related jobs formed when the

jobs in the original job set are represented by chains of half-unit length.

mch 1

mch 2

51

61

71

52

62

72

53

63

73

54

64

74

41 42 11

21

31

12

22

5.5

32

FIGURE 9.7 An optimal schedule for the example with preemptable jobs.

MINIMIZING TOTAL FLOWTIME 213

9.3 MINIMIZING TOTAL FLOWTIME

Whereas the makespan problem is essentially a problem in the optimal allocation of

jobs to machines, the minimization of F and Fw requires that we recognize sequencing

as well as allocation decisions. The generalization to parallel machines of optimal

sequencing properties for the basic single-machine model is fairly straightforward

for the F-problem but surprisingly difficult for the Fw-problem.

Consider first the problem of minimizing F. Adopt the following notation:

pi[j] = processing time of the j th job in sequence on the i th machine

Fi[j] = flowtime of the j th job in sequence on the i th machine

n j = number of jobs processed by the i th machine

Then the objective function is

F =

m
∑

i=1

ni
∑

j=1

Fi[j] =

m
∑

i=1

ni
∑

j=1

(ni − j + 1)pi[j]

As in the basic single-machine F-problem (see Chapter 2), we can determine a

schedule by matching the integer coefficients (ni − j + 1) with the processing times

(pi[j]). The objective function corresponds to the scalar product of the coefficients

vector and the processing times vector. The coefficients are

1, 2, . . . , n1, 1, 2, . . . , n2, . . . , 1, 2, . . . , nm

Unlike the single-machine case, the parallel-machine case allows some discretion in

the choice of the coefficients, because the ni are arbitrary, subject to n1 + n2 + · · · +

nm = n. Nevertheless, it should be clear that the scalar product cannot be minimized

unless the ni differ by at most one; that is, their values must satisfy the following

inequality:

|ni − nk | ≤ 1, for all pairs (i, k)

In particular, if n is an even multiple of m, it is optimal to assign the same number of

jobs to each machine: that is, n1 = n2 = · · · = nm . Once we determine the ni values,

we construct an optimal schedule by matching the processing times in nonincreasing

order with the coefficients in nondecreasing order. Thus, we assign the m longest jobs

to m different machines, the next m longest jobs to m different machines, and so on,

until all jobs are assigned. We can think of this procedure as an assignment of m jobs

at a time, which means that several optimal schedules exist, because the individual

job-to-machine assignments are not specified at any stage of the algorithm. There is

also no need to consider scheduled preemptions.

214 PARALLEL-MACHINE MODELS

1 3 5

2 4 6

mch 1

mch 2

FIGURE 9.8 An optimal solution to the six-job F-problem.

� Example 9.4 Consider the F-problem with m = 2 machines in which we wish

to schedule the following six jobs.

Job j 1 2 3 4 5 6

pj 1 2 3 4 5 6

For two parallel machines the coefficients vector is (1, 1, 2, 2, 3, 3). Therefore,

jobs 5 and 6 are assigned to be last on different machines; then jobs 3 and 4 are

assigned to different machines; and finally jobs 1 and 2 are assigned to be first on

different machines. The algorithm might construct the schedule shown in Figure 9.8,

or it might alternatively construct a different schedule, but one with the same optimal

value of F.

We can also construct an optimal schedule using a list-scheduling algorithm with

the jobs ordered by SPT. Except for ties in processing times, the list-scheduling

algorithm produces a unique schedule, which matches one of the schedules produced

by the m-jobs-at-a-time approach. The list-scheduling algorithm has two special

virtues. First, the algorithm is a dispatching procedure, with scheduling decisions

implemented in the order that they are made. Second, the algorithm can be extended

in an obvious way to problems with dynamic arrivals, which is not the case for the

m-jobs-at-a-time procedure. Thus, the F-problem on parallel machines is easy to

solve by a highly intuitive approach.

A slight adaptation of the same approach can solve the F-problem when the

machines are uniform. A dispatching algorithm for this case can be based on a list

in SPT sequence, but it requires looking ahead. The first unscheduled job on the list

should be assigned to the machine on which it would finish first. It is possible that

a slow machine may not be used at all or used only for a short time relative to the

makespan, but inserted idleness is not needed. The F-problem remains efficiently

solvable even in case of unrelated machines, where each machine processes each job

at a different speed. The known polynomial-time solution formulates the problem

as a network flow model, but for this reason it does not lead to intuitive scheduling

insights.

By contrast, the Fw-problem is NP-hard even for identical machines. Dynamic

programming formulations are possible, but the “curse of dimensionality” renders

a dynamic programming procedure impractical for problems of even moderate size.

Two theoretical properties apply to this problem. First, any optimal solution must

MINIMIZING TOTAL FLOWTIME 215

have SWPT job orderings at each machine. (If this were not true, a simple pairwise

interchange on one machine could improve the schedule.) Second, we can calculate

a simple lower bound on the optimum value of Fw. Let

B(1) = the minimal value of Fw for the given job set if there were only one

machine (obtained via SWPT)

B(n) = the minimal value of Fw for the given job set if there were n machines

(obtained by assigning each job to a different machine)

Then a lower bound for m machines (1 ≤ m ≤ n) is

B(m) =
1

2m
[(m − 1)B(n) + 2B(1)] (9.4)

Clearly, B = max{B(m), B(n)} is also a valid lower bound and may be better because

of the rare occasions in which B(m) < B(n).

An experimental study that compares several heuristic rules was reported by

Baker and Merten (1973). They incorporated the m-jobs-at-a-time mechanism into a

heuristic procedure denoted Hm , which works as follows.

Step 1. Form a priority list of all unscheduled jobs according to some rule, R.

Step 2. Assign the first m jobs on the list to different machines. Repeat Step 2 until

all jobs are scheduled and then go to Step 3.

Step 3. Apply SWPT sequencing to each machine.

The complementary heuristic procedure, called H1, is a list-scheduling algorithm,

which assigns one job at a time.

Step 1. Form a priority list of all unscheduled jobs according to some rule, R.

Step 2. Assign the first job on the list to the machine with the least amount of

processing allocated. Repeat until all jobs have been assigned. Then go to Step 3.

Step 3. Apply SWPT sequencing to each machine.

� Example 9.5 Consider the Fw-problem with m = 5 machines in which we

wish to schedule the following ten jobs.

Job j 1 2 3 4 5 6 7 8 9 10

pj 5 21 16 6 26 19 50 41 32 22

wj 4 5 3 1 4 2 5 4 3 2

pj / wj 1.2 4.2 5.3 6.0 6.5 9.5 10.0 10.2 10.7 11.0

Under Hm an initial ordering must be specified in Step 1. If we choose longest

weighted processing time (LWPT), then the jobs are initially in reverse numerical

order. At the first stage, jobs 10 through 6 are assigned to different machines, and

216 PARALLEL-MACHINE MODELS

5 10

91

8

74

2 6

3

3 4 10

2 9

1 8

7

5 6

(a) (b)

FIGURE 9.9 Schedules for the example problem from (a) Hm and (b) H1.

at the second stage, the remaining jobs are assigned to different machines. Clearly,

Step 2 of the procedure does not specify exactly how this second assignment should

be made. If the first five assignments were actually fixed, we could show that the

optimal assignment of the remaining jobs would be to match the largest weighting

factor with the machine having the smallest amount of processing already assigned.

Pursuing this rule of thumb, and subsequently applying Step 3 of the procedure, we

construct the schedule displayed in Figure 9.9a, with Fw = 1078. (The procedure is

summarized in Table 9.1.)

Under H1, with the jobs ordered by LWPT, the procedure simply assigns the

jobs one at a time, as described in Table 9.2, and finally reorders all jobs so that

SWPT prevails on each machine. The schedule that results is slightly better (with

Fw = 1070) than the one produced above by Hm , as shown in Figure 9.9b.

The experimental study covered several variations of these heuristic procedures

but concluded that their relative behavior was extremely difficult to characterize. The

study found that:

� H1 and Hm may produce different schedules, and either method may produce

different schedules when the initial ordering R is varied.
� There is no “best rule” R for H1 or for Hm .

These general conclusions aside, however, the most effective variation of the 15

procedures considered in the study was definitely H1 used with R = SWPT. Not

only did this combination produce the best schedule in most of the test problems, but

it also has the virtues of list scheduling. In particular, it is a dispatching procedure

(Step 3 of H1 can be omitted), and it can easily be adapted to dynamic problems. The

test problems used in these comparisons contained n = 100 jobs and up to m = 6

machines. The number of jobs was thus relatively large compared to the number of

machines. A comparison when the number of jobs is only two or three times the

number of machines has not been reported.

STOCHASTIC MODELS 217

TABLE 9.1

1. Initial job list {10, 9, 8, 7, 6, 5, 4, 3, 2, 1}
2. Assignment phase

Processing Machine

Stage Commitments Job (wj) Assigned

1 (0, 0, 0, 0, 0) 10 (2) 1

9 (3) 2

8 (4) 3

7 (5) 4

6 (2) 5

2 (22, 32, 41, 50, 19) 5 (4) 1

4 (1) 4

3 (3) 3

2 (5) 5

1 (4) 2

3. SWPT at each machine

Machine Sequence

1 5–10

2 1–9

3 3–8

4 4–7

5 2–6

(See Figure 9.9a)

The effectiveness of H1 with R = SWPT observed for a large number of jobs

suggests that it may be an asymptotically optimal heuristic. Indeed, if job processing

times and weights are obtained by independent sampling from distributions with finite

variances, asymptotic optimality holds with probability one (w.p.1). Convergence

w.p.1, alternatively described as almost surely, is a stochastic concept that implies

what it says: the event that convergence will not occur has a probability of at most

zero. For all practical purposes, convergence w.p.1 is as good as simple convergence.

� Theorem 9.5 When processing times and weights are sampled from distribu-

tions with finite variances, Algorithm H1 with R = SWPT is asymptotically optimal

w.p.1.

We provide the proof in our Research Notes.

9.4 STOCHASTIC MODELS

As we have seen, the parallel-machine makespan problem with nonpreemptable jobs

is generally difficult to solve in the deterministic case. Logically, we would expect that

218 PARALLEL-MACHINE MODELS

TABLE 9.2

1. Initial job list {10, 9, 8, 7, 6, 5, 4, 3, 2, 1}
2. Assignment phase

Processing Commitments Job Machine Assigned

(0, 0, 0, 0, 0) 10 1

(22, 0, 0, 0, 0) 9 2

(22, 32, 0, 0, 0) 8 3

(22, 32, 41, 0, 0) 7 4

(22, 32, 41, 50, 0) 6 5

(22, 32, 41, 50, 19) 5 5

(22, 32, 41, 50, 45) 4 1

(28, 32, 41, 50, 45) 3 1

(44, 32, 41, 50, 45) 2 2

(44, 53, 41, 50, 45) 1 3

3. SWPT at each machine

Machine Sequence

1 3–4–10

2 2–9

3 1–8

4 7

5 5–6

(See Figure 9.9b)

the stochastic counterpart is even more difficult to solve. However, one special case

exists in which the solution is surprisingly accessible. That is the case of exponentially

distributed processing times.

Judging by the number of research papers devoted to exponential processing times,

we might think they are common in practice, but that is not the case. The exponential

distribution is often an appropriate model for arrival processes and sometimes for

waiting times, but it rarely fits physical processing times. Nevertheless, the expo-

nential distribution is interesting to study because it possesses special characteristics

that make it an important boundary case and because its special characteristics are

conducive to elegant theoretical models. As discussed in Appendix A, the exponential

distribution lies on the boundary between distributions with increasing and decreas-

ing completion rates, whereas our intuition and much of the empirical data suggest

that increasing completion rates (ICRs) are more realistic.

9.4.1 The Makespan Problem with Exponential Processing Times

As a rule, the analysis of stochastic models tends to be more complex than the analysis

of their deterministic counterparts. Sometimes, however, the stochastic aspects of

a problem make heuristics more robust than in the deterministic case. One such

STOCHASTIC MODELS 219

instance is the m-machine makespan problem with nonpreemptable jobs. In the

special case of exponentially distributed and independent processing times, longest

expected processing time (LEPT) dispatching minimizes the expected makespan.

By itself, the optimality of a specific dispatching rule for a highly specialized

distribution such as the exponential may not be of crucial importance. Nevertheless,

this special case helps us understand the general case, in two ways. First, the result

confirms the usefulness of adapting the LPT rule for stochastic processing times.

Second, the result highlights a broader question: Should we allocate jobs to machines

in advance or use a dispatching rule?

This model illustrates a positive Jensen gap. Suppose we have a two-machine

problem in which the machines are loaded equally according to mean processing

times. Then the deterministic counterpart yields a makespan equal to half the total

processing time. However, in the stochastic case, the probability that both machines

finish simultaneously is negligible. One machine finishes earlier than half the total

processing time, while the other machine finishes later than half the total processing

time. The makespan is always the later of the two finish times; therefore, the expected

makespan extends beyond the deterministic makespan by a positive amount.

In the optimal schedule for the two-machine problem, the time between the last

two job completions must be less than the processing time of the last job to finish.

Moreover, this time difference reveals how close the schedule is to splitting the work

equally between the two machines. Thus, it makes sense to have the shortest job

finish last, suggesting that LEPT has merit in the stochastic case, at least to the same

extent that LPT is a good heuristic for the deterministic case. (These arguments apply

to m > 2 and for other distributions as well.)

� Example 9.6 Consider the M-problem with m = 2 machines in which we

wish to schedule n = 2 jobs with exponential processing times.

Job j 1 2

µj 1 1

To find the expected makespan, we utilize a fundamental algebraic identity:

max{A, B} = A + B − min{A, B}. Taking the expectation we get E(max{A, B}) =

E(A + B) − E(min{A, B}). In general, the minimum of two exponential random

variables with means a and b (i.e., with completion rates 1/a and 1/b) is an ex-

ponential random variable with a completion rate of 1/a + 1/b, and thus a mean

of 1/(1/a + 1/b). In our example, E(min{p1, p2}) = 1/(1/1 + 1/1) = 1/2. Hence,

E(max{p1, p2}) = 2 − 1
2

= 3
2
. This involves a Jensen gap of 1

2
, or 50% of the deter-

ministic counterpart makespan.

In Example 9.6 there is no opportunity to benefit from dispatching because the

optimal schedule allocates one job to each machine. To appreciate the more general

case, we consider an example with more than two jobs.

220 PARALLEL-MACHINE MODELS

� Example 9.7 Consider the M-problem with m = 2 machines in which we

wish to schedule n = 4 jobs with exponential processing times, as shown in the

following table.

Job j 1 2 3 4

µj 1 2 3 4

The minimal makespan for the deterministic counterpart is M = 5 and can be

found by the LPT heuristic: jobs 4 and 3 are allocated to machines 1 and 2 first, then at

time 3, job 3 is allocated to machine 2, and at time 4, job 1 is allocated to machine 1. In

the stochastic counterpart, LEPT dispatching is optimal, as noted earlier, and a tedious

calculation reveals that the expected makespan is 6.271. Without dispatching—that

is, if we assign jobs to machines at the outset—the expected makespan would be

even greater. Specifically, if we use the optimal deterministic counterpart assignment

instead of dispatching, the expected value increases to 7.004.

Knowledge of the optimal dispatching rule should not be considered a full solution.

We may also want to know the mean of the resulting makespan or its cdf. However, in

deriving the makespan distribution for the LEPT dispatching rule, we must explicitly

account for 2(n − 2) distinct possible allocations of jobs to machines. Thus, we can

“solve” the stochastic counterpart in terms of specifying the optimal dispatching rule

for minimizing the expected makespan, but we cannot calculate the value of that

expectation in polynomial time. In practice, we can resolve this calculation problem

by using simulation, but the logic required is more complicated than in the sample-

based methodology we introduced in Chapter 6. In this case, each scenario requires

its own sequencing decisions. In other words, after generating a set of processing

times in a given scenario, we must simulate the job-to-machine assignments that

LEPT dispatching would generate. Only then can we compute the makespan for that

scenario.

9.4.2 Safe Scheduling with Parallel Machines

We continue with the m-machine makespan problem with nonpreemptable jobs and

independent exponential processing time distributions. The LEPT dispatching rule

then maximizes the likelihood that the last job will be the shortest one. Thus, LEPT

dispatching is not only optimal but also yields the stochastically minimal makespan.

To understand why this property is important for safe scheduling, recall our two basic

safe scheduling problems in which due dates are decisions. We can either minimize

d subject to a service-level constraint SL = b, or we can optimize d + γ E(T) and

determine the optimal due date as a by-product of the optimization. As in TSP

applications, there is no reason to believe that the same sequence (or dispatching

rule) is necessarily optimal for both objectives. But when a stochastically minimal

sequence (or dispatching rule) exists, Theorem 8.7 (which we repeat now with slight

modification) states that it must be the optimal sequence for both objectives.

SUMMARY 221

� Theorem 9.6 Let b = (γ − 1)/γ and suppose a sequencing rule exists that

yields a stochastically minimal makespan distribution. Then this rule is optimal

for minimizing d subject to a service-level constraint SL = b and for minimizing

d + γ E(T).

� Example 9.8 Revisit Example 9.7 with the objective of minimizing d +

γ E(T) with γ = 10.

Job j 1 2 3 4

µj 1 2 3 4

Recall from Chapter 7 that the optimal service level is given by (γ − 1)/γ = 0.9.

Here, knowledge of the optimal dispatching rule is not sufficient because we cannot

calculate the correct safety time without a distribution for the makespan. As we

mentioned earlier, deriving this distribution is a challenging analytic problem, which

would be exponentially more complicated for larger n. However, we can estimate

the desired value using simulation. Building a simulation model with Risk Solver, as

described in Chapter 6, we estimate the optimal due date at 11.125.

9.5 SUMMARY

As noted at the outset of this chapter, problems of scheduling single-stage jobs

with parallel processors contain both allocation and sequencing dimensions. The

determination of optimal schedules is often rendered difficult by the need to make

both kinds of decisions, and the thrust of analytic results has been aimed primarily

at makespan problems for good reason: makespan problems involve only allocation.

Indeed, in single-machine models, the makespan criterion is seldom an important

consideration unless sequence-dependent setup times are involved.

From a practical viewpoint, the emphasis on makespan in the parallel-machine

case is quite reasonable, because a generic heuristic procedure for nonpreemptable

jobs would be to solve the allocation problem first and then the sequencing problem.

In other words, we should distribute the processing load among machines as evenly

as possible and then determine an optimal sequence on each machine separately.

Although an even distribution of the load (i.e., a minimal makespan) is not necessarily

optimal for measures other than the makespan, it tends to provide good schedules.

Moreover, this two-phase method of determining a schedule is a more practicable

way of managing the large combinatorial problem represented by scheduling with

parallel machines. The main exception to this approach is the F-problem, for which

a straightforward optimization procedure exists.

In stochastic instances, the separation of allocation and sequencing is less effective.

A simple four-job example demonstrated that significant differences in makespan may

occur with and without dispatching, and using dispatching for the makespan objective

implies that we cannot first allocate and then sequence. Furthermore, there is an

222 PARALLEL-MACHINE MODELS

inherent conflict between the two most important performance measures, namely,

makespan and flowtime.

The important makespan results are the construction of an optimal schedule using

Algorithm 9.1 for unrelated, preemptable jobs, the longest-first or “critical path”

priorities contained in Algorithms 9.2 and 9.3 and the LPT list-scheduling proce-

dure. Other specialized algorithms and heuristic procedures are largely based on the

concepts underlying these fundamental results. Optimization in the stochastic model

requires us, in practice, to use simulation. Finally, although different list-scheduling

policies do lead to pronounced differences in the makespan, we showed that they are

all asymptotically optimal, which means that they all converge to the same value as

n grows large.

The minimization of total flowtime with parallel processors involves a generaliza-

tion of single-machine analysis, but the minimization of total weighted flowtime or

total tardiness is not easily accomplished. For the total weighted flowtime problem, it

is possible to find an optimal schedule using an m-dimensional dynamic programming

approach, but its computational requirements are severe. Fortunately, experimental

evidence has indicated that, at least for large problems, simple heuristic approaches

consistently produce schedules within 1% or 2% of optimum. The simplest heuris-

tic of them all—SWPT dispatching—is asymptotically optimal, which explains its

superior performance for large problems.

Asymptotic optimality of list scheduling applies to stochastic problems if process-

ing times are independent and have finite variances. This is true even if we allocate

jobs to machines in advance. If we use any list as the basis for dispatching, the result is

asymptotically optimal even if processing times are correlated (as long as they do not

depend on the sequence itself). Therefore, we can expect to obtain good performance

from simple heuristics, such as list scheduling based on LEPT for makespan. For the

total flowtime problem, SEPT is known to be optimal, even for preemptable jobs,

provided that the processing time distributions exhibit ICRs. In the weighted version,

we would expect that SWEPT is an effective heuristic.

REFERENCES

Baker, K.R. and Merten, A.G. (1973). Scheduling with parallel processors and linear delay

costs, Naval Research Logistics Quarterly 20, 793–804.

Cheng, T.C.E. and C.C.S. Sin (1990). A state-of-the-art review of parallel-machine scheduling

research, European Journal of Operational Research 47, 271–292.

Conway, R.W., W.L. Maxwell, and L.W. Miller (1967). Theory of Scheduling, Addison-Wesley,

Reading, MA.

Coffman, E.G., M.R. Garey, and D.S. Johnson (1978). An application of bin packing to

multiprocessor scheduling, SIAM Journal of Computing 7, 1–17.

Coffman, E.G. and R.L. Graham (1972). Optimal scheduling for two processor systems, Acta

Informatica 1, 200–213.

Dobson, G. (1984). Scheduling independent tasks on uniform processors, SIAM Journal of

Computing 13, 705–716.

EXERCISES 223

Eastman, W.L., S. Even, and I.M. Isaacs (1964). Bounds for the optimal scheduling of n jobs

on m processors, Management Science 11, 268–279.

Friesen, D.K. and M.A. Langston (1986). Evaluation of a multifit-based scheduling algorithm,

Journal of Algorithms 7, 35–59.

Graham, R.L. (1969). Bounds on multiprocessor timing anomalies, SIAM Journal of Applied

Mathematics 17, 416–425.

Hu, T.C. (1961). Parallel sequencing and assembly line problems, Operations Research 9,

841–848.

Kao, T.Y. and E.A. Elsayed (1990). Performance of the LPT algorithm in multiprocessor

scheduling, Computers and Operations Research 17, 365–373.

Lam, S. and R. Sethi (1977). Worst case analysis of two scheduling algorithms, SIAM Journal

of Computing 6, 518–536.

Lee, C.-Y. (1991). Parallel machines scheduling with nonsimultaneous machine available time,

Discrete Applied Mathematics 30, 53–61.

Lee, C.-Y. and J.D. Massey (1988). Multiprocessor scheduling: combining LPT and multifit,

Discrete Applied Mathematics 20, 233–242.

McNaughton, R. (1959). Scheduling with deadlines and loss functions, Management Science

6, 1–12.

Portougal, V. (1993). Asymptotic behavior of some scheduling algorithms, Asia-Pacific Journal

of Operational Research 10, 71–91.

Root, J.G. (1965). Scheduling with deadlines and loss functions on k parallel machines,

Management Science 11, 460–475.

Rothkopf, M.H. (1966). Scheduling independent tasks on parallel processors, Management

Science 12, 437–447.

EXERCISES

9.1. Consider a makespan problem involving three identical machines and the fol-

lowing set of eight jobs. Assume that no preemption is permitted.

Job j 1 2 3 4 5 6 7 8

pj 1 2 3 4 5 6 7 8

a. What is the makespan generated by an SPT list schedule?

b. What is the makespan generated by an LPT list schedule?

c. What is the minimum makespan?

9.2. The following 11 operations are to be scheduled on four parallel machines.

Job j A B C D E F G H I J K

pj 12 6 7 8 2 3 15 17 20 14 19

224 PARALLEL-MACHINE MODELS

Management’s goals are:
� Minimize F , the overall time in the shop.
� Reduce M , the maximum time in the shop.

a. What sequence do you suggest? Justify your choice.

b. Present your result in a Gantt chart, and calculate the F and M values.

c. Is this result optimal for one of these measures? for both? Explain.

9.3. The following 12 operations are to be scheduled on three parallel machines:

Job j A B C D E F G H I J K L

pj 12 6 7 8 2 3 15 17 20 14 19 10

Solve the problem using a list schedule and test the following variations:

a. Use random order, and compare results with the bound in Theorem 9.1.

b. Use SPT order, and compare results with (a) and the bound in Theorem 9.1.

c. Use LPT order, and compare results with (b) and the bound in Theorem 9.3.

9.4. Consider the scheduling of n nonpreemptable jobs on m identical parallel ma-

chines using an SPT list schedule. Show that this procedure assigns the jobs to

machines in rotation. That is, if the jth job on the list is assigned to machine

i(1 ≤ i ≤ m − 1), then the (j + 1)st job will be assigned to machine (i + 1); and

if the jth job on the list is assigned to machine m, then the (j + 1)st job will be

assigned to machine 1.

9.5. Consider the makespan minimization problem on m machines with machine

release dates. Show that Theorem 9.2 still applies.

9.6. Construct a two-machine example to show that SWPT list scheduling does not

guarantee minimum Fw.

9.7. In the following example, there are eight jobs and three parallel, identical ma-

chines. The table gives the processing times for each job and the (unique) direct

successor, Sj, for each job.

Job j 1 2 3 4 5 6 7 8

pj 1 3 4 2 1 2 2 2

Sj – 1 1 1 2 2 4 4

a. Find a schedule that minimizes the makespan, assuming that no preemption

of the jobs is permitted.

b. Find a schedule that minimizes the makespan, assuming that preemption is

permitted.

10
FLOW SHOP SCHEDULING

10.1 INTRODUCTION

This chapter deals with a model based on the design in which machines are arranged in

series. In this design, jobs flow from an initial machine, through several intermediate

machines, and ultimately to a final machine before completing. Traditionally, we

refer to this design as a flow shop, even though an actual shop may contain much

more than a single serial configuration.

In a flow shop, the work in a job is broken down into separate tasks called

operations, and each operation is performed at a different machine. In this context,

a job is a collection of operations with a special precedence structure. In particular,

each operation after the first has exactly one direct predecessor and each operation

before the last has exactly one direct successor, as shown in Figure 10.1. Thus, each

job requires a specific sequence of operations to be carried out for the job to be

complete.

The shop contains m different machines, and in the “pure” flow shop model,

each job consists of m operations, each of which requires a different machine. The

machines in a flow shop can thus be numbered 1, 2, . . . , m; and the operations of

job j numbered (1, j), (2, j), . . . , (m, j), so that they correspond to the machine

required. For example, p53 denotes the operation time on machine 5 for job 3. Figure

10.2 represents the flow of work in a “pure” flow shop, in which all jobs require one

operation on each machine.

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

225

226 FLOW SHOP SCHEDULING

...

FIGURE 10.1 The precedence structure of a job in a flow shop.

Machine

1

Machine

2

Machine

3

Machine

m
...

Input

Output

FIGURE 10.2 Workflow in a pure flow shop.

Figure 10.3 represents the flow of work in a more general flow shop. In the general

case, jobs may require fewer than m operations, their operations may not always

require adjacent machines, and the initial and final operations may not always occur

at machines 1 and m. Nevertheless, the flow of work is still unidirectional, and we

can represent the general case as a pure flow shop in which some of the operation

times are zero.

With machines in series, the conditions that characterize the flow shop model are

similar to the conditions of the basic single-machine model.

C1. A set of n unrelated, multiple-operation jobs is available for processing at

time zero. (Each job requires m operations, and each operation requires a

different machine.)

C2. Setup times for the operations are sequence independent and included in

processing times.

C3. Job descriptors are known in advance.

C4. All machines are continuously available.

C5. Once an operation begins, it proceeds without interruption.

Machine

1

Machine

2

Machine

3

Machine

m
...

...

Input Input InputInput

OutputOutput Output Output

FIGURE 10.3 Workflow in a general flow shop.

INTRODUCTION 227

(a)

(b)

(c)

1 2

2

1 2

21

1

12

2

12

2 1

1

1 2

2

12

2 1

1

FIGURE 10.4 Three schedules for Example 10.1.

One difference from the basic single-machine case is that inserted idle time may

be advantageous. In the single-machine model with simultaneous arrivals, we can

assume that the machine need never be kept idle when work is waiting. In the flow

shop case, however, we may need inserted idle time to achieve optimality.

� Example 10.1 Consider a problem containing n = 2 jobs in a four-machine

flow shop.

Job j 1 2

p1 j 1 4

p2 j 4 1

p3 j 4 1

p4 j 1 4

Suppose that F is the measure of performance. The two schedules shown in Figure

10.4a, b are the only schedules with no inserted idle time, and in either schedule,

F = 24. The schedule in Figure 10.4c is an optimal schedule, with F = 23. Note

that in this third schedule, machine 3 is kept idle at time t = 5, when operation (3, 1)

could be started, in order to await the completion of operation (2, 2).

In the single-machine model there is a one-to-one relation between a job sequence

and a permutation of the numbers 1, 2, . . . , n. To find an optimum sequence, it is

necessary to examine (at least implicitly) each of the sequences corresponding to the

228 FLOW SHOP SCHEDULING

n! different permutations. Similarly, in the flow shop problem, there are n! different

job sequences possible for each machine, and potentially as many as (n!)m different

schedules. As we search for an optimum, it would obviously be helpful if we could

ignore many of these possibilities. In the next section we discuss the extent to which

the search for an optimum can be reduced. Then, we examine the case m = 2, which

is an interesting problem in its own right and a building block for solving larger

problems. We then look at optimization methods and heuristic approaches, and we

introduce some variations of the basic model.

10.2 PERMUTATION SCHEDULES

Example 10.1 illustrates that it may not be sufficient to consider only schedules in

which the same job sequence occurs on each machine. On the other hand, it is not

always necessary to consider (n!)m schedules in determining an optimum. The two

dominance properties given below indicate how much of a reduction is possible in

flow shop problems.

� Theorem 10.1 With respect to any regular measure of performance in the flow

shop model, it is sufficient to consider only schedules in which the same job sequence

occurs on the first two machines.

Proof. Consider a schedule in which the sequences on machines 1 and 2 are different.

Somewhere in such a schedule we can find a pair of jobs, i and j , with operation

(1, i) preceding an adjacent operation (1, j) but operation (2, j) preceding (2, i), as

in Figure 10.5a. For this pair, we can impose on machine 1 the order of the jobs on

machine 2 (j before i), without adversely affecting the performance measure. If we

interchange operations (1, i) and (1, j), resulting in the schedule shown in Figure

10.5b, then

� with the exception of (1, i), no operation is delayed,
� operation (2, i) is not delayed, and
� earlier processing of (2, j), and other operations as well, may result.

(a)

(b)
...

...

...

...

...

...1,i 1,j

2,j 2,i

1,j 1,i

2,j 2,i

FIGURE 10.5 A pairwise interchange of two adjacent operations on machine 1.

PERMUTATION SCHEDULES 229

Therefore, the interchange would not increase the completion time of any operation

on machine 2 or on any subsequent machine. This means that no increase in any

job completion time could result from the interchange, and hence no increase in any

regular measure of performance. The same argument applies to any schedule in which

job sequences differ on machines 1 and 2, so the property must hold in general.

� Theorem 10.2 With respect to the makespan of the flow shop model, it is

sufficient to consider only schedules in which the same job sequence occurs on the

last two machines.

Proof. Consider a schedule in which the sequences on machines (m − 1) and m are

different. Somewhere in such a schedule we can find a pair of jobs, i and j , with

operation (m, j) preceding an adjacent operation (m, i), but operation (m − 1, i)

preceding (m − 1, j). As a result of interchanging operations (m, i) and (m, j),

� with the exception of (m, j), no operation is delayed,
� operation (m, j) completes no later than (m, i) in the original schedule, and
� earlier processing of operations (m, i) and (m, j) may result.

Therefore, the interchange would not lead to an increase in the makespan of the

schedule. Again, this type of argument applies to any schedule in which job sequences

differ on machines (m − 1) and m. Therefore, the property must hold.

The implication of these two theorems is that in searching for an optimal schedule,

it is necessary to consider different job sequences on different machines with these

two general exceptions:

1. For any regular measure, it is sufficient for the same job order to occur on the

first two machines, so that (n!)m−1 schedules constitute a dominant set.

2. For makespan problems, it is also sufficient for the same job order to occur on

the last two machines, so that (n!)m−2 schedules constitute a dominant set for

m > 2.

A permutation schedule is simply a schedule with the same job order on all

machines—a schedule that is completely characterized by a single permutation of

the job indices 1, 2, ..., n. As a consequence of Theorems 10.1 and 10.2, we may

consider only permutation schedules in the following cases:

� Optimizing a regular measure of performance when m = 2.
� Optimizing makespan when m = 2 or m = 3.

In addition, the makespan problem is symmetric: if we can solve the problem with

the machine order reversed, then we can reverse the optimal permutation and we will

have an optimal solution to the original problem. Even when it is sufficient to deal

230 FLOW SHOP SCHEDULING

only with permutation schedules, and even when we can exploit symmetry, it may

still be difficult to locate optima efficiently. The next section deals with one flow shop

problem that is relatively easy to solve.

10.3 THE TWO-MACHINE PROBLEM

10.3.1 Johnson’s Rule

The objective of minimizing makespan in the two-machine flow shop model is also

known as Johnson’s problem. The results originally obtained by Johnson (1954) are

among the very first formal results in the theory of scheduling. In the formulation of

this problem, job j is characterized by processing time p1 j , required on machine 1,

and p2 j , required on machine 2 after the operation on machine 1 is complete. For

convenience in the exposition, however, we use a j in place of p1 j and b j in place of

p2 j . (We return to the use of double subscripts when there are several machines.) There

exists some optimal sequence satisfying the following rule for ordering pairs of jobs.

� Theorem 10.3 (Johnson’s Rule). Job i precedes job j in an optimal sequence

if min{ai , b j } ≤ min{a j , bi }

In practice, an optimal sequence is directly constructed with an adaptation of

Theorem 10.3. The positions in sequence are filled by a one-pass mechanism that, at

each stage, identifies a job that should fill either the first or last available position.

Algorithm 10.1 Implementing Johnson’s Rule

Step 1. Find the minimum processing time among unscheduled jobs.

Step 2a. If the minimum in Step 1 occurs on machine 1, place the associated job in

the first available position in sequence. (Ties may be broken arbitrarily.) Go to

Step 3.

Step 2b. If the minimum in Step 1 occurs on machine 2, place the associated job in the

last available position in sequence. (Ties may be broken arbitrarily.) Go to Step 3.

Step 3. Remove the assigned job from consideration and return to Step 1 until all

sequence positions are filled.

We illustrate the algorithm with an example.

� Example 10.2 Consider a problem containing n = 5 jobs in a two-machine

flow shop.

Job j 1 2 3 4 5

a j 3 5 1 6 7

b j 6 2 2 6 5

THE TWO-MACHINE PROBLEM 231

TABLE 10.1

Stage Unscheduled Jobs min j {a j , b j } Assignment Partial Schedule

1 1, 2, 3, 4, 5 a3 [1] = 3 3 x x x x

2 1, 2, 4, 5 b2 [5] = 2 3 x x x 2

3 1, 4, 5 a1 [2] = 1 3-1 x x 2

4 4, 5 b5 [4] = 5 3-1 x 5-2

5 4 a4 = b4 [3] = 4 3-1-4-5-2

Table 10.1 shows how an optimal sequence is constructed in five stages using

Algorithm 10.1. At each stage, Step 1 identifies mini {ai , bi }. Then Step 2 fills one

position in sequence, and the process is repeated. The sequence that emerges is 3-1-4-

5-2. The schedule produced by the algorithm, shown in Figure 10.6, has a makespan

of 24.

An alternative exists for implementing Johnson’s Rule that provides a different

perspective on the structure of optimal schedules. In this implementation, shown as

Algorithm 10.2, we first partition the jobs into two sets, according to whether the

first operation is shorter or longer than the second operation. Then, we sequence

the jobs with shorter first operations by applying SPT to their a j values, and we

sequence the jobs with longer first operations by applying LPT to their b j values.

Finally, we arrange the two sequences in tandem to produce a full sequence for the

solution.

Algorithm 10.2 Implementing Johnson’s Rule

Step 1. Let U = { j |a j ≤ b j } and V = { j |a j > bj}.

Step 2. Arrange the members of set U in nondecreasing order of a j , and arrange the

members of set V in nonincreasing order of b j .

Step 3. An optimal sequence is the ordered set U followed by the ordered set V .

In Step 1 of the algorithm, including jobs with a j = b j in U rather than in V is

arbitrary. Such jobs may be placed anywhere between the positions that would be

assigned to them by the two options. Furthermore, if we define a new set W consisting

of all jobs with a j = b j , then W can be sequenced between U and V , and it does not

matter how jobs are sequenced within it. However, Algorithm 10.2 reduces the total

flowtime relative to the alternative implementations.

4 5 2

1 4 5 2

3 1

3

FIGURE 10.6 The schedule produced by Algorithm 10.1 for Example 10.2.

232 FLOW SHOP SCHEDULING

10.3.2 A Proof of Johnson’s Rule

This section provides two perspectives on Johnson’s Rule. First, we justify Algorithm

10.1. Second, we address Theorem 10.3 and exploit the potential for using an adjacent

pairwise interchange argument. For convenience, we number the jobs according to

their position in sequence.

In the two-machine model, the completion time for operation k of job j can be

calculated recursively as follows:

C1 j = C1, j−1 + a j

C2, j = max{C2, j−1, C1 j } + b j

where C10 = C20 = 0, and we assume that jobs are processed as early as possible (as

in Figure 10.6). If we add a constant p to all operation times, then we simply increase

the completion time of job j by j p on machine 1 and by (j + 1)p on machine 2. In

particular, the makespan increases by (n + 1)p, but the optimality of a sequence will

not be affected by the transformation.

If a j = 0, then there exists an optimal sequence in which job j comes first. (To

show this property, suppose no such optimal sequence exists. Then interchange job j

with the first job in the optimal sequence and confirm that the makespan does not get

worse.) From symmetry, if b j = 0, then there exists an optimal sequence in which

job j comes last.

These two properties—adding a constant to processing times and sequencing a

zero processing time—justify Algorithm 10.1. Given a set of jobs, we can calculate

the constant p = −mini [min{ai , bi }] and add it to all processing times. This creates

at least one processing time of zero. If a j = 0, then we can assign job j to the first

position in sequence. This corresponds to Step 2a of Algorithm 10.1. Similarly, if

b j = 0, then we can assign job j to the last position in sequence. This corresponds

to Step 2b of Algorithm 10.1. Thus, Algorithm 10.1 is optimal by construction.

We turn now to Johnson’s Rule itself and interpret it as a sorting rule, one that can

be justified with an adjacent pairwise interchange argument. Suppose that there exists

a schedule S containing a pair of adjacent jobs i and j , with j following i , satisfying

min{ai , b j } > min{a j , bi }, thus violating Johnson’s Rule. We construct schedule S′

by interchanging jobs i and j . We want to show that this interchange cannot increase

the makespan and may reduce it. For this purpose, we use the notion of total idle time

on machine 2, denoted i2. We can express the makespan as follows:

M = i2 +

n
∑

j=1

b j

In other words, our objective is to minimize i2 because the sum of processing times

on machine 2 is constant.

THE TWO-MACHINE PROBLEM 233

Let b0 = 0 and define

y j =

j
∑

k=1

(ak − bk−1)

Assuming that jobs are processed on machine 1 without inserted idle time, y j repre-

sents the difference between two times: the time required to process the first j jobs

on machine 1 and the time required to process the first (j − 1) jobs on machine 2.

Before job j starts on machine 2, there must have been at least this much idle time

on machine 2, so i2 ≥ y j . Thus, we obtain i2 = max{y j }, allowing us to express the

makespan as

M = i2 +

n
∑

j=1

b j = max j {y j } +

n
∑

j=1

b j

Thus, we are interested in minimizing max j {y j }. We rewrite the given condition

min{ai , b j } > min{a j , bi } as follows:

max{−ai ,−b j } < max{−a j ,−bi } (10.1)

To both sides we add the constant P , where

P =
∑

k∈B

ak + ai + a j −
∑

k∈B

bk

and B denotes the set of jobs preceding i and j . Adding P to (10.1) yields

max{P − ai , P − b j } < max{P − bi , P − a j } (10.2)

Now observe that

P − ai =
∑

k∈B

ak + a j −
∑

k∈B

bk = y j (S′)

P − b j =
∑

k∈B

ak + ai + a j −
∑

k∈B

bk − b j = yi (S′)

P − bi =
∑

k∈B

ak + ai + a j −
∑

k∈B

bk − bi = y j (S)

P − a j =
∑

k∈B

ak + ai −
∑

k∈B

bk = yi (S)

Hence (10.2) becomes

max{y j (S′), yi (S′)} < max{yi (S), y j (S)}

234 FLOW SHOP SCHEDULING

so that the interchange leaves the objective function no worse off and may actually

improve it. The remaining step in the proof is to show that Johnson’s Rule is transitive.

In a rigorous sense, transitivity may not hold if there are ties. Here lies an insight

that did not arise in our single-machine cases. When we implement sorting rules

such as SPT for a single machine, we are indifferent to tie-breaking mechanisms,

and moreover, each different way of breaking a tie leads to an alternative optimum.

Thus, SPT is necessary and sufficient for optimality. However, in the two-machine

flow shop problem, Johnson’s Rule is sufficient but not necessary, and we may not

be indifferent when ties occur. We provide an example to illustrate this point.

� Example 10.3 Consider a problem containing n = 3 jobs in a two-machine

flow shop.

Job j 1 2 3

a j 4 2 4

b j 3 2 5

The sequence 1-2-3 has the property that min{ai , b j } ≤ min{a j , bi } for consecutive

pairs 1-2 and 2-3. However, its makespan of 15 is not optimal. The problem lies in

the fact that min{ai , b j } ≤ min{a j , bi } does not hold for the pair 1-3. In other words,

it is possible in this example to construct a sequence with the property that adjacent

pairs satisfy Johnson’s inequality, but nonadjacent pairs do not. This feature can

occur only when there are ties, and it reflects the fact that Johnson’s Rule is not

rigorously transitive. Thus, we could state the rule as a strict inequality. Then it

would be transitive, but it might not order a given job set completely. On the other

hand, when we state the rule as in Theorem 10.3, it orders a set of jobs completely; but

only when we break ties correctly does it permit us to construct optimal sequences in

O(n log n) time. Fortunately, Algorithms 10.1 and 10.2 always break ties correctly. In

the example, Algorithm 10.1 yields either one of the sequences 3-1-2 and 2-3-1—both

of which are optimal—and Algorithm 10.2 yields 2-3-1.

10.3.3 The Model with Time Lags

Time lags (start lags and stop lags) allow for splitting and overlapping of jobs. That

is, processing can begin at machine 2 on an early portion of a job, while the later

portion is still at machine 1. We define a start lag u j as the required delay between

the start of a job’s first operation and the start of its second operation. Analogously,

a stop lag v j is the required delay between the completion of a job’s first operation

and the completion of its second. A typical application would be a situation where

each job is a batch consisting of several discrete and identical units. Once the first

unit completes at machine 1, it can immediately begin processing at machine 2. In

that case, the start lag represents the time to process one unit on machine 1, and the

stop lag represents the time to process one unit on machine 2. In other words, we

would be using a “transfer batch” of size 1. Obviously, we can also model larger

THE TWO-MACHINE PROBLEM 235

transfer batches with the use of time lags. In the case of start lags and stop lags, the

optimal permutation schedule is characterized by a rule analogous to Johnson’s Rule:

specifically, job i precedes job j in an optimal sequence if

min{ai + di , b j + d j } ≤ min{a j + d j , bi + di } (10.3)

where

d j = max{u j − a j , v j − b j } (10.4)

The form of Eq. (10.4), in which d j is usually negative, reflects the fact that one of the

two time lags will always guarantee the other. If we have d j = u j − a j ≥ v j − b j ,

then a schedule that meets the start-lag constraint will automatically satisfy the stop-

lag constraint. On the other hand, if we have d j = v j − b j ≥ u j − a j , then a schedule

that meets the stop-lag constraint will automatically satisfy the start-lag constraint.

In either case, d j represents the time required between the completion of the first

operation and the start of the second operation. Some expositions refer to d j as the

transfer lag.

10.3.4 The Model with Setups

In light of condition C2 for the basic two-machine model, setup times are assumed to

be not only sequence independent but also contained in processing times. For certain

applications, however, it is useful to treat the setup times explicitly. For this purpose

we define s1 j as the setup time for job j on machine 1 and s2 j as the setup time on

machine 2.

In the basic model, under C2, the first operation of a job must complete on

machine 1 before setup of machine 2 can begin. This feature is sometimes called

an attached setup time, meaning that the setup is “attached” to the job and cannot

be done while the job is somewhere else. Stated another way, the setup cannot be

scheduled in anticipation of arriving work. We can analyze this version of the two-

machine flow shop problem in the original manner. Specifically, let A j = s1 j + a j

and B j = s2 j + b j , and then adapt Johnson’s Rule to construct the optimal sequence:

job i precedes job j in an optimal sequence if min{Ai , B j } ≤ min{A j , Bi }. The use

of capital letters denotes a compound processing time, with “processing” taken to

mean both setup time and run time.

As a variation, suppose that the setup times are separable. In other words, the

setups at machine 2 can be detached and scheduled in anticipation of arriving work.

Assume, nevertheless, that each job must be completed at machine 1 before it can

begin work at machine 2. Under these assumptions, we can develop a schedule by

using the time-lag model. Specifically, the start lag is u j = s1 j + a j − s2 j and the

stop lag is v j = b j . It follows that the transfer lag is d j = max{s1 j − s2 j , 0}, from

which (10.3) can be used to construct an optimal sequence.

236 FLOW SHOP SCHEDULING

10.4 SPECIAL CASES OF THE THREE-MACHINE PROBLEM

For the makespan criterion and m = 3 machines, it is sufficient to consider only

permutation schedules in the search for an optimum, yet it is difficult to general-

ize the two-machine result. Indeed, the general three-machine problem is NP-hard.

However, there are several special cases in which the three-machine problem can be

solved efficiently, with procedures that resemble Johnson’s Rule for the two-machine

problem. In the cases listed below, it is possible to find an optimum without resorting

to enumerative search.

Case 1. Machine 1 dominates machine 2: min{p1 j } ≥ max{p2 j }.

Solution: Apply Johnson’s Rule to the pseudo two-machine problem formed by

a′
j = p1 j + p2 j and b′

j = p2 j + p3 j . The optimal sequence in the pseudoproblem

is optimal for the original. (This procedure is sometimes called Johnson’s approx-

imate method.)

Case 2. Machine 3 dominates machine 2: min{p3 j } ≥ max{p2 j }.

Solution: Johnson’s approximate method.

Case 3. Regressive second stage: p2 j ≤ min{p1 j , p3 j } for all j .

Solution: Johnson’s approximate method.

Case 4. Machine 2 dominates machine 1: min{p2 j) ≥ max{p1 j }.

Solution: Solve the two-machine problem corresponding to machines 2 and

3. Let job k denote the first job in this sequence. Generate additional sequences

by inserting in first position jobs with p1 j ≤ p1k . Among these sequences (the

two-machine solution sequence and the additional sequences), the one with the

smallest makespan in the three-machine problem is optimal.

Case 5. Machine 2 dominates machine 3: min{p2 j } ≥ max{p3 j }.

Solution: A symmetric version of the procedure in Case 4.

Case 6. Johnson’s extended rule: If job i is preferred to job j under Johnson’s Rule

for each of the two-machine subproblems represented by machine pairs 1-2, 2-3,

and 1-3, and if these (i, j) preference orderings form a complete sequence, then

such a sequence is optimal for the three-machine problem.

Case 7. Constant second stage: If p2 j is a constant, and if shortest processing time

(SPT) priority applied to machine 1 yields the same sequence as longest processing

time (LPT) priority applied to machine 3, then this sequence is optimal.

Case 8. Lower bound condition: Let M denote the makespan corresponding to an

optimal sequence to the pseudoproblem of Johnson’s approximate method and

let M ′ denote the actual makespan in the three-machine problem for the same

sequence. That sequence is optimal if

M = M ′ +

n
∑

j=1

p2 j

Some experimental studies have explored the likelihood of these conditions in

sample problems. In test problems, processing times were first drawn at random

MINIMIZING THE MAKESPAN 237

from a uniform distribution. This procedure gives rise to what might be called a

“random shop” problem structure. However, the existing flow shop literature suggests

a number of other interesting structures as well. Below we list six different structures

that formed the basis of the test data.

S1. Random shop: Processing times are independent samples drawn from a uniform

distribution.

S2. Ordered shop: Two relationships apply: (1) if job i has a smaller processing

time than job j on machine k, then job i also has a processing time no larger

than that of job j on each other machine; and (2) if job i has its r th smallest

processing time on machine k, then so does every other job.

S3. Constant second stage: Processing times for machines 1 and 3 are independent

samples drawn from a uniform distribution; processing times on machine 2 are

constant.

S4. Correlated shop: If the processing time of a job is large on one particular

machine, then the job’s processing times on other machines also tend to be

large.

S5. Trend shop: Processing times are positively correlated with machine number.

S6. Correlation-trend shop: A combination of S4 and S5.

Structures S4 and S6 were included because they seem to represent relatively difficult

flow shop problems to solve by enumerative techniques.

For each of the six shop structures, test problems were created with 5, 20, and

50 jobs. For each combination of shop structure and problem size, 50 jobsets were

created, for a combined total of 900 test problems. Overall, at least one of the eight

conditions held in approximately half the test problems, and in the vast majority of

problems where at least one of the conditions held, the lower bound condition (Case 8)

was successful. Correlation in the test data (S4 and S6) led to fewer successes as

problem size increased, while the opposite was true for trend alone (S5). In addition,

Case 8 accounted for most of the successes. In fact, for structures S1, S4, S5, and

S6 it was, with one exception, the only condition that applied in any of the 600

test problems. For S2 and S3, Case 6 provided some degree of success, as well as

Case 8.

We conclude that the three-machine special cases, in which the optimal solution

can be found by a polynomial algorithm, are likely to occur reasonably often in

sample problems. Moreover, among the various procedures that have been designed

to detect special cases, the lower bound condition is by far the most powerful. The

results also indicate that unless special shop structure is involved, the other conditions

are virtually ineffective at detecting special cases.

10.5 MINIMIZING THE MAKESPAN

Except for the very special cases mentioned in the previous section, we need

general-purpose procedures to solve the makespan problem with m = 3. For this

238 FLOW SHOP SCHEDULING

purpose, branch and bound methods have been reasonably successful. For larger

flow shop problems, the same branch and bound approaches have also been used

to find optimal permutation schedules. Although permutation schedules are not a

dominant set for makespan problems when m ≥ 4, it seems plausible that the best

permutation schedule should be close to the optimum. However, it has been shown

that the worst-case behavior of permutation schedules is not even bounded by a

constant but may be roughly as large as 0.5m1/2 . Nevertheless, permutation schedules

are asymptotically optimal for large n (i.e., n ≫ m), for minimizing the makespan

and for minimizing maximum tardiness. Neither theoretical result seems to reveal

what might happen in practice with flow shop problems of moderate size. In this

section we describe branch and bound approaches and heuristic approaches for

permutation schedules in the m-machine makespan problem.

10.5.1 Branch and Bound Solutions

The branching tree for the flow shop problem has the same structure as the permutation

tree for single-machine schedules shown in Figure 3.4, except that s represents a

partial permutation occurring at the beginning of the sequence instead of at the end.

In other words, the job sequence is constructed in a forward direction as we proceed

down the tree. For each node on the tree, corresponding to a partially solved problem

P(s), we require a lower bound on the makespan associated with any completion

of the corresponding partial sequence s. Again, we denote by s′ the set of jobs not

contained in s.

For a given partial sequence s, let Ci (s) denote the completion time on machine i

for the last job in s. This completion may also determine the earliest time at which

some unscheduled job could begin processing at machine i . However, there may be

other conditions that delay the start of the next job at machine i . Suppose that a

particular job j is a candidate to be added to the partial sequence s. Then the earliest

time that job j could begin processing on machine i may instead be determined by

the work required on job j before it reaches machine i . This amount of work is

p1 j + p2 j + · · · + pi−1, j . Since we do not yet know which unscheduled job will be

next, we can take the most favorable case and conclude that the earliest time at which

the next job will start on machine i is at least

min
j∈s ′

{p1 j + p2 j + · · · + pi−1, j }

We can use a similar logic, starting from machine k < i , and conclude that the earliest

time at which the next job will start on machine i is at least

Ck(s) + min
j∈s ′

{pk j + pk+1, j + · · · + pi−1, j }

Thus, as the first component of the lower bound, we define the earliest time at which

MINIMIZING THE MAKESPAN 239

some unscheduled job could begin processing on machine i as follows:

ri (s) = max
k≤i

[

Ck(s) + min
j∈s ′

{

i−1
∑

u=k

pu j

}]

Once processing does begin on machine i , the amount of processing yet required on

that machine is
∑

j∈s ′ pi j . This is the second component of the lower bound. As a

third component, observe that after the last job finishes on machine i , it must still be

processed by subsequent machines. In the most favorable case, that amount of time is

q
i
(s) = min

j∈s ′

{

m
∑

u=i+1

pu j

}

where qm = 0. Putting together the three components, we obtain the following lower

bound on the makespan, from the perspective of machine i :

bi (s) = ri (s) +
∑

j∈s ′

pi j + qi (s)

This bound assumes that machine i will be the bottleneck. This premise accounts

for the second component in the bound: when machine i is truly a bottleneck, there

will be no inserted idle time in its remaining operations. Obviously, at the time we

make the calculation, we do not know whether any particular machine will be the

bottleneck; therefore, we take as a lower bound the maximum of the bi values:

L B1(s) = maxi

ri (s) +
∑

j∈s ′

pi j + qi (s)

In the literature on branch and bound procedures, L B1, or minor variations of it,

are called machine-based bounds. For our purposes, we can think of L B1 as a lower

bound based on the premise of a single bottleneck machine.

We can extend the notion of a machine-based bound and recognize two bottleneck

machines instead of just one. The rationale for doing so is that the two-machine

makespan problem can be solved efficiently by Algorithm 10.1 as part of the lower

bound calculation. Also, by treating (m − 2) of the machines as nonbottlenecks, we

are assuming that work on those machines can be performed in parallel. In this context,

we find it convenient to use a shorthand notation for partial sums of processing times

over several adjacent machines. Let

Pj (i, h) =

h
∑

u=i

pu j

where Pj (i, h) = 0 if h < i .

240 FLOW SHOP SCHEDULING

If we assume that machines i and h are bottlenecks, then machines prior to i and

machines following h are treated as simple nonbottlenecks. Thus, we have the first

and third components of the lower bound as before:

ri (s) = max
k≤i

[Ck(s) + min
j∈s ′

{Pj (k, i − 1)}]

qh(s) = min
j∈s ′

{Pj (h + 1, m)}

For the second component, machines i and h are treated as bottlenecks, and processing

on machines between i and h is treated as if it occurs on a dominated machine, as in

Case 1 of Section 10.4. Thus, the second component corresponds to the makespan

of a three-machine pseudoproblem in which the processing times are pi j , Pj (i + 1,

h − 1), and ph j , for each unscheduled job j in s ′. Denote this solution by Mih . Then

the lower bound can be written as follows.

L B2 = max
(i,h)

{ri (s) + Mih + qh(s)}

where the maximum is taken over all pairs of machines (i, h). Experimental studies

have shown that L B2 is a very effective lower bound, but its computational require-

ment is O(n3 log n), which is substantial. One way to limit the amount of computation

done at each node is to use only i = h. This amounts to using just one bottleneck

machine, which corresponds to using L B1. Another simplification is to use only

h = m. This simplification reduces the computational burden by a factor of n at each

node by considering only bottleneck pairs that include the last machine. Either sim-

plification reduces the effort required to compute a bound at each node, but since the

resulting bounds may be less tight, the optimization procedure requires more effort

in its tree search. In large problems, it makes sense to utilize the strongest possible

bound because the tree search is quite extensive. We illustrate the calculations with

an example.

� Example 10.4 Consider a problem containing n = 4 jobs in a four-machine

flow shop.

Job j 1 2 3 4

p1 j 4 2 3 5

p2 j 3 8 2 4

p3 j 7 2 4 3

p4 j 3 5 1 5

The first node generated by the branch and bound algorithm corresponds to the

subproblem P(1), for which job 1 is assigned the first position in sequence and

s ′ = {2, 3, 4}. For this partial sequence the values of Ci (s) are 4, 7, 14, and 17. The

lower bound calculations for L B1 are shown below.

MINIMIZING THE MAKESPAN 241

i {ri (s) +
∑

j∈s′ pi j + qi (s)} max

1 4 + 10 + 7 = 21

2 7 + 14 + 5 = 26

3 14 + 9 + 1 = 24

4 17 + 11 + 0 = 28 28

For the other partial solutions at the first level of the branching tree, similar calcula-

tions yield bounds of 27 for P(2), 28 for P(3), and 27 for P(4).

The use of L B2 can improve the lower bound for P(2) and P(4). To illustrate,

consider the calculation of L B2 for P(2) when the two bottleneck machines are i = 2

and h = 4. The subproblem for these two machines uses the data shown below.

Job j 1 3 4

machine i = 2 3 2 4

nonbottleneck 7 4 3

machine h = 4 3 1 5

The optimal sequence for this subproblem is 4-1-3, with a makespan of 18. Because

we also have r2 = 10 and q4 = 0, it follows that L B2 = 10 + 18 + 0 = 28. A similar

set of calculations shows that the L B2 = 28 as well, for P(4).

Computational results indicate that problems containing 20 jobs and 4 machines

may be considered “large,” although they can be solved in a few seconds of computer

time. Problem sizes of up to 50 or 100 jobs and 5 machines can often be solved

with modest computational times. However, some problems of this size require very

extensive searching.

10.5.2 Heuristic Solutions

The branch and bound approach has two inevitable disadvantages typical of combi-

natorial optimization methods. First, the computational requirements can be severe

for large problems. Second, even for moderate-sized problems, there is no guaran-

tee that the solution can be obtained quickly because the search effort depends on

the data in the problem. Heuristic algorithms avoid these two drawbacks: they can

obtain solutions to large problems with limited computational effort, and their com-

putational requirements are predictable for problems of a given size. The drawback

of heuristic approaches, of course, is that they do not guarantee optimality; and in

some instances it may even be difficult to judge their effectiveness. The heuristic

methods described in this section are representative of the many such techniques for

the makespan problem.

A useful guideline for sequencing jobs in the flow shop can be stated qualitatively

as follows: give priority to jobs having the strongest tendency to progress from short

times to long times in the sequence of operations. Although there might be other ways

242 FLOW SHOP SCHEDULING

of implementing this principle, Palmer’s slope index makes the following calculation

for each job:

s j =

m
∑

i=1

(m − 2i + 1)pi j

Then a permutation schedule is constructed by sequencing the jobs in nondecreasing

order of their slope indices, s j .

For m = 2, the slope index sequences the jobs in nonincreasing order of

(p2 j − p1 j). This method is slightly different from Johnson’s Rule and does not

guarantee an optimum. In Example 10.2, however, the heuristic yields the sequence

1-3-4-5-2. Although this is different from the sequence constructed by Johnson’s

Rule, it still has an optimal makespan. In the job set of Example 10.4, the slope index

values are −1 for job 1, −3 for job 2, 4 for job 3, and 1 for job 4. The slope index

thus generates the sequence 2-1-4-3, for which the makespan is M = 29.

Another heuristic method for makespan problems is the Campbell, Dudek, and

Smith (CDS) algorithm. This algorithm uses Johnson’s Rule in a heuristic fashion

and creates several schedules from which a “best” schedule can be chosen. The algo-

rithm corresponds to a multistage use of Johnson’s Rule applied to a pseudoproblem,

derived from the original, with processing times a j and b j . At stage 1, a j = p1 j

and b j = pmj . In other words, the first and last processing times for each job com-

prise the pseudoproblem. At stage 2, a j = p1 j + p2 j and b j = pm−1, j + pmj . Here,

the first two and last two processing times, aggregated for each job, comprise the

pseudoproblem. In general, at stage i ,

a j =

i
∑

k=1

pk j and b j =

m
∑

k=m−i+1

pk j

For each stage i , the job sequence obtained from the pseudoproblem is used to

calculate a makespan for the original problem. The procedure consists of (m − 1)

stages, some of which may generate the same sequence, after which the algorithm

selects the best makespan calculated. Ties can be broken arbitrarily, although it is not

difficult to incorporate tie-breaking rules. For instance, we can break ties by using the

ordering that occurred in the previous stage. The computational effort for the CDS

algorithm is greater than that of the slope index method, but the CDS algorithm has

tended to produce better solutions in computational tests.

When we apply the CDS algorithm to Example 10.4, there are three stages. At

stage 1, the pseudoproblem to be solved by Johnson’s Rule is the following:

Job j 1 2 3 4

a j 4 2 3 5

b j 3 5 1 5

VARIATIONS OF THE m-MACHINE MODEL 243

The optimal sequence for this problem is 2-4-1-3. At stage 2, the pseudoproblem is

Job j 1 2 3 4

a j 7 10 5 9

b j 10 7 5 8

The optimal sequence for this problem is 3-1-4-2, using an arbitrary means of breaking

ties. At stage 3, the pseudoproblem is

Job j 1 2 3 4

a j 14 12 9 12

b j 13 15 7 12

The optimal sequence for this problem is 4-2-1-3. Thus, the CDS algorithm selects

three sequences to be evaluated. The best makespan among the three (from the original

processing time data) is M = 29.

In addition to the slope index method and the CDS method, which are both

specialized to the flow shop model, we can use general-purpose heuristic techniques.

For instance, we can apply the insertion heuristic to the permutation sequences

that define flow shop schedules. Computational experiments suggest that although

the insertion heuristic requires more effort than the CDS algorithm, the additional

effort produces slightly better solutions. Similarly, neighborhood search, simulated

annealing, and tabu search procedures have also been tested in flow shop problems.

The experimental results indicate that heuristic procedures can generate solutions

that are on average within about 1% of optimum.

10.6 VARIATIONS OF THE m-MACHINE MODEL

10.6.1 Ordered Flow Shops

A special case of the flow shop problem is the ordered flow shop. The special case

is defined by two conditions: (1) if job j has a smaller processing time than job k

on machine i , then job j also has a processing time no larger than that of job k on

each other machine; and (2) if job j has its r th smallest processing time on machine

i , then so does every other job. These conditions tend to occur when the jobs being

scheduled represent orders, and the items comprising the orders have similar unit

processing times on all machines. In this situation, the operation processing times

reflect the order sizes.

Condition (1) of the ordered flow shop makes it possible to refer to the size of

a job. That is, we can identify a longest job or a shortest job, since the ordering of

jobs by their operation times for one machine will be identical to the ordering for any

244 FLOW SHOP SCHEDULING

other machine. In particular, we can use SPT to refer to a shortest-first ordering of

the jobs and LPT to refer to a longest-first ordering.

For the ordered flow shop, a dominant set of schedules exists for the makespan

problem. Dominant schedules are determined by pyramid sequences, which are or-

derings of the jobs in which the first k jobs (1 ≤ k ≤ n) are in SPT order, and the

remaining jobs are in LPT order. Another way to think of a pyramid sequence is in

terms of the position assigned to the longest job. In a pyramid sequence, if the longest

job appears in position j , then the jobs in positions 1 to j are in SPT order, while the

jobs in positions j to n are in LPT order.

The dominance of pyramid sequences does not dictate an optimal sequence; it

simply reduces the number of sequences among which we have to search. The

number of pyramid sequences is 2n−1, which is much smaller than the number of

feasible sequences. For example, if n = 15, the number of pyramid sequences is

32,768; whereas the number of permutations is over 1.3 trillion.

For the ordered flow shop, the optimal schedule for the F-problem is given by the

SPT sequence. This result may not seem surprising given the optimality of SPT in

the single-machine model, but the F-problem is NP-hard for the general flow shop

model, even when m = 2.

10.6.2 Flow Shops with Blocking

In certain production settings, there is limited waiting space between adjacent ma-

chines. Equivalently, a policy constraint may limit the number of jobs between ma-

chines, as we often see, for example, in the kanban system of JIT. When this waiting

space is full, any job completed by the upstream machine must remain in place until

space becomes available, so that machine is blocked. An extreme blocking case oc-

curs when there is no waiting space between machines at all, so a job can be in the

system only if it occupies a machine. If we limit ourselves to permutation schedules,

however, then the model without waiting space is equivalent to the more general

case. For example, if we want to allow space for k jobs to wait between two adjacent

machines, we can insert k dummy machines between them with processing times of

zero, and these dummy machines can then hold up to k jobs in queue as required. In

light of this equivalence, we assume that flow shops with blocking allow no queues

between machines.

Consider the case m = 2 with the makespan objective. For the first (n − 1) jobs,

there is no advantage in allowing a job to depart from machine 2 before machine 1 is

ready to deliver the next job. Therefore, we can think of a schedule as a sequence of

n + 1 (unequal) intervals such that during period 1, machine 1 processes job [1], in

interval (n + 1) machine 2 processes job [n], and otherwise at interval j , machine 1

processes job [j] and machine 2 processes job [j − 1]. This structure occurs because

if job j follows job i then there exists an interval during which machine 1 is occupied

by job j and machine 2 by job i . If we define dummy jobs—job 0 and job (n + 1)—

at the beginning and the end of the schedule with processing times of zero, then the

duration of interval j is max{a[j], b[j−1]}. The shortest path from job 0 to job (n + 1)

through all other jobs is an instance of the traveling salesperson problem (TSP) with

distance elements Di j given by max{a j , bi }. This TSP has a special structure that

VARIATIONS OF THE m-MACHINE MODEL 245

allows for solution in polynomial time using a procedure known as the Gilmore

and Gomory algorithm. In contrast, however, when m ≥ 3 the problem cannot be

formulated as a TSP, and in a practical sense, it is even more complex than the TSP.

10.6.3 No-Wait Flow Shops

In certain production settings, once the processing of a job begins, subsequent pro-

cessing must be carried out with no delays in the operation sequence. In other words,

no waiting is allowed before or during any operation. Such a requirement is frequently

encountered in some process industries, particularly where material is formed while it

is hot. Delays between operations result in cooling that makes the forming operation

prohibitively difficult.

Consider the problem of minimizing makespan when no waiting is permitted. For

simplicity, assume we are seeking an optimal permutation schedule. (In the general

case, some jobs may have no operations on certain machines, so the set of permutation

schedules is not dominant.) Suppose that jobs i and j are adjacent in sequence and

that job i precedes job j . A certain delay would be incurred in the processing of job j

if the two jobs were released to a shop at the same time and job i were processed first.

Let Ih j denote the idle time incurred by job j prior to its operation on machine h. To

process job j without any delays so that it will be completed at the same moment, the

idle time must be incurred before the start of job j on machine 1. Now suppose that

job j is followed in sequence by job k. The delays incurred in the processing of job k

do not depend on what happened before job j in sequence, but only on the operation

times of job j itself when it is processed without delay. Let Di j denote the total delay

(measured from the start of job i) incurred by job j when it follows job i in sequence.

Recall the notation Pj (g, h) for the sum of processing times of job j on machines g

through h (inclusive), but let Pj (g, 0) = 0 (for any g and j). Because the structure of

this problem is the same for any number of machines, we can assume that operation

(1, i) starts at time zero and we can write

Di j = I1 j + I2 j + · · · + I mj = max
1≤h≤m

[Pi (1, h) − Pj (1, h − 1)]

The right-hand side reflects the fact that if there is no waiting, then operation (h, j) is

ready to start Pj (1, h − 1) time units after the start of operation (1, j), but machine h

is not free until time Pi (1, h). Thus, the machine for which the expression Pi (1, h) −

Pj (1, h − 1) is maximized dictates Di j . By the same token, D jk is the total delay

(measured from the start of job j) incurred by job k when it follows job j in sequence.

If the schedule consisted of only these three jobs, then an expression for the makespan

of the schedule associated with the sequence i-j-k would be

M = Di j + D jk + p1k + p2k + · · · + pmk

In general, an expression for the makespan is

M =

n−1
∑

j=1

D[j],[j+1] +

m
∑

h=1

ph,[n]

246 FLOW SHOP SCHEDULING

TABLE 10.2

— D12 D13 . . . D1n

m
∑

h=1

ph,1

D21 — D23 . . . D2n

m
∑

h=1

ph,2

. . .

Dn1 Dn2 Dn3 . . . —
m
∑

h=1

ph,n

0 0 0 . . . 0 —

Thus, the makespan is the sum of two quantities: (1) a sum of sequence-dependent

delay terms and (2) the total processing time of the last job in sequence. The structure

of this expression closely resembles the criterion in the traveling salesperson problem

(see Chapter 8) and, with some modification, this makespan problem can be recast

as a TSP.

In the TSP, each city corresponds to a job, and the intercity distances correspond

to the delay pairs Di j . In addition, one dummy city must be added to the problem

(corresponding to an idle state) to which the distance from city i is the sum of the

operation times for job i , and from which the distance to all other cities is zero, as

shown in Table 10.2.

� Example 10.5 Consider a problem containing n = 4 jobs in a five-machine

flow shop.

Job j 1 2 3 4

p1 j 4 2 5 3

p2 j 5 4 3 9

p3 j 7 6 2 9

p4 j 9 8 1 8

p5 j 3 7 6 4

We can verify that the corresponding TSP has the following distance matrix:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

− 13 17 9 28

4 − 16 3 27

18 6 − 5 17

13 17 22 − 33

0 0 0 0 −

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

For instance, if job 2 follows job 1 then P1(1, h) − P2(1, (h − 1)) is maximized

for h = 4 with D12 = 4 + 5 + 7 + 9 − 2 − 4 − 6 = 13. Thus, if job 2 is selected to

follow job 1, then to avoid waiting, it should start 13 time units after the start of job 1.

Suppose the closest unvisited city algorithm (see Chapter 8) is used to find a solution

to this problem. If city 1 is chosen as an origin, then the procedure constructs the

sequence 1-4-2-3, with a makespan of 59.

SUMMARY 247

An instance where no wait and blocking merge is the two-machine case with a

makespan objective: the same sequence is optimal for both the blocking case and the

no-wait case: given an optimal blocking solution, it is always possible to schedule

starting times on machine 1 so that no waiting is required on machine 2 and yet

the makespan does not exceed the blocking case. Given an optimal no-wait solution,

queueing is not needed between machines. But for more than two machines the

no-wait requirement is stronger: any no-wait sequence ensures no blocking (without

increasing the makespan), but a no-blocking solution may not satisfy the no-wait

requirement because it may involve waiting on some machines. Indeed, for the no-

wait case, we can model the problem as a TSP for any number of machines, whereas

for the no-blocking case, only a two-machine model yields this formulation. One

conceptual difference between the two models, even with just two machines, is that

once we determine the sequence in the blocking case, we can simply release jobs into

the system by dispatching, whereas in the no-wait case we must devise an explicit

schedule and compute the release dates in advance.

10.7 SUMMARY

In the development of scheduling models more general than single-machine models,

the flow shop represents the most direct extension to jobs with multiple operations re-

quiring distinct multiple resources. In the analysis of flow shop problems, scheduling

theory has been strongly influenced by Johnson’s two-machine result, very possibly

because it is the only optimal scheduling rule applicable to a large class of flow shop

problems. One disadvantage of this influence might be the disproportionate attention

paid to the makespan criterion, because that is the focus of Johnson’s Rule. In view

of the many intriguing and practical variations of the single-machine model, it is

remarkable that no similar progress has been made with the flow shop using other

performance measures.

On the other hand, the pivotal influence of Johnson’s Rule has had some defi-

nite advantages. First, by emphasizing the properties of permutation schedules, the

original result focused flow shop research on problems of manageable size. Multiple-

resource problems are certainly more difficult than single-resource problems. In a

sense, the multiple-resource structure potentially represents a situation in which each

resource is itself associated with a combinatorial problem and in which these several

problems are closely interrelated. In such a case, it is an acceptable simplification to

deal with only a limited set of alternatives. In the flow shop model, the problem of

finding a best permutation schedule is no larger than related single-machine prob-

lems, and it seems plausible that the best permutation schedule should be close to

optimal, even if permutation schedules do not constitute a dominant set.

A second advantage of the Johnson influence is that the two-machine analy-

sis seems to capture the essence of larger makespan problems. As we have seen,

Johnson’s Rule is an element in solving special cases of the three-machine model, in

calculating tight lower bounds for an optimization procedure, and in implementing

the CDS heuristic algorithm. This feature suggests that the two-machine case may

be the key to resolving larger problems with other criteria. For example, if we were

248 FLOW SHOP SCHEDULING

faced with a flow shop problem with several machines and setups, a reasonable solu-

tion strategy would be to adapt the CDS heuristic procedure, using a pseudoproblem

based on the form of the two-machine model with setup times.

REFERENCES

Burns, F. and J. Rooker (1976). Johnson’s three-machine flow shop conjecture, Operations

Research 24, 578–580.

Burns, F. and J. Rooker (1978). Three stage flow shops with regressive second stage,

Operations Research 26, 207–208.

Campbell, H.G., R.A. Dudek, and M.L. Smith (1970). A heuristic algorithm for the n-job,

m-machine sequencing problem, Management Science 16, 630–637.

Dannenbring, D. (1977). An evaluation of flow shop sequencing heuristics, Management

Science 23, 1174–1182.

Gilmore, P.C. and R.E. Gomory (1964). Sequencing a one state-variable machine: a solvable

case of the traveling salesman problem, Operations Research 12, 655–679.

Ignall, E. and L.E. Schrage (1965). Application of the branch and bound technique to some

flow shop scheduling problems, Operations Research 13, 400–412.

Johnson, S.M. (1954). Optimal two-and three-stage production schedules with setup times

included, Naval Research Logistics Quarterly 1, 61–68.

Lageweg, B.J., J.K. Lenstra, and A.H.G. Rinnooy Kan (1978). A general bounding scheme for

the permutation flow shop, Operations Research 26, 53–67.

Lai, T.-C. (1996). A note on heuristics of flow shop scheduling, Operations Research 44,

648–652.

Mitten, L.G. (1959). Sequencing n jobs on two machines with arbitrary time lags, Management

Science 5, 293–298.

Monma, C. and A.H.G. Rinnooy Kan (1983). A concise survey of efficiently solvable spe-

cial cases of the permutation flow-shop problem, RAIRO Recherche Operationelle 17,

105–119.

Nawaz, M., E. Enscore, and I. Ham (1983). A heuristic algorithm for the m-machine n-job

flow-shop sequencing problem, Omega 11, 91–95.

Osman, I.H. and C.N. Potts (1989). Simulated annealing for permutation flow-shop scheduling,

Omega 17, 551–557.

Palmer, D.S. (1965). Sequencing jobs through a multi-stage process in the minimum total

time—a quick method of obtaining a near optimum, Operational Research Quarterly 16,

101–106.

Panwalkar, S.S. and C.R. Woolam (1980). Ordered flow shop problems with no in-process

waiting: further results, Journal of the Operational Research Society 30, 1039–1043.

Portougal, V. and J.L. Scott (2001). The asymptotic convergence of some flow-shop scheduling

heuristics, Asia-Pacific Journal of Operational Research 18, 243–256.

Potts, C.N., D.B. Shmoys, and D.P. Williamson (1991). Permutation vs non-permutation flow

shop schedules, Operations Research Letters 10, 281–284.

Reeves, C.R. (1993). Improving the efficiency of tabu search for machine sequencing problems,

Journal of the Operational Research Society 44, 375–382.

Smith, M.L., S.S. Panwalkar, and R.A. Dudek (1976). Flow shop sequencing problems with

EXERCISES 249

ordered processing time matrices: a general case, Naval Research Logistics Quarterly 23,

481–486.

Smits, A.J.M. and K.R. Baker (1981). An experimental investigation of the occurrence of

special cases in the three-machine flowshop problem, International Journal of Production

Research 19, 737–741.

Szwarc, W. (1977). Optimal two machine orderings in the 3 × n flow shop problem, Operations

Research 25, 70–77.

Szwarc, W. (1983). Flow shop problems with time lags, Management Science 29, 477–481.

Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem,

European Journal of Operational Research 47, 65–74.

Wismer, D.A. (1972). Solution of the flow shop scheduling problem with no intermediate

queues, Operations Research 20, 689–697.

EXERCISES

10.1. Consider the following three-job two-machine flow shop makespan problem.

Job j 1 2 3

a j 4 2 4

b j 3 2 5

a. Show that there is an optimal schedule in which job 1 precedes job 2.

b. Show that there is an optimal schedule in which job 2 precedes job 3.

c. Show that there is an optimal schedule in which job 3 precedes job 1.

10.2. The times required to complete eight jobs on two machines are shown in the

table that follows. Each job must follow the same sequence, beginning with

machine A and moving to machine B.

Job j 1 2 3 4 5 6 7 8

Machine A (a j) 16 3 9 8 2 12 18 20

Machine B (b j) 5 13 6 7 14 4 14 11

a. Determine a sequence that will minimize throughput time.

b. Construct a chart of the resulting sequence, showing B’s idle times.

c. For the sequence in (a), how much could B’s idle time be reduced by

splitting the last two jobs (7 and 8) in half?

10.3. Consider the following three-job flow shop example.

Job j 1 2 3

a j 4 4 3

b j 7 1 2

250 FLOW SHOP SCHEDULING

Show that Johnson’s condition is not necessary for optimality in the two-

machine makespan problem.

10.4. Show that the jobs in the sequence produced by Algorithm 10.2 will sat-

isfy Johnson’s Rule; that is, if job i precedes job j in that sequence, then

min{ai , b j } ≤ min{a j , bi }.

10.5. Consider the two-machine problem with makespan objective and setup times.

Suppose that the setup times are separable—that is, setups may be scheduled

in anticipation of arriving jobs. Show that the rule for constructing an optimal

sequence takes the following form:

job i precedes job j in an optimal sequence if min{e1i , e2 j } ≤ min{e1 j , e2i }

where e1i (e2i) denotes the initial (final) idle time on machine 2 (machine 1)

when job i is scheduled by itself.

10.6. Consider a flow shop with three proportional machines. In other words, the

processing times satisfy pi j = ci p j . For a problem that involves minimizing

some regular measure of performance, is the proportional-machines structure

any easier than the general three-machine problem? Is there an optimal permu-

tation schedule?

10.7. How many different schedules are candidates for the optimal makespan in the

four-job, four-machine flow shop problem?

10.8. For a flow shop problem containing n jobs and m machines, what is the order

of magnitude of the computational effort required by

a. Palmer’s slope index method?

b. the CDS algorithm?

c. the insertion heuristic?

10.9. Find the optimal makespan for the following flow shop problem. If there is an

additional constraint of no wait in process, does the optimal makespan change?

Does the optimal sequence change?

Job j 1 2 3 4

p1 j 9 13 15 20

p2 j 11 17 18 24

p3 j 8 12 14 18

p4 j 6 10 12 15

11
STOCHASTIC FLOW
SHOP SCHEDULING

11.1 INTRODUCTION

The analysis of stochastic flow shop problems has not proceeded very far and re-

mains challenging. With few exceptions, research on the stochastic flow shop has

been limited to the makespan as a performance measure, and much of the work

addresses only the two-machine problem. In the stochastic flow shop model, the

makespan typically exhibits a positive Jensen gap even with two machines, so the

problem is inherently more complex than its deterministic counterpart. Nevertheless,

the deterministic counterpart provides an effective heuristic for large n. For small and

medium numbers of jobs, we can use neighborhood search heuristics to improve upon

the performance of the deterministic counterpart. With more than two machines, we

can at least adapt some of the heuristic procedures developed for the deterministic

counterpart, which often depend on the two-machine solution in one way or another.

Some special cases of the stochastic, two-machine makespan problem exist—not

necessarily practical ones—in which optimal sequences can be found readily. In

the context of safe scheduling for the stochastic flow shop, however, we must also

recognize the need for safety time.

We begin our coverage in Section 11.2 with stochastic counterparts of models

covered in the previous chapter, under the assumption of stochastic independence. In

Section 11.3, we introduce safe scheduling models, again subject to stochastic inde-

pendence. In Section 11.4, we study the implications of introducing linear association

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

251

252 STOCHASTIC FLOW SHOP SCHEDULING

into both stochastic counterpart and safe scheduling models. In all these cases, we

limit ourselves to permutation flow shops with a makespan objective.

11.2 STOCHASTIC COUNTERPART MODELS

Few analytic results exist for the stochastic m-machine case. Those that are available

rely on very restrictive assumptions. Therefore, we focus on the two-machine case.

We use A j and B j to denote stochastic processing times on the two machines,

but we retain a j and b j for the expected values. For general distributions without

special conditions on processing times, the only full solution known for a stochastic

counterpart applies to the two-job problem.

� Theorem 11.1 In the two-job stochastic flow shop problem, job 1 precedes

job 2 in an optimal sequence if E(min{A1, B2}) ≤ E(min{A2, B1}).

Proof. When job 1 precedes job 2, the makespan is given by A1 + max{A2, B1} +
B2. Furthermore, A1 + max{A2, B1} + B2 = A1 + A2 + B1 + B2 − min{A2, B1}. In

words, the makespan is the total processing time of all operations minus the time

during which the two machines operate in parallel. By symmetry, A1 + A2 + B1 +
B2 − min{A1, B2} is the makespan of the same shop when job 2 is first. The condition

then follows by comparing the expected values of the two makespan expressions.

Theorem 11.1 generalizes Johnson’s Rule for two jobs in the deterministic case,

which calls for job 1 to be first if min{a1, b2} ≤ min{a2, b1}. The theorem holds for

any processing time distributions, but the calculations become more tractable if we

assume independent processing time distributions because we can calculate the cdf

of the minimum using the formula

Fmin(t) = 1 − (1 − FX (t))(1 − FY (t))

where FX (t), FY (t), and Fmin(t) denote the cdfs of X , Y , and their minimum. The

expected value of the minimum can then be calculated as the area above the cdf and

below 1 to the right of the origin. However, the formula does not lead to a closed-form

calculation of the minimum for all distributions. Alternatively, we can use simulation

and analyze a stored sample to estimate the information we need. Stored sample

analysis is also applicable when processing times are not independent.

To pursue the analysis beyond the two-job problem, we must make a more spe-

cific assumption about the distribution of processing times. To start, we consider

exponential processing times. (As we mentioned in Chapter 9, the exponential is not

necessarily very practical, but it is significant as a boundary case, and it sometimes

provides us with general insights.) Suppose we have two exponential random vari-

ables, one with a mean of x and the other with a mean of y. Equivalently, we say that

one has a completion rate (or processing rate) of 1/x and the other has a completion

rate of 1/y. The minimum of the two exponential random variables is an exponential

STOCHASTIC COUNTERPART MODELS 253

random variable with processing rate (1/x + 1/y). Therefore, the condition in Theo-

rem 11.1 can be rewritten for the exponential case. The condition for job 1 to precede

job 2,

E(min{A1, B2}) ≤ E(min{A2, B1}) (11.1)

implies the reverse ordering of processing rates, or

1/a1 + 1/b2 ≥ 1/a2 + 1/b1 (11.2)

Algebraic rearrangement yields

1/a1 − 1/b1 ≥ 1/a2 − 1/b2 (11.3)

In words, the job with the larger difference in processing rates should come first.

� Example 11.1 Consider the scheduling of two jobs with independent expo-

nentially distributed processing times. The mean of each processing time is given in

the following table.

Machine Job 1 Job 2

1 4 5

2 5 8

The processing rates associated with these means are 0.25 and 0.2 for job 1 and 0.2

and 0.125 for job 2. Since the difference for job 2 (0.0875) exceeds the difference for

job 1 (0.05), job 2 should be scheduled first. This sequence reverses the solution of the

deterministic counterpart and demonstrates that applying Johnson’s Rule to the mean

values in a stochastic problem does not necessarily produce an optimal sequence.

For this example, the expected makespan is 19.333 for the sequence 2–1 and 19.5

for sequence 1–2. The standard deviations are 10.424 and 10.548, respectively. The

difference in both measures is on the order of 1%, and the optimal sequence is

advantageous on both counts.

� Example 11.2 Consider the scheduling of two jobs with independent expo-

nentially distributed processing times. The mean of each processing time is given in

the following table.

Machine Job 1 Job 2

1 1 1

2 1 1 +
√

7

254 STOCHASTIC FLOW SHOP SCHEDULING

In Example 11.2, the calculations yield an expected makespan of 5.861 for the

sequence 2-1 and 6.146 for sequence 1-2. The standard deviations are 3.801 and 3.942,

respectively. For the optimal sequence, the advantage in the mean is about 4.8%, and

the advantage in the standard deviation is about 3.7%. The parameters of this example

illustrate the maximum percentage improvement of the correct sorting rule for a two-

job problem with exponential processing times. Johnson’s Rule, when applied to the

means, results in a tie, but if we reduce a1 infinitesimally, the sequence 1-2 becomes

the deterministic optimum, whereas the sequence 2-1 remains the optimal solution

for exponential processing times.

Sorting by the difference in mean processing rates (1/a j − 1/b j) involves a tran-

sitive sequencing relation and can be extended to n jobs. Thus, at the very least, it

provides a reasonable heuristic procedure for the n-job problem. In the exponential

case, this sorting rule, which we refer to as Talwar’s Rule, turns out to be optimal.

� Theorem 11.2 (Talwar’s Rule). In the stochastic two-machine flow shop prob-

lem with exponential processing times, the expected makespan is minimized by

sequencing the jobs so that (1/a[1] − 1/b[1]) ≥ (1/a[2] − 1/b[2]) ≥ · · · ≥ (1/a[n] −
1/b[n]).

(We omit the proof.)

In the n-job case, the condition for job j to precede job (j + 1) can be written

1/a j + 1/b(j+1) ≥ 1/a(j+1) + 1/b j

This condition involves a comparison between two means. Because they are means

of exponential distributions, the cdf for min{A j , B(j+1)} lies entirely above the cdf

for min{A(j+1), B j }. In other words, stochastic dominance holds in the comparison

for each pair of successive jobs. This feature also holds when there are n jobs; that is,

Talwar’s Rule yields not only a minimal expected makespan but also a stochastically

minimal makespan.

When the problem involves distributions other than the exponential, we have

to rely on heuristic procedures. One plausible heuristic sorts the jobs by (1/a[1] −
1/b[1]) ≥ (1/a[2] − 1/b[2]) ≥ · · · ≥ (1/a[n] − 1/b[n]), as in Theorem 11.2. We refer

to this procedure as Talwar’s Heuristic. Another possibility, of course, is solving

the deterministic counterpart—that is, applying Johnson’s Rule to the means—and

using the sequence in the stochastic problem. We refer to that procedure as Johnson’s

Heuristic. Johnson’s Heuristic may require a tie-breaking rule: when comparing

processing times with the same mean, the one with the lower variance is considered

smaller. Yet another heuristic procedure, which we refer to as the Adjacent Pairwise

Interchange (API) Heuristic, starts with any sequence, such as the deterministic

counterpart sequence, and tries to improve on it with an API neighborhood search.

We call a pair of adjacent jobs stable if they satisfy Theorem 11.1. We call a sequence

stable if every pair of adjacent jobs is stable. The API Heuristic checks all adjacent

job pairs in the initial sequence starting with the first two jobs, and if an unstable pair

is found, the two jobs are interchanged. After each such interchange, the job that was

STOCHASTIC COUNTERPART MODELS 255

moved downstream is stable with respect to its upstream neighbor, but the one moved

upstream may have to be interchanged repeatedly until it reaches a stable position,

possibly as the first job. Then, the heuristic repeats its check of all pairs and stops

when all adjacent pairs are stable.

The API Heuristic requires O(n2) tests and always results in a stable sequence.

The procedure is not guaranteed to find an optimal sequence. In fact, more than

one stable sequence can exist. The heuristic is guaranteed only to converge to some

stable sequence, but that does not mean it will locate the best one or that the optimal

sequence is stable. However, if any transitive sorting rule is optimal then the API

Heuristic will converge to it. For example, when all distributions are exponential, the

API Heuristic yields the optimal (Talwar) sequence.

Although the API Heuristic cannot verify whether a sequence is optimal, we can

theoretically determine whether the stable sequence it yields is unique by simply

checking all pairwise relationships. If the stable sequence is not unique, even for a

single instance, then no transitive optimality condition exists for that family of distri-

butions in general. However, as we pointed out earlier, the formulas in the pairwise

evaluation might be intractable for many types of probability distributions. Therefore,

we can approximate the desired evaluation either by analyzing a stored sample or by

assuming a particular family of distributions for all processing times. For the latter

approach, if we were to assume an exponential distribution for each processing time,

we would generate the sequence of Talwar’s Heuristic. A more flexible approach is

to evaluate Theorem 11.1 by assuming the normal distribution applies. The normal

assumption is a two-parameter distribution, unlike the exponential, so we can try to

match its mean and standard deviation with those of the distributions in the problem.

In other words, we use the normal distribution as an approximation to the actual

processing time distribution. The formulas for the normal case are tractable, as we

show next.

In general, for any random variables X and Y ,

min{X, Y } = X − max{X − Y, 0}

and therefore,

E(min{X, Y }) = E(X) − E(max{X − Y, 0})

Define W = X − Y so that

E(min{X, Y }) = E(X) − E(W +)

Suppose that X and Y are independent normal random variables. Then, W is nor-

mal with mean µw = µx − µy and variance σ 2
w = σ 2

x + σ 2
y . In addition—as shown

in Appendix B—E(W +) = σw [ϕ(z) + zw�(z)], where ϕ and � denote the density

function and cdf of the standard normal and z = µw/σw . The expected minimum is

then given by

E(min{X, Y }) = µx − σw [ϕ(z) + z�(z)] (11.4)

256 STOCHASTIC FLOW SHOP SCHEDULING

� Example 11.3 Consider the following five-job, two-machine flow shop prob-

lem in which the jobs have normally distributed processing times on the two machines,

A and B

Job j 1 2 3 4 5

Mean A 9.94 10.14 10.15 10.30 10.45

Standard deviation A 0.32 0.02 0.73 0.91 0.27

Mean B 10.16 10.16 10.26 10.45 10.46

Standard deviation B 0.74 0.11 0.76 0.20 0.05

The application of Johnson’s Rule to the deterministic counterpart leads to

the sequence 1-2-3-4-5. Using (11.4), Table 11.1 records the differences between

E(min{Ai , B j }) and E(min{A j , Bi }) for these jobs, with job i corresponding to

a row and j to a column. For instance, the calculations for E(min{A1, B2})
yield µw = µx − µy = 9.94 − 10.16 = −0.22, σ 2

w = 0.322 + 0.112 = 0.3382, so

zw = −0.22/0.338 = −0.65, leading to E(min{A1, B2}) = 9.94 − 0.338(0.3229 −
0.65 × 0.2578) = 9.89. Similarly, E(min{A2, B1}) = 9.86. The first entry in the ta-

ble is the difference 9.89 − 9.86 = 0.03 (approximately).

When the entry in row i and column j is negative, then placing job i directly ahead

of j is stable. Here, no pair in the Johnson sequence is stable except the last. In the

API Heuristic, we work from left to right, so the first interchange occurs between jobs

1 and 2. As a result, jobs 1 and 3 become adjacent and unstable, so we interchange

job 3 with job 1, obtaining 2-3-1-4-5. With the first pair now unstable, we interchange

jobs 2 and 3, obtaining 3-2-1-4-5. Job 4 then migrates to the first position in a similar

manner, giving us a stable API sequence, 4-3-2-1-5. However, it is not the only stable

sequence. For example, the sequence 4-3-5-2-1 is also stable. Thus, no transitive

optimality condition can hold for the normal distribution.

Although more than one stable solution exists in Example 11.3, the API Heuristic

yields a sequence that is slightly superior to the deterministic counterpart sequence

in terms of the mean but with a higher standard deviation. Using Risk Solver with a

sample size of one million, we estimated the mean for the API sequence at 62.29 and

the mean for the deterministic counterpart sequence at 62.30, with standard deviations

of 1.29 and 0.95, respectively. However, in some instances, the deterministic counter-

part sequence could yield a lower expected makespan than the API sequence. Thus,

TABLE 11.1

Job Index 2 3 4 5

1 0.033 0.006 0.166 −0.037

2 0.032 0.275 0.005

3 0.168 −0.037

4 −0.305

STOCHASTIC COUNTERPART MODELS 257

even when the deterministic counterpart sequence is not stable, the API heuristic is

not guaranteed to improve on it.

The existence of more than one stable sequence proves that there can be no tran-

sitive sorting rule for normal processing times. Suppose, however, that all processing

times are distributed normally with equal means µ but different variances, V(A j),

V(B j), and so on. Then, by (11.4),

E(min{A1, B2}) = µ − ϕ(0)[V(A1) + V(B2)]1/2

and similarly,

E(min{A2, B1}) = µ − ϕ(0)[V(A2) + V(B1)]1/2

Therefore, E(min{A1, B2}) ≤ E(min{A2, B1}) if and only if V(A1) + V(B2) ≥
V(A2) + V(B1)], or equivalently,

V(A1) − V(B1) ≥ V(A2) − V(B2)

In this special case, then, the API Heuristic does lead to a transitive sorting rule.

This rule tends to place operations with high variance at the beginning or end of

the schedule, whereas for operations performed in parallel, it favors low variances.

Such placement aims to reduce the Jensen gap, which tends to be large when two

high-variance activities are performed in parallel. The following example elaborates

on this point.

� Example 11.4 Consider a two-job, two-machine flow shop problem with inde-

pendent processing times. Let A1 = B2 = 1 − ε (where 0 ≤ ε ≤ 1), with certainty,

and let A2 and B1 be independent exponential random variables with mean 1.

Initially, assume ε = 0, creating a tie when we solve the deterministic counterpart.

For both sequences, the makespan in the deterministic counterpart is exactly 3. If we

make ε slightly positive, however, the sequence 1-2 becomes the unique solution to

the deterministic counterpart, with a makespan of 3 − 2ε. The makespan of sequence

2-1 is longer, at 3 − ε, and this is also the expected value of the makespan in the

stochastic counterpart. If we use the sequence 1-2 in the stochastic counterpart,

the two exponentials are processed in parallel. The expected value of the larger of

the two is 1.5. Therefore, the expected value of the makespan under the sequence 1-2

is 3.5 − 2ε. In other words, the optimal sequence for the deterministic counterpart is

suboptimal in the stochastic problem.

In addition, the variance of the makespan for sequence 2-1 is 2, whereas the

variance of the makespan for sequence 1-2 is 1.25. The example thus also shows

that when the makespan is the objective for the stochastic problem, the sequence that

minimizes the mean may not minimize the variance.

The deterministic counterpart is a good starting sequence for the API Heuristic

because Johnson’s Rule is asymptotically optimal for any independent processing

258 STOCHASTIC FLOW SHOP SCHEDULING

time distributions. For this result to hold, we require all jobs to satisfy two regularity

conditions.

R1. (1/u)
∑

j=1,...,u (E(A j) + E(B j)) ≥ 2δ, where δ > 0; u = 1, 2,

R2. (1/u)
∑

j=1,...,u (V(A j) + V(B j)) ≤ γ 2, where γ is finite; u = 1, 2,

If, for example, processing times tend to decrease according to a geometric pro-

gression, then asymptotic optimality is not guaranteed. Condition R1 rules that out.

Similarly, condition R2 requires that the average variance in the system, defined by

(1/n)
∑

j=1,...,n (V(A j) + V(B j)), should not be an unbounded increasing function

of n. The conditions are met, for instance, if jobs are selected at random from some

pool of potential jobs, all with finite variances.

� Theorem 11.3 Consider a stochastic two-machine flow shop with independent

processing time distributions subject to regularity conditions R1 and R2. Let sJ

denote the deterministic counterpart sequence (from Johnson’s Rule), s∗ the optimal

sequence, and M(s) the makespan associated with the sequence s. Then, as n → ∞,

E[M(sJ) − M(s∗)]/E[M(s∗)] → 0 with probability 1.

The formal proof is beyond our scope. Essentially, it shows that the Jensen gap is

bounded from below by 0 and from above by a function that is proportional to the

square root of the total variance in the system,
∑

i=1,...,n (V(Ai) + V(Bi)). Because

the Jensen gap is nonnegative, E[M(s∗)] cannot be lower than the makespan of

the deterministic counterpart, which in turn cannot be lower than the deterministic

counterpart makespan of sJ . Moreover, because the total variance grows in proportion

to the number of jobs and the average variance of each, the square root becomes

relatively negligible for large n.

As a consequence of Theorem 11.3, the advantage of Talwar’s Rule over the

deterministic counterpart solution becomes negligible for large n, even in the case

of exponential processing times. It is therefore plausible that this advantage tends to

decrease with n.

11.3 SAFE SCHEDULING MODELS WITH

STOCHASTIC INDEPENDENCE

In the safe scheduling problem with due dates as decisions, we start by considering

two basic problems: (1) minimizing d subject to a service-level constraint and (2)

minimizing d + γ E(T). The same sequence is not guaranteed to solve both versions

even for the same optimal service level.

The analysis of makespan behavior in the stochastic flow shop is mathematically

challenging. One of the few cases in which algebraic derivations are possible is the

two-job, two-machine case with simplified processing time distributions.

SAFE SCHEDULING MODELS WITH STOCHASTIC INDEPENDENCE 259

� Example 11.5 Consider a two-job, two-machine flow shop problem with the

following processing time specifications.

Machine Job 1 Job 2

1 1 U

2 U 1

The processing times denoted 1 are deterministic. The processing times denoted U

follow a uniform distribution with a range of (0, 3).

In Example 11.5, we might first compare the deterministic counterparts for the

two sequences. Sequence 1-2 leads to a makespan of 3.5, whereas sequence 2-1 leads

to a makespan of 4. Thus, in the deterministic counterpart, the sequence has an effect

on the makespan.

The stochastic analysis of the makespan requires expressions for the sum of two

random variables and for the maximum of two random variables. We omit the details

but show the results graphically in Figure 11.1. We can show algebraically that

both sequences have an expected makespan of 4, and their cdfs intersect at 13/3,

corresponding to a service level of SL = 0.605.

First, consider the problem of minimizing d subject to the service-level target

SL = 0.6. The sequence 2-1 attains SL = 0.6 for d = 4.317, just to the left of the

intersection depicted in Figure 11.1. At that value, the cdf for sequence 2-1 lies above

the cdf for sequence 1-2 and provides the better solution.

Now consider the problem of minimizing d + γ E(T) with γ = 2.5, which is

equivalent to requiring an optimal service level of SL = 0.6. It can be shown that

d + γ E(T) is minimized by the sequence 1-2 with d = 4.324. This relatively simple

Sequence 1-2

Sequence 2-1

1
0.0

0.2

0.4

0.6

0.8

1.0

S
e
rv

ic
e
 L

e
v
e
l

2 3 4

Makespan

5 6 7

FIGURE 11.1 Comparison of the cdfs for two sequences in Example 11.5.

260 STOCHASTIC FLOW SHOP SCHEDULING

example demonstrates that even with a common service-level target, the two safe

scheduling formulations do not necessarily lead to the same optimal sequence.

Examples of this type rely on the property that the cdfs of the two makespan

distributions intersect each other shortly after the due dates that achieve the prescribed

service levels. For any SL ≥ 0.605, the sequence 1-2 is optimal for both objectives.

If a stochastically minimal sequence exists (as in the case of two machines and

exponential processing times), then its cdf does not intersect the cdf of any other

sequence. A stochastically minimal sequence would be optimal for both objectives.

(We encountered this type of result earlier, in Theorem 8.7.)

For the objective of minimizing d + γ E(T), our general analysis parallels that of

previous chapters, as summarized in the steps below.

1. The optimal due date is given by the critical fractile formula,

SL = Pr{Cmax ≤ d∗} = (γ − 1)/γ

where Cmax denotes the makespan of the schedule.

2. Assuming—as an approximation—that Cmax follows a normal distribution with

mean µ and standard deviation σ , we can also write

d∗ = µ + z∗σ

so that z∗ represents the optimal standard normal variate corresponding to d∗.

3. The optimal value of the objective function can then be calculated as H (d∗),

where

H (d∗) = d∗ + γ E(T) = µ + γ σϕ(z∗)

We simulated sequences for a seven-job, five-machine flow shop with indepen-

dent normally distributed processing times. We compiled a stored sample of 1000

realizations. For a particular sequence, the estimated mean makespan was 126.12 and

the estimated standard deviation was 5.35. A chi-square goodness-of-fit test did not

reject the hypothesis that the makespan distribution was normal. For γ = 10, corre-

sponding to a service level of 90%, we would therefore set z∗ = 1.282 and obtain

H (d∗) = 135.50.

The formula for H (d∗) also highlights the marginal economic trade-off between

mean and standard deviation. Specifically, we should be willing to increase µ by

up to γ ϕ(z∗)units for every unit decrease in σ , or 12.82 in our instance. This is

formally true only when the optimal service level is used, but otherwise it is even

more important to decrease σ .

Two extensions of Theorem 11.3 apply to safe scheduling. Specifically, Johnson’s

Rule is asymptotically optimal for any independent processing time distributions,

not only for the stochastic counterpart model in Theorem 11.3, but also for safe

scheduling. We consider a stochastic n-job, two-machine flow shop model with

FLOW SHOPS WITH LINEAR ASSOCIATION 261

independent processing time distributions subject to regularity conditions R1 and

R2 given earlier. Again, we use sJ to denote the deterministic counterpart sequence

(given by Johnson’s Rule) and s∗ to denote the (unknown) optimal sequence.

� Theorem 11.4 Consider the objective of minimizing d subject to a service-

level constraint SL ≥ b. Let d∗(s) denote the optimal value associated with the

sequence s. Then, as n → ∞, [d∗(sJ) − d∗(s∗)]/d∗(s∗) → 0 with probability 1.

� Theorem 11.5 Consider the objective of minimizing Z (s) = d + γ E(T). Let

Z∗(s) denote the optimal value of the objective function associated with the sequence

s. Then, as n → ∞, [Z∗(sJ) − Z∗(s∗)]/Z∗(s∗) → 0 with probability 1.

These last two theorems portray the state of the art in safe scheduling for the

flow shop model. Thus far, the only safe scheduling results apply to the makespan

problem. However, the state of the art resembles the traditional analysis of flow shop

models, where little progress has been made beyond analyzing the makespan, except

for special cases.

11.4 FLOW SHOPS WITH LINEAR ASSOCIATION†

We next remove the stochastic independence assumption and replace it by linear

association, building on the results of Appendix A.4. As usual, we focus on the

makespan objective. Theorems A.4, A.5, and A.6 assume a job shop environment,

but a flow shop is a special case, so those theorems apply. Propositions A.1 and A.2 are

also valid, suggesting that with safe scheduling models, we cannot rely on the initial

solution to remain correct after the adjustment. Instead, it is necessary to calculate

due dates and compare sequences after the adjustment. With this background, we

address some flow shop models specifically.

The two-machine two-job model is solved by comparing two minima, and we

prefer to run job 1 first if E(min{A1, B2}) ≤ E(min{A2, B1}). By Theorem A.3 and

Corollary A.1, our preference to schedule job 1 first does not change after adjustment.

That is, we can sequence by the initial processing times and the result is optimal for

the linearly associated times. By serially implementing Theorem A.2 (according to

which the sum of adjusted random variables is equal to the adjusted sum of their

initial values) and Theorem A.3, we can see that the cdf of the makespan of a flow

shop subject to linear association is given by the initial cdf of the same shop adjusted

afterwards. By applying Theorem A.1 we obtain the following result.

� Theorem 11.6 For a shop with linearly associated processing times with a

common factor Q, let s1 and s2 be two sequences, let M(s j) be the adjusted makespan

of sequence s j , and let M ′(s j) be the initial makespan of the same shop. If M ′(s1) ≥ex

M ′(s2), then M(s1) ≥ex M(s2), and if M ′(s1) ≥st, M ′(s2) then M(s1) ≥st M(s2).

†This section builds on specialized material in Appendix A.

262 STOCHASTIC FLOW SHOP SCHEDULING

Thus, for the stochastic counterpart m-machine flow shop, the optimal sequence

subject to an independent processing time assumption remains optimal if we introduce

a common factor and obtain linearly associated processing times. Furthermore, if a

stochastically dominant sequence exists, it remains stochastically dominant. As an

example, suppose that we have independent exponentially distributed raw processing

times subject to a common factor element that need not be exponential. Then Talwar’s

Rule can be applied to the raw processing times and the result remains stochastically

minimal after introducing the factor even though the adjusted distributions are not

exponential.

By Theorem A.3, the optimal initial solution of the no-wait two-machine model re-

mains optimal under linear association. In fact, practically all the results we presented

for deterministic counterpart models remain valid for the linearly associated case. To

cover safe scheduling flow shop models, we make use of Theorems A.5 and A.6 that

provide the variance and coefficient of variation of adjusted variables. Theorem A.6

indicates that the squared coefficient of variation (scv) of the product exceeds the

sum of the scvs of the components, and therefore the coefficient of variation of the

product exceeds that of either component. In our context, the more important aspect

of this observation is that the coefficient of variation of the makespan cannot be less

than that of Q. Recall Example A.1 and Propositions A.1 and A.2: they could be

recast for this chapter without any substantial change. In particular, empirical results

and the lognormal central limit theorem (Appendix A) suggest that approximating

the makespan by a lognormal approximation of a normal random variable would be

appropriate.

11.5 EMPIRICAL OBSERVATIONS

Finding the minimum expected makespan for the stochastic flow shop is a challenging

problem, and our main practical tools are likely to be heuristic procedures. For the

two-machine case, we have only heuristic methods available unless we know that

the processing time distributions are exponential. (Even in that special case, we can

calculate the optimal sequence, but finding the distribution of the makespan, or even

its mean, remains a formidable computational task.) For more than two machines,

we might try to adapt heuristic procedures that perform well in the deterministic

counterpart, but it would also be desirable to develop some general insights into this

complicated problem.

In Example 11.3, we found that the API Heuristic generated a better sequence

for the stochastic problem than Johnson’s Rule as applied to the deterministic coun-

terpart. Thus, compared to Johnson’s sequence, the optimal stochastic sequence

can have a higher makespan in the deterministic counterpart but a lower mean in

the stochastic counterpart. This relationship implies that the Jensen gap must be

smaller for the optimal sequence than for the sequence obtained from the deter-

ministic counterpart. Similar observations could be made in Examples 11.1 and

11.2. In the former, the optimal makespan of 19.33 is associated with a determin-

istic counterpart makespan of 18—a Jensen gap of 1.33, whereas the deterministic

EMPIRICAL OBSERVATIONS 263

makespan of 17 leads to 19.50—a Jensen gap of 2.50. Based on such examples,

we might guess that the best sequence is one with a small Jensen gap. Similarly,

we might guess that the best sequence for safe scheduling is also one with a small

Jensen gap.

We call a schedule dense if its deterministic counterpart makespan is small—that

is, if it exhibits relatively little idle time. Otherwise, the schedule is called loose. In

a deterministic context, we would say that dense is “good,” and loose is “bad.” We

might hypothesize that dense and loose schedules should perform roughly equally

when stochastic processing times are involved. The intuitive reasoning would be that

loose schedules provide protection with the very idleness built into them, so they

should exhibit lower variance.

To elaborate on this argument, dense schedules are vulnerable to the Jensen gap

because they are finely tuned and have little margin for stochastic variation. Stochastic

processing times should therefore inflate the mean makespan of the deterministic

counterpart. On the other hand, loose schedules contain more idle time and should

be better able to absorb stochastic variations. The idle time should provide protection

from a similar kind of inflation. Given the limits of our current theoretical knowledge,

however, such hypotheses can only be tested empirically. To that end, we turn to

empirical results obtained by simulation.

We explored the properties of dense and loose schedules in a seven-job, five-

machine flow shop example. Using simulation, we created a stored sample of 1000

realizations, and we compared all 5040 permutation schedules. We then tested each

schedule to estimate the mean and the standard deviation of its makespan. The results

allowed us to develop some quantitative perspective on the nature of the Jensen gap

and the relationship between means and standard deviations. (The approximately

normal makespan distribution that we discussed earlier belongs to one of those 5040

sequences.)

Figure 11.2 shows the Jensen gap as a function of the deterministic counterpart

makespan for each permutation (called the nominal makespan). As expected, the

Jensen gap is decreasing in the nominal makespan. Although the Jensen gap indicates

the extent of the bias that occurs when the deterministic counterpart is used as a

predictor of the stochastic outcome, it does not follow that schedules with large

Jensen gaps are necessarily poor. In fact, the experiment showed just the opposite.

Figure 11.3 plots the mean makespan of each sequence as a function of the nominal

makespan, showing that dense schedules produce the smaller expected makespans.

Jensen Gap

0

2

4

6

8

105 110 115 120 125 130 135

FIGURE 11.2 The Jensen gap as a function of the nominal makespan.

264 STOCHASTIC FLOW SHOP SCHEDULING

Mean

116

118

120

122

124

126

128

130

132

105 110 115 120 125 130 135

FIGURE 11.3 The mean makespan as a function of the nominal makespan.

(The data points in this figure can be obtained from Figure 11.2 by adding the nominal

makespan to the Jensen gap.) The mean makespan is increasing in the nominal

makespan. Thus, our intuitive hypothesis is not supported. The implication is that

solving the deterministic counterpart produces a good sequence for the stochastic

problem. At the same time, however, predicting the value of the expected makespan

requires that we adjust for the Jensen gap. Given the state of the art, simulation is

still the best way to estimate the bias.

As discussed earlier, we might expect that looser schedules would exhibit larger

means and smaller variances than dense schedules. In Figure 11.4, we show the

relationship between mean and standard deviation of the makespan for the 5040 se-

quences. Contrary to our intuition, the smaller makespan values tend to be associated

with smaller standard deviations.

In these experiments, the best schedules exhibited the largest Jensen gaps. In an

empirical sense, the observation that large Jensen gaps were associated with low

variance suggests that Jensen gaps somehow decrease variance. Nevertheless, when

it comes to predicting schedule length, dense schedules may lead to prediction errors

unless we allow for the Jensen gap. A dense schedule with a Jensen gap correction

(as well as a buffer for safety time) should therefore perform very well in practice

because it tends to have low variance and low mean. However, if we do not take the

Jensen gap into account, we may be better off with a loose schedule and a makespan

that is more likely to be achieved.

Standard Deviation

4.5

5

5.5

6

6.5

105 110 115 120 125 130 135

FIGURE 11.4 The standard deviation as a function of the expected makespan.

EMPIRICAL OBSERVATIONS 265

D+J+B

L+J+B D+J

L+J

L

D

Legend:

D = dense schedule
L = loose schedule
J = Jensen correction
B = buffer

FIGURE 11.5 Some dominance relationships among schedules.

Figure 11.5 depicts a ranking of options for predicting schedule length. At the

top, the most desirable option is to use a dense schedule but correct for the Jensen

gap and add a buffer for safety time. We denote this combination by D + J + B

(for dense + Jensen + buffer). Next come either dense schedules with a Jensen

correction but no safety time (D + J), or loose schedules with a Jensen correction

and a safety time buffer (L + J + B). We cannot order these options because both

are suboptimal in different ways, so they are depicted in parallel. These two options

dominate loose schedules with a Jensen correction but no safety time (L + J), which

in turn dominates loose schedules without any correction or buffer (L). At the very

bottom comes the raw dense schedule (D), because its inaccurate prediction is likely

to lead to disappointment.

In spite of these results, it would be a mistake to conclude that high Jensen gaps are

always associated with low variance. For instance, in Examples 11.1 and 11.2 we saw

that Talwar’s Rule produced makespans with high Jensen gaps and low variances when

compared with the Johnson’s Rule. Along similar lines, an exploratory simulation

study identified a case where sequences tended to yield very similar Jensen gaps

but quite different variances. The particular simulation tested the hypothesis that the

API Heuristic yields superior results for the case of normal distributions with equal

means, for which the pairwise-improvement condition is transitive. An experiment

was devised to study different allocations of variance to jobs with equal means,

subject to the same total variance in the system. When Johnson’s Rule compares

two operations with the same mean, a tie occurs. We break such ties in favor of

the smaller variance. With this tie-breaker in place, it is possible to allocate the

variances so that the API Heuristic reverses the Johnson sequence. Figures 11.6 and

11.7 portray the results of such a simulation, in which mean operation times are 10

and the total variance of each job is 2. The variance is allocated to operations starting

with 0 on machine A and 2 on machine B for job 1, finishing with 2 on machine A

266 STOCHASTIC FLOW SHOP SCHEDULING

0

5

10

15

20

25

30

35

40

Jensen Gap _Johnson

Jensen Gap _API

0 200 400 600 800 1000

FIGURE 11.6 The Jensen gap of the two sequences as a function of the number of jobs.

and 0 on machine B for job n. Across the set of n jobs, the variance is monotone

increasing on the first machine and monotone decreasing on the second. Using the tie-

breaker, the Johnson sequence is 1 − 2 − ... − n, and the API sequence is the reverse,

(n, n − 1, ..., 1). The results fail to confirm the hypothesis that API is the superior

sequence in this case: no discernible difference in the mean is observed (essentially the

same Jensen gap occurs in both cases), as depicted in Figure 11.6, where the horizontal

axis denotes the nominal makespan and the two graphs practically overlap. However,

the API Heuristic yielded a significantly higher standard deviation, as depicted in

Figure 11.7.

Whereas the disappointing results for the API Heuristic in the transitive normal

case are somewhat surprising, they support another hypothesis called the variance

effect. It states that if we ignore the mean job processing times and schedule by

variances—as if the variance were the processing time—then Johnson’s Rule tends

to yield sequences with low variance. The converse was also observed empirically:

scheduling by −σ 2
j tends to yield sequences with high variance.

Now consider the case where the mean and the variance are agreeable. We expect

that Johnson’s sequence might often be optimal in such a case because our empirical

0

5

10

15

20

25

30

35

0 200 400 600 800 1000

SD Makespan_Johnson

SD Makespan_API

FIGURE 11.7 The standard deviation of the two makespans.

SUMMARY 267

evidence suggests that the two criteria (reducing the mean and the standard deviation)

would be satisfied at the same time. When all means are equal, then means and

variances are agreeable, but in Figures 11.6 and 11.7, we saw that API reverses the

Johnson sequence. Thus, we might expect the API Heuristic to be inferior when

agreeability holds because it may lead the API Heuristic away from the Johnson

sequence. Indeed, the empirical results for the Johnson sequence in such cases were

good, but not perfect. Consider the case of exponential processing times, where

Talwar’s sequence is optimal but not identical to Johnson’s sequence. This is a case

where means and variances are agreeable. Furthermore, the API Heuristic, when based

on the true distributional values in Theorem 11.1 rather than a normal approximation,

converges to Talwar’s sequence in this case. Thus, there must be instances where the

API Heuristic is superior to Johnson’s Rule.

11.6 SUMMARY

Although the two-job, two-machine stochastic flow shop model is easy to solve, this

result does not lead to significant inroads even for the two-machine case with n jobs.

One heuristic based on the two-job result combined with API is useful sometimes, but

it also has a tendency to produce unnecessarily high variance. Thus, with one notable

exception—Talwar’s Rule—all stochastic flow shop models are difficult to solve even

for medium-size instances and even for m = 2. Even Talwar’s Rule—on top of the

fact that it requires the strong assumption that processing times are exponential—is

not sufficient for safe scheduling purposes. If we wish to determine optimal safety

time, then as a practical matter, we must use simulation to estimate the cdf of the

makespan. (For this case, calculating the makespan distribution analytically requires

exponential complexity.) This situation suggests that we should use heuristics and

rely on stored samples.

For two machines, we saw that using the deterministic counterpart (Johnson’s

Rule) is asymptotically optimal. Furthermore, the deterministic counterpart is also

asymptotically optimal for safe scheduling. Empirical experience suggests that this

result extends to m machines, but formal proofs have not yet been developed.

When processing times are exponential, Talwar’s Rule yields sequences with

low mean and low variance. Nonetheless, empirical results suggest that pursuing a

low Jensen gap by using schedules that aren’t dense can actually lead to makespan

distributions with a higher mean and a higher variance than those of the deterministic

counterpart sequence. This is surprising, especially when we consider that Johnson’s

Rule tends to yield a large Jensen gap. Nevertheless, this observation reinforces the

usefulness of Johnson’s Heuristic. But there is an important caveat: because the Jensen

gap tends to be large for the deterministic counterpart, it is imperative to recognize

it for scheduling purposes and allow enough time for it. Otherwise, the schedule is

practically guaranteed to be misleading, and practitioners would be justified if they

were to conclude that the best deterministic counterpart sequence is not desirable in

practice. Thus, using the deterministic counterpart may not be successful unless safe

268 STOCHASTIC FLOW SHOP SCHEDULING

scheduling principles are pursued to account for the true mean, including the Jensen

gap.

We also saw that when linear association is involved, the Jensen gap is not nec-

essarily the most important issue for effective safe scheduling. The dominating issue

may well be that the standard deviation of the makespan is likely to grow almost

linearly with the mean, so we must not use safety times that tend to zero for large

n. Again, the problem is easy to resolve once we understand the issue. Also, if the

Jensen gap is expressed as a fraction of the makespan, it remains constant under linear

association. Furthermore, Johnson’s Heuristic can safely be applied to the initial pro-

cessing times, ignoring the adjustment for linear association, because it is sufficient

to apply the adjustment to the final results.

The conclusions we obtained for the flow shop can be considered special cases of

job shops, and thus they are also useful as a heuristic guide for more complex shops

and for project scheduling.

REFERENCES

Clark, C.E. (1961). The greatest of a finite set of random variables, Operations Research 9,

145–162.

Cunningham, A.A. and S.K. Dutta (1973). Scheduling jobs with exponentially distributed

processing times on two machines of a flow shop, Naval Research Logistics Quarterly 16,

69–81.

Dodin, B. (1996). Determining the optimal sequences and the distributional properties of their

completion times in stochastic flow shops, Computers & Operations Research 23, 829–843.

Johnson, S.M. (1954). Optimal two- and three-stage production schedules with setup times

included, Naval Research Logistics Quarterly 1, 61–68.

Kamburowski, J. (1999). Stochastically minimizing the makespan in two-machine flow shops

without blocking, European Journal of Operational Research 112, 304–309.

Kamburowski, J. (2000). Non-bottleneck machines in three-machine flow shops, Journal of

Scheduling 3, 209–223.

Ku, P.-S. and S.-C. Niu (1986). On Johnson’s two-machine flow shop with random processing

times, Operations Research 34, 130–136.

Makino, T. (1965). On a scheduling problem, Journal of the Operations Research Society

Japan 8, 32–44.

Pinedo, M. (1982). Minimizing the expected makespan in stochastic flow shops, Operations

Research 30, 148–162.

Portougal, V. and D. Trietsch (1998). Makespan-related criteria for comparing schedules in

stochastic environments, Journal of the Operational Research Society 49, 1188–1195.

Portougal, V. and D. Trietsch (2001). Stochastic scheduling with optimal customer service,

Journal of the Operational Research Society 52, 226–233.

Portougal, V. and D. Trietsch (2006). Johnson’s problem with stochastic processing times and

optimal service level, European Journal of Operational Research 169, 751–760.

Talwar, P.P. (1967). A note on sequencing problems with uncertain job times, Journal of the

Operations Research Society Japan 9, 93–97.

EXERCISES 269

EXERCISES

11.1. The following array records the differences E(min{Ai , B j }) − E(min{A j , Bi })
for a set of five jobs, with job i corresponding to a row and j to a column.

When the entry in row i and column j is negative, then placing job i directly

ahead of j is stable.

Job 2 Job 3 Job 4 Job 5

Job 1 −6.00 2.91 6.09 0.71

Job 2 6.01 −2.50 1.00

Job 3 3.66 0.77

Job 4 0.99

a. Using the API Heuristic, find a stable job sequence, starting with the se-

quence 1-2-3-4-5.

b. Is the sequence in (a) the only stable sequence?

11.2. Consider the following five-job, two-machine flow shop problem with expected

makespan objective. Each processing time follows a normal distribution, with

the parameters for mean and standard deviation given in the table.

Job j 1 2 3 4 5

µA j
8 12 15 10 14

µB j
12 15 14 8 10

σA j
1 2 3 1 2

σB j
2 2 3 2 1

Find a solution using Talwar’s Heuristic, Johnson’s Heuristic, and the API

Heuristic. Initialize the API Heuristic with the solution generated by Johnson’s

Heuristic.

11.3. Find the solution to the problem in the previous exercise using the Evolutionary

Solver.

11.4. Consider a two-machine three-job example with independent normally dis-

tributed processing times.

Job j 1 2 3

µA j
20 19 20

µB j
20 19 20

σA j
5 1 5

σB j
5 2 5

270 STOCHASTIC FLOW SHOP SCHEDULING

a. Find the Johnson sequence (with ties broken by the smaller variance).

b. Find a stable sequence. Is it the only stable sequence?

c. Using simulation, compare the two sequences found above with the se-

quence 1-2-3 and determine which is optimal for the stochastic counterpart.

Based on the results, is it true that an optimal sequence must be stable?

11.5. Consider the following five-job, two-machine flow shop problem. Each pro-

cessing time follows a normal distribution, with the parameters for mean and

standard deviation given in the table.

Job j 1 2 3 4 5

µA j
8 12 15 10 14

µB j
12 15 14 8 10

σA j
1 2 3 1 2

σB j
2 2 3 2 1

a. Estimate the mean and the standard deviation of the makespan for the job

sequence 1-2-3-4-5, by simulation. Using these estimates, compute the due

date for which the sequence provides a service level of 75%.

b. Using the simulation results from part (a), compute the optimal due date

for minimizing the function H (d) = d + γ E(T), with γ = 5.

c. Find the job sequence that minimizes the value of H (d) = d + γ E(T), with

γ = 5.

11.6. Show that the complexity of the API Heuristic is O(n2). Does your proof

extend to the complexity of finding all stable sequences?

11.7. Prove that if a transitive rule can generate an optimal sequence for the stochas-

tic counterpart two-machine flow shop problem, then API is guaranteed to

converge to that optimal solution. Does your proof suffice to show that if there

is only one stable sequence then the sequence is optimal?

12
LOT STREAMING PROCEDURES
FOR THE FLOW SHOP

12.1 INTRODUCTION

Lot streaming is the process of splitting a job into sublots so that its operations can be

overlapped. We can think of lot streaming as a special type of lot splitting. The term

lot splitting refers to breaking a given lot size into smaller sublots during production.

The lot size itself is a predetermined quantity, typically set by the customer or by

planning processes that precede scheduling. The opportunity to split lots arises in

the short term—in the implementation of a detailed schedule—and two cases are

worth distinguishing. The more common case involves interrupting a job, performing

other kinds of work, and later returning to finish the interrupted job. We refer to this

phenomenon as preemption, which is motivated by a desire to implement appropriate

priorities in a situation where two or more jobs compete for limited resources.

The second case involves overlapping operations for a given job. Before an entire

job is complete on a particular machine, some portion of the job is moved ahead to

a downstream operation. We refer to this case as lot streaming, which is motivated

by a desire to move a job through several work stations as quickly as possible. Lot

streaming is distinct from preemption because it deals with a particular job: rather

than give priority to another job, the objective is to expedite the current job.

The concept of lot streaming appears in various places in the literature on pro-

duction. For example, one motivation for group technology is the potential benefit

for lead time and work-in-process inventory levels when operations are overlapped

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

271

272 LOT STREAMING PROCEDURES FOR THE FLOW SHOP

in a manufacturing cell. In addition, the concepts of synchronous manufacturing in-

clude the distinction between process batch and transfer batch. The process batch

is essentially the predetermined lot size, whereas the transfer batch is the size of a

sublot moved from one operation to the next, permitting operations to overlap and

throughput to be increased. In highly repetitive JIT production, the aim is to reduce

setups enough to make the process batch very small. In those circumstances, we need

not distinguish between the process batch and the transfer batch. However, when

setup times remain large, the use of a small transfer batch is attractive.

The basic lot streaming model is a one-job flow shop model in which the lot

size is known. To accelerate the job as much as possible, we look for a minimum

makespan. Even when the overall criterion is something other than the makespan,

minimizing the makespan of individual jobs improves performance. One example

concerns utilization: as we saw in Chapter 10, reducing the makespan reduces total

idleness of the machines, so this objective is associated with increased throughput.

As another example, if we were solving an instance of the T-problem for n jobs in

a flow shop (which is quite a difficult problem), a reasonable strategy would be to

build a good schedule without lot streaming and then apply lot streaming procedures

locally for each job to reduce job completion times (and hence total tardiness) even

further.

� Example 12.1 Consider a lot streaming problem consisting of 100 units to

be processed sequentially by five machines with unit processing times of 5, 9, 4, 7,

and 6.

Without lot streaming, the job is in process for a time of 3100. When we invoke lot

streaming and split the job into two equal sublots, this time drops to 2000, as shown

in Figure 12.1.

2000

5050

5050

50 50

5050

5050

FIGURE 12.1 A solution to Example 12.1 with two equal sublots.

THE BASIC TWO-MACHINE MODEL 273

12.2 THE BASIC TWO-MACHINE MODEL

12.2.1 Preliminaries

The production model is a flow shop made up of m machines. A job lot, consisting

of U identical items, must proceed in sequence through m operations, one at each

machine. The processing time per unit at machine i is denoted pi . Thus, without lot

streaming, the makespan for the lot becomes

M = U

m
∑

i=1

pi

If the lot can be split, then lot streaming may allow M to be reduced. To describe

a schedule containing sublots, we let L i j represent the size of the jth sublot on

machine i . (It may be useful to think about L i j as the number of items contained

in the jth transfer lot emanating from machine i.) As a convenient alternative, it is

sometimes helpful to use decision variables xi j , denoting the relative size of the jth

sublot on machine i . That is,

xi j = L i j/U

where, for each machine i ,

∑

j

L i j = U

or equivalently,

∑

j

xi j = 1

As in the flow shop model, we can work with the reversed problem, in which

the machines and sublots are reversed in sequence. More formally, the processing

time on the ith machine in the reversed problem is pm−i+1. The optimal solution can

always be obtained by solving the reversed problem and reversing the schedule.

We are ultimately interested in solving a form of the problem in which the vari-

ables L i j are integers, corresponding to the discrete number of units in each sublot.

Typically, this discrete version of the problem can be formulated as an integer linear

program. Anticipating that this may be a difficult problem to solve, however, we

may at least gain some insight from solving a continuous version of the problem, in

which we relax the integer restrictions. We might actually be able to implement the

continuous solution directly if it happens to be integer, or if we are willing to round

off fractions in the continuous solution. (Such rounding may be acceptable if U is

large and the number of sublots is small.) In addition, the optimal makespan in the

continuous version serves as a lower bound on the optimal makespan in the discrete

version, and the makespan produced by rounding the continuous solution serves as

an upper bound.

274 LOT STREAMING PROCEDURES FOR THE FLOW SHOP

In the discrete version, we can minimize the makespan by assigning just one

item to each sublot—that is, by setting L i j = 1. Nevertheless, there may be practical

considerations that make it undesirable to have a large number of unit-sized sublots.

For example, there may be limited material handling equipment or difficulties in

tracking a large number of small sublots. Thus, we formulate the basic lot streaming

problem with a constraint on the number of sublots.

In general, the transfer lots between machines i and (i + 1) may differ from the

transfer lots between machines (i + 1) and (i + 2). Thus, the general form of the

model allows for variable sublots. However, there may be technological constraints

that affect the formation and movement of sublots, and in some applications, we may

want to preserve the integrity of sublots throughout the schedule. If the sublot size

is the same at each machine (L i j = L j), we call the sublots consistent. Any set of

consistent sublots satisfies the conditions of an ordered flow shop (see Chapter 10),

if we think of the sublots as jobs. Thus, if a set of consistent sublots is determined,

we should want to sequence them in a pyramid sequence (an SPT/LPT sequence).

In some applications, a requirement may be imposed that each machine, once

started, must process the entire lot continuously, with no idling. Such a restriction,

when imposed on the first machine, does not affect the optimal makespan, and by

symmetry, the same is true for the last machine. Thus, in the two-machine problem,

the no-idling restriction does not affect the optimal makespan. When imposed on

intermediate machines in larger problems, however, this restriction may increase the

optimal makespan.

The least restrictive model allows variable sublots and intermittent idling. By

comparison, the assumption of no idling is a special case, and the assumption of con-

sistent sublots is a special case. Thus, the model with variable sublots and intermittent

idling dominates the others. From a scheduling point of view, it is unwise to impose

additional restrictions, such as consistent sublots or no idling, unless a technological

reason requires it. The only exception is the two-machine model, where performance

is not sacrificed by assuming consistent sublots or no idling.

No dominance exists between a model prescribing variable sublots with no idling

and a model prescribing consistent sublots with intermittent idling; but either model

dominates the case of consistent sublots with no idling.

12.2.2 The Continuous Version

We begin the analysis with the two-machine case, which is the simplest lot streaming

model. The concept of variable sublots does not really apply to the two-machine

problem because only one set of transfers occurs. Therefore, we can assume the use

of consistent sublots. Specifically, let s denote the number of sublots. For convenience,

we can rescale the problem so that p1 = 1 and p2 = q, and we can take U = 1. Sublot

k must be preceded by (k − 1) sublots on machine 1 and followed by (s − k) sublots

on machine 2. Thus, the makespan must satisfy

M ≥

k
∑

j=1

x j + q

s
∑

j=k

x j (12.1)

THE BASIC TWO-MACHINE MODEL 275

When k = s, the inequality simplifies to M ≥ 1 + qxs > 1, and when k = 1, it

simplifies to M ≥ q + x1 > q. Thus, we have

M > max{1, q} (12.2)

In addition, the inequality in (12.1) must be satisfied as an equation for at least one

index k. Let c denote such an index. We refer to sublot c as critical, and we have

M =

c
∑

j=1

x j + q

s
∑

j=c

x j (12.3)

The following property characterizes the solution that minimizes makespan.

� Theorem 12.1 In the optimal solution for a two-machine lot streaming prob-

lem, all sublots are critical.

Proof. Assume there is a schedule S that attains the optimal makespan M but in

which sublot k is noncritical. We will show how to increase the size of sublot k and

reduce the sizes of all other sublots in order to improve the makespan. By definition

of a noncritical sublot, we have

M −

k
∑

j=1

x j − q

s
∑

j=k

x j = � > 0 (12.4)

Now construct schedule S′ (with primes denoting its sublot sizes) by setting

x ′
k = xk(1 − δ) + δ and x ′

j = x j (1 − δ) for all j �= k

where 0 < δ < �/(� + 1 + q − M). We know this fraction is no larger than one,

because any form of lot streaming yields M ≤ 1 + q. If M′ is the makespan for

schedule S′, then

M ′ =

c′

∑

j=1

x ′
j + q

s
∑

j=c′

x ′
j (12.5)

for some index c′. If c′ = k, then substitution in (12.5) for x ′
j yields

M ′ = (1 − δ)

k
∑

j=1

x j + q

s
∑

j=k

x j

 + δ(1 + q) (12.6)

276 LOT STREAMING PROCEDURES FOR THE FLOW SHOP

From (12.4) we have (
∑k

j=1 x j + q
∑s

j=k x j) = M − �. Substituting this relation

into (12.6) yields

M ′ = (1 − δ)(M − �) + δ(1 + q) = M + δ(� + 1 + q − M) − � < M (12.7)

where the inequality is obtained from the definition of δ. In other words, if we have

c′ = k, then we can improve on the optimal makespan. On the other hand, if c′ �= k,

then substitution in (12.5) for x ′
j allows us to write

M ′ ≤ (1 − δ)

c′

∑

j=1

x j + q

s
∑

j=c′

x j

 + δ max{1, q} (12.8)

which, in view of (12.1), gives us

M ′ ≤ (1 − δ)M + δ max{1, q} (12.9)

We know from (12.2) that M > max{1, q}. Thus, it follows that M ′ < M , so again,

we can improve on the optimal makespan. Thus, in either case, we can improve on

the optimum, which contradicts the assumption that S is an optimal schedule. Hence,

all sublots must be critical in an optimal solution.

From Theorem 12.1 it follows that the optimal schedule contains no idling, so

successive sublots satisfy the relation x j+1 = qx j . From this relation we obtain

x j = q j−1x1

and since the proportions must sum to 1, we have

s
∑

j=1

x j = x1

s
∑

j=1

q j−1 = 1

Therefore, the optimal set of sublot sizes is described by the proportions

x j = q j−1/(1 + q + q2 + · · · + qs−1) = q j−1(1 − q)/(1 − qs) (12.10)

Equivalently, successive sublots satisfy the relation L j = q L j−1 = q j−1 L1; or, in the

original item scale,

L j = Uq j−1(1 − q)/(1 − qs) (12.11)

Both (12.10) and (12.11) describe a geometric pattern of sublot sizes.

The optimal makespan must be equal to the time required by the first sublot on

machine 1 plus the time required for the entire lot on machine 2. In the rescaled

THE BASIC TWO-MACHINE MODEL 277

13.55 10.84 8.67 6.94

13.55 10.84 8.67

227.75

6.94

FIGURE 12.2 The continuous solution for Example 12.2.

model, this sum is x1 + q. In the original time scale, we obtain

M = U p1

1 − qs+1

1 − qs
(12.12)

All of these results assume that p1 �= p2, so that q �= 1. In the special case q = 1, we

obtain equal sublots L j = U/s, and M = U p1(1 + s)/s.

� Example 12.2 Consider a two-machine lot streaming problem containing

U = 40 units. The processing times are p1 = 5 and p2 = 4, and we seek a schedule

with s = 4 sublots.

Since we have q = 0.8, it follows from (12.11) that the optimal sublot sizes

are approximately Lj = (13.55, 10.84, 8.67, 6.94). From (12.12), the corresponding

makespan is M = 227.75. Without lot streaming the makespan would be M = 360,

so lot streaming improves the makespan by nearly 37%. The four-sublot schedule is

shown in Figure 12.2.

When the number of sublots becomes quite large, the makespan approaches

M = U max{p1, p2} (12.13)

In Example 12.2, this limit is 200. Therefore, we can compare the reduction of 37%

in the makespan achieved with four sublots to a reduction of 44.4%, which represents

a bound on the reduction that any amount of lot streaming could achieve. In other

words, the use of four sublots achieves about 83% of the benefit that could be obtained

using 40 sublots.

The determination of optimal sublot sizes for the continuous version of the model

can be generalized to m machines with a no-idling constraint and a prescribed number

of transfers between each pair of machines. In that case, we apply the two-machine

solution of Eq. (12.11) to adjacent machine pairs and thereby construct the optimal

schedule and the optimal makespan for m machines.

12.2.3 The Discrete Version

Now we require that the sublots correspond to an integer number of items. Looking

back at Example 12.2, we can see that a naive round-off rule will not be satisfactory,

278 LOT STREAMING PROCEDURES FOR THE FLOW SHOP

because (in that example) such a rule may lead us to round all the fractional sublot

sizes in the same direction. We thus need a more sophisticated procedure for finding

integer sublot sizes.

Let Sj denote the cumulative number of items in the first j sublots, that is,

S j = L1 + L2 + · · · + L j

Suppose we have a trial value M of the makespan. Define the late start time, L S j , for

the jth sublot on machine 2 as the latest time at which the jth sublot could begin on

machine 2 and still allow for all remaining work to be done on machine 2 by time M :

L S j = M − p2(U − S j−1)

For feasibility, we must complete the jth sublot on machine 1 no later than L S j ,

so that

p1S j ≤ M − p2(U − S j−1) (12.14)

or

S j ≤ [M − p2(U − S j−1)]/p1 (12.15)

This is a recursive formula for calculating S j in terms of S j−1. Equivalently, it

calculates the values of L j in sequence, starting with L1. To initialize the process,

we use S0 = 0, and we terminate the process if S j should reach U .

Observing that S j is increasing in S j−1, we choose each S j in turn to be as large

an integer as (12.15) will permit. If Ss < U , then our trial value of M must have been

infeasible, and the next trial value for the makespan should be slightly larger. In order

to find the appropriate increment in the trial makespan, let

f j = min{[M − p2(U − S j−1)]/p1, U } − S j

An interpretation of f j is as follows. If we operated machine 1 continuously and

transferred the jth sublot as late as possible (just in time for it to start at machine 2),

then f j would be the fraction of the next item that machine 1 would have processed

when the jth sublot arrived. In the actual schedule, we need not transfer the jth sublot

as late as possible.

Next, let e j = 1 − f j . Then the appropriate increment to M is given by

�M = p1(min j {e j })

The search procedure begins with the optimal makespan in (12.12) because it is a

lower bound on the discrete optimum. If the trial value proves to be infeasible, then

we increase it by �M and test the new trial value. We repeat these steps until the

trial value is feasible, which signals optimality. The optimal schedule is not always

THE BASIC TWO-MACHINE MODEL 279

11 9 7

229

13

13 11 9 7

FIGURE 12.3 The discrete solution for Example 12.2.

unique, and we can sometimes find an alternative optimum by solving the reversed

problem.

The above procedure requires at most s iterations so it is polynomial in s. This is

a significant result, because the alternative is solving an integer program.

As an illustration, we return to Example 12.2. The continuous optimum was

227.75, but because we have integer pi in this example, we know that the optimal

makespan must be integer. Thus, we start with a trial makespan of M = 228. Using

(12.15), we obtain

S1 ≤ min{[228 − 4(40)]/5, 40} = 13.6; S1 = 13; e1 = 0.4

S2 ≤ min{[228 − 4(27)]/5, 40} = 24.0; S2 = 24; e2 = 1.0

S3 ≤ min{[228 − 4(16)]/5, 40} = 32.8; S3 = 32; e3 = 0.2

S4 ≤ min{[228 − 4(8)]/5, 40} = 39.2; S4 = 39; e4 = 0.8

We have S4 < U , so the trial makespan is infeasible. We increment by �M =

p1(minj{ej}) = 5e3 = 1.0 and obtain a new trial makespan of M = 229. Repeating

the procedure, we obtain

S1 ≤ min{[229 − 4(40)]/5, 40} = 13.8; S1 = 13

S2 ≤ min{[229 − 4(27)]/5, 40} = 24.2; S2 = 24

S3 ≤ min{[229 − 4(16)]/5, 40} = 33.0; S3 = 33

S4 ≤ min{[229 − 4(7)]/5, 40} = 40; S4 = 40

Now, S4 = U , so the trial makespan is optimal. We have M = 229 and optimal sublot

sizes of Lj = (13, 11, 9, 7). As shown in Figure 12.3, only the third sublot is critical,

due to the integer constraints in the problem.

12.2.4 Models with Setups

In general, setups may apply to the whole batch, to each sublot, or to each item.

When setups occur for each item, setup time can be included in the item processing

time and our models require no change. For simplicity, we treat the other cases

separately, starting with batch setups (although both could apply in practice). If a

280 LOT STREAMING PROCEDURES FOR THE FLOW SHOP

setup is required once on each machine before the batch can start, two possibilities

exist. A setup is called attached if it cannot start until the arrival of the first sublot;

otherwise, the setup is separable and can be performed in advance, before the first

item arrives.

Let SUk denote the setup time on machine k. In the case of a separable setup,

consider two possibilities: (1) if SU1 ≥ SU2, then for the purpose of optimizing the

sublots, we can ignore both setups and just add SU1 to the makespan; (2) otherwise,

we can subtract min{SU1, SU2} from both setups and add it to the makespan without

changing the fundamental problem. Therefore, without loss of generality, we can

ignore SU1 and redefine SU2 as max{0, SU2 − SU1}. Next, let h1 = SU2/p1 denote

the number of items that can be processed on machine 1 while machine 2 is being set

up. No incentive exists to send any items to machine 2 before it is ready for them, so

L1 ≥ h1. More precisely, the continuous version is solved by setting L1 to max{L ′
1,

h1}, where L ′
1 is the value obtained for the basic model without setups. Subsequent

sublots should be geometric (because the no-idling principle remains intact), but the

final sublot may be reduced to avoid exceeding U items in total. If h1 > L ′
1, it may

happen that not all the sublots planned for will actually be needed.

When the setup is attached, we can ignore SU1 because it just adds a constant

to the makespan, and we should still follow the no-idling principle. However, SU2

should not be reduced because the setups cannot be performed in parallel. In this case,

the first sublot should be smaller than it would be without setups. When L1 reaches

machine 2, it takes SU2 + L1 p2 to finish processing it. During this time, machine 1

can process h1 + L1q items, and we can always adjust L1 to a high enough value to

justify sending these items to machine 2 immediately without further delay. Thus,

we obtain L2 = h1 + L1q > L1q (which demonstrates that L1 is indeed smaller than

L ′
1). Thereafter, we use geometric lots and obtain

L j = L j−1q = h1q j−2 + L1q j−1 = (h1 + L1q)q j−2

To determine L1, we start by setting L1 = 1, and if we can finish all the other items

without requiring more than s sublots in total, then this is the optimal solution.

Otherwise, we should increase L1 to ensure that s sublots will suffice. We define

Q = (1 − qs−1)/(1 − q), if q �= 1

= s − 1, if q = 1

Then, based on the no-idling requirement, we can show that

L1 = (U − Qh1)/(Q + qs−1)

We next consider the case of sublot setups. By nature, such setups are attached.

For example, we may need to stop the machine to mount the items that need to be

processed. The general solution follows similar analysis to that of the attached setup,

THE THREE-MACHINE MODEL WITH CONSISTENT SUBLOTS 281

but the details are beyond our scope. Instead, we address the special case of q = 1

(i.e., p1 = p2 = p), because it provides insight as to the general trade-off involved in

this model. We must balance the number of sublots: too few, and we lose the benefit

of lot streaming; too many, and we waste too much time on setups, increasing the

makespan.

Again, the key idea is the requirement of no idling. This implies that L j should

be set up and processed on machine 2 during the same period that L j+1 is set

up and processed on machine 1. Define h2 = {(SU2 − SU1)/p} as the number of

items that can be processed on machine 1 while machine 2 is being set up but after

machine 1 has completed its own setup (with a symmetric interpretation if h2 < 0).

Therefore, L j+1 = L j + h2, so that the sublots form an arithmetic series with a sum of

L1s + h2s(s − 1)/2. Thus, U = [L1 + h2(s − 1)/2]s, and L1 = U/s − h2(s − 1)/2.

The makespan includes the time to set up and process the first sublot on machine

1, the time to process all items on the second machine, and the time for s setups on

machine 2. We thus obtain M = SU1 + (L1 + U)p + SU2s. Substituting for L1 and

h2, and after some algebra, we obtain

M = pU/s + (s + 1)(SU1 + SU2)/2

This expression could also be derived by studying the reversed problem, so it should

not be surprising that the effect of the two setups is symmetric. Setting the derivative

with respect to s equal to 0, we obtain

s =

√

2pU

SU1 + SU2

To ensure an integer number, it is optimal to round down if ⌊s⌋/s > s/⌈s⌉ and round

up otherwise. Finally, solutions with discrete sublots for all the models discussed in

this subsection can be obtained by the same approach that we outlined earlier for the

case without setups.

12.3 THE THREE-MACHINE MODEL WITH CONSISTENT SUBLOTS

12.3.1 The Continuous Version

For the three-machine problem, we first consider the case in which consistent sublots

are required. Recall from our preliminary comments that this requirement may in-

crease the makespan beyond what might otherwise be attainable. However, our ap-

proach to the three-machine problem can also be used for the m-machine case.

For the special case of two sublots (s = 2), we can specify the solution with a

simple decision rule as follows.

282 LOT STREAMING PROCEDURES FOR THE FLOW SHOP

Algorithm 12.1 Solving the 3 × 2 Lot Streaming Problem

Case 1. For (p2)2 − p1 p3 > 0 and p1 ≥ p3,

set x1 = p1/(p1 + p2) and x2 = p2/(p1 + p2)

Sublots are in the ratio p1 : p2.

Case 2. For (p2)2 − p1 p3 > 0 and p1 < p3,

set x1 = p2/(p2 + p3) and x2 = p3/(p2 + p3)

Sublots are in the ratio p2:p3.

Case 3. For (p2)2 − p1 p3 ≤ 0,

set x1 = (p1 + p2)/(p1 + 2p2 + p3) and x2 = (p2 + p3)/(p1 + 2p2 + p3)

Sublots are in the ratio (p1 + p2):(p2 + p3).

In particular, the inequality (p2)2 ≤ p1 p3 appears to define the case of a “short”

operation time on machine 2, analogous to a dominated machine in the standard flow

shop model. Obviously, the solution depends on whether machine 2 is dominated.

When more than two sublots exist, we might guess that the optimum is of the

geometric form L j = q L j−1 = q j−1 L1. But that is not always the solution.

� Example 12.3 Consider a three-machine lot streaming problem with U = 90

units and processing times p1 = 2, p2 = 4, and p3 = 3. The job is to be processed

in three sublots.

This case provides a counterexample to the optimality of geometric lots. The

optimal makespan of 490 is achieved with sublot sizes of Lj = (20, 40, 30), as

shown in Figure 12.4. (We might call this solution a pyramid sequence.) Geometric

sublots based on q = 2, q = 0.75, or q = 1.167 lead to larger makespans. However,

geometric sublots would be optimal when machine 2 is dominated, in which case

they should maintain the ratio (p1 + p2) : (p2 + p3).

20

20

20

40

40

40

30

30

30

490

FIGURE 12.4 A counterexample to the optimality of geometric sublots.

THE THREE-MACHINE MODEL WITH CONSISTENT SUBLOTS 283

In general, the optimal choice of consistent sublots can be found by linear pro-

gramming (LP). Two LP formulations are of interest, and both generalize to more

than three machines. We present the models with the number of machines denoted

by m. The natural formulation uses sublot completion times as variables.

Variables

ti j = completion time for sublot j on machine i

L j = size of sublot j

Objective function

minimize tms

Constraints

L1 + L2 + · · · + Ls = U

t11 ≥ p1L1

ti j ≥ ti−1, j + pi L j 2 ≤ i ≤ m, 1 ≤ j ≤ s

ti j ≥ ti, j−1 + pi L j 1 ≤ i ≤ m, 2 ≤ j ≤ s

This linear programming formulation contains (2ms − s − m + 2) constraints and

s(m + 1) variables. If we replace the constraints ti j ≥ ti−1, j + pi L j with the corre-

sponding equations, we obtain a no-idling version of the model.

An alternative structure focuses on the idle periods that occur in the schedule. Let

zi j denote the idle period immediately preceding the jth sublot on machine i . (These

variables would be zero for j > 1 in a no-idling version of the model.) As a first step,

we express zij in terms of the sublot completion times:

zi j = max{0, ti−1, j − ti, j−1}

The first machine can be scheduled without any idle time; therefore, z1 j = 0. In

addition, the first sublot need not encounter any delay. Thus, for i ≥ 2,

zi1 = L1(p1 + p2 + · · · + pi−1)

For the remaining combinations of (i, j), we can substitute for ti j in terms of idle

periods. That is,

ti j = (zi1 + pi L1) + (zi2 + pi L2) + · · · + (zi j + pi L j)

Hence, the generic equation for zi j becomes

zi j = max{0, (zi−1,1 + pi−1L1) + (zi−1,2 + pi−1L2) + · · · + (zi−1, j + pi−1L j)

−(zi1 + pi L1) − (zi2 + pi L2) − · · · − (zi, j−1 + pi L j−1)}

284 LOT STREAMING PROCEDURES FOR THE FLOW SHOP

In a linear programming framework, this relationship can be represented by a single

inequality:

zi j ≥ (zi−1,1 + pi−1L1) + (zi−1,2 + pi−1L2) + · · · + (zi−1, j + pi−1L j)

−(zi1 + pi L1) − (zi2 + pi L2) − · · · − (zi, j−1 + pi L j−1)

If the right-hand side is negative, then the variable zi j will appear as zero in the linear

programming solution, and the constraint will be a strict inequality. Equivalently, we

can rewrite this constraint as follows:

zi1 + · · · + zi j − (zi−1,1 + · · · + zi−1, j) + (pi − pi−1)(L1 + · · · + L j−1)

−pi−1 L j ≥ 0

With this type of constraint at its heart, the formulation can be posed in terms of the

variables L j and zi j . Furthermore, the makespan is equal to total idle time on the last

machine plus the total processing time on the last machine. The latter is a constant

and can be left out of the optimization; hence, the objective function is simply the

sum of idle periods on machine m.

Variables

zi j = length of idle period preceding sublot j on machine i

L j = size of sublot j

Objective function

minimize zm1 + zm2 + · · · + zms

Constraints

L1 + L2 + · · · + Ls = U

j
∑

k=1

zik −

j
∑

k=1

zi−1,k + (pi − pi−1)

j−1
∑

k=1

Lk − pi−1 L j ≥ 0

where the range for the last constraint is 2 ≤ i ≤ m, 1 ≤ j ≤ s.

The fact that no idle time need occur on the first machine allows us to avoid

constraints defining z1 j and also to avoid using those variables explicitly in the

model. The formulation thus contains (ms − s + 1) constraints and ms variables. For

example, a problem containing 5 machines and 6 sublots requires a linear program

with dimensions 25 × 30, as compared to 51 × 36 with the first formulation.

12.3.2 The Discrete Version

For the discrete version, we seek a solution to the linear programs described previ-

ously, but with the added requirement that the L j values must be integers. Thus, we

THE THREE-MACHINE MODEL WITH VARIABLE SUBLOTS 285

can find a solution by solving an integer linear programming model, based on the

formulations given earlier.

12.4 THE THREE-MACHINE MODEL WITH VARIABLE SUBLOTS

12.4.1 Item and Batch Availability

We turn our attention to the general version of the problem, where the sublot sizes

are allowed to vary. We can solve the no-idling case by applying the two-machine

solution, first to machines 1 and 2, then to machines 2 and 3. In what follows, we

examine the case where idling is permitted.

Generally, problems involving batching and lot splitting require an assumption

about the timing of movement, although in the two-machine problem, it is not usually

necessary to make such an assumption explicit. Under item availability (or item flow),

each item can be delivered immediately after its processing is complete. Under batch

availability (or batch flow), the completion of a sublot determines when each of its

items is available for the next operation. For example, when each sublot requires a

setup and a teardown, batch availability is implied. In a particular application, the

technology for moving items between machines may dictate which assumption is

appropriate.

Item availability is the more general case: any schedule that can be achieved under

batch availability can also be achieved under item availability, but the reverse is not

true. On the other hand, item availability cannot achieve improvements over batch

availability when the problem requires consistent sublots. Thus, we can assume batch

availability whenever the problem requires consistent sublots. To put it another way,

when we examined the problem with consistent lots in the previous section, there

was no reason to distinguish item availability from batch availability.

In the three-machine problem with item availability, an optimal schedule need not

have consistent sublots. To illustrate this point, let U = 24 and s = 2 for processing

times p1 = 1, p2 = 2, and p3 = 1. According to Case 1 of Algorithm 12.1, an optimal

solution for consistent sublots is given by the proportions x1 = 1
3

and x2 = 2
3
. For

Lj = (8, 16) we obtain M = 72. An optimal solution for item availability is given by:

x11 = 1
3
, x12 = 2

3
; and x21 = 2

3
, x22 = 1

3
, with a makespan of 64. The two schedules

are compared in Figure 12.5. In the schedule with variable sublots, the shaded area

represents items transferred from machine 1 to machine 2 as part of the second sublot,

at time 24, but from machine 2 to machine 3 as part of the first sublot, at time 40.

In the previous section, we addressed the three-machine problem with consistent

sublots, which implies batch availability. In the most general case, which we address

next, we assume only item availability and allow variable sublots.

12.4.2 The Continuous Version

In the three-machine model, any feasible makespan can be achieved by scheduling

the first and third machines to operate continuously. On the first machine, we start

286 LOT STREAMING PROCEDURES FOR THE FLOW SHOP

8 16

8 16

8 16

72

8 24 40 64

FIGURE 12.5 Solutions with consistent sublots and variable sublots.

each operation as soon as the machine becomes available. On the third machine,

we start each operation as late as possible without delaying subsequent operations

beyond the makespan. In general, we define the machines that operate continuously

as the partition set, or simply the partition. Therefore, machines 1 and 3 are always

in the partition for the three-machine problem.

We define a no-wait schedule as one in which no queueing of sublots occurs.

There must be an optimal schedule that is a no-wait schedule. If this were not true,

then there would be some sublot that waits between its completion on one machine

and its start on the next machine. It would then be possible to enlarge this sublot, and

shrink some earlier sublot, so that no wait would occur and the makespan would be

no larger.

Suppose the partition is {1, 3}. Then one condition for a no-wait schedule is the

following:

L j+1(p1 + p2) = L j (p2 + p3) (12.16)

In words, (12.16) states that the time it takes to process a sublot on the first two

machines is equal to the time to process the previous sublot on the last two machines.

This condition is necessary for machines 1 and 3 to run continuously. Now, let

q = (p2 + p3)/(p1 + p2)

Consistent with (12.16), we construct a set of geometric sublots with the relation

L j = q L j−1 = q j−1 L1

THE THREE-MACHINE MODEL WITH VARIABLE SUBLOTS 287

As in (12.11), it follows that

L j = Uq j−1(1 − q)/(1 − qs)

for q �= 1, and L j = U/s for the special case q = 1. This solution will be a no-wait

schedule at machine 2 if machine 2 can process each sublot as soon as it becomes

available from machine 1. We write this requirement as

p1(L1 + L2 + · · · + L j+1) ≥ p1L1 + p2(L1 + L2 + · · · + L j)

It follows that

p1(L2 + · · · + L j+1) ≥ p2(L1 + L2 + · · · + L j)

p1L1(q + q2 + · · · + q j) ≥ p2L1(1 + q + · · · + q j−1)

qp1L1(1 + q + · · · + q j−1) ≥ p2L1(1 + q + · · · + q j−1)

qp1 ≥ p2

which we can equivalently express as

(p2)2 ≤ p1 p3 (12.17)

If (12.17) does not hold, then {1, 3} cannot be the optimal partition; instead, the

optimal partition must be {1, 2, 3}. In this case, we decompose the problem into a

two-machine subproblem for machines 1 and 2, which determines the transfers from

machine 1 to machine 2, and a separate two-machine subproblem for machines 2

and 3, which determines the transfers from machine 2 to machine 3. We can then

solve each of the two-machine subproblems using the analysis of Section 12.2.

As an illustration, we revisit Example 12.3, for which the optimal solution for con-

sistent sublots is shown in Figure 12.4. Since (12.17) fails, the problem decomposes

into a pair of two-machine subproblems. Between machines 1 and 2, the transfer lots

are determined by solving the two-machine problem with processing times of 2 and

4. The transfer lots are therefore in the ratios 1:2:4. Between machines 2 and 3, the

transfer lots are determined by solving the two-machine problem with processing

times of 4 and 3. These transfer lots are in the ratios 16:12:9. The resulting makespan

is 451.39, as shown in Figure 12.6. (The two shaded areas in the figure show the first

two sublots transferred from machine 2 to machine 3.) The makespan represents an

improvement of about 8% compared to the optimum for consistent sublots shown in

Figure 12.4.

12.4.3 The Discrete Version

We can extend the notion of decomposition to the discrete case in an analogous fash-

ion. Again, the key condition is whether machine 2 is dominated. If condition (12.17)

holds, then {1, 3} is the optimal partition, and no decomposition is needed. In that

288 LOT STREAMING PROCEDURES FOR THE FLOW SHOP

451.39

FIGURE 12.6 The continuous solution to the Example 12.3 with variable sublots.

case, we invoke a three-machine extension of the solution procedure for two machines

(details below). On the other hand, if (12.17) fails, then the optimal partition must be

{1, 2, 3}. In this case, we decompose the problem into a subproblem for machines 1

and 2, and a separate subproblem for machines 2 and 3. Each subproblem is solved

by the two-machine procedure for the discrete version, described in Section 12.2.

To complete the exposition, we extend the two-machine procedure for discrete

sublots to three machines when machine 2 is dominated. As before, let S j denote the

cumulative number of items in the first j sublots, that is,

S j = L1 + L2 + · · · + L j

Suppose we have a trial value M of the optimal makespan. Then, the late start time

for the jth sublot on machine 3 is

L S j = M − p3(U − S j−1)

For feasibility, we must complete the jth sublot on machine 2 no later than L S j ;

therefore,

p1S j + p2L j ≤ M − p3(U − S j−1) (12.18)

where machine 2 processes L j without delay after it completes on machine 1. Since

L j = S j − S j−1, we may write (12.18) as

p1S j + p2(S j − S j−1) ≤ M − p3(U − S j−1) (12.19)

or

S j ≤ [M + p2S j−1 − p3(U − S j−1)]/(p1 + p2) (12.20)

This is a recursive formula for calculating S j in terms of S j−1. Equivalently, it

calculates the values of L j in sequence, starting with L1. To initialize the process,

we use S0 = 0, and we terminate the process if S j should reach U .

THE THREE-MACHINE MODEL WITH VARIABLE SUBLOTS 289

Observing that S j is increasing in S j−1, we choose each S j in turn to be as large

an integer as (12.20) will permit. If Ss < U , then our trial value of M must have been

infeasible. Our next trial value for the makespan will be slightly larger. The appropriate

increment in the trial makespan is (p1 + p2)(minj{ej}), where e j = 1 − f j , and

f j = min{[M + p2S j−1 − p3(U − S j−1)]/(p1 + p2), U } − S j

The search procedure begins with the optimal makespan of the continuous version

as a trial makespan. If the trial value proves to be infeasible, then we increase it

appropriately and test the new trial value. We repeat these steps until the trial value

is feasible.

Again, we revisit Example 12.3. As in the continuous version, Eq. (12.17) fails, and

the problem decomposes. Between machines 1 and 2, the transfer lots are determined

by solving the two-machine problem with processing times of 2 and 4. The transfer

lots are therefore 13, 26, and 51. Between machines 2 and 3, the transfer lots are

determined by solving the two-machine problem with processing times of 4 and 3.

The transfer lots are therefore 39, 29, and 22. The resulting makespan is 452. (As it

happens, this figure is equal to the makespan in the continuous case, rounded up.)

� Example 12.4 Consider a lot streaming problem on three machines, with

U = 90 units, as in Example 12.3, but with processing times p1 = 3, p2 = 2, and

p3 = 4. The job is to be processed in three sublots.

In this case, the condition in (12.17) holds, so {1, 3} is the optimal partition, and

no decomposition is needed. The continuous solution therefore takes the geometric

form L j = q L j−1 = q j−1 L1, with q = 1.2, yielding sublot sizes of 24.73, 29.67, and

35.60, and a makespan of 483.65. Using (12.20) for this trial makespan, we obtain

transfer lots of 24, 29, and 35. When we compute S3 = 88 < U , we must iterate, using

the values of ei ={0.27, 0.47, 0.67}. The next trial makespan is 483.6 + 5 × 0.27 =

485, which turns out to be feasible. The maximal values of S j are 25, 55, and 91,

implying transfer lots of 25, 30, and 35, as shown in Figure 12.7.

485

25 30 35

25 30 35

25 30 35

FIGURE 12.7 Optimal solution to Example 12.4 (with machine 2 dominated).

290 LOT STREAMING PROCEDURES FOR THE FLOW SHOP

12.4.4 Computational Experiments

A computational comparison of alternative solutions to the continuous version of

the three-machine problem is revealing. For this purpose, 6000 test problems were

randomly generated, and the makespan was obtained by each of five methods. The

study tracked the relative error (suboptimality) in the solution, where the optimal

makespan is given by the variable-sublot solution. Alternatively, we can constrain

the solution to have no idling, consistent sublots, equal sublots, or equal sublots and

no idling. Such constraints may increase the makespan substantially over what is

optimally possible, or they may have no impact at all. The virtue of such constraints

is that they render the problem readily solvable. In fact, formulas exist for the optimal

makespan in three of the cases: equal sublots, no idling, and equal sublots with no

idling. Simple algorithms are available for consistent sublots and, as discussed in

Section 12.4.2, for the optimal solution. The study distinguished the subset of prob-

lems in which machine 2 was dominant from the subset in which it was dominated.

Statistics were compiled on the average and maximum values of the relative error.

The average values appear in Table 12.1.

The table confirms some important structural results. For example, the consistent-

sublots procedure yields optimal solutions when machine 2 is dominated, and the

no-idling procedure yields optimal solutions when machine 2 is dominant. For that

matter, equal-sublot solutions also have no idling in the latter case, as the table

indicates.

On average, the suboptimality in the consistent-sublot solution is small, averaging

about 4% or 5% in the problems with three sublots and machine 2 dominant, declining

to about 1% with eight sublots. Considering that the consistent-sublots solution will

in fact be optimal when machine 2 is dominated, this means that the amount of

suboptimality tends to be quite small in problems with random processing times.

The largest amount of suboptimality observed for consistent-sublots solutions

was 9.7%. This figure, along with maximum values for the other cases, is shown in

Table 12.2.

Table 12.2 emphasizes the role of machine dominance. For example, the no-idling

solution is optimal when machine 2 is dominant, but it may be suboptimal by 50%

or more when machine 2 is dominated. The equal-sublot solution may be suboptimal

TABLE 12.1

Machine 2 Dominant Machine 2 Dominated

Procedure Sublots: 3 5 8 3 5 8

Equal sublots, no idling 0.10 0.094 0.076 0.20 0.24 0.24

No idling 0.0 0.0 0.0 0.12 0.17 0.19

Equal sublots 0.10 0.094 0.076 0.074 0.072 0.059

Consistent sublots 0.044 0.028 0.014 0.0 0.0 0.0

THE THREE-MACHINE MODEL WITH VARIABLE SUBLOTS 291

TABLE 12.2

Machine 2 Dominant Machine 2 Dominated

Procedure Sublots: 3 5 8 3 5 8

Equal sublots, no idling 0.17 0.16 0.14 0.49 0.66 0.77

No idling 0.0 0.0 0.0 0.48 0.65 0.76

Equal sublots 0.17 0.16 0.14 0.13 0.13 0.11

Consistent sublots 0.097 0.077 0.056 0.0 0.0 0.0

by as much as 10–20%, but this figure is not too sensitive to whether machine 2 is

dominant.

An additional study examined the improvement in the makespan that results from

increasing the number of sublots. Intuitively, we should expect the improvement to

show diminishing returns to the number of sublots. This pattern has been demonstrated

analytically in the two-machine case with consistent sublots and in the m-machine

case with variable sublots. Moreover, by using just two sublots, we can realize at

least half the gain associated with any number of sublots. To demonstrate that the

same result applies with consistent sublots with more than two machines, Tables

12.3 and 12.4 summarize computational results for three-machine cases. Again, the

metric is the percentage improvement, but here the base case is the makespan for one

sublot—that is, without lot streaming. The computations are based on an additional

set of 1000 test problems.

Both tables describe a clear pattern of diminishing returns, as anticipated. For

every solution procedure, more than half of the potential benefit from 10 sublots

is obtained with just two sublots, and roughly 80% of the benefit is obtained with

three sublots. The relative performance of the various procedures remains consistent

with the outcomes discussed earlier in connection with Table 12.1. Furthermore, when

machine 2 is dominated, consistent sublots and variable sublots perform equivalently,

whereas when machine 2 dominates, the advantage of variable sublots diminishes as

s grows.

TABLE 12.3

Machine 2 Dominant

Procedure Sublots: 2 3 5 8 10

Equal sublots, no idling 0.246 0.328 0.394 0.430 0.443

No idling 0.300 0.388 0.446 0.472 0.478

Equal sublots 0.246 0.328 0.394 0.430 0.443

Consistent sublots 0.268 0.360 0.429 0.463 0.472

Variable sublots 0.300 0.388 0.446 0.472 0.478

292 LOT STREAMING PROCEDURES FOR THE FLOW SHOP

TABLE 12.4

Machine 2 Dominated

Procedure Sublots: 2 3 5 8 10

Equal sublots, no idling 0.177 0.236 0.283 0.310 0.318

No idling 0.227 0.289 0.328 0.343 0.347

Equal sublots 0.237 0.316 0.379 0.415 0.427

Consistent sublots 0.275 0.360 0.421 0.449 0.457

Variable sublots 0.275 0.360 0.421 0.449 0.457

12.5 THE FUNDAMENTAL PARTITION

Earlier, we introduced partitions for the three-machine model to address the case

of variable sublots. Partitions can also be defined for m machines, and a particular

one—the fundamental partition—can lead to a solution of the m-machine problem

with variable sublots. The fundamental partition has a role in the optimal solution of

the consistent-sublot case as well, thus providing a connection between the two cases.

To illustrate this role, we revisit the three-sublot Example 12.3, where the partition

{1, 2, 3} is fundamental. The optimal variable-sublot solution involves ratios of 4:2

for the sublots in the first transfer (between machines 1 and 2) and 3:4 for the second

transfer (between machines 2 and 3). In the consistent-sublot solution, the ratio of the

first two sublots is 4:2 and the ratio of the last two sublots is 3:4. In general, the ratio

of any two successive sublots in the consistent-sublot case must match the optimal

ratio that applies in some part of the fundamental partition. For more downstream

sublots, the ratio of successive sublots must either follow the same ratio or match that

of a subsequent part of the same partition.

12.5.1 Defining the Fundamental Partition

A machine belongs to a partition if it is restricted to operate continuously from the

beginning of the first sublot until the end of the last sublot. Pairs of consecutive

machines in a partition set, along with all machines that may reside between them,

form the parts of the partition. As in the three-machine special case, we include

machine 1 and machine m in a partition. The fundamental partition is then defined

as the partition with the minimal number of machines such that the machines in the

partition can operate continuously with no waiting and no change in sublots between

adjacent partition machines. Let

P(i, k) = pi + pi+1 + · · · + pk

In words, P(i, k) represents the aggregate processing time per unit on machines i

through k. Define quv = P(u + 1, v)/P(u, v − 1) and suppose that two successive

lots satisfy L j = quv L j−1. If no waiting occurs at the intermediate machines, then

THE FUNDAMENTAL PARTITION 293

the first (v − u) machines can complete the second sublot precisely when the last

(v − u) machines complete the first sublot. Thus, no waiting occurs at machine v if

no waiting occurs at the (v − u − 1) intermediate machines. This result is assured

if quv ≥ quw for all u < w < v . The following algorithm uses these observations to

generate the fundamental partition.

Algorithm 12.2 Generating the Fundamental Partition

Step 1. Initialize: set u = 1 and place machine 1 in the partition.

Step 2. Find maxv>u{quv}. Break ties in favor of the largest v.

Step 3. Add machine v to the partition right after machine u. If v = m, stop. Otherwise,

let u = v and return to Step 2.

To illustrate Algorithm 12.2, consider Example 12.1. After inserting machine 1

in the partition, we compare the values 9/5 (for v = 2), (9 + 4)/(5 + 9) = 13/14,

(9 + 4 + 7)/(5 + 9 + 4) = 20/18, and (9 + 4 + 7 + 6)/(5 + 9 + 4 + 7) =

26/25 (for v = 5). The maximum, 9/5, is obtained for v = 2, so we add machine

2 to the partition. Returning to Step 2 with u = 2, we now compare the values 4/9

(for v = 3), (4 + 7)/(9 + 4) = 11/13, and (4 + 7 + 6)/(9 + 4 + 7) = 17/20 (for v =

5). The maximum is obtained for v = 5 = m, so we add machine 5 to the partition and

stop with the final partition {1, 2, 5}. We denote the kth machine in the partition as

machine [k]. It is also useful to record the ratios, namely, q[1][2] = q1,2 = 9/5 = 1.8 and

q[2][3] = q2,5 = 17/20 = 0.85. Assume there are K parts (i.e., K + 1 machines) in the

partition. Then, by construction, q[1][2] > q[2][3] > · · · > q[K][K+1]. In our example,

q1,2 = 1.8 > q2,5 = 0.85.

We can use the fundamental partition to solve the m-machine variable-sublot prob-

lem by specifying geometric sublots for each part. Therefore, when only machines 1

and m are in the fundamental partition, the solution of the variable-sublot case yields

consistent sublots, and the optimal solution features geometric sublots with ratios

q1m. Limiting our attention to other consistent-sublot cases, we assume that at least

three machines (two parts) make up the fundamental partition. For the case s = 2, the

following algorithm provides an optimal solution.

Algorithm 12.3 Solution for Consistent Sublots and s = 2

Step 1. Find the fundamental partition and let u = 2.

Step 2. If [u] = m (machine [u] is the last machine in the partition), go to Step 4.

Step 3. If P(1, [u] − 1) ≤ P([u] + 1, m), let u = u + 1 and return to Step 2.

Step 4. Let L1 = U/(1 + q[u−1][u]) and L2 = U − L1 (i.e., L2/L1 = q[u−1][u]).

To illustrate, consider Example 12.1 again. Starting with u = 2 (in this case, ma-

chine 2), we find P(1, [u] − 1) = P(1, 1) = p1 = 5 ≤ P([u] + 1, m) = P(3, 5) =

4 + 7 + 6 = 17. Hence, we increment u to 3 and return to Step 3. This time

[3] = 5 = m, so we go to Step 4, where we set L1 = U/(1 + q[u−1][u]) = 100/

(1 + 0.85) = 54.05 and L2 = U − L1 = 45.95. Figure 12.8 displays the Gantt chart

294 LOT STREAMING PROCEDURES FOR THE FLOW SHOP

1951.35

54.1

54.1

54.1

45.9

45.9

45.9

54.1

54.1

45.9

45.9

FIGURE 12.8 Optimal solution to Example 12.1.

for this solution. Here, the two sublots are both critical on machines 2 and 5, which

are the two machines that form part 2 of the fundamental partition. (A small idle

interval occurs on machine 4.) In part 1, however, the second sublot has to wait for

the first sublot to complete on machine 2 before it can be processed, whereas it arrives

to machine 5 exactly when machine 5 becomes free.

The proof that Algorithm 12.3 provides the optimal solution for the two-sublot case

is based on the observation that it selects as u the first value for which P(1, [u] − 1) >

P([u] + 1, m). As a result, we have P([u − 1], m) > P(1, [u]), because [u − 1] ≤

[u] − 1. If we increase L2 by � > 0, we add �P([u − 1], m) to the completion time

of the second sublot on machines [u − 1] to m and save �P(1, [u]) on machines

1 through [u], but the savings are not sufficient to compensate for the increase. To

justify not decreasing L2 either, we invoke the same observation for the symmetric

problem, where decreasing L2 implies increasing L1. This is a special case of our

general result, which we now state formally.

� Theorem 12.2 Optimal consistent sublots exist such that L j+1 = q[u−1][u]L j

for some u and for all 1 ≤ j < s − 1. Furthermore, for any 1 ≤ k ≤ s − j − 1,

L j+k+1 = q[v−1][v] L j+k , where v ≥ u.

The formal proof of the theorem is complicated and beyond the scope of our

coverage. Essentially, the theorem holds because if we partition the sublots and

allocate the parts to the parts of the fundamental partition, then the makespan is given

by the sum of the partial makespans obtained by each subset of sublots on the subset

of machines with which it is associated. In particular, the theorem mandates sublots

with a pyramid structure, as befits the ordered flow shop that is obtained if we treat

each sublot as a job.

SUMMARY 295

12.5.2 A Heuristic Procedure for s Sublots

The more general m × n problem with consistent sublots can be solved by linear

programming, as discussed earlier. No procedure as efficient as Algorithm 12.3 is

available. However, we can build a good heuristic procedure for the m × n problem

using the solution to the m × 2 problem.

Recall that the two-sublot solution involves a single ratio that specifies the allo-

cation of work between the two sublots. To utilize this solution as a heuristic for the

s-sublot problem, we simply set the ratio of successive sublots equal to this value and

construct the corresponding geometric sublots.

In Example 12.1, we found that the critical machines are u = 2 and v = 5, and

the optimal allocation of work is 0.5405 to the first sublot and 0.4595 to the second,

for a ratio L2/L1 = 0.85. Using this ratio in a four-sublot solution, we obtain sublot

sizes approximately as follows: 31.4, 26.7, 22.7, and 19.3. When this allocation is

employed on the 5 × 4 problem, the makespan is 1384.5, which is about 0.2% above

the optimum. In this case, it is also easy to find the optimum. If we assume the optimum

is not given by the allocation presented above, then by Theorem 12.2 we should base

at least one sublot ratio on the first part of the fundamental partition (because there are

only two parts in the fundamental partition). If we set L1 = 1 (tentatively), it follows

that L2 = 1.8, L3 = 1.8 × 0.85, and L4 = 1.8 × 0.852.Together the sum is 1 + 1.8 +

1.8 × 0.85 + 1.8 × 0.852 = 5.63, and hence we should multiply all tentative values

by 100/5.63 = 17.8, yielding 17.8, 32.0, 27.2, and 23.1, with a makespan of 1381.5.

Thus, we have sublots 1 and 2 with a ratio that is dictated by the first part of the

fundamental partition whereas sublots 2, 3, and 4 have ratios based on the second

part (sublot 2 belongs to both parts of the sublots, and similarly machine 2 belongs

to both parts of the fundamental partition). Indeed, the makespan of 1381.5 improves

upon the previous result, but if we were to set another sublot with the ratio of part 1,

the makespan would increase to 1489.2. The model is convex (it can be formulated

as an LP), so we need not check the option of setting even more sublots per part 1:

that would yield a yet worse result.

A brief computational study has investigated the two-sublot heuristic procedure on

randomly generated problems. In the test problems, the procedure yielded an average

relative error of only 1.2%, as compared to 4.6% for the equal-sublot heuristic. In

addition, it produced an optimal makespan in a majority of the test problems.

12.6 SUMMARY

The lot streaming model extends our ability to produce good flow shop schedules,

even though the analysis of the lot streaming problem has not progressed much beyond

the makespan criterion. Lot streaming analysis raises important issues in modeling,

such as the use of consistent sublots, the appropriateness of item availability, and the

need for integer solutions.

Two features of simple models seem to capture key aspects of lot streaming

analysis. Obviously, equal sublots are seldom optimal; but the two-sublot solution of

296 LOT STREAMING PROCEDURES FOR THE FLOW SHOP

Algorithm 12.2, together with the notion of geometric sublot sizes, seems to provide

a useful construct for larger problems. The usefulness of a two-sublot solution recalls

a similar finding in Chapter 10, where solving the two-machine case provided a key

to solving larger flow shop problems.

A second important feature is the condition for a dominated machine 2 in three-

machine models, as expressed by the condition (p2)2 ≤ p1 p3. Much of our analysis

of the three-machine case hinged on the outcome of this condition, which suggests

that dominance may be a key to solving larger problems. Again, this result recalls

an analogous finding for the flow shop model, where three-machine problems can be

solved by two-machine procedures when dominance occurs.

We would like to extend lot streaming concepts to several jobs. However, a dis-

quieting example illustrates the difficulties posed by the n-job model. A reasonable

approach might be to sequence the jobs without lot streaming and then simply to

split each job independently into optimal sublots. Although this hierarchical solution

scheme is appealing, it may not be optimal.

� Example 12.5 Consider a two-job, two-machine problem in which two sublots

are required for each job, as described in the following table.

Job 1 Job 2

p1 7 14

p2 14 42

Example 12.5 shows that hierarchical solutions may not be optimal. The opti-

mal flow shop sequence without lot streaming is 1-2. When lot streaming is ap-

plied to the individual jobs of this sequence, the resulting schedule is described in

Table 12.5, with a makespan of 58.33. The optimal schedule is shown in Table 12.6,

with a makespan of 57. In the optimal schedule, the sublots of jobs 1 and 2 alternate,

indicating that the schedule cannot be produced by the hierarchical scheme.

If we restrict attention to equal sublots, the result for the two-machine case is

different. When we apply lot streaming with equal sublots to a given flow shop

sequence, Johnson’s Rule implies that no incentive exists to resequence those sublots.

TABLE 12.5

Machine Job 11 Job 12 Job 21 Job 22

Sublot times 1 2.33 4.67 3.50 10.50

2 4.67 9.33 10.50 31.50

Machine Job 11 Job 12 Job 21 Job 22

Completion times 1 2.33 7.00 10.50 21.00

2 7.00 16.33 26.83 58.33

REFERENCES 297

TABLE 12.6

Machine Job 11 Job 12 Job 21 Job 22

Sublot times 1 1 6 2 12

2 2 12 6 36

Machine Job 11 Job 21 Job 12 Job 22

Completion times 1 1 3 9 21

2 3 9 21 57

If we allow a different number of sublots on each job, this implication remains true,

although the optimal job sequence may change. The solution to an n-job problem

using equal sublots is therefore straightforward to construct, although it is suboptimal

on two counts. First, it is not as good as the hierarchical schedule based on optimal

sublots (yielding 58.33 in our example); and second, that schedule is potentially

inferior to a schedule in which sublots are resequenced and work reallocated (57 in

our example.) In Example 12.5, equal sublots yield a makespan of 59.5, or about

4.4% above the optimum.

In this chapter, we have addressed a number of lot streaming problems, all of

which are characterized by deterministic conditions and the makespan criterion.

In general, stochastic conditions and different criteria lead to rather difficult prob-

lems. A brief guide to some of the existing results can be found in our Research

Notes.

REFERENCES

Baker, K.R. (1995). Lot streaming in the two-machine flow shop with setup times, Annals of

Operations Research 57, 1–11.

Baker, K.R. and D.F. Jia (1993). A comparative study of lot streaming procedures, Omega 21,

561–566.

Baker, K.R. and D.F. Pyke (1990). Solution procedures for the lot streaming problem, Decision

Sciences 21, 475–491.

Chang, J.H. and H.N. Chiu (2005). A comprehensive review of lot streaming, International

Journal of Production Research 43, 1515–1536.

Chen, J. and G. Steiner (1996). Lot streaming with detached setups in three-machine flow

shops, European Journal of Operational Research 96, 591–611.

Chen, J. and G. Steiner (1998). Lot streaming with attached setups in three-machine flow

shops, IIE Transactions 30, 1075–1084.

Glass, C.A., J.N.D. Gupta, and C.N. Potts (1994). Lot streaming in three-stage production

processes, European Journal of Operational Research 75, 378–394.

Glass, C.A. and C.N. Potts (1998). Structural properties of lot streaming in a flow shop,

Mathematics of Operations Research 23, 624–639.

298 LOT STREAMING PROCEDURES FOR THE FLOW SHOP

Goyal, S.K. (1976). Note on “Manufacturing cycle time determination for a multi-stage eco-

nomic production quantity model,” Management Science 23, 332–333 and the rejoinder,

334–338.

Kulonda, D.J. (1984). Overlapping operations—a step toward just-in-time production, in Read-

ings in Zero Inventory, APICS 27th Annual International Conference, pp. 78–80.

Potts, C.N. and K.R. Baker (1989). Flow shop scheduling with lot streaming, Operations

Research Letters 8, 297–303.

Sen, A., E. Topaloglu, and O.S. Benli (1998). Optimal streaming of a single job in a two-stage

flow shop, European Journal of Operational Research 110, 42–62.

Smunt, T.L., A.H. Buss, and D.H. Kropp (1996). Lot splitting in stochastic flow shop and job

shop environments, Decision Sciences 27, 215–238.

Szendrovits, A.Z. (1975). Manufacturing cycle time determination for a multi-stage economic

production quantity model, Management Science 22, 298–308.

Trietsch, D. (1989). Polynomial transfer lot sizing techniques for batch processing on consec-

utive machines, Technical Report NPS-54-89-011, Naval Postgraduate School, Monterey,

CA.

Trietsch, D. and K.R. Baker (1993). Basic techniques for lot streaming, Operations Research

41, 1065–1076.

Truscott, W.G. (1985). Scheduling production activities in multi-stage batch manufacturing

systems, International Journal of Production Research 23, 315–328.

EXERCISES

12.1. A special case of the model with consistent sublots is generated by the require-

ment that all sublot sizes be equal. Suppose there are m machines and s sublots.

Construct a formula for the makespan in the case of equal sublots.

12.2. Consider the two-machine model with s sublots. Let M1 represent the makespan

when there is one sublot and no lot streaming. Let M0 represent the limit of

the makespan as the number of sublots approaches infinity. Thus, M0 − M1

denotes the potential improvement from lot streaming.

a. Show that when there are two sublots in the schedule, the makespan is

improved by at least half of the potential improvement.

b. Generalize the result in (a) and show that when there are s sublots in the

schedule, the maskespan is improved by at least s/(s + 1) of the poten-

tial improvement. (Hint: The improvement analysis can be based on the

makespan for equal sublot sizes; the optimal schedule is known to be at

least as good.)

12.3. Consider lot streaming for a job lot consisting of 1200 items requiring three

operations. The operation times (in order) are 2, 3, and 6 minutes.

a. What is the makespan of the schedule when the job is scheduled in one

large lot at each operation?

b. What is the makespan of the schedule when lot streaming is used and s = 2?

EXERCISES 299

c. What is the makespan of the schedule when lot streaming is used and s = 3?

d. What is the makespan of the schedule when lot streaming is used and the

sublots are size 1?

e. What percentage of the improvement between the schedule in (d) and the

schedule in (a) is achieved by the schedule in (c)?

12.4. In the three-machine problem with consistent sublots, geometric sublots are

optimal if machine 2 is dominated—that is, if (p2)2 ≤ p1 p3. Assume that

processing times are all randomly drawn from the same distribution.

a. Suppose that processing times are all randomly drawn from a uniform

distribution on the interval (1, 2). Using simulation, estimate the probability

that machine 2 will be dominated.

b. Find the probability in (a) when the processing times are all randomly drawn

from a normal distribution with mean 10 and standard deviation 1.

c. Find the probability in (a) when the processing times are all randomly

drawn from the same lognormal distribution with mean 10 and standard

deviation 1.

12.5. Construct a two-machine, two-job example with a different number of equal

sublots on each job, demonstrating that the optimal job sequence may change

when the number of sublots of one job increases.

12.6. Construct a three-machine, two-job, two-sublot example demonstrating that

even with equal sublots interleaving may be optimal when m ≥ 2.

12.7. Consider lot streaming for a job lot consisting of a large number of items

requiring three operations. The operation times per item are (in order) 2, 1,

and 3.

a. What is the makespan of the schedule when the job is scheduled in one

large lot at each operation?

b. What is the makespan using equal sublots and s = 2?

c. What is the makespan using no idling and s = 2?

d. What is the makespan using equal sublots, no idling, and s = 2?

e. What is the makespan without restrictions and s = 2?

12.8. Consider lot streaming for a job lot consisting of 1000 items requiring five

operations. The operation times per item are (in order) 5, 9, 4, 7, and 6 minutes.

a. What is the makespan of the schedule when the job is scheduled in one

large lot at each operation?

b. What is the makespan using equal sublots and s = 3?

c. What is the makespan using no idling and s = 3?

d. What is the makespan using equal sublots, no idling, and s = 3?

e. What is the makespan using consistent sublots and s = 3?

f. What is the makespan using variable sublots and s = 3?

13
SCHEDULING GROUPS OF JOBS

13.1 INTRODUCTION

In some settings, the grouping of jobs is a desirable or necessary tactic, usually

because of some technological feature of the processing capability. By exploiting this

feature, we can find optimal schedules easily, or we can at least identify a relatively

small set of dominant schedules, and thereby avoid searching a very large number of

alternatives.

The motivation for grouping often relates to the existence of changeover times,

or setup times, on a machine. For example, jobs might belong to a particular family

due to similarities in their required tooling or their container size. As a result of this

similarity, a job does not need a setup when following another job from the same

family, but a known “family setup time” is required when a job follows a member

of a different family. We call this a family scheduling model. Typically, the family

scheduling model contains a large number of jobs but a relatively small number of

families.

We can almost think of the family scheduling model as one in which the elements

to be scheduled are the families. Since the jobs are given, we know the processing

time for each family, and we know that some changeover time will be required. Thus,

we might be tempted to recast the problem as one of scheduling families, except that

our measures of performance relate to the individual completion times of the jobs

rather than to the completion times of families.

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

300

SCHEDULING JOB FAMILIES 301

The motivation for grouping may instead be the capability of the machine to

process several jobs at once. For example, jobs might be placed in an oven for a

heat-treat operation. The oven has a finite capacity, so several jobs can be processed

simultaneously. As in baking cookies, a group of jobs processed together is called

a batch, and we call this a batch processing model. Typically, the capacity of the

processor is related to the weight, size, or simply the number of jobs in a batch.

We can almost think of a batch processing model as one in which the elements

to be scheduled are the batches. Here, again, however, the batch completion times

would not tell the whole story. Instead, we have the flexibility to allocate jobs to

batches in different ways, and it is the completion times of the individual jobs that

determine the measure of performance.

In Section 13.2 we elaborate on the family scheduling model, relating the analysis

to known results from the basic single-machine model and highlighting the more

prominent generalizations. In Section 13.3, we examine a simple form of batching,

where the jobs are not available until their batch completes, and we introduce the

analysis of batch availability. Section 13.4 deals with problems involving a batch

processor. We emphasize two criteria, namely, total flowtime and maximum lateness.

However, we address other performance measures where results are available.

13.2 SCHEDULING JOB FAMILIES

In the family scheduling model we use the pair (i , j) to refer to job j of family i .

We let f denote the number of families, n the number of jobs, and ni the number of

jobs belonging to family i . Thus, n1 + n2 + · · · + n f = n. In addition, pi j denotes the

processing time of job (i , j), and si denotes the setup time required in order to process a

job in family i following a job in some other family. When f = 1, the problem reduces

to the single-machine model, where, for example, SPT minimizes total flowtime and

EDD minimizes maximum lateness. Therefore, we assume that f > 1.

In principle, any family scheduling model can be viewed as a single-machine

model with sequence-dependent setup times. If a job follows a member of the same

family, then its setup time is zero; otherwise, its setup time is the family setup time.

We know that sequence-dependent setup times tend to make solutions difficult to

find. (Recall the traveling salesperson problem presented in Chapter 8.) However, by

exploiting the special structure of family scheduling, we can sometimes avoid the

enumerative techniques that would ordinarily be required when setups are sequence

dependent.

A simplifying assumption for family scheduling is the requirement of precisely

f setups in the schedule, one for each family. Such a requirement may reflect long

setups, or it may result from a desire to minimize the time spent on setup in situations

where capacity is scarce. This condition may also be imposed simply to make the

problem more tractable. We refer to this assumption as the group technology (GT)

assumption. (In current parlance, the group technology principle calls for the grouping

of similar elements.) We refer to an optimal solution subject to the GT assumption as

a GT solution.

302 SCHEDULING GROUPS OF JOBS

The makespan is minimal in a GT solution, because additional setups would only

make the makespan greater. Moreover, in a GT solution the makespan is a constant

independent of sequence. Let pi denote the total processing time for family i , or

pi =

ni
∑

j=1

pi j

Then the makespan for a GT solution is given by

M =

f
∑

i=1

(si + pi)

Because the elements of this sum are given, the makespan in a GT solution is a fixed

quantity and cannot be influenced by the selection of a sequence.

13.2.1 Minimizing Total Weighted Flowtime

The next simplest problem in family scheduling is the F-problem under the GT

assumption. A two-level approach works well in this case. Within families, we know

that jobs should be sequenced according to SPT. (If this were not the case, an adjacent

pairwise interchange would improve total flowtime.) We can then treat the family

as a job string and exploit the sequencing rule for strings. (See Chapter 8.) In other

words, we treat the family as if it were a single entity, or composite job. In this case,

there is a setup time for the string, along with its processing times, but the essential

result is unchanged: the optimal sequence exhibits nondecreasing ratios (si + pi)/ni .

We state this result formally below, omitting the proof.

� Theorem 13.1 In the F-problem under the GT assumption, the jobs within a

family should be scheduled according to SPT, and the families should be scheduled

in nondecreasing order of (si + pi)/ni .

The same two-level reasoning applies to the Fw-problem. Let w i j denote the

weighting factor of job (i , j), and let

w i =

ni
∑

j=1

w i j

Within families, the jobs should be ordered by SWPT. Again, we can treat the families

as composite jobs. In this case the composite jobs have processing times equal to

(si + pi) and weighting factors equal to w i . The optimal schedule applies the SWPT

rule to the composite jobs, as follows.

SCHEDULING JOB FAMILIES 303

� Theorem 13.2 In the Fw-problem under the GT assumption, jobs within a

family should be scheduled according to SWPT, and families should be scheduled in

nondecreasing order of (si + pi)/w i .

The proof of Theorem 13.2 follows from straightforward arguments based on

adjacent pairwise interchanges, first for jobs within families and then for families.

Thus, with respect to the Fw criterion, we use the SWPT rule at both levels. First,

the rule determines the sequencing of jobs within families. Then, with the families

treated as composite jobs, the SWPT rule determines the optimal sequence of the

families.

Without the GT assumption, families may be split and processed in separate

batches. In this case, we do not know in advance how many setups will occur, and

the optimization of total flowtime is more difficult.

� Example 13.1 Consider the F-problem for three jobs representing two fami-

lies, with a setup time of 1 for either family.

Job(i, j) (1, 1) (1, 2) (2, 1)

pij 2 7 4

Suppose family 1 comes first. The flowtimes of the three jobs are then 3, 10, and

15, for a total of 28. If the family sequence is reversed, then the total flowtime is

still 28. But suppose we sequence the jobs (1, 1), (2, 1), (1, 2), with a setup for each

one. In this schedule, the flowtimes are 3, 8, and 16, for a total of only 27. This very

small example illustrates the fact that the optimal solution of the Fw-problem may be

attained only by splitting the families.

For the general case, it is possible to use a dynamic programming solution proce-

dure that exploits the fact that, for each family, the jobs appear in SWPT order in the

optimal schedule, although not necessarily as a block of adjacent jobs. The multidi-

mensional structure of this dynamic programming algorithm makes it computation-

ally demanding even for small problems, and its significance is mainly conceptual.

Because the GT solution is relatively straightforward to construct, it is of interest

to study conditions under which we can limit ourselves to schedules in which each

family is processed in a single batch.

� Theorem 13.3 In the Fw-problem for the family scheduling model, suppose

all jobs in each family have identical process times and weights. Then there exists an

optimal solution that is a GT solution.

Proof. We consider a schedule S in which there are at least two separate batches of

family i . In particular, suppose that the first batch of family i contains a jobs, and the

second batch of family i contains b jobs. Assume temporarily that a > 1 and b > 1.

Suppose also that the two batches are separated by k jobs of other families with a

304 SCHEDULING GROUPS OF JOBS

total weight of wk taking up an interval of length t . We also use pi i and w i i to denote

the processing time and weight of all individual jobs in family i .

Now consider the effects of inserting the last job from the first batch of family i

into the second batch, thereby creating schedule S′. As a result, k jobs are accelerated

by an amount pi i , and the job that was moved is delayed by an amount t + si .

Hence, the effect on total weighted flowtime is (t + si)w i i − pi i wk . If this quantity

is negative, schedule S′ is better than schedule S. If it is positive, construct schedule

S′′ by inserting the first job from the second batch into the first batch. In this case,

k jobs are delayed by pi i , and the job that was moved is accelerated by t + si . The

effect on total weighted flowtime becomes pi i wk − (t + si)w i i , which is negative, so

schedule S′′ is better than S. Now relax the assumption that a, b > 1. If we insert

from a one-job batch to another batch we also save a setup, which improves the

flowtime of any subsequent jobs even further.

One of the two insertions, resulting in either S′ or S′′, will improve Fw , or at least

leave it no worse. As long as the batch from which we removed a job for that insertion

is not empty, we can repeat the process until one of the two batches disappears and

its jobs are consolidated in to the other batch. Thus, given any solution that does not

represent a GT schedule, we can construct a GT schedule that is at least as good.

Theorem 13.3 identifies a special case in which we can limit attention to GT

solutions and avoid dynamic programming. Qualitatively, Theorem 13.3 states that

we should not split a family when its jobs are identical, suggesting that the reason

for splitting a family is to exploit differences among its jobs.

13.2.2 Minimizing Maximum Lateness

Suppose that each job has its own due date, di j . Under the GT assumption, it is

possible to attack the Lmax-problem using the EDD rule in a two-level approach,

although a slight adjustment is necessary at the family level. At the job level, the

result is straightforward: jobs in each family should be sequenced according to EDD.

Within a family, however, any one of the jobs could produce the maximum lateness.

Suppose that jobs in family i are indexed by EDD and that the family begins its

setup at time t . Then, the lateness of job (i, j) becomes

L i j = t + si + pi1 + pi2 + · · · + pi j − di j = t + si + pi − (di j + qi j)

where qi j denotes the processing time in the family beyond job (i, j), or

qi j = pi − (pi1 + pi2 + · · · + pi j)

The maximum lateness among jobs in family i becomes

max j {L i j } = t + si + pi − min j {di j + qi j }

SCHEDULING JOB FAMILIES 305

From this expression, we can see how to adapt the EDD rule for families. Define the

family due date, di , as follows:

di = min j {di j + qi j }

This quantity, which is independent of the time at which family i begins processing,

can easily be determined once the family is ordered by EDD. This definition of a

family due date allows us to use the two-level approach.

� Theorem 13.4 In the Lmax-problem under the GT assumption, the jobs within

a family should be scheduled according to EDD. Then the families should be ordered

by EDD, using family due dates.

Proof. The first part of the theorem, regarding the sequence of jobs within families,

follows Theorem 2.6. Therefore, we examine the sequencing of families. Consider a

sequence S that is not the EDD sequence. That is, somewhere in S there must exist a

pair of adjacent families, i and k, with k following i starting at time t in the schedule,

such that di > dk . Now construct a new sequence, S′, in which families i and k are

interchanged, and all other families complete at the same time as in S. Let ix denote

the job in family i that achieves the maximum lateness in the family, and let ky denote

the analogous job in family k. Then, denoting by L i (S) the maximum lateness in S

for family i , we have

L i (S) = t + si + pi1 + pi2 + · · · + pi x − di x = t + si + pi − di

Lk(S′) = t + sk + pk1 + pk2 + · · · + pky − dky = t + sk + pk − dk

Lk(S) = t + sk + si + pi + pk − dk

L i (S′) = t + si + sk + pk + pi − di

It follows that Lk(S) > L i (S′) and Lk S) > Lk(S′). Hence,

Lk(S) > max{L i (S′), Lk(S′)}

As a consequence,

Lmax(S) ≥ Lmax(S′)

In other words, the interchange of families i and k does not increase the value of

Lmax, and may actually reduce it. The validity of the theorem follows from this

result.

This theorem, like Theorem 13.2 earlier, shows how to extend an elementary result

for the basic single-machine model to the GT scheduling model.

In the case of the Lmax-problem, it may be desirable to split families when the GT

assumption does not apply. Without the GT assumption, this problem is known to be

306 SCHEDULING GROUPS OF JOBS

NP-hard. It is possible to use a dynamic programming approach to find an optimal

schedule, but it is even more computationally demanding than the one cited earlier

for the Fw-problem. Therefore, we are interested in conditions for the optimality of a

GT solution, such as the following.

� Theorem 13.5 In the Lmax-problem for the family scheduling model, suppose

all jobs within a family have identical due dates. Then there exists an optimal solution

that is a GT solution.

Proof. Recall that our notation takes job ix as the job within family i for which the

maximum lateness occurs. We first show that there is no incentive to split family i

prior to job ix. In other words, job ix should appear in the first batch of family i .

To see why, imagine a schedule S in which job ix does not appear in the first batch.

Thus, somewhere in the schedule, there is a batch of family i jobs, followed by jobs

from other families, followed by another batch of family i jobs, and this second batch

contains job ix. Construct schedule S′ by shifting the first batch of family i jobs later,

so that it is immediately followed by the second batch of family i jobs. Although

some jobs in family i are thereby delayed, none will have a lateness larger than that of

job ix because they are scheduled in a single batch with job ix, and by definition job

ix attains the maximum lateness among these jobs when they are scheduled together.

Because this shift saves the setup that preceded the first batch of family i jobs, the

maximum lateness in family i is decreased by this shift. Meanwhile, no job in any

other family completes later in schedule S′ than in schedule S. Therefore, schedule

S′ is at least as good as schedule S, and there is no incentive to split family i prior to

job ix.

Under the hypothesis of the theorem, all jobs in the family have the same due date,

and so job ix must be the last job in the family. Therefore, there is no incentive to

split family i at all.

Theorem 13.5 echoes the result of Theorem 13.3, showing that the GT solution

occurs when jobs within a given family have identical urgencies. This result reinforces

the notion that, in the minimization of Lmax and Fw , it is desirable to split a family

into multiple batches when the jobs differ in the value of a key parameter.

13.2.3 Minimizing Makespan in the Two-Machine Flow Shop

We can also address the scheduling of job families in the flow shop setting, at least

under the GT assumption. The makespan problem for the two-machine case is of

particular interest because, like the problems discussed above, its solution would

reduce to ordering the jobs if there were only one family and no need for setups.

(In the flow shop case, that ordering would be given by Johnson’s Rule, as discussed

in Chapter 10.) Our notation is ai j for the processing time of the jth job in family i on

the first machine and bi j on the second machine. Additionally, s1i and s2i denote the

family setup times on machines 1 and 2, respectively. The setup on machine 1 merely

adds a constant delay to any schedule, so for the purposes of scheduling jobs in a

SCHEDULING JOB FAMILIES 307

family, we can safely assume s1i = 0. Initially, we assume that family setup times are

attached (see Section 10.3), which means that they can begin only when a job from

the corresponding family is available at the machine.

The problem can be decomposed into two levels. In the lower-level problem, we

determine an optimal sequence for the jobs within each family. In the higher-level

problem, we then schedule the families, treating the jobs in each family as a string.

(It can be shown that there exists an optimal solution where the jobs within families

are sequenced by their lower-level optima.)

First, we solve the lower-level problem when there are family setup times. Al-

though it would be convenient to ignore setups and rely on Johnson’s Rule to schedule

jobs within families, that procedure is not always optimal.

� Example 13.2 Consider a two-machine family scheduling problem consisting

of one three-job family, with no family setup on machine 1 and a family setup of

length s2 = 5 on machine 2.

Job j 1 2 3

aj 10 8 2

bj 12 5 1

The sequence 1-2-3, which is prescribed by Johnson’s Rule, yields a makespan of

33, but the sequence 3-1-2 yields a makespan of only 29.

Suppose we ignore setup times and construct a job sequence for family i using

Johnson’s Rule, renumbering the jobs in the order obtained. As the example demon-

strates, this sequence does not guarantee optimality within the family. Nevertheless,

an optimal sequence exists in which Johnson’s Rule applies to all the jobs after the

first. Although we can often narrow the set of possibilities, we may have to test

all jobs in the family at the first sequence position to determine the solution to the

lower-level problem.

Next, we examine the effects of the lower-level solution on the higher-level prob-

lem. Each family will appear in the schedule with its individual jobs sequenced by the

lower-level rule. Also, a setup time will initiate the processing of the jobs comprising

the family, as shown in Figure 13.1.

As reflected in the figure, we postpone the start of s2i just long enough to avoid any

intermittent idling on that machine thereafter. This can be done without increasing

the family makespan, Mi . Similarly, we forbid intermittent idling on machine 1. Let

I1i

I2 i

FIGURE 13.1 A two-machine schedule for a family containing four jobs.

308 SCHEDULING GROUPS OF JOBS

I1i denote the run-in time (for family i), and let I2i denote the run-out time, as shown

in the figure. The run-in time represents the period during which only machine 1 can

process the family, so machine 2 remains idle unless an operation from the previous

family is in process. The run-out time is defined symmetrically as the period when

only machine 2 can process the family. Let

Ai = s1i +

ni
∑

j=1

ai j

and

Bi = s2i +

ni
∑

j=1

bi j

Then, because there is no intermittent idling,

I1i = Mi − Bi (13.1)

and

I2i = Mi − Ai (13.2)

Equations (13.1) and (13.2) show that by minimizing Mi , we also minimize I1i

and I2i . The run-in and run-out times are important for optimizing the higher-level

problem: they are the parameters of an equivalent problem that we can solve by

Johnson’s Rule. Define the body of family i , Ci , as the period during which the

two machines can operate in parallel, so that Mi = I1i + Ci + I2i . Hence, Ci =

Ai + Bi − Mi . It follows that I1i = Ai − Ci and I2i = Bi − Ci . By minimizing Mi ,

we maximize Ci , which can only help our objective. Conceptually, each family can

now be replaced by a single representative job such that the representative operation

on machine 1 takes Ai and the representative operation on machine 2 takes Bi .

Because the body can be processed in parallel, the representative job has a start

lag of I1i and a stop lag of I2i (as analyzed in Section 10.3.3). When we apply

Eq. (10.4), we obtain di = −Ci , so the higher-level problem is solved by Johnson’s

algorithm with job processing times given by Ai − Ci = I1i and Bi − Ci = I2i . That

is, in the higher-level problem, family i precedes family k in an optimal sequence if

min{I1i , I2k} ≤ min{I1k, I2i }.

We can also analyze separable setups (see Section 10.3.4), for which the family

setup on machine 2 may take place before any job from the family completes its work

at machine 1. In this case, the solution is simplified because Johnson’s Rule holds

within families, and a two-level approach finds the optimal schedule under the GT

assumption.

SCHEDULING WITH BATCH AVAILABILITY 309

GT solution 1-2

machine 1

machine 2

GT solution 2-1

machine 1

machine 2

Split solution

machine 1

machine 2

1,21,1 2,1

1,21,1 2,1

1,21,12,1

1,21,12,1

1,21,1 2,1

1,21,1 2,1

17

15

14

FIGURE 13.2 Three schedules for Example 13.3.

Once again, as in the problems discussed earlier, we can relax the GT assumption

by permitting families to be split.

� Example 13.3 Consider a two-machine family scheduling problem consisting

of a two-job family and a one-job family, as described in the table. Suppose that setups

are attached and all setups require one time unit.

Job (i, j) (1, 1) (1, 2) (2, 1)

aij 1 5 3

bij 3 1 5

The example demonstrates that splitting families can be advantageous in the two-

machine flow shop. There are two GT solutions, but neither is optimal, as shown in

Figure 13.2.

We can expect that problems containing more than two machines will usually be

much more difficult than the two-machine case and heuristic methods will often be

appropriate.

13.3 SCHEDULING WITH BATCH AVAILABILITY

In the models considered thus far, grouping permits the adjacent processing of several

jobs in order to reduce the total number of setups. In these models, jobs complete

individually and become available for delivery one at a time. This mode is sometimes

called item availability. In contrast, under batch availability, all the jobs in a batch

become available at the same moment. Batch availability is characteristic of systems

310 SCHEDULING GROUPS OF JOBS

in which jobs are transported and delivered in containers such as boxes, pallets,

or trucks. For example, a key step in the manufacture of printed circuit boards is

often the insertion operation. Each board has several components inserted into it (or

mounted onto it) and is then placed in a rack. When the number of boards in the

rack reaches a certain level, the operator stops production and transfers the rack to a

subsequent operation. The number of boards in the rack constitutes the batch size, in

which transfers occur, and the time required by the operator to check and move the

rack between stations plays the role of the setup time between batches.

Sequencing problems involving batch availability tend to be more difficult than

their analogs with item availability, and relatively few results exist. We look first at

the minimization of total flowtime in the case where there is only one family. (The

Fw-problem, which is a generalization, is known to be NP-hard.)

� Example 13.4 Consider the F-problem for one family containing the six jobs

shown in the table below, with a setup time of s = 2. We omit the subscript for family

index because the problem contains only one family.

Job j 1 2 3 4 5 6

pj 1 2 4 5 6 10

If we schedule the jobs in this sequence and in batches of size 2, we can describe

the schedule in symbols as s12s34s56. The batches are described next:

Batch Jobs Completion

1 {1, 2} 5

2 {3, 4} 16

3 {5, 6} 34

In other words, two jobs complete at time 5, two more complete at 16, and the last

two complete at 34. The total flowtime is F = 2(5) + 2(16) + 2(34) = 110.

For later reference, we provide an alternative expression for total flowtime. In any

schedule, batch i contains ni jobs, each of which completes at Ci , the completion

time of batch i . Thus, at one level, we can think of total flowtime in the form

F = �i ni Ci (13.3)

The batch completion time Ci , in turn, is the sum of the processing times (including

setup time) for each of the first i batches, or

Ci =

i
∑

k=1

(s + Pk) (13.4)

SCHEDULING WITH BATCH AVAILABILITY 311

where Pk denotes the total processing time in the kth batch, and where the batches

are indexed in the order of their appearance in sequence. The first batch contributes

to all of these Ci values; the second batch contributes to all but the first, and so on.

We can thus write total flowtime as follows:

F = �i (s + Pi)[n − (n1 + n2 + · · · + ni−1)]

Now suppose that e(i) denotes the index of the first job in batch i . Then, we may

rewrite this expression:

F = �i (s + Pi)[n − e(i) + 1] (13.5)

In our example, we have

F = (2 + 3)[6] + (2 + 9)[4] + (2 + 16)[2] = 30 + 44 + 36 = 110

In the F-problem, some simplifications are possible. Most importantly, we can

limit consideration to SPT sequences.

� Theorem 13.6 In the F-problem with batch availability and one family, there

is an optimal schedule in which the jobs appear in nondecreasing order of their

processing times.

This property, which should not be surprising, is demonstrated by means of a

pairwise interchange: for any allocation of jobs to batches, we can retain the number

of setups and interchange a non-SPT pair without increasing F .

In light of Theorem 13.6, we can assume (as in our example above) that the jobs

are numbered according to SPT and that they appear in numbered sequence in the

optimal schedule. The problem becomes one of partitioning the n jobs and forming

batches.

The search for an optimal schedule can be accomplished using a dynamic pro-

gramming approach that locates optimal partitions in the sequence of the n jobs.

Suppose that the schedule for the first (k − 1) jobs has been determined and that it

ends with the completion of a batch. Let G(k) denote the minimum contribution to

total flowtime from the jobs k through n. This minimum value can be found, in turn,

by considering all possible sizes for the first batch in this set. Thus,

G(k) = min j {g(k, j) : k < j ≤ n + 1}

where g(k, j) represents the minimum contribution to total flowtime from jobs k

through n when the first batch contains jobs k through (j − 1). In light of (13.5), we

have

g(k, j) = (n − k + 1)[s + pk + pk+1 + · · · + p j−1] + G(j) (13.6)

312 SCHEDULING GROUPS OF JOBS

TABLE 13.1

j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 G(k)

k = 6 — — — — — 12 12

k = 5 — — — — 28 36 28

k = 4 — — — 49 51 69 49

k = 3 — — 73 72 80 108 72

k = 2 — 92 89 93 107 145 89

k = 1 107 102 103 112 132 180 102

The recursion in (13.6) produces the optimal value of total flowtime as G(1), starting

the calculations with G(n + 1) = 0.

To illustrate the solution algorithm, we return to Example 13.4 and start with

G(7) = 0. The calculated values of g(k, j) are shown in Table 13.1. For instance, we

obtain the optimal size of the first batch from g(1, 3) as follows.

g(1, 3) = (6 − 1 + 1)[2 + 1 + 2] + G(3) = (6)(5) + 72 = 102

where G(3) = 72 had previously been calculated.

Retracing the steps leading to the optimal value will reveal that the optimal sched-

ule is s12s34s5s6.

A second property helps anticipate the structure of the solution and will be of

interest later on.

� Theorem 13.7 In the F-problem with batch availability and one family, the

batch sizes form a nonincreasing sequence.

Proof. Suppose that the optimal schedule S does not satisfy the theorem. Then there

must be a pair of batches i and k, with k following i , such that a, the size of batch

i , and b, the size of k, satisfy a ≤ (b − 1). Form schedule S′ by moving the first job

from batch k into batch i . Jobs not contained in these two batches complete at the

same time in S′ as in S, so their contributions to total flowtime can be ignored. The

one job moved between batches is accelerated by the construction of S′. Its flowtime

is improved by the time required to set up and process the other jobs of batch k in

schedule S, which we may write as

�1 = s + pk2 + · · · + pkb

Meanwhile, the reallocation delays the completion of batch i , and hence each job

remaining in it, by an amount equal to the processing time, pk1, of the job that was

moved. We can write the resulting increase in the total flowtime as

�2 = apk1 ≤ (b − 1)pk1 ≤ pk2 + · · · + pkb = �1 − s

SCHEDULING WITH A BATCH PROCESSOR 313

The last inequality holds because the jobs are in SPT order. Thus, �2 < �1, so that

the total flowtime of S′ is smaller than the total flowtime of S. At the outset, we

assumed that S was optimal, so this is a contradiction. Therefore, we must have

a ≥ b as provided in the theorem.

We did not make use of Theorem 13.7 in the solution of our example problem,

although it would allow us to skip some of the calculations tabulated earlier. In

particular, the calculations leading to g(2, 3) = 92 and g(1, 2) = 107 can be skipped.

In both cases, the leading batch of size 1 would be followed by a batch of size 2, thus

violating the nonincreasing property prescribed by the theorem.

When the jobs are all identical, some analytic simplifications are possible. First,

ignoring the integer requirement, the optimal number of batches is given by the

following expression:

k =

√

1

4
+

2np

s
−

1

2

where p denotes the common processing time. Then, the size of batch i is given by

bi =
n

k
+

(k + 1)s

2p
−

is

p

This formula reinforces the notion that the batch sizes are generally unequal and

(in the spirit of Theorem 13.7) nonincreasing in size.

Problems with multiple families and batch availability are somewhat more compli-

cated, and no general results have been developed. However, when the GT assumption

applies, two-level solutions exist.

13.4 SCHEDULING WITH A BATCH PROCESSOR

A batch processor can accommodate several jobs simultaneously, and all jobs require

the same amount of processing capacity. Batch availability is implicit in its mode of

operation. In a batch processing scenario, we usually let B denote the capacity of the

processor: this is the maximum number of jobs that can be processed at any one time.

We let p denote the time required to process the jobs in any batch. This time is fixed

and independent of the number of the jobs in the batch, and we sometimes refer to

a fixed batch processor. Once processing is initiated on a batch processor, the batch

cannot be interrupted, nor can other jobs be started. Batch processors can be found

in various settings. For example, several layers of fabric are cut simultaneously on a

cutting machine, several printed circuit boards are tested simultaneously, and several

gears are heat-treated simultaneously. Transportation of items between workstations

can also occur in batches. We can view the cutter, tester, oven, or transporter as a batch

processor. By contrast, we call the processor in the single-machine model a discrete

314 SCHEDULING GROUPS OF JOBS

processor, although we can also think of a discrete processor as a batch processor

with B = 1.

We briefly consider the case of n jobs simultaneously available for scheduling

on a batch processor. For any regular performance measure, it is desirable to start

processing at time zero and to use batches of the maximum possible size for as

long as possible. Such a schedule is called a full-batch schedule. The composition

of the batches is irrelevant if the performance measure is M or F , and all full-batch

schedules are optimal in these two cases. If the performance measure is Lmax, a

full-batch schedule is optimal if the jobs are initially sequenced by EDD; and if the

performance measure is Fw , a full-batch schedule is optimal if the jobs are initially

sequenced in nonincreasing order of their weighting factors (sometimes called the VIP

sequence). In what follows, we turn to scheduling problems for which the solutions

may not be so obvious.

13.4.1 Minimizing the Makespan with Dynamic Arrivals

Makespan minimization is obvious when all jobs are simultaneously available, but

a more interesting problem arises when there are dynamic arrivals. In the dynamic

single-machine problem, the optimal makespan is obtained by sequencing the jobs

according to earliest release date (ERD). In the case of a batch processor, we first

sequence the jobs by ERD and then assign jobs to batches. An optimal assignment

has the property that only the first batch need be partially empty. This procedure is

called the first-only-empty (FOE) algorithm. Here, ⌈x⌉ denotes the smallest integer

greater than or equal to x .

Algorithm 13.1 FOE Algorithm

Step 1. Let m = ⌈n/B⌉ and let k = n − B(m − 1).

Step 2. Assign jobs 1, 2, . . ., k to the first batch.

Step 3. Assign the remaining jobs, one at a time and in ERD order, to the first batch

with available capacity.

Step 4. Construct a detailed schedule by starting each batch at either the time its last

job arrives or the time the previous batch finishes.

The FOE algorithm produces an optimal makespan.

� Example 13.5 Consider the following set of n = 11 jobs, and suppose that

the capacity of the batch processor is B = 3, with p = 4.

Job j 1 2 3 4 5 6 7 8 9 10 11

rj 0 2 5 7 8 8 10 11 13 14 15

From Step 1 of the FOE algorithm, we calculate the number of batches as m = 4

and the size of the first batch as k = 2. Thus, the first two jobs make up the first batch,

SCHEDULING WITH A BATCH PROCESSOR 315

and the remaining jobs are assigned to batches as follows, with starting times shown:

Batch Jobs Start

2 {3, 4, 5} 8

3 {6, 7, 8} 12

4 {9, 10, 11} 16

The final batch starts at time 16, so the makespan must be M = 20. The optimality

of the FOE algorithm is proved next.

� Theorem 13.8 In the batch processor scheduling model, the FOE algorithm

produces the minimum makespan.

Proof. For the purposes of this proof, let si denote the start time of the ith batch in

the schedule, and let m denote the number of batches. Obviously, if sm = rn , then the

theorem holds. This leaves us to consider the case of sm > rn , for which we know

that the last two batches are consecutive (by construction). Suppose that the number

of consecutive batches at the end of the schedule is denoted h, where h ≥ 2. Then we

know that the first batch in this set is the only member of the set that may not contain

B jobs, and it starts at the release date of its last job, or sm−h+1 = rn−h B , so that

job (n − h B) completes as early as possible. We also know that job (n − h B) must

appear in a different batch than job (n − h B + B), which must appear in a different

batch than job (n − h B + 2B), and so on. Thus, the set of jobs from job (n − h B)

to job n also completes as early as possible. Prior to the last h batches, the problem

decomposes, and we can apply a similar argument to show that the set of remaining

jobs completes as early as possible.

13.4.2 Minimizing Makespan in the Two-Machine Flow Shop

The two-machine flow shop problem with batch processors also has a relatively

straightforward solution. In this model, the two batch processors may differ, so we

use subscripts 1 and 2 to distinguish their respective capacities and process times.

From the perspective of the first machine, where all jobs are simultaneously available,

it is desirable to use a full-batch policy. When we do so, the completion time of the

jth full batch on machine 1 is simply j p1. This is the completion time as well for jobs

(j − 1)B1 + 1 to j B1.

From the perspective of the second machine, jobs arrive dynamically and are

assigned to the second batch processor with the objective of minimizing Cmax on

the second machine. From our discussion of the FOE algorithm, we know that all

batches on machine 2, except possibly the first, should be full batches. For trial

makespan M to be feasible, the start time on machine 2 of the kth batch from the end

must be no later than s = M − k p2. This is also the start time for jobs n − k B2 + 1

through n − (k − 1)B2. The last of these jobs appears on machine 1 in batch number

316 SCHEDULING GROUPS OF JOBS

⌈[n − (k − 1)B2]/B1⌉, which finishes at time f = ⌈[n − (k − 1)B2]/B1⌉p1. Thus,

for M to be feasible, we require that times s and f be compatible; that is, s ≥ f , or

M − k p2 ≥ ⌈[n − (k − 1)B2]/B1⌉ p1

M ≥ k p2 + ⌈[n − (k − 1)B2]/B1⌉ p1

Thus, the makespan will be determined by the tightest of these inequalities, so that

M = maxk{k p2 + ⌈[n − (k − 1)B2]/B1⌉ p1} (13.7)

where k = 1, 2, . . . , ⌈n/B2⌉.

� Example 13.6 Consider the problem of scheduling n = 18 jobs on two ma-

chines. The jobs have the following characteristics.

Machine i 1 2

Bi 5 3

pi 5 4

From (13.7), and considering k = 1, 2, . . . , 6, we have

M = max{24, 23, 27, 26, 30, 29} = 30

Thus the optimal makespan is 30, and the constraining batch is k = 5. The fifth batch

from the end on machine 2 contains jobs 4-6. Job 6 appears in the second batch on

machine 1 and therefore completes on machine 1 at time 10. The last five batches on

machine 2 then require total processing time of 20 even when done consecutively,

so the schedule cannot complete before time 30. Figure 13.3 displays the schedule

and the number of jobs assigned to each batch, along with selected batch completion

times.

5

5 10

14 30

3555

333333

FIGURE 13.3 Optimal schedule for Example 13.6.

SCHEDULING WITH A BATCH PROCESSOR 317

13.4.3 Minimizing Total Flowtime with Dynamic Arrivals

If all jobs are simultaneously available, as in the basic single-machine model, then,

as mentioned earlier, many of the single-machine results carry over to the scheduling

of a single batch processor. In fact, the batch processor version tends to be easier,

because any full-batch schedule is optimal for several measures of performance.

When we turn to the dynamic version of the model with nonpreemptable jobs, we

might expect that solutions are not as easy to find. In the single-machine model,

the dynamic version of the F-problem, the Lmax-problem, and the U-problem are all

NP-hard. For the batch processor model, there is some hope that solutions for these

criteria can be found with limited computational requirements.

A dynamic programming approach is available for the F-problem. For conve-

nience, we address the problem of minimizing the sum of completion times, which

is equivalent to the F-problem in the sense that the performance measures differ by

only a given constant. To simplify the decisions, it is sufficient to consider initiating

a batch either when a job arrives and the processor has been idle or when a batch

completes and at least one job is waiting. If we were given a schedule in which a

batch started at some other time, then we could shift that batch to an earlier time and

improve the schedule. As a consequence, we need only consider schedules in which

each batch starts either immediately after the previous batch or at a job release date.

These observations permit us to think of scheduling as deciding whether to initiate

a batch when the processor has been idle, and if so, how many consecutive batches to

run. Viewed in this light, scheduling decisions need only be contemplated at release

dates. Thus, if there are n jobs, then there are at most n times (corresponding to the

values of the release dates r j) at which scheduling decisions need to be made.

Let a(t) denote the number of available jobs waiting to be processed at time t ,

and as before, let B and p denote the capacity of the processor and its process time,

respectively. Suppose that we schedule h batches consecutively, starting at time r j .

In that case, the start time of the kth batch in sequence is

tk = r j + (k − 1)p

and its size is

bk = min{B, a(tk)}

The value a(tk) must equal the sum of the number of jobs left behind by the (k − 1)st

batch and the number of jobs arriving between tk−1 and tk . Using this recursive

relation, we can write

a(tk) = [a(tk−1) − B]+ + |{i : tk−1 < ri ≤ tk}|

where [x]+ = max{x, 0} and |X | denotes the number of elements in set X .

In order to implement the dynamic programming algorithm, take the pair (r j , a j) as

a state, where a j is shorthand for a(r j). Define the function G(r j , a j) as the minimum

318 SCHEDULING GROUPS OF JOBS

sum of completion times for the state (r j , a j). Then, the dynamic programming

recursion takes the following form:

G(r j , a j) = min{G(r j+1, a j + 1), minh{S(j, h) + G(r ′
j , a′

j)}

where S(j, h) denotes the sum of completion times for the jobs contained in the next

h consecutive batches, r ′
j denotes the first release date after the h consecutive batches

complete, and a′
j denotes the number of available jobs waiting to be processed at

time r ′
j . Expressed in symbols, we have

S(j, h) =

h
∑

k=1

(r j + kp)bk

r ′
j = min{ri : ri > r j + hp}

a′
j = a(r j + hp) + 1

The solution is found by calculating G(r1, 1), starting with the ending condition that

G(rn+1, x) = 0 for any x . The computational effort for each state is at worst linear

in the number of jobs, n, and the total number of states cannot exceed n2. Thus, the

algorithm requires an effort of O(n3).

13.4.4 Batch-Dependent Processing Times

In the batch processor model, the process times are typically a fixed constant, which

we have denoted p. A slightly more complicated model allows the batch processing

time to depend on the jobs assigned to the batch. Suppose that job j has a distinct

processing time, pj. When several jobs are assigned to a batch, the batch processing

time is the maximum processing time among its assigned jobs. This generalization of

the fixed batch model is motivated by the problem of scheduling burn-in operations

for electronic components, and we refer to it as the burn-in model. Each component

must be tested under high-temperature conditions for a given length of time, called

the burn-in time. Different component types can have different burn-in times. The

number of components that can be tested simultaneously is often larger than the

number of any one type that is available for testing, so there is an incentive to mix

component types in any test batch. The temperature is common to different types,

and no significant harm is done by testing a component for longer than its required

burn-in time. Therefore, the length of the batch run is determined by the longest

required burn-in time in the batch.

For the burn-in model, we can develop a solution algorithm for the F-problem

based on some dominance properties. First, suppose we have determined an assign-

ment of jobs to batches and numbered the batches from 1 to b. Batch k has processing

time Pk , which denotes the maximum processing time among the jobs assigned to the

batch. Also, let nk denote the number of jobs assigned to batch k. With this notation

SCHEDULING WITH A BATCH PROCESSOR 319

we can write the performance criterion as

F =

b
∑

k=1

nk

k
∑

i=1

Pi (13.8)

An alternative expression for the total flowtime follows from interchanging the order

of summation:

F =

b
∑

i=1

Pi

n −

i−1
∑

j=1

n j

 (13.9)

An adjacent batch interchange argument shows that in an optimal schedule the batches

should be sequenced in nondecreasing order of Pk/nk .

A second dominance property assumes that the jobs are numbered in SPT order.

Then it is possible to show that there is an optimal schedule in which all batches

contain consecutively numbered jobs. This property simplifies the search for an

optimum considerably. We can imagine the jobs listed in sequence, and we can view

the scheduling problem as deciding where the batch boundaries should be placed

among the (n − 1) possible locations.

� Example 13.7 Consider a burn-in problem containing the following set of

n = 8 jobs, and suppose that the capacity of the batch processor is B = 3.

Job j 1 2 3 4 5 6 7 8

pj 4 6 7 9 12 18 20 24

With eight jobs, we know that any schedule will necessarily have at least three

batches and as many as eight. The three-batch solutions, along with their F-values,

are listed below.

Batches Process Times Completion Times F

{1, 2, 3} {4, 5, 6} {7, 8} 7, 18, 24 7, 25, 49 194

{1, 2, 3} {4, 5} {6, 7, 8} 7, 12, 24 7, 19, 43 188

{1, 2} {3, 4, 5} {6, 7, 8} 6, 12, 24 6, 18, 42 192

Similarly, we could enumerate the list of four-batch schedules, five-batch schedules,

and so on, up to a single eight-batch schedule. Any schedule added to the list could be

eliminated before evaluating its total flowtime if we encountered an adjacent pair of

batches in conflict with the desired ordering of the ratio Pk/nk . For example, consider

the schedule made up of the batches {1} {2} {3, 4, 5} {6, 7, 8}. The second batch

has a ratio of 6, but the third batch has a ratio of 4. Therefore, this schedule does not

belong to the dominant set unless we interchange the second and third batches.

320 SCHEDULING GROUPS OF JOBS

Although these two dominance properties limit the number of dominant schedules,

the set of undominated candidates may still be quite large. We can take a branch and

bound approach, based on the enumeration of partial schedules. A partial schedule

consists of a set of batches at the start of the schedule. To this partial schedule, we

append all possible batches. Admissible candidates for the appended batch must (a)

contain a set of consecutive jobs, (b) contain at most B jobs, and (c) exhibit a Pk/nk

ratio no smaller than that of the last batch in the existing partial schedule. In our

example, suppose we had the partial schedule {1, 2} on hand and were considering

admissible candidates for the second batch. Batch {3} is admissible, but {3, 4} and

{3, 4, 5} are not admissible because their Pk/nk ratios are smaller than the ratio of

5 for the batch in the existing partial schedule. Conditions (a) and (b) prohibit any

other batch containing job 3, although batches without job 3 are admissible.

For any partial schedule, there is a contribution to the performance measure from

the jobs already scheduled. In addition, to pursue a branch and bound approach, we

need a lower bound on the contribution from the remaining jobs. A straightforward

way to obtain such a bound is to schedule the remaining jobs on B parallel, discrete

processors in SPT order. A batch processor with capacity B is less flexible than

B separate processors each with unit capacity, so the parallel-machine solution will

always be at least as good as any potential batch processor solution for the same job set.

13.5 SUMMARY

We have examined two types of scheduling models involving groups of jobs. In the

family scheduling model, jobs belonging to the same family tend to be scheduled

together in order to avoid nonproductive setup time. In various batching models, the

several jobs assigned to the same batch are processed together and share the same

completion time.

Scheduling job families is evidently more complicated than scheduling individual

jobs, and only a few results for the basic single-machine model carry over to schedul-

ing families. Optimal schedules for the Lmax-problem and the Fw-problem are direct

generalizations in the case of the GT model. However, the two-level approach at the

heart of these generalizations has distinct limits.

In order for the two-level approach to work, there must be an efficient way of

sequencing jobs within families. (This would not be the case, for example, in the

T-problem.) In addition, the optimal sequencing within families must be independent

of the time at which the family begins processing. (This would not be the case,

for example, in the U-problem.) Without these properties, the two-level approach

will not lead to an efficient algorithm for optimization, although it may provide a

reasonable heuristic procedure. Little is known, however, about the effectiveness of

such two-level heuristic procedures.

In the general case, where the GT scheduling model does not apply, few avenues

seem to be available. While a dynamic programming formulation is possible for

the Lmax- and Fw-problems, even this approach is computationally demanding. For

REFERENCES 321

the special case of total flowtime, Mason and Anderson (1991) develop dominance

conditions that are useful in enumerative search procedures and in branch and bound

procedures. Their computational experience suggests that problems containing up to

30 jobs can be optimized with such methods, although they point out that solution

times are noticeably affected by the size of setup times relative to processing times

and by the number of families relative to the number of jobs. For the flow shop

problem, general methods such as tabu search and simulated annealing appear to

offer the best prospects for effective performance with reasonable computational

requirements.

Batch availability introduces the simplest form of job dependence in that all jobs

in the same batch complete at the same time. Few results have been obtained for

sequencing models with batch availability, and we highlighted the F-problem as the

one case that has received significant attention.

The more prevalent form of grouping into batches occurs in conjunction with

the scheduling of a batch processor. For static problems involving a single batch

processor, solutions are often not difficult to find. Dynamic models, where jobs are

released intermittently, call for more sophisticated solution techniques, but dynamic

programming methods appear to work well. The burn-in model, which introduces the

feature of batch-dependent processing times, gives rise to a difficult class of problems

in the batch processing category. Uzsoy (1994) addressed a version of this model in

which the jobs have different capacity requirements and showed that the makespan

and total flowtime problems are both NP-hard.

REFERENCES

Ahmadi, J.H., R.H. Ahmadi, S. Dasu, and C.S. Tang (1992). Batching and scheduling jobs on

batch and discrete processors, Operations Research 39, 750–763.

Albers, S. and P. Brucker (1993). The complexity of one-machine batching problems, Discrete

Applied Mathematics 47, 87–107.

Bruno, J. and P. Downey (1978). Complexity of task sequencing with deadlines, setup times

and changeover costs, SIAM Journal of Computing 7, 393–404.

Bruno, J. and R. Sethi (1978). Task sequencing in a batch environment with setup times,

Foundations of Control Engineering 3, 105–117.

Chandru, V., C.Y. Lee, and R. Uzsoy (1993). Minimizing total completion time on batch

processing machines, International Journal of Production Research 31, 2097–2122.

Coffman, E.G., M. Yannakakis, M.J. Magazine, and C. Santos (1990). Batch sizing and job

sequencing on a single machine, Annals of Operations Research 26, 135–147.

Dobson, G., U.S. Karmarkar, and J.L. Rummel (1987). Batching to minimize flow times on

one machine, Management Science 33, 784–799.

Gupta, J.N.D. (1988). Single facility scheduling with multiple job classes, European Journal

of Operational Research 33, 42–45.

Ikura, Y. and M. Gimple (1986). Efficient scheduling algorithms for a single batch processing

machine, Operations Research Letters 5, 61–65.

322 SCHEDULING GROUPS OF JOBS

Lee, C.Y., R. Uzsoy, and L.A. Martin-Vega (1992). Efficient algorithms for scheduling semi-

conductor burn-in operations, Operations Research 40, 764–775.

Mason, A.J. and E.J. Anderson (1991). Minimizing flow time on a single machine with job

classes and setup times, Naval Research Logistics 38, 333–350.

Monma, C.L. and C.N. Potts (1989). On the complexity of scheduling with batch setup times,

Operations Research 37, 798–804.

Potts, C.N. and L.W. Van Wassenhove (1992). Integrating scheduling with batching and lot-

sizing: a review of algorithms and complexity, Journal of the Operational Research Society

43, 395–406.

Santos, C. and M. Magazine (1985). Batching in single operation manufacturing systems,

Operations Research Letters 4, 99–103.

Uzsoy, R. (1994). Scheduling a single batch processing machine with non-identical job sizes,

International Journal of Production Research 32, 1615–1635.

EXERCISES

13.1. Consider the problem of scheduling twelve jobs that belong to three families,

assuming that the GT assumption applies. In the following table, the family is

denoted f j , the setup time is denoted s j , the process time is denoted p j , the

due date is denoted d j .

Job j 1 2 3 4 5 6 7 8 9 10 11 12

fj 1 1 1 1 2 2 2 3 3 3 3 3

sj 5 5 5 5 8 8 8 2 2 2 2 2

pj 6 16 80 61 97 12 55 23 32 46 55 67

dj 26 33 137 157 75 52 162 65 136 81 30 121

a. Find the optimal GT schedule for the F-problem.

b. Find the optimal GT schedule for the Lmax-problem.

13.2. Consider the problem of scheduling four families with item availability, where

family i requires a setup time. Each family contains three jobs. The objective

for scheduling is to minimize total job completion time.

Processing Times

Setup Time Job 1 Job 2 Job 3

Family 1 5 5 11 8

Family 2 10 6 5 3

Family 3 8 3 5 7

Family 4 2 12 15 4

EXERCISES 323

a. If no setup times existed, what would be the optimal value of the objective?

b. What is the optimal GT schedule and the corresponding value of the objec-

tive?

c. Suppose the GT assumption in (b) is relaxed. What is the optimal schedule

and the corresponding value of the objective?

13.3. Consider the problem of scheduling n families with batch availability, where

family i requires setup time si . Suppose that the GT assumption holds.

a. Describe how to construct an optimal schedule for the F-problem.

b. Describe how to construct an optimal schedule for the Lmax-problem.

13.4. Consider the GT scheduling model with the criterion of minimizing the max-

imum cost, where each job’s cost function is a nondecreasing function of

completion time.

a. Devise an algorithm that will find an optimal schedule.

b. Determine the computational effort required to execute the algorithm in (a).

13.5. Consider the problem of scheduling n simultaneously available jobs on a single

machine with a fixed batch processor. For each of the following performance

measures, describe and justify a full-batch schedule that will provide an optimal

solution.

a. Total flowtime.

b. Total weighted flowtime.

c. Maximum lateness.

d. Maximum weighted lateness.

e. Number of tardy jobs.

13.6. Consider a burn-in problem containing the following set of n = 10 jobs, and

suppose that the capacity of the batch processor is B = 3.

Job j 1 2 3 4 5 6 7 8 9 10

pj 2 5 7 8 8 10 11 13 14 15

a. Find the optimal schedule for the F-problem and the corresponding total

flowtime.

b. Repeat (a) for a capacity of B = 4.

13.7. Consider the lower-level sequencing problem in the two-machine flow shop

model with groups of jobs and attached setups.

a. Show that, without loss of generality, we can take the group setup time on

machine 1 to be s1 = 0 (for convenience, we omit the family index and

index the jobs by Johnson’s Rule).

b. Prove that Johnson’s Rule applies to all jobs after the first.

c. Suppose we consider shifting job s(s �= 1) to the first position. Show that

there is no incentive to do so if a1 ≤ as .

324 SCHEDULING GROUPS OF JOBS

d. Show that there is no incentive to shift job s unless it belongs to V as defined

in Algorithm 10.2 (i.e., unless as > bs).

e. Show that there is no incentive to shift job s if s2 + bs ≤ as .

f. Show that adding a job can reduce the optimal makespan.

13.8. Consider the problem of scheduling families of jobs in a two-machine flow

shop with a GT policy. Prove that an optimal solution exists where the sequence

within each family is given by the lower-level optimum. (Hint: Recall from the

discussion in the chapter that this solution maximizes the body of each family

and thus minimizes the run-in and the run-out times.)

14
THE JOB SHOP PROBLEM

14.1 INTRODUCTION

The classical job shop scheduling problem differs from the flow shop problem in

one important respect: the flow of work is not unidirectional. The elements of the

problem are a set of m machines and a collection of n jobs to be scheduled. Each

job consists of several operations with the same linear precedence structure as in

the flow shop model. Although a job can have any number of operations, the most

common formulation of the job shop problem specifies that each job has exactly

m operations, one on each machine. It is not difficult, however, to adapt the main

ideas to general cases in which a job visits the same machine more than once or skips

some machines. Because the workflow in a job shop is not unidirectional, we can

think of each machine in the shop as having the input and output flows of work shown

in Figure 14.1. Unlike the flow shop model, there is no initial machine that performs

only the first operation of a job, nor is there a terminal machine that performs only

the last operation of a job.

In the flow shop, machine k performs the kth operation of any job, and there is no

need to distinguish between operation number and machine number. In the job shop,

by contrast, it is appropriate to describe an operation with a triplet (i, j, k) to denote

that operation j of job i requires machine k. A problem setting can then be described

by listing the processing times of all operations identified by such triplets.

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

325

326 THE JOB SHOP PROBLEM

Machine

k

Arriving

jobs

Leaving

jobs

In-process jobs In-process jobs

FIGURE 14.1 Workflow in a job shop.

� Example 14.1 Consider a four-job, three-machine job shop problem with the

following processing times.

Job 1 Job 2 Job 3 Job 4

Operation pi jk Operation pi jk Operation pi jk Operation pi jk

Machine 1 (1, 1, 1) 4 (2, 2, 1) 4 (3, 3, 1) 3 (4, 3, 1) 1

Machine 2 (1, 2, 2) 3 (2, 1, 2) 1 (3, 2, 2) 2 (4, 1, 2) 3

Machine 3 (1, 3, 3) 2 (2, 3, 3) 4 (3, 1, 3) 3 (4, 2, 3) 3

Alternatively, we may use the pair (i, j) to denote the j th operation for job i and a

separate routing matrix k(i, j) to represent the machine required by operation (i, j).

Table 14.1 provides the data for Example 14.1 in the alternative format: (a) opera-

tion processing times and (b) operation machine assignments. The set of machine

assignments for a given job constitutes its routing. For example, job 2 has a machine

routing of 2-1-3.

Aside from routings, the job shop model reflects the same assumptions that ap-

ply in the flow shop model. To complete a problem statement, we must specify a

TABLE 14.1

(a) Processing Times (b) Routings

Operation Operation

1 2 3 1 2 3

Job 1 4 3 2 Job 1 1 2 3

Job 2 1 4 4 Job 2 2 1 3

Job 3 3 2 3 Job 3 3 2 1

Job 4 3 3 1 Job 4 2 3 1

INTRODUCTION 327

Job 1

Job 2

Job 3

Job 4

Machine 1

Machine 2

Machine 3

212

221111

(a)

(b)

431331

412322122

313 423233133

212 221

111

431

331

412

322

122

313

423

233

133

FIGURE 14.2 Job and machine requirements in Example 14.1.

performance measure. The problem is then one of constructing a feasible schedule

that optimizes the performance measure.

A graphical description of the job shop problem contains the jobs and a Gantt

chart to be filled in. The graphical job description of Example 14.1 is given in

Figures 14.2 and 14.3. Figure 14.2a consists of a collection of rectangles, each with a

job–operation–machine triplet. The length of the rectangle is equal to the processing

time of the corresponding operation, using the scale of the Gantt chart. The sequential

numbering of operations for a given job indicates the operation sequence.

If we place the operation rectangles as compactly as possible on the Gantt chart in

some arbitrary fashion, as in Figure 14.2b, the chart describes the workload for each

machine but is unlikely to represent a valid schedule. A feasible schedule is shown in

Figure 14.3a. A schedule is a feasible resolution of the resource constraints when no

two operations ever occupy the same machine simultaneously. Another requirement

is feasible resolution of the logical constraints, which means that all operations of

each given job can be placed on a time axis in precedence order without overlapping.

A graphical display of this property is shown in Figure 14.3b.

When we examined the flow shop problem in Chapter 10, it appeared at first

glance that we might need to examine (n!)m schedules in the search for an optimum.

Subsequently, we found that, for large problems, the subset of permutation schedules

was likely to contain very good solutions even if it could not be guaranteed to contain

an optimum. In a sense, the first step in analyzing the job shop model is to locate

a similar “very good” subset for more detailed exploration. This subset should be

straightforward to construct and as small as possible. Section 14.2 discusses such a

subset of schedules, and Section 14.3 describes how to generate the schedules of this

subset systematically. Section 14.4 describes a procedure for solving the job shop

problem with the makespan criterion. Section 14.5 addresses neighborhood search

techniques.

328 THE JOB SHOP PROBLEM

Job 1

Job 2

Job 3

Job 4 431

133122111

233221

331322313

423412

Machine 1

Machine 2

Machine 3

331431111221

122322212 412

133233423313

(a)

(b)

212

FIGURE 14.3 Two views of a feasible schedule for Example 14.1.

14.2 TYPES OF SCHEDULES

In principle, the number of feasible schedules for any job shop problem is infinite,

because we can insert an arbitrary amount of idle time between adjacent pairs of

operations. Once we specify the operation sequence for each machine, however, this

kind of idle time cannot be helpful for any regular measure of performance. Rather, it

is desirable to schedule the operations as compactly as possible. Superfluous idle time

exists in a schedule if we can begin some operation earlier in time without altering

the sequence on any machine. Adjusting the start time of some operation in this way

is equivalent to moving an operation rectangle to the left on the Gantt chart while

preserving the rest of the schedule. This type of adjustment is thus called a local

left-shift. Given an operation sequence for each machine, there is only one schedule

in which no local left-shift is possible. The set of all schedules in which no local

left-shift is possible is called the set of semiactive schedules and is equivalent to the

set of all schedules containing no superfluous idle time. This set dominates the set of

all schedules, which means that it is sufficient to consider only semiactive schedules

when we want to optimize any regular measure of performance.

The number of semiactive schedules is at least finite, although it may well be quite

large. The exact number is usually difficult to determine. For the classical job shop

problem, in which each job has exactly one operation on each machine, each machine

TYPES OF SCHEDULES 329

must process n operations. The number of possible sequences is therefore n! for each

machine. If the sequences on each machine were entirely independent, there would be

(n!)m semiactive schedules. However, the precedence structure and machine routing

for each job usually render some of the potential combinations infeasible.

� Example 14.2 Consider a two-job, two-machine job shop problem with the

following routings.

Operation

1 2

Job 1 1 2

Job 2 2 1

Although (n!)m = 4 in this case, there are only three semiactive schedules that are

feasible. It is sometimes helpful to use a network model to represent the feasibility

conditions in a job shop problem. Figure 14.4a displays the four operations of Ex-

ample 14.2, with arcs denoting the precedence structures within each job’s sequence

of operations. We label nodes with the pair (i, j) to denote the j th operation of job i .

Using the routing matrix of the example, we draw a dotted arc between pairs of nodes

corresponding to the same machine. Thus, in Figure 14.4b, operations (1, 1) and

(2, 2) are connected this way, as are operations (2, 1) and (1, 2). We call these dis-

junctive arcs, whose direction remains undetermined. The construction of a schedule

ultimately sequences the operations that require a given machine. This construction

determines the direction of the disjunctive arc, in effect by choosing a precedence

relation consistent with the sequence.

Figure 14.5 shows all four ways of resolving the directions of the disjunctive arcs

in Example 14.2. Three of these are feasible, but the fourth, shown in Figure 14.5d, is

infeasible. One way to identify infeasibility is to locate a cycle in the network. In this

instance, no operation in the network of Figure 14.5d is initially schedulable because

each operation has a predecessor.

Once we have chosen directions for the disjunctive arcs and obtained a feasible

schedule, we can schedule the operations from left to right (in time sequence). An

unscheduled operation is schedulable if all of its predecessors are already scheduled.

At each stage we identify the schedulable operations and place one of them into the

(a) (b)

1,1 1,2

2,1 2,2

1,1 1,2

2,1 2,2

FIGURE 14.4 Network representation of Example 14.2.

330 THE JOB SHOP PROBLEM

(b)

1,1 1,2

2,1 2,2

(a)

1,1 1,2

2,1 2,2

(d)

1,1 1,2

2,1 2,2

(c)

1,1 1,2

2,1 2,2

FIGURE 14.5 Alternative resolutions of disjunctive arcs in Example 14.2.

schedule as early as possible, without violating any precedence relations. Then we

repeat the process until all operations have been scheduled. The resulting schedule is

semiactive.

When makespan is the criterion of interest, computing its value is equivalent to

finding the longest path in the precedence network after all disjunctive arcs have

been resolved. This path is known as the critical path, and the operations on it are

called critical. In Example 14.2, if all the operations are of length 1, then the sched-

ule corresponding to Figure 14.5a will have length 2, while the other two feasible

schedules will have length 4. In this instance, all operations are critical in all three

schedules. This particular schedule also demonstrates that there may be two or more

critical paths in parallel. Each such critical path consists of a chain of operations with

precedence constraints between them and no idling between successive operations.

If the longest path did not involve precedence constraints between consecutive oper-

ations, we could shorten it by processing these operations in parallel. A critical path

must start on some machine where one or more critical operations are performed

consecutively. Then, unless the critical path is defined by a single machine, the criti-

cal path shifts to another machine, where again, one or more operations are critical.

Similar shifts of the critical path may occur downstream (including shifts back to a

machine that was already on the critical path). Consecutive operations on the critical

path that are processed on the same machine constitute blocks. Each block has one or

more operations and each operation belongs to one block. If all blocks have a single

operation, the makespan must equal the time to finish one job and therefore it must

also be optimal. Otherwise, there must be at least one block of consecutive operations

on the critical path that are processed on the same machine. If the critical path is

defined by a single machine, there is exactly one such block, and the makespan is

again optimal. Accordingly, we generally assume that the critical path has more than

one block and at least one of these blocks has more than one operation.

Larger versions of the job shop problem also have the feature that (n!)m tends

to overstate the number of feasible schedules. For instance, in terms of precedence

TYPES OF SCHEDULES 331

relationships, our two-job Example 14.2 is contained in the four-job, three-machine

problem of Example 14.1, so the number of semiactive schedules in that problem

must certainly be smaller than (4!)3. Again, the main point is simply that the number

of semiactive schedules is finite, albeit quite large. Fortunately, it is possible to find

a dominant subset among the semiactive schedules.

In a semiactive schedule, the start time of a particular operation is constrained

either by the processing of a different job on the same machine or by the processing

of the directly preceding operation on a different machine. In the former case, when

the completion of an earlier operation on the same machine is constraining, it may

still be possible to find obvious means of improvement. Suppose, in Example 14.1,

that the job sequence 4-3-2-1 is used at each machine. The associated semiactive

schedule is displayed in Figure 14.6a. Although no local left-shifts are possible

in this schedule, we can easily make an improvement. For instance, we can start

operation (1, 1) earlier than at time 18 without delaying any other operation. In fact,

we can start operation (1, 1) at time 0, and the remaining operations of job 1 can also

be started earlier without delaying any of the other operations. On the Gantt chart,

such an alteration would correspond to shifting operation (1, 1) to the left and beyond

other operations already scheduled on machine 1. This type of adjustment—in which

we alter the sequence and begin some operation earlier, without delaying any other

operation—is called a global left-shift. The set of all schedules in which no global

left-shift is possible is called the set of active schedules. It is clearly a subset of the

set of semiactive schedules.

Just as the set of semiactive schedules dominates the set of all schedules, so the set

of active schedules dominates the set of semiactive schedules. In other words, when

optimizing any regular measure of performance, we need to consider only active

schedules. The number of active schedules is a function of both the routings and the

processing times in a given problem, but the number of semiactive schedules is a

function of only the routings. Whereas one semiactive schedule corresponds to each

feasible combination of machine sequences, as discussed previously, we can often

transform several semiactive schedules into the same active schedule through a series

of global left-shifts.

In addition, we can often transform a given semiactive schedule into several

different active schedules by a series of global left-shifts. For example, suppose we

left-shift the operations in Figure 14.6a as far as possible, in the job order 3-2-1. (We

cannot left-shift the operations of job 4 at all.) The active schedule that emerges is

shown in Figure 14.6b and has a makespan of 18. Alternatively, suppose we left-shift

the operations in the job order 1-2-3. The active schedule that results is shown in

Figure 14.6c and has a makespan of 15.

The number of active schedules tends to be large, and it is sometimes convenient

to focus on a smaller subset called the nondelay schedules. In a nondelay schedule,

no machine is kept idle at a time when it could begin processing some operation. For

example, in Figure 14.6b, machine 1 remains idle at time 5 when it could start on

operation (3, 3). Therefore, the schedule in Figure 14.6b is not a nondelay schedule.

If the job sequence on machine 1 were changed to 1-3-2-4, then we would obtain a

nondelay schedule (see Figure 14.6d). By examining the idle intervals in Figure 14.6c,

332 THE JOB SHOP PROBLEM

(a)

4 2

27

4

4

3

3

3

2

2

1

1

1

(b)

4 2

18

4

4

3

3

3

2

1

1

1 2

(c)

4 2

4

4

3

3

3

2

1

1

15

21

(d)

42

4

4

3

3

3

2

1

1

21

17

FIGURE 14.6 Four feasible schedules for Example 14.1.

we can determine that the schedule shown there is also not a nondelay schedule. This

particular schedule shows that there may be alternatives in constructing a nondelay

schedule from a given active schedule.

All nondelay schedules are active schedules because they allow no left-shifting.

On the other hand, many active schedules are not nondelay schedules. Therefore, the

SCHEDULE GENERATION 333

number of nondelay schedules can be significantly less than the number of active

schedules. Our dilemma is that there is no guarantee that the nondelay subset will

contain an optimum.

In summary, active schedules are generally the smallest dominant set in the job

shop problem. Nondelay schedules are smaller in number but not dominant. Nev-

ertheless, we can usually expect the best nondelay schedule to provide a very good

solution, if not an optimum. In a sense, the role of the nondelay schedules is similar

to the role of permutation schedules in large flow shop problems: although the set is

not always dominant, it tends to produce a solution close to the optimum.

14.3 SCHEDULE GENERATION

Procedures for generating schedules are fundamental to both optimal and heuristic

solution techniques for job shop problems. Depending on how we determine operation

start times, we can classify a generating procedure as a single-pass mechanism or

an adjusting mechanism. In a single-pass procedure, we fix the start time of an

operation permanently the first time it is assigned. Thus, a single pass through the list

of operations generates a full schedule. In an adjusting procedure, we may reassign

some start times as we add subsequent operations to the schedule. On the one hand,

adjusting procedures seem to resemble the way schedulers develop manual solutions

to a job shop problem—that is, revising the information on a Gantt chart. On the

other hand, such revisions are essentially neighborhood search techniques. As such,

they tend to work best when they are based on good initial schedules. Single-pass

mechanisms can be used to create such initial schedules and are useful even if we

intend to revise the schedule later. Furthermore, restricting attention to single-pass

procedures is not a severe limitation in theory because for any given schedule (even

an optimal one), some single-pass procedure is capable of producing it.

An important class of single-pass procedures for generating schedules is the class

of dispatching procedures. As discussed in earlier chapters, dispatching has the

property that we can execute the actual decisions affecting a given machine in the

same order that they are made. This means that we do not have to determine scheduling

decisions all at once, but only as they are needed. In the job shop problem, a scheduling

decision is usually needed whenever a machine becomes idle. The decision is either to

leave the machine idle or else to begin processing one of the operations waiting for it.

With a dispatching procedure, we can postpone making this type of decision as long as

possible, in order to take into account the latest shop data. For this reason, dispatching

procedures are rather common in practice, where they can easily adapt to dynamic

job arrivals, machine breakdowns, and other factors that affect shop status over time.

Dispatching procedures are single-pass procedures in two respects. Not only do

they make one pass through the list of operations, assigning an irrevocable starting

time to each, but they also make one pass in time from the beginning of the schedule

to the end. They construct the schedule left to right on the Gantt chart. A different kind

of single-pass approach, for example, would be a job-at-a-time procedure. This type

of mechanism makes a single pass through the operations, job by job. It schedules all

334 THE JOB SHOP PROBLEM

the operations of a given job before proceeding to schedule the operations of other

jobs. Such an approach makes one pass through the list of operations but several

passes in the time dimension.

Schedule generation procedures treat operations in an order that is consistent with

the precedence relations of the problem. In other words, no operation is considered

until all of its predecessors have been scheduled. Once we schedule all the prede-

cessors of an operation, that operation becomes schedulable, regardless of the time

at which the next decision is required. Generation procedures operate with a set of

schedulable operations at each stage, determined simply from precedence structure.

The number of stages for a one-pass dispatching procedure is equal to the number

of operations, or nm. At each stage, the operations that have already been assigned

starting times make up a partial schedule. Given a partial schedule for any job shop

problem, we can construct a unique set of schedulable operations. Let

P S(k) = a partial schedule containing k scheduled operations

SO(k) = the set of schedulable operations at stage k, corresponding

to a given P S(k)

s j = the earliest time at which operation j ∈ SO(k) could be started

f j = the earliest time at which operation j ∈ SO(k) could be finished

For convenience, we use the single subscript j as an operation index.

For a given active partial schedule, the potential start time for schedulable operation

j , denoted s j , is determined by the completion time of the direct predecessor of

operation j and the latest completion time on the machine required by operation j .

The larger of these two quantities is s j . The potential finish time f j is simply s j + p j ,

where p j is the processing time of operation j .

A systematic approach to generating active schedules works as follows.

Algorithm 14.1 Active Schedule Generation

Step 1. Let k = 0 and begin with P S(k) as the null partial schedule. Initially, SO(k)

includes all operations with no predecessors.

Step 2. Determine f ∗ = min j∈SO(k){ f j } and the machine m∗ on which f ∗ could be

realized.

Step 3. For each operation j ∈ SO(k) that requires machine m∗ and for which s j <

f ∗, create a new partial schedule in which operation j is added to P S(k) and

started at time s j .

Step 4. For each new partial schedule created in Step 3, update the data set as follows:

(a) Remove operation j from SO(k).

(b) Form SO(k + 1) by adding the direct successor of j to SO(k).

(c) Increment k by one.

Step 5. Return to Step 2 for each partial schedule created in Step 3 and updated in

Step 4, and continue in this manner until all active schedules have been generated.

SCHEDULE GENERATION 335

4

4

3

3 2

1

FIGURE 14.7 A partial schedule for Example 14.1.

The key condition that yields active schedules is the inequality s j < f ∗, employed

in Step 3. By definition of f ∗, it is impossible to add to P S(k) any operation that

completes prior to f ∗. In addition, any schedule that contained P S(k) and left machine

m∗ idle through time f ∗ would not be an active schedule, because some schedulable

operation could be left-shifted into that idle interval. For the next scheduling decision,

then, machine m∗ must be assigned some processing prior to f ∗. The possibilities to

be explored are operations j requiring machine m∗ and for which s j < f ∗ (including

the job by which f ∗ was defined). If m∗ is not unique, then we must extend Step 3 to

every operation that requires the use of one of the machines associated with f ∗.

To illustrate how Algorithm 14.1 generates partial schedules, consider Example

14.1. Suppose that we reach stage k = 6 with P S(6) as the partial schedule shown in

Figure 14.7. It follows that

SO(6) = {(1, 2), (2, 2), (3, 3), (4, 3)}

f ∗ = min{ f12, f22, f33, f43} = min{9, 10, 8, 7} = 7

m∗ = 1

Thus, we must assign some operation to machine 1 and start work on it prior to time

f ∗ = 7.

For machine 1: s22 = 6, s33 = 5, and s43 = 6. Since each of these three potential

start times is less than f ∗, we can form three active partial schedules for stage k = 7.

These correspond to the following.

1. Start (2, 2) at time 6; SO(7) = {(1, 2), (2, 3), (3, 3), (4, 3)}.

2. Start (3, 3) at time 5; SO(7) = {(1, 2), (2, 2), (4, 3)}.

3. Start (4, 3) at time 6; SO(7) = {(1, 2), (2, 2), (3, 3)}.

The third partial schedule on this list is contained in the full schedule shown in

Figure 14.6b.

We can modify the structure of Algorithm 14.1 in Steps 2 and 3 so that it generates

only nondelay schedules. Instead of identifying the earliest potential finish time in

Step 2, we identify the earliest possible start time. Then, in Step 3, we consider

336 THE JOB SHOP PROBLEM

only those alternatives in which an operation begins at this time. In our example, we

generate only one nondelay schedule for stage k = 7:

Start (3, 3) at time 5; SO(7) = {(1, 2), (2, 2), (4, 3)}.

This is one of the alternatives among the active schedules, but the other alternatives

involve delaying machine 1 while work is available.

Algorithm 14.1 illustrates a tree-structured approach to schedule generation. The

nodes in the tree correspond to partial schedules, and each time a new operation

is added to a partial schedule, the algorithm proceeds from one level of the tree

to the next. If we construct the tree in its entirety, then it enumerates all active

schedules (or all nondelay schedules if we modify the algorithm accordingly). The

enumeration tree could be the basis for an optimum-seeking approach using branch

and bound. Unfortunately, in moderate-sized job shop problems, the computational

effort of typical branch and bound applications based on this enumeration tree is quite

demanding.

In contrast to an optimizing procedure, a suboptimal approach that generates only

one complete schedule might entail a light computational effort even in very large

problems. In Step 3 of the generation procedure, we create several branches in the

tree of partial schedules, identifying all conflicts at a given machine. An enumeration

procedure must resolve these conflicts in all possible ways at each stage. By contrast,

a heuristic procedure that is designed to generate only one schedule can resolve

a conflict in just one way. This means that the procedure must specify a rule for

selecting one operation from among the conflicting operations. For a given priority

rule R, Algorithm 14.1 can be adapted as a heuristic procedure by altering Step 3 as

follows.

Step 3. For each operation j ∈ SO(k) that requires machine m∗ and for which s j <

f ∗, calculate a priority index according to a specific priority rule. Find the operation

with the smallest index and add this operation to P S(k) as early as possible, thus

creating only one partial schedule, P S(k + 1), for the next stage.

The remaining problem is to identify an effective priority rule. To suggest the

kinds of information that can be used effectively, the following list contains some

common priority rules.

SPT (shortest processing time): Select the operation with the minimum processing

time.

FCFS (first come first served): Select the operation that arrived at the machine

earliest.

MWKR (most work remaining): Select the operation associated with the job

having the most work remaining to be processed.

LWKR (least work remaining): Select the operation associated with the job having

the least work remaining to be processed.

THE SHIFTING BOTTLENECK PROCEDURE 337

In makespan problems, research studies tend to find that no single priority rule

dominates all others, although the most successful rules are often those favoring jobs

with much processing remaining. The MWKR rule and similar priority schemes often

produce a good makespan. (In Example 14.1, MWKR produces a makespan of only

14.) The SPT rule sometimes produces good schedules, too. When relatively simple

priority rules such as these are in effect, nondelay dispatching tends to be better than

active dispatching for generating heuristic schedules. In stochastic cases, nondelay

scheduling is even more attractive because we prefer to process an available job rather

than leave a machine idle and wait for the arrival of another job that is subject to

random delays.

When the criterion is total flowtime, SPT and LWKR are usually more effective

than other rules, and, again, nondelay dispatching tends to perform better than active

dispatching.

Research experiments have demonstrated that schedule generation based on pri-

ority dispatching rules is a practicable method of finding good solutions to job shop

problems, although, of course, optimal solutions cannot be guaranteed. This line of

research supports the use of nondelay schedules as a basis for schedule generation,

rather than the set of active schedules. For makespan problems, the most suitable

priority assignments seem to favor jobs with a heavy unprocessed workload; while

for total flowtime problems, the most suitable assignments seem to favor jobs with

a light unprocessed workload. These tendencies are in line with our observations

for parallel machines, where SPT minimizes total flowtime but LPT is effective in

reducing the makespan.

For criteria other than makespan and total flowtime, the study of priority rules for

the static job shop model has been limited. Most of our knowledge about priority

rules has come from studies of the dynamic job shop model, which we examine in

the next chapter.

14.4 THE SHIFTING BOTTLENECK PROCEDURE

Perhaps the most effective optimization algorithm for minimizing the makespan in

the job shop problem is the shifting bottleneck procedure. (We shall see where its

name comes from as we examine its detailed structure.) Essentially, this procedure

is a branch and bound solution that employs especially powerful bounds by focusing

on the machines that are most likely to dictate the minimal solution. Furthermore,

these bounds are relatively easy to compute.

The algorithm has also been adapted as a heuristic procedure, scheduling one

machine at a time. Thus, at any stage of the procedure, we have a set X of machines

already scheduled, along with its complement, X ′. We select a machine from the set

X ′ and schedule all of its operations, allowing it to be moved to set X . This step

allows us to revise the information pertaining to the other machines in X ′, and then,

based on this information, we select the next machine to schedule. We then repeat

the process iteratively until all machines are scheduled. Selecting the machine to

schedule next is obviously a key feature of the procedure.

338 THE JOB SHOP PROBLEM

14.4.1 Bottleneck Machines

For background, we draw on the solution of the “head–body–tail” (or HBT) problem

for a single machine. The HBT model occurs as a subproblem when we implement

the shifting bottleneck approach. As presented in Chapter 8, the HBT model involves

n jobs, with each job characterized by a release date (ri), a processing time (pi),

and a delivery time (qi). The problem requires sequencing the jobs on one machine

to minimize the latest delivery time. In Chapter 8, we also outlined a multimachine

interpretation of the same model, in which ri represents time spent at earlier operations

in the shop, and q j represents time spent at later operations.

Although the HBT problem is NP-hard, it is possible to solve relatively large

versions of the problem by using an algorithm due to Carlier (1982). Moreover, an

effective heuristic procedure, known as the largest tail (LT) procedure, is available

for this problem. The LT procedure was introduced in Chapter 8 as Algorithm 8.1.

We use the HBT model in two ways. First, when we select a machine from set

X , we schedule its operations by solving the HBT problem corresponding to the

selected machine. (Strictly speaking, we sequence the operations on that machine

by resolving its disjunctive arcs in a feasible manner.) Second, for each machine

remaining in set X ′, we solve a derived HBT problem in order to determine which

machine is most critical. A machine is critical if the solution to its HBT problem is

maximal among the machines in X ′. This machine is called the bottleneck machine

because it tends to constrain the overall length of the job shop schedule, given the

scheduling commitments already made.

Consider a particular machine k in the job shop problem. Suppose that (i, j) denotes

an operation that takes place on that machine. All n jobs will ultimately be processed

on machine k, even though the jobs require processing elsewhere. We can think of the

information about the n jobs, with respect to machine k, as comparable to the three

job parameters in the HBT model, and we use this information to construct a derived

HBT problem. First, for each job i , there is an earliest possible time at which it could

be released for processing on machine k. Before any scheduling has been done, this

time is simply the sum of all the operation times for job i , over all the predecessors

of operation j , as if all such operations were on nonbottleneck machines. This time

interval plays the role of the release date in the derived HBT problem. Second, the

processing time for operation (i, j) plays the role of the processing time in the derived

HBT problem. Third, after operation (i, j) completes, there is a minimum amount of

time still required to finish the job. This time is simply the sum of all the operation

times for job i , over all the successors of operation j , as if all such operations were

on nonbottleneck machines. In symbols, the derived problem will have the following

parameters for operation (i, j).

ri =
∑

u< j

piu

pi = pi j

qi =
∑

u> j

piu

THE SHIFTING BOTTLENECK PROCEDURE 339

Next, suppose we solve the derived problem and obtain a value for the latest delivery

time, denoted Mk . If Mk is the optimal solution to the derived HBT problem, then Mk

is a lower bound on the optimal makespan of the job shop problem because the HBT

formulation assumed optimistic conditions about the predecessors and successors

of operation (i, j). In particular, those operations were all assumed to be processed

on nonbottlenecks. Among all m machines, the largest of the HBT solution values

provides an even stronger bound. Let b denote the machine k on which the largest Mk

occurs. In symbols, our lower bound becomes Mb = maxk{Mk}. Machine b is called

the bottleneck machine.

14.4.2 Heuristic and Optimal Solutions

To the extent that we are simply trying to identify a bottleneck machine, we may want

to save time and solve the various derived HBT problems by using some heuristic

method, such as the LT procedure. Only if we wish to compute lower bounds in the

process would we need to use an optimizing method for the derived HBT problems.

Having identified a bottleneck machine, we next want to schedule its operations.

More specifically, we want to resolve the disjunctive arcs corresponding to all the

operations that require the bottleneck machine. In other words, we want to specify

the sequence of operations on the bottleneck machine. This sequence is provided by

the solution of the derived HBT problem that gave rise to Mb.

After we remove the bottleneck machine from set X ′ and sequence its operations,

we can update the parameters of the derived HBT model for machines remaining in

X ′. First, consider how the derived parameter ri might be affected. Initially, we set

ri equal to the sum of the operation times for job i prior to the given machine, a

sum which we can think of as the longest path from the start of the network to node

(i, j), with disjunctive arcs ignored. After some disjunctive arcs have been resolved,

we can still think of ri as longest such path, but its value may have increased

by the resolution of certain disjunctive arcs in the sequencing of the bottleneck

machine.

We treat the derived parameter qi in an analogous fashion. Initially, we set qi equal

to the length of the longest path to the end of the network from node (i, j), again with

disjunctive arcs ignored. The sequencing of the bottleneck machine resolves certain

disjunctive arcs that may increase the length of this path.

Therefore, each time we identify a bottleneck machine and sequence its operations,

we must update the longest path calculations that give rise to the ri and qi parameters

of HBT problems for machines remaining in X ′. Once this updating process is

complete, we can proceed to the next iteration and find a new bottleneck machine.

Repeating this procedure m times will resolve all disjunctive arcs and allow us to

build a complete schedule.

When used as a heuristic method, the shifting bottleneck procedure requires a

subroutine for solving derived HBT problems and a criterion for designating a bot-

tleneck machine. The subroutine could be as simple as the LT procedure, or it could

be a full-fledged optimization algorithm. Similarly, the bottleneck criterion could be

largest makespan value, Mb, or it could be something simpler to compute, such as the

340 THE JOB SHOP PROBLEM

largest workload, or the largest makespan value if preemption were allowed, either of

which is straightforward to calculate. Computational comparisons suggest that these

choices do not lead to very substantial differences in overall performance.

To illustrate the shifting bottleneck approach, we apply it in heuristic fashion

to Example 14.1. Figure 14.2 depicts the jobs involved and provides us with a

convenient basis for constructing the HBT problems. Initially, the three derived

problems take the forms shown below, along with their solutions from the LT heuristic

procedure.

Machine 1 Job i 1 2 3 4

ri 0 1 5 6 Solution

pi 4 4 3 1 1-2-3-4 (12)

qi 5 4 0 0

Machine 2 Job i 1 2 3 4

ri 4 0 3 0 Solution

pi 3 1 2 3 2-4-3-1 (11)

qi 2 8 3 4

Machine 3 Job i 1 2 3 4

ri 7 5 0 3 Solution

pi 2 4 3 3 3-4-2-1 (12)

qi 0 0 5 1

At this stage, we must choose a bottleneck machine by breaking the tie between

machines 1 and 3. Suppose we choose the latter. This fixes the operation sequence

on machine 3 and, as a result, may alter the derived HBT problems on the other two

machines. For example, when we reconstruct the derived problem for machine 1, we

find that q2 = 6. This follows from the fact that operation (2, 2) on machine 1 must

be followed by operation (2, 3), which in turn must be followed by operation (1, 3)

according to the fixed sequence on machine 3. The new derived problems are shown

below.

Machine 1 Job i 1 2 3 4

ri 0 1 5 6 Solution

pi 4 4 3 1 1-2-3-4 (14)

qi 5 6 0 0

Machine 2 Job i 1 2 3 4

ri 4 0 3 0 Solution

pi 3 1 2 3 2-4-3-1 (13)

qi 2 10 3 9

THE SHIFTING BOTTLENECK PROCEDURE 341

This time, machine 1 is the unique bottleneck, so we fix its sequence and reconstruct

the derived problem for machine 2, obtaining the following:

Machine 2 Job i 1 2 3 4

ri 4 0 3 0 Solution

pi 3 1 2 3 2-4-3-1 (13)

qi 2 10 4 9

At this stage, we have determined the sequence at each of the machines, as follows:

Machine 1 1-2-3-4

Machine 2 2-4-3-1

Machine 3 3-4-2-1

We can now construct a schedule for the entire job shop problem by following the

rules for active schedule construction and breaking ties arbitrarily. (The ties may

change the order in which we place operations into the schedule, but in this case,

they do not affect the final schedule.) Figure 14.8 shows the resulting schedule, with

a makespan of M = 14.

We built this schedule with a heuristic procedure, using the LT algorithm to solve

the derived problem. When we wish to find an optimal solution using the shifting

bottleneck approach, the algorithmic requirements are more demanding. First, we

must find optimal solutions to the derived HBT problem, so that we always have a

lower bound on hand. Second, instead of constructing a solution by scheduling one

machine at a time (and moving it from X ′ to X), we must be more patient. In the

optimization approach, we enhance the schedule simply by resolving one disjunctive

arc at a time and then updating the search for the bottleneck machine. In the branch

and bound tree, each resolution of a disjunctive arc gives rise to a node at the next

lower level of the tree. Paired with it is another node corresponding to the reverse

resolution of the same disjunctive arc. For each of these nodes, the newly calculated

value of Mb, based on optimization of the derived HBT problems, provides a lower

bound on the eventual solution.

42

14

4

4

3

3

3

2

2

1

1

1

FIGURE 14.8 Heuristic solution for Example 14.1.

342 THE JOB SHOP PROBLEM

In this branch and bound algorithm, each time that we resolve a disjunctive arc, we

may change which machine represents the bottleneck. This shifting designation of the

bottleneck as we proceed through the construction of a schedule gives the algorithm

its name. Among optimization algorithms, the shifting bottleneck approach appears

to represent the best computational procedure for finding optimal solutions. It is also

effective when implemented as a heuristic procedure, although, in the next section,

we describe an alternative approach that relies on neighborhood search concepts.

14.5 NEIGHBORHOOD SEARCH HEURISTICS

We continue to assume that the objective is to minimize the makespan. As we have

seen, a job shop schedule can be expressed by a set of m job permutations that

designate the sequence of operations on each machine. For instance, the set in Figure

14.8 is {1-2-3-4, 2-4-3-1, 3-4-2-1}. Equivalently, the schedule is determined by

n(n − 1)/2 disjunctive arcs at each machine. For instance, considering machine 1 in

Figure 14.8, we can identify disjunctive arcs from (1, 1) to (2, 2), (3, 3), and (4, 3);

from (2, 2) to (3, 3) and (4, 3), and from (3, 3) to (4, 3). Similar sets of arcs apply in

the other machine sequences. Every feasible semiactive schedule can be represented

by a unique set of permutations.

Given a feasible schedule, we may try to improve on it using a neighborhood

search, which we illustrate using adjacent pairwise interchange (API) neighbor-

hoods. For convenience in ensuring feasibility, we limit our attention to APIs within

blocks—that is, involving pairs of critical operations on a common machine. This

is permissible because, given any feasible but suboptimal solution, a succession of

APIs on the evolving critical paths can lead to optimality. This property is called con-

nectivity. In more detail, starting with any suboptimal schedule, we perform selected

APIs on the critical path. The critical path changes, but at each stage, at least one

API opportunity within some block on the current critical path can bring us closer to

an optimal sequence. Thus, although individual APIs in the succession may lengthen

the makespan, an optimal schedule will eventually be reached. Our next theorem

establishes this result formally, and the proof shows how such a series of APIs can

be identified when an optimal sequence is known.

� Theorem 14.1 Any suboptimal feasible schedule S can be transformed to an

optimal schedule by a finite succession of adjacent pairwise interchanges on evolving

critical paths, starting with the critical path of S and ending with an optimal critical

path.

Proof. Let S∗ be an optimal schedule and suppose (i1, j1, k) precedes (i2, j2, k) in

S∗. That is, there is a disjunctive arc oriented from (i1, j1, k) to (i2, j2, k) in this

optimal solution. If the same orientation applies in S, we say that the order of these

operations in S agrees with S∗. If the opposite orientation applies, the order is

in conflict. Two operations (i1, j1, k1) and (i2, j2, k2) are contiguous if the starting

time of (i2, j2, k2) coincides with the completion time of (i1, j1, k1) in a semiactive

NEIGHBORHOOD SEARCH HEURISTICS 343

schedule. Contiguous operations in a critical path either involve the same job (such

that i1 = i2, j1 = j2 − 1, and k1 �= k2) or the same block (such that i1 �= i2 and

k1 = k2). By definition, all operations on a critical path are contiguous. Consider the

contiguous operations within the blocks of any critical path of S. If the ordering of all

pairs agrees with S∗, then the length of this path cannot exceed the longest path in S∗,

thus contradicting the assumption that S is suboptimal. Therefore, the order of at least

one pair of these operations is in conflict with S∗. Select any such pair and reverse its

order by an API on that machine. If the result is not optimal, repeat the process. Each

such API removes the conflict between the orientations of one disjunctive arc in the

two sequences. Because the number of the disjunctive arcs is finite, the number of

necessary APIs must also be finite, which completes the proof.

In particular, connectivity implies that any randomized search using this neigh-

borhood will eventually reach an optimal solution. To illustrate, Figure 14.9a traces

the critical path of the solution in Figure 14.8, by shading the critical activities. The

critical path includes operations (1, 1), (2, 2), (2, 3), and (1, 3). Therefore, there are

only two APIs to consider: interchanging (1, 1) with (2, 2)—as depicted in Figure

14.9b—and interchanging (2, 3) with (1, 3)—as depicted in Figure 14.9c. Interchang-

ing (1, 1) with (2, 2) does not change the makespan but leads to a dead end because the

only API available on the critical path is to reverse that interchange. Interchanging (2,

3) with (1, 3) increases the makespan to 15. At this stage, we know that the starting

solution was locally optimal in the API neighborhood. Suppose, however, that we per-

form the latter interchange—in the spirit of tabu search or simulated annealing—and

study the new critical path, (2, 1), (4, 1), (3, 2), (1, 2), (1, 3), (2, 3). We then can

exchange (3, 2) and (1, 2), reducing the makespan to 13, as in Figure 14.9d. It can be

shown that this solution is optimal (but not unique), illustrating connectivity in the

example.

We mentioned tabu search and simulated annealing because both allow consider-

ation of inferior neighbors in the hope of discovering a better sequence later. That

same notion lies behind the search illustrated in Figure 14.9. Alternatively, we could

identify the necessary second interchange by observing that after the first API, job 1

is in process on machine 2 when machine 3 becomes ready for it. That conflict

accounts for the increase in makespan. In other words, after the first API, the crit-

ical path changes, and another operation of a job that we interchanged becomes

critical on an upstream machine. Thus, the second API on machine 2 was directly

indicated by the first change, to promote the progress of job 1. Similarly, after an

interchange, the makespan may increase because the job that was delayed causes

delays on downstream machines. Such delays may be handled by APIs on those

machines, to postpone the same job that was postponed by the initial API and thereby

promote other jobs that may be ready earlier. Thus, any proposed interchange may

induce a cascading sequence of APIs on other machines, all on the evolving critical

path. If the objective is improved after two APIs, we can accept both even though the

first alone was detrimental. Effectively, this neighborhood—which we call the en-

hanced neighborhood—checks neighbors defined by a succession of induced APIs.

344 THE JOB SHOP PROBLEM

(c)

42

4

4

3

3

3

2

1

1

15

21

(a)

42

14

4

4

3

3

3

2

2

1

1

1

(b)

42

14

4

4

3

3

3

2

2

1

1

1

(d)

42

4

4

3

3

3

2

1

1

13

13

21

FIGURE 14.9 Performing API on the heuristic result.

An option in the heuristic procedure is to restrict the number of induced APIs tested

without improvement.

An operation that is neither first nor last in its block is called internal. Interchanging

two adjacent internal operations cannot advance the start time of the block or its

completion time, so it cannot immediately reduce the makespan. Thus, we may

restrict our neighborhood by excluding APIs between internal operations. Similarly,

SUMMARY 345

we can also exclude APIs between the first two operations on a critical path if

their block has three or more operations and, symmetrically, between the last two. In

other words, for immediate benefit, only interchanges near the boundary between two

successive blocks of the critical path need be considered. Unfortunately, this restricted

neighborhood does not guarantee connectivity. This problem can be ameliorated

by employing multiple seeds. Computational experience involving multiple seeds

suggests that on balance the restricted neighborhood is significantly more efficient.

Incidentally, in an enhanced neighborhood, when an initial interchange induces other

APIs on upstream or downstream machines, the induced APIs automatically occur

near the boundary between two successive blocks of the evolving critical path. In

other words, induced APIs are legitimate for the evolving restricted neighborhood.

Therefore, it is sufficient to enforce the restriction for the first API only. For instance,

in Figure 14.9a, both API candidates were near a boundary and belonged to the

restricted neighborhood. The second interchange, initiated in Figure 14.9c, occurred

between operations (3, 2) and (1, 2), which were the last two jobs in the first block.

The two neighborhoods that we introduced—both with and without

enhancement—can be used in a variety of search algorithms. More complicated

neighborhoods have also been proposed with good results reported. Recently, a study

of advanced tabu search (TS) methods produced the best heuristic solutions for most

open benchmark problems in the literature and found several new optimal solutions as

well. The neighborhood structure in that experiment includes a feature akin to genetic

algorithms: a set of elite solutions—defined by their relatively small makespan—is

used to generate new seeds for the search. Under genetic algorithms (GAs), such

starting points are the offspring that we consider as candidate solutions, but in that

experiment they were just starting points for tabu searches in the restricted API neigh-

borhood. These starting points were rarely elite solutions by themselves, so additional

search was warranted. The experiment thus combined the strengths of GA and TS.

Earlier results had suggested that simulated annealing (SA) can achieve good

results efficiently, so that the question arises whether TS is better than SA. A definitive

answer is not yet in. The superiority of TS performance may be due to the clever

neighborhood structure and to highly efficient makespan-updating calculations. But

the same neighborhood structure and updating calculations could be applied to other

search approaches. Furthermore, a search technique tested earlier relied on a shifting-

bottleneck structure, and that technique could also be revisited. At the moment,

however, neighborhood search algorithms represent the most effective approach to

solving large versions of the job shop problem.

14.6 SUMMARY

The job shop model has been a central paradigm for scheduling since the early days of

scheduling theory. This chapter introduced the static version of the job shop problem

and showed that, for regular measures of performance, the set of active schedules is

the relevant dominant set. However, the job shop problem is challenging to solve,

even when we limit attention to active schedules. The computational demands of

346 THE JOB SHOP PROBLEM

solving even moderately sized problems (such as 15-job, 15-machine problems) often

become prohibitive. Although systematic optimization techniques are available for

job shop problems, their computational limitations have drawn attention to heuristic

procedures. In particular, priority dispatching rules are very useful in practice. Most

of our knowledge about priority dispatching, however, derives from experimental

studies of the dynamic version of the job shop model, which is our focus in the next

chapter.

The shifting bottleneck approach constituted a major breakthrough and is currently

the leading optimization technique for the job shop problem. The technique has been

refined, and it has also been tested as a heuristic procedure, with promising results.

Because of the equivalence between the HBT problem and the Lmax-problem, the

shifting bottleneck procedure can also be used directly in solving the job shop problem

with Lmax criterion. At present, it appears possible to adapt the procedure to such

other criteria as total flowtime or total tardiness, although such extensions have not yet

been studied in depth. Nevertheless, problems with more than about 200 operations

remain out of reach of current optimization approaches.

For any benchmark problem whose optimal solution is not known, the best avail-

able solution is the tightest upper bound on the optimal solution. At this time, most

of the existing upper bounds have been found by a highly tailored tabu search ap-

plication. Exploiting the structure of the job shop problem, we can define efficient

neighborhoods that either reduce the number of irrelevant neighbors that need to be

examined or increase the chance that we examine only neighbors that are likely to pro-

vide improvement. Currently, such search heuristics are the most effective approach

to all but small-scale versions of the static problem.

REFERENCES

Adams, J., E. Balas, and D. Zawack (1988). The shifting bottleneck algorithm for job-shop

scheduling, Management Science 34, 391–401.

Blackstone, J.H., D.T. Phillips, and G.L. Hogg (1982). A state-of-the-art survey of dispatching

rules for job shop operations, International Journal of Production Research 20, 27–45.

Blazewicz, J., W. Domschke, and E. Pesch (1996). The job shop scheduling problem: con-

ventional and new solution techniques, European Journal of Operational Research 93,

1–33.

Carlier, J. (1982). The one machine sequencing problem, European Journal of Operational

Research 11, 42–47.

Carlier, J. and E. Pinson (1989). An algorithm for solving the job-shop problem, Management

Science 35, 164–176.

Carlier, J. and E. Pinson (1994). Adjustment of heads and tails for the job-shop problem,

European Journal of Operational Research 87, 146–161.

Conway, R.W., W.L. Maxwell, and L.W. Miller (1967). Theory of Scheduling, Addison-

Wesley, Reading, MA.

Dauzere-Peres, S. and J. Lasserre (1993). A modified shifting bottleneck procedure for job-shop

scheduling, International Journal of Production Research 31, 923–932.

EXERCISES 347

Giffler B. and G.L. Thompson (1960). Algorithms for solving production scheduling problems,

Operations Research 8, 487–503.

Golenko-Ginzburg, D., S. Kesler, and Z. Landsman (1995). Industrial job-shop scheduling with

random operations and different priorities, International Journal of Production Economics

40, 185–195.

Laslo, Z., D. Golenko-Ginzburg, and B. Keren (2007). Optimal booking of machines in a

virtual job shop with stochastic processing times to minimize total machine rental and job

tardiness costs, International Journal of Production Economics 111 (2), 812–821.

Nowicki, E. and C. Smutnicki (1996). A fast taboo search algorithm for the job shop problem,

Management Science 42, 797–813.

Nowicki, E. and C. Smutnicki (2005). An advanced tabu search algorithm for the job shop

problem, Journal of Scheduling 8, 145–159.

Panwalkar, S.S. and W. Iskander (1977). A survey of scheduling rules, Operations Research

25, 45–61.

Vaessens, R.J.M., E.H.L. Aarts, and J.K. Lenstra (1996). Job shop scheduling by local search,

INFORMS Journal on Computing 8 (3), 302–317.

Van Laarhoven, P.J.M., E.H.L. Aarts, and J.K. Lenstra (1992). Job shop scheduling by simulated

annealing, Operations Research 40, 113–126.

EXERCISES

14.1. Consider the following four-job, three-machine job shop problem.

Processing Times Machines

Operation Operation

1 2 3 1 2 3

Job 1 4 2 3 Job 1 1 2 3

Job 2 2 4 4 Job 2 1 3 2

Job 3 3 5 3 Job 3 3 2 1

Job 4 4 3 5 Job 4 2 1 3

a. Draw charts (see Figure 14.2) that show the job processing requirements

and the machine requirements in this problem, thus identifying a lower

bound for the makespan.

b. Draw a network diagram for the operations in this problem, showing all

precedence requirements and all disjunctive arcs.

14.2. Revisit the problem in Exercise 14.1. Consider the partial schedule that contains

the following assignments. At machine 1, jobs 1, 2, and 4 are sequenced in

that order without idle time. At machine 2, jobs 4, 1, and 3 are sequenced in

that order without idle time. At machine 3, job 3 is sequenced first, and the

next time that a scheduling decision must be made occurs at time 6. At time

6 on machine 3, what scheduling alternatives are available? Which would be

348 THE JOB SHOP PROBLEM

appropriate for a nondelay schedule? Which would be appropriate for an active

schedule?

14.3. Revisit the problem in Exercise 14.1 and construct a full schedule using a

priority dispatching rule.

a. Use FCFS and break ties with SPT and LWKR if needed. Calculate the

makespan.

b. Use SPT and break ties with LWKR and FCFS if needed. Calculate the

makespan.

c. Use LWKR and break ties with SPT and FCFS if needed. Calculate the

makespan.

d. Use MWKR and break ties with LPT and FCFS if needed. Calculate the

makespan.

14.4. Consider a series/parallel job shop in which jobs require three operations. The

initial operation can be performed either at machine 1A or machine 1B, which

are identical. The jobs then proceed to machines 2 and 3 in sequence. The

operation times are shown below.

Machine 1 2 3

Job A 10 4 1

Job B 12 2 1

Job C 9 4 3

Job D 8 2 3

Job E 7 4 2

Job F 13 1 1

a. Find a schedule that minimizes the makespan.

b. Show a Gantt chart for your schedule.

14.5. Revisit the problem in Exercise 14.3. Construct a schedule using a neighbor-

hood search algorithm based on adjacent pairwise interchanges and calculate

the resulting makespan.

14.6. Revisit the problem in Exercise 14.1. Construct a schedule using the shifting

bottleneck algorithm and calculate the resulting makespan.

14.7. Show that in an enhanced neighborhood, when an initial API induces other

APIs on upstream or downstream machines, they automatically apply within

the evolving restricted neighborhood.

14.8. Consider Figure 14.9. Show that the critical path has parallel operations. Show

that the API between (4, 1, 2) and (2, 1, 2) makes no difference to the makespan

but reduces the number of critical activities. Suggest an additional API that

will reduce total flowtime without increasing the makespan.

15
SIMULATION MODELS FOR
THE DYNAMIC JOB SHOP

15.1 INTRODUCTION

One of the most thoroughly studied and widely applied areas of scheduling research

involves the dynamic version of the job shop model. When we refer to the “dynamic”

version, we mean that jobs are released and arrive at the shop over time. In the dynamic

version of simpler models, we have assumed that information about all arrivals is

known in advance and that the list of arrivals is finite—no larger than, say, 100 jobs.

The dynamic job shop model usually connotes a different setting: information about

arriving jobs is not known in advance—even the timing of arrivals is unknown—and

the arrivals are ongoing. Some studies involve performance measures for thousands of

jobs. Because different studies involve different numbers of jobs, it is common to use

mean values (of flowtime, tardiness, etc.) instead of totals as performance measures.

Because the timing of arrivals is uncertain, we assume that jobs arrive randomly,

so that the shop itself behaves like a network of queues. In this context, scheduling

is typically carried out by means of dispatching decisions: each time a machine be-

comes free, we must decide what it should do next. These scheduling decisions are

unavoidable in the operation of such a system. Furthermore, research has demon-

strated substantial differences among dispatching procedures, so it makes sense to

seek out the decision rules that promote good performance.

The effects of dispatching procedures in queueing networks are very difficult to

describe by means of analytic techniques. Nevertheless, the study of scheduling in

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

349

350 SIMULATION MODELS FOR THE DYNAMIC JOB SHOP

dynamic job shops has made considerable progress with the use of computer simu-

lation models. The rationale for using simulation methods in job shop studies is the

same as the rationale for simulation in any other complex system: short of testing

alternative policies in the actual system, we cannot fully anticipate how different

operating procedures will affect performance. Experimentation with a computer sim-

ulation model has made it possible to compare alternative dispatching rules, test broad

conjectures about scheduling procedures, and develop greater insight into job shop

operation. The purpose of this discussion is to convey the flavor of job shop simulation

experiments. After examining the typical features of simulation models, we highlight

some of the major insights that have emerged from years of research on this topic.

15.2 MODEL ELEMENTS

The literature on the dynamic job shop model includes simulations of both actual

and hypothetical systems. The hypothetical shops, in particular, typically consist of

a small number of machines, usually less than 10. Models of actual shops sometimes

contain dozens of machines, but no evidence has been found that the number of

machines has a crucial influence on the relative performance of scheduling rules.

Aside from the question of scale, several issues arise in the building of a model. It

is desirable for the model to be somewhat simplified in order to isolate the effects

of scheduling and to permit generalization of the experimental results. On the other

hand, if the model is too simple, the conclusions may not apply under other, more

realistic conditions. The successful work in this area exemplifies a blend of simple

structure and elaborate detail, and the following list of model assumptions is typical.

1. Jobs consist of strictly ordered operation sequences.

2. A given operation can be performed by only one type of machine.

3. There is only one machine of each type in the shop.

4. Processing times as well as due dates are known at the time of arrival.

5. Setup times are sequence independent.

6. Once an operation starts, it cannot be interrupted.

7. An operation may not begin until its predecessors are complete.

8. Each machine can process only one operation at a time.

9. Each machine is continuously available for production.

The first five of these assumptions have sometimes been relaxed in simulation

experiments, either to achieve a better representation of reality in the simulation of an

actual shop or to examine the sensitivity of basic findings to alternative assumptions

about the environment. The remaining assumptions are virtually standard in job shop

studies.

The input to the simulation model is a job file that describes the entire set of jobs.

The arrivals occur randomly over time, and the operation times are samples from

MODEL ELEMENTS 351

TABLE 15.1

A 1 2 3 4 L

Arrive — 1/4 1/4 1/4 1/4 —

1 — — 1/4 1/4 1/4 1/4

2 — 1/4 — 1/4 1/4 1/4

3 — 1/4 1/4 — 1/4 1/4

4 — 1/4 1/4 1/4 — 1/4

Leave — — — — — —

a given probability distribution. (There has been little indication that the nature of

the arrival process or the service process is critical in comparing scheduling rules,

although greater variability in arrivals or operation times tends to magnify differences

between rules.) The description of an arriving job also includes the number of its

operations, which may vary among jobs or remain fixed, and its machine routing.

In the closed job shop, each job must have one of a number of specified routings,

representing a fixed line of products. By contrast, the pure job shop accommodates

virtually any possible machine routing, as might be found with custom-ordered

products. Finally, an aggregate description of workflow is contained in a routing

matrix, R, in which element ri j represents the proportion of jobs that proceed to

machine j after completion of an operation on machine i . Values of r0 j indicate

the destinations of jobs upon arrival to the shop, and ri,m+1 indicates the proportion

of jobs that leave the shop after an operation on machine i . Thus, if there are m

machines, the R matrix has (m + 1) rows and columns. The two extreme cases are

the pure job shop, in which these proportions are equally distributed, and the pure

flow shop, in which only one routing exists. Routing matrices for these two cases are

displayed in Tables 15.1 and 15.2, respectively, for a four-machine shop.

The output of the simulation is a set of statistics that describes the behavior of

the model over a simulated interval of operation. The statistical analysis of simu-

lation outcomes is a topic beyond the scope of this coverage, but many articles on

job shop experiments discuss statistical interpretations. Usually, the experiments are

aimed at characterizing system performance in the long run, after the system reaches

statistical equilibrium. Therefore, the first portion of the experiment is a warmup

TABLE 15.2

A 1 2 3 4 L

Arrive — 1 0 0 0 —

1 — — 1 0 0 0

2 — 0 — 1 0 0

3 — 0 0 — 1 0

4 — 0 0 0 — 1

Leave — — — — — —

352 SIMULATION MODELS FOR THE DYNAMIC JOB SHOP

period, after which performance data is gathered. To the extent that the experiments

are aimed at obtaining qualitative insights and understanding, it may not be critical

to invoke sophisticated statistical tests. However, an important feature of the exper-

imentation is typically the maintenance of a stored or reproducible job file. (In the

past, high-speed memory was at a premium, and good simulation models relied on

the ability to reproduce the same set of random variables. Today, it is not difficult

to store large samples in high-speed memory. For this reason, we have assumed that

samples are stored. Most of the seminal results reported in this chapter, however,

were obtained with reproducible files.) With a consistent set of input data, we can

repeat a simulation several times, using the same input each time and varying only

the scheduling rules. This approach helps focus on performance differences among

scheduling rules and to remove those differences that could occur simply due to

random factors.

15.3 TYPES OF DISPATCHING RULES

Detailed scheduling decisions in a job shop are usually determined by dispatching

rules. At the completion of any operation, a machine becomes free, and the dis-

patching rule specifies what the machine should do next. One of the options, of

course, is to keep the machine idle for a certain period, but, in the spirit of nondelay

schedules, most dispatching rules immediately assign work to the machine as long as

work is available. This assignment is based on priorities determined for each of the

waiting jobs.

Two types of classifications are important in describing priority rules. First, a

rule is local if we base priority assignment only on information about the jobs

represented in the individual machine queue. The SPT and LWKR rules, introduced

in the previous chapter, are two examples of local rules. By contrast, a rule is global

if it uses information from machines other than the one at which the decision is

pending. Examples of global rules include the following.

AWINQ (anticipated work in next queue): Select the waiting operation whose

direct successor operation will encounter the queue with the least work waiting.

This includes work that has not yet arrived there but that is anticipated to arrive

before the direct successor operation can begin.

FOFO (first off first on): Select the operation that will complete earliest. If this

operation is not yet in the queue, the machine remains idle until it arrives.

Intuitively, global rules ought to be more effective than local rules, but it is not easy

to determine which global rules are good. Moreover, the information base required

for global rules may be so extensive as to preclude implementation in many shops.

Simulation studies have mainly examined local rules.

A second classification of dispatching rules involves the dynamics of the informa-

tion base. A rule is static if its relative assignment of priorities does not change over

TYPES OF DISPATCHING RULES 353

time and dynamic otherwise. A little elaboration on this distinction might be helpful.

The simplest set of static rules provides that each operation of a given job has the

same priority. For example:

ERD (earliest release date): Select the operation associated with the job that arrived

at the shop (i.e., was released) earliest.

EDD (earliest due date): Select the operation associated with the job that has the

earliest due date.

Certain rules, including SPT and LWKR, are static with respect to a particular

operation, but dynamic with respect to a particular job, in the sense that individ-

ual operations of the same job acquire different relative priorities. Here are other

examples.

MST (minimum slack time): Select the waiting operation associated with the job

that has minimum slack time. Slack time is equal to the difference between the

due date and the earliest possible finish time of the job.

ODD (operation due date): Select the operation that has the earliest operation due

date. We determine an operation due date by dividing the interval between the

job due date and its release date into as many subintervals as there are opera-

tions. The end of each subinterval represents a due date for the corresponding

operation.

A dynamic version of ODD results if we replace the release date by the current

(dispatching) time. Furthermore, slack-oriented versions can be developed by incor-

porating remaining work into the priority calculation. Some other dynamic rules are

listed below.

S/OPN (slack per operation): Select the operation associated with the job that has

the minimum ratio of slack time to remaining operations.

TSPT (truncated SPT): Select the operation with the shortest operation time (as

under SPT), except when an operation has waited in the queue more than

W time units. Operations with queue times larger than W receive overriding

priority and are dispatched by first-come, first-served (FCFS) priority.

MDD (modified due date): Select the operation associated with the job that has

the earliest modified due date. The modified due date is either the original due

date or the earliest possible finish time, whichever is larger.

It is not difficult to devise a plausible dispatching rule, as the foregoing examples

should demonstrate. In some situations, the rationale for using a particular rule may

be that it helps produce rapid turnaround, but in other instances the motivating factor

may be the need to meet due dates. Simulation research has examined a wide variety

of alternative rules and identified a few simple but effective rules for each situation.

The following sections suggest the tenor of these findings.

354 SIMULATION MODELS FOR THE DYNAMIC JOB SHOP

15.4 REDUCING MEAN FLOWTIME

The most commonly used measure of turnaround in a job shop has been mean job

flowtime. An equivalent measure is mean number of jobs in the system, because the

flowtime–inventory relationship described in Chapter 2 also pertains to the dynamic

job shop. In light of the fact that SPT minimizes F in single-machine problems, it

is natural to expect that shortest-first strategies should perform well in the job shop

setting. Therefore, it is not surprising to find that the major comparative studies have

found that SPT minimizes mean flowtime when compared to the dozen or so simple

dispatching rules that are frequently considered as alternatives.

Conway (1965a) performed an elaborate study, using mean number of jobs in

the system, J , as the performance measure. Conway simulated a pure job shop

containing nine machines and operating under the assumptions listed in the previous

section. The experiments gathered statistics on about 9000 jobs and reported results

for over 30 priority rules. Table 15.3 reproduces some of those results, dramatizing

the effectiveness of the SPT rule. Even the global rule AWINQ did not match the

performance of SPT, although both performed substantially better than ERD, which

essentially ignores both job traits and shop status in determining priorities. In search

of a rule that performs better than SPT, Conway investigated the performance of

several combination rules, two of which appear in Table 15.3. A combination of

SPT and LWKR computes job priorities under each rule separately and then takes

a weighted sum of the two values, weighting the SPT priority value by α and the

LWKR priority value by (1 − α). Different values of the weighting parameter α

generate a parametric set of combination rules. Conway’s experiments showed that

the proper choice of α could improve slightly over SPT, but a poor choice of α could

lead to worse performance. There were also tests of combination rules using SPT and

AWINQ, and in Conway’s study one of these produced the smallest value of J .

The effectiveness of combination rules has limited practical value, for several rea-

sons. First, any combination rule requires the specification of a weighting parameter,

and it takes considerable effort to find an “optimal” value of α for a given situation.

The range of desirable α values might well be sensitive to shop utilization and certain

TABLE 15.3

Dispatching Rule J

Simple rules

ERD 57.51

FCFS 58.87

SPT 23.25

LWKR 47.52

AWINQ 34.03

Combination rules

SPT, LWKR (α = 0.985) 22.98

SPT, AWINQ (α = 0.96) 22.67

REDUCING MEAN FLOWTIME 355

job parameters. Moreover, the added benefits of using a combination rule—and a

global rule as well, if AWINQ is involved—seem marginal at best compared to the

performance under SPT. Because the pure SPT rule is so much easier to implement,

and because it accounts for nearly all of the good performance of the combination

rules, it is, for all practical purposes, considered the best rule where the objective is

to minimize mean flowtime. Conway’s findings are representative of similar results

in several other investigations.

Conway also studied whether the SPT rule was sensitive to the precision of

processing time information in situations where priority assignments must employ

estimates. His experimentation was motivated by the fact that in practice it is not

always possible to have completely reliable information in advance about operation

times. Instead, an estimate of each processing time is available, but the actual time

is often subject to some uncertainty. Therefore, Conway described the quality of

the estimates in terms of their precision. In the model, actual times were uniformly

distributed random variables ranging from a specified proportion β below the estimate

to the same proportion above the estimate. For example, if a particular operation had

an estimated time of 10 hours and the quality parameter β was set at 0.2, then the

actual time was equally likely to be any value between 8 and 12 hours. Of course, the

case β = 0 corresponds to the implementation of SPT with perfect information. As

shown in Table 15.4, the SPT rule is remarkably insensitive to imperfect information.

Even when the estimate is allowed to be off by 100% from the true value (β = 1.0),

the deterioration in performance is very slight, suggesting that SPT can still be

effective when available information is unreliable. (When viewed in light of our

current knowledge about the applicability of SEPT in a stochastic environment, this

result should not be surprising.)

Table 15.4 also displays the result of simulating the performance of a two-class

rule, which places “short” jobs in a high priority class and “long” jobs in a low

priority class. The dispatching rule selects jobs in the queue from the high priority

class whenever they are available and from the low priority class only when no high

priority jobs are present. Within classes, however, dispatching uses FCFS priority. The

dividing line between short and long in the study was arbitrarily taken as the mean of

the processing time distribution. The significance of this rule is that it requires only a

two-way classification of jobs, which is a coarse method of discrimination compared

to SPT. Even though the performance of the two-class rule does not approach that of

SPT, the use of a short-long distinction accounts for a significant improvement over

TABLE 15.4

Dispatching Rule J

SPT (β = 0) 23.25

SPT (β = 0.1) 22.23

SPT (β = 1.0) 27.13

2CLASS 35.29

FCFS 58.87

356 SIMULATION MODELS FOR THE DYNAMIC JOB SHOP

a rule such as FCFS, which is completely blind to job characteristics. It is possible to

envision a family of similar rules with three classes, four classes, and so on. In this

family, a larger number of classes represents a finer discrimination among tasks until,

in the limiting case, SPT represents perfect short-long discrimination. The two-class

rule is the simplest rule in this family. Although it is the least demanding in terms of

the quality of information required, it nevertheless accounts for about two-thirds of

the benefit that SPT itself achieves over FCFS.

The mechanism by which SPT reduces mean flowtime should not be difficult to

understand. By giving priority to short tasks, it accelerates the progress of several

short jobs at the expense of a few long jobs. The SPT rule reduces mean flowtime, but

long jobs tend to encounter very long delays. In other words, the turnaround is good

for most of the jobs but extremely poor for the few long jobs assigned low priorities.

Several suggestions for ameliorating this aspect of performance have been proposed,

but all involve sacrificing some of the benefits of SPT. Conway first investigated

TSPT, under which SPT is the normal dispatching mode, but operations receive

special priority once their waiting time in a given queue exceeds a certain value, W .

The parametric performance of this rule is described in Table 15.5.

In Conway’s study, the average waiting time per operation observed under FCFS

was 7.27 and under SPT was only 2.78. Therefore, truncation at W = 32 still allows

individual waiting times to be far above average, yet any earlier truncation appears

to sacrifice most of the benefits of SPT. A second suggestion involves the use of

SPT in a relief role (RSPT). Under this rule the normal dispatching mode is FCFS,

but when the length of an individual queue grows too long, the local dispatching

mechanism switches over to SPT. In particular, when the length of any queue reaches

a certain number Q, then priorities within that queue are reassigned according to SPT.

However, once the queue length drops below Q the dispatching rule reverts to FCFS.

Since FCFS is the normal dispatching mode, long jobs do not typically encounter

excessive delays. Long jobs sometimes encounter temporary delays, however, while

SPT provides relief to individual machines facing severe congestion. The mean queue

TABLE 15.5

Dispatching Rule J

Truncated SPT

TSPT (W = ∞) 23.25 (SPT)

TSPT (W = 32) 32.85

TSPT (W = 16) 44.20

TSPT (W = 8) 53.50

TSPT (W = 4) 55.67

TSPT (W = 0) 58.87 (FCFS)

Relief SPT

RSPT (Q = 1) 23.25 (SPT)

RSPT (Q = 5) 29.49

RSPT (Q = 9) 38.67

RSPT (Q = ∞) 58.87 (FCFS)

MEETING DUE DATES 357

length under pure FCFS was 6.54 and under SPT was 2.58. Therefore, a queue length

parameter of Q = 9 allows machine queues to grow beyond their mean length before

the dispatching rule suspends FCFS. At the same time, the parameter Q = 9 retains

over half the benefit of SPT sequencing.

Compromise mechanisms such as TSPT and RSPT are necessary in systems that

will not tolerate the long flowtimes associated with long jobs under SPT. Never-

theless, it is important to recognize that different mechanisms will exhibit different

performance trade-offs, and any departure from a desirable pure rule should be ex-

plored thoroughly in order to avoid losing the advantages the pure rule achieves.

In the case of TSPT and RSPT, the data in Table 15.5 suggest that RSPT is more

effective at preserving the turnaround performance of pure SPT while meeting the

objections raised about long jobs.

15.5 MEETING DUE DATES

15.5.1 Background

When the scheduling objective involves meeting job due dates, the most significant

performance measures are likely to be tardiness-based criteria, such as the proportion

of jobs tardy or mean job tardiness. In such instances, it becomes relevant to consider

dispatching strategies that employ due date information, as exemplified by many

of the rules described earlier. In addition, the tardiness criterion appears to present

a much more complex problem than the minimization of mean flowtime, because

several factors can affect performance.

To begin with, consider the distribution of job latenesses. Since lateness is just

the algebraic difference between the completion time and a (given) due date, we can

expect that the mean of this distribution will be minimized by SPT. Nevertheless, it is

not only the lateness mean that accounts for good tardiness performance, but also the

lateness variance. Figure 15.1 shows four hypothetical distributions of job lateness,

with the due date (zero lateness) represented by the vertical axis. The distribution in

Figure 15.1a represents the performance of a dispatching procedure that ignores both

processing time and due date information. Figure 15.1b represents the performance

of SPT, which tends to minimize mean lateness while allowing some jobs to become

quite late. Figure 15.1c represents the performance of a low-variance type of rule

that attempts to schedule jobs for completion as close to their due dates as possible.

While the low variance is achieved at the expense of an increased mean, the trade-off

may still be desirable unless the mean increases so much that a large proportion of

the jobs becomes tardy, as in Figure 15.1d.

Experts have advocated three main types of approaches in determining priorities

using due date information:

� Allowance-based priorities
� Slack-based priorities
� Ratio-based priorities

358 SIMULATION MODELS FOR THE DYNAMIC JOB SHOP

(b)

(c)

(d)

(a)

FIGURE 15.1 Hypothetical distributions of job lateness for four priority rules.

A job’s flow allowance is the time between its release date and its due date. As time

passes, a job’s remaining allowance shrinks. Under allowance-based priority rules,

the urgency of a job is related to its remaining allowance. If we are dispatching at

time t , the remaining allowance of job j may be expressed as a j (t) = d j − t , where

a j (t) is the remaining allowance and d j is the due date. A basic allowance-based

priority system gives priority to the smallest a j (t). Since t is the same for all jobs

when we are making a dispatching decision, the job with the smallest a j (t) will also

have the smallest d j . Thus, the simplest allowance-based rule is just the earliest due

date (EDD) rule.

A job’s slack time is its remaining allowance adjusted for remaining work. The

slack for job j is s j = a j (t) − Pj , where s j is the slack time and Pj is the time

required by the remaining operations of job j . The simplest slack-based priority

MEETING DUE DATES 359

rule is the minimum slack time (MST) rule, which gives priority to the smallest

s j . Slack-based priorities enjoy considerable popularity, but there is reason to be

cautious about them. The intuitive justification for MST rules is that when two jobs

have the same allowance, the longer job is more urgent because its due date allows

less delay. However, SPT sequencing is often effective at meeting due dates, even

though it does not explicitly use due-date information. One structural problem with

slack-based priorities is that by “netting out” remaining work against the remaining

allowance, MST priorities incorporate some anti-SPT scheduling compared to EDD

priorities, at least among jobs with similar due dates. At the margin, this effect may

well be undesirable.

The third approach resembles slack-based priorities but uses ratio arithmetic in-

stead. For instance, the simplest form of the critical ratio is a j (t)/Pj , or the remaining

allowance divided by the remaining work. In other words, critical ratio priorities mea-

sure urgency by the ratio of remaining allowance and remaining work rather than

their difference, as in MST. Sometimes, remaining work is augmented by standard

queue allowances in the critical ratio. Priorities based on smallest critical ratio (SCR)

have some practical appeal in that the ratio value of 1 provides a standard for whether

a job is running late. However, negative ratios are difficult to interpret, and SCR

is open to the criticism that, like MST, it induces some anti-SPT performance at

the margin. (Consider a case where two jobs have the same due date and just one

operation remaining. The longer job will have a smaller slack, and when we divide

the slack by its processing time, we exacerbate the effect of MST.)

Another factor in measuring urgency is the number of operations remaining on

a job. When two jobs have the same remaining allowance and remaining work,

the job with the larger number of operations is intuitively more urgent because

it will encounter more opportunities for queueing delay, other things being equal.

This reasoning leads to priority indices based on remaining allowance per operation

(A/OPN) or slack per operation (S/OPN). Although these rules have performed well

in some research experiments, they, along with SCR, have some practical drawbacks.

First, ratio priorities may work in the wrong direction when their numerators are

negative. Among jobs with negative slack, the job with minimum slack per operation

might not be the logical dispatching choice. Second, ratio priorities are dynamic:

as two jobs wait in queue, their relative priorities may change. This feature could

be perplexing to people carrying out the schedule, although dynamic priorities may

actually be effective.

An alternative way to recognize the number of remaining operations is to use

operation milestones. After a job’s due date is assigned, we can set milestones in

place to show when each operation should complete if the job is to progress smoothly

toward on-time completion. These milestones are called operation due dates, and

they essentially break up a job’s flow allowance into as many segments as the number

of operations in the job. These segments then play the role of flow allowances for each

operation, and they pace the job through the shop. Once operation due dates have

been established, we can dispatch jobs by priority rules that use only the operation

processing time and the operation due date in one of the three types of approaches. The

allowance-based approach thus leads to earliest operation due date (ODD) priorities;

360 SIMULATION MODELS FOR THE DYNAMIC JOB SHOP

the slack-based approach leads to minimum operation slack time (OST); and the

ratio-based approach leads to smallest operation critical ratio (OCR).

Table 15.6 presents selected results reported by various investigators whose re-

search involved some of these rules. Three measures of performance are considered

in the table: mean tardiness (MT), proportion of jobs tardy (PT), and conditional

mean tardiness (CMT). Algebraically, we have

C MT = MT/PT

or, in other words, CMT represents the mean tardiness computed for the set of tardy

jobs. The information in Table 15.6 must be interpreted in light of some qualifications.

First, different researchers used different experimental conditions, which may account

for their apparently conflicting conclusions, as discussed later. Second, the table

reflects only the simpler rules discussed earlier and ignores rules that involve an

additional parameter, such as TSPT. The table has been slightly simplified in other

ways, but it conveys some distinct impressions:

� For PT , the SPT rule is consistently very effective.
� For CMT , critical ratio priorities are effective.
� For MT , the results are quite mixed.

TABLE 15.6

Performance Best Other Rules

Measure Rule(s) Compared Author(s)

MT MST S/OPN, SPT Gere

SPT S/OPN, EDD Conway et al., Carroll

S/OPN SPT Weeks

SPT, ODD MST, OST, SCR, OCR Kanet and Hayya

A/OPN SCR, S/OPN Miyazaki

SPT, EDD MST, SCR Baker and Bertrand

MST, SPT, EDD OST, S/OPN, ODD, SCR Muhlemann et al.

PT S/OPN, SPT EDD, MST Conway et al.

SPT MST, EDD, S/OPN Elvers

SPT EDD, ODD, MST, SCR, OST,

S/OPN

Muhlemann et al.

SCR, A/OPN S/OPN Miyazaki

SPT MST, OST, EDD, ODD, SCR,

OCR

Kanet and Hayya

SPT, S/OPN, MST EDD Elvers and Taube

CMT S/OPN SPT, EDD Conway et al.

SCR SPT, EDD, ODD, MST,

S/OPN, OST

Muhlemann et al.

OCR SPT, EDD, ODD, MST, OST,

SCR

Kanet and Hayya

MEETING DUE DATES 361

In order to understand why the picture is mixed for the MT criterion, we need to

examine some additional factors.

Absolute performance at meeting due dates is affected by how tight the due dates

are. For example, tighter due dates tend to produce larger values of MT and PT , if

other conditions remain unchanged. Beyond that, evidence exists that the relative

performance of priority rules is also affected by due date tightness, at least for PT

and for MT . The research evidence suggests the presence of crossover points, with

one rule performing best for tighter due dates and another performing best for looser

due dates. To some extent, the conflicting evidence in Table 15.6 may reflect the fact

that different research experiments happen to have been conducted on opposite sides

of a crossover point. This possibility has led to a search for rules that are robust with

respect to due date tightness. One candidate is the MDD rule.

A variety of decision rules can be used to set due dates. If r j denotes the release

date for job j , then we set the job’s due date equal to d j = r j + a j , where a j = a j (r j)

represents the original flow allowance. The following list describes a number of ways

to set the original flow allowances. (Here, m j denotes the number of operations for

job j .)

CON : a j = k (constant flow allowances)

SLK : a j = Pj + k (equal slack)

NOP : a j = km j (proportional to number of operations)

PPW : a j = Pj + km j (processing plus waiting time)

TWK : a j = k Pj (proportional to total work)

The parameter k would be chosen differently for each rule in order to achieve a

given average flow allowance. Some evidence exists that the due date assignment

rule can influence the performance of certain priority rules, so another possible

explanation for the conflicting results in Table 15.6 might be that different due date

rules were used in different research studies.

Not only are there alternative rules for setting job due dates, but similar choices

arise for setting operation due dates. Once a job’s due date is set, we divide its original

flow allowance into as many segments as there are operations. These segments, which

determine operation due dates, can be constant for all operations of the given job.

Alternatively, they can reflect equal slack, or they can be proportional to total work.

Thus, if we use the subscripts (i, j) to denote the i th operation of job j and adopt the

convention d0 j = r j , then we have

CON : di j = di−1, j + a j/m j

SLK : di j = di−1, j + pi j + (a j − Pj)/m j

TWK : di j = di−1, j + a j pi j/Pj

Kanet and Hayya (1982) compared CON and TWK as alternatives for setting

operation due dates and found TWK to be superior. Using the TWK method, they

observed that operation-based versions of EDD, MST, and SCR produced better

362 SIMULATION MODELS FOR THE DYNAMIC JOB SHOP

tardiness performance than the job-based versions. Thus, in terms of Table 15.6, we

might hypothesize that some of the conflicting evidence about such rules as ODD and

OST may reflect differences in the choice of a decision rule for setting milestones.

In summary, the existing results comprise a mixed and apparently inconsistent set

of results on priority rules for minimizing mean tardiness. At the same time, there are

certain aspects of the experimental conditions, often overlooked, that might account

for the inconsistencies in these studies.

15.5.2 Some Clarifying Experiments

Our brief review of simulation results leads directly to certain interesting questions.

First, a question remains about how to set operation due dates for operation-based

priority rules. The work of Kanet and Hayya indicates that TWK is a better rule than

CON for setting milestones, but the SLK rule was not included in their comparisons.

In addition, they did not investigate whether their results held for different ways of

setting job due dates.

Once we gain insight into how to set milestones, we can compare the two ap-

proaches for recognizing the remaining number of operations, by comparing S/OPN

with OST and A/OPN with ODD. We can also design an effective operation-based

version of the MDD rule. Define an operation’s modified due date as its original

operation due date or its early finish time, whichever is larger. The rule then gives

priority to the job with minimum modified operation due date (MOD).

A second question involves setting job due dates. Some authors have simply

assumed TWK to be desirable, but some single-machine experiments have suggested

that there may be a crossover effect. The performance of due date rules still requires

some additional study.

Once we gain insight into the setting of job due dates, we can make a meaningful

comparison of priority rules, in which we incorporate considerations of due date

tightness and recognize that the priority rule must be considered in conjunction

with the due date rule. This comparison should reconcile many of the conflicting

implications surrounding mean tardiness as a criterion.

Below, we summarize the experimental investigation in Baker (1984), which

was aimed at answering these questions. The simulation model represented a four-

machine job shop. Jobs arrived randomly and had four operations on average, and

no successive pair of operations required the same machine. The specific number of

operations was equally distributed among the integers from 2 to 6, and the routings

were those of a pure job shop. The operation times were random samples from an

exponential distribution with a mean of 1. Thus, the average operation time was taken

as the unit of time, so that the mean amount of work per job was 4 time units. In

such a system, the mean arrival rate determines shop utilization, defined as the ratio

of work required to capacity available. In this model, the mean operation time was 1,

and the mean number of operations per job was equal to the number of machines in

the shop; therefore, utilization was equal to arrival rate.

The primary experiments were conducted with a utilization level of about 90%.

A second job set was created, with a utilization of about 80%. This second data set

MEETING DUE DATES 363

allowed the experiments to be repeated, in order to verify the results observed in the

primary data set. As it turned out, the utilization level was not a major factor, and

qualitatively similar results were observed in both data sets.

To provide some perspective on the numerical values observed in the experiments,

the theoretical value of mean flowtime is 40 for a utilization of 90%. This value rep-

resents the long-run or equilibrium value of mean flowtime, based on the assumption

that FCFS priorities apply at each machine. In other words, if we could get perfect

information under FCFS about all future events in the shop, and thereby know at the

time of a job’s arrival the precise time of its ultimate completion, we could then set

due dates so that each job would complete exactly on time. In that case, the average

flow allowance would be 40. Without full information about the future, some tardi-

ness inevitably occurs when the average flow allowance is 40, but this level anchors

the tardiness scale. Table 15.7 shows the flow allowances that were included in the

experiments. Also shown are the values of MT and PT observed in the simulation

when FCFS priorities were imposed and constant flow allowances were assigned. We

can see, for example, that allowances of 40 (or 20 in the 80% data set) represent mod-

erately tight due dates for FCFS, in that roughly 40% of the jobs are late. Improved

performance can result from a better choice of priority rule and a more effective way

of setting due dates.

As the parameters in Table 15.7 indicate, the experiments were designed with

reference to theoretical mean flowtime. Thus, if a mean allowance of 40 represents

“moderately tight” due dates for the case of 90% utilization, then a mean allowance

of 20 represents “moderately tight” for the case of 80% utilization because the un-

derlying theory tells us that the mean flowtimes are half as large. Suppose we want

to test the effect of utilization. This experimental design involves changing the uti-

lization but maintaining the ratio of mean flow allowance to mean flowtime derived

from theory. In this framework, flow allowances with a mean of 50 in the case of

90% utilization are considered comparable to flow allowances of 25 in the case of

80% utilization. It is important to interpret flow allowances in terms of the system’s

utilization. If we increased the workload by raising the arrival rate, while keeping the

TABLE 15.7

Flow Allowance

Utilization Value 15 20 25 30

80% MT 6.48 4.10 2.48 1.46

PT 0.56 0.40 0.27 0.15

Flow Allowance

Utilization Value 30 40 50 60

90% MT 14.82 9.86 6.28 3.87

PT 0.58 0.42 0.30 0.20

364 SIMULATION MODELS FOR THE DYNAMIC JOB SHOP

flow allowances the same, then a higher proportion of jobs would be tardy. In other

words, the frequency of tardiness does not reflect the size of the flow allowances

alone, but only in the context of the average level of congestion in the system.

We could adopt a different convention. For example, some experiments have held

mean flow allowance constant while raising utilization. Under our framework, that

experimental design is viewed as tightening the due dates because mean flowtime was

allowed to increase while the mean flow allowance was maintained. The crossover

phenomena observed in those experiments can be interpreted as crossovers in

tightness.

15.5.3 Experimental Results

Operation Milestones. Table 15.8 shows the MT outcomes in an experiment that

compared the three methods of setting milestones (CON, SLK, and TWK). These

methods correspond to the rows of the table, while the columns represent three

ways of setting job due dates. The priority rule in these experiments was ODD, the

utilization was 80%, and the average flow allowance was 20. The table shows that for

each choice of due date rule, TWK milestones led to the best tardiness performance.

Furthermore, the combination of TWK for job due dates with TWK for milestones

produced the lowest values of MT .

The robustness of this result was tested several ways. First, the tightness of the

job due dates was varied by changing the average allowance to 15 and to 25. Then

the priority rule was changed to OST and to MOD. Then the utilization was raised

to 90%. In every comparison, TWK milestones produced the lowest value of MT .

In addition, the combination of TWK for job due dates with TWK for milestones

consistently produced the lowest MT .

Earlier research had concluded that milestones assigned on the basis of work

content were more effective than those assigned by equal spacing. The results in Table

15.8 reinforce that notion, demonstrating that the dominance of TWK milestones is

robust to certain changes in tightness, utilization, and priority rule. Therefore, in

subsequent experiments, the TWK rule was used to set all milestones.

Due Date Assignment Rules. The five methods of setting job due dates (CON,

SLK, NOP, PPW, and TWK) were compared for 10 of the priority rules at different

tightness levels. The tightness levels were those implied by the four flow allowances

TABLE 15.8

Job Due Date Rule

SLK PPW TWK

Operation CON 2.28 2.92 1.49

Due date SLK 2.11 2.08 1.47

Rule TWK 1.45 1.18 0.87

MEETING DUE DATES 365

given for each data set in Table 15.7. In every comparison except under FCFS, the

TWK method produced the lowest values of MT and PT . This set of results provides

strong evidence that the TWK rule is a reliable and effective method for setting due

dates, at least in this tardiness range.

A few additional experiments were conducted in search of a crossover for the due

date rule at larger flow allowances. This idea was motivated by the single-machine

results in earlier studies, which indicate that the crossover occurs only when the

due dates are quite loose. In fact, a similar crossover was eventually discovered for

the job shop model, but it occurred only when tardiness levels were already extremely

low. Although TWK was not superior in these cases, its performance was still very

close to the best. (Some details are presented later.) For all practical purposes, the

TWK rule provided superior tardiness performance.

Allowance-Based Rules. Figure 15.2 shows the graph of MT as a function of the

average allowance, for the priority rules EDD, ODD, A/OPN, and MDD. The graph

emphasizes the fact that MT is a function of due date tightness. By smoothing the

points produced by the simulation runs, the graph suggests the shape of these functions

and shows the existence of crossover points. For example, the MDD rule produced

the lowest MT at an average allowance of 30; ODD produced the lowest value at 40;

and A/OPN produced the lowest at 50. All of the rules produced very little tardiness

(MT ≤ 0.01) at 60.

In the region of the graph, the operation-based rules performed quite well. The

rule A/OPN nearly avoided tardiness for average allowances of 50 and above, but its

tardiness performance deteriorated quickly when the allowances were tightened.

Average flow allowance

EDD

A/OPN

MDD

ODD

M
e
a
n
 t
a
rd

in
e
s
s

FIGURE 15.2 Mean tardiness performance for allowance based rules.

366 SIMULATION MODELS FOR THE DYNAMIC JOB SHOP

M
e
a
n
 t
a
rd

in
e
s
s

Average flow allowance

MST

S/OPN

OST

FIGURE 15.3 Mean tardiness performance for slack-based rules.

Slack-Based Rules. Figure 15.3 shows a similar graph for the priority rules MST,

OST, and S/OPN. Two features of the figure resemble Figure 15.2: the slack-based

rules performed well under tight due dates, and there was a visible crossover in the

graphs of the two operation-based rules. If we superimposed Figures 15.2 and 15.3,

the comparison would show A/OPN and S/OPN to be quite similar, while ODD,

would be slightly better than OST.

This pair of comparisons (which was reinforced by similar results for the case of

80% utilization) suggests that no significant advantage lies in using slack-based rules.

Although the anti-SPT effect might be minor, S/OPN and OST appear to produce

performance comparable to A/OPN and ODD, respectively, but the allowance-based

rules are slightly simpler.

Critical Ratio Rules. Figure 15.4 shows a graph of the critical ratio rules SCR and

OCR, along with S/OPN. Comparing the two critical ratio rules, we observe that

the operation-based version achieved smaller MT values when flow allowances were

small, but the job-based version was preferable when allowances were large. This

same type of crossover occurred for MST and OST in Figure 15.3. These results

suggest that the pacing induced by operation milestones improves performance when

due dates are relatively tight but provides little benefit when due dates are relatively

loose.

The comparison between the critical ratio rules and S/OPN in Figure 15.4 is also

instructive. As in the case of A/OPN discussed earlier, the S/OPN rule achieved very

small levels of mean tardiness for relatively long flow allowances, but performance

MEETING DUE DATES 367

M
e
a
n
 t
a
rd

in
e
s
s

Average flow allowance

S/OPN

SCR

OCR

FIGURE 15.4 Mean tardiness performance for critical ratio rules and S/OPN.

deteriorated rapidly when allowances were shortened. By contrast, the critical ratio

rules yielded more tardiness for loose due dates, but they were less sensitive to

shortening the flow allowances.

This comparison is interesting in light of an earlier claim that SCR and S/OPN are

equivalent. Although this equivalence does not hold for our definition of SCR (time

remaining divided by work remaining), one variation is to replace the numerator in

the critical ratio by job slack. If, in addition, we interpret “work remaining” as the

allowance for remaining operations, and if those allowances are set by the CON rule

for determining milestones, then SCR does become identical to S/OPN. However,

the MT performance of SCR seems better without the changes.

Modified Operation Due Dates. MDD did not always produce extremely low MT

values, as Figure 15.2 indicates. However, the foregoing discussion suggests that an

operation-based form can be more effective. The simulation runs certainly confirmed

this point, as shown in Figure 15.5. The graph reproduces the results for A/OPN

and ODD along with the results for MOD and SPT. Not only did MOD produce

very small tardiness levels, but its performance deteriorated far less quickly than

the performance of other rules as due dates were tightened. Additional studies have

confirmed the robustness of modified due date priorities.

The results in Figure 15.5 are reproduced in Table 15.9. As the data indicate, MOD

did not dominate the other rules, for at an average allowance of 60 its tardiness level

was slightly higher than that of A/OPN, ODD, and S/OPN. However, the absolute

value of MT was very small under those conditions.

368 SIMULATION MODELS FOR THE DYNAMIC JOB SHOP

M
e
a
n
 t
a
rd

in
e
s
s

Average flow allowance

A/OPN

SPTODD

MOD

FIGURE 15.5 Mean tardiness performance for selected rules.

As Figure 15.5 shows, the SPT rule exhibited its own kind of robustness, with a

tardiness “curve” that was relatively flat. As a result, SPT produced less tardiness than

all of the other rules except MOD when due dates were very tight, and SPT produced

more tardiness than all of the other rules (except FCFS) when due dates were very

loose. The flatness of the SPT curve created crossovers with most other priority rules,

which may account for much of the conflicting evidence in the literature.

The performance of the MOD priority rule against the MT criterion was remarkable

in these experiments. In addition, its performance on the PT criterion was also quite

good. As stated earlier, in reference to Table 15.6, the SPT rule appears to be the

benchmark for comparisons involving PT . Table 15.10, which shows PT values,

demonstrates that MOD generated PT performance that was almost as robust as the

performance of SPT.

TABLE 15.9

Allowance Factor
Priority

Rule 30 40 50 60

ODD 3.90 1.13 0.28 0.0061

S/OPN 7.54 1.60 0.0024 0.0043

A/OPN 6.94 2.09 0.0024 0.0029

MOD 1.43 0.48 0.14 0.0092

SPT 3.00 2.22 1.84 1.48

SUMMARY 369

TABLE 15.10

Allowance Factor
Priority

Rule 30 40 50 60

ODD 0.40 0.15 0.05 0.006

S/OPN 0.56 0.24 0.01 0.002

A/OPN 0.54 0.30 0.009 0.003

MOD 0.14 0.06 0.03 0.01

SPT 0.08 0.04 0.03 0.02

Crossovers in Due Date Rules As mentioned earlier, some exploratory runs with very

loose due dates revealed a crossover effect in the choice of the due date rule. In particu-

lar, the priority rules A/OPN and MOD were investigated in a region of due dates more

loose than the region in Figures 15.2–15.5. Under TWK due dates, a small amount

of tardiness persisted for average allowances up to 100. On the other hand, under

NOP due dates, there was no tardiness at all for allowances of 80 and above with the

A/OPN priority rule, and there was no tardiness at 90 and above with the MOD rule. In

graphical terms, these results suggest that tardiness curves for NOP due dates exhibit

smaller x-intercepts in graphs such as Figures 15.2–15.5, compared with curves for

TWK. Nevertheless, this effect may be of little practical significance because even

the TWK rule yields very little tardiness in the region where NOP yields none.

15.6 SUMMARY

After looking at the main results relating to mean flowtime, we gave an overview of

a simulation study on tardiness-oriented dispatching in a job shop. For minimizing

the proportion tardy (PT), the evidence is quite strong that SPT is effective. For

minimizing the conditional mean tardiness (CMT), the evidence is more limited, but

it consistently suggests that the use of critical ratio priorities is effective. For the

criterion of mean tardiness (MT), there appears to be conflicting evidence in the

research literature. It may be possible to explain such conflicts by recognizing that

MT performance varies with due date tightness, and we can think of a graph in which

MT performance is represented by a curve. Not surprisingly, if we increase flow

allowances (and thereby loosen due dates), then MT drops. This relation gives rise to

downward-sloping MT curves. More importantly, the shape of the MT curve depends

critically on the priority rule in effect, as indicated in Figures 15.2–15.5.

The SPT rule exhibits a very flat MT curve, which gives rise to performance

crossovers with nearly all of the other priority rules tested. In particular, SPT is

relatively effective when due dates are very tight but not when due dates are loose.

Thus, a particular experimental comparison might find SPT performance to be good

or bad, depending on how tight the due dates are set.

The MOD rule also exhibits a relatively flat MT curve. It provides superior MT

performance when due dates are tight, and it is close to the best rules when due dates

370 SIMULATION MODELS FOR THE DYNAMIC JOB SHOP

are loose. This robustness appears to make MOD a desirable choice under conditions

where we cannot guarantee loose due dates.

As a general guideline, operation-oriented priority rules perform better on the

MT criterion than job-oriented rules. One such approach, embodied in MOD, is to

set operation milestones and use them in priority calculations. In these cases, the

evidence indicates that milestones should not be equally spaced; rather, they should

reflect the work content in individual operations, as in the TWK rule.

A second operation-oriented approach, embodied in the A/OPN rule, is to use

the number of remaining operations as a denominator in the priority calculation.

In particular, the A/OPN rule exhibits a relatively steep MT curve, which makes it

undesirable when due dates are tight. Nevertheless, the A/OPN rule appears superior

when due dates are loose. This result suggests that A/OPN may be a desirable choice

in situations where we can systematically keep tardiness very small.

In general, slack-based rules offer no great advantage over simpler allowance-

based rules. For example, S/OPN produces MT performance very similar to that of

A/OPN. Where S/OPN achieves better MT performance than A/OPN, the ODD and

MOD rules seem even better.

Finally, the evidence is quite strong that due dates should reflect work content,

in light of the fact that TWK was usually the best of the due date assignment rules

studied. Some evidence, however, indicates that the NOP rule could yield efficient due

dates for avoiding tardiness completely. However, we might wonder what information

besides work content can be helpful in setting due dates.

The simulation approach is inherently suited to the study of stochastic job shops.

However, in a true stochastic system, we don’t know the processing time in advance.

In most of the studies we reported, by contrast, the jobs are generated randomly

but are assumed known when it comes time to actually apply the various rules.

We noted one exception—Conway’s finding that SEPT is as effective as SPT for

minimizing average flowtime. One consequence of treating job parameters as known

is that no Jensen gap occurs. Thus, we may still want to study the effect of using

dispatching rules that are based on known distributions rather than known realizations.

On the one hand, adapting rules such as MDD or its derivatives (such as MOD) to

stochastic times is conceptually easy: we can calculate the expected modified due

date, E(max{d j , t + p j }), and use it instead of MDD. On the other hand, we need

research to determine whether this refinement is important.

REFERENCES

Anderson, E.J. and J.C. Nyirenda (1990). Two new rules to minimize tardiness in a job shop,

International Journal of Production Research 28, 2277–2292.

Baker, K.R. (1968). Priority dispatching in the single channel queue with sequence-dependent

setups, Journal of Industrial Engineering 19, 203–206.

Baker, K.R. (1984). Sequencing rules and due date assignments in a job shop, Management

Science 30, 1093–1104.

Baker, K.R. and J.W.M. Bertrand (1981). An investigation of due date assignment rules with

constrained tightness, Journal of Operations Management 1, 109–120.

REFERENCES 371

Baker, K.R. and J.J. Kanet (1983). Job shop scheduling with modified due dates, Journal of

Operations Management 4, 11–22.

Berry, W.L. and V. Rao (1975). Critical ratio scheduling: experimental analysis, Management

Science 22, 192–201.

Bertrand, J.W.M. (1983). The effect of workload dependent due-dates on job shop performance,

Management Science 29, 799–816.

Blackstone, J.H., D.T. Phillips, and G.L. Hogg (1982). A state-of-the-art survey of dispatching

rules for job shop operations, International Journal of Production Research 20, 27–45.

Carroll, D.C. (1965). Heuristic sequencing of single and multiple component jobs. PhD dis-

sertation, MIT.

Conway, R.W. (1965a). Priority dispatching and work-in-process inventory in a job shop,

Journal of Industrial Engineering 16, 123–130.

Conway, R.W. (1965b). Priority dispatching and job lateness in a job shop, Journal of Industrial

Engineering 16, 228–237.

Conway, R.W., W.L. Maxwell, and L.W. Miller (1967). Theory of Scheduling, Addison-Wesley,

Reading, MA.

Eilon, S. and I.G. Chowdhury (1976). Due dates in job shop scheduling, International Journal

of Production Research 14, 223–237.

Elvers, D.A. (1973). Job shop dispatching using various due date setting criteria, Production

and Inventory Management 14, 62–69.

Elvers, D.A. and L. Taube (1983). Time completion for various dispatching rules in a job shop,

Omega 11, 81–89.

Fry, T.D., P.R. Philipoom, and R.E. Markland (1989). Due date assignment in a multistage job

shop, IIE Transactions, 21, 153–161.

Gere, W.S. (1966). Heuristics in job shop scheduling, Management Science 13, 167–190.

Kanet, J.J. (1981). A critical look at critical ratio, In Proceedings of the APICS 24th Annual

Conference, pp. 182–183.

Kanet, J.J. and J.C. Hayya (1982). Priority dispatching with operation due-dates in a job shop,

Journal of Operations Management 2, 155–163.

Miyazaki, S. (1981). Combined scheduling system for reducing job tardiness in a job shop,

International Journal of Production Research 19, 201–211.

Muhlemann, A.P., A.G. Lockett, and C.I. Farn (1982). Job shop scheduling heuristics and

frequency of scheduling. International Journal of Production Research 20, 227–241.

Pai, A.R. and K.L. McRoberts (1971). Simulation research in interchangeable part manufac-

turing, Management Science 17, B732–B743.

Panwalkar, S.S. and W. Iskander (1977). A survey of scheduling rules, Operations Research

25, 45–61.

Vig, M.M. and K.J. Dooley (1991). Dynamic rules for due-date assignment, International

Journal of Production Research 29, 1361–1377.

Weeks, J.K. (1979). A simulation study of predictable due dates, Management Science 25,

363–373.

16
NETWORK METHODS FOR
PROJECT SCHEDULING

16.1 INTRODUCTION

Network models are widely used in the formulation of resource allocation problems

and sequencing problems, so it is appropriate to think of network models as funda-

mental in scheduling. The purpose of this introductory treatment of network models

is twofold. The first objective is to describe the elements of network models: many

of the scheduling problems discussed later can be visualized more clearly and ana-

lyzed more effectively with the use of network concepts. The second objective is to

discuss the basic elements of the critical path method (CPM) and the program eval-

uation and review technique (PERT), which are well-known techniques for network

scheduling.

CPM and PERT emerged independently in the late 1950s and are regarded as

tools for planning and scheduling large, nonrepetitive projects. However, their po-

tential usefulness has a much broader scope. They have won rapid acceptance as

useful practical techniques and have been successfully employed in a variety of ar-

eas, including research and development, construction, maintenance, marketing and

production.

For the purpose of using network methods in project scheduling, a project repre-

sents a collection of well-defined tasks called activities. When all of these activities

are carried out, the project is completed. (In job shop terminology, a project is called

a job and an activity is called an operation.) The activities of a project are subject to

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

372

LOGICAL CONSTRAINTS AND NETWORK CONSTRUCTION 373

logical constraints, which restrict activity scheduling to feasible sequences. Within a

feasible sequence, however, activities may be started and stopped independently of

each other, as long as the logical constraints are not violated. The graphical repre-

sentation of logical relationships among project activities is more precisely called an

activity network model, but for simplicity, we refer to network models. As we shall

see, the network model not only depicts logical constraints, but it also provides a

structure for analysis.

Section 16.2 describes the construction of network models to display logical infor-

mation. Section 16.3 discusses the fundamentals of analyzing simple, deterministic

networks. Section 16.4 discusses a classic trade-off involving cost and time. Section

16.5 describes the stochastic approach of PERT along with a critical look at some of

its assumptions.

16.2 LOGICAL CONSTRAINTS AND NETWORK CONSTRUCTION

Network representations of logical constraints were introduced in Chapter 8 for de-

scribing sets of related jobs. In the same way, a network model can be used to

describe the precedence relationships among activities in a project. The particular

network model employed in previous chapters represented activities as nodes in

the network and represented direct precedence relations as directed arcs. This type

of network is referred to as an activity-on-node (AON) network because of its struc-

ture. An alternative model, the activity-on-arc (AOA) network, is more frequently

employed in project scheduling.

Networks are made up of nodes and directed arcs. In an AOA network, the arcs

represent activities and nodes represent events. The distinction between activities

and events in AOA networks is subtle but important. Activities are processes and are

associated with intervals of time over which they are performed; events are stages of

accomplishment and are associated with points in time. For example, in the develop-

ment of a prototype of an automobile emission control device, “testing cold weather

performance” might be an activity, whereas “test completed” would be an event.

In a network, the direction of an arc indicates the direction of a precedence

relation. Thus, if A directly precedes B, an appropriate network representation is

given in Figure 16.1. Here, event 1 (node 1) represents the start of activity A and

event 3 represents the completion of activity B. Event 2 has two interpretations: it

can be considered the completion of activity A or the start of activity B. The network

structure indicates that these two events are not logically distinct. In other words,

whereas they may occur temporally at different points, they occur logically at the

same point.

1 2 3
A B

FIGURE 16.1 Activity A directly precedes B, in an AOA representation.

374 NETWORK METHODS FOR PROJECT SCHEDULING

4

6 7

5

C

E

D

FIGURE 16.2 Activities C and D directly precede E, in an AOA representation.

If two activities, C and D, are allowed to be concurrent, but C directly precedes E

and D directly precedes E, the network representation is shown in Figure 16.2. Here,

the interpretation of node 6 in logical terms is the completion of both activities C

and D (or equivalently, the start of activity E, which requires that both C and D be

complete). Similarly, if F directly precedes G and F directly precedes H, where G

and H can be concurrent, then the network representation is shown in Figure 16.3.

Here, the interpretation of node 9 in logical terms is the completion of activity F or,

equivalently, the potential start of either activity G or activity H, or both.

Several conventions are usually prescribed for the construction of AOA networks.

Here are the principal rules.

1. The network should have a unique starting event (a single origin node).

2. The network should have a unique completion event (a single terminal node).

3. The nodes should be numbered so that for any activity, the completion event

has a larger number than the starting event. (Such a numbering can always be

found unless the network contains logical inconsistencies that would lead to

circular precedence relationships.)

4. No activity should be represented by more than one arc in the network.

5. No two activities should share both a starting event and a completion event.

In particular, we want to be able to identify activities by the node numbers of

their starting and ending events and to do so uniquely.

Rule 5 may create a problem for the basic AOA network.

F

H

G

98

10

11

FIGURE 16.3 Activity F directly precedes G and H, in an AOA representation.

LOGICAL CONSTRAINTS AND NETWORK CONSTRUCTION 375

1 2 3 4
A

B

D

C

FIGURE 16.4 An AOA network for Example 16.1.

� Example 16.1 Consider the following simple project (planning and holding a

fund-raising concert).

Activity ID Predecessors

Plan concert A —

Advertise B A

Sell tickets C A

Hold concert D B, C

Figure 16.4 shows a simple AOA network representation for the example. How-

ever, a reference to activity (2, 3) would be ambiguous: it could refer to either activity

B or activity C.

For informal purposes or hand calculations, this network diagram is sufficient. To

avoid violating Rule 5, however, we must include a dummy activity (dotted arc), as

shown in Figure 16.5. The dummy activity allows the same logical relationships to

be accommodated without violating Rule 5 or some other rule. No physical process

corresponds to the dummy activity, but it is often necessary to use dummy activities to

exhibit correct logical relationships under the standard conventions. Also, computer

programs for project scheduling techniques often rely on the ability to use dummy

activities.

Given these conventions, the task of constructing a suitable network requires two

types of input: a detailed list of the individual activities and a specification of their

precedence relations. To help provide the latter information, we answer the following

questions for each activity:

Which activities precede it? (What controls its start?)

Which activities follow it? (What are its consequences?)

Which activities may be concurrent with it?

A

B

D
C1 2

3

4

5

FIGURE 16.5 Revision of Figure 16.4, using a dummy arc.

376 NETWORK METHODS FOR PROJECT SCHEDULING

A

B

C

D

FIGURE 16.6 AON network for the activities in Example 16.1.

With this information available, the next step is to draw an intelligible network

diagram. Often, this will be a trial-and-error process. It is desirable, but not always

possible, to adhere to the following guidelines.

Avoid drawing arcs (arrows) that cross.

Draw arcs as straight lines.

Avoid too wide a variation in arc lengths.

Keep the angles between arcs as large as possible.

Maintain a left-to-right component in each arc.

The use of AON networks leads to a different approach to constructing network

diagrams for project scheduling. Recall that in an AON network the nodes represent

activities and the arcs represent the logical constraints. Because each arc corresponds

to a direct precedence relation between two activities, we need not introduce dummy

activities. For example, Figure 16.6 is the AON network for the fund-raising concert

of Example 16.1.

The direct correspondence of arcs with precedence information, and the obser-

vation that dummy activities appear to be unnecessary for expressing logical con-

straints, make AON networks somewhat easier to construct than AOA networks.

For this reason, when network models are used in formulating scheduling problems

that contain logical constraints, we often prefer the AON type of network. Nev-

ertheless, in practical applications of CPM and PERT, good reasons exist for using

AOA networks. First, when computer programs perform the requisite calculations for

large projects, the computational task can be carried out more efficiently with AOA

formulations. Second, the event orientation of AOA networks can be advantageous

from a project management point of view. In particular, events in the network rep-

resent milestones—points in time when project status can be conveniently updated,

prospects can be reevaluated and plans can be revised. Because of the particular

usefulness of event-oriented networks in project scheduling, our coverage of CPM

and PERT in the following sections emphasizes AOA networks.

16.3 TEMPORAL ANALYSIS OF NETWORKS

The underlying motivation of temporal analysis involves the question, “When will the

project be complete?” A closely related question is, “Which activities will contribute

TEMPORAL ANALYSIS OF NETWORKS 377

directly to the duration of the project?” To help answer both questions, the network is

first analyzed under the simplifying assumption that all activity durations are known

constants, pj.

In the standard terminology, “time” refers to a point in time and is associated with

the occurrence of an event, whereas “duration” refers to an interval in time and is

associated with an activity. Corresponding to each event in the network are two time

values: an early event time (ET), which is the earliest point in time at which the event

could possibly occur, and a late event time (LT), which is the latest point in time at

which the event could possibly occur without delaying the completion of the project.

These are complementary definitions, and they suggest complementary methods of

calculation.

Algorithm 16.1 Calculation of Early Event Times

Step 1. Assign an ET of zero to the origin event.

Step 2. Using the node numbering convention of Rule 3, consider the events in

numerical order. For each event, make the following calculations: (a) to the ET

of each directly preceding event, add the duration of the connecting activity; (b)

select the maximum of the sums calculated in (a).

Algorithm 16.2 Calculation of Late Event Times

Step 1. Assign an LT equal to the project due date to the terminal event. (As a default

project due date, use the ET of the project completion event.)

Step 2. Consider the events in reverse numerical order. For each event, make the

following calculations: (a) from the LT of each directly succeeding event, subtract

the duration of the connecting acitivity; (b) select the minimum of the differences

found in (a).

Thus, a forward pass calculates ET values, and a backward pass calculates LT

values. If the project does not have an explicit due date, the backward pass is initialized

by using the ET for the terminal event as the due date. Once all ET and LT values are

computed, attention shifts to activity information. In particular, four quantities are

calculated for each activity.

Early start time (ES): The earliest time at which the activity could possibly be

started (equal to the ET of the activity’s starting event).

Early finish time (EF): The earliest time at which the activity could possibly be

completed (equal to the sum of the ES and the activity duration).

Late finish time (LF): The latest time at which the activity could be completed

without delaying the project beyond its due date (equal to the LT of the activity’s

completion event).

Late start time (LS): The latest time at which the activity could be started without

delaying the project beyond its due date (equal to the difference between LF

and the activity duration).

378 NETWORK METHODS FOR PROJECT SCHEDULING

1

2

3

4

5

6A(5)

B(4)

D(1)

C(3)

F(9)

G(5)

I(2)
E(2)

H(4)

FIGURE 16.7 Network model for the example project.

� Example 16.2 Consider the following project.

Activity ID Direct Predecessors Duration

A — 5

B — 4

C — 3

D A 1

E C 2

F C 9

G C 5

H B, D, E 4

I G 2

The network diagram corresponding to this example is shown in Figure 16.7,

where each arc is labeled with both activity ID and duration. The forward and

backward passes produce the ET and LT values displayed in Figure 16.8. The ET

values of nodes 2 and 3 are 5 and 3, respectively, because the only predecessor

of activities A and C is the start node. Node 4 then receives an ET of max{5 +

0 0

5 7

6 8

12 12

8 103 3

1

2

3

4

5

65
1

4

3

4

2

9

5

2

FIGURE 16.8 Network for the example project with ET and LT shown for each event.

TEMPORAL ANALYSIS OF NETWORKS 379

1, 4, 3 + 2} = 6. Node 5 receives an ET of 3 + 5 = 8, and the terminal node has

ET = max{3 + 9, 6 + 4, 8 + 2} = 12. Implementing Algorithm 16.2, we calculate

LT for nodes 5 and 4 as 12 − 2 = 10 and 12 − 4 = 8, respectively. Node 3 then

receives LT = min{8 − 2, 12 − 9, 10 − 5} = 3. Node 2 is addressed next with LT =
8 − 1 = 7, and finally node 1 receives LT = min{8 − 4, 3 − 3, 7 − 5} = 0. (Because

no project due date was given, the late event time for event 6 is taken to be 12, its

early event time. For this reason, we can anticipate that the LT of node 1 should be 0.)

One of the motivating questions has now been answered. Assuming that activity

durations are deterministic, the ET of the terminal event represents the minimum

project length. The project can be completed by this time provided sufficient resources

are available. To address the second question, it is necessary to understand what

accounts for the project length.

Activities that contribute directly to the duration of the project are called critical.

Any delay in a critical activity will ultimately cause a delay in the completion of the

project. The chain of arcs formed by the critical activities is called the critical path; it

is the longest path from the origin event to the terminal event and may not be unique.

In Example 16.2 the critical path is C–F. Because the logical constraints require that

the activities on the critical path be carried out sequentially, event 6 cannot be realized

prior to time 12. In general, if the project is to be completed by the ET of the terminal

event, we cannot tolerate any delay along the critical path.

For noncritical activities, however, some scheduling flexibility exists. Consider the

scheduling of activities G and I in Example 16.2. Activity G can start no earlier than

time 3, and to avoid delaying the project, activity I must be completed by time 12.

Because seven units of time are required to carry out activities G and I in sequence,

and because an interval of length nine is available, some flexibility remains. The two

extra units of time can be absorbed before or after either activity, or perhaps in some

combination, as shown in Figure 16.9. This kind of flexibility is called float. Along

the critical path (or critical paths, if there are several) no float exists, whereas along

G I

G I

G I

Time

3 12

3 12

FIGURE 16.9 Three different ways of scheduling activities G and I.

380 NETWORK METHODS FOR PROJECT SCHEDULING

other paths, some amount of float occurs. To quantify the scheduling flexibility, we

can use various measures of float.

To describe the various measures of float concisely, consider activity j and let

p j = duration of activity j

i = start node of activity j

k = end node of activity j

ETi = early event time corresponding to node i, etc.

Then the four measures of float are

Total float (TF) = LTk − ETi − p j

Safety float (SF) = LTk − LTi − p j

Free float (FF) = ETk − ETi − p j

Independent float (IF) = max{0, ETk − LTi − p j }

Of the four measures, the most frequently used is total float, which—as observed

above—actually measures float along a path. The total float represents the delay in

start time that could be absorbed by an activity without delaying the project, assuming

no other activity on the path is delayed further. The safety float is similar, but assumes

that the direct predecessors of an activity have already been delayed as much as pos-

sible. Free float measures the delay in start time that could be absorbed by an activity

without preventing any other activity from being started at its own early start time.

Finally, independent float, which is perhaps the most useful measure of individual

activity float, represents the delay in start time that can be absorbed by an activity

unconditionally—that is, independent of any scheduling decisions made elsewhere

in the network. The calculations of the four types of float for Example 16.2 are sum-

marized in Table 16.1. The critical activities are identified by the condition TF = 0.

Returning to the two questions posed at the outset of this section, we can see

how the temporal analysis of a network provides answers. If we assume that activity

durations are known constants, then the duration of a project is equal to the length of

TABLE 16.1

Activity TF SF FF IF

A 2 2 0 0

B 4 4 2 2

C 0 0 0 0

D 2 0 0 0

E 3 3 1 1

F 0 0 0 0

G 2 2 0 0

H 2 0 2 0

I 2 0 2 0

THE TIME/COST TRADE-OFF 381

the longest path in the network. The critical activities, those that lie along this longest

path, are the activities that contribute directly to project length. Any delay in a critical

activity will lead to a delay in the project. Furthermore, for noncritical activities, the

amount of scheduling flexibility available and the nature of that flexibility can be

represented by the various measures of activity float.

The assumption of constant, deterministic activity durations on which temporal

analysis is based certainly has some shortcomings. To address these limitations, and

to develop more practical forms of network analysis, the basic project model has

historically been extended in two important ways. One (associated with CPM) treats

each activity duration as a function of the resources applied, leading to a resource

allocation problem in which resource levels (and therefore activity durations) are

decisions. The other extension (associated with PERT) allows activity durations to

be probabilistic and answers the motivating questions in probabilistic terms. These

extensions are discussed in the next two sections.

16.4 THE TIME/COST TRADE-OFF

The first generalization of the basic model treats activity durations as decision vari-

ables. The premise is that activity durations can be shortened by the application of

greater amounts of labor, capital, or both. More simply, this means that the expen-

diture of more money can reduce the duration of an activity. A time/cost trade-off

therefore exists for each activity in the project, and an aggregate trade-off exists

between project duration and project expense. Decreasing the project duration by

spending more money is also known as crashing.

To illustrate the structure of a time/cost model, suppose that the relationship

between activity duration and cost satisfies the following properties:

1. Each activity duration is a linear function of the costs incurred in carrying out

the activity.

2. Each activity has a minimum feasible duration and a maximum feasible

duration.

Under these conditions, the time/cost trade-off for a given activity can be represented

by the graph shown in Figure 16.10, using the following notation.

a = minimum feasible duration

b = maximum feasible duration

p = activity duration

c = cost per unit time of expediting the activity

K = total cost incurred in carrying out the activity

c0 = vertical intercept

Within this framework, it is possible to formulate several problems in finding

minimum-cost project schedules.

382 NETWORK METHODS FOR PROJECT SCHEDULING

(C
o

s
t)

(Duration)

a b
p

K

K = c0 − cp

FIGURE 16.10 The time/cost function for an individual activity.

Suppose that, in addition to the activity-related costs described in Figure 16.10,

there is also a fixed overhead cost, c f , incurred on a daily basis until the project

is completed. Example 16.3 illustrates the decision procedure involved in finding a

minimum-cost schedule.

� Example 16.3 Consider the following project, where the fixed cost c f =
$450/day.

Activity ID Predecessors aj bj cj c0j

A — 1 day 3 $400 $1400

B A 3 7 100 1100

C A 2 4 400 1800

D C 2 5 200 1300

First, suppose that all activities are scheduled at their maximum durations, with

a total cost of $6500 (activity A costs $1400 − 3 × $400 = $200, and similarly,

we obtain $400, $200, $300, and $5400 for B, C, D, and the fixed costs). The

corresponding network diagram, displayed on a time scale, is shown in Figure 16.11a.

To reduce fixed costs, a reduction must be made in the length of the project. In other

words, the length of the critical path (A–C–D) must be shortened in a manner that

reduces costs. Among the critical activities, D is the least expensive to expedite. A

two-day reduction in its duration (costing $400) achieves a reduction in overhead

costs of $900. The net reduction is $500, thus reducing the total cost from $6500 to

$6000. At this stage, activity B is also critical (see Figure 16.11b) and the alternatives

for reducing the length of the project are:

1. Expedite activity A at $400/day.

2. Expedite activities B and C at $500/day.

3. Expedite activities B and D at $300/day.

THE TIME/COST TRADE-OFF 383

0 12107 3

A

B

C D

Cost = $6500

0 107 3

A B

C D

Cost = $6000

0 9 7 3

A B

C D

Cost = $5850

10 75

A B
C D

Cost = $5750

(a)

(b)

(c)

(d)

FIGURE 16.11 A sequence of schedule modifications in Example 16.3.

Clearly, the third alternative is most desirable, but a reduction of only one day is

possible, because activity D must be at least two days in length (Figure 16.11c).

This change costs $300 but saves $450, leading to a total cost of $5850. A further

improvement requires alternative 1 in the above list. Activity A can be scheduled at

its minimal duration, and the resulting total cost is lowered to $5750 (Figure 16.11d).

The cost of a further one-day reduction in the project length, achieved by crashing

activities B and C, would more than offset the savings in overhead cost; therefore,

the cost of $5750 is optimal.

As this simple example illustrates, when variable activity costs and fixed project

costs are of concern, it can be expected that total cost will exhibit a U shape,

384 NETWORK METHODS FOR PROJECT SCHEDULING

Optimum

Project

 length

Project cost

FIGURE 16.12 The total cost curve.

resembling the function sketched in Figure 16.12. In such a case, finding an optimal

project length—and an associated project schedule—is a meaningful optimization

problem.

For larger projects, the heuristic solution method illustrated above will seldom

be practicable. With a great many more activities present, there will be more stages

at which several paths are critical. The identification of all alternatives for reducing

project length in such cases can be a formidable task, not to mention the large number

of stages that might also occur. Furthermore, as we progress through a process of

greedily collecting the best crashing opportunities, as described above, we may find

it necessary to reverse an early crashing decision. Therefore, solutions to large-scale

time/cost problems rely heavily on more sophisticated techniques.

When the cost functions are linear, as in Figure 16.10, the problem can be solved

by linear programming. Let activity j be characterized by start node i and completion

node k. In other words, activity j can also be referred to as activity (i, k). The basic

decision variables are the activity durations or, equivalently, the times at which the

nodes in the network are realized. Let

N = number of nodes in the network

xi = early event time of node i(ETi)

pik = duration of activity (i, k)

Then the length of the project is (xN − x1), or simply xN if x1 is taken to be zero.

The two feasibility constraints on activity durations may be expressed as

pik ≤ bik for each activity (i, k)

pik ≥ aik for each activity (i, k)

and the relationship between early event times and activity durations may be written

xk − pik − xi ≥ 0, for each activity (i, k)

TRADITIONAL PROBABILISTIC NETWORK ANALYSIS 385

The objective function is simply the sum of project costs and activity costs, or

c f xN +
∑

j

(c0 j − c j p j)

Because the sum of the c0 j values is a constant, the objective is essentially to mini-

mize c f xN − � j c j p j . The full linear program, with activities represented by double

subscripts (i, k) is shown below.

Minimize c f xN −
∑

(i, k)
cik pik

Subject to

xk − pik − xi ≥ 0, for all (i, k)

pik ≤ bik, for all (i, k)

pik ≥ aik, for all (i, k)

xi , pik ≥ 0

16.5 TRADITIONAL PROBABILISTIC NETWORK ANALYSIS

Historically, PERT included the earliest practical modeling of stochastic processing

times in scheduling applications. PERT was devised for the United States Navy, and

its first application was an R&D project related to the development of the Polaris

missile. By nature, development projects involve highly uncertain activity times. In

the original application, many activities were subcontracted to external contractors,

so the activity durations were perceived to be stochastically independent and not

subject to simple crashing. Completion times, however, were known to be dependent

because a delay in one completion time can cause delays downstream. The challenge

was to model this type of stochastic behavior. However, to keep the framework

simple, the analysis essentially ignored the dependencies created by the precedence

relations. This simplification has been universally adopted and practiced for many

years, although it has also been increasingly criticized. In this section, we describe

the simplified framework and some of the criticisms.

16.5.1 The PERT Method

Once again, the motivating question is, “When will the project be complete?” The

objective of probabilistic analysis is to answer this question with explicit recognition

that activity durations are uncertain. Let

p j = duration of activity j (treated as a random variable)

µ j = mean of p j , or E(p j)

σ 2
j = variance of p j

The analysis therefore recognizes that p j is a random variable and begins with

the assumption that µ j and σ 2
j are known. The PERT model requires two basic

386 NETWORK METHODS FOR PROJECT SCHEDULING

assumptions:

A1. The activities in the network are statistically independent.

A2. The critical path in the network (as defined below) contains a large enough

number of activities so that the central limit theorem applies when analyzing

its length.

The mean of a sum of random variables is equal to the sum of the means. For

independent random variables, the variance of a sum also equals the sum of the

variances. Furthermore, the central limit theorem states that the distribution of the sum

of a large number of independent random variables is approximately normal, and the

approximation improves as the number of components in the sum grows. Therefore,

if Lπ denotes the duration along path π in the network and if there are many activities

on the path, then Lπ can be treated as a normal random variable with mean

µπ =
∑

j∈π

µ j (16.1)

and variance

σ 2
π =

∑

j∈π

σ 2
j (16.2)

This analysis ignores the possibility that some activities along the path will be

delayed by activities outside the path. But such delays are less likely on long paths, and

PERT focuses specifically on the longest. Starting with a deterministic counterpart

approach, PERT identifies the critical path by taking µ j to be the duration of activity

j and performing the deterministic temporal analysis described in Section 16.3.

However, depending on the realizations of the stochastic elements, this path is not

certain to be critical. Therefore, we also refer to it as the nominal critical path.

Let λ denote the nominal critical path, and let Lλ denote its length—that is, Lλ is

the nominal project makespan. PERT adopts the stochastic perspective and treats Lλ

as having an approximately normal distribution with parameters µλ and σ 2
λ , calculated

by Eqs. (16.1) and (16.2). Accordingly, the distribution of the project length is taken

to be normal with parameters µλ and σ 2
λ . The motivating question posed earlier can

then be answered in probabilistic terms. If we use the PERT approximation, the

probability that the project will be completed by a due date d is

Pr{Lλ ≤ d} = �[(d − µλ)/σλ]

where �(z) denotes the cumulative distribution for a standard normal random

variable.

To support this analysis, the method relies on knowledge of µ j and σ 2
j . Fre-

quently, there will be no data from which to estimate these parameters, and it may

be difficult even for knowledgeable personnel to provide good estimates. For such

TRADITIONAL PROBABILISTIC NETWORK ANALYSIS 387

m ba

(a)

m ba

(b)

FIGURE 16.13 The density functions of two beta distributions.

situations, PERT provides a mechanism for obtaining µ j and σ 2
j from estimates that

are considered easier to obtain in practice. For a given activity, let

a = an optimistic duration; that is, an estimate of the activity duration under the

most favorable conditions

b = a pessimistic duration; that is, an estimate of the activity duration under the least

favorable conditions

m = the most likely duration

These three parameters are incorporated in a beta distribution as a probabilistic model

for the duration of the activity. Parameters a and b are the minimum and maximum

values of the distribution, and m is the mode. Depending on the choice of those

parameters, the beta distribution can be symmetric or else skewed in either direction,

as depicted in Figure 16.13. Based on its professional judgment, the original PERT

team recommended the following calculations to approximate µ j and σ 2
j :

µ j = (a + 4m + b)/6 (16.3)

σ j = (b − a)/6 (16.4)

Both of these formulas are merely convenient rules of thumb. Suppose that we

consider the range between a and b as 100%, with a = 0% and b = 100%. If the

388 NETWORK METHODS FOR PROJECT SCHEDULING

mode is between 5% and 95%, then a beta distribution exists that approximately

satisfies Eqs. (16.3) and (16.4). On this scale, a mode of 50% yields a symmetric beta

distribution, and any other value gives rise to a skewed distribution. Thus, even when

µ j and σ 2
j are not known at the outset, PERT offers simple calculations for the two

parameters from estimates of a, m, and b.

� Example 16.4 Consider the following project and suppose that we wish to

estimate the probability that the project will complete by time 15.

Activity Predecessors aj mj bj µj σ 2
j

A — 2 4 12 5 2.78

B — 3 6 9 6 1.00

C A 1 2 9 3 1.78

D A 1 4 7 4 1.00

E B 1 2 3 2 0.11

F B 4 7 10 7 1.00

G C 1 2 9 3 1.78

H D, E 4 5 12 6 1.78

I F 1 3 5 3 0.44

We illustrate the PERT calculations for Example 16.4, where the last two columns

in the table follow Eqs. (16.3) and (16.4) using the given values of a, m, and b.

The next step is to construct the network diagram and label activity j with its mean

duration, µ j , as shown in Figure 16.14. Then, by using these mean values, we can

identify the nominal critical path as B–F–I. From Eqs. (16.1) and (16.2), we find

that the length of the path B–F–I has a mean of 16 and a variance of 2.44. If we use

the probabilistic characteristics of this path as a model for the project duration, the

A(5)

C(3)

D(4)

B(6)

H(6)

G(3)

F(7)

I(3)E(2)

1

2

3

4

6

7

5

FIGURE 16.14 Deterministic analysis using mean values, for Example 16.4.

TRADITIONAL PROBABILISTIC NETWORK ANALYSIS 389

probability that the project will be completed by time 15 is then

Pr{Lλ ≤ 15} = �

[

15 − 16
√

2.44

]

≈ 0.26

In summary, PERT recognizes that the duration of the project is a random variable

and that questions about the completion of the project can be answered only in proba-

bilistic terms. The PERT approach utilizes mean values and deterministic analysis to

identify the critical path, λ. Then, assumptions A1 and A2 are invoked to characterize

the length of this path, Lλ. The properties of the random variable Lλ are then sub-

stituted for the duration of the project to make statements about project completion.

Finally, where information about the duration of individual activities is scarce, PERT

uses a model that is associated with the beta distribution to generate means and vari-

ances for activity durations. Although many theoretical objections can be raised to

PERT, its practical value has been very real. In many cases, the advent of PERT made

available a powerful planning tool when no comparable tool had formerly existed.

Also, in the years that have passed since PERT was introduced, several refinements

have been developed to compensate for some of its theoretical shortcomings.

16.5.2 Theoretical Limitations of PERT

The objections that are most often raised about PERT fall into two categories: prob-

lems arising at the project level and problems arising at the individual activity level.

Perhaps the most popular indictment of PERT is that its estimate of mean project

duration is biased downward. Whereas the true mean project duration takes the form

E[maxπ {Lπ }], PERT substitutes maxπ {E(Lπ)}. Because the max{ } function is con-

vex, a positive Jensen gap is likely to exist.

The extent of the error that is involved in this calculation depends on the structure

of the network and the properties of activity distributions. For example, suppose

that a project consists of four different path lengths that are independent and have

normal distributions. (This structure occurs only if the project is composed of four

independent chains of activities that share start and finish events.) Figure 16.15a

depicts a case where the length of the nominal critical path is likely to be exceeded

by another path length. In that case, a large Jensen gap may be expected. By contrast,

Figure 16.15b depicts a case where the nominal critical path is very likely to be

longest, as all other paths are practically certain to complete earlier. In this case, the

Jensen gap is negligible.

Under the independence assumption, the distribution of project completion time

in a series–parallel network structure can be calculated by a decomposition procedure

akin to the one we illustrated in Section 8.3. However, most project networks include

activities that cross from one path to another and are therefore difficult to analyze.

The most basic network structure that resists analysis is the interdictive graph, shown

in Figure 16.16. Any project network that has the interdictive graph embedded in it

cannot be decomposed. In such cases, only bounds or approximations can be obtained

analytically, and simulation remains the best approach.

390 NETWORK METHODS FOR PROJECT SCHEDULING

(a)

(b)

FIGURE 16.15 Distribution of individual paths in a network for two hypothetical projects.

A second shortcoming in PERT concerns its identification of critical activities.

By using a deterministic counterpart to identify the critical path, PERT necessarily

partitions the activities into two distinct subsets: the critical activities and the non-

critical activities. Because the network is probabilistic, however, it is possible that

an activity that lies on the nominal critical path may not lie on the longest path in

D

E

C

B

A

1

2

4

3

FIGURE 16.16 The interdictive graph.

TRADITIONAL PROBABILISTIC NETWORK ANALYSIS 391

a particular realization of the project. Furthermore, the two-way partition in PERT

may not reflect the likelihood that the various activities will be critical. For instance,

in Example 16.4, PERT identifies activities B, F, and I as critical. Nevertheless, an

intuitive argument can be made that B is somehow “more critical” than F because

B is critical whenever F is critical and B is also critical when B–E–H turns out to

be the longest path. Define the criticality (or criticality index) of an activity as the

probability that it will lie on the longest path. (For example, when we use a stored

sample with r repetitions, the criticality of an activity is estimated by the proportion

of rows in which it is on the longest path.) Thus, the problem with the deterministic

counterpart analysis of PERT is that it leads to criticalities of either 0 or 1, whereas

criticalities should ideally be probabilities. Moreover, the PERT substitute is not even

an effective rounding approach, as we demonstrate with an example.

� Example 16.5 Consider the following project.

Activity Predecessors aj mj bj

A — 7 9 11

B — 7 8 10

C A 1 3 5

D A 1 3 7

E B 1 3 7

F B 1 3 5

G C 1 1 1

H F 1 1 1

The network depiction of this project is given in Figure 16.17. We assume that

a j , m j , and b j are each realized with probability 1/3. (We are not using the beta

approximation, opting for a discrete distribution instead. We can retain the names a j ,

m j , and b j , however, because the likelihood of m j is still maximal.) One feature in this

example is that parallel critical paths exist under some realizations. For instance, there

A

C

D

B
H

G

F

E

1

2

5

6

4

3

FIGURE 16.17 Network representation for Example 16.5.

392 NETWORK METHODS FOR PROJECT SCHEDULING

TABLE 16.2

Activity Criticality

A 0.58

B 0.42

C 0.27

D 0.30

E 0.24

F 0.19

G 0.27

H 0.19

is a probability of 1/272 = 1/729 that the project duration will be 9, which requires

all the realizations to be a j . In such a case, both A and B are critical, but they clearly

cannot belong to the same path. We then allocate the criticality to the two paths (and

thus to the activities along the paths) equally. This allocation would not be necessary

when continuous distributions are involved, in which case the probability of two

paths attaining the same length is zero. Using this allocation rule, Table 16.2 lists the

criticalities of Example 16.5 obtained by enumerating all 729 possible realizations.

The following properties emerge.

1. Although the nominal critical path is A−C−G, the analysis reveals that

A−C−G will be the longest path with a probability of 0.27, which is less

than the probability that A−D will be the longest path (0.30).

2. Although the PERT method identifies activity C as critical, it is on the longest

path with a probability of only 0.27.

3. Although the PERT method identifies activity B as noncritical, it is on the actual

longest path with a probability of 0.42.

The example demonstrates that we cannot compute the true criticality indices using

PERT. Furthermore, the activities along a single path may be critical to different

degrees, suggesting that criticality is more a trait of individual activities than of

entire paths. Unfortunately, the difficulties inherent in a mathematical analysis of the

problem are substantial, and simulation is often more suitable.

A third problem with the PERT calculations involves its assumption A1 that the

activity durations are independent. A comprehensive analytical treatment of more

general situations requires a model for dependence among activities, and it is quite

difficult to formulate (much less analyze) such a model. (One advantage of simulation

is that it can accommodate dependence.)

At the level of individual activities in the network, an entirely different set of

PERT assumptions can be challenged.

1. The true form of the distribution of an activity duration may not be a beta

distribution.

SUMMARY 393

2. The true distribution may be beta, but its mean and variance may not be those

prescribed in Eqs. (16.3) and (16.4).

3. The estimates on which the entire procedure is based (i.e., estimates of a, m,

and b) may be inaccurate.

These issues reflect a deeper problem: activity distributions may not be estimated

from historical data or historical experience in a reliable manner. When such history

does not exist, subjective estimates are used. Furthermore, the beta density function

would then be used only to help elicit the triplet of a, m, and b. Thus, no explicit use

of the beta distribution would be made at all. PERT would then rely on the estimates

of a, m, and b, which could be subject to political and psychological biases.

16.6 SUMMARY

Network models are building blocks for scheduling and are especially popular for

project planning. Because logical constraints often appear as basic elements in

scheduling problems, the ability to visualize and describe logical relationships with

network structures is a fundamental aspect of scheduling. We encountered activity-on-

node networks earlier in the book, but in this chapter we relied on the activity-on-arc

network as a model for precedence relationships.

As suggested earlier, the significance of CPM and PERT lies primarily in their role

as useful tools for project planning and project management. The historical success

of these network-based techniques in finding rapid acceptance among practitioners

can be attributed to several factors. First, the basic model provides information in a

useful form. It analyzes the project in a way that makes pertinent information explicit

and that can be used as a basis for communication throughout the administrative

organization. In addition, the model accommodates sufficient detail so that important

aspects of the project will not be overlooked, and it provides a framework for testing

and evaluating alternative project management strategies. The methodology also helps

managers focus on what’s important (the critical path), and delegate other issues.

A focus on the critical path should include questioning the assumptions behind the

model. Specifically, the precedence relationships that dictate the critical path should

be examined. One anecdote involves the construction of a skyscraper, where installing

windows was the last activity on the critical path. When asked why windows could

not be installed on lower floors while the upper floors were completed, the answer

was that experience revealed that windows might be broken due to mishaps during

construction. However, the expected savings by avoiding such breakage did not even

nearly justify the delay in project completion.

The basic aim of CPM and PERT is to answer two questions: (1) When will

the project complete? and (2) Which activities will be critical? The answers are

straightforward using a deterministic perspective and CPM, but the PERT approach

to the stochastic problem is open to criticism. Regarding question (1), the main

criticism is that the PERT answer is biased due to the inherent Jensen gap. Regarding

394 NETWORK METHODS FOR PROJECT SCHEDULING

question (2), the main criticism is that the PERT answer is oversimplified, and in

some cases could be misleading.

Additional criticisms have been offered regarding the PERT model for activity

durations. According to Woolsey (1992), estimates of the mode are relatively easy to

obtain (although this does not imply that they are necessarily accurate and precise),

but when asking for estimates of a and b, we often get highly unreliable answers

based on political calculations of the acceptability of the answer. Woolsey’s evidence

may be anecdotal, but similarly troubling criticism comes from generic research by

Tversky and Kahneman (1974). They discovered that people, even experts, tend to

greatly underestimate the necessary range between a and b: when asked to provide a

confidence interval of 98%, respondents come up with intervals that miss the mark in

about 30% of the cases. In our context, that error is roughly equivalent to estimating

a confidence interval of about two standard deviations rather than six. Thus, Tversky

and Kahneman speak to honest mistakes, whereas Woolsey questions the sincerity

of the estimates. In combination, these two causes could inject serious error into

the picture. The observation (made earlier) that the independence assumption is not

reliable only exacerbates the problem.

The basic versions of CPM and PERT address two central aspects of project

planning by supplying information about the length of the project and by identifying

the particular activities on which the project duration depends. The simplest approach

to these topics is through temporal analysis of deterministic networks with constant

activity durations. The analysis is enriched by the two extensions introduced in this

chapter: the time/cost trade-off and stochastic analysis of project timing. In the next

chapter, we discuss project scheduling with limited resources, which can also be

viewed as a generalization of the job shop problem. Contemporary safe scheduling

models that extend these ideas further and address the main weaknesses in PERT are

covered in Chapter 18.

REFERENCES

Clark, C.E. (1961). The greatest of a finite set of random variables, Operations Research 9,

145–162.

Clark, C.E. (1962). The PERT model for the distribution of an activity time, Operations

Research 10, 405–406.

Elmaghraby, S.E. (1977). Activity Networks: Project Planning and Control by Network Models,

Wiley, Hoboken, NJ.

Fulkerson, D.R. (1961). A network flow computation for project cost curves, Management

Science 7 (2), 167–178.

Kelley, J.E. (1961). Critical-path planning and scheduling: mathematical basis, Operations

Research 9 (3), 296–320.

Levy, F.K. and J.D. Wiest (1969). A Management Guide to PERT/CPM, Prentice Hall, Engle-

wood Cliffs, NJ.

MacCrimmon, K.R. and C.A. Ryavec (1964). An analytical study of the PERT assumptions,

Operations Research 12 (1), 16–37.

EXERCISES 395

Malcolm, D.G., J.H. Rosebloom, C.E. Clark, and W. Fazar (1959). Application of a tech-

nique for a research and development program evaluation, Operations Research 7, 646–

669.

Tversky, A. and D. Kahneman (1974). Judgment under uncertainty: heuristics and biases,

Science 185, 1124–1131.

Van Slyke, R.M. (1963). Monte Carlo methods and the PERT problem, Operations Research

11 (5), 839–860.

Woolsey, R.E. (1992). The fifth column: the PERT that never was or data collection as an

optimizer, Interfaces 22 (3), 112–114.

EXERCISES

16.1. The following is a list of logical relations among a set of project tasks.

Predecessor Successor

A D

A E

A F

B D

B F

C E

C F

a. Draw an AON representation of the project network.

b. Draw an AOA representation of the project network.

16.2. The table below describes the elements of a project.

Task Predecessors Duration

A — 5

B — 9

C — 8

D A 6

E A 10

F C 7

G C 3

H D,E 9

I G 8

J B,F 10

a. Draw an AON representation of the project network.

b. Draw an AOA representation of the project network.

c. Calculate the length of the critical path.

d. List the critical activities.

396 NETWORK METHODS FOR PROJECT SCHEDULING

16.3. Revisit the project of the previous exercise. For each activity in the project:

a. Calculate the Total Float.

b. Calculate the Safety Float.

c. Calculate the Free Float.

d. Calculate the Independent Float.

16.4. The table below describes the elements of a project.

Task Predecessors Duration

A — 5

B — 9

C — 8

D A 6

E A 10

F C 7

G B,C,D 3

H C,D,E 12

I E,G 8

J B,D,F 10

a. Draw an AON representation of the project network.

b. Draw an AOA representation of the project network.

c. Calculate the length of the critical path.

d. List the critical activities.

16.5. Revisit the project of the previous exercise. For each activity in the project:

a. Calculate the Total Float.

b. Calculate the Safety Float.

c. Calculate the Free Float.

d. Calculate the Independent Float.

16.6. For the project of Example 16.4, identify all the embedded interdictive graphs.

16.7. Show that TF ≥ SF ≥ IF and TF ≥ FF ≥ IF, but SF and FF are not ordered.

16.8. The table below describes the elements of a project.

Task Predecessors a m b

A — 1 4 7

B — 1 5 9

C A 3 6 9

D B 1 2 3

E A 1 2 9

F C,D 2 4 6

G C,D,E 2 9 10

H F 2 2 2

EXERCISES 397

a. Draw an AOA representation of the project network.

b. Using PERT, calculate the mean length of the critical path.

c. Identify which activities are critical.

d. Find the probability that the project will be complete by time 20.

16.9. The table below describes the elements of a project. The project contains six

activities, each represented by its start node and finish node in the network

diagram. Each activity duration follows a normal duration, and each can be

shortened to its minimum duration, both measured in days. The daily cost of

shortening each activity is listed in the last column.

Start Node Finish Node Normal Minimum Cost

1 2 9 6 20

1 3 8 5 25

1 4 15 10 30

2 4 5 3 10

3 4 10 6 15

4 5 2 1 40

a. Draw an AOA representation of the project network.

b. What is the normal project length and the minimum project length?

c. Find the minimum cost of completing the project at each possible length

in the interval represented by the answers in (b).

d. Suppose that overhead costs amount to 60 per day and that total project

costs are the sum of overhead costs and crashing costs. For each of the

project lengths in (c), find the total project cost.

16.10. Build a simulation model for the project in Example 16.4, but replace each

beta distribution by a normal distribution with the same mean and variance.

a. Estimate the mean and variance of the project duration.

b. Estimate the probability that the project will complete by time 15.

c. Estimate the criticality of each activity.

17
RESOURCE-CONSTRAINED
PROJECT SCHEDULING

17.1 INTRODUCTION

In this chapter, we synthesize much of the previous material to address the deter-

ministic resource-constrained project scheduling model. This model contains both

types of constraints that characterize scheduling decisions. Recall from Chapter 1

that scheduling decisions are generally subject to both precedence constraints and

resource constraints. The preceding chapters have dealt with a variety of situations

in which one or both of these types of constraints are relaxed or at least simplified.

In a sense, the difficulties in those simpler problems are superimposed in resource-

constrained project scheduling.

A general precedence structure accommodates arbitrary precedence constraints,

such as those found in the network models of Chapter 16. In that analysis, however,

the critical path calculations assume that resources of the appropriate type and amount

are sufficiently available and that resource capacities are never binding on scheduling

decisions. Chapter 8 covered some problems involving precedence constraints, but

with only one resource (machine). In flow shop and job shop problems, where

more general resource models apply, precedence relations are restricted to special

structures.

A general resource structure contains multiple units of each of several different

resources. Chapter 9 introduced models with resource parallelism, but only for one

resource type; and the multiple-resource models of the flow shop and the job shop

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

398

EXTENDING THE JOB SHOP MODEL 399

contain only one unit of each resource. The extension to parallel resource structure

involves combinatorial problems in a whole new dimension.

The relation of this topic to the material in earlier chapters can therefore be in-

terpreted in two ways. First, the resource-constrained project scheduling problem

can be formulated by adding explicit resource requirements and resource capacities

to the basic network model of CPM and PERT. Alternatively, the problem can be

formulated by allowing general precedence structures in the job shop problem and

replacing machines by machine groups, for parallelism. We cover the job shop per-

spective first, to stress that the philosophy of solving job shop problems carries over

to project scheduling.

Project scheduling has important practical applications, and in practice, such

problems are almost always analyzed using heuristic procedures. For that reason, we

ultimately emphasize simple heuristics rather than optimization approaches.

17.2 EXTENDING THE JOB SHOP MODEL

In the terminology of network models, we can state the problem as scheduling a

project consisting of several activities in the presence of limited resources. The

purpose of this section is to show how the job shop approach of Chapter 14 can be

adapted to the resource-constrained project scheduling problem, in which general

precedence structures and general resource structures apply.

To begin, suppose that each activity requires a specific resource and a single unit

of each resource is available. In other words, two activities that require the same

resource cannot be scheduled in parallel. (In the project scheduling literature such

resources are also known as renewable resources.) Let

P(j) = the set of all direct predecessors of activity j

S(j) = the set of all direct successors of activity j

|P(j)| = the number of elements in P(j)

R j = the resource type required by activity j

Also, let n denote the total number of activities to be scheduled, and let m denote the

number of resource types.

The concepts of schedule classification carry over directly from the job shop

discussion. Therefore, where regular measures of performance are concerned, it is

sufficient to examine active schedules in the search for an optimum. In this context,

an active partial schedule is a feasible schedule for a subset of the activities with

the property that no scheduled activity can start earlier without delaying some other

activity in the partial schedule. As in Chapter 14, PS(k) refers to a partial schedule

containing k activities. For a given partial schedule, let u j denote the number of

activities in P(j) that are contained in the partial schedule. Then the set S A(k) of

schedulable activities corresponding to a given P S(k) is defined by

S A(k) = { j |u j = |P(j)| for j /∈ PS(k)}

400 RESOURCE-CONSTRAINED PROJECT SCHEDULING

In words, after completing the scheduled activities in P S(k), any unscheduled activity

for which all direct predecessors are scheduled is a schedulable activity.

Given an active partial schedule P S(k) and an activity j in the corresponding set

S A(k), the conditional early start and early finish times associated with activity j are

defined, respectively, by

E S j = max{max{Ci |i ∈ P(j)}, max{Ci |i ∈ P S(k) and Ri = R j }}

E F j = E S j + p j

The formula for E S j reflects the fact that an activity’s start time is dictated by both

precedence and resource constraints. When resource constraints apply, E S j and E F j

are defined with respect to a given partial schedule. Thus, activity j may appear

in several of the schedulable sets S A(k) that occur successively in the construction

of a complete schedule, and the associated E S j (and E F j) can change as those

schedulable sets expand. Specifically, E S j may change whenever the resource that

activity j requires is engaged by another activity that has been appended to the partial

schedule.

When arbitrary precedence structures are introduced into the job shop model,

the procedure for generating all active schedules is a straightforward extension of

Algorithm 14.1, as given below.

Algorithm 17.1 Active Schedule Generation

Step 1. Let k = 0 and begin with P S(k) as the null partial schedule. Initially, S A(k)

includes all operations with no predecessors.

Step 2. Determine EF∗ = min j∈S A(k){EF j } and the resource type R∗ on which EF∗

could be realized.

Step 3. For each activity j ∈ SA(k) that requires resource type R∗ and for which

ES j < EF∗, create a new partial schedule in which activity j is added to PS(k)

and started at time ES j .

Step 4. For each new partial schedule PS(k + 1) created in Step 3, update the data set

as follows:

(a) Remove activity j from SA(k).

(b) For each activity i ∈ S(j), increment ui by one.

(c) Form S A(k + 1) by adding to S A(k) those activities i ∈ S(j) for which ui =

|P(i)|.

(d) Increment k by one.

Step 5. Return to Step 2 for each partial schedule created in Step 3 and updated in

Step 4, and continue in this manner until all active schedules have been generated.

One way to structure a heuristic procedure is to choose just one partial schedule

(one of the schedulable activities) among the alternatives created at Step 3.

The next step in extending the job shop model is to incorporate resource paral-

lelism. The simplest such model contains only one resource type but allows activities

EXTENDING THE JOB SHOP MODEL 401

to require more than one unit of the resource. (This kind of single-resource model is

particularly relevant to certain construction and maintenance problems in which labor

is the key resource.) The crucial difference occurs in Step 3, where it is necessary

to examine not just single activities but groups of activities as well. Basically, a new

partial schedule can be generated at Step 3 for any subset of schedulable activities

that can be accommodated by available resources. The task is then to eliminate the

subsets that do not result in active partial schedules and keep all the rest for Step 4.

The partial schedules are denoted P S(k + a) in Step 4 because several activities

might have been added to P S(k). Although a complete schedule for n activities may

thus be generated in fewer than n stages, the implementation of Step 3 involves an

additional combinatorial effort. Conceptually, the approach can be extended to prob-

lems containing several resource types. Further generalizations of Algorithm 17.1

could also be pursued for problems in which resource substitutability is possible or

in which activities require several different resources simultaneously. Finally, once

the generation scheme is designed, we can embed it in a branch and bound procedure

for determining an optimal schedule.

Lower bounds in the resource-constrained project scheduling problem can be

developed using the concepts introduced in Chapter 14 in connection with the job

shop problem. For example, an activity-based bound can be obtained by ignoring

all resource constraints, and a resource-based bound can be obtained by ignoring

all precedence constraints. To illustrate the calculation of an activity-based bound,

consider a problem containing general precedence structure and unit resource avail-

abilities (so that Algorithm 17.1 applies), and assume that makespan is the criterion.

For each activity j let π j denote the length of the longest path in the project network

from the completion of activity j to the end of the project. (In other words, π j is

the critical path length for the subproject containing all the successors of activity j .)

Then, by ignoring the resource constraints, we can construct the following lower

bound on the makespan for a given partial schedule P S(k):

b1 = max
j∈S A(k)

{E S j + p j + π j }

In this type of calculation, E S j depends on the commitments in the partial schedule,

but π j has to be calculated only once for each activity.

To illustrate the derivation of a resource-based bound, let UR denote the set of un-

scheduled jobs that require resource R. Then, by ignoring the precedence constraints,

we can construct the following lower bound on the makespan:

b2 = maxR

{

max{C j | j ∈ P S(k) and R j = R} +
∑

i∈UR

pi

}

These two simple bounds can be strengthened somewhat by accommodating some

resource constraints in the activity-based bound and some precedence information in

the resource-based bound. A combination activity-based bound explicitly considers

the resource availabilities, one at a time. Temporarily, number the activities in set UR

402 RESOURCE-CONSTRAINED PROJECT SCHEDULING

in nondecreasing order of their critical path length π j . (In this way, activities near the

end of the project will appear relatively early in the numbered list.) Then, taking the

activities in numbered order, calculate

v j = max{v j−1, π j } + p j

where v0 = 0. Let the last (and thus largest) of these v j be denoted VR . Then

b3 = maxR{VR + max{C j | j ∈ P S(k) and R j = R}

A combination resource-based bound explicitly considers precedence relations

among all activities that require a given resource. This time, number the activities in

set UR in nondecreasing order of their early start times, E S j . (In this way, activities

near the beginning of the project will appear relatively early in the numbered list.)

Then, taking the activities in numbered order, calculate

w j = max{w j−1, E S j } + p j

where w0 = 0. Let the last of these w j be denoted WR . Then

b4 = maxR{WR}

Obviously, the bounds b3 and b4 are at least as tight as b1 and b2, and generally tighter,

although they require some additional calculations. A composite bound is therefore

B = max{b3, b4}.

� Example 17.1 Consider a project containing 10 activities and two resource

types, as described in the following table. The last column is calculated from the

information in the previous columns.

Activity p j R j P(j) π j

A 4 1 — 2

B 3 2 — 5

C 2 1 — 5

D 4 2 — 8

E 4 2 D 4

F 2 1 B 3

G 2 2 C 3

H 1 1 E 3

I 2 2 A 0

J 3 1 F,G,H 0

As an instance of the calculations of π j in Example 17.1, take activity D. It

is followed directly by E and later by H and J , with processing times of 4, 1,

EXTENDING THE JOB SHOP MODEL 403

A

D

?

?

Resource 1

Resource 2

FIGURE 17.1 A partial schedule for Example 17.1.

and 3, so πD = 4 + 1 + 3 = 8. To illustrate the bound calculations, suppose that

at an intermediate stage in the generation of active schedules, we have the partial

schedule shown in Figure 17.1. In this partial schedule, activity A occupies resource

1 beginning at time 0 and activity D occupies resource 2 beginning at time 0.

With these two activities constituting P S(2), the set of schedulable activities is

S A(2) = {B, C, E, I }. The sets U1 and U2 are {C, F, H, J } and {B, E, G, I } with

total processing times of 2 + 2 + 1 + 3 = 8 and 3 + 4 + 2 + 2 = 11, respectively.

Given this partial schedule, the conditional project network is depicted in Figure

17.2. In this figure, the constraints imposed by the partial schedule are accounted for,

but any additional resource constraints are not. Figure 17.2 shows that the early start

times of the schedulable activities are

E SB = E SC = E FE = E SI = 4

We now can calculate b1 for B, C, E , and I :

b1 = max{4 + 3 + 5, 4 + 2 + 5, 4 + 4 + 4, 4 + 2 + 0} = 12

0

4

6

12

84

9

7

A(4) C(2)

F(2)

G(2)

I(2)

D(4)

B(3)

E(4)

J(3)

H(1)

FIGURE 17.2 The conditional project network given P S(2).

404 RESOURCE-CONSTRAINED PROJECT SCHEDULING

Next, we have

max{C j | j ∈ P S(2) and R j = 1} = 4 = max{C j | j ∈ P S(2) and R j = 2}

so

b2 = max{4 + 8, 4 + 11} = 15

In calculating b3, the activities requiring resource 1 are considered in the order

J−H−F−C (because in this order, their π j values—0, 3, 3, 5—are nondecreasing)

and V1 = 8. The activities requiring resource 2 are considered in the order I−G−E−B,

and we list the V2 calculations in detail:

v I = max{v0, π1} + p1 = max{0, 0} + 2 = 2

vG = max{2, 3} + 2 = 5

vE = max{5, 4} + 4 = 9

vB = max{9, 5} + 3 = 12 = V2

Thus,

b3 = max{4 + 8, 4 + 12} = 16

Finally, W1 = 13 and W2 = 15, so b4 = 15. We trace the calculation of W1.

Figure 17.2 shows that the early start times for U1 = {C, F, H, J } are 4, 7, 8, and 9.

These values lead to the following calculations:

wC = max{w0, E SC } + pC = max{0, 4} + 2 = 6

w F = max{6, 7} + 2 = 9

w H = max{9, 8} + 1 = 10

w J = max{10, 9} + 3 = 13 = W1

As a result, b3 is the tightest bound for this P S(2), indicating that the makespan must

be at least 16 for this partial schedule.

For resource-constrained project scheduling problems with criteria other than

makespan, the basic approach is similar. First, a tree-structured schedule generation

scheme, such as Algorithm 17.1, forms the basis for constructing schedules. An

activity-based bound is obtained by ignoring resource constraints and evaluating the

resulting CPM network. A resource-based bound is obtained by ignoring precedence

constraints and evaluating the resulting single- or parallel-machine sequencing prob-

lem. The success of such an approach depends on tightness of these bounds and on

the computational effort they require.

EXTENDING THE PROJECT MODEL 405

17.3 EXTENDING THE PROJECT MODEL

To illustrate how the temporal analysis of CPM can be useful in resource-constrained

problems, consider the project model in which all activities require only one resource

type. Let

a j = resource units required to perform activity j

A = total resource units available

An early start schedule is constructed by starting each activity at its own early start

time, as calculated by CPM. If the resources required in this schedule never exceed

availabilities, then this schedule achieves the minimum possible duration. Similarly,

a late start schedule is constructed by starting each activity at its late start time, and

if this schedule is resource-feasible, then it achieves the minimum possible duration.

If neither schedule is feasible, it is still possible to extract some information for the

calculation of a lower bound on project duration.

Let G t denote the set of activities in process at time t in some given schedule with

duration D. In addition, let

rE (t) =
∑

j∈G t

a j for the early start schedule

rL (t) =
∑

j∈G t

a j for the late start schedule

rS(t) =
∑

j∈G t

a j for some arbitrary schedule S

In other words, rE (t) represents the resource consumption at time t under the early

start schedule, and so on. If we examine cumulative resource consumptions, we find

that

t
∑

u=1

rE (u) ≥

t
∑

u=1

rS(u) ≥

t
∑

u=1

rL (u) (17.1)

where we are treating time as discrete. The following properties address the question

of whether a feasible schedule can be found to achieve the given duration D.

� Theorem 17.1 If
∑t

u=1 rL (u) > t A for any 1 ≤ t ≤ D, then no feasible sched-

ule of length D exists.

Proof. Under the hypothesis of the theorem, and the inequalities in (17.1), it follows

that
∑t

u=1 rS(u) > t A. In other words, there are insufficient resources available to

carry out the activities in an arbitrary schedule of length D.

An analogous argument for the reversed project establishes a symmetric result.

406 RESOURCE-CONSTRAINED PROJECT SCHEDULING

� Theorem 17.2 If
∑D

u=D−t+1 rE (u) > t A for any 1 ≤ t ≤ D, then no feasible

schedule of length D exists.

� Example 17.2 Consider a project containing 10 activities that require a single

resource type, as described in the following table.

Activity p j P(j) a j E S j L F j

12 4 — 1 0 10

13 3 — 4 0 7

14 2 — 3 0 7

15 4 — 4 0 4

56 4 15 3 4 8

37 2 13 2 3 9

47 2 14 6 2 9

67 1 56 4 8 9

28 2 12 5 4 12

78 3 37,47,67 3 9 12

Suppose that A = 7, and consider whether it is possible to complete the project by

time 12, which is the length of the critical path. First construct the resource profile of

the late start schedule, shown in Table 17.1. For t = 9, we have t A = 9 × 7 = 63, but
∑9

u=1 rL (u) = 69, so the critical path length cannot possibly be achieved. (A similar

conclusion can be reached by applying Theorem 17.2 to the early start schedule.)

Suppose instead that A = 8. Then neither theorem will apply; yet we can’t conclude

that a schedule of length 12 can be found when eight resource units are available.

It is also possible to develop a resource-based bound using the information in

the early and late start schedules. Let the total resource requirement in the project

be

Q =

D
∑

u=1

rE (u)

Then a feasible schedule of length D cannot exist unless

Q ≤ D A (17.2)

TABLE 17.1

Time, t 1 2 3 4 5 6 7 8 9 10 11 12

Resources, rL (t) 4 4 4 4 7 10 11 12 13 4 8 8

Cumulative resources 4 8 12 16 23 33 44 56 69 73 81 89

HEURISTIC CONSTRUCTION AND SEARCH ALGORITHMS 407

In effect, (17.2) yields a lower bound on project duration D, but this bound can be

strengthened somewhat by examining the first part of the early start schedule and

the last part of the late start schedule. Let τ represent the first period u at which

rE (u) > A. Then the resources that are not used in the beginning of the early start

schedule sum to

τ−1
∑

u=1

[A − rE (u)]

These resources cannot be utilized by any feasible schedule. Analogously, let η

represent the latest time u at which rL (u) > A. Then an additional expression for

resources that cannot be utilized by any feasible schedule of duration D is

D
∑

u=η+1

[A − rL (u)]

Therefore, the inequality (17.2) can be amended to reflect usable resource capacity.

Hence, a feasible schedule of length D cannot exist unless

Q ≤ D A −

τ−1
∑

u=1

[A − rE (u)] −

D
∑

u=η+1

[A − rL (u)] (17.3)

This bound is sometimes called the skyline bound because it makes use of the profile

of resource requirements in the schedule.

Theorems 17.1 and 17.2 and the bound in (17.3) are all based on conditions that

can be examined before a schedule generation procedure begins. To adapt the bounds

for use at intermediate stages of a branch and bound scheme, the inequalities must be

generalized to accommodate fluctuating resource availabilities. In addition, the same

type of analysis can be extended to problems in which several resource types exist

and problems in which activities require different resources simultaneously.

17.4 HEURISTIC CONSTRUCTION AND SEARCH ALGORITHMS

The resource-constrained project scheduling problem is NP-hard in the strong sense

and may be intractable for n > 50. The majority of practical projects reportedly have

50–100 activities, whereas a “large” project might have as many as 300. Therefore,

project scheduling software packages invariably rely on heuristics, usually keeping

the details proprietary. Here, we consider heuristics that generalize those described

in Chapter 4, and we limit our scope to the nonpreemptive case.

It is difficult to judge the performance of heuristics except by testing them against

each other, but for tractable instances (of up to about 30 to 50 activities), such

408 RESOURCE-CONSTRAINED PROJECT SCHEDULING

tests can also compare heuristics to the optimal solution. The best-performing com-

mercial scheduling packages seem to achieve results similar to those obtained by

a priority-based construction heuristic in which priority is determined on the ba-

sis of earliest late-finish time (LFT). There are two good reasons to favor this

priority rule. First, the late finish time acts as an activity due date, so the pri-

orities reflect the properties of EDD and tend to reduce the maximum tardiness.

But the maximum tardiness among the activities equals the tardiness of the whole

project, so this priority list is likely to produce relatively short project lengths. (Re-

call from Chapter 8 that in the dynamic single-machine model, minimizing the

makespan is equivalent to minimizing maximum tardiness.) Second, LFT prior-

ity is automatically logically feasible because an activity’s predecessor must have

an earlier late-finish time and so appears earlier in the priority list. Nevertheless,

such a simple heuristic cannot guarantee optimality and should not be the only

heuristic in use. An opportunity exists to improve on the performance of the typical

commercial package by using more advanced heuristics such as we explore in this

section.

17.4.1 Construction Heuristics

The two major construction heuristic approaches for project scheduling are par-

allel and serial, and both are based on dispatching logic. These approaches can

be used either in the forward direction or in reverse. We can even construct se-

quences from both ends toward the middle. For illustration, we describe the forward

direction.

The parallel approach can accept any priority list—logically feasible or not—and

it yields a nondelay sequence. We construct the sequence from beginning to end and

whenever resources are free, we schedule the highest-priority schedulable activity. (In

Section 17.2, we defined an activity as schedulable once its predecessors have been

completed, but here we must also consider the availability of resources.) Because

we always schedule at least one schedulable activity when available, the result is

a nondelay schedule. To illustrate, we revisit Example 17.2, and we schedule it by

LFT priority with ties broken by LPT and any remaining ties broken in favor of

the highest resource consumption. This ranking yields the list 15, 13, 14, 56, 47,

37, 67, 12, 78, and 28. (We need the tie-breaker to decide that 13 should precede

14, 78 should precede 28, and 67 should follow both 37 and 47. The latter two

have the same duration and require the second tie-breaker to place 47 ahead of 37.)

Recall that in this example, if we use A = 8, Theorems 17.1 and 17.2 do not indicate

whether a schedule of length 12 is infeasible. Therefore, it is interesting to examine

the heuristic for A = 8. Figure 17.3 shows the results as a Gantt chart in which

the vertical scale shows the resource consumption of an activity and the horizontal

scale shows its duration. Shaded areas denote resource idleness. Proceeding with the

priority list, activities 15, 13, and 14 are scheduled consecutively, but afterwards,

only activity 12 fits in the single free resource slot. To achieve a nondelay schedule,

activity 12 is scheduled in the free slot even though activities with higher priorities

HEURISTIC CONSTRUCTION AND SEARCH ALGORITHMS 409

8 10 126 4 20 14

8

6

4

2

R
e
s
o
u

rc
e
 C

o
n

s
u
m

p
tio

n

15

13
14

12

37

56

47

67

28

78

FIGURE 17.3 Scheduling Example 17.2 by the parallel approach.

remain unscheduled. Activity 56 becomes schedulable next, and 37 follows because

it is schedulable right after 14, whereas 47 is not yet schedulable. The remaining

activities on the list (47, 67, 78, and 28) are then scheduled consecutively. The

makespan is 14 (which happens to be optimal).

In the serial approach, only the highest-priority activity is considered schedulable,

and resources may remain idle if they don’t suffice for that activity, even if they could

have accommodated other activities. When we schedule an activity, however, we use

the earliest possible slot even if higher-priority activities have already been scheduled

with later starting times. That is, during the procedure we may leave resources unused,

but we may still allocate them in subsequent steps. As a result, the schedule is active,

but not necessarily nondelay. Figure 17.4 illustrates the use of the serial approach

in the same example with the same priority list as before. Activities 15, 13, 14, 56,

and 47 are scheduled according to the list, with nondecreasing starting times. When

activity 37 is then considered, it is possible to fit it before 47, in parallel to 56,

yielding an active schedule. However, an idle slot of one time unit exists just ahead

of activity 37 (utilized by 12 in the parallel approach). This outcome demonstrates

that the serial approach allows delay. As the process continues, activity 12 is also

scheduled earlier than higher-priority activities, but it delays no activity with a higher

priority because they have all been scheduled as early as possible in previous steps.

6 8 10 124 2 0 14

8

6

4

2

R
e
s
o
u

rc
e
 C

o
n

s
u

m
p
tio

n

15

13
14

12

37

56

47

67

28

78

FIGURE 17.4 Scheduling Example 17.2 by the serial approach.

410 RESOURCE-CONSTRAINED PROJECT SCHEDULING

Indeed, the only difference between the parallel and serial schedules is that activity

37 starts earlier at the expense of 12, in accordance with the prescribed priority. The

makespan remains 14.

As noted before, the LFT priority list is logically feasible. In general, however,

priority lists need not be logically feasible. For example, if we use LPT to prioritize,

logical feasibility is not guaranteed. This is not a problem in the parallel approach,

but it is crucial in the serial approach: during the process, the next activity on the list

must be schedulable as soon as enough resources are released by earlier activities or

the procedure cannot continue. However, if we wish to test only a small number of

lists, we can make any list comply by preprocessing. One way to do that is to allow

unlimited resources and record the order in which the parallel approach schedules

activities; this order becomes the required preprocessed list. Alternatively, we can

adapt the heuristic to allow skipping the highest-priority activity if it is logically

infeasible and scheduling the first logically feasible activity as soon as resources

are sufficient. This approach requires returning to the skipped activities and is thus

identical to the preprocessing alternative. In effect, the same preprocessing steps

are intermingled with scheduling activities. Although the parallel approach does

not require preprocessing, it performs the equivalent function—skipping logically

infeasible activities and returning to them later—during the scheduling process. But

preprocessing may not always be necessary. Again, one advantage of the LFT priority

list is that it is inherently logically feasible. Other priority lists generated by CPM

logic share this trait.

Both approaches have advantages. The serial approach can produce all active

schedules. If we were given the optimal priority list, then the serial approach would

produce an optimal schedule. However, we don’t know the optimal priority list, and

we want to avoid evaluating many different lists. Therefore, we can’t easily exploit

the fact that the serial approach produces active schedules. In contrast, the parallel

approach produces only nondelay schedules. In a given problem instance, the parallel

approach may not be able to generate the optimal schedule. However, nondelay

schedules are an appealing subset in practice, and the parallel approach is relatively

easy to implement. It may also be desirable to try out both approaches.

17.4.2 Neighborhood Search Improvement Schemes

Once a schedule is constructed, we can improve on it by neighborhood searches

(including tabu search and simulated annealing) following the template of Chapter

4. We have already discussed such approaches in Chapter 14, for the job shop. But

although project scheduling is a generalization of the job shop, we cannot describe a

schedule with a sequence of permutations. Hence, the approach of Chapter 14 is not

directly applicable. Furthermore, unlike the job shop case, here we explicitly limit

our attention to active or nondelay schedules.

� Example 17.3 Consider the following project containing four resource types.

Activity j requires ai j units of resource type i . For each type, the availability is

Ai = 7.

HEURISTIC CONSTRUCTION AND SEARCH ALGORITHMS 411

Activity p j P(j) a1 j a2 j a3 j a4 j

12 1 — 6 3 4 5

13 4 — 5 4 3 2

14 2 — 1 1 2 3

16 3 — 2 4 2 4

17 4 — 2 2 4 3

18 2 — 2 3 3 4

25 2 12 1 1 3 3

58 4 25 5 3 2 3

68 3 12, 13, 16 2 3 4 2

78 4 14,17 2 3 3 2

The project network is given in Figure 17.5.

Critical path analysis shows that the length of this project (without accounting for

resource constraints) is 8, but the limit on resource 3 implies a makespan of at least

13 time units. (This resource has a load of 86, so 7 resource units would require more

than 12 time units.) Suppose we take a serial approach using the logically feasible

priority list obtained by sorting activities by their origin node first and destination

node second. In this case, the list is {12, 13, 14, 16, 17, 18, 25, 58, 68, 78}. The serial

approach yields a makespan of 17. Activity 17 is scheduled earlier than activity 16

because 13 and 16 cannot run in parallel due to resource constraints. Similarly, 18

must follow 16 because they cannot run in parallel. However, after interchanging 68

and 78, the makespan improves to 16. The schedule is summarized in Table 17.2.

When we introduced neighborhood search in Chapter 4, we illustrated the pro-

cedure with unrelated jobs, but when precedence constraints apply, we may have to

modify search procedures accordingly and work with blocks of jobs. Suppose we

want to construct adjacent pairwise interchange (API) neighborhoods for a feasible

four-job sequence a-b-c-d, but with precedence restrictions. If the two adjacent activ-

ities b and c are logically unrelated, then interchanging these two activities yields a

1

4

2

7

5

8

63

FIGURE 17.5 A project network for example 17.3.

412 RESOURCE-CONSTRAINED PROJECT SCHEDULING

TABLE 17.2

Activity 12 13 14 16 17 18 25 58 68 78

Start time 0 1 1 5 3 8 7 9 13 10

Finish time 1 5 3 8 7 10 9 13 16 14

logically feasible sequence. Suppose instead that the two activities are related. If so,

then b must be an immediate predecessor of c, and we should avoid the interchange.

However, we need not stop exploring sequences. If we were trying to start activity

c earlier, we can exchange the block b-c with a to obtain the new sequence b-c-a-d.

Similarly, if the intention was to start activity b later, we can switch to the partial se-

quence a-d-b-c. More generally, blocks may contain more than two activities, which

are identified iteratively.

To illustrate a modified API, consider Example 17.2. Suppose we start with the

sequence {12, 13, 14, 15, 28, 37, 47, 56, 67, 78}, which is logically feasible. If we

wish to shift activity 67 to an earlier position, we must also shift activity 56 with it,

thus obtaining the sequence {12, 13, 14, 15, 28, 37, 56, 67, 47, 78}. We can repeat

this modified API two more times with the same block to obtain the sequence {12,

13, 14, 15, 56, 67, 28, 37, 47, 78}. If we next wish to shift activity 67 earlier, we must

append activity 15 to the block. In the same example, if we try to shift activity 78

to an earlier position, activities {37, 47, 56, 67, 78} must be shifted as a block, and

the resulting sequence is {12, 13, 14, 15, 37, 47, 56, 67, 78, 28}. To shift the activity

earlier, the block must be expanded to include {13, 14, and 15}, and the modified

API yields the feasible sequence {13, 14, 15, 37, 47, 56, 67, 78, 12, 28}. After that

interchange, activity 78 cannot be shifted further. In general, all sequences generated

by the modified API from any logically feasible initial sequence are logically feasible.

Furthermore, all the logically feasible sequences that can be reached by a series of

adjacent job interchanges can also be reached by adjacent block interchanges.

Biased random sampling is a popular way to generate distinct sequences for a

search. In Chapter 4, we saw that it is not necessarily a very effective approach

in the single-machine tardiness problem. In project scheduling, however, it has the

advantage that if we make the random choices at decision points of a dispatching

procedure, only logically feasible sequences are selected. So random sampling is less

wasteful in the present context than in the single-machine case. For project scheduling,

simple priority rules such as LFT can be used to bias the random selection and thus

improve its effectiveness.

17.4.3 Selecting Priority Lists

We now return to the selection of priority lists. Many priority lists have been recom-

mended for project scheduling. Three prominent priority rules are the following.

1. (LST) Select activity j according to smallest L S j (dynamically calculated).

HEURISTIC CONSTRUCTION AND SEARCH ALGORITHMS 413

2. (Delta) Select activity j according to smallest δ jk , where

δ jk = max
j �=k

{max{0, E F j − L Sk}}

3. (LFT) Select activity j according to smallest L F j .

The LST rule minimizes slack, so it is analogous MST. However, because we update

the latest start time as we proceed, based on the current project information, all

L S j values remain nonnegative. The LST priority list is logically feasible, which

is convenient in constructing schedules, but the rationale for LST is not necessarily

persuasive. In Chapter 2, for example, we saw that in the single-machine case, MST

maximizes the minimum lateness. In Chapter 15, we saw that slack-related priority

rules were sometimes effective, but not necessarily for the criterion of maximum

tardiness.

The Delta rule aims to reduce the potential incremental delay in the whole project

caused by scheduling activity j before activity k. The pair of activities having maximal

δ jk is scheduled by LFT, but, in general, the sequences generated by LFT and by the

Delta rule are not identical.

The LFT rule derives its effectiveness from emulating the EDD rule, which mini-

mizes maximum tardiness in the single-machine case. But even in the single-machine

case, EDD is not guaranteed to be optimal with nonzero release dates. That fact may

explain why no single rule is always superior in the project scheduling context.

It may also explain why a rule like MST, with properties of dubious value in the

single-machine case, seems to perform well in project scheduling.

In general, running multiple heuristics, possibly in both directions and also from

both ends to the middle, is often a good meta-heuristic. Dozens of priority rules

have been proposed and tested for the project scheduling problem. However, some

intuitively appealing rules do not seem to perform better than random dispatching.

Therefore, at some point, adding more rules may become less effective than generating

trial sequences by biased sampling. A similar argument also suggests that (at least

for sequences that are logically feasible) we should run both serial and parallel

list scheduling heuristics. There is clear empirical evidence, however, that parallel

scheduling is very likely to outperform serial scheduling for any single list. The serial

approach becomes advantageous only when we perform multiple runs. For instance,

it is known to perform better in the context of biased sampling. LFT seems to be the

best list to use as the basis of such biased sampling.

To illustrate, return to Example 17.3 using the LFT priority list with ties broken by

LPT. This tie-breaker is identical to LST because the slack is given by L F j − p j , and

the tie implies that L F j values are equal for all candidate activities. Any remaining

ties can be broken in favor of the resource with the largest total load, given here by

the order 3, 4, 1, 2. (These tie-breaking selections are motivated by the largest-fit

heuristic covered in Chapter 9.) The resulting list is {12, 17, 25, 14, 13, 16, 78, 68,

58, 18}. For this list, the serial approach yields a makespan of 15, which happens to

be optimal. The schedule is summarized in Table 17.3.

414 RESOURCE-CONSTRAINED PROJECT SCHEDULING

TABLE 17.3

Activity 12 13 14 16 17 18 25 58 68 78

Start time 0 5 3 9 1 13 1 9 12 5

Finish time 1 9 5 12 5 15 3 13 15 9

Once a priority list has been adopted, its implications can be described by soft

precedence constraints. For instance, we can enforce the sequencing decisions of

Table 17.3 by adding a soft precedence constraint between activity 12 and activity

17, and similarly between the pairs of activities {25, 14}, {14, 13}, {13, 16}, {78,

58}, and {58, 18}, as the table indicates directly. In addition, the schedule implies

that 16 must complete before 18 can start because otherwise eight units of resource

4 would be required; similarly, we need soft constraints for the pairs {17, 68} and

{13, 58}. Such a network allows us to determine the start time of each activity within

the slack it has after the soft constraints are added. We use soft constraints in the

following chapter as well.

17.5 SUMMARY

The scheduling of a project in the presence of limited resources is a challenging

decision-making problem. It is a full-blown scheduling problem in the sense that

solutions must cope with both technological precedence constraints and resource

availability constraints. In its general forms, it is a combinatorial problem of such

magnitude that virtually all existing methods for finding optimal schedules are im-

practical for problems of realistic dimensions. The problem is especially frustrating

because it initially appears simple. First, the problem is fairly easy to formulate and vi-

sualize. Second, the problem extends the CPM and PERT models, which themselves

have been readily and widely adapted to practical network scheduling problems.

Third, the substantial literature on the subject contains any number of sophisticated

and clever optimum-seeking schemes, yet the barrier of computational practicality

still exists.

For relatively small problems, optimal solutions have been achieved mostly by

branch and bound and also by integer programming. An integer programming ap-

proach can harness the power of classical constrained optimization techniques and

accommodate fairly general criteria. A branch and bound approach, based on the

implicit enumeration of all active schedules, is more flexible in its structure and may

provide better insights into the nature of the solution. In addition, the tree structure

embedded in the branching procedure provides a basis for implementing heuristic

techniques.

Just as in the job shop problem, the use of priority-dispatching procedures and

biased-sampling schemes appear to be effective heuristic devices. On the one hand,

such suboptimal approaches are quite rapid and are the most flexible in their ability

to accommodate realistic criteria and decision constraints. On the other hand, they

EXERCISES 415

achieve their speed and flexibility at the expense of not being able to guarantee

optimality. To extend our approach to preemptive scheduling, we could model each

activity as a series of fractional activities. Because this representation would not force

all of the fractional parts to run contiguously, the effect would be to allow preemp-

tion of activities. As mentioned earlier, many heuristic programs are commercially

available, although their details have often been withheld on proprietary grounds.

Evidence suggests, however, that these commercially available heuristics could be

significantly improved by utilizing state-of-art alternatives.

REFERENCES

Davis, E.W. and J.H. Patterson (1975). A comparison of heuristic and optimum solutions in

resource constrained project scheduling, Management Science 21, 944–955.

Demeulemeester, E. and W. Herroelen (1992). A branch and bound procedure for the multiple

resource-constrained project scheduling problem, Management Science 38, 1803–1818.

Demeulemeester, E. and W. Herroelen (2002). Project Scheduling: A Research Handbook,

Kluwer Academic Publishers, Norwell, MA.

Fleszar, K. and K. Hindi (2004). Solving the resource-constrained project scheduling problem

by a variable neighbourhood search, European Journal of Operational Research 155,

402–413.

Herroelen, W. (2005). Project scheduling—theory and practice, Production and Operations

Management 14 (4), 413–432.

Kelley, J.E. (1963). The critical path method: resources planning and scheduling, Chapter 21

in Industrial Scheduling (J. Muth and G.L. Thompson, eds.), Prentice Hall, Englewood

Cliffs, NJ, pp. 347–365.

Kolisch, R. and S. Hartmann (2006). Experimental investigation of heuristics for resource-

constrained project scheduling: an update, European Journal of Operational Research 174,

23–37.

Morton, T.E. and D.W. Pentico (1993). Heuristic Scheduling Systems, Wiley, Hoboken, NJ.

Pritsker, A.A.B., L.J. Watters, and P.M. Wolfe (1969). Multi project scheduling with limited

resources: a zero–one programming approach, Management Science 16, 93–108.

Schrage, L.E. (1970). Solving resource constrained network problems by implicit

enumeration—nonpreemptive case, Operations Research 18, 263–278.

Wiest, J.D. (1964). Some properties of schedules for large projects with limited resources,

Operations Research 12, 395–418.

Wiest, J.D. (1967). A heuristic model for scheduling large projects with limited resources,

Management Science 13, B359–B377.

EXERCISES

17.1. Consider the project described in the following table. Each of the tasks A–H

has a given duration p j , a set of predecessors P(j), and a resource requirement

a j . The total number of resource units available is 5.

416 RESOURCE-CONSTRAINED PROJECT SCHEDULING

Activity p j P(j) a j

A 5 — 3

B 3 — 2

C 4 — 2

D 1 A 2

E 4 A 2

F 3 D, E 1

G 5 B, D 1

H 6 C 3

a. Draw an AOA network for this project.

b. If no resource limit existed, what would be the length of the critical path?

c. Construct an early start schedule for the project.

d. Construct a late start schedule for the project.

e. Use the schedules in (d) and (e) to compute bounds on the project duration.

17.2. Revisit the project in the previous exercise. Find the minimum makespan by

comparing three schedules constructed using heuristic procedures.

a. Apply the LST priority rule and calculate the makespan.

b. Apply the Delta priority rule and calculate the makespan.

c. Apply the LFT priority rule and calculate the makespan.

17.3. Consider the project described in the following table. Each of the tasks A–L

has a given duration p j , a set of predecessors P(j), and a resource requirement

a j . The total number of resource units available is 5.

Activity p j P(j) a j

A 6 — 2

B 8 — 3

C 4 — 3

D 4 A 4

E 4 A 2

F 12 B, E 3

G 14 B, E 1

H 6 B, C, E 4

I 8 D, F 2

J 16 D, F, G 1

K 2 D, F, G 1

L 12 H, K 3

a. Draw an AOA network for this project.

b. If no resource limit existed, what would be the length of the critical path?

c. Construct an early start schedule for the project.

EXERCISES 417

d. Construct a late start schedule for the project.

e. Use the schedules in (d) and (e) to compute bounds on the project duration.

17.4. Revisit the project in the previous exercise. Find the minimum makespan by

comparing three schedules constructed using heuristic procedures.

a. Apply the LST priority rule and calculate the makespan.

b. Apply the Delta priority rule and calculate the makespan.

c. Apply the LFT priority rule and calculate the makespan.

17.5. Consider the project described in the following table. Each of the tasks A–J

has a given duration p j , a set of predecessors P(j), and a resource requirement

a j . The total number of resource units available is 10.

Activity p j P(j) a j

A 1 — 7

B 4 A 1

C 3 A 4

D 2 A 3

E 2 A 5

F 2 B 8

G 2 C 2

H 3 D 6

I 1 G, H 9

J 3 I 10

a. Draw an AOA network for this project.

b. If no resource limit existed, what would be the length of the critical path?

c. Construct an early start schedule for the project.

d. Construct a late start schedule for the project.

e. Use the schedules in (d) and (e) to compute bounds on the project duration.

17.6. Revisit the project in the previous exercise. Find the minimum makespan by

using a parallel approach and LFT priority.

17.7. Consider Example 17.3, where the initial list was {12, 13, 14, 16, 17, 18, 25,

58, 68, 78} and an optimal list for serial construction is {12, 17, 25, 14, 13, 16,

78, 68, 58, 18}.

a. Prove the optimality of the serial list.

b. List a series of modified API steps that leads from the initial list to the

optimal list.

18
SAFE SCHEDULING FOR PROJECTS

18.1 INTRODUCTION

The main objective of safe scheduling is to set due dates and release dates in response

to stochastic variation. In some cases, it is also possible to characterize the optimal

sequence as the basis for these decisions, but in complex environments (such as flow

shops, job shops, and projects), the state of the art relies on deterministic analysis

for sequencing decisions followed by stochastic analysis for timing decisions. In

this chapter, we assume that sequencing decisions have been made and enforced by

soft precedence constraints, as we discussed in the previous chapter. We study how

to set release dates and due dates by addressing the stochastic counterpart of the

E/T problem. We also discuss the implications of stochastic variation for crashing.

Our analysis departs from traditional PERT assumptions in two major ways: (1)

we do not assume stochastic independence among activity durations (processing

times); and (2) we do not assume beta distributions. In Chapter 16, we discussed how

the independence assumption may lead to implausible conclusions. Therefore, we

advocate the use of stored samples to achieve more general results. To generate stored

samples, we can draw on historical observations to estimate activity distributions

under the assumption that they are linearly associated. This approach provides a

simple and practical model for activity distributions that does not suffer from the

drawbacks of traditional PERT.

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

418

INTRODUCTION 419

In project scheduling, we often find that expenses are incurred during the project’s

execution but revenue is generated only when the project is complete. We therefore

have an incentive to postpone activities as much as possible without violating the

due date. When no due date is imposed, we want to postpone noncritical activities as

much as possible without increasing the makespan. As in the single-machine case (see

Section 7.5), we can enforce such a policy by imposing release dates (r j) for activities.

The imposition of release dates is important for a project because the default is usually

to begin each activity at its early start time, thus incurring unnecessary earliness

costs.

To create a framework for analysis, we begin with a deterministic environment in

which a project consists of n activities and has a due date (d). Each activity incurs an

earliness cost per unit time denoted αj for activity j . This earliness cost reflects the

economic value of postponing the activity and may also be viewed as a holding cost.

The project incurs a tardiness cost per unit time denoted β. In practice, tardiness cost

reflects the delay in obtaining revenue and often includes explicit compensation to

customers when a due date is missed. Ideally, we would like to balance activities’

earliness costs against the project’s tardiness costs. The objective is thus to minimize

total E/T cost, or

Z = β (C − d) +

n
∑

j=1

α j

(

C − r j

)

where C ≥ d represents the project completion time. We assume that d is given, as if

it had been negotiated with a customer. The customer provides no external incentive

for early completion, so we proceed as if the output of the project is provided

to the customer at the due date or as soon as possible thereafter. In other words,

if the project completes prior to the due date, delivery to the customer still occurs on

the due date, fulfilling the negotiated agreement. If the project completes later than

the due date, then the tardiness cost applies. On the other hand, earliness cost reflects

the length of time an activity is held in the system. In the project setting, this length

of time is given by (C − r j) for activity j because once started, the activity becomes

part of the project and is released from the system only when the entire project is

completed.

If no due date is imposed, we can set d = 0. This convention ensures that tardiness

costs will be incurred, thus providing an incentive to achieve a short makespan. In

this case, the tardiness cost reflects the makespan incentive, which must be traded off

against the earliness costs in the project. Thus, whether we have a given due date or

not, we can use Z as an objective function.

For convenience, we may sometimes write β as αn+1 and the project due date d

as rn+1. This substitution allows us to rewrite the objective as follows.

Z =

n+1
∑

j=1

α j

(

C − r j

)

420 SAFE SCHEDULING FOR PROJECTS

We define α = α1 + α2 + · · · + αn, obtaining

Z = (α + β)C −

n+1
∑

j=1

α jr j

In the deterministic context, we minimize this objective by starting each activity as

late as possible (at its late start time) and by finishing the project as early as possible

(exactly at its due date). If no due date is given, then, by convention, we replace it

with the minimal makespan.

18.2 STOCHASTIC BALANCE PRINCIPLES FOR

ACTIVITY NETWORKS

In our E/T model, earliness cost reflects the difference between an activity’s release

date and the project due date, and we reduce earliness cost by increasing the release

date. However, in the stochastic case, increasing a release date exposes the project

to the risk of delay. Therefore, the interval between release date and due date should

contain some safety time. Similarly, tardiness cost reflects the difference between the

project’s completion time (equivalently, its release date) and its due date. Increasing

the project completion time exposes the project to the risk of tardiness. Therefore, the

interval between expected completion time and due date should also contain some

safety time. In our model, however, we need not calculate these safety times explicitly

because they are determined implicitly by setting optimal release dates.

Mathematically, a release date has the same effect as a predecessor activity. We

can think of a release date r j as the time required by a preceding “activity” that starts

at time zero and has a duration of r j . Although we do not actually count release dates

as activities, we may associate a criticality measure with each one. In Chapter 16, we

defined the criticality of an activity as the probability that it lies on the critical path.

Accordingly, the criticality, q j , of a release date is the probability that the longest

path includes the corresponding “activity.” When the due date is sufficiently large,

the optimal criticality of each release date, q∗
j , should satisfy a critical ratio that

resembles the critical ratio that appeared in earlier chapters for similar problems. In

particular, the optimal project service level, Pr{C ≤ d}, should be set equal to β/(α +

β), which we recognize as the critical ratio we saw in Chapter 7. By setting the release

dates so that their criticalities are optimal, we essentially optimize the safety times

for the project. We first derive this result for a case with special structure. Thereafter,

we generalize the result and discuss hierarchical implementation of the model.

18.2.1 The Assembly Coordination Model

In the assembly coordination model (ACM), n stochastically independent inputs must

be coordinated to arrive on or before a given due date, in time for a planned assem-

bly operation. Initially, we assume that procurement lead times for the inputs have

STOCHASTIC BALANCE PRINCIPLES FOR ACTIVITY NETWORKS 421

rn

rn+1 = Due Date

.

.

.

1

2

n

N0

r2

r1

FIGURE 18.1 The ACM network structure.

continuous distributions. We also assume that the assembly operation is instantaneous

(or at least that it takes a fixed amount of time) and that it starts on the due date or

when the last input arrives, whichever is later. Figure 18.1 depicts the ACM as an

AOA network. For convenience, we use the index 0 for the start node, so we can index

the completion nodes of the release date arcs from 1 to n. The due date is represented

by the activity connecting node 0 to node N (the project completion node), and we

represent its length as rn+1.

The objective is to minimize

Z = E

n+1
∑

j=1

α j

(

C − r j

)

 = E

n
∑

j=1

α j

(

C − r j

)

+ β(C − d)

= E

n
∑

j=1

α j

(

C − d + d − r j

)

+ β(C − d)

=

n
∑

j=1

α j

(

d − r j

)

+ (α + β)E [(C − d)]

=

n
∑

j=1

α j

(

d − r j

)

+ (α + β)

∫ ∞

d

1 −

n
∏

j=1

F j

(

y − r j

)

dy (18.1)

In this expression, Fj() denotes the cdf of the duration of activity j, so F j (y − r j)

represents the probability that input j will have arrived by time y. The product is

the probability that all inputs will have arrived by time y. Therefore, this prod-

uct is the cdf of the completion time. The integral (from d) of the complement of

this probability yields the expected tardiness. The integral is multiplied by (α +

β) because, during tardiness, all holding costs and the tardiness cost apply. Hold-

ing costs that occur with certainty while the project is in progress but before the

due date are given by �αj(d − rj). Taking partial derivatives with respect to r j ,

422 SAFE SCHEDULING FOR PROJECTS

we obtain

∂ Z

∂r j

= −α j + (α + β)

∫ ∞

d

f j

(

y − r j

)

∏

k �= j

Fk (y − rk) dy

The criticality of r j is given by the integral in this expression. First, fj() denotes the

density of the probability that input j will arrive at time y (after the due date), and

the product of the remaining cdfs represents the probability that the other inputs will

have arrived already. Therefore, the integrand is the density of the event that input j is

critical and completes at time y. Integrating over all possible tardy completion times

yields the criticality. The optimal criticality, q∗
j , is obtained when the release dates are

selected so that the partial derivative is zero. This condition implies q∗
j = α j/(α + β),

which we call stochastic balance. Although this analysis applies only to the release

dates of the n activities, the same formula applies to the criticality of the due date as

well, because the (n + 1) criticalities must sum to 1. (With continuous distributions,

the probability that more than one input is critical at the same time is zero.) Thus,

the due date has a criticality of β/(α + β). The due date criticality is also the optimal

service level of the project because the due date is critical when the project completes

on time. Assuming that d is sufficiently large, we can adjust all n physical release

dates to the required values.

If the distribution is discrete (or, equivalently, when using sample-based optimiza-

tion), we modify the condition: an optimal release date is the smallest feasible value

for which q j > α j/(α + β). If q j ≤ α j/(α + β), then it cannot harm us (and may

help us) to increase the release date to the next level. In addition, we may obtain

multiple critical paths, in which case the sum of criticalities exceeds unity.

We next remove the assumption that the due date is sufficiently large. Without this

assumption, it may happen that even if we set release dates of zero, the criticality

of some activities will exceed αj/(α + β). For those activities, r j = 0 is optimal.

Other activities may be free to attain their optimal criticality. As a result, the project

service level cannot reach its optimum. In effect, criticality is shifted from the due

date to constrained resources, thus reducing the project service level. Therefore, the

criticality of a constrained resource must be higher than αj/(α + β). To prove this,

suppose that q∗
j < α j/(α + β) occurred at r∗

j = 0. Then we could increase the release

date and by doing so, increase the criticality and thus increase the partial derivative

toward zero—a contradiction. Thus, if r j is set to zero due to a constraint, then

we must have qj > αj/(α + β). For constrained release dates, the true economic

impact of postponing activity j is not αj per time unit but some higher rate, v∗
j , such

that q∗
j = v∗

j /(α + β).

Although the optimality conditions are analytical, it is seldom possible to compute

optimal release dates from formulas, so we must resort to a numerical search. To

facilitate this search, it is possible to calculate a bound on the optimal release dates.

For example, we might set the release dates such that the probability an input arrives

after the due date is at most αj/(α + β). Because an input that arrives on or before

STOCHASTIC BALANCE PRINCIPLES FOR ACTIVITY NETWORKS 423

the due date cannot cause tardiness, these release dates (denoted r L
j) constitute lower

bounds on the optimal r j .

Suppose that the due date is a decision variable and that our secondary objective is

to minimize it. To minimize the objective function—our primary objective—we must

drive n partial derivatives to zero, but we have n + 1 decision variables. Because there

are too many variables, we can set one of them arbitrarily. However, our secondary

objective dictates setting the earliest release date to zero. We can do so by starting

with a large due date and then subtracting the minimal r j from all n + 1 release dates.

Although the ACM can be solved numerically by minimizing Eq. (18.1) directly or

by driving the partial derivatives to zero, that approach requires evaluating integrals

and is computationally demanding. Sample-based optimization is more effective and

can also be applied in more complex models.

� Example 18.1 Consider an ACM with 10 input activities and a due date of

d = 94. The duration of each activity follows a lognormal distribution with mean (µ)

and coefficient of variation (cv) given in the table. Also shown in the table are the

earliness costs (αj), which sum to α = 75. The tardiness cost is β = 225.

Input 1 2 3 4 5 6 7 8 9 10

µ 63 49 53 77 69 43 57 87 40 45

cv 0.20 0.35 0.30 0.10 0.15 0.45 0.25 0.05 0.50 0.40

αj 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

We tackle this problem with a stored-sample approach. We use a sample of 10

scenarios to demonstrate the calculations. (Such a small sample is not adequate to

analyze this problem, and we comment later on the results of using a more realistic

sample size.) The 10 scenarios, along with some additional calculations, are shown

in Table 18.1. All outcomes have been rounded to the first decimal place.

Below the table of scenarios, the first calculation is the maximum duration in the

ten scenarios for each activity. The next row displays the given values of αj. The

next row shows the calculated values of the critical ratio, αj/(α + β). Ideally, we

would like each activity to be critical with this probability, but because we have only

10 scenarios, the probability that an activity is critical must be either zero or some

multiple of 0.1. Generalizing the insights of Chapter 7, the optimal criticality of each

release date is obtained by ⌈sαj/(α + β)⌉/s, where s is the number of scenarios in the

stored sample; that is, we use the smallest possible multiple of 1/s that is not smaller

than the critical ratio. In our example, all αj/(α + β) values are below 0.1 so our

target criticality is 0.1 for each of them.

The row of lower bounds shows the values of r L
j . This value is the difference

between the due date (94) and the maximum shown three rows above, or zero if

that difference is negative. This value represents the latest time the activity could be

released without violating the due date in any of the scenarios, or zero if necessary.

424 SAFE SCHEDULING FOR PROJECTS

TABLE 18.1

Input

Scenario 1 2 3 4 5 6 7 8 9 10

1 62.9 51.5 44.2 66.2 54.5 35.7 88.6 85.3 23.2 46.9 Due date

2 41.6 46.8 61.5 80.5 75.3 35.1 81.1 80.2 21.8 31.7 94

3 44.9 59.0 39.1 81.8 72.0 32.1 81.1 86.0 71.6 68.7 Alpha

4 48.6 43.5 45.0 69.8 62.8 68.0 50.8 81.8 39.3 26.5 75

5 73.6 36.1 31.4 82.7 62.4 128.9 39.8 81.2 31.5 49.1 Beta

6 50.4 41.9 33.5 80.6 86.4 35.4 69.8 86.5 32.0 56.9 225

7 50.9 68.8 57.6 84.1 80.4 31.3 63.3 93.2 67.3 70.1 Total
8 56.6 28.1 74.5 76.5 82.7 107.2 63.6 87.6 44.9 17.3 300
9 51.0 88.8 77.4 81.0 84.4 32.2 58.2 86.3 23.5 25.2

10 53.7 36.0 80.2 80.3 63.9 46.2 71.3 84.1 34.8 56.7

Max 73.6 88.8 80.2 84.1 86.4 128.9 88.6 93.2 71.6 70.1

Alpha(j) 3 4 5 6 7 8 9 10 11 12

Critical ratio 0.010 0.013 0.017 0.020 0.023 0.027 0.030 0.033 0.037 0.040

Lower bound 20.4 5.2 13.8 9.9 7.6 0 5.4 0.8 22.4 23.9

The formula is

r L
j = max(0, d − maxs{ps j })

where psj denotes the duration of activity j in scenario s.

The first step is to set the release dates equal to these lower bounds and determine

the criticality of each activity. The calculations are summarized in Table 18.2. In the

body of the table, we calculate the completion time of each activity in each scenario,

given the release dates shown in the row labeled “Release”. For each scenario, the

project length is calculated in the column labeled “Length”, and the time for the

assembly is shown on the right. Activity j is critical if its completion time matches

the time at which assembly takes place. The frequency with which this event occurs

for each activity is shown in the row labeled “Criticality”. For example, if we scan

the column for activity 10, we find only one scenario (the last) out of ten in which

activity 10 completes at the assembly time. Thus, its criticality is 0.1. Activity 6,

which postpones the assembly beyond the due date in two scenarios, has a criticality

of 0.2. Similarly, activity 1 has a criticality of 0. Finally, the project has criticality of

0.8 because the due date is achieved in eight of the ten scenarios.

Comparing Table 18.2 to the critical ratios in Table 18.1, we find that the criticality

is at least 0.1 for all activities except the first, so in those cases, the lower-bound release

date is optimal. When we explore larger release dates for activity 1, we find that at

r1 = 31.1, its criticality jumps to 0.1. At this stage, all inputs except input 6 have

criticalities of 0.1, and input 6 has a criticality of 0.2. The optimality conditions

are thus satisfied, so this solution is optimal for the sample. Based on the data in

this sample, our estimate of the optimal objective function is 7608. The due date

STOCHASTIC BALANCE PRINCIPLES FOR ACTIVITY NETWORKS 425

TABLE 18.2

Input

1 2 3 4 5 6 7 8 9 10

Release 20.4 5.2 13.8 9.9 7.6 0.0 5.4 0.8 22.4 23.9 Length Assembly

1 83.3 56.7 58.0 76.1 62.1 35.7 94.0 86.1 45.6 70.8 94.0 94.0

2 62.0 52.0 75.3 90.4 82.9 35.1 86.5 81.0 44.2 55.6 90.4 94.0

3 65.3 64.2 52.9 91.7 79.6 32.1 86.5 86.8 94.0 92.6 94.0 94.0

4 69.0 48.7 58.8 79.7 70.4 68.0 56.2 82.6 61.7 50.4 82.6 94.0

5 94.0 41.3 45.2 92.6 70.0 128.9 45.2 82.0 53.9 73.0 128.9 128.9

6 70.8 47.1 47.3 90.5 94.0 35.4 75.2 87.3 54.4 80.8 94.0 94.0

7 71.3 74.0 71.4 94.0 88.0 31.3 68.7 94.0 89.7 94.0 94.0 94.0

8 77.0 33.3 88.3 86.4 90.3 107.2 69.0 88.4 67.3 41.2 107.2 107.2

9 71.4 94.0 91.2 90.9 92.0 32.2 63.6 87.1 45.9 49.1 94.0 94.0

10 74.1 41.2 94.0 90.2 71.5 46.2 76.7 84.9 57.2 80.6 94.0 94.0

Criticality 0.0 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1

has a criticality of 0.8, indicating that the optimal solution achieves a service level

of 0.8. This value differs from the critical ratio target of 225/(75 + 225) = 0.75

largely because the small sample size provides a discrete approximation to a problem

involving continuous distributions.

Using a stored sample of 10 discrete scenarios to determine 10 release dates will

obviously not yield precise results in a problem involving continuous distributions. As

in other stochastic problems where we have used a stored-sample approach, we need

much larger sample sizes. To illustrate, we started with a stored sample containing

10,000 scenarios to provide us with precise estimates of “true” values. For this large

sample, the optimal value of the objective function was 7453 and the optimal service

level, 0.7312. The service level is less than the desired 0.75 due to constrained release

dates. We then calculated that the optimal release dates obtained from the sample of

size 10 actually yield an objective of 8798, or 18% higher than the true optimum.

This observation demonstrates that at the very least we should demand a sample that

has more repetitions than release dates. When we tested the performance of samples

of 100 and 1000, we obtained much better results: the objective function values were

7519 (0.9% above the optimum) and 7471 (0.2%). As these results demonstrate, a

reasonable sample size tends to yield a small optimality gap.

Our numerical search above exploited the structure of the problem, adjusting the

release dates one by one until the correct criticality was achieved for each of them.

This approach is useful if we program the necessary steps specifically for this purpose.

Another approach is by generic numerical search. Several iterations may be required,

but that is true in either approach. One advantage of rounding the sample realizations

(as we did to one decimal place) is that the numerical search is greatly facilitated by

the coarse grid. For instance, consider the search for r1. In this case r L
1 = 20.4 yields

a criticality that is too low, and so does r L
1 + 0.1 = 20.5. Therefore, we can repeat

426 SAFE SCHEDULING FOR PROJECTS

our trials for the values 20.7, 21.1, 21.9, 23.5, 26.7, 33.1, doubling the step size every

time. At r1 = 33.1, the criticality exceeds the target value of 0.1. We now know that

26.7 is too low and 33.1 is probably too high (although it could be precisely right).

We now try 29.9 (in the middle) and continue the search by halving the remaining

search interval each time. If r j − r L
j = K , then it will take at most O(log K) trials

to identify the optimal value (given the other release dates). If we search this way,

starting with the lower bound solutions and increasing them one by one, then each

iteration takes us closer to the optimal solution and therefore the optimal solution

can be found in polynomial time. In this particular example, when we used a stored

sample of 10,000, we had to adjust two inputs twice: the rest required at most one

adjustment and three constrained inputs required no adjustment at all.

18.2.2 Balancing a General Project Network

In a general project network, we can show that the same stochastic balance result

remains intact. Furthermore, we do not have to assume stochastic independence.

Although Eq. (18.1) is no longer valid, our objective is still to minimize the expected

total weighted flowtime, including delay. As in Chapter 17, we denote the set of

direct physical predecessor activities of j by P(j). If any of the incoming activities

of j is a dummy, then for the purpose of defining P(j), we replace it by its physical

predecessors. Release dates are excluded. With this notation in place, we obtain the

following project stochastic balance (PSB) model.

Minimize Z = E

n+1
∑

j=1

α j

(

C − r j

)

 = (α + β)E(C) −

n+1
∑

j=1

α jr j (18.2)

Subject to

C j ≥ r j + p j ; j = 1, . . . , n (18.3)

C j ≥ Ck + p j ; ∀k ∈ P(j), j = 1, . . . , n (18.4)

C ≥ d = rn+1 (18.5)

C ≥ Ck ; ∀k ∈ P(N) (18.6)

The decision variables are the release dates, excluding the due date. (The due date can

be set to the minimal value as a secondary objective later, as in the ACM.) Equation

(18.3) states that the completion time of an activity cannot be lower than the release

date plus the processing time. Equation (18.4) states that completion times are also

constrained by the latest completion time of any predecessor activity. The condition in

(18.5) implies that the project is not considered finished before d, even if the physical

activities are completed earlier. Equation (18.6) is analogous to (18.4) but applies to

the project completion and not to a physical activity: the project is not complete until

all predecessor activities of the terminal node, N, are complete.

STOCHASTIC BALANCE PRINCIPLES FOR ACTIVITY NETWORKS 427

We use the notation r j = E S j to denote the early start time for activity j. By

setting r j = E S j , we ensure that the activity will never be delayed by the release

date. For processing times with a lower bound, define pmin
j as the minimal possible

processing time. Specifically, if we use a stored sample, pmin
j corresponds to the

lowest realization of activity j in the sample. If activity j has no predecessors, then

E S j = 0; otherwise, E S j = max{rk + pmin
k |k ∈ P(j)}. In the latter case, E S j is the

largest possible release date that cannot delay activity j. We may say that such a

release date is inactive, whereas a release date that has a positive probability of

delaying the activity is active. Any earlier release would not delay activity j either,

but our objective function is improved if we postpone release dates as much as

possible without increasing tardiness. If P(j) is not empty, then setting r j = E S j

typically leads to q j = 0. If qj > 0, another critical path exists, so reducing r j cannot

reduce the makespan. If P(j) is empty, then even if we set r j = E S j , it may dictate the

makespan (and q j > 0). Thus, although the PSB problem does not include constraints

of the form r j = E S j , the optimal solution will still comply with these constraints.

Unlike the ACM case, we cannot compute partial derivatives in the PSB problem,

and thus we cannot compute criticalities. Partial derivatives still exist, and they still

have to vanish when the release dates are optimal, except when they are constrained

by the release date. For continuous processing time distributions, the optimal solution

is characterized by the following theorem, which generalizes the results we obtained

for the ACM.

� Theorem 18.1 The following are necessary and sufficient optimality condi-

tions for the PSB problem with probability 1.

1. q∗
j = v∗

j /(α + β) ≥ α j/(α + β); j = 1, 2, . . . , n;

2. if v∗
j > α j , then r∗

j = E S j ;

3. q∗
n+1 = 1 −

∑n
j=1 v∗

j /(α + β) ≤ αn+1/(α + β);

where v∗
j reflects the true marginal economic implication of postponing r j per time

unit.

The PSB problem is a convex model, so the global minimum is achieved if local

optimality conditions are satisfied. The theorem lists such local optimality conditions.

We provide a more formal proof in our Research Notes.

To illustrate, we refer to Figure 18.2, which is essentially an interdictive graph

with release dates depicted as activities starting at node 1 and ending at nodes 2,

3, 5, 7, 8, and 9, where (1, 9) is the due date. (The figure uses rA, rB instead of r1,

r2, etc.) If we set rE = E SE = max{rB + pmin
B , max{rC , rA + pmin

A } + pmin
C }, then

rE cannot delay the project because activity E cannot be started earlier due to the

precedence constraints. Similarly, there is no incentive to set rC < rA + pmin
A . In

contrast, if we set rA or rB to their early start times (zero), then the longest path

can still start at one of them. When all release dates (including the due date) are

equal to the corresponding early start times, then one of these two must be critical

428 SAFE SCHEDULING FOR PROJECTS

Due Date

D

EC

B

A

rE

rD

rC

rA

rB

6

9

83

1

5

2
7

4

FIGURE 18.2 The interdictive graph with release dates.

(qA + qB = 1). Consequently, it is possible to postpone rC , rD , and rE just enough

to achieve any desired criticality for each of them, but release dates rA and rB may

yield higher than desired criticalities, in which case their optimal value is their early

start time.

Finally, the due date can be effectively removed by setting rn+1 = ESn+1 or even

rn+1 = 0. If we set rn+1 < ESn+1, then we incur a tardiness penalty of β(ESn+1 −

rn+1) before we even start. This initial penalty is a constant, however, and does not

change the structure of the optimal solution except in one way: it implies that the

release date of at least one activity that has no predecessors must be zero, and the

project service level is zero, as well. In effect, criticality must be transferred from the

due date to a set of activities with r j = E S j .

18.2.3 Additional Examples

In this section, we discuss some additional examples to demonstrate the generality

of our approach.

� Example 18.2 Consider a project valued at $10,000,000, and suppose the

annual holding cost is 18.25%. Assume we manage a hundred activities with the

STOCHASTIC BALANCE PRINCIPLES FOR ACTIVITY NETWORKS 429

same holding cost, and that the policy is to meet the due date with a service level of

90%. Assume further that the resulting project buffer is about six months.

The interest rate is about $5000 per day, and since there are 100 activities, it

follows that αj = $50/day for 1 ≤ j ≤ 100. To achieve a service level of 90%, we

require β = $45,000/day, so (α + β) = $50,000. Stochastic balance will be achieved

with criticalities of 0.1% for each release date and 90% for the due date. As this

requires a project buffer of half a year, the approximate cost of the policy is $91,250.

(Calculating the exact cost of such policies is best done by simulation, comparing

the option of β = 0, in which there is no tardiness penalty and we only focus on

holding cost.) The customer pays for this service level both as part of the price and

by waiting, unless early deliveries are allowed.

To actually calculate the optimal release dates in such examples, we continue

to rely on stored-sample analysis. Formally, when a stored sample is available, the

optimal release dates can be found by linear programming (which can also solve

the ACM with a given stored sample). The model is essentially an elaboration of

the generic PSB problem, but instead of using the expected value in the objective

function, we use the average cost computed for the scenarios in the stored sample.

For each scenario, we use its own processing time realizations, but the same release

date decisions apply to all s scenarios. The project completion time of scenario i is

denoted Ci. For other variables, we use a double index (i, j) to denote the jth activity

of the ith scenario. We obtain

Minimize Z =
(α + β)

s

s
∑

i=1

Ci −

n+1
∑

j=1

α jr j (18.7)

Subject to

Ci j ≥ r j + pi j ; i = 1, . . . , s, j = 1, . . . , n

Ci j ≥ Cik + pi j ; ∀k ∈ P(j), i = 1, . . . , s, j = 1, . . . , n

Ci ≥ d = rn+1

Ci ≥ Cik ; ∀k ∈ P(N), i = 1, . . . , s

We can solve this model as a generic linear program. In practice, however, it is

more efficient to find the optimal solution by a numerical search, as in Example 18.1.

The linear programming (LP) formulation is important because it implies that the

problem is convex, so once a local optimum is found by such a search, we know that

it is globally optimal. The next example demonstrates that analysis of this type can

also help schedule repetitive operations. Again, for the purpose of illustration, we

utilize a sample that is not sufficiently large to be reliable.

� Example 18.3 Consider a bus route consisting of five segments. The travel

time for each segment is random, and 10 recent observations have been compiled, as

shown below.

430 SAFE SCHEDULING FOR PROJECTS

Segment j 1 2 3 4 5

E(pj) 13.51 24.27 8.15 21.53 10.27

σ j 3.89 7.08 1.96 7.50 2.54

Scenario Segment j 1 2 3 4 5

1 pj 16.60 20.10 10.66 21.52 7.45

2 pj 11.92 19.49 9.05 15.99 10.96

3 pj 14.82 33.39 7.59 19.51 14.81

4 pj 11.32 23.12 12.18 17.36 9.41

5 pj 21.15 20.77 6.62 37.72 12.60

6 pj 10.58 24.15 7.98 23.23 7.49

7 pj 17.57 19.09 7.96 30.79 9.14

8 pj 9.72 40.49 6.61 12.90 13.21

9 pj 12.17 22.37 6.35 19.80 9.57

10 pj 9.28 19.77 6.47 16.48 8.05

Travel time to a particular station does not depend on the departure times at the

previous station. The number of passengers boarding the bus at each station is also

random, and observations have produced the following expected values.

Segment j 1 2 3 4 5

Passengers 12.2 9.4 5.5 8.2 4.1

All passengers go to the same final destination at the end of segment 5. The due date

at the final destination is 8:45 am.

Having decided that they wish to take this bus, the passengers consult the bus

schedule, which publishes departure times from each station, and they arrange to

arrive at their station before the corresponding departure time. The objective function

includes the time value of these passengers from the scheduled departure time until

the scheduled arrival at the final station, and any tardiness of the bus at the destination

is also penalized for disrupting its next assignment. The bus costs $3 per minute, and

each passenger-minute is evaluated at $0.20. The tardiness cost at the destination is

$1 per minute, and the penalty per passenger is $0.30. Thus, the total cost of the bus

during such tardiness is $4 per minute and the cost of each passenger is assessed at

$0.50 per minute.

Reasonable time units for such a schedule are minutes, but unlike the approach of

Example 18.1, we postpone rounding until the last step. Mathematically, this example

is equivalent to a serial project with release dates, as depicted in Figure 18.3. For

convenience, we do not index the release date nodes, but instead we index the bus

arrival events by station numbers. We adopt the convention that station j precedes

STOCHASTIC BALANCE PRINCIPLES FOR ACTIVITY NETWORKS 431

1

r1

2

3 4

5

6

r2

r3
r4

r5

r6

FIGURE 18.3 The bus scheduling problem as a project.

segment j, and the destination is denoted station 6. The release date also controls

the start time of segment j. That is, we model each segment (between stations) as

an activity, and the scheduled departure time as a release date. Conceptually, the

release date decisions require a balance of two types of waiting costs. One waiting

cost applies to the bus and the passengers on it. If the bus arrives at a station too early,

then the bus and those passengers are delayed while the bus waits at the station. We

also assume that if the bus arrives at the final destination too early, a similar earliness

cost applies. The other waiting cost applies to the boarding passengers: if the bus

arrives at a station too late to meet its release date, then those passengers are delayed

while they wait for the bus to arrive. We can capture these costs by measuring the

time value of the nominal trip duration plus the expected tardiness penalty. That is,

once we compute the correct waiting costs, we can model this as a PSB problem. Our

first task is to calculate the correct parameters. Then, because we are using a stored

sample, we have the option of solving the problem as a linear program or using a

generic search instead.

Let α0 denote the unit time cost for the bus and αp denote the unit time cost for

each passenger, both during scheduled operation. When the bus is tardy, we add to

these two costs the tardiness penalties of β0 and βp, respectively. Denote the expected

number of passengers who board the bus at station j by wj. To cast the problem as

a PSB model, let αj denote the unit time cost of those passengers who board the bus

at station j. At the first station, α1 also accounts for the value of the bus (because the

bus “joins” at that station). Thus, α1 = α0 + αpw1 = 3 + 0.2 × 12.2 = 5.44, α2 =

αpw2 = 0.2 × 9.4 = 1.88, and so on. Similarly, αn+1 = β = β0 + βp

∑

n
k=1wk =

TABLE 18.3

Segment 1 2 3 4 5 d

αj 5.44 1.88 1.1 1.64 0.82 12.82

q∗
j 23% 8% 5% 7% 3% 54% Objective

r∗
j 0.00 9.72 36.70 44.66 65.37 76.33 766.278

Rounded 0 10 37 45 66 77 766.754

Adjusted 7:28 7:38 8:05 8:13 8:34 8:45

432 SAFE SCHEDULING FOR PROJECTS

0

1

1101009080706050403020100

FIGURE 18.4 A predictive Gantt chart for Example 18.3.

1 + 0.3 × 39.4 = 12.82. These rates are given in the second row of Table 18.3. We

can also calculate (α + β) = 23.7. The next row in the table is the ratio between

the respective rate and 23.7—this calculation yields the critical ratios. Given the cost

rates and the stored sample, we can construct and solve the PSB problem. The optimal

release dates are given in the next row. However, we still have to round the schedule

to integer minutes, and it is not straightforward to characterize the optimal rounding:

theoretically, it transforms the linear program into an integer program, which is NP-

hard. In this case, rounding up seems to work well. Such a rounded solution is given

in the next to last row. After adjusting the release dates for a scheduled arrival at

8:45 am, we obtain the schedule in the last row. For instance, the calculation shows

that the departure should precede the due date by 76.33 minutes, which we round up

to 77, yielding the listed departure of 7:28 am.

Figure 18.4 shows the associated predictive Gantt chart (without rounding). The

vertical segments in the figure correspond to the delay of the bus in a station due to

a release date. A positive probability exists that the bus won’t even reach the fifth

station by the due date. (In general, specifying a very high delay penalty would reduce

the incidence of such events.)

Table 18.4 shows the solution in more detail (without rounding or adjusting the due

date to 8:45), based on the stored sample. It lists the departure times in the example.

TABLE 18.4

Scenario 1 2 3 4 5 d

1 0.00 16.60 36.70 47.36 68.88 76.33

2 0.00 11.92 36.70 45.75 65.37 76.33

3 0.00 14.82 48.21 55.80 75.31 90.12

4 0.00 11.32 36.70 48.88 66.24 75.65

5 0.00 21.15 41.92 48.54 86.26 98.86

6 0.00 10.58 36.70 44.68 67.91 75.40

7 0.00 17.57 36.70 44.66 75.45 84.59

8 0.00 9.72 50.21 56.82 69.72 82.93

9 0.00 12.17 36.70 44.66 65.37 74.94

10 0.00 9.72 36.70 44.66 65.37 73.42

Release 0.00 9.72 36.70 44.66 65.37 76.33

STOCHASTIC BALANCE PRINCIPLES FOR ACTIVITY NETWORKS 433

The last row gives the release dates. The shaded elements in the table denote critical

release dates. If we were to increase any release date, the project would take longer

in every scenario for which the release date is shaded. By using a stored sample to

optimize release dates, we essentially represent the processing time distribution by a

discrete sample. As was the case in Example 18.1, this approach leads to more than

one critical release date in some scenarios. For instance, the first scenario contains

three shaded release dates: r1, r3, and r6 (= d). If we trace that scenario, we see that

the bus arrives at station 2 almost 7 minutes after r2 (so r2 cannot be critical), but it

arrives at station 3 precisely at r3 (hence, no waiting occurs). The bus then reaches

stations 4 and 5 after their release dates but arrives at the destination precisely on time.

Thus, both r1 and r3 satisfy the criterion of criticality (increasing either of them would

make the trip longer), and the due date is critical, too. The table contains s + n =

10 + 5 = 15 shaded elements. In general, there may be up to s + n such elements

in the optimal solution. Therefore, if n is not negligible relative to s, the observed

criticalities may seem out of order, as we also saw in Example 18.1. Denote the

frequency at which r j is critical (shaded) by qj, and the question is how to verify that

qj is optimal. If we assume temporarily that r j > E S j , then the criticality is optimal

under two conditions: (1) qj > αj/(α + β); and (2) decreasing r j infinitesimally

reduces qj sufficiently to obtain qj ≤ αj/(α + β). If r j = E S j the first condition is

sufficient. In our instance, the first condition is satisfied because q1 = 0.4 > α1/(α +

β) = 0.23. If we slightly decrease r1 (which, in this case, is allowed to be negative),

it remains critical in two scenarios. (Specifically, these are scenarios 3 and 5, under

which only r1 is critical.) Thus, we obtain q1 = 2/10 ≤ 0.23, so the second condition

is also satisfied. (This test verifies local optimality, which is sufficient because our

model is convex. We caution, however, that the test becomes invalid once we round to

integer release dates. The integer model is not convex and therefore local optimality

is not sufficient. One practical way to avoid this problem is to round the data in

the stored sample to the desired units, in which case the final result will not require

rounding and the optimality conditions are sufficient. That is the approach we took

in Example 18.1.)

� Example 18.4 Consider a project with the network of Figure 18.2, and let the

earliness and tardiness costs be given by αA = 10, αB = 20, αC = 30, αD = 15, αE =

5, and β = 120. The due date is 60. Activity times are based on a stored sample

of 1000 repetitions with expected durations of µA = 15, µB = 36, µC = 18, µD =

25, µE = 12. The stored sample was generated by using lognormal and positively

correlated distributions.

We solved this example with a spreadsheet model. Figure 18.5 depicts the optimal

solution as a predictive Gantt chart, with criticalities qA = 6%, qB = 14.9%, qC = 15%,

qD = 7.5%, qE = 2.5%. The release dates of activities C, D, and E yield the required

optimal criticalities dictated by αj/(α + β). For instance, qC = αC/(α + β) = 30/200 =

15%. However, both A and B have release dates of zero, and their criticalities exceed

their respective αj/(α + β) values. For instance, qB = 14.9% > αB/(α + β) = 10%.

434 SAFE SCHEDULING FOR PROJECTS

1401301201101009080706050403020100

1401301201101009080706050403020100

1401301201101009080706050403020100

1401301201101009080706050403020100

1401301201101009080706050403020100

1401301201101009080706050403020100

A

B

C

D

E

Project

100%

100%

100%

100%

100%

100%

FIGURE 18.5 The optimal solution of Example 18.4 as a predictive Gantt chart.

When combined, the criticalities of these two activities exceed their optimal uncon-

strained targets by (6 − 5)% + (14.9 − 10)% = 5.9%. Accordingly, the project

service level, 54.1%, is 5.9% lower than its unconstrained target of 60%. Thus,

some criticality is shifted from the due date to the constrained release dates. Be-

cause we use a larger sample and continuous processing times, our criticalities match

Theorem 18.1 precisely.

18.2.4 Hierarchical Balancing

One interesting historical difference between the development of CPM and that of

PERT is their fundamental approach to managing large projects. PERT set out to

provide the full detail in one chart and was recommended for modeling thousands of

activities. Although the need for hierarchical management was addressed briefly, the

major thrust involved managing the whole project using one network. CPM, by con-

trast, explicitly assumed that each project activity could be a subproject. In addition,

implicit staging activities might not be represented on the project network at all. For

instance, in Example 18.3, the bus should be prepared for its scheduled departure at

STOCHASTIC BALANCE PRINCIPLES FOR ACTIVITY NETWORKS 435

7:28. The preparation activity must start earlier than that and may be considered a

subproject. However, the project network does not include this preparation, so this

is an implicit subproject. When a subproject hierarchy exists, the release date of an

activity acts as a due date for the implicit subproject. In this subsection, we elaborate

on this role, with a special focus on booking resources that may be necessary for

performing an activity but are released once the activity is complete. Example 18.5

illustrates why the booking of such resources requires special attention.

� Example 18.5 Consider the construction of a floor in a new building. This

subproject requires, among other things, staging reinforced concrete slabs and using

a crane and a truck. Furthermore, it cannot start before the retaining walls of the

lower floor are complete. Let the criticality of the retaining-wall activity be 10%, and

assume that the booking lead time is too long to allow waiting for the completion of

the wall before booking the truck and the crane. Because there is no space for storing

the slabs, they are lifted directly from a truck by the crane. Suppose the rental cost

for the truck is $300/hour, and for the crane, $500/hour. Once complete, the floor is

assessed a holding cost of α = $10/hour. Suppose further that the holding cost of

the full project is $1900/hour. Our task is to determine the optimal criticalities of the

truck and the crane and how to use the release date of the slab-laying operation to

schedule their booking.

In this example, expensive equipment performs an activity whose holding cost is

a fraction of the value of the equipment. However, the equipment is released at the

end of the activity, whereas the holding cost is charged until the project is complete.

If the equipment is staged before it can start, its rental cost is wasted. For this reason,

the activity release date should not be treated as a hard constraint but rather as a guide

that helps us schedule the truck and the crane optimally. It would make no sense to

idle the expensive equipment just to satisfy an arbitrary constraint. Furthermore, the

low holding cost of the floor says nothing about how sensitive the project is to delays

in this activity. The activity itself can have a much higher criticality than that of its

release date because it may be on the critical path even if the critical path starts at an

earlier release date. The most important information about the project comes from

the criticality of the wall, from which we can deduce that the expected time value of

the activity is $1900 × 10% = $190/hour. Adding the floor holding cost, we obtain

$200/hour. We now schedule the truck and the crane such that the probability the truck

will be last is 300/(200 + 300 + 500) = 30%, the crane’s criticality should be 50%,

and that of the retaining wall and materials, 20%. These are, in effect, approximations

of the optimal local criticalities.

We treated the retaining wall and the floor as one composite activity. This approach

is based on the observation that the release date is not a binding constraint but

rather a guide that helps us schedule the truck and the crane with their prescribed

local criticalities. In the numerical search for the release dates that are required,

the distribution of the completion time of the retaining wall is created through the

project’s simulation study. We should also take into account any randomness in the

436 SAFE SCHEDULING FOR PROJECTS

delivery of the purchased materials, perhaps based on historical experience with such

deliveries. Similarly, the truck and the crane release dates are based on their individual

distribution estimates. In effect, we are implementing the ACM for four inputs: about

10% of the project, the slabs, the truck, and the crane. Finally, this solution is quite

likely to delay the floor construction, but in effect, we are balancing 10% of the

project against quite expensive rental charges.

18.3 CRASHING STOCHASTIC ACTIVITIES

Setting active release dates is a form of continuous crashing. We can treat the release

dates as project activities and control the length of these activities at a cost, exactly

as in the CPM crashing model of Chapter 16. If we assume that crashing reduces

only the mean and does not change the variance or the shape of the distribution, we

can solve for the optimal crashing policy and the optimal safety time by adapting

Theorem 18.1. The activity with the lowest cj/qj (where cj is the marginal cost of

crashing the activity by one time unit) is the first candidate to be crashed. If cj/qj

is higher than the time value of the project, cf (where cf = α + β) , then crashing

should stop. As in the deterministic case, it may become necessary to reduce the

planned crashing of an activity that was originally a good candidate for crashing if

its criticality is sufficiently reduced due to other crashing decisions.

The following example demonstrates the risk of a sizable error from assuming

that only the mean is subject to crashing. (In this and the following example, we use

independent exponential processing times to achieve mathematical tractability, but

the principle applies in general.)

� Example 18.6 Consider a project consisting of one activity with an exponential

activity time distribution. Assume that the mean time is µ = 5, the due date is d = 5,

the cost of crashing is c1 = 10, α1 = 1, and the tardiness penalty is β = 19, so (α +

β) = 20. Assume the distribution remains exponential after crashing.

In this case, the due date is fixed, and because the holding cost is small, we have

no incentive to set an active release date. Assume temporarily that crashing does not

change the distribution but just shifts it to the left. That assumption would imply

starting at a negative time. Crashing would cost c1 = 10 per time unit and save

(α + β) = 20 per time unit if tardiness occurs. But the probability of tardiness is

e−1 = 0.368 (yielding a service level of 63.2%), so the savings is 20 × 0.368 = 7.36 <

10 = c1 per time unit. Thus, such crashing cannot be justified economically. Viewed

from a different perspective, the optimal service level would be c1/(α + β) = 0.5,

whereas we already achieve 0.632 without crashing, so crashing cannot be justified.

Furthermore, if we could save money by negative crashing (i.e., increasing µ), then

we might be tempted to examine this option instead. However, the true optimal µ

in this case is 2.98, leading to a total cost of 31.33 and a service level of 0.813.

This high service level is justified because the gain from crashing is higher than with

simple crashing. To follow the necessary calculations formally, the objective function

CRASHING STOCHASTIC ACTIVITIES 437

is given by

Z = c1 (d − µ) + (α + β)q1µ = c1 (d − µ) + (α + β)µ exp (−d/µ)

where q1 is the criticality of the activity, and therefore, for the exponential distribution,

q1 = exp(−d/µ). From the memoryless property, the conditional tardiness is µ, given

that tardiness occurs. Taking the derivative with respect to µ and setting it to zero,

we obtain

c1 = (α + β)

(

1 +
d

µ

)

exp

(

−
d

µ

)

= (α + β)

(

1 +
d

µ

)

q1

q1 =
c1

(α + β)

(

1 +
d

µ

)

That is, we must set µ to the value that adjusts the criticality of activity 1 to the

right-hand side. If we compare this equilibrium condition to the result when crashing

is limited to reducing the mean, q1 = c1/(α + β), we may say that the division by

(1 + d/µ) modifies c1. We refer to (1 + d/µ) as the cost modifier, and because the

modification is by division, a high modifier effectively reduces the crashing cost and

encourages more crashing than would otherwise be justified, thus leading to lower

criticalities and higher service levels. In general, the cost modifier depends on (1)

the rate at which σ j is reduced by crashing; (2) the effect of this reduction on the

final project standard deviation, σ ; and (3) the effect of σ on the expected project

tardiness. Let E(T) denote the expected project tardiness. The cost modifier then has

the form

1 +
dσ j

dµ j

∂σ

∂σ j

∂E(T)

∂σ
(18.8)

To actually calculate the necessary derivatives for a general project structure re-

quires simulation, but if we assume a serial project structure with many activities

and independent processing time distributions, then we may invoke the normal ap-

proximation. We illustrate this analysis with another example involving exponential

processing times, but this time there are many activities in series, so the effect on the

project variance is lower.

� Example 18.7 Consider a project involving 30 exponential activities in series,

such that for the first 10 activities (j = 1, . . ., 10), µj = 10, and for the next 20

activities (j = 11, . . ., 30), µj = 5. Activities remain exponential after crashing and

may be crashed by up to 50% . Let cj = 9.8 + (31 − j)/100; for example, c1 =

10.1, c11 = 10, and c30 = 9.81. Let (α + β) = 20 and d = 150. Our task is to find

the optimal crashing plan. Assume α is sufficiently small to preclude active release

dates.

438 SAFE SCHEDULING FOR PROJECTS

The project distribution is approximately normal by the central limit theorem. If

we choose to crash the cheapest activities, namely, activities 30, 29, . . . , 11 (in that

order), and crash them maximally, we obtain a service level of 50% because after

crashing 20 activities by 2.5 each, the project mean matches the due date and the

normal distribution is symmetric. Consider the crashing costs that are available at this

stage. Activities 30, 29, . . . , 12 have an infinite crashing cost, having reached their

crashing limit. The same applies for activity 11, but in this case, we might notice

that at the moment we stopped crashing it, it still had a crashing cost of 10. If we

ignore the need to modify the crashing costs, it would be optimal to stop crashing

that activity at precisely the same value because the service level now matches c11/

(α + β) = 50%. The next available activity to crash costs 10.01, so it is justified

only if we desire a service level higher than 50%. The total cost associated with the

current solution is 762.9. This crashing plan reduces the variance from 1500 to 1125.

If instead we crash the first 10 activities maximally, and thus pay more for crashing

but reduce the variance to 750, we obtain the same service level, and the objective

function is reduced to 721.26. Therefore, selecting activities to crash based on cj

alone is not optimal. Furthermore, the optimal value is 717.11 and entails a higher

service level. It involves crashing all activities to progressively smaller µi values,

following an arithmetic series with µ1 = 5.326 and µ30 = 4.345. (The maximal

crashing constraints are not tight.) The optimal service level is 57.37%, instead of

50%. Thus, it is very important to consider the variance reduction effect, which in

this case accounts for a savings of 5.5%, and it is also useful to optimize the service

level, which accounts for an additional 0.5%.

If the influence of crashing on activity time distributions is linear, we can incor-

porate crashing decisions in the LP model we presented for optimizing release dates.

When using LP, it is convenient to assume that the stored sample records values for

maximally crashed activity times such that the mean of activity j is µj (which we may

also write as µj(0)) and its standard deviation is σ j (or σ j(0)). Denote the amount of

crashing the mean by −�j. Because we assume that activities are maximally crashed,

this implies increasing the mean by �j. We may also denote the mean after negative

crashing by µj(�j) and the standard deviation by σ j(�j)—that is, µj(�j) = µj + �j.

Let λj be a given constant (which is likely to be between 0 and 1). One proposed

model transforms the cdf of the processing time in such a manner that for any given

probability of completion, the argument is multiplied by (1 + �j/µj)λj, and then the

cdf is shifted to the right by �j(1 − λj). Two important special cases are λj = 0 and

λj = 1. In the former, the transformation consists of shifting the cdf to the right by �j,

and this is the simplest case. In the latter, the coefficient of variation is held constant

(as in Examples 18.5 and 18.6). Selecting λj between 0 and 1 leads to a coefficient

of variation that decreases with the mean (i.e., decreases with negative crashing), yet

the standard deviation increases with the mean. After negative crashing, this trans-

formation yields stochastically larger processing times. Denote the processing time

after negative crashing by pij(�j)—that is, the stored sample consists of pij(0) data.

The desired transformation is obtained by setting

pi j (� j) = pi j (0)(1 + � jλ j/µ j (0)) + � j (1 − λ j) (18.9)

SUMMARY 439

In this equation, pij(�j) is a linear function of the decision variable �j, so we can

use it within a linear program. The model we obtain is then a simple generalization

of the model we presented for setting release dates and can be used to make release

date decisions alongside crashing decisions.

Minimize Z =
(α + β)

s

s
∑

i=1

Ci −

n+1
∑

j=1

α jr j −

n+1
∑

j=1

c j� j (18.10)

Subject to

Ci j ≥ r j + pi j (� j); i = 1, . . . , s, j = 1, . . . , n

Ci j ≥ Cik + pi j (� j); ∀k ∈ P(j), i = 1, . . . , s, j = 1, . . . , n

Ci ≥ d = rn+1

Ci ≥ Cik ; ∀k ∈ P(N), i = 1, . . . , s

As in the special case, this LP formulation is not an efficient solution approach. It

is significant mainly as a demonstration of convexity. A numerical search for the

optimal solution is recommended. As an illustration, we add a crashing option to

Example 18.4.

� Example 18.8 Consider a project with the network of Figure 18.2 with ear-

liness and tardiness costs given by αA = 10, αB = 20, αC = 30, αD = 15, αE = 5,

and β = 120, and with expected durations of µA = 15, µB = 36, µC = 18, µD = 25,

µE = 12. Crashing is possible by up to �A = 3, �B = 6, �C = 4, �D = 5, �E = 2 at

cost rates of cA = 20, cB = 40, cC = 60, cD = 30, and cE = 10. Crashing maintains

the coefficient of variation of the processing time distributions; that is, we use λj =

1 for all activities in Eq. (18.9).

Figure 18.6 depicts the optimal solution as a predictive Gantt chart. Activities A,

D, and E are crashed maximally, whereas activities B and C are crashed partly. The

release dates are adjusted to yield criticalities qA = 5%, qB = 10.5%, qC = 15%,

qD = 7.5%, and qE = 2.5%. Comparing the results to Figure 18.5, we see that activity

A has been crashed sufficiently to reduce its criticality to the target value of αA/(α +

β) = 10/200 = 5%, but activity B still has a release date of zero, and its criticality

exceeds the target of 10% by 0.5%. The total costs of crashing are 7.8% of the total

cost, followed by a savings of 12.4% to yield a net savings of 4.6%.

18.4 SUMMARY

In this chapter, we introduced the stochastic balance approach to scheduling projects

with optimal safety times, and we outlined how the approach can be extended to

hierarchical scheduling problems. The underlying principle behind these applications

is economic balance, but our system is stochastic so we require stochastic economic

balance, or stochastic balance, for short. Stochastic balance, in turn, is associated with

440 SAFE SCHEDULING FOR PROJECTS

100%

100%

100%

100%

100%

100%

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

A

B

C

D

E

Project

FIGURE 18.6 A predictive Gantt chart for Example 18.8.

achieving optimal criticalities. Specifically, balance is achieved when the marginal

cost of providing protection is equal to the marginal benefit. In our particular case, the

benefit is associated with controlling tardiness in the project completion time. This

benefit is gained by reducing the sum of the marginal earliness costs of all activities

plus the cost of tardiness (α + β). The criticality of an activity is the probability it will

cause a tardy completion time. Stochastic balance is achieved when the criticality of

each activity is given by its marginal cost (αj) divided by (α + β). We saw, however,

that if the completion time is constrained, an activity may acquire excessive criticality.

In such cases, we should not delay that activity. We discussed examples showing how

to apply stochastic balance in passenger transportation and in hierarchical systems.

Next, we considered the issue of crashing stochastic activities, thus incorporating the

historical CPM approach into PERT. We showed that stochastic balance principles

can guide such decisions, and we formulated the problem as a linear program. In this

case, however, our decision variables influence not only the criticality but also the

distribution of a delay, given that a delay occurs. In response, we have to modify the

marginal costs to reflect such effects.

EXERCISES 441

At this stage, results have been reported only for single projects. We can view

a job shop as a multiproject environment, but the projects (jobs) in a job shop all

have a very simple structure. Models of stochastic balance in more general multipro-

ject environments remain to be developed. Furthermore, the state of the art involves

sequencing decisions based on deterministic counterpart models, without using in-

formation about variance. That information is used only for setting release dates,

leading to optimal safety times.

REFERENCES

Britney, R.R. (1976). Bayesian point estimation and the PERT scheduling of stochastic activ-

ities, Management Science 22 (9), 938–948.

Elmaghraby, S.E., A.A. Ferreira, and L.V. Tavares (2000). Optimal start times under stochastic

activity durations, International Journal of Production Economics 64, 153–164.

Herroelen, W. and R. Leus (2004). Robust and reactive project scheduling: a review and clas-

sification of procedures, International Journal of Production Research 42 (8), 1599–1620.

Herroelen, W., R. Leus, and E. Demeulemeester (2002). Critical chain project scheduling: do

not oversimplify, Project Management Journal 33 (4), 48–60.

Kumar, A. (1989). Component inventory costs in an assembly problem with uncertain supplier

lead-times, IIE Transactions 21 (2), 112–121.

Ronen, B. and D. Trietsch (1988). A decision support system for planning large projects,

Operations Research 36, 882–890.

Trietsch, D. (1993). Scheduling flights at hub airports, Transportation Research Series B

(Methodology) 27B (2), 133–150.

Trietsch, D. (2005). Why a critical path by any other name would smell less sweet: towards a

holistic approach to PERT/CPM, Project Management Journal 36 (1): 27–36.

Trietsch, D. (2005). The effect of systemic errors on optimal project buffers, International

Journal of Project Management 23, 267–274.

Trietsch, D. (2006). Optimal feeding buffers for projects or batch supply chains by an exact

generalization of the newsvendor model, International Journal of Production Research 44,

627–637.

Van Slyke, R.M. (1963). Monte Carlo methods and the PERT problem, Operations Research

11 (5), 839–860.

Wollmer, R.D. (1985). Critical path planning under uncertainty, Mathematical Programming

Study 25, 164–171.

EXERCISES

18.1. The search procedure used in the chapter to optimize release dates starts with

r L
j + step size (where step size is one unit of the desired time unit),

tests the criticality, and if the criticality is not yet excessive, increases the

release date by increments of 2step size, 4step size, and so on. Once a

release date with an excessive criticality is found, the procedure implements a

442 SAFE SCHEDULING FOR PROJECTS

bisection search within the last section identified. Show that if if r j − r L
j = K ,

then it will take at most O(log K) trials to identify the optimal value in the

given step size units (for the other given release dates).

18.2. Consider the ACM with a large enough due date to avoid constrained release

dates. Suppose we use an algorithm that searches the optimal release dates by

starting at the lower bounds r L
j and adjusting inputs one-by-one to their optimal

criticalities.

a. Show that release dates gradually increase toward their optimal values.

b. Describe a similar approach for projects with a general PERT network

structure. Show how to obtain lower bound values for this case and provide

an argument showing that release dates are monotone increasing in this

case, too. (Hint: The release dates of jobs that succeed activity j are not

equivalent to due dates for activity j, but one of them can serve for the

purpose of calculating reasonable lower bounds.)

18.3. Consider the ACM and the PERT model as in the previous problem, but now

assume that the due date is not large enough to avoid constrained release dates.

Update the previous algorithm. Will the search be easier or more difficult?

18.4. Consider Example 18.1 as analyzed by the small stored sample of Table 18.1.

Suppose now that the due date can be adjusted and a secondary objective is

to minimize it. Find the optimal release dates and due date. What is the total

criticality of the solution?

18.5. Explain why it is impossible to obtain a high project service level without a

sufficiently high due date. Alternatively, explain why, if we wish to have the

project delivered as early as possible, we may have to accept a low service

level. Which release dates tend to be critical in such a case? What is the correct

criticality of other release dates relative to the case where the due date is

delayed sufficiently to obtain the desired service level?

18.6. One way to model a multiproject environment is by generalizing the job shop

model. Each job is a project, and those projects are considered together because

they compete for resources. Beyond that, multiple projects often share activities

or feed each other. One way to model such cases is by combining them to a

single project. However, the essence of a multiproject environment is that each

project has its own completion time. Therefore, each project should also have

its own due date and tardiness penalty. For a given sequence of projects with

known due dates and a given sequence of project activities, consider how the

LP formulation can be used to set release dates for all activities.

a. Consider Example 18.5. Can a hierarchical model be presented as a multiple

project case?

b. Consider Example 18.3, but assume that there are only two destination

stations (so the last three columns in the segment times table are irrelevant)

and that of the 12.2 expected number of passengers who board the bus for

the first segment, 7.1 leave the bus at the first station and 5.1 continue to

EXERCISES 443

the final station. Let d1 denote the due date of the passengers who leave the

bus at station 2, after one segment. Construct an LP model for optimizing

the release dates and d1. Can you optimize d1 as a separate subproblem?

c. In principle, can such LP models include crashing considerations?

d. What is the theoretical significance of such LP formulations? (Hint: Would

you actually use LP to solve such models?)

18.7. Consider Example 18.3 again. In that example, all passengers go to the final

destination. But, in general, bus schedules should also accommodate passengers

who board the bus at station i and depart at station k (k > i). Traditionally,

such schedules (e.g., for trains or for connecting flights) involve just one timing

decision per station: that is, the scheduled arrival time is also the scheduled

departure time. A service gap sufficient to allow passengers to disembark and

embark (and to service the equipment, if necessary) may also be specified.

a. Show that service gaps can be considered part of the next leg travel time

without affecting the optimal solution.

b. Explain why, if we wish to provide a high service level to disembarking

passengers, we must pay by often delaying the vehicle in the station.

c. Suppose that we specify a departure time and an arrival time separately. By

way of notation, let rk denote the scheduled departure time from station k

and let dk denote the due date at that station. Also, let Tk = (Ck − dk)+,

where Ck is the arrival time at station k. For convenience, assume that

the bus departs from station 0 at time 0 (so r0 = d0 = 0). Any departure

delays from that station can be considered part of the travel time of the first

segment. Construct a model for this purpose where release dates and due

dates are decisions.

d. Show that your model is convex. (Hint: Demonstrate convexity by recasting

the model as an LP for any given stored sample.)

APPENDIX A

PRACTICAL PROCESSING
TIME DISTRIBUTIONS

A.1 IMPORTANT PROCESSING TIME DISTRIBUTIONS

Three distributions are prevalent in stochastic scheduling research—the uniform, ex-

ponential, and normal distributions. In addition to these three, we discuss two less

prevalent distributions that may be more important in practice: the lognormal distri-

bution and the Parkinson distribution. In this section, we introduce these distributions

and discuss how to simulate them. Some other distributions are used in the literature,

but our coverage does not require them.

A.1.1 The Uniform Distribution

The uniform distribution describes a random outcome that is equally likely to occur

anywhere between a minimum value a and a maximum value b . We denote the

uniform distribution by U[a, b], where a is the minimum possible realization and b

the maximum possible realization. This distribution has mean µ = (a + b)/2 and

variance σ 2 = (b − a)2/12. An important special case, U[0, 1], can be simulated by

computers very efficiently. For example, in Excel, this is done by the RAND function.

If we wish instead to simulate a uniform random variable on the interval from a to b,

we employ the transformation

u = a + (b − a) rand

where rand is the result of the U[0, 1] simulation.

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

445

446 APPENDIX A: PRACTICAL PROCESSING TIME DISTRIBUTIONS

The uniform distribution is most useful when we wish to study the first-order

effects of stochastic variation—that is, when we want to show the main differences

between deterministic and stochastic models. We often use the uniform distribution

for such purposes, but that does not mean we expect processing times to be uniform

in practice.

A.1.2 The Exponential Distribution

The exponential distribution describes a random outcome (typically a waiting time)

with the property that the event we are awaiting is no more likely to occur when

we have been waiting a long time than when we have been waiting a short time.

The exponential distribution with mean µ is defined by the cumulative distribution

function (cdf)

F(t) = 1 − e−t/µ

where t ≥ 0. The standard deviation of an exponential distribution is always the same

as its mean. Thus, σ = µ. In general, let cv = σ/µ; cv is called the coefficient of

variation, and for the exponential distribution, we have cv = 1. This distribution is

often realistic for estimating the time between machine breakdowns or other randomly

occurring events. In this text, we use the exponential distribution for mathematical

convenience and for developing useful insights, but again, that does not imply that

we expect processing times to be exponential in practice.

The cdf of a continuous random variable transforms it into a U[0, 1] random

variable. For instance, if the realization of an exponential random variable with mean

µ is 2µ, then the cdf of this value is 1 − e−2µ/µ = 1 − e−2 = 0.8647 , and we can

interpret this event as equivalent to a realization of 0.8647 for a U[0, 1] random

variable. Therefore, it is always possible to simulate any continuous random variable

by simulating a U[0, 1] first, thereby obtaining a result (rand) between 0 and 1, and

then finding the value of t for which F(t) = rand. A basic exponential random

variable has µ = 1, in which case F−1(rand) = −ln(1 − rand). We can simulate a

basic exponential random variable using the transformation

x = −ln(1 − rand)

Because 1 − rand is also distributed U[0, 1], an equally valid simulated value is

obtained from the transformation

x = −ln(rand)

For the case of a general exponential random variable, we simply multiply by µ and

use

x = −µ ln(rand)

IMPORTANT PROCESSING TIME DISTRIBUTIONS 447

A.1.3 The Normal Distribution

The normal distribution describes a random outcome that follows the so-called bell

curve. The normal distribution also represents the aggregate influence of a large

number of additive factors. We denote the normal distribution by N (µ, σ 2). If we

set µ = 0 and σ 2 = 1, we obtain the standard normal distribution. We denote the

density of the standard normal random variable by ϕ(z) and its cdf by �(z). Most

stochastic models assume independent processing times. Subject to this assumption,

the sum of many independent small random variables can be approximated by the

normal distribution with mean equal to the sum of the individual means and variance

equal to the sum of the variances. This well-known result is called the central limit

theorem. The independence assumption is required both for the normality and for

making the variance equal to the sum of the variances. We use the normal distribution

with the same caveats that apply to the exponential distribution.

It is not straightforward to simulate a normal random variable by the usual method

because �(z) does not have an analytic inverse. However, utilizing the central limit

theorem, we can simulate a normal random variable as a sum of independent U[0, 1]

random variables. By adding just two U[0, 1] random variables we obtain a random

variable with a triangular distribution, so named because its density function has the

shape of a triangle. In this case, the density is defined between 0 and 2 and the mode is

at 1. By adding three independent U[0, 1] random variables, we observe a bell shape

that begins to resemble the normal. When we use 12 independent U[0, 1] random

variables and subtract 6 from the result, we obtain an excellent approximation of a

standard normal. Transforming the result, z, to a general normal random variable,

say, w , is achieved by

w = zσ + µ

Equivalently,

z = (w − µ)/σ

A.1.4 The Lognormal Distribution

We know from experience that processing time distributions are typically skewed to

the right, and processing times are never negative. The normal distribution, however,

is defined for negative realizations and is symmetric around the mean. In this sense,

the exponential distribution may appear to be more realistic than the normal, but

practical experience suggests that the normal is often a better approximation than

the exponential. Therefore, in our examples, we prefer to use a distribution that is

associated with the normal random variable but has the two desired properties.

Consider a random variable that is obtained not as the sum of many independent

positive small components but rather as their product. If we take the logarithm

of each individual random variable in the product, the sum of these logarithms is

approximately normal by the central limit theorem. The exponent of this sum—that

448 APPENDIX A: PRACTICAL PROCESSING TIME DISTRIBUTIONS

is, the product itself—is strictly positive and skewed to the right, as desired. The

random variable associated with this structure is known as the lognormal distribution.

Suppose we wish to simulate a lognormal random variable, say, X , with mean µ

and standard deviation σ . Let Y be the natural logarithm of X , that is, Y = ln(X);

conversely, X = exp(Y). By definition, Y is distributed normally, so we already know

how to simulate it. If the result of simulating Y is y, then we obtain x = exp(y) as a

simulated X value. But some software platforms (including Excel) require the user

to directly specify the mean and standard deviation of Y (denoted here by m and s),

whereas we have only the mean and standard deviation of X . Then again, once we

find m and s, we might as well simulate Y , and thus obtain X = exp(Y), without

using built-in functions. It is convenient to start by simulating X/µ and then multiply

the result by µ. X/µ is a lognormal random variable with mean µ = 1 and standard

deviation σ = cv . We refer to any lognormal random variable with mean 1 as basic.

Because ln(1) = 0, it can be shown that, for the basic case,

s2 = ln(1 + cv2) m = −s2/2

To multiply by µ, we can add ln(µ) to y before taking the exponent. Therefore, we

can evaluate m and s directly for X from the following relationships:

s2 = ln(1 + σ 2/µ2) m = ln(µ) − s2/2 (A.1)

Using these values, the density function of the lognormal distribution is given by

f (x) =

1

x
√

2π s2
exp

(

− (ln x − m)2

2 s2

)

, if x > 0

0, otherwise

and the mode is equal to exp(m − s2). When a lognormal distribution is given directly

by m and s2, we can use (A.1) to solve for µ and σ 2. Specifically, we obtain

µ = exp(m + s2/2) σ 2 = µ2[exp(s2) − 1] (A.2)

As a numerical example, McKay et al. (1988) observed in a particular complex

shop that the difference between consecutive processing times of identical items

can easily have a ratio of 2 (i.e., the slower item takes twice as long as the faster

one). If we assume a basic lognormal processing time distribution and interpret this

observation as implying that the two fractile values associated with probabilities of

0.1 and 0.9 demonstrate this ratio, then we have cv ≈ 0.27. By (A.1) we then obtain

s = 0.2653 and m = −0.0352. They also noted, however, that setup times are even

less predictable, and by assumption C3 we include setup times in our processing times.

Furthermore, in some cases larger ranges have been observed. For instance, Buzacott

and Shantikumar (1993) report a ratio of 10 for a particular precision machining

operation. This would lead to cv ≈ 0.90, with s = 0.7703 and m = −0.2967.

IMPORTANT PROCESSING TIME DISTRIBUTIONS 449

σ = 1

σ = 0.25

σ = 0.5

σ = 2

0
0 0.5 1 1.5

0.4

0.8

1.2

1.6

2

x

f(x)

2 2.5 3 3.5 4 4.5 5

FIGURE A.1 Comparing the basic lognormal distribution to the exponential.

Figure A.1 depicts the probability density functions of basic lognormal distribu-

tions with cv = 0.25, 0.5, 1, and 2. As the figure demonstrates, a higher cv yields

a more skewed pdf. The figure also includes the pdf of a basic exponential random

variable, for comparison. As the figure demonstrates, when cv is low, the lognormal

distribution is quite similar to the normal—and thus it can substitute for the normal

when it is a better approximation than the exponential. But when the coefficient of

variation is 1, the lognormal is more similar to the exponential (which has cv = 1).

Two special features of the lognormal distribution are relevant. First, the sum of

many independent strictly positive random variables, each with a finite coefficient of

variation, is lognormal in the limit. We refer to this result as the lognormal central

limit theorem. In calculating the parameters of the lognormal approximation of the

sum, we first add up the independent means and variances to obtain the mean and

the variance of the sum, and then apply (A.1). (Compare this property to the regular

central limit theorem, which uses the same mean and variance calculation but does

not require positive random variables. In the limit, however, the lognormal and the

normal approximations of the sum approximate each other.) Furthermore, if we

approximate the sum of few lognormal distributions by a lognormal distribution with

the appropriate mean and standard deviation, the result is a better approximation than

the normal random variable with the same mean and standard deviation. To this end,

if the lognormals are given in terms of m and s2, we must first apply (A.2) to obtain

their means and variances, add them, and finally apply (A.1) to the sums. Second,

suppose that the processing time of an activity is the reciprocal of the capacity

dedicated to the processing, and suppose further that the capacity is lognormal.

The processing time that results is then also lognormal, with the same coefficient of

variation. (This would not be true for any other distribution covered in this appendix.)

A.1.5 The Parkinson Distribution

Parkinson’s Law (due to C. Northcote Parkinson, 1909–1993) states that “work

expands so as to fill the time available for its completion.” There is no law, however,

450 APPENDIX A: PRACTICAL PROCESSING TIME DISTRIBUTIONS

suggesting that work compresses so as never to take more than the time allotted to it.

Suppose then that work is allotted p units of time but it really requires Y , where Y is

a random variable, then the measurable time we can observe, X , is given by

X = max{p, Y }

and we say that X has a Parkinson distribution. Borrowing a term from modern

programming, the parameters of the Parkinson distribution are k ≥ 2 objects and

the random variable is defined as their maximum. In the basic case, k = 2, the first

object is a constant p and the second object is a random variable Y . The value

of p is often agreed upon by negotiation, while Y reflects real randomness. When

processing times are monitored, workers are often concerned that if they report good

performance today it will be the basis of the expected norm tomorrow. As a result,

the Parkinson distribution arises: delays are measurable but earliness is hidden. In

other words, we cannot actually observe Y ; we can only observe X .

Another realistic case occurs when machine repair times need to be included but

only if a breakdown actually took place. The basic Parkinson distribution can be

depicted as “deterministic with a random tail.” For example, if the probability of on-

time completion is 0.9, then with probability 0.9 the reported (and thus observable)

processing time will match the plan; otherwise, it will follow a tail that might be

similar to an exponential distribution or to the tail of a lognormal distribution. In

such an environment, tight processing time estimates yield thick tails and vice versa.

Occasional slight earliness that may occur in such a case (perhaps due to expediting)

can typically be ignored.

Conceptually, specifying a high p can be viewed as a hidden buffer against tardi-

ness. Indeed, it can be shown that the mean of a basic Parkinson random variable is

always higher than the mean of Y but the variance is always lower. In other words,

we are reducing variation by specifying a buffer of capacity. But because we do not

admit it, the buffer is hidden and thus not likely to be optimized or put in the right

place. This phenomenon becomes pronounced when p is relatively large, and thus

the tail is relatively small. Again, this direction increases the predictability of the

system, but at the price of wasted capacity. When the predictability is high enough,

one advantage is that deterministic sequencing models become more relevant. Our

assumption in this text, however, is that the price of wasted capacity is too high. For

that reason, we need stochastic scheduling models that can handle the real underlying

variance of Y without resorting to excessive p estimates and allowing the system to

waste earliness too recklessly. While the use of buffers is necessary and rational, they

should not be hidden and they should not be determined by such a process.

A.2 INCREASING AND DECREASING COMPLETION RATES

Suppose that we start processing a job, and after x time units, it has not been

completed. Consider the distribution of the time remaining to complete the job given

that processing has lasted longer than x . To obtain the conditional density function,

STOCHASTIC DOMINANCE 451

f (t |t > x), we must divide f (t) by [1 − F(x)], the probability that processing did

not finish by x . As a result the area under the conditional density function above

x is 1. Therefore, if δ is an infinitesimal time interval, the probability the job will

complete during the next δ time units is δ × f (t)/[1 − F(t)]. For this reason, the

ratio f (t)/[1 − F(t)] is known as the completion rate. In general, the completion

rate is a function of t , and it may or may not be monotone. If it is monotone

increasing, we refer to the processing time distribution as having an increasing

completion rate (ICR), and if it is monotone decreasing, we refer to the processing

time distribution as having a decreasing completion rate (DCR). If a processing

time distribution is ICR, then its conditional remaining expectation, that is, [E(t |t >

x) − x], is monotone decreasing, which is the case we intuitively expect. (In reliability

theory, completion rates are known as failure rates, so ICR is denoted IFR and DCR is

denoted DFR.)

The uniform and normal distributions exhibit ICR. The exponential distribution

is a boundary case, with constant completion rate. Thus, it lies between the cases

of ICR and DCR. If an exponentially distributed processing time does not complete

during the first x time units, we might want to know the distribution of the remaining

time. Surprisingly, the distribution of the remaining time follows exactly the same

distribution as it did initially. In other words, as long as the job is not yet complete,

the probability it will complete in the next small time interval is constant for an

interval of given length, no matter how much processing has taken place. This feature

is sometimes referred to as the memoryless property.

For nonnegative random variables, constant completion rate and unit coefficient

of variation are related: ICR random variables are associated with coefficients of

variation below 1, and DCR random variables are associated with coefficients of

variation above 1. More precisely, ICR implies low coefficient of variation, but

the converse is only true in an approximate sense (i.e., the completion rate is not

necessarily increasing everywhere), and, similarly, DCR implies high coefficient of

variation whereas the converse is only true in an approximate sense.

Now consider the lognormal and the Parkinson distributions. The lognormal can

be shown to exhibit an increasing completion rate initially, but if processing does

not complete by some threshold (that depends on the parameters) it becomes DCR.

Similarly, the Parkinson is ICR for any processing time below p, but once p is ex-

ceeded there is an immediate increase in the expected remaining processing time. The

behavior thereafter depends on the tail distribution of Y . Thus, these two distributions

exemplify that the completion rate need not be a monotone function.

A.3 STOCHASTIC DOMINANCE

When E(p1) ≤ E(p2), we say that p1 is (weakly) smaller than p2 by expectation.

We also write p1 ≤ex p2. Example 6.5 demonstrates that p1 ≤ex p2 is not suffi-

cient to generalize deterministic dominance rules requiring p1 ≤ p2, because the

worst-case realization of p1 could be larger than that of p2. However, stochastic

ordering relationships exist that preclude a worst-case reversal. We say that one

452 APPENDIX A: PRACTICAL PROCESSING TIME DISTRIBUTIONS

FX

E(X)

FIGURE A.2 Depicting the expected value as an area over the cdf.

random variable, X , is stochastically smaller than another, Y (denoted X ≤st Y), if

Pr{X ≤ t} ≥ Pr{Y ≤ t} for any t . This implies that the cdf of X , FX (t), is at or

above the cdf of Y , FY (t). In other words, FX ≥ FY everywhere. We also refer to this

relationship as stochastic dominance, and if it applies to several random variables,

we say that they are stochastically ordered (because the dominance relationship is

transitive). Stochastic dominance is a strong relationship in the sense that ≤st implies

≤ex. A useful way to see this relationship is by noting that the expected value of a

nonnegative random variable is given by the area captured above its cdf below 1 and

to the right of the origin (see Figure A.2). But if FX ≥ FY , then the area above FX

cannot exceed the area above FY .

The definition of ≤st does not require statistical independence. For example, let

X and Y be two independent and identically distributed (iid) random variables, and

let Z be any nonnegative random variable (including the degenerate case, in which

Z = 0 with certainty). Then X ≤st Y + Z and X ≤st X + Z . The first relationship is

between independent random variables. Note that when Z = 0 with certainty, this im-

plies that independent and identically distributed random variables are stochastically

smaller than each other. But in the second relationship, X and X + Z are statistically

dependent because of a common element shared by the two random variables.

A.4 LINEARLY ASSOCIATED PROCESSING TIMES

When random variables are subject to common causes of variation affecting more

than one of them in the same direction, they are said to be associated (Esary et al.,

1967). More formally, random variables are associated if the correlation between

any positive increasing functions of any two of them is nonnegative. Independent

random variables are associated (weakly), but negatively correlated ones are not.

We need to consider associated processing times because, in practical settings, there

are often many common causes of variation that affect more than one job in the

same direction. For example, if the quality of a particular tool deteriorates, then

those jobs that require it may all take longer to process. Because this applies to

several jobs, the processing times are positively correlated. In general, it is likely that

various causes affect different subsets of jobs in such a way that positive correlation

is introduced among them to various degrees. Furthermore, when processing times

are associated random variables, the completion time variance is higher than for

independent random variables, for all but the first job. For independent random

LINEARLY ASSOCIATED PROCESSING TIMES 453

variables, the variance of a sum equals the sum of the variances. But, by definition,

two associated random variables have a nonnegative covariance, and the variance

of a sum of random variables with a positive covariance is higher than the sum

of the variances. So, in effect, the independence assumption is optimistic for the

variance of a completion time. In a scheduling context, because our penalty functions

are nondecreasing, when two processing times are associated their penalties are

associated. This, in turn, implies that the variance of performance measures that are

based on processing times that are associated random variables is also higher than for

independent processing times. Thus, it is optimistic to ignore positive dependence in

practice.

One way in which association may arise is by adding the same random variable

to two or more independent random variables. Another way is if two or more posi-

tive random variables are multiplied by the same common factor. For example, if a

regular worker may be sick tomorrow, and the replacement worker is 10% slower,

then it would constitute a common factor of 1/0.9 multiplying all processing times.

Therefore, for scheduling purposes today, we must consider tomorrow’s job process-

ing times as positively dependent. Limiting ourselves to linear causes of association,

consider the case where two positive random variables, X1 and X2, are given by

X1 = (R1 + α1S)Q and X2 = (R2 + α2S)Q, where R1, R2, and S are independent

nonnegative random variables; Q is a positive independent random variable; α1 and

α2 are nonnegative scalars. (Because X1, X2 > 0, it follows that if S or α1 = 0 then

R1 > 0, and so on.) If we set S = 0 and Q = 1, then X1 = R1, X2 = R2, and they

are independent by assumption (and thus associated). At the other extreme, if R1

and R2 are 0, then X1 and X2 are proportional (and thus associated). Here Q is a

common factor shared by X1 and X2, whereas S represents any additive element

they may share. Alternatively, we could have modeled S without subjecting it to the

common factor. To construct general scheduling models with this type of association,

we might assume that several common factors exist (generalizing Q), such as work-

ers, tools, weather, and so on. Similarly, we can model multiple common elements

(generalizing S), and let each job incorporate a weighted subset of them. Then each

job is subject to a subset of common factors and a subset of common elements. For

each particular pair of jobs, the product of the common factors in the intersection

of common factors acts as Q, and the intersection of common elements acts as S.

Common factors and elements that are not shared by the two jobs can be incorporated

into R j . Such models, however, would pose a very significant estimation challenge,

and for this reason we often simplify by using just one common factor and up to one

common element with α1 = α2 = 1.

Suppose that a set of random variables is defined by X j = R j Q > 0 for a set of

independent nonnegative R j and an independent positive common factor Q. Then we

say that the members of the set {X j } are linearly associated. In a project-management

setting, Trietsch (2005) shows how to estimate the necessary distributions for this

case. An extended definition includes the common element; that is, X j = (R j + S)Q,

in which case we can say that the members of the set X j are linearly associated

with a common factor and a common element. The following theorem was also

presented—without proof—as Theorem 6.7.

454 APPENDIX A: PRACTICAL PROCESSING TIME DISTRIBUTIONS

� Theorem A.1 Given three positive independent random variables—R1, R2,

and Q—and one nonnegative random variable S, let X1 = (R1 + S)Q and X2 =
(R2 + S)Q. Then X1 ≤ex X2 if and only if R1 ≤ex R2 and X1 ≤st X2 if and only if

R1 ≤st R2.

Proof. For ≤ex (i.e., to show that E(X1) ≤ E(X2) if and only if E(R1) ≤ E(R2)), by

independence, E(X j) = E(Q)E(R j + S), so the theorem holds. For ≤st, let W1 =
R1 + S and W2 = R2 + S. By construction, W1 ≤st W2 if and only if R1 ≤st R2.

Even if S = 0, W1, W2 > 0, so log(W j) is well defined. By the definition of stochastic

dominance and because the log function is monotone, log(W1) ≤st log(W2) if and only

if W1 ≤st W2. Therefore, log(W1) + logQ ≤st log(W2) + logQ (and thus W1 Q ≤st

W2 Q) if and only if R1 ≤st R2.

In scheduling, we focus on completion times. Completion times are typically

composed of sums of processing times and often involve maximum operators (when

we must wait for more than one operation to complete before we can start a new

operation). Furthermore, it may happen that we set release dates for some jobs, in

which case the start time is given by the maximum of the previous completion time

and the release date. For our basic results, however, we assume that no due dates

or release dates exist. Therefore, all processing times are based on sums of random

variables or on maxima of two or more random variables. We now study the effect

of linear association on completion times. Some of our results could be extended to

include a common element, but we omit such details.

To make our results easier to visualize and to simplify the proofs, we imagine a

very large sample that represents reality precisely. In this sample space, we assume

that n columns represent initial independent nonnegative values. One additional

column gives realizations, q, of the positive common factor, Q. We can then add n

additional columns, each representing the product of q and one of the initial columns.

We refer to these last n columns as the adjusted values. By construction, the adjusted

values are linearly associated. In general, we should use the adjusted values for our

scheduling decisions, but we might wonder to what extent we can make the decisions

first and then apply the adjustment. Performing the analysis in this order is always

more convenient because the initial values are independent.

� Theorem A.2 Let X j (j = 1, 2, . . . , n) and Q be (n + 1) independent random

variables, where Q is positive. Then
∑

j Q X j = Q
∑

j X j .

Proof. For every run with realizations x j and q, it does not make a difference if we

add the adjusted columns or adjust the sum of the initial columns.

Corollary A.1 Let X j (j = 1, 2, . . . , n) and Q be (n + 1) independent random

variables, where Q is positive. Then E[
∑

j Q X j] = QE[
∑

j X j].

It is difficult to work with convolutions of dependent random variables such as

Q X j and Q Xk . Fortunately, this result tells us that it is permissible to perform the

LINEARLY ASSOCIATED PROCESSING TIMES 455

convolution of X j and Xk on the initial processing times and then adjust the result

(multiply by Q). Because the initial values are independent and processing times are

positive, we can often use the lognormal (or even the regular) central limit theorem

to obtain a reasonable convolution for the initial values. If Q is lognormal and we use

the lognormal central limit theorem for the convolutions, the product has a lognormal

distribution (because the logarithms of the convolutions and of Q are normal). In

such a case we add the parameters m and s2 of the convolution and of Q to obtain

the corresponding parameters of the product.

� Theorem A.3 Let X j (j = 1, 2, . . . , n) and Q be (n + 1) independent random

variables, where Q is positive. Then min{Q X j } = Q min{X j } and max{Q X j } =
Q max{X j }.

Proof. Because Q is positive, for every run with realizations x j and q, min{qx j }) =
q min{x j } and max{qx j }) = q max{x j }. Hence, it does not matter if we adjust first

or take the minimum (or the maximum) first.

Corollary A.2 Let X j (j = 1, 2, . . . , n) and Q be (n + 1) independent ran-

dom variables, where Q is positive; then E(min{QX j }) = E(Q)E(min{X j }) and

E(max{QX j }) = E(Q)E(max{X j }).

Thus, for any completion time that is obtained by a series of max and convolu-

tion operations, we can implement Theorems A.2 and A.3 serially. The cdf of the

completion time subject to linear association is then given by the initial cdf of the

same completion time adjusted afterwards. Corollaries A.1 and A.2 yield the adjusted

expected completion time. Similar analysis proves the following:

� Theorem A.4 Consider a job shop where all jobs are available for their

initial operation at time zero (i.e., without active release dates). Assume linearly

associated processing times with a common factor element Q. Let C j (s) be the

adjusted completion time of job j under sequence s, and let C ′
j (s) be the initial

completion time under the same sequence, then C j (s) = QC ′
j (s).

For such a shop let s1 and s2 be two sequences in which C j (s j) is the adjusted

completion time under sequence s j and C ′
j (s j) is the respective initial completion

time. By Theorem A.1, if E[C ′
j (s1)] ≥ex E[C ′

j (s2)] then C j (s1) ≥ex C j (s2), and if

C ′
j (s1) ≥st C ′

j (s2) then C j (s1) ≥st C j (s2). The symmetrical result also holds. For safe

scheduling, we are especially interested in identifying stochastic dominance, because

it often suffices to ensure the optimal sequence for safe scheduling as well as for the

stochastic counterpart. But obtaining stochastic dominance for stochastic counterpart

solutions is the exception and not the rule. More generally, typical results available

for stochastic counterpart models remain valid for the linearly associated case. For

such models, however, if we assume (without loss of generality) that E(Q) = µq = 1,

then there is no real difference introduced by linear association. The consequences

of linear association are more important for safe scheduling, however, where we

456 APPENDIX A: PRACTICAL PROCESSING TIME DISTRIBUTIONS

may encounter some difficulties in generalizing all results based on the independence

assumption. The reason is that due dates and release dates that are optimal for the

initial processing times are not likely to remain optimal after adjustment. In other

words, service levels are subject to change. This difficulty would apply even if a

stochastically dominant sequence exists because we still need to adjust our due

dates and release dates. Nevertheless, to study safe scheduling models with linear

association we must first consider the variance in more detail.

� Theorem A.5 Consider a job shop where all jobs are available for their initial

operation at time zero (i.e., without active release dates). Assume linearly associated

processing times with a common factor element Q, such that E(Q) = µq . Let C ′
j (s)

be the initial completion time of job j under sequence s, with mean µs and variance

σ 2
s , and let C j (s) be the adjusted completion time of the job under the same sequence.

Then

V(C j (s)) = E(Q2)σ 2
s + V(Q)µ2

s = E(C ′
j (s)2)V(Q) + µ2

qσ
2
s

Proof. By a fundamental identity, V(C j (s)) = E(C j (s)2) − [E(C j (s))]2 (which is

nonnegative because by Jensen’s inequality E(C j (s)2) ≥ [E(C j (s))]2). Substituting

QC ′
j (s) for C j (s), we obtain V(C j (s)) = E(Q2C ′

j (s)2) − [E(QC ′
j (s))]2. Because Q

and C ′
j (s) are independent, we can also write V(C j (s)) = E(Q2)E(C ′

j (s)2) − µ2
qµ

2
s .

By the same identity we can substitute σ 2
s + µ2

s for E(C ′
j (s)2) and V(Q) + µ2

q for

E(Q2), to obtain V(C j (s)) = µ2
qσ

2
s + V(Q)σ 2

s + V(Q)µ2
s . The two (symmetrical)

results follow by recombining either the first two elements to E(Q2)σ 2
s or the last

two elements to E(C ′
j (s)2)V(Q).

By dividing the interim result obtained in this proof by (µ2
qµ

2
s), we obtain the

following theorem.

� Theorem A.6 Consider a job shop where all jobs are available for their initial

operation at time zero (i.e., without active release dates). Assume linearly associated

processing times with a common factor element Q, such that E(Q) = µq . Let C ′
j (s)

be the initial completion time of job j under sequence s, with mean µs and variance

σ 2
s , and let C j (s) be the adjusted completion time of the job under the same sequence.

Then

V(C j (s))/[E(C j (s))]2 = V(Q)/µ2
q + V(Q)σ 2

s /(µ2
qµ

2
s) + σ 2

s /µ2
s .

Theorem A.6 indicates that the squared coefficient of variation (scv) of the product

exceeds the sum of the scvs of the components, and therefore the coefficient of

variation of the product exceeds that of either component. In our context, the more

important aspect of this observation is that the coefficient of variation of the makespan

cannot be less than that of Q. Henceforth, we assume that Q is normalized so that

µq = 1. We can do so without loss of generality because, for any positive µq ,

LINEARLY ASSOCIATED PROCESSING TIMES 457

QC ′
j (s) = (Q/µq)(C ′

j (s)µq). With µq = 1, Theorem A.5 implies that the variance

of the makespan cannot decrease by incorporating the common factor in the model.

If the means and variances of two makespan distributions are agreeable, they remain

agreeable after multiplication by Q; otherwise, the one with the larger mean may

also acquire a larger variance due to the element V(Q)µ2
s .

� Example A.1 Suppose the initial makespans of two sequences have normal

distributions with µ1 = 100, µ2 = 104, σ1 = 10, and σ2 = 6. Suppose further that

the common factor, Q, is lognormal with mean 1 and scv = 0.25. Let the objective

be minimizing d + γ E(T) with γ = 2.624. Compare the two sequences before and

after adjustment.

For details on calculating the optimal due date for the objective of minimizing

d + γ E(T), see Appendix B. The makespan, Cmax, is a completion time and thus

subject to Theorems A.5 and A.6. We selected γ = 2.624 because, for the normal

distribution, it renders the value of a unit of standard deviation equal to that of a unit

of mean—as implied by Eq. (B.17). Since µ2 − µ1 = 4 = σ1 − σ2, it follows that

the two initial sequences are equivalent. Therefore, for slightly smaller γ , we should

prefer sequence s1, and for higher γ , we should prefer s2. For γ = 2.624, they yield

different optimal due dates, however; namely, d1 = 100 + 0.3026 × 10 = 103.03

and d2 = 104 + 0.3026 × 6 = 105.82 (where 0.3026σ is the optimal safety time for

γ = 2.624 with a normal distribution). The two initial distributions intersect each

other at 110, which happens to be higher than both initial due dates and corresponds

to SL = 0.841. Sequence s2 has the more attractive distribution beyond x0 = 110

and above SL0 = 0.841. To evaluate the situation after the adjustment, we utilize

the observations that a normal variable with small cv can be approximated by a

lognormal variable and that the product of two lognormal variables is lognormal.

From Section A.1.4, a lognormal random variable is given by the exponent of a

core normal random variable with variance ln(1 + scv) and mean ln µ − ln(1 +
scv)/2. Calculating scv for the initial distributions is straightforward and for the

respective products we can then utilize Theorem A.6. We performed the necessary

calculations on an Excel spreadsheet and found that, after adjustment, s1 has the more

attractive cdf below SL = �(6.15) > 0.999999999; that is, in a practical sense s1

is stochastically dominant! Thus, for γ > 2.624, the initial optimal sequence should

be rejected. We prefer the sequence with the higher variance for high γ , which

may be counterintuitive. But notice that the variance of the initial sequence in this

example is negligible relative to the variance induced by Q, and therefore the mean

becomes the crucial issue. To complete the analysis, we now determine the optimal

due date. Because the lognormal is the exponent of a core normal and the exponent

function is monotone increasing, it follows that we can determine the value of the

core that leads to our desired service level (namely, (γ − 1)/γ) and the optimal

due date is the exponent of this core value. The correct core is obtained by the

mean plus 0.3026 standard deviation; by the spreadsheet results for the mean and

standard deviation of the core, we get 4.489 + 0.3026 × 0.4531 = 4.635 (for s1).

458 APPENDIX A: PRACTICAL PROCESSING TIME DISTRIBUTIONS

After taking the exponent we obtain d1 = 103.00. Similar calculations for s2 are

4.531 + 0.3026 × 0.4588 = 4.675, with d2 = exp(4.675) = 107.25. It is interesting

to note that d1 is (slightly) smaller than its initial value whereas d2 is larger. Various

aspects of this example prove the next three propositions.

Proposition A.1 The initial optimal sequence for minimizing d + γ E(T) is not

identical to the optimal adjusted sequence.

Proposition A.2 The initial optimal sequence for minimizing d subject to a service

level constraint SL ≥ b is not identical to the optimal adjusted sequence.

Proposition A.3 Consider two intersecting cdfs of initial completion times and the

cdfs of the same completion times after adjustment. The adjusted cdfs may intersect

at a different service level than do the initial cdfs.

For makespan minimization, safe scheduling models based on initial (independent)

processing times, it often happens in the limit as n → ∞ that the coefficient of

variation of the makespan, cv , becomes negligible. If cv → 0, however, then the

optimal safety time becomes negligible relative to the expected makespan. This is

a highly suspicious result that most practitioners would not and should not accept.

Indeed, it is implausible that the true coefficient of variation tends to zero as n → ∞,

so including linear association in the model is one way to improve the practicality of

a model. Thus, on the one hand, linear association makes the model more realistic

and yet tractable. On the other hand, setting due dates and release dates must not

be performed before the adjustment. A reasonable heuristic is to solve the stochastic

counterpart on the initial values, apply the adjustment to the result, and only then set

due dates and release dates.

REFERENCES

Buzacott, J.A. and J.G. Shantikumar (1993). Stochastic Models of Manufacturing Systems,

Prentice Hall, Englewood Cliffs, NJ.

Esary, J.D., F. Proschan, and D.W. Walkup (1967). Association of random variables, with

applications, Annals of Mathematical Statistics 38, 1466–1474.

McKay, K.N., F.R. Safayeni, and J.A. Buzacott (1988). Job-shop scheduling theory: what is

relevant, Interfaces 18, 84–90.

Ross, S.M. (1996). Stochastic Processes, 2nd ed., Wiley, Hoboken, NJ.

Trietsch, D. (2005). The effect of systemic errors on optimal project buffers, International

Journal of Project Management 23, 267–274.

APPENDIX B

THE CRITICAL RATIO RULE

B.1 A BASIC TRADE-OFF PROBLEM

A common planning problem involves trading off surplus and shortage outcomes in

an uncertain environment. Conceptually, we make a decision and then await the value

of an uncertain outcome. However, due to uncontrollable factors, the outcome may

turn out to be larger or smaller than what we decide. If the outcome is larger than the

value we decide, we incur costs due to underestimation; if the outcome is smaller,

we incur costs due to overestimation. Faced with these possibilities, we look for a

decision that navigates optimally between the two kinds of risks.

In a scheduling environment, the uncertain outcome is often the completion time

of a particular job (or a set of jobs). The job’s due date, assuming that we can choose

it, plays the role of our decision. If the job completes before the due date, then we

incur earliness costs, and if the job completes after the due date, we incur tardiness

costs. Unless our decisions are perfect, we can anticipate incurring one cost or the

other, and our objective is to minimize the expected cost.

The use of expected cost as an objective function derives from the theory of

decision making under risk and uncertainty. If we interpret the scheduling scenario

literally, as a repeating operational problem, then an appropriate objective is the

long-run cost, which is optimized by minimizing the expected cost corresponding to

each decision.

To analyze the decision problem, we let d denote the due date (the decision

variable), and we let C denote the completion time. (We use capital letters to represent

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

459

460 APPENDIX B: THE CRITICAL RATIO RULE

random variables.) Then the difference between completion time and due date is

(C − d). If this quantity is negative, we incur an earliness cost equal to α(d − C);

if this quantity is positive, we incur a tardiness cost equal to β(C − d). A key

assumption, therefore, is that the earliness and tardiness costs are linear. We can write

the total cost as follows:

G(C, d) = α max {0, d − C} + β max{0, C − d} (B.1)

The objective is to minimize expected cost. In light of (B.1), the criterion becomes

E[G(C, d)] = αE[max{0, d − C}] + βE[max{0, C − d}] = aE(E) + βE(T)

(B.2)

In reference to Chapter 7, we should clarify that for a given distribution, and

for γ > 1, there is no conceptual difference between minimizing d + γ E(T) and

minimizing αE(E) + βE(T). To justify this comment, we start by writing

d + γ E(T) = d + E(T) + (γ − 1)E(T) = d + E(T) + βE(T) (B.3)

where we have substituted β for (γ − 1). Next, note that

d = C + max{0, (d − C)} − max{0, (C − d)}

Because d is not random, E(d) = d, and after taking the expectation of the expression

above, we can write

d = E(C) + E[max{0, (d − C)}] − E[max{0, (C − d)}] = E(C) + E(E) − E(T)

(B.4)

By slight rearrangement (B.4) implies that

d − E(C) = E(E) − E(T)

That is, the safety time, d − E(C), is the difference between the expected earliness

and the expected tardiness. Therefore, a positive safety time implies that the expected

earliness exceeds the expected tardiness. Substituting (B.4) into (B.3), we obtain

d + E(T) + βE(T) = E(C) + E(E) + βE(T)

E(C) is constant, so for the specific choice α = 1 and β = (γ − 1) and any

distribution, the optimal due date is the same value that minimizes αE(E) + βE(T).

In what follows, we first examine the implications of (B.2). Then, for convenience

and to provide a slightly different perspective, we obtain the main results again for

the d + γ E(T) objective.

OPTIMAL POLICY FOR DISCRETE PROBABILITY MODELS 461

B.2 OPTIMAL POLICY FOR DISCRETE PROBABILITY MODELS

The mechanics of optimizing expected cost differ slightly according to whether we

use a discrete model or a continuous model to describe random outcomes. There is

no essential difference in the conclusions drawn from these two cases, but treating

them separately serves to illustrate how we might apply different mathematical

assumptions in the analysis.

In the discrete case, we use pt as the probability distribution function (pdf) for

completion time. Specifically, we define pt as the probability that the job will complete

at time t . (For convenience, we assume that t is integer.)

pt = Pr{C = t}

Also, we define the cumulative distribution function (cdf) for completion time to be

F(t) = Pr{C ≤ t}

Stated in words, F(t) represents the probability that the job completes on or before

time t .

Suppose that we choose a due date of d, and then we observe a completion time of

C . In retrospect, we can ask whether it would be desirable to have increased d by one

initially. An increase in d would have been desirable if the job finished late, but not if

it finished early or on time. Specifically, a unit increase in d would have reduced tardi-

ness cost if the job finished late—that is, if C > d. The probability of this outcome can

be written as [1 − F(d)]. On the other hand, a unit increase in d would have increased

earliness cost if the job finished early or on time, the probability of which is F(d).

Thus, there would be a unit increase in earliness cost with probability F(d) and a

unit reduction in tardiness cost with probability [1 − F(d)]. The expected incremental

cost can be expressed as

αF(d) − β[1 − F(d)]

It follows that we should increase the due date as long as this expected incremental

cost drops; that is, while

αF(d) − β[1 − F(d)] < 0

Rearranging terms in this condition, we can equivalently write

F(d) <
β

α + β
(B.5)

Because F(d) is the probability that the job will finish by its due date, it is also called

the service level (SL). The ratio β/(α + β) is often called the critical ratio. Our

condition in (B.5) implies that we should continue to increase the due date as long as

462 APPENDIX B: THE CRITICAL RATIO RULE

d*

βα

β

+

FIGURE B.1 Finding d∗ for a discrete distribution.

SL does not exceed the critical ratio. Or, to state it another way, we should increase

d until we reach the first value for which SL = F(d) ≥ β/(α+β). This value of d is

known as the critical fractile.

Conceptually, we can determine the optimal due date from a graph of the cdf. For a

discrete probability model, the cdf is a step function that takes on values between 0 and

1 (see Figure B.1). The critical ratio β/(α + β) is a number between 0 and 1, and we

can plot it on the vertical axis of the graph. Then the optimal due date, d∗, is simply the

first d value for which the cdf equals or exceeds this height, as sketched in Figure B.1.

As an example, suppose we have a unit earliness cost of α = 20 and a unit

tardiness cost of β = 80. Suppose also that the completion time follows the discrete

distribution shown below:

Time t 12 13 14 15 16 17 18

Probability pt 0.05 0.10 0.30 0.25 0.15 0.10 0.05

cdf F(t) 0.05 0.15 0.45 0.70 0.85 0.95 1.00

In this case the ratio β/(α + β) equals 80/(20 + 80), or 0.8, and the optimal due date

is the first level at which the cumulative distribution function equals or exceeds this

value. Therefore, the optimal due date is 16, because

F(15) < 0.8 ≤ F(16)

We can also calculate the expected cost for the optimal decision from Eq. (B.2). For

the discrete case, this calculation typically involves multiplying each cost outcome

by its probability and taking the sum of those products.

E[G(C, d)] = αE[max{0, d − C}] + βE[max{0, C − d}]

= 20[4 × 0.05 + 3 × 0.1 + 2 × 0.3 + 1 × 0.25]

+ 80[1 × 0.1 + 2 × 0.05]

= 20[1.35] + 80[.2]

= 43

OPTIMAL POLICY FOR CONTINUOUS PROBABILITY MODELS 463

For an additional perspective, note that the area below the cdf to the left of the due date

(16) is given by 4 × 0.05 + 3 × 0.1 + 2 × 0.3 + 1 × 0.25 = 1.35, whereas the area

above the cdf and below 1 to the right of the due date is given by 1 × 0.1 + 2 × 0.05 =

0.2. These values are also the expected earliness and the expected tardiness. Indeed, it

is always possible to depict E(E) and E(T) as such areas. This observation can also be

used to justify the critical fractile result graphically as follows: suppose we postpone

the due date by a small amount, �, measured from the optimal value we calculated.

This will increase the expected earliness area by at least �β/(α + β) and decrease

the expected tardiness area by at most �α /(α + β). The result is an expected loss

(by increased earliness) of at least �αβ/(α + β) and an expected gain (by decreased

tardiness) of at most �αβ/(α + β), so on balance, such a postponement should not

be entertained. By a symmetric argument, the due date should not be reduced, either.

B.3 A SPECIAL DISCRETE CASE: EQUALLY LIKELY OUTCOMES

A special case arises when the probability distribution contains N equally likely

outcomes. In other words, each outcome has probability 1/N, so the kth smallest

outcome corresponds to

F(k) = k/N

In this case, we can determine the optimal due date by choosing the kth smallest

outcome, where k is the first value for which k/N ≥β/(α +β). We can denote this value

by k = ⌈Nβ / (α + β)⌉, where ⌈x⌉ is the smallest integer that is at least as large as x.

As an example, suppose we have a unit earliness cost of α = 20 and a unit tardiness

cost of β = 80. Suppose also that a simulation experiment produced the following

completion times in nine independent runs.

Experiment 1 2 3 4 5 6 7 8 9

Outcome 27 41 38 33 45 48 35 39 36

Here, we have β/(α + β) = 0.8. The first value of k for which k/9 ≥ 0.8 is k = 8, so

we choose the 8th smallest outcome, or 45, as the due date.

B.4 OPTIMAL POLICY FOR CONTINUOUS PROBABILITY MODELS

Sometimes it is convenient to treat the probability model as continuous rather than

discrete. In the continuous case, we describe the processing time with a continuous

probability model, by specifying either its cdf, F(x), or its probability density function,

f (x). The argument used earlier involving incremental costs and revenues still holds,

but in this case, because the cdf is continuous, there will always be a value of d for

which (B.5) can be satisfied as an equation. However, we can develop a more formal

derivation.

464 APPENDIX B: THE CRITICAL RATIO RULE

d*

βα

β

+

FIGURE B.2 Finding d∗ for a continuous distribution.

We can think about the objective function in (B.2) as a function of the decision d.

Thus, we define H(d) = E[G(C, d)], so that

H (d) = αE[max{0, d − C}] + βE[max{0, C − d}]

To find the optimal due date, we take the derivative with respect to d and set it

equal to zero. This step is made easier if we swap the order of expectation and

differentiation, as shown below, where we use the notation δ(x) = 1 if x > 0 and

δ(x) = 0 otherwise.

∂ H (d)/∂d = αE[∂/∂d(max{0, d − C})] + βE[∂/∂d(max{0, C − d})]

= αE[δ(d − C)] + βE[δ(C − d)](−1)

= α Pr{C < d} − β Pr{C > d}

= αF(d) − β[1 − F(d)]

Setting this expression equal to zero yields the continuous form of (B.5):

F(d∗) =
β

α + β
(B.6)

In graphical terms, we solve Eq. (B.6) by plotting the cdf and locating the point at

which its height equals β/(α + β), as shown in Figure B.2. Again, E(E) and E(T) are

depicted by the areas below F to the left of the due date (earliness) and above F (but

below 1) to the right of the due date (tardiness).

The critical ratio, β/(α + β), has a general interpretation that arises in settings other

than scheduling, as long as there are costs for overestimation and underestimation.

A statement of the optimality condition that covers both the discrete and continuous

cases is the following:

Set the due date equal to the smallest value x for which F(x) ≥ β / (α + β).

OPTIMAL POLICY FOR CONTINUOUS PROBABILITY MODELS 465

As an example of the continuous case, suppose we have a unit earliness cost of

α = 20 and a unit tardiness cost of β = 80, and suppose that the completion time

follows a uniform distribution from 100 to 300. In other words, mean completion

time is 200 but completion is equally likely to occur anywhere between 100 and 300.

More formally, the cdf takes the form

F(x) = 0.005(x − 100), 100 ≤ x ≤ 300

Here the critical ratio is equal to 80/(80 + 20) or 0.8. The procedure illustrated in

Figure B.2 calls for this ratio to be set equal to F(d∗). We have

0.005(d∗ − 100) = 0.8

which allows us to solve for d∗ and obtain

d∗ = 260

The uniform distribution characterizes completion as occurring in the range 200 ±

100, with equally likely outcomes in this range. However, the optimal due date does

not lie at the center of this interval. In this case, the relative values of unit earliness

cost and unit tardiness cost dictate a due date above the mean of the distribution.

If we think of the quantity 200 as a naı̈ve forecast, and the tolerance of ±100 as

representing possible forecast error, we can see that it is logical to make a decision

different from the naı̈ve forecast because of the cost structure that applies to forecast

errors. Specifically, errors that create earliness penalties cost 20 per unit. On the other

hand, errors that create tardiness penalties cost 80 per unit. Because the opportunity

cost is greater for tardiness than for earliness, it makes sense to bias the decision

toward protecting against the risk of tardiness. We achieve this result by choosing a

due date that is greater than the naı̈ve forecast.

For any nonnegative distribution with mean µ and standard deviation σ , we can

write a specific form for H(d).

H (d) = α

d
∫

0

(d − x) f (x) dx + β

∞
∫

d

(x − d) f (x) dx

= αd

d
∫

0

f (x) dx − α

d
∫

0

x f (x) dx + β

∞
∫

d

x f (x) dx − βd

∞
∫

d

f (x) dx

Because the random variable is nonnegative,

d
∫

0

x f (x) dx +

∞
∫

d

x f (x) dx = µ (B.7)

466 APPENDIX B: THE CRITICAL RATIO RULE

So we can write

H (d) = αd F(d) − α

d
∫

0

x f (x) dx + β

µ −

d
∫

0

x f (x) dx

 − βd[1 − F(d)]

= (α + β)d F(d) + βµ − (α + β)

d
∫

0

x f (x) dx − βd

and rearranging terms, we obtain

H (d) = (α + β)d F(d) − βd + βµ − (α + β)

d
∫

0

x f (x) dx (B.8)

The formula in (B.8) represents the expected cost for any choice of a due date d.

We could set the derivative of H(d) equal to zero to find the optimal due date,

but we already know that (B.6) applies in general. Thus, the optimal due date d∗

satisfies

F(d∗) =
β

α + β

When we substitute d∗ for d in (B.8), the first and second terms cancel, leaving us

with the formula for the optimal expected cost:

H (d∗) = βµ − (α + β)

d
∫

0

x f (x) dx = (α + β)

∞
∫

d

x f (x) dx − αµ (B.9)

where we use (B.7) once again to demonstrate the equality of the two versions.

Finally, we could also have represented H(d) by

H (d) = α

d
∫

0

F(x) dx + β

∞
∫

d

(1 − F(x)) dx

This version corresponds to depicting the expected earliness and tardiness as areas

below the cdf to the left of the due date for earliness and above the cdf but below 1

to the right of the due date for tardiness.

A SPECIAL CONTINUOUS CASE: THE NORMAL DISTRIBUTION 467

B.5 A SPECIAL CONTINUOUS CASE: THE NORMAL DISTRIBUTION

A special, but important, continuous case is that of the normal distribution, where

we assume a negligible probability that the random variable will be negative. It is

also convenient to use the standard normal distribution (mean of zero and standard

deviation of 1) for certain calculations. In our context, z represents the transformed

completion time, z = (x − µ)/σ . For the standard normal, we denote the probability

density function by ϕ(z) and the cdf by 	(z). The derivative of ϕ(z) is −zϕ(z), and

this observation is the key to evaluating (B.7) or (B.9). Let k = (d − µ) / σ be the

transformed due date, so that d = µ + kσ . Thus, the safety time is kσ (where k is

not necessarily positive). If z > k, the completion time exceeds the due date, and

tardiness occurs. Let k∗ denote the optimal k. From (B.6),

	 (k∗) =
β

α + β
(B.10)

Operationally, we compute the critical ratio and use normal tables to determine k∗

from (B.10). Then we set d∗ = µ + σk∗. Equivalently, we can write d∗ = µ +

σ	−1[β/(α + β)].

For the normal random variable, Eq. (B.8) and (B.9) can be evaluated using

calculus. If we assume the probability of negative realizations is negligible, we

obtain the following approximation:

d
∫

0

x f (x) dx ≈

d
∫

−∞

x f (x) dx = µ	(k) − σϕ (k) (B.11)

Substituting this formula into (B.9), and using (B.10), we obtain

H (d∗) = (α + β)σϕ (k∗) (B.12)

If we are interested in the value of H(d) for a nonoptimal choice of d = µ + σk, then

we proceed from Eq. (B.8):

H (d) = (α + β)d	(k) − β(d − µ) − (α + β)[µ	(k) − σϕ (k)]

When we substitute d = µ + kσ , we obtain

H (d) = ασk	(k) − βσk[1 − 	(k)] + (α + β)σϕ (k) (B.13)

By similar analysis, the expected tardiness is given by

E(T) = σ [ϕ (k) − k	 (−k)] (B.14)

468 APPENDIX B: THE CRITICAL RATIO RULE

where 	(−k) = 1 − 	(k). The expected earliness is obtained by

E(E) = σ [ϕ (k) + k	 (k)] (B.15)

We can verify, for consistency, that Eq. (B.13) takes the form

H (d) = αE(E) + βE(T)

If we set k = 0 in (B.14) and (B.15), which is equivalent to setting d = µ, we

obtain

H (µ) = (α + β)σϕ (0)

This result is very similar to (B.12) but this form holds for H(d) only for the special

values k = 0 or k = k∗. Furthermore, as ϕ(0) is the maximal possible value of ϕ(k),

we can say that the benefit of using the optimal safety time relative to not using safety

time is a relative reduction of (ϕ(0) − ϕ(k∗)) / ϕ(0) in the expected E/T penalty. This

benefit is zero for α = β but exceeds 50% when max{β / α, α / β} > 7.365.

In Chapter 11, we use a variation on this type of analysis in the formula for

E(min{X, Y}) = E(X − max{X − Y , 0}) = E(X) − E(W+), where W = X − Y. If X

and Y are normally distributed, then W is normally distributed with mean µ = µx −

µy and variance σ 2 = σ x
2 + σ y

2. E[W+] is given by the following definite integral:

∞
∫

0

wϕ

(

w − µ

σ

)

dw

Let u = w/σ , so that dw = σdu. For convenience, let z = µ/σ . Then our integral

becomes

σ

∞
∫

0

uϕ (u − z) du

Next, let v = u − z, so that du = dv and the lower limit of integration corresponds to

v = −z. The integral is now transformed to

σ

∞
∫

−z

(v + z) ϕ (v) dv = σ

∞
∫

−z

vϕ (v) dv + σ z

∞
∫

−z

ϕ (v) dv

CALCULATING d + γ E(T) FOR THE NORMAL DISTRIBUTION 469

Adapting (B.11), with µ = 0, we obtain

σ

∞
∫

−z

vϕ (v) dv = σϕ (z) and σ z

∞
∫

−z

ϕ (v) dv = σ z	 (z)

Thus, we have E[W+] = σ [ϕ(z) + z	(z)], and we can write

E(min{X, Y }) = E(X) − E(W +) = µx − σ [ϕ (z) + z	 (z)] (B.16)

B.6 CALCULATING d + γ E(T) FOR THE NORMAL DISTRIBUTION

We return to a consideration of the specific objective function H(d) = d + γ E(T)

and derive the formula for its optimal value. As before, let k = (d − µ) / σ be the

transformed due date, where µ is the mean of the normal distribution that describes

completion time and σ is its standard deviation. The critical ratio in this case is given

by (B.10),

	 (k∗) =
γ − 1

γ

which can also be written as 1 − 	(k∗) = 1/γ or as γ = 1/	(−k∗). Thus, the formula

for mean tardiness is

E(T) =

∞
∫

d

(x − d) f (x) dx =

∞
∫

d

x f (x) dx − d[1 − 	 (k)]

Taking the optimal due date as d∗ = µ + k∗σ , resolving the integral as we did earlier,

and substituting for the term in brackets, we obtain

E(T) = µ − [µ	 (k∗) − σϕ (k∗)] − d∗/γ

Thus, we can combine the two components of the objective and write

H (d∗) = d∗ + γ E(T) = µ + k∗σ + γ [µ − µ	 (k∗) + σϕ (k∗)] − γ (d∗/γ)

H (d∗) = µ + k∗σ + γ [µ − µ	 (k∗)] + γ σϕ (k∗) − γ (d∗/γ)

H (d∗) = d∗ + γµ[1 − 	 (k∗)] + γ σϕ (k∗) − d∗

H (d∗) = µ + γ σϕ (k∗) = µ + σϕ (k∗)/	 (−k∗) (B.17)

From (B.17) it is clear that for the objective d + γ E(T), a makespan that has both

a lower mean and a lower variance is dominant. (This result holds for any convex

increasing objective.) Nonetheless, for two normal distributions, if one has lower

470 APPENDIX B: THE CRITICAL RATIO RULE

mean and lower variance than the other, it is still not stochastically dominant in the

ordinary sense. The only case in which one normal variable is stochastically smaller

than another, independent, normal variable occurs when their variances are equal.

Otherwise, the cdfs of two normal distributions with different means and standard

deviations always intersect each other exactly once. It may happen, however, that

this intersection yields stochastic dominance for all practical purposes. For example,

when the intersection is for a negative argument, then by definition it occurs outside

the range of our interest and may be ignored.

REFERENCE

Lau, H.-S. (1997). Simple formulas for the expected costs in the newsboy problem: an educa-

tional note, European Journal of Operational Research 100, 557–561.

APPENDIX C

INTEGER PROGRAMMING MODELS
FOR SEQUENCING

C.1 INTRODUCTION

Much of the scheduling literature focuses on solutions obtained with algorithms that

exploit special structure. However, for small- and medium-sized problems, solutions

might be obtained readily by using an integer programming (IP) approach. IP formu-

lations represent a precise algebraic statement of the problem, and solutions can be

obtained using commercially available optimization software, possibly even “student

versions” of the software. Although our coverage in this book emphasizes the insights

obtained from analyzing scheduling problems, and the conversion of those insights

into specialized solution techniques, we should not lose sight of the possibilities

represented by IP approaches. In this appendix, we give an overview of IP mod-

els for the single-machine problem and the permutation flow shop problem, which

are both problems of finding the best sequence. For the purposes of illustration, we

build optimization models for minimizing total tardiness, but the approach to other

regular measures tends to be quite similar. For the flow shop model, we cover both

the makespan objective and the total tardiness objective.

IP models for sequencing problems were originally devised and tested starting

around 1960. At the time, the development of IP was in its early stages. The hardware

and software capabilities of that era limited IP solutions to rather small scheduling

problems. In fact, articles on the topic were more focused on calibrating IP techniques

than on solving scheduling problems. Unfortunately, the current literature contains

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

471

472 APPENDIX C: INTEGER PROGRAMMING MODELS FOR SEQUENCING

very little research that can guide us to the most productive use of IP for solving real

scheduling problems. For that reason, we cover some alternative approaches.

C.2 THE SINGLE-MACHINE MODEL

We look first at formulating the single-machine sequencing model, which is a building

block for more complicated problems involving sequencing decisions. We present

three distinct ways of formulating the sequencing problem using IP. These three ap-

proaches are distinguished by the type of binary variable that captures the sequencing

decision. Other formulations exist, but they tend to be hybrid combinations of these

three, or elaborations based on detailed computational considerations.

C.2.1 Sequence-Position Decisions

First, we have the sequence-position variable, proposed by Wagner (1959). Let

xik = 1, if job i is assigned to the kth position in sequence

= 0, otherwise

For a set of sequence-position variables to be feasible, we require the constraints of

an assignment model:

n∑

i=1

xik = 1, for all positions k

n∑

k=1

xik = 1, for all jobs i

To construct an objective function, we define the variable tk as the tardiness of job k.

We can write the following definitional constraint in the model:

n∑

i=1

pi

k∑

u=1

xiu −

n∑

i=1

di xik ≤ tk, for all positions k

The left-hand side subtracts the due date of the kth job from the cumulative processing

time for the first k jobs. The tardiness variable on the right-hand side is assumed to

be nonnegative in the formulation, and it will be advantageous for this variable to be

as small as possible. Thus, it will take on the value of zero when the corresponding

job finishes before its due date. Otherwise, it will track the tardiness of the kth job.

Our objective function becomes

Minimize

n∑

k=1

tk

THE SINGLE-MACHINE MODEL 473

C.2.2 Precedence Decisions

An alternative approach relies on precedence variables, introduced by Manne

(1960). Let

yi j = 1, if job i is scheduled before j in sequence

= 0, otherwise

It is sufficient to define these variables only for i < j because y j i = 1 − yi j and

because the “diagonal” elements yi i are not needed. In addition, let s j denote the

start time of job j , and as above, let t j denote the tardiness of job j . For any pair of

jobs i and j , either j follows i or i follows j , so either si + pi ≤ s j or s j + p j ≤ si .

These are called disjunctive constraints, meaning that one or the other must hold

for a solution to be feasible. Using precedence variables, the pair of disjunctive

constraints between jobs i and j can be written in linear form as follows:

si + pi ≤ s j + M(1 − yi j), for all jobs i < j

s j + p j ≤ si + Myi j , for all jobs i < j

Here, M denotes a large positive constant such as the sum of all the processing

times. Finally, we track the tardiness value by introducing the following constraint:

t j ≥ s j + p j − d j , for all jobs j

For our current objective function, because t j is nonnegative, and because we

ultimately try to minimize its value, the constraint ensures that t j = (s j + p j − d j)
+.

C.2.3 Time-Indexed Decisions

A third approach is based on time-indexed variables, introduced in a slightly different

form by Bowman (1959) and Pritsker et al. (1969).

x j t = 1, if job j starts in period t (i.e., at the beginning of period t)

= 0, otherwise

In the time-indexed model, we view time as discrete and scheduled events as tak-

ing place in individual time periods. Deterministic scheduling models often assume

integer processing times, in which case the set of schedules allowed by this formula-

tion is dominant. In the single-machine sequencing model, the length of the schedule

is T =
∑n

j=1 p j . The parameter T is a key part of the model. We also let S j t denote

the set of start times s j for which job j would be in process in period t . For the

474 APPENDIX C: INTEGER PROGRAMMING MODELS FOR SEQUENCING

time-indexed variables to be feasible, we require

T −p j +1∑

t=1

x j t = 1, for all jobs j

n∑

j=1

∑

s∈S j t

x js =

n∑

j=1

t∑

s=t−p(j)+1

x js ≤ 1, for all time periods t = 1, 2, . . . , T

The objective function uses coefficients c j t , representing the contribution to the

objective function from job j if its processing begins at time t . For the tardiness

objective, c j t = (t + p j − 1 − d j)
+
, for t ≤ T − p j + 1. Our objective becomes

Minimize

n∑

j=1

T −p j +1∑

t=1

c j t x j t

Unlike the other formulations, the size of the time-indexed formulation depends

on the total processing time. Suppose we assume that the average processing time is

50. If the problem contains 20 jobs, the makespan will be about T = 1000. A 20-job

problem would therefore lead to a formulation containing roughly 1020 constraints

and 20,000 variables, all of which are binary. Obviously, the time-indexed formulation

can lead to models with a very large number of variables; however, it may be efficient

in other respects. Table C.1 compares the formulation sizes for job sets of 10, 20, and

30 jobs, assuming an average processing time of 50.

TABLE C.1 Size of the IP Formulation for Various Numbers of Jobs

Jobs

Decisions 10 20 30

Sequence-position decisions

Constraints 30 60 90

Variables 110 420 930

Integer variables 100 400 900

Precedence decisions

Constraints 100 400 900

Variables 65 230 495

Integer variables 45 190 435

Time-indexed decisions

Constraints 510 1020 1530

Variables 5000 20000 45000

Integer variables 5000 20000 45000

THE FLOW SHOP MODEL 475

C.3 THE FLOW SHOP MODEL

For the flow shop, we focus on the makespan objective because that problem receives

most of the attention in the literature. Two IP formulations of the flow shop model

are of interest. The first uses sequence-position variables xik as in the single-machine

model along with two additional variable types:

Ik j = idle interval on machine k prior to the start of the job in sequence position j .

Hk j = idle time for the job in sequence position j after finishing on machine k.

Starting at the completion of the job in position j on machine k, we can measure the

time until the start of the job in position (j + 1) on machine (k + 1) in two ways.

First, we can add the idle interval on machine k prior to the start of the job in sequence

position (j + 1), the processing time on machine k of the job in sequence position

(j + 1), and the idle time for the job in sequence position (j + 1) after finishing on

machine k. This is the sum of three terms,

Ik, j+1 +

n∑

i=1

pki xi, j+1 + Hk, j+1

As an alternative, we can add the idle time for the job in sequence position j

after finishing on machine k, the processing time on machine (k + 1) of the job in

sequence position j , and the idle interval on machine (k + 1) prior to the start of the

job in sequence position (j + 1). This is also the sum of three terms,

Hk, j +

n∑

i=1

pk+1,i xi, j + Ik+1, j+1

Thus, one set of constraints in the model must assure that these two sums are identi-

cal, or

Ik, j+1 +

n∑

i=1

pki xi, j+1 + Hk, j+1 − Hk j −

n∑

i=1

pk+1,i xi j − Ik+1, j+1 = 0

which applies for all sequence positions 1 ≤ j ≤ n − 1 and all machines 1 ≤ k ≤

m − 1. A special version of this equation applies for the first job:

Ik1 +

n∑

i=1

pki xi1 + Hk1 − Ik+1,1 = 0, for all machines 1 ≤ k ≤ m − 1

476 APPENDIX C: INTEGER PROGRAMMING MODELS FOR SEQUENCING

When the objective is to minimize the makespan, we can write

Minimize

n∑

i=1

pmi +

n∑

j=1

Imj

The first summation, representing the total processing time required on the last

machine, is simply a constant, so to minimize the makespan, we must minimize∑n
j=1 Imj .

Other measures of performance can also be captured in the model. For example,

to calculate the tardiness of job j , we use a multimachine analogy of the expression

in the single-machine model:

n∑

i=1

pmi

k∑

u=1

xiu +

k∑

j=1

Imj −

n∑

i=1

di xik ≤ tk, for all positions k

The alternative formulation uses precedence variables and disjunctive constraints

as in the single-machine model, but the latter must be repeated for each machine.

ski + pki ≤ sk j + M(1 − yi j), for all jobs i < j, and for all machines k

sk j + pk j ≤ ski + Myi j , for all jobs i < j, and for all machines k

In addition, we need constraints for the start times of a job on successive machines:

sk j + pk j ≤ sk+1, j , for all jobs j, and for all machines k < m

To represent the makespan objective, we introduce the variable w and require that,

for the last machine, w ≥ smj + pmj for all jobs j . Then the objective is simply to

minimize w .

Briefly, other measures of performance can be formulated based on the knowledge

that the completion time of job j is smj + pmj . Thus, for example, we can introduce

the tardiness variable t j along with the constraint

smj − t j = d j − pmj , for all jobs j

Then the total tardiness objective can be expressed as
∑n

j=1 t j .

Limited computational work suggests that the sequence-position model is com-

putationally more efficient than the precedence model. This result is based on tests

by Tseng et al. (2004) on sample makespan problems containing up to nine jobs and

nine machines.

REFERENCES 477

REFERENCES

Blazewicz, J., M. Dror, and J. Weglarz (1991). Mathematical programming formulations for

machine scheduling: a survey, European Journal of Operational Research 51, 283–300.

Bowman, E.H. (1959). The schedule-sequencing problem, Operations Research 7, 621–624.

Giglio, R.J. and Wagner, H.M. (1964). Approximate solutions to the three-machine scheduling

problem, Operations Research 12, 305–324.

Manne, A.S. (1960). On the job shop scheduling problem, Operations Research 8, 219–223.

Pritsker, A.A.B., L.J. Watters, and P.M.Wolfe (1969). Multi-project scheduling with limited

resources: a zero–one programming approach, Management Science 16, 93–108.

Tseng, F.T., E.F. Stafford Jr., and J.N.D. Gupta (2004). An empirical analysis of integer

programming formulations for the permutation flowshop, Omega 32, 285–293.

Wagner, H.M. (1959). An integer linear programming model for machine scheduling, Naval

Research Logistics Quarterly 6, 131–140.

NAME INDEX

Aarts, E.H.L., 81, 347

Adams, J., 346

Ahmadi, J.H., 321

Ahmadi, R.H., 196, 321

Ahmed, M., 105

Akker, J.M., 161

Albers, S., 321

Anderson, E.J., 321, 322, 370

Applegate, D.L., 196

Armstrong, R., 105

Bagchi, U., 105, 196

Baker, K.R., 8, 9, 31, 55, 81, 105, 161, 162, 196,

222, 249, 297, 298, 370, 371

Balas, E., 346

Balut, S.J., 161

Benli, O.S., 298

Berry, W.L., 371

Bertrand, J.W.M., 30, 31, 81, 360, 370,

371

Bixby, R.E., 196

Blackstone, J.H., 105, 346, 371

Blazewicz, J., 346, 477

Bowman, E.H., 477

Britney, R.R., 441

Brucker, P., 321

Bruno, J., 321

Burns, F., 248

Buss, A.H., 298

Buzacott, J.A., 458

Cai, X., 161

Campbell, H.G., 242, 248

Carlier, J., 196, 338, 346

Carroll, D.C., 360, 371

Chandra, R., 196

Chandru, V., 321

Chang, J.H., 297

Chang, Y., 105

Chen, J., 297

Cheng, T.C.E., 105, 222

Chiu, H.N., 297

Chowdhury, I.G., 371

Chu, C., 196

Chvatal, V., 196

Clark, C.E., 268, 394, 395

Coffman, E.G., 7, 9, 222, 321

Conway, R.W., 7, 9, 222, 346, 354–356, 360, 370,

371

Cook, W.J., 196

Cunningham, A.A., 268

Dannenbring, D., 248

Dasu, S., 321

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

479

480 NAME INDEX

Dauzere-Peres, S., 346

Davis, E.W., 415

De, P., 105

Della Croce, F., 55

Demeulemeester, E., 415, 441

Dharan, B.G., 197

Dobson, G., 222, 321

Dodin, B., 161, 268

Domschke, W., 346

Dooley, K.J., 371

Downey, P., 321

Dror, M., 477

Dudek, R.A., 242, 248

Dutta, S.K., 268

Eastman, W.L., 223

Eilon, S., 371

Elmaghraby, S.E., 31, 55, 394, 441

Elsayed, E.A., 223

Elvers, D.A., 360, 371

Emmons, H., 55

Enscore, E., 248

Esary, J.D., 134, 452, 458

Even, S., 223

Farn, C.I., 371

Fazar, W., 395

Ferreira, A.A., 441

Fleszar, K., 415

Florian, M., 197

Fredendall, L.D., 162

French, S., 7, 9

Friesen, D.K., 223

Fry, T.D., 105, 371

Fulkerson, D.R., 394

Gapp, W., 196

Garey, M.R., 6, 9, 222

Gavett, J.W., 196

Gelatt, C.D., 81

Gere, W.S., 360, 371

Ghosh, J., 105

Giffler, B., 347

Giglio, R.J., 477

Gilmore, P.C., 245, 248

Gimple, M., 321

Glass, C.A., 297

Glover, F., 81

Golenko-Ginzburg, D., 347

Gomory, R.E., 245, 248

Goyal, S.K., 298

Graham, R.L., 222, 223

Grosso, A., 55

Gupta, J.N.D., 297, 321, 477

Gutjahr, W.J., 134

Hall, N., 105

Ham, I., 248

Hartmann, S., 415

Hassin, R., 105

Hayya, J.C., 360, 361, 362, 371

Hellmayr, A., 134

Herroelen, W., 415, 441

Hindi, K., 415

Hodgson, T.J., 134, 196

Hogg, G.L., 346, 371

Hoogeveen, J.A., 161

Hu, T.C., 223

Ibaraki, T., 162, 196

Ignall, E., 248

Ikura, Y., 321

Isaacs, I.M., 223

Iskander, W., 347, 371

Jia, D.F., 297

John, T.C., 196

Johnson, D.S., 6, 9, 222, 230

Johnson, S.M., 248, 268

Jonker, R., 196

Kahneman, D., 394, 395

Kamburowski, J., 268

Kanet, J.J., 81, 105, 360–362, 371

Kao, T.Y., 223

Karel, C., 184, 197

Karg, R., 196

Karmarkar, U.S., 321

Kelley, J.E., 394, 415

Keren, B., 347

Kesler, S., 347

Kirkpatrick, S., 81

Kise, H., 162, 196

Kolisch, R., 415

Kropp, D.H., 298

Ku, P.S., 268

Kubiak, W., 105

Kulonda, D.J., 298

Kumar, A., 441

Lageweg, B.J., 55, 62, 81, 196, 248

Lai, T.C., 248

Lam, S., 223

Landsman, Z., 347

Langston, M.A., 223

Laporte, G., 196

NAME INDEX 481

Laslo, Z., 347

Lasserre, J., 346

Lau, H-S., 470

Lawler, E.L., 54, 55, 197

Lee, C.Y., 223, 321, 322

Lenstra, J.K., 55, 62, 81, 196, 248, 347

Leus, R., 441

Levy, F.K., 394

Li, X., 81

Little, J.D.C., 184, 197

Lockett, A.G., 371

Louveaux, F.V., 196

MacCrimmon, K.R., 394

Magazine, M.J., 321, 322

Makino, T., 268

Malcolm, D.G., 395

Mankekar, D.S., 196

Manne, A.S., 477

Markland, R.E., 371

Martin-Vega, L.A., 322

Mason, A.J., 321, 322

Massey, J.D., 223

Maxwell, W.L., 7, 9, 31, 222, 346, 371

McKay, K.N., 458

McMahon, G., 197

McNaughton, R., 223

McRoberts, K.L., 371

Mercure, H., 196

Merten, A.G., 215, 222

Miller, L.W., 7, 9, 222, 346, 371

Mine, H., 196

Mitten, L.G., 55, 196, 248

Miyazaki, S., 360, 371

Monma, C.L., 197, 248, 322

Moore, J.M., 31, 134

Morton, T.E., 7, 9, 81, 197, 415

Muhlemann, A.P., 360, 371

Mukhopadhyay, S.K., 105

Murty, K.G., 184, 197

Muth, J.F., 7, 9, 415

Nawaz, M., 248

Niu, S.C., 268

Nowicki, E., 347

Nyirenda, J.C., 370

Osman, I.H., 248

Pai, A.R., 371

Palmer, D.S., 248

Panwalkar, S.S., 248, 347, 371

Patterson, J.H., 415

Pentico, D.W., 7, 9, 81, 415

Pesch, E., 346

Pflug, G.Ch., 134

Philipoom, P.R., 371

Phillips, D.T., 346, 371

Pinedo, M., 7, 9, 268

Pinson, E., 346

Portmann, M.C., 196

Portougal, V., 162, 197, 223, 248, 268

Posner, M., 105

Potts, C.N., 81, 197, 248, 297, 298, 322

Pritsker, A.A.B., 415, 473, 477

Proschan, F., 134, 458

Pyke, D.F., 297

Rachamadugu, R.M.V., 81

Raghavachari, M., 105

Rao, V., 371

Rau, J.G., 21, 31, 55

Reeves, C.R., 248

Rinnooy Kan, A.H.G., 55, 62, 81, 196, 248

Ronen, B., 441

Rooker, J., 248

Root, J.G., 223

Rosebloom, J.H., 395

Ross, S.M., 134, 458

Rothkopf, M.H., 223

Rummel, J.L., 321

Ryavec, C.A., 394

Safayeni, F.R., 458

Santos, C., 321, 322

Schrage, L.E., 54, 55, 248, 415

Scott, J.L., 248

Scudder, G.D., 105

Sen, A., 298

Sethi, R., 223, 321

Sethi, S., 105

Shani, M., 105

Shantikumar, J.G., 458

Shwimer, J., 55

Sidney, J.B., 197

Sin, C.C.S., 222

Smith, M.L., 242, 248

Smith, W.E., 24, 31

Smits, A.J.M., 249

Smunt, T.L., 298

Smutnicki, C., 347

Soroush, H.M., 162

Stafford, E.F. Jr., 477

Steiner, G., 297

Su, Z., 196

Sullivan, R., 105

482 NAME INDEX

Sundararaghavan, P., 105

Sweeny, D.W., 184, 197

Szendrovits, A.Z., 298

Szwarc, W., 54, 55, 105, 249

Taillard, E., 249

Talwar, P.P., 268

Tang, C.S., 321

Taube, L.R., 360, 371

Tavares, L.V., 441

Thompson, G.L., 7, 9, 196, 347, 415

Topaloglu, E., 298

Trietsch, D., 9, 134, 161, 162, 197, 268, 298, 441

Truscott, W.G., 298

Tseng, F.T., 477

Tversky, A., 394, 395

Uzsoy, R., 321, 322

Van Laarhoven, P.J.M., 81, 347

Van Slyke, R.M., 395, 441

Van Wassenhove, L.N., 81

Van Wassenhove, L.W., 322

Vecchi, M.P., 81

Vig, M.M., 371

Volgenant, T., 196

Wagner, H.M., 477

Walkup, D.W., 134, 458

Watters, L.J., 415, 477

Weeks, J.K., 360, 371

Weglarz, J., 477

Wells, C., 105

Wiest, J.D., 394, 415

Wismer, D.A., 249

Wolfe, P.M., 415, 477

Wollmer, R.D., 441

Woolam, C.R., 248

Woolsey, R.E., 394, 395

Wu, Y.B., 196

Yannakakis, M., 321

Yano, C.A., 162

Zawack, D., 346

Zhou, S., 161

SUBJECT INDEX

Active schedule, 331–337, 345, 399, 409–410,

414. See also Nondelay schedule

Active subproblem, 50

Activity network. See Network model; Project

scheduling; Series-parallel precedence

structure

Activity-on-arc (AOA) network. See Network

model, activity

Activity-on-node (AON) network. See Network

model, activity

Adjacent pairwise interchange (API), 17–18,

36–37

for Johnson’s rule, 232–234

for the E/T problem, 89

for the family scheduling problem,

302–303

for the F-problem with precedence constraints,

175

for the F-problem, 20–21

for the Lmax-problem, 21–22

for the T -problem, 25–28

in batch processing, 302–303, 319

in neighborhood search, 66–69, 342–345,

411–412

in stochastic scheduling, 126, 145

modified, 411–412

within blocks, 342–345

Adjacent Pairwise Interchange (API) Heuristic,

254–257, 262, 265–267

Adjusting procedure (mechanism), 333

Agreeable parameters, 25–26

and nonsimultaneous arrivals, 173–174

and related jobs, 175

in the dynamic U -problem, 174

in the stochastic flow shop problem, 266–267

in the stochastic T -problem, 126

in the stochastic U -problem, 155–156

in the T -problem, 25–26

Alldifferent constraint, 78, 131

Allocation decision, 4–6, 31, 200–201, 213,

219–222, 301, 311, 372, 381, 409

Allowance per operation (A/OPN) rule, 359, 362,

365–366

Anticipated work in next queue (AWINQ) rule,

352–353

AOA (activity-on-arrow). See Network model,

activity

AON (activity-on-node). See Network model,

activity

API Heuristic. See Adjacent Pairwise Interchange

Heuristic

API. See Adjacent pairwise interchange

Assembly coordination model (ACM), 420–426,

429, 436

Principles of Sequencing and Scheduling By Kenneth R. Baker and Dan Trietsch
Copyright C© 2009 John Wiley & Sons, Inc.

483

484 SUBJECT INDEX

Assembly tree (intree), 208

Assignment problem, 188

Association, stochastic, 124–127, 452–453

linear, 125–127, 154–156, 190, 261–262, 268,

418, 452–458

Asymptotic optimality, 148–149, 205, 208, 217,

222, 238, 257–258, 260–261, 267

Availability

batch, 285, 301, 309–313, 321

item, 285, 309–310

Backtracking, 51, 186

Batch

availability. See Availability, batch

flow. See Availability, batch

processing model, 301, 313–321

Beta distribution, 387–389, 392–393, 418

Block, 101–103, 150–151, 169–170, 172–174,

330, 342–345, 411–412

Blocking. See Flow shop

Booking resources. See Hierarchical balance

Bottleneck (critical) machine, 10, 166, 239–241,

295, 338–342. See also Shifting bottleneck

procedure

Branch and bound, 47–54, 57–58, 63, 133, 195,

321

and the parallel-machine model, 202

for the burn-in model, 320

for the dynamic Cmax-problem, 170. 172

for the dynamic Lmax-problem, 170, 172

for the dynamic T -problem, 173

for the E/T -problem, 103–104

for the flow shop makespan problem, 237–241

for the job shop problem, 336–342

for the resource-constrained project scheduling

problem, 401–404, 407, 414

for the stochastic E(max{g})-problem, 121

for the T -problem, 48–53

for the traveling salesperson problem,

184–189

Buffer

hidden, 450

of capacity, 450

project, 429. See also Safety time; Stochastic

balance

time. See Safety time

Burn-in model, 318–320

Bus scheduling problem. See Passenger

transportation

Campbell, Dudek, and Smith (CDS) algorithm,

242–243, 248

Capacity, effect on stochastic processing time,

450

Central limit theorem, 149, 192, 386, 438, 447,

449, 455. See also Lognormal central limit

theorem

Chain, 178–181, 195, 211–212, 330, 379

Closest unvisited city algorithm, 189–190,

246

Cmax-problem. See Maximum completion time

Coefficient of variation (cv), 262, 423, 338–439,

446, 449, 451, 456, 458

squared (scv), 262, 456–457

Complete enumeration, 41, 47, 148, 205. See also

Implicit enumeration

Completion rate

decreasing (DCR), 218, 450–451

increasing (ICR), 218, 222, 450–451

Complexity theory, 6. See also NP-hard

Composite bound, 402

Composite job, 302–303

CON due date rule, 29–30, 174, 361–362,

364

Connectivity, 342–343, 345

Construction heuristic procedure, 61–63, 80.

See also Priority rule

parallel, 408–409, 413

serial, 408–410, 413

Contiguity constraint, 178

Convexity

and positive Jensen gap, 122, 389

in setting due dates and release dates, 151.

See also Convexity of the PSB model

LP model as proof of, 295, 429, 433, 439

of the consistent sublot problem, 295

of the PSB model, 427, 429, 433

Correlation. See Stochastic dependence

Crashing (time/cost trade-off)

deterministic, 381–385

stochastic, 436–440

Critical activity, 379–382, 390–393. See also

Criticality

Critical fractile, 142–144, 146, 149, 260, 459–470.

See also Critical ratio

Critical machine. See Bottleneck machine

Critical path, 209, 222, 330, 342, 345, 379, 389,

393, 398, 420, 422, 427, 435

calculations, 377–380, 406, 411

nominal, 386, 388–390, 392

Critical path method (CPM), 372, 376–385,

393–394, 399, 404–405, 410, 414, 434,

436, 440. See also Program evaluation and

review technique

Critical ratio, 420, 423–425, 432, 461–467, 469.

See also Critical fractile

priority dispatching rule. See Priority rule

Critical sublot, 275–276, 279, 294

SUBJECT INDEX 485

Criticality (index), 391–392, 420, 422–425, 429,

433–434, 440. See also Project scheduling,

stochastic balance

local, 435. See also Hierarchical balance

DCR. See Completion rate, decreasing

Decomposition tree. See Series-parallel

precedence structure

Delivery time, 169–170, 338–339

Delta priority rule, 413

Dense schedule, 263–265, 267

Deterministic counterpart, 109, 115–117, 119,

122–123, 127–128, 132–133

of the parallel-machine makespan problem,

218–220

of the PERT model, 386, 390–391, 441

of the stochastic E/T problem, 147–150

of the stochastic flow shop problem, 251–254,

256–259, 261–262, 267

of the stochastic Lmax-problem, 122

of the stochastic Tmax-problem, 122

of the stochastic T -problem, 123

of the stochastic traveling salesperson problem,

190, 195

DFR (decreasing failure rate). See Completion

rate, decreasing

Discrete processor, 313–314, 320

Disjunctive arc, 329–330, 338–343

Disjunctive constraint, 473, 476

Dispatching, 58–64, 80, 104

in the dynamic job shop, 349–350, 352–370

in the dynamic single-machine model, 168–169,

172–173, 189, 195

in the flow shop with blocking, 247

in the job shop, 333

in the parallel-machine model, 202, 205, 208,

214, 216, 219–222

in the resource-constrained project scheduling

problem, 408–410, 414

with priority rules, 336–337, 346, 408, 410,

411–414

Dominance property, 43–47, 49–50, 54, 181.

See also Dominant set

for early/tardy problems, 88

for flow shop problems, 228

for lot streaming problems, 274, 287, 296

for the burn-in model, 318–321

in stochastic sequencing, 120, 123–127, 133,

262

Dominance relationship, 265, 274, 364, 367, 469

Dominant set, 14, 88, 473

in the E/T problem, 88–92, 94, 99–101

in the flow shop problem, 229, 238, 244–245,

247

in the job shop problem, 328, 331, 333, 345

in the restricted version of the E/T problem, 94,

99

with nonsimultaneous arrivals, 167–168

Due date, 11–12, 21–29, 87, 109, 358, 419.

See also Family due date; Operation due

date

as decision, 28–31, 87, 93–94, 99, 101, 258–261

in safe scheduling, 138–152, 220–221,

457–458

in the dynamic job shop, 361

common, 87–101, 104, 141–143, 149, 193–194

distinct, 101–104, 143–149

modified. See Modified due date

project, 386, 420–436

tight, 29–30, 138–145

Dummy activity, 375–376, 426

Dynamic programming, 37–42, 53–54, 57–58,

121, 133, 181, 320–321

and stochastic scheduling, 121, 123, 133, 157

and the parallel-machine model, 202, 214, 222

computer implementation, 41–42, 45–47

for the E/T problem, 95, 100

for the F-problem with batch availability,

311–312

for the F-problem with batch processing and

dynamic arrivals, 317–318

for the F-problem with general precedence

structure, 181

for the Fw-problem in family scheduling, 303

for the Lmax-problem in family scheduling, 306

for the T -problem, 39–40, 43–46

for the traveling salesperson problem, 183–184

for the U -problem, 41

Dynamic job shop model, 337, 349–370

conditional mean tardiness (CMT), 360, 369

mean flowtime, 349, 354–357, 369–370

mean tardiness (MT), 349, 360–370

proportion of jobs tardy (PT), 357, 360–361,

363–365, 368–369. See also Service level

Dynamic arrivals. See Nonsimultaneous arrivals

Earliest due date (EDD) rule, 21–22, 102, 104,

132, 358–361

and related jobs, 176

and stochastic feasibility, 152–156

and the late finish time priority, 408, 413

and the Lmax-problem, 21–22, 120

and the Lmax-problem with batch processing,

314

and the stochastic T -problem, 126–127

and the stochastic U -problem, 158. See also

Stochastic feasibility

and the T -problem, 26, 28–29, 61, 63

486 SUBJECT INDEX

Earliest due date (EDD) rule (Continued)

and the Tmax-problem, 22, 31, 36, 120

and the U -problem, 24

as a priority dispatching rule, 353, 360, 365

dynamic adaptation, 168, 171

in biased random sampling, 66

in family scheduling, 301, 304–305

in Smith’s rule, 23–24

in stochastic scheduling, 109, 115–117

nondelay implementation, 171–173

Earliest release date (ERD) rule, 169, 174, 314

as a priority dispatching rule, 353–354

Earliness/Tardiness (E/T) problem, 86–105.

See also Due date, common and distinct

in project scheduling, deterministic, 419–420

in project scheduling, stochastic, 420–436.

See also Stochastic balance

restricted version, 88, 92–99

stochastic counterpart, 145–151, 161, 468

unrestricted version, 88–94, 97–98, 100–101

with job-dependent costs, 100–103

with quadratic costs, 99–100

Early event time (ET), 377–380, 384

Early finish time (EF), 377, 400, 403

Early start schedule, 405–407

Early start time (ES), 377, 400–406, 419,

427–428

Elite solutions, 345

Economic balance, stochastic. See Stochastic

balance

Elimination, 49–51, 186

Enhanced neighborhood, 343–345

ERD. See Earliest release date

Error bound, 203, 205

Evolutionary Solver, 75–79, 127, 131, 134, 158

Excel, 75–79, 127–132, 445, 448, 457

Exponential distribution, 218–220, 252–257, 260,

262, 267–268, 362, 446–447, 449–451

completion rate (processing rate), 218,

252–253

computer simulation, 446

in examples, 219–220, 253, 257, 436–437

memoryless property, 437, 451

F-problem. See Total flowtime

Family due date, 305

Family scheduling model, 300–309

Feasibility

check (stochastic), 154

constraint, 4, 384

stochastic, 138–140, 152, 154–156

First Come First Served (FCFS) rule, 336, 348,

353–357, 363, 365, 368

First fit decreasing (FFD) procedure, 207

First Off First On (FOFO) rule, 173, 352

First-only-empty (FOE) algorithm, 314–315

Float, 379–381

free, 380

independent, 380

safety, 380

total, 380

Flow allowance, 29, 358–359, 361, 363–367, 369

Flow shop, 225–248, 272–273, 295–296, 306, 309,

315, 321, 325–327, 333, 351, 398, 418

2-machine, 230–235

3-machine, 236–237

m-machine, 236–247

no wait, 245–247

ordered, 237, 243–244, 274, 294

stochastic, 251–267

with blocking, 244–245, 247

Flowtime, 12–13, 15–21, 30, 109, 113–114, 116.

See also Total flowtime; Total weighted

flowtime

and inventory, 15–16, 19–21, 86, 354

mean. See Dynamic job shop model

Full-batch schedule, 314–315, 317

Fundamental partition. See Lot streaming

Fw-problem. See Total weighted flowtime

Gantt chart, 2–3, 16, 293, 408

in the job shop problem, 327–328, 331, 333

predictive, 153, 432–434, 439

Genetic algorithm, 74–76, 345. See also

Evolutionary Solver

Gilmore and Gomory algorithm, 245

Global left shift, 331

Global optimum, 68–70, 427, 429

Greedy procedure, 61, 80

for the traveling salesperson problem, 189

for the Tw-problem, 62–64, 69

Group technology, 271, 301–306, 308–309, 313,

320

Head-body-tail (HBT) problem, 169–172

in the shifting bottleneck procedure, 338–341,

346

Heuristic procedure (heuristic), 4–8, 48, 57–81,

100

for single-machine problems, 57–81

for stochastic scheduling, 133–134, 141,

145–149, 152, 158, 162, 192, 221, 251,

254–257, 262, 265–268

for the dynamic F-problem, 173

for the family scheduling problem, 320

for the flow shop makespan problem, 241–243,

247–248, 251, 254–257, 262, 265–268

for the job shop problem, 333, 336–346

SUBJECT INDEX 487

for the lot streaming problem, 295

for the parallel-machine Fw-problem, 215–218

for the parallel-machine makespan problem,

202, 205, 207–208

for the resource-constrained project scheduling

problem, 400, 407–414

for the restricted version of the E/T problem,

95–96, 99

for the traveling salesperson problem, 189–190

Hierarchical balance, 434–436. See also

Stochastic balance

ICR (increasing completion rate). See Completion

rate

IFR (increasing failure rate). See Completion rate

Implicit (curtailed) enumeration, 41, 47–48, 53,

205, 414

Implicit subproject, 434–435

Inserted idle time, 14, 101–104, 109. See also

Active schedule

in lower bound calculations, 239

in the dynamic single-machine model, 166–169,

195

in the flow shop problem, 227

in the job shop problem, 328

in the stochastic E/T problem, 149–152, 161

Insertion procedure, 61, 66, 80

for the flow shop problem, 236, 243

for the T -problem, 62

for the traveling salesperson problem, 189–190

for the Tw-problem, 62–63, 69

Integer programming (IP), 273, 279, 285, 414,

432, 471–477

Interdictive graph, 389–390, 427

Inventory, 15–16, 19–21, 86, 271, 354. See also

Flowtime

safety stock (as analogue of safety time), 137,

160

Item availability. See Availability, item

Jensen gap, 122, 219, 251, 257–258, 262–265,

267–268, 389, 393

Job shop, 3, 8, 261, 268, 325–346, 398, 418

closed, 351

dynamic, 346, 349–370

extended (to project scheduling), 372, 399–404

pure, 351

Johnson’s approximate method, 236

Johnson’s extended rule, 236

Johnson’s Heuristic (the deterministic counterpart

sequence), 254, 256–258, 260–262,

265–268

tie-breaking rule (for variance reduction), 254,

265

Johnson’s Rule, 230–236, 247, 252–254, 256–258,

260–262, 265–267, 296, 306

in family scheduling, 307–308

Jumptracking, 51–52

Just-in-time (JIT), 86, 104, 244, 272

Largest tail (LT) procedure, 169–172, 338–341

Late finish time (LF), 377, 408

Late finish time (LFT) priority, 408–410, 412–413

Late event time (LT), 377–380

Late start schedule, 405–407, 420

Late start time (LS), 278, 288, 377, 420

Late start time (LST) priority, 412–413

Lateness, 12, 21, 114, 175, 357. See also

Maximum lateness

maximum minimal lateness, 23, 413

Least work remaining (LWKR) rule, 336–337,

352–354

Lexicographic ordering, 210

Linear association, see Association

Linear programming (LP), 283–285, 295,

384–385, 429, 431–432, 438–440,

442–443

as proof of convexity. See Convexity

List scheduling, 202–208, 214, 216, 222, 413.

See also Construction heuristic procedure

Local left shift, 328

Local optimality, 37, 68–72, 80, 343, 427, 429,

433

Logical constraint (relationship), 327, 373–376,

379, 393. See also Precedence constraint

Logical feasibility, 408, 410–413. See also Logical

constraint

Lognormal central limit theorem, 262, 449, 455

Lognormal distribution, 262, 445, 447–451, 455,

457

and linear association, 455, 457

and stochastic capacity, 449

in examples, 127–128, 159, 423, 433, 457

computer simulation, 127–128, 448

Longest path, 209, 330, 339, 343, 379, 381,

390–392, 401, 420, 427. See also Critical

path

Longest processing time (LPT), 89, 91, 97

LPT/SPT sequence. See V-shaped sequence

and Johnson’s Rule, 231, 236

and the ordered flow shop, 244

in the job shop problem, 337

in the resource-constrained project scheduling

problem, 408, 410, 413

list scheduling procedure, 205–209, 219–220,

222

Longest expected processing time (LEPT),

126–127, 219–220, 222

488 SUBJECT INDEX

Longest weighted processing time (LWPT),

215–216

LWPT/SWPT sequence, 100

Look-ahead procedure, 168, 172, 179, 189, 195,

208

Loose schedule, 5, 263–265

Lot streaming problem, 271–297

continuous version, 273–277, 279–284,

286–287

discrete version, 273, 277–279, 284–285,

287–289

fundamental partition, 292–295

linear programming formulation, 283–284

partition set, 286. See also fundamental partition

with consistent sublots, 274–285, 290–292

with equal sublots, 290–291, 295–297

with intermittent idling, 274, 290–291

with no idling, 274, 276, 280–281, 283–284,

290–291

with three or more machines, 281–295

with two machines, 273–281

with variable sublots, 285–292

Lower bound, 49–54, 172, 184–187, 202,

206–207, 273, 278, 320. See also Branch

and bound

for Fw in the parallel-machine problem, 215

for release dates in stochastic balance

calculations, 422–424, 426–427

in flow shop scheduling, 236–241, 247

in job shop scheduling, 339, 341

in resource-constrained project scheduling,

401–404, 406–407

Machine-based bound, 239

Makespan, 13, 93, 182, 195, 321. See also

Maximum completion time

in a GT solution, 302

in the flow shop model, 229–247, 251–267,

475–476

in the flow shop with family setups, 306–309

in the head-body-tail (HBT) problem,

169–171

in the job shop model, 330–331, 337–345

probability distribution of, 142–143, 191–193,

220–221, 258–260, 263, 267, 385–389,

456–458, 469

project, 398–415, 419, 420

with a batch processor, 314–316

with lot streaming, 272–292, 294–297

with parallel machines, 201–212, 217–222

Maximum completion time, 13, 93, 112, 116.

See also Makespan

Cmax-problem, 13

dynamic version, 169–170

in safe scheduling, 141–143, 194–195,

259–261, 264–268, 457–458. See also Due

date in safe scheduling

in the stochastic counterpart, 112, 116, 122,

251–259, 261–268

with sequence-dependent setup times,

182–190, 195

Maximum cost problem, 34–36

stochastic counterpart 109, 117–122, 133

with precedence constraints, 176

Maximum flowtime (Fmax), 13, 15–16, 19–20

Maximum lateness, 21–23, 112, 115–116

Lmax-problem, 120, 122, 132

dynamic version, 171–173, 175–176.

See also Head-body-tail problem

with a batch processor, 314

with job families, 304–306, 320

Maximum tardiness, 13, 21–23, 109, 112,

115–116, 238

Tmax-problem, 35, 117, 120, 122, 132

dynamic version, 167, 171–172

relation to resource-constrained project

scheduling, 408, 413

with precedence constraints, 175–176

Memoryless property. See Exponential distribution

Minimum slack time (MST) rule 22–23, 66

as a dispatching rule, 353, 358–361, 366, 413

Modified API. See Adjacent pairwise interchange,

modified.

Modified due date (MDD) rule, 28, 51, 68, 80, 370

as a dispatching rule, 59–61, 353, 361–362,

365, 367

nondelay implementation, 173

weighted version (WMDD), 60, 62–63

Modified operation due date (MOD) rule, 362,

364, 367–370

Most work remaining (MWKR), 336–337

Multifit algorithm, 207–208

Nearly optimal solutions, 6, 192

Neighborhood search, 66–70, 80, 100, 103.

See also Genetic algorithm; Simulated

annealing; Tabu search

and minimizing D, 141

for the flow shop problem, 243

for the job shop problem, 327, 333, 342–346

for the parallel-machine makespan problem,

202, 205

for the resource-constrained project scheduling

problem, 410–412

in the stochastic E/T problem, 149, 152

in the stochastic flow shop problem, 251, 254.

See also Adjacent Pairwise Interchange

Heuristic

SUBJECT INDEX 489

Network model, 208–210, 214, 329–330, 339

activity, 372–394, 398–415, 420–421,

434–436

activity-on-arc (AOA), 373–376, 393

activity-on-node (AON), 373, 376, 393

series-parallel precedence structure, 179–181,

389

Network methods. See Project scheduling

Newsvendor model. See Critical ratio; Stochastic

balance

Nominal makespan, 263–264, 266

Nondelay dispatching procedure, 169, 408–410.

See also Inserted idle time

Nondelay schedule, 331–333, 335–337, 352,

408–410. See also Active schedule

Nonsimultaneous (dynamic) arrivals, 166–176,

195, 314–315, 317–318, 321. See also

Dynamic job shop

Normal distribution,146–149,192, 194, 255–257,

260, 262–263, 265–267, 386, 397,

437–438, 447, 449, 451, 455, 457,

467–470

computer simulation, 447

in examples, 139, 142–144, 147, 191–192, 256,

389, 457

NP-complete, 6

NP-hard, 6, 54, 93, 133, 317

E/T problem with distinct due dates, 101

F-problem for the burn-in model, 321

F-problem for the flow shop, 244

Fw-problem with batch availability, 310

Fw-problem with parallel machines, 214

HBT problem, 169, 338

in the ordinary sense, 54, 93, 100. See also

Pseudopolynomial algorithm

in the strong sense, 54, 202, 407

integer programming, 432

Lmax-problem with family scheduling,

305–306

Lmax-problem with nonsimultaneous arrivals,

171

makespan problem with parallel machines, 202,

208

makespan problem with parallel machines and

related jobs, 209–210

resource-constrained project scheduling

problem, 407

restricted version of the E/T problem, 95

stochastic T - and Tw-problems, 133

stochastic U -problem with service-level

constraints, 152, 156

T - and Tw-problems, 29, 54

three-machine makespan problem for the flow

shop, 236

traveling salesperson problem, 183

unrestricted version of the E/T problem with

nonidentical costs, 100

U -problem with nonsimultaneous arrivals,

174

Uw-problem, 25

Number of operations (NOP) due date rule, 361,

364, 369–370

Number of tardy jobs, 13, 24, 86

U -problem, 24–25, 41

dynamic version, 172, 174

stochastic version, 112, 115, 118, 122,

132–133, 138, 152–160

weighted version, 25, 41, 80

Operation due date, 359, 361

Operation Due Date (ODD) rule, 353, 359, 362,

364–367

as a dispatching rule, 353

Operation milestone, 359, 362, 364, 366–367,

370, 376

Operation slack time (OST) rule, 360, 362, 364,

366

Optimality principle, 38. See also Dynamic

programming

Optimization methods, 34–54

Ordered flow shop. See Flow shop

Origin node, 374

Palmer’s slope index, 242

Parkinson distribution, 445, 449–451

Passenger transportation, safe scheduling

examples, 2, 5, 193, 429–433

Partition set. See Lot streaming

Perfect schedule, 88

Performance guarantee, 203, 205, 208. See also

Asymptotic optimality

Performance measure (objective), 12–13, 34, 87,

109, 138–139, 141–143, 145–146,

156–157, 354, 359, 385, 419–421, 426.

See also Regular measure

secondary, 23, 92–93, 101, 423, 426

Permutation schedule, 11, 14, 168, 172, 327,

333

in the flow shop problem, 227–230, 236, 238,

244, 247

in the flow shop problem with no wait, 245

in the flow shop problem with time lags, 235

in the stochastic flow shop problem, 252, 263

PERT. See Program evaluation and review

technique

Planning, 2, 4, 29, 271, 372, 389, 393–394

Polynomial algorithm, 6, 54, 103, 214, 237, 245,

279

490 SUBJECT INDEX

Precedence constraint (relation), 166, 174–181,

195, 208–211, 225, 325, 327, 329–330,

373–376, 385, 398–399, 401–402, 411,

427

soft, 414, 418, 427

Predecessor, 166, 174–175, 329, 338–339, 350,

378, 408, 412, 420, 426–428

direct, 174, 178, 211, 225, 334, 380, 399–400

Predictive Gantt chart. See Gantt chart

Preemption, 14, 109, 271

in the dynamic single-machine model, 166–168

in the parallel-machine model, 201–203,

211–212, 222

in the resource-constrained project scheduling

problem, 415

in the shifting bottleneck algorithm, 340

preempt-repeat mode, 167–168, 172, 195

preempt-resume mode, 167–168, 172, 195

Priority rule, 28, 141, 336

allowance-based, 358, 365–366

critical ratio, 366–367

due date, 369

dynamic, 353

for resource constrained project scheduling,

408, 412–413

global, 352, 354–355

local, 352

modified operation due date, 367–368

slack-based, 358, 366

static, 352

Probabilistic. See Stochastic

Process batch, 272

Processing plus waiting time (PPW) due date rule,

361, 364

Program evaluation and review technique (PERT),

372–373, 376, 385–394, 399, 414, 418,

434, 440. See also Critical path method

(CPM)

Project buffers. See Buffer

Project scheduling, 268, 372–394, 398–415,

418–441

hierarchical, 434–436. See also Stochastic

balance

network models. See Network models, activity

resource-constrained. See Resource-

constrained project scheduling

stochastic, 385–393, 418–441

PSB (project stochastic balance) model, 426–434.

See also Stochastic balance

Pseudopolynomial algorithm, 54, 95, 100, 202

Pyramid sequence (SPT/LPT), 244, 274, 282, 294

Quadratic earliness/tardiness cost, 99–100

Random sampling (for seed generation), 63–66, 80

biased, 64–66, 80, 412–414

Regular measure, 13–14, 37, 86, 105, 137, 166,

228, 328, 331, 345, 399, 471

Reduction, 184, 186–187

Regularity condition, 204–205, 258

Related jobs, 166, 174–181, 208–212, 373, 411

Release date, 11–12, 29–30, 102, 149–152,

160–161, 167–176, 247, 314–315,

317–318, 338, 353, 358

active, 150, 152, 427, 436–437, 455

as safe scheduling decisions, 138, 149–152,

247, 454–456

criticality of. See Stochastic balance

different, 166

in projects, 413, 418–439, 441

inactive, 427

Renewable resource, 399

Resource-constrained project scheduling, 398–415

construction heuristics, 408–410

parallel, 408–410, 413

serial, 408–410, 413

lower bounds, 401–404, 406–407

neighborhood search, 410–412

priority lists, 408–414

Restricted neighborhood, 345

Reversed problem, 170, 172, 229, 273, 279, 281,

405, 408

Risk solver, 127–133, 158, 221, 256

Routing matrix, 326, 329, 351

Run-in time, 307–308

Run-out time, 307–308

Safe scheduling, 5, 137–161

and the traveling salesperson problem, 191–195

for project scheduling, 418–441

for the flow shop problem, 251–252, 258–263,

267–268

with linearly associated random variables,

154–156, 190, 261–262, 418, 433,

452–456

Safety time, 2, 5, 7, 105, 137–138, 143, 146–148,

160–161, 195, 264–265, 267–268, 420,

436, 439, 441, 457–458, 460, 467–468

Sample-based optimization, 112, 114–117, 133,

422–426. See also Simulation; Stored

sample

Sample size

for sample-based optimization, 112–113, 116,

129–130, 133, 423–425

for the random sampling heuristic, 64–66

Scenario, 112–115, 139, 152, 192, 220, 313,

423–425, 429, 433, 459

SUBJECT INDEX 491

Scheduling, 1

Schedulable activity, 399–401, 403, 408–410

Schedulable operation, 329, 334–335

Schedule generation procedure, 333–337, 400,

408–410

Search techniques, 63–75

Secondary measure. See Performance measure

Semiactive schedule, 328–331, 342

Sequence-dependent setup times, 166, 181–195,

246, 301. See also Traveling salesperson

problem

Series-parallel precedence structure, 179–181, 195

decomposition tree, 180–181, 195

network structure, 389

Service level (SL), 5, 137, 145–146, 191–194,

220–221, 258–261, 389, 429, 436–438,

456–458. See also Dynamic job shop,

proportion of jobs tardy

constraint, 137–139, 157, 193–194. See also

Feasibility, stochastic

maximizing for a given due date, 193

maximizing the minimum, 117

optimal, 142–144, 148, 420, 422, 425, 438,

461–462. See also Criticality; Stochastic

balance

target, 137–141, 153, 155, 425, 434. See also

Constraint

Setup time, 11–12, 108, 165, 178

attached, 235, 280, 307, 309

separable, 235, 280, 308

sequence-dependent, 166, 181–195, 221, 246,

301

Shifting bottleneck procedure, 337–342, 345–346

Shortest expected processing time (SEPT) rule,

109

and minimizing E(F), 113–115

and minimizing E(T), 126–127

and minimizing U , 154–155

and parallel machines, 222

and safe scheduling, 145

in simulation, 113, 355, 370

SEPT/EDD, 126–127

Shortest processing time (SPT) rule, 17, 104

and Johnson’s Rule, 231, 236

and minimizing F , 17–18, 58, 354–357

and minimizing F in the ordered flow shop, 244

and minimizing J (inventory), 19

and minimizing L , 21

and minimizing maximum waiting time, 19

and minimizing T , 26, 28–30

and minimizing total completion time, 19

and minimizing total waiting time, 19

dynamic adaptation, 168

in relief (RSPT), 356–357

in the burn-in model, 319–320

in the dynamic job shop, 352–357, 359–360,

366–370

in the E/T problem, 89–92, 97–98, 101

in the family scheduling model, 301, 302

in the F-problem with batch availability, 311,

313

in the job shop problem, 336–337

in the stochastic counterpart, 109

nondelay implementation, 173

SPT/LPT sequence. See Pyramid sequence

string-based version, 177–179, 181, 195

truncated (TSPT), 353, 356–357, 360

with list scheduling, 214

Shortest remaining processing time (SRPT) rule,

168

Shortest weighted expected processing time

(SWEPT) rule, 109, 115, 222

Shortest weighted processing time (SWPT) rule,

20–21, 31, 37, 60, 65

in the dynamic Fw-problem, 173

in the E/T problem. See LWPT/SWPT sequence

in the family scheduling model, 302–303

in the parallel-machine problem, 215–217, 222

Simulated annealing, 72–74, 80, 343, 345, 410

for the family scheduling problem, 321

for the flow shop problem, 243

Simulation, 5–6, 8, 109, 112–113, 127–133, 160,

220–222, 252, 260, 263–265, 267, 389,

392, 429, 435. See also Sample-based

optimization

job shop, 349–370

of random variables, 445–448

reproducible, 352. See also Stored sample

Single-machine problem, 10–31, 34–54

Single-pass procedure (single-pass mechanism),

333

Skyline bound, 407

Slack (in project scheduling). See Float

Slack (SLK) due date rule, 29–30, 107, 174,

361–362, 364

Slack per operation (S/OPN) rule, 353, 359, 362,

366–367

Slack time, 22–23, 353, 358–360

SLK. See Slack due date rule

Smallest critical ratio (SCR) rule, 359, 366–367

Smallest operation critical ratio (OCR) rule, 360,

366–367

Smith’s Rule, 23–24

Sorting rule, 57–60, 68, 80, 148–149, 232–234,

254–245, 257

SPT. See Shortest processing time

492 SUBJECT INDEX

Stable sequence, 254–257

Start lag. See Time lag

Static priority, 58–59, 352–353

Statistical independence. See Stochastic

independence

Stochastic association. See Association, stochastic

Stochastic balance (economic), 420–441. See also

Safety time

ACM model (assembly coordination), 420–426

hierarchical, 434–436

in crashing. See Crashing

PSB model (project stochastic balance),

426–434

Stochastic counterpart, 108–134, 137

of the dynamic problem, 172

of the E/T problem, 145–152, 161, 418–441,

455

of the flow shop problem, 251–258, 262–267

of the Fw-problem with chains, 195

of the parallel-machine makespan problem,

202, 205, 218–220

of the traveling salesperson model, 190

Stochastic crashing. See Crashing

Stochastic dependence, 111–112, 124, 161, 385,

452–454

Stochastic dominance, 123–127, 133, 145, 193,

254, 262, 451–457, 469–470

Stochastic independence, 111, 115, 124–126, 149,

154, 161, 251, 257–261, 386–394, 420,

426, 436–437, 447, 449, 452–458, 470

Stochastic ordering, 124–126. See also Stochastic

dominance

and minimizing D, 145

and minimizing T , 126–127

and minimizing U , 153–156

Stochastic scheduling, 7, 108–134, 137–161,

190–195, 217–222, 251–268, 385–394,

420–441

Stop lag. See Time lag

Stored sample, 112–113, 115, 139, 151, 158,

160–161, 192, 252, 255–256, 260, 263

267, 352, 391, 418, 423–427, 429–434,

438, 454. See also Simulation

Straddling job, 89, 93–94, 98

String, 176–181, 195, 302, 307

Subproject, implicit, 435. See also Hierarchical

balance

Successor, 174, 176, 178, 180, 208–211, 225, 334,

338–339, 352, 399, 401

SWEPT. See Shortest weighted expected

processing time

SWPT. See Shortest weighted processing time

Synchronous manufacturing, 272

T-problem. See Total tardiness

Tabu search, 70–72, 80

for the family scheduling problem, 321

for the flow shop problem, 243

for the job shop problem, 343, 345–346

for the resource-constrained project scheduling

problem

Talwar’s Heuristic, 254–255

Talwar’s Rule, 254, 258, 262, 265, 267

Tardiness, 12, 76

Temporal analysis, 376–381, 386, 394, 405

Terminal job, 208–210

Terminal node (event), 374, 377, 379, 426

Throughput, 4, 169, 272

Tie-breaking rules

and Johnson’s Rule, 234

in Johnson’s Heuristic (for variance reduction),

254, 265–266

in prioritiy lists for project scheduling, 408, 413

Tightness, 29–30, 138, 141, 161, 192, 361–362,

364–365, 369

Time/cost trade-off. See Crashing

Time lag, 234–235, 308

Timeliness, 4

Total completion time, 19

Total cost, 34, 36, 39, 49

total cost with crashing, 381–383, 436, 438–439

total E/T cost (deterministic), 88–91, 94–98,

101–104, 419–420

total expected cost, 109–110, 137–138

Total flowtime, 12, 16–19, 30, 57, 86, 101

as a secondary measure, 23

F-problem, 13, 20, 58, 122, 132

dynamic version, 168, 173

for the burn-in model, 318–320

for the flow shop, 244

for the job shop, 337, 346

in batch processing, 302–304, 310–314,

317–321

stochastic counterpart, 109, 113–116, 195

with batch processing and dynamic arrivals,

317–318, 321

with chains, 178–181, 195

with dynamic arrivals, 173

with groups of jobs, 302

with parallel machines, 213–214, 221–222

with precedence constraints, 175

with series-parallel precedence structure,

179–180

with strings, 176–178, 195

in simulation, 112–113

Total lateness, 21, 112, 114–117, 122, 132

Total string flowtime, 176–177

SUBJECT INDEX 493

Total tardiness, 12, 25, 86, 116, 152, 161

T -problem, 12–13, 25–29, 31, 34, 36–37, 39,

43–44, 46–54, 59, 61, 68, 75, 93, 320,

471–476

dynamic version, 166–167, 172–173

in the flow shop model, 238, 272

in the job shop model, 346, 349

stochastic counterpart, 109–112, 116,

122–123, 126, 128–132, 152

trade-off with tightness, 141–145, 192–193,

450. See also Stochastic balance

with parallel machines, 222

Total unit penalty. See Number of tardy jobs

Total weighted flowtime, 19–21, 31

Fw-problem, 20, 31, 36, 40–41

stochastic counterpart, 115–116, 132,

426–436

with batch processing, 302–304, 310, 314,

320–321

with dynamic arrivals, 173

with job families, 302–304, 320

with parallel chains, 178–181, 195

with parallel machines, 213–217, 222

with series-parallel precedence structure, 195

with strings, 177–178, 195, 302

Total weighted tardiness, 29, 41, 43, 57, 118

Tw-problem, 43–44, 54, 60, 62, 80

test problems, 84–85

Total work (TWK) due date rule, 29–31, 174,

361–362, 364–365, 369–370

Trial solution, 48–54, 187

Trial value (makespan), 207, 278, 288–289, 315

Transfer batch, 234–235, 272

Transfer lag, 235

Transitivity, 37, 124, 167–168, 234–237, 265,

452

Traveling salesperson problem (TSP) 182–195

in the flow shop with blocking, 244–245, 247

in the flow shop with no wait, 246–247

in the safe scheduling problem, 191–195

stochastic counterpart 190

Turnaround, 4, 12, 15, 353–354, 356–357

TWK. See Total work due date rule

Tw-problem. See Total weighted tardiness

U-problem. See Number of tardy jobs

Uniform distribution, 237, 445–447, 451

computer simulation, 445

in examples, 112, 153, 259, 465

Uniform machines, 208, 214

Unrelated machines, 208, 214

Variance effect, 266

V-shaped sequence, 90, 94–97, 99, 104, 149

WMDD. See Modified due date rule, weighted

Worst-case performance bound, 204, 206–207,

210–211, 238

WSPT. See Shortest weighted processing time

(SWPT)

	Principles of Sequencing and Scheduling.pdf
	1-Introduction.pdf
	2-Single-Machine Sequencing.pdf
	3-Optimization Methods for the Single-Machine Problem.pdf
	4-Heuristic Methods for the Single-Machine Problem.pdf
	5-Earliness and Tardiness Costs.pdf
	6-Sequencing for Stochastic Scheduling.pdf
	7-Safe Scheduling.pdf
	8-Extensions of the Basic Model.pdf
	9-Parallel-Machine Models.pdf
	10-Flow Shop Scheduling.pdf
	11-Stochastic Flow Shop Scheduling.pdf
	12-Lot Streaming Procedures for the Flow Shop.pdf
	13-Scheduling Groups of Jobs.pdf
	14-The Job Shop Problem.pdf
	15-Simulation Models for the Dynamic Job Shop.pdf
	16-Network Methods for Project Scheduling.pdf
	17-Resource-Constrained Project Scheduling.pdf
	18-Safe Scheduling for Projects.pdf
	Appendix A.pdf
	Appendix B.pdf
	Appendix C.pdf
	Name Index.pdf
	Subject Index.pdf

