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attempting to bring solutions to theoretical as well as practical problems. New 
resolution methods are being developed in relation to classical scheduling problems 
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real dynamic in this field. Numerous research studies are developed in cooperation 
with companies to identify real problems including problem statements not 
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liable to help in resolving or considering a solution to problems actually encountered 
in the real world.  
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Chapter 1

Statement of Production Scheduling 

The current environment in companies is characterized by markets facing fierce 
competition and from which customer requirements and expectations are becoming 
increasingly high in terms of quality, cost and delivery times. This evolution is made 
even stronger by rapid development of new information and communication 
technologies which provide a direct connection between companies (business to 
business) and between companies and their clients (business to customer). In this 
type of context, company performance is built on two dimensions: 

– a technological dimension, whose goal is to develop intrinsic performance of 
marketed products in order to satisfy requirements of quality and lower cost of 
ownership for these products. Technological innovation plays an important role and 
can be a differentiating element for market development and penetration. In this 
regard, we must note that rapid product technological growth and the personalization 
requirements for these products expected by markets often lead companies to 
forsake mass production and instead focus on small or medium-sized production 
runs, even on-demand manufacturing. This requires them to have flexible and 
progressive production systems, able to adapt to market demands and needs quickly 
and efficiently; 

– an organizational dimension intended for performance development in terms of 
production cycle times, respect of expected delivery dates, inventory and work in 
process management, adaptation and reactivity to variations in commercial orders, 
etc. This dimension plays an increasingly important role as markets are increasingly 
volatile and progressive, and require shorter response times from companies. 
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Therefore, companies must have powerful methods and tools at their disposal for 
production organization and control [BAI 99]. 

This production organization must be considered not only at company level, but 
also from its position in the supply chain where it is one of the links, resulting in a 
global “virtual” company which must be focused on satisfying customer needs under 
the best possible conditions [BAI 99, WU 98]. 

To achieve these goals, a company organization normally relies on the 
implementation of a number of functions including scheduling which plays a vital 
role. Indeed, the scheduling function is intended for the organization of human and 
technological resource use in company workshops to directly satisfy client 
requirements or demands issued from a production plan prepared by the company 
planning function. Considering market trends and requirements, this function must 
organize the simultaneous execution of several jobs using flexible resources 
available in limited amounts, which becomes a complex problem to solve. In 
addition, it is this function which ultimately is responsible for product 
manufacturing. Its efficiency and failures will therefore highly condition the 
company’s relationship with its customers. Within companies, this function has 
obviously always been present, but today it must face increasingly complex 
problems because of the large number of jobs that must be executed simultaneously 
with shorter manufacturing times. This situation is obviously the result of the current 
environment as it was described earlier. 

Offering efficient and powerful solutions to scheduling problems thus defined 
constitutes an important economic challenge. Despite the simplicity of formulating 
this type of problem, it must be noted that to date there is no “one” method able to 
solve all possible scenarios. In fact there are a number of generic problems 
differentiated by the characteristics of jobs to be performed or resources available to 
perform them. Specific methods can then be associated with the resolution of each 
of these generic problems, these specific methods being either a specific 
interpretation of the problem in a general way, or a specific method dedicated to the 
problem involved. Resolution of a concrete problem starts by identifying the generic 
problem to which we can associate it, followed by the selection of the method(s) 
adapted to the resolution of this problem. We must also note that the decision 
problem associated with the scheduling problem belongs to the category of 
combinatorial NP-complete problems. Consequently, resolution by exact methods is 
not realistic for large problems, justifying the use of powerful heuristic methods. 
This explains why research on scheduling problems is always popular and demands 
numerous studies [WIE 97]. 

The goal of this book is to present a number of methods for the resolution of 
scheduling problems. There are a number of studies, past or present, on scheduling 
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issues [HER 06, LEU 04, PIN 05, SUL 07]. In this book, we have chosen to 
emphasize approaches to strictly solve or to improve the solution for problems 
actually encountered in the real world. This leads us to the organization of this book 
as follows. 

A global presentation of concepts in relation to the scheduling domain and basic 
methods for solving classical scheduling problems is proposed in Chapter 2. The 
following two chapters present heuristic type resolution methods to solve large 
problems: metaheuristics (Chapter 3) and genetic algorithms (Chapter 4). Chapter 5 
discusses an approach based on constraint propagation aiming at characterizing all 
solutions to a problem, which can be useful to help in searching for optimal 
solutions or in decision support. Chapter 6 recalls resolution principles based on the 
use of priority rules to generate a schedule by simulation or to identify priority rules 
to be used to organize scheduling in real time. The two following chapters discuss 
three scheduling problems for specific production lines: cyclic scheduling to satisfy 
mass production of a limited number of products (Chapter 7) and hoist scheduling 
(Chapter 8). Chapter 9 addresses an important practical extension of the scheduling 
problem: choosing which resource to use for each job operation, coupled with the 
operation scheduling for resources used. Chapter 10 considers a specific problem for 
which operations to be performed are not linked to sequencing constraints. Finally, 
the last two chapters focus on scheduling problems in uncertain environments or in 
environments which are not completely specified, a situation often encountered in 
practice. The fuzzy approach makes it possible to consider these two characteristics 
(Chapter 11), whereas the decision support approach makes it possible to organize 
job processing in real time according to the real state of the workshop and thus to 
consider unforeseen situations, using deterministic models (Chapter 12). 

It is important to note that although this book often uses vocabulary and 
examples inherent to the manufacturing field, methods presented can be used to 
organize processing of any type of activity requiring available resources in a limited 
amount, in particular service activities, provided of course that the processing 
constraints are similar to those of one of the models considered in this book. 
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Chapter 2 

Basic Concepts and Methods
in Production Scheduling

2.1. Introduction 

The scheduling problem is the organization over time of the execution of a set of 
tasks, taking into account time constraints (i.e. deadlines, precedence constraints, 
etc.) and capability and capacity constraints on resources required for these tasks. 

A schedule constitutes a solution to the scheduling problem. It describes the 
execution of tasks and the allocation of resources over time with the aim of meeting 
one or more objectives. More precisely scheduling problems can be decomposed in 
two types. In a pure scheduling problem a start date and an end date have to be 
decided for each task, whereas in a sequencing problem tasks that compete for the 
use of the same resource only have to be ordered. Scheduling necessarily induces a 
unique set of sequencing relations. On the other hand, a solution to the sequencing 
problem, described in terms of precedence relations (those that solve the potential 
resources conflicts) is not associated with a single schedule but covers a family of 
schedules (possibly an infinity of schedules if dates are real numbers or if the 
variation domain is not bounded).

This chapter aims to present the main results from basic literature on scheduling 
problems, results which may be referred to in the following chapters. First, we 
present the basic concepts by integrating general method principles for the 
resolution of optimization problems. Then we address the project scheduling 
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problem where most questions involve the determination of total project time and 
the emphasis of usable degrees of freedom (time floats) to minimize the cost of 
resource utilization or to smooth out the workload. Although this type of problem 
does not take resource constraints into account, its formulation is essential in 
scheduling because it enables the presentation of fundamental concepts and basic 
algorithms for handling time constraints. Finally, we present a second important 
family of problems, the shop scheduling problems. While in project scheduling, we 
can adapt the level of resources necessary for the execution of complex but well 
structured work, in shop scheduling on the other hand, we must use a known set of 
limited resources (machines) as well as possible to produce a diverse set of products. 
The complexity then lies in the combinatorics resulting from the consideration of 
existing resources limitation and not in the manufacturing processes which are here 
predetermined (in shop scheduling, manufacturing processes are often restricted to 
be linear sequences of operations on distinct machines, called routings). A series of 
traditional results are presented concerning initially one machine problems, then 
parallel machine problems and finally problems where products circulate in the shop 
according to a single routing or multiple routings.

2.2. Basic scheduling concepts 

2.2.1. Tasks 

A task is a basic work entity located in time with a start time ti and/or an end 
time ic , where execution is characterized by a duration ip  (we have iii ptc )
and by the intensity k

ia  with which it consumes certain resources k. In more simple 
terms, we presume that for each resource required, this intensity is constant during 
task execution. 

With certain problems, the tasks can be executed in parts, and interlacing of the 
different parts ensures that resources are as active as possible. With others, on the 
other hand, we cannot stop a task that is started. We speak of preemptive and non- 
preemptive problems respectively. 

In project scheduling (see section 2.3), we will keep the term “task” to describe 
the activities of a project. For shop scheduling (see section 2.4), we will opt for the 
term “operation” (in this case, we will also prefer processing time rather than 
duration). In manufacturing, we often observe several phases in the execution of an 
operation: preparation; main phase; finishing; and transport. Depending on 
manufacturing conditions, each of these phases can greatly condition the time in 
which a product remains in the shop. 
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2.2.2. Resources 

A resource k  is a technical or human means needed for the execution of a task 
and available in a limited quantity, its (presumed constant) capacity kA . Several 
types of resources can be observed. A resource is said to be renewable if it becomes 
available again with the same quantity (man, machine, space, equipment in general, 
etc.) once used by one or more tasks; usable resource quantity is limited at each 
moment. Otherwise, it is non-renewable or consumable (raw material, budget, etc.); 
global consumption (or accumulation) during time is limited. A resource is said to 
be doubly-constrained when its instant use and global consumption are both limited 
(source of energy, financing, etc.). Disjunctive resources cannot be shared, they are 
able to execute only one task at a time (machine tool, manipulating robot), while 
cumulative resources can be shared by several tasks simultaneously (team of 
workers, workstation) assuming that their capacity is sufficient. 

NOTE.– In practice, flexibility of certain resources can lead to taking into account 
additional reconfiguration times, which may depend on the task at hand, but also on 
the state of the resource itself, which is often linked to the previous tasks executed 
on this resource. This means that setup times must be taken into consideration, 
depending on the sequence chosen. The consideration of these setup times is vital in 
practice because they can have a huge impact on scheduling. It encourages the 
grouping of identical products into lots resulting in grouping tasks relative to a 
single lot on each machine in order to minimize total machine reconfiguration time 
(see Chapter 12). In addition, task durations are not always known but can be 
dependent on the quantity of means alloted to their execution which in turn can be 
linked to the resource’s speed or performance (see Chapters 5, 9 and 12). 

2.2.3. Modeling 

Generally, the decision variables encountered in this book involve decisions on 
time (scheduling variables) or resources (allocation variables). A constraint 
expresses restrictions on the values that decision variables can jointly take. Time and 
resource constraints can be distinguished. 

2.2.3.1. Time constraints 

These include: 

– allocated time constraints, generally based on a management policy and 
relative to task deadlines (delivery lead times, availability of supply) or to project 
deadlines. For a task i, ir defines the date of availability (before which i cannot 
begin) and id  defines its due date (before which i must be completed); 
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– precedence constraints and, in a more general way, technological consistency 
constraints, which describe a relative ordering of certain tasks compared to others 
(for example, routing constraints in the case of shop problems); 

– timetable constraints linked to respect for work schedules, etc. 

These constraints can all be expressed with the help of potential inequalities 
[ROY 70], which mandate a minimum distance of ijb  between two particular events 
associated with tasks (their starting times or their ending times): 

ijij bxx [2.1] 

Now that this primitive constraint is defined, we will examine how it can be used 
to express some of the time constraints presented above. 

2.2.3.1.1. Constraint expressed in a single potential inequality 

The precedence constraint between two tasks i  and j , symbolized as ji
( i  precedes j ), is represented by the numerical relation iij ptt .

A time limit constraint can also be represented with the help of the primitive 
constraint [2.1], by including a dummy task 0 with a zero duration, that sets the time 
origin ( 00t ) of the problem; for example, constraint ii rt  is rewritten in the 
form of ii rtt 0 . The constraint ii dc  becomes ii dct0 .

2.2.3.1.2. Constraint expressed with a conjunctive set of potential inequalities 

This is the case with relative location constraints such as a necessary overlap 
between two tasks i  and j . It is represented by a constraint requiring two potential 
inequalities:  

)0()0( jiij tctc .

We use this type of conjunctive logical expression to represent that a time 
constraint is satisfied if all its member constraints are simultaneously satisfied: 
connector  represents the Boolean logical and connector, potential inequalities are 
then interpreted as logical literals of the first order predicate calculus. 

Another example of a complex time constraint resulting in a conjunctive 
expression is that of tasks with a constrained duration. To model the fact that the 
duration of a task i  is only approximately known and defined by an interval of 
possible values of the type [ , ]ii

p p , the following conjunctive expression can be used: 

)()( iiiiii pctptc .
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2.2.3.1.3. Constraint expressed as a disjunction of potential inequalities 

This type of expression involves the connector  (or logical). Semantically, the 
constraint is satisfied if at least one of the literals is a satisfied constraint. 

A first case is for example the existence of several execution modes. For 
example, let us define a product which can be manufactured in two distinct ways: 

– mode 1: operation i, then operation j;

– mode 2: operation j, minimum waiting time of waitp  units (for cooling down, 
drying process, etc.), then operation i.

The global time constraint which expresses the existence of these two execution 
modes can have the following form: 

( 0) ( )j i i j waitt c t c p .

In the simple previous case, the time constraint is directly represented in the 
form of a disjunction between several potential inequalities. A more complex case is 
the one of timetable constraints: task i  can be accomplished only  
during one of some h  time intervals: ],[ 11

ii dr , ],[ 22
ii dr , …, ],[ h

i
h

i dr , with 

],[],[ 11 l
i

l
i

l
i

l
i drdr , )1(,,1 hl . If there is no hypothesis on the 

timetable for i , the constraint is represented with the help of the following 
disjunctive expression: 

)]()[()]()[( 2
0

2
0

1
0

1
0 iiiiiiii dctrttdctrtt

)]()[( 00
h
ii

h
ii dctrtt

This form is not a disjunctive set of single potentials inequalities. However, 
thanks to a rewriting using the distributive nature of logical connectors, we can 
translate this expression into a conjunctive set of disjunctive expressions on 
potential inequalities, i.e. into a set of constraints to satisfy, where each one is a 
disjunctive expression. 
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2.2.3.2. Resource constraints and sequencing problem 

These constraints signify that resources are available in limited quantity (their 
capacity), and are also called sharing constraints. For a given schedule, let the set of 
tasks consuming resource k at time t be: iiik ptttnitT ,|,,1)(  (note that 
tasks ending exactly at moment t, are not considered in )(tTk ). Capacity limitation 
of resource k is then expressed by the following constraint: 

k
tTi

i Aat
k )(

, [2.2] 

To ensure respect of resource constraints, we must avoid temporal overlapping 
of certain task subsets. This leads to the order of a sufficient number of task pairs, 
which comes down to adding new precedence constraints to the initial constraint set. 
This type of decision is called a sequencing decision or an arbitration. All 
sequencing decisions characterize the sequencing problem brought about by the 
initial scheduling problem. There are two types of resource constraints, linked to the 
disjunctive or cumulative nature of resources. 

Disjunctive resources 

These are resources which can only be used for one task at a time. In a shop 
problem, resources are machines. A disjunction pair )()( ijji  is associated 
with each pair ),( ji  of tasks using the same resource, which is translated in the form 
of a disjunction between two potential inequalities: 

)()( jjiiij pttptt [2.3] 

In order to respect these constraints, it is necessary and sufficient to solve all 
disjunction pairs relative to each disjunctive resource, which leads to a total 
sequencing of tasks using a single disjunctive resource. 

Cumulative resources 

When the resource capacity and task intensities are greater than one, the set of 
tasks which cannot be executed simultaneously may have a higher cardinality. The 
respect of resource constraints only leads to a partial sequence of tasks using the 
same resource. As before, it is possible to represent cumulative resource constraints 
with the help of a conjunction of disjunctive expressions. Chapters 5, 9 and 12 
describe the involvement of cumulative resources. 
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2.2.3.3. Objectives and evaluation criteria 

When we address the resolution of a scheduling problem, we can choose 
between two main strategy types, respectively focussing on the optimality of 
solutions (in relation to one or more criteria), or on their feasibility (in relation to 
constraints). The optimization-based approach presumes that candidate solutions for 
a problem can be ordered, according to one or more numerical evaluation criteria 
that express the quality of solutions. We will attempt to minimize or maximize such 
criteria. Note for example those: 

– related to time: total execution time or average time for completing a set of 
tasks; the different types of delays in relation to deadlines set; 

– related to resources: the – maximum, average or weighted – quantity of 
resources necessary for completing a set of tasks and the load of each resource; 

– related to costs for launching, production, transportation, storage, etc. 

A criterion based on variables ic  is called regular if we cannot downgrade it as 
a task is executed earlier. This is the case for minimization of makespan, maximum 
delay, etc. A subset of solutions is called dominant for the optimization of a given 
criterion if it contains at least one optimum for this criterion. In this way, the search 
for an optimal solution can be limited to a dominant subset. In a semi-active
schedule, we cannot move a task earlier without modifying the sequence on the 
resource it uses. The set of semi-active schedules is dominant for any regular 
criterion. In an active schedule, no task can be started earlier without delaying the 
start of another one. Active schedules are semi-active and the set of active schedules 
is dominant for any regular criterion. In non-delay schedules, we must not delay the 
execution of a task if it is ready to start and if its resource is available. Non-delay 
schedules are also active. We will come back to the generation of these schedules in 
section 2.4.6 and Chapter 6. 

It is sometimes difficult to translate all solving objectives with one or more 
numerical criteria. In this case, we can use a constraint satisfaction approach. The 
set of constraints groups intrinsic problem constraints (technological consistency for 
example) as well as threshold objectives to be reached or not to be exceeded 
(maximum duration, maximum/minimum inventory, etc.). In this case, we will be 
able to use an ordinary solution as long as it is feasible. The exploration strategy of 
the space of feasible solutions must use constraints in a smart way in order to reduce 
the space exploration. This is the principle of constraint propagation, representing a 
set of filtering techniques (withdrawal of inconsistent values) and developed in 
Chapter 5. 
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2.2.4. Resolution methods 

2.2.4.1. Introduction 

In an optimization-based approach, the knowledge helping to provide an ideal 
solution is integrated in a programmable model where the execution does not require 
the intervention of a decision maker. When, on the contrary, some knowledge is 
difficult to represent or use (uncertain, inaccurate data, non-consistent, qualitative or 
highly context-dependent criteria), an approach based on decision support may turn 
out to be more realistic and flexible. In this case, the idea is to analyze the problem 
and characterize all solutions in order to help the decision maker with total or partial 
control of the resolution procedure in solving the problem. For this, characterization 
can rely on constraint propagation techniques. 

A method using an optimization criterion is exact if it guarantees optimality of 
solutions found. Otherwise it will be called approximate, or heuristic when it 
empirically provides “good” solutions [MAC 93]. If the goal is reduced to only 
satisfy constraints, a method based on constraint propagation will be said to be exact 
(or “sound”) if the solutions found correctly satisfy all constraints of the problem. 
Finally, we should mention the completeness property; a method is complete if, 
regardless of the problem addressed, we can ensure that the problem accepts or does 
not accept solutions in a reasonable amount of time. 

Calculation cost is clearly vital when choosing an automatic resolution method. 
Even though the increasing power of computers may constantly push back the limit 
of combinatorial problem sizes accessible by exact methods, their resolution is often 
expensive (computing time, memory space), which explains the use of approximate 
methods. In the case of an interactive resolution, the number of decisions made by 
the decision maker, the number of backtracks, …, are also factors conditioning this 
cost independently from that incurred by underlying techniques used. 

2.2.4.2. General methods of combinatorial optimization 

We briefly describe here a few general optimization methods that we will often 
encounter in the exact resolution of scheduling problems: branch-and-bound 
procedures [BAK 74] and mathematical programming techniques such as mixed-
integer linear programming [NEM 88] and dynamic programming [BER 87].  

2.2.4.2.1. Branch and bound procedures 

Branch and bound (B&B) optimization procedures are exploration procedures 
using implicit enumeration of all solutions [LAW 66]. They lead to the development 
of a search tree where each node represents a sub-problem and where arcs issued 
from a single node represent all possible decompositions of the problem located at 
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the base of the arc into smaller size sub-problems (Figure 2.1). The objective is to 
arrive at a node corresponding to a solution, by generating the least number of 
nodes. 

Figure 2.1. Research space associated with a B&B procedure 

B&B procedures are based on four main components: 

– the branch technique for decomposing a problem by breaking it down into 
smaller sized sub-problems; 

– the bound method which involves a bound on the optimization criterion for all 
solutions of a sub-problem (lower bound for minimization); 

– the evaluation method, for determining if a node is terminal (it contains no 
admissible solution, or it is an optimal solution, or we can obtain the optimal 
solution for this sub-problem in a polynomial time1), or if it should be separated. If 
we can make sure that it does not contain a better solution than the ones already 
found, it will not be separated; 

– the selection method, or exploration strategy, which describes how to choose 
the sub-problem to branch, when there are several candidates. Two main strategies 
exist. In a best-first strategy, we select and then branch the “pending” sub-problem 
with the best bound. In a depth-first search procedure with backtrack, pending nodes 
are managed in a stack: at each step we seek a pending problem, we bind it, we 
probe it and we stack the sub-problems emanating from its branching. 

1 A polynomial or polynomial-time solving method is a method with a running time bounded 

by a polynomial function of the problem size N (e.g. 2N ). A problem is said to be easy if 
such methods exist. On the other hand, facing hard combinatorial problems, the running time 

is only bounded by an exponential function of N (e.g. N2 ). 
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For large problems, we must be concerned with having to handle substantial tree 
structures. To limit the search tree size, we can attempt to refine lower bound 
calculations. We can also apply dominance results [CAR 88, ESQ 99]. In addition to 
the lower bound calculation, we can calculate at each node an upper bound of the 
criterion with the help of a heuristic. The goal is to stop the development of a node 
when its lower bound is greater than the best upper bound found to date. Chapter 9 
illustrates these methods. 

2.2.4.2.2. Dynamic programming 

Scheduling problems are combinatorial problems for which there are general 
tools such as dynamic programming [BEL 74] as long as this optimization criterion 
presents specific properties, such as an additive form. The principle is to carry out a 
step decomposition of the problem, and to scan backwards – from the last decision 
up – the sequential decision process associated with the scheduling problem. Each 
step corresponds to a sub-problem that we solve in an optimal way by considering 
information obtained during previous steps. This requires a formulation of the 
criterion in the form of a recurrence relation connecting two consecutive levels. As 
with B&B procedures, dynamic programming works by an implicit enumeration of 
all solutions. This optimization has a more general vocation than B&B procedures, 
but on the other hand, the size of problems that it can address is more limited. 
However, it is possible to apply dominance results, and for reasonably-sized NP-
hard problems2, we can, in practice, build interesting pseudo-polynomial3 dynamic 
programming algorithms. 

2.2.4.2.3. Linear and integer programming 

A linear program models an optimization problem in which the criterion and 
constraints are linear functions of variables. To process a linear program in 
continuous variables, the two most important types of algorithms are the Simplex 
method and the Interior Points method. In practice, the Simplex method is powerful 
although its theoretical complexity is exponential. The best example of an Interior 

2 In complexity theory [GAR 79], an optimization problem X is said to be NP-hard if the 
associated problem of existence EX (finding an admissible solution at a cost lower than a 
given k) is an NP-complete problem. To do this, it must be proven that EX accepts a 
formulation making it possible to easily verify (in polynomial time) whether a given set of 
values actually does constitute a solution (definition of the NP class). It must also be proven 
that we can find EX by polynomial transformation of another known NP-complete problem 
(for example, the SAT problem raised by satisfiability of a set of Boolean formulae). In this 
way, finding a polynomial resolution algorithm for a single NP-complete problem would 
automatically solve all problems. This type of algorithm does not yet exist. 
3 A pseudo-polynomial algorithm is an algorithm capable of solving an NP-complete problem 
in polynomial time with coding of the problem’s data in base 1 (see [CAR 88], page 76). A 
problem for which no pseudo-polynomial algorithm exists will be said to be NP-complete in 
the strong sense.
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Points method is the Karmarkar algorithm which solves linear programs in 
polynomial time. 

Modeling scheduling problems often involves integer variables in the 
mathematical program. We are then in the presence of mixed-variable programs 
where the major disadvantage may be the large number of required constraints and 
variables; no polynomial algorithm exists to solve this type of program. The best 
approaches used relax the constraints that state integer values for variables; these are 
polyhedral methods derived from the Simplex algorithm, and B&B procedures. In 
certain cases, we can go back to flow problems for which we have powerful 
algorithms [WOL 98]. 

2.2.5. Representation of solutions 

The Gantt chart is a very simple and widely used graphical representation for 
viewing scheduling. A horizontal segment of length that is proportional to the 
operation duration is associated with each task (Figure 2.2). In a “resource” chart, 
each horizontal line corresponds to a resource, which makes it possible to view its 
periods of operation or idleness as well as the sequence of operations using it and 
the scheduling duration. In a “job” or “product” chart, a line is associated with each 
job; when it follows a linear route it is then easy to see the chaining of its operations 
and the waiting time between two consecutive operations. 
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Figure 2.2. “Resource” Gantt chart 

2.3. Project scheduling 

This section addresses the description of a basic project scheduling method. This 
method is described in this book, even though it is focused on production 
scheduling, because it is a basic technique for methods developed in the context of 
production shops. The specific characteristic of project scheduling is to study a 
single project, for which we attempt to minimize makespan with no consideration 
for resource limitation constraints. Initially limited to managing large projects, the 
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use of these techniques, often grouped under the famous PERT acronym, has now 
spread to companies. 

2.3.1. Modeling 

Graph theory is a very real help in the manipulation of a large amount of 
numerical data. It is a rigorous support for both checking the consistency of the 
problem raised and its resolution. Current formulations linked to the project 
scheduling problem involve the definition of a graph using potential inequalities (see 
section 2.2.3). 

When formulating potential inequalities on an Activity-On-Node graph, each 
node represents a task i, and each arc (i, j) represents a potential inequality between 
the start dates ti and tj of tasks i and j [ROY 70]. We generally add two nodes, 
Beginning and End, corresponding to fictitious project tasks with a zero time 
duration. In this way, we associate a zero value arc (Beginning, i) with each task i
able to start the project; similarly we associate a zero value arc (j, End) with each 
task j able to complete the project. Subsequently, we use the traditional notation 

)(i (resp. )(i ) to represent the group of nodes located at the origin (resp. at the 
end) of arcs entering (resp. issued from) node i.

0
T1

T3
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T6 
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Figure 2.3. Activity-On-Node graph associated with a project 

The above example (Figure 2.3) illustrates the case of a project containing six 
tasks submitted to different types of constraints (the durations are expressed in 
days):  

– arcs ( 3T , 2T ) and ( 3T , 4T ) represent for example a precedence constraint 
and are valued by task 3T  duration (15 days); 

– arc (Beginning, 1T ) with value 0 indicates that task 1T  can start when the 
project starts whereas task 6T  must wait at least 14 days. 
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2.3.2. Resolution 

One of the main questions in the resolution involves the calculation of the 
minimal project duration. This comes down to searching the longest path (arcs in 
bold in Figure 2.3) between Beginning and End nodes on the activity-on-node graph 
associated with the problem for which we have powerful algorithms. We thus 
determine critical paths each corresponding to a sequence of tasks where beginning 
dates are imposed if we wish to finish the project as soon as possible. They are 
called critical path methods, the most famous of which are PERT (program 
evaluation and review technique), CPM (critical path method) and MPM (Metra-
potential method and, later, the project management method), all of which appeared 
in the late 1950s [ROY 70]. 

2.3.2.1. Left-shift scheduling 

Calculating left-shift scheduling consists of allocating an earliest start time jt  to 
each task j, considering the earliest start times it  of tasks i such that a ijij btt
type constraint exists. Formally, the definition of earliest start times is recursive: 

iji
ji

j btmaxt
)(

[2.4] 

with: 0Beginningt
nb_iter 0 % Initialization 
for each node j, do

jt 0

repeat   % Main loop 
 stable  true 

for each node j  Beginning 

for any node )( ji
     if ijij btt then

      jt iji bt

     stable  false 
 nb_iter  nb_iter + 1
until stable = true or nb_iter > n - 1
if nb_iter > n – 1 then graph contains a circuit 

Algorithm 2.1. Bellman algorithm 
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Left-shift scheduling calculation determines the length of the longest paths 
reaching each task from the Beginning task. A solution exists if and only if no circuit 
of strictly positive length (“positive circuit”) exists. The Bellman algorithm 
accomplishes this type of calculation. It ends in the presence of positive circuits, 
with the help of a theorem ensuring that for n  nodes, the longest paths contain at the 
most 1n  arcs. Its statement is Algorithm 2.1. 

NOTE.– When we can ensure the absence of circuits, the graph can be decomposed 
into levels and it is thus more interesting to apply a simplified algorithm traversing 
the nodes in the increasing order of levels (see for example [PRI 94]). 

The application of Algorithm 2.1 makes it possible to determine the earliest 
finish time Endt , and thus the minimum duration of the project. 

2.3.2.2. Right-shift scheduling 

If the objective is to end the project as soon as possible, we can rule that Endt  is 
also a latest finish time, in order to determine by propagation a latest start time it
for each task. This time, we calculate the length of the longest paths between any 
node and end node. To do this, we use a simplified dual procedure of the previous 
(in fact detection of positive length circuits is well established). Starting from an 
initial state where Endi Endt t t , the procedure provides a stable set of latest start 
times in at most 1n  iterations, confirming: 

ijj
ij

i btmint
)(

[2.5] 

We call critical tasks the tasks which have identical earliest and latest start times 
once calculation of the left-shift scheduling and right-shift scheduling set at Endt  has 
been found. By definition, critical paths connect the beginning and end of a project 
and are made up exclusively of critical tasks4. By determining critical paths, it then 
becomes possible to focus our attention on the execution of critical tasks. Any delay 
in the execution of a critical task inevitably prolongs the duration of the project.  

For the others, we can determine several types of floats, which can possibly be 
used to smooth out workload, reduce costs, etc. 

4 Note that it is not really necessary to calculate earliest and latest schedules to identify 
critical jobs and paths; when calculating left-shift scheduling, tasks involved in the longest 
paths need to be located. 
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2.3.2.3. Characterization of the different float types 

Total float of a task is the maximum delay that it can have in relation to its 
earliest start time without affecting the minimum duration of the project. It is equal 
to the gap separating the earliest and latest start times: 

TFloati ti t i

Free float of a task is the maximum delay that it can have in relation to its 
earliest start time without affecting its following tasks which will retain their same 
earliest start times: 

min ( )i j ij i
j i

FFloat t b t

where ijb represents a valuation of the arc connecting i to j. Since the definition of 
free float is more restrictive than total float, the first is always a fraction of the 
second.

The interfering float is the difference between total float and free float. It 
characterizes the pairing of a task i scheduling with scheduling of following tasks in 
the graph: 

i i iItFloat TFloat FFloat

The independent float of task i  is the positive gap – if it exists – separating two 
dates: 

– the earliest start time for i  calculated in the case where all previous tasks on 
the graph are set as late as possible; and 

– the latest start time for i  calculated in the case where all following tasks on the 
graph are set as early as possible, 

IdFloati min(0, min
j i

(t j bij ) max
l i

(tl bli))

When the main requirement in a project is to end as soon as possible, it is 
advisable to schedule non-critical tasks earliest to offset possible contingencies 
during their execution as long as the available float is sufficient. Very often, 
however, considering other criteria linked to resources leads to delaying the start or 
prolonging the duration of non-critical tasks. We can use total float to classify tasks 
and reinforce operation control over those with little control because a too long 
delay can create a new critical path and prolong the project duration. We must keep 
in mind that any action on a task’s total float can have consequences on the total 
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float of other tasks. The notion of free float proves to be more useful for the 
consideration of other criteria. 

2.4. Shop scheduling 

2.4.1. Introduction 

In shop scheduling problems, resources are machines only able to execute one 
task – or operation – at a time. On the other hand, each job involves an indivisible 
physical entity, called product, or lot when several identical products are grouped. 
Since an entity cannot be in two places at the same time, a single job can only be 
executed one operation at a time on a single machine. 

We will discuss one-machine and multi-machine problems consecutively. In the 
first case, each job is reduced to a single operation; we must then find a job 
sequence on the single machine. In the second case, we will first distinguish 
identical parallel machine problems which use the same single operation job 
hypothesis and for which the solution is a set of sequences, one for each machine. 
We will then study multi-machine shop problems where jobs include several 
operations, each requiring a specific machine to be available in a single copy. This 
case covers three types of problems, whether the sequence of operations for a single 
job is set and common to all jobs (flow shop), set but inherent to each job (job shop), 
or finally undetermined (open shop). Open shop problems are discussed in Chapter 
10. 

2.4.2. Basic model 

2.4.2.1. Data, variables and constraints 

The shop includes m  machines. We must complete n  jobs that can start at t = 0. 
Each job i is made up of in  operations which must be executed in sequence. The jth

operation of job i is called (i, j); it uses machine ijm , with no interruption with a 
processing time ijp , and the respect of production routes mandates 

),()2,()1,( iniii  where  symbolizes the relation of precedence. Setup 
times are independent of the sequence of operations and are included in their 
processing time. 

The objective of the scheduling problem is to set start times tij. In order to do 
this, we must determine the order of circulation of all jobs for each machine, or 
sequence, since resources are disjunctive. From these sequences, several feasible 
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schedules – localizing in an absolute manner the operations in time – can be 
obtained according to the criterion to optimize.

2.4.2.2. Criteria

In shop scheduling, we attempt to minimize the maximum or the average over all 
jobs of indicators based on product wait times between two operations (flow time, 
delays, etc.). We often operate a weight on criteria (weight wi) in order to model 
preferences or costs during execution of operations. Since several criteria are 
regular, the search for optimal solutions can focus on dominant left-shift schedule 
subsets.

2.4.3. One-machine problem 

The study of single (each job only includes one operation to which it is 
assimilated) machine environments serves as a basis for developing more realistic, 
albeit more complex, multi-machine environment reasonings. Since the basic shop 
scheduling model is retained, we will first highlight the hypotheses inherent to a 
one-machine problem. The basic results are presented before addressing resolution 
methods which may also be used in the more general context of multi-machine 
problems. 

2.4.3.1. Specific results – priority rules 

For certain criteria, list algorithms, based on rules sequencing operations 
according to an imposed order of priority, make it possible to efficiently lead to an 
optimal resolution. The operations are sequenced from 0t . At date t , and from 
all unscheduled operations that are ready ( }/{ tti i ), we choose the one with the 
highest priority. The following moment of decision ( tt ) corresponds to the next 
greatest moment among the earliest end dates of scheduled operations (O) and the 
smallest of the earliest start times of operations not yet scheduled (N):

))(min ),(minmax( jj
ii

tpt
i

tptt

ii

NO

Priority may be linked to the shortest processing time, to the earliest due date, to 
the greatest quantity of work remaining, etc. (see Chapter 6). The advantage of 
priority rules resides in their simplicity of application. However, optimality is still 
dependent on the criterion chosen. 

Sequencing of operations in increasing processing times/weights ( ii wp ) ratio
makes it possible to minimize the total flow time or work-in-process inventory. This 
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corresponds to respecting the WSPT rule (weighted shortest processing time first) or 
Smith’s rule [SMI 56]. Sequencing operations in increasing processing times (SPT 
rule) minimizes the total lateness. Sequencing operations in increasing due dates 
minimizes maximum lateness and maximum tardiness. The corresponding rule is 
called EDD (earliest due date first) also known as Jackson’s rule [JAC 55]. Note 
that the two previous rules can be adapted to optimally solve problems associated 
with the same criteria in the case where we consider different availability dates and 
where preemption is authorized [HOR 74, SMI 56]. The Hodgson-Moore algorithm 
minimizes the total number of tardy operations [MOR 68]. It consists of gradually 
building a schedule based on the EDD rule. When a delay appears in the partial 
schedule, the longest processing time operation already in place is pushed back to 
the end of the schedule. In the presence of precedence constraints between tasks, we 
have an exact polynomial method to minimize the maximum delay criteria. As in the 
application of Jackson’s rule (EDD), the idea is to propagate the latest start time 
constraints with the Bellman algorithm and to place operations in increasing order of 
new due dates obtained. 

For considering other criteria (for example the minimization of the total 
tardiness) under general conditions, the absence of specific results leads to the use of 
approximate methods (heuristic or metaheuristic, for example genetic algorithms –
see Chapter 4) or general methods such as tree search procedures [CAR 82, MAC 
93] (see also the work by Morton and Pentico [MOR 93]). 

2.4.4. Parallel machine problems 

With the one-machine problem, scheduling comes down to sequencing 
operations. The problem with parallel machines is characterized by the fact that 
several machines can be used for the execution of a job that only requires one of 
them. Theoretically, this problem is a generalization of the one-machine problem 
and a specific case of multi-machine shop problem. It is a problem frequently 
encountered in real applications, particularly in the context of hybrid flow shops (see 
Chapters 4 and 9), but also in the environment of computer processing scheduling 
[BLA 96a]. In this case, operations correspond to processing programs executed on 
processors. A task can start and then be interrupted if a more urgent process 
becomes available, which requires close attention to the question of preemption. 

The resolution goes through the process of allocation decisions and is generally 
performed in two steps: 

– decide on which machine each operation will be executed; 

– determine the sequence of operations on each machine. 
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The problem is generally subdivided into three classes based on whether the 
machines are: 

– identical: processing time is the same for all machines; 

– uniform: processing time uniformly varies according to machine performance; 

– independent: processing time is completely variable between the different 
machines.

We will only cover the case of identical machines considering the criteria of 
makespan and the sum of due dates. 

2.4.4.1. Makespan minimization 

Makespan minimization leads to a better load distribution for a cost effective use 
of plant capacity. In the absence of precedence constraints and in the case of 
interruptible operations, the MacNaughton algorithm provides a minimal time 
scheduling in linear time [MAC 59] (Algorithm 2.2). 

If the preemption is prohibited, the problem becomes NP-hard with two 
machines or more; exact methods are mainly B&B procedures. We can use a 
heuristic which consists of placing operations according to LPT policy (longest 
processing time first) and assign them according to this order, consecutively to the 
machine with the lightest load. The shortest operations are then kept at the end of the 
schedule in order to balance the load as much as possible. 

With precedence constraints, and in the specific case where the number of 
machines is at least equal to the number of jobs, we again fall back to the project 
scheduling problem and we can use the Bellman algorithm, otherwise some 
optimality results exist when the precedence graph has specific characteristics. The 
general problem is NP-hard in the strong sense ([PIN 95], page 66). 

1. i
i

n

i
i pp

m
C max,1max

1

*
max

2. Select an operation and schedule it on the first machine at 0t .
3. Schedule an operation not yet selected on the same machine as early as possible. 

 Restart as long as total time on the machine does not exceed *
maxC .

4. Transfer the part of the work scheduled after *
maxC  onto the next machine. Go back 

to 3. 

Algorithm 2.2. MacNaughton algorithm 
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2.4.4.2. Sum of due dates 

The minimization problem of the average due dates is optimally resolved with 
SPT. For the weighted average, WSPT-FAM (weighted shortest processing time on 
first available machine) is a good heuristic. In the presence of precedence 
constraints, the problem is NP-hard in the strong sense. 

2.4.5. Flow shop 

In the case of a flow shop, any job visits each machine in the shop and the 
routing of a job through the different machines is the same for all jobs 
(unidirectional flow). This single route is a part of the problem data. This 
specification is very often encountered in practice; it corresponds to an assembly or 
processing line for example. An important case in particular is the one of a 
simplified flow shop where the sequence – or permutation – of jobs visiting one 
machine is the same for all machines. This is the permutation flow shop. The hybrid
flow shop case corresponds to a generalization of the flow shop and parallel machine 
problems. In this problem, the shop is made up of a certain number of ordered 
levels; each level has several parallel machines. This problem is discussed in 
Chapters 4 and 9. The specific results presented here exclusively involve the 
minimization objective of makespan and are limited to the permutation flow shop 
for which we obtain the most significant results. In addition, we know that schedules 
such that the job sequence is identical on the first two machines are dominant for 
regular criteria (see section 2.2.3.3). 

2.4.5.1. Two-machine flow-shop 

In this case, an optimal schedule for the makespan criterion can be searched for 
among permutation schedules. We apply the sufficient optimality condition given by 
Johnson’s rule [JOH 54]: job i  precedes job j  in the optimal sequence ( ji ) if:

),min(),min( 2121 ijji pppp .

The associated algorithm [CAR 88] tends to put at the beginning of the schedule 
the jobs with lower processing times on the first machine, while rejecting the jobs 
with lower processing times on the second machine at the end of the schedule: 
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1. Constitute job groups 2121 /;/ iiii ppiVppiU .

2. Schedule U  according to SPT sequence on the first machine ( 1ip ) and V
according to the LPT sequence on the second machine ( 2ip ). 

3. The optimal sequence is given by jobs scheduled in U  followed by those scheduled in 
V .

Algorithm 2.3. Johnson algorithm 

2.4.5.2. Three-machine flow-shop 

Schedules such that the job sequence is identical on the two last machines are 
dominant for the makespan criterion. Up to three machines, an optimal schedule can 
still be searched for among permutation schedules. 

In the following two specific cases: 21 maxmin i
i

i
i

pp  or 23 maxmin i
i

i
i

pp

(the load on 2M  is always lower than on 1M  or 3M ), we can extend Johnson’s 
rule. They correspond to the fact that 2M  does not represent a “bottleneck”, i.e. that 
it is completely dominated by 1M  or 3M . We then define two fictitious machines 

1M  and 3M , on which respective processing times of a job are: 211 iii ppp ;

322 iii ppp  and we apply Johnson’s rule to this new two-machine problem. 

Outside of these specific cases, the problem is NP-hard in the strong sense and 
we go back to the context of the m-machine problem. Works by [STO 63] and [IGN 
65] respectively were among the first to propose a program in integer variables and a 
B&B for its resolution. 

2.4.5.3. M-machine flow-shop 

Generally, there is not an exact polynomial method. We use tree search  
methods, integer programming and heuristics, such as for example the famous 
Campbell, Dudek and Smith (CDS) method, a multi-step extension of Johnson’s rule  
[CAM 70]. 

From the m-machine problem, we generate 1m  fictitious problems with two 
similar machines: 
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– at step 1, we only consider the first and last machine for a job i:

1
1
1 ii pp ; imi pp1

2

– at step 2, both equivalent machines are made up respectively of the first two 
and the last two machines regardless of any intermediate machine. Generally at step 
l, we have the following processing time on both equivalent machines: 

l

k
ik

l
i pp

1
1 ;

m

lmk
ik

l
i pp

1
2 ; 1,,1 ml

– for each of these fictitious problems, we determine the optimal sequence with 
the help of Johnson’s rule; 

– retain the best solution amongst the 1m  solutions obtained. 

2.4.6. Job shop 

The job shop problem can be found when a shop manufactures parts with 
different characteristics, but nevertheless requires processes where the sequences are 
known in advance. Each job must visit machines in a given sequence, but the 
difference with the flow shop is that this sequence may be different for each job 
(multidirectional flow). 

In the following, we propose a quick overview of the most traditional results and 
methods. For a more detailed explanation of the job shop problem, refer to states of 
the art such as [BLA 96b] and [JAI 99]. As in the case with the flow shop, we will 
only consider makespan minimization here. There are very few specific results; they 
are limited to the case of the two-machine and two-job problems.  

2.4.6.1. Two-machine job-shop 

This problem has a known solution reachable in polynomial time. It is resolved 
by the Jackson algorithm, based on Johnson’s rule [JAC 56, JOH 64]: 
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1. Separate jobs into four sets: 
 – }{ 1O : set of jobs made up of an operation executed on 1M ;

 – }{ 2O : set of jobs made up of an operation executed on 2M ;

 – }{ 12O : set of jobs made up of two operations, the first one on 1M , the second on 

2M ;

 – }{ 21O : set of jobs made up of two operations, the first one on 2M , the second on 

1M .

2. Jobs for }{ 12O  and }{ 21O  are sequenced according to Johnson’s rule; those for 

}{ 1O  and }{ 2O  do not have a specific sequence. 

3. Optimal scheduling respects the following sequences: 
 – for 1M : }{}{}{ 21112 OOO ;

 – for 2M : }{}{}{ 12221 OOO .

Algorithm 2.4. Jackson algorithm 

2.4.6.2. Two-job job-shop 

With the help of a graphical method, this problem can also be optimally solved 
in polynomial time [AKE 55, HAR 63]. We consider a plan made up of two time 
axes, with the abscissa associated with the execution of job 1 and the ordinate with 
the execution of job 2. The determination of a shortest time schedule goes back to 
the search for shortest routes in a plan paved with obstacles, insurmountable 
rectangles representing the simultaneous execution of both jobs on the same 
machine. The route includes horizontal lines (only job 1 executing), vertical lines 
(only job 2), or at 45° diagonal (jobs 1 and 2 simultaneously on two different 
machines) lines. The route maximizing the quantity of simultaneous jobs leads to the 
shortest makespan. Its value is given by the sum of the length of horizontal, vertical 
segments and projections of 45° segments on one of its axes. 

2.4.6.3. M machine job-shop 

In general, the problem is NP-hard in the strong sense. It is addressed by 
enumeration methods based on mixed-variable programming or by tree search 
methods, and heuristics based for example on priority rules. A more sophisticated 
modeling tool is called a disjunctive graph [ROY 70]. Operations are associated 
with nodes. The set of arcs is made up of a conjunctive part representing the 
precedence constraints linked to each single job (operating sequence) and a 
disjunctive part associated with all conflicts related to using resources that cannot be 
shared. A feasible schedule is characterized by the choice of one directed arc – or 
arbitration – in each disjunction pair. Feasible schedule makespan is the length of 
the longest path between the beginning node and end node on the graph where all 
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disjunction pairs have been arbitrated without generating a circuit. The detailed 
description of this model is given in section 10.6. 

2.4.6.3.1. Generating schedules with priority rules 

This approach consists of generating specific schedules (semi-active, active, non-
delay) with the help of priority rules for the choice of candidate operations to be 
scheduled [BAK 74, CON 67]. An operation is “schedulable” if the previous 
operation in its production route is finished and if the machine it uses is idle. Its 
earliest start time is then the maximum date between the finish time of its immediate 
predecessor in the routing and the finish time of the last scheduled operation on the 
machine it uses. Two procedures are mainly used to constitute all schedulable 
operations: 

– by generation of active schedules: among schedulable operations (initially the 
first for each job), we select the one for which the earliest finish time is the smallest; 
we call it c*. All schedulable operations are made up of operations with an earliest 
start time lower than c* on the machine where this operation may be executed; 

– by generation of non-delay schedules: the procedure is similar to the previous 
one, except for the fact that the selected operation is the one for which the earliest 
start time is the smallest and called t*. The generation of non-delay schedules 
ensures that a machine does not remain idle when an operation is waiting for this 
machine. However, there is no guarantee that all non-delay schedules contain an 
optimal solution to the scheduling problem raised, contrary to all active schedules. 

Once the group of schedulable operations is completed, it is time to effectively 
select the operation to be executed on the machine concerned. In order to do this, we 
use priority rules such as SPT, LPT, EDD, FIFO, etc. (see Chapter 6). For a selected 
operation, we arbitrate machine usage conflicts by adding arcs between this 
operation and all operations still to be executed on this same machine on the 
disjunctive graph. The schedule generation approach can also be associated with a 
branch and bound procedure to optimally solve a job shop problem. At each step of 
this procedure, we can branch as soon as several operations become ready. 

2.4.6.3.2. Shifting bottleneck heuristic 

The shifting bottleneck heuristic is a powerful method for the resolution of job 
shop problems [ADA 88, DAU 93]. It is linked to the shifting bottleneck concept 
and uses the efficiency of a tree search procedure to solve the one-machine problem 
with minimization of the maximum lateness [CAR 82]. 
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1. M = group of machines in the problem 
2. 0M  = group of machines on which conflicts have been solved (maybe temporarily); 

0M .

3. Choose in 0\ MM  the bottleneck machine. For this, we consider the associated 

conjunctive problem and for each machine in 0\ MM , we consider a one-machine 

problem with minimization of the maximum lateness that is solved by a B&B. The 
bottleneck machine is resource k for which we obtain the largest lateness.

4. Reusing the disjunctive graph and adding arcs corresponding to the optimal sequence 
on machine k. 

5. Re-sequence all machines 0M  by including the sequence of operations associated 

with k and by resolving a new one-machine problem for each. 
6. Reiterate for a new machine 0\ MM  (return to 3) up to MM 0 .

Algorithm 2.5. Shifting bottleneck heuristic 

For examples on the application of this heuristic, we can refer to [PIN 99]. We 
also find a variation of this heuristic to solve the minimization of the total weighted 
tardiness. 

2.5. Conclusion 

This chapter has attempted to give a quick outline of methods which have now 
become standard for project and shop scheduling. For more detailed information on 
description and application of these methods, as well as others not described here, 
please refer to the numerous books on scheduling, among them: [BAK 74, BEL 82, 
BLA 07, CAR 88, CON 67, ESQ 99, FRE 82, LEU 04, PIN 95, PIN 05]. 

The objective here has mainly been to provide the necessary material for 
understanding the following chapters which describe specific methods and concepts 
in greater detail. 
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Chapter 3 

Metaheuristics and Scheduling

3.1. Introduction 

Scheduling involves taking decisions regarding the allocation of available 
capacity or resources (equipment, labor and space) to jobs, activities, tasks or 
customers over time. Scheduling thus results in a time-phased plan, or schedule of 
activities. The schedule indicates what is to be done, when, by whom and with what 
equipment. Although the statement of a manufacturing organizational problem such 
as scheduling may seem simple, we must never underestimate the effort necessary to 
find its solution [WID 98]. Scheduling problems can be modeled as assignment 
problems, which represent a large class of combinatorial optimization problems. In 
most of these cases, finding the optimal solution is very difficult. In fact, except for 
a few exceptions, the only known method to solve the problem to optimality would 
be to enumerate an exponential number of possible solutions! Specialists in this case 
speak of NP-complete problems [CAR 88, GAR 79]. In these conditions, it is 
necessary to find a solution method providing solutions of good quality in a 
reasonable amount of time: this is what heuristic methods are all about. 

This chapter focuses on describing the three main heuristic classes, constructive 
methods, local search methods and evolutionary algorithms [COS 95c]. Since these 
methods are general enough to be applied to a multitude of combinatorial 
optimization problems, they are called metaheuristics.

This chapter is organized as follows: the next two sections indicate how to model 
scheduling problems in terms of combinatorial optimization and briefly describes 
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the major issues encountered when solving such problems. A complete presentation 
of the main metaheuristics is the subject of section 3.4, preceding a detailed analysis 
of the application of a tabu search method for the job shop scheduling problem with 
tooling constraints. 

3.2. What is a combinatorial optimization problem? 

Combinatorial optimization is the field of discrete mathematics involving the 
resolution of the following problem. 

Let X be a set of solutions and f a function that measures the value of each 
solution in X. The objective is to determine a solution s*  X minimizing f, i.e.: 

)(min*)(
X

sfsf
s

Set X is presumed finite and is in general defined by a set of constraints. As an 
example, for a job scheduling problem on one machine, X can be made up of all job 
sequences satisfying precedence and priority constraints while f can correspond to 
the date at which the last job is finished (makespan). 

3.3. Solution methods for combinatorial optimization problems 

Despite the permanent evolution of computers and the progress of information 
technology, there will always be a critical size for X above which even a partial 
listing of feasible solutions becomes prohibitive. Due to these issues, most 
combinatorial optimization specialists have focused their research on developing 
heuristic methods. A heuristic method is often defined [NIC 71] as a procedure that 
uses the structure of the considered problem in the best way possible in order to find 
a solution of reasonably good quality in as little computing time as possible. General 
properties of these techniques and the circumstances in which they apply are 
described in [MÜL 81, SIL 80]. 

Most difficult combinatorial optimization problems are NP-complete (see 
Chapter 2). Since no efficient algorithm for solving NP-complete problems is known 
despite the numerous efforts over the last 50 years, the use of heuristic methods is 
completely justified when facing such difficult problems. The performance of a 
heuristic method typically depends on the quality of the solution produced as output 
and on the computing time necessary to reach such a solution. A compromise has to 
be found on a case-by-case basis according to the considered optimization problem 
since these two criteria are of opposite nature. Since the optimal solution value of a 
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large scale difficult combinatorial optimization problem is typically unknown, the 
quality of a solution produced by an algorithm is typically evaluated using bounds or 
estimates of this optimal solution value. It might also be interesting to analyze the 
performance of a given heuristic method in the worst case scenario. A measure of 
the biggest possible error (with respect to the optimal value) is particularly useful 
when the goal is to specify in which circumstances the considered heuristic method 
should not be used.  

Although obtaining an optimal solution is not guaranteed, the use of a heuristic 
method provides multiple advantages when compared with exact methods: 

– the search for an optimal solution can be inappropriate in certain practical 
applications for many reasons such as the large size of the problem considered, the 
dynamic characterization of the work environment, a lack of precision in data 
collection, difficulties encountered when formulating the constraints in 
mathematical terms, the presence of contradictory objectives; 

– when applicable, an exact method is often much slower than a heuristic 
method, which generates additional computing costs and a typically very long 
response time; 

– research principles at the basis of a heuristic method are generally more 
accessible to inexperienced users. The lack of transparency that characterizes certain 
exact methods requires regular intervention from specialists or even from the 
method’s designers; 

– a heuristic method can easily be adapted or combined with other types of 
methods. This flexibility increases the range of problems to which heuristic methods 
can be applied. 

Even though a good knowledge of the problem to be solved is the main 
contributor to the efficient and successful use of a heuristic method, there are several 
general rules that can be used to guide the search in promising regions of the 
solution space X. Guidelines for the use of heuristics in combinatorial optimization 
can be found in [HER 03]. A classification of heuristic methods was proposed by 
Zanakis et al. [ZAN 89]. In the next sections of this chapter, we describe three 
fundamentally different heuristic approaches. The research principles of these 
approaches constitute a basis for several known heuristic methods such as the greedy 
algorithm, tabu search, simulated annealing and genetic algorithms. The Committee 
on the Next Decade of Operations Research [CON 88] declared in 1988 that these 
last three methods were very useful and promising for the solution of a large number 
of practical applications in the future. This prediction has turned out to be true. 
Although very general in their concept, these methods do require a large modeling 
effort if we wish to obtain good results. 
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3.4. The different metaheuristic types 

3.4.1. The constructive approach 

Constructive methods produce solutions in the form of s = (x1, x2, ..., xn), starting 
from an initial empty solution s[0] and then inserting at each step 
k (k = 1, ..., n), a component xo(k) (o(k)  {1, 2, ..., n}\{o(1), o(2), ..., o(k – 1)}) in 

the current partial solution s[k – 1]. The decision that is taken at a given step is based 
on the index of the inserted component and on the value to give it. This decision is 
then never reassessed. The vector representation s = (x1, x2, ..., xn) is quite suitable in 
solutions for a general assignment problem. Vector positions correspond to objects, 
whereas each component xi defines the resource allocated to object i.

The exploration of solution space X with a constructive method is represented in 
Figure 3.1. The goal is to decrease the size of the problem at each step, which means 
confining ourselves to an increasingly smaller subset Xk  X. A constructive method 
finds an optimal solution when each considered subset contains at least one optimal 
solution s*  X. Unfortunately, cases where such a condition is always fulfilled are 
rare. The majority of constructive methods are greedy: at each step, the current 
solution is completed in the best way possible without taking into consideration all 
consequences that this generates with regards to final solution cost. In this sense, 
greedy style methods are often seen as myopic. 

X),...,2,1({X nxxxsk components )(o,...,)2(o,)1(o kxxx  are fixed} (k = 1, …, n)

Figure 3.1. Exploration of X with a constructive approach 

Constructive methods are distinguished by their speed and great simplicity. 
Solutions are very quickly generated for a given problem without having to use 
highly sophisticated techniques. However, the main drawback with these methods 
resides unfortunately in the quality of the solutions obtained. The use of the best 
choice at each step is a strategy with potentially catastrophic long term effects. From 
a theoretical standpoint, obtaining an optimal solution is only ensured for problems 
accepting a formulation in terms of matroids [GON 85]. It is thus generally wise to 
implement procedures anticipating side effects and future consequences caused by 
decisions made during the completion of a partial solution. 
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We illustrate constructive methods with the algorithm by Nawaz et al. [NAW 
83] summarized below and developed for the search of a minimal length sequence in 
a simple flow shop. The scheduling problem in a simple flow shop is a production 
problem in which n jobs must be executed following the same sequence on each of 
the m machines in the shop; these jobs all have the same process plan but not the 
same processing times. The processing time of job i on machine j is denoted by pij

(i = 1... n, j = 1... m). 

1. for each job i (i = 1 ... n), set Pi
m

p
j

ij
1

2. sort the jobs into a list in descending order of Pi
3. take the first two jobs from the list at step 2 and find the best sequence for these two 

jobs by evaluating both scheduling possibilities. The relative positions of these two 
jobs cannot be modified during the next heuristic phases; set i  3;

4. take the job in ith position from the list at step 2 and find the best sequence by 
inserting this job in one of the i possible positions among the jobs already placed; 

5. if i < n then set i  i+1 and go to step 4; 
otherwise STOP: the sequence found is the NEH heuristic solution 

Algorithm 3.1. NEH heuristic 

Nawaz et al.’s algorithm is based on the assumption that a job with a long total 
processing time has priority over a job with a shorter total processing time. The final 
sequence is found in a constructive way, by inserting a new job at each step and by 
finding the best possible position for this new job, without modifying the relative 
positions of the jobs inserted earlier (see Algorithm 3.1). 

This heuristic provides a very good compromise between solution quality and 
computing time [WID 91b]. 

3.4.2. Local search approach 

Local search methods are iterative algorithms which explore the solution space X 
by moving step by step from one solution to another. This type of method begins 
with a solution s0  X arbitrarily chosen or otherwise obtained from a constructive 
method. The transition from one solution to another is made according to a series of 
basic modifications which must be defined on a case-by-case basis. The following 
notations are taken from the [WER 89] reference. We denote by the set of all 
possible modifications that can be applied to a solution. A solution s’ obtained from 
s by applying a modification  is denoted as s’ = s . The neighborhood N(s)
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of a solution s  X is defined as the set of solutions that can be obtained from s by 
applying a modification . Specifically, we can write: N(s) = {s’  X | :
s’ = s }. This type of examination process is interrupted when one or more 
stopping criteria are met. Figure 3.2 illustrated the general scheme of a local search 
method. Consecutive transitions from one solution to a neighbor solution define a 
path in the solution space X. 

Figure 3.2. Exploration of X with a local search approach 

An oriented graph G, called state space graph, can be defined to represent a 
local search. Each solution in X is associated with a vertex in G, and an arc from 
vertex s1 to vertex s2 is introduced in G if and only if s2 is a neighbor of s1 (i.e. s2
N(s1)). Modeling an optimization problem and choosing a neighborhood N(s) must 
be done in such a way that for each solution s  X, there is at least one path in G
linking s to an optimal solution s*. The existence of such paths ensures that the local 
search method can possibly reach an optimal solution starting from any initial 
solution s0.

The neighborhood of a solution s in the context of assignment problems can be 
defined in a very simple way [FER 96]. Given a set of objects and a set of resources, 
and assuming that exactly one resource must be assigned to each object, we can 
define the neighborhood N(s) of s as the set of solutions that can be obtained from s
by changing the resource assignment of exactly one object.  

The descent method described in Algorithm 3.2 is a first example of a local 
search method. This type of method moves in X by choosing at each step the best 
neighbor solution in the neighborhood N(s) of the current solution s. This process is 
repeated as long as the value of the objective function decreases. The search stops 
when a local minimum is reached. Historically, descent methods have always been 
among the most popular heuristic methods to handle combinatorial optimization 
problems. However, they contain two major obstacles which considerably limit their 
efficiency:
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– according to the size and structure of the considered neighborhood N(s), the 
search for the best neighbor solution in N(s) is a problem which can be as difficult as 
the original problem (which is to find the best solution in X); 

– a descent method is unable to escape the first local minimum encountered. 
Combinatorial optimization problems however typically contain numerous local 
optima with an objective function value which can be very far from the optimal 
value. This is illustrated in Figure 3.3. 

In order to cope with these deficiencies, more sophisticated local search methods 
have been developed in the last 20 years. These methods accept neighbor solutions 
with a lesser quality than the current solution in order to avoid local minima of 
function f. The most famous methods of this type are presented in the next sections. 
The main differences between these methods concern the rule used to choose a 
neighbor solution and the stopping criteria. The search can be stopped when a 
solution deemed close enough to being optimal is found. Unfortunately, the optimal 
value of a combinatorial optimization problem is typically not known, and it is 
therefore often not possible to use such a stopping criterion. 

Initialization 
 choose an initial solution s X;
 set s*  s; 
Iterative process 

repeat
  generate N(s); 
  determine s’ N(s) such that f(s’) =

N(s)”s
min f(s”); 

  set s  s’; 
if f(s) < f(s*) then set s*  s; 

until s  s* 

Algorithm 3.2. The descent method 

Figure 3.3. A descent method cannot escape a local minimum 
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The methods presented below are generally much more powerful than a simple 
descent method but also much more expensive in terms of computing resources. 
Their implementation must consider the maximum response time authorized by the 
program user. We should note in conclusion that significant effort is necessary to 
correctly adjust the parameters used by these methods in order to effectively guide 
the search throughout X. 

3.4.2.1. Simulated annealing 

Originally, the simulated annealing method goes back to experiments by 
Metropolis et al. [MET 53]. Their studies have led to a simple algorithm to simulate 
the evolution of an unstable physical system toward a state of thermal balance with a 
fixed temperature t. The state of the physical system is characterized by the exact 
position of all the atoms it contains. Metropolis et al. use a Monte Carlo method to 
generate a series of consecutive system states starting with a given initial state. Any 
new state is obtained when an atom executes an infinitesimal random movement. 
Let E be the energy difference generated by such a disruption. The new state is 
accepted if the system energy decreases ( E < 0). In the contrary case of ( E  0), it 
is accepted with a certain probability: 

)
E

exp(),E(prob
tk

t
B

where t is the system temperature and kB a physical constant known as the 
Boltzmann constant. At each step, acceptance of a new state where the energy is not 
lower than the current state is decided by randomly generating a number q  [0,1[. If 
q is lower than or equal to prob( E,t), then the new state is accepted, otherwise the 
current state is maintained. Metropolis et al. have shown that a repeated use of this 
type of rule brings the system to a state of thermal balance. Many years passed after 
these studies from Metropolis et al. before the simulation algorithm they developed 
was used to define a new heuristic method for the resolution of a combinatorial 
optimization problem. Simulated annealing is a local search method where the 
search mechanism is modeled on the Metropolis et al. algorithm and principles of 
thermodynamic annealing. The idea consists of using the Metropolis et al. algorithm 
with decreasing temperature values t. The progressive cooling of a particle system is 
simulated by, on the one hand, making an analogy between the system energy and 
the objective function of a combinatorial optimization problem, and between system 
states and the solutions of the considered problem on the other hand. To reach states 
with as little energy as possible, the system is initially brought to a very high 
temperature and then slowly cooled down. When the temperature goes down, atom 
movements become less random and the system will tend to be in low energy states. 
System cooling must be carried out very slowly in order to reach a state of balance 
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at each temperature t. When no new state is accepted at a given temperature t, the 
system is considered frozen and it is presumed that it has reached a minimum level 
of energy. 

Kirkpatrick et al. [KIR 83] and Cerny [CER 85] were the first to follow such a 
technique to solve combinatorial optimization problems. The neighborhood N(s) of 
a solution s  X contains all states which can be obtained from the current state by 
slightly moving one atom of the physical system. Only one neighbor solution s’
N(s) is generated at each iteration. This solution is accepted if it is better than the 
current solution s. Otherwise, we proceed as with the Metropolis et al. algorithm and 
the new s’ solution is accepted with a probability prob( f,t) depending on the 
importance of the damage f = f(s’) – f(s) and on a parameter t corresponding to the 
temperature. Changes in temperature are performed on the basis of a precise cooling 
pattern. Generally speaking, the temperature is lowered in steps each time a specific 
number of iterations are executed. The best solution found is stored in variable s*.
The algorithm is interrupted when no neighbor solution has been accepted during a 
complete constant temperature iteration cycle. The simulated annealing method is 
described in Algorithm 3.3. 

Simulated annealing performance is closely linked to the cooling pattern 
involved. Numerous theoretical studies have been carried out on this subject and 
several variations have been proposed [COL 88, OSM 94]. Simulated annealing can 
be described in the form of a non-homogenous Markov chain [AAR 89, VAN 87], 
which leads to interesting results in terms of asymptotic convergence of the 
algorithm when certain specific conditions are met. Geman et al. [GEM 84] have 
demonstrated that the method converges in terms of probability to an optimal 
solution if temperature tk at the kth iteration meets the two following conditions: 

i)
k
lim tk = 0 

ii) tk )1log(
c
k

k = 1, 2, ... 

where c is a constant independent of k. Hajek [HAJ 88] established a similar 
convergence result by asserting: 

iii) tk = 
)1log(

c
k

   and c = 
X

max
s

 f (s) – 
O

min
s

 f (s)

where O represents the set of all local minima of f which are not optimal solutions. 
In general, constant c is called the maximum depth of function f.
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In reality, the above condition is difficult to obtain and very costly in terms of 
calculation. We generally prefer the cooling pattern by levels shown in Algorithm 
3.3, even though it does not guarantee algorithm convergence to an optimal solution. 
Recently, the simulated annealing algorithm has been frequently used to solve 
practical optimization problems. A detailed review of the literature was carried out 
by Collins et al. [COL 88]. Several simulated annealing algorithm applications are 
proposed in a book edited by Vidal [VID 93]. The interested reader can refer to 
[EGL 90, REE 93, RUT 89, VAN 87] for more detailed information on simulated 
annealing. 

Initialization 
 choose an initial solution s  X;
 set s*  s; 
 set k 0;    (global iteration counter)
 set new_cycle  true;  (Boolean variable indicating if it is worth 

     executing a new cycle of iterations)
 set t  t0;    (t0 = initial system temperature)
Iterative process 

while new_cycle = true do
 set nbiter  0;    (iteration counter internal to a cycle)
 set new_cycle  false; 

while (nbiter < nbiter_cycle) do
  set k   k + 1  and  nbiter   nbiter + 1;
  randomly generate a solution s' N(s); 
  set f  f(s') – f(s); 

if f < 0 then set s  s’  and  new_cycle  true;
otherwise

   set prob( f,t)  exp(- f/t); 
    generate a random real number q from an uniform distribution over the 

interval [0,1[; 
   if q < prob( f, t) then set s  s’  and   new_cycle  true; 

if f(s) < f(s*) then set s*  s; 
 set  t: = a  t    (0 < a < 1: cooling factor)

Algorithm 3.3. Simulated annealing 

3.4.2.2. Threshold accepting methods 

Threshold accepting methods are local search methods that can be seen as 
deterministic variants of simulated annealing. The main difference between these 
two methods is the level of acceptance of a lower quality solution at each step. In a 
threshold accepting method, this type of decision is taken in a deterministic manner, 
without having to use the principles of thermodynamic annealing. It is strictly based 
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on an auxiliary function  (s,s’) and on a threshold S which can possibly involve the 
value f(s*) of the best solution encountered so far. Function  (s,s’) and threshold S 
can be defined in many ways leading to several variations for threshold accepting 
methods. The threshold accepting method is presented in a generic way in 
Algorithm 3.4, followed by three adaptations of this method developed by Dueck 
and Scheuer [DUE 90, DUE 93]. The algorithm is generally interrupted when a 
number nbiter_tot of iterations is reached or when the best found solution s* is not 
improved during a number nbiter_max of iterations. 

Standard threshold accepting method 

Threshold S is defined the same way as temperature t in the simulated annealing 
algorithm. It is initially set at a high value, then proportionally lowered  
(i.e., S is set equal to a S with 0 < a < 1) each time a predetermined number of 
iterations is completed. The aim of this method is to accept all neighbors s’ which do 
not deteriorate the quality of the current solution s in a significant way. For this 
purpose, the auxiliary function  (s,s’) is defined as  (s,s’) = f(s’) – f(s).

Great deluge method 

In this case, threshold S corresponds to a level of water. In a minimization 
problem, a neighbor solution s’ is accepted if and only if f(s’) is below the water 
level S regardless of the value f(s) of the current solution. In this way,  (s,s’) = f(s’),  
The water level is initially set at a high value S0, and it then decreases linearly (i.e., 
S is set equal to S – d where d is a parameter measuring the decreasing speed).  

Initialization 
 choose an initial solution s  X; 
 set s*  s; 
 set nbiter  0;   (iteration counter)
 set best_iter  0;   (iteration leading to the best s* solution found to date)
 set S  S0;   (S0 = initial threshold)
Iterative process 

while no stopping criterion is met do
  set nbiter   nbiter + 1; 
  randomly generate a solution s' N(s); 

if s,s’) < S then
   set s  s’;
   if f(s) < f(s*) then set s*  s  and   best_iter  nbiter; 
  update threshold S 

Algorithm 3.4. Threshold accepting method 
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Originally, this method was designed to solve maximization problems. First, the 
level of water is arbitrarily set at a low value, and it is then linearly increased. In 
such a case, a neighbor solution s’ is only retained if it is over the water level (i.e., if 
f(s’) > S). This explains the name of the method. Such a research principle can be 
simply illustrated by considering a hiker unable to swim and wanting to reach the 
highest point of a given region when the level of water constantly increases. The 
hiker’s chances of success are higher if the water increase is slow (i.e., d is small). 

Record-to-record travel method 

In this adaptation of the threshold accepting method, all neighbor solutions s’ of 
significantly lower quality than the best solution s* found so far are rejected. In 
order to do this, we must define a maximal deterioration max_d, in relation to value 
f(s*), over which any neighbor solution s’ is automatically rejected. As in the 
previous method, acceptance of a new solution is made without examining the value 
of the current solution, hence  (s,s’) = f(s’). Threshold S is initialized at a high value 
and is then updated at each step by setting S equal to f(s*) + max_d. Parameter 
max_d is typically not modified during the execution of the algorithm. 

According to [DUE 90, DUE 93], the three previous methods provide numerous 
advantages compared to the simulated annealing method. Several tests were carried 
out in the context of the traveling salesman problem. It would seem that a threshold 
accepting method generally gives better results than simulated annealing while being 
quicker and less sensitive to the set of parameters used. Sinclair [SIN 93] confirmed 
these observations after using the great deluge and the record-to-record travel 
methods for balancing hydraulic turbine runners. We do not know of any more 
comparative studies leading to similar conclusions. 

3.4.2.3. Tabu search 

Tabu search is a general iterative method for combinatorial optimization 
introduced by Glover [GLO 86] in a specific context and later developed in a more 
general context [GLO 89, GLO 90]. Independently, Hansen developed the SAMD 
method (for Steepest Ascent Mildest Descent) based on similar ideas [HAN 86]. The 
tabu search method is very powerful over a considerable number of combinatorial 
optimization problems, particularly scheduling. 

Method description 

As previously mentioned, the movement from a current solution s to a neighbor
solution s’ is chosen in such a way that: 

f(s’) =
N(s)s”

min f(s”)
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As long as we are not in a local optimum, any iterative local search method 
behaves as the descent method and improves the objective function value at each 
step. On the other hand, when we reach a local optimum, the movement rule 
described earlier makes it possible to choose the lesser of bad neighbors, i.e. the one 
inducing as little increase of the objective function as possible. The disadvantage 
that would represent a method only based on this principle is that if a local minimum 
s is found at the bottom of a deep valley, it would be impossible to get out of it in a 
single iteration, and a movement from s to a neighbor solution s’  N(s) with
f(s’) > f(s) can cause the opposite movement at the next iteration, since generally 
s  N(s’) and f(s) < f(s’); there is therefore a risk of “cycling” around this local 
minimum s. For this reason, the tabu search algorithm uses a second principle 
consisting of keeping in the memory the last visited solutions, and prohibiting a 
return to them for a fixed number of iterations, the goal being to offer enough time 
to the algorithm to exit a local minimum. In other words, the tabu search method 
keeps a list T of “tabu” solutions at each step, and it is prohibited to move to any 
solution in T. When moving from s to a neighbor solution, the oldest element in T is 
removed and replaced by s. The necessary space to register a list of tabu solutions 
can be quite large in terms of memory. For this reason, it is sometimes preferable to 
prohibit a set of movements that would bring us back to solutions already visited. 
These prohibited movements are called tabu movements.

The aspiration function 

During the choice for the best solution s’ N(s), we may have to decide 
between several candidates providing the same value to the objective function. If the 
chosen neighbor does not lead to a good region of the solution space X, it might then 
be desirable to be able to go back to a visited solution s despite the fact that it is now 
part of the tabu list T, in order to explore a new region neighboring s.

Figure 3.4. Illustration of the aspiration function concept 
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For this reason, the tabu search method involves a new ingredient called 
aspiration function defined over all values of the objective function: when a 
neighbor solution s’ N(s) belongs to T and meets the aspiration criterion (i.e. 
f(s’) < A(f(s))), we cancel its tabu status and s’ then becomes a candidate during the 
selection for the best neighbor of s. In general, A(f(s)) takes on the value of the best 
solution s* encountered so far (i.e., we “aspire” to determine a better solution than 
s*). Another possibility is to set A(z) equal to the best value obtained by moving 
from a solution s with value f(s)=z (see Figure 3.4). 

Neighborhood 

For certain problems, the neighborhood N(s) of a solution s is large and, in 
addition, the only way to determine a solution s’ minimizing f over N(s) is to review 
all solutions in N(s); we thus prefer to generate a subset N’  N(s) only containing a 
sample of solutions neighboring s and we choose a solution s’  N’ of minimal 
value f(s’).

Ending condition 

We must still define a stopping condition. We are generally given a maximum 
number nbmax of iterations between two improvements of the best solution s*
encountered so far. In certain cases, it is possible to determine a lower bound f on 
the optimal value and we can then stop the search when we have found a solution s
of value f(s) close to f.

The tabu search method is summarized in Algorithm 3.5. 

Initialization 
 Choose an initial solution s X;
 set s*  s; 
 set nbiter  0; (iteration counters)
 set T ;   (the tabu list is initially empty)
 initialize the aspiration function A; 
 set best_iter  0; (iteration where s* was found)
Iterative process 

while (f(s)> f ) and (nbiter-best_iter<nbmax) do
 set nbiter  nbiter+1; 
 generate a subset N’ N(s) of solutions neighboring s; 
 choose the best solution s’ N’ solution such that  f(s’)  A(f(s)) or  s’ T;
 update the aspiration function A and the tabu list T; 
 set s  s’; 

if f(s)<f(s*) then  set s*  s and  best_iter  nbiter 

Algorithm 3.5. Tabu search
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In summary, the following elements are the main ingredients of a tabu search 
method: 

X the set of solutions 
f the objective function defined on X 
N(s) the neighborhood of a solution s X
|T| the number of tabu solutions or the size of the tabu list T 
A the aspiration function 
nbmax the maximum number of iterations between two improvements of s*
N’ the subset of N(s) (the way of generating it and its size) 
f a lower bound on the objective value. 

Most tabu method ingredients are illustrated in section 3.5. Those not present 
have been considered as useless during the adaptation of the tabu method to the 
considered scheduling problems. Any reader interested in more illustrations of all 
ingredients can refer to scientific papers from Glover [GLO 89; GLO 90; GLO 97]. 
More refined versions of the tabu search algorithm have been presented in more 
detail in the literature. The interested reader should consult [GLO 89, GLO 90, GLO 
93b, HER 97, REE 93, SOR 94, TAI 93, WER 89] for more information on this 
subject. Several strategies have been proposed to improve the efficiency of the tabu 
search algorithm presented above [GLO 97]. Intensification and diversification are 
two of these strategies. 

Intensification consists of a detailed exploration of a region of X deemed 
promising. Its implementation usually resides in a temporary widening of the 
neighborhood of the current solution in order to visit a set of solutions sharing 
common properties. Another possibility consists of returning to the best solution s*
encountered so far and to restart the search from this solution with a smaller tabu list 
size for a limited number of iterations. Diversification is a complementary technique 
to intensification. Its objective is to direct the search procedure to unexplored 
regions in X. The simplest diversification strategy is to restart the search process 
periodically from a solution either randomly generated or judiciously chosen in a 
region that has not yet been visited. In this way, we decrease the influence of the 
choice of the initial solution s0 over the global algorithm performance. The same 
type of effect can be obtained by temporarily modifying the objective function or by 
favoring modifications not made during a large number of iterations. 

To conclude this presentation of the tabu search method, we should mention that 
no theoretical result guarantees the convergence of the algorithm toward an optimal 
solution of the considered problem contrary to the simulated annealing method. The 
main reason for this fact comes from the nature of the method itself. Since the 
method is highly adaptive and flexible, its analysis with traditional mathematical 
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tools is difficult. The only known theoretical results to this day involve a 
probabilistic version of the tabu search algorithm close to the simulated annealing 
method. Faigle and Kern [FAI 92] have shown that it is possible to modify the 
objective function and the generation probability of neighbor solutions in order to 
ensure global convergence of the search process. Such a result is unfortunately not 
very useful in practice because the probability of convergence to an optimal solution 
only happens after an infinite time period. In addition, the tabu search method does 
not need to converge toward an optimal solution to be effective. The goal is to visit 
at least one optimal solution or a good quality solution during the search. 

Despite the fact that no substantial theoretical result was established, the tabu 
search algorithm has been arousing increased interest since its discovery 20 years 
ago. Impressive results have been obtained for numerous combinatorial optimization 
problems. Several examples of tabu search applications are proposed in [GLO 93a]. 
A detailed example of a tabu search application is the subject of section 3.5, job 
shop scheduling with tooling constraints. For the conclusion of this section, we 
should note that Glass and Potts have achieved an interesting comparison of 
different local search methods for the single flow shop problem [GLA 96], while the 
same type of analysis was performed by Galinier and Hertz for the graph coloring 
problem [GAL 06]. 

3.4.3. The evolutionary approach 

Life sciences and natural processes have always fascinated engineers. They use 
structures and mechanisms from reality to develop artificial objects used in various 
contexts. In the field of combinatorial optimization, natural phenomena complexity 
has served as a model for increasingly sophisticated algorithms in the last 35 years. 
The evolutionary methods presented in this section constitute the basis of a 
constantly growing field of computer programming. 

Contrary to constructive and local search methods involving a single solution 
(partial or not), evolutionary methods handle a group of solutions at each search 
process step. The main idea is to regularly use the collective properties of a group of 
solutions, called population solutions, with the goal of efficiently guiding the search 
to appropriate solutions in the solution space X. In general, the size p of a population 
remains constant throughout the process. After the random or constructive method 
generation of an initial population containing solutions s0,i  X (i = 1, ..., p), an 
evolutionary method attempts to improve the average quality of the current 
population by using natural evolution principles. In our terminology, the cyclic 
process at the basis of an evolutionary method is made up of the continuous 
succession of a cooperation phase and an individual adaptation phase. This new 
formalism applies to most evolutionary methods developed to date. 
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In the cooperation phase, the solutions in the current population are compared 
and then combined together in order to produce new and good quality solutions for 
the long term. The resulting information exchange leads to the creation of new 
solutions which have the predominant characteristics contained in current population 
solutions. In the individual adaptation phase, the solutions evolve independently 
respecting a series of predefined rules. Modifications experienced by each solution 
are performed without interaction with other solutions in the population. A new 
population of solutions is created at the end of each individual adaptation phase. 

Figure 3.5. Exploration of X with an evolutionary approach 

The search mechanism at the basis of an evolutionary method is briefly 
represented in Figure 3.5. The goal is to locate the best possible solutions by 
manipulating at each step a set of solutions located in different promising regions of 
the solution space X. 

In what follows, we say that an evolutionary method prematurely converges or 
goes through a diversity crisis when the current population contains a high 
percentage of identical solutions. Different mechanisms can be incorporated to avoid 
this drawback. The simplest way to prevent premature convergence risks is to 
introduce a measure E  [0, 1] based on the notion of entropy [FLE 94, GRE 87] in 
order to evaluate the degree of diversity within a population of solutions. A value  
E = 0 indicates that the population is made up of identical individuals whereas a 
value closer to 1 suggests a large diversity in the population. When entropy E is 
judged to be too low at a given step, the idea is to take measures to reintroduce 
sufficient diversity in the current population. 

3.4.3.1. Genetic algorithms 

Genetic algorithms are evolutionary methods greatly influenced by biological 
mechanisms linked to the principles of natural evolution and selection. Initially 
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developed by Holland et al. [HOL 75] to respond to specific needs in biology, 
genetic algorithms have quickly been adapted to a large variety of contexts. In a 
simple genetic algorithm [GOL 87], the search is handled by three operators applied 
consecutively. The cooperation phase is managed by a reproduction operator and a 
crossover operator whereas the individual adaptation phase uses a mutation operator. 
It is important to note that concepts at the basis of genetic algorithms are extremely 
simple. In fact, they only involve randomly generated numbers and a set of generic 
probabilistic rules which do not necessarily consider all characteristics of the 
problem discussed. Chapter 4 focuses on genetic algorithms. 

3.4.3.2. Scatter search method 

The scatter search method [GLO 94, GLO 95] simulates an evolution which is 
not directly related to genetics. No restriction is made on how to code solutions. The 
cooperation phase does not refer to a reproduction operator, and the combination of 
solutions is more generic than with a genetic algorithm. The combination operator 
generates new individuals by considering groups of solutions with possibly more 
than two elements. The role of the individual adaptation phase is to repair 
individuals produced by the combination operator if they do not satisfy all 
constraints of the considered problem; during the individual adaptation phase, each 
individual is also possibly improved by means of an improvement operator. This 
type of mechanism can be implemented in the form of a local search method 
involving an auxiliary function penalizing individuals that do not satisfy all 
constraints of the considered problem. The few variations of scatter search proposed 
in literature were all perceived to be a generalization of a genetic algorithm [RAD 
94]. Scatter search was originally developed by Glover [GLO 77] for the solution of 
integer programming problems. The idea is to continuously operate linear 
combinations over a set of solutions coded as vectors with integer components. An 
auxiliary procedure is applied at each step to repair individuals if the linear 
combination has produced non-integer components in vectors. This repairing 
process can be done by using systematic rounding or, even better, a local search 
method meant to find an integer solution that is the “closest” to the considered  
non-integer vector. Among successful applications of the scatter search method, we 
should mention the adaptations made for quadratic assignment problems [CUN 97], 
neural network training [KEL 96] or unconstrained continuous optimization  
[FLE 96a]. 

3.4.3.3. The ant algorithm 

Collective performance [THE 94] of social insects such as ants, bees, wasps or 
termites has intrigued entomologists for a very long time. The main question 
involves mechanisms enabling individuals of a single colony to manage their 
activities and to favor survival of the species. Everything is done as if an invisible 
agent is coordinating activities of all individuals from the center of the colony. 
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Studies have shown that this global behavior was the result of a multitude of 
particularly simple local interactions. The nature of these interactions, information 
processing mechanisms and the difference between solitary and social behaviors has 
long remained a mystery. During the accomplishment of a specific task by an insect 
colony, it was observed that task coordination did not depend directly on workers 
but on the state of the task’s progress. The worker does not manage its job; it is 
guided by it. Any working insect modifies the form of stimulation generating its 
behavior and causes the creation of a new stimulation that will trigger other 
reactions from it or a coworker. 

To illustrate the appearance of collective structures in a society of insects, we 
must mention the example of an ant colony searching for a food source. Initially, 
ants leave their nest and move randomly. When an ant happens to discover a food 
source, it informs its coworkers of its discovery by setting off a temporary mark on 
the ground upon its return to the nest. This mark is nothing more than a chemical 
substance called a pheromone, which will guide the other ants toward the same food 
source. Upon their return, these ants also set off pheromones on the ground and thus 
reinforce the trail marking leading from the nest to the source of discovered food. 
Pheromone marking reinforcement in the most used trail optimizes food gathering. 
In the long run, ants will only use the closest source because the trail leading to 
remote sources will evaporate and become undetectable. This example shows that 
the ant colony converges to an optimal solution where each ant only has access to 
local information and it is unable to resolve the problem on its own in a reasonable 
amount of time.  

In the last few years, engineers have focused on social insect behavior in order to 
create a new form of “collective problem solution”. The ant algorithm, initially 
developed by Colorni et al. [COL 91, COL 92, DOR 96], is an evolutionary method 
where search mechanisms are greatly influenced by the collective behavior of an ant 
colony. In the cooperation phase, each current population solution is examined in 
turn in order to update a global memory. Then, the individual adaptation phase 
involves a constructive method which uses information contained in the global 
memory to create new solutions. This type of approach repeatedly uses a 
constructive method by including the accumulated experience from previous method 
applications. Each constructive method application corresponds to the work 
accomplished by a single ant. In the previous example, the global memory appears 
in the traces of pheromone set off by the ants. This search principle easily adapts to 
the general assignment problem. Concepts presented below generalize the ideas of 
Colorni et al. [COL 91, COL 92, DOR 96] in the traveling salesman context. 
Consider a set of n objects to which a resource j {1, ..., m} has to be assigned. This 
assignment must meet a series of given constraints and be as inexpensive as 
possible. Two decisions are made at each step of a constructive method. The first 
one involves the choice of one of the n objects and the second defines the resource 
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assigned to it. In a traditional constructive method, these decisions are made in a 
manner that will complete the current solution in the best way possible. In other 
words, they are based on an object and a resource with the maximum appeal for the 
current step. The ant algorithm uses a complementary notion to an object or resource 
appeal. Partial solutions are completed in a probabilistic manner by relying on past 
experience. The term trace will then be used to represent an element of information 
which is known based on experiments carried out on the completion of previous 
solutions. At each step k of the development process, an ant chooses an object i, not 
yet assigned, with probability pobj(k, i) and a resource j that is feasible for object i,
with probability pres(k, i, j). Each of these probabilities involves two numbers  
(s[k – 1],.) and (s[k – 1],.) which measure the trace and appeal respectively for an 

object or resource, given a partial solution s[k – 1] in which objects o(1), ..., o(k – 1) 
have already been assigned to resources xo(1), ..., xo(k-1):
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Algorithm 3.6 presents an ant algorithm for the solution of general assignment 
problems. The number of ants is n. During the first cycle all traces are set to 1 
because the ants do not know the problem to be solved. At the end of a cycle, traces 

1 and 2 are updates in relation to the characteristics of a solution produced by each 
ant. Generally, only one of the two decisions is made in a probabilistic way at each 
step of the constructive method. In most applications solved with the help of the ant 
algorithm, choosing the next object is done either naturally, or based on a 
deterministic rule not involving the concept of trace. 

A simplified version of the ant algorithm was proposed by Colorni et al. [COL 
94] for the job shop scheduling problem. They construct a graph Gjobshop based on 
the method by Roy and Sussmann [ROY 64]: each operation to be performed on the 
machines is a vertex of Gjobshop; an artificial vertex (corresponding to the start of the 
schedule) is added to Gjobshop, and linked by an arc to each job’s first operation; for 
each job, two consecutive operations in the process plan are linked by an arc; two 
operations, which can be executed on a single machine, are connected by an edge
(i.e., a non-oriented arc), then for each ant, they apply the procedure described in 
Algorithm 3.7. 
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At the end of this procedure, the ant has visited all vertices of the graph (i.e., all 
job operations) according to the order in which set B was constructed. This sequence 
makes it possible to define a direction on all edges of the graph, thus defining an 
ordering of the operations on each machine. Colorni et al. then apply the longest 
route with minimal length algorithm to find the date at which the last job ends [ROY 
64]. In addition to its applications to the traveling salesman and the plant problem, 
the ant algorithm was also adapted to graph coloring [COS 97] and quadratic 
assignment [MAN 99], among others. More details on ant colony algorithms can be 
found in [DOR 04]. 

Initialization 
f(s*)   infinite;   (infinite = arbitrarily large value)
ncycles  0;     (cycle counter)
best_cycle  0;   (cycle leading to the best s* solution found to date)

1(…, i):= 1; 2(…, i, j):= 1;   i = 1, ..., n   j = 1, ..., m 
Iterative process 
while no stopping criterion is met do
 ncycles  ncycles + 1; 

for q= 1 to nants do
for k= 1 to n do

   choose an object i  {1, ..., n} \ {o(1), ..., o(k – 1)} with probability pobj(k, i); 
   choose a feasible resource j for object i with probability pres(k, i, j); 
   assign resource j to object i; xi:=  j; o(k):=  i; 
  calculate the cost f(sq) of solution sq = (x1, ..., xn); 
 set population  p equal to the set { s1, s2, ..., snants } 
 set s’ = arg min {f(s) | s  p}; 

if f(s’) < f(s*) then s*  s’  and   best_cycle  ncycles; 
 update traces 1 and 2

Algorithm 3.6. An ant algorithm for a general assignment problem 

Progression of an ant
 Construct the graph Gjobshop where represents the artificial vertex; 
 for every vertex x in Gjobshop  set A(x) equal to the set {t | there is an arc from x to t or 

an edge between  x and  t }; 
 set A  A( ) and  B ;
 set C equal to the vertex set of Gjobshop;
Iterative process 

while C do
  choose a vertex  t  A according to a probability of transition; 
  set A  A  A(t) \ {t},  C  C \ {t}  and  B  B  {t}; 

Algorithm 3.7. Progression of an ant 
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3.4.4. The hybrid approach 

Evolutionary methods, and particularly genetic algorithms have been studied in 
depth since their very first developments early in the 1970s [HOL 75]. The many 
adaptations proposed in the literature fulfill the main weaknesses of traditional 
evolutionary methods where global performance is often far lower than that of a 
local search method such as tabu search or simulated annealing. In a more specific 
context, it is now understood that a simple genetic algorithm cannot provide good 
results when the set of solutions must satisfy many constraints. Grefenstette [GRE 
87] has shown that it is possible to take advantage of the characteristics of the 
problem studied when defining all operators in a genetic algorithm. 

Most of the innovations introduced in the evolutionary method field use concepts 
no longer related to natural evolution principles. Very interesting results were 
recently obtained by inserting a local search method into the individual adaptation 
phase of an evolutionary method. In what follows, we will refer to this new 
combined search method as a hybrid algorithm. The strength of a hybrid algorithm 
resides in the combination of these two fundamentally different search principles. 
The role of the local search method is to explore in depth a given region of the set X 
of solutions, whereas the evolutionary method introduces general conduct rules in 
order to guide the search through X. In this sense, the combination operator has a 
long term beneficial diversifying effect. To our knowledge, works by Glover [GLO 
77], Grefenstette [GRE 87] and Mühlenbein et al. [MÜH 88] are the originators of 
hybrid algorithms. Each has introduced a simple descent method (see Algorithm 3.2) 
to increase the performance of an existing evolutionary method. Glover used a 
scatter search method and Grefenstette and Mühlenbein et al. used a genetic 
algorithm to solve integer programming and traveling salesman problems 
respectively. Simulated annealing and tabu search are improvements of the simple 
descent method. It is thus normal to use them within an evolutionary method to 
further increase its performance. Combination possibilities are numerous at this 
level [CAL 99, COS 95a, COS 95b, FAL 96, FLE 94, FLE 96b, MOS 93, REE 96]. 

In his thesis, Costa proposes two hybrid algorithms based on the two 
combination schemes described in Figure 3.6 [COS 95c]. The resulting algorithm is 
called an evolutionary tabu search or evolutionary descent algorithm depending on 
the local search method used. In the first case, the local search method plays the role 
of the mutation operator whereas in the second case it replaces the reproduction 
operator. This operator has been deleted to decrease premature convergence risks 
which are often high in a hybrid algorithm where the local search method is 
deterministic. 
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Figure 3.6. Two hybrid schemes using a genetic algorithm 

The evolutionary tabu search has been applied to sports scheduling problems. 
Costa has shown that the performance of the algorithm is significantly better than 
the tabu search executed separately during a comparable time period. This type of 
behavior is the result of the complementarity which exists between tabu search and 
genetic algorithms. To be really efficient, tabu search requires significant modeling 
and parameter tuning efforts. Conversely, even though genetic algorithms are less 
efficient, they have the advantage of being robust and based on extremely simple 
rules. In addition, Costa presents an adaptation of the evolutionary descent algorithm 
to solve graph coloring problems [COS 95b]. The performance of the algorithm is 
much better than the genetic algorithm and the descent method used in it. Results 
obtained from a hybrid algorithm are usually of very high quality. Unfortunately, 
necessary computing times to reach a given quality solution can become prohibitive. 
After a comparison of several approaches in the solution of a range of quadratic 
assignment problems, Taillard [TAI 95] concludes that hybrid algorithms are among 
the most powerful but also the most time expensive. Choosing the right method 
largely depends on the time available for the solution of a specific problem. 
Nowadays research focuses on parallelizing hybrid algorithms in order to reduce 
computing time and solve larger problems. 

3.5. An application example: job shop scheduling with tooling constraints 

Production systems are constantly evolving, especially in the engineering 
industry. Rigid transfer lines are currently being replaced by cells or flexible 
workshops. These systems are made up of numerical control machines and can 
simultaneously produce different types of products. This versatility is essential in the 
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current manufacturing context. In fact, it is important to be able to produce different 
types of products quickly in order to satisfy client demand. This means that set-up 
times between two types of products must be very short. To reach this goal, optimal 
management of tool switches is necessary. Owing to this, one basic hypothesis of 
the scheduling problem in a workshop has become obsolete [BAK 74]: set up times 
for operations are independent of the sequence and are included in processing 
times.

The scheduling problem in a workshop considering tooling constraints is 
described in more detail below. The main elements are a series of machines and a 
collection of types of products to be produced on these machines. A process plan is 
associated with each product type and consists of a sequence of operations; each 
operation is characterized by a type of machine on which it must be performed, its 
processing time and the tools needed for each machine. The main hypotheses are as 
follows [BAK 74, WID 91a]: 

– m different machines are continuously available (no breakdown and no 
maintenance operation are considered); 

– a set of n type products is available for processing at time zero (each product 
type requires m operations and each operation is processed on a different machine); 

– each machine has a tool magazine with a limited capacity; 

– a machine can process only one product at a time; 

– a product can only be produced by one machine at a time; 

– individual operations are non-preemptive; 

– each individual operation requires a number of tools, which never exceeds the 
capacity of the tool magazine; 

– process plans are known in advance. 

The goal is to find a sequence of operations for each machine to minimize the 
makespan which is defined as the maximum of the completion times of all 
operations. 

This problem, if tooling constraints are not taken into consideration, is the well 
known job shop scheduling problem. It is NP-complete, as demonstrated by Lawler, 
et al. [LAW 89]. A reader interested in a good summary of methods implemented to 
solve the job shop scheduling problem without tooling constraints should refer to 
work by Blazewicz, Domschke and Pesch [BLA 96]. 

Returning now to our problem with tooling constraints, because of the limited 
capacity of the tool magazines on the machines, tool switches are unavoidable and 
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further complicate the problem of finding an optimal job shop scheduling [BLA 94]. 
When a tool switch happens, the machine’s tool magazine is emptied of its tools, 
either partially or completely, and replenished with the tools necessary for the 
production of the next products in the planned sequence. The time required for this 
change is usually significant. To illustrate this, we will use the following example: 
we assume that products A, B and C must be manufactured (in that order) on a 
machine with a tool magazine having a capacity of 10. These products require 
respectively 4, 5 and 3 tools that are different from one another. A tool switch must 
therefore happen after the manufacturing of products A and B. 

In certain cases, different types of products may require common tools. These 
tools should not be duplicated in the tool store, thus free space may be preserved. In 
our example, if A and B use 2 tools in common, it is possible to include tools 
required for the production of the three products in the store without exceeding its 
capacity (4 + 5 – 2 + 3 = 10). In these conditions, it is not necessary to execute a tool 
switch.

Before moving on to the resolution of the job shop scheduling problem with 
tooling constraints with a tabu search, we will discuss a traditional case model in 
order to draw some lessons from it. 

3.5.1. Traditional job shop modeling 

For clarity purposes, from now on, the traditional job shop scheduling problem 
will be noted as JP, while JPT will be the job shop scheduling problem with tooling 
constraints.

Let O = {1, ..., n} denote the total set of operations which are to be performed. 
For each operation i  O we denote: 

– Pi the product to which i belongs; 

– Mi   the machine on which i is processed; 

– pi   the processing time of i;

– PP(i)  the operation preceding i in the process plan of Pi;

– FP(i)  the operation following i in the process plan of Pi .

A job shop scheduling problem can be represented as a graph theoretical 
problem [ROY 64]. For a given example of JP, the following graph G = (X, U, D) 
can be associated with it: 
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– X = {0, ..., n + 1} = O  {0, n + 1}, where 0 and n + 1 are special vertices 
identifying the start and the completion of the schedule; 

– U = {[i, j] | 1 i, j n , Mi = Mj and Pi  Pj}

– D =  {(i, j) | 1 i, j n and j = FP(i)}
{(0, i) | 1 i n and i is the initial operation for product Pi}
{(i, n + 1) | 1 i n and i is the final operation for product Pi}

With each arc (i,j) D or edge [i, j] U with i  1, we associate a length 
representing the duration pi of operation i. All arcs from vertex 0 have a length equal 
to zero. In other words, all arcs in D represent the different process plans. An 
orientation of the edges in U is called feasible if it does not create a circuit in G. A 
feasible orientation of the edge set U corresponds to a feasible ordering of the 
operations on the machines. The job shop scheduling problem is to find a feasible 
orientation of the edge set U in such a way that the longest route from 0 to n + 1 is 
of minimal length. Two operations requiring the same machine are defined as 
adjacent if the ending time of the first product is equal to the starting time of the 
second product on this same machine. An operation is called critical if it belongs to 
the longest route from 0 to n + 1. A block is a maximal sequence of adjacent 
operations which must be executed on a single machine and belonging to a longest 
route from 0 to n + 1. 

The first adaptation of tabu search to the JP was developed by Taillard [TAI 94]. 
The set X of solutions is defined as the set of feasible orientations. Given a solution 
s in X, a neighbor solution s’  N(s) is obtained by permuting two consecutive 
critical operations using the same machine. When two consecutive critical 
operations i and j are permuted, operation j is introduced in the tabu list T: it is 
forbidden to permute j with the next operation on machine Mj during |T| iterations. 
The neighborhood structure N(s) used by Taillard has the following properties, 
demonstrated by van Laarhoven et al. [VAN 92]: 

– if s is a feasible orientation, then all elements in N(s) are also feasible 
orientations; 

– let G be the state space graph induced by X and N(s) (see section 3.4.2): for each 
solution s  X, there is at least one path in G linking s to an optimal solution s*.

A second tabu search adaptation to the JP was proposed by Dell’Amico and 
Trubian [DEL 93]. Their method seems to dominate Taillard’s approach. The main 
difference is the definition of neighborhood N(s): for each operation i in a block, 
they consider as neighbors of s those solutions that can be generated by moving i to
the first or last position of the block to which it belongs, if the corresponding 
ordering is feasible. If that is not the case, operation i is moved to the position inside 
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the block closest to the first or last position so that feasibility is preserved. 
Dell’Amico and Trubian have proved that this type of neighborhood leads to a state 
space graph G in which it is possible to reach an optimal solution starting from any 
initial solution [DEL 93]. 

Nowicki and Smutnicki [NOW 96] have developed a third adaptation of tabu 
search for the JP, which is based, once again, on a different definition of the 
neighborhood N(s). These three adaptations of tabu search for the JP unfortunately 
do not consider tooling constraints. 

3.5.2. Comparing both types of problems 

As mentioned in the introduction, the time required to switch tools on a machine 
is significant. The moment where the contents of a tool magazine are modified will 
be called a switching instant. It lasts + r time units, where is a fixed time due 
to the removal of the tool magazine from the machine, is a fixed time for each tool 
replacement and r is the total number of tools to be replaced by other tools. In 
addition, a complete set of tools is attached to each machine (in this way, two 
machines can use identical tools simultaneously). 

With these basic hypotheses, a comparative analysis of JP and JPT problems was 
conducted to determine how ingredients used in solution methods for the JP could 
also be used for the JPT. The following observations were made [HER 95, HER 96]: 

– an optimal ordering of the operations on the machines for the JP does not 
necessarily correspond to an optimal ordering for the JPT; 

– given an ordering of the operations, minimizing the makespan is not 
necessarily achieved by minimizing the number of switching instants; 

– given an ordering of the operations, a schedule of minimum time for the JP can 
easily be obtained by searching for a longest path in a graph; this problem can be 
solved in polynomial time (see for example the adaptation of Bellman’s algorithm 
described in [TAI 94] or the O(n) algorithm developed by Adams et al. [ADA 88]). 
For the JPT problem, the complexity of this problem is still open. In other words, 
given an ordering of the operations on the machines, we do not know how to take 
into account tooling constraints for minimizing the makespan; 

– assuming that the number of switching instants is given for each machine, it is 
not always optimal to plan the switching instants to the earliest or latest; 

– if we know the sequence of operations on each machine as well as the contents 
of the tool magazine, then a minimum time scheduling can be found by solving a 
longest path problem; in this case, switching instants are considered as additional 
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operations whose duration is known and the graph is constructed in the same way as 
for the JP. 

As mentioned above, when solving the JP, neighborhood structures from Taillard 
and from Dell’Amico and Trubian generate a state space graph G in which it is 
possible to reach an optimal solution from any initial solution. This is unfortunately 
not the case with the JPT. In fact, by using these neighborhood structures, it  
is possible to “cycle” between a set of solutions while the optimal solution may  
be elsewhere (the state space graph G contains several connected components)  
[HER 96]. 

3.5.3. Tool switching 

As previously mentioned, despite knowing operation sequences on machines, it 
is still difficult to determine the best way to take tooling constraints into 
consideration. One possibility is to use the heuristic method proposed in [HER 96]. 
It contains three phases which are summarized below. 

In the first phase, all machines are treated independently, the aim being to 
evaluate the number of switching instants. The INSTANT algorithm determines a set 
of operations which immediately precede a switching instant. It considers the 
ordered set {o1, …, or} of operations on a machine k (1 k m) and sequentially 
schedules the switching instants only when forced to. Thus, if a switching instant 
precedes an operation oi (1 < i r), this means that the set of tools required to 
complete oi on k cannot be added to the tool magazine without exceeding its 
capacity. The number of switching instants determined by this algorithm is minimal. 
In the following, all considered schedules will have that number of switching 
instants.

The aim of the second heuristic phase is to determine the contents of the tool 
magazines. As in the first phase, all machines are treated independently. Since tool 
replacements can only occur during the switching instants, all operations between 
two consecutive switching instants can be considered as a unique operation 
requiring a known set of tools to be processed. Thus, given an ordered set of 
operations which must be processed on a machine k (1 k m), the objective is to 
minimize the total number of tool switches. It was proven by Tang and Denardo 
[TAN 88] that this problem can be solved in an exact way and in a reasonable 
amount of time. The REPLACEMENT algorithm uses the KTNS (keep tool needed 
soonest) policy proposed by Tang and Denardo [TAN 88]. This replacement policy 
has the following properties: 
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– at any given instant, no tool is introduced unless it is required for the next 
operation; 

– if a tool must be inserted, the tools remaining (not taken out) are those needed 
the soonest. 

Once the tool switching problem is solved on each machine, a solution to the JPT 
can be obtained by solving a longest path problem. In fact, all switching instants can 
be considered as additional operations with known duration, and a graph can then be 
constructed in the same way as for the JP. The two first heuristic phases consider the 
machines independently. In the third phase, all the machines are treated 
simultaneously, the aim being to improve a solution by scheduling a switching 
moment on a machine when no product is ready to be processed on it. An algorithm, 
called IMPROVE, is proposed in [HER 96] to improve the schedule of the switching 
instants.

3.5.4. TOMATO algorithm   

We can now describe a tabu search algorithm for the job shop scheduling 
problem with tooling constraints. 

Let s’ be a neighbor solution of s obtained by moving an operation on a machine 
k. To evaluate s’, we first determine the operations on k which immediately precede 
a switching instant with the help of the INSTANT algorithm. We then apply the 
REPLACEMENT algorithm on k and calculate the makespan of s’ by solving a 
longest path problem (see section 2.4.2). Once the decision is made to move from a 
current solution s to a neighbor solution s’  N(s), we try to improve the schedule of 
switching instants in s’ by using the IMPROVE algorithm. 

The tabu T list is a set of operations not authorized to be moved during a certain 
number of iterations. When an operation i is moved before or after an operation j on 
a machine k, operation i is introduced in the tabu list T. In addition, if j is an 
immediate predecessor or successor to i, operation j is also introduced in the tabu T: 
indeed, in that case, s could be obtained from s’ by moving j before or after i. The 
length of the tabu list is randomly chosen at each iteration in the interval [n, 3n/2 ],
following a uniform distribution. 

The objective function f is the makespan (the time where the last job  
is completed). Finally, the iterative process ends when nbmax iterations  
are completed without improvement of f(s*). An algorithmic form of this tabu 
search adaptation to the job shop scheduling problem with tooling constraints is 
presented in Algorithm 3.8. The method was named TOMATO (for TOol 
MAnagement with Tabu Optimization) in [HER 96]. 



62     Production Scheduling 

Initialization 
 find an initial solution for the JP; 
 let s be the schedule obtained by using the INSTANT and REPLACEMENT heuristics 

on each machine, and by solving a longest path problem; 
 improve s by using the IMPROVE procedure; 
 set nbiter  0,  T ,   s*  s   and   best_iter  0; 
Iterative process 
while (nbiter-best_iter<nbmax) do
 set nbiter  nbiter+1; 
 evaluate each solution s’ of N(s) by using the INSTANT and REPLACEMENT 

procedures for the machine on which an operation is moved, and by solving a longest 
path problem; 

 choose the best solution s’ of N(s) so that f(s’) < f(s*) or s’ is not tabu; 
 improve s’ by using the IMPROVE procedure; 
 update the list T of tabu movements; 
 set s  s’; 

if f(s) < f(s*) then set s*  s  and   best_iter  nbiter 

Algorithm 3.8. The TOMATO algorithm 

TOMATO should only be applied to job shop scheduling problems in which the 
tool magazines are of relatively limited capacity, which is the case with small to 
medium-sized companies. When the capacity of the tool magazines increases and 
becomes far greater than the average number of tools necessary for the execution of 
an operation, the problem generally becomes similar to the job shop scheduling 
problem without tooling constraints. In this case, a solution can be obtained with the 
method proposed by Dell’Amico and Trubian, and (the few) switching instants can 
then be planned by using the INSTANT, REPLACEMENT and IMPROVE 
algorithms. TOMATO is a flexible method that can be used by a production 
manager who wants either a quick but not precise estimation of the makespan or an 
accurate solution. The desired trade-off between calculation time and solution 
quality can be established by adjusting the parameter nbmax. TOMATO can be used 
as a descent method by setting nbmax = 0. It was observed in [HER 96] that 
TOMATO provides in less than 1 second solutions whose value are approximately 
only 5% above the best known solution values. 

3.6. Conclusion 

Upon reaching the end of this chapter, a reader inevitably asks the following 
question: which is the best metaheuristic? 
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Unfortunately, a direct and specific answer is impossible: even though some 
similarities are obvious between these different approaches (e.g., the use of 
neighborhoods), they are different in sensitive areas (simulated annealing uses an 
energy function, tabu search handles a list of prohibited movements, genetic 
algorithms have crossover operators, etc.). Comparisons are difficult to make for 
two reasons: on the one hand, such a comparison requires a fine tuning of all 
parameters of all methods, and on the other hand, the quality of the solutions 
produced by a metaheuristic depends on the available computing time. However, 
regardless of the metaheuristic used, it is now a fact that all these algorithms are the 
only effective solution methods for many large size combinatorial optimization 
problems. The promising results of hybrid approaches bode well for vital progress in 
this field. 

In conclusion, we mention that any reader wanting a deeper understanding of 
metaheuristics for general combinatorial optimization problems should see [REE 95, 
DRE 03]. Also, successful adaptations of metaheuristics for the solution of real 
problems are described in [IBA 05]. 
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Chapter 4 

Genetic Algorithms and Scheduling

4.1. Introduction 

4.1.1. Origin of genetic algorithms 

Genetic algorithms (GA) are methods similar to simulated annealing (see 
Chapter 3) (they contain no inherent principle to assert that the best solution 
obtained in a finite time is optimal). They have also been created by analogy with 
natural phenomena. In this case, the idea is to simulate the natural evolution of 
organisms (individuals), generation upon generation, considering heredity and 
survival. In a population of individuals, generally the fittest, those best adapted to 
the environment, survive and ensure descendants. In addition, it is assumed that 
qualities and faults can be stochastically inherited from parents. Such algorithms 
were developed in 1950 by biologists using computers to simulate organism 
evolution. Late in the 1960s, John Holland [HOL 75] and his team, and later 
numerous other researchers [DAV 91, GOL 89], adapted these algorithms for 
designing solution methods for optimization problems, by developing an analogy 
between an individual in a population and a problem solution within a set of 
solutions. 

4.1.2. General principles of genetic algorithms 

In a population, an individual is characterized by his genetic footprint called a 
genome (a set of chromosomes). A genetic footprint is associated with each 
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individual integrated into the initial population; it could be an elaborated footprint 
built by specific modules or a footprint obtained in a random way. The footprint of 
new individuals is further obtained by a recombination of footprints from parents, a 
genetic operation called crossover or by modifying the footprint of an individual, a 
genetic operation called mutation. The crossover corresponds to the sexual 
reproduction of individuals in a population with consideration for heredity. In this 
way, when two individuals considered fit enough are crossed, they will create a new 
individual who will also have good chances of being fit and resist natural selection, 
which is less the case with unfit individuals. Mutation represents modifications to 
the genetic footprint which may occur with individuals and avoids population 
degeneration. The genetic crossover operator increases population size. The 
population size is maintained at a reasonable finite size with the existence of a birth-
and-death process according to rules depending on their fitness. 

By analogy, in a genetic algorithm, an individual (a solution) is characterized by 
a data structure representing its genetic footprint, which we continue to call a 
genome or chromosome if the genome is reduced to a chromosome. The genome 
contains a set of codes called genes which in certain cases need to be interpreted to 
find the corresponding solution. In this case, the result of this interpretation is called 
a phenotype. With the help of these genomes, a genetic algorithm explores the space 
of solutions for the problem concerned in order to extract the best possible solution, 
and preferably the optimal solution. It is not necessary to explore the whole space; 
exploring a sub-space containing an optimal solution is sufficient. This is what is 
called a dominant subset. Coding and genetic operators must be designed carefully 
accordingly to the potential existence of a dominant subset. In this chapter, we will 
draw attention as much as possible to the dominance conditions for the problems 
addressed.  

If we are trying to maximize a function, the fitness of an individual can be 
measured by a value which varies in the same direction as the objective function of 
the problem concerned, otherwise in the opposite direction if the objective function 
needs to be minimized. The greater the fitness, the better chances an individual will 
have to be chosen by a selection using a roulette technique (an individual’s 
probability of being selected = his fitness divided by the sum of all individuals’ 
fitness in a population). For each problem to be solved, we must determine how to 
obtain the fitness of an individual from the objective function. As a value of fitness, 
we can use the value of the objective function (if it must be maximized) or an upper 
bound of the objective function for the whole population less the value of the 
objective function (if it must be minimized). However, we can also, in the case of a 
maximization, for example, sort individuals by ascending objective function and 
then consecutively give them the fitness value: a, a + , a + 2 , a + 3 etc. 
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Genetic crossover and mutation operators are algorithms acting on chromosomes 
associated with individuals. They are dedicated to exploring the space of problem 
solutions. 

The population’s birth-and-death process can be carried out in different ways. In 
certain cases, it is assumed that two consecutive generations do not live in the same 
period and thus that the parents are dead when children are alive (this is the case in 
reality for butterfly populations for example). In other cases, there is overlap 
between generations; grandparents can live at the same time as their grandchildren 
whereas the parents may have died prematurely. In both cases, based on an initial 
population and after numerous iterations where the population evolves, we reach a 
population where individuals are all very fit (converging to good quality 
population). In other words, it is a set of “good” solutions for the problem that 
concerns us. For the same problem, there are several genetic algorithm variations 
based on: 

– coding used to represent the solutions in the form of genomes; 

– the way to create an initial population; 

– the way to transform an objective function into a fitness; 

– selection mode for reproducing chromosomes (in general, the “better” an 
individual is, the better his chances for being chosen as a reproductive element); 

– design of genetic crossover and mutation operators; 

– the manner in which the population evolves throughout iterations, i.e. 
definition of the birth-and-death process. 

The method of building a genetic algorithm, regardless of the problem to 
address, will be summarized. Throughout the rest of the chapter, emphasis will be 
made on quality of coding and genetic operators for designing specific and efficient 
genetic algorithms for given scheduling problems. 

The simplest schema for a genetic algorithm [GOL 89] is illustrated in the 
following diagram (Algorithm 4.1). This is a schema of consecutive generations 
with no overlap between consecutive populations (nevertheless, since a pair of 
parents can simply be copies without crossover or mutation into the next population, 
we may find identical individuals in the previous and new populations). 
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a- INITIALIZATION:  Generate an initial Po population of Q individuals. 
b- EVALUATION: Evaluate the “fitness” of any individual in population Pk-1.
c- SELECTION:  Select Q/2 individual couples in population Pk-1.
d- CROSSOVER: With probability pc any individual couple is replaced by a new 

individual couple obtained by applying a genetic crossover 
operator, with probability 1 – pc any individual couple is 
retained (for example pc = 0.75, i.e. rather large). 

 e- MUTATION:  With probability pm any individual of Pk is modified by a 
mutation, with a probability 1 – pm the individual is retained 
(for example pm = 0.2, or rather small). 

f- Population Pk obtained replaces population Pk-1.

g- STOP?:  Go back to b- until a given number of iterations is reached. 

Algorithm 4.1. Simple Goldberg schema for genetic algorithms (SGA)

To implement the Goldberg schema, we must choose: 

– population size: Q,

– probabilities pc and pm,

– a number of generations before stopping. 

However, we can also use the schema with population recovery proposed by 
[DAV 91] and several other variations with hybridization briefly described in 
section 4.5.  

4.1.3. Schema theorem 

This theorem applies to the simple Goldberg schema when gene coding is 
binary. Holland’s schema theorem will not be presented in its totality here. We will 
only summarize its consequences. The schema theorem justifies the convergence 
(still ascertained, when respecting the genetic algorithm hypotheses) of genetic 
algorithms to a population of good individuals. It also shows the importance of the 
position of the genes when they are dependent (for example, if for a pair of given 
genes, solutions are better when genes have opposite values regardless of the value 
of these two genes, it is good that their positions increase the probability of taking 
their values in only one of both parents when applying a crossover operator). This 
idea, corresponding to the simplest genetic algorithm case for which the schema 
theorem is shown, can be extended to more complex coding and in this case, the 
consequence for the potential generalization of the schema theorem is as follows: 
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“What must be kept from the good characteristics of both parents in order to build 
children that are as good as possible?” Research of good crossover for the different 
problems addressed is presented in this chapter. 

4.1.4. Chapter presentation 

The structure of this chapter is based on an increasing complexity of scheduling 
problems. The complexity is defined here by the difficulty of developing genetic 
algorithms to solve these problems, which in fact constitutes a typology of these 
problems with regards to genetic algorithms. The first problems discussed are 
problems with one machine where coding is only permutation coding. It is 
illustrated with examples and shows that any coding and especially all crossover 
operators are not equivalent in developing efficient genetic algorithms. The case of 
job shop scheduling is then considered in order to show that permutation coding is 
not adequate for this type of problem and that they either need to be adapted or 
changed. The case with multiple parallel resources organized in a hybrid flow shop 
is introduced. We begin with a discussion of a simple case with only one stage 
(parallel machine problem). We then generalize to a case with multiple stages. A 
few combinations of operations research methods with genetic algorithms to try and 
improve their respective efficiency is presented briefly at the end of this chapter. 

4.2. One-machine problems 

4.2.1. Example 1: total time and setup times 

Problem description 

The problem involved is an extension of the basic one-machine problem. In the 
basic one-machine problem: 

– the machine is always available, 

– all operations are available at moment 0, 

– setup times are independent of the sequence and included in operation time, 

– all operation characteristics (times, due dates, etc.) are known at the moment 
when we address the problem. 

In this extension, we presume that setup times depend on the sequence of 
operations: between operation i and operation j for example, tools for the 
numerically controlled machine must be changed and this takes sij. The criterion is 
minimizing total scheduling time, or what is equivalent, minimizing the total setup 
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times. We presume that we know the state of the machine at time 0 and 
consequently setup time s0i between a fictitious operation numbered 0 of zero 
duration placed at moment 0 and any other operation i placed first. In the end, the 
machine is left in the last state of the last operation.  

Preliminary analysis 

In the traditional schema of genetic algorithms, we presume that the probability 
of an individual being chosen to procreate is higher if his quality (or fitness) is better 
and we also presume, as with natural reproduction, that two good individuals 
copulating will have a higher probability of producing children of good quality, 
maybe even exceptional children. If we want to reproduce these natural reproduction 
properties, we must thus give more chances to good individuals to procreate (this is 
done by pair selection in the global schema), as well as developing crossovers with a 
high probability of producing very good children when good individuals marry each 
other. In order to carry out such crossovers, we start with a preliminary analysis 
phase in each example to identify the good characteristics for each individual to 
attempt their reproduction in children. 

In a genetic algorithm, when crossovers are not carefully developed, obtaining 
good quality children is left to chance and the genetic algorithms become unguided 
random explorations. Generally, in this case the authors feel the need to reverse the 
roles of genetic operators by asking crossover operators to create diversity instead of 
creating quality and mutation operators to improve individuals with improvement by 
neighborhood methods for example, instead of creating diversity. These authors 
continue to call their approach a “genetic algorithm”, although they have strayed 
from the original spirit of genetic algorithms which is respected throughout this 
chapter. 

Concerning the problem addressed in this section, a solution is described by the 
sequence of operations on the machine (see Figure 4.1 illustrating a solution in the 
form of a Gantt chart). A solution is right if setup times used to make up this 
solution are short. 

5 1 3 2 4 6

0
s05 s51 s13 s32 s24 s46

Figure 4.1. Gantt chart of a one-machine problem with setup times

When an individual “father” and an individual “mother” are good, it is because 
setup times are short. In order to create children, setup times must be those present 
in the father or the mother or the shortest possible. The idea here is to select couples 
(i, j) corresponding to an immediate set of operations on machines by giving 
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preference to couples (i, j) which correspond to short setup times. These are the 
good schemas that we should attempt to retain during crossovers. 

Possible solution codings 

Many codings can be used to represent a permutation of n elements 
corresponding to the sequence of n operations on the machine. Only two codings are 
presented here and their qualities and faults are analyzed. 

The first coding is called “permutation”. It simply consists of placing in a vector 
the number of operations in the sequence where they are placed on the machine. For 
Figure 4.1, the permutation vector is given in Table 4.1. 

Position in the sequence 1 2 3 4 5 6 

Permutation 5 1 3 2 4 6 

Table 4.1. The permutation vector

The second coding is called “rank”. It consists of giving the relative position of 
each operation on a machine in a vector. For Figure 4.1, the rank vector is given in 
Table 4.2. 

Operation number 1 2 3 4 5 6 

Rank 2 4 3 5 1 6 

Table 4.2. The rank vector

Generation of initial population 

In order to generate an individual, we must determine the sequence of operations 
and then transcribe this sequence, either in the form of permutation coding or in the 
form of rank coding. 

The first method for obtaining individuals for the initial population is to generate 
coding in a completely random manner. We generate a regular sequence with 
probability 1/n! and we place the sequence obtained in the permutation vector or in 
the rank vector. This will generate a very diversified sub-population. 

The second method for obtaining individuals for the initial population is to use 
similar resolution methods with or without the introduction of random decisions in 
the methods. This generates a generally good quality sub-population. Since the 
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problem concerned here is a specific case of the traveling salesman problem, we can 
use polynomial heuristics designed for this problem (for example, closest visited 
city or closest insertion, the simplest and most well known). 

Crossover operators 

Only two crossover operators are described (we can find many more in the 
literature; see for example [POR 96]). They are presented with permutation coding 
with emphasis on quality. Their effect on rank coding is then examined. The most 
traditional operator used in genetic algorithms is the one-point operator consisting of 
copying the father’s beginning until the randomly selected point of crossover and 
the end of the mother from the crossover point for the son (for the daughter, switch 
“father” and “mother”). Unfortunately, this very simple crossover is not suitable for 
the permutation vector or the rank vector as is illustrated in Table 4.3, since the 
results obtained may no longer be permutations of 1, 2, …, n (for example, value 6 
is absent and value 4 is duplicated in the son’s encoding). It is therefore important to 
design specific crossovers for the codings representing permutations. 

Father coding 2 4 3 5 1 6 

Mother coding 6 2 5 3 1 4 

Son coding 2 4 5 3 1 4 

Daughter coding 6 2 3 5 1 6 

Table 4.3. Simple one-point crossover for permutation or rank vectors

The first crossover operator presented here is the simplest version of the 
sequence operator proposed in [DAV 85]. It is represented by the acronym 1X 
(where 1 means that it is a one-point crossover, X symbolizes crossovers. If we were 
to be rigorous, it should be represented as 1OX for one-point order crossover). As 
with the simple one-point operator, it begins with a copy of the father’s beginning 
(resp. of the mother) and it ends the chromosome with missing sequenced digital 
values sorted in the order of the mother (resp.  father). By switching “beginning” 
and “end” in this crossover’s description, we obtain another son and another 
daughter based on a similar principle, which would, for example, make it possible to 
keep the two best children obtained, thus improving the quality of this crossover. 
Table 4.4 illustrates the 1X crossover with the same example as the one from  
Table 4.3. 

We now examine the children created. We may presume that if the father and the 
mother were good quality, it is because corresponding setup times were relatively 
short. Working with the permutation vector, this is translated by the hypothesis that 
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s02, s24, s43, s35, s51, s16, s06, s62, s25, s53, s31, s14 were relatively short 
compared to the rest of setup times. It would then be interesting to examine how 
these setup times are kept in the children created. We find four in son 1, six in 
daughter 1, six in son 2 which is identical to the father, and four in daughter 2. 

Father coding 2 4 3 5 1 6

Mother coding 6 2 5 3 1 4

Son 1 coding 2 4 6 5 3 1 

Daughter 1 coding 6 2 4 3 5 1 

Son 2 coding 2 4 3 5 1 6

Daughter 2 coding 2 6 5 3 1 4

Table 4.4. 1X sequence crossover

Father permutation 5 1 3 2 4 6 

Mother permutation 5 2 4 6 3 1 

Son 1 permutation 6 1 5 2 4 3 

Daughter 1 permutation 6 2 4 3 5 1 

Son 2 permutation 5 1 3 2 4 6 

Daughter 2 permutation 5 1 4 6 3 2 

Table 4.5. Equivalent permutations to Table 4.4

Table 4.5 shows the equivalent of permutation coding for individuals from Table 
4.4 presumably defined by a rank coding. 

If we assume the coding corresponds to the ranks (see Table 4.5) then we 
discover two setups from parents in son 1 and daughter 1, six in son 2 which is 
identical to the father and five in daughter 2. We see in the example that globally we 
find less subsequent operation pairs from parents if the 1X crossover is applied to 
rank coding instead of permutation coding and this is explained by the fact that 1X 
better retains consecutive operation sub-sequences for permutation than for rank 
coding, where what is retained or discovered is carried out in a much more random 
way. 

Another operator was designed specifically to retain the routes between cities 
(edges {i, j} or {j, i}) for the symmetric traveling salesman (distance from i to j = 
distance from j to i) by [WHI 89]. This is the edge recombination crossover (ERX). 
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We can easily extend it to pair conservation in the case of asymmetric problems. 
This extension is presented here. We explain it by using permutation coding in the 
example in Table 4.4. The first phase consists of building the table of pairs 
belonging to both parents. It is represented in Table 4.6 in the form of a first element 
successors list of each pair. 

Entries in the table 0 1 2 3 4 5 6 

2 4 4 1 3 1 2 
List of successors

6 6 5 5 / 3 / 

Table 4.6. Table of pairs 

In our particular case, we start with fictitious 0 operation. This is the current 
operation. Then Algorithm 4.2 is executed. 

while there remains an operation not placed do
Place the current operation; 
Among the non-placed successors from the current operation, arbitrarily choose one 

among those with the least amount of successors (*) not yet placed or arbitrarily choose a 
non-placed operation if the current operation has no non-placed successors; 

The chosen operation becomes the current operation. End while.

Algorithm 4.2. Pair recombination crossover

The result when using Table 4.6 is: 

0 6 2 4 3 1 5 

We retain 5 out of 6 arcs which could have been retained. By replacing 
successors by predecessors where there is a star (*) in the algorithm, we observe 
better results. Based on the different random choices illustrated by numbers in 
boxes, we obtain the following results: 

0 2 4 3 5 1 6   0 6 2 4 3 1 5 

0 2 5 1 4 3 6   0 6 2 5 1 4 3 

0 2 5 3 1 4 6   0 6 2 5 3 1 4 

0 2 5 3 1 6 4          
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4 times five arcs are retained and 3 times six arcs are retained. We retain many 
arcs which are probably not very costly; on the other hand, the quality of added arcs 
is random, and because of this, some children will probably be good and others 
mediocre (they disappear rather quickly with the birth-and-death process). 

Mutation operators 

The mutation operator is intended for the creation of diversity in the population. 
It must lightly modify the permutation involved while retaining a permutation. We 
must change at least two pairs. We can draw a position i (< n) and switch values of 
positions i and i + 1, or draw a position i and a position j ( i) and switch values of 
positions i and j, or even move the value corresponding to position i within 
permutation forward or backward. 

4.2.2. Example 2: sum of weighted tardiness 

Problem description 

We focus on the basic one-machine problem (see its description in section 4.2.1). 
The criteria to optimize is the sum of weighted tardiness in relation to due dates, in 
other words, any operation i has a due date di and is considered late if it ends at time 
Ci where Ci is strictly greater than di. An operation i not finished on time leads to a 
penalty equal to its tardiness in relation to due date, max(0, Ci – di), multiplied by a 
penalty associated with operation i: wi.

Preliminary analysis 

A solution to this problem can be described again by the sequence of operations 
on the machine (see Figure 4.2, where lines model the tardiness and the number of 
lines denote the tardiness penalty value). Intuitively, a solution is “good” (it 
corresponds to a low value of the sum of weighted tardiness criteria) if most 
operations are finished on time and if the operations which are the latest do not 
correspond to high penalty operations. 

0

6 1 3 4 2 5

d1 d6 d3 d4 d5 d2

T1 T5T4T3

Figure 4.2. Gantt chart of a one-machine problem with sum of weighted tardiness
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A “father” individual and a “mother” individual are considered good when they 
place short due date and/or high tardiness penalty operations early in the sequence 
(and in certain cases, the shortest operations before the longest operations). Relative 
positions between operations, or partial sequences, are what should be kept from 
good “father” and “mother” individuals as they constitute the good schemas to retain 
for crossovers. 

Possible solution codings

As with the previous example, the permutation vector is used. It directly 
describes the sequence of operations as it appears in the Gantt chart. We can also 
use matrix coding called “permutation matrix” to work on total sequences (with 
binary coding), as well as on partial sequences (with ternary coding). Ternary 
coding is the only one presented; it will be used for other scheduling problems more 
complex than the one-machine problem. Table 4.7 illustrates this coding for 
permutation of Figure 4.2. 

 1 2 3 4 5 6 

1 0 1 1 1 1 -1 

2 -1 0 -1 -1 1 -1 

3 -1 1 0 1 1 -1 

4 -1 1 -1 0 1 -1 

5 -1 -1 -1 -1 0 -1 

6 1 1 1 1 1 0 

Table 4.7. MT permutation matrix

This permutation matrix is defined as MT(i, i) = 0 and MT(i, j) = 1 if i precedes j
in the permutation, otherwise –1. It has specific properties. It is transitive:  
MT(i, j) = 1 and MT(j, k) = 1 leads to MT(i, k) = 1. It is antisymmetric:  
MT(i, j) = – MT(j, i). It has only one line containing zero value 1, and only one line 
containing a value 1, only one line containing two values 1, …, only one line 
containing (n – 1) values 1. We have the same property for columns and for  
values – 1. Because of the antisymmetric property, we may only store the top 
diagonal matrix; however, for a better understanding, the extended matrix is used 
here. 

Generation of initial population 

We can use a totally random generation presented in section 4.2.1 and transcribe 
the sequence obtained into a permutation matrix or vector. However, in order to 
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obtain good initial individuals for the sum of weighted tardiness criteria, we can also 
use specific heuristics for this problem. For example increasing due date sequence 
(EDD algorithm for earliest due date) and in the same way, decreasing penalty 
sequence, possibly improved with a simple neighborhood improvement procedure 
(see Chapter 3). 

Crossover operators 

We can again use the 1X crossover operator which retains sequences well. It 
particularly confirms property 1 described below. 

Property 1. If i precedes j in “father” and “mother” individuals, then i precedes j in 
children created by the crossover. 

To retain relative operation sequences, it is possible to generalize the 1X 
crossover operator with the k point crossover operator noted as kX in the following 
way and illustrated in Table 4.8 for k = 2. Explanations are given for the conception 
of son 1 and son 2 from father and mother (to obtain daughter 1 and daughter 2, 
simply reverse the roles of father and mother). k crossover points are randomly 
chosen in order to cut off individuals with k + 1 sub-chromosomes where we will 
distinguish odd and even position sub-chromosomes. For son 1 (resp. son 2), values 
in even position sub-chromosomes (resp. odd) are those found in the father’s  
sub-chromosome in the same position. For son 1 (resp. son 2), odd position  
sub-chromosome values (resp. even) are the values shown in this father’s sub-
chromosomes, but sorted in the mother’s sequence. This kX crossover confirms 
property 1 and it retains the partial sequences of the father (for sons) or of the 
mother (for daughters) all the more as k is large. 

Position 1 Position 2 Position 3 

Father coding 2 4 3 5 1 7 8 6

Mother coding 6 2 5 3 8 1 7 4

Son 1 coding 2 4 3 5 1 6 8 7 

Daughter 1 coding 2 6 5 3 8 4 1 7 

Son 2 coding 2 4 5 3 1 7 8 6

Daughter 2 coding 6 2 3 5 8 1 7 4

Table 4.8. kX sequence crossover
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It is also possible to define a uniform type crossover by using the MT 
permutation. A crossover is said to be uniform when values from the father and/or 
the mother are used in an irregular and generally random manner and not by 
complete sub-sequences to constitute the children.  

1 2 3 4 5 6  1 2 3 4 5 6 

0 1 1 1 1 -1 1 0 1 1 1 1 1 

-1 0 -1 -1 1 -1 2 -1 0 -1 -1 -1 -1 

-1 1 0 1 1 -1 3 -1 1 0 1 1 1 

-1 1 -1 0 1 -1 4 -1 1 -1 0 1 -1 

-1 -1 -1 -1 0 -1 5 -1 1 -1 -1 0 -1 

1 1 1 1 1 0 6 -1 1 -1 1 1 0 

Table 4.9. MT “father” and “mother” matrix

1 2 3 4 5 6  1 2 3 4 5 6 

0 1 1 1 1 0 1 0 1 1 1 1 -1 

-1 0 -1 -1 0 -1 2 -1 0 -1 -1 -1 -1 

-1 1 0 1 1 0 3 -1 1 0 1 1 -1 

-1 1 -1 0 1 -1 4 -1 1 -1 0 1 -1 

-1 0 -1 -1 0 -1 5 -1 1 -1 -1 0 -1 

0 1 0 1 1 0 6 1 1 1 1 1 0 

Table 4.10. SIM and MT “son” matrix

Tables 4.9 and 4.10 illustrate the crossover called MT2. Permutation values for 
the father and the mother are respectively: 613425 (from Figure 4.2) and 136452. 

Crossover begins by adding father and mother matrices and dividing this sum by 
2. When the father and mother have the same value, we retrieve this value, 
otherwise we obtain zeros (see left matrix in Table 4.10, called the SIM matrix), 
zeros that will need to be replaced by 1 or – 1 in order to obtain a permutation 
matrix once again. We then complete the matrix with the following iterative 
algorithm: 
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while there is a zero element outside of the diagonal do
Randomly choose one of these elements. 

For this element, choose the value of the father (with probability ) or the value of the 
mother (with probability 1- ).

Put opposite value in the symmetric element. 
Make matrix transitive. 
End while 

In this example, we randomly choose for example element (1, 6), then with 
probability  = 0.6, we randomly choose value – 1 from the father, i.e. 6 is placed 
before 1. By transitivity, 6 is also before 3. For the last zero element (2, 5), we 
presume that the random choice has selected value – 1 from the mother, i.e. 5 is 
placed before 2. All values are chosen and the permutation obtained is 613452. 

From parents 613425 and 136452, we have obtained child 613452. The number 
of times we have retained the sequence (i, j) in the son as it existed in the father and 
mother is 9 (number 1 in the left hand matrix) and the number of times we have 
retained the sequence (i, j) in the son when it existed in the father and/or the mother 
is equal to the maximum value of 15 (n(n – 1)/2). This crossover attempts to retain 
sequences. 

Mutation operators 

We can use the same operators as in section 4.2.1. Since the goal of mutations is 
to create diversity, it is not necessary to develop sophisticated approaches in order to 
be efficient. On the other hand, mutations often ensure connectivity of the space 
visited, i.e. we can visit the solution space by only using permutations as a 
neighborhood technique. This is interesting because in general, it is very difficult to 
demonstrate that crossover operators alone ensure this connectivity. 

4.2.3. Example 3: sum of weighted tardiness and setup times 

Problem description 

A one-machine scheduling problem is considered here which is a generalization 
of example 1 (presence of setup times depending on the sequence of operations) and 
example 2 (the criteria used is sum of weighted tardiness). We add setup times in the 
Gantt chart of Figure 4.2. 

Preliminary analysis 

A solution is considered good because setup times used are not too large and/or 
because short due date and/or high penalty operations are placed sufficiently early in 
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the sequence. If we do not want the efficiency of the genetic algorithm to be left to 
chance, crossover operators must be developed to find a compromise between 
retaining arcs (corresponding to short setup times) and retaining partial sequences 
(corresponding to sequencing the most urgent operations first if they lead to high 
tardiness penalties). In this case, it is possible to use the content of the chromosome 
describing a solution as well as the problem statement providing setup times, 
processing times, due dates and penalties with crossovers. The crossover then 
becomes “data-dependent”. Without going into a full discussion on this type of 
crossover, here is a general idea: when there is a possibility of choosing between 
retaining part of the father code or part of the mother code, in order to make this 
choice, we use unbalanced probabilities obtained from supplementary evaluations 
which use data from the problem and consider partial consequences on the criteria 
value of each choice. 

Possible solution codings 

Since it is always permutation scheduling, we can use the permutation vector as 
well as the permutation matrix. 

Generation of initial population 

We use identical processes as in sections 4.2.1 and 4.2.2: a totally random 
generation of permutations, or heuristics which attempt to empirically build good 
quality solutions. Solutions which can be improved with a few iterations from a 
local neighborhood technique (see Chapter 3). 

Crossover operators 

Here we propose a new operator called MT2mod. It is a mix of 2X and MT2. We 
describe it for the son (simply change father for mother to obtain the daughter). 
Once we have chosen two crossover points, we copy the central part of the father as 
the central part of the son. Any operation preceding this central part in the father 
will remain in front of this central part in the son and any operation which follows 
this central part in the father will follow this central part in the son. All these 
precedences are used to complete the matrix to the left of MT2mod crossover (we 
retain the common partial sequences in the father and in the mother, in addition to 
the central part of the father and the relative position of father operations in relation 
to the copied central part). We then finish the MT2mod crossover with the regular 
procedure by increasing the probability of using the value in the mother as in section 
4.2.2. To obtain a data-dependent crossover, we can try to choose the one for which 
the sum of setup times divided by the number of sequence operations is minimal as 
central part in the father. 
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Mutation operators 

We can use the same operators as in section 4.2.1.  

4.3. Job shop problems 

Problem description 

This is a shop containing several machines, and each machine has different 
functions. In order to carry out job i, it is necessary to execute a set of ni operations, 
where each one requires a specific machine in the shop. The jth operation in job i
requires pij units of time on machine Mij. Several criteria can be considered to assess 
the performance of job shop scheduling; we can use the same as previously 
described and more specifically the sum of weighted tardiness compared to due 
dates. 

Preliminary analysis 

Table 4.11 provides the description of a job shop problem where a solution is 
provided by the Gantt chart in Figure 4.3. 

i pi1 Mi1 pi2 Mi2 pi3 Mi3 pi4 Mi4 di wi
1 2 M1 3 M2 1 M1 3 M3 10 2 

2 1 M3 1 M1 3 M2 / / 8 1 

3 2 M2 4 M1 3 M3 / / 10 3 

Table 4.11. Job shop scheduling problem statement

Figure 4.3. Gantt chart of the job-shop scheduling problem with sum of weighted tardiness

A solution is considered good because it places the most urgent and highest 
tardiness penalty jobs early enough. We presume that we are working on a dominant 
set. For example, we can consider the set for semi-active schedules (by definition, 
any operation is left shifted, either after the operation preceding it in its job, or after 
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the operation preceding it on the machine used), thus, for each solution described by 
a Gantt chart, there corresponds a list of permutations, as each permutation 
sequences operations for each machine. However, the reverse is not true: if we have 
a sequence of operations on machines, this still does not define a schedule. For 
example, no feasible schedule for the description of Table 4.11 corresponds to the 
list of permutations in Table 4.12. As, according to the jobs, 1.1 precedes 1.2 and 
3.1 precedes 3.2 and according to the sequence on machines given by permutations, 
3.2 precedes 1.1 and 1.2 precedes 3.1. We therefore have a process as shown in 
Figure 4.4 and no scheduling is possible because for example, 1.1 only precedes 
itself.

In a job shop scheduling problem, the choice for the sequence of operations on 
machines must not create a circuit in the precedence graph built from sequences of 
operations in jobs and sequences of operations on machines. 

M1 3.2 1.1 2.2 1.3 

M2 1.2 3.1 2.3 / 

M3 2.1 3.3 1.4 / 

Table 4.12. Scheduling resulting from a list of permutations

Figure 4.4. Appearance of a circuit in the precedence graph resulting  
from jobs and permutations on each machine

Possible solution codings 

There are several solutions to face this issue. The first one (not the best) consists of 
working on codings of lists of operation permutations on machines and deleting all 
individuals who do not correspond to feasible solutions because of the presence of 
circuits in the precedence graph. The second one consists of repairing these individuals 
with generally empirical procedures which make circuits disappear. The third one, 
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generally used, consists of considering that permutations on machines are not 
imperative sequences between operations, but only priorities between operations, 
priorities used to build a feasible schedule from the chromosome by using a solutions 
generator. The most frequently used generator consists of developing the schedule 
with no delay corresponding to these priorities. Its operation is simple: we start at 
moment 0 with an empty schedule. We then increase the time and we search for the 
first moment where a free machine has operations waiting in front of it. We then 
allocate the highest priority operation (the one placed the earliest in the permutation). 
The problem with proceeding that way is that we only scan on no delay schedules and 
this set is not dominant for the criteria considered here (the optimal solution may not 
belong to this set and in this case, the genetic algorithm may not be able to find it). A 
generator of “active” schedules that we do not present here (see Chapter 2), explores a 
dominant set of solutions. Other solutions can be used making it possible to avoid 
creating a circuit while retaining coding which scans a dominant set of solutions (i.e. 
containing at least one optimal solution). It is the generalized permutation coding [BIE 
95] (not presented here) and the ternary coding (0, 1, –1) already proposed in section 
4.2.2 for the particular case of permutations and for which it is possible to develop 
crossover operators that never create circuits in the precedence graph. 

Generation of initial population 

If coding is assumed to contain priority lists which are transformed into solutions 
with the help of a generator, then this is called indirect coding. In this case, the 
coding for the genome (chromosomes) and that for phenotype (corresponding 
solutions) are no longer in bijection. In order to generate random values for 
genomes, we must generate random permutations for operations on each machine 
and complete this set by using the sequence of operations on each machine obtained 
by applying one or more heuristics. 

If we use a ternary MT matrix for coding then MT(i, j) = 0 means that there is no 
precedence relation between operations i and j, directly nor by transitivity.  
MT(i, j) = 1 means that operation i precedes operation j in the precedence graph, 
either directly because i precedes j in the job or on a machine, or indirectly (for 
example, i precedes k on a machine, k precedes l in its job, l precedes j on another 
machine); MT(i, j) = – 1 if MT(j, i) = 1. 

It is possible to code any solution obtained by a heuristic in the form of an MT 
matrix. It is also possible to generate random feasible solutions by working directly on 
matrix MT. We initialize matrix MT to 0. We then introduce in the MT matrix 
relations of precedence corresponding to jobs (this sub-graph must be transitive). We 
then consider MT sub-matrices consecutively corresponding to operations executed on 
one machine. These sub-matrices must be permutation matrices since we must decide 
the exact sequence on each machine. We search for a 0 outside of the diagonal in any 
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of these sub-matrices. We arbitrarily decide to give this element the value 1 or value  
–1, then we execute a transitive closing on matrix MT. We iterate this process as long 
as there is a 0 outside of the diagonal in one of these sub-matrices. For the example in 
Table 4.11, Table 4.13 presents the random generation of an initial solution 
characterized by the sequence 22, 11, 32, 13 on machine 1, sequence 31, 12, 23 on 
machine 2 and sequence 21, 33, 14 on machine 3.

  M1 M2 M3

  11 13 22 32 12 23 31 14 21 33 
 11 0 1   1   1   

M1 13 -1 0   -1   1   
 22   0   1   -1  
 32    0   -1   1 
 12 -1 1   0   1   

M2 23   -1   0   -1  
 31    1   0   1 
 14 -1 -1   -1   0   

M3 21   1   1   0  
 33    -1   -1   0 

a) Part of the MT matrix imposed by jobs 

 11 13 22 32 12 23 31 14 21 33 
11 0 1 -1 1 1 1 0 1 -1 1 
13 -1 0 -1 -1 -1 0 -1 1 -1 0 
22 1 1 0 1 1 1 0 1 -1 1 
32 -1 1 -1 0 0 0 -1 1 -1 1 
12 -1 1 -1 0 0 1 -1 1 -1 0 
23 -1 0 -1 0 -1 0 -1 0 -1 0 
31 0 1 0 1 1 1 0 1 0 1 
14 -1 -1 -1 -1 -1 0 -1 0 -1 -1
21 1 1 1 1 1 1 0 1 0 1
33 -1 0 -1 -1 0 0 -1 1 -1 0

b) Randomly generated part 
(consecutive random choices only in gray parts: 

(11, 22) = –1, (11, 32) = 1, (13, 32) = –1, (12, 23) = 1, (12, 31) = –1, (14, 33) = –1) 

Table 4.13. Generation of a random ternary matrix
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Crossover operators 

For indirect coding made up of permutation lists used as priority lists with one 
solution generator, permutation crossovers presented for one-machine problems can 
be executed on the coding of each machine (for example, a 1X crossover). For direct 
ternary coding, we use the MT3 crossover which is a generalization of the MT2 
crossover. This crossover starts by adding up the ternary matrices of the father and 
mother. We then divide the matrix obtained by 2 by rounding to 0 each time we 
obtain +1/2 or –1/2 (we then retain all compatible sequences for the father and 
mother). In the resulting matrix, we consider sub-matrices corresponding to each 
machine (see gray parts in Table 4.13b). For each 0 outside of the diagonal in these 
sub-matrices, we use the value located in the father or mother with probability 1/2. 
Each time we add a new value in the matrix, we also add necessary values so that 
the matrix remains transitive. We iterate the previous process until there is no longer 
a 0 outside of the diagonal in the sub-matrices corresponding to machines. 

Mutation operators 

For indirect coding, we use traditional mutation operators for permutations. For 
direct coding with the help of a ternary matrix, the mutation operator works in the 
following way. We begin by filling the MT matrix with the mutant in creation with 
the precedence constraints issued from jobs (as in the case of the generation of an 
initial solution). We then randomly choose an element off diagonal in one of the 
sub-matrices corresponding to one of the machines. For this element, we use the 
opposite value of the MT matrix corresponding to the individual to mutate (+1 if –1 
and vice versa). We then continue as we would for a (single parent) crossover. For 
each 0 outside of the diagonal in a sub-matrix of the mutant, we use the value 
located in the MT matrix of the individual to mutate. Each time we add a new value, 
we add the necessary values so that the matrix remains transitive. We reiterate the 
previous process until there is no longer a 0 outside of the diagonal in the sub-
matrices corresponding to machines. 

4.4. Hybrid flow shop 

4.4.1. Specific case: one-stage total duration problem 

Description of the problem and preliminary analysis 

The one-stage hybrid flow shop problem (see a detailed presentation in Chapter 
9) is no more than a parallel machine problem. In this case, each job consists of only 
one operation. This is the context where all machines are identical or, in other 
words, where the processing time of a job (or operation) is the same on all machines. 
The criterion to minimize is duration time Cmax corresponding to the scheduling of a 
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set T of jobs. We are in the presence of a pure allocation problem and the sequence 
of jobs on machines is of no interest here.  

When we analyze the nature of a problem solution, we may very easily establish 
that there is at least one optimal solution (minimizing total scheduling time or 
makespan) for which any machine executes at least one operation (we presume that 
there are obviously more operations to be executed than there are machines). This is 
only true when the machines are all identical and always available. We will only 
build solutions where no machine will be left inactive (dominant set). In addition, 
the total load will have to be distributed on all machines without necessarily 
authorizing an operation to be executed simultaneously on several machines (no 
splitting) or to be preempted by other operations (no preemption).  

Possible solution codings 

The problem to solve is to find for each job T, the machine that will execute it in 
order to minimize total scheduling time. There are several ways to code a solution 
for this type of problem. We present three of them. 

One of the possible approaches to code such a solution is to use a vector where 
each element represents a job and shows the number of the machine on which it will 
be executed. This coding will be called DC1-ASS (for Direct Coding for ASSignment) 
from now on. To give an example, say we have a set of jobs defined by T = {1, 2, 3, 4, 
5}. Suppose we have 3 parallel machines and those processing times are 31p ,

52p , 83p , 24p , 45p . A possible solution for this problem is represented 
by vector S1 = (1, 2, 3, 2, 1). It corresponds to assigning jobs 1 and 5 to machine 1, 
jobs 2 and 4 to machine 2 and job 3 to machine 3. Figure 4.5 illustrates coding for this 
solution as well as the associated Gantt chart. This coding is a direct coding because it 
describes a solution directly and completely. 

We can also build another type of direct coding that is more interesting because 
it enables us to delete, in the case of identical parallel machines, the randomness 
linked to machine numbering. This coding, called DC2-ASS, consists of building a 
matrix in which element (i, j) of the matrix has a value of 1 if jobs i and j are on the 
same machine and 0 otherwise. This type of coding is even more efficient when 
there are additional job constraints. It is to be noted that saying two jobs are on the 
same machine does not lead to any decision in terms of the sequence of these two 
jobs.  

Another “indirect” type of coding, called IC3-ASS for Indirect Coding for 
ASSignment, consists of establishing a list of priorities for all jobs provided by a 
permutation vector, for example. This solution requires the use of a solution 
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generator. Its objective is to determine a solution from a given coding. In the very 
specific case involved here, the no delay solution generator visits a dominant set of 
solutions. It is so simple that is seems natural to use it. 

Figure 4.5. Coding of a solution for one-stage hybrid flow shop and associated Gantt chart

Generation of initial population 

To generate an initial population in the case of direct coding, we must find a set 
of solutions where each one represents an allocation of all jobs to machines. In order 
to do this, we can use a method that randomly generates many individuals and which 
respects the dominant condition “no inactive machine”. For each solution, we must 
calculate the value of criteria Cmax. This evaluation is very simple because we only 
need to use the last end date obtained on one of the machines. For indirect coding, 
we can use the same initial population generation as in section 4.2.1 by applying it 
to all jobs of T.

Possible crossovers 

For IC3-ASS coding, we can use crossovers from sections 4.2.1 and 4.2.2. For 
this type of problem and for DC1-ASS coding, it is not necessary to use a 
complicated crossover operator. For example, the simple one-point crossover is 
sufficient. Of course this operator will not guarantee that we obtain two valid 
children in terms of what has been presented in the preliminary analysis. In fact, it is 
possible that this type of crossover generates a solution in which a machine may be 
idle. In this case, we end with a “repair” phase which moves a job to any idle 
machine.

We use the same data as in the previous example. Figure 4.6 represents a one-
point crossover of two individuals. For child 2, no machine is sitting idle and 
consequently, it respects the dominant condition. It is therefore not necessary to 
apply a corrective operator.
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Figure 4.6. Crossover operator for one-stage hybrid flow shop

On the other hand, child 1 will have to have a correction to assign a job to 
machine 3. This repair phase works in a similar way as a mutation operator. In fact, 
its objective is to identify idle machines. Subsequently, we choose the machine with 
the greatest load among those with more than one allocated job. We then reallocate a 
job to an idle machine. This process is repeated until all machines are busy with at 
least one job. We can then observe that the corrective operator must only be applied 
on child 1; machine 3 is the only idle one. For this operator, we can choose the 
longest job (because it cannot be interrupted and will have to be executed by the 
same machine) among jobs allocated to the machine with the largest load. In our 
example, the machine with the largest load is machine 2 and the longest job is job 3. 
Therefore child 1 becomes tuple (1, 2, 1, 2, 3). This correction operator is applied 
after any crossover, but also after the use of the mutation operator. In the case of 
DC2-ASS coding, it is preferable to use the MT3 crossover operator, which was 
presented in section 4.3 and to make it symmetric (–1s become +1s). The repair 
consists of splitting a subset of operations executing on a single machine in two, 
until all machines are used. 

Mutation 

Concerning the mutation operator, clearly, coding a simple probability of 
modifying a gene in the chromosomes is sufficient, followed by the corrective 
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operator if necessary for DC1-ASS. The value of this probability must be relatively 
low so as not to significantly modify the nature of individuals. In the case of DC2-
ASS coding, it is more complex because we must retain transitivity of the “is on the 
same machine as” relation. For IC3-ASS coding, we use techniques from section 
4.2.1. 

4.4.2. General case: k stages total duration problem 

Problem description 

The K stages hybrid flow shop is a flow shop – all jobs need a set of operations 
and operation j of each job requires machine j – moreover each operation j must be 
performed on a single machine chosen from a set of parallel machines dedicated to 
this operation and grouped on the stage j. This problem comes down to 
simultaneously solving an allocation problem, an example of which was presented 
in the previous section, and a sequencing problem. In fact, for each stage, we must 
define all jobs to be allocated to each machine and for each machine, in which 
sequence jobs allocated to this machine must be allocated. We focus here on stages 
made up of identical parallel machines and the criterion to optimize is the total 
scheduling time. 

Preliminary analysis 

Before proposing coding for a solution for this type of scheduling, we must first 
define dominant conditions in order to use coding appropriate for its characteristics. 
As before, we must never leave a machine idle, so that all available machines are 
used. Subsequently, as far as priorities to determine sequences on machines are 
concerned, they must not be too different between two consecutive stages. In fact, 
the consequence would be the generation of unnecessary inactive times. This is 
particularly possible using relative job positions. In this way, we can hope that if job 
i  precedes job j  at stage h, then either i  precedes j  at stage h + 1, or i  and j
are on different machines. This analysis will make it possible to offer a crossover 
operator that is better adapted for this type of problem, and will best retain the 
sequences. 

Figure 4.7 illustrates a case where sequences between two stages are retained. 
Figure 4.8 shows the same problem for which we have deliberately reversed two 
sequences between the two stages. In this case, the value of the end scheduling date 
is more important and does not correspond to an interesting scheduling. We see the 
inactivity generated by these different sequences. However, this situation is still not 
verified, it all depends on the distribution of job processing times. 
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level 2 

level 1 

Figure 4.7. Case where sequences are retained between the two stages

level 1 

level 2 

Figure 4.8. Case where sequences are not retained between the two stages

Possible solution codings 

In this section, we propose two types of coding. In both cases, we consider two 
chromosomes, one for each family of unknowns for the problem to solve 
(assignment and sequencing). 

The first coding builds a genotype made up of two chromosomes: the first one 
models the assignment problem by using DC1-ASS coding presented for the one-
stage hybrid flow shop problem. The second chromosome determines relative 
sequences of all jobs for each stage. We actually need an MT3 type matrix (see 
section 4.3) for each stage. Suppose we focus on stage h. Each element (i, j) of this 
matrix is equal to either – 1 in the case where operation of job j precedes the one 
from job i, or to 0 in the case where we do not know the relative position between 
operations of jobs i and j, or even to 1 in the case where the operation of job i
precedes the one from job j. An example of this matrix and its associated Gantt chart 
is illustrated in Figure 4.9.  
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We should point out that at each modification made on this matrix, a transitive 
closing calculation must be applied in order to verify the absence of a circuit (a 
modification may add a circuit, i.e. job i precedes job j and job j precedes job i for a 
given sequence). 

 1 2 3 4 5    

1 0 1 0 1 0  Job 1 1 

2 -1 0 0 -1 0  Job 2 1 

3 0 0 0 0 -1  Job 3 2 

4 -1 1 0 0 0  Job 4 1 

5 0 0 1 0 0  Job 5 2 

Figure 4.9. Example of direct coding for hybrid flow-shop and stage 1 

Figure 4.10 presents a solution for the two-stage hybrid flow shop problem for 
which we have two machines in the first stage and one in the second. This 
corresponds to a possible solution but not to the best solution. 

Another way to code a solution for this problem is to use a priorities-based 
coding. In this case, we arrive at an indirect coding, implying that it is necessary to 
implement a solution generator which will successively allocate jobs to machines by 
using all priorities.  

For the hybrid flow shop problem, we can use two chromosomes as before. The 
first one will give the machine number where each job in each stage will be 
assigned. The second one will give the priority on this machine for each job and 
each stage. An example of this coding is given in Figure 4.11.  
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For stage 1 

 1 2 3 4 5    

1 0 0 0 -1 0  Job 1 2 

2 0 0 1 0 1  Job 2 1 

3 0 -1 0 0 -1  Job 3 1 

4 1 0 0 0 0  Job 4 2 

5 0 -1 1 0 0  Job 5 1 

For stage 2  

 1 2 3 4 5    

1 0 -1 -1 -1 -1  Job 1 1 

2 1 0 1 1 1  Job 2 1 

3 1 -1 0 -1 -1  Job 3 1 

4 1 -1 1 0 -1  Job 4 1 

5 1 -1 1 1 0  Job 5 1 

Figure 4.10. Example of a solution for a two-stage hybrid flow shop

As in the case with the job shop problem, the problem lies in the choice of a 
good generator. We can particularly use an active scheduling generator [BAK 74] or 
a no delay scheduling generator (which never leaves a machine unoccupied when an 
operation is available to be executed on this machine). These generators respect the 
choice of machines defined by the first chromosome from the genome, jobs (an 
operation can only be executed after the end of the previous one) and priorities 
provided by the second chromosome (when two operations are in conflict for the 
generator choice, it is always the one with the highest priority that is chosen). With a 
hybrid flow shop, instead of handling the different stages in parallel as time 
progresses, we can decompose the resolution by first placing the operations at stage 
1, then at stage 2, etc. This will not change the result, but makes it possible to have a 
better understanding of the advantages and disadvantages of the different generators. 
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Jobs 1 2 … N … 1 2 … N

Machines 1
1M 1

2M … 1
NM … kM1

kM 2
… k

NM

Priorities 1
1P 1

2P … 1
NP … kP1

kP2
… k

NP

 Stage1 …. Stage k

Figure 4.11. A second coding for hybrid flow shop 

In the case of a hybrid flow shop, choosing sequences of operations on the 
different machines at each stage never creates a circuit in the precedence graph as 
was the case with the general job shop problem (Figure 4.4). We can use priorities 
associated with operations assigned to each machine in each stage in order to define 
sequences on this machine and strictly respect the sequences obtained. We then shift 
to the left each operation in stage h either on the operation preceding it at stage h –1, 
or on the operation preceding it on the machine. We obtain a scheduling called semi-
active. In this case, we consider the coding to be direct, since priorities contained in 
the second chromosome directly give the sequence on machines by simply 
considering them in increasing order for each machine. It may be interesting to use 
this type of coding for exploring a dominant solution space; however, many 
solutions of this type are of very low quality, because to take any sequence on each 
machine in each stage can generate important idle times on machines, as illustrated 
in Figure 4.8, for example. That is why genetic algorithms using no delay or active 
scheduling generators generally converge faster toward good solutions [VIG 96]. 
However, direct coding can, given sufficient time, provide a better solution 
(especially when we compare with algorithms using no delay schedules, which a 
great many authors use, but which are not dominant and can therefore not contain 
the optimal solution). 

Generation of initial population 

The generation of initial population can be done by using one or the other 
coding. Part of the population can be generated in a completely random manner and 
the other part by using good heuristics. 

Possible crossovers 

Crossover operators will obviously depend on the chosen coding. In the case 
where the first coding would be chosen, an operator for the assignment chromosome 
and/or an operator for the sequencing part are needed. In this way, either the 
assignment chromosome changes, or the sequencing chromosome, or both. For the 
assignment chromosome, a one-point crossover is sufficient. For the chromosome 
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providing sequences, we can use the MT3 crossover operator discussed previously 
(see section 4.3). In this case however, we must use a repair operator. In fact, it is 
possible that the use of these two operators can leave a machine idle, which is 
contrary to the rule of dominance highlighted by the hybrid flow shop problem. 
Using the repair operator makes it possible to have a solution which respects 
constraints of dominance. We should point out that it is always interesting to apply 
the transitive closing calculation as soon as a modification is made on the sequence 
chromosome. 

When the second coding is used, there can be three possible crossover operators: 
we either apply the one-point crossover in the priority chromosome without 
changing assignments; or we apply the one-point crossover in the assignment 
chromosome without changing sequences, but possibly finishing with a repair. And 
finally, we can apply the one-point crossover anywhere on the genome. In the last 
case, the assignment and priority chromosomes are modified. If assignments are 
decided by the generator, the coding and the crossover operator only apply to 
priorities. It is then not always necessary to develop a repair operator; we must 
examine in detail if the generator will be able to satisfy conditions of dominance 
from a genome. If that is not the case, we can possibly use the repair operator 
previously seen. 

Mutation 

Concerning mutation, the two codings must be differentiated as with crossover 
operators. If we work with the first coding, we can work only on the scheduling 
chromosome. We then randomly choose one machine from all of them. Then we 
modify with a probability of mutation the sequence assigned to this machine. We 
can also consider the modification of the chromosome dedicated to assignment; in 
this case, we then need to use the repair operator seen by the crossover operator. For 
the second coding, we simply need to choose a low probability to mutate a gene in 
each chromosome. 

Another method that is interesting for this problem is to use a mutation where the 
probability varies periodically between 0 and 1 [VIG 96]. In this way, the mutation 
rate is assimilated with a decreasing and periodic function enabling a periodic 
reinitialization of the population. This can help in getting out of a local extremum. 
Of course, this principle can be used for other problems and is not specific to the 
hybrid flow shop. 
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4.5. Hybrid genetic algorithms 

4.5.1. Hybridization with other metaheuristics 

A large number of crossovers were proposed between genetic algorithms and other 
metaheuristics [DOM 98, GAL 99, LAS 93, MÜH 91, SUC 87], in particular with 
neighborhood improvement methods such as the largest gradient, the tabu method or 
simulated annealing (see Chapter 3). A steep ascent or stochastic descent method is 
interesting because it makes it possible to verify if better solutions can be found in a 
neighborhood close to a solution belonging to the population, with low calculation 
cost, and if that is the case, to possibly improve the value of the best solution found. 
The question thus raised is this: must the best solution obtained by neighborhood 
improvement replace the individual thus improved in the population or not? Certain 
authors systematically apply a neighborhood improvement method and systematically 
replace original individuals with improved individuals at each genetic algorithm 
generation. In this case, we can make the following observations: 

– the population consists of local optima in relation to the considered 
neighborhood; there is therefore quick but premature convergence to a limited set of 
local optima;

– as the population is mainly improved by the application of the neighborhood 
method, mutations become improvers and crossover operators become diversifiers: 
trying to recreate diversity in the population to extract from local optima into which 
the neighborhood method leads them frequently. 

Other authors systematically apply a neighborhood improvement method to all 
individuals in the population at each genetic algorithm generation. The best solution 
is carefully put aside even if the corresponding individual is not retained. In fact, in 
this case, the improved individual only replaces the original individual with a 
generally low probability: 1/20 or 1/10 appear to be good choices according to some 
authors. At each generation, we can also improve a population’s individuals based 
on a given probability or, which amounts to the same thing, only use the 
neighborhood method every k generations. This limits algorithm cost. These last 
hybridizations between genetic algorithms and neighborhood improvement methods 
converge more slowly toward very good solutions, but are not as quickly trapped by 
local optima. In addition, they respect the spirit of genetic algorithms better since the 
crossovers must try to preserve the parents’ good properties and thus develop quality 
individuals, and mutation’s main role is to create diversity in the population. 
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4.5.2. Hybridization with combinatorial optimization methods 

One of the major drawbacks with genetic algorithms is that we cannot 
demonstrate the optimality of the resulting best solution. In addition, genetic 
algorithms visit a set of solutions. The size of these sets is generally very large and 
consequently crossing this type of method with methods based on reducing solution 
spaces, by pairing operations research and genetic algorithms is interesting. 

A crossover used by several authors [DJE 96, POR 98] consists of using a 
genetic algorithm in a branch and bound procedure (BBP). The objective is to 
improve the upper boundary (smallest solution found in the case of minimization) 
by exploring the space of solutions corresponding to certain nodes in the 
arborescence created by consecutive branchings. The idea is obviously not to 
execute a genetic algorithm at each node in the arborescence, since the 
computational time for a BBP is high enough. On the other hand, applying it to 
levels in the research tree in order to improve boundary calculation is interesting. In 
this way, by respecting the constraints defined by a certain node in the research tree, 
the goal of the genetic algorithm is to try to improve the value of the upper 
boundary. Certain branches of the research tree can then be cut, limiting the size of 
the arborescence explored. The problem with this approach is, on one hand to find 
appropriate coding to transcribe constraints of a node in the research tree in codings 
used, and on the other hand, to find a good compromise between the BBP 
computation time and the time allowed for the improvement of the upper boundaries 
[DJE 96, POR 98]. 

4.6. Conclusion 

In this chapter, scheduling problems have been considered in an increasingly 
difficult order in relation to their approximate resolution by genetic algorithms. We 
have observed, on the one hand, schedules for which all operations are pre-assigned 
to resources (one-machine and job shop problems) and, on the other hand, schedules 
for which it is necessary to allocate resources (identical parallel machine and hybrid 
flow shop problems).  

We have also observed problems for which permutation coding can actually give 
the order of operation on the different resources (immediate direct coding possible 
for all problems presented except for the job shop problem) problems for which 
traditional permutation coding no longer makes it possible to describe solutions 
quickly for which we must either use a generator to transform permutation coding 
into solutions (indirect coding), or use more sophisticated direct coding such as for 
example the MT3 matrix. We also attempted to show how we could try to develop 
genetic operators to make resulting genetic algorithms as efficient as possible, based 
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in coding and criteria considered. Experiments made in late 1999/early 2000  
[POR 00] confirmed that crossovers retaining the good properties of parents, as they 
were defined in this chapter for the problem described in section 4.2.3, on average 
create better children than others. The improvement is even more significant when 
we use “data-dependent” crossovers as for example in [MAH 00] for hybrid flow 
shop problems with a single machine per stage. 

In conclusion, genetic algorithms are robust methods (low sensitivity to 
variations in digital data from statements), easy to develop and to implement. 
However, as with neighborhood methods, it is very important to analyze the 
characteristics of the problem to solve and the characteristics of the solutions 
offering good values to performance criteria, in order to develop the most efficient 
coding and genetic operators. Before applying genetic algorithms to concrete 
problems, experimentation is absolutely necessary. They enable the comparison of 
several codes and genetic operators in industry or randomly generated examples and 
the choice of those most suitable based on the problem involved as well as 
numerical instances with the same characteristics as the concrete application to solve 
(for example, a very large time range in relation to the setup time range for the 
problem corresponding to section 4.2.3). The parameters for the general schema 
retained for the genetic algorithm (size of population, mutation percentage, 
crossover percentage, etc.) are also retained with this experimentation phase. 
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Chapter 5 

Constraint Propagation and Scheduling

5.1. Introduction 

5.1.1. Problem and chapter organization 

By “constraint-based approach” for scheduling problems, we refer to studies 
focusing on the representation and processing of constraints in scheduling [ERS 76a, 
FOX 83, DIN 90, LEP 91, SMI 93, FAR 94, LEP 94, NUI 94, VAN 94, CAS 95, 
BAP 98, BAP 01, BRU 02, DOR 02, LOP 03]. These approaches compare and 
combine operations research methods (graph theory, mathematical programming, 
combinatorial optimization methods), with constraint representation and processing 
from artificial intelligence (constraint satisfaction problems, constraint propagation 
algorithms, constraint programming languages).  

The goal of these studies is to put tools in place to facilitate interaction between 
models and decision makers, by integrating useful analysis methods in a context of 
decision support (consistency checking, characterization of solution space) and 
efficient resolution algorithms (complete generation, optimization). 

At the core of concerns common to these studies, we find the problem of 
developing efficient and general constraint propagation mechanisms, which are the 
subject of this chapter. Specific results taken from scheduling problems and general 
results taken from constraint satisfaction problems have been grouped together. 

Chapter written by Patrick ESQUIROL, Pierre LOPEZ and Marie-José HUGUET.  
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First we present purely temporal problems. There are complete propagation 
algorithms with acceptable complexity for simple temporal problems, in which each 
constraint limits the distance between two dates to a connected domain. Processing 
more evolved temporal constraints, based notably on disjunctive temporal intervals, 
makes the problem very difficult, even when these disjunctions are limited to two 
intervals. 

Next, we will focus on problems in which tasks must respect temporal and 
resource sharing constraints simultaneously. We present a summary of constraint 
analysis results [ERS 76a, ESQ 87, LOP 91] which focus on the development of 
propagation rules making simple temporal constraints and resource sharing 
constraints interact. Two types of reasoning are presented. The first requires a prior 
conflict analysis between tasks and deduces sequencing conditions. The second 
simultaneously integrates constraints of time and resources. It limits location of a 
task in relation to a time interval in order to respect the energetic balance. 

The use and control of constraint propagation mechanisms is discussed. They 
may be used to discover a global inconsistency in a problem formulation quickly, or 
to simplify its resolution.  

A few extensions are considered at the end of the chapter, the case of preemptive 
problems and the case of scheduling problems with assignment constraints more 
specifically.

5.1.2. Constraint propagation 

The resolution of a combinatorial problem is often reached with a tree search 
algorithm. At each step, only certain variables receive a value. We will thus talk 
equally about assignment of a value v  (to a variable x ) or instantiation of a 
variable x  (by a value v ) to designate a basic decision, and we will denote it by 

vx . Variables that have not yet received a value at any level are called free 
variables. 

To guarantee obtaining a solution – if such a solution exists – it is necessary to 
list the remaining choices for the variables already instantiated if we want to be able 
to explore other possibilities in case of a dead end. Control of the search tree 
development is carried out in a mode using chronological backtracking and the 
resolution is non-deterministic because we cannot predict the choices actually 
leading to a solution. 

The goal of constraint propagation is to simplify the resolution of a problem or 
to demonstrate the absence of a solution. It does not represent a resolution 
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technique, but it represents a set of constraint rewriting techniques. In practice, this 
may consist of removing the values not belonging to any solution from the decision 
variable domain. This domain filtering avoids many resolution attempts doomed to 
fail. These techniques also simplify the expression of constraints, by eliminating 
redundant constraints for example. Finally, propagation can, in certain cases, show 
proof of global inconsistency of the problem before any resolution attempt. 

The general schema of a backtracking algorithm is as follows (inspired by [SAD 
96] and [NUI 94]): 

while unassigned variables remain and a global inconsistency is not detected 
 apply propagation rules 

if inconsistency is detected 
 then if unexplored choices exist 
  then backtrack to an unexplored choice
  else global inconsistency detected 

else
  select a free variable 
  choose a value for this variable and store the remaining values 

Algorithm 5.1. A general non-deterministic resolution algorithm 

We should emphasize that constraint propagation does not modify all the 
solution space; it only facilitates its exploration.  

DEFINITION.– Two problems are equivalent if they have the same sets of variables 
and the same solutions. 

DEFINITION.– A constraint C  is redundant in relation to a subset of constraints 
},,,{ 21 pCCCE  if we can show that satisfaction of all E constraints implies 

satisfaction of C . Between two equivalent problems the only difference is the 
presence of a redundant constraint. 

Constraint propagation transforms a problem into an equivalent problem until its 
expression stabilizes. Schematically speaking, at each propagation step, the 
following cycle is repeated: 

1) select a subset of constraints and generation of an induced constraint; 

2) discover a redundant constraint in relation to the induced constraint; 

3) modification of the set of constraints: addition of the induced constraint and 
deletion of the redundant constraint. 
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Constraint-based approaches have shown their usefulness in the representation 
and resolution of NP-hard scheduling problems such as job-shop problems [BEL 89, 
DIN 90, ERS 76b, ERS 80, SMI 93]. These approaches use general techniques 
based on constraint satisfaction problems, including constraint propagation, as well 
as resolution strategies focusing on the choice of variables to instantiate, choice of 
values for a given variable, backtracking techniques, etc. These last elements greatly 
condition global resolution algorithm performance.  

5.1.3. Scheduling problem statement 

The idea is to organize the execution of a set of n tasks with a set of m resources. 
Each task i  is characterized by its duration pi and must be executed in a time 
window ],[ ii dr  ( ir  is its earliest start time and id  its latest finish time). Preemption 
is prohibited: once started, a task cannot be interrupted. On the other hand, each task 
i requires a known and constant ia  quantity (intensity) from a single resource ik
(mono-resource problem) for its completion. We assume that the allocation problem 
is solved when: i , ik  is known. Resources are renewable (capacity kA  of 
resource k  is known and constant). The constraints considered are temporal 
constraints (deadlines, precedence between tasks, etc.) as well as resource sharing 
constraints.

The scheduling problem involved covers disjunctive resource problems (for 
example, shop floor scheduling) and cumulative resource problems (for example, 
project scheduling). 

5.1.4. Notations 

The following list of notations is inherent to this chapter; the new concepts 
referred to will be discussed throughout this chapter. For more general notations, 
please refer to Chapter 2. 

it , ic : start and completion time of a task i

it , it : earliest start time, latest start time of a task i

ic , ic : earliest completion time, latest completion time of a task i

ct , :  interval of study 

kT :  set of tasks using resource k : kkTiT ik /
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kn : number of tasks using resource k : kk Tn

kW : maximum production of resource k over interval

iw :  energy required for task i  over interval 

iw :  minimum energy required for (or compulsory consumption of) 
 task i  over interval 

iw : maximum energy required for task i  over interval 

iS : available energy for execution of i  over interval 

5.2. Time constraint propagation 

5.2.1. Introduction 

It is possible to see a scheduling problem as a specific class of constraint
satisfaction problem (CSP) [NUI 94, VAN 94]. We must determine the assignment 
of variables representing the start or completion time for each task (both if the task 
durations are not known in advance) within a domain associated with the time 
window of the task, in such a way that the set of constraints is satisfied, particularly 
resource constraints. In artificial intelligence, a particular type of CSP was proposed, 
temporal CSPs or TCSPs [DEC 91, DEC 03], for planning and temporal reasoning 
problems [DAV 87]. In TCSPs, the variables correspond to time intervals or to time 
events, the constraints connecting two events [VIL 86] or two intervals [ALL 83] 
correspond to numerical or symbolic relations. Combinations of these two types of 
relations were proposed in [MEI 96]. Schwalb and Vila review different modelings 
of temporal problems and associated constraint propagation methods [SCH 98]. In 
scheduling, temporal constraints traditionally used are potential inequalities (see 
Chapter 2). Afterwards, we only focus on problems where temporal constraints are 
expressed by numerical relations between time events, including potential 
inequalities.

5.2.2. Definition 

A numerical temporal constraint satisfaction problem, also called a numerical
TCSP, is defined in [DEC 91] by:  

– a set of temporal variables },,{ 1 nxx  corresponding to instants; 
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– a set of domains associated with each variable },,{ 1 nDD . Each domain iD
represents all values which can be used by ix ; each domain iD  is the union1 of a set 

of in  disjoint intervals: in
iiii IIID 21 ;

– a set of binary ijC  constraints limiting possible values of a distance between 

two variables, ij xx , by domain ijD  of ijn  disjoint intervals: 

ijn
ijijijij IIID 21 . ijC  represents constraint xj – xi Dij.

Domain constraints can be put in the form of binary constraints C0i and Ci0 by 
introducing a variable 0x  representing the time origin. The universal constraint 
corresponds to interval [ ] ,  covering all possible values. An inconsistency 
appears in the problem when the set of intervals associated with the domain of a 
variable or constraint is empty. 

Some classical shop scheduling problems can be represented by a TSCP in 
which variables correspond to start times of tasks. Constraints formulated by a 
conjunction of potential inequalities (due dates and precedence constraints) can be 
directly translated into binary TCSP constraints associated with a single interval; for 
example precedence between two tasks i  and j  corresponds to [,[ ijij ptt .
Resource sharing constraints, which are modeled by a disjunctive set of potentials 
inequalities disjunctions, for example )()( jjiiij pttptt , can be 
translated into binary TCSP constraints including two intervals: 

[,[],] ijij pptt . On the other hand, certain resource constraints, such 
as cumulative constraints, cannot be represented by binary TCSP constraints. 

5.2.3. Simple temporal problems 

From the general definition of TCSPs derives a specific class of problems called 
simple temporal problems (STP) in which all constraints only involve one interval. 
Thus, in an STP each constraint ijC  represents the double ijijij bxxa
inequality.

DEFINITION.– A problem is minimal if all domains associated with variables 
and constraints do not include any inconsistent value (we can thus say that the 
domain is minimal). 

1 By definition, the union (noted as ) between separate intervals is not an interval (the 
domain obtained is not connected); we also speak of domain holes.



Constraint Propagation and Scheduling     109 

Binary constraints of an STP can be represented in a potentials graph. The 
minimal problem is thus obtained polynomially by applying a longest path 
algorithm. In TCSP formalism, the corresponding propagation can be represented 
from the definition of two operations between constraints (illustrated in Figure 5.1): 

– intersection operation, denoted , is defined between two binary constraints 
involving the same couple of variables; let 1

ijC : 1
ijij Dxx  and 2

ijC : 2
ijij Dxx

be the two constraints; the intersection 213
ijijij CCC  is defined by constraint 

3
ijij Dxx  with 213

ijijij DDD ;

– composition operation, denoted , is defined between two binary constraints 
with one common variable: let ikC : ikik Dxx  and kjC : kjkj Dxx  be the two 
constraints; the composition kjikij CCC  is defined by constraint 

ijij Dxx  with } , ,/{ 2121 xxxDxDxxD kjikij .

0 5 10 15

I
J

JI
JI

}]7,5[],2,0[{I , }]8,6[],3,1[{J , }]7,6[],2,1[{JI , }]15,11[],10,6[],5,1[{JI

Figure 5.1. Intersection and composition operations  

The following algorithm represents local consistency conditions between any 
triplet of variables. Applied to an STP, it is complete. It is equivalent to the Floyd-
Warshall algorithm applied to the potentials graph corresponding to STP. 

Function PC-0( P )
PP

 for jik ,, from 1 to n loop

)( kjikijij CCCC

  if ijD then stop (inconsistency) 

return P

Algorithm 5.2. PC-0 algorithm for simple temporal problems 
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For an STP, this algorithm will help in determining the minimal domain of any 
ijC  constraint. As a comparison, propagation performed by the less complex 

Bellman-Ford algorithm (see Chapter 2) only determines the minimal variable 
domains, i.e. constraints of form 0iC  and iC0 .

5.2.4. General temporal problems 

For general temporal problems, PC-0 is sound (deleted times are really 
inconsistent), but it is incomplete. Several runs are usually required to arrive at a 
fixed point (problem for which no adjustment of constraint domains is possible). The 
idea of executing several runs is used in the PC-1 algorithm, which carries out a 
path-consistency propagation [DEC 03] in a numerical TCSP. 

Although it improves PC-0 (constraint update is stronger), PC-1 is incomplete 
and does not guarantee the detection of an inconsistent problem. In addition, the 
application of PC-1 is limited by the fact that it can lead to a large fragmentation of 
intervals associated with constraints as illustrated in the following example 
[SCH 97]. 

EXAMPLE.– Three binary constraints ijC : }]50,34[],33,23[],22,0[{ , ikC :

}]22,21[],12,11[],2,1[{ , kjC : }]24,23[],17,16[],1,0[{ . The application of the PC-1 

algorithm to update constraint ijC  via variable kx  results in ijC :

]}4644[ ],3937[ ],3634[ ],2927[],2624[ ],2323[ ],2221[],1917[ ],1311[ ],31{[ ,,,,,,,,,, .

Function PC-1( P )
PP

 inconsistency  false 
repeat 

  End  true
for jik ,, from 1 to n loop

   if )( kjikijij CCCC

   then )( kjikijij CCCC

     end  false 
   if ijD then inconsistency  true 

until end or inconsistency 
return P

Algorithm 5.3. Path-consistency in a TCSP 
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In order to avoid this fragmentation problem, Schwalb and Dechter propose two 
methods [SCH 97]. The first one relies on a relaxation of binary constraints to 
constraints formed from a single interval covering all possible values. For each 

constraint }...,...,,{: 1 ijn
ij

k
ijijijij IIIxxC , the relaxation proposed is as follows: 

)](max ),(min[ : )relax(
11

k
ij

n k 

k
ij

n k 
ijijij IIxxCC

ijij ....
.

This relaxation makes it possible to go back to an STP on which PC-0 
determines minimal constraints. The ULT algorithm (upper-lower tightening) is 
based on this relaxation. For an initial P  TCSP, its principle follows the following
diagram. 

Function ULT( P )
inconsistency  false
repeat

  end  true 
for ji, from 0 to n do   (relaxation)

ijC  relax( ijC )

P  PC-0( P )
for ji , from 0 to n do ( P = “intersection” between P  and P )

   ijijij CCC

   if ijD then inconsistency  true 

if PP then end  false
PP

until end or inconsistency 
 return P

Algorithm 5.4. Path-consistency without domain fragmentation 

EXAMPLE.– Relaxations of the three binary constraints from the previous example 
are:

{[0,50]}: ]}50,34[ ],33,23[ ],22,0{[: ijij CC

{[1,22]}:1,22]}2[ 1,12],1[ ,2],1{[: ikik CC
{[0,24]}:[23,24]} 6,17],1[ ],1,0{[: kjkj CC

The application of the PC-0 algorithm on constraint ijC via variable kx  results 

in ijC : ]}46,1{[ . The intersection between ijC  and ijC  results in 

ijC : ]}46,34[ ],33,23[ ],22,1{[ .
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A second method for limiting interval fragmentation consists of defining a new 
intersection operation between two binary constraints, noted as . As with ,
operation  is defined between two binary constraints involving the same pair of 
variables. 

Let the two binary constraints be 11
2

1
1

1
1

: nijij IIIxxC  and 

22
2

2
1

2
2

: nijij IIIxxC . Constraint 213
ijijij CCC  is defined by the set of 

intervals 33
2

3
1 3nij IIIxx , 13 nn , such that 

3 3 3
31... , [ ]k k kk n I lb ,ub , where 3

klb  and 3
kub  are the lower and upper bounds of 

intersection 22
2

2
1

3
2nk IIII . By definition, this intersection operation does 

not increase the initial number of intervals by constraints but it is not commutative: 
1221
ijijijij CCCC . The LPC algorithm (loose path-consistency), based on this 

principle, is equivalent to the PC-1 algorithm by replacing  by .

EXAMPLE.– From the three previous binary constraints and by applying the LPC 
algorithm on constraint ijC  using kx : )( kjikijij CCCC , the result is: 

4,46]}3[ [23,29], ,22],1{[:ijC .

It has been shown in [SCH 97] that the PC-1, ULT and LPC algorithms 
determine the same lower and upper bounds for each constraint. The difference 
between these algorithms is in the management of “holes” appearing in intervals 
associated with the constraints. The PC-1 algorithm causes an increase in the 
number of holes in the constraint domains. The ULT algorithm retains the actual 
holes already present in constraints whereas the LPC algorithm enlarges them. 

5.3. Resource constraint propagation 

Only considering resource sharing constraints defines a sequencing problem:
tasks requiring the same resources must be partially – sometimes completely – 
sequenced in order for instant global consumption to remain within resource 
availability. The consideration of time window constraints reduces the set of 
sequencing problem solutions; certain configurations are prohibited, others become 
mandatory, which can lead to tightening of task time windows. Thus, there are 
propagation rules for resource constraints that we can classify into two methods of 
reasoning.
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The first method requires a prior conflict characterization, or critical sets of 
tasks. Sequencing conditions obtained can be propagated [ESQ 87], and lead to a 
tightening (or adjustment) [CAR 94] of task time windows. 

The second is linked to the concept of energy, helping to make quantitative 
methods of reasoning integrating time and resource constraints [ERS 91, LOP 91, 
LOP 92, LOP 96]. As with the previous method, this second method of reasoning 
can produce sequencing conditions without requiring an analysis of the problem in 
terms of critical sets. However, it also makes it possible to prohibit locating a task at 
certain time intervals – which would generate a deficit in energetic balance. This 
reasoning becomes interesting when some execution characteristics are not 
completely known, for example when task durations depend on resources used (see 
section 5.5.2). 

5.3.1. Characterization of conflicts 

In order to characterize potential conflicts for the use of a resource, we determine 
critical sets of tasks (called conflict sets in [BEL 82] and forbidden sets in 
[BAR 88]). These are smaller subsets of tasks which cannot be executed 
simultaneously because of a lack of resources. Since a critical set is minimal, 
sequencing two tasks of this set resolves the conflict. 

5.3.1.1. Critical sets 

DEFINITION.– kTI  is a critical set of tasks for a resource k  if and only if: 

Ii
ki Aa , and 

}{\
,

jIi
ki AaIj .

A necessary and sufficient condition for a scheduling to be eligible from a 
resource constraint point of view is that all critical sets be resolved. The different 
sequencing decisions taken are compatible with each other; the precedence 
constraints graph, once updated, must not include any cycle because of anti-
symmetry and transitivity of the relation of precedence between tasks. During 
resolution, consistency checking is performed by temporal propagation mechanisms. 

EXAMPLE.– Tasks },,,{ DCBA  use a resource k  available in five copies ( 5kA ),
according to the following terms: 

i A B C D

ia 4 3 2 1 
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The critical sets of this problem are: },{ BA , },{ CA , and },,{ DCB . As an 
example, resolution of the conflict linked to },,{ DCB  goes through the choice of 
one of the following sequencing decisions: 

CB BC DB BD DC CD

5.3.1.2. Recursive search algorithm of critical sets 

To make it simple, we will only describe critical set search in the case of a single 
resource2. Let E  be the list of tasks using the same resource, sequenced by non-
increasing intensity (we denote by ][iEa  the intensity of the ith task of E ):

][][1),( jEiE aaEjiji .

The algorithm develops a binary search tree according to a depth-first search. 
Each node is characterized by four elements: 

– current list of task E  which can still be chosen to develop new critical sets; 

– accumulation R  of intensities of tasks from E;

– a set I , grouping tasks already chosen; 

– accumulation S  of intensities of tasks from I.

In a given node, if kASR , then no critical set containing I  can be obtained 
and this node is not developed. Otherwise, if kAS , then current set I  is a critical 
set and the node is not developed. Otherwise, we separate the node by creating two 
successor nodes, one representing all critical sets obtained by completing I  by other 
tasks from E or the first at least, 1E , the other representing all critical sets 
including I  and other tasks from E except 1E .

The exhaustive search for all critical sets of a problem presents an exponential 
complexity. Indeed, the space of critical set search is the one for the parts of kT
sets: the size of this space increases in O( kn2 ). In practice, even though increasing 
the problem size does not necessarily lead to an increase in resource capacity, the 
increase of the number of critical sets remains polynomial [BAR 88]. 

2 In order to find all critical sets, we can apply this algorithm to each of the problem’s 
resources consecutively. This way (resource by resource) may not be the most efficient in a 
multi-resource case (case not considered here, where execution of a task involves several 
resources simultaneously). In fact, we may discover the same sets several times if their 
criticality is valid for several resources. 
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Initialization 
E sort( kT , ia , non-increasing)

E
iaR ; I ; 0S

CRIT_SET( SIREAk ,,,, )

Function CRIT_SET( SIREAk ,,,, )

 if kASR then return
 else 

if kAS then return }{I
else

   1I CRIT_SET( 11 },1{,},1{\, EEk aSEIaREEA )

   1I CRIT_SET( SIaREEA Ek ,,},1{\, 1 )

   return 11 II

Algorithm 5.5. Search algorithm for critical sets

In the case of shop scheduling problems, complexity is naturally decreased 
because all critical sets are disjunctive pairs; for machine k , there remains 

2/)1( kk nn . In the case of cumulative problems, there can also be critical sets of 
two tasks. We group them into maximum disjunctive sets in which propagation rules 
for the disjunctive case apply. 

5.3.1.3. Maximum disjunctive sets 

DEFINITION.– We call maximum disjunctive sets (MDSs) a maximum subset of tasks 
D such that each couple of tasks in D  is a disjunctive pair. 

D  tasks must therefore be totally sequenced. MDSs are also called one-machine 
problems [CAR 84]. In fact, from a resource sharing standpoint, everything happens 
as if each maximum disjunctive set’s tasks were running on the same machine. 
When each task only uses one resource, searching for this type of set is relatively 
easy. In the case of disjunctive problems, for a resource k , kT  is the only MDS.  

In the case of cumulative problems, kT  can include several MDSs. E  is the list 
obtained by sorting kT  by non-increasing intensity. The algorithm used to determine 
MDSs uses the fact that an MDS contains at most one element from rank j  in E
such that 2/kjE Aa .
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The sub-list pEMDS ,,10  where p  is such that kpEpE Aaa 1  and 

kpEpE Aaa 1  corresponds to the first maximum disjunctive set. The others 

are obtained by considering each task rank knpp ,,1  and by subtracting 
from sub-list pE ,,1  all tasks of rank q so that kpEqE Aaa .

Function MAX_DISJ_SET( kT )

E  sort( kT , ia , non-increasing); kn E ; 1p

while knp and kpEpE Aaa 1

   1pp
if 1p

 then pEMDS ,,10 (the first MDS) 

1l ; 1pq ; 1pp
while knp and 1q

   while 1q and kpEqE Aaa

    1qq
   if 1q
   then 1ll

     pEqEMDSl ,,1 (the following) 
   p 1p

return },,,{ 10 lMDSMDSMDS

Algorithm 5.6. Search algorithm for maximum disjunctive sets 

EXAMPLE.– The problem is defined by the following table and by 5kA :

i 1 2 3 4 5 6 7 8 

iE a b c d e f g h

ia 4 4 3 3 2 2 1 1 

Three MDSs exist: dcbaMDS ,,,0 , ebaMDS ,,1  and fbaMDS ,,2 .
Conflict resolution for this problem requires total sequencing on these three sets at 
least. However, there are still other conflicts to be resolved. They are characterized 
by sets of three or four tasks: hga ,, , hgb ,, , gec ,, , hec ,, , gfc ,, , hfc ,, ,

ged ,, , hed ,, , gfd ,, , hfd ,,  and hgfe ,,, .
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We now present constraint propagation rules which can facilitate the analysis 
and resolution of the scheduling problem by relying on critical sets and maximum 
disjunctive sets. 

5.3.2. Deductions based on critical sets and MDSs 

The following set of rules are based on the search for sequencing conditions 
from which we can adjust time windows ],[ ii dr  initially allocated to tasks; we will 
represent the current window of task i  by the [t i,ci] interval after propagation of 
conclusion of these rules. 

We will start by presenting a basic rule which can be applied to any type of 
problem (disjunctive and cumulative) and that will delete inconsistent decisions 
(forbidden precedence) linked to the resolution of critical sets. In the case of 
disjunctive problems, we can use rules for much stronger conclusions. We can 
search for task pairs which must be sequenced. In a more general way, sequencing 
rules applicable to disjunctive problems attempt to demonstrate that a task must not 
(or must) be placed before (or after) all tasks in a set (see detection of immediate 
selections in [CAR 94] and [BRU 94] also implemented in [NUI 94], edge-finding
rules in [APP 91], not-descendant/not-ascendant sets in [ERS 76a] and the not-
first/not-last problem shown in [BAP 96]). To conclude, we propose a more general 
formulation of the forbidden precedence rule; this rule will sequence a pair of tasks 
by taking the influence of a set of tasks into consideration.

It is important to note that conclusions of rules are not explicitly stored – except 
for the simplest ones (type ji ), where the number remains limited – but 
immediately interpreted in terms of time window adjustments. 

5.3.2.1. Forbidden precedence (FP) – mandatory precedence (MP) 

The first sequencing rule (FP1), illustrated in Figure 5.2, consists of discovering 
forbidden precedences, denoted as ji , i.e. pairs of tasks (i, j) where time 
windows prohibit decision ji . Its formulation is as follows: 

if jiij pptc then ji  [FP1] 
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ip

jp

it

jc

Figure 5.2. Detection of a forbidden precedence relation 

Applied to a disjunctive pair (i, j) (represented by critical (i, j)), this rule shows 
the inconsistency of one of the possible sequences, which makes the other one 
mandatory.

if critical ),( ji and ji then ij  [MP1] 

The forbidden precedence relation leads to a time window adjustment: 

if ij then jjii pttt ,max and iijj pccc ,min  [A1] 

An inconsistency (denoted by ) appears if no sequencing is eligible: 

if critical )( ji, and ji and ij then  [I1] 

In practice, rule I1 is not required. The inconsistency linked to contradictory 
conclusions ji  and ij  (obtained by MP1) is propagated using time window 
adjustments (obtained by A1) and inevitably leads to a numerical inconsistency. 
After a finite number of adjustments, the width of one of the time windows becomes 
less than the task duration. Rules FP1, MP1 and A1 define a basic core for the 
development of a crossed propagation of time window and resource sharing 
constraints in the case of disjunctive problems. The search for all conclusions 
allowed by these rules has limited complexity. We show that the application of these 
rules accomplishes a bound arc-consistency type propagation [LHO 93, FAR 94], 
i.e. a propagation of disjunctive constraints in the form of window boundary 
adjustments, without creating holes in the domains of start times. 

5.3.2.2. Not-first (NF) – not-last (NL) 

Figure 5.3 illustrates a more general rule than FP1. This rule, denoted as NF, is 
based on two task subsets, }{ i  and S , included in a maximum disjunctive set (must 
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be completely sequenced). )(Slst  represents an upper bound from the latest start 
time over all eligible S sequences. The formulation of the NF rule is as follows:  

if ii ptSlst )( then Si  [NF]

In Figure 5.3 time windows for tasks are such that any sequencing placing i
before S  tasks is impossible regardless of the sequence chosen for the sequencing 
of S .

ip

)(Slst

it

S

Figure 5.3. Detection of a Si  type condition 

Since all tasks must be sequenced, we can conclude from the NF rule that in any 
eligible sequencing, at least one task of S  must be placed before i :

if Si then isSs   tq  [MP2] 

This can lead to a domain adjustment of i  start time [TOR 00a]: 

if isSs   tq then ssSsii pttt min,max  [A21] 

The upper bound )(Slst  is established by relaxing constraints of earliest start for 
S  tasks with the help of the following algorithm: 



120     Production Scheduling 

Function LST( S )
E  sort( S , ic , non-increasing)

][][ 11 EE pclst

 for k  from 2 to E  do 

][][,min kEkE pclstlst

return lst

Algorithm 5.7. Determination of the latest start time for a set of tasks 

Rules NL, MP3 and A22 which are symmetric to NF, MP2 and A21 will not be 
discussed in detail. The NL rule demonstrates that a task i  cannot be executed after 
all tasks of a S  set. The relation obtained, iS , will in turn make it possible to 
conclude on i  sequencing before at least one task of S  (rule MP3). The NL rule 
involves function )(Seft  which determines a lower bound of the earliest completion 
time over all eligible S sequences. Adjustment rule A22 updates time ic .

Two O(n2) versions of an algorithm to implement NF/NL rules are available in 
[BAP 96, TOR00a]. An O(nlogn) version can now be found in [VIL 05], as well as 
other filtering algorithms for the implementation of the rules presented in the 
following (edge-finding). Also, it is worth reading [PER 05] where a unified 
framework is proposed for local adjustments. 

5.3.2.3. Non-insertable (NI) – mandatory last (ML) – mandatory first (MF) 

We are again placed in the disjunctive case. Task i  is not insertable in S , a 
condition denoted by Si  (Figure 5.4), if no scheduling will exist accepting a 
sequence in the form }{ iS , S, , },{\SS . Such schedules 
are necessarily part of the interval ]max,min[ s

Ss
s

Ss
ct :

if
Ss

issSs
s

Ss
pptc minmax then Si  [NI] 
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ip

S

sSs
tmin s

Ss
cmax

Figure 5.4. Detection of a Si  type condition 

Task i  must therefore be executed either before or after all S  tasks. If in 
addition one of the NL or NF rules triggers, the conclusion is very strong: by 
combining NI and NF (respectively NL), we can conclude that i  must be in last (or 
first) position in relation to the tasks of S :

if Si and Si then iS  [ML] 

if Si and iS then Si  [MF] 

Since the tasks of S  must be sequenced, we deduct the following adjustments: 

if iS then Seft,tt ii max  [A31] 

if Si then Slstcc ii ,min  [A32] 

5.3.2.4. Generalized forbidden precedence 

One last rule enables the sequencing of two tasks in the disjunctive case. 
Consider two subsets S  and },{ ji . To be eligible, any sequence made up of the 
tasks of },{ jiS  meeting relation ji  must end at date s

jSs
c

}{
max  at the latest. 

Similarly, this type of sequence begins at date siSs
t

}{
min  at the earliest. In this way, 

fulfillment duration of any sequence meeting ji  is necessarily equal to or lower 
than siSs

s
jSs

tc
}{}{

minmax . Otherwise, we conclude that any sequence meeting the 

ji  relation is forbidden: 
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if
},{}{}{ jiSs
ssiSs

s
jSs

ptc minmax then ji  [FP2] 

The conclusion of FP2 can be reused (see rule MP1) to demonstrate a relation of 
mandatory precedence as well as possible adjustments that it implies (see rule A1). 
This rule, which is completely new to our knowledge, offers a generalization of FP1 
(we do get to FP1 by writing S  in FP2). 

5.3.3. Deductions based on the energetic balance 

Conclusions related to energetic reasoning use resource usage balances over 
certain time intervals, which lead to the identification and calculation of different 
energies [ERS 91, LOP 91, LOP 92, LOP 96]. Over a time interval, energy can 
actually be provided by a resource or required by a task. In this last case, we will 
separately observe its minimum consumption from its maximum consumption over 
that time interval. 

5.3.3.1. Available energy – required energy 

Maximum available energy that a resource k  provides over a ct ,  time 
interval corresponds to the product of the length of the interval by the capacity 
(constant) kA  of the resource: 

tcAW kk  [5.1] 

For a task i  located in time ( it  is fixed), the energy required by (or consumption 

of) i  over , denoted iw , is written as (Figure 5.5): 

ttccaw iiii ,max,min,0max  [5.2] 
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ia

it ic

t c

0 2 11 14

8

12

6

Figure 5.5. Consumptions of task i  ( 14,0, ii ct , 6ip , 2ia ) over time period 

11,2  for different it  values 

5.3.3.2. Necessary feasibility conditions 

Now that available and required energies are defined, we can formulate a 
condition that is both necessary and sufficient for the availability of scheduling 
based on energetic balances. A given scheduling { niti ,,1, } is feasible if and 
only if: 

k
Ti

i Ww
k

,  [5.3] 

However, this condition is not directly usable because before resolution, it , ic

and iw  are variables. We can, however, deduct from equation [5.2] lower and 
upper bounds by considering the time window constraint of i . The minimum energy 
required by i  over , denoted as iw , is calculated by examining task consumption 
over the interval when it is pushed back in extreme positions of its window; we also 
call this compulsory consumption:

iiiii tctctcpaw ,,,min,0max  [5.4] 

For a maximum energy iw  formula, we must replace ic  with ic  and it  with 

it  in equation [5.4]. 
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EXAMPLE.– In the previous example (Figure 5.5), we have: 
632iii tcaw  and 1262iii paw .

Due to the compulsory consumption, we can formulate a sufficient problem 
inconsistency condition: 

if
kTi

ik wW  tq then  [I2] 

5.3.3.3. Relevant intervals for feasibility analysis 

It is possible to list in )( 2nO  all relevant intervals for the feasibility analysis. 
They can be summarized in three date sets ([LOP 91, BAP 98]): 

},,1,{},,1,{},,1,{1 nicnitnitO iii

},,1,{},,1,{},,1,{2 nitnicnicO iii

},,1,{ ni-tctO(t) ii

These three sets correspond to discontinuities of the energy consumption curve 
gradient when the bounds of intervals under study vary [LOP 91]. Feasibility 
analysis of scheduling is then carried out by studying energetic balances over 

ct ,  intervals where bounds are in one of the three Cartesian products: 21 OO ,

11 ),( OttOO  and 22,)( OtOtO .

NOTE.– In the search for a solution to a cumulative problem, an experimental study 
[BAP 98] of the necessary satisfiability tests and corresponding adjustments shows 
that energetic reasoning is too time consuming compared to existing procedures (for 
example [DEM 92] or [BRU 98]). We can decide to limit intervals of study to the 
Cartesian product of },,1,{},,1,{'1 nitnitO ii  by 

},,1,{},,1,{'2 nicnicO ii , which results in losing some conclusions. 

5.3.3.4. Adjustments 

Apart from rule I2, which concludes to global inconsistency, there are other 
statements of property [5.3] in the form of propagation rules implying an adjustment 
of domains. 
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For a given task i  and an interval , let 
}{\ iTj

jki
k

wWS  be the 

maximum available energy for executing i  over  considering compulsory 
consumption of other kT  tasks: 

if ii wSi   tq, then there are forbidden start dates for i  [FD1] 

Dates leading to a larger consumption than iS  are inconsistent and must be 

deleted. Knowing that energy iw  recognizes ii pa  as an upper bound, that i  cannot 
be interrupted and that its intensity is constant during execution, we can add rule 

FD1. In the case where 
i

i
i a

S
p , a part of the task, 

i

i
i a

S
p , must be maintained 

apart from . This results in a forbidden value interval for it :

[,]
i
i

i
i
i

a
Scpa

St . The removal of values in an initially allowed domain ],[ ii tt ,

can create an increase of it , a decrease of it , or both (creating a hole). 

Since the updating procedure can be executed in )1(O  and given )( 2nO
intervals to consider for n  tasks to be updated, all updating resulting from the 
application of rule FD1 can be carried out in )( 3nO .

5.3.3.5. Sequencing relations 

Another application of energetic reasoning involves the sequencing of two tasks. 
For a given pair of tasks ),( ji  and an interval , let 

},{\
,

jiTl
lkji

k

wWS )(  be the 

maximum available energy to execute i  and j  over  considering compulsory 
consumption of other tasks of kT . We have the following rule: 

if jiji wwSji ),(  tq,,

then there are forbidden pairs of execution dates for i  and j  [FD2] 

In other words, if i and j both consume over , they must be separated by a 
minimum distance. However, we cannot specify in which relative position i and j
are. This rule does not allow a direct interpretation in terms of time window 
adjustments. For this purpose, we must consider additional hypotheses. 
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First, we must limit ourselves to disjunctive problems and choose intervals 
such that consumptions of both tasks when ji  are maximal, for example 

],[ ji ct ; we can then conclude to a new forbidden precedence relation (Figure 

5.6): 

if
},{\ jiTl
ljiij

k

wpptc then ji  [FP3] 

ip

},{\ jiTl
l

k

w

it

jc

jp

Figure 5.6. New forbidden precedence relation 

FP3 dominates FP1. It can be triggered in cases where FP1 would not conclude. 
On the other hand, if FP1 is triggered, FP3 will as well. 

On the other hand, by choosing intervals of the form j
iJ

j
J

ct
ii

 max min
}{

,  with 

},/,,1{ ijii cttijnjJ , another statement of rule FD2 helps in 

finding the domain adjustment produced by rule A32 (sequencing of i before all 
tasks of iJ ).

The energetic reasoning provides rules covering powerful and well-known 
propagation rules (disjunction pairs, immediate selections, not-descendant/not-
ascendant sets). It is very general, since it also makes it possible to provide rules 
deducing some forbidden start times (in its most general expression, rule FD1 leads 
to the creation of “holes” in the domain of it ). This has been proven to be of great 
interest for various scheduling problems (see for example [TER 06]). 
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5.4. Integration of propagation techniques in search methods 

The use of constraint propagation mechanisms within a backtracking algorithm 
(see section 5.1.2) limits the search space for solution. However, a compromise still 
needs to be made. In fact, powerful propagation mechanisms in terms of solution 
space reduction can simplify the resolution (it can even in certain cases be carried 
out with no backtracking), but can sometimes be expensive in terms of calculation 
time. In addition, absence of propagation mechanisms leads to useless explorations 
of solution space and results in numerous backtrackings. If we examine the different 
types of propagation rules previously described, we observe that these rules 
manipulate the main variables of the problem { it } and/or { ic } where they try to 
filter the domain, symbolic relations (type ji ), but also, in the case of energetic 

reasoning, intermediate variables (quantities iw ).

A first resolution algorithm consists of limiting variables used only for temporal 
variables it  and to progressively instantiate them. At each step, a decision is 
propagated as far as possible before moving on to the following variable. The 
resulting search tree contains as many levels as there are temporal variables. In each 
node, a variable is selected (the order of variable choices is not set beforehand); we 
create as many successor nodes as there are possible values in the domain of the 
chosen variable. 

A second resolution algorithm favors the resolution of resource utilization 
conflicts and is meant to resolve the problem by sequencing conflicting tasks. In this 
case, the search tree developed is different from the previous one. It is based on 
sequencing variables and includes as many levels as there are critical sets. For 
example, in the disjunctive case a binary ijx  variable represents possible sequences 
between two conflicting tasks i  and j  ( jixij 1  and ijxij 0 ).

Other resolution schemas can be considered. In the disjunctive case for example, 
we can consider task ranks in the sequence on the machine as a variable set. 

In the following, we present control strategies for the development of a 
backtracking algorithm based on propagation mechanisms. These strategies are 
explained through different choices involving backtracking techniques, variable and 
value selection heuristics and the selection and control of propagation rules. One last 
point is dedicated to the use of this algorithm for the search for optimal solutions. 
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5.4.1. General improvement techniques of chronological backtracking 

In the general resolution schema with chronological backtracking, step l  of the 
resolution is characterized by the search for a consistent instantiation ll vx
considering already completed instantiations { 11 vx , 22 vx , … , 11 ll vx }.
If there is some inconsistency at step l  (no value can be attributed to lx ), the last 
completed instantiation ( 11 ll vx ) is called into question, although this is not 
necessarily involved in the failure detected. 

Different “intelligent” backtracking techniques can be imagined [DEC 90, TSA 
93, DEC 03]. The backjumping technique consists of returning to the previous most 
recent step k  ( 1lk ), such that there is at least one constraint involving both 
variables lx  and kx . This technique is all the more efficient the lower the number 
and arity of constraints (sparse constraint graph not very dense). Unfortunately, in 
the case of scheduling problems, resource sharing constraints create a strong pairing 
between temporal variables, in particular cumulative constraints linking temporal 
variables in the set of tasks sharing a resource. This technique can become 
appropriate if we can decompose the scheduling problem in order to decrease the 
constraint arity involved in sub-problems. 

A second technique is based on recording failures encountered during  
resolution in the constraint form in order to avoid reproducing them. This technique, 
called constraint recording (or nogood constraints), consists of storing causes  
for a failure during resolution by explaining implicit constraints in the initial  
problem formulation. In order to do this, when an inconsistency appears for  
the instantiation of a variable lx , we search among all previous instantiations  
{ 11 vx , 22 vx , … , 11 ll vx }, the subsets liable to be the cause of this 
failure. These subsets are then stored in the form of constraints to keep the failure 
from occurring again. For efficiency purposes, we generally only store constraints 
with low arity (one or two variables). 

This constraint recording technique is more powerful than backjumping for 
dense constraint graphs. On the other hand, only storing low arity constraints is 
limiting for scheduling problems for which pairing between tasks is high since the 
reasons for a failure during resolution cannot be translated in the form of binary 
constraints [SAD 96]. 
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5.4.2. Heuristics for variable and value ordering 

Variable and value ordering heuristics have an important impact on the 
performance of solution search procedures [SMI 93, BAP 95, SAD 96]. These 
heuristics can be static or dynamic (based on propagation results, for example). As 
an example, general variable ordering heuristics select the most constrained variable 
first (the one for which there is the least choice of values) or the most restrictive 
variable (the one linked to the highest number of other variables). 

In the disjunctive problem case (job shop) for which problem resolution is based 
on the search for a sequencing of disjunctive tasks, Smith and Cheng define a series 
of heuristics based on temporal flexibility associated with different sequencing 
decisions [SMI 93]. These are task selection heuristics based on the temporal slacks 
linked to a sequencing: jiij pptcjislack ; they are associated with rules 

of conflict-based constraint analysis, notably the MP rule. This heuristic selects the 
pair of tasks to sequence ji, ; it is identified by the pair where one of the sequences 
gives the minimum margin: 

uvvuijji
vu

slack,slackminminslack,slackmin
,

 [5.5] 

for all unsequenced pairs vu, .

For this selected pair ji, , we choose the sequencing with the highest slack, for 
example ij  if jiij slackslack .

Experienced without allowing backtracking (which does not guarantee the 
production of a feasible solution), this heuristic is called “min-slack/max-slack” and 
obtains very good results compared to approaches implementing backtracking
techniques either chronological or intelligent (for 60 randomly generated problems, 
the heuristic, programmed in C, resolves 56 problems in an average CPU time of  
0.2 s per problem resolved on a Decstation 50003). The results are also far superior 
to those obtained by more traditional priority rules used for tardiness minimization 
(Earliest Due Date, Cost OVER Time, Apparent Tardiness Cost; see Chapter 6). 

In a more general way, in the application of rules involving sets of tasks, certain 
tasks are sorted (rules MF and ML), while others are not (including those handled by 
rules NF and NL). For these, an indeterminism remains and a choice must be made 

3 The authors propose refining the method by introducing a second heuristic for sequencing 
tasks with equal priority by min-slack/max-slack. They then resolve all problems generated in 
a short time period (0.3 seconds per problem resolved). 
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for the tasks to select and the way in which to place them for efficient resolution. By 
the application of the NF and NL rules, we identify tasks which can be first or last. 
Baptiste et al. [BAP 95] propose different heuristics according to whether we prefer 
to always select a first task, a last task or decide to apply dynamic criteria such as 
the number of tasks which can be executed first or last. In this way, they indicate 
that it is better to select a task belonging to the smallest possible-first or possible-last 
group, in order to limit the number of branching in the search tree. For the selection 
of a possible first task, a rule based on earliest start time gives the priority on the 
selection of tasks; latest start time intervenes to break ties (the global rule is called 
EST-LST). For a possible-last task, the LFT-EFT rule (latest finishing time-earliest 
finishing time) is the rule applied. 

5.4.3. Strategies for applying propagation rules 

Propagation mechanisms can be applied during resolution when variables are 
instantiated in order to prune the search tree. The simplest application principle of 
propagation mechanisms is forward checking consisting of propagating the 
instantiation value which was only performed on variables linked to the current 
variable by a constraint (not yet instantiated). Propagating each instantiation to all 
variables of the problem can also be considered. In this case, we speak of full 
lookahead or Maintaining Arc-Consistency (MAC). In the CSP domain, propagation 
rules considered for resolution algorithms are only rarely meant for the most detailed 
explanation of all constraints of a problem, except for simple problems for which 
this explanation guarantees a resolution algorithm with no backtracking. In practice, 
for temporal problems, this means that we do not try to explain new constraints as 
can be the case with the Floyd-Warshall algorithm and that we limit ourselves to the 
Bellman-Ford algorithm which restricts variable domains. 

In a shop scheduling problem, it is important to develop a relevant strategy for 
the application of propagation rules. The strategy retained in [BAP 95] and 
[TOR 00a] consists of selecting the resource with the lowest slack, where a resource 
slack is defined by the difference between offer and demand for the use of this 
resource in the time window of each unsequenced task. The propagation rules are 
then applied on this resource until there is no longer a deduction, before moving on 
to the next resource in the decreasing slack order. 

5.4.4. Use of a backtracking algorithm 

Criteria optimization can be carried out with the help of a binary search 
procedure using a backtracking algorithm. For example, for makespan minimization, 
the optimization procedure determines an initial scheduling horizon H  located in 
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the middle of trivial lower and upper bounds deducted by a (meta)heuristic. This 
horizon value is used as scheduling makespan and restricts completion times for the 
different tasks of the problem. For this horizon H , the optimization procedure uses 
a backtracking algorithm to determine a solution. If this algorithm does not detect 
global inconsistency of the problem over horizon H , i.e. if a solution is found, the 
value of H  is then used as the new upper bound; otherwise the lower bound 
becomes 1H . The optimization procedure continues by determining a new H
value by dichotomy. The optimum is reached when the lower and upper bounds are 
equal. 

Based on this principle, we can cite results obtained for the resolution of 
cumulative problems ([BAP 98], section C.3). These results show that propagation 
rules based on energetic reasoning are all the more powerful as the problem is highly 
cumulative (i.e. with a low disjunction pair percentage compared with the total 
number of pairs of tasks). For 31 highly cumulative problems generated by Baptiste 
and Le Pape (disjunction percentage of 0.33), the energetic reasoning divides the 
number of backtracks by 45 and the CPU time necessary to find an optimal solution 
by 7. However, for Alvarez problems (disjunction percentage of 0.82), Patterson 
(0.67) or Kolisch (0.56), the results may seem disappointing. In addition, excellent 
results have been obtained for the hybrid flow shop resolution (see Chapter 9). 

5.5. Extensions 

5.5.1. Preemptive problems 

A hypothesis which may be interesting to consider is that linked to the 
uninterruptibility of tasks. We often estimate that this preemption should not be 
considered in production and that it specifically addresses computer scheduling 
problems. We can however consider preemption to be the relaxation of a non-
preemptive problem making it possible to implement new methods of reasoning. 
New necessary conditions for the existence of a feasible solution for cumulative and 
preemptive scheduling are established in [BAP 98, BAP 01]. These conditions 
involve the resolution of a partially or fully elastic4 problem, a definition which is 
based on the notion of energy from section 5.3.3 extended to the preemptive case.  

4 In a fully elastic problem, we can change the task at will (since the energy required remains 
constant) as long as we do not violate resource capacity. In a partially elastic problem, we 
restrict the previous change by imposing a higher energy consumption limit over a given time 
interval. 
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When we try to minimize total time, considering preemption leads to adjustment 
formulae of the earliest completion time for tasks (instead of the earliest start time). 
The FD1 conclusion (see section 5.3.3.4) would result in the new constraint:  

i
i

i
i p

a
S

cc

In [BAP 01], we find: 

tctcpa
S

cc ii
i
i

i ,,min,0max .

This last formula is more general since it ensures a lower bound of the 
completion time in the preemptive case. In the non-preemptive case, it is lower since 
the term tctcp ii ,,min  is always less than or equal to ip . The same 
earliest start time is found in several cycles by applying the rule several times over 
the same  interval. 

In the partially elastic case, it has been shown that for the determination of 
intervals , the idea is to consider the Cartesian product of the earliest start times 
and latest completion times sets to completely obtain all relevant intervals of study 
in order to decide on the existence of a feasible schedule. 

5.5.2. Consideration of allocation constraints  

Problem statement 

In this section, scheduling problems considered in section 5.1.3 are extended to 
problems for which assignment of tasks to resources is not set beforehand. A set of 
resources RRi , able to complete the task, is associated with each task i . For 
each k  resource of iR , the duration (processing time) of task i  is denoted by kip ,

and can be variable: ],[ ,,, kikiki ppp , or set: kikiki ppp ,,, . As with parallel 

machine problems, we can separate problems according to resource characteristics. 
When resources are identical, the duration of a task does not vary according to the 
resource to which it is assigned. When resources are uniform, the duration varies 
proportionally based on the allocated resource; then on independent resources, the 
duration of a task is ordinary according to the resource used for its execution. 
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Efficient algorithms exist for processing scheduling and allocation problems 
separately, but they do not guarantee finding a relevant solution for the complete 
problem. In this context of integrated resolution of scheduling and allocation 
problems, a certain number of studies were carried out. We can for example cite 
studies on flow shops with allocation constraints, also called hybrid flow shops (see 
Chapter 9) and job shops with allocation constraints also called flexible job shops 
[BRA 93, HUR 94]. Results on the complexity of such problems are presented in 
[BRU 97]. More general scheduling problems, including allocation constraints, have 
also been studied, for example multiresource scheduling problems where resources 
can be cumulative and production routes can be non-linear, and considering (or not) 
setup times [KOL 95, BIL 96, DAU 98, ART 99], multiresource job shop problems 
[NUI 94], or flexible job shop problems integrating transportation constraints 
[PAU 95]. In most cases, the methods used are exact tree search methods or 
approximate methods such as metaheuristics. 

To our knowledge, the only studies based on constraint propagation techniques 
for scheduling and allocation problems are those from Nuijten, and Huguet and 
Lopez. In [NUI 94], with each task and allocation possibility, we associate a time 
window. Developed constraint propagation techniques are based on traditional 
scheduling propagation mechanisms and make it possible to restrict task time 
windows; this can lead to the removal of allocation choices. A propagation rule 
dedicated to allocation constraints is also implemented; it is based on a resource 
aggregation to which different tasks can be allocated to a cumulative resource. For 
example, consider three tasks, kji ,,  which can be assigned either on resource 1r  or 
on resource 2r . In the disjunctive case, at most two tasks may be executed 
simultaneously by set of resources },{ 21 rr . This set of resources is thus seen as an 

aggregated resource with a capacity of 2 and mechanisms of cumulative resource 
propagation based on NF and NL rules (see section 5.3) are proposed. In [HUG 99], 
allocation choices are interpreted in terms of possible task duration constraints. This 
interpretation brings the scheduling and allocation problem back to a scheduling 
problem in which task durations are variable. Constraint propagation mechanisms 
similar to those used in [NUI 94] are implemented. In addition, specific rules based 
on energetic reasoning are proposed for the propagation of allocation constraints 
[HUG 00].  

5.6. Conclusion 

The object of this chapter was to present major constraint propagation techniques 
for the resolution of scheduling problems. These techniques characterize the set of 
feasible solutions and offer a formal context for addressing these problems from a 
decision support context. 
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We first focused on the purely temporal aspect of the scheduling problem. 
General results from the study of constraint satisfaction problems were exposed. For 
simple temporal constraints, there are complete propagation algorithms with 
acceptable complexity based on the search for the longest paths in the constraint 
graph. When we must deal with more sophisticated temporal constraints (interval 
disjunction), we find incomplete reasoning. 

We then considered problems in which tasks must respect temporal and resource 
sharing constraints simultaneously. We have shown a range of constraint analysis 
rules based on conflicts between tasks for the use of resources and rules involving 
energetic balances, where satisfaction is the source of propagations over the absolute 
or relative positioning of tasks. We have studied extensions of propagation rules for 
problems where task interruption is authorized or assignment of tasks to resources is 
not entirely set. 

Finally, we discussed control strategies for the development of a backtracking 
algorithm involving propagation mechanisms. This can help in the quick discovery 
of global inconsistency in the problem formulation, to simplify the resolution and to 
search for an optimal solution. 

To conclude, we should note that this presentation is not exhaustive. For 
example, there are powerful propagation techniques for the processing of disjunctive 
scheduling problems. They are known as global operations or shaving [CAR 94, 
MAR 96]. A local constraint is raised (instantiation of a start time or sequencing 
decision) and corresponding adjustments are propagated over the whole problem. If 
inconsistency is detected, the negation of the constraint raised must be checked and 
is thus added to the problem definition. We can consider a hybrid use of shaving
type propagation techniques and local search procedures (notably the Tabu method) 
to enable the efficient extraction of local optimas and solve large job-shop problems 
(15 tasks-10 machines and beyond) [TOR 00b]. 
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Chapter 6 

Simulation Approach

6.1. Introduction 

This chapter focuses on presenting the “simulation” approach, a scheduling 
problem resolution approach widely used in a number of manufacturing software 
packages dedicated to this type of problem. This approach is part of the class of 
“heuristic” methods. It considers a large number of constraints but not all those 
encountered in the scheduling problem resolution. It does not directly consider 
global criteria. It is configurable and we will see that it is possible to characterize 
parameter choices which are best adapted to certain situations and to obtain “good” 
solutions in most cases. It is relatively easy to implement. We may consider its 
iterative use for improving the quality of the proposed solution or to evaluate the 
variation effects of certain characteristics of the problem over results obtained. 

This chapter is made up of five parts: 

– in section 6.2, we quickly present manual resolution procedures still used and 
their possible evolutions considering results presented in the previous chapters; 

– section 6.3 focuses on presenting discrete event simulation: the different 
modeling elements inherent to this technique and corresponding resolution methods; 

– in section 6.4, we show how discrete event simulation can be used for building 
projected schedules, or for real-time decision support;

– section 6.5 discusses priority rules: classifications, relations between (local) 
rules and (global) performance criteria, support for the choice of rules; 
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– in section 6.6, we quickly present computer tools for the implementation of 
such an approach. 

6.2. Heuristic resolution (greedy) procedures 

6.2.1. Limits of the basic method 

Local approach 

Chapter 2 has shown that we know methods for determining an optimal schedule 
in terms of different types of criteria for the one-machine scheduling problem. These 
methods are quite simple to implement. In order to determine this optimal schedule, 
it is simply necessary to have access to certain characteristics of jobs to schedule and 
to be able to classify these jobs with the help of indicators calculated from these 
characteristics. 

This apparent ease of optimal scheduling determination can encourage the 
generalization of this type of approach to job shop scheduling calculation containing 
several machines; we use one of the resolution methods adapted to the one-machine 
problem to build independently the schedule for each machine in the shop. The 
implementation of such a policy raises three problems: 

– the algorithms used for one-machine problems presume that we know the
availability dates ri of job i (we often presume that all jobs are available at date 0). 
However, the availability date of a job for machine Mk depends on the date where 
this job will have finished previous operations from other machines. This date 
depends on the schedule made on these machines. This schedule is not known at 
first; it must be determined. We can see that this approach can only be implemented 
by an iterative method which will solve one-machine scheduling problems in a 
certain order. In the case of job shops, it is difficult to easily determine this order:  

– certain constraints are difficult to consider for machine Mk:

- either because they involve a group of machines (production routes, for 
example), 

- or because they are relative to a given machine. For example, the delivery 
date of a job is the date of the end of operations on the last machine and it is difficult 
to ensure satisfaction of this constraint with other machines; 

– optimality of the solution, in the sense of criteria, is not absolutely ensured 
because a global optimum is not obtained by a sum of local optima except in specific 
cases.
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Constraint analysis 

We have seen in the previous chapter how constraint analysis will restrict value 
domains of the different operation ti start dates. This analysis is all the more 
powerful as it is more widespread. However, the more widespread it is, the more 
difficult it becomes. The minimal version of this propagation may be only local. In 
this case, for each scheduling decision made for operation o(i, j) on machine Mk, we 
only carry out a local propagation on the machine Mk and job i involved. We 
prohibit on machine Mk the time slot reserved for this operation o(i, j) and we deduct 
the earliest start time for the next operation o(i, j + 1) for this job.

6.2.2. Manual development procedures of projected scheduling 

Part manufacturing scheduling problems (that we will call “job” in the rest of the 
chapter for homogenity purposes) have been discussed for a long time and we did 
not wait for calculators to solve them. They are very often “manually” resolved 
using “mural planners” containing as many lines (or rulers) as there are machines Mk
on which we want to schedule i jobs to execute (Gantt chart). Rectangular cardboard 
pieces represent operations o(i, j) (operation j for job i, i production route element) 
to be scheduled and the length of these rectangles is proportional to pij duration of 
operation o(i, j) in compliance with a time scale represented based on the diagram’s 
x abscissa axis. Scheduling software displays show this type of representation. 

It is a specialized operator who carries out scheduling by placing rectangles on 
the different diagram lines one by one. In order to do this, he uses a systematic 
procedure followed by several adjustments when the first solution does not suit him. 
This method of placing the operations one by one to develop a schedule is at the 
basis of several heuristic resolution methods for these problems.  

6.2.3. Job placement procedure 

The systematic procedure that has been used for the longest time is the “job 
placement” procedure. The resulting construction method consists of: 

– classifying the different jobs i (made up of a certain number of operations 
o(i, j)) to be scheduled according to a sequence chosen by the user. This 
classification C will be very important for the quality of the result; 

– starting an iterative job placement procedure. In order to do this: 

- we choose the first job i0 in classification C,
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- we place operations for this job in relation to operations already sequenced 
(free time slots on machines involved). There can be different operation placement 
policies (earliest, latest, etc.), 

- we choose a new job in the classification and we iterate, etc.. 

This procedure is particularly interesting for manual implementation because it 
makes it possible to consider operation sequencing constraints very simply. 

Once this schedule is finished, we can measure the degree of satisfaction of 
certain constraints which have not been directly considered in the placement 
procedure. This is the case with delivery date satisfaction; in fact, these dates 
associated with the different jobs are not directly considered during scheduling 
development. We have, however, been able to consider these delivery dates for the 
classification for these jobs. For example, we have been able to classify jobs by 
increasing delivery dates. This certainly does not guarantee that all delivery dates 
will be satisfied as the following example shows. 

6.2.4. Example 

A job shop contains three machines M1, M2 and M3. In this shop, three types of 
jobs A, B and C are produced. The corresponding part routings are:  

– A: 

- o(A,1) on M1; for pA1 = 4, 

- o(A,2) on M2; for pA2 = 3, 

- o(A,3) on M3; for pA3 = 5, 

requested delivery date: dA = 17; 

– B:

- o(B,1) on M3; for pB1 = 3; 

- o(B,2) on M2; for pB2 = 5; 

- o(B,3) for M3; for pB3 = 3; 

requested delivery date: dB = 16;

– C:

- o(C,1) on M2; for pC1 = 5; 

requested delivery date: dC = 10.
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We wish to execute projected job scheduling in this job shop. To use the 
placement method, we first classify jobs, for example, in decreasing delivery date 
sequence. The classification is as follows: {C, B, A}. We then consider jobs in this 
sequence and we place operations for each one in the sequence given by the 
production route.  

The sequence of operation placement is: o(C,1) on M2, o(B,1) on M3, o(B,2) on 
M2, o(B,3) on M3 , o(A,1) on M1, o(A,2) on M2 and o(A,3) on M3. We obtain the 
following schedule: 

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Machines

time

o(A,1)

o(C,1)

o(B,1)

o(B,2)

o(B,3)

o(A,2)

o(A,3)

Figure 6.1. Schedule obtained with job placement procedure 

We observe that, although priority was given to jobs with more urgent delivery 
dates, the resolution method was not able to respect the job A delivery date. In the 
next section, however, we will see that a schedule which respects delivery dates 
does exist.  

If the operator is not satisfied with the scheduling result, he can manually modify 
it by operation moves or permutations while still respecting production routes and 
resource constraints. Schedule quality will then depend on the operator’s experience 
and skills as well as his capacity to control the combinatorial aspect and various 
human or technical constraints which cannot be formalized. 

6.2.5. Operation placement procedure 

As we have often mentioned, schedule quality obtained with the previous 
procedure largely depends on the sequence in which the jobs are placed. As much as 
this procedure can be justified in the case of flow shops, it can become penalizing in 
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job shops or open shops. In fact, it runs the risk of very quickly deteriorating 
schedule quality for jobs which are not first in the classification. 

A more generic operation placement procedure consists of no longer placing all 
operations corresponding to a given job before placing the operations of the 
following job. This procedure consists of placing operations in a certain sequence 
one at a time. In order to do this: 

– we classify all operations corresponding to jobs to be executed in a certain 
order. This order or sequence takes into account certain characteristics of these 
operations (place in the production route criticality of the machine involved, 
duration, margin, etc.); 

– we take the first operation in the list; 

– we place the corresponding operation on the machine on which it must be 
executed by taking production route constraints into consideration. This placement 
is definitive and will not be questioned any longer in the rest of the scheduling 
process; 

– we then place the next operation in the list and so on until it is finished. 

This procedure can be considered as representing a group of progressive 
resolution methods for scheduling problems. In fact, as its previous description 
indicates, it does not explain how operations are classified: is this classification 
carried out once for all operations at the beginning of the resolution (and in this case, 
how is it done?) or is it questioned after each operation placement? 

This method belongs to the class of so-called “greedy” methods within which we 
never challenge decisions made at any of the previous steps in the resolution. There 
is no backtracking in the arborescent resolution. Heuristics must then be chosen to 
make the best possible local decisions without being sure that they will lead to the 
optimal solution. 

The simulation approach presented in the third part belongs to this class of 
methods and will implicitly use a systematic operation classification procedure 
taking increasing achievement dates into consideration.  
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6.3. Simulation approach 

6.3.1. Discrete event models 

Introduction 

First, we will quickly present the modeling context and method of execution for 
discrete event simulations (for a more detailed presentation, see [CER 88] or [LAW 
06]), and in the next section we will show how it can be used to solve the scheduling 
problem.

In this section, we are attempting to model the dynamic behavior of a production 
system, or more specifically, job flow circulation in this system. To illustrate the 
concepts and formalisms used, we will use the very simple example of a machine M
with stock S waiting for execution. This machine receives jobs i on which it must 
execute operations (each job has only one operation on machine M) lasting a certain 
amount of time. Once the operation is completed, the job leaves the system. 

Objects and attributes 

In this type of model, we consider that the model is made up of objects (real or 
fictitious). In the previous example, objects are: machine M, stock S and jobs i. Each 
object is characterized by a set of attributes (small database connected to each 
object). Some of the attributes of these objects are fixed. These represent the 
characteristics of the object involved or relations with other objects. In this example, 
the fixed object attributes are: 

– machine: name;

– stock: name, possibly stock capacity;

– job: name, execution time on machine M.

Other attributes are variable and evolve over time. In our example, variable 
attributes are: 

– machine: state of occupation valued at 0 if the machine is idle and 1 if the 
machine is busy; 

– stock: list of pending jobs;

– job: position in the system (“out of the system”, “in stock S”, “on machine 
M”).
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States and events 

The state of an object at a given moment is characterized by the value of all its 
attributes (fixed and variable). The state of the system is characterized by the state of 
all objects that it contains. This model is based on the notion of state. The 
characteristic of discrete event models comes from the fact that we are placed at 
such a modeling granularity that: 

– the state of each component can only take discrete values. That is the case here 
because:

- the state of occupation of machines can only take value 0 (idle machine) or 1 
(busy machine), 

- the state of stock corresponds to different compositions of the list of present 
jobs, 

- the position of jobs can only have three values (“out of the system”, “in 
stock”, or “on machine”); 

– in correlation, state changes can only happen at specific moments in time that 
we call “events”.  

In the example, there are three types of events: 

– arrival of a job in the system. This is the moment when the job arrives from 
outside; 

– start of operation for a job on the machine. This is the moment where the job 
arrives on the machine for execution; 

– end of operation for a job on the machine. This is the moment when the job 
leaves the machine (operation completed) and exits the system. 

These events correspond to the start and end of job operations on machines.  

State change logic 

To describe the dynamic behavior of the system, “state change logic” must be 
explained. State change logic describes the way in which state changes are made for 
the different objects involved in the occurrence of a given type of event. There is no 
imposed formalism to describe this state change logic. It can be described by any 
organization chart for representing what must be carried out during the event’s 
occurrence.  
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In this state change logic, we describe: 

– the different state changes which happen during the occurrence of the event; 

– projected event dates for which the future occurrence is triggered by the 
present event’s occurrence (generation of events). For example, during a “start of 
operation” event, we can forecast the “end of operation” event date taking into 
account the execution time value.

Modeling helps us consider the fact that the way in which state changes and 
event generation happen can depend on the state of the system during the occurrence 
of the event. We can then describe more complex state change logic. In the simple 
example used as presentation support, we can describe state changes associated with 
the three types of events: 

1. Arrival of job i event  

The change of state depends on the state of the machine at the moment where 
this event arrives: 

– if the machine is free then: 

- there is projection of the occurrence of a start of operation event at the 
current date (if the job’s transfer time is negligible); 

– if the machine is busy then: 

- job position becomes: “in stock”;

- the list of jobs in stock is incremented. 

2. Start of operation of job i event 

Job position is “on machine”. 

The machine goes into “busy” state.

There is projection of the occurrence of an end of operation event for job i at a 
date equal to the current date increased by execution time pi of job i.

3. End of operation of job i event 

Job i exits the system: job position is “out of the system”.

If stock is empty then machine goes into “idle” state.

Otherwise, if the job list in stock is not empty then: 
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– the next job to be executed must be chosen in the job list;

– the name of this job  must be taken out of the job list;

– the position of this job becomes: “on machine”;

– there is projection of the occurrence of a start of operation event for the job at 
the current date (if the job’s transfer time on the machine is negligible). 

Priority rules 

Choosing the next job in stock is a decision which will define the sequence in 
which the different jobs in stock will be processed. This decision must be made each 
time the machine becomes available and consists of only making a choice from jobs 
present in stock at that moment. 

To make this decision, we can use a priority rule by allocating what we call a 
“priority index” to each job. The higher the index value, the higher the priority for 
this job and the quicker it will be processed. The fourth part of this chapter presents 
a classification of the most common priority rules. 

6.3.2. Discrete event simulation 

Discrete event simulation consists of reproducing the evolution of the system’s 
state throughout time over a given timeframe with the help of the previous model. 
We move over time in an increasing way, emphasizing the different consecutive 
events: we distinguish exogenous events with outside influence (for example, the 
arrival of jobs) from endogenous events (consequences of state changes in the 
system). We use the term “simulation” because in this way, we imitate the way in 
which operations occur in a real system.  

The most traditional resolution motor in this domain consists of increasing time 
by event. In fact, by definition of event modeling, the system can only change states 
when events occur. At each moment, we maintain a list of expected events with their 
time of occurrence. This list is called an “event list” (a string of chronologically 
ordered events). Each resolution phase consists of searching for the event with the 
shortest projected occurrence date. We know that there will not be a change of state 
between the current date and this date. This event is then the “next event” that will 
happen in the system. The simulation motor searches for this date and increases 
current simulation time to it. We then trigger the state change logic associated with 
this type of event. This trigger will modify the system state and possibly generate 
the occurrence date projection of certain events. Projected event dates are put in the 
event list. When we have finished processing an event, we again search for the event 
with the earliest occurrence date and we increase the current time to this date, and so 
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on and so forth until a set limit time is reached corresponding to the end of the 
simulation, or until the time when the schedule becomes empty. 

Another type of simulation motor consists of increasing time by small 
increments and, testing at each increment, if conditions are met so that one of the 
events can occur. To categorize the occurrence of the different events sometimes a 
lower value time increment must be used which can be penalizing in calculation 
time because at each step in time, we must test if trigger conditions for each event 
are met. 

When the simulation is finished, we have sequentially resolved the problem of 
determining dates for different events. We then know the state change times taking 
into account the state change logic associated with the different events, and in 
particular priority rules which can have been used to make the choices between jobs 
in progress. 

EXAMPLE.– This example comes from the example in section 6.2. We only 
consider machine M2 and the three jobs A, B and C and corresponding operations. 
Arrival dates and execution times are given in Table 6.1.  

Jobs Availability dates Operation time
A 5 3
B 4 5
C 0 5

Table 6.1. Arrival dates and operation times

Date Type of event Job position Machine occupation 
state

Job list in 
stock

0 initialization idle empty
0 arrival C idle empty
0 start operation C C --> M2 busy empty
4 arrival B B --> stock busy B
5 arrival A A --> stock busy B, A
5 end operation C C --> out busy B, A
5 start operation B B --> M2 busy A

10 end operation B B --> out busy A
10 start operation A A --> M2 busy empty
13 end operation A A --> out idle empty

Table 6.2. Procedure of a discrete event simulation
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Completing this simulation means gradually filling Table 6.2 by using the event 
list. Each line corresponds to an event and reproduces the state obtained after 
processing the occurrence of this event.  

To gradually fill this table, we have used the following schedules containing 
projected events at a given moment (only major event lists are presented).   

First event list:  

Date Type of event
0 arrival C
4 arrival B
5 arrival A

Third event list after processing the start of operation C event: 

Date Type of event
4 arrival B
5 arrival A
5 end of operation C

Fourth event list after arrival of B: 

Date Type of event
5 arrival A
5 end of operation C

Fifth event list after arrival of A: 

Date Type of event
5 end of operation C

Seventh event list after end of operation C and start of operation B: 

Date Type of event
10 end of operation B

Ninth event list after end of operation B and start of operation A: 

Date Type of event
13 end of operation A
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Throughout the simulation, we evaluate different indicators relative to the state 
evolution of the system over time. This is how we can: 

– catalog times of certain events which have a value of importance such as job 
due dates. In this way, we can compare due dates to delivery dates and measure the 
delay resulting from priority rules used; 

– measure resource utilization indices (agents, production methods, transport 
systems, etc.) and know their saturation state; 

– measure occupation indices from different storage devices and obtain 
indications on their future over or undersizing; 

– determine the possible occurrence of generally undesirable events (inventory 
location saturation, congestion, etc.). Generally, discrete event simulations highlight 
bottlenecks which limit the circulation of entities in the system. 

Simulation is therefore a method of evaluating performance (temporal or not) of 
a given system considering the way the flow of jobs within a system is accomplished 
(priority rules, for example). 

6.4. Using the simulation approach for the resolution of a scheduling problem 

6.4.1. Determination of projected schedule 

In this problem, we wish to determine completion dates of different operations 
o(i, j) for jobs i on given resources Rk, considering temporal (allocated time, 
sequencing because of production routes, availability dates) as well as resource 
utilization constraints. We consider that jobs to be completed consist of 
manufacturing parts in a shop containing machines according to an order book. We 
thus know a group of jobs i to be manufactured on machines Mk according to their 
production routes. 

When this shop’s operation simulation has been completed, we then observe as 
we have seen in the previous section that we have the “film” or the “chronogram” of 
the history of the variations of machine states over time. We then have dates for all 
events and among others, start and due dates for the different operations executed on 
machines Mk for the different jobs. In particular, we have the completion dates 
which are due dates of the last operations of production routes for each job. This 
series of dates can then be considered projected scheduling. 

This scheduling was obtained by using a method for choosing jobs in stock on 
machines (priority rules). No criteria can be considered in a direct way in this 
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choice; however, indirect consideration can be made at priority rule level (with the 
limitations mentioned in the fourth part of this chapter). 

EXAMPLE.– Using the same example as in section 6.2.4 corresponding to a shop 
with three machines and three jobs to complete. A simulation using the “first in, first 
out” priority rule makes it possible to obtain the schedule illustrated in Figure 6.2. 

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Machines

time

o(A,1)

o(C,1)

o(B,1)

o(B,2)

o(B,3)

o(A,2)

o(A,3)

Figure 6.2. Schedule obtained using “first in, first out” priority rule

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

time

o(A,1)

o(C,1)

o(B,1)

o(B,2)

o(B,3)

o(A,2)

o(A,3)

Machines

Figure 6.3. Schedule obtained using “shortest processing time first” rule 

If we complete the same type of simulation using the “shortest processing time 
first” rule, we will need to execute A2 before B2 when operation C1 on M2 ends 
and we obtain a schedule in Figure 6.3 which respects delays. 
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6.4.2. Dynamic scheduling 

Dynamic or “real-time” scheduling happens when scheduling decisions for 
operations on a machine are taken individually each time a machine is freed or when 
an operation becomes available. We can then take into consideration production 
contingencies which have resulted in the fact that the machine became free at a 
given moment. There is no pre-prepared plan any longer, but a series of decisions 
taken at the moment when an operation to be executed on an idle machine must be 
chosen. We talk about dynamic scheduling because scheduling is completed step-
by-step over time. 

We talk about “real-time” scheduling because the scheduling decision must be 
taken on site when a machine becomes physically available (or in a slightly 
anticipated way when we know it will become available). This decision will then be 
taken based on the actual state of the shop at the moment the decision is taken. It 
will be able to take into consideration all operations actually available for the 
machine at that moment (jobs present in real or virtual stock on the machine), 
considering disruptions which may have occurred. To make this choice, we can use 
different procedures. Among these procedures we can use those which are purely 
local and which will consist of using priority rules (see following sections). Chapter 
12 presents a more elaborate procedure explaining the available degrees of freedom 
linked to the decision procedure and characterizing eligible scheduling 
classifications.

6.4.3. Using simulation for decision support 

The availability of a simulator makes it possible to remedy the short-sightedness 
of priority rules not only in terms of criteria but also in terms of feasibility: respect 
of delivery dates, respect of maximum interval between two job constraints 
(constraint mainly encountered in chemical processes, particularly in surface 
treatment which will be discussed in Chapter 8). On the other hand, this simulation 
uses priority rules which are obviously short-sighted. It can only: 

– provide an upper bound for the criteria to optimize; 

– give proof of feasibility and not of non-feasibility. 

In this way, we can use the possibilities offered by the simulation in different 
ways, as will be presented below. 
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Choice of the best priority rule 

We have seen that a simulation gives information on the quality of the 
performance obtained by implementing a certain priority rule. To implement this 
simulation, we have also seen that it is important to have a list of jobs to execute 
with their availability and delivery dates. The performance results for the rules used 
are only valid for a given range of commands. If this range can be considered as 
representative of what the job shop will have to process, we can consider that the 
results are generally valid for the job shop in this environment.  

We can then consider using in real time the priority rule that has turned out to be 
the best when used in simulation. This rule will be the one implemented in the job 
shop and will be used in real time to choose jobs in machine inventory. 

The advantages of such as method are: 

– the implementation is relatively easy and the speed of the evaluation makes it 
possible to test a large number of rules; 

– it is reactive and makes it possible to consider the actual job shop state. We 
only consider the jobs actually present. Contrary to the projected approach, this 
approach makes it possible to react to unexpected events: a job delay will not block 
the completion of operations over other jobs which have not been delayed. 

On the other hand, the main disadvantage comes from the fact that performance 
is not absolutely guaranteed. In fact, simulation has been able to evaluate 
performances for the range of orders used. If reality is different, we cannot 
extrapolate the results obtained with certainty. 

Real-time decision support 

The simulation can also be used to optimize certain particularly important 
decisions, for example because they can lead to blocking (in case of limited capacity 
storage) or impossibility (maximum delay between two jobs) situations. If there are 
only a few alternatives, they can all be simulated and the best one can be retained. If 
we now have to determine a chain of events instead of a single decision, then we can 
use optimization procedures such as, for example, simulated annealing, which uses a 
performance evaluation of each chain of decisions to gradually converge toward the 
best chain. The simulation can be used at each iteration to evaluate the performance 
criteria.

To develop such decision policies or to use them in the context of projected 
scheduling, they must be integrated in a more global job shop simulator. In this 
simulator, at each decision point, a certain number of anticipation type simulations 
must be carried out using the same model but with simplified priority rules. In this 
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case, the use of object languages is very appropriate, duplication and object 
destruction mechanisms are particularly convenient in using the same objects for all 
simulations and simplify all problems connected to the initialization of simulations 
as well as to the management of the different schedules [CAV 97]. 

6.5. Priority rules 

6.5.1. Introduction 

The problem of determining powerful priority rules has produced and is still 
producing an abundance of literature. A very large number of rules or combination 
of rules have been defined and tested. The analysis of this literature shows that, 
except for a few well known general results, it is extremely tricky to attempt to 
define the field of application (type of job shop, evaluation criteria) of a given rule. 
When analyses become more finite, conclusions from the different authors can be 
different, and even contradictory. 

We will only describe in this part the most widely known and used rules with the 
different types of classifications encountered in literature and the main results for 
their domain of application. 

6.5.2. Description of priority rules 

Classification 

We observe several classification criteria [BLA 82]: 

– local or global rule: a rule is said to be local if it only takes into consideration 
information local to the queue, in contrast with, for example, WINQ which takes 
into account the load on the next machine; 
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Notation Priority calculation Description
FIFO riJ First in, first out 
RANDOM random draw Random value allocated to an arrival in the 

queue

SPT piJ Shortest processing time on the machine 

SPT/FIFO( ) piJ if t- riJ < 
0 otherwise (FIFO) 

SPT as long as wait time is lower than ,
then transition to a priority queue managed 
by FIFO 

SPT/FIFO( )

1Jn
s

,pmin
i

i
iJ

Mix between SPT and SLACK/OPN (rule 
defined below) weighted by 

LWKR 
pij

j J

ni Shortest job remaining until end of range 

EDD di Earliest delivery date 

SLACK 
s d t pi i ij

j J

ni Smallest margin, i.e. earliest potential time 
until delivery date 

SLACK/OPN s
n J

i

i 1
Relation of the margin with the number of 
remaining number of operations 

WINQ Wi(J+1) Next operation on the machine with the least 
jobs in progress 

CRITICAL
RATIO

d t

p

i

ij
j J

ni

Relation of remaining time until delivery 
date with the sum of remaining operation 
times 

CoverT
i

i

n

j i
j J

g

iJ j
j J

w s

p w

Cost over Time: relation of estimated delay 
cost with operation time  

RR

1Jw)t(ce

iJp)t(ce
in

1Jj
ijp/is

Weight of execution times and margin based 
on c(t), load of machine involved at instant t 

Table 6.3. Main priority rules 
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– static or dynamic: a rule is said to be static if the priority value remains stable 
during the time the job remains in the queue (SPT, FIFO, etc.). A dynamic rule can 
retain a relative sequence between two jobs (SLACK), but the priority value must be 
updated again as soon as a new job arrives in the queue; 

– information taken into account by the rule: rules which consider execution 
times, delivery dates, both, or neither, etc.; 

– complexity: weighted combination of rules, usage of parameters to be set, job 
shop specification consideration, etc. 

These classifications can be interesting in highlighting the implementation 
problems with rules in a simulator or directly in the shop. 

Main priority rules (Table 6.3) 

In addition to general job notations, we introduce the following notations: 

i job involved in the operation used for priority index calculation

J rank of operation involved in job i

t current time

rij date of operation (i, j) arrival in job queue

Si current job i margin (determination defined in description of SLACK rule)

wj projected wait time for the jth operation of job i involved

Wij total job wait time in machine where the jth operation of job i must occur 

 parameter to be set by the operator 

x + = x  if x  0 
x + = 0  if x < 0 

“User priority” should also be mentioned where the user allocates a priority to 
each job. A certain number of priority levels are defined, and the choice between 
identical priority levels is made according to one of the previous rules. 

6.5.3. Experimentation conditions 

We will see that comparing performance of the different rules is particularly 
tricky; it is thus vital to define the simulation context in which comparisons are 
made rigorously. There is consensus between authors on the following conditions. 
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Model of shop used 

A machine only executes one operation at a time. 

Once an operation has started, it cannot be interrupted. 

Machines are the only limited capacity resource considered. 

There is no possibility for alternative routing. 

Jobs are independent of one another (we do not consider assembly problems). 

The priority rule is the same for all machines. 

Preparation time is included in execution time and does not depend on the 
sequence of jobs on the machine. 

Shop parameters 

To be able to execute a large number of trials, the shops are randomly generated 
around average values defined by the user. An important problem is to determine the 
discriminating ones in relation to the performance of priority rules. The authors 
[BOU 91, GRA 93] consider that the most discriminating are dispersion of 
execution times, the starting margin in relation to delivery dates and shop load 
(average machine load rate). On the other hand, the job arrival rule (most often 
chosen exponentially), shop size and routing mode (randomly chosen in general) 
have very little influence on results [ELV 74]. 

Evaluation criteria 

The two most often used comparison points are work-in-process and respect of 
delays. Shop productivity is rarely taken into account. 

Work-in-process is mostly characterized by the average time jobs remain present 
(Favg), and variation of this time. 

Respect of delays is characterized by: 

– average lateness (Lavg). It should be noted that the only difference between 
this criteria and Favg is a constant and is therefore its equivalent in terms of 
optimization. It is not widely used from a practical standpoint because 
manufacturers are rarely concerned with early production. On the other hand, the 
absolute lateness value is interesting in a just in time production context; 

– average real (Tavg) or maximum (Tmax) delay; 
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– the number of late jobs. 

It should be noted that the determination of the mode of delay to be respected 
(delivery dates) discussed below has a direct influence over the criteria and explains 
that rules not considering delivery dates can be powerful in respecting these delays. 

Determination modes for delivery dates 

Availability and delivery dates are determined in companies by production 
management software (most often using the MRP approach) by evaluating the total 
time of transition for each job (lead time) and by assessing wait times at each 
workstation. The experimentations follow the same principle for realism purposes; 
we distinguish several modes of determination: 

– CON: the allocated transition time is constant, regardless of the job; 

– RAN: the allocated time is random: extreme case where the customer gets to 
make decisions; 

– SLK: time allocated is equal to the sum of execution times plus a global wait 
time similar for all jobs; 

– TWK: time allocated is a multiple of the sum of execution times. 

Each determination mode depends on a single parameter used to set the 
“flexibility” in delivery dates, this parameter is strategically important for 
companies because it conditions the work-in-process level and market response 
time. A certain number of studies were carried out on the relevance of these modes 
([BAK 84] for example). The goal is to minimize the average job transition time 
while respecting delivery dates. SLK and TWK seem more powerful, TWK often 
seems to be the best. This last element is surprising insofar as it would seem that the 
global wait time depends more on the number of waits than on execution time. 

A study [CAN 88] proposing to iterate on the starting margin (delivery date 
minus availability date) with the help of simulations should also be mentioned. 
These simulations can predict real job transition times in the shop. In this way, we 
can separate respect of delivery dates from the optimization of work-in-process 
taken into consideration by a specialized priority rule. 

Implementation of the simulation 

In most cases, we must calculate the average and the variation of certain values. 
In order for the results to be significant, we must wait for the shop to have reached 
its permanent operation speed before starting to collect values, on the other hand, we 
must wait long enough for the results to be trustworthy. This last element is carried 
out using the evaluation of a confidence interval for the measures taken [LAW 84]. 
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6.5.4. Main results 

Using a single rule 

For the average processing time in the shop, the SPT rule (obviously more 
important as distribution of execution times is high) is better in all cases. On the 
other hand, it is bad for the variation of this same criteria because of wait times in 
long operations which can be very important. Several authors have tried to resolve 
this flaw by mixing SPT with another rule, either alternatively or by truncation, 
which is more efficient. In this case, a parameter makes it possible to define from 
what wait time period an operation will be managed by another priority rule. 

Concerning respect for delivery dates, SPT remains powerful for average real 
delay, particularly when delivery dates are relatively tight (margin at the start lower 
by five times the sum of execution times), and for the number of late jobs. However, 
rules explicitly taking into account delivery dates are much better for the variation of 
real delay. The SLACK/OPN rule is globally considered as one of the most powerful 
for all criteria relative to respect of delivery dates. EDD is also interesting (and 
simpler to implement). 

The CoverT rule constitutes a particular case in the sense that it can be very 
powerful for real delay but it depends on the assessment quality of machine wait 
times. Several assessment methods for these times have been proposed: prior 
simulation with FIFO rule, distribution of the beginning margin on each operation, 
dynamic assessment in the shop. [RUS 86] studies these methods with different 
parameter values and compares them to the most powerful traditional rules. For 
each criteria, CoverT is as powerful as the best traditional rule for the considered 
criteria, even with rudimentary assessments of wait times, and performance 
improves with the precision of these assessments. 

The RR rule [RAG 93] also considers wait time assessment. It is very complete; 
as powerful as SPT for the average processing time in the shop, but much better for 
the variation, powerful for the average real delay and very powerful for maximum 
real delay, which is a particularly interesting criterion in the industry. 

[CON 67] studied the incidence of the determination mode for delivery dates 
over relative performance of rules without leading to really significant results. Most 
of the studies take place in the TWK mode context. 

Although the FIFO rule is very simple to implement, it is much less powerful 
than the above-mentioned rules for all traditional criteria (equivalent to RANDOM).  
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The “user priority” rule makes it possible to consider strategically important 
differences of the different jobs to be executed in the shop and to decrease the cycle 
time of important jobs. Using it interactively is nevertheless tricky because any 
priority change often has unpredictable consequences on schedule and the user 
quickly loses control of operations.  

Finally, studies by [PIE 97] propose a different rule for each machine, and the 
nature of the rule is determined in real time according to the state of the shop (with 
thresholds with a value optimized in a finite way for the change of rules). 

Mixing of rules 

After focusing on the rules themselves with the use of great imagination on the 
part of the different authors, no significant performance improvements were 
reached, except perhaps in the case of the RR rule. Research is now evolving 
towards the study of mixing a small number of rules which are simple and 
complementary in terms of performance. Among the different research projects 
carried out, we find: 

– [GRA 93] in which three rules are used: SPT, SLACK and user priority. Their 
use is weighted by three factors determined by a production rules-based system 
modeling the expertise of the relevance of rules, or by a network of neurons where 
information is acquired from previously treated examples. The use of fuzzy 
inference mechanisms enables a qualitative modeling of the expertise and eliminates 
threshold effects. Experiments carried out show that on the one hand, automatic 
learning is more powerful, but on the other hand, the rule obtained is often better 
than the most powerful of the three basic rules for the problem involved; 

– [HOL 97] which concerns simple sums of priority indices associated with 
rules. The following rules have thus been examined: 

- SPT+WINQ: interesting for the average processing time in the shop (the best 
for average and good for variation) and average for real delay, 

- SPT + WINQ + FIFO, SPT + WINQ + SLACK, SPT + WINQ + FIFO + 
SLACK: these three rules are interesting for real maximum delay and processing 
time variation in the shop and weak for average values. 

Generation of active schedules 

In the preceding sections, only jobs actually waiting to be processed are 
considered in the choice of the operation to execute. In the case where execution 
times are very long, the decision to commit an operation can have high 
consequences and it might be advisable to leave a machine idle, waiting for a more 
interesting operation (for the performance criteria that we have set). In this way, we 
move away from so-called “without delay” schedules, the most often used, in which 
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a machine is committed as soon as a job becomes available for it. We are then 
placed in a more complete class of “active” schedules, which implies an intensity 
increase for the procedure. In fact, we must have reliable knowledge of the next 
arrivals, which is not always the case, and define a maximum delay for the machine 
without committing an available job.  

Conclusion 

The main conclusion is the contrast between the sum of studies completed on 
this subject and the lack of really indisputable results to come out and which have 
been discussed throughout this chapter. In particular, the attempts to constitute, 
notably with data analysis techniques [BOU 91], a knowledge base to help define 
the rule that is most adapted to a given scheduling problem (shop, production and 
performance criteria) have not led to sufficiently relevant expertise to be able to give 
a significant improvement of performance by the relevant choice of a rule in relation 
to the problem raised. 

Automatic learning techniques based on networks of neurons [GRA 93, PIE 93] 
seem to be more promising as long as we stay within a relatively restricted class of 
shops. 

6.6. Information technology tools 

We must distinguish between scheduling software packages using simulation as 
the scheduling method and actual simulation tools. 

6.6.1. Scheduling software 

Available scheduling software packages mainly use greedy procedures which are 
characterized by selection modes of conflicting operations on a machine and which 
must be separated by a priority rule. Some of these packages use simulation to make 
this selection and resolve the conflicts in chronological order. They generally 
propose very few rules for a user to choose from (most often user priority, SLACK 
and SPT). Their cutting edge graphical interfaces (Gantt chart presentation, data 
modification, scheduling modification) and processing speed make it possible for 
the user to improve scheduling in an iterative way. The basic model is generally 
very simple (linear ranges, a single type of resource) but personalized modifications 
or options enable the user to consider specific operation constraints for the shop 
involved. 
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It should be noted that other selection modes are increasingly becoming available 
in software packages (simulation in a reactionary way from delivery dates, job 
placement, critical machine scheduling, etc.) making it possible for the user to 
choose the one which is the most appropriate for the current situation.  

6.6.2. Simulation languages 

These languages or software packages offer specific primitives for quick 
simulation and display of discrete event systems. Without being too exhaustive or 
attempting to market any one of these software packages, we can nevertheless name 
a few that are regularly used in laboratories or in manufacturing companies in the 
field of production systems: Arena [KEL 06], Witness, Modline/Qnap, Simple ++, 
Quest, etc. The main advantage is their ability to simulate all details of the shop to 
be scheduled. Although these simulators can finitely evaluate shop performance and 
develop a sophisticated control system, their use as scheduling systems requires 
graphical interface programming and interfacing with the shop environment 
(production management, real-time follow up), which can be cumbersome compared 
to scheduling software programs with this functionality already incorporated. 

It should also be noted that it is possible to use spreadsheets as a tool for building 
simulation software dedicated to scheduling for problems of limited size. 

6.7. Conclusion 

The simulation approach is part of the methods called gradual schedule 
construction. This type of method quickly determines schedules which respects 
technical constraints. It is characterized by a large potential modeling power, but 
gradual schedule construction prohibits going back to decisions already made which 
could improve schedules or respect for delivery dates. In addition, schedule quality 
depends on its construction rules expressed in the form of priority given to the 
different jobs in the queue. However, we can observe that it is not always easy to 
adequately determine the rules for optimizing given performance criteria for 
schedules. 

Concerning information technology tools implementing this approach, the user 
can choose between: 

– software packages dedicated to scheduling, integrating simplified shop 
modeling which can be difficult to modify with a very limited number of priority 
rules. However, they generally make it possible to quickly develop scheduling; 
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– simulation packages (or spreadsheets for small problems) for detailed 
modeling, but with no dedicated interfaces for the scheduling problem which is 
mandatory when used in a shop. 
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Chapter 7 

Cyclic Production Scheduling

7.1. Introduction 

The cyclic character of the rhythm of life is the most natural of things. The most 
logical cause is linked to natural environmental phenomena which humans have to 
face: the inevitable alternation of seasons due to the Earth’s rotation around the Sun, 
as well as daily and nightly rotations due to the revolution of the Earth around its 
axis. Another cause is linked to traditions and society planning work based on a 
week containing work and rest phases. In summary, everyone lives according to a 
cyclic organization and this way of life naturally inspires different production 
management methodologies. In order to simplify and facilitate understanding of this 
presentation, two examples will illustrate this methodology. The first example, 
developed in this introduction, has no other objective than to present how activity 
management can be very complex and how this complexity can be sensibly reduced 
via cyclic organization. The second example will involve flexible manufacturing 
systems (FMS). It will be used as explicit support for this presentation. The 
introduction example involves a known, albeit complex, problem: class schedule 
planning within an institution (college or high school). The idea is to organize and 
plan an annual timetable of classes in an institution. Four types of entities gravitate 
around this problem: teachers, classes, classrooms and class schedules. The goal is 
to make sure students can attend classes corresponding to their curriculum in 
appropriate classrooms in the presence of a teacher specialized in the field involved. 

Chapter written by Jean-Claude GENTINA, Ouajdi KORBAA and Hervé CAMUS. 
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Numerous capacity constraints involve the number of teachers per discipline, and 
the number and capacity of classrooms as well as the fact that only one teacher is 
assigned to teach in a given room at a given moment for students of a given class. 
As for the courses themselves, several characteristics must be taken into 
consideration. There are different course types with different timelines: classes, 
classroom studies (CS) and practical studies (PS). Teaching sessions are grouped 
into variable size modules depending on certain constraints; typically these 
constraints are precedence type constraints: classes before CS before PS. 

The first and foremost objectives involve feasibility of planning over a 
maximum possible timeframe (school year). Once this constraint is resolved, it then 
becomes possible to attempt to close the cycle as soon as possible in order to leave 
as much time as possible for students before finals, all the while respecting program 
timing constraints for all disciplines. Another reason justifying this criterion comes 
from the fact that it is always important to leave the largest margin possible at the 
end of the year to react and adjust the timetable for unexpected events (absence of a 
teacher, etc.). A second criterion consists of reducing the call for substitute teachers 
to minimize overheads. The compromise will favor student satisfaction because the 
establishment is concerned about their well being and success. The image commonly 
associated with this type of problem involves a large table where the person 
responsible for the timetable works very hard inserting little cards with different 
colors. This job is particularly difficult because he must model in two dimensions a 
problem which is by definition four dimensional: classes, programs, teachers and 
classrooms. The solutions generally used consist of splitting this problem into sub-
problems (distribution by semester for example), then for each semester, a typical 
week is created. This typical week will be repeated throughout this period. 

The major complexity with the scheduling problem for resources (teachers and 
classrooms) is thus reduced to a temporal horizon; of a semester and a week 
respectively. This distribution of the semester load comes in fact from a first phase 
called short term planning. The goal of scheduling, logically called cyclic, thus 
consists of organizing the week load to be repeated over a semester as best as 
possible. In this chapter, we will focus on this way of organizing production 
activities by attempting to repeat a basic cycle relatively well optimized, thus 
illustrating the notion of cyclic scheduling. The advantage of such an approach, 
notably the finite optimization of this basic cycle, would remain useless without a 
certain control of the transition from the planning and scheduling levels. In fact, the 
periods retained must be carefully chosen at planning level whenever possible to 
represent the best compromise between the generally antagonistic feasibility of the 
solution retained, complexity of the approach (planning and scheduling phases) as 
well as optimization of previous criteria.  



Cyclic Production Scheduling     169 

7.2. Cyclic scheduling problem classifications 

Two classes of problems have been addressed in the context of cyclic 
scheduling. The first one, for reference, is the electroplating robot scheduling 
problem (more commonly known as hoist scheduling problem or HSP). For more 
detailed information, readers can refer to Chapter 8. The second application is 
related to an FMS job-shop which is developed in more detail here in the cyclic 
scheduling approach. 

7.2.1. Electroplating robot problem (HSP) 

This problem involves the organization of a flexible production mainly restricted 
by unique transport made up of a single capacity robot for the more simple systems. 
The most well known application involves electroplating chains. The basic 
components can be very schematically characterized by a sequence of trays in which 
a chemical operation with a strictly defined timeline over a time interval [min, max] 
must be carried out. Production sequences are different depending on the parts 
involved. The transport resource (made up of one or more robots on a single rail, 
where collision problems may occur) naturally constitutes the critical problem 
resource. For a given production, it is possible to search for repetitive production 
scheduling by the nature of products launched and their respective quantities. This 
comes down to repeating robot movements according to an optimized cycle 
[CRA 97]. It should be noted that this problem is generally NP-hard. 

7.2.2. FMS cyclic scheduling problem 

FMS represent a large class of production systems. The exact content of the term 
“flexibility” is subject to different interpretations. To be more precise, FMS 
correspond to small to medium-sized production systems with a certain number of 
degrees of freedom. They are halfway between mass production systems (car 
production, for example) where production is linear (with no routing flexibility) and 
“totally flexible” open shops where production is done by unit. They are relatively 
different from computer systems which simplify work-in-process and routings to 
focus mainly on operations to be executed. FMS is characterized by a set of 
machines (transformation resources) able to execute different types of operations 
(machining, tapping, turning, milling, assembly, etc.) on different types of parts 
around a transport system (often a type of conveyor). Different types of parts are 
simultaneously found in the systems and use the same machines. These parts are 
generally transported on a physical support (called pallet) constituting transport 
resources. This support is different depending on the nature of the parts class to be 
produced requiring specific “installations”. 
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There is a great analogy, without being complete, between the introduction 
example problem and the FMS problem that we are discussing here. In fact, 
products to be manufactured correspond to classes (in the sense of group of 
students); these products’ operations ranges (commonly called jobs) correspond to 
class programs taken by students. In terms of problem resources, classrooms with 
their static constraints (for example, only physical science classes are taught in 
physical science classrooms) can be assimilated to transformation resources of FMS 
(such as a tooling machine, numerical command machine, etc.). It should be noted 
that these two types of resources represent bottleneck resources of the system 
studied. This is due to the capacity limitation of these same resources: a single 
classroom or a single machine for a given type of operation. A characteristic of FMS 
resides in routing of parts which is generally assigned to specific pallets containing 
loading adapted to only one type of part. In addition, the part/pallet allocation is 
most often invariable from the beginning to the end of production for one part. The 
performance criteria is to complete the requested production as soon as possible 
(total production time minimization, also called makespan) in order to keep some 
margin. It may be used to start a new production, to offset an unexpected 
malfunction in the production system, etc. Similarly, for our introduction example, 
the second objective would involve minimization of intervention from substitute 
teachers. Here, because of economic and production type constraints, we will 
minimize the number of pallets to be used1 or work-in-process in the context of an 
invariable part/pallet allocation. 

In order to facilitate understanding of the methodology, an illustrative example is 
developed. To simplify presentation, Petri net formalism is retained for the 
simplicity of its graphical model and also for the power of its mathematical analysis 
tools for the different system properties. We refer the reader to [MUR 89] and  
[DIC 93] for general concepts and notations commonly accepted for this formalism. 
This tool is first and foremost a modeling tool; it is still not used much in 
scheduling. Petri nets actually present the advantage of multidimensional modeling, 
an important advantage compared to other representation tools such as Gantt  
charts or other graphical models. The example considered here is taken from a 
project called Eowyn [KOR 98] which has enabled the comparison of different 
approaches (from predictive to reactive). See the flexible production cell described 
in Figure 7.1.  

1 In general, transport resources represent supports for adapted parts very difficult to execute 
and thus very costly. In addition, the number of pallets in circulation leads to the increase of 
the number of parts and the resulting inventory value. 
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Figure 7.1. Presentation of the flexible cell 

This cell is made up of 5 diversion stations and an on-line station (M5) around a 
central conveyor containing 2 switches (AB and BC represented by dotted lines). 
The M1 station is a loading and unloading robot enabling product arrival and exit. 
The other stations (M2 to M6) are multipurpose tooling machines. They can execute 
several different operations. In any case, these transformation resources are 
presumed to be non-preemptive (a part in the process of being manufactured only 
frees up the resource at the end of the operation) and disjunctive (each resource can 
only execute one operation at a time). In terms of transport system, each diversion is 
made up of an arrival buffer managed as a queue (first in, first out or FIFO) for 3 
places, from a transformation point and a storage place at exit. The numbers 
indicated on the arcs represent section capacity in terms of number of pallets (for 
example, the section between stations M1 and M2 may contain at most 4 pallets). 
The complete transport system is made up of 72 cells and may contain at most 72 
pallets. The pallets involved here are transport resources for circulating parts (from 
raw material to finished state) on adequate supports. To simplify the problem, we 
will assume that the pallets are dedicated (i.e. they are only able to transport parts 
for a single product). 
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We will focus on a precise production range where the parts to be produced as 
well as their volume are known. We consider production for three different types of 
parts: A, B and C. Exact quantities are also presumed given: 30 copies of each type 
of part. Production ratios for the different types of parts are thus easily determined 
(33% for each type). Determining scheduling of parts on transformation and 
transport resources still remains to be completed. In order to do this, we presume 
that operations sequences for these different types of parts are known. They are 
modeled with the help of Petri nets (Figure 7.2)2. Production of the type A part 
requires a sequence of 5 operations. The execution times, given and presumed set, 
are indicated on the ranges (for example the operation to execute on M2 for a type A 
part needs 5 UT3). There is flexibility at manufacturing range level. In fact, the third 
operation in this job can be equally executed on M3 or M6, but with distinct 
execution times. The branch containing M6 has a routing ratio (usage rate) equal to 

not yet determined. In the case of M3, it has a ratio of 1- . Other flexibilities can 
be considered by the [CAM 96] method that will not be explained in detail here for 
purposes of clarity.  

Note that range B does not carry routing ratios for the two branches that it 
contains. This is due to the fact that both branches are completely equal from a 
throughput standpoint since they use the same machines with the same execution 
times but with different sequences. After this quick problem presentation, it is now 
time to present and justify the cyclic approach. 
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Figure 7.2. Modeling of jobs for the different types of parts to be produced

2 In order for the Petri net not to become too heavy, we will not present the shared resources 
corresponding to machines. 
3 UT for unit of time. The range of this unit actually depends on the production context 
considered here: machining, assembly and other types of operations. 
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After presenting the shop floor, types of parts and expected production, the next 
step is performance evaluation consisting of determining the best branches to use for 
each part in order to obtain the best production flow. The goal of this step is to 
“linearize” jobs by choosing the best branches immediately. In addition, this step 
determines the optimal system flow and consequently the optimal cycle time. This 
cycle time is given by the bottleneck machine (with the largest workload). In fact, 
because work-in-process is not limited, it is always possible to use a sufficient work-
in-process level to saturate the bottleneck machines to then work at its maximum 
speed. At this level, jobs are linearized (Figure 7.3). In this example, we presume 
that we will need to manufacture one part for each type of part in a production cycle. 
After flow optimization, the machine with the largest workload is M2 and optimal 
cycle time CT is equal to the load of this machine (sum of all operations that M2 
produces per cycle): CT = 10 UT. This cycle time is reachable by cyclic scheduling 
with the use of sufficient work-in-process. The problem now consists of determining 
this minimal work-in-process.  

Figure 7.3. Linear jobs after flow optimization

7.3. Problem positioning 

After the first resolution step, we have the following information: a production 
cycle produces three parts (1 type A, 1 B and 1 C), it lasts 10 UT and must 
theoretically be repeated 30 times to produce the 30 parts of each type initially 
ordered. System unknowns are: 

– for the machines: 

- the circulation sequence of parts on machines (i.e. make resource sharing 
deterministic), 

- arrival dates for parts on machines modulo CT: i.e. the temporal allocation of 
transformation resources; 
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– for the products: 

- the number of pallets used by part type, 

- initial location of pallets. 

During the second step (scheduling step of the permanent cyclic state), we will 
resolve remaining indeterminisms in order to obtain a completely deterministic 
cyclic system while optimizing the secondary criteria (work-in-process 
minimization). Scheduling is completely characterized by “programming of task 
execution by allocating required resources and by setting their start times”
[GOT 93]. In our case, the idea is to allocate machines while respecting optimal 
cycle time (strict constraint) as well as to determine required work-in-process 
(performance criteria). Scheduling problems are known as being complex and highly 
combinatorial [BEL 82]. It was proven that project planning problems are 
polynomial combinatorial and that cyclic scheduling is non-polynomial complete
[CAR 88, SER 89]. The consideration of transformation resources (associated with 
the different operations) makes the first problem non-polynomial difficult in most 
cases and leaves the second in the class of non-polynomial problems [SER 89]. 
Among the cyclic scheduling methods known to date, we should mention: 

– bottleneck machine scheduling [ERS 82]: the main criterion for this approach 
is the minimization of the average and maximum size of the input buffer at each 
machine. It is based on bottleneck machine job scheduling (slowest machine with 
regards to the load) followed by conflict resolution of other machines; 

– k-cyclic scheduling [CHR 97]: this approach focuses on cyclic scheduling in an 
information technology context. The work-in-process minimization objective has 
not been addressed (notion of work-in-process is of minimal importance in this 
case). In this particular case, work-in-process corresponds to memory space 
necessary for storing intermediate results. Since this resource is relatively cheap, its 
minimization is not sought after; 

– 1-cyclic scheduling [HIL 89, VAL 94, CAM 96, KOR 02]: these approaches 
all have the objective of respecting optimal cycle time while minimizing work-in-
process.  

Before presenting the scheduling algorithm minimizing work-in-process and 
respecting the optimal cycle time, we will show attainability for this optimal cycle 
time. An intuitive demonstration is the direct result of Petri net characterization. In 
fact, by marking all places in the linearized graph (Figure 7.3), it is clear that all 
bottleneck machines are saturated (as soon as a machine finishes an operation it 
immediately finds a part for production) and the system evolves at maximum speed, 
i.e. at the speed of the bottleneck machine. In this way, with the hypothesis that 
work-in-process is large enough, the optimal cycle time (equal to bottleneck 
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machine workload) is attainable. The goal of the scheduling algorithm is to 
determine the minimum amount of work-in-process to reach this performance 
(necessary and sufficient work-in-process). This approach attempts to minimize 
production costs (pallet production costs, intermediate inventory costs, etc.) and 
reduce the risk of system saturation by work-in-process that is too large and can 
block it. In order to evaluate the quality of results, we will calculate a lower bound 
of the work-in-process to be determined. We will consider job A for example: total 
operation duration for this job is equal to 16 UT (this is the sum of corresponding 
operation durations). We know that the cycle width is CT = 10 UT (cycle time). 
Consequently, a part can only have operations of which the sum of duration is at 
most equal to 10 UT at each cycle. In this way, to obtain finished part A at each 
cycle, at least two A parts are required in the system in order, for each of them, to 
“virtually” experience half the process. Generally, we obtain the following work-in-
process lower bound for range G: 

where operator “ x ” represents the smallest integer higher than or equal to x. The 
system work-in-process lower bound is equal to the sum of lower bounds for all its 
jobs. This bound is not necessarily reachable. 

7.4. Presentation of tools used 

After an understanding of general theoretical concepts related to the cyclic 
scheduling problem, we will present the main modeling tools as well as notions 
linked to the cyclic operation. The Gantt chart will be extended in order to better 
represent the “flat” projection of modeled scheduling with the help of Petri nets. 

7.4.1. Modeling using Petri nets  

The interest in using Petri nets is not only limited to their implementation in the 
first development phases (verifying system properties such as blocking, agility and 
performance analysis). They can also be used judiciously throughout resolution to 
follow gradual transformations of the model by considering its flexibilities. Final 
cyclic scheduling also uses a formalism derived from Petri nets: Event Graphs (EG). 
These graphs are particularly well adapted to the modeling of scheduling cyclic 
behavior in the sense that at each end of the cycle, the system goes back to its initial 
state, so that it can relaunch the cycle.  
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Figure 7.4 represents a cyclic production by an EG: two jobs using a single 
machine are produced. Each job is modeled by the operation to be executed in 
addition to an immediate transition (serving to form the cycle). As for the machine, 
it is represented by a machine cycle. Since its allocation is cyclic, it is alternately 
allocated to one and then the other of both jobs. At the initial state (graph 1), both 
parts are in raw mode and the machine is ready to receive part 2. After a cycle 
including the production of a copy of each job, parts are finished and the machine 
goes back to its initial state (graph 2). The only thing to do then is to cross 
immediate transitions (in zero time) to find the system in its initial state to restart a 
new production cycle (graph 3). EGs then clearly and faithfully represent the 
dynamic of cyclic scheduling. 

1

33

Figure 7.4. Advantage of using an EG to model a cyclic order

With this type of graph, it is easy to grasp the multidimensional aspect of 
scheduling. With the study of this system’s cycles, we can observe two main 
characteristics: the process aspect represented by the pallets (and thus the parts 
allocated to pallets circulating in the production system) and the transformation 
resource aspect represented here by machines. The temporal aspect is associated 
with transition time delay characterizing the deterministic timeframe of operations. 



Cyclic Production Scheduling     177 

See [HIL 89] for more information on properties of EG Petri nets. We should note 
that the resulting EG makes it possible to model the permanent cyclic system(s). 
Total production scheduling of a finite number of parts will mainly include the 
permanent state and transition phases [KOR 00] ensuring production start and end. 
The simultaneous consideration of temporary/permanent state alternation has led  
us to consider a sub-class of Petri nets integrating EGs: choice-free Petri nets 
[TER 97]. 

7.4.2. Dual Gantt chart 

Although this model presents a graphical advantage because of the dynamic and 
multidimensional aspects of the problem, it is still difficult to mentally envisage the 
temporal sequence of the control because of parallelism involving products and 
associated resources. It can therefore be necessary to use another formalism to 
represent the control behavior in two dimensions, especially if we are trying to 
represent the resulting scheduling without referring to the explicit knowledge of 
Petri nets. Our proposition is to extend the Gantt chart to a dual Gantt chart. In fact, 
most of the time on a Gantt chart, only two dimensions are represented involving 
time and jobs. When scheduling is carried out gradually by consecutive placement 
of the different operations, as is the case with this approach, it may be interesting to 
simultaneously display scheduling of operations for products, at transport support 
level, and also for machines based on EG where we find product (job) and machine 
cycles in parallel. It is possible to represent the allocation of operations to 
corresponding machines on the Gantt chart (Figure 7.5).  

In addition, it is necessary to regroup all operations for the same product. It is for 
this reason that we have added this new dimension in the proposed extension. The 
advantage of this type of representation is to enable people in charge of scheduling 
to understand in one chart the main scheduling parameters, as the example in Figure 
7.5 shows. This example highlights the duality which exists between products and 
machines. In this way, considering these two aspects becomes easy for the work-in-
process optimization problem. This example also illustrates the cyclic aspect of 
scheduling. In fact, the cycle is based on the cyclic diagram repeated for machines 
which imposes a periodicity and a synchronization of all production. In this 
example, to produce part Pr1, it is necessary to use two pallets P1 and P2. These 
pallets follow each other in a set order. In this way, during the first represented 
cycle, P1 transports part no. 1 which has just entered the system to execute the first 
two operations. During this time, P2 transports part no. 0, which has already been 
subject to these two operations, to execute the third and final operation. 
Consequently, during the following cycle, P1 will always transport part no. 1 for the 
last operation, whereas P2 will have already finished part no. 0 and will start a new 
cycle with part no. 2, etc. 
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Figure 7.5. Illustrative example of the dual Gantt chart

7.4.3. Resource availability interval 

We will now focus on the concept of a resource availability interval, developed 
in [VAL 94], to extend it to our problem. An availability interval is a time interval 
during which a machine is unoccupied. Knowledge of these intervals is very useful 
to better organize the operation placement procedure constituting the basis for the 
proposed scheduling method. In traditional scheduling, we generally use the notion 
of machine margin to evaluate their occupation ratios. It is based on the evaluation 
of the time periods during which the machine is idle. Cyclic scheduling is based on 
the same ideas (Figure 7.6).  
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Figure 7.6. Utilization of periods of machine inactivity

However, it is important to define with precision the notion of a machine margin 
to be able to use it during scheduling. In fact, when a single cycle is fixed and an 
operation (O1 on Figure 7.7) is placed, two distinct periods appear during which the 
corresponding machine (M1) remains idle: intervals [0, t1] and [t2, CT]. Due to this, 
placing a new O2 type operation in one of these two intervals becomes impossible 
because they are both smaller in size than the operation to place. Scheduling thus 
seems impossible. 

Figure 7.7. Placement of an operation in the cycle

However, it is possible to place this O2 operation after O1 by representing 
several cycles in sequence, as we have done in Figure 7.8. Both inactivity periods 
invoked will now only form a single availability interval in which it becomes 
possible to place this O2 operation. Actually, placement of O1 operation on the 
machine has only created a single availability interval for machine M1: interval 
[t2, t1 + CT], denoted as [t2, t1]CT. The availability interval of a machine in cyclic 
scheduling is thus defined as the largest possible (continuous) interval between two 
consecutive operations during which the machine is idle. In this way, we define the 
notion of an overlapping cycle. This notion is related to cyclic scheduling for which 
certain operations (here O2; see Figure 7.8) “overlap” two consecutive cycles. 
Actually, in any cyclic scheduling, there is cycle overlapping. This overlapping 
obviously depends on the origin of the cycle (because of the definition of the cycle 
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start date). However, it is useless to be able to precisely define this cycle start. For 
purposes of simplicity, we refer the reader to scheduling methods which supposedly 
do not carry out cycle overlapping such as [HIL 89] and [VAL 94]. Such methods 
are most often sub-optimal and consider a set reference origin for all operations. 
They thus restrict availability intervals of cyclic scheduling machines and do not 
optimize placement of operations during scheduling. 

Figure 7.8. Definition of cyclic machine availability interval

7.4.4. Operation placement policies in cyclic scheduling 

In order to eventually reach optimality, or at least to get as close as possible, we 
have had to redefine the notion of operation placement policy in scheduling. The 
method retained consists of a progressive operation placement, notably restricted in 
the temporal domain by the maximum CT cycle time to respect and by the number 
of parts of each type to produce during this cycle. In fact, the most widely used 
policy consists of executing the operations as soon as possible, based on a policy 
called the earliest firing operating mode which is no longer sufficient for reaching 
optimality for cyclic production. Actually this policy is only proven to be “optimal” 
in the case of total production time minimization and in a few specific cases 
[CAM 98]. We focus on minimization of the number of works-in-process in a cyclic 
context. Since operation placement is performed gradually (one operation at a time), 
the order in which operations are taken into account is therefore very important. The 
only constraint to respect is the precedence between operations in the same job. For 
the rest, the different possibilities must be studied (see section 7.5). It is necessary to 
constitute a sequence of operations to be scheduled (sequenced series of operations 
to be scheduled) before moving to the actual placement of these operations. Let us 
suppose that we have such a sequence and only deal with the operation placement 
problem (Figure 7.9). 
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Figure 7.9. Illustrative example of placement policies

The cycle corresponds to the production of two parts respectively called P1 and 
P2. P1 is the result of three operations from Pr1 O1 to Pr1 O3 and P2 of 2 operations 
Pr2 O1 and Pr2 O2. We suppose that a prior study has established that the CT cycle 
time is equal to 5, for bottleneck machine M1. Part of the scheduling is presumed to 
be done already and it is easy to show that scheduling still remains feasible4. The 
problem consists of scheduling the last three operations. We also suppose that these 
operations must be scheduled in a precise order: sequence of operations to be 
scheduled (Figure 7.9). Several potential solutions must thus be considered for the 
first operation to be placed: Pr1 O3. First, we can try to place this operation as soon 
as possible, i.e. as soon as the product and corresponding machine are both free, in 
this case from date 3. This policy which attempts to minimize the number of works-
in-process can lead to a deadlock, for example by not allowing placement of the next 
operation Pr2 O1 (Figure 7.10). This first approach tends to overly restrict 
scheduling by transforming initial machine availability intervals into one of smaller 
intervals which will not be able to be used thereafter. Since this first solution is not 
satisfactory, we propose other placement policies making it possible to build eligible 
scheduling at any time [KOR 98].  

4 Each of these two machines has a time interval that is not yet allocated (availability interval) 
able to contain operations to schedule on the machine. 



182     Production Scheduling 

m chi e

P2

P

4

M2

M1 P

!

Figure 7.10. Earliest placement policy for product

Possible policies actually consist of placing operations in appropriate availability 
intervals, either at the earliest or latest in the considered interval (Figure 7.11). By 
applying these two policies for each operation early, we guarantee [KOR 98] that we 
obtain eligible and powerful scheduling. In fact, scheduling with only earliest or 
latest placements in the availability intervals never generates new intervals and thus 
does not uselessly consume machine margin. Scheduling thus found is eligible but 
often to the detriment of the work-in-process used because generally it does not 
correspond to resource availability dates, sometimes generating excessive 
consumption of range margin and therefore of work-in-process. That is why it is 
necessary to combine these different placement policies such as “earliest in the job” 
(to minimize work-in-process) and in the availability intervals to guarantee eligible 
scheduling. 

ma

P2

P1

0 3

M2

M1

P

Figure 7.11. Other placement policies: latest for availability interval
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In addition to previously mentioned variations, there are all the other operation 
placement policy solutions. The only real constraint involves the actual placement of 
an operation only within an availability interval of the corresponding machine. An 
optimal scheduling solution corresponds in fact to a combination of these different 
placement policies. Thus, in theory, to reach optimality, we must try for each 
operation all possible placement policies in all possible availability intervals. 
Because of the complexity of this exact resolution method, we have chosen to 
develop a heuristic using the main characteristics discussed5. Three placement 
policies will therefore be used: earliest in the job, earliest in availability intervals
and latest in availability intervals. With these placement policies, eligible cyclic 
scheduling respecting the cycle time constraint equal to CT is guaranteed by 
minimizing the system’s work-in-process as well as possible. 

7.5. Algorithm principle  

The algorithm proposed is based on the simultaneous use of the three scheduling 
policies mentioned in section 7.4. The principle is simple: for each operation, from 
the operation sequence to be scheduled, all three types of placement are attempted. 
In order to limit the combinatorial analysis, we have chosen to set the resolution 
based on the depth of research noted as . This parameter corresponds to the number 
of operations considered at each iteration, (length of sequence of operations to be 
scheduled). In this way, at each iteration, the algorithm builds the depth research tree 

 (which corresponds to the determination of all possible sequences) and chooses 
the best sequence of operations from a cost function. This function is a linear 
function of the number of works-in-process used and machine margins.  

The initialization of the algorithm is carried out by the arbitrary placement of an 
operation at date zero (origin of the calculating window with a width equal to the 
cycle time). For a better understanding of the algorithm principle, let us consider the 
case  = 2 with the initial example (Figure 7.3). Algorithm initialization consists of 
placing the first operation of job A (on machine M1) at date zero, for example6. At 
the first iteration, the algorithm will search for all possible sequences with a length 
of . These sequences are restricted by precedences between the operations of a 
single job. In fact, strict precedence constraints between operations of a single range 
do not give us authority to “jump” the operations of a part hoping to place it later on. 
Thus, for each job where at least one operation is already placed, the future 
operation of the range ready for a placement is the absolute next operation in the 

5 The exact method consisting of listing all possible placements is too combinatorial. Other 
research paths are currently being studied to develop other less greedy methods, from 
structural properties of the Petri net in particular. 
6 For convenience reasons, it will be called A.1. 
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range: for our example it is the second operation of product A (using M2). In this 
way, still for a depth of  = 2, the fourth operation of job A cannot be present in the 
first sequence. On the other hand, the third operation can be part of it on the 
condition that the second one is present as well. This is due to the fact that the first 
operation of A has already been placed. Consequently, the next operation of job A to 
be placed can only be the second operation. However, for all other jobs still not 
used, all operations are candidates for the sequence. The algorithm determines all 
sequences. For this example, there are 68:  

– 1 sequence: A.2 – A.3; 

– 9 sequences: A.2 – (an operation of job B or C); 

– 9 sequences: (an operation of job B or C) – A.2; 

– 5 sequences: two consecutive operations of job B; 

– 4 sequences: two consecutive operations of job C; 

– 20 sequences: an operation of job B– an operation of job C; 

– 20 sequences: an operation of job C– an operation of job B. 

However, some of these sequences are equal from the point of view of their 
influence over the system’s performance. In fact, two operations belonging to two 
different parts and two different machines (A.2 and B.1, for example) can be equally 
considered in one direction (A.2-B.1) or in another (B.1-A.2) without a difference in 
results. The idea is to only determine non-equal sequences, in our example, 46 of 
them. In fact, we only need to delete one sequence out of two in the form 
(operation 1 – operation 2), (operation 2 – operation 1) each time operation 1 and 
operation 2 belonging to two different ranges and to two different machines. 
Obviously, eliminating equal sequences is not so easy for  > 2.  
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1 15 4 3 2

M1 M1M4 M2 M5
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Figure 7.12. EG modeling the permanent state 
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This is how elimination is performed throughout the development of these 
sequences. These sequences are gradually developed with elimination as doubles 
appear. These sequences are then evaluated with the help of the cost function. This 
evaluation is carried out after virtual placement of all operations considering the 
three placement policies to determine the best among them. From this, we retain  
the first operation to actually be placed, and we restart the calculation with the 
remaining operations. This method is a type of controlled beam-search.  
The final result (the permanent state) is modeled in the form of an EG Petri net 
(Figure 7.12).  

A dual Gantt chart can also represent such a result (Figure 7.13) where product 
and machine viewpoints are considered.  

5 10

1

4
3

M

M

M4

M3

M

Figure 7.13. Gantt chart representing a cycle

In theory, this cycle is a frame to be repeated 30 times to obtain the initial 
request. In reality, this permanent state will last slightly less than 30 cycles because 
a temporary state must also be established to start production and another temporary 
state to end production. 

7.6. Extension of cyclic strategies 

During this chapter, and for purely educational reasons, we have considered an 
example where the initial request is “well formed”, i.e. already cyclic (30 times a 
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cycle of 1 part of A, 1 of B and 1 of C). We will justify this data later. In fact, 
production management generally expresses a global demand: 30 parts of A, 30 
parts of B and 30 parts of C (Figure 7.2). It is then the turn of planning to define the 
ways in which to accomplish this production in cyclic function. In order to do this, 
we must determine the maximum theoretical flow to produce all 90 parts. This 
comes down to determining the optimal theoretical flow corresponding to 
production ratios per product: Ra = 30/90 = 1/3 of total A flow, Rb = 1/3 of B and 
Rc = 1/3 of C.  

Note that Zi is the operation load of machine Mi brought back to a single part 
considered as “average”7. To calculate Zi, the idea is to find the sum, for all 
operations using Mi, of the product of execution time of the operation by the usage 
ratio of this operation. This ratio is calculated by the product of the production ratio 
of the corresponding part by the routing ratio of the branch considered as illustrated 
in Figure 7.2. For example, M6 machine workload is equal to the product of the 
timeframe of the only operation needed (1 UT) by the production ratio of the 
corresponding product (Ra = 1/3) and by the routing ratio of the corresponding 
branch ( ), or Z6 = 1* *Ra = /3.  

This workload Zi is based on production ratios of each product: Ra, Rb and Rc. It 
is also based on routing ratios8  and  (ranges A and C in Figure 7.2).  

We thus obtain 

RaZ
 RcRbRa+Z

*Rc*RbRaZ
)(Rc)(RaZ

RbRaZ
Rc  Rb Ra Z

**16
**2*2*25

33*34
1**41**43

*5*52
*2*2*21

or  

16
**25

*34
*43
*52
*21

Z
 RcRa+RbZ

RcRbRaZ
RbRaZ
RbRaZ

  RcRbRaZ

7 It is a part made up of 1/3 of A, 1/3 of B and 1/3 of C. 
8 The choice of the branch for part B does not influence machine loads (M2 and M4) or 
system flow since they both contain the same machines and production times. That is why we 
have not associated routing ratios with these two branches. 
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We observe that the machine workloads are all lower than or equal to the M2 
workload regardless of routing ratio values  and . Since the optimal flow 
corresponds to the one on the machine with the largest load (max(Zi)), the optimal 
production flow cannot be higher than a part every 3.33 UT. Consequently, the 
theoretical lower bound of total production time is equal to 90*10/3 = 300 UT. We 
therefore cannot complete the initial demand in less than 300 UT. This timeframe 
corresponds to the continuous operation of machine M2 to execute all 90 parts. This 
calculation makes it possible to use the minimum production timeframe and to 
identify the bottleneck machine associated with this production. 

The content of a production cycle still remains to be determined. Let X be the 
number of repetitions of the cycle and E = {na A, nb B, nc C} be the cyclic 
production horizon (number of parts actually produced per cycle). Although the 
production flow does not depend on  and  (for this example obviously), the 
number of parts to be produced per cycle is closely linked to these ratios. For 
example, if  = 1/2 (half of parts A are executed by M6 and the other half by M3), 
then na has to be in multiples of 2. In this way, the higher the  denominator 
(respectively ), the larger the production horizon becomes. We should add that if 
the production horizon is large, then the scheduling becomes more complex to 
determine.  

For our example, the only constraints are: cba nnn 9 and x* na 30 10. An 
obvious solution consists of setting 1cba nnn  and x 30 , which 
corresponds to the example considered throughout this chapter. It is easy to verify 
that cycle time for this example is equal to 10 and corresponds to the optimal desired 
flow. This situation is ideal, because the different number of parts may be first 
among themselves or the smallest common divider may be too large to be 
interesting. In fact, it would not be interesting from our point of view to retain a 

9 In order to respect the initial demand (as many A as B and C). 
10 In order to respect the initial A demand: the number of repetitions on the cycle multiplied 
by the number of A parts completed per cycle is equal to the number of A parts requested. 
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permanent state where the cycle would be too large (in number of parts) because it 
would only lead to insufficient repetition. It is thus necessary to first establish a 
finite planning phase in order to determine one or more cyclic permanent states to 
develop from a given initial request.  

We will now use the example of an initial request for 400 parts of product A, 200 
of product B and 400 of product C [CAM 98]. An obvious solution would be to 
produce this request by repeating a permanent cyclic system containing 5 parts (2 A, 
1 B and 2 C) 200 times. However, this production can also be accomplished in two 
cyclic productions: the first one consists of repeating a cycle of 4 A, 3 B and 3 C 50 
times and the second one consists of repeating a cycle of 4 A, 1 B and 5 C 50 times 
[CAM 98]. For this example, the timeframe of the solution made up of two different 
permanent states is less then a single state. In fact, completing the request in several 
cyclic systems instead of a single one can be better in terms of productivity. This 
results in a flexibility of production jobs. To evaluate and choose a solution, we 
must be able to compare the different candidate solutions. The criteria to use here 
are numerous: total estimated production time (at this stage in the study, we only 
have a first evaluation out of temporary systems and no estimate of the necessary 
work-in-process for these systems), solution determination complexity, number of 
temporary systems to calculate, etc. Several of these criteria contradict each other. 
This is the case notably for minimization of cycle sizes (decrease of complexity) and 
maximization of flow. In addition, there are numerous parameters to the problem: 
the number of temporary systems, the number of parts to produce by product on 
each cycle, the number of repetitions of each cycle, etc. [CHA 03]. 

7.7. Conclusion and prospects 

Throughout this chapter, we have presented the main advantages of the cyclic 
approach to the resolution of scheduling problems. This notion seems quite natural, 
but this type of methodology is still rare in operation research and very rare in 
production. Studies by Professor Chrétienne and his team [MUN 91, HAN 94] have 
largely contributed to the demonstration of the richness and efficiency of such 
methodologies. In this case, hypotheses associated with this type of problem remain 
restrictive: infinite problem (or considered as such), prior in-depth knowledge of 
products to be manufactured throughout a cycle, etc. 

The advantage of studies on cyclic scheduling in flexible manufacturing systems 
[HIL 89, VAL 94, CAM 97, KOR 02] resides in the fact that they address in an 
original manner the problem of complexity decrease for the scheduling problem 
with the help of production organized in repetitive production cycles. Still, in the 
case of cyclic scheduling, research procedures for solutions remain heuristic and 
cannot pretend to be optimal in theory. Generally, the combinatorial analysis of 
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these problems remains complex and the problem is globally NP-hard, which 
prevents the practical application of exact methods.  

Throughout this chapter, a few paths were mentioned to almost optimally solve 
the cyclic scheduling problem. In fact, the progressive operation placement approach 
can become exact if we consider at the start scheduling of a sequence of operations 
with a length equal to the total number of operations to be placed in the cycle and 
that we propose for each operation to be scheduled all possible placement policies in 
the different availability intervals. This method is exact but very complex. An 
approach that would limit this combinatorial analysis as much as possible is in 
development. The most promising path seems to reside in the structural analysis of 
the cyclic scheduling problem taking into consideration particular properties of the 
Petri net model associated as well as characteristics of manufacturing production 
systems. It is in this spirit that we have presented this inventive method concerning 
cyclic scheduling. The main problem encountered is not so much in the scheduling 
optimization problem of a cycle as in the preliminary planning phase. It is during 
this phase that we search for the most appropriate cyclic scheduling strategies 
considering (finite) production to be completed, with criteria involving first 
minimization of total production time and second minimization of the system’s 
work-in-process. In any case, the cyclic scheduling problem remains an open 
problem from the standpoint of resolution methods to be developed as well as from 
the standpoint of fields of application. 
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Chapter 8 

Hoist Scheduling Problem 

8.1. Introduction

Since the 1970s, and more specifically since the founding works by Phillips and 
Unger [PHI 76], automated electroplating systems have been widely studied. Such 
systems are composed of tanks containing chemical or electrolytic baths in which 
parts (or products) to be processed are submerged. Transportation of products 
between tanks is performed by one (or more) hoist(s). When the production line is 
dedicated to a single product type (printed circuit boards, for example), hoist 
movement sequence is cyclic and an open loop control is used. Small series 
production lines, or even unit production lines are automated in closed loop because 
hoist movements are no longer cyclic. Several scheduling problems encountered in 
this context have aroused the interest of the scientific community. Since they all 
involve hoist movement scheduling, the generic name “Hoist Scheduling Problem”
or HSP is generally used to refer to them in scientific literature. However, they 
involve different characteristics: some of these are static (or even cyclic) and others 
are dynamic. This chapter presents them, paying particular attention to:  

– the physical system and production constraints to consider; 

– a classification of scheduling problems encountered; 

– the main cyclic scheduling approaches in scientific literature; 

– studies dedicated to the resolution of non-periodic problems. 

Chapter written by Christelle BLOCH, Marie-Ange MANIER, Pierre BAPTISTE and 
Christophe VARNIER.
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8.2. Physical system and production constraints 

An electroplating line is generally made up of (Figure 8.1):  

– one or more arrival and exit stations,

– carriers on which parts to produce are grouped into batches, 

– tanks, often lined up, containing chemical solutions, 

– hoists, or robots, ensuring transportation of carriers between tanks. 

Figure 8.1. Basic line

The carrier is an entity which groups parts that are to be treated in an identical 
way. The quantity of assembled parts is a specification in the same way as the
processing sequence associated with the carrier. This specification is an ordered set 
of operations that it must undergo (described by the station where each operation 
must be performed and the corresponding processing time). It generally contains the 
following phases: 

– loading of parts on a carrier performed at the arrival station; 

– preparation (cleaning and rinsing of parts); 

– the optional pre-treatment, by applying one or more sub-layers; 

– metal deposit electrolytically or chemically; 

– finishing (passivation by phosphate treatment, whirling, drying, etc.); 

– unloading at the exit station. 

The processing specifications can also include operations executed after 
unloading of parts (stripping or rinsing, for example) for cleaning the carrier. 
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Processing operations (or treatments) cannot be interrupted (no preemption is 
allowed). In addition, no wait is allowed between two successive processing 
operations in order to avoid deterioration when parts are exposed to air. When a 
carrier is taken out of a tank after a processing operation, it must be transported as 
fast as possible into the tank where the next operation will take place. Because of 
this, intermediate storage between tanks is not possible. Hoists must not stop when 
they transport a carrier. 

8.2.1. Tanks 

Tanks contain chemical solutions into which carriers are soaked. Processing time 
in each bath (or operation duration) is limited: most often, chemical experts 
responsible for production define a minimum processing time (needed to obtain 
desired quality) and a maximum time beyond which the product: 

– has not changed (total indifference); 

– has tolerable deterioration (which should generally be identical on a complete 
series for consistency); 

– becomes defective, because the processing time no longer corresponds to the 
chemical characteristics of the treatment bath previously set. 

In a standard case, each tank receives one carrier at a time (it is then called a 
single-capacity tank) and carriers are only processed once into each tank. There are, 
however, several extensions to this basic model: 

– if carriers are processed more than once in the same tank, it is called multi-
function (Figure 8.2) otherwise it is called mono-function. This additional degree of 
freedom carries a blocking risk, even if the maximum time constraint is relaxed. In 
addition, it makes variable indexing trickier; 

– if a treatment is particularly long, creating several places in a larger tank, 
called a multi-capacity tank (or duplicated tank) is advantageous (Figure 8.2). This 
complicates the problem since the distance matrix between tanks is no longer 
computable. The operation must be assigned to one of the places in the tank to know 
exact distances. Most often, this assignment is not carried out beforehand and only 
the greatest distance is considered, but this simplification can be tricky when multi-
capacity tank places are not consecutive.  
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Figure 8.2. Variation on processing resources 

8.2.2. Hoists 

When a small production line has only one hoist it is called a single-hoist, 
otherwise it is called a multi-hoist (Figure 8.3). In practice, the number of hoists 
varies from 2 to 6, but is generally between 2 and 3. Mostly identical, they move on 
a rail set along the tanks, not allowing crossovers. In addition to transport 
operations, they may also move while empty to let another hoist carrying a carrier 
pass through. Transport must be assigned to hoists and collision risks appear. To 
avoid any interference, a transport can require the addition of clearing movements of 
other hoists. 

Figure 8.3. Diagram of a line segment with two hoists

The execution of a transport operation is complex: the empty hoist joins the tank 
containing the carrier, comes down, catches and lifts it. It then stops for a set 
draining time (to avoid contaminating neighboring baths), moves toward the 
destination tank, takes another pause for stabilizing (to limit carrier oscillation) and 
places the carrier. Movement time between two tanks can be specified by a time 
matrix or computed more precisely (taking into account acceleration, deceleration 
and nominal speed). Generally, two speeds are used depending on whether the hoist 
moves while empty or with a load. 
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Complex lines also use other types of transport systems, transfers, which 
transport carriers between several line segments (often called “in I” because of their 
linear configuration). They are generally small cars moving on rails perpendicular to 
the one supporting the hoists (Figure 8.4). Their number depends on line dimensions 
(number of I segments and number of tanks for each of them), but is often between 1 
and 3. Synchronization between the transfer and a hoist is sometimes necessary for 
carrier exchange. The robot places the carrier in the little car transporting it up to the 
segment on which it must continue its treatment, and then another hoist picks it up. 

Figure 8.4. Diagram of a complex system with a transfer

Scheduling problems involved in this context generally concern the management 
of all these handling resources. The scheduling to be determined is then represented 
in the form of a specific chronogram, called time-way chart, and commonly used by 
line designers and users to represent hoist movements between tanks (Figure 8.5).  

Figure 8.5. Graphical representation of a transport operation 
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8.2.3. Carriers 

Generally, there are enough carriers and they are not considered as resources. 
However, sometimes, they cannot come off the line after unloading and their 
number is limited. They might hinder the progress of current active carriers because 
they are temporarily stored into unoccupied tanks. They must be moved when 
treatment of a full carrier requires the tank in which they are lying. This makes 
control even trickier. In reality, this case happens only rarely and will not be 
addressed in this chapter. 

8.3. Hoist scheduling problems

8.3.1. General presentation 

The common notion of a job used in scheduling can be associated with the 
carrier or parts, knowing that between loading and unloading, these entities are taken 
together. It seems even more natural to consider the carrier if the processing 
specifications include cleaning operations (see section 8.2). However, carriers may 
be critical resources (see section 8.2.3) and the parts arrival rule does not depend on 
their availability. Linking the concept of job to the carrier can turn out to be 
inappropriate. However, this approach is used in this chapter, because it is the one 
used by most authors, and cases where it is not applicable still remain relatively rare.  

Electroplating includes two types of tasks (processing and transportation), and 
two types of resources (tanks and hoists). However, the conjunction of no-wait and 
no preemption constraints links processing operations to transport. In particular, 
hoist movement durations must be taken into account. The problem consists of 
scheduling transport in order to optimize one or more criteria, respecting: 

– constraints relative to one or more product types:  

- the sequence of operations for each carrier, 

- bounded operation times, draining and stabilization times; 

– no wait and no-preemption constraints, which lead to: 

- absence of intermediate buffer between tanks, 

- obligation to consider robot movement durations; 

– constraints linked to resources: 

- tank capacity (single-capacity tank or multi-capacity tank), 

- number of available hoists and their capacity, 
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- possibly the number of carriers and the fact they must stay in the line (see 
section 8.2.3); 

– spatial constraints leading to the risk of collision between hoists. 

For each transport, starting and ending tanks and thus transport duration are 
known. However, the hoist’s current position before the transport is performed 
depends on the sequence of movements. The time required to move whilst empty 
toward the starting tank is a variable to be determined with scheduling (such as exact 
processing times). In addition, an assignment sub-problem appears if the line 
contains multi-capacity tanks or several hoists. Assignment may be static (it 
precedes calculation) or dynamic (it is done during resolution). 

This presentation shows that the hoist scheduling problem attracts many 
constraints. However, processing time margins, and especially larger ones, allow us 
to momentarily store jobs in the corresponding tanks as long as the maximum 
boundary is respected. Although this general HSP description stands for all existing 
cases, the scheduling problems involved often have different optimization criteria 
and characteristics, greatly linked to studied physical systems, to processing 
constraints and to considered modes of control. The approach depends particularly 
on the compromise to be reached between the three main objectives which are 
productivity, quality and flexibility. The following section provides a general 
overview of these different problems, by linking them to corresponding production 
modes. 

8.3.2. Static scheduling problems 

Hoist systems can be used in very different contexts. In very large series, 
consecutive jobs are all identical and production is said to be mono-product. The 
transport sequence is cyclic: the same sequence of hoist movements is repeated over 

consecutive periods. We speak of cycle of degree n or n-periodic cycle when n
jobs are introduced in the system throughout a period. Most manufacturers settle for 
1-periodic solutions even though we know that they are not dominating solutions. 
This cyclic operation mode has led to the definition of a first hoist scheduling 
problem known as a cyclic hoist scheduling problem or CHSP [LEI 89a]. Its goal is 
mainly represented in terms of productivity and quality. The searched solution is the 
cycle maximizing line productivity, minimizing period for a set cycle degree n. It 
specifies the sequence of transports, as well as the start date of each one throughout 
a period and must be feasible, i.e.: 

– describing a sequence of movements physically executable by the hoists; 

– inducing operation times compliant to specified boundaries. 
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The simplest CHSP, called a basic problem [MAN 94b], consists of searching 
for the minimal 1-cycle period in the case of simplest lines (i.e. single-hoist I only 
containing single-capacity tanks and mono-function tanks). Even though some of the 
constraints are ignored, Lei and Wang showed that it was NP-complete [LEI 89b]. 
This explains why most researchers only solved this simplest case. 

In large series, the line processes different types of jobs (multi-product case).
However, a cyclic management mode can still be considered if there are only a few 
types of products (two or three) and if they are quite similar. Nevertheless, the 
proportion of each job type to process must be known and the problem then contains 
an additional decision level: since jobs are not identical, building the hoist 
movement sequence must be preceded by (or accompanied by) a choice of product 
type mixing. The same job sequence periodically enters the system and the sequence 
repeated by hoists includes all transports required for processing all jobs involved. 
This cyclic problem can be considered as a multi-product CHSP. 

If such a cyclic mode cannot be used, an alternative consists of working by
runs. This management mode is a chain of mono-product production phases. The 
main problem then occurs during production change. The simplest solution consists 
of completely emptying the processing line before starting a new run. However, it is 
worth enabling the cohabitation of two job types in the system during the transient 
phase, in order to minimize its duration. This is the subject of the third type of static 
HSP. 

Finally, when the line must process various parts in small series, producing by 
mixing or by runs is no longer possible. However, if a quite stable production plan 
exists, this production context can still lead to the definition of a static problem. If 
information delays are sufficient, a first decision level consists of scheduling the 
different jobs to process soon to achieve productivity gains and improve the quality 
of treatments. On the one hand, the arrival order of jobs greatly influences total 
production time. On the other hand, wisely choosing job arrival dates limits the 
number of resource conflicts between carriers and reduces the number of treatments 
whose duration exceeds the specified maximal processing time.  

By contrast with cyclic problems commonly referenced by the CHSP acronym, 
the last two problems (static but not cyclic) presented above were grouped under the 
generic title of “predictive hoist scheduling problem” or PHSP  [BLO 99b, ROS 99]. 

8.3.3. Dynamic scheduling problems 

Sub-contracting companies must generally treat a large variety of jobs in small 
quantities and in very short delays. Faced with the decreasing size of series and 
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reduction in delays, they must combine various jobs on the line and increase the 
flexibility of their automated systems. The increasingly short delays imposed by 
their prime manufacturers do not enable them to establish reliable planning of 
several hours, and manufacturing managers must be able to react quickly (to an 
urgent order for instance). Professionals say that the line is managed in random 
mode. There are two main approaches in hoist movement scheduling based on the 
trade-off to reach between three main objectives (productivity, quality and 
flexibility):

– if quality of treatments is the main objective, all transports are scheduled 
before letting any new carrier enter the system. This forecasted scheduling must 
consider all present carriers (in tanks or at loading station) and respect all 
constraints. In particular, new jobs must be able to come in as soon as possible, 
while making sure (among other things) that all maximum processing times will be 
respected and that no job will become defective. Generally, the criterion to minimize 
is the makespan (i.e. end date for all jobs). This approach is very much decried in 
the manufacturing world as not being robust enough, because it suggests transport 
start dates which must be strictly respected, which is almost impossible in reality 
because of unavoidable production hazards. Nevertheless, this solution remains the 
only one suitable for high added value production runs for which treatments must be 
of very high quality (in the aerospace field, for example). The associated scheduling 
problem is called the “dynamic hoist scheduling problem” or DHSP  [LAM 96b]; 

– if priority is given to productivity and flexibility (in terms of job diversity), 
transport tasks are dynamically assigned to hoists. A hoist control system generally 
relies on a list algorithm that determines which carrier will move next each time a 
hoist ends a transport. This decision is generally made in relation to the nature of the 
bath in which the carrier will stay and the time it will spend there before exceeding 
its maximum processing time. Respect for maximum boundaries is not always 
ensured, but in certain cases, it is possible to limit the negative consequences of such 
a violation (by decreasing the intensity circulating in the bath, if the operation 
involved is electrolysis, for example). This second approach is called “reactive hoist 
scheduling problem” or RHSP  [BLO 97] and is different from the previous one by 
the decision horizon involved. The DHSP corresponds to “by job” management 
whereas RHSP corresponds to “by task”.

8.3.4. Classification and brief state of the art 

The wealth of literature dedicated to HSP combined with the diversity of cases 
treated makes classification essential. An extension of the normal notation used in 
scheduling [GRA 79] was proposed in [BLO 99b] and [MAN 03]. It enables us to 
situate the HSP to be solved among the various existing instances, and to identify 
the class to which it belongs. It considers some of the main physical and logical 
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parameters found in the literature related to the HSP. It covers four fields: type of 
HSP, physical parameters, logical parameters and criteria. Each field consists of 
several parameters: 

– type of HSP: the HSP tackled can be static (cyclic (CHSP) or not cyclic 
(PHSP)), or dynamic (dynamic (DHSP) or reactive problems (RHSP);

– physical parameters: this field respectively includes the number of lines (nl),
the number of transfers connecting these lines (ntransfer), the need of 
synchronization between hoists and transfers (synchro). It also provides, for each 
line i of the facility (i=1 to nl), the number of hoists (mh), the number of tanks (mt), 
the number of carriers (nc), the maximal capacity of tanks (ct), the constraints 
involved by the characteristics of carriers (circulation of products (circ), a dedicated 
transport system to ensure the return of empty carriers from the unloading station to 
the loading station (ret), empty carriers remaining on the line if there is no storage 
place near the facility (empty)), and finally the configuration of the loading and 
unloading stations: associated or dissociated stations (load-unload);

– logical parameters describe the production environment to be considered: the 
total number of parts to be treated (nparts), the number of different processing 
specifications (nps), the maximal number of operations among those processing 
sequences (nop), the possible cleaning of empty carriers after the unloading 
operation (clean) (one or several operations included in nop), and finally the 
recirculation constraint (recrc) involved by multi-function tanks; 

– criteria: this field gathers one or several objectives to be optimized. The 
literature dedicated to HSP includes several criteria, for instance: minimize the cycle 
time for the CHSP (Tmin), minimize the makespan (Cmax), maximize the 
throughput (ThroughputMax), minimize the temporary period between two mono-
product cycles (TransMin), minimize the number of hoists (mhmin), minimize the 
waste in environmental issues (WasteMin), minimize the number of defective jobs 
(DefectiveJobsMin), maximize the quality of treatments (Qmax). The generic value 
“Other” can be used if the considered criteria does not belong to the above list, and 
the notation can easily be extended if necessary. 

To summarize, the complete notation is: XHSP | nl, ntransfer, synchro, (mh, mt, 
ct)i=1 tonl/nc, circ, ret, empty/load-unload | nparts/nps, nop, clean, recrc | criteria.

This has enabled its authors to classify approximately 100 publications in tree 
form, by defining one tree per acronym identified in the previous section, giving a 
global view of the research carried out. An associated state of the art is detailed in 
[ROS 99]. Table 8.1 provides a summary and offers some references both to the 
main publications and to more recent works. The complete notation associated with 
each of these publications is provided in section 8.8.  
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This bibliographical work shows that most authors consider a relatively simple 
line (in I, single-hoist and single-capacity tanks). This naturally prevents us from 
applying the proposed solving approaches in real contexts (because industrial 
facilities are generally more complex). This does not mean that researchers are not 
interested in real production lines. However, the problem is so complex (see section 
8.3.2) that the most practical path consists of addressing the simplest cases, and then 
studying possible extensions. Unfortunately, these might sometimes be impossible 
to implement (notably because of their too large combinatorial).  

CHSP Single-hoist, single-capacity tanks and mono-product: [PHI 76, LEI 93a, 
ARM 94, SON 95, LIM 97, CHE 98, MAT 00, SUB 06]
Single-hoist, single-capacity tanks and multi-product:
[PTU 95, VAR 00, MAT 06] 
Single -hoist, multi-capacity tanks and mono-product:
[SHA 88, LEI 89a, HAN 93, LEI 94, LIU 02, ZHO 03, XU 04, KUN 06] 
Multi-hoist, single-capacity tanks and mono-product:
[LEI 93b, YAN 01, MAN 06, MAN 08] 
Multi-hoist, multi-capacity tanks and mono-product:
[LEI 91, HAN 94, MAN 94b, ARM 96, BAP 96, RIE 02, VAR 97, MAN 00] 

PHSP Transient phase scheduling: [VAR 96] 
Job scheduling at the system entry:  
[CAU 95, FLE 95, CAU 97, LAC 98, BLO 99a, ROS 99, FLE 01]

DHSP Single-hoist and single-capacity tanks:  
[YIH 94, CHE 95, GE 95, ROS 99, FAR 01, HIN 04, PAU 07]
Single-hoist and duplicated tanks: [SPA 99] 
Multi-hoist: [LAM 96a] 

RHSP Single-hoist and single-capacity tanks: [YIH 93]
Multi-hoist: [THE 90, JEG 06] 

Table 8.1. Some publications relating to the different classes of HSP

The presented summary also shows that much effort has been expended to solve 
the HSP, while emphasizing that this has not been equally distributed between the 
different existing variants of the problem. These contrasts are clearly linked to the 
evolution of production conditions over time. In fact, the first research studies were 
carried out when mass production was still dominant: only the mono-product cyclic 
problem was really interesting for companies. This explains why the search for an 
optimal cycle in this context has led to more than half of the listed publications. 
These studies resulted in the development of relatively efficient optimal algorithms, 
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making it possible to schedule larger production lines relevant to the industry. In 
addition, even though there are few facilities dedicated to a single type of product 
today, there are still some in certain sectors and these algorithms are still current.  

Gradually, series size and delays have decreased. A growing need for increasing 
processing system flexibility has arisen. This has led to the emergence of research 
relative to lower production horizons: real-time task assignment (RHSP), mixing of 
jobs and transient phase scheduling between mono-product production phases 
(PHSP). RHSP was the first approach developed in the industry, obviously because 
available automatisms, specifically industrial logic controllers already used to 
control hoists, allowed it to be implemented quickly. Another reason was also 
probably because this type of control is the one offering the greatest flexibility (see 
section 8.3.3) and robustness (when production hitches occur). The success of this 
solution, the generalization of its use, may have impeded the development of other 
suitable paths and limited its improvement. This accounts for the low number of 
publications listed for the multi-product CHSP and optimization of transient phases, 
and for the near-total absence of recent research projects relative to RHSP. 

However, this hoist control mode does not always respect the specified 
maximum processing times. This defect motivated research on arriving job 
scheduling and DHSP. Since these problems have only recently appeared in reaction 
to existing system failures, there are fewer publications about them than those 
related to CHSP. They have however multiplied in recent years and this interest may 
certainly reduce this difference over time. Transient phase scheduling has scarcely 
been studied, whereas mixing of product types seems to benefit from renewed 
interest. Some production line designers would now like to direct their research 
toward hybrid control, which would adapt hoist control to the nature of jobs entering 
the system. An open loop cyclic control would be used when jobs arriving over a 
given horizon are identical and dynamic control would be used when a different job 
type arrived.  

Finally, this chapter would not be complete if while highlighting the problems, it 
did not address the methods used to solve them. Once more, it seems impossible to 
explain each one of the listed publications (which are described in [MAN 94a, 
LAM 96b, ROS 99, MAN 03]). Only a few of the main solving approaches and 
models will be presented. Two models in particular, developed for CHSP, exist on 
which most of the other approaches proposed thereafter are based. Section 8.4 will 
start with their presentation and will then describe a few CHSP resolution methods, 
before giving information on studies related to other HSP classes. 
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8.4. Modeling and resolution 

8.4.1. Notations 

A definition of notations used in this chapter is necessary in order to describe the 
presented models. To facilitate understanding and avoid any confusion with certain 
common notations used in scheduling, these notations have been reviewed and 
unified. They are therefore not representative of those commonly adopted in the 
industry or in the literature dedicated to HSP: 

n   number of jobs;

in  number of treatments in the processing sequence of job i )     1 ( ni ;

mc  number of tanks in the processing line involved; 

kM   tank k based on tank numbering set beforehand ) c    1 ( mk .

NOTE.– In general, loading and unloading stations are assimilated to fictitious tanks 
respectively numbered 0 and mc+1. By convention, we consider that a carrier arrival 
in the system corresponds to the end of its loading, whereas its exit date corresponds 
to the time when the hoist places it at the unloading station. These commonly used 
(except in the case of extensions taking into account different possible 
configurations for loading and unloading stations) hypotheses will be the ones 
adopted in this chapter. Consequently, ni does not include loading or unloading 
operations, which are implicitly assimilated to indexes j = 0 and j = ni + 1.

Also:
  , ji   the tank where the jth treatment of a job i is performed, 

)    1 ,     1 ( injni ,

ps
ij   the actual time for the jth treatment of a job i )    1 ,     1 ( injni ,

ps
ij and p

s
ij   maximum and minimum ps

ij  times as specified in the processing 

specifications,

ji t ,  transport of carrier i between   ,   ji  and  1 , ji ,

pt
ij  time required to execute ji t , ,

,
)    0 ,    1 ( injni ,

tt
ij ji t ,  start date, therefore end of the treatment of i in   ,   ji ,

vkl   constant duration of empty hoist movement between kM  and lM .
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Modeling of the cyclic problem also requires the definition of:

–  the desired cyclic scheduling period; 

– N the number of carriers to consider, i.e. the number of carriers simultaneously 
present in the system ( maxmax NNN  ,    1  being a constant representing the highest 
possible number). N  can either be a data set beforehand or a variable defined at the 
same time as scheduling. 

8.4.2. CHSP resolution: basic problem 

The two most widely used models to solve the basic problem (see section 8.3.2.) 
are presented in this section, and are based on descriptions from Manier in 1994 
[MAN 94a] and Lamothe in 1996 [LAM 96a]: 

– the first model presented, called the “carrier model”, involves all operations 
relative to carriers which can simultaneously be present in the system; 

– the second, called the “period model”, indicates constraints linking operations 
involved during a given period  cycle. 

First, notations are simplified using the assumptions of the basic problem. The 
expression of constraints is given for each model and an example illustrates some 
associated solving methods, before presenting a common formalism [HAN 93]. 

8.4.2.1. Simplification of notations 

The carriers, all identical, have the same number of treatments ni, but this 
notation will not be simplified to avoid confusion with n, the number of jobs. In 
addition, all tanks are single-capacity and mono-function, and thus can be numbered 
in relation to the processing sequence order ([8.1]). Finally, all carriers have real 
identical processing times and transport time is independent of the moved carrier 
since departing and arriving tanks are the same ([8.2]). 

ji Mjinjniji,    , ,    1 ,     1 ,     [8.1] 

    ,    1 ,     2 ,  ppnjniji, s
j1

s
iji  [8.2] 

    ,    0 ,     2 ,  ppnjniji, t
j1

t
iji

These assumptions, as used here and by the majority of authors, allow us to note:

[j] the tank in which jth processing for all jobs is done, 
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ps
j   the real duration of jth processing for all jobs, 

pt
j  transport ji t ,  time for all jobs. 

On the other hand, the 1-periodic assumption requires that a carrier i enters the 
system exactly i-1 periods after carrier 1. In addition, all transports required by the 
processing specifications must be executed within a cycle ([8.3]), and variables t t

j1
can be renamed t j for conciseness: 

  1     ,    0 ,     2 ,  ittnjniji, t
j1

t
iji  [8.3] 

8.4.2.2. Carrier model 

ni + 1 variables of this model are starting transport dates for carrier 1 and period 
. They are calculated given that 0 0t  and considering three types of constraints: 

– chemical constraints, i.e.: 

- the no-wait succession of processing operations, indicating that the time 
between the date at which carrier 1 is lifted from tank [j – 1] and the date at which 
carrier 1 is placed in [j] (corresponding to two consecutive operations) equals the 
sum of the transport time between [j – 1] and [j] and the real processing time in [j]:

         ,    1 , ppttnjj s
j

t
1j1jji  [8.4] 

- respect for processing time limits: 

      ,    1 , pppnjj s
j

s
j

s
ji

Note that these constraints are independent once more of i. Therefore, they only 
need to be expressed for carrier 1. In addition, the conjunction of the two previous 
equations leads to the global expression of chemical constraints by: 

          ,    1 , ppttpnjj s
j

t
1j1jj

s
ji [8.5] 

– unit capacity constraints for each mono-function tank which, combined with 
the 1-cyclic assumption, require that a carrier be lifted from each tank and that 
another take its place (but not necessarily in this order) during a cycle.  must 
therefore be higher than all actual processing times: 

pnjj s
ji    ,    1 , or according to [8.4]: pttnjj t

jj1ji      ,    0 , [8.6] 
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– constraints linked to the single capacity hoist which must have enough time 
between two transports to move between the tank where it has just placed a carrier 
and the one where it will pick one up. This is expressed with the help of disjunctive 
constraints linking transport operations in pairs: 

 ,   1     , 0     , or

tt t
ij iji' j' j 1  j'

i
tt t

ij i' j'i' j' j' 1  j

pt t v

i, i' j, j' , i, i' n j, j' n

pt t v

 [8.7] 

By using equation [8.3]: 

  1    i'tt j'
t

j'i'  and   1    itt j
t
ij

expression [8.7] can therefore be replaced by:  

  1      1   

or

  1      1   

t
j jj' j 1  j'

t
j j'j' j' 1  j

i' i pt t v

i i' pt t v

In practice, disjunctions linking j' t , 1  to ji t , are the same as those linking 

1  , tq j'  to jqi t ,  (for q going from 1 to n-i, always by applying [8.3]). 
Disjunctions linking the first carrier to all the others simply have to be expressed. In 
addition, only N carriers simultaneously present in the system are liable to come into 
conflict for the use of the hoist. Consequently, only the disjunctions relative to the 
first N carriers must really be there. Finally, certain disjunctions are already 
arbitrated, as indicated in the next inequality:  

  1    ,      0 ,    1 , , , ittnjj'Nij'ji jj'i  [8.8] 

which expresses, for all j and j'  operations such that j'  precedes j in the 
processing specifications, that the first carrier will be lifted from [ ]j'  before any i
carrier entered later is itself lifted from [ j ]. This is easily justified in the mono-
product and mono-function case: since all carriers have exactly the same processing 
specifications and visit each tank only once, their order of circulation in tanks is 
identical to the one in which they enter the system. In this way, the first carrier will 
get out of any [ ]j' tank before any other carrier i entered in the system later, and, 
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even more important, before i gets lifted from [ j ] (since j'  precedes j in the 
processing specifications). Finally, hoist constraints are entirely represented by: 

    1   

 , ,  ,  2    , 0      , or

  1     

t
j jj' j 1  j'

i
t

j j'j' j' 1  j

i pt t v 

i j j' i N j' j n

i pt t v

[8.9] 

These constraints can also be expressed by considering the period beginning with 
transport ji t ,  (of carrier i between [ j] and [ j+1] ), and ending when transport of 

carrier i + 1 between the same tanks starts. In this cycle, ji t ,  must be finished 
and the robot must have had time to move while empty before another carrier i' is
transported between tanks [ ]j'  and [ 1]j' . The constraints are then independent 
from i and i'  carrier numbers (Figure 8.6) and can be written as: 

t-tnj'jj'j jj'jj'jj'i  -     mod )  (   ,      0 , , [8.10] 

with       and      t t
jj' j' jj j'j 1  j' j' 1  jp pv v  (where wu  mod  

represents the rest of the Euclidian division of u  by w ).

Figure 8.6. “Hoist” constraints expressed during a cycle

Function mod is non-linear. In addition, [HAN 93] introduces an integer 
representing the number of periods passed between beginning transport dates 
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respectively from [j] to [j + 1] and [ j’] to [j’ + 1] ([8.11]) and expresses the 
following constraints linked to the hoist ([8.12]) and to integers ([8.13]). 

     1)  (         
          

yt-ty 'jjj'j'jj

therefore,  -       mod )  ( 
    

yt-tt-t 'jjj'jj'j , [8.11] 

j'j'jjj'j'jji yt-tnj'jj'j  -    -      ,      0 , ,  [8.12] 

    ,1      ,      0 , , 
  

yyynj'jj'j 'jjjj''jji  [8.13] 

The carrier model is thus defined by equations [8.2], [8.3], [8.5], [8.6] and [8.9] 
or [8.2], [8.3], [8.5], [8.6], [8.12] and [8.13]. It is widely used in other works, 
generally within a branch and bound search procedure which progressively builds 
scheduling. The branch and bound processes are different depending on the authors. 
Nevertheless, the solving principle common to all these approaches can be presented 
here in a generic way without having to detail each of them. Most often, it starts 
with a calculation limiting domains for t t

ij and  by reducing the model to non-
disjunctive constraints. Thus, a lower boundary min and a higher boundary max of 

 can be evaluated to initialize the search [MAN 94b]. min indicates that  must be 
at least higher than the minimal time required to accomplish all transports of a cycle 
on the one hand, and than the largest minimum processing time contained in the 
processing specifications on the other hand (constraints [8.6]). max is determined by 
the least productive scheduling (but one that definitely respects all constraints), 
which consists of processing all carriers consecutively, so that these carriers are 
never in the system simultaneously. The assessment of tj domains is the direct 
consideration of constraints [8.3] and [8.5], from t0 = 0. The following example 
illustrates this step. The line studied has three tanks, M1, M2 and M3, and loading and 
unloading stations, M0 and M4. The maximum number of carriers present is set to be 
equal to 3, or one carrier per tank (no carrier should be in M0 and M4 because arrival 
in one of them corresponds either to arrival in the system or exit). According to the 
basic problem assumptions, the processing specifications follow tank indexing. 
Table 8.2 provides processing time boundaries in each one (in seconds). 

M1 M2 M3

Minimum time 2 4 3 

Maximum time 12 10 7 

Table 8.2. Processing time boundary in each tank
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Empty hoist movement duration between two adjacent tanks is equal to 1 second 
and the empty hoist movement duration between non-adjacent tanks is: 

  -      ,5    1 4,    0 , , jj'vvj'jj'j j 'jj' j

Transport time is obtained by adding the time needed to lift and lower the carrier, 
i.e. 1 second. Any transport thus requires 2 seconds, because a carrier only moves 
between adjacent tanks. Period boundaries then become: 

] min, max ], min = max (4  2,4) = 8, max = 2 + 2 + 2 + 4 + 2 + 3 + 2 + 4 = 21 

and conjunctive constraints linked to processing times and to the 1-periodic cycle 
assumption provide the following domains: 

0 ;  and   , where    4,14s t s t
0 0 0 00 1 0 1 0 1p p p pt t t t t t

similarly,   4  4  2  and    14   10  2 , where    10, 26   2 2 2t t t

finally,   10  3  2  and    26   7  2, where     15, 353 3 3t  t t .

  boundaries make it possible to deduce tt
ij domains since they are linked to tj by 

constraint [8.3] (Table 8.3). 

Carrier (i, 0)t (i, 1)t (i, 2)t (i, 3)t

i = 2 [9, 21] [13, 35] [19, 47] [24, 56] 

i = 3 [18, 42] [22, 56] [28, 68] [33, 77] 

Table 8.3. Variable domains for i > 1
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D1: (2,0)t  (1,1)t or (1,1)t  (2,0)t D10: (3,2)t  (1,3)t or (1,3)t  (3,2)t

D2: (3,0)t  (1,1)t or (1,1)t  (3,0)t D11: (4,2)t  (1,3)t or (1,3)t  (4,2)t

D3: (2,1)t  (1,2)t or (1,2)t  (2,1)t D12: (2,1)t  (1,3)t or (1,3)t  (2,1)t

D4: (3,1)t  (1,2)t or (1,2)t  (3,1)t D13: (3,1)t  (1,3)t or (1,3)t  (3,1)t

D5: (4,1)t  (1,2)t or (1,2)t  (4,1)t D14: (4,1)t  (1,3)t or (1,3)t  (4,1)t

D6: (2,0)t  (1,2)t or (1,2)t  (2,0)t D15: (2,0)t  (1,3)t or (1,3)t  (2,0)t

D7: (3,0)t  (1,2)t or (1,2)t  (3,0)t D16: (3,0)t  (1,3)t or (1,3)t  (3,0)t

D8: (4,0)t  (1,2)t or (1,2)t  (4,0)t D17: (4,0)t  (1,3)t or (1,3)t  (4,0)t

D9: (2,2)t  (1,3)t or (1,3)t  (2,2)t

Table 8.4. List of remaining disjunctions to arbiter

At this step, some disjunctions are already arbitrated: those between transports 
relative to operations linked by a precedence relation in the processing sequence 
(constraint [8.8]) and those whose variable domains are separate (consequently 
imposing the order in which they will be executed). The tree search procedure then 
consists of progressively building scheduling by arbitrating remaining disjunctions 
(Table 8.4). The branching phase corresponds to arbitration of these disjunctions, 
and the bound phase adjusts previous domain limits and recalculates a lower bound 
of  for each partial solution (by still using constraints [8.3] and [8.5]). At each new 
arbitration, constraint system consistency must be checked by ensuring that the 
decision taken has not reduced any domains to the empty set and that all conjunctive 
constraints [8.3] and [8.5], as well as those corresponding to arbitrations already 
completed, are still satisfied. 

The scientific studies contain several solving approaches (based on a principle 
similar to the one presented here), which are mainly distinguished by the arbitration 
strategy of disjunctive constraints (in other words the order in which they are 
considered) and evaluation and checking procedures used: 

– in the Shapiro and Nuttle algorithm [SHA 88], the jth tree level corresponds to 
the addition of carrier j + 1 (this is made up of all possible partial sequences between 
operations of carrier 1 and of the other carriers scheduled until j + 1th) and the 
evaluation uses the resolution of several linear programs; 
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– the evaluation phase from Lei and Wang [LEI, 89a] adjusts variable domains 
(called “time windows”), and these authors use a specific matrix to gradually build 
scheduling by choosing the next transport to place (Figure 8.7); 

a. Initial matrix b. Resulting matrix

(i,0)t (i,1)t (i,2)t (i,3)t

i = 1

i = 2

i = 3

i = 4

1 2

3

(i,0)t (i,1)t (i,2)t (i,3)t

i = 1

i = 2

i = 3

i = 4

1 2

3

4

Choice of transport to place in fourth position in existing partial scheduling 
{(1,0)t; (1,1)t; (2,0)t; ?...} 

  Candidate operations 

Figure 8.7. Illustration of the exploration strategy from [LEI 89a]

– [MAN 94b] uses constraint logic programming. Disjunctions are arbitrated 
starting with those for which there is only one possible choice, then by arbitrating 
those where one of the choices seems to have been more “probable” (by comparison 
with temporal windows involved), before ending by those where temporal windows 
provide no liable element to guide the choice. The evaluation uses a constraint 
propagation mechanism inherent to the languages used. 
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D6
(2,0) <(1,2)

(t0 , t3 , t1 , t2 ) = 20;
(t0 , t1 , t2 , t3 ) = 21.

[16,18]; t0=0;t1 [7,9];
t2 [19,21]; t3 [26,30] (t0 , t2 , t3 , t1 ) = 17;

D12

D1
(1,1)<(2,0)(2,0) <(1,1)

Pog ={(2,0)<(1,3); (1,3)<(3,0)}   Rdg ={D12}
[14,21]; t1 [7,14]; t2 [17,26]; t3 [22,35]

Pog ={(1,1)<(3,0); (1,2)<(2,1); (1,2)<(3,1); (1,2)<(4,1); (1,2)<(3,0);
(1,2)<(4,0); (1,3)<(2,2); (1,3)<(3,2); (1,3)<(4,2); (1,3)<(3,1);
(1,3)<(4,1); (1,3)<(4,0)}

Rdg ={D6, D12, D15,D16}
[10,21]; t1 [4,14]; t2 [10,26]; t3 [15,35]

Pog = Rdg ={D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16,D17}
[8,21]; t1 [4,14]; t2 [10,26]; t3 [15,35]

(1,2) < (2,0)

(2,1) <(1,3) (1,3) < (2,1)

Figure 8.8. Resolution using the carrier model

To illustrate these methods in a concise way, the previous example is solved here 
with a simplified arbitration strategy which considers the disjunctions according to 
the order of Table 8.4 and gives priority to the carrier entered last in the system. The 
corresponding search tree is presented in Figure 8.8. A node corresponds to the 
arbitration of one of the disjunctions and also contains information available before 
branching, that is, the list of disjunctions remaining to arbitrate, as well as the list of 
partial orders and temporal windows deducted from the previous node arbitration. In 
fact, in order to limit the number of nodes, the evaluation phase is supposed to use a 
constraint propagation mechanism similar to the one from [MAN 94b].  and tj

domains are the only ones indicated, knowing that the other domains deduct 
themselves as in the preliminary calculation. 
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The first branch thus built leads to a failure. In fact, since the line only contains 
one hoist, starting the second carrier before taking out the first one from M1 would 
come down to placing carrier 2 before it is available. The procedure therefore 
translates the second D1 alternative. The evaluation adjusts temporal windows by 
using the initial conjunctive constraints ([8.3] and [8.5]), to which the conjunctive 
constraint translating the order adopted for D1 is added. The lower  boundary in 
particular increases by two and several partial orders are imposed by constraint 
propagation. Only four disjunctions remain to be arbitrated and the following node 
consists of processing the first one. The branch developed first again gives priority 
to carrier 2 and no inconsistency is detected. Boundaries are readjusted, two partial 
orders are taken out and only D12 remains to be arbitrated. By reiterating the process, 
a first solution is determined. It is the cycle represented by the generic transport 
sequence {(i, 0)t; (i – 1, 2)t; (i, 1)t; (i – 1, 3)t}, with a minimum period equal to 16 
seconds. Retained execution dates are minimum tj boundaries. The procedure then 
searches for a better solution by considering the other possible choice for D12. The 
evaluation of the minimum  boundary turns out to be too high and the branch is 
forsaken. Figure 8.8 indicates that by continuing the evaluation, another less 
interesting solution would have been determined. Similarly, the evaluation of min

for the second alternative of D6 leads to forsaking the branch. The first solution 
found thus turns out to be the optimal solution. Note that because of the simplicity of 
the example involved, all the cases possibly encountered have not been illustrated. 
Notably, the only abandonments carried out here are linked to the impossibility of 
developing the choice retained for D12 or the fact that min is more important than the 
value of  for the first solution found. However, more generally, the exploration of a 
branch can also be forsaken if the choice obtained is possible, but the propagation 
detects an inconsistency (in other words, at least one disjunction no longer offers a 
choice) among remaining partial orders to be arbitrated. 

[MAT 00] proposed a solving algorithm based on graph treatment for bound 
calculation. Some of the calculated bounds first enable us to check the feasibility of 
any solution before performing its complete evaluation. This enables us to save 
some calls to the evaluation procedure and therefore increases the performances of 
the branch and bound procedure. 

8.4.2.3. Period model 

The variables in this model are period  and transport starting dates throughout a 
cycle. We note as: 

j  transport starting date between [ j] and [ j+1] in the cycle: 

 mod    ,  j  0 , jji tnj .
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Boolean variables j'jx are defined by: 

   
 ,  ,  0    ,  0    ,    1 if    ,   0 otherwise, and     1i i j j' j j' j j' j j' j' jj j' j n j' n x x x x

 Therefore, ,     -    mod ) - ( ,    0 ,    0 , , j'jjj'jj'ii xttnj'njj'j

and the constraints expression is consequently modified. Constraint [8.3] becomes 
useless because only one period is considered and equations [8.5], [8.6] and [8.9] or 
[8.10] become respectively: 

             ,    1 , pxppnjj s
jj1j

t
1j1jj

s
ji [8.14] 

            ,    1 , pxnjj t
j1jjj1ji [8.15]

        -  ,    0 ,    0 , , vpxnj'njj'j 'j 1j
t
jj'jjj'ii    

[8.16]

Once more, different resolution approaches exist which are mainly distinguished 
by the definition of Boolean variables and the way in which they are determined: 

– Phillips and Unger [PHI 76] use complete mixed programming to solve a 
manufacturing detailed example with 13 tanks which almost constitutes the only 
reference example for CHSP; their algorithm was still recently reused and extended 
to the duplicated tank case [ZHO 03]; 

– [LEI 93a] assume that the transport order is known in a cycle. The authors 
define  boundaries and use an iterative procedure determining if there is a feasible 
schedule for the different values belonging to this interval. This algorithm is reused 
by Lim to evaluate chromosomes in a genetic algorithm where solutions are 
represented by sequenced lists of tanks unloaded by the hoist in a cycle and where 
the strength depends on the obtained period [LIM 97]; 

– [LEI 94] and [ARM 94] define branch and bound procedures which gradually 
build scheduling. The [LEI 94] algorithm will be the only one detailed here (Figure 
8.9), but it will enable the reader to understand what separates these approaches 
from those described in section 8.4.2.2. A node represents a partial transport order 
already placed in the cycle. The first two are associated with the arrival of a carrier 
in the system (marking the start of the cycle) and with the addition of M1 to M2

transport. Transports are then consecutively added. The width of a tree at a given 
level corresponds to the number of places possible in the sequence for the added 
operation by still keeping the arrival of the carrier in first place. At each node, the 
procedure evaluates  by default. The exploration strategy is in depth first and gives 
priority to the node with the minimal boundary. At level 2 of the tree presented in 
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Figure 8.9, operation 2 is added and the first branch explored has the lowest 
boundary. Then the different possible places for 3 are considered. The first one 
leads to failure because the maximum processing time in M3 is not respected. The 
two following places give solutions of respectively 17 and 16 second periods. A 
return to level 2 is carried out to search for a better solution. The evaluation of  by 
default does not prohibit exploration, but it is too high for two of the son nodes and 
the third son node leads to inconsistency, which proves the period-16 solution is 
optimal. 

8 , failure, 
M3 maximum 
time exceeded

Solution
= 17

{ 0 }

8, 0

1 x0,1 [4,14];
2 x1,2 [10,26];
3 x2,3 [15,35]

{ 0 , 2 , 1 } { 0 , 1 , 2 }

{ 0 , 3 , 2 , 1 } { 0 , 2 , 3 , 1 } { 0 , 2 , 1 , 3 }

{ 0 , 1 }

{ 0 , 3 , 1 , 2 } { 0 , 1 , 3 , 2 } { 0 , 1 , 2 , 3 }

8

158

Solution
= 16

20
(solution)

21
(solution)

16 , failure,
M3 maximum 
time exceeded

: search tree branch where only boundaries of are reevaluated.

Figure 8.9. Resolution using the period model [LEI 94] 

8.4.2.4. Common formalism 

Hanen and Munier propose a common formalism by dividing all constraints by 
[HAN 93]. This model uses given Ljj’ lengths and Hj j’ heights (which are integers):

1 ,  ,  0    ,  0    ,   -       , with   j
i i j' j j j' j j' jj j' j n j' n V V L H V  [8.17]

These authors thus group all constraints in a bi-valued graph where peaks sj

represent Vj. The first disparity of [8.14] and constraints [8.16], for example, are 
equal respectively to the following expressions: 
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 ,  1    ,       and   0s t
i j 1 j j 1 jj 1j

pj j n L Hp

 ,  ,  0    ,  0    ,        and   t
i i j j' j j' j j'j j 1  j'j j' j n j' n L H xp v

This formalism also makes it possible to represent the carrier model by retaining 
length definitions and by defining Vj variables from tj, and Hjj’ heights from yjj’. The 
authors then demonstrate that the problem is a part of the central scheduling 
repetitive problem when Hjj’ are set. They present two tree search procedures by 
branch and bound. One, based on a carrier model, adjusts H and L boundaries at 
each node, thus evaluating by default. The other uses a period model and gradually 
builds a solution (called “pattern”) by listing transport permutations in a cycle. The 
default  evaluation is a critical path calculation in the diagram. Other authors 
[CHE 98] propose two branch and bound search procedures based on this model. 
One lists initial carrier distributions in the tanks, limiting their number by 
calculating a higher boundary of the number of carriers which can be lifted by the 
robot in a cycle. The algorithm verifies that there is an achievable scheduling for 
each initial state and evaluates by default by solving a linear problem, obtained by 
relaxing certain constraints and represented in a bi-valued graph. The other 
procedure then determines the corresponding optimal transport sequence.  

8.4.3. Extensions 

Different extensions can be added to the basic models already described: 

– search for cycles with a higher degree than 1 has in particular been studied by 
[MAN 94b, LEI 89a] for the carrier model and by [LEI 94] for the period model. 
The extension of chemical constraints and of constraints linked to the robot does not 
raise any specific problem; the extension of tank resource constraints is more 
significant. Globally, the same formalism can be retained and almost all tree search 
approaches can be generalized (except for the one from [ARM 94], which is based 
on the 1-periodic assumption to evaluate by default). However, the important 
number of variables generally limits these approaches to a maximum of three or four 
degree solutions; 

– the consideration of multi-capacity tanks (called duplicated tanks) has been 
addressed in particular by [SHA 88, LEI 89a, HAN 93, MAN 94b, LEI 94, LIU 02, 
RIE 02, ZHO 03]. Generally, it does not lead to additional constraints, but a 
modification of constraints [8.6] or [8.15], consisting of the meaning that a carrier 
can only enter a tank containing bk places on the condition that one of the bk carriers 
preceding it has been removed. The authors generally do not give prior place 
assignment and consider the longest transport distance (see section 8.2.1); 
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– the study of all possible configurations for loading and unloading stations, by 
taking into account the duration of these operations and of cleaning operations in the 
processing specifications was conducted by [SHA 88] and [MAN 94b], adding 
additional constraints for this purpose. The first one defined the notion of carrier 
circulation, specific constraint involving that the carrier unloaded during a cycle be 
immediately reloaded and reused as arriving carrier in the next cycle; 

– the generalization of multi-hoist lines, developed for the approaches by 
[LEI 89a, HAN 93, ARM 94, MAN 94b], respectively in [LEI 91, HAN 94, 
LEI 93b, BAP 96, MAN 00, YAN 01, RIE 02]. All these approaches share the line 
in zones each served by one of the hoists. Contrary to those from [LEI 91] (limited 
to 2 hoists) and from [LEI 93b], the extension of [MAN 94b] ([MAN 00]) considers 
zones which may be disjoint and/or continuous. A series of transports, and not a 
work zone, is assigned to each hoist, which encourages more flexible management 
while balancing the hoist workload. However, this increases the risk of collision 
between hoists, and new constraints (called “spatial constraints”) are used to avoid 
interferences. Expressed in the form of disjunctive rules, they were deducted from 
the analysis of different interference configurations liable to appear. The notion of 
hoist clearing (section 8.2.2) and congestion are also considered. This approach was 
also completed by improving the study of transport assignment for hoists [VAR 97]. 
In [HAN 94], temporal and spatial constraints linked to the multi-hoist case are 
added to the hybrid model in section 8.4.2.4 by using binary variables hij to represent 
arbitration of corresponding disjunctions in the diagram, and then by resolving a 
linear problem for each occurrence of these variables.  

More recently, and for a given number of hoists, the authors of [YAN 01] use a 
simulated annealing algorithm to find the optimal partition in zones. Nevertheless 
they still make the same assumption as [LEI 91] (continuous zones with a single 
boundary station between two contiguous zones). 

The authors of [RIE 02] hybridize constraint logic programming and mixed 
integer programming to solve the multi-hoist case either assigning disjoint zones 
like [LEI 91] or using collision-based assignment like [MAN 00]. A preprocessing 
step is used to eliminate certain contradictory situations in advance, which makes it 
possible to greatly reduce the number of Boolean variables used to represent the 
order in which any hoist performs transports; 

– the study of both design and scheduling of electroplating facilities. [ARM 96] 
search for the best number of hoists, but also with the same partition approach as 
[LEI 91]. [MAN 06, MAN 08] propose a decision support system based on an 
evolutionary approach, a linear programming evaluation model, and simulation. 
They a priori do not fix either the number of hoists, or the assignment of transport 
operations to each hoist. They determine schedules with the best couples (cycle 
time, number of hoists), in order to help a designer to choose the best compromise 
among the solutions generated. 
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8.4.4. Multi-product case 

The authors who have focused on the multi-product CHSP [PTU 95, VAR 00, 
MAT 06] have broken it down into several mono-product cyclic problems. They 
then consider as many sub-problems as different processing specifications to be 
treated. Ptuskin supposes that the mixing (order of the different types of jobs in the 
arrival sequence) is known. He determines their exact arrival date within this 
sequence and real processing times to minimize the period. [VAR 00] does not make 
this assumption and searches for a generic minimal period cycle to make a carrier 
enter the line every units of time, regardless of its processing specifications 
among those authorized in the mixing. In both cases, the solution needed has a 
common period at every mono-product sub-problem. Ptuskin uses an iterative 
procedure and Varnier proposes a branch and bound procedure to arbitrate the 
disjunctions between different carriers, according to a principle relatively similar to 
that in section 8.4.2.2. Finally, [MAT 06] extends the solving approach proposed in 
[MAT 00] to tackle the multi-product CHSP. These authors consider two types of 
products. They use fictitious tanks to transform the 2-product CHSP which 
processing sequence contains mt treatments in a mono-product CHSP which 
processing sequence contains 2mt treatments. Type 1 products only visit tanks with 
odd numbers whereas type 2 products only visit the tanks with even numbers. This 
implies the addition of new arcs in the graph representing the constraints relative to 
type 2 products. The solving algorithm can then treat the graph in the same way as 
in the mono-product case. 

8.5. Resolution of other problems presented  

The resolution of non-cyclic problems is generally based on a linear carrier 
model in which simplifications presented in section 8.4.2.1 are no longer relevant, 
because the notion of period no longer exists and several processing specifications 
are considered. The constraints used are based on the same formalism, but must be 
expressed for all carriers, since the first one no longer plays a specific role. In this 
way, chemical constraints ([8.5] type) must be expressed for all carriers, constraints 
[8.6] involving the period are replaced by disjunctive constraints somewhat similar 
to constraints [8.7] expressed for the hoist and are applied with no modification.

8.5.1. Optimization of temporary phases 

[VAR 96] optimizes the transient phase resulting from the transition of an initial 
cycle A to a final cycle B. This author takes advantage of  the degraded production 
mode for each cycle (because of a load decrease for type A jobs and an increase for 
B) to temporarily combine transports from both cycles into a single forecasted 
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scheduling. A and B cycles are elements of the problem. Once more, the proposed 
resolution method is similar to the one illustrated in section 8.4.2.2 and also uses 
constraint logic programming. However, the solution needed is not cyclic, and the 
criteria to minimize are transient phase durations. A branch and bound search 
procedure makes it possible to arbitrate disjunctive constraints linked to resource 
sharing. A lower and upper criteria boundary is determined beforehand and to limit 
the number of disjunctions, partial orders of A and B cycles are kept. 

8.5.2. Job scheduling at line arrival 

Faced with a much higher number of variables, the authors addressing this 
problem use greedy progressive construction algorithms or local search methods to 
generate job arrival sequences, and then determine for each one if achievable 
transport scheduling exists with the help of simulation or dedicated heuristics. In the 
case of a greedy method [CAU 95, FLE 95], the new job to add in the developing 
sequence must be determined at each iteration. It is the non-scheduled job whose 
earliest beginning date is the lowest. This date is evaluated by an iterative procedure 
using a discrete event simulator, which plays the same role as the conjunctive 
constraint system verification in section 8.4.2.2. It is equivalent to calculating time 
windows of transports by expressing chemical constraints [8.5] for all the carriers 
involved in the partial solution. It does not arbitrate disjunctions over resources 
(type [8.6] and [8.7]), but detects possible overlapping between time windows. In 
this case, the iterative procedure delays the job arrival to solve these conflicts. When 
a local search algorithm is used, it provides a carrier a beginning sequence for 
simulation so that it can determine beginning dates by an iterative procedure similar 
to the previous one. [CAU 95 and FLE 95] combine a stochastic descent with the 
simulator already presented, whereas [LAC 98] uses a kangaroo algorithm, 
associated with a simulation based on a multi-agent model, which can also be used 
for real-time hoist control and considers carriers as a resource.  

In the same way but for an extended problem, the authors of [FLE 01] use 
several tools to solve a problem in which random events imply variations in 
transportation times. They call it the stochastic HSP (SHSP). They aim at 
minimizing the consequences of such variations in terms of increase of the 
makespan and number of job damages due to the violations of time windows 
constraints. They propose a model which again associates stochastic metaheuristics 
to manage the production at the system entrance, decision rules to manage the inner 
production, and simulation to evaluate the criterion to minimize. [CAU 97] and 
[BLO 99a] have a methodology that is almost similar by combining respectively 
simulated annealing and tabu search into a dedicated heuristic. In fact, since the 
problem is over-constrained, the simulation manipulates numerous solutions in order 
to find a few (or none) achievable. Replacing it by a heuristic which builds an 
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achievable scheduling from the beginning sequence proposed may turn out to be a 
more efficient solution. The heuristics proposed on this subject by [CAU 97] 
gradually build the transport sequence by considering jobs consecutively according 
to the imposed arrival sequence and by delaying the arrival date of the last job in the 
partial sequence if performing one of the associated transports creates a time 
window overlap. [BLO 99a] uses a procedure inspired by the bottleneck machine 
heuristic [ADA 88] (also see Chapter 2) modified to consider constraints specific to 
HSP (notably bounded processing times and no-wait constraints)  
[ROS 99]. The goal is to use the scheduling of job entries as a control to limit 
resource conflicts, deadlocks and maximum processing time constraint violations 
(see section 8.3.3). Imposing job entry dates that were judiciously calculated makes 
it possible to significantly reduce the number and magnitude of observed violations 
of constraints. 

8.5.3. DHSP resolution  

DHSP resolution methods are heuristic, and are mostly strongly based on solving 
principles encountered to date:  

– Yih uses an iterative procedure which attempts to enter the new carrier as soon 
as possible [YIH 94], calculates its transports’ execution time windows by using 
chemical constraints translating the minimum operation times, and then attempts to 
use certain available processing time margins or delays the entrance of this job if 
necessary, when overlaps between these time windows and those of the previous 
carriers are detected; 

– Ge and Yih, Cheng and Smith, and Lamothe all present tree search procedures 
to progressively construct a schedule [GE 95, CHE 95, LAM 96a]. The first one is 
similar to the one described in section 8.4.2.3, because each node represents a partial 
transport sequence, and each level corresponds to the addition of a transport by 
prioritizing the new carrier whenever possible and by choosing the carrier transport 
which is the closest to its maximum processing time otherwise. Solving a linear 
program combining conjunctive constraints of the “carrier” model and those 
indicating the partial sequence makes it possible to check the consistency of the 
constraints system for each sub-branch. The tree is deeply analyzed and the 
algorithm stops at the first determined achievable scheduling. The other methods are 
closer to the ones illustrated in section 8.4.2.2, because a node corresponds to the 
arbitration of a disjunction. These methods use a graph to represent conjunctive 
constraints associated with a partial solution (chemical constraints and constraints 
from previous arbitrations). In this graph, calculating the longest route enables us to 
adjust transport execution time windows and to detect possible inconsistencies by 
positive circuit detection. They differ, however, by their exploration strategy and 
their stop criteria. The first one [CHE 95] uses dominance rules from the traditional 
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constraint analysis theory [ERS 80] to identify trivial arbitration and quickly 
decrease research space. It uses a heuristic rule when indecision remains (see section 
5.4.2) and stops without backtracking in the case of inconsistency (thus offering no 
solution). The second one [LAM 96a] arbitrates disjunctions linked to tanks with 
priority and by increasing operation start dates. It is complete and backtracking is 
more powerful than traditional backtracking since a portion of information from the 
previous resolution is kept. In addition, this author is the only person to our 
knowledge who has solved the DHSP for complex lines, similar to industrial 
facilities;

– [ROS 99] uses an evaluation procedure of the longest routes in a graph similar 
to [CHE 95] and [LAM 96a] to evaluate transport sequences. However, these are not 
partial sequences evaluated at each node of a tree search procedure; these are 
complete sequences, represented in the form of chromosomes in a genetic algorithm 
covering the search space. The strength of these solutions is proportional to the end 
date for all jobs, and they are penalized when an inconsistency is detected; 

– Spacek et al. model the problem in an inventive way in the form of a P-
temporal Petri network [SPA 99]. The variables are transition launching dates. This 
representation is illustrated in the form of a state equation in algebra (max, +). The 
components of the state represent execution dates for processing vector x(k) and 
carrier transport operations k. Determining a solution x#(k) is made possible by the 
resolution of a problem obtained by relaxing the hoist’s unit capacity constraints. 
Then, the algorithm searches for overlaps of time windows linked to the hoist and 
resolves them by modifying the control vector u(k) according to a “repair” procedure 
inspired from [YIH 94]; 

– similarly to [CHE 95], Hindi and Fleszar use a non-standard CSP (Constraint 
Satisfaction Problem) model [HIN 04]. The variables used in this model correspond 
to hoist operations. At each step, one of the available hoist operations is chosen and 
scheduled at the earliest possible time, while avoiding all conflicts. The choice made 
gives priority to the operation with the earliest start time (if possible). In case of 
infeasibility (if an upper bound is not respected for soaking durations), then the 
considered transport operation is delayed and backtrack is initiated (another 
operation is chosen according to this strategy); 

– in [PAU 07], the jobs are picked up one after the other according to the entry 
sequence. Then the activities of a job are consecutively scheduled. Once a job is 
introduced, all its activities are planned for execution within corresponding time 
windows. These time windows are continuously adapted, then the activities 
associated with one job can be re-scheduled but not re-sequenced at a later step. 
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8.5.4. RHSP resolution  

Real-time control has motivated several studies on the real-time assignment of 
transports to hoists. There are two main approaches: one is based on heuristic rules 
included in an expert system or within list algorithms, the other using state change 
probabilities.  

Thesen and Lei develop an expert system which chooses the heuristic to use 
according to the current line state [THE 90]. Decision rules enable hoists to adapt in 
real time to the situation. Four allocation rules are used. The first one defines work 
zones beforehand to balance the load between robots. The second one accomplishes 
this balance in real time by dynamically readjusting work zone limits. The third one 
allocates each transport to the robot whose current position is the closest to the 
starting tank and the last prioritizes the hoist which is at the farthest left of loading 
tasks and applies the third for the other transports.  

[YIH 93] uses both neural networks and semi-Markov decision models. The 
latter describes some of the possible system states. A transition matrix is built by 
studying the loss or gain associated with a decision. This approach is then completed 
by using a network or neurons to generalize the policy obtained by resolving the 
semi-Markov model for all possible states. 

Jégou et al. propose two multi-agent systems to solve the RHSP, considering 
each tank and each hoist as an agent [JEG 06]. The first system is used to determine 
the input date of the next job; the second system allows us to assign transfer 
operations to hoists and to schedule the actual operation of these hoists. For this 
goal, it uses the flexibility of the time windows.  

8.6. Conclusion  

The rapid overview of studies related to HSP provided in this chapter is not 
exhaustive. It could furthermore be linked with other problems, only varying by a 
few (or even only one) assumptions or constraints. The scheduling problem for 
arriving jobs then resembles the car sequencing problem in the automobile industry. 
Similarly, establishing certain parallels with the Crane scheduling problem [LIE 82], 
vehicle routing with time windows [DUH 97] or simultaneous scheduling of 
machines and material handling resources in flexible production systems [ULU 97] 
could also have been informative. Finally, other problems were considered in the 
hoist system context. Certain authors focus on the influence of tank layout over shop 
productivity [GRU 97], and others discuss robustness of solutions in order to take 
the different production hazards into consideration [MAR 01, FAR 01]. Finally, 
many “variants” among the numerous variants we have identified still remain 
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interesting and have opened issues for researchers. Nevertheless, recent works also 
point out new research directions, by extending classical HSPs to consider stochastic 
events and their influence on the line [FLE 01], environmental issues [XU 04, 
KUN 06, SUB 06], or to solve both design and scheduling problems [MAN 06, 
MAN 08].  
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8.8. Appendix: notation

 Reference Notation 
1 [ARM 94] CHSP |19//diss|/21|Tmin 
2 [ARM 96] CHSP |mh,50,ct//diss|/52|mhmin 
3 [BAP 96] CHSP |3,18,10//|/19,recrc|Tmin 
4 [BLO 99a] PHSP|mh,mt,1/ret/|nparts/nps,nop|Cmax 
5 [CAU 95] PHSP |3,4,synchro,(15),(15),(15)//diss|16/24,17,recrc|Cmax 
6 [CAU 97] PHSP |16//diss|36/10,12,recrc|Cmax 
7 [CHE 95] DHSP |5//diss|100/100,7|Cmax 
8 [CHE 98] CHSP|13//diss|/14|Tmin 
9 [FAR 01] DHSP|mt/nc/|nparts/nop|(Tmin,Qmax) 
10 [FLE 95] PHSP |1,12,ct/nc/|20/nps,4,recrc|Cmax 
11 [FLE 01]* SHSP*| mh,16 / 6, empty/ diss | nparts / 12, nop| (Cmax, Other) 
12 [GE 95] DHSP |mt//diss|100/nps,nop|Cmax 
13 [HAN 93] CHSP |1,14,ct//diss|/16,recrc|Tmin 
14 [HAN 94] CHSP |mh,mt,ct//diss|/nop|Tmin 
15 [HIN 04] DHSP | 5 / / diss | 100 / 100,6| Cmax 
16 [JEG 06] RHSP|2,16,1//load-unload|

nparts/14|(DefectiveJobsMin,ThroughputMax) 
17 [LAC 98] PHSP|16/6,empty/diss|nparts/12,16,recrc|Cmax 
18 [KUN 06] CHSP | 1, 10, 8 / / ass | / 12| (Tmin, WasteMin) 
19 [LAM 96a] DHSP|2,1,synchro,(mh,17,1),(mh,17,2)//diss|50/4,25,recrc|Other 
20 [LAM 96b] DHSP|2,12,1//diss|/nps,14|Other
21 [LEI 89a] CHSP|1,12,ct//|/14|Tmin 
22 [LEI 91] CHSP | 2,25,ct / / diss |/ 27| Tmin 
23 [LEI 93a] CHSP|5//diss|/7|Tmin 
24 [LEI 93b] CHSP|mh,12,1//diss|/14|mhmin 
25 [LEI 94] CHSP|12//diss|/14|Tmin 
26 [LIM 97] CHSP|12//load-unload|/14|Tmin 
27 [LIU 02] CHSP | 1, 8, 5 / / load-unload | / 11, recrc| Tmin 
28 [MAN 94b] CHSP|mh,mt,ct/circ/|/nop,clean,recrc|Tmin 
29 [MAN 00] CHSP|3,17,10//load-unload|/20,clean,recrc|Tmin 
30 [MAN 06] CHSP | mh, 12, 1 / / ass | / 14| (Tmin, mhmin) 
31 [MAN 08] CHSP | mh, 14, 1 / circ/ ass | / 16| (Tmin, mhmin) 
32 [MAT 00] CHSP|8//|/nop|Tmin 
33 [MAT 06] CHSP | mt / / diss | / 2, mt+2| Tmin
34 [PAU 07] DHSP | 18 / / diss | 40 / 4, 12| Cmax 
35 [PHI 76] CHSP | 12/ / ass | / 14, recrc| Tmin 
36 [PTU 95] CHSP|50/nc/|nparts/nps,nop|Cmax 
37 [RIE 02] CHSP|4,13,ct//|/nop,recrc|Tmin
38 [ROS 99] PHSP|3,33,1/ret/|15/9,30,clean,recrc|Cmax 
39 [SHA 88] CHSP |1,15,6/nc,circ/|/17,clean,recrc|Tmin 
40 [SON 95] CHSP|10//diss|/12|Other 
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41 [SPA 99] DHSP|1,12,3//|/14|Cmax 
42 [SUB 06] CHSP | 12/ / ass | / 14| (Tmin, WasteMin, Others) 
43 [THE 90] RHSP|3,20,1/nc/|nparts/3,nop| ThroughputMax 
44 [VAR 96] PHSP|mh,mt,1//ass|/2,nop, recrc|TransMin
45 [VAR 97] CHSP|4,30,ct//ass|/30,recrc| Tmin 
46 [VAR 00] CHSP|mt//load-unload| /nps, nop| Tmin 
47 [XU 04] CHSP | 1, 15, 8 / / ass | / 17| (Tmin, WasteMin) 
48 [YAN 01] CHSP | mh, mt, 1 / / diss | / mt+2| Tmin 
49 [YIH 93] RHSP|5//diss|nparts/nps, 7| ThroughputMax 
50 [YIH 94] DHSP|5//diss|100/100, 7|Cmax 
51 [ZHO 03] CHSP | 1, 10, 5 / / ass | / 12| Tmin 
* SHSP = PHSP with transportation times as random variables 
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Chapter 9 

Shop Scheduling with Multiple Resources 

9.1. Introduction

In multi-resource shop scheduling, the idea is to integrate into modeling a group 
of resources available for job completion. There are two types of resources. 
Resources unable to execute two simultaneous jobs are called disjunctive resources, 
for example, a machine-resource in a shop is often disjunctive. When there are 
several copies of the disjunctive resource in the workshop, we then speak of a shop 
containing several parallel resources. We distinguish the case of identical, 
proportional or different resources according to their performance. Resources which 
can execute several simultaneous jobs are called cumulative resources, for example, 
a team of several men can be considered a cumulative resource. The accumulation of 
demands on a cumulative resource cannot exceed total availability of the resource at 
any moment. However, whether the resources are disjunctive and made up of 
multiple copies or cumulative, the scheduling problem to be solved is NP-hard to its 
fullest extent. The goal of this chapter is to describe exact and heuristic algorithms 
which are intended for managing conflicts during resource usage by minimizing the 
makespan, i.e. the total execution time. 

Next, we observe two types of scheduling problems. In section 9.2, we consider 
problems where circulation in the shop is the same for all jobs, and where resources 
are grouped by stages. We speak of hybrid flow shop, or of flow shop with 
duplicated machines or multiprocessor flow shop. These different names illustrate 
the wealth of literature in the field. Jobs circulate in the shop in the same order, and 
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each job must visit each stage. We presume here that at least one stage contains 
more than one resource. In section 9.3, we discuss the most generalized multiple 
resource scheduling problems, where each job is made up of a partially sequenced 
set of operations inherent to the job, and where each operation requires one or more 
disjunctive or cumulative resource, in variable quantities. This is called RCPSP or 
the Resource Constrained Project Scheduling Problem. The hybrid flow shop is 
obviously a specific RCPSP, and as we will demonstrate several ideas developed for 
the flow shop can be applied to the RCPSP.  

9.2. Hybrid flow shop scheduling problem 

In practice, we find many production shops organized in “flows”, i.e. shops 
where jobs move through machines in the same sequence. In this case, each job 
visits each machine in the shop and the circulation sequence on the different 
machines is the same for all jobs [ESQ 99, BRU 07]. We also encounter another 
type of shop, also organized in flows, but which presents an additional problem 
because machines are made up of multiple copies and grouped into “stages”. In this 
type of shop, each job visits each stage and the circulation sequence for stages is the 
same for each job. The idea is to assign operations to machines at each stage. The 
type of shop, called hybrid flow shop or “flow shop with multiple machines”, comes 
with a double problem: determining for each operation a start time and assigning 
this operation to a machine. 

A hybrid flow shop example with four stages and three jobs is illustrated in 
Figure 9.1. Each operation (i, j) is referenced by a job i index and a stage j index. A 
processing time denoted as pi,j is associated with each operation, and a number of 
available machines denoted as mj are associated with each stage. Two fictitious 
project start (S*) and end (E*) tasks are also added. The Gantt chart (Figure 9.1) 
represents a feasible solution for this problem. 

This definition will be illustrated in section 9.2.1 with the help of production 
cases which can be modeled by a hybrid flow shop. Later, in section 9.2.2, a brief 
state of the art will be presented giving an overview of the literature in the field. In 
section 9.2.3, we propose a mathematical programming model of a hybrid flow shop 
scheduling problem including the notation used. In section 9.2.4, basic heuristic 
methods for easily building a heuristic solution of a hybrid flow shop problem are 
exposed. Section 9.2.5 is dedicated to the description of an exact method called the 
Branch and Bound Procedure (BBP). Finally, a generalization of the hybrid flow 
shop is shown in section 9.2.6. 
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Figure 9.1. A feasible solution for hybrid flow shop with 3 jobs and 4 stages

9.2.1. A few manufacturing cases 

Modeling of a shop scheduling problem by a hybrid flow shop scheduling 
problem is natural in many production shops. However, even outside of the 
production context, certain scheduling problems are hybrid flow shop type problems 
when there is an assignment problem to grouped resources, and entities to be 
scheduled follow the same flow [RUI 08]. Some cases which come directly from the 
manufacturing world are described below. 
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3.2 3.3 3.4

S* E*

p1 1 = 3 p1 2 = 6 p1 3 = 6 p1 4 = 4

p2 1 = 7 p2 2 = 3 p2 3 = 6 p2 4 = 3

p3 3 = 3p3 1 = 5 p3 2 = 2 p3 4 = 9
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9.2.1.1. Floor covering production [VIG 99] 

The first phase of floor covering production is raw weaving. In order to do this, 
numerous looms enable parallel production of different types of carpets (according 
to their variety: thickness, color, pattern, density, etc.). These machines constitute 
the first step of the hybrid flow shop. At this stage, it is possible to split the job into 
sub-lots and to execute it simultaneously on several machines. We speak of 
authorized splitting. The gray goods are obtained in rolls. The rolls must then be 
dyed. In order to do this, there are machines which continuously turn and dye the 
carpets. Clearly, changing dyes must be organized in order to avoid carpet waste; the 
wasted carpet over useful carpet ratio must be close to zero. In the shop, carpet 
dyeing machines can measure up to 20 meters long and weigh several tons. Since 
they are very expensive, there are not many copies of these machines in a shop. 
They can be considered as critical resources and they vary; some can be dedicated to 
uniform coloring while others can print color patterns. They constitute the second 
stage of the hybrid flow shop. The dyed carpets are then dried, latexed and packaged 
for delivery. This is the third stage. This shop can be illustrated by a specific hybrid 
flow shop containing three stages. 

9.2.1.2. Glass-bottle industry [RIC 98] 

The production process of glass bottles is semi-continuous. The continuous part 
is made up of a series of parallel tanks which distribute fusion glass to molding 
machines. Molding machines are of varied types and varied outputs, enabling the 
production of different bottles depending on the mold available. At a given moment, 
however, machines connected to the same tank can only produce bottles of the same 
color. The bottles then have cold and hot operations to finalize the product. This 
production system can be represented by a two stage hybrid flow shop with a few 
specific constraints. Since dye changes must be carried out at the same time for all 
machines, two criteria must be considered: maximizing a profit and minimizing the 
largest gap in relation to this dye change date. 

9.2.1.3. Production of pants [ELM 97, DES 98, WON 01] 

The context presented here is found in the production of clothes in general, as 
well as in other production systems where products are grouped into lots. The pant 
production process is broken down into several phases: cutting the fabric, sewing 
and stitching and installing the zippers. Each of these operations is carried out  
by a team of seamstresses specialized in the corresponding type of operation. Pants 
are grouped in packets of identical size and we presume that seamstresses do  
not have the same level of productivity. We can thus consider that products to be 
manufactured are all identical and that operation time for a product only depends on 
the operations and the “resource” used for this operation. This problem can be 
modeled by a particular hybrid flow shop with resources that have different ratings 
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at each stage and identical products to schedule. Sub-problems at each stage are 
more complex than in the case where machines are identical, but jobs are identical, 
which simplifies the problem. The result of the study is that from three stages on, 
this problem is very difficult to resolve. 

9.2.1.4. Wood treatment shops [RIA 98] 

A shop produces different basic products which will subsequently be 
incorporated into furniture, for example tables, chairs, sofas, etc. Each product to be 
manufactured must go through three consecutive operations: wood cutting, drilling 
and varnishing. The shop only has one machine to cut wood. The cut parts are then 
treated in another part of the shop made up of two machines dedicated to products 
depending on their size. Finally, the last operation which is meant to give the wood 
its final look can only happen on one machine. This shop was modeled as a 
particular three stage hybrid flow shop insofar as the allocation of products to 
machines does not have to be determined, because it depends on product size. 

9.2.2. State of the art survey 

Scheduling hybrid flow shop problems have largely been studied since the 
1970s. We can find a detailed state of the art for these problems in [VIG 97, VIG 
99]. The first studies focused on two stage shops as well as shops containing an 
undetermined number of stages. They provide heuristics as well as exact methods. 
Gupta [GUP 88] shows that the two stage problem, whose objective is minimization 
of the latest end date, is strongly NP-hard, as soon as a stage has more than one 
machine. The result is that all hybrid flow shop problems, except for a few specific 
cases, are also strongly NP-hard. 

Concerning two-stage problems, many heuristics methods are based on 
Johnson’s algorithm [JOH 54] which polynomially solves the two-machine flow 
shop problem with makespan minimization. This algorithm makes it possible to 
choose a sequence of jobs, but gives no information on the allocation of jobs to 
machines. Certain authors propose a complement to allocation rules [GUP 88, SRI 
89, DEA 91, LEE 93, LEE 94, SRI 89], while others do not [SHE 72, BUT 73]. For 
problems with other criteria and specific constraints, the authors proposed inventive 
heuristics [HAO 97, GUP 98, RIA 98, TKI 00, CHA 04, HE 07, LOW 08] and exact 
methods dedicated to the problem [GUP 91, GUP 94, LI 97, GUP 95, LEE 04]. 

Concerning multi-stage problems, numerous heuristic methods were developed. 
Often, they are inspired by heuristics used for the flow shop enabling the 
determination of a job sequence. As with the two stage case, we must then add rules 
for the allocation of jobs to machines [LEE 94, GUI 96]. The stochastic methods 
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(see Chapter 3) were largely used. For example, Nowicki and Smutnicki [NOW 98] 
present a Tabu algorithm with very good results. Evolutionist algorithms like genetic 
algorithms (see Chapter 4) were also proposed to solve these problems [POR 98, 
MOR 05]. In addition, several BBPs were described to solve the basic problem (no 
particular constraint and minimization of the latest end date) in an exact way. Brah 
and Hunsucker [BRA 91] have adapted a BBP from Bratley, Florian and Robillard 
[BRA 75]. As it turns out, this method is not very powerful despite a few proposed 
improvements [POR 98, DUP 98]. Since then, numerous other BBPs were 
developed and offer very good results [VAN 94, CAR 97, CAR 98, BRO 98, DES 
98, NER 98, MOU 00]. 

9.2.3. Notation and mathematical model 

T is the set of n jobs, K is the number of stages and mj is the number of machines 
at stage j. Mj is the set of machines constituting stage j. We denote (i, j) the operation 
of job i processed at stage j and pi,j is its duration. In short pj = pi,j,  i = 1...n, is the 
operation processing time vector at stage j. In the basic problem, we consider that 
the machines are all available at date 0, that jobs can all start at date 0, and that the 
objective is to minimize the maximum completion time. The objective of the 
following linear programming model is to formalize the problem and not to propose 
a resolution method. We denote by ti,j, the start time of (i, j); xi,j,k a binary variable 
equal to 1 if (i, j) is performed on machine k and 0 otherwise; and by yi,i’,j a binary 
variable equal to 1 if job i precedes job i’ at stage j, 0 otherwise. HV is an arbitrarily 
large number. A linear programming model is:  

minimize Cmax

subject to: 

jMk
j,ki,x ,1 Kj j,n,i i, 11 [9.1] 

ni  i, ,ptC Ki,Ki, 1max [9.2] 

11  1 ,1 - Kj,n,ii,ptt ji,ji,ji,  [9.3] 
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Constraint [9.1] makes sure that operation (i, j) is assigned to one machine, 
constraints [9.2] define the Cmax, [9.3] translate the routing constraints, and 
constraints [9.4] and [9.5] translate the succession of operations on machines. This 
mathematical model can be theoretically processed by a commercial software 
package, but the problems which can be solved this way are in reality quite small. 

9.2.4. Heuristic canonical methods 

In order to address a hybrid flow shop problem and provide a first resolution 
algorithm, we should not bypass the most traditional methods. These methods 
consist of determining a sequenced list of jobs and then to consider each job, in the 
sequence of the list one after the other, and to choose a resource to execute it by 
using an allocation rule. Several algorithms make it possible to determine a job list: 

– for a 2-stage problem, we can apply the Johnson algorithm, or define an index 
and sort jobs according to their increasing index values, or even use a traditional 
priority rule such as SPT (Shortest Processing Time first) or EDD (Earliest Due 
Date first) by considering a specific stage or by adding times on stages. In any case, 
the result is a sorted job list; 

– for an n-stage problem, we can apply a traditional heuristic for the flow shop 
problem such as CDS [CAM 70], Townsend [TOW 77] or NEH [NAW 83] all 
providing a job sequence.  

Numerous rules then make it possible to assign the jobs to machines. We can 
mention for example: 

– FAM (First Available Machine) consisting of assigning the job to the first 
available machine. This is the most widely used rule; 

– ECT (Earliest Completion Time) if machines are not identical, i.e. jobs have 
processing times which depend on the machine used; we can assign the job to the 
machine making it possible to complete earlier; 

– LSM (Latest Start Machine), which consists of choosing the latest available 
machine among available machines when the operation is ready (at a given date in 
the first stage or completed at the previous stage), or the earliest available machine if 
no machine is available when the operation is ready. This rule tends to minimize the 
idle time of used machines and to effectively only use those which are necessary; 
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– assign jobs in the machine numbering sequence, if they are identical. This 
allocation minimizes the sum of completion times in a parallel machine problem, if 
the jobs are classed beforehand according to the SPT rule. 

An algorithm to determine a job list and an allocation rule make it possible to 
build a first heuristic for the hybrid flow shop problem. Concerning quality of 
results, this type of method is much less powerful on average than stochastic 
algorithms of simulated annealing or Tabu search type, or even genetic algorithms. 
However, it has the advantage of being simple to understand and implement. 
Furthermore, such a method can be used to obtain an initial solution that can be 
improved by a stochastic algorithm [JIN 06, LAH 07]. 

This heuristic can be summarized as follows. At the first stage of the hybrid flow 
shop, we take the jobs in the list order and we assign them by following the 
established rule. There are two possibilities at a subsequent stage. We either 
consider the jobs again according to the list, as was defined for the first stage, or we 
build a new list in which jobs are classified in increasing order of their due date in 
the previous stage. We then apply the allocation rule by taking into consideration 
availability dates for allocating all jobs and we start again at the following stage. 
These two different processes, which are almost never mentioned in other works, 
lead to different solutions as the following example shows. 

EXAMPLE.– Consider a two stage hybrid flow shop with two machines at each 
stage and three jobs to schedule. The objective is to minimize the maximum 
completion time. Job processing times are equal to p1 = (2, 15, 6) for the first stage, 
and p2 = (11, 4, 9) for the second stage. The Johnson algorithm gives a J = (1, 3, 2) 
sequence, the SPT rule applied to the first stage gives a SPT1 = (1, 3, 2) sequence, 
and applied to the second stage SPT2 = (2, 3, 1). For example we will use sequence 
SPT2. We choose to use the FAM allocation rule in the first and second stage. The 
Gantt chart in Figure 9.2 represents the allocation result for the first stage. 

Stage 1 M1

M2

0 5 10 15 20 25

2

3 1

Figure 9.2. Gantt chart for the first stage
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M3

M4

M3

M4
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Stage 2 2

3 1

23

1

a)

b)

Figure 9.3. Gantt charts of different solutions at the second stage

For the second stage, two cases must be considered: a) we keep the list given by 
SPT2 rule, or b) we build a new list according to completion times of jobs in the first 
stage. In the second case, we obtain list L = (3, 1, 2). Corresponding solutions are 
represented in Figure 9.3. We observe that the solutions are not the same. 

The authors very often place themselves in case b) without being explicit, which 
minimizes the importance of the sequence used in the first stage. We can also note 
that the case may sometimes generate non-active schedules, which is not desirable 
when the criteria to be optimized are regular.  

9.2.5. An exact method 

In addition to the heuristic methods, for which the challenge consists of finding 
solutions which get closer to the optimal solution, several exact methods have been 
developed, and their challenge consists of optimally solving increasingly large 
problems. Among the exact methods very often used in scheduling literature, we 
find BBPs. The hybrid flow shop BBP presented here involves traditional hybrid 
flow shop, i.e. without a specific constraint, with K stages and with the goal of 
minimizing the maximum completion time (Cmax). This method, called the “interval 
method” [CAR 84, CAR 91, VAN 94, PER 95, MOU 99, OLI 99], consists of 
dividing time intervals associated with operations as much as possible. The 
branching scheme as well as associated lower bounds are described below. The 
method presented in the previous section provides upper bounds. 
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We associate with each operation (i, j) an earliest start time ri,j, a latency duration 
qi,j, a due date or latest completion time di,j and a slack si,j defined in the following 
way (UB designates an upper bound of the Cmax value): 

1j

1k
ki,ji, pr ,

K

1jk
i,kji, pq , jiji qUBd ,, , jijijiji prds ,,,,

A BBP node corresponds to a specific operation to be chosen and a series of 
dates:

– an operation number (a, b) (job a, stage b);

– the list of all earliest start times; 

– the list of all latest completion times; 

– the list of all latency durations; 

– the value of a lower bound for the evaluation of a node. 

9.2.5.1. Branching scheme 

The principle of the branching scheme of this BBP consists of creating, in each P
node, two sub-problems by delaying the earliest operation start time of (a, b) for the 
Left Son (LS) node, and by advancing the latest completion time of (a, b) for the 
Right Son (RS) node. By reducing the time intervals associated with an operation, 
we constrain the problem, which makes it possible to quickly converge toward the 
optimal solution with the help of lower and upper bounds. The BBP algorithm is 
presented below (Algorithm 9.1). 

The update of the earliest start and latest completion times of son nodes of an 
ordinary P node is carried out in the following way: 

– for the LS node, dates associated with operations are the same as for the P
node, except for the earliest start times for operations of job a, which are updated in 
the following manner: 

ra,j (LS) = ra,j (P), 1  j  b-1, and 
2
(P)s

(P)r(LS)r ba,
ba,ba,

and ra,j (LS) = max[ra,j (P), ra,j-1 (LS) + pa,j-1] for j from b+1 to K

– for the RS node, dates associated with operations are the same as for the P
node, except for the latest completion times for operations of job a, which are 
updated in the following manner: 
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da,,j (RS) = da,j (P), b+1  j  K and ,1
2
(P)s

(P)d(RS)d ba,
ba,ba,

da,,j (RS) = min[da, j(P), da,j+1 (RS) – pa,j+1] for j from b–1 to 1 

9.2.5.2. Lower bounds [CAR 84, SAN 95] 

For node N, consider stage j. It is possible to calculate the following lower bound 
LBj (T,N) from earliest operation start times and latency durations. 

j

Ti
ji,j],[mj[1],j],[mj[1],

j m

p(N)q(N)q(N)r(N)r
N)(T,LB

jj

where r[1],j (N), …, r[mj],j (N) are the mj smallest earliest start times and q[1],j (N), …, 
q[mj],j (N), are the mj smallest latency durations for N.

EXAMPLE.– Consider the data from the previous example. At stage 1, suppose that 
a heuristic algorithm gives BestUB = 21 as upper bound. The initial date calculation 
gives the following results. 

Root node *

ri,j i = 1 i = 2 i = 3

j = 1 0 0 0 

j = 2 2 15 6 

qi,j i = 1 i = 2 i = 3

j = 1 11 4 9 

j = 2 0 0 0 

di,j i = 1 i = 2 i = 3

j = 1 10 17 12 

j = 2 21 21 21 

Table 9.1. Root BBP node
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// initialization
Calculate an upper bound BestUB with the help of a heuristic, 
for each operation (i, j) 
 calculate ri j(*), qi j(*), di j(*), 
end for 
for each stage j, 
 calculate the lower bound LBj (T, *). 
end for 
LB*  max1 j K LB(T,*) . 
Create the root node (*). 
While there remains an unexplored node 
 // Step 2  choice of a node to explore  
 Choose node N such that  LB(N) = minp LB(P).  

if LB(N) = BestUB then END, Display BestUB and the schedule corresponding to N  
 otherwise  
 // Step 3  update of earliest start times and latency durations 

for any operation (i, j) 
  qi,j (N)  max{qi,j (N), LB(N) - di,j (N)}

  di,j (N)  min{di,j (N), BestUB - qi,j (N)}

 end for 
 launch the calculation of a heuristic for updating BestUB. 
 // Step 4  Choice of stage  

for any stage j 
  calculate LBj(T, N) 
 end for 
 j*   arg{ max1 j K LBj (T, N)} 
 // Step 5  update of earliest start times and latency durations 
 determine Er the set of mj* jobs with smallest earliest start times 
 determine Eq the set of mj*  jobs with smallest latency durations 

for each job i of Er
  calculate new earliest start times  nri,j*(N)  ri,j*(N)+  si,j* / 2 .

  create a fictitious node LS(i) and calculate new lower bounds  LBj*(T, LS(i)). 
 end for 

for each job i of Eq
  calculate new latest completion times  nri,j*(N)  ri,j*(N)+  si,j* / 2 .

  create a fictitious node RS(i) and calculate new latency times and then new lower bounds   
  LBj*(T, RS(i)). 
 end for
 Or job i* Er Eq such that the difference between the associated lower bound and the lower 

bound of N be maximal. 
 // Step 6  Node creation 
 Lower bound update 
 Add to list of nodes LS(i*) and RS(i*)  
 end if 
end while 

Algorithm 9.1. BBP algorithm  
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At step 1, lower bound calculation for each stage gives: LB1(T,*) = ((0 + 0) + (4 
+ 9) + 23) / 2 = 18, for the first stage and LB2(T,*) = ((2 + 6) + (0 + 0) + 24) / 2 = 16, 
for the second. We have LB(*) = 18. At step 2, the chosen node is the root node * 
(single node). At step 3, we update latency durations and latest completion times. 
Calculation shows that their values do not change, neither does the upper bound. At 
step 4, lower bound calculation leads to the same result, we then select the first 
stage: j* = 1. At step 5, we then obtain Er={1, 2} and Eq={2, 3}. For each Er job, we 
calculate new earliest start times and for each Eq job, new latest completion times.  

For Er we obtain the two following tables. 

Job 1 (s11 = 10 – 0 – 2 = 8)  Job 2 (s21 = 17 – 0 – 15 = 2)

Fictitious node LS(1)  Fictitious node LS(2)

nri,j i = 1 i = 2 i = 3 nri,j i = 1 i = 2 i = 3

j = 1 4 0 0 j = 1 0 1 0 

j = 2 6 15 6 j = 2 2 16 6 

jiq , i = 1 i = 2 i = 3 jiq , i = 1 i = 2 i = 3 

j = 1 11 4 9 j = 1 11 4 9

j = 2 0 0 0 j = 2 0 0 0 

jid , i = 1 i = 2 i = 3 jid , i = 1 i = 2 i = 3 

j = 1 10 17 12 j = 1 10 17 12

j = 2 21 21 21 j = 2 21 21 21 

Table 9.2. Calculation of two fictitious nodes “on the left” for the BBP

We find: LB1(T, LS(1)) = ((0 + 0) + (4 + 9) + 23)/2 = 18 and LB1(T,LS(2)) = 18 
also. For Eq, we find the following.
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Job 2 (s21 = 17 – 0 – 15 = 2)  Job 3 (s31 = 12 – 0 – 6 = 6)

Fictitious node RS(2)  Fictitious node RS(3)

jir , i = 1 i = 2 i = 3 jir , i = 1 i = 2 i = 3

j = 1 0 0 0 j = 1 0 0 0 
j = 2 2 15 6 j = 2 2 15 6 

jiq , i = 1 i = 2 i = 3 jiq , i = 1 i = 2 i = 3 

j = 1 11 4 9 j = 1 11 4 11 
j = 2 0 0 0 j = 2 0 0 0 

jind , i = 1 i = 2 i = 3 jind , i = 1 i = 2 i = 3 

j = 1 10 15 12 j = 1 10 17 8
j = 2 21 21 21 j = 2 21 21 21 

Table 9.3. Calculation of two fictitious nodes “on the right” for the BBP

We find: LB1(T,RS(2)) = ((0 + 0) + (4 + 9) + 23) /2 = 18 and LB1(T,RS(3)) = ((0 
+ 0) + (4 + 11) + 23) /2 = 19. The selected job is the one with the highest difference 
with the old lower bound, in this case job 3. The connecting operation is operation 
(3,1). At step 6, we add the following two nodes to the node list. 

Node 1 = LS(3)  Node 2 = RS(3)

jir , i = 1 i = 2 i = 3 jir , i = 1 i = 2 i = 3

j = 1 0 0 3 j = 1 0 0 0 
j = 2 2 15 9 j = 2 2 15 6 

jiq , i = 1 i = 2 i = 3 jiq , i = 1 i = 2 i = 3 

j = 1 11 4 9 j =1 11 4 11
j = 2 0 0 0 j = 2 0 0 0 

jid , i = 1 i = 2 i = 3 jid , i = 1 i = 2 i = 3 

j = 1 10 17 12 j = 1 10 17 8
j = 2 21 21 21 j = 2 21 21 21 

Table 9.4. Creation of two real nodes for the BBP 

We again calculate the lower bounds associated with these two new nodes. We 
find 18 for LS(3) and 19 for RS(3) and we go back to step 2. 
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Finally, Cmax value for the optimal solution is equal to 19. The values obtained 
for earliest start times and latest completion times lead to the solution illustrated in 
the Gantt chart in Figure 9.4. 

M1

M2

M3

M4

0 5 10 15 20

Stage 1

2

3

1Stage 2

1

2

3

Figure 9.4. Gantt chart of the resulting BBP optimal solution 

We can observe that the solution found by the heuristic in this small example is 
optimal for case b) (see Figure 9.3). 

9.2.6. Extensions of the traditional hybrid flow shop problem 

A first traditional hybrid flow shop problem extension consists of considering 
that machines of one stage do not have the same outputs (see pants manufacturing 
example in section 9.2.1). In this case, we consider that the operation processing 
time is based on the performing machine. Clearly, associated problems are more 
difficult to solve than in the case where machines are identical, but they more 
closely resemble manufacturing reality. 

We find another extension of this problem in certain manufacturing shops 
containing machines with their adapted tools. Each machine contains a certain 
number of tools and consequently can only execute certain types of operations. We 
then speak of multi-purpose machines [JUR 92, BRU 97]. At each stage, the tools 
are considered to be distributed between the machines. Each operation requiring a 
specific tool for its execution can only be executed on a subset of machines in that 
stage. In a way, this problem consists of restricting the number of possible 
allocations to a stage. The most common case consists of presuming that all shop 
machines are different and that each machine has specific tools. In this case, each 
operation can only be executed on a series of machines inherent to the operation 
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with time depending on the machine chosen. In reality, we find several applications 
that can be illustrated that way (see Chapter 12). 

Finally, a natural hybrid flow shop extension consists of considering that an 
operation may require several types of machine for its execution, and for each 
machine type, a certain number of machines. If we consider that machines are no 
longer organized in stages, then we obtain a multi-resource (each operation requires 
more than one type of resource) cumulative (each operation may require more than 
one resource unit per resource type) problem. In addition, if precedence constraints 
between operations are not chains (job constraints), but given by a graph of 
precedence, then we obtain a problem called “resource constrained project 
scheduling”.  

9.3. RCPSP: presentation and state of the art 

The Resource Constrained Project Scheduling Problem (RCPSP) is widely 
studied in other works [BRU 99, DEM 02, WEG 05, ART 08]. It consists of 
scheduling a given number of tasks over one or more limited capacity resources. 
Each task is defined by a processing time, consumption of each resource, and a 
series of tasks called predecessors, i.e. a task cannot start before the end of all its 
predecessors. The goal is then to find feasible schedules, i.e. task start times which 
satisfy resource constraints as well as precedence constraints, and that optimize 
given criteria, such as the project completion time for example. Many works have 
shown that this problem can be used to solve real life applications, and several 
extensions have been proposed. See [BRU 99, OZD 95, KOL 97, DEM 02, WEG 
05, ART 08] for a description of solving methods which consider variations of the 
RCPSP.

Many heuristic methods have been proposed for solving the RCPSP: priority 
rule-based methods [KLE 00], neighborhood and large neighborhood search [PIN 
94, BOU 03, DEB 06, FLE 04, GOD 05, KOC 03, PAL 04, VAL 03], population-
based method [MER 02, VAL 04], activity-insertion-based methods [ART 00, ART 
03], etc. Experimental evaluation of some of these methods has been recently 
presented [KOL 06]. 

Authors have also proposed efficient lower bounds [MING 98, BRU 98a, BRU 
00, CAR 03, CAR 07, DAM 05, DEM 05]. 

In this chapter we present the traditional form of the problem (section 9.3.1), 
along with the main exact resolution methods (section 9.3.2).  
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9.3.1. A simple model including shop problems  

The RCPSP generalizes traditional scheduling problems such as job shop or flow 
shop. This time, a task may have a certain number of predecessors and/or 
successors. However, the graph associated with precedence constraints between 
tasks should not have a directed cycle in order for the problem to accept a solution. 
In addition, tasks are no longer executed on a machine, but require one or more 
cumulative resources. This problem is characterized by:

– X = {1, 2, …, n}: all tasks. Tasks 1 and n are the fictitious project start and end 
tasks;

– U = {(i, j), …, (h,l)}: all precedence constraints between tasks; (i,j) U if j 
cannot start before the end of i; 

– pi: task i processing time, also called duration; 

– R = {1, 2, …, k}: all resources used by tasks; 

– Ak: availability of resource k, also called resource capacity; 

– ai,k: resource k quantity required by task I, also called resource requirement, or 
resource consumption; 

– ri: task i release date initialized at l(1, i), where l(i,j) is the longest path in the 
precedence graph between task i and task j; 

– qi: task i tail initialized at l(i, n) – pi;

– di: deadline of task i defined in the case where project completion date is set to 
D: di = D – qi.

The notations presented above correspond to the most traditional version of the 
RCPSP. The goal is then to find the minimal length schedule which does not violate 
precedence constraints or resource constraints. More general models were presented 
in the literature to take into account more complex systems. A problem typology and 
notation were proposed in [HER 98b] to generalize the traditional typology.  

It is important to note that this problem is NP-hard [GAR 79]. An example of the 
RCPSP is presented below.  

EXAMPLE.– We consider n = 9 tasks with respective processing time, 0, 2, 2, 4, 1, 
3, 2, 3, 0, and k = 3 resources with availability A1 = 3, A2 = 3 and A3 = 2. Figure 9.5 
shows precedence constraints between tasks, and the Gantt chart shows a feasible 
solution of duration 12.  
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Figure 9.5. Example of the RCPSP

9.3.2. Main exact methods for the RCPSP 

Since the RCPSP is NP-hard, tree search-based methods, or Branch-and-Bound 
(B&B), are preferred tools for its exact resolution. We intend to present a few exact 
reference methods. A tree search-based method has already been proposed in section 
9.2.5. We remind our readers that a B&B is based on a few essential mechanisms:  

– the branching scheme, for building the search tree; 

– lower bound, which provides a lower bound of the best solution associated 
with the current node; 

– dominance rules, establishing the dominance of one node over another; 

– adjustment rules for deriving information from decisions taken during previous 
steps of the tree search. 

9.3.2.1. Traditional branching schemes 

This section focuses on the presentation of a few branching schemes commonly 
encountered in the literature.  

Chronological schemes  

When a chronological scheme is used, a node (P) in the search tree corresponds 
to a series of scheduled tasks SC(P), i.e. a group of tasks for which the starting time 
is set. The eligible series of tasks EL(P), i.e. the group of tasks with scheduled 
predecessors, is determined. A task ip EL(P) is chosen. The time tp is determined as 

1 | 1,2,1

2 | 1,1,1

4 | 2,1,1

3 | 1,2,1

0 | 0,0,0

2 | 1,3,2

2 | 3,2,2

3 | 2,1,1

0 | 0,0,0

resource
consumption

A3 = 2

A2 = 3

A1 = 3

task time

1

2

4

6

3
7

5
8

9

example of feasible solution
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the earliest time point for placing ip, without violating constraints of precedence or 
resource constraints, and which is larger than or equal to the moment of placement 
of the last placed task. 

Most authors, including Sprecher [SPR 96], calculate in each node the series of 
eligible tasks as well as their earliest start times. If backtracking occurs, another 
EL(P) task is chosen to be scheduled. If all EL(P) tasks have been tested, we go back 
up in the search tree. In the tree thus generated, a node (P) has as many sons as there 
are tasks in EL(P). Baptiste and Le Pape [BAP 97] use a slightly different 
chronological branching scheme: for the ip chosen, either ip is scheduled before all 
eligible tasks, or a constraint between task ip starting time and the starting time of 
the EL(P) group’s other tasks is set. We mandate that at least one task of this series 
starts before the beginning of ip.

Shifting of a minimal series of tasks 

Demeulemeester and Herroelen [DEM 92, DEM 97] use a branching scheme 
inspired by the one proposed by Christofides et al. [CHR 87], based on minimal 
subsets of deferred tasks to solve new resource conflicts.  

Eligible subsets 

The branching scheme presented in [MIN 98] is based on the extension of partial 
scheduling by block addition at each node in the search tree. A subset of tasks 
defines a block if and only if constraints of resources and precedence are not 
violated when all tasks in the block are executed at the same time.  

Reduction of task intervals  

Carlier and Latapie [CAR 91] proposed a branching scheme which is not directly 
based on the construction of partial schedules. Task deadlines are then presumed to 
be known. A set of tasks corresponds to a node (P) in the search tree. Each of these 
tasks has a ri(P) release date and a deadline di(P). Task ip is chosen. Two sons are 
then created: P1, for which the release date of task ip is modified, and P2, for which 
the deadline of task ip is modified. For more information about this method, please 
refer to section 9.2.5 where it was presented for the resolution of the hybrid flow 
shop which is a specific RCPSP case. 

Disjunctions, conjunctions and parallelism  

This branching scheme was proposed in [BRU 98a]. It is based on the “schedule 
scheme” notion (C, D, N, F) which indicates, for a set of tasks, task pairs in 
conjunction, pairs in disjunction, pairs which must be executed in parallel and 
flexible pairs, for which none of the relations mentioned is mandated. For each node, 
a task pair is chosen among those still flexible and a relation (disjunction or 
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parallelism) is set, then two nodes are created, one corresponding to fixing a 
disjunction and the other corresponding to fixing parallelism relation.  

9.3.2.2. Lower bounds 

A lower bound, applied to a node (P) in the arborescence, provides a lower 
bound for the length of the best solution which will be obtained from (P). In this 
way, the search tree can be limited by excluding nodes from which no strictly better 
solution than the best known solution can be found.  

Critical path bounds 

The first bounds used for the RCPSP are based on the critical G = (X, U) graph 
path notion. Release dates and tails are those corresponding to the node for which 
the evaluation is calculated.  

Lower bounds for the m machine problem  

m machine problems are a relaxation of the initial RCPSP. The basic idea is to 
simply translate resource conflicts by relaxing constraints of precedence. If S is a set 
of tasks and if, for any subset s of S, such that |s| > m, all s tasks cannot be executed 
together without violating one of the resource constraints, the m machine problem in 
which each S task requires one machine to be executed, can be introduced.  

These are a few commonly used bounds for this problem finding their place in a 
tree search-based method for the resolution of the RCPSP. Quantity G’(J) = (ri1+…+ 
rim + i J pi+ qj1+…qjm)/m is the bound associated with the m machine problem 
[CAR 84], used by Carlier and Latapie [CAR 91], with ri1,…, rim the smallest m 
release dates of tasks J and qj1,…,qjm the smallest m tails (see section 9.2.5). This 
bound was improved with bounds called “subset bound” and “adjusted subset 
bound” [PER 95, VAN 94]. We should also mention the development of the Jackson 
pseudo-preemptive schedule by Carlier and Pinson [CAR 98a], for directly 
obtaining the subset bound.  

Time bound reasoning applied to the cumulative scheduling problem 

Baptiste et al. [BAP 99] focused on the cumulative scheduling problem (CuSP), 
which is a relaxation of a decisional occurrence of the RCPSP to one of its resources 
in which constraints of precedence are replaced by [ri, di] intervals, associated with 
each task i. Since index k of the resource is set, it will subsequently be omitted. The 
authors have particularly proposed a series of relaxations for this problem in order to 
obtain necessary existence conditions. This relaxation, called “non-interruptible”, is 
based on the notion of energy [LAH 82, LOP 92], presented in Chapter 5 and 
reviewed here. 



Shop Scheduling with Multiple Resources     253 

For a given i task, the minimum energy required by i over any interval [t1, t2] is 
equal to (see section 5.3.3): wi

[t1, t2] = ai . min (max (0, ri + pi – t1), max (0, t2 – di + 
pi), pi, t2 – t1). Lopez et al. [LOP 92] have proven that, if a non-empty interval [t1, t2]
exists for which i wi

[t1, t2] > A . (t2 – t1), then no feasible schedule will be found for 
the CuSP. Baptiste et al. [BAP 99] have demonstrated that it is simply required to 
verify this necessary existence condition for a quadratic number of intervals. A 
quadratic algorithm is proposed to establish the necessary existence conditions for 
all relevant intervals. 

A linear program based on the minimum feasible subsets  

The lower bound proposed by Mingozzi et al. [MIN 98] is based on blocks as 
previously defined. A linear program involving two types of decision variables is 
proposed. The first variables decide if a given block is executing at a given moment. 
The second variables express the fact that a task i starts at a given moment. Brucker 
et al. [BRU 98a] use one of the intermediate problem relaxations and apply an exact 
resolution by column generation. 

9.3.2.3. Adjustments and rules of dominance  

As reviewed above, rules of dominance and adjustment eliminate nodes of the 
search tree, for which no interesting solution can be developed. These rules 
generally apply to the structure of the partially generated scheduling, or to the search 
memory, i.e. that certain information is stored during the search to establish a 
comparison between the current node and the ones already explored. Generally, 
rules based on search memory belong to a class of techniques often used in artificial 
intelligence: intelligent backtracking. Here, starting times for scheduled tasks are the 
information stored. Adjustment processes of release dates and tails, as well as other 
mechanisms can be introduced. They make it possible to “over-constrain” the 
problem by getting as much information as possible from decisions made.

Left-shift  

This rule of dominance, initially proposed by Stinson et al. [STI 78], is based on 
the fact that all active and semi-active schedules, as formally defined for the RCPSP 
by Sprecher et al. [SPR 95], contain a minimum time solution. In this way, 
numerous methods [BEL 90, DEM 92, DEM 97, MIN 98, SPR 96], based on the 
development of partial schedules test if a sequenced operation can be left-shifted. In 
this case, the partial solution considered is not explored.  

The cut-set rule 

The rule of dominance called cut-set was described by Demeulemeester and 
Herroelen [DEM 92]. It consists of comparing the partial schedule in development 
to a previously developed partial schedule. Methods based on the same type of 
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comparison were previously proposed by Stinson et al. [STI 78], and Talbot and 
Patterson [TAL 78]. The cut-set rule actually comes down to comparing two partial 
schedules containing the same tasks. If, in the first one, all tasks end sooner than in 
the second, then all the solutions to be deduced from the first one will also be 
deduced from the second one. This rule has been widely used since its 
implementation by Demeulemeester and Herroelen [DEM 97, HER 98a, MIN 98]. 

Time bound adjustments 

Contrary to the two previous rules which enabled the elimination of nodes when 
they were dominated, time bound adjustments described by Baptiste et al. [BAP 99], 
make it possible to over-constrain the problem and to adjust the intervals [ri, di] of 
tasks when it is possible, without creating another choice point in the search tree.  

This technique is based on the time bound reasoning proposed by Lahrichi [LAH 
82], Erschler et al. [ERS 91], and Lopez et al. [LOP 92]. These adjustments are based 
on the notion of mandatory task part, whether it shifts to the left (pi

+(t1)) or to the right 
(pi

-(t2)), in relation to an interval [t1, t2]: pi
+(t1) = max(0, pi – max(0, t1 – ri)), pi

 –

(t2) = max (0, pi – max(0, di – t2)). The energy required for task i over interval  
[t1, t2] is thus defined as: wi

[t1, t2] = ai . min(t2 – t1, pi
+(t1), pi

–(t2)), and W[t1, t2] = 
i wi

[t1, t2]. Therefore, if: [t1, t2] / W[t1, t2] – wi
[t1, t2] + ai . min(t2 – t1, pi

+(t1)) > A . (t2 – 
t1), then a lower bound of the completion time of task i is: t2 + (1/ai).( W[t1, t2] – wi

[t1, t2]

+ ai . min(t2 – t1, pi
+(t1)) – A . (t2 – t1)). For this earliest end date, we can update the 

task’s release date. The symmetric adjustment is also defined for deadline (tails). 

Introduction of disjunctions 

All deduction methods proposed by Brucker et al. are grouped under this 
terminology [BRU 98a]. All these methods were developed to significantly improve 
the performance of the branching scheme based on a representation (C, D, N, F). 
These methods enable the setting of disjunctions in “flexible” task pairs without 
introducing a choice point, i.e. without developing a node in the arborescence.  

9.3.2.4. Development of an exact method in a simple example 

We propose an explanatory example showing the main mechanisms involved in 
the resolution of the RCPSP. To illustrate our example, we have chosen the method 
proposed by Baptiste and Le Pape [BAP 97, BAP 99, NER 99]. This method is 
based on:  

– consecutive resolutions of decision-making instances; 

– the development of partial schedules according to a chronological branching 
scheme; 

– the application of time bound reasoning as necessary existence conditions. 
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// initialization  
calculate UB: best known solution time (list method); 
calculate LB: a lower bound (larger value for which necessary time bound conditions 

detect no inconsistency; 
// dichotomous search on the smallest eligible UB bound 
while (LB < UB)  
 Determine UBtest the bound to test UBtest  (UB + LB)/2 
 // initialization of the tree search method 
 create the corresponding root node: fictitious start task is sequenced at t = 0; 
 t  0, 
 choose a task (e) which does not have task 0 as its predecessor   
 // scan the search tree 
 while (there is an unexplored node in the stack)  
 remove the first node from stack // e is the task to place  
 // placement of chosen task 
 place (e) at te the first moment larger than t and re such that sufficient resources are 

available
 if all tasks are sequenced then
  UB  scheduling end date  
  if scheduling end date  UBtest then
   UB  UBtest
   END_UB 
  end if  
 end if
 t  te

 for non-placed tasks ri  max (ri, te)
 propagate updates on graph 
 if inconsistency is detected ( i/ di > UBtest) then END_NODE 
 // application of time bound necessary conditions 
 apply necessary conditions and time bound adjustments 
 If inconsistency is detected then END_NODE 
 propagate these adjustments in the graph 
 if inconsistency is detected (di  > UBtest) then END_NODE 
 // branching function  
 determine the list of tasks where predecessors are finished 
 choose (en) one of these tasks  // i.e. the one with the smallest ri

 place on the stack of unexplored nodes the node in which at least one task will start 
before start of (en)

 place on stack of unexplored nodes the node in which the next placed task will be (en)
 end as long as // end of node  
 if no solution with time smaller than or equal to UBtest was found then LB  UBtest + 

1
end while  // end of the method    

Algorithm 9.2. “Chronological” BBP algorithm 
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Algorithm 9.2 briefly recaps the structure of this method. In this general 
algorithm, we have voluntarily omitted certain aspects, i.e. the initial branch phase 
in the generated one machine problems. We use END_NODE to indicate that the 
process on the node is interrupted and that the following node in the stack is 
processed, and END_UB to indicate that a desired duration solution was found. A 
new iteration of the search on the smallest eligible upper bound is then executed. 

It is important to note that in the following example we do not use all elements 
of the method which would be too long, even for a small example. We will simply 
emphasize the key elements of the method. We consider the following seven task 
and two resource problem: 

Resource
consumption

Task time
Solution given by a simple heuristic:

UB = 10
Calculation of a default bound:

on R2 ipiai = 16 hence LB =8

A2 = 2

A1 = 5

4 | 3,1

3 | 1,1

3 | 4, 1

2| 2,1

0 | 0,0

2 | 2,2

0 | 0,0

3

2

5

4

761

Figure 9.6. Initialization of the tree search method

The first iteration of the search algorithm for the smallest UB consists of 
verifying if there is a solution with a duration smaller than or equal to 9 = (10 + 8)/2. 
We briefly present the search tree route corresponding to this case. Nodes are 
scanned according to their number in the next diagram. The dotted arrows indicate 
backtracking in the search tree (Figure 9.8). 

After this iteration, we have a solution lasting 9 with a lower bound of 8. We 
now need to verify if a solution lasting 8 exists.

As before, in Figure 9.8 the nodes are numbered in the order of their 
examination. The straight arrows indicate a descent in the search tree, the dotted 
arrows indicate backtracking. Since it was proven that no solution lasting 8 exists, at 
the end of this iteration we can conclude that the minimum duration for this example 
is 9. The solution previously presented for UBtest = 9 is therefore an optimal solution. 
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i i =
1 2

test

Figure 9.7. Iteration for UBtest = 9



258     Production Scheduling 

root node

node 1 node 2

node 3 node 4

node 5

node 10

node 6 node 7

node 8 node 9

4 = 5, r7 = 9.
Impossible

Task 3 is placed at
t = 0. We conclude
that task 2 cannot
start before date 2.
By propagating on
the graph, it follows
that: r

4 = 5, r7 = 9.
Impossible

Task 2 is placed at
t = 0. We conclude
that task 3 cannot
start before date 3.
By propagating on
the graph, it follows
that: r

4 = 5, r7 = 9.
Impossible

Task 2 is placed at
t = 0. We conclude
that task 3 cannot
start before date 3.
By propagating on
the graph, it follows
that: r

4 = 8, r7 = 12.
Impossible

Task 3 is placed at
t = 3. We conclude
that task 2 cannot
start before date 5.
By propagating on
the graph, it follows
that: r

Task 6 starts at t = 0

No task is available.
No son is created

No task is available.
No son is created

At least one task must
start before task 2

At least one
task must

start before task 6

At least one task must
start before task 2

At least one
task must

start before task 3

Figure 9.8. Iteration for UBtest = 8

9.3.3. Results and fields of application of methods 

It is important to note that the results listed here are those supplied by the authors 
of referenced works. Great precautions must therefore be taken in comparing the 
different methods. In fact, most often, the test platform changes as well as the 
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language used. It is however interesting to attempt to highlight major trends in terms 
of efficiency and respective fields of application of these methods. 

Patterson [PAT 84] proposed 110 RCPSP instances to compare the different 
exact methods. The size of these instances varies from 7 to 50 tasks (with an average 
of 22 tasks), with a number of resources from 1 to 3. Very good results were 
obtained with these instances, in particular with the DH method [DEM 92]. The 
authors compare this method to the one proposed by Stinson [STI 78]. A second 
version of the DH method [DEM 97] greatly improves these results: the 110 
instances are resolved in an average time frame of 0.025 s. However, it is easy to 
produce the mainly disjunctive nature of the tests proposed by Patterson [BAP 97]. 
In addition, the DH method efficiency is strongly linked to an implementation 
developed with the cut-set rule [DEM 97]. 

An alternative was proposed by Kolish et al. [KOL 95], with the development of 
a configurable test generator, and the implementation of a library of tests mainly 
characterized by three factors accounting for the number of precedences, the average 
number of resources used for tasks, and the average quantity of resources used for 
each task according to the quantity of resources available. Once again, the DH 
method [DEM 97] is extremely efficient since it solves all 480 proposed tests. The 
method proposed by Mingozzi et al. [MIN 98] should also be mentioned as being 
powerful in these instances. However, it is interesting to note that these two methods 
use the same bound and have the cut-set rule in common, although they are not 
based on the same branching scheme.  

Demeulemeester and Herroelen have emphasized the limits of the DH method. 
In fact, this method owes its efficiency in great part to the use of the cut-set rule 
which is very memory intensive. The authors even maintain that with this type of 
approach, 500 MB of memory is necessary to process tests with 62 tasks. The rule of 
dominance proposed by Sprecher [SPR 96], based on global left-shift, seems to be 
an alternative to the DH method to solve the tests proposed by Kolish et al. [KOL 
95] without using the cut-set rule, and is thus less expensive. 

The method proposed by Brucker et al. [BRU 98a] can also appear to be a good 
compromise between efficiency and memory space used. The results reported by the 
authors on the 480 tests from Kolish et al. are globally not as good as those 
mentioned previously, but generated tests performed on larger sizes (90 tasks) 
conclude that the method is highly efficient on large size instances. The bound used 
is based on the resolution of a linear program with the help of a column generation 
technique which requires consequent memory space. In addition, the method is 
clearly less powerful when resource consumption is low in relation to the 
availability of resources, which is the case with highly cumulative problems. 
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In this way, even though the parameters proposed by Kolish et al. for the 
characterization of the instances help us better understand their structure, these three 
factors do not completely account for their cumulative character. Baptiste and Le 
Pape [BAP 97] propose the comparison of different instances with the help of the 
disjunction ratio involving the number of task pairs which cannot be executed 
simultaneously, either because there is a relation of precedence in a broad sense 
between tasks, or because the sum of task consumption exceeds the resource 
availability. With this criteria, the authors have established a series of 40 reasonably 
sized highly cumulative instances (20 and 25 tasks): the ratio of disjunctions is on 
average equal to 0.33 for these instances, whereas it is 0.53 for the more cumulative 
instances proposed by Kolish et al., and 0.67 for instances proposed by Patterson. 
Baptiste and Le Pape [BAP 97] have shown that on traditional instances, using tools 
such as necessary existence conditions and adjustments based on time bound 
reasoning are not very efficient. On the contrary, these same tools ended up being 
essential in order to solve highly cumulative problems.  

9.4. Conclusion  

The goal of this chapter was to present, on the one hand, two multiple resource 
scheduling problems, whether these resources be disjunctive, made up of multiple 
copies (hybrid flow shop), or cumulative (RCPSP) and, on the other hand, 
traditional resolution methods for these two problems which are NP-hard.  

For the hybrid flow shop, after a review of a few manufacturing applications 
related to this type of problem, we described the heuristic resolution methods based 
on simple principles: the determination of a list of jobs and allocation of these jobs 
on machines. We then explained an exact method (B&B), whose branching scheme 
is not explicitly based on the chronological development of schedules. 

For the RCPSP, after a reminder of the structure of the problem, we have 
described in detail the different B&B components in other works. Finally, we have 
reported one of these methods where the branching scheme is based on the 
development of partial schedules in a simple example. Remember that the hybrid 
flow shop can be seen as a specific RCPSP case. The methods detailed for the 
RCPSP can be directly applied to the resolution of the hybrid flow shop and some of 
them are particularly efficient for this type of problem [NER 98].  

In conclusion, we feel it is important to insist on the practical aspect linked to the 
resolution of these two types of problems. From the extremely abundant literature 
concerning these two problems, we can highlight simple heuristics to be 
implemented but where performance in terms of the quality of resulting solutions 
can be quite poor. Sophisticated heuristic methods (see Chapter 3) are most often a 
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way to reach a good compromise between the quality of resulting solutions and 
calculation time. Finally it is established that for reasonably sized problems, there 
are efficient exact methods for the resolution of the hybrid flow shop (up to 50 
operations) as well as for the RCPSP (up to 60 tasks). 
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Chapter 10 

Open Shop Scheduling 

10.1. General overview

In production scheduling problems called open shop problems (or problems with
free job routes), each item to be produced must have several operations on machines 
but in a totally open sequence. The absence of imposed order between operations 
makes these problems extremely combinatorial and prevents the application of 
already proven flow shop and job shop resolution techniques. However, it is 
necessary to have powerful resolution methods for these problems that have long 
been neglected, because they are encountered much more often because of the fact 
that flexible shops are increasingly common. 

The main problem is a shop problem called open shop. This is why the bulk of 
this chapter is focused on this problem. Section 10.2 presents open shop in the 
context of shop problems and gives a few applications. The complexity of the 
different versions of this problem is discussed in section 10.3. In particular, contrary 
to flow shop and job shop, open shop becomes easy when operations can be 
interrupted: this remarkable case, actually encountered in telecommunications, 
deserves to be explained in section 10.4. “Simple” heuristics (excluding 
metaheuristics) are described in section 10.5. The other resolution methods using the 
disjunctive model are reviewed in section 10.6, and metaheuristics, easier to present, 
are presented in section 10.7. In section 10.8 we present exact methods. The 
available tests and comparative algorithm performances are described in section 
10.9. The last section (10.10) presents a few neighboring problems encountered 
outside of production, mainly in telecommunications. 

Chapter written by Christian PRINS.
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10.2. The open shop problem 

10.2.1. Open shop in relation to other shop problems 

In shop problems, a set T of n jobs T1, T2, ..., Tn must be executed over a set M of 
m specialized machines M1, M2, ..., Mm. Simply put, we consider that if each job Ti

(in practice a product to be manufactured) contains m operations (i, j), j = 1, 2, ... m
the operation (i, j) occurs on machine Mj. Even with this hypothesis, shop problems 
become difficult with three machines. However, most resolution methods in the 
chapter are adaptable to jobs with more than m operations. Matrix P, n m, gives 
the integer processing time pij of each operation (i, j). There are two types of 
common constraints: a machine cannot process more than one job at a time, and a 
job cannot occur on more than one machine at the same time. 

A schedule is defined by allocating a start date tij (or an end date Cij = tij + pij) to 
each operation (i, j) while respecting constraints. The most common objective is to 
minimize the total duration Cmax (maximum of completion times), also called 
makespan. In the following, C*

max denotes the minimal makespan, pi the duration of 
job Ti if executed without pause (sum of elements in row i of P), and Zj the workload 
of machine Mj (sum of j column elements). According to constraints, these quantities 
are lower bounds of the makespan for any schedule. In particular, their maximum, 
LB, is a traditional bound, valid for any shop problem: 

                     ppLB
m

ijni
ni

ijmj
1,j

1,
1,

1,
max, maxmax  [10.1] 

If we voluntarily delay operations, we have an unlimited number of possible 
schedules. A schedule is semi-active if no operation can be launched earlier while 
conserving its rank in its job or on its machine. A semi-active schedule is active if 
no operation can be started earlier without violating the constraints or delaying 
another operation (in this way, no operation can be placed in a possible “gap” 
located before it on its machine). Finally, an active schedule is called non-delay or 
dense if no machine is left idle when it could process an operation.  

Semi-active schedules include active schedules, which in turn contain non-delay 
schedules and these three types of schedules are finite in number. A traditional result 
stipulates that there is always an optimal active schedule in the case of makespan 
minimization. A resolution algorithm can then limit its search to only explore active 
solutions in order to find this optimum. On the other hand, the set of non-delay 
schedules (the smallest one) may not contain an optimal solution. 
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The two most well-known shop problems are flow shop and job shop. They have 
been studied since the 1950s and are characterized by a fixed route for each job (see 
Chapter 2). In the general flow shop modeling linear structure shops, products (jobs) 
follow the same route M1, M2, ..., Mm but a job may overtake another. The 
permutation flow shop models the specific case of assembly lines: products cannot 
overtake each other, and a sequence of jobs is enough to define a schedule. In job 
shop, each job has its own route to follow: the flow shop is therefore a specific job 
shop case, with identical routes. Job shop problems can be found in shops organized 
in islands, with diversified products (small mechanics, for example). 

The open shop is the case where the order of operations for each job is 
completely open. An instance is thus defined by n, m and P. The problem appeared 
late (around 1975) in scheduling literature, because it is less frequent than flow shop 
and job shop. However, many sequencing constraints are artificial in reality: they are 
not induced by the product, but often by a rigid line organization in the shop. In 
modern flexible shops, we have many more choices in the order of operations. Early 
in the 1980s, the satellite telecommunications field raised completely unexpected 
open shop type problems. All this makes open shop problems increasingly common 
in the industry. 

10.2.2. An example 

Consider a small example with three jobs and three machines to illustrate the 
differences between open shop and other shop problems. Table 10.1 gives the P
matrix of operation times with machine-loads and job times. Any feasible schedule 
will last at least 1,000, the LB value. Figure 10.1 is the graphical representation 
(Gantt chart) of a permutation flow shop schedule defined by the sequence of jobs 
(1, 2, 3): the makespan is 1,358. We observe inactivity periods on M2 and M3,
typical of this problem. Downstream machines wait for the products to reach them. 
Figure 10.2 shows an open shop schedule. The free routes of jobs facilitate the 
problem, hence total time is decreased to 1,239. This schedule can still be improved 
by moving job T1 to date 85 on M3. The resulting schedule is optimal since the LB 
bound is reached. 

M1 M2 M3 pi

T1 97 72 500 669 
T2 261 540 85 886 
T3 642 274 84 1,000

Zj 1,000 886 669 1,000

Table 10.1. 3  3 example with bound calculation
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1,3581,000 = LB

Figure 10.1. Permutation flow shop type scheduling example
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Figure 10.2. Open shop type scheduling example

10.2.3. A few real open shop examples 

Table 10.2 presents four examples of open shop applications. Outside of 
production, the problem is encountered in testing and maintenance activities, in 
service and telecommunications sectors. The telecommunications context is 
explained in section 10.10. Note that in machining, for example, the Gantt chart line 
scan corresponds to machines or parts. In fact, in an open shop environment, jobs 
and machines are often found by convention and play an equal role. In this way, if 
we transpose matrix P, the optimal time does not change, contrary to flow shop and 
job shop. 
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Application Jobs Operations Machines

Machining Part machining Operation to execute
on a part Machine-tools

Equipment test Equipment to test Basic test Operator or 
Test bed

Examination of 
patients in hospital

Patient with routine
examination to 

perform

Patient tests: 
analyses, x-rays, etc.

Doctors or 
specialized rooms

Digital satellite 
telecommunications

Group of packets 
to transmit by 

one Earth-station

Packet from a 
transmitting 

station to a repeater

Satellite repeaters 
(channels)

Table 10.2. Some real open shop examples 

10.3. Complexity of open shop problems 

10.3.1. Overview 

With no specific hypothesis, open shop is an NP-hard problem from three 
machines. However, as with flow shop and job shop, it becomes polynomial for  
m = 2. If operation preemptions (interruptions) are authorized, the open shop also 
becomes polynomial, but, other shop problems remain NP-hard. For these two 
polynomial cases, C*

max = LB. All these results were established by Gonzalez and 
Sahni [GON 76]. Since then, a multitude of papers on the complexity of particular 
cases have emerged, but few studies have been completed on practical resolution 
methods, which is typical for a relatively recent problem. The next sections present a 
few particular cases. 

10.3.2. Polynomial geometric methods 

Let pmax denote the longest operation time and Zmax the biggest machine-load. 
The open shop problem becomes polynomial with C*

max = LB if the pmax / Zmax ratio 
is small. These results come from studies in geometry on a problem called compact 
summation of vectors. Given a series of m vectors in IRn, in what sequence should 
their sum be executed in order for the partial sums to be confined in the smallest 
sphere possible? This problem is NP-hard but different bounds are known for the 
sphere’s radius and good use has been made of them in scheduling.  

Results of this type are summarized in a review [SEV 94]. Here are two 
examples. Fiala in 1982 calls m' the smallest power of 2 m and shows that, if 
Zmax  (16.m'.log2 m' + 5.m').pmax, then the open shop can be solved in O(n2m3).
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However, operations must be very small compared to machine-loads: for m = 3, we 
find Zmax/pmax  148. Sevast’janov refined these bounds in 1990: the problem can be 
solved in O(n2m2) if Zmax  (m2 – 1 + 1/(m – 1)).pmax. For m = 3, this corresponds to  
Zmax/pmax  8.5. However, the probability of finding open shops verifying these 
conditions in practice becomes very low when m increases. 

10.3.3. The polynomial m = 2 case 

The report from Gonzalez and Sahni [GON 76] also gives a polynomial 
algorithm reaching LB for the two machine case (or two jobs since the optimal 
makespan of an open shop does not change when P is transposed). In 1995, Pinedo 
[PIN 95] proposed a simpler algorithm based on a priority rule called LAPT (longest 
alternate processing time). We begin at time 0 with idle machines. At each iteration, 
we search for the smallest time t to which a machine can start an operation. We then 
execute at t the job with the longest operation remaining on the other machine. If the 
schedule has no down time, it is clearly optimal because its makespan is equal to the 
maximum LB of the two machine-loads. Otherwise, Pinedo shows that the algorithm 
will, at most, leave a gap on only one machine and that this gap does not delay the 
schedule. 

M1 M2 pi

T1 97 72 169 

T2 261 540 801 

T3 642 274 916 

Zj 1,000 886 1,000

Table 10.3. A two machine example

Table 10.3 illustrates an example where n = 3, m = 2 and LB = 1,000. Figure 10.3 
shows the Gantt chart of the schedule obtained by the LAPT rule: LB bound is 
actually reached. We detail the algorithm sequence. At the beginning, M1 and M2 are 
idle at t = 0. (3, 2) is the executable operation at t = 0 whose job has the longest 
operation on the other machine. We place (3, 2) on M2. Then, M1 can start two 
operations at t = 0: (1, 1) and (2, 1). Job T2 is the one with the largest remaining 
work (540) on the other machine, M2. We then place (2, 1) on M1. Subsequently, M1
can only start one operation at t = 261, (1, 1). We therefore have no choice and we 
place this operation. We can then only execute (2, 2) when M2 is ready at t = 274, 
then (3, 1), and (1, 2). 
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274

1,000 = LB

Figure 10.3. Scheduling found by optimal LAPT rule

10.3.4. The boundary m = 3 case 

We say that a machine Mj is dominated by another Mk if the longest operation of 
Mj does not last longer than the shortest operation of Mk. In other words, if max (pij, i
= 1 … n)  min (pik, i = 1 ... n). If one of the three machines is dominated, the open 
shop can be solved in O(n) and C*

max can exceed LB [ADI 89]. Roughly, the 
algorithm first calculates a schedule for the two non-dominated machines, then it 
places dominated machine operations. The case where jobs only have two 
operations, where one has to be on M1 (M1 is then called bottleneck machine) can 
also be handled in O(n), with a makespan which can exceed LB [DRO 99]. The 
bottleneck machine case has an open complexity. 

10.3.5. Special open shops 

In the case of makespan minimization, the smallest additional constraint deletes 
the open shop polynomial cases. In this way, the m = 2 case becomes NP-hard when 
we add release dates to jobs [LAW 81] or if jobs must be accomplished without wait 
time between operations (no-wait case), as in the steel industry [SAH 79]. In the 
preemptive case, it becomes NP-hard if one additional resource is added, whether it 
is renewable [WER 91] or consumable [WER 92]. For other optimization criteria, 
the open shop is generally NP-hard from m = 2, for example, to minimize the 
average job completion time or mean flow time [ACH 82] or the maximum lateness 
in case of job due dates [LAW 81]. 

10.4. The preemptive case (operations executable multiple times) 

10.4.1. Gonzalez and Sahni algorithm 

It is remarkable that open shop is “easy” in the preemptive case, as opposed  
to flow shop and job shop. The corresponding algorithm [GON 76] deserves  
a detailed explanation, especially since the problem is currently present in 
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telecommunications. Its complexity is O(m2n2), actually O(r2) if there are r mn
non-zero operations. To simplify the presentation, we use a “square” open shop (m =
n). We first give the algorithm text before explaining it with an example. 

Add fictitious activity to P to make all sums 
for rows and columns equal to LB (matrix P’)
while P’ is not zero do
 Search for a perfect matching C in the bipartite graph  
 associated with P’ (n operations, one per row and per column) 
 D  min{p’ij |(i, j) C}
 Build a partial schedule (schedule slice) where each  
 operation (i, j) of C is executed for D units of time. 
 for any operation (i, j) C do
  p’ij p’ij – D
Remove fictitious activity from scheduling obtained. 

Algorithm 10.1. Gonzalez and Sahni algorithm for the preemptive case 

10.4.2. An example 

In Table 10.4, we use our 3  3 example. We add 114 to (1, 2), 217 to (1, 3) and 
114 to (2, 3) to obtain matrix P’ where all line and column sums equal 1,000 (Table 
10.5). We speak of a “quasi-bistochastic” matrix. 

 M1 M2 M3 pi   M1 M2 M3 pi

T1 97 72 500 669  T1 97 186 717 1,000

T2 261 540 85 886  T2 261 540 199 1,000 

T3 642 274 84 1,000  T3 642 274 84 1,000 

Zj 1,000 886 669 1,000  Zj 1,000 1,000 1,000 1,000

Tables 10.4 and 10.5. 3  3 example and its quasi-bistochastic matrix P’

We extract from P’ a set of operations which can be executed in parallel, called 
matching. In P’ it corresponds to non-zero elements placed one per row and per 
column. A matching is said to be perfect if it contains n operations. Gonzalez and 
Sahni proved that a perfect matching always exists in P’, even with the presence of 
zero elements. An algorithm for finding such matching can be found in [PRI 94a]. 
We can, for example, use {(1, 3), (2, 2), (3, 1)}, with D = min {717, 540, 642) = 
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540. We execute these operations (bordered in Table 10.5) for 540 units of time to 
obtain a partial schedule (or schedule slice) and we update P’ (Table 10.6). 

M1 M2 M3 pi   M1 M2 M3 pi

T1 97 186 177 460  T1 97 186 0 283 

T2 261 0 199 460  T2 84 0 199 283

T3 102 274 84 460  T3 102 97 84 283 

Zj 460 460 460 460  Zj 283 283 283 283

Tables 10.6 and 10.7. P’ after first and second matching extraction

P’ remains quasi-bistochastic, we have taken out 540 from each row and each 
column. On the other hand, the remaining matrix bound is now LB – D = 1,000 – 
540 = 460. Due to the existence of a perfect matching at each iteration, the original 
matrix P’ will be able to be broken down into a sequence of schedule slices whose 
total duration will be LB. This process converges because at least one operation 
cancels itself in P’ at each matching extraction, the operation with processing  
time D.

Continuing with matching {(1, 3), (2, 1), (3, 2)}, and D = min {177, 261, 274}, 
or 177. We execute these operations for 177 units of time and we update P’
(Table 10.7). Then, for example, we remove {(1, 2), (2, 3), (3, 1)} with D = 102 
(Table 10.8), then {(1, 1), (2, 3), (3, 2)} with D = 97 (Table 10.9), then  
{(1, 2), (2, 1), (3, 3)} with D = 84. The algorithm is finished because P’ is zero. 

M1 M2 M3 pi M1 M2 M3 pi

T1 97 84 0 181 T1 0 84 0 84 
T2 84 0 97 181 T2 84 0 0 84 
T3 0 97 84 181 T3 0 0 84 84

Zj 181 181 181 181  Zj 84 84 84 84

Tables 10.8 and 10.9. P’ after third and fourth matching extraction

Figure 10.4 illustrates the breakdown which actually lasts LB and contains five 
matchings here. It also gives the valid schedule for P, obtained by removing the 
fictitious activity. Note that most operations are not fragmented, which raises the 
minimization problem of the number of preemptions while keeping a makespan 
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equal to LB. This problem is NP-hard, but we can decrease preemptions in a 
heuristic manner.  
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Figure 10.4. Preemptive scheduling with and without fictitious activity

The total number of matchings can be reduced by extracting matchings 
containing a large amount of work. In our example, this goal is achieved by 
extracting matchings where the smallest element is maximal (max-min matching). 
We can also change the order of matchings in the final breakdown. In this way, by 
permuting slices 2 and 5 in Figure 10.4, we put back together the two fragments of 
job 2 on M1.

10.5. Simple heuristics (excluding metaheuristics) 

10.5.1. Introduction 

Since open shop was studied late by researchers (compared to flow shop and job 
shop), most published reports first involved complexity results, the study of 
particular cases, and the demonstration of performance guarantees for certain very 
simple heuristics. The emergence of methods used in practice for the resolution of 
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open shop with numerical evaluations over different types of data is very recent. We 
can cite heuristics from Bräsel et al. [BRÄ 93] and from Guéret and Prins [GUE 96]. 
The following sections present a few results for performance guarantees and two 
families of heuristics: the list family (priorities) and heuristics-based matching 
techniques. Current metaheuristics mainly based on the disjunctive model, are the 
subject of a special section (section 10.7). 

10.5.2. Performance guarantees 

Since open shop is difficult, it is tempting to use approximate methods, but with 
a deviation to the optimal makespan that is as small as possible. Finding a heuristic 
which is always at less than 5/4 from the optimum is actually an NP-complete 
problem [WIL 97]. We still do not have a heuristic that is guaranteed at 5/4. We do 
however have [CHE 93] results for list heuristics, which use priority rules to build 
non-delay schedules (see section 10.2.1). If Cmax(H) is the makespan calculated by a 
list heuristic H, then for any instance, Cmax(H) / C*

max  2, i.e. that we are never more 
than twice the optimum. The bound refines for m = 3 machines: 5/3. In addition, 
Chen defines a rearranging in O(n) for the schedule obtained to decrease the bound 
to 3/2. 

10.5.3. List heuristics 

Principle

Operations are sorted by decreasing priority in a list . Each iteration of the 
heuristic calculates the minimum date t in which operations are executable, and then 
executes at t the available task with the highest priority. 

We obtain Algorithm 10.2, which is very simple if two tables FM and FT are 
used. FM is a table of m integers defining the date in which each machine becomes 
available during the algorithm. FT, a table of n integers, defines the current end date 
(completion time) for each job. For each selected operation (u, v), Cuv denotes its 
end date; a matrix C is sufficient to store the schedule obtained without ambiguity. 

Examples of traditional priority rules 

The following rules are traditional and can apply to open shop: 

FF (First-Fit), where is the natural order of operations in the instance; 

Random, where the list is a random permutation of operations; 

SPT (Shortest Processing Time), operations sorted by increasing times; 
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LPT (Longest Processing Time), operations sorted by decreasing times; 

MWR (Most Work Remaining), priority to job with maximum residual time 
(total time of operations not yet executed). 

Initialize FM and FT to 0 
for k from 1 to mn do
 t  min { max(FT(i),FM( j ) )  | (i, j) }
 Determine (u, v), 1st operation of executable at t
 Cuv, FT(u), FM(v) t + puv

 Remove (u, v) from 

Algorithm 10.2. General form of a list algorithm for open shop 

The best rule on average for open shop is MWR, followed by LPT which is only 
slightly inferior. Note that LPT surpasses SPT for open shop, but it is the contrary 
for flow shop. FF and Random are interesting because they give an idea of the type 
of scheduling that a human would manually build. These rules provide a reference 
solution: an acceptable heuristic must be as good as these two rules. SPT, for 
example, is even worse! 

Improved list heuristics

Guéret and Prins [GUE 96] proposed more efficient list heuristics based on 
vectors of priorities. The priority of an operation (i, j) takes into account its 
processing time, the duration of its job and the load of its machine. It is in fact a 
vector (pij, pi, Zj), sorted by component decreasing order. In the H1 heuristic, list 
is sorted by a decreasing lexicographical order of priorities, just like words in a 
dictionary: (30, 20, 10) thus has higher priority than (30, 15, 15). H1 outperforms 
rule MWR on average. An improved heuristic H1D is obtained if priorities are 
managed dynamically, i.e. if residual pi and Lj are updated, followed by priorities 
after each iteration.  

Excellent results are obtained by a heuristic called H1R, which is a repetitive 
version of H1 accompanied by list perturbations. We begin by applying H1. The 
resulting schedule is examined to detect operations during which gaps appear on 
other machines and those ending after LB. All these operations gain one position in 
the list. We repeat the process a fixed number of times NRuns, while keeping the 
best schedule found. Algorithm 10.3 clarifies this process. 

In a few iterations, a spectacular compaction of the first schedule is often 
obtained. It is not a local (descent) search method because the makespan of 
consecutive schedules can increase. Since improvements space out during iterations, 
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in practice NRuns = 50 is a good compromise between quality of results and 
execution time. 

BestCmax  +
Sort  by decreasing lexicographic order 
for Runs from 1 to NRuns do
 Execute list Algorithm 10.2 on 
 //Current solution is kept if it is the best 

if Cmax < BestCMax then do
  BestCMax Cmax

  BestC C
 //Priority list perturbation 

for k from 2 to mn do
  (i, j) k (rank k operation in )

if Cij > LB or a machine is inactive in ]tij,Cij[ then         
   Permute k-1 and k

Algorithm 10.3. Repetitive H1R heuristic 

10.5.4. Matching heuristics 

Principle of matching breakdown 

As in the preemptive case, the idea is to extract from P matchings corresponding 
to schedule slices, but since we do not start with a quasi-bistochastic matrix, we 
cannot always find matchings with m operations. However, to avoid the generation 
of too many matchings, we can search for maximum cardinality matchings 
(containing the highest number of non-zero elements). The final schedule 
corresponds to the concatenation of slices in the order of their extraction. Table 
10.10 goes back to our three machines and three job example in which we have 
chosen a first matching (bordered elements). Figure 10.5 is an example of possible 
final breakdown. 

M1 M2 M3 pi

T1 97 72 500 669 

T2 261 540 85 886

T3 642 274 84 1,000 

Lj 1,000 886 669 1,000

Table 10.10. 3  3 example with a first matching (bordered)
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Figure 10.5. Matching breakdown example for Table 10.10

It is clear that we can improve the breakdown by “compacting” slices for 
example, but we can start by searching for a minimal length breakdown. This 
problem unfortunately is NP-hard, just like open shop, but we can intuitively 
observe that we will obtain good breakdowns if slices contain a small empty 
proportion. Here are different types of matchings with the correct property and 
algorithm references for their calculation (these algorithms are quite technical): 

 minimum or maximum sum of processing times (min-weight and max-weight 
matchings), computable using the “Hungarian” algorithm [PAP 82]; 

 minimum duration of the longest operation or maximum duration of the 
shortest operation (min-max and max-min matchings) [DER 78]; 

 minimum time difference between longest and shortest operations (balanced 
matchings) [MAR 84]; 

lexicographical matchings [BUR 91]. Max-min example: maximization of the 
smallest matching element, followed by the second smallest, etc.

Breakdown improvement 

Min-max matchings lead to better schedules on average (H2 heuristic from 
Guéret and Prins), but even the list heuristic using the FF rule is better. The 
breakdown must therefore be followed by an improvement procedure. We can 
execute a compaction to the earliest operations in each slice, in the order in which 
they are generated. We can also perform a compaction-insertion: before compacting 
an operation after its predecessor on its machine, we look first for an earlier gap 
where the operation can be inserted on this machine without conflict. Figure 10.2 
shows the schedule obtained by compacting the one from Figure 10.5. A 
compaction-insertion procedure would give an optimal result lasting LB = 1,000 by 
inserting (1, 3) in the gap between (2, 3) and (3, 3) on M3.
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These improvements depend on the slice sequence. Since compaction is quick 
(O(mn)), we can build an initial breakdown (slice sequence), and then carry out a 
local search with the goal of changing the sequence order to reduce makespan after 
compaction-insertion. For example, at each iteration of this local search, we can 
explore movements of a slice in the current sequence, or permutations of two slices, 
and observe if the makespan decreases after compaction-insertion. If that is the case, 
we execute the transformation and we start again with the new sequence as the 
current sequence. On average, the best results are obtained by a heuristic called 
H2RL, containing a min-max matching breakdown, followed by a local search with 
slice movement and permutations, and compaction-insertion [GUE 96]. 

Theoretical advantage with matching methods over list methods 

List methods build non-delay schedules and, in some instances, no list will return 
the optimum (see section 10.2.1). That is not the case with matching methods which 
have more chances of finding the optimum in theory. Decompositions into 
matchings, either followed by compaction or not, result in semi-active schedules, but 
most often they are not active (as in Figures 10.5 and 10.6). On the other hand, 
compaction-insertion returns active schedules by definition, among which there is 
always an optimal solution. 

10.6. The disjunctive model and shop problems 

10.6.1. Disjunctive model review 

This model is recalled here because it is used by most metaheuristics and exact 
methods to solve the open shop problem. The disjunctive model [ROY 64] is a 
graph describing scheduling problems with sequencing and disjunctive constraints.
A disjunctive constraint (or disjunction) between two tasks i and j means that i and j
cannot occur at the same time. This constraint is most often caused by sharing a 
resource only available in one copy. More precisely, for this type of n task 
scheduling problem, the disjunctive graph G = (X, U, D, P) is defined as follows: 

X is a set of nodes representing the n tasks as well as two fictitious tasks 0 
(input) and n + 1 (output); 

U is a set of arcs describing sequencing constraints; it must not contain cycles; 

D is a set of edges (undirected arcs) representing disjunctions; 

P is a mapping giving for each arc (x, y) the minimum time between the start 
dates of tasks x and y (generally the processing time px of task x).

The advantage of this model is the following: to define a schedule, each 
disjunction [x, y] must be replaced either by one arc (x, y) (for x before y) or by one 
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arc (y, x) (for y before x). This decision is called arc selection. Any feasible schedule 
corresponds to a complete selection, in which each disjunction of G is replaced by 
one arc without creating cycles. For a given complete selection, the makespan 
corresponds to the longest operation sequence in G, called critical path. For a graph 
with k arcs, this path can be calculated in O(k) by the Bellman algorithm (described 
in [PRI 94a] and Chapter 2 for example). Several branch-and-bound methods and 
metaheuristics then become possible by exploring complete selections to find the 
one with minimal makespan. 

10.6.2. Disjunctive model and shop problems 

For shop problems, the tasks in the disjunctive model correspond to the mn
operations. For the flow shop and job shop, the sequencing constraints in U form n
paths from fictitious task 0 (graph input) to mn + 1 (graph output). These paths 
correspond to sequences imposed on each job. For the open shop, U is empty, there 
are only disjunctions. Disjunctions only occur between operations of the same job or 
the same machine. Complete selections have a simple structure: each operation has 
two successors and two predecessors (one in its job and one on its machine). 

10.6.3. Example of open shop disjunctive model 

Figure 10.6 reuses the first open shop scheduling example given at the beginning 
of this chapter. The critical path is easily detectable on the Gantt chart: it is the 
sequence of operations ((3, 1), (1, 1), (1, 3)) responsible for the makespan 1,239.  

Figure 10.7 gives the complete selection of disjunctions corresponding to this 
schedule. First, we have created mn operation-nodes, and then we have entered the 
arcs describing the order of operations observed on each machine and in each job. 
The weight of each arc (x, y) is the processing time of operation x. And finally we 
have connected the beginning (node 0) to operations with no predecessor by zero 
time arcs, followed by operations without successors to exiting node mn + 1. By 
applying the Bellman algorithm, we find the critical path and its time (in dotted 
lines). 
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Figure 10.7. Complete selection of disjunctive graph 

10.6.4. Disjunctive model properties 

In a complete arbitration, a block is a maximum sequence of consecutive 
operations of the same job or machine, located on the critical path. From the graph 
structure, a block has at least two operations. A block operation is internal if it is not 
the first, or the last, one of the block. In addition, job-blocks and machine-blocks are 
alternated along the critical path. For example, in the previous example, operations 
(3, 1) and (1, 1) form a block on machine M1, whereas (1, 1) and (1, 3) constitute a 
block for job T1. We obtain the following properties [BAL 69] for any feasible 
schedule S of a shop problem by considering the associated complete selection: 
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 inverting an arc from the critical path results in another feasible schedule; 

 inverting a non-critical arc either creates a cycle or does not improve S;

 inverting an arc between two internal block operations does not improve S.

10.7. Metaheuristics for the open shop 

10.7.1. Known traditional neighborhoods for job shop 

Balas properties make it possible to explore a set of potentially improving 
transformations (neighborhood) from a current schedule. They were first used for 
job shop. The simplest neighborhoods dispense with testing the emergence of 
cycles, thus their exploration is quick and they have been used for simulated 
annealing algorithms: inverting an arc from a critical path block [VAN 92], or 
inverting an arc (x, y) from the critical path, with operation x at the beginning of a 
block or y at the end of a block [MAT 88]. In [DEL 93], more complex 
transformations are developed for a tabu search method. They can create cycles: 
inverting two consecutive arcs in a block, or move an internal operation μ at the 
head or at the end of a block (in case of cycle, we shift μ by one position to the right 
or left in its block until we obtain a feasible schedule). 

10.7.2. Tabu search and simulated annealing methods for open shop 

The general principle of these methods is presented in Chapter 3. Three tabu 
methods were proposed for the open shop. The oldest and simplest one uses the 
neighborhood applied to job shop from Matsuo [TAI 93]. Alcaide et al. then have 
tested the inversion of one or two consecutive arcs from a block [ALC 97]. The most 
recent method uses a sophisticated neighborhood [LIA 99b]. For current scheduling 
and an operation x, Liaw notes as PJ(x) and SJ(x) the predecessor and successor in 
the job, and PM(x) and SM(x) the predecessor and successor for the machine. For 
any arc (x,y) of a machine-block, he inverts the three arcs (x, y), (PJ(y), y) and 
(x, SJ(x)). For any arc (x, y) of a job-block, he inverts (x, y), (PM(y), y) and 
(x, SM(x)). The only simulated annealing method was proposed by Liaw [LIA 99a] 
with the same neighborhood as in his tabu method. 

10.7.3. Population-based algorithms and neural networks 

In 1994, Fang et al. proposed the first genetic algorithm for the open shop, with 
mixed results [FAN 94]. In 2000, Prins developed a flexible genetic algorithm [PRI 
00] where the chromosomes are lists of operations. The schedule associated with a 
chromosome is recovered by three scheduling engines which build either a non-
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delay schedule (like the list in Algorithm 10.2), or an active schedule (like the 
Giffler algorithm presented in [FRE 82]). Crossover operators are simple, such as 
LOX (Linear Order Crossover), but the algorithm includes several refinements. For 
example, a few really good heuristic schedules are introduced in the initial 
population. This population is managed in such a way that each individual has a 
distinct makespan, and improvement procedures such as the H1R heuristic are used 
as mutation operator. This algorithm made it possible to solve several open instances 
in literature (see section 10.9.2). 

Liaw [LIA 00] proposed another genetic algorithm in 2000, but based on the 
disjunctive model and hybridized with the local search already used for his tabu 
search method. In 2005, Colak and Agarwal introduced an original approach based 
on neural networks [COL 05]. Their method is not more effective than the genetic 
algorithms of Prins and Liaw, but it is remarkably fast (nearly 10 times faster than 
the other metaheuristics). The same year, Blum published an effective ant colony 
algorithm, hybridized with a beam search, called Beam-ACO [BLU 05]. The last 
breakthrough is a particle swarm optimization algorithm (PSO) designed in 2007 by 
Sha and Hsu [SHA 07]. The two latter metaheuristics have improved several best-
known solutions from a set of hard instances introduced by Guéret and Prins  
[GUE 99].   

10.8. Exact methods for open shop 

10.8.1. Brucker et al. branch-and-bound method 

All current (optimal) exact methods for open shop are branch-and-bound 
methods based on the disjunctive model. The first effective method comes from 
Brucker et al. [BRU 97]; it succeeds in optimally solving problems up to size 
10  10. Only a broad overview is given here, because the details of its 
implementation are complex. Each node in the search tree contains the disjunctive 
graph with the disjunctions already selected. At the root, no disjunction is selected 
yet. A node corresponds to a complete solution if all disjunctions are selected. The 
branching scheme uses a theorem from Brucker which considers the graph G with a 
complete selection and a critical path μ. He stipulates that if a better complete 
selection H exists, then a block B of μ and an operation u of B also exist, such that u
is located before or after all operations of B in H.

In any node, a matching heuristic which respects disjunctions already selected is 
executed to obtain a complete selection, lasting UB. For branching, we apply the 
theorem by choosing a critical path μ of G. Children-nodes are obtained by 
considering each B block of μ, and by forcing each internal u operation to be before 
or after any other x operation of B. The generated child-node inherits the 
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disjunctions selected in the father-node, to which we add arcs (u, x). Bounding
functions (lower bounds) are calculated. The node is pruned if one of them reaches 
UB. These bounds are similar to those proposed by Carlier and Pinson [CAR 89] for 
job shop. They are based on the calculation of a release date and tail for each 
operation, from already selected disjunctions. A constraint propagation technique, 
called immediate selection, deduces additional selections in each node. 

10.8.2. More recent improvements 

Several techniques can decrease the number of nodes explored by the Brucker 
method by 10. The first method, called intelligent backtracking [GUE 00], attempts 
to identify which selected disjunction is responsible for the pruning of a node S in 
the search tree. This disjunction may have been selected in a node located several 
levels above the father-node. It can be detected by keeping some information 
(explanation system) in each node. We can backtrack directly to the selecting node, 
which accelerates the exploration of the search tree.  

Another technique [GUE 98a] is called prohibited intervals. Here is its principle 
for any schedule with makespan UB, a machine Mj with load Lj, and a given 
operation (i, j) from Mj. In any optimal schedule, Mj cannot contain an idle period 
higher than  = UB – Lj. It is possible to quickly calculate, in O(n.LB), the durations 
d1, d2, ..., dk of all subsets of operations of Mj not containing (i, j). We can show that 
(i, j), in an optimal schedule, can only start in intervals such as [du, du+ ], u = 1, 2, 
..., k. This technique enables the elimination of numerous nodes in which operations 
occur outside of these intervals. It has actually solved one open 10  10 instance 
from the literature. 

Today, the most effective branch-and-bound algorithm is the one designed by 
Dorndorf et al. [DOR 01]. It combines constraint propagation methods with a 
technique called shaving. This technique consists of considering assumptions such 
“operation (i,j) starts at its earliest start time” or “operation (i,j) starts at its latest 
start time” and checking whether a schedule exists under these assumptions. This 
new method has for the first time solved some 20  20 instances to optimality. 

10.9. Algorithm comparison 

10.9.1. Uniform processing times 

The simplest way to test algorithms is to randomly generate examples with 
uniform processing times drawn in an integer interval [a, b]. As with other shop 
problems, these problems are on average more difficult when m = n. Numerical 
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evaluations in [BRÄ 93] and [GUE 96] with times in [1, 100] show that this type of 
open shop is actually quite easy: the deviations to LB are low, and the optimal 
makespan actually often equals LB. For comparison purposes, this situation is rare in 
the job shop. Table 10.11 compares heuristics from section 10.5 on examples with 
times in [1, 100]: list heuristics FF, LPT, H1D and H1R, and matching methods H2
and H2RL. For each heuristic, we give the average gap between Cmax and LB (in %), 
over a series of 1,000 problems and in parentheses, the number of times where LB
(thus the optimum) is reached. 

Size FF LPT H1D H1R H2 H2RL 
5  5 5.23 (201) 4.37 (247) 3.15 (350) 0.43 (778) 8.21 (54) 0.28 (868) 
7  7 5.09 (98) 3.95 (133) 3.22 (200) 0.42 (702) 8.49 (8) 0.18 (872) 

10  10 4.23 (49) 3.04 (75) 2.61 (81) 0.35 (607) 8.16 (3) 0.12 (883) 

Table 10.11. Comparison between list and matching heuristics

In this type of example, the decomposition into min-max matchings without 
improvement procedure (H2) returns the worst results, at 8% from the bound. 
Among list heuristics, even FF has a decent 5% gap. However, methods without 
improvement mechanisms (i.e. all except for H1R and H2RL) rarely reach LB when 
n increases: at most 81 10  10 problems over 1,000 for H1D. The repetitive list 
H1R method solves a majority of examples, also with weakening on the large ones. 
The decomposition into matchings followed by a local search (H2RL) returns the 
best results and is very stable: it reaches LB in 87% of cases regardless of size.  

H2RL is thus the most powerful simple heuristic, even though it is slower than 
H1R. It improves even more if less dispersed processing times are used, in [50, 100] 
for example, because it finds more balanced matchings. On the other hand, by 
increasing dispersal, H2RL weakens and is bested by H1R. Metaheuristics are even 
better, albeit more calculation time intensive: the tabu method from Liaw [LIA 99b] 
and the genetic algorithm from Prins [PRI 00] reach LB in 98% of any size 
examples. As for branch-and-bound methods, they can optimally solve any example 
of this type up to 10  10 size. Here is an idea of algorithm execution times 
(programmed in Pascal-Delphi) to treat a 10  10 problem on a 1.8 GHz PC running 
Windows XP: H1R lasts on average 0.02 s, H2RL 1 s, the tabu method 6.5 s, the 
genetic algorithm 13.9 s, and the branch-and-bound methods 1 min. 
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10.9.2. Taillard examples 

More difficult tests can be built. In 1993, from amongst thousands of randomly 
generated examples, Taillard selected a group of 60 examples with greater 
deviations to LB for its tabu search method [TAI 93]. These examples (10 in each 
size 4  4, 5  5, 7  7, 10  10, 15  15 and 20  20) are stored in J.E. Beasley’s 
“OR Library” at http://people.brunel.ac.uk/~mastjjb/jeb/info.html. The Brucker 
branch-and-bound method published later resolved all 4  4, 5  5 and 7  7 and six 
10  10, for a total of 36 instances. The proven optima exceed LB only for some 
4  4 and 5  5. The more recent branch-and-bound algorithm by Dorndorf et al.
[DOR 01] solved all 10  10 instances. Contrary to Brucker’s method, it was also 
applied to the 15  15 and 20  20 instances: all except one 20  20 were solved to 
optimality, at the expense of significant running times (50 minutes to 5 hours, on a 
333 MHz Pentium II PC).  

The simple heuristics from section 10.5 greatly deteriorate compared to uniform 
time examples. Guéret and Prins offset this weakening with the help of two black 
boxes: BBL, which includes different list algorithms including H1R, and BBM
containing matching methods such as H2RL [GUE 98b]. These black boxes return 
the best result of the heuristics that they contain, which compensates for the possible 
poor performance of a method for some instances. Table 10.12 compares LPT, BBL
and BBM with three metaheuristics on the 60 Taillard problems. For metaheuristics, 
we give the results published for the tabu method by Taillard in 1993 (TabuT), for 
the one from Liaw in 1999 (TabuL), and for the genetic algorithm from Prins in 
2000 (GA). The table shows the average gap to LB in %, the gap to the optimum
when it is known, and the number of problems for which LB and known optima are 
reached. 

Method LPT TabuT BBL BBM GA TabuL
Gap to LB % 9.02 2.66 2.56 1.70 1.03 0.92 
Gap to Opt. % 8.38 2.12 1.89 1.03 0.34 0.23 
LB reached 0 0 2 25 33 42 
Opt. reached 0 12 3 28 42 43 

Table 10.12. Comparison of methods for the 60 Taillard examples

The simple heuristic BBL and BBM black boxes beat Taillard’s tabu method, 
which highlights the weakness of the disjunctive model in the open shop case. To 
find a majority of optima, we must use the disjunctive model with a sophisticated 
neighborhood (Liaw’s tabu search) or Prins’ genetic algorithm, not based on the 
disjunctive model. TabuL is globally slightly better, but mostly finds the optimum
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for 4  4, 5  5 and 7  7, already resolved by Brucker’s branch-and-bound method. 
It only reaches LB in 19 of the 30 10  10, 15  15 and 20  20 examples. The 
genetic algorithm is not as good for small examples but solves 29 out of these 30 
large examples. In particular, it breaks one 15  15 and two 20  20. By combining 
the Brucker method and genetic algorithm, Taillard examples are all defeated, 
except for one 20  20 where the genetic algorithm finds the best known solution, 
1,171, very close to the lower bound LB = 1,169. 

The two most recent metaheuristics mentioned in section 10.7.3 are able to reach 
the lower bound for all instances, even for the last 20  20 open instance: the Beam-
ACO of Blum [BLU 05] and the PSO from Sha and Hsu [SHA 07]. Therefore, 
Taillard instances should no longer be used to benchmark open shop algorithms. 

10.9.3. Difficult Brucker and Guéret and Prins tests 

Since the optimal makespan is most often LB in the Taillard examples, Brucker 
et al. had the idea to generate 73 even more difficult examples to test their branch-
and-bound method in [BRU 97]. With only sizes 3  3 to 9  9, their machine loads 
and job times are all very close and often equal to LB, equal to 1,000 in all instances. 
Since machines and jobs are critical, the least delay in a schedule prevents reaching 
LB. Despite their small size, these examples are difficult because nine of them  
have resisted the branch-and-bound method by Brucker: one 7  7, six 8  8 and  
two 9  9. In addition, of the 64 optimal solutions, 34 exceed LB with gaps  
reaching 18%. 

Method LPT BBL BBM GA
Gap to LB % 12.65 5.00 6.83 2.83 
Gap to Opt. % 9.60 2.49 4.26 0.45 
LB reached 2 10 10 21 
Opt. reached 4 16 15 41 

Table 10.13. Comparison of methods for the 73 Brucker examples

Table 10.13 compares LPT, BBL, BBM and Prins’ genetic algorithm with these 
examples (not used by Liaw and published after Taillard studies). We observe the 
deterioration of all methods. Processing times are much dispersed in the Brucker 
examples and make the list methods of BBL better than BBM matching methods, as 
mentioned in section 10.9.1. The genetic algorithm is very robust, however, with an 
average of 0.45% for the 64 known optima. The algorithm may reach the optimum
on some of the nine open problems, but we do not have proof since the optima
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mainly seem to be higher than LB for this type of example, contrary to the examples 
from Taillard. 

Guéret and Prins have found even more difficult instances by designing the first 
lower bound NB better than LB for the open shop [GUE 99]. Such bounds have been 
known for a long time for flow shop and job shop because of the sequencing 
constraints, but they were lacking with the open shop. The bound is obtained by 
optimally solving a relaxed problem in which we authorize the simultaneous 
execution of operations for all jobs, except one fixed job Tk. This problem is still 
NP-hard but can be efficiently resolved in practice by using the following property: 
there is a quick algorithm in O(mn LB) for the particular case where Tk has an 
imposed sequence. By generating hundreds of Brucker instances and by calculating 
the new bound, they have isolated 80 instances 3  3 to 10  10, with NB/LB
reaching 1.3. These 30% gaps are comparable to those of the most difficult job shop 
cases.

Contrary to Taillard instances, many instances are still open in the two sets 
described in this section, which can be downloaded from the following Internet 
address: http://www.emn fr/x-auto/gueret/OpenShop/OpenShop html. Concerning 
the 73 Brucker instances, the Beam-ACO of Blum has improved six best-known 
solutions and the very recent PSO of Sha and Hsu two others. However, one 7  7 
out of 12, five 8  8 out of 11 and two 9  9 out of 3 are not yet solved to optimality. 
The situation is even worse for the 80 harder files from Guéret and Prins, even if 
Blum has improved 24 best-known solution values and Sha and Hsu 16: three 6  6, 
six 7  7, six 8  8, eight 9  9 and all 10  10 are still undefeated (there are 10 
instances for each size). These examples illustrate the hardness of the open shop: in 
comparison, all flow shop and job shop instances up to 10  10 are easily solved 
nowadays.  

10.10. Open shop problems in satellite telecommunications 

10.10.1. TDMA systems principle  

Modern satellite telecommunications systems (Intelsat, Eutelsat for example) use 
the TDMA (time division multiple access) technique. They raise several scheduling 
problems presented in a survey paper [PRI 94b]. In these systems, a set of n Earth-
stations cyclically share over time a geostationary satellite to transmit numerical 
data packets. The cycle has a very short time  (2 ms). The list of packets to 
transmit in each cycle is known in advance and does not change for several minutes. 
We have the time to calculate a packet schedule for a cycle, in order to share the 
satellite without conflict. This solution is also applied to the following cycles as long 
as the packets do not change.  
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Figure 10.8. Simplified diagram of a satellite telecommunications system 

The satellite has a single antenna receiving the packets transmitted by the 
stations (Figure 10.8). This antenna feeds a series of m amplifier tubes (repeaters), 
and each repeater has its own output antenna which covers a zone on the ground. 
Each repeater is sensitive to a specific radio frequency. A filter placed after the 
receiving antenna switches the packets transmitted by stations to the appropriate 
repeater according to the frequency. For example, if a station i must transmit a 
packet to station k located in zone j, this packet i k will have to be transmitted by i
to the satellite, over the frequency of the repeater with a transmitting antenna 
covering k. The satellite will receive this packet, switch automatically according to 
its frequency to the repeater covering zone j, and the retransmitted packet will thus 
reach k.

10.10.2. Pure open shop cases 

In the simplest systems, we have an open shop. In fact, the packets can be 
assimilated to tasks: since the numerical throughput (bit rate) of the system is 
constant, we can convert their size, given in bytes for example, into time. Two 
stations cannot send a packet at the same time to the same repeater, or they risk 
interference. In addition, a station transmitter (respectively the receiver) has a bus 
structure which prohibits the transmission (reception) of more than one packet at a 
time. We can agree that repeaters (or their destination zones) correspond to 
machines, and traffic transmitted by each, to a job. If a station i has a packet to 
transmit to a repeater j, this packet can be viewed as a known time operation (i, j). 
The order of packets is completely open because of the very short system cycle. The 
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telecommunications protocol is responsible for resequencing the packets upon 
receipt at the stations with the help of buffers. 

The objective is to find a schedule within a cycle time , which can be very 
difficult if LB is close to . In practice, we still attempt to minimize the used part of 
the cycle to preserve capacity for unexpected packets. Fortunately, this open shop 
problem is often preemptive: a station can fragment a packet to be transmitted as 
long as it is transmitted in integers (between two data bytes). We can then apply the 
polynomial Gonzalez and Sahni algorithm from section 10.4. 

10.10.3. Preemptive case complications 

Each packet contains a fixed size preamble. If we decide to cut the packet in two, 
we must create an additional preamble. Minimizing total time for the preemptive 
case becomes NP-hard when the preamble size is significant compared to packet 
size. In certain systems, packets have compressed data. The compression rate 
decreases for a smaller packet: even without taking the additional preamble into 
account, splitting a packet increases in a non-linear fashion the volume of data to 
transmit. 

10.10.4. Generalization of the basic open shop 

We also find problems generalizing the basic open shop in the non-preemptive 
case. First, we can have several packets with different sizes transmitted by a given 
station i to a given repeater (or a zone) j: we then have an open shop of the second
type, in which a job may have several operations per machine. Subsequently, we can 
have several repeaters in parallel to cover each zone j: this is a hybrid open shop 
case, or multi-level. Finally, there can be p stations k1, k2, ..., kp in a zone. Since a 
packet retransmitted by the satellite in a zone can be picked up by all stations in the 
zone, we can have multi-destination packets in the form of i k1, k2, ..., kp which 
include traffic for all these destinations. If in addition, we have several repeaters in 
parallel for the zone, simultaneously transmitting several packets with common 
destinations is prohibited, since a station cannot receive more than one packet at a 
time.  

The general form can be modeled as a hybrid open shop where station 
transmitters are jobs and repeaters (or zones) are machines, and where station 
receivers are additional renewable resources. It is extremely difficult in practice, 
because of the large size and numerous additional constraints in real systems. Carlier 
and Prins designed methods actually used in the daily use of the Eutelsat European 
system [CAR 86]. 
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10.11. Conclusion 

Open shop problems are increasingly common in production because of flexible 
shops. We also find them in telecommunications and in timetabling. Timetabling 
was not addressed, for lack of room, and also because it groups very different 
problems depending on whether we consider school or university timetables, shift 
work, or crew or transport system timetables. Certain timetable problems are clearly 
similar to the problems studied in this chapter, for example the organization of a 
university exam period: all exams that a student must take can be considered as one 
open shop job. A review from de Werra provides a good starting point [WER 85]. 

Long considered as easy in practice compared to flow shop and job shop, the 
open shop problem is actually characterized by small deviations to the lower bound 
LB for the total time (maximum machine loads and job times), which is often 
reached. In fact, by digging deep, it is possible to find very difficult tests, with 30% 
gaps comparable to those of other shop problems. Research still remains to be done 
for exact methods: a 7  7 example from Brucker remains open, whereas any 
10  10 flow shop or job shop example can be optimally resolved today. 

The disjunctive model used by branch-and-bound methods and all metaheuristics 
except for the genetic algorithm by Prins, seems to reach its limits with open shop 
whereas it is very powerful with job shop. An obvious reason is the absence of 
sequencing constraints which weaken the model. Another explanation is the useless 
enumeration of non-active schedules which cannot be optimal (this is the case for 
the example in Figures 10.7 and 10.8). This is a weakness in the face of a solutions 
space made huge by free job routes. Fortunately, the genetic algorithm returns very 
good solutions: on the one hand its intrinsic parallelism adequately scans the 
solutions space, but on the other hand, it only explores active schedules and is 
somewhat more “productive”. 
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Chapter 11 

Scheduling Under Flexible Constraints
and Uncertain Data: The Fuzzy Approach

11.1. Introduction 

Traditional scheduling problem formulations can be classified into two 
approaches: those based on the optimization of criteria such as total duration, and 
those based on the satisfaction of constraints pertaining to delay or resource 
availability. The first approach calculates an optimal schedule that is not always 
useful in practice because other criteria may have been neglected in the model. In 
the second approach, we can formalize local specifications, but we run the risk of 
either finding no solution if the problem is too constrained, or finding too many and 
not be able to guide the user, whose preferences are not represented. In addition, 
most scheduling models are deterministic and assume a precise knowledge of data 
such as task execution times, production requirements, etc. There is literature on 
stochastic scheduling, but these models may be difficult to use in practice, as 
scheduling problems in a deterministic environment are already very complex. 
Moreover, the stochastic approach [HER 05] often works “in the average”, which 
may not make much sense for production processes or projects that are not 
repeatedly performed a sufficient number of times.  

Using fuzzy sets and possibility theory can make it possible to propose an 
acceptable trade-off between expressivity and computational difficulty, when 
modeling preferences and uncertainty, even though this type of approach is not yet 
widely used in scheduling. Fuzzy PERT studies have highlighted the difference 
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between a flexible constraint problem and a problem with uncertain execution times. 
In the first case, we focus on the notion of solution optimality. In the second case, 
we encounter problems in adapting the critical path method. The flexible constraint 
approach offers a trade-off avoiding rigidities of constraint analysis while being less 
restrictive than the optimization of global criteria regarding the representation of 
objectives. Extending constraint analysis, it also includes certain optimization 
problems as particular cases. In addition, possibility theory also offers a natural 
framework; simpler and less greedy in information than the stochastic approach to 
treat uncertainty for certain parameters such as uncontrollable times for certain tasks 
when this uncertainty is caused by a lack of knowledge. Flexible constraints and 
uncertain data can therefore be represented in a single framework. Instead of 
optimizing behaviors on average, we are searching for schedules that can withstand 
hazards by satisfying all constraints to a reasonable extent with a sufficient level of 
confidence.  

The use of fuzzy sets in scheduling dates back to the end of the 1970s [DUB 78, 
PRA 79]. We find reviews on this subject in the book by Loostma [LOO 97] and 
papers by [CHA 98, WER 99, TUR 99, DUB 03a]. Different studies were published, 
emphasizing constraint flexibility, ill-known data or the use of fuzzy rules. For 
example, we can cite: 

– project scheduling, having to deal with renewable and non-renewable resource 
constraints, with multiple modes of task execution and with multiple criteria. It is a 
pretty realistic and general model [BLA 86]. Fuzzy sets are used to model partial 
information (uncertainty) on task execution times [HAP 94]; 

– scheduling based on heuristic rules attempts to express preferences between 
task sequences in a constructive manner. In this perspective, the literature shows the 
application of fuzzy heuristic rules to scheduling problems with known execution 
times on one hand [BEL 88], and in a more general way the use of fuzzy priority 
rules [GRA 94]; 

– job-shop problem under imprecise execution times, addressed on the basis of 
methods for comparing fuzzy quantities, and resolved by simulated annealing type 
methods [FOR 97b]; 

– job-shop problem with flexible constraints, for which we try to minimize job 
due dates by minimizing violation of the most violated constraint. Similar to project 
scheduling, this problem comes down to setting hard constraints by reaching a 
compromise between local criteria in order to ensure the existence of a small 
number of solutions at the “center” of the original constraint domain [FAR 97]; 

– the hybrid case where there are preferences about due-dates and execution 
times for certain tasks, and where such times for other tasks are uncertain. We 
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demonstrate that this problem comes down to the pure flexible constraints case when 
we look for robust solutions [DUB 95a].  

This chapter is intended to be an introduction to these studies. We will first 
present a refresher on possibility theory and fuzzy intervals. Section 11.3 follows 
with a discussion on the case of scheduling under flexible constraints with fuzzy 
priority rules. Section 11.4 describes the fuzzy approach with ill-known execution 
times for activities. We examine difficulties encountered by the critical path method 
under uncertainty and provide recent solutions to these difficulties. We also show 
how to formulate the problem of task sequence determination under uncertainty. 
Finally, the last section before the conclusion briefly discusses the hybrid case 
where fuzzy constraints and uncertain execution times are present simultaneously.  

11.2. Basic notions on the fuzzy approach to uncertainty and constraints

11.2.1. Possibility theory 

In order to model unknown or flexible quantities, we must recall a few results 
from fuzzy sets and possibility theory (see for example [DUB 88]). A fuzzy set A is 
a subset of a universe U whose boundaries are gradual. Formally, the following 
definitions are instrumental.  

The membership function A of fuzzy set A associates with each element u  U a 
degree of membership A(u) from u to A, normally with values in [0, 1].  

The core of A is the set c(A) = {u, A(u) = 1}. It gathers elements totally 
belonging to A (they are prototypes of A).

The height of a fuzzy set A is the maximum degree of membership of an element 
from U to A. If this height is smaller than 1, the core is empty. 

The level-cut  of A is the crisp set (i.e. non-fuzzy) A  of elements of U with a 
degree of membership to A of at least . These level-cuts form a family of nested 
sets and constitute another representation of the fuzzy set A.

The support of A is the set s(A) = {u, A(u) > 0}. It contains prototypes of A and 
peripheral elements (borderline elements such as 0 < A(u) < 1). It only rejects “non-
A” prototypes ( A (u) = 0).  

The complement of a fuzzy set A in universe U is denoted Ac and its membership 
function is Ac = 1 – A. Fuzzy set union and intersection are obtained by 
respectively using the pointwise maximum and minimum of membership functions.  
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Given a parameter x with an ill-known value, all that we know is that value x
belongs to a fuzzy set A: the stronger the degree of membership μA(u) of a value u to 
fuzzy set A, the more it is possible (i.e. plausible) for u to be the value of x. Values 
outside the support are considered impossible. In other words, the value of x is 
restricted by a possibility distribution x = A. We assume that the core of A is not 
empty, i.e. μA(u) = 1 for at least one value u.

In the context of this type of uncertainty modeling, a possibility distribution is 
similar to a distribution of probability. It is different due to the conventions adopted:

x(u) = 1 does not mean that x = u is certain, but only that it is a plausible value. In 
particular, the sum of degrees of possibility can be greater than 1. In terms of 
modeling, possibility degrees do not account for the same uncertain aspect as 
probabilities. Possibility theory describes the incomplete character of information 
(possibly total ignorance when for any u, x (u) = 1) whereas probabilities often 
express randomness. Note that these representations are not incompatible: 
incompleteness in probability is captured by probability intervals, and each 
possibility distribution efficiently, and very simply, encodes a specific family of 
probability measures. In fact, probability and possibility are only incompatible in the 
context of a Bayesian approach that mandates that the probability distribution be 
unique. 

The possibility of an event “x  P”, denoted by (x P), is the intersection 
degree of A and P, where the intersection of two fuzzy sets is defined by the 
minimum operation: 

(x P) = supu min ( A(u), P(u)) [11.1] 

This degree assesses to what extent event “x  P” may be true or, in a similar 
way, to what extent proposition “x  P” is consistent with information “x  A”
modeled by x = A. Note that in the previous equation, P can also be a fuzzy set. 

The dual necessity measure of “x  P”, denoted as (x P) evaluates to what 
extent A is completely included in the core of P. In other words, to what extent 
proposition “x  P” is certainly true, i.e. that it is implied by information “x  A”:

(x P) = infu max (1 – A(u), P(u)) = 1 – (x  Pc) [11.2] 

where Pc is the complement of P. In fact, N(x  P) = 1 if and only if the support of 
A is included in the core of P: x P is certain if and only if all partially possible 
values of x are among those completely satisfying proposition x P.
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Figure 11.1. (a) Numbers possibly/necessarily before A;  
(b) numbers possibly/necessarily after A 

A fuzzy interval is a fuzzy subset of reals whose level-cuts are intervals 
(generally closed). The simplest representation of a fuzzy interval uses a trapezoidal 
membership function (Figure 11.1): we set two nested intervals [a, b]  [c, d]
respectively forming the core and support of the fuzzy interval and we linearly 
interpolate between a and c, and between b and d, respectively.  

If x is a true value variable, A a fuzzy interval and p a traditional number, we can 
verify that: 

(x  p) = (x  [p, + )) = supu  p μA (u) = (- ,A](p) [11.3] 

(x p) = (x  [p, + )) = infu< p (1 – μA (u)) = (- ,A [(p) [11.4] 

(x p) = (x  (– , p]) = supu  p μA (u) = [A,+ ) (p) [11.5] 

(x p) = N(x  (– , p]) = infu> p (1 – μA (u)) = ]A,+ )(p) [11.6] 

where (- , A], (- , A[, [A,+ ), ]A,+ ) indicate sets with numbers possibly before 
A, necessarily before A, possibly after A and necessarily after A respectively (Figure 
11.1). 

11.2.2. Fuzzy arithmetic 

We review here some basics on the calculation of fuzzy intervals. A and B are 
two fuzzy intervals restricting possible values of two logically independent variables 
x and y. The sum and difference between two intervals is defined by: 

μA B(z) = supx, y  z =x + y min(μA (x), μB(y)) = supx min(μA (x), μB(z – x)) [11.7]
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μA B(z) = supx, y  z =x – y min(μA (x), μB(y)) = supx min(μA (x), μB(z + x)) [11.8] 

When B = {b} is a precise value, we find μA B(z) = μA(z – b) and 
],(],( bAbA .

Similarly, the minimum and maximum of two fuzzy intervals are fuzzy intervals 
defined by (see also Figure 11.2): 

mĩ n(A ,B)
(z) = supx, y  z =min(x, y) min(μA (x), μB(y)) [11.9] 

mã x( A, B) (z) = supx, y  z =max(x, y) min(μA (x), μB(y)) [11.10]

Extended minimum and maximum operations satisfy most usual minimum and 
maximum properties, for example idempotence, or property mã x(A, B)  C = mã x
(A  C, B  C), or even mutual distribution. However, as Figure 11.2 shows, the 
mã x(A, B) fuzzy interval cannot be equal to A or to B, as well as for fuzzy interval 
mĩ n (A, B).

1

0

A B

z

max (A, B)
min (A, B)

Figure 11.2. Maximum and minimum of two fuzzy intervals A and B 

 11.2.3. Fuzzy interval comparison 

Fuzzy interval comparison is a tricky problem as shown by the large amount of 
literature involved. Numerous techniques have been developed, and each one was 
inspired by a different semantic. We are giving a broad overview by choosing the 
relevant methods in the present framework. For more information, please refer to 
[BOR 85, CHE 92, DUB 00, WAN 01]. 

First, we must distinguish between two situations: the case where fuzzy intervals 
must actually be totally ordered (for example, the comparison of total fuzzy 
execution times for two different schedules) and the case where we must describe 
the relative position of fuzzy intervals with the help of a degree of comparison (the 
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degree to which an inequality holds, for example). If the goal is to determine the 
degree of satisfaction of constraint A  B between two flexible quantities A and B,
i.e. encoding preferences formulated in the form of fuzzy intervals, we use formulae 
defining the possibility that some x smaller than A and larger than B exists for 
example [DUB 88]: 

(A  B) = supx min(μ(– , A] (x), μ[B, + ) (x)) 

This purely metric index is the direct extension of the comparison of intervals 
and is based on the following idea: [a, b]  [c, d] if and only if a d. In this case,

([c, d] [a, b]) = 0 and ([a, b] [c, d]) = 1. If [a, b]  [c, d] , then ([c,
d] [a, b]) = ([a, b] [c, d]) = 1, which indicates indifference. The properties  
of this index make it the natural possible extension of interval orders [FOD 94,  
PIR 97]. 

On the other hand, when ranking imprecise quantities, we give preference to a 
method based on calculation of areas with an interpretation in terms of imprecise 
probabilities. In short, the method called “area compensation” [FOR 96] belongs to a 
family of “defuzzification” approaches consisting of replacing fuzzy intervals by 
real substitutes and comparing them. The real or true substitute F(A) of a fuzzy 
interval A is defined as the center of gravity of the average interval generated by the 
family of probabilities compatible with fuzzy interval A [YAG 81, DUB 87]. 
Mathematically, we can define the real substitute of A by: 

F(A) = daa )(
2
1 1

0

–

where ],[ – aa  is the level cut  of A. There are other fuzzy interval defuzzification 
methods. Nevertheless, contrary to other methods, our proposition has the advantage 
of linearity, i.e. it guarantees: F(A  B) = F(A) + F(B) and F(  · A) =  F(A), for 
any scalar .

11.2.4. Possibilistic utility 

Possibility theory offers a framework different from the one of expected utility 
for decision under uncertainty. If we stick to the traditional context of decision 
theory in which a decision is a function from a set of states S to a set of 
consequences X, we assume that knowledge of the state of a system is described by a 
possibility distribution  over S and that preference in the decision result is modeled 
by a function μ: X  [0, 1] such that μ(x) is the degree of preference of consequence 
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x (similar to a utility function). We then have two criteria based on degrees of 
necessity and possibility [11.2] and [11.1], to evaluate a decision :

– pessimistic criterion: u
*
( ) = infs S max (1 –  (s), μ (  (s)));

– optimistic criterion: u*( ) = sups S min (  (s), μ (  (s))).

By considering that a state s such that  (s) = 1 is seen as a plausible state, u
*
( )

evaluates to what extent decision  presents favorable consequences in all plausible 
situations. In particular if we have no information on the state, then (s) = 1  s and 
u

*
( ) = inf s S μ(  (s)); we find Wald’s pessimistic criteria. On the other hand, 

u*( ) is high when a plausible state exists where decision  leads to a successful 
consequence. These criteria are different from the expected utility based on a 
probability Prob (such as u( ) = s Prob(s) · μ (d(s)), for two reasons:  

– they assume less information on the state; 
– they apply to decisions which are not repeated, where results do not 

accumulate (contrary to costs for example). 

The rationality of these criteria was highlighted by their axiomatizations in the 
style of Von Neumann and Morgenstern [DUB 95b] and Savage [DUB 01b] 
respectively.

11.3. Scheduling under flexible constraints 

The use of flexible constraints in the context of scheduling (job-shops, for 
example, but also in project management) is a way to offset deficiencies with 
traditional scheduling approaches. The search for an optimum in terms of a unique 
criterion does not interpret well the fact that the reasons why one schedule is better 
than another often depend on the satisfaction of local constraints. Although the 
constraint-based approach (see Chapter 5) actually tries to take this local aspect into 
consideration, it is based on an all-or-nothing form, whereas approaches using 
optimization evaluate the quality of a schedule in a more gradual way. Using 
flexible constraints enables us to remain gradual while maintaining the essence of 
the constraint-based approach, which excludes compensation between local criteria. 
First, we treat the main scheduling problem (with unlimited resources), followed by 
sequencing problems caused by limited resources. 
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11.3.1. The fuzzy PERT problem: flexible constraints 

We consider sets of tasks linked together by precedence constraints, indicating 
that a task cannot start before the other one ends. The set forms what we call a 
project or a job. By convention, two fictitious tasks with zero duration time are 
added, (start of the project) and  (end of the project); precedes all tasks, and all 
tasks precede . When resource constraints are not considered, a project can be 
represented by a directed graph with no cycle where the nodes represent activities 
and arcs show precedence constraints. Succ(i) (resp. Pred(i)) represents all tasks 
immediately following (resp. preceding) i, whereas SUCC(i) (resp. PRED(i))
represents all successors (resp. predecessors) of i. Given two tasks i and j of the 
graph, C(i, j) represents all paths  from i to j. We mainly use notations from 
Chapter 2. We also note by t–

j and t+
j the earliest and latest starting times for task j.

The scheduling problem considered here is a matter of determining task starting 
times and to possibly set their execution times on the basis of availability and 
delivery constraints. In this case, a delivery date d and/or an availability date r are 
specified for the project, and we can use the following constraints in addition to 
precedence constraints between tasks (remember that initial and final tasks have 
zero times):  

Availability constraint: t  r [11.11]

Delivery constraint: t  d [11.12]

This constraint satisfaction problem may very well fail to have a solution (choice 
of task starting times tj). The earliest starting time of each task only depends on the 
duration of tasks preceding it and the availability date, whereas the latest starting 
date depends on the delivery date, the duration of this task and the duration of tasks 
following it. If the earliest and latest starting times of the task are incompatible, then 
the problem has no solution. In this case, negative floats can emerge for certain 
tasks. However, it is quite possible that no task is critical. 

1

0
Preferred

delivery date
Deadline

Figure 11.3. Flexible delivery date 
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Even though certain tasks have to comply with local availability (waiting for 
parts before continuing for example) or delivery constraints (milestone dates for 
example), there are additional constraints which must be taken into consideration, in 
the form of a local feasibility window: 

ri  ti  di – pi [11.13] 

We must admit that these constraints are often “flexible” in practice. We can 
make the temporal window where a product must be manufactured flexibly, by 
modeling supplier and customer preferences. Customers wish to receive finished 
products before a certain date, called preferred delivery date; but they may accept 
some delay. Generally, there is a maximum deadline beyond which the order will be 
considered obsolete: either the parts ordered will no longer be useful or another 
supplier is used. Between the preferred delivery date and the deadline, customer 
satisfaction decreases. The longer the delay, the less satisfied the customer will be.  

This type of decreasing satisfaction curve, represented by a fuzzy interval 
(– , d̃ ] in Figure 11.3, can only be obtained during negotiation with the customer. 
A global flexible constraint on delivery results in a local satisfaction index 
sat (t )

(– ,d̃]
(t ).

We formalize in a similar way supplier preferences. In short, they prefer to 
supply as late as possible to ensure a certain temporal float for the manufacturing 
and delivery of semi-finished products. A global flexible constraint on availability  
is satisfactory at level sat (t ) [˜ r , ) (t ) . The fuzzy interval [r̃ , ) has an 
increasing membership function such that [ r̃, )(x) 0  if x r (impossible to start 
before r) and 1)(),~[ xr  if x r  (prefer to start after r ).

Finally, task execution times can sometimes be controlled and are subject to 
preferences, for example by setting machine parameters (speed, instrument 
precision, temperature of a tank, etc.), or by allocating more or less manpower (e.g. 
preferences depend on the number of employees to pay). The criteria involved thus 
affect the quality of item produced, and the comfort or safety of operators. For each 
task, we assume that there are optimal parameter settings, and acceptable, even if 
less satisfactory, parameter values (not as close to security, quality and wear 
standards). We can represent the preference relative to task duration by a fuzzy 
interval. In other words, the execution time of a task i can be a controllable 
parameter whose more or less satisfactory values can also be modeled by a fuzzy 
interval ip~ : a duration pi of task i instantiation is totally satisfying if it is part of 
optimal duration values, i.e. to the core of ip~ . It is not at all satisfying (it violates 
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the constraint) if it is outside the range of acceptable values, i.e. support of ip~ .
Otherwise, the closer it gets to the set of optimal values, the more satisfactory it 
becomes. In other words, we have a flexible constraint for pi where the degree of 
satisfaction by an instantiation pi is the degree of membership of pi to ip~ :
sat(pi) p̃ i

(pi).

Generally, the “useful” part of fuzzy interval ip~  is only its increasing part that 
contradicts due-date constraints. It can sometimes interpret the following preference: 
the more time allocated to the task, the better it is (because the result is of a better 
quality, the job is done under better conditions, etc.).  

To summarize, we consider these different preferences in the choice of starting 
and execution times for tasks to be scheduled. Consequently, we look for a plan that 
will better satisfy contradictory constraints of suppliers, customer and resources 
used to accomplish the tasks.  

In this context, a potential solution to the problem is an instantiation 
),,,,,( pptt of the starting times of n tasks and their execution times that 

must satisfy “traditional” hard constraints, such as precedence constraints between 
tasks on one hand, and on the other hand flexible availability, delivery and duration 
constraints described above. We must therefore solve a problem of fuzzy constraint 
satisfaction [DUB 95a, DUB 96]: the degree of satisfaction of a potential solution 

),,,,,( pptt  is the degree of satisfaction of the least satisfactory 
constraint. sat (t , , t , p , , p ) = 0 if ),,,,,( pptt  violates at least 
one precedence constraint, and otherwise:  

),,,,,( ppttsat  = min (mini )(~ ip p
i

, )(]
~

,(– td , )(),~[ tr )

[11.14] 

We have not taken into consideration possible local delivery or availability 
constraints here, relative to specific tasks. We can observe that potential solutions 
are not equally satisfying. Degrees of satisfaction lead to a total pre-order of all 
instantiations that satisfy hard constraints. A solution violating a date or a constraint 
on duration is unacceptable (sat = 0); whereas there are solutions that satisfy all 
ideal task duration and starting time ranges, they are the best (sat = 1); otherwise, 
the problem becomes conflicting and we must explicitly accept a relaxation of 
preferences on execution times. The goal is to stay as close as possible to ideal 
execution times.  

The degree of coherence cons of the problem (degree of satisfaction for the best 
solutions) somewhat expresses the degree of feasibility of the scheduling problem: 
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cons = sup
 ) , , , , ,( pptt

),,,,,( ppttsat  [11.15] 

When constraints are partially inconsistent, we find 0 < cons < 1, as no 
instantiation can satisfy them perfectly. 

In practice, the problem comes down to the search for starting time instantiations
),,( tt , by merging precedence constraints and flexible constraints for 

execution times. Let ),,( tt be an instantiation of starting times only; it is 
satisfactory when there exists ),,( pp  such that ),,,,,( pptt
optimizes the problem: 

),,( ttsat = sup
 ), ,( pp

),,,,,( ppttsat  [11.16] 

We can show that: 

[ , ) (– , ] (– , ]( , )  such that ( )
( , , ) min min( ( ) , ( ), ( ))

jp k j d dj k j Pred k
sat t t t t t t

[11.17] 

Thus, we have to solve a problem only involving task starting times, containing 
two flexible availability and delivery constraints and flexible precedence constraints 
in the form: 

),~[ iij ptt  [11.18] 

with a degree of satisfaction equal to )(),~[ ijp tt
i

.

Instead of directly searching for a solution, the user is generally interested in 
knowing the set of possible starting time values for each task. A value for the 
starting time of task i is satisfactory insofar as it is higher than its earliest starting 
time and less than its latest starting time caused by the set of precedence constraints, 
availability and delivery. It is obvious that if global availability and delivery dates 
are decision variables of the problem, the earliest and latest task starting times are 
independent groups of variables. This reasoning is still valid in the flexible case, 
because we can reason with availability and delivery dates as well as flexible 
execution times as if they were not fuzzy. We can in fact calculate the degree of 
local satisfaction sat(ti) of an instantiation of the earliest starting time ti of task i:

sat(ti) = sup
 )   :( ijt j

),,( ttsat  = ))(),(min( ]~,(–),~[ – itit tt
ii

 [11.19]  
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where fuzzy earliest and latest starting times of task i are calculated as in the non-
fuzzy case because of independent forward and backward propagation steps with the 
help of operations on fuzzy intervals, and no longer on traditional numbers (by 
means of addition, subtraction minimum and maximum of fuzzy intervals). 

~~xa~m~ –
)(

jj
iPredj

i ptt  for i > , and rt ~~  [11.20] 

ij
iSuccj

i ptt ~~ni
~

m~
)(

 for i < , and dt
~~  [11.21] 

The more or less satisfactory values for the starting time of task i is therefore a 
fuzzy interval ]~,~[ –

ii tt . The local degree of satisfaction sat(ti) is the height of this 
fuzzy subset. The degree of coherence of the problem can be known immediately 
after the forward propagation phase: it is the height of the fuzzy interval [ t̃ – , d

~
],

from which the project preferred ending date is derived.

If cons < 1, we can thus calculate precise values for starting times and task 
execution times (otherwise, we obtain intervals). Task execution times are obtained 
by inverting the membership function of the increasing part of ip~ .

Earliest starting time values are obtained similarly from it –~ . Nevertheless, if 
the solution obtained is optimal in the sense of the bottleneck type criterion defined 
by formula [11.14], it is not always Pareto-optimal in the sense of the multicriteria 
problem involving membership functions of flexible constraints, viewed as criteria 
to maximize. In fact, only duration and starting times of critical tasks (those whose 
local degree of satisfaction sat(ti) coincide with global degree of satisfaction cons)
are calculated correctly. They form a set of critical paths in the usual sense. We can 
still improve task execution times along non-critical paths. In order to do this, we 
can solve a second fuzzy PERT problem, where we set critical task execution times 
based on )(1~ consp ipi  and starting and ending project dates likewise. We 

proceed recursively in this way until all tasks in the graph become critical [DUB 99] 
(if cons < 1). 

EXAMPLE.– A set of three tasks T1, T2, T3 where T1 must precede T2 and T3. We 
must find earliest starting times and task execution times. Each task is assumed to 
last 4 hours to be properly completed. There is no way to complete it in less than 
two hours. We note as (a, b, c) the fuzzy number of core b and support (a, c). The 
feasibility domain of p1 is (2, 4, + Task T1 can start at time r = 0. Task T2 must 
be preferably ended within four hours and T3 within six hours. Tasks must be 
finished within eight hours in any case. Fuzzy delivery dates are therefore (– , 4, 8)
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and (– , 6, 8). Let t1, t2, t3 be task starting times, p1, p2, p3 their best execution times. 
The degree of coherence of the problem is the maximum value of: 

min( (2, 4,+ (p1), (2,4,+ (p2), (2, 4,+ (p3), (– , 4, 8) (t2 + p2), (– , 6, 8) (t3 + p3))

with t1 0, min(t2, t3) t1 + p1. We can confirm that cons = 0.5. However, the value 
selection of execution times and starting times of degree of membership 0.5 gives 
p1= p2 = p3 = 3, and suggests t1 = 0, t2 = 3, t3 = 3. This solution can be improved. 

The set of tasks T1, T2 is critical. It cannot be moved without decreasing cons
below 0.5 (this value enforces an ending date of 6). Variables t1, t2, p1, p2 are 
completely determined on the critical path. However, T3 is not critical in this 
configuration. It will be executed in the best conditions by optimizing the simpler 
scheduling problem with variables t3 and p3, defined by: t3  3, t3 + p3  (– , 6, 8), 
and p3  (2, 4, + . A simple calculation shows that the optimal max-min solution 
is unique and gives t3 = 3 and p3 = 3.5 with a degree 0.75. Joined to values found 
previously for t1, t2, p1, p2, it forms an optimal Pareto as well as optimal max-min 
solution for the problem. 

11.3.2. Limited resources: flexible constraints and fuzzy rules 

The practical realization of a project is greatly constrained by the availability of 
resources. We limit ourselves here to resources known as “renewable”, i.e. resources 
that are integrally restored at the end of execution of the task requesting them. They 
are most often machines, but also additional tools or even human operators. Often 
disjunctive, these constraints prevent the execution of more than one task at a time 
even when no priority precedences between these tasks exist. 

The flexible constraints approach easily extends to resource constraint 
scheduling, a special case of which is job-shop scheduling. In this case, resources 
are machines. A task requires a specific machine during its execution. This 
particular case is very important in reality because it involves a significant part of 
job-shop models.  

Next to temporal parameters, other constraints can be subject to flexibility, 
notably the use of resources. If we have generally interchangeable machines, we can 
express preferences on the use of one machine or the other to execute a task. Outside 
of traditional machine type resources, we can also consider human resources. If we 
typically have a certain quantity of operators, it may become necessary to hire 
additional personnel in order to deal with the workload in a reasonable amount of 
time. This increase in human resources constitutes a relaxation of the initial 
constraint; it is accompanied by additional cost as well as a possible deterioration of 
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production quality. It may occur that the additional employees are less efficient 
because they are less specialized. Finally, in contexts such as open shop (see 
Chapter 10), precedence constraints can also be flexible. Namely, even if there is a 
preference on the precedence between two tasks A and B on the same product, the 
other precedence is tolerable. For example, we can hope that A precedes B (with a 
degree equal to 1), while accepting that B can precede A with a positive degree less 
than 1. 

The resolution procedure for the job-shop problem under flexible constraints is 
derived from fuzzy PERT under flexible constraints. In fact, we can apply the 
general principle of changing resource constraints into (disjunctions of) precedence 
constraints. Namely, any job-shop scheduling problem under flexible constraints can 
be seen as a family of flexible constraint project scheduling problems, in which we 
must find the best representative – in terms of max-min criteria.  

Methods have been developed and experimented for the resolution of job-shop 
scheduling problems under flexible constraints [FAR 97]. They are implicit 
enumeration techniques, where the search in the solution graph, notably to solve 
conflicts of precedence between tasks, is guided by degrees of membership of 
current partial solutions. We have been able to show that taking into consideration 
flexibility of constraints does not slow down the solving process. On the contrary, 
the heuristic associated with problems involving preferences tends to position tasks 
in the middle of temporal windows, often making it possible to reduce calculation 
time. 

Determining task sequences on machines was addressed by some with the help 
of fuzzy rules that model heuristic knowledge in a flexible way and express a 
blending of priority rules. The use of priority rules in fact has the advantage of easily 
solving the sequencing problem, possibly in real time, even if the objectives attained 
with local priority rules are not always very clear. In most production scheduling 
software packages, heuristics, such as empirical rules, are used, making it possible to 
rank tasks according to a particular priority. This ranking is then used in a scheduler. 
A simulation tool can gradually allocate the necessary resources to the different 
tasks, while respecting precedence constraints. When a conflict between tasks 
appears because of resource sharing, the program may select the next priority task 
according to the heuristic involved. Among traditional priority rules, we can name 
SPT (Shortest Processing Time) and LST (Least Slack Time) that rank tasks 
according to their execution times and estimated floats respectively (see Chapter 6). 
In fact, a great number of priority rules were proposed for project management, and 
in a more general way, for production scheduling [MAC 93]. The use of fuzzy sets 
in priority rules enables two improvements. First, with a fuzzy priority rule, we 
avoid thresholding effects. We can also make a blending of the different traditional 
rules.  



316     Production Scheduling 

For example, it is reasonable to write: if task duration is small and if its float is 
very small, then the task must receive high priority. This linguistic rule naturally 
translates in terms of fuzzy rules: 

If duration  SMALL and float  VERY SMALL then priority  HIGH

where “SMALL” “VERY SMALL” and “HIGH” are fuzzy intervals, for example.  

When we need to settle a conflict between two tasks requiring the same machine, 
we match the parameters of these tasks against the premises of the rule to determine 
an indication of their respective relevance. The actual crisp duration and float values 
are used to determine the activation degrees of the premises, the degree of activation 
of a “high priority” conclusion is calculated here as the minimum of activation 
degree of rule conditions. We avoid defining a crisp partition between situations 
where a rule applies and other situations, although similar to the previous ones, 
where another longer applies. 

The combination of several rules in a fuzzy expert system makes it possible to 
improve the advice provided by this system. Since the different priority rules 
influence the performance in different ways according to prescribed criteria that 
measure scheduling quality, their mode of combination does not constitute a trivial 
problem. For example, it is well known that if the criterion considered is average 
cycle time, SPT and LST rules are not equally relevant. In this case, SPT is more 
appropriate and should therefore receive higher weight in the decision process.  

In [BEL 89], the authors jointly use the approach by constraints and fuzzy 
priority rules combined with a majority approach for job-shop scheduling. The 
aggregation of different fuzzy priority rules was studied by [DUB 94], and the 
difficult problem of choosing weights by [GRA 94], in the context of general 
scheduling problems. Ideal weights are based on the number of resources, dispersion 
of execution times and obviously the criteria to be optimized. That is why additional 
rules can be added to the rule-based system for determining priority weights of 
fuzzy rules, for example the fuzzy rule: 

if the dispersion of operation times is high and if minimizing average delay 
and average cycle time are significant, then the SPT weight must be high. 

The implementation details of a fuzzy rule-based system are out of the scope of 
this chapter (see [DUB 88] for more information). The four main steps for the 
inference process are:  

– pattern matching: linguistic terms (e.g. high, important) are compared with real 
input values (e.g. operation duration) to determine the degree of truth of each 
premise; 
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– inference: premise compatibility values are propagated (according to a 
generalized modus ponens) toward conclusions; 

– combination: conclusions of the different rules are combined to obtain a global 
conclusion of the rule base; 

– selection: a crisp conclusion is calculated from the fuzzy conclusion. 

[TUR 99] proposes an extensive bibliography on the fuzzy rule-based approach 
for planning and scheduling, an approach that Turksen himself largely developed 
and applied in the artificial intelligence context. 

11.4. Scheduling with ill-known execution times  

In this second version of fuzzy scheduling, we try to minimize total completion 
time (or makespan) of a set of tasks. We no longer have constraints expressing 
preference on dates or execution times. As with their traditional counterparts, that 
they generalize, fuzzy scheduling techniques under uncertainty require that the 
problem considered can be represented in the form of a directed, compact and 
acyclic graph. This model is convenient for the efficient processing of time windows 
and execution times, fuzzy or crisp, as well as conjunctive precedence constraints.  

We assume task execution times are non-controllable parameters, i.e. the user is 
not the one choosing their values. They are, for example, subcontracted production 
management task execution times, software debugging tasks in computer system 
project management, process execution times that depend on the resource that will 
eventually be assigned to tasks, etc. As a consequence, the values of execution times 
pi for tasks i are no longer known with precision and certainty: we only know more 
or less plausible values in the form of fuzzy sets ip~ . A particular case is that of 
execution times for which we only know a bracketing interval. While the idea of 
representing ill-known execution times by intervals sounds very natural, it seems 
paradoxical that the interval PERT problem was considered and solved only 
recently.

Noting that, in traditional PERT, the values of all relevant parameters come from 
calculations based on task execution times, we may be tempted to apply the same 
algorithm as with the deterministic case to PERT, by performing calculations on 
intervals or fuzzy intervals as in the previous section instead of calculations on 
traditional numbers. In fact, the critical path method seems difficult to directly 
adapt, and most previous fuzzy PERT methods handing uncertain durations are ad
hoc in this respect. This type of problem requires a “potential-bound” type 
representation ([ESQ 95]). When, in addition, we want to take limited resources into 
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account, appropriate precise representative values of uncertain execution times are 
used when solving the sequencing problem. 

11.4.1. Critical paths under ill-known execution times: difficulties 

The necessity for a relevant model representing uncertainties in execution times 
in the manufacturing area no longer needs to be proven. By nature, these execution 
times are subject to hazards and are sometimes only partially controllable. In 
particular, if we consider infrequent tasks or new types of operation resulting from a 
technological evolution, using information-demanding methods for determining the 
value or the statistical distribution of these execution times is not relevant. These 
considerations remain valid in project management, notably when tasks are still ill-
defined. 

Modeling these imprecise execution times using fuzzy intervals alleviates these 
drawbacks by exploiting simple and usually available pieces of information [ROM 
90, FOR 97b]. It is rarely possible to obtain a complete description of fuzzy intervals 
representing imprecise execution times. It is in fact illusory to require perfect 
precision on data encoding uncertainty. In this field, recommendations from 
Rommelfanger [ROM 90] can be instrumental in practice. To obtain a fuzzy 
interval, he proposes obtaining from the decision-maker (or the expert) a few 
characteristic values and interpolating in a linear way between these points: which 
values are typical (core)? Which values are not so surprising (level cut 0.5)? What 
are the boundaries of the physical domain (support)? The corresponding fuzzy 
interval is then obtained by linear interpolation. Fuzzy intervals for execution times 
are encoded with the help of such six specific values. 

We consider the traditional problem of project duration minimization. In this 
case, we have no availability or delivery constraint; the objective is to minimize total 
project duration. This usually leads to posing the following constraints on earliest 
and latest starting times:  

t–  = 0 (by convention, we consider that the project starts at date 0) [11.22] 

t–  = t+  (we consider that the project ends as soon as possible) [11.23] 

In this problem, we try to define possible ranges for choosing relative task 
starting times. The difference between the latest starting time and earliest starting 
time of a task (called total float) represents its leeway for starting it without delaying 
the end of the project. Since this type of problem always has a solution, the floats are 
never negative. 
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When execution times pi have precise values, we can consider them as constants. 
Both problems, minimization of project duration and availability and delivery 
constraint scheduling respectively, are resolved in a similar manner. A first phase of 
forward propagation (in the style of equation [11.20]) calculates task earliest 
starting times from t–  = 0 (resp. t–  = r), and a backward propagation phase (in the 
style of equation [11.21]) calculates task latest starting times from t+  = t– (resp. t+

= d, since task  has a duration of zero). The floats can thus be calculated as i = t+
i

– t–
i and critical tasks are (possibly) detected. These are zero float tasks: we cannot 

delay them without delaying the end of the project (see Chapter 2).  

When execution times pi have ill-known values, the most natural thing is to 
calculate the fuzzy set t̃ –

i of generally possible values of earliest starting times by 
forward propagation, iteratively applying formula [11.20] with fuzzy execution 
times. We are then tempted to pose t̃  = t̃ – , and to execute a backward
propagation by iteratively applying formula [11.21]. 

As highlighted in [CHA 81, DUB 88, NAS 93, ROM 94, HAP 94], the forward 
propagation phase is correct, in the sense that the calculated t̃ –

i  do correspond to all 
generally possible values for earliest starting times. A difficulty appears with 
backward propagation when we wish to respect the constraint t+  = t– . Since the 
earliest starting time t– of the last task is ill-known and is represented by an 
uncertainty distribution t̃ – , requiring that the distribution of t+ be the same as 
that of t– is not the same as prescribing that t+  = t– because two quantities can at 
the same time be independent and have the same distribution. For example, consider 
a very simple one-task problem. We have the following dependencies between 
quantities: 

t–
1 = t– = 0; t– = t–

1 + p1; t+ = t– ; t+
1 = t+ – p1 ( = t–

1)

Since quantities t+  and p1 are not logically independent (because of constraints 
t+ = t– = t–

1 + p1), it is not correct to write that all possible t+
1 values can be 

obtained by subtraction of fuzzy intervals t̃  = t̃ –  and p̃1. For example, if the 
set of generally possible values for p1 is interval [1, 4], we obtain for t̃  = t̃ –

interval [1, 4], which would yield for t̃ 1 interval ]3,3[]4,1[]4,1[ , whereas it is 
obvious that the task is critical and that t+

1 = t–
1.

More generally, when we pose t+ = t– , quantity t+ depends on parameters pi.
Since the t+

j depend on t+ , these quantities thus depend on pi. We cannot use the 
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backward propagation formula )(min
)(

jj
iSuccj

i ptt  via simple fuzzy interval 

arithmetics [11.21]1.

In fact, since ABBA    (more precisely, A A B B , in the sense of the 
inclusion of fuzzy sets), applying the backward propagation phase as defined by 
formula [11.21] runs the risk of considering duration uncertainties twice, which 
results in fuzzy sets that are too large to actually be useful. 

11.4.2. Critical paths with interval execution times  

The simplest way of representing ill-known duration times is to use intervals of 
the form P̃i = [p–

i, p+
i]. For a more precise approach to the problem, we must go 

back to its mathematical representation. For a project with n tasks, we denote by 
configuration a tuple of n values  = (v1, …,vn) such that vi P̃i . represents the 
state of the world in which it turns out that p1 = v1, p2 = v2 … and pn = vn. For a 
given configuration , pi( ) represents the value of pi in . In this configuration, 
we can thus calculate t–

i( ), t+
i( ) and i( ) which are the earliest and latest starting 

times and float i in configuration . If is a path in the graph relating task i to task 
j, l ( ) represents the length of this path for configuration . The set of 
configurations is equated to the Cartesian product H = i = 1, n P̃i . An important role 
is played by extreme configurations such that pi( )  {p–

i, p+
I},  i=1, ..., n.

A configuration defines an instance of a deterministic scheduling problem 
(classical PERT/CPM problem), on which the PERT/CPM method can be applied. 
Using configurations, the sets of possible values t-

i( ) for the earliest starting date 
and the possible values t+

i( ) for the latest starting dates and the possible values 
i( ) for the float are defined by 

T-
i = {t-

i( ) | H }= [ti
--, ti

-+]; T+
i = { t+

i( ) |  H }= [ti
+-, ti

++]; 

Fi = {  i ) | H }= [ i
-, i

+].

Since functions that define the earliest starting times, latest starting times and 
floats in terms of task durations are obviously continuous, the quantities T-

i, T+
i, Fi,

1 Note that during the forward propagation phase, we also perform calculations on non-
independent values. This is, for example, the case where two parallel tasks have a common 
predecessor: their two earliest dates depend on the duration of this common predecessor. 
When they are immediately followed by a single task, we then calculate the maximum 
between sets of values of two non-independent variables. However, the hidden dependence 
problem is avoided since mã x ( a~ b

~
a~ c~ a~ xa~m ( b

~
c~
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are closed intervals. Chanas et al. [CHA 02b] propose to extend the notion of 
criticality to interval-valued scheduling problems as follows: 

– a task is possibly critical if there exists a configuration H in which this task 
is critical in the usual sense;  

– a task is necessarily critical if it is critical in the usual sense in all 
configurations H.

Similar definitions can be stated for possibly and necessarily critical paths. 
While possibly critical paths always exist, necessarily critical paths may fail to exist. 
When all execution times are interval-valued, there is at most one necessarily critical 
path. When there is none, there may nevertheless exist isolated (groups of) 
necessarily critical tasks (for instance, the first and last tasks are always so). Finding 
them is crucial but turns out to be harder than in the deterministic case, since we can 
no longer rely on critical paths. It can be proved that a task is possibly critical if and 
only if the lower bound of its float interval is zero, and that it is necessarily critical if 
and only if the upper bound of its float interval is zero. If a task is necessarily critical 
then it has the same earliest and latest starting times intervals but the opposite is not 
true. This last proposition makes it clear that the float interval of a task cannot be 
calculated by means of its earliest and latest starting times intervals. It must be 
calculated separately; see Dubois et al. [DUB 05] for details.  

The latest starting time of task i in configuration H is defined as the 
difference t+

i( ) = max  C( l ( )  max  C(i l ( between the longest path 
in the graph and the longest path between task i and the end-task. Calculating the 
interval of latest starting times comes down to applying interval analysis methods to 
this function, which is non-trivial since the two parts of this expression have some 
ill-known quantities in common. A brute-force method with exponential complexity 
consists of calculating t+

i( ) for all extreme configurations consisting of assigning 
to each task execution time its upper or its lower bound, and calculating the 
maximum and minimum of t+

i( ) on such configurations. A simplification consists 
of noting that, to calculate the lower (respectively upper) bound of t+

i( ), it is 
always possible to set the execution time of tasks not succeeding i to their lower 
(respectively upper) bounds [DUB 03b]. An efficient path enumeration algorithm 
for determining the bounds of the latest starting time interval is proposed in [DUB 
05], based on considerations on the form of optimal extreme configurations. For 
example, there exists a path  C(i  such that an extreme configuration
defined as pj( ) = p j for j outside , and p+

j otherwise, minimizes t+
i( ). Zielinski 

[ZIEL 05] proposes a polynomial iterative labeling method for constructing optimal 
configurations minimizing and maximizing t+

i( ).  
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The calculations of float intervals of tasks must be carried out independently, 
applying interval analysis to the explicit expression of the float, i.e.:  

 i ) = = max  C( l ( )  max  C(i l (  max  C( i l (

Again, a brute force method can be used, enumerating extreme configurations, 
and efficient path enumeration techniques can be used to find the optimal bounds of 
the float intervals [DUB 05]. However, Chanas and Zielinski [CHA 02a] proved that 
the intrinsic complexity of proving the possible criticality of a task is exponential, 
hence calculating the greatest lower bound of float intervals of tasks is NP-hard. 
Surprisingly, the problem of deciding the necessary criticality of a task was solved 
more recently and turns out to be a polynomial problem [FOR 05] to which a variant 
of Zielinski’s labeling polynomial method can be applied to construct an optimal 
configuration minimizing the upper bound of the float of a task.  

Finally, it was shown that, if the task graph is series-parallel, the interval PERT 
problem can be resolved by an exact, not very combinatorial, method, based on the 
simple identification of configurations maximizing or minimizing the quantities of 
interest (earliest, latest dates and floats) [FAR 00, DUB 05]. 

11.4.3. Critical paths with fuzzy execution times 

In order to obtain a more expressive representation of incomplete knowledge 
about task execution times pi, a possibility distribution ip~i  can be used. In 
other words, the degree of possibility that pi is equal to a given value v is 

)()()( ~ vvvp
ipii . With the hypothesis that task execution times are 

logically independent, the degree of possibility of a configuration is:  

1 1( ) ( ( ) and  and  ( ) and  and  ( ))i i n np p p p p p  [11.24] 

))((min))((min ~
,1,1

ip
ni

ii
ni

ppp
i

The calculation of the possibility or necessity of a criticality event, such as for 
example the possibility that a path be critical or that a task be critical, or the 
calculation of possible value distribution quantities defined according to execution 
times (latest dates and floats in particular) must refer to this joint possibility 
distribution. The possibility that a path C( , ) going from initial node  to end-
node  of the graph is critical is the possibility of having a configuration in which 
C( , ) is critical:  

(C( , ) critical) = 
: ( , )  critical in 

sup  ( )
C

 [11.25] 
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Chanas and Zielinski [CHA 01] propose a method to find degrees of possible 
criticality of tasks. Similarly, the necessity that a path C( , ) be critical is  
[CHA 02b]:  

N(C( , ) critical) = 1 – (C( , ) non-critical) [11.26]

=
: ( , )  non-critical in 

1 sup  ( )
C

denoting G  the directed graph where task execution times are represented by level-
cuts  of fuzzy intervals. Since a task is critical if and only if it belongs to a critical 
path, the degree of possibility that it is critical is the maximum degree of possible 
criticality of a path from  to  containing it: 

(C( , ) critical ) = sup { : C( , ) possibly critical in G  }.

The necessity that it be critical is defined by duality.  

N(C( , ) critical ) = 1 – inf { : C( , ) critical in G  }. 

Concerning the calculation of latest fuzzy dates, and possibly floats, a first 
solution is to carry out a symbolic calculation as proposed by [NAS 93], operating 
simplifications on symbolic expressions of latest starting dates and floats. 
Nevertheless, this symbolic approach is very time-consuming and does not scale up. 
Another, less calculation intensive, approach is to change the definition of the fuzzy 
subtraction [ROM 94, HAP 94] so as to make it better adapted to the backward 
propagation technique for latest starting times. This type of approach is 
unfortunately ad hoc and does not provide the correct fuzzy bounds for latest 
starting times and floats. Such correct fuzzy bounds consist of applying the 
extension principle to the explicit expressions of these quantities, without resorting 
to fuzzy arithmetic. Using a mathematical representation of fuzzy intervals as pairs 
of (left and right) profiles, a direct extension to fuzzy intervals of the path 
enumeration algorithms in [DUB 05] was proposed by Fortin [FOR 06]. 

11.4.4. Limited resources: approach by fuzzy interval comparison 

We know that the resolution of project scheduling problems with limited 
resources (such as the job-shop problem) generally consists of searching for the 
“best” transformation of disjunctive constraints into precedence constraints; the 
optimization implied by the term “best” defines a possible underlying multi-criteria 
optimization problem. This transformation thus reduces the problem to simple PERT 
scheduling, which can be solved by simple critical path techniques in the 
deterministic case. In the case of ill-known data, it leads to solving a fuzzy or 
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interval PERT type problem at each step of its resolution [BLA 86, FOR 97a]. 
Special cases of resource-constrained scheduling problems with ill-known execution 
times, such as flow-shops, have also been considered, as in [MCC 92]. 

The operations research literature is replete with methods solving deterministic 
scheduling problems with limited resources, notably for job-shops. Those 
recognized as the most efficient result from the joint use of a disjunctive graph and 
an optimization meta-heuristic (simulated annealing for example), in the 
deterministic [VAN 92] as well as fuzzy context [FOR 97b]. The idea is simple: if 
we represent a job-shop type problem to be solved using a disjunctive graph, each 
eligible solution requires the choice of a specific direction for edges connecting 
tasks requiring the same resource. Starting from any such solution, we can reach an 
optimal one (minimizing the makespan), by gradually modifying the direction 
adopted for certain edges on the longest path in this graph. Local search methods, 
such as simulated annealing or tabu search for example, favoring modifications that 
improve performance with regards to criteria chosen, are likely to end up with a very 
good quality solution, or even an optimal one, in a reasonable amount of time. 

Concerning the uncertain duration variant of the problem, it is clearly more 
relevant to quickly search for a good solution than to persist in trying to determine 
the optimal solution. In fact, data is in essence imprecise. In a scheduling context 
with limited resources, ill-known temporal parameters are clearly liable to be 
modeled by fuzzy quantities, but it is all the same with renewable and countable 
resources. Thus, when the resource considered consists of a team of operators, their 
number can also be partially unknown (because of partially uncontrollable 
availability).

Optimization is performed with the goal of determining the best schedule in the 
sense of performance criteria such as total duration for example. In other words, we 
determine the task sequence that leads to the earliest total completion time for each 
machine. Since task execution times are ill-known, a method that ranks fuzzy 
intervals is needed. The sequence of tasks on each machine is then clearly 
determined even if there unavoidably remains imprecision about their starting and 
ending times. The fuzzy interval representation of imprecise statistical information 
for temporal parameters naturally leads to the choice of the area compensation 
method as the proper tool to compare two schedules on the basis of their fuzzy 
evaluation for example, e.g. their total fuzzy duration (see [FOR 97] and section 
11.2.3). Chanas and Kasperski [CHA 03, CHA 04] propose an optimization method 
directly handling uncertain execution times in specific one-machine scheduling 
problems. Kasperski [KS 05] applies the same approach to a sequencing problem. 
An application example of this general scheduling model with resource constraints 
with fuzzy execution times is described in [HAP 94]. It is a software design tool 
based on an object-oriented approach. It involves scheduling the different design 
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steps and therefore the evaluation of the total necessary completion time for creating 
a piece of software. As an illustration, [HAP 94] presents a specific problem 
involving a total of 53 tasks (the last one for integrating the different modules and 
testing the system). 

11.5. Flexible constraint scheduling and ill-known task execution times 

In the case when there are flexible constraints on due-dates (earliest starting 
times, latest end dates, delivery dates), but where task execution times are uncertain, 
we are facing a decision problem under uncertainty. We must choose starting times 
for tasks (and therefore their sequencing on each machine) in order to satisfy local 
flexible constraints, regardless of the actual task execution times in their interval of 
uncertainty. In this case, the problem can be addressed as follows [DUB 95a]. 
Consider a set of partially sequenced tasks. The fulfillment of each task i requires an 
ill-known processing or execution time ip~  as in section 11.4. There is a date at 
which the project can start, and a due-date. These dates, r~  and d

~
 respectively, are 

flexible, as in section 11.3.  

Suppose that a solution sets the starting times of all tasks. A precedence 
constraint relating two tasks i and k, will be more or less certainly verified because 
of the limited knowledge about execution times. The corresponding degree of 
necessity that i precedes k is (applying equation [11.2]): 

N (pi  tk – ti) = ),~] ip  (tk – ti), [11.27] 

where ]p̃i , ) has an increasing membership function, corresponding to the fuzzy 
complement of the right part (decreasing) of ip~ . This degree of necessity is smaller 
as the interval [ti, tk] is small, since the smaller the interval, the harder it is to insert 
task i.

The degree of satisfaction of the flexible release constraint of product j is simply 
),~[r (t ), t being the starting time of the first task. The degree of satisfaction of 

the flexible delivery constraint is the degree of certainty that the project terminates 
on time. If kt  is the starting time of a task k immediately preceding the last task ,
we calculate, based on [11.2]: 

N(tk + pk d̃ ) = infx max (1 – )(~ x
kp , )(]~,(– kd tx ) [11.28] 
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We recognize in [11.28] the pessimistic possibilistic preference functional 
introduced in section 11.2.4, because if  = 

kp~  is the characteristic function of an 
interval [a, b], we have: 

N(tk + pk d̃ ) = infx  [a, b] kp~ (t + x) = 
kp~ (t + b),

which evaluates the satisfaction of this flexible constraint in the worst case.  

Overall, the scheduling problem is addressed here as one of maximizing the 
degree of satisfaction of the most violated constraint among those described above 
(precedence, release and delivery):  

min( min{ ),p~] i
(tk – ti): i, k  succ(i)}, ),~[r (t ), 

min{ N(tk + pk d̃ ): k  prec( )} ) 

An optimal solution to the problem is therefore a choice of starting times it  for 
tasks i maximizing this criterion. 

Consider the following small example, with only one task (a trip), the starting 
date of which we must calculate [DUB 95]. Consider a person living in the suburbs 
of a city and traveling downtown by bus to an important meeting. The meeting is 
scheduled to take place at 8 am. We create the following constraints:  

– the person prefers not to leave home before 7 am, at least not before 6:30 am. 
We then have a constraint r~  on the starting time, such that ),~[r (t) = 0 if  

t  6:30 am and 1 if t  7; 

– the person does not want to arrive at the meeting after 8:15 am. Ideally, (s)he 
wishes to arrive at 8 am. Therefore, there is a constraint d̃  on the arrival time, such 
that 1)(]

~
,(– ptd  if t + p  8 and 0 if t + p  8:15.  

– the travel duration p is uncertain as the bus may arrive right away at the  
bus stop, or there will be a waiting time depending on traffic density. We have a 
possibility distribution  = p~  such that  (p) = 1 if p = 1 and (p) = 0 if p ,

1:15[. Travel time is therefore approximately one hour and we have no control over 
it.

The optimal start hour is obtained by maximizing: 

min ( ),~[r (t), N (t + p d̃ )), [11.29] 
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where N(t + p d̃ ) = infp max (1 –  (p), )(]~,(– ptt ). This last expression is a 
pessimistic possibilistic criterion. We observe that calculation of the optimal value is 
simplified if we note that, under continuity conditions on membership functions,  

infp max ( )(1 ~ pp , )(]~,(– ptt ) = supp min ( )(1 ~ pp , )(]~,(– ptt )

 [11.30]

which brings the problem down to the example of maximization, relative to p and t,
of:

min ( ),~[r (t), )(1 ]~,( pp , )(]~,(– ptt ) [11.30] 

By considering linear membership functions, we thus find, by simple calculation 
of right segment intersection: t = 6 hours 52 minutes 30 seconds, which, as long as 
travel time does not last more than p = 1 hour 11 minutes 20 seconds, ensures a 
presence at the meeting no later than at 8:03:45, an acceptable delay, beyond which 
the decision-maker considers that he can justify this delay by transportation hazards. 
We thus obtain a good compromise, safe but realistic. Note that if we replace 1 –

]~,( p  by p~  in the problem reformulated by expression [11.30], we obtain the 

trivial optimistic solution t = 7, x = 1, which in practice is not plausible. 

Calculating expression [11.30] makes it possible to handle uncertain execution 
times as a case of flexible execution times, as long as we replace the uncertainty 
distribution p~ (p) by the (increasing) membership function of the complement of 
(– , p̃]. We can, more generally, use the resolution tools and the approach 
described in section 11.4, even when tasks have ill-known execution times. 
However, we must then remember that in this case, task execution times thus 
obtained represent pessimistic duration previsions that we suppose to be sufficiently 
reasonable to occur in reality. The greater the global degree of satisfaction obtained, 
the more confidence we can place in these previsions, and the more robust against 
hazards are task starting times calculated by this approach. 

This approach was extended to the job-shop problem under flexible constraints 
with ill-known execution times for tasks [DUB 95a] (see also [CHA 04]). 
Considering two tasks i and k on a single machine that can occur at the same time, a 
disjunctive constraint of non-overlapping between these tasks is confirmed with a 
degree of necessity equal to max(N(pi  tk – ti), N(pk ti – tk)). In addition, we have 
been able to extend some constraint analysis methods (see Chapter 5) to the fuzzy 
case in order to test, for each precedence conflict between tasks assigned to the same 
machine, whether due-date constraints enforce a precedence relation over another 
one, in the context of the maximization of the degree of satisfaction of the most 
violated constraint.  
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11.6. Conclusion: the potential contribution of possibility theory in scheduling  

Possibility theory makes it possible to extend the constraint-based approach to 
scheduling problems so as to include the notion of preference. It also enables 
uncertainty to be represented for certain parameters such as processing times. As for 
the first aspect, the approach by flexible constraints has several specificities making 
it attractive in scheduling problems:  

– it can easily express local preference specifications. These preferences come 
directly from the decision-maker or from the relaxation of constraints that are  
too tight. Flexible constraints are sometimes more expressive than global criteria 
that we find in literature. We can for example encode the problem of makespan 
minimization as a particular case of the flexible constraint problem; 

– it assumes that violations of certain constraints are not compensated by total 
satisfaction of the others. We therefore do not minimize global cost, but we try to 
balance possible task due-dates. This comment clearly positions this approach in 
contrast with optimization of additive global criteria; 

– it is totally in agreement with constraint-based analysis, of which this is a 
particular case. We can also directly use existing propagation tools, either by 
efficiently propagating local preferences, or by resolving the flexible constraint 
problem as a set of standard problems with hard constraints obtained by setting 
aspiration levels beforehand (which define hard constraints in the form of level 
cuts) [DUB 01a]. In fact, solutions to an optimal flexible scheduling problem are 
better described as solutions to a scheduling problem with hard constraints obtained 
by relaxing constraints as little as possible. The goal of a flexible constraint problem 
can therefore be seen as the specification of a standard problem with hard 
constraints making a trade-off between them in order to ensure the existence of a 
solution;

– although more elaborate than the approach by standard constraints, its 
complexity remains in the same range. It remains applicable to problems with 
similar size to those treated by the traditional constraint-based approach. 

The notion of flexible constraint makes it possible to avoid two pitfalls of 
modeling by constraints: the case of the over-constrained problem where we 
sometimes only discover the inconsistency after many calculations; or the case of 
the under-constrained problem having too many solutions to be useful. Nevertheless, 
there are still very few studies using this approach. Although it seems promising, it 
still remains to be validated in practice, in terms of its effective power of expression 
as well as calculation times obtained, even if tests performed on 169 problems with 
5 machines and 30 tasks in [FAR 97] seem conclusive. In particular, the use of 
flexible constraints can more quickly find an achievable solution to the problem 
(except for a very narrow zone of problems where consistency is very difficult to 
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prove). Other tests on larger examples with 10 machines have illustrated the same 
trend [FAR 97]. 

Possibility theory also offers a simple and gradual modeling of uncertainty in terms 
of task execution times. This modeling generalizes interval-based sensitivity analysis. 
It is different from the probabilistic approach based on hypotheses of independence 
and often assuming statistical knowledge. The possibilistic critical path method does 
not meet all difficulties often making a rigorous probabilistic approach unworkable. 
The latter approach, proposed a long time ago, must take into consideration the 
dependence between paths, contrary to the possibilistic approach. Even the 
determination of earliest starting time distributions is a difficult problem with a 
probabilistic approach, and we have seen that it is carried out simply in the context of 
fuzzy sets. Nevertheless, the determination of latest dates and floats in the possibilistic 
context cannot be carried out by traditional tools, and goes through the identification 
of parameter configurations accomplishing better and worse case situations. In the case 
where we have flexible constraints and uncertain knowledge at the same time, 
possibility theory proposes a moderately pessimistic criterion achieving robustness in 
the face of uncertainty, which constitutes an alternative to the expected utility 
criterion. From a formal point of view, this criterion is easily integrated in the context 
of flexible constraint satisfaction and propagation techniques. 
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Chapter 12 

Real-Time Workshop Scheduling

12.1. Introduction 

The real-time (or on-line) workshop scheduling problem consists of permanently 
adapting the execution terms of a set of jobs using a set of resources to the real 
situation of the system involved. This problem is different from the projected (or 
off-line) scheduling problem which is aimed at projecting the execution terms of a 
set of jobs using a set of resources over a finite or infinite horizon, based on 
hypotheses on the evolution of the system’s situation over time. The chapter can be 
divided into two parts. The first part (sections 12.2, 12.3 and 12.4) focuses on 
positioning of real-time workshop scheduling in the production management system 
scheduling function. It shows the interest of the problem and, with a brief state of 
the art, the low number of studies addressing it in a methodological way. It  
also defines the decision variables, characteristics and objectives of the problem 
involved. The second part (sections 12.5, 12.6 and 12.7) proposes a real-time 
scheduling method in the context of workshops working on demand with small and 
medium-sized runs. 

12.2. Interest and problem positioning

12.2.1. The context of on demand production workshops 

For companies working on demand, the current context imposes production 
times that keep getting shorter, whereas the increasingly irregular demand makes it 
difficult to anticipate production. In addition, respect for announced manufacturing 
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delivery dates becomes essential in the supply chain context which controls 
manufacturer/supplier relations. In this type of environment, the workshop 
scheduling function plays a vital role. It is the one organizing fulfillment of the 
projected production schedule using workshop resources, integrating into this 
organization the unexpected or urgent orders as best as possible, and controlling the 
consequences of external or internal workshop uncertainties with increasingly tight 
production programs. 

The scheduling problem for this type of company is characterized by a set of 
jobs (or manufacturing orders) to be produced over a given horizon issued from an 
MRP type plan [GIA 88]. Each job has a release date and a desired due date. The 
scheduling objective is to precisely allocate the operations which make up the jobs 
to workshop resources and to define their start dates. The consideration of real 
workshop characteristics imposes a satisfaction of complex constraints: multi-
operation jobs with various sequencing constraints, operations requiring several 
resources for their completion, resource setup times or cost timetables associated 
with resources, etc. The necessity of having a dynamic vision of the scheduling 
function in order to react quickly to (internal or external) disruptions that the 
workshop may encounter gets added to these complex characteristics of the 
scheduling problem: unexpected jobs to perform, resource breakdowns, supply 
problems, lack of components, etc. 

Note that the real-time scheduling problem is naturally encountered in computer 
systems (see, for example, [GOT 93, SIL 94, STA 95]). In fact, the dynamic arrival 
of jobs to be fulfilled (processed) and the need to react very quickly constitute vital 
characteristics of these systems. The scheduling problem involved is generally 
limited to a resource or several parallel resources (processors). In addition, the 
interruption of tasks (preemption) is often allowed, contrary to workshops. The set 
of tasks to be performed at a given moment is relatively low compared to what we 
encounter in production. In pipeline architectures, the cyclic character of tasks to be 
scheduled can sometimes simplify problem resolution (see [GOT 93] and Chapter 7).  

12.2.2. The different approaches to real-time workshop scheduling  

The problem involved here is a job shop scheduling problem which has been the 
subject of a very large number of studies, of which we can find a summary in  
[BLA 96] in its simplest form (see also Chapter 2). Roughly, in (job-shop) 
scheduling, we can distinguish two phases: a predictive or off-line phase which 
takes place before the production process actually starts, and a real-time or on-line 
phase which performs scheduling decisions in real time as the production process 
goes by. We cannot define the real-time scheduling approach independently of the 
selected off-line scheduling approach. We first describe two extreme cases that have 
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been widely studied in the literature and that illustrate well this relationship between 
off-line and real-time scheduling: the pure static case and the pure dynamic case 
[STA 95]. 

In the pure static case, a set of jobs is presumed known beforehand over a finite 
horizon. The traditional off-line approach consists of calculating a sequence of job-
operations on each resource. In academic approaches, numerous exact or heuristic 
optimization algorithms are proposed, and some of them are described in Chapters 3, 
4, 5 and 8 ([CAR 89, ADA 88, BAL 95, NOW 96, MAR 96, SCH 98, MAS 02]). In 
most production scheduling software packages, an approximate algorithm based on 
the use of one or more priority rules is used to solve the static problem (see [BLA 
82] and Chapter 6). More recently, we find scheduling software packages based on 
more sophisticated approximate algorithms. A production software program based 
on the shifting-bottleneck heuristic [ADA 88] is presented in [MEE 96]. Another 
software package using the tabu search method (see [GLO 93, NOW 96] and 
Chapter 3) is described in [ART 97].  

The real-time approach based on resolving the static problem consists of 
controlling the respect of proposed sequences and projected start times. New jobs 
included in the production plan or modifications of resource characteristics 
following disruptions are taken into consideration in a deferred way, from the 
moment when a new static problem is generated, based on a “rolling horizon” 
principle. A complete rescheduling is then carried out. One of the problems is to set 
the date from which a new schedule has to occur [OVA 94, VIE 03] and obviously 
this approach is well suited to the cases where the need for rescheduling is not too 
frequent. Another real-time approach is reactive scheduling where in the presence of 
an unexpected event the off-line schedule can be modified or repaired through local 
modifications. 

In the pure dynamic case, the set of jobs is not known in advance and the 
scheduling horizon is infinite. When a job arrives, we must allocate its operations to 
resources and position them in relation to operations which have not yet started. 
Thus the on-line approach consists of following a certain policy for queue 
management for each resource. The off-line approach consists of selecting the best 
policy with the help of flow simulation of jobs in the workshop. The dynamic aspect 
of the problem can also involve resource availability, for which the possibility of 
breakdowns is then considered, following probabilistic models based on the mean 
time between failures or mean time to repair elements, for example [XIE 89]. This 
simulation takes into account dynamic aspects of the problem (disruptions, arrival of 
jobs, etc.) and makes it possible to compare the performances obtained for different 
policies in order to retain one. This is the one that will effectively be applied to build 
the workshop schedule in real-time, by queue management for each resource  
(see [BLA 82] and the simulation approach presented in Chapter 6). In addition  
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to simulation yielding mean and standard deviation performances of the selected 
policy, another role of the off-line phase in the pure dynamic case can be to evaluate 
the performance of the on-line policy in the worst-case through analytical 
techniques. In some particular cases, performance guarantees can be obtained  
[ALB 03]. 

The Kanban method, mainly designed for production lines [SHI 86], can also be 
presented as a dynamic real-time scheduling method decentralized by Kanban 
management terms of each manufacturing center. The limited number of Kanbans in 
a given manufacturing center notably avoids the uncontrolled increase of work-in-
process.  

Another approach for considering disturbances occurring during the execution of 
operations consists of considering operation processing times or other characteristics 
such as resource availability, as uncertain data during the solving of the off-line 
scheduling problem. The projected schedule, defined by considering uncertainties, 
has a certain robustness in relation to disruption. According to [HER 05], there are 
three categories of off-line scheduling approaches under uncertainty. 

Fuzzy scheduling takes place within the context of the possibility theory; this 
approach is presented in [DUB 95] (see also Chapter 11).  

Stochastic scheduling consists of minimizing the expected value of the objective 
function (usually the makespan) taking account of the processing time probability 
distribution [SKU 05]. As opposed to the pure dynamic case, the set of jobs, 
precedence constraints and resource requirement are assumed to be known in 
advance. As a typical work in this area, Stork presents in [STO 00] a branch and 
bound to calculate a pre-selective policy minimizing the expected makespan for the 
stochastic resource-constrained project scheduling problem. 

A third approach to tackle uncertainty during the off-line scheduling phase deals 
with robust, or proactive, scheduling [DAN 95, WU 99, ART 03, ALO 05, AYT 05, 
HER 05]. This approach differs from the stochastic scheduling approach in the sense 
that the off-line schedule is generated with the objective of being relatively 
insensitive to the actual realization of the uncertain data, for example by minimizing 
the maximum distance between the realized schedule and the optimal one if all data 
were known a priori. The approach described in this chapter proposes an off-line 
scheduling method based on another concept related to robustness and is detailed in 
section 12.2.3. 

When the off-line schedule has been generated with robustness considerations, it 
usually incorporates a certain degree of flexibility to self-adapt to unexpected 
events. In such cases, the repair procedure or reactive scheduling has to be carried 
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out only if the inherent flexibility is not able to absorb the disruptions. This is the 
approach selected in this chapter. 

12.2.3. An original approach 

In the late 1970s [DEM 77], a new approach gave birth to a category of 
proactive/reactive scheduling methods. The method was based on the observation 
that neither the standard static approach, nor the dynamic scheduling approach really 
satisfies real-time scheduling of job shops working on demand. The purely dynamic 
approaches are penalized by their ignorance of the manufacturing plan which, even 
though it will change during its execution, definitely exists in this problem. Global 
performance of resource queue management by priority rules or by a more 
sophisticated algorithm working with a smaller group of operations can turn out to 
be insufficient. The purely dynamic approach by definition allows very little 
anticipation for the use of resources. However, this anticipation can be vital in 
workshops because of the setup times needed on some machines, procurement 
management, etc. The static approaches can generate better solutions for holding 
delays, when they themselves are not solely based on priority rules. On the other 
hand, not considering the disruptions occurring in real-time can make the proposed 
solutions inapplicable and the additional optimization effort ends up being useless. 
In the case where a disruption leads to a complete rescheduling, the static approach 
also penalizes the anticipation because the proposed sequences can be totally 
different from one scheduling to another. This can go all the way to a loss of 
confidence in the scheduling system from its users. Both approaches also suffer 
from their directive aspect, leaving no freedom of action to deciders since they only 
propose one solution.  

In parallel to the necessity of reactivity with regard to disruptions, anticipation 
and flexibility requirements for decisions, generally taken by people, make the real-
time workshop scheduling problem much more complex than the real-time 
scheduling problem of a computer system. The problem with evaluating the 
performance of a real-time scheduling policy in a production system, and more 
generally of establishing a diagnostic following a bad result of this system, must also 
be taken into consideration. In this way, in a workshop, the decision makers have a 
tendency to attribute the fact that due dates are not respected to erroneous decisions 
or to a lack of personnel productivity instead of to the absence of an adapted real-
time scheduling policy. The desire to meet due dates in this context often leads 
decision makers to release product manufacturing as soon as possible, which comes 
down to uselessly overloading the workshop, considerably increasing work in the 
process. 
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With the hypothesis that real-time scheduling is crucial for on-demand 
workshops, the approach presented in this chapter and initiated in [DEM 77] and 
[THO 80] attempts to take advantage of static and dynamic approaches discussed 
above and tries to avoid their main disadvantages. It is based on the above-presented 
online and off-line scheduling phases. The first consists of generating in the off-line 
scheduling phase not just one solution, but a set of eligible solutions from the 
initially known production plan. The notion of eligibility, which is the basis of this 
approach, stipulates that a solution is eligible if it respects all the problem’s 
constraints, job delivery dates also being defined as constraints1. The second 
proposition consists of using this set of eligible solutions in real-time (on-line) in the 
context of an interactive decision support system for real-time scheduling. The 
objectives of this system are:  

– to improve in real-time solutions proposed by the off-line phase by updating 
them according to decisions taken and significant events which occur (disruptions in 
particular) while measuring their eligibility at any moment; 

– when workshop status requires that a decision be taken, to help in the choice of 
this decision among the possible choices at that moment, by relying on updated 
solutions; 

– in case of loss of eligibility following disruptions, to propose local 
modifications on the solution set to retrieve eligibility. The local character of 
modifications guarantees speed of execution and low disruption (robustness) from 
all proposed solutions. In this way, there is no need to reschedule as long as the set 
of solutions can remain eligible. Rescheduling only becomes necessary when the 
system can no longer find eligibility with the help of local modifications, which 
settles the problem of determining a rescheduling period which occurs when rolling 
horizon procedures are considered. 

Note that since the early works of [DEM 77] and [THO 80], the method has been 
studied in several contexts and various forms [THO 88, ERS 89, LEG 92, BIL 96a, 
BIL 96b, ART 97, ART 99, WU 99, ART 03, ALO 05, BRI 07] and that a real-time 
production scheduling software has been issued from this work [THO 88] (see also 
section 12.8). More precisely, the method presented in this chapter is based on  
[ART 97]. 

12.3. Modeling and dynamic of scheduling problem considered 

We can define a workshop as a system made up of basic entities which are 
operations and resources. We can associate characteristic parameters with each 

1 The notion of eligibility concerning constraint propagation in scheduling is described in 
more detail in Chapter 5, section 5.3. 
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entity. Scheduling problem solving consists of defining the relational terms of these 
entities in order to complete a series of given jobs. Due to the dynamic approach 
chosen, the association of a variable state over time for each entity is vital to follow 
up the global workshop state and real-time decision-making. An entity goes from 
one state to another following an event or a decision the occurrence of which is 
controlled by constraints. We observe three fundamental entities in the production 
system: resources, production operations, setup operations, described in sections 
12.3.1, 12.3.2 and 12.3.3 respectively. 

12.3.1. Resources 

Resources constitute workshop production components and are its fundamental 
element. The issue with the scheduling problem comes from the fact that their 
capacity is limited. In this chapter, we only consider renewable resources, i.e. where 
availability is completely returned after each operation. We distinguish disjunctive
resources, which can only perform one operation at a given moment, from 
cumulative resources performing a limited number of operations at a given moment. 
We consider that a cumulative resource Rk is made up of a number of resource units 
Ak  1 called capacity; each resource unit can be assimilated to a disjunctive 
resource. By extension, any disjunctive resource Rk has a unit capacity Ak = 1. In 
approaches generally encountered for the job shop problem, disjunctive resources 
are the only ones considered (see Chapter 2), cumulative resources being only 
considered for the resource-constrained project scheduling problems (see [HER 98] 
and Chapter 9). In reality, we often encounter both types of resources in shops: 
machines and tools can be represented by disjunctive resources, whereas operator 
teams can be represented by cumulative resources. 

The maximum capacity of a resource may not always be available. Machines 
may have maintenance periods and operators do not work 24 hours a day. Most 
resources follow a timetable and at any instant t, capacity Ak(t) of a resource satisfies 
Ak(t) Ak.

At a given time period t, the state of the “resource unit” entity of a resource Rk is 
defined by the pair E1(k, t), E2(k, t) . Component E1(k, t)  {LI, OC} defines the 
state of the resource unit in relation to operation fulfillment: 

– idle state (LI) indicates that the resource unit is not occupied with the 
execution of an operation; 

– occupied state (OC) indicates that the resource unit is busy with the execution 
of an operation. 
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Component E2(k, t) {PN, NP} is a disruption indicator encountered by the 
resource unit, called breakdown:

– breakdown state (PN) indicates that the resource unit no longer works, 
following a hazard linked to the resource; 

– non-breakdown state (NP) indicates that the resource unit works properly. 

Two additional state components will be introduced to take into consideration 
setup activities for a disjunctive resource (see section 12.3.3). 

12.3.2. Production operations 

Jobs to be fulfilled are made up of operations, each job i having an availability 
release date ri and a delivery date di. o(i, j) represents operation j of job i with 1 

 j  ni . Precedence relations exist between operations of one job and do not 
necessarily constitute a total order between these operations, which is different from 
traditional job shop models. In fact, precedence relations between the different 
operations of job i can be represented by an operation-on-node graph Gi. In this way, 
for an operation o(i, j), the set pred(i, j) represents all operations immediately 
preceding o(i, j) within job i. succ(i, j) represents all operations that are direct 
successors of o(i, j) in job i. These generalized precedence relations enable modeling 
of assembly problems [SCH 98, DAU 98] and in a more general way, non-linear 
routings [ART 97]. 

For their execution, production operations use one or more resources 
simultaneously (multi-resource context). For example, a production operation can 
simultaneously require the use of a machine, a tool or two operators. 

In addition, there may be several terms of use for resources for a single 
production operation, particularly when a choice of different resources is possible 
for executing a production operation. Each resource use term is called a mode 
(denoted as m). An operation (i, j) may have mij  1 mode(s), each mode m
(1 m  mij) defining:  

– a number of resource units aijkm  0 used on each resource Rk in the workshop; 

– a duration pijm.

For example, a turning operation can be executed by numerically controlled lathe 
A (mode 1: one resource) or by numerically controlled lathe B (mode 2: one 
resource) or by an operator using a manually controlled lathe (mode 3: two 
resources). 
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With reference to models encountered in literature, multi-resource and multi-
mode characteristics define the workshop problem involved here as a multi-project 
scheduling problem with limited resources and multiple modes [HER 98]. 

At a given time t, the state of a production operation is defined by the pair O1(i,
j, t), O2(i, j, t) . Component O1(i, j, t)  {BL, AP, DI, EC, TR} represents the 
operation situation in the job completion, i.e. its state of progress: 

– available state (DI) indicates that execution of the production operation can 
start, parts are waiting in front of the resource(s); 

– in process state (EC) indicates that execution of the production operation is in 
process; 

– finished state (TR) indicates that execution of the production operation is 
finished for the job involved; 

– approaching state (AP) is only defined for production operations with at least 
one preceding operation and indicates that any preceding operation is either finished, 
or “in process”, but that there is at least one in the in process state;

– blank state (BL), also defined for operations with at least one previous 
operation, indicates that at least one of these previous operations is not finished or in 
process. 

The second component O2(i, j, t)  {BQ, NB} is an indicator of a disruption that 
the operation encountered, called “blocking”, which prohibits any possibility of 
operation execution, regardless of the state of resources necessary for its execution 
(which may correspond to a lack of components for example). It is a disruption 
linked to the operation and not to resources that it requires. Two states are possible: 

– blocked state (BQ) indicates that the production operation cannot be executed 
because of a blocking; 

– non-blocked state (NB) indicates that the production operation is not subject to 
the blocking hazard. 

12.3.3. Setup operations 

Before the execution of a production operation, certain resources require the 
completion of a setup activity with the goal of getting them into a configuration 
compatible with the production operation to be fulfilled, called setup state. This 
setup activity may consist of one or more cleanings, adjustments, equipment 
assembly (tools, tooling) specific to the production operation to be executed, 
disassembly of equipment used by the production operation finished, etc. Depending 
on the context, this setup activity may be integrated in the value given for the 
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duration of an operation, or be explicitly taken into account. The first context is 
valid if setup time is low compared to production time, if setup requires the presence 
of parts to be completed, if it requires no resources except for the ones used for 
production (same machine and same operators for example) and if setup time does 
not depend on sequence of operations executed, or if setup can be carried out in 
concurrent operation time, i.e. without occupying resources. The objective here is to 
take into consideration a second context for which the setup activity can be 
anticipated before the arrival of parts for the production operation, and does not 
necessarily involve the same set of resources, but occupies this set of resources for a 
period time depending on its initial setup state and the setup state to be reached. 

Traditional solving approaches (for a state of the art, please refer to [ART 97]) 
consider setup activity by introducing setup costs linked to changes in production 
type, or setup times occupying resources between two different types of production. 
Several types of setup times are found in literature. In general, the setup time 
considered immobilizes a single disjunctive resource, in the context of one-resource 
[GAV 65], parallel resource [GUI 91, MON 93], flow shop [PRO 91] and less often 
job shop [OVA 94] problems with assembly constraints (see [SCH 98]), or project 
scheduling (see [KOL 95], p. 177). We observe:  

– resource assembly time independent of the sequence which immobilizes a 
resource before execution of an operation and only depends on this operation and 
the resource involved; 

– resource disassembly time independent of the sequence immobilizing a 
resource after execution of an operation and only depends on this operation and the 
resource involved; 

– resource setup time depending on the sequence which immobilizes a resource 
between the execution of two operations and depends on the resource involved, 
previous and next operations. In certain cases, each production operation is 
associated with a family and setup times are defined in relation to families.  

The model retained in this chapter to describe the setup activity refines  
these traditional models, in order to take into consideration more precisely the multi-
resource characteristics of this activity generally encountered in reality. With 
regards to the notion of setup, production operations are distributed into families  
(set F) and workshop resources can be divided into two subsets: 

– set Rp of main resources contains all resources which may require a setup 
activity prior to execution of a production operation, i.e. for which the notion of 
setup state has a meaning; for simplification purposes, we consider that a main 
resource must be disjunctive; 
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– set Rc of complementary resources is the set of resources for which the notion 
of setup state makes no sense, i.e. they never require setup. They can be disjunctive 
or cumulative. 

Each production operation belonging to a certain family and needing a set of 
main resources, the necessary setup activity to bring all required main resources in 
the configuration enabling the execution of this operation, can be broken down into 
three basic setup operations:

– family change operation, denoted as s(f, f ’, u);

– multi-resource assembly and disassembly operations respectively noted as  
s(–, u) and s(u, –). 

The family change operation s(f, f ’, u) makes it possible to simultaneously move 
a set of main resources u = {Rk1, …, Rkr}, r  1, from one setup state compatible 
with family f  F to a setup state compatible with family f ’  F, f ’  f. According to 
the same principle as with a production operation, several modes ms(f, f ’, u) of
execution of a family change operation can exist. Each mode involves a different set 
of complementary resource units required by the family change operation. Operation 
duration depends on the mode chosen m  {1, …, ms(f, f ’, u)}, of family f, of family 
f ’ and is noted as ps(f, f ’, u)m. The family change operation occupies all main 
resources of set u and a number of resource units for each complementary resource 
Rk equal to as(f, f ’, u)km  0. 

Resource assembly operation s(–, u) switches a set of main resources  
u = {Rk1, …, Rkr}, r  1, from “isolated” state to “associated within set u” state. 
There may be several modes ms(–, u) of execution of the assembly operation. Each 
mode involves a different set of complementary resources required by the assembly 
operation. Operation duration depends on the mode chosen m  {1, …, ms(–, u)}, and 
is denoted as ps(–, u)m. The assembly operation occupies all main resources of set u
and a number of resource units on each complementary resource k given by  
as(–,u)km  0. 

Finally, resource disassembly operation s(u, –) switches a set of main resources  
u = {Rk1, …, Rkr}, r  1, from “associated within set u” state to “isolated” state. 
There may be several modes ms(u,–) of execution of the disassembly operation.  
Each mode involves a different set of complementary resources required by the 
disassembly operation. Operation duration depends on the mode chosen  
m  {1, …, ms(u, –)}, and is denoted as ps(u, –)m. The disassembly operation occupies 
all main resources of set u and a number of resource units on each complementary 
resource k given by as(u, –)km  0. 
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This original model introduces the setup operation notion, thus generalizing the 
traditional notion of setup time, in order to take into account the multi-resource 
context. The definition of these operations for setup is greatly justified for the 
consideration of complementary resources which can be different for setup and for 
production. The sequence of setup operations necessary prior to a production 
operation varies according to the initial setup state for each main resource used. 

The setup state of a main resource k at a given time t is defined by the pair  
S1(k, t), S2(k, t) . Component S1(k, t)  {f | f F} {(f, f ’) | f, f ’ F} traditionally 

defines the setup state of Rk in relation to set F of production operation families:

– S1(k, t) = f indicates that resource k is in a state compatible with any production 
operation of family f;

– S1(k, t) = (f, f ’) indicates that resource k is moving at time t from a state 
compatible with family f to a state compatible with family f ’.

S2(k, t) defines the state of association of Rk with a set of other main resources; 
this state is directly linked to the multi-resource context retained for production and 
setup operations. We observe the following cases: 

– S2(k, t)  indicates that resource k is not associated with any other main 
resource; it is in the isolated state; 

– S2(k, t) u indicates that resource k is associated within the set of main 
resources u  {Rk1, …, Rkr} Rp , with k u; it is therefore ready to execute any 
production operation simultaneously requiring all resources of u;

– S2(k, t)  (–, u) indicates that the resource is switching from “isolated” state to 
“associated within set u  {k1, …, kr}” state; 

– S2(k, t)  (u, –) indicates that the resource is switching from “associated within 
set u  {k1, …, kr}” state to “isolated” state. 

The generation of setup operations is dynamic and depends on sequencing and 
allocation decisions presented in the following section. This dynamic character 
makes this setup operation a generic operation with a “physical” existence only 
when it is in progress, contrary to production operation with an approaching, 
availability state, etc. For each generic setup operation (change of family, assembly, 
disassembly) s, we associate state S3(s, t)  {BQ, NB} indicating if the operation is 
blocked or not (because of lack of a component to complete this setup, for example). 
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12.4. Decisions, events and constraints 

This section contains the description of decisions and events, and their impact on 
the evolution state of entities presented in the previous section and constraints that 
they have to face. 

We consider two types of decision significant for real-time scheduling 
concerning production operations: 

– the start decision E(o, m), consisting of allocating to operation o resources 
defined by the m mode and to start its execution, switching o from state DI 
(available) to state EC (in process) and involved resource units from state LI (idle) 
to state OC (occupied); 

– the interruption decision I(o, m) consisting of suspending the execution of an 
operation with mode m; this decision frees resource units involved in this execution. 

The start decision E(o, m) can only happen if each resource unit involved is idle 
(LI) and not in breakdown (NP), if the operation is available (DI) and non-blocked 
(NB), if the set of main resources used is associated and if each main resource is 
prepared for the operation family. On the other hand, no specific constraint 
influences the interruption decision. 

We consider two types of decision significant for real-time scheduling 
concerning setup operations: 

– the start decision E(s, m), consisting of starting execution of setup operation s
in mode m, switching resource units of each main and complementary resource 
involved from state LI (idle) to state OC (occupied) and each main setup resource 
from initial setup state to in process setup2;

– the cancellation decision A(s, m) which interrupts the execution of a setup s
operation; this decision frees resource units (main and complementary resources 
used) involved and brings main resources back to the initial setup state. 

The start decision E(s, m) can only happen if each resource unit involved is idle 
(LI) and not in breakdown (NP), if the setup operation is not blocked and if the set 
of main resources used is in the initial required setup state. For the cancellation 
decision, no constraint is defined by simplification. 

Significant events for real-time scheduling can be divided into two classes: 
unexpected events and expected events. We consider two types of unexpected events 
that we can also call disruptions: 

2 The “initial” and “in process setup” states vary according to the setup operation involved: 
change of family, assembly or disassembly (see section 12.3.3). 
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– the breakdown event which makes the use of a certain number of resource 
units a of a resource Rk temporarily impossible for any production or setup 
operation; this event is denoted as P(k, a);

– the blocking event which prevents the execution of a production o (or setup s)
operation independently of the resources that it uses (lack of procurement, absence 
of a non-modeled resource, etc.); this event is denoted as B(o) (respectively B(s)).

There are three types of expected event, each is the consequence of an 
unexpected event or decision: 

– the end of execution event for production o (or setup s) operation is expected 
after the type E(o, m) (respectively E(s, m)) decision, actually at a date equal to the 
date of this decision plus operation duration po (ps); this event frees resource units 
involved for a production operation and in the case of a setup operation, switches 
main resources to the final setup state associated with this operation; 

– the end of breakdown event of a number a of resource units for resource k is 
expected after occurrence of a type P(k, a) event with or without an estimated 
breakdown time; it is denoted as FP(k, a);

– the end of blocking event of production o or setup s operation is expected after 
occurrence of a type B(o) (respectively B(s)) event with or without an estimated 
blocking time; it is denoted as FB(o) (FB(s)).

Any execution end event can only happen if each resource unit occupied is not in 
breakdown (NP) and if the in process operation is not blocked (NB).  

The state sequence of the different entities according to events and decisions, as 
well as constraints weighing on these events and decisions characterizing the 
scheduling problem, can be modeled by a Petri net3. A Petri net is a network 
containing two types of nodes. Events and decisions are represented by “transition” 
nodes and states of entities by “place” nodes. We can find a detailed representation 
of such a network in [ART 97]. 

12.5. Models for off-line and on-line scheduling 

By taking into consideration constraints presented in section 12.4, and knowing 
the current state of the workshop defined by the set of states of different entities 
presented in the previous section, the scheduling objective is to reach a final eligible 
state. This state then corresponds to transferring to the “finished” state the set of 
production operations before job delivery dates. 

3 We can find a presentation on Petri nets in Chapter 7. 
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The bias of the method proposed is to consider, for projected scheduling, a 
deterministic model in which unexpected events are not considered, neither is the 
decision to interrupt an operation, since preempting an operation is not authorized in 
this scheduling phase. The goal of off-line scheduling is to plan a set of start 
decisions leading to a final eligible state, while remaining as flexible as possible. 
The real-time scheduling objective is to help in choosing the best decision at any 
time because of the state of the workshop and off-line schedule. In the case of 
disruption, real-time scheduling reacts by using available flexibility and if this 
disruption compromises eligibility of all expected decisions, by possibly proposing 
decisions of production operation interruption or cancellation of setup operations. 
These propositions then have the goal of locally modifying the set of decisions 
expected by projected scheduling in order to recover eligibility. 

In order to bring out flexibility for its use with real-time scheduling during off-
line scheduling, the approach proposed in section 12.2.3 is intended to define a set 
of solutions instead of just one as with traditional approaches. This inventive 
approach is now presented, in the context of the scheduling problem involved. 

12.5.1. Groups of interchangeable operations 

In order to facilitate real-time use of the set of schedules obtained from the 
projected scheduling procedure, emphasis on sequential degrees of freedom for the 
execution of production operations, easy to understand and use in real time, was 
preferred. This has led to introducing the concept of “sequence of interchangeable 
operation groups”, in order to retain sequential indeterminism for production 
operations belonging to the same group [DEM 77]. A total order relation exists 
between any two operations belonging to two consecutive groups in the sequence. In 
terms of constraint propagation for other operations (see Chapter 5), the least 
favorable sequence of production operations, i.e. the most restricting start decisions 
involving other operations, is always considered. In this way, we ensure that start 
times associated with operations, i.e. projected dates for start decisions, will be 
compatible with any permutation selected in each group. In order to facilitate 
understanding of the set of solutions thus proposed, the scheduling method is only 
authorized to interchange production operations allocated to the same resources and 
for each resource, to the same resource units. In addition, it can only include in a 
group production operations from the same setup class. Finally, setup operations to 
be executed cannot be included in a group of interchangeable operations. 
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12.5.2. Operation-on-node graphs 

The definition of interchangeable operation group sequences offers degrees of 
freedom of a sequential nature for operation start decisions. Temporal degrees of 
freedom, preserving sequential degrees of freedom, can also be highlighted by 
characterizing the start date of a production or setup operation4 o with the help of an 
earliest start date ro and a latest end date do. According to one of the two dates 
involved, a sequence of groups, i.e. a set of scheduling problem solutions, can be 
represented by two operation-on-node graphs for calculating these dates by potential 
propagation [ROY 70].  

For earliest start date calculation, graph G = (X, U) is defined in the following 
way. The set of nodes X is such that each projected production operation is a node 
and each necessary setup operation is also a node. For each job i, we add a fictitious 
operation o(i, ni + 1) following any operation of this job without successor in the 
routing. We also add to the graph original time node O and a node H to measure 
eligibility. The set of arcs U represents the set of precedence constraints . We define 
three types of arcs; the first two are only defined for production operations: 

– constraints linked to the routing: a “routing” type arc is defined between two 
nodes corresponding to two consecutive production operations in the job routing; 
this arc is valued by duration of operation corresponding to the original node; a 
routing type arc is defined between node O and each node corresponding to the first 
operation in a job i, valued by ri; a routing type arc is defined between each node 
corresponding to the last operation o(i, ni + 1) of a job i and node H, valued by – di;

– constraints linked to routing and to considering the most unfavorable 
permutations within one group (“group” type arcs): a group type arc is defined 
between two nodes if the destination node corresponds to a production operation 
where a previous operation in the routing belongs to the same group as the operation 
corresponding to the original node. This arc is valued by the sum of durations of 
production operations belonging to the same group as the production operation 
corresponding to the original node, i.e. duration of this group; 

– constraints linked to resource sharing (“resource” type arcs): a resource type 
arc is defined between two nodes x1 and x2 in the following four cases: either x1 and 
x2 correspond to two production operations whose groups are (directly) consecutive 
on a set of non-empty resource units; or x1 and x2 correspond to two setup 
operations directly consecutive on a set of non-empty resource units; or x1
corresponds to a setup operation, x2 corresponds to a production operation and group 
x2 is directly consecutive to the setup operation x1 on a set of non-empty resource 
units; or x1 corresponds to a production operation, x2 corresponds to a setup 

4 Subsequently, o represents an operation without specifying if it is a setup or production 
operation, whereas o(i, j) exclusively represents a production operation. 
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operation and this operation is directly consecutive to group x1 on a set of non-
empty resource units. In the case where x1 corresponds to a production operation, 
the arc is valued by duration of its group (which is the sum of the durations of the 
operations inside the group); in the case where x1 corresponds to a setup operation, 
the arc is valued by its duration. Earliest start dates for all operations can be obtained 
by potential propagation in this graph from node O with which we associated zero 
potential. Potential obtained for node H is the maximum lateness denoted as Lmax. It 
gives information on eligibility of the group sequence. 

Contrary to the traditional method [ROY 70], we cannot calculate the latest end 
date by reverse propagation in graph G, because group type arcs do not correspond 
to the expression of the most unfavorable permutation constraint for end dates. We 
thus have to use another graph containing (in reverse) the exact same routing and 
resource type arcs but different group type arcs [THO 80].  

However, when the number of operations in a group is large, the number of 
group type arcs can be very significant. Fortunately, it is not necessary to represent 
group type arcs, the knowledge of operation membership to a group and routing type 
arcs are sufficient for representing group type arcs implicitly. We can thus blend 
both graphs into a single one called a “group graph”. This graph which prevents 
combinatorial explosion of group type arcs is presented with the help of this next 
example. The algorithm enabling the calculation of earliest start and latest end dates 
from this graph is presented in section 12.5.3. 

EXAMPLE.– A workshop is made up of 9 resources, 7 of which are disjunctive, 
representing two presses (denoted as PR1 and PR2) , two molds (denoted as MO1
and MO2), three operators (denoted as O1, O2 and O3) and two cumulative 
resources representing two operator teams (EQ1 and EQ2), where each team 
contains two operators (two resource units, notation ldc in the diagram). We 
consider five jobs with an earliest start date equal to 0 and with linear routing5. In 
this example, all production and setup operations only have one mode of execution. 
Job characteristics are presented in Table 12.1.  

i di j Fij Resources pij j Fij Resources pij

1 20 1 A PR1, MO1, O1 2 2 B PR1, MO2, O3 1 

2 20 1 C PR2, MO2, O2 1 2 B PR1, MO2, O3 2 

3 5 1 C PR2, MO2, O2 2 - - - - 

4 10 1 - EQ1 (2 ldc) 1 2 - EQ2 (1 ldc) 4 

5 10 1 - EQ1 (2 ldc) 2 2 - EQ2 (1 ldc) 6 

Table 12.1. Job characteristics

5 Gi is a chain. 
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Resource Disassembly s(u, –) Resource Assembly s(–, u)Association u

Duration Complementary Duration Complementary

{PR1, MO1} 5 EQ1 (1 ldc) 4 EQ1 (2 ldc)

{PR1, MO2} 8 EQ1 (1 ldc) 2 EQ1 (2 ldc)

{PR2, MO1} 2 EQ1 (1 ldc) 6 EQ1 (2 ldc)

{PR2, MO2} 4 EQ1 (1 ldc) 8 EQ1 (2 ldc)

Table 12.2. Resource assembly and disassembly operation characteristics

Change Duration Complementary Change Duration Complementary

s(A, B, u) 3 EQ2 (1 ldc) s(C, A, u) 5 EQ2 (1 ldc)

s(A, C, u) 4 EQ2 (1 ldc) s(C, B, u) 6 EQ2 (1 ldc)

s(B, A, u) 1 EQ2 (1 ldc)    

s(B, C, u) 3 EQ2 (1 ldc)    

Table 12.3. Family change operation characteristics

For example, job 1 has a delivery date equal to 20 and two operations: o(1, 1) 
duration equal to 2, of family A, allocated to resources PR1, MO1, O1 and operation 
o(1, 2) of family B, duration equal to 1 and allocated to resources PR1, MO2, O3. 
Concerning setup activities, press and mold resources (PR1, PR2, MO1 and MO2) 
are the main workshop resources liable to have setup activities. Operator resources 
(O1, O2, O3, EQ1 and EQ2) are complementary resources. The distribution of 
production operations into families is indicated in Table 12.1. We can observe that 
manufacturing order operations 4 and 5 have no family. In fact, they are only 
allocated to complementary resources. Resource assembly and disassembly 
operation characteristics are presented in Table 12.2. For example, PR1 resource 
assembly operation with MO1 lasts for 4 units of time and uses 2 resource units 
from complementary resource EQ1. The characteristics of family change operations 
are given in Table 12.3, where u can be replaced by any resource in the set 
{PR1, PR2, MO1, MO2} or any association of a set element {PR1, PR2} with any 
element of the set {MO1, MO2}. In this way, for isolated resource PR1, changing 
from family A to family B lasts for 3 units of time and uses 1 resource unit of 
complementary resource EQ2.
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Figure 12.1. Example of an eligible schedule set

The sequence of groups presented in Figure 12.1 in the form of a Gantt chart 
represents a set of solutions to the problem thus defined. The sequence of groups 
contains 3 groups with more than one operation: {o(2, 1), o(3, 1)}, {o(1, 2), o(2, 2)} 
and {o(4, 1), o(5, 1)}. Therefore, 8 schedules are represented. 

Necessary setup operations are represented by simple line rectangles, whereas 
interchangeable production operation groups are represented by double line 
rectangles. In this Gantt chart, operations and groups are scheduled the earliest. We 
thus observe that the sequence of proposed groups is eligible by looking at job due 
dates. The two graphs used for calculating earliest start and latest end dates for 
operations are represented implicitly by the single graph in Figure 12.2. 
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Figure 12.2. Graph representing sequence of groups in Figure 12.1

In this graph, we have two types of nodes: “operation” and “group” nodes. We 
only represent resource type arcs (bold line) and routing type arcs (dotted line) and 
we include nodes representing production operations located in one group within the 
node representing the group. We define routing type arcs between two “operation” 
nodes and resource type arcs between two “group” nodes. This representation makes 
it possible to reduce the number of arcs and to highlight the group concept in the 
operation-on-node graph. For example, the group type arc existing between node 
o(3, 1) and node o(2, 2) for earliest start date calculation is implicitly represented by 
the routing type arc between o(2, 1) and o(2, 2) which traverses the node 
representing group {o(2, 1), o(3, 1)}. For calculating latest end dates, a “group” type 
arc exists between node o(2, 2) and node o(1, 1), but it is implicitly represented by 
the routing type arc between o(1, 1) and o(1, 2), which “passes through” the node 
representing group {o(1, 2),o(2, 2)}. The method for calculating dates associated 
with operations and verifying eligibility of a sequence of groups is presented in the 
next section. 
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12.5.3. Generic graph methods 

Potential propagation method 

From a sequence of groups given by a graph, we use a potential propagation 
method to calculate the earliest start and latest end dates of the different operations, 
represented in square brackets in Figure 12.2. For earliest start date calculation, we 
allocate zero potential to the original O node and we propagate this potential with an 
extension of the Bellman algorithm (see Chapter 2) with a recursive formulation as 
follows: the potential of (production or setup) “operation” node o of the graph, i.e. 
the earliest operation start date ro, is the largest value between: 

– the earliest end date of any operation o(i, j) whose node is the origin of a 
routing type arc having node o as destination, in the most unfavorable permutation 
situation in group gij containing o(i, j):

ro  rij + pij

ro max{rxy | o(x, y) gij, o(x, y)  o(i, j)}+ {pxy | o(x, y) gij}

– the largest earliest end date of operations included in any group g whose node 
is linked to the group of node o by a resource type arc: 

ro max{ro’ | o’ g}+ {po’ | o’ g}

In the presence of timetables, we must add to these values durations of inactive 
periods of resources used by the operation or the group during the period involved.  

In the graph in Figure 12.2, we calculate in this way a maximum lateness of –1 
(advance), since job 5 ends on date 9. Latest end dates are obtained in a symmetric 
way by starting the propagation from node H, by allocating for example to node H a 
latest end date equal to max(0, Lmax), as was done in Figure 12.2. For these 
calculations, the graph model requires no distinction between setup and production 
operations.  

Insertion method for a production operation 

The model based on graphs makes it possible to analyze the impact of a local 
modification of the series of solutions on eligibility, notably when this modification 
is caused by an insertion. We can define the insertion problem of a production 
operation in a set of schedules represented by a sequence of groups in the following 
way. Given a scheduling problem A defined by a set of resources and jobs, a 
sequence of groups SA eligible for problem A, a production operation o(i, j) not in A
and with an earliest start and latest end date, the insertion problem of o(i, j) comes 
down to proposing a new eligible sequence of groups SB, or the closest possible to 
eligibility for problem B defined by adding o(i, j) to A. To solve this problem, a 
purely dynamic approach consists of solving problem B with no consideration for 
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SA. In contrast, the method proposed here uses this sequence as insertion support for 
operation o(i, j). We set an objective of inserting o(i, j) in the set of schedules: 

– by respecting sequence SA, i.e. without changing the relative order of 
operations already present, or their allocation; 

– by minimizing violation of latest end dates of o(i, j) and already sequenced 
operations in SA, o(i, j) satisfying its earliest start date. 

Preserving SA has the double purpose of not provoking major changes in the 
sequence, which may not be accepted well in real time in a workshop, and making 
problem B much simpler to solve because of the significant reduction of all possible 
solutions.  

Details of this method will not be described here. For an idea of its principle, we 
use each resource type arc u from graph G modeling the current set of solutions SA

as a characteristic element of a position of insertion. In fact, there is a positive or 
zero time interval between the earliest end date of group g1 corresponding to the 
origin node of u and the latest start date of group g2 corresponding to destination 
node of u. In addition to this interval, called the time window, arc u also defines an 
resource occupation, i.e. the resource unit subset that group g2 directly recovers 
after being used by g1. These two elements, characterizing the insertion interval,
totally define maximum allocation of resource units to an operation if we settle for 
inserting it between g1 and g2, and its maximum duration preserving eligibility. 
Generally, it is necessary to jointly use several resource type arcs to give an 
operation all the resource units that it requires. Provided these arcs are compatible, 
i.e. not located on the same route in graph G, the insertion interval represented by 
these arcs has a resource occupation equal to the union of the resource occupations 
of its arcs and a time window equal to the intersection of windows associated with 
its arcs. The main concern with the insertion problem is to avoid listing all possible 
insertion intervals and to verify compatibility of arcs making up each insertion 
interval. In the case where the operation to be inserted cannot generate a setup 
activity, a polynomial algorithm has been defined to find the optimal insertion 
interval, i.e. minimizing maximum violation of the latest operation end dates [ART 
00]. This algorithm is based on a forward traversal of graph G which modifies at 
each iteration an insertion interval containing a maximal set of arcs, called the 
insertion cut, by replacing resource type arcs going to a node by resource type arcs 
issued from the same node. For each insertion cut, the algorithm removes useless 
arcs for allocation, in order to increase the time window while conserving a 
sufficient number of resource units. A heuristic based on this principle was proposed 
for the consideration of setup activity which may occur following the inserted 
operation. 
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These propagation and insertion methods are used for real-time decision support 
in order to prepare for hazards, but also during off-line scheduling in iterative 
improvement methods for the initially generated sequence of groups. 

12.6. Off-line scheduling method 

12.6.1. Gradual construction of a feasible initial sequence of groups 

A feasible sequence of groups is a sequence respecting all constraints of the 
problem, except possibly for job delivery dates, which distinguishes it from an 
eligible sequence which must also respect these delivery dates. A feasible initial 
sequence of groups and corresponding graph of groups can be constructed gradually, 
using a method presented in detail in [ART 97], by adding a new production 
operation to a partial sequence at each step. This operation is selected within a series 
of candidate operations with the help of a priority rule. Please see Chapter 6 or 
[BLA 82] for states of the art concerning priority rules in job shop scheduling and 
[KUR 82] in multi-project scheduling.  

The difference from traditional methods is that the selected operation position in 
the partial sequence is obtained by applying the insertion algorithm. The priority rule 
used must reach a compromise between three objectives sorted in a preferential 
sequence. The first objective is meeting the delivery dates of jobs to be fulfilled. In 
order to do this, a priority rule based on the margin of operations is used. The second 
objective, linked to resource setup activity, carries out technological groupings, i.e. 
maximum sequence of production operations from the same family by using the same 
main resources in order to avoid unproductive setup times. We should note that there 
may be incompatibility between these two objectives. The third objective, linked to the 
real-time decision support phase, is the maximization of the number of solutions 
proposed. In the interchangeable operation group context, the idea is to include as 
many operations as possible in each group. This objective can also turn out to be 
incompatible with delivery date satisfaction since interchangeability adds constraints 
to start operation dates which can lead to job delays.  

The accomplishment of the delay/setup and delay/interchangeability compromise 
uses constraint analysis (see Chapter 5). In fact, to reach the delay/setup compromise 
for a given iteration of the gradual construction, an estimated latest end date is 
calculated for each production operation, considering the partial sequence generated 
and the corresponding job delay. In case of conflict between the selection of an 
urgent operation (relative to its margin) and selection of an operation to complete 
the technological grouping or to increase the number of operations of a group, the 
priority rule proposed selects the second operation insofar as this selection is 
compatible with the estimated latest end date of more urgent operations. Similarly, 
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when a production operation generating no setup is selected by this priority rule, its 
insertion in the already existing group (when appropriate) over all resources 
involved is only carried out with respect to latest estimated end dates for operations 
already present in the group. If interchangeability constraints cause the violation of 
one of these dates or if the selected production operation generates a setup activity, a 
new group not containing this operation is then created (possibly preceded by the 
different setup operations required).  

12.6.2. Search for eligibility by iterative improvement of the sequence 

Despite constraint analysis carried out during generation, the priority rule used 
cannot guarantee respect for all job due dates. In the case where a delay is indicated 
by a positive potential associated with node H of the graph, a group sequence 
iterative improvement algorithm is then executed based on a neighborhood search 
method. This method identifies the critical path in the graph representing the current 
set of solutions, i.e. the set of operations the sequence of which makes this potential 
positive. From the current set of solutions, a neighboring set of solutions is obtained 
by deleting a critical operation from the graph and by re-inserting it in another 
position with the help of the polynomial insertion algorithm presented in section 
12.5.3. Selecting operations to move and ending algorithm conditions are performed 
according to principles from the tabu search method (see [GLO 93, NOW 96] and 
Chapter 3 on metaheuristics), making it possible to temporarily accept eligibility 
deteriorations to get rid of a possible local optimum. The proposed tabu search 
method, which is an extension of that presented in [DAU 98], is described in detail 
in [ART 97]. It has obtained good results in resource-constrained project scheduling 
problems [ART 99] which integrate the main constraints retained in this chapter. 

12.7. Real-time scheduling method, interactive decision support system 

The real-time scheduling method proposed is implemented by an interactive 
decision support system. Section 12.7.1 first presents how real-time information 
(events, decisions) is retrieved in this system from the workshop and how decision 
support information is sent to the different decision centers. Among this decision 
support information, section 12.7.2 puts emphasis on eligibility control indicators 
for the current sequence of groups, since its respect remains the main objective of 
real-time scheduling. In fact, decision support itself is different whether we are in an 
eligible context or not. As long as the current sequence of groups is eligible, 
decision support procedures presented in section 12.7.3 are intended to help in 
making operation start decisions favoring conservation of this eligibility. When the 
sequence becomes non-eligible, decision support procedures presented in section 
12.7.4 are intended to retrieve eligibility, prior to continuing to use the sequence of 
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groups for decision support. Finally, section 12.7.5 presents the possibility of testing 
decisions outside of the planned context and thus extending the use of the proposed 
decision support system for negotiation between decision centers. 

12.7.1. Decision support system organization 

Interactions between the decision support system for real time scheduling and its 
environment are represented in Figure 12.3. The system stores the current workshop 
state in the form of a Petri net discussed in section 12.4, which makes it possible to 
know all possible decisions and events at any given time. It also stores the current 
set of off-line schedules in the form of a potential-task graph presented in section 
12.5.2, which makes it possible to know all projected start decisions, the expected 
set of end of execution events and eligibility of the current set of schedules. In the 
information technology context, the decision support system is connected to a series 
of identified decision centers located in the workshop and in scheduling offices by 
an inter-process communication mechanism with the help of message queues.  

1 2 X

...Decision
center

Decision
center

Decision
center

Centralization of events and decisionsDistribution of information
and propositions

Current schedule setWorkshop current state

Decision support system

Set of eligible
schedules

Unexpected jobs

Workshop
state

Projected

Real time

Figure 12.3. Structure of the decision support system

A decision center groups a set of entities in a logical link. A decision center can, 
for example, be made up of a single resource, or a series of resources grouped in a 
“section” controlled by a single decider. A more “project” orientated global decision 
center, can group a series of jobs and the different resources required to execute 
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these jobs. Messages sent from a decision center to the decision support system, 
constituting requests, are stored in a message queue and are processed in sequence 
according to the FIFO rule. Messages sent from the system to a center are responses 
to these requests.  

The general algorithm of the decision support system is the following. req is a 
message sent by decision center X read by the system in the queue at date t. If req is 
“simply” an information request, this information is built and sent to center X. For 
each request, the system identifies entities (operations, resources) involved and 
sends information (new states, margins) for these entities. If req is an event or 
decision declaration, the system verifies validity of req by testing if a corresponding 
transition can be fired in the current Petri net state. If the test is positive, the 
transition is fired and Petri net marking is updated. If the test is negative, invalid 
request information is sent to the decision center with comments on the error. In the 
case of a valid request, if the decision or event requires it, the potential task graph is 
updated and dates associated with operations are refreshed according to date t. For 
example, following the end of operation commitment, the corresponding node is 
deleted from the graph, and based on the event date, the possible modification of 
operation start dates is propagated in the graph. Finally, information required 
following the occurrence of the event or decision req is sent back to center X which 
transmitted req. We should mention that one of the implementation problems with 
this type of system is workshop division into an adequate number of decision 
centers.

12.7.2. Eligibility control 

In general, the response to an expected event or to a decision, such as the end of 
operation execution on a set of resources, is made up of the new state of the 
resource(s) involved, the list of available or approaching operations allocated to this 
(these) resource(s) and the margins of each operations. To reduce the information 
that a single user has to manipulate, operations with a blank state will not be 
displayed, except if the operation is located in the leading group of a series of 
resources (i.e. the group with no “resource” type predecessor in the projected 
sequence at decision time t).

Margins of (production or setup) operations, either in-process or located in a 
leading group, are sufficient enough to inform decision makers on global eligibility 
without the need for propagation. In fact, calculating the margin of a production or 
setup operation o only involves the earliest start date of the operation calculated 
from t (denoted as ro(t)), duration po and latest end date do of the operation 
calculated at the end of the generation procedure. In real time, there are two margins 
associated with a single operation. Net margin mpo(t) of a production or setup 
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operation o gives information about eligibility of the sequence in relation to this 
operation regardless of other operations in the same group. Its expression is: 

mpo(t) = do – po – ro(t) [12.1] 

If |gij| > 1, group margin mgij(t) of a production operation o(i, j) gives 
information on eligibility of the sequence when o(i, j) is executed first in its group 
gij, to preserve all permutations in gij. Its expression is: 

mgij(t) = min{dxy|o(x, y) gij, o(x, y)  o(i, j)} – {pxy|o(x, y) gij} – rij(t) [12.2] 

The minimum of two margins [12.1] and [12.2] is called sequential free margin
of the operation [THO 80]. A group sequence is eligible if and only if the sequential 
free margin of all operations located in a leading group is positive or zero. Beyond 
global eligibility, each sequential free margin gives information on degrees of 
freedom concerning start operation date (for production or setup operations) as well 
as on sequential degrees of freedom within group gij (only for production 
operations). For example, if the net margin of an operation is positive and its group 
margin is negative, this means that permutation with the operation processed first in 
its group is no longer eligible. Nevertheless, if another group operation g exists with 
a group margin that is positive, then the permutation with this operation processed 
first in the sequence retains eligibility. When an operation sees its sequential free 
margin become negative, then at least one job will end after its due date if start 
decisions are taken in the order suggested by the off-line schedule. In order to have a 
precise list of late jobs, propagation (see section 12.5.3) is necessary for calculating 
the earliest projected end date of each job. 

In addition, in response to an unexpected event declaration (disruption) such as 
resource breakdown with an estimated duration or more generally following an 
event making certain margins negative, the system sends back the same information 
as before, completed by the list of jobs that the hazard potentially delays beyond 
their delivery date. 

12.7.3. Decision support in an eligible sequence context 

Information given in the context where the current sequence of groups is eligible 
makes it possible to help in choosing the next start decisions in the decision center 
involved. If no displayed margin is negative (if no job is late), then eligibility is 
respected and the system suggests the selection of start decisions within the set of 
projected solutions, even in the presence of disruptions. Operations in the center 
involved are displayed according to a total sequence corresponding to a preferential 
commitment sequence, including production operations belonging to the same group 
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of interchangeable operations g. We can in fact show that the best solution to save 
degrees of freedom associated with g is to start production operations of g in the 
decreasing order of their sequential free margin [THO 80]. However, this sequence 
is only a proposal and operations of the same group can be executed in any order. 

12.7.4. Decision support for retrieving eligibility 

When a margin becomes negative following a disruption or a delay of the 
occurrence of a projected decision or an expected event, the set of schedules 
described by the projected sequence of groups becomes ineligible and strict respect 
of the planned context cannot improve the situation. On the other hand, if detected 
delays of jobs are not “too” significant, we can presume that local modifications 
consisting of making one or more decision(s) outside of the planned context may 
restore eligibility. 

The system then tests a series of possible decisions depending on the hazard 
which caused the problem. If an operation is blocked when it uses resources that 
work well, the system tests the start of other operations on these resources. This start 
is possible as long the blocked operation is interrupted. If a resource fails, the system 
tests the start of waiting operations on a replacement resource. In all cases, these 
tests are carried out on the potential-task graph in order to evaluate the impact of 
alternative decisions on eligibility. The polynomial insertion algorithm presented in 
section 12.5.3 is the basic tool for these local modifications which follow the 
principle of the iterative improvement procedure presented in section 12.6.2, i.e. 
reducing the length of the critical path, by deletion and reinsertion of critical 
operations while retaining the relative sequence of groups. 

This local character makes it possible to retain most of the anticipations that 
could have been carried out following the known projected schedule and ensures 
schedule stability. In return, if disruptions are too large, a return to the global 
generation of a set of solutions may be necessary. In practice, this capacity of two 
level reactions is well adapted to reality in a workshop. 

12.7.5. Decision and negotiation support between decision centers outside the 
planned context 

Even though the decision maker has some level of freedom proposed by the 
system, he may wish to consider decisions other than the ones proposed to him. The 
system must therefore let him test the consequences of this type of decision, which 
are outside of the planned context. The insertion algorithm presented in section 
12.5.3 makes it possible to quickly test the impact on eligibility: 
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– of the start of an operation not located in a leading group; 

– of the modification of the projected execution mode for an operation; 

– of the insertion (one operation at a time) of an unexpected job not considered 
during off-line scheduling. 

Even if, within a given decision center, this possibility gives more flexibility to 
the decision maker, it also provides help in negotiating between the various decision 
centers as the following scenarios show: 

– in the multi-resource context, following a breakdown (absence of operators for 
example), center A may require replacement with certain resources from center B. 
The use of the system can prove that unexpected mobilization of these resources will 
not disrupt eligibility of sets of schedules. In this way, decision makers from center 
B can more readily accept that “their” resources be used outside of the context 
initially planned; 

– when receiving an urgent order, the sales department can test the insertion 
impact of the associated new job in the set of schedules and see its repercussions on 
delays of other jobs (and thus of other clients), which provides elements in the 
negotiation between the client and sales department, as well as between the sales 
department and production; 

– concerning setup times, section managers can be tempted to maximize 
technological groupings whereas scheduling managers are mostly concerned by 
delays. We can see the advantage of the possibility of testing the eligibility of start 
decisions outside of the planned context, such as the unexpected insertion of an 
operation of the same family, enabling these decision makers to measure the 
consequences of their own preferences over the global performance of the 
workshop. 

12.8. Conclusion

Company environments and market demand require increased performance of 
product flow management during production. This management involves a certain 
number of functions among which workshop scheduling is becoming increasingly 
important. It is in fact this function which manages all operations to be performed to 
obtain the required final product. In order to achieve this, numerous disruptions can 
occur, requiring a dynamic vision of the scheduling problem. In response to this 
objective, a trend is appearing directing research toward real-time scheduling, for 
taking into account the robustness and flexibility necessary for this real time 
approach. Studies in this field are still limited and it seemed useful to present in this 
book a methodology which is advanced enough to enable the definition and 
implementation of a real interactive decision support system for real-time 
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scheduling. This methodology, along with its associated methods and tools, made it 
possible to develop a computer program that is at the core of a commercial software 
package called ORDO implemented in over sixty companies. Details about this 
software are available in [THO 88, ROU 98]. 

However, this only constitutes a specific direction; other approaches need to  
be explored, as was mentioned in this chapter and in others. Real-time scheduling 
constitutes an open problem for research, where results will surely contribute  
to better efficiency activity management systems in the goods or services 
manufacturing field. 
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