

This page intentionally left blank

Production Scheduling

This page intentionally left blank

Production
Scheduling

Edited by
Pierre Lopez

François Roubellat

First published in France in 2001 by Hermes Science entitled “Ordonnancement de la production”
First published in Great Britain and the United States in 2008 by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA.
Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
6 Fitzroy Square 111 River Street
London W1T 5DX Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd, 2008
© Hermes Science Ltd, 2001

The rights of Pierre Lopez and François Roubellat to be identified as the authors of this work have been
asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Cataloging-in-Publication Data

 [Ordonnancement de la production. English]
Production scheduling / edited by Pierre Lopez, Francois Roubellat.
 p. cm.
 Includes bibliographical references and index.
 ISBN 978-1-84821-017-2
 1. Production scheduling. 2. Inventory control. I. Lopez, Pierre. II.
Roubellat, Francois. III. Title.
 TS157.5.07313 2008
 658.5'3--dc22

 2007043950

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN: 978-1-84821-017-2

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire.

http://www.wiley.com

Table of Contents

Preface . xiii

Chapter 1. Statement of Production Scheduling 1
François ROUBELLAT and Pierre LOPEZ

Chapter 2. Basic Concepts and Methods in Production Scheduling. 5
Patrick ESQUIROL and Pierre LOPEZ

2.1. Introduction . 5
2.2. Basic scheduling concepts . 6

2.2.1. Tasks . 6
2.2.2. Resources . 7
2.2.3. Modeling. 7
2.2.4. Resolution methods . 12
2.2.5. Representation of solutions . 15

2.3. Project scheduling . 15
2.3.1. Modeling. 16
2.3.2. Resolution . 17

2.4. Shop scheduling . 20
2.4.1. Introduction . 20
2.4.2. Basic model . 20
2.4.3. One-machine problem . 21
2.4.4. Parallel machine problems . 22
2.4.5. Flow shop . 24
2.4.6. Job shop . 26

2.5. Conclusion. 29
2.6. Bibliography . 29

vi Production Scheduling

Chapter 3. Metaheuristics and Scheduling. 33
Marino WIDMER, Alain HERTZ and Daniel COSTA

3.1. Introduction . 33
3.2. What is a combinatorial optimization problem?. 34
3.3. Solution methods for combinatorial optimization problems. 34
3.4. The different metaheuristic types . 36

3.4.1. The constructive approach . 36
3.4.2. Local search approach . 37
3.4.3. The evolutionary approach . 48
3.4.4. The hybrid approach . 54

3.5. An application example: job shop scheduling with tooling constraints . . 55
3.5.1. Traditional job shop modeling . 57
3.5.2. Comparing both types of problems . 59
3.5.3. Tool switching . 60
3.5.4. TOMATO algorithm. 61

3.6. Conclusion. 62
3.7. Bibliography . 63

Chapter 4. Genetic Algorithms and Scheduling 69
Marie-Claude PORTMANN and Antony VIGNIER

4.1. Introduction . 69
4.1.1. Origin of genetic algorithms . 69
4.1.2. General principles of genetic algorithms 69
4.1.3. Schema theorem . 72
4.1.4. Chapter presentation . 73

4.2. One-machine problems . 73
4.2.1. Example 1: total time and setup times 73
4.2.2. Example 2: sum of weighted tardiness 79
4.2.3. Example 3: sum of weighted tardiness and setup times 83

4.3. Job shop problems . 85
4.4. Hybrid flow shop . 89

4.4.1. Specific case: one-stage total duration problem 89
4.4.2. General case: k stages total duration problem 93

4.5. Hybrid genetic algorithms . 99
4.5.1. Hybridization with other metaheuristics 99
4.5.2. Hybridization with combinatorial optimization methods 100

4.6. Conclusion. 100
4.7. Bibliography . 101

Table of Contents vii

Chapter 5. Constraint Propagation and Scheduling 103
Patrick ESQUIROL, Pierre LOPEZ and Marie-José HUGUET

5.1. Introduction . 103
5.1.1. Problem and chapter organization . 103
5.1.2. Constraint propagation . 104
5.1.3. Scheduling problem statement . 106
5.1.4. Notations. 106

5.2. Time constraint propagation . 107
5.2.1. Introduction . 107
5.2.2. Definition . 107
5.2.3. Simple temporal problems . 108
5.2.4. General temporal problems . 110

5.3. Resource constraint propagation . 112
5.3.1. Characterization of conflicts . 113
5.3.2. Deductions based on critical sets and MDSs. 117
5.3.3. Deductions based on the energetic balance 122

5.4. Integration of propagation techniques in search methods 127
5.4.1. General improvement techniques of chronological backtracking . . 128
5.4.2. Heuristics for variable and value ordering 129
5.4.3. Strategies for applying propagation rules. 130
5.4.4. Use of a backtracking algorithm . 130

5.5. Extensions . 131
5.5.1. Preemptive problems . 131
5.5.2. Consideration of allocation constraints 132

5.6. Conclusion. 133
5.7. Bibliography . 134

Chapter 6. Simulation Approach. 139
Gérard BEL and Jean-Bernard CAVAILLÉ

6.1. Introduction . 139
6.2. Heuristic resolution (greedy) procedures . 140

6.2.1. Limits of the basic method . 140
6.2.2. Manual development procedures of projected scheduling 141
6.2.3. Job placement procedure . 141
6.2.4. Example . 142
6.2.5. Operation placement procedure . 143

6.3. Simulation approach . 145
6.3.1. Discrete event models . 145
6.3.2. Discrete event simulation . 148

6.4. Using the simulation approach for the resolution of a scheduling
problem . 151

viii Production Scheduling

6.4.1. Determination of projected schedule 151
6.4.2. Dynamic scheduling . 153
6.4.3. Using simulation for decision support 153

6.5. Priority rules . 155
6.5.1. Introduction . 155
6.5.2. Description of priority rules . 155
6.5.3. Experimentation conditions. 157
6.5.4. Main results . 160

6.6. Information technology tools. 162
6.6.1. Scheduling software . 162
6.6.2. Simulation languages . 163

6.7. Conclusion. 163
6.8. Bibliography . 164

Chapter 7. Cyclic Production Scheduling . 167
Jean-Claude GENTINA, Ouajdi KORBAA and Hervé CAMUS

7.1. Introduction . 167
7.2. Cyclic scheduling problem classifications 169

7.2.1. Electroplating robot problem (HSP). 169
7.2.2. FMS cyclic scheduling problem . 169

7.3. Problem positioning . 173
7.4. Presentation of tools used . 175

7.4.1. Modeling using Petri nets . 175
7.4.2. Dual Gantt chart . 177
7.4.3. Resource availability interval . 178
7.4.4. Operation placement policies in cyclic scheduling 180

7.5. Algorithm principle . 183
7.6. Extension of cyclic strategies. 185
7.7. Conclusion and prospects . 188
7.8. Bibliography . 189

Chapter 8. Hoist Scheduling Problem. 193
Christelle BLOCH, Marie-Ange MANIER, Pierre BAPTISTE, and Christophe
VARNIER

8.1. Introduction . 193
8.2. Physical system and production constraints 194

8.2.1. Tanks . 195
8.2.2. Hoists. 196
8.2.3. Carriers. 198

8.3. Hoist scheduling problems . 198

Table of Contents ix

8.3.1. General presentation . 198
8.3.2. Static scheduling problems . 199
8.3.3. Dynamic scheduling problems . 200
8.3.4. Classification and brief state of the art 201

8.4. Modeling and resolution . 205
8.4.1. Notations. 205
8.4.2. CHSP resolution: basic problem . 206
8.4.3. Extensions . 218
8.4.4. Multi-product case . 220

8.5. Resolution of other problems presented . 220
8.5.1. Optimization of temporary phases. 220
8.5.2. Job scheduling at line arrival . 221
8.5.3. DHSP resolution . 222
8.5.4. RHSP resolution . 224

8.6. Conclusion. 224
8.7. Bibliography . 225
8.8. Appendix: Notation . 230

Chapter 9. Shop Scheduling with Multiple Resources 233
Jean-Charles BILLAUT, Jacques CARLIER, Emmanuel NÉRON and Antoine
OLIVER

9.1. Introduction . 233
9.2. Hybrid flow shop scheduling problem . 234

9.2.1. A few manufacturing cases . 235
9.2.2. State of the art survey . 237
9.2.3. Notation and mathematical model . 238
9.2.4. Heuristic canonical methods . 239
9.2.5. An exact method . 241
9.2.6. Extensions of the traditional hybrid flow shop problem 247

9.3. RCPSP: presentation and state of the art . 248
9.3.1. A simple model including shop problems 249
9.3.2. Main exact methods for the RCPSP. 250
9.3.3. Results and fields of application of methods. 258

9.4. Conclusion. 260
9.5. Bibliography . 261

Chapter 10. Open Shop Scheduling . 271
Christian PRINS

10.1. General overview . 271
10.2. The open shop problem . 272

x Production Scheduling

10.2.1. Open shop in relation to other shop problems 272
10.2.2. An example . 273
10.2.3. A few real open shop examples . 274

10.3. Complexity of open shop problems . 275
10.3.1. Overview. 275
10.3.2. Polynomial geometric methods. 275
10.3.3. The polynomial m = 2 case . 276
10.3.4. The boundary m = 3 case . 277
10.3.5. Special open shops . 277

10.4. The preemptive case (operations executable multiple times) 277
10.4.1. Gonzalez and Sahni algorithm . 277
10.4.2. An example . 278

10.5. Simple heuristics (excluding metaheuristics). 280
10.5.1. Introduction . 280
10.5.2. Performance guarantees . 281
10.5.3. List heuristics . 281
10.5.4. Matching heuristics. 283

10.6. The disjunctive model and shop problems 285
10.6.1. Disjunctive model review . 285
10.6.2. Disjunctive model and shop problems. 286
10.6.3. Example of open shop disjunctive model 286
10.6.4. Disjunctive model properties . 287

10.7. Metaheuristics for the open shop. 288
10.7.1. Known traditional neighborhoods for job shop 288
10.7.2. Tabu search and simulated annealing methods for open shop. . . . 288
10.7.3. Population-based algorithms and neural networks 288

10.8. Exact methods for open shop . 289
10.8.1. Brucker et al. branch-and-bound method 289
10.8.2. More recent improvements . 290

10.9. Algorithm comparison . 290
10.9.1. Uniform processing times . 290
10.9.2. Taillard examples . 292
10.9.3. Difficult Brucker and Guéret and Prins tests 293

10.10. Open shop problems in satellite telecommunications 294
10.10.1. TDMA systems principle . 294
10.10.2. Pure open shop cases . 295
10.10.3. Preemptive case complications . 296
10.10.4. Generalization of the basic open shop 296

10.11. Conclusion . 297
10.12. Bibliography . 297

Table of Contents xi

Chapter 11. Scheduling Under Flexible Constraints and Uncertain Data:
The Fuzzy Approach . 301
Didier DUBOIS, Hélène FARGIER and Philippe FORTEMPS

11.1. Introduction . 301
11.2. Basic notions on the fuzzy approach to uncertainty and constraints . . . 303

11.2.1. Possibility theory . 303
11.2.2. Fuzzy arithmetic . 305
11.2.3. Fuzzy interval comparison . 306
11.2.4. Possibilistic utility . 307

11.3. Scheduling under flexible constraints . 308
11.3.1. The fuzzy PERT problem: flexible constraints 309
11.3.2. Limited resources: flexible constraints and fuzzy rules. 314

11.4. Scheduling with ill-known execution times 317
11.4.1. Critical paths under ill-known execution times: difficulties 318
11.4.2. Critical paths with interval execution times 320
11.4.3. Critical paths with fuzzy execution times. 322
11.4.4. Limited resources: approach by fuzzy interval comparison 323

11.5. Flexible constraint scheduling and ill-known task execution times. . . . 325
11.6. Conclusion: the potential contribution of possibility theory
in scheduling . 328
11.7. Bibliography. 329

Chapter 12. Real-Time Workshop Scheduling 333
Christian ARTIGUES and François ROUBELLAT

12.1. Introduction . 333
12.2. Interest and problem positioning . 333

12.2.1. The context of on demand production workshops. 333
12.2.2. The different approaches to real-time workshop scheduling. 334
12.2.3. An original approach . 337

12.3. Modeling and dynamic of scheduling problem considered 338
12.3.1. Resources . 339
12.3.2. Production operations . 340
12.3.3. Setup operations . 341

12.4. Decisions, events and constraints . 345
12.5. Models for off-line and on-line scheduling 346

12.5.1. Groups of interchangeable operations 347
12.5.2. Operation-on-node graphs. 348
12.5.3. Generic graph methods . 353

12.6. Off-line scheduling method . 355
12.6.1. Gradual construction of a feasible initial sequence of groups 355
12.6.2. Search for eligibility by iterative improvement of the sequence . . 356

12.7. Real-time scheduling method, interactive decision support system . . . 356

xii Production Scheduling

12.7.1. Decision support system organization. 357
12.7.2. Eligibility control . 358
12.7.3. Decision support in an eligible sequence context 359
12.7.4. Decision support for retrieving eligibility 360
12.7.5. Decision and negotiation support between decision centers
outside the planned context. 360

12.8. Conclusion . 361
12.9. Bibliography. 362

List of Authors . 367

Index . 371

Preface

This book is mainly a translation of an earlier text published in French in 2001.
For this edition, all the authors have been requested to update their chapter by
considering the latest advances and references in the field.

Research studies on job scheduling are mobilizing a large number of researchers
attempting to bring solutions to theoretical as well as practical problems. New
resolution methods are being developed in relation to classical scheduling problems
or practical situations encountered in the context of goods or service production.
Exchanges between researchers in this community are extensive and contribute to a
real dynamic in this field. Numerous research studies are developed in cooperation
with companies to identify real problems including problem statements not
considered in much basic research for scheduling problem solving.

In this book, we have attempted to bring together a number of contributions
liable to help in resolving or considering a solution to problems actually encountered
in the real world.

We wish to thank all the authors who have graciously accepted to participate and
who have presented a summary of available results or current studies in different
fields related to production scheduling.

Pierre LOPEZ
François ROUBELLAT

This page intentionally left blank

Chapter 1

Statement of Production Scheduling

The current environment in companies is characterized by markets facing fierce
competition and from which customer requirements and expectations are becoming
increasingly high in terms of quality, cost and delivery times. This evolution is made
even stronger by rapid development of new information and communication
technologies which provide a direct connection between companies (business to
business) and between companies and their clients (business to customer). In this
type of context, company performance is built on two dimensions:

– a technological dimension, whose goal is to develop intrinsic performance of
marketed products in order to satisfy requirements of quality and lower cost of
ownership for these products. Technological innovation plays an important role and
can be a differentiating element for market development and penetration. In this
regard, we must note that rapid product technological growth and the personalization
requirements for these products expected by markets often lead companies to
forsake mass production and instead focus on small or medium-sized production
runs, even on-demand manufacturing. This requires them to have flexible and
progressive production systems, able to adapt to market demands and needs quickly
and efficiently;

– an organizational dimension intended for performance development in terms of
production cycle times, respect of expected delivery dates, inventory and work in
process management, adaptation and reactivity to variations in commercial orders,
etc. This dimension plays an increasingly important role as markets are increasingly
volatile and progressive, and require shorter response times from companies.

Chapter written by François ROUBELLAT and Pierre LOPEZ.

2 Production Scheduling

Therefore, companies must have powerful methods and tools at their disposal for
production organization and control [BAI 99].

This production organization must be considered not only at company level, but
also from its position in the supply chain where it is one of the links, resulting in a
global “virtual” company which must be focused on satisfying customer needs under
the best possible conditions [BAI 99, WU 98].

To achieve these goals, a company organization normally relies on the
implementation of a number of functions including scheduling which plays a vital
role. Indeed, the scheduling function is intended for the organization of human and
technological resource use in company workshops to directly satisfy client
requirements or demands issued from a production plan prepared by the company
planning function. Considering market trends and requirements, this function must
organize the simultaneous execution of several jobs using flexible resources
available in limited amounts, which becomes a complex problem to solve. In
addition, it is this function which ultimately is responsible for product
manufacturing. Its efficiency and failures will therefore highly condition the
company’s relationship with its customers. Within companies, this function has
obviously always been present, but today it must face increasingly complex
problems because of the large number of jobs that must be executed simultaneously
with shorter manufacturing times. This situation is obviously the result of the current
environment as it was described earlier.

Offering efficient and powerful solutions to scheduling problems thus defined
constitutes an important economic challenge. Despite the simplicity of formulating
this type of problem, it must be noted that to date there is no “one” method able to
solve all possible scenarios. In fact there are a number of generic problems
differentiated by the characteristics of jobs to be performed or resources available to
perform them. Specific methods can then be associated with the resolution of each
of these generic problems, these specific methods being either a specific
interpretation of the problem in a general way, or a specific method dedicated to the
problem involved. Resolution of a concrete problem starts by identifying the generic
problem to which we can associate it, followed by the selection of the method(s)
adapted to the resolution of this problem. We must also note that the decision
problem associated with the scheduling problem belongs to the category of
combinatorial NP-complete problems. Consequently, resolution by exact methods is
not realistic for large problems, justifying the use of powerful heuristic methods.
This explains why research on scheduling problems is always popular and demands
numerous studies [WIE 97].

The goal of this book is to present a number of methods for the resolution of
scheduling problems. There are a number of studies, past or present, on scheduling

Statement of Production Scheduling 3

issues [HER 06, LEU 04, PIN 05, SUL 07]. In this book, we have chosen to
emphasize approaches to strictly solve or to improve the solution for problems
actually encountered in the real world. This leads us to the organization of this book
as follows.

A global presentation of concepts in relation to the scheduling domain and basic
methods for solving classical scheduling problems is proposed in Chapter 2. The
following two chapters present heuristic type resolution methods to solve large
problems: metaheuristics (Chapter 3) and genetic algorithms (Chapter 4). Chapter 5
discusses an approach based on constraint propagation aiming at characterizing all
solutions to a problem, which can be useful to help in searching for optimal
solutions or in decision support. Chapter 6 recalls resolution principles based on the
use of priority rules to generate a schedule by simulation or to identify priority rules
to be used to organize scheduling in real time. The two following chapters discuss
three scheduling problems for specific production lines: cyclic scheduling to satisfy
mass production of a limited number of products (Chapter 7) and hoist scheduling
(Chapter 8). Chapter 9 addresses an important practical extension of the scheduling
problem: choosing which resource to use for each job operation, coupled with the
operation scheduling for resources used. Chapter 10 considers a specific problem for
which operations to be performed are not linked to sequencing constraints. Finally,
the last two chapters focus on scheduling problems in uncertain environments or in
environments which are not completely specified, a situation often encountered in
practice. The fuzzy approach makes it possible to consider these two characteristics
(Chapter 11), whereas the decision support approach makes it possible to organize
job processing in real time according to the real state of the workshop and thus to
consider unforeseen situations, using deterministic models (Chapter 12).

It is important to note that although this book often uses vocabulary and
examples inherent to the manufacturing field, methods presented can be used to
organize processing of any type of activity requiring available resources in a limited
amount, in particular service activities, provided of course that the processing
constraints are similar to those of one of the models considered in this book.

Bibliography

[BAI 99] BAI S., NSF workshop on supply chain management in electronic commerce, Final
Report, http://www.ise.ufl.edu/supplychain, 1998.

[HER 06] HERRMANN J. (Ed.), Handbook of Production Scheduling, International Series in
Operations Research & Management Science , vol. 89, 2006.

[LEU 04] LEUNG J.Y-T., Handbook of Scheduling: Algorithms, Models, and Performance
Analysis, Chapman & Hall/CRC Computer & Information Science Series, 2004.

4 Production Scheduling

[PIN 05] PINEDO M., Planning and Scheduling in Manufacturing and Services, Springer,
2005.

[SUL 07] SULE D., Final Production Planning and Industrial Scheduling: Examples, Case
Studies and Applications, Second Edition, Taylor & Francis/CRC Press, 2007.

[WIE 97] WIERS V.C.S., “A review of the applicability of OR and AI scheduling techniques
in practice”, Omega, International Journal of Management Science, vol. 25, no. 2, p. 145-
153, 1997.

[WU 98] WU S.D., STORER R.H. and MARTIN-VEGA L.A., “Manufacturing logistics
research: taxonomy and directions”, NSF Design and Manufacturing Grantees
Conference, Monterrey, Mexico, 1995.

Chapter 2

Basic Concepts and Methods
in Production Scheduling

2.1. Introduction

The scheduling problem is the organization over time of the execution of a set of
tasks, taking into account time constraints (i.e. deadlines, precedence constraints,
etc.) and capability and capacity constraints on resources required for these tasks.

A schedule constitutes a solution to the scheduling problem. It describes the
execution of tasks and the allocation of resources over time with the aim of meeting
one or more objectives. More precisely scheduling problems can be decomposed in
two types. In a pure scheduling problem a start date and an end date have to be
decided for each task, whereas in a sequencing problem tasks that compete for the
use of the same resource only have to be ordered. Scheduling necessarily induces a
unique set of sequencing relations. On the other hand, a solution to the sequencing
problem, described in terms of precedence relations (those that solve the potential
resources conflicts) is not associated with a single schedule but covers a family of
schedules (possibly an infinity of schedules if dates are real numbers or if the
variation domain is not bounded).

This chapter aims to present the main results from basic literature on scheduling
problems, results which may be referred to in the following chapters. First, we
present the basic concepts by integrating general method principles for the
resolution of optimization problems. Then we address the project scheduling

Chapter written by Patrick ESQUIROL and Pierre LOPEZ.

6 Production Scheduling

problem where most questions involve the determination of total project time and
the emphasis of usable degrees of freedom (time floats) to minimize the cost of
resource utilization or to smooth out the workload. Although this type of problem
does not take resource constraints into account, its formulation is essential in
scheduling because it enables the presentation of fundamental concepts and basic
algorithms for handling time constraints. Finally, we present a second important
family of problems, the shop scheduling problems. While in project scheduling, we
can adapt the level of resources necessary for the execution of complex but well
structured work, in shop scheduling on the other hand, we must use a known set of
limited resources (machines) as well as possible to produce a diverse set of products.
The complexity then lies in the combinatorics resulting from the consideration of
existing resources limitation and not in the manufacturing processes which are here
predetermined (in shop scheduling, manufacturing processes are often restricted to
be linear sequences of operations on distinct machines, called routings). A series of
traditional results are presented concerning initially one machine problems, then
parallel machine problems and finally problems where products circulate in the shop
according to a single routing or multiple routings.

2.2. Basic scheduling concepts

2.2.1. Tasks

A task is a basic work entity located in time with a start time ti and/or an end
time ic , where execution is characterized by a duration ip (we have iii ptc)
and by the intensity k

ia with which it consumes certain resources k. In more simple
terms, we presume that for each resource required, this intensity is constant during
task execution.

With certain problems, the tasks can be executed in parts, and interlacing of the
different parts ensures that resources are as active as possible. With others, on the
other hand, we cannot stop a task that is started. We speak of preemptive and non-
preemptive problems respectively.

In project scheduling (see section 2.3), we will keep the term “task” to describe
the activities of a project. For shop scheduling (see section 2.4), we will opt for the
term “operation” (in this case, we will also prefer processing time rather than
duration). In manufacturing, we often observe several phases in the execution of an
operation: preparation; main phase; finishing; and transport. Depending on
manufacturing conditions, each of these phases can greatly condition the time in
which a product remains in the shop.

Basic Concepts and Methods in Production Scheduling 7

2.2.2. Resources

A resource k is a technical or human means needed for the execution of a task
and available in a limited quantity, its (presumed constant) capacity kA . Several
types of resources can be observed. A resource is said to be renewable if it becomes
available again with the same quantity (man, machine, space, equipment in general,
etc.) once used by one or more tasks; usable resource quantity is limited at each
moment. Otherwise, it is non-renewable or consumable (raw material, budget, etc.);
global consumption (or accumulation) during time is limited. A resource is said to
be doubly-constrained when its instant use and global consumption are both limited
(source of energy, financing, etc.). Disjunctive resources cannot be shared, they are
able to execute only one task at a time (machine tool, manipulating robot), while
cumulative resources can be shared by several tasks simultaneously (team of
workers, workstation) assuming that their capacity is sufficient.

NOTE.– In practice, flexibility of certain resources can lead to taking into account
additional reconfiguration times, which may depend on the task at hand, but also on
the state of the resource itself, which is often linked to the previous tasks executed
on this resource. This means that setup times must be taken into consideration,
depending on the sequence chosen. The consideration of these setup times is vital in
practice because they can have a huge impact on scheduling. It encourages the
grouping of identical products into lots resulting in grouping tasks relative to a
single lot on each machine in order to minimize total machine reconfiguration time
(see Chapter 12). In addition, task durations are not always known but can be
dependent on the quantity of means alloted to their execution which in turn can be
linked to the resource’s speed or performance (see Chapters 5, 9 and 12).

2.2.3. Modeling

Generally, the decision variables encountered in this book involve decisions on
time (scheduling variables) or resources (allocation variables). A constraint
expresses restrictions on the values that decision variables can jointly take. Time and
resource constraints can be distinguished.

2.2.3.1. Time constraints

These include:

– allocated time constraints, generally based on a management policy and
relative to task deadlines (delivery lead times, availability of supply) or to project
deadlines. For a task i, ir defines the date of availability (before which i cannot
begin) and id defines its due date (before which i must be completed);

8 Production Scheduling

– precedence constraints and, in a more general way, technological consistency
constraints, which describe a relative ordering of certain tasks compared to others
(for example, routing constraints in the case of shop problems);

– timetable constraints linked to respect for work schedules, etc.

These constraints can all be expressed with the help of potential inequalities
[ROY 70], which mandate a minimum distance of ijb between two particular events
associated with tasks (their starting times or their ending times):

ijij bxx [2.1]

Now that this primitive constraint is defined, we will examine how it can be used
to express some of the time constraints presented above.

2.2.3.1.1. Constraint expressed in a single potential inequality

The precedence constraint between two tasks i and j , symbolized as ji
(i precedes j), is represented by the numerical relation iij ptt .

A time limit constraint can also be represented with the help of the primitive
constraint [2.1], by including a dummy task 0 with a zero duration, that sets the time
origin (00t) of the problem; for example, constraint ii rt is rewritten in the
form of ii rtt 0 . The constraint ii dc becomes ii dct0 .

2.2.3.1.2. Constraint expressed with a conjunctive set of potential inequalities

This is the case with relative location constraints such as a necessary overlap
between two tasks i and j . It is represented by a constraint requiring two potential
inequalities:

)0()0(jiij tctc .

We use this type of conjunctive logical expression to represent that a time
constraint is satisfied if all its member constraints are simultaneously satisfied:
connector represents the Boolean logical and connector, potential inequalities are
then interpreted as logical literals of the first order predicate calculus.

Another example of a complex time constraint resulting in a conjunctive
expression is that of tasks with a constrained duration. To model the fact that the
duration of a task i is only approximately known and defined by an interval of
possible values of the type [,]ii

p p , the following conjunctive expression can be used:

)()(iiiiii pctptc .

Basic Concepts and Methods in Production Scheduling 9

2.2.3.1.3. Constraint expressed as a disjunction of potential inequalities

This type of expression involves the connector (or logical). Semantically, the
constraint is satisfied if at least one of the literals is a satisfied constraint.

A first case is for example the existence of several execution modes. For
example, let us define a product which can be manufactured in two distinct ways:

– mode 1: operation i, then operation j;

– mode 2: operation j, minimum waiting time of waitp units (for cooling down,
drying process, etc.), then operation i.

The global time constraint which expresses the existence of these two execution
modes can have the following form:

(0) ()j i i j waitt c t c p .

In the simple previous case, the time constraint is directly represented in the
form of a disjunction between several potential inequalities. A more complex case is
the one of timetable constraints: task i can be accomplished only
during one of some h time intervals:],[11

ii dr ,],[22
ii dr , …,],[h

i
h

i dr , with

],[],[11 l
i

l
i

l
i

l
i drdr ,)1(,,1 hl . If there is no hypothesis on the

timetable for i , the constraint is represented with the help of the following
disjunctive expression:

)]()[()]()[(2
0

2
0

1
0

1
0 iiiiiiii dctrttdctrtt

)]()[(00
h
ii

h
ii dctrtt

This form is not a disjunctive set of single potentials inequalities. However,
thanks to a rewriting using the distributive nature of logical connectors, we can
translate this expression into a conjunctive set of disjunctive expressions on
potential inequalities, i.e. into a set of constraints to satisfy, where each one is a
disjunctive expression.

10 Production Scheduling

2.2.3.2. Resource constraints and sequencing problem

These constraints signify that resources are available in limited quantity (their
capacity), and are also called sharing constraints. For a given schedule, let the set of
tasks consuming resource k at time t be: iiik ptttnitT ,|,,1)((note that
tasks ending exactly at moment t, are not considered in)(tTk). Capacity limitation
of resource k is then expressed by the following constraint:

k
tTi

i Aat
k)(

, [2.2]

To ensure respect of resource constraints, we must avoid temporal overlapping
of certain task subsets. This leads to the order of a sufficient number of task pairs,
which comes down to adding new precedence constraints to the initial constraint set.
This type of decision is called a sequencing decision or an arbitration. All
sequencing decisions characterize the sequencing problem brought about by the
initial scheduling problem. There are two types of resource constraints, linked to the
disjunctive or cumulative nature of resources.

Disjunctive resources

These are resources which can only be used for one task at a time. In a shop
problem, resources are machines. A disjunction pair)()(ijji is associated
with each pair),(ji of tasks using the same resource, which is translated in the form
of a disjunction between two potential inequalities:

)()(jjiiij pttptt [2.3]

In order to respect these constraints, it is necessary and sufficient to solve all
disjunction pairs relative to each disjunctive resource, which leads to a total
sequencing of tasks using a single disjunctive resource.

Cumulative resources

When the resource capacity and task intensities are greater than one, the set of
tasks which cannot be executed simultaneously may have a higher cardinality. The
respect of resource constraints only leads to a partial sequence of tasks using the
same resource. As before, it is possible to represent cumulative resource constraints
with the help of a conjunction of disjunctive expressions. Chapters 5, 9 and 12
describe the involvement of cumulative resources.

Basic Concepts and Methods in Production Scheduling 11

2.2.3.3. Objectives and evaluation criteria

When we address the resolution of a scheduling problem, we can choose
between two main strategy types, respectively focussing on the optimality of
solutions (in relation to one or more criteria), or on their feasibility (in relation to
constraints). The optimization-based approach presumes that candidate solutions for
a problem can be ordered, according to one or more numerical evaluation criteria
that express the quality of solutions. We will attempt to minimize or maximize such
criteria. Note for example those:

– related to time: total execution time or average time for completing a set of
tasks; the different types of delays in relation to deadlines set;

– related to resources: the – maximum, average or weighted – quantity of
resources necessary for completing a set of tasks and the load of each resource;

– related to costs for launching, production, transportation, storage, etc.

A criterion based on variables ic is called regular if we cannot downgrade it as
a task is executed earlier. This is the case for minimization of makespan, maximum
delay, etc. A subset of solutions is called dominant for the optimization of a given
criterion if it contains at least one optimum for this criterion. In this way, the search
for an optimal solution can be limited to a dominant subset. In a semi-active
schedule, we cannot move a task earlier without modifying the sequence on the
resource it uses. The set of semi-active schedules is dominant for any regular
criterion. In an active schedule, no task can be started earlier without delaying the
start of another one. Active schedules are semi-active and the set of active schedules
is dominant for any regular criterion. In non-delay schedules, we must not delay the
execution of a task if it is ready to start and if its resource is available. Non-delay
schedules are also active. We will come back to the generation of these schedules in
section 2.4.6 and Chapter 6.

It is sometimes difficult to translate all solving objectives with one or more
numerical criteria. In this case, we can use a constraint satisfaction approach. The
set of constraints groups intrinsic problem constraints (technological consistency for
example) as well as threshold objectives to be reached or not to be exceeded
(maximum duration, maximum/minimum inventory, etc.). In this case, we will be
able to use an ordinary solution as long as it is feasible. The exploration strategy of
the space of feasible solutions must use constraints in a smart way in order to reduce
the space exploration. This is the principle of constraint propagation, representing a
set of filtering techniques (withdrawal of inconsistent values) and developed in
Chapter 5.

12 Production Scheduling

2.2.4. Resolution methods

2.2.4.1. Introduction

In an optimization-based approach, the knowledge helping to provide an ideal
solution is integrated in a programmable model where the execution does not require
the intervention of a decision maker. When, on the contrary, some knowledge is
difficult to represent or use (uncertain, inaccurate data, non-consistent, qualitative or
highly context-dependent criteria), an approach based on decision support may turn
out to be more realistic and flexible. In this case, the idea is to analyze the problem
and characterize all solutions in order to help the decision maker with total or partial
control of the resolution procedure in solving the problem. For this, characterization
can rely on constraint propagation techniques.

A method using an optimization criterion is exact if it guarantees optimality of
solutions found. Otherwise it will be called approximate, or heuristic when it
empirically provides “good” solutions [MAC 93]. If the goal is reduced to only
satisfy constraints, a method based on constraint propagation will be said to be exact
(or “sound”) if the solutions found correctly satisfy all constraints of the problem.
Finally, we should mention the completeness property; a method is complete if,
regardless of the problem addressed, we can ensure that the problem accepts or does
not accept solutions in a reasonable amount of time.

Calculation cost is clearly vital when choosing an automatic resolution method.
Even though the increasing power of computers may constantly push back the limit
of combinatorial problem sizes accessible by exact methods, their resolution is often
expensive (computing time, memory space), which explains the use of approximate
methods. In the case of an interactive resolution, the number of decisions made by
the decision maker, the number of backtracks, …, are also factors conditioning this
cost independently from that incurred by underlying techniques used.

2.2.4.2. General methods of combinatorial optimization

We briefly describe here a few general optimization methods that we will often
encounter in the exact resolution of scheduling problems: branch-and-bound
procedures [BAK 74] and mathematical programming techniques such as mixed-
integer linear programming [NEM 88] and dynamic programming [BER 87].

2.2.4.2.1. Branch and bound procedures

Branch and bound (B&B) optimization procedures are exploration procedures
using implicit enumeration of all solutions [LAW 66]. They lead to the development
of a search tree where each node represents a sub-problem and where arcs issued
from a single node represent all possible decompositions of the problem located at

Basic Concepts and Methods in Production Scheduling 13

the base of the arc into smaller size sub-problems (Figure 2.1). The objective is to
arrive at a node corresponding to a solution, by generating the least number of
nodes.

Figure 2.1. Research space associated with a B&B procedure

B&B procedures are based on four main components:

– the branch technique for decomposing a problem by breaking it down into
smaller sized sub-problems;

– the bound method which involves a bound on the optimization criterion for all
solutions of a sub-problem (lower bound for minimization);

– the evaluation method, for determining if a node is terminal (it contains no
admissible solution, or it is an optimal solution, or we can obtain the optimal
solution for this sub-problem in a polynomial time1), or if it should be separated. If
we can make sure that it does not contain a better solution than the ones already
found, it will not be separated;

– the selection method, or exploration strategy, which describes how to choose
the sub-problem to branch, when there are several candidates. Two main strategies
exist. In a best-first strategy, we select and then branch the “pending” sub-problem
with the best bound. In a depth-first search procedure with backtrack, pending nodes
are managed in a stack: at each step we seek a pending problem, we bind it, we
probe it and we stack the sub-problems emanating from its branching.

1 A polynomial or polynomial-time solving method is a method with a running time bounded

by a polynomial function of the problem size N (e.g. 2N). A problem is said to be easy if
such methods exist. On the other hand, facing hard combinatorial problems, the running time

is only bounded by an exponential function of N (e.g. N2).

14 Production Scheduling

For large problems, we must be concerned with having to handle substantial tree
structures. To limit the search tree size, we can attempt to refine lower bound
calculations. We can also apply dominance results [CAR 88, ESQ 99]. In addition to
the lower bound calculation, we can calculate at each node an upper bound of the
criterion with the help of a heuristic. The goal is to stop the development of a node
when its lower bound is greater than the best upper bound found to date. Chapter 9
illustrates these methods.

2.2.4.2.2. Dynamic programming

Scheduling problems are combinatorial problems for which there are general
tools such as dynamic programming [BEL 74] as long as this optimization criterion
presents specific properties, such as an additive form. The principle is to carry out a
step decomposition of the problem, and to scan backwards – from the last decision
up – the sequential decision process associated with the scheduling problem. Each
step corresponds to a sub-problem that we solve in an optimal way by considering
information obtained during previous steps. This requires a formulation of the
criterion in the form of a recurrence relation connecting two consecutive levels. As
with B&B procedures, dynamic programming works by an implicit enumeration of
all solutions. This optimization has a more general vocation than B&B procedures,
but on the other hand, the size of problems that it can address is more limited.
However, it is possible to apply dominance results, and for reasonably-sized NP-
hard problems2, we can, in practice, build interesting pseudo-polynomial3 dynamic
programming algorithms.

2.2.4.2.3. Linear and integer programming

A linear program models an optimization problem in which the criterion and
constraints are linear functions of variables. To process a linear program in
continuous variables, the two most important types of algorithms are the Simplex
method and the Interior Points method. In practice, the Simplex method is powerful
although its theoretical complexity is exponential. The best example of an Interior

2 In complexity theory [GAR 79], an optimization problem X is said to be NP-hard if the
associated problem of existence EX (finding an admissible solution at a cost lower than a
given k) is an NP-complete problem. To do this, it must be proven that EX accepts a
formulation making it possible to easily verify (in polynomial time) whether a given set of
values actually does constitute a solution (definition of the NP class). It must also be proven
that we can find EX by polynomial transformation of another known NP-complete problem
(for example, the SAT problem raised by satisfiability of a set of Boolean formulae). In this
way, finding a polynomial resolution algorithm for a single NP-complete problem would
automatically solve all problems. This type of algorithm does not yet exist.
3 A pseudo-polynomial algorithm is an algorithm capable of solving an NP-complete problem
in polynomial time with coding of the problem’s data in base 1 (see [CAR 88], page 76). A
problem for which no pseudo-polynomial algorithm exists will be said to be NP-complete in
the strong sense.

Basic Concepts and Methods in Production Scheduling 15

Points method is the Karmarkar algorithm which solves linear programs in
polynomial time.

Modeling scheduling problems often involves integer variables in the
mathematical program. We are then in the presence of mixed-variable programs
where the major disadvantage may be the large number of required constraints and
variables; no polynomial algorithm exists to solve this type of program. The best
approaches used relax the constraints that state integer values for variables; these are
polyhedral methods derived from the Simplex algorithm, and B&B procedures. In
certain cases, we can go back to flow problems for which we have powerful
algorithms [WOL 98].

2.2.5. Representation of solutions

The Gantt chart is a very simple and widely used graphical representation for
viewing scheduling. A horizontal segment of length that is proportional to the
operation duration is associated with each task (Figure 2.2). In a “resource” chart,
each horizontal line corresponds to a resource, which makes it possible to view its
periods of operation or idleness as well as the sequence of operations using it and
the scheduling duration. In a “job” or “product” chart, a line is associated with each
job; when it follows a linear route it is then easy to see the chaining of its operations
and the waiting time between two consecutive operations.

0 5 10 15

o14

o13

o33

o11

o44

o42

o12o31

o34Station 1

Station 2

Station 3

Station 4 o43

o41

o32o21

o22

o23

o24

Figure 2.2. “Resource” Gantt chart

2.3. Project scheduling

This section addresses the description of a basic project scheduling method. This
method is described in this book, even though it is focused on production
scheduling, because it is a basic technique for methods developed in the context of
production shops. The specific characteristic of project scheduling is to study a
single project, for which we attempt to minimize makespan with no consideration
for resource limitation constraints. Initially limited to managing large projects, the

16 Production Scheduling

use of these techniques, often grouped under the famous PERT acronym, has now
spread to companies.

2.3.1. Modeling

Graph theory is a very real help in the manipulation of a large amount of
numerical data. It is a rigorous support for both checking the consistency of the
problem raised and its resolution. Current formulations linked to the project
scheduling problem involve the definition of a graph using potential inequalities (see
section 2.2.3).

When formulating potential inequalities on an Activity-On-Node graph, each
node represents a task i, and each arc (i, j) represents a potential inequality between
the start dates ti and tj of tasks i and j [ROY 70]. We generally add two nodes,
Beginning and End, corresponding to fictitious project tasks with a zero time
duration. In this way, we associate a zero value arc (Beginning, i) with each task i
able to start the project; similarly we associate a zero value arc (j, End) with each
task j able to complete the project. Subsequently, we use the traditional notation

)(i (resp.)(i) to represent the group of nodes located at the origin (resp. at the
end) of arcs entering (resp. issued from) node i.

0
T1

T3

Start T2

T4 T5 End

T6

4

16

15 20

14

15 2

15

6

Figure 2.3. Activity-On-Node graph associated with a project

The above example (Figure 2.3) illustrates the case of a project containing six
tasks submitted to different types of constraints (the durations are expressed in
days):

– arcs (3T , 2T) and (3T , 4T) represent for example a precedence constraint
and are valued by task 3T duration (15 days);

– arc (Beginning, 1T) with value 0 indicates that task 1T can start when the
project starts whereas task 6T must wait at least 14 days.

Basic Concepts and Methods in Production Scheduling 17

2.3.2. Resolution

One of the main questions in the resolution involves the calculation of the
minimal project duration. This comes down to searching the longest path (arcs in
bold in Figure 2.3) between Beginning and End nodes on the activity-on-node graph
associated with the problem for which we have powerful algorithms. We thus
determine critical paths each corresponding to a sequence of tasks where beginning
dates are imposed if we wish to finish the project as soon as possible. They are
called critical path methods, the most famous of which are PERT (program
evaluation and review technique), CPM (critical path method) and MPM (Metra-
potential method and, later, the project management method), all of which appeared
in the late 1950s [ROY 70].

2.3.2.1. Left-shift scheduling

Calculating left-shift scheduling consists of allocating an earliest start time jt to
each task j, considering the earliest start times it of tasks i such that a ijij btt
type constraint exists. Formally, the definition of earliest start times is recursive:

iji
ji

j btmaxt
)(

[2.4]

with: 0Beginningt
nb_iter 0 % Initialization
for each node j, do

jt 0

repeat % Main loop
 stable true

for each node j Beginning

for any node)(ji
 if ijij btt then

 jt iji bt

 stable false
 nb_iter nb_iter + 1
until stable = true or nb_iter > n - 1
if nb_iter > n – 1 then graph contains a circuit

Algorithm 2.1. Bellman algorithm

18 Production Scheduling

Left-shift scheduling calculation determines the length of the longest paths
reaching each task from the Beginning task. A solution exists if and only if no circuit
of strictly positive length (“positive circuit”) exists. The Bellman algorithm
accomplishes this type of calculation. It ends in the presence of positive circuits,
with the help of a theorem ensuring that for n nodes, the longest paths contain at the
most 1n arcs. Its statement is Algorithm 2.1.

NOTE.– When we can ensure the absence of circuits, the graph can be decomposed
into levels and it is thus more interesting to apply a simplified algorithm traversing
the nodes in the increasing order of levels (see for example [PRI 94]).

The application of Algorithm 2.1 makes it possible to determine the earliest
finish time Endt , and thus the minimum duration of the project.

2.3.2.2. Right-shift scheduling

If the objective is to end the project as soon as possible, we can rule that Endt is
also a latest finish time, in order to determine by propagation a latest start time it
for each task. This time, we calculate the length of the longest paths between any
node and end node. To do this, we use a simplified dual procedure of the previous
(in fact detection of positive length circuits is well established). Starting from an
initial state where Endi Endt t t , the procedure provides a stable set of latest start
times in at most 1n iterations, confirming:

ijj
ij

i btmint
)(

[2.5]

We call critical tasks the tasks which have identical earliest and latest start times
once calculation of the left-shift scheduling and right-shift scheduling set at Endt has
been found. By definition, critical paths connect the beginning and end of a project
and are made up exclusively of critical tasks4. By determining critical paths, it then
becomes possible to focus our attention on the execution of critical tasks. Any delay
in the execution of a critical task inevitably prolongs the duration of the project.

For the others, we can determine several types of floats, which can possibly be
used to smooth out workload, reduce costs, etc.

4 Note that it is not really necessary to calculate earliest and latest schedules to identify
critical jobs and paths; when calculating left-shift scheduling, tasks involved in the longest
paths need to be located.

Basic Concepts and Methods in Production Scheduling 19

2.3.2.3. Characterization of the different float types

Total float of a task is the maximum delay that it can have in relation to its
earliest start time without affecting the minimum duration of the project. It is equal
to the gap separating the earliest and latest start times:

TFloati ti t i

Free float of a task is the maximum delay that it can have in relation to its
earliest start time without affecting its following tasks which will retain their same
earliest start times:

min ()i j ij i
j i

FFloat t b t

where ijb represents a valuation of the arc connecting i to j. Since the definition of
free float is more restrictive than total float, the first is always a fraction of the
second.

The interfering float is the difference between total float and free float. It
characterizes the pairing of a task i scheduling with scheduling of following tasks in
the graph:

i i iItFloat TFloat FFloat

The independent float of task i is the positive gap – if it exists – separating two
dates:

– the earliest start time for i calculated in the case where all previous tasks on
the graph are set as late as possible; and

– the latest start time for i calculated in the case where all following tasks on the
graph are set as early as possible,

IdFloati min(0, min
j i

(t j bij) max
l i

(tl bli))

When the main requirement in a project is to end as soon as possible, it is
advisable to schedule non-critical tasks earliest to offset possible contingencies
during their execution as long as the available float is sufficient. Very often,
however, considering other criteria linked to resources leads to delaying the start or
prolonging the duration of non-critical tasks. We can use total float to classify tasks
and reinforce operation control over those with little control because a too long
delay can create a new critical path and prolong the project duration. We must keep
in mind that any action on a task’s total float can have consequences on the total

20 Production Scheduling

float of other tasks. The notion of free float proves to be more useful for the
consideration of other criteria.

2.4. Shop scheduling

2.4.1. Introduction

In shop scheduling problems, resources are machines only able to execute one
task – or operation – at a time. On the other hand, each job involves an indivisible
physical entity, called product, or lot when several identical products are grouped.
Since an entity cannot be in two places at the same time, a single job can only be
executed one operation at a time on a single machine.

We will discuss one-machine and multi-machine problems consecutively. In the
first case, each job is reduced to a single operation; we must then find a job
sequence on the single machine. In the second case, we will first distinguish
identical parallel machine problems which use the same single operation job
hypothesis and for which the solution is a set of sequences, one for each machine.
We will then study multi-machine shop problems where jobs include several
operations, each requiring a specific machine to be available in a single copy. This
case covers three types of problems, whether the sequence of operations for a single
job is set and common to all jobs (flow shop), set but inherent to each job (job shop),
or finally undetermined (open shop). Open shop problems are discussed in Chapter
10.

2.4.2. Basic model

2.4.2.1. Data, variables and constraints

The shop includes m machines. We must complete n jobs that can start at t = 0.
Each job i is made up of in operations which must be executed in sequence. The jth

operation of job i is called (i, j); it uses machine ijm , with no interruption with a
processing time ijp , and the respect of production routes mandates

),()2,()1,(iniii where symbolizes the relation of precedence. Setup
times are independent of the sequence of operations and are included in their
processing time.

The objective of the scheduling problem is to set start times tij. In order to do
this, we must determine the order of circulation of all jobs for each machine, or
sequence, since resources are disjunctive. From these sequences, several feasible

Basic Concepts and Methods in Production Scheduling 21

schedules – localizing in an absolute manner the operations in time – can be
obtained according to the criterion to optimize.

2.4.2.2. Criteria

In shop scheduling, we attempt to minimize the maximum or the average over all
jobs of indicators based on product wait times between two operations (flow time,
delays, etc.). We often operate a weight on criteria (weight wi) in order to model
preferences or costs during execution of operations. Since several criteria are
regular, the search for optimal solutions can focus on dominant left-shift schedule
subsets.

2.4.3. One-machine problem

The study of single (each job only includes one operation to which it is
assimilated) machine environments serves as a basis for developing more realistic,
albeit more complex, multi-machine environment reasonings. Since the basic shop
scheduling model is retained, we will first highlight the hypotheses inherent to a
one-machine problem. The basic results are presented before addressing resolution
methods which may also be used in the more general context of multi-machine
problems.

2.4.3.1. Specific results – priority rules

For certain criteria, list algorithms, based on rules sequencing operations
according to an imposed order of priority, make it possible to efficiently lead to an
optimal resolution. The operations are sequenced from 0t . At date t , and from
all unscheduled operations that are ready (}/{ tti i), we choose the one with the
highest priority. The following moment of decision (tt) corresponds to the next
greatest moment among the earliest end dates of scheduled operations (O) and the
smallest of the earliest start times of operations not yet scheduled (N):

))(min),(minmax(jj
ii

tpt
i

tptt

ii

NO

Priority may be linked to the shortest processing time, to the earliest due date, to
the greatest quantity of work remaining, etc. (see Chapter 6). The advantage of
priority rules resides in their simplicity of application. However, optimality is still
dependent on the criterion chosen.

Sequencing of operations in increasing processing times/weights (ii wp) ratio
makes it possible to minimize the total flow time or work-in-process inventory. This

22 Production Scheduling

corresponds to respecting the WSPT rule (weighted shortest processing time first) or
Smith’s rule [SMI 56]. Sequencing operations in increasing processing times (SPT
rule) minimizes the total lateness. Sequencing operations in increasing due dates
minimizes maximum lateness and maximum tardiness. The corresponding rule is
called EDD (earliest due date first) also known as Jackson’s rule [JAC 55]. Note
that the two previous rules can be adapted to optimally solve problems associated
with the same criteria in the case where we consider different availability dates and
where preemption is authorized [HOR 74, SMI 56]. The Hodgson-Moore algorithm
minimizes the total number of tardy operations [MOR 68]. It consists of gradually
building a schedule based on the EDD rule. When a delay appears in the partial
schedule, the longest processing time operation already in place is pushed back to
the end of the schedule. In the presence of precedence constraints between tasks, we
have an exact polynomial method to minimize the maximum delay criteria. As in the
application of Jackson’s rule (EDD), the idea is to propagate the latest start time
constraints with the Bellman algorithm and to place operations in increasing order of
new due dates obtained.

For considering other criteria (for example the minimization of the total
tardiness) under general conditions, the absence of specific results leads to the use of
approximate methods (heuristic or metaheuristic, for example genetic algorithms –
see Chapter 4) or general methods such as tree search procedures [CAR 82, MAC
93] (see also the work by Morton and Pentico [MOR 93]).

2.4.4. Parallel machine problems

With the one-machine problem, scheduling comes down to sequencing
operations. The problem with parallel machines is characterized by the fact that
several machines can be used for the execution of a job that only requires one of
them. Theoretically, this problem is a generalization of the one-machine problem
and a specific case of multi-machine shop problem. It is a problem frequently
encountered in real applications, particularly in the context of hybrid flow shops (see
Chapters 4 and 9), but also in the environment of computer processing scheduling
[BLA 96a]. In this case, operations correspond to processing programs executed on
processors. A task can start and then be interrupted if a more urgent process
becomes available, which requires close attention to the question of preemption.

The resolution goes through the process of allocation decisions and is generally
performed in two steps:

– decide on which machine each operation will be executed;

– determine the sequence of operations on each machine.

Basic Concepts and Methods in Production Scheduling 23

The problem is generally subdivided into three classes based on whether the
machines are:

– identical: processing time is the same for all machines;

– uniform: processing time uniformly varies according to machine performance;

– independent: processing time is completely variable between the different
machines.

We will only cover the case of identical machines considering the criteria of
makespan and the sum of due dates.

2.4.4.1. Makespan minimization

Makespan minimization leads to a better load distribution for a cost effective use
of plant capacity. In the absence of precedence constraints and in the case of
interruptible operations, the MacNaughton algorithm provides a minimal time
scheduling in linear time [MAC 59] (Algorithm 2.2).

If the preemption is prohibited, the problem becomes NP-hard with two
machines or more; exact methods are mainly B&B procedures. We can use a
heuristic which consists of placing operations according to LPT policy (longest
processing time first) and assign them according to this order, consecutively to the
machine with the lightest load. The shortest operations are then kept at the end of the
schedule in order to balance the load as much as possible.

With precedence constraints, and in the specific case where the number of
machines is at least equal to the number of jobs, we again fall back to the project
scheduling problem and we can use the Bellman algorithm, otherwise some
optimality results exist when the precedence graph has specific characteristics. The
general problem is NP-hard in the strong sense ([PIN 95], page 66).

1. i
i

n

i
i pp

m
C max,1max

1

*
max

2. Select an operation and schedule it on the first machine at 0t .
3. Schedule an operation not yet selected on the same machine as early as possible.

 Restart as long as total time on the machine does not exceed *
maxC .

4. Transfer the part of the work scheduled after *
maxC onto the next machine. Go back

to 3.

Algorithm 2.2. MacNaughton algorithm

24 Production Scheduling

2.4.4.2. Sum of due dates

The minimization problem of the average due dates is optimally resolved with
SPT. For the weighted average, WSPT-FAM (weighted shortest processing time on
first available machine) is a good heuristic. In the presence of precedence
constraints, the problem is NP-hard in the strong sense.

2.4.5. Flow shop

In the case of a flow shop, any job visits each machine in the shop and the
routing of a job through the different machines is the same for all jobs
(unidirectional flow). This single route is a part of the problem data. This
specification is very often encountered in practice; it corresponds to an assembly or
processing line for example. An important case in particular is the one of a
simplified flow shop where the sequence – or permutation – of jobs visiting one
machine is the same for all machines. This is the permutation flow shop. The hybrid
flow shop case corresponds to a generalization of the flow shop and parallel machine
problems. In this problem, the shop is made up of a certain number of ordered
levels; each level has several parallel machines. This problem is discussed in
Chapters 4 and 9. The specific results presented here exclusively involve the
minimization objective of makespan and are limited to the permutation flow shop
for which we obtain the most significant results. In addition, we know that schedules
such that the job sequence is identical on the first two machines are dominant for
regular criteria (see section 2.2.3.3).

2.4.5.1. Two-machine flow-shop

In this case, an optimal schedule for the makespan criterion can be searched for
among permutation schedules. We apply the sufficient optimality condition given by
Johnson’s rule [JOH 54]: job i precedes job j in the optimal sequence (ji) if:

),min(),min(2121 ijji pppp .

The associated algorithm [CAR 88] tends to put at the beginning of the schedule
the jobs with lower processing times on the first machine, while rejecting the jobs
with lower processing times on the second machine at the end of the schedule:

Basic Concepts and Methods in Production Scheduling 25

1. Constitute job groups 2121 /;/ iiii ppiVppiU .

2. Schedule U according to SPT sequence on the first machine (1ip) and V
according to the LPT sequence on the second machine (2ip).

3. The optimal sequence is given by jobs scheduled in U followed by those scheduled in
V .

Algorithm 2.3. Johnson algorithm

2.4.5.2. Three-machine flow-shop

Schedules such that the job sequence is identical on the two last machines are
dominant for the makespan criterion. Up to three machines, an optimal schedule can
still be searched for among permutation schedules.

In the following two specific cases: 21 maxmin i
i

i
i

pp or 23 maxmin i
i

i
i

pp

(the load on 2M is always lower than on 1M or 3M), we can extend Johnson’s
rule. They correspond to the fact that 2M does not represent a “bottleneck”, i.e. that
it is completely dominated by 1M or 3M . We then define two fictitious machines

1M and 3M , on which respective processing times of a job are: 211 iii ppp ;

322 iii ppp and we apply Johnson’s rule to this new two-machine problem.

Outside of these specific cases, the problem is NP-hard in the strong sense and
we go back to the context of the m-machine problem. Works by [STO 63] and [IGN
65] respectively were among the first to propose a program in integer variables and a
B&B for its resolution.

2.4.5.3. M-machine flow-shop

Generally, there is not an exact polynomial method. We use tree search
methods, integer programming and heuristics, such as for example the famous
Campbell, Dudek and Smith (CDS) method, a multi-step extension of Johnson’s rule
[CAM 70].

From the m-machine problem, we generate 1m fictitious problems with two
similar machines:

26 Production Scheduling

– at step 1, we only consider the first and last machine for a job i:

1
1
1 ii pp ; imi pp1

2

– at step 2, both equivalent machines are made up respectively of the first two
and the last two machines regardless of any intermediate machine. Generally at step
l, we have the following processing time on both equivalent machines:

l

k
ik

l
i pp

1
1 ;

m

lmk
ik

l
i pp

1
2 ; 1,,1 ml

– for each of these fictitious problems, we determine the optimal sequence with
the help of Johnson’s rule;

– retain the best solution amongst the 1m solutions obtained.

2.4.6. Job shop

The job shop problem can be found when a shop manufactures parts with
different characteristics, but nevertheless requires processes where the sequences are
known in advance. Each job must visit machines in a given sequence, but the
difference with the flow shop is that this sequence may be different for each job
(multidirectional flow).

In the following, we propose a quick overview of the most traditional results and
methods. For a more detailed explanation of the job shop problem, refer to states of
the art such as [BLA 96b] and [JAI 99]. As in the case with the flow shop, we will
only consider makespan minimization here. There are very few specific results; they
are limited to the case of the two-machine and two-job problems.

2.4.6.1. Two-machine job-shop

This problem has a known solution reachable in polynomial time. It is resolved
by the Jackson algorithm, based on Johnson’s rule [JAC 56, JOH 64]:

Basic Concepts and Methods in Production Scheduling 27

1. Separate jobs into four sets:
 – }{ 1O : set of jobs made up of an operation executed on 1M ;

 – }{ 2O : set of jobs made up of an operation executed on 2M ;

 – }{ 12O : set of jobs made up of two operations, the first one on 1M , the second on

2M ;

 – }{ 21O : set of jobs made up of two operations, the first one on 2M , the second on

1M .

2. Jobs for }{ 12O and }{ 21O are sequenced according to Johnson’s rule; those for

}{ 1O and }{ 2O do not have a specific sequence.

3. Optimal scheduling respects the following sequences:
 – for 1M : }{}{}{ 21112 OOO ;

 – for 2M : }{}{}{ 12221 OOO .

Algorithm 2.4. Jackson algorithm

2.4.6.2. Two-job job-shop

With the help of a graphical method, this problem can also be optimally solved
in polynomial time [AKE 55, HAR 63]. We consider a plan made up of two time
axes, with the abscissa associated with the execution of job 1 and the ordinate with
the execution of job 2. The determination of a shortest time schedule goes back to
the search for shortest routes in a plan paved with obstacles, insurmountable
rectangles representing the simultaneous execution of both jobs on the same
machine. The route includes horizontal lines (only job 1 executing), vertical lines
(only job 2), or at 45° diagonal (jobs 1 and 2 simultaneously on two different
machines) lines. The route maximizing the quantity of simultaneous jobs leads to the
shortest makespan. Its value is given by the sum of the length of horizontal, vertical
segments and projections of 45° segments on one of its axes.

2.4.6.3. M machine job-shop

In general, the problem is NP-hard in the strong sense. It is addressed by
enumeration methods based on mixed-variable programming or by tree search
methods, and heuristics based for example on priority rules. A more sophisticated
modeling tool is called a disjunctive graph [ROY 70]. Operations are associated
with nodes. The set of arcs is made up of a conjunctive part representing the
precedence constraints linked to each single job (operating sequence) and a
disjunctive part associated with all conflicts related to using resources that cannot be
shared. A feasible schedule is characterized by the choice of one directed arc – or
arbitration – in each disjunction pair. Feasible schedule makespan is the length of
the longest path between the beginning node and end node on the graph where all

28 Production Scheduling

disjunction pairs have been arbitrated without generating a circuit. The detailed
description of this model is given in section 10.6.

2.4.6.3.1. Generating schedules with priority rules

This approach consists of generating specific schedules (semi-active, active, non-
delay) with the help of priority rules for the choice of candidate operations to be
scheduled [BAK 74, CON 67]. An operation is “schedulable” if the previous
operation in its production route is finished and if the machine it uses is idle. Its
earliest start time is then the maximum date between the finish time of its immediate
predecessor in the routing and the finish time of the last scheduled operation on the
machine it uses. Two procedures are mainly used to constitute all schedulable
operations:

– by generation of active schedules: among schedulable operations (initially the
first for each job), we select the one for which the earliest finish time is the smallest;
we call it c*. All schedulable operations are made up of operations with an earliest
start time lower than c* on the machine where this operation may be executed;

– by generation of non-delay schedules: the procedure is similar to the previous
one, except for the fact that the selected operation is the one for which the earliest
start time is the smallest and called t*. The generation of non-delay schedules
ensures that a machine does not remain idle when an operation is waiting for this
machine. However, there is no guarantee that all non-delay schedules contain an
optimal solution to the scheduling problem raised, contrary to all active schedules.

Once the group of schedulable operations is completed, it is time to effectively
select the operation to be executed on the machine concerned. In order to do this, we
use priority rules such as SPT, LPT, EDD, FIFO, etc. (see Chapter 6). For a selected
operation, we arbitrate machine usage conflicts by adding arcs between this
operation and all operations still to be executed on this same machine on the
disjunctive graph. The schedule generation approach can also be associated with a
branch and bound procedure to optimally solve a job shop problem. At each step of
this procedure, we can branch as soon as several operations become ready.

2.4.6.3.2. Shifting bottleneck heuristic

The shifting bottleneck heuristic is a powerful method for the resolution of job
shop problems [ADA 88, DAU 93]. It is linked to the shifting bottleneck concept
and uses the efficiency of a tree search procedure to solve the one-machine problem
with minimization of the maximum lateness [CAR 82].

Basic Concepts and Methods in Production Scheduling 29

1. M = group of machines in the problem
2. 0M = group of machines on which conflicts have been solved (maybe temporarily);

0M .

3. Choose in 0\ MM the bottleneck machine. For this, we consider the associated

conjunctive problem and for each machine in 0\ MM , we consider a one-machine

problem with minimization of the maximum lateness that is solved by a B&B. The
bottleneck machine is resource k for which we obtain the largest lateness.

4. Reusing the disjunctive graph and adding arcs corresponding to the optimal sequence
on machine k.

5. Re-sequence all machines 0M by including the sequence of operations associated

with k and by resolving a new one-machine problem for each.
6. Reiterate for a new machine 0\ MM (return to 3) up to MM 0 .

Algorithm 2.5. Shifting bottleneck heuristic

For examples on the application of this heuristic, we can refer to [PIN 99]. We
also find a variation of this heuristic to solve the minimization of the total weighted
tardiness.

2.5. Conclusion

This chapter has attempted to give a quick outline of methods which have now
become standard for project and shop scheduling. For more detailed information on
description and application of these methods, as well as others not described here,
please refer to the numerous books on scheduling, among them: [BAK 74, BEL 82,
BLA 07, CAR 88, CON 67, ESQ 99, FRE 82, LEU 04, PIN 95, PIN 05].

The objective here has mainly been to provide the necessary material for
understanding the following chapters which describe specific methods and concepts
in greater detail.

2.6. Bibliography

[ADA 88] ADAMS J., BALAS E. and ZAWACK D., “The shifting bottleneck procedure for
job shop scheduling”, Management Science, vol. 34, p. 391-401, 1988.

[AKE 56] AKERS S.B., “A graphical approach to production scheduling problems”,
Operations Research, vol. 4, p. 244-245, 1956.

30 Production Scheduling

[BAK 74] BAKER K.R., Introduction to Sequencing and Scheduling, John Wiley, New York,
1974.

[BEL 74] BELLMANN R. and DREYFUS S.E., Applied Dynamic Programming, Princeton
University Press, 1974.

[BEL 82] BELLMANN R., ESOGBUE A.O. and NABESHIMA I., Mathematical Aspects of
Scheduling and Applications, Pergamon Press, 1982.

[BER 87] BERTSEKAS D.P., Dynamic Programming: Deterministic and Stochastic Models,
Prentice Hall, New Jersey, 1987.

[BLA 96a] BLAZEWICZ J., ECKER K.H., PESCH E., SCHMIDT G. and WEGLARZ J.,
Scheduling Computer and Manufacturing Processes, Springer, 1996.

[BLA 96b] BLAZEWICZ J., DOMSCHKE W. and PESCH E., “The job-shop scheduling
problem: conventional and new solution techniques”, European Journal of Operational
Research, vol. 93, no. 1, p. 1-33, 1996.

[BLA 07] BLAZEWICZ J., ECKER K.H., PESCH E., SCHMIDT G. and WEGLARZ J.,
Handbook on Scheduling, Springer Verlag, Berlin, New York, 2007.

[CAM 70] CAMPBELL H. G., DUDEK R.A. and SMITH M.L., “A heuristic algorithm for
the n job, m machine sequencing problem”, Management Science, vol. 16, no. 10,
p. 630-637, 1970.

[CAR 82] CARLIER J., “The one machine sequencing problem”, European Journal of
Operational Research, vol. 11, p. 42-47, 1982.

[CAR 88] CARLIER J. and CHRETIENNE P., Problèmes d’ordonnancement: modélisation/
complexité/algorithmes, Masson, Paris, 1988.

[CON 67] CONWAY R.W., MAXWELL W.L. and MILLER L.W., Theory of Scheduling,
Addison Wesley, 1967.

[DAU 93] DAUZÈRE-PÉRÈS S. and LASSERRE J.-B., “A modified shifting bottleneck
procedure for job shop scheduling”, International Journal of Production Research,
vol. 31, p. 923-932, 1993.

[ESQ 99] ESQUIROL P. and LOPEZ P., L’ordonnancement, Economica, Paris, 1999.

[FRE 82] FRENCH S., Sequencing and Scheduling, Ellis-Horwood, 1982.

[GAR 79] GAREY M.R. and JOHNSON D.S., Computers and Intractability, Freeman, 1979.

[HAR 63] HARDGRAVE W.W. and NEMHAUSER G.L., “A geometric model and graphical
algorithm for a sequencing problem”, Operations Research, vol. 12, no. 2, 1964.

[HOR 74] HORN W. A., “Some simple scheduling algorithms”, Naval Research Logistics
Quarterly, vol. 21, p. 177-185, 1974.

[IGN 65] IGNALL E.J. and SCHRAGE L.E., “Application of the branch and bound technique
to some flow-shop scheduling problems”, Operations Research, vol. 13, no. 13, 1965.

[JAC 55] JACKSON J.R., Scheduling a production line to minimize maximum tardiness,
Management research project, University of California, Los Angeles, no. 43, 1955.

Basic Concepts and Methods in Production Scheduling 31

[JAC 56] JACKSON J.R., “An extension of Johnson’s results on job-lot scheduling”, Naval
Research Logistics Quarterly, vol. 3, no. 3, 1956.

[JAI 99] JAIN A.S. and MEERAN S., “Deterministic job-shop scheduling: past, present and
future”, European Journal of Operational Research, vol. 113, p. 390-434, 1999.

[JOH 54] JOHNSON S.M., “Optimal two and three-stage production schedules with setup
times included”, Naval Research Logistics Quarterly, vol. 1, no. 1, p. 61-68, 1954.

[JOH 64] JOHNSON L.A. and MONTGOMERY D.C., “Operations scheduling”, Operations
Research in Production Planning, Scheduling and Inventory Control, John Wiley & Sons,
1964.

[LAW 66] LAWLER E.L. and WOOD D.E., “Branch-and-bound methods: A survey”,
Operations Research, vol. 14, p. 699-719, 1966.

[LEU 04] LEUNG J.Y-T., Handbook of Scheduling: Algorithms, Models, and Performance
Analysis, Chapman & Hall/CRC Computer & Information Science Series, 2004.

[MAC 59] MACNAUGHTON R., “Scheduling with deadlines and loss functions”,
Management Science, vol. 6, p. 1-12, 1959.

[MAC 93] MACCARTHY B. and LIU J., “Addressing the gap in scheduling research: a
review of optimization and heuristic methods in production scheduling”, International
Journal of Production Research, vol. 31, p. 59-79, 1993.

[MOO 68] MOORE J.M., “An n job, one machine sequencing algorithm for minimizing the
number of late jobs”, Management Science, vol. 15, p. 102-109, 1968.

[MOR 93] MORTON T.E. and PENTICO D., Heuristic Scheduling Systems, John Wiley &
Sons, 1993.

[NEM 88] NEMHAUSER G.L. and WOLSEY L., Integer and Combinatorial Optimization,
John Wiley, New York, 1988.

[PIN 95] PINEDO M., Scheduling: Theory, Algorithms and Systems, Prentice Hall, 1995.

[PIN 99] PINEDO M. and CHAO X., Operations Scheduling with Applications in
Manufacturing and Services, Irwin McGraw-Hill, 1999.

[PIN 05] PINEDO M., Planning and Scheduling in Manufacturing and Services, Springer,
2005.

[PRI 94] PRINS C., Algorithmes de graphes, Eyrolles, 1994.

[ROY 70] ROY B., Algèbre moderne et théorie des graphes, vol. II, Dunod, 1970.

[SMI 56] SMITH W.E., “Various optimizers for single-stage production”, Naval Research
Logistics Quarterly, vol. 3, p. 59-66, 1956.

[STO 63] STORY A.E. and WAGNER H.M., “Computational experience with integer
programming for job-shop scheduling”, Chapter 14 in Industrial Scheduling, Muth J.F.
and Thompson G.L. (eds), Prentice Hall, 1963.

[WOL 98] WOLSEY L., Integer Programming, John Wiley, New York, 1998.

This page intentionally left blank

Chapter 3

Metaheuristics and Scheduling

3.1. Introduction

Scheduling involves taking decisions regarding the allocation of available
capacity or resources (equipment, labor and space) to jobs, activities, tasks or
customers over time. Scheduling thus results in a time-phased plan, or schedule of
activities. The schedule indicates what is to be done, when, by whom and with what
equipment. Although the statement of a manufacturing organizational problem such
as scheduling may seem simple, we must never underestimate the effort necessary to
find its solution [WID 98]. Scheduling problems can be modeled as assignment
problems, which represent a large class of combinatorial optimization problems. In
most of these cases, finding the optimal solution is very difficult. In fact, except for
a few exceptions, the only known method to solve the problem to optimality would
be to enumerate an exponential number of possible solutions! Specialists in this case
speak of NP-complete problems [CAR 88, GAR 79]. In these conditions, it is
necessary to find a solution method providing solutions of good quality in a
reasonable amount of time: this is what heuristic methods are all about.

This chapter focuses on describing the three main heuristic classes, constructive
methods, local search methods and evolutionary algorithms [COS 95c]. Since these
methods are general enough to be applied to a multitude of combinatorial
optimization problems, they are called metaheuristics.

This chapter is organized as follows: the next two sections indicate how to model
scheduling problems in terms of combinatorial optimization and briefly describes

Chapter written by Marino WIDMER, Alain HERTZ and Daniel COSTA.

34 Production Scheduling

the major issues encountered when solving such problems. A complete presentation
of the main metaheuristics is the subject of section 3.4, preceding a detailed analysis
of the application of a tabu search method for the job shop scheduling problem with
tooling constraints.

3.2. What is a combinatorial optimization problem?

Combinatorial optimization is the field of discrete mathematics involving the
resolution of the following problem.

Let X be a set of solutions and f a function that measures the value of each
solution in X. The objective is to determine a solution s* X minimizing f, i.e.:

)(min*)(
X

sfsf
s

Set X is presumed finite and is in general defined by a set of constraints. As an
example, for a job scheduling problem on one machine, X can be made up of all job
sequences satisfying precedence and priority constraints while f can correspond to
the date at which the last job is finished (makespan).

3.3. Solution methods for combinatorial optimization problems

Despite the permanent evolution of computers and the progress of information
technology, there will always be a critical size for X above which even a partial
listing of feasible solutions becomes prohibitive. Due to these issues, most
combinatorial optimization specialists have focused their research on developing
heuristic methods. A heuristic method is often defined [NIC 71] as a procedure that
uses the structure of the considered problem in the best way possible in order to find
a solution of reasonably good quality in as little computing time as possible. General
properties of these techniques and the circumstances in which they apply are
described in [MÜL 81, SIL 80].

Most difficult combinatorial optimization problems are NP-complete (see
Chapter 2). Since no efficient algorithm for solving NP-complete problems is known
despite the numerous efforts over the last 50 years, the use of heuristic methods is
completely justified when facing such difficult problems. The performance of a
heuristic method typically depends on the quality of the solution produced as output
and on the computing time necessary to reach such a solution. A compromise has to
be found on a case-by-case basis according to the considered optimization problem
since these two criteria are of opposite nature. Since the optimal solution value of a

Metaheuristics and Scheduling 35

large scale difficult combinatorial optimization problem is typically unknown, the
quality of a solution produced by an algorithm is typically evaluated using bounds or
estimates of this optimal solution value. It might also be interesting to analyze the
performance of a given heuristic method in the worst case scenario. A measure of
the biggest possible error (with respect to the optimal value) is particularly useful
when the goal is to specify in which circumstances the considered heuristic method
should not be used.

Although obtaining an optimal solution is not guaranteed, the use of a heuristic
method provides multiple advantages when compared with exact methods:

– the search for an optimal solution can be inappropriate in certain practical
applications for many reasons such as the large size of the problem considered, the
dynamic characterization of the work environment, a lack of precision in data
collection, difficulties encountered when formulating the constraints in
mathematical terms, the presence of contradictory objectives;

– when applicable, an exact method is often much slower than a heuristic
method, which generates additional computing costs and a typically very long
response time;

– research principles at the basis of a heuristic method are generally more
accessible to inexperienced users. The lack of transparency that characterizes certain
exact methods requires regular intervention from specialists or even from the
method’s designers;

– a heuristic method can easily be adapted or combined with other types of
methods. This flexibility increases the range of problems to which heuristic methods
can be applied.

Even though a good knowledge of the problem to be solved is the main
contributor to the efficient and successful use of a heuristic method, there are several
general rules that can be used to guide the search in promising regions of the
solution space X. Guidelines for the use of heuristics in combinatorial optimization
can be found in [HER 03]. A classification of heuristic methods was proposed by
Zanakis et al. [ZAN 89]. In the next sections of this chapter, we describe three
fundamentally different heuristic approaches. The research principles of these
approaches constitute a basis for several known heuristic methods such as the greedy
algorithm, tabu search, simulated annealing and genetic algorithms. The Committee
on the Next Decade of Operations Research [CON 88] declared in 1988 that these
last three methods were very useful and promising for the solution of a large number
of practical applications in the future. This prediction has turned out to be true.
Although very general in their concept, these methods do require a large modeling
effort if we wish to obtain good results.

36 Production Scheduling

3.4. The different metaheuristic types

3.4.1. The constructive approach

Constructive methods produce solutions in the form of s = (x1, x2, ..., xn), starting
from an initial empty solution s[0] and then inserting at each step
k (k = 1, ..., n), a component xo(k) (o(k) {1, 2, ..., n}\{o(1), o(2), ..., o(k – 1)}) in

the current partial solution s[k – 1]. The decision that is taken at a given step is based
on the index of the inserted component and on the value to give it. This decision is
then never reassessed. The vector representation s = (x1, x2, ..., xn) is quite suitable in
solutions for a general assignment problem. Vector positions correspond to objects,
whereas each component xi defines the resource allocated to object i.

The exploration of solution space X with a constructive method is represented in
Figure 3.1. The goal is to decrease the size of the problem at each step, which means
confining ourselves to an increasingly smaller subset Xk X. A constructive method
finds an optimal solution when each considered subset contains at least one optimal
solution s* X. Unfortunately, cases where such a condition is always fulfilled are
rare. The majority of constructive methods are greedy: at each step, the current
solution is completed in the best way possible without taking into consideration all
consequences that this generates with regards to final solution cost. In this sense,
greedy style methods are often seen as myopic.

X),...,2,1({X nxxxsk components)(o,...,)2(o,)1(o kxxx are fixed} (k = 1, …, n)

Figure 3.1. Exploration of X with a constructive approach

Constructive methods are distinguished by their speed and great simplicity.
Solutions are very quickly generated for a given problem without having to use
highly sophisticated techniques. However, the main drawback with these methods
resides unfortunately in the quality of the solutions obtained. The use of the best
choice at each step is a strategy with potentially catastrophic long term effects. From
a theoretical standpoint, obtaining an optimal solution is only ensured for problems
accepting a formulation in terms of matroids [GON 85]. It is thus generally wise to
implement procedures anticipating side effects and future consequences caused by
decisions made during the completion of a partial solution.

Metaheuristics and Scheduling 37

We illustrate constructive methods with the algorithm by Nawaz et al. [NAW
83] summarized below and developed for the search of a minimal length sequence in
a simple flow shop. The scheduling problem in a simple flow shop is a production
problem in which n jobs must be executed following the same sequence on each of
the m machines in the shop; these jobs all have the same process plan but not the
same processing times. The processing time of job i on machine j is denoted by pij

(i = 1... n, j = 1... m).

1. for each job i (i = 1 ... n), set Pi
m

p
j

ij
1

2. sort the jobs into a list in descending order of Pi
3. take the first two jobs from the list at step 2 and find the best sequence for these two

jobs by evaluating both scheduling possibilities. The relative positions of these two
jobs cannot be modified during the next heuristic phases; set i 3;

4. take the job in ith position from the list at step 2 and find the best sequence by
inserting this job in one of the i possible positions among the jobs already placed;

5. if i < n then set i i+1 and go to step 4;
otherwise STOP: the sequence found is the NEH heuristic solution

Algorithm 3.1. NEH heuristic

Nawaz et al.’s algorithm is based on the assumption that a job with a long total
processing time has priority over a job with a shorter total processing time. The final
sequence is found in a constructive way, by inserting a new job at each step and by
finding the best possible position for this new job, without modifying the relative
positions of the jobs inserted earlier (see Algorithm 3.1).

This heuristic provides a very good compromise between solution quality and
computing time [WID 91b].

3.4.2. Local search approach

Local search methods are iterative algorithms which explore the solution space X
by moving step by step from one solution to another. This type of method begins
with a solution s0 X arbitrarily chosen or otherwise obtained from a constructive
method. The transition from one solution to another is made according to a series of
basic modifications which must be defined on a case-by-case basis. The following
notations are taken from the [WER 89] reference. We denote by the set of all
possible modifications that can be applied to a solution. A solution s’ obtained from
s by applying a modification is denoted as s’ = s . The neighborhood N(s)

38 Production Scheduling

of a solution s X is defined as the set of solutions that can be obtained from s by
applying a modification . Specifically, we can write: N(s) = {s’ X | :
s’ = s }. This type of examination process is interrupted when one or more
stopping criteria are met. Figure 3.2 illustrated the general scheme of a local search
method. Consecutive transitions from one solution to a neighbor solution define a
path in the solution space X.

Figure 3.2. Exploration of X with a local search approach

An oriented graph G, called state space graph, can be defined to represent a
local search. Each solution in X is associated with a vertex in G, and an arc from
vertex s1 to vertex s2 is introduced in G if and only if s2 is a neighbor of s1 (i.e. s2
N(s1)). Modeling an optimization problem and choosing a neighborhood N(s) must
be done in such a way that for each solution s X, there is at least one path in G
linking s to an optimal solution s*. The existence of such paths ensures that the local
search method can possibly reach an optimal solution starting from any initial
solution s0.

The neighborhood of a solution s in the context of assignment problems can be
defined in a very simple way [FER 96]. Given a set of objects and a set of resources,
and assuming that exactly one resource must be assigned to each object, we can
define the neighborhood N(s) of s as the set of solutions that can be obtained from s
by changing the resource assignment of exactly one object.

The descent method described in Algorithm 3.2 is a first example of a local
search method. This type of method moves in X by choosing at each step the best
neighbor solution in the neighborhood N(s) of the current solution s. This process is
repeated as long as the value of the objective function decreases. The search stops
when a local minimum is reached. Historically, descent methods have always been
among the most popular heuristic methods to handle combinatorial optimization
problems. However, they contain two major obstacles which considerably limit their
efficiency:

Metaheuristics and Scheduling 39

– according to the size and structure of the considered neighborhood N(s), the
search for the best neighbor solution in N(s) is a problem which can be as difficult as
the original problem (which is to find the best solution in X);

– a descent method is unable to escape the first local minimum encountered.
Combinatorial optimization problems however typically contain numerous local
optima with an objective function value which can be very far from the optimal
value. This is illustrated in Figure 3.3.

In order to cope with these deficiencies, more sophisticated local search methods
have been developed in the last 20 years. These methods accept neighbor solutions
with a lesser quality than the current solution in order to avoid local minima of
function f. The most famous methods of this type are presented in the next sections.
The main differences between these methods concern the rule used to choose a
neighbor solution and the stopping criteria. The search can be stopped when a
solution deemed close enough to being optimal is found. Unfortunately, the optimal
value of a combinatorial optimization problem is typically not known, and it is
therefore often not possible to use such a stopping criterion.

Initialization
 choose an initial solution s X;
 set s* s;
Iterative process

repeat
 generate N(s);
 determine s’ N(s) such that f(s’) =

N(s)”s
min f(s”);

 set s s’;
if f(s) < f(s*) then set s* s;

until s s*

Algorithm 3.2. The descent method

Figure 3.3. A descent method cannot escape a local minimum

40 Production Scheduling

The methods presented below are generally much more powerful than a simple
descent method but also much more expensive in terms of computing resources.
Their implementation must consider the maximum response time authorized by the
program user. We should note in conclusion that significant effort is necessary to
correctly adjust the parameters used by these methods in order to effectively guide
the search throughout X.

3.4.2.1. Simulated annealing

Originally, the simulated annealing method goes back to experiments by
Metropolis et al. [MET 53]. Their studies have led to a simple algorithm to simulate
the evolution of an unstable physical system toward a state of thermal balance with a
fixed temperature t. The state of the physical system is characterized by the exact
position of all the atoms it contains. Metropolis et al. use a Monte Carlo method to
generate a series of consecutive system states starting with a given initial state. Any
new state is obtained when an atom executes an infinitesimal random movement.
Let E be the energy difference generated by such a disruption. The new state is
accepted if the system energy decreases (E < 0). In the contrary case of (E 0), it
is accepted with a certain probability:

)
E

exp(),E(prob
tk

t
B

where t is the system temperature and kB a physical constant known as the
Boltzmann constant. At each step, acceptance of a new state where the energy is not
lower than the current state is decided by randomly generating a number q [0,1[. If
q is lower than or equal to prob(E,t), then the new state is accepted, otherwise the
current state is maintained. Metropolis et al. have shown that a repeated use of this
type of rule brings the system to a state of thermal balance. Many years passed after
these studies from Metropolis et al. before the simulation algorithm they developed
was used to define a new heuristic method for the resolution of a combinatorial
optimization problem. Simulated annealing is a local search method where the
search mechanism is modeled on the Metropolis et al. algorithm and principles of
thermodynamic annealing. The idea consists of using the Metropolis et al. algorithm
with decreasing temperature values t. The progressive cooling of a particle system is
simulated by, on the one hand, making an analogy between the system energy and
the objective function of a combinatorial optimization problem, and between system
states and the solutions of the considered problem on the other hand. To reach states
with as little energy as possible, the system is initially brought to a very high
temperature and then slowly cooled down. When the temperature goes down, atom
movements become less random and the system will tend to be in low energy states.
System cooling must be carried out very slowly in order to reach a state of balance

Metaheuristics and Scheduling 41

at each temperature t. When no new state is accepted at a given temperature t, the
system is considered frozen and it is presumed that it has reached a minimum level
of energy.

Kirkpatrick et al. [KIR 83] and Cerny [CER 85] were the first to follow such a
technique to solve combinatorial optimization problems. The neighborhood N(s) of
a solution s X contains all states which can be obtained from the current state by
slightly moving one atom of the physical system. Only one neighbor solution s’
N(s) is generated at each iteration. This solution is accepted if it is better than the
current solution s. Otherwise, we proceed as with the Metropolis et al. algorithm and
the new s’ solution is accepted with a probability prob(f,t) depending on the
importance of the damage f = f(s’) – f(s) and on a parameter t corresponding to the
temperature. Changes in temperature are performed on the basis of a precise cooling
pattern. Generally speaking, the temperature is lowered in steps each time a specific
number of iterations are executed. The best solution found is stored in variable s*.
The algorithm is interrupted when no neighbor solution has been accepted during a
complete constant temperature iteration cycle. The simulated annealing method is
described in Algorithm 3.3.

Simulated annealing performance is closely linked to the cooling pattern
involved. Numerous theoretical studies have been carried out on this subject and
several variations have been proposed [COL 88, OSM 94]. Simulated annealing can
be described in the form of a non-homogenous Markov chain [AAR 89, VAN 87],
which leads to interesting results in terms of asymptotic convergence of the
algorithm when certain specific conditions are met. Geman et al. [GEM 84] have
demonstrated that the method converges in terms of probability to an optimal
solution if temperature tk at the kth iteration meets the two following conditions:

i)
k
lim tk = 0

ii) tk)1log(
c
k

k = 1, 2, ...

where c is a constant independent of k. Hajek [HAJ 88] established a similar
convergence result by asserting:

iii) tk =
)1log(

c
k

 and c =
X

max
s

 f (s) –
O

min
s

 f (s)

where O represents the set of all local minima of f which are not optimal solutions.
In general, constant c is called the maximum depth of function f.

42 Production Scheduling

In reality, the above condition is difficult to obtain and very costly in terms of
calculation. We generally prefer the cooling pattern by levels shown in Algorithm
3.3, even though it does not guarantee algorithm convergence to an optimal solution.
Recently, the simulated annealing algorithm has been frequently used to solve
practical optimization problems. A detailed review of the literature was carried out
by Collins et al. [COL 88]. Several simulated annealing algorithm applications are
proposed in a book edited by Vidal [VID 93]. The interested reader can refer to
[EGL 90, REE 93, RUT 89, VAN 87] for more detailed information on simulated
annealing.

Initialization
 choose an initial solution s X;
 set s* s;
 set k 0; (global iteration counter)
 set new_cycle true; (Boolean variable indicating if it is worth

 executing a new cycle of iterations)
 set t t0; (t0 = initial system temperature)
Iterative process

while new_cycle = true do
 set nbiter 0; (iteration counter internal to a cycle)
 set new_cycle false;

while (nbiter < nbiter_cycle) do
 set k k + 1 and nbiter nbiter + 1;
 randomly generate a solution s' N(s);
 set f f(s') – f(s);

if f < 0 then set s s’ and new_cycle true;
otherwise

 set prob(f,t) exp(- f/t);
 generate a random real number q from an uniform distribution over the

interval [0,1[;
 if q < prob(f, t) then set s s’ and new_cycle true;

if f(s) < f(s*) then set s* s;
 set t: = a t (0 < a < 1: cooling factor)

Algorithm 3.3. Simulated annealing

3.4.2.2. Threshold accepting methods

Threshold accepting methods are local search methods that can be seen as
deterministic variants of simulated annealing. The main difference between these
two methods is the level of acceptance of a lower quality solution at each step. In a
threshold accepting method, this type of decision is taken in a deterministic manner,
without having to use the principles of thermodynamic annealing. It is strictly based

Metaheuristics and Scheduling 43

on an auxiliary function (s,s’) and on a threshold S which can possibly involve the
value f(s*) of the best solution encountered so far. Function (s,s’) and threshold S
can be defined in many ways leading to several variations for threshold accepting
methods. The threshold accepting method is presented in a generic way in
Algorithm 3.4, followed by three adaptations of this method developed by Dueck
and Scheuer [DUE 90, DUE 93]. The algorithm is generally interrupted when a
number nbiter_tot of iterations is reached or when the best found solution s* is not
improved during a number nbiter_max of iterations.

Standard threshold accepting method

Threshold S is defined the same way as temperature t in the simulated annealing
algorithm. It is initially set at a high value, then proportionally lowered
(i.e., S is set equal to a S with 0 < a < 1) each time a predetermined number of
iterations is completed. The aim of this method is to accept all neighbors s’ which do
not deteriorate the quality of the current solution s in a significant way. For this
purpose, the auxiliary function (s,s’) is defined as (s,s’) = f(s’) – f(s).

Great deluge method

In this case, threshold S corresponds to a level of water. In a minimization
problem, a neighbor solution s’ is accepted if and only if f(s’) is below the water
level S regardless of the value f(s) of the current solution. In this way, (s,s’) = f(s’),
The water level is initially set at a high value S0, and it then decreases linearly (i.e.,
S is set equal to S – d where d is a parameter measuring the decreasing speed).

Initialization
 choose an initial solution s X;
 set s* s;
 set nbiter 0; (iteration counter)
 set best_iter 0; (iteration leading to the best s* solution found to date)
 set S S0; (S0 = initial threshold)
Iterative process

while no stopping criterion is met do
 set nbiter nbiter + 1;
 randomly generate a solution s' N(s);

if s,s’) < S then
 set s s’;
 if f(s) < f(s*) then set s* s and best_iter nbiter;
 update threshold S

Algorithm 3.4. Threshold accepting method

44 Production Scheduling

Originally, this method was designed to solve maximization problems. First, the
level of water is arbitrarily set at a low value, and it is then linearly increased. In
such a case, a neighbor solution s’ is only retained if it is over the water level (i.e., if
f(s’) > S). This explains the name of the method. Such a research principle can be
simply illustrated by considering a hiker unable to swim and wanting to reach the
highest point of a given region when the level of water constantly increases. The
hiker’s chances of success are higher if the water increase is slow (i.e., d is small).

Record-to-record travel method

In this adaptation of the threshold accepting method, all neighbor solutions s’ of
significantly lower quality than the best solution s* found so far are rejected. In
order to do this, we must define a maximal deterioration max_d, in relation to value
f(s*), over which any neighbor solution s’ is automatically rejected. As in the
previous method, acceptance of a new solution is made without examining the value
of the current solution, hence (s,s’) = f(s’). Threshold S is initialized at a high value
and is then updated at each step by setting S equal to f(s*) + max_d. Parameter
max_d is typically not modified during the execution of the algorithm.

According to [DUE 90, DUE 93], the three previous methods provide numerous
advantages compared to the simulated annealing method. Several tests were carried
out in the context of the traveling salesman problem. It would seem that a threshold
accepting method generally gives better results than simulated annealing while being
quicker and less sensitive to the set of parameters used. Sinclair [SIN 93] confirmed
these observations after using the great deluge and the record-to-record travel
methods for balancing hydraulic turbine runners. We do not know of any more
comparative studies leading to similar conclusions.

3.4.2.3. Tabu search

Tabu search is a general iterative method for combinatorial optimization
introduced by Glover [GLO 86] in a specific context and later developed in a more
general context [GLO 89, GLO 90]. Independently, Hansen developed the SAMD
method (for Steepest Ascent Mildest Descent) based on similar ideas [HAN 86]. The
tabu search method is very powerful over a considerable number of combinatorial
optimization problems, particularly scheduling.

Method description

As previously mentioned, the movement from a current solution s to a neighbor
solution s’ is chosen in such a way that:

f(s’) =
N(s)s”

min f(s”)

Metaheuristics and Scheduling 45

As long as we are not in a local optimum, any iterative local search method
behaves as the descent method and improves the objective function value at each
step. On the other hand, when we reach a local optimum, the movement rule
described earlier makes it possible to choose the lesser of bad neighbors, i.e. the one
inducing as little increase of the objective function as possible. The disadvantage
that would represent a method only based on this principle is that if a local minimum
s is found at the bottom of a deep valley, it would be impossible to get out of it in a
single iteration, and a movement from s to a neighbor solution s’ N(s) with
f(s’) > f(s) can cause the opposite movement at the next iteration, since generally
s N(s’) and f(s) < f(s’); there is therefore a risk of “cycling” around this local
minimum s. For this reason, the tabu search algorithm uses a second principle
consisting of keeping in the memory the last visited solutions, and prohibiting a
return to them for a fixed number of iterations, the goal being to offer enough time
to the algorithm to exit a local minimum. In other words, the tabu search method
keeps a list T of “tabu” solutions at each step, and it is prohibited to move to any
solution in T. When moving from s to a neighbor solution, the oldest element in T is
removed and replaced by s. The necessary space to register a list of tabu solutions
can be quite large in terms of memory. For this reason, it is sometimes preferable to
prohibit a set of movements that would bring us back to solutions already visited.
These prohibited movements are called tabu movements.

The aspiration function

During the choice for the best solution s’ N(s), we may have to decide
between several candidates providing the same value to the objective function. If the
chosen neighbor does not lead to a good region of the solution space X, it might then
be desirable to be able to go back to a visited solution s despite the fact that it is now
part of the tabu list T, in order to explore a new region neighboring s.

Figure 3.4. Illustration of the aspiration function concept

46 Production Scheduling

For this reason, the tabu search method involves a new ingredient called
aspiration function defined over all values of the objective function: when a
neighbor solution s’ N(s) belongs to T and meets the aspiration criterion (i.e.
f(s’) < A(f(s))), we cancel its tabu status and s’ then becomes a candidate during the
selection for the best neighbor of s. In general, A(f(s)) takes on the value of the best
solution s* encountered so far (i.e., we “aspire” to determine a better solution than
s*). Another possibility is to set A(z) equal to the best value obtained by moving
from a solution s with value f(s)=z (see Figure 3.4).

Neighborhood

For certain problems, the neighborhood N(s) of a solution s is large and, in
addition, the only way to determine a solution s’ minimizing f over N(s) is to review
all solutions in N(s); we thus prefer to generate a subset N’ N(s) only containing a
sample of solutions neighboring s and we choose a solution s’ N’ of minimal
value f(s’).

Ending condition

We must still define a stopping condition. We are generally given a maximum
number nbmax of iterations between two improvements of the best solution s*
encountered so far. In certain cases, it is possible to determine a lower bound f on
the optimal value and we can then stop the search when we have found a solution s
of value f(s) close to f.

The tabu search method is summarized in Algorithm 3.5.

Initialization
 Choose an initial solution s X;
 set s* s;
 set nbiter 0; (iteration counters)
 set T ; (the tabu list is initially empty)
 initialize the aspiration function A;
 set best_iter 0; (iteration where s* was found)
Iterative process

while (f(s)> f) and (nbiter-best_iter<nbmax) do
 set nbiter nbiter+1;
 generate a subset N’ N(s) of solutions neighboring s;
 choose the best solution s’ N’ solution such that f(s’) A(f(s)) or s’ T;
 update the aspiration function A and the tabu list T;
 set s s’;

if f(s)<f(s*) then set s* s and best_iter nbiter

Algorithm 3.5. Tabu search

Metaheuristics and Scheduling 47

In summary, the following elements are the main ingredients of a tabu search
method:

X the set of solutions
f the objective function defined on X
N(s) the neighborhood of a solution s X
|T| the number of tabu solutions or the size of the tabu list T
A the aspiration function
nbmax the maximum number of iterations between two improvements of s*
N’ the subset of N(s) (the way of generating it and its size)
f a lower bound on the objective value.

Most tabu method ingredients are illustrated in section 3.5. Those not present
have been considered as useless during the adaptation of the tabu method to the
considered scheduling problems. Any reader interested in more illustrations of all
ingredients can refer to scientific papers from Glover [GLO 89; GLO 90; GLO 97].
More refined versions of the tabu search algorithm have been presented in more
detail in the literature. The interested reader should consult [GLO 89, GLO 90, GLO
93b, HER 97, REE 93, SOR 94, TAI 93, WER 89] for more information on this
subject. Several strategies have been proposed to improve the efficiency of the tabu
search algorithm presented above [GLO 97]. Intensification and diversification are
two of these strategies.

Intensification consists of a detailed exploration of a region of X deemed
promising. Its implementation usually resides in a temporary widening of the
neighborhood of the current solution in order to visit a set of solutions sharing
common properties. Another possibility consists of returning to the best solution s*
encountered so far and to restart the search from this solution with a smaller tabu list
size for a limited number of iterations. Diversification is a complementary technique
to intensification. Its objective is to direct the search procedure to unexplored
regions in X. The simplest diversification strategy is to restart the search process
periodically from a solution either randomly generated or judiciously chosen in a
region that has not yet been visited. In this way, we decrease the influence of the
choice of the initial solution s0 over the global algorithm performance. The same
type of effect can be obtained by temporarily modifying the objective function or by
favoring modifications not made during a large number of iterations.

To conclude this presentation of the tabu search method, we should mention that
no theoretical result guarantees the convergence of the algorithm toward an optimal
solution of the considered problem contrary to the simulated annealing method. The
main reason for this fact comes from the nature of the method itself. Since the
method is highly adaptive and flexible, its analysis with traditional mathematical

48 Production Scheduling

tools is difficult. The only known theoretical results to this day involve a
probabilistic version of the tabu search algorithm close to the simulated annealing
method. Faigle and Kern [FAI 92] have shown that it is possible to modify the
objective function and the generation probability of neighbor solutions in order to
ensure global convergence of the search process. Such a result is unfortunately not
very useful in practice because the probability of convergence to an optimal solution
only happens after an infinite time period. In addition, the tabu search method does
not need to converge toward an optimal solution to be effective. The goal is to visit
at least one optimal solution or a good quality solution during the search.

Despite the fact that no substantial theoretical result was established, the tabu
search algorithm has been arousing increased interest since its discovery 20 years
ago. Impressive results have been obtained for numerous combinatorial optimization
problems. Several examples of tabu search applications are proposed in [GLO 93a].
A detailed example of a tabu search application is the subject of section 3.5, job
shop scheduling with tooling constraints. For the conclusion of this section, we
should note that Glass and Potts have achieved an interesting comparison of
different local search methods for the single flow shop problem [GLA 96], while the
same type of analysis was performed by Galinier and Hertz for the graph coloring
problem [GAL 06].

3.4.3. The evolutionary approach

Life sciences and natural processes have always fascinated engineers. They use
structures and mechanisms from reality to develop artificial objects used in various
contexts. In the field of combinatorial optimization, natural phenomena complexity
has served as a model for increasingly sophisticated algorithms in the last 35 years.
The evolutionary methods presented in this section constitute the basis of a
constantly growing field of computer programming.

Contrary to constructive and local search methods involving a single solution
(partial or not), evolutionary methods handle a group of solutions at each search
process step. The main idea is to regularly use the collective properties of a group of
solutions, called population solutions, with the goal of efficiently guiding the search
to appropriate solutions in the solution space X. In general, the size p of a population
remains constant throughout the process. After the random or constructive method
generation of an initial population containing solutions s0,i X (i = 1, ..., p), an
evolutionary method attempts to improve the average quality of the current
population by using natural evolution principles. In our terminology, the cyclic
process at the basis of an evolutionary method is made up of the continuous
succession of a cooperation phase and an individual adaptation phase. This new
formalism applies to most evolutionary methods developed to date.

Metaheuristics and Scheduling 49

In the cooperation phase, the solutions in the current population are compared
and then combined together in order to produce new and good quality solutions for
the long term. The resulting information exchange leads to the creation of new
solutions which have the predominant characteristics contained in current population
solutions. In the individual adaptation phase, the solutions evolve independently
respecting a series of predefined rules. Modifications experienced by each solution
are performed without interaction with other solutions in the population. A new
population of solutions is created at the end of each individual adaptation phase.

Figure 3.5. Exploration of X with an evolutionary approach

The search mechanism at the basis of an evolutionary method is briefly
represented in Figure 3.5. The goal is to locate the best possible solutions by
manipulating at each step a set of solutions located in different promising regions of
the solution space X.

In what follows, we say that an evolutionary method prematurely converges or
goes through a diversity crisis when the current population contains a high
percentage of identical solutions. Different mechanisms can be incorporated to avoid
this drawback. The simplest way to prevent premature convergence risks is to
introduce a measure E [0, 1] based on the notion of entropy [FLE 94, GRE 87] in
order to evaluate the degree of diversity within a population of solutions. A value
E = 0 indicates that the population is made up of identical individuals whereas a
value closer to 1 suggests a large diversity in the population. When entropy E is
judged to be too low at a given step, the idea is to take measures to reintroduce
sufficient diversity in the current population.

3.4.3.1. Genetic algorithms

Genetic algorithms are evolutionary methods greatly influenced by biological
mechanisms linked to the principles of natural evolution and selection. Initially

50 Production Scheduling

developed by Holland et al. [HOL 75] to respond to specific needs in biology,
genetic algorithms have quickly been adapted to a large variety of contexts. In a
simple genetic algorithm [GOL 87], the search is handled by three operators applied
consecutively. The cooperation phase is managed by a reproduction operator and a
crossover operator whereas the individual adaptation phase uses a mutation operator.
It is important to note that concepts at the basis of genetic algorithms are extremely
simple. In fact, they only involve randomly generated numbers and a set of generic
probabilistic rules which do not necessarily consider all characteristics of the
problem discussed. Chapter 4 focuses on genetic algorithms.

3.4.3.2. Scatter search method

The scatter search method [GLO 94, GLO 95] simulates an evolution which is
not directly related to genetics. No restriction is made on how to code solutions. The
cooperation phase does not refer to a reproduction operator, and the combination of
solutions is more generic than with a genetic algorithm. The combination operator
generates new individuals by considering groups of solutions with possibly more
than two elements. The role of the individual adaptation phase is to repair
individuals produced by the combination operator if they do not satisfy all
constraints of the considered problem; during the individual adaptation phase, each
individual is also possibly improved by means of an improvement operator. This
type of mechanism can be implemented in the form of a local search method
involving an auxiliary function penalizing individuals that do not satisfy all
constraints of the considered problem. The few variations of scatter search proposed
in literature were all perceived to be a generalization of a genetic algorithm [RAD
94]. Scatter search was originally developed by Glover [GLO 77] for the solution of
integer programming problems. The idea is to continuously operate linear
combinations over a set of solutions coded as vectors with integer components. An
auxiliary procedure is applied at each step to repair individuals if the linear
combination has produced non-integer components in vectors. This repairing
process can be done by using systematic rounding or, even better, a local search
method meant to find an integer solution that is the “closest” to the considered
non-integer vector. Among successful applications of the scatter search method, we
should mention the adaptations made for quadratic assignment problems [CUN 97],
neural network training [KEL 96] or unconstrained continuous optimization
[FLE 96a].

3.4.3.3. The ant algorithm

Collective performance [THE 94] of social insects such as ants, bees, wasps or
termites has intrigued entomologists for a very long time. The main question
involves mechanisms enabling individuals of a single colony to manage their
activities and to favor survival of the species. Everything is done as if an invisible
agent is coordinating activities of all individuals from the center of the colony.

Metaheuristics and Scheduling 51

Studies have shown that this global behavior was the result of a multitude of
particularly simple local interactions. The nature of these interactions, information
processing mechanisms and the difference between solitary and social behaviors has
long remained a mystery. During the accomplishment of a specific task by an insect
colony, it was observed that task coordination did not depend directly on workers
but on the state of the task’s progress. The worker does not manage its job; it is
guided by it. Any working insect modifies the form of stimulation generating its
behavior and causes the creation of a new stimulation that will trigger other
reactions from it or a coworker.

To illustrate the appearance of collective structures in a society of insects, we
must mention the example of an ant colony searching for a food source. Initially,
ants leave their nest and move randomly. When an ant happens to discover a food
source, it informs its coworkers of its discovery by setting off a temporary mark on
the ground upon its return to the nest. This mark is nothing more than a chemical
substance called a pheromone, which will guide the other ants toward the same food
source. Upon their return, these ants also set off pheromones on the ground and thus
reinforce the trail marking leading from the nest to the source of discovered food.
Pheromone marking reinforcement in the most used trail optimizes food gathering.
In the long run, ants will only use the closest source because the trail leading to
remote sources will evaporate and become undetectable. This example shows that
the ant colony converges to an optimal solution where each ant only has access to
local information and it is unable to resolve the problem on its own in a reasonable
amount of time.

In the last few years, engineers have focused on social insect behavior in order to
create a new form of “collective problem solution”. The ant algorithm, initially
developed by Colorni et al. [COL 91, COL 92, DOR 96], is an evolutionary method
where search mechanisms are greatly influenced by the collective behavior of an ant
colony. In the cooperation phase, each current population solution is examined in
turn in order to update a global memory. Then, the individual adaptation phase
involves a constructive method which uses information contained in the global
memory to create new solutions. This type of approach repeatedly uses a
constructive method by including the accumulated experience from previous method
applications. Each constructive method application corresponds to the work
accomplished by a single ant. In the previous example, the global memory appears
in the traces of pheromone set off by the ants. This search principle easily adapts to
the general assignment problem. Concepts presented below generalize the ideas of
Colorni et al. [COL 91, COL 92, DOR 96] in the traveling salesman context.
Consider a set of n objects to which a resource j {1, ..., m} has to be assigned. This
assignment must meet a series of given constraints and be as inexpensive as
possible. Two decisions are made at each step of a constructive method. The first
one involves the choice of one of the n objects and the second defines the resource

52 Production Scheduling

assigned to it. In a traditional constructive method, these decisions are made in a
manner that will complete the current solution in the best way possible. In other
words, they are based on an object and a resource with the maximum appeal for the
current step. The ant algorithm uses a complementary notion to an object or resource
appeal. Partial solutions are completed in a probabilistic manner by relying on past
experience. The term trace will then be used to represent an element of information
which is known based on experiments carried out on the completion of previous
solutions. At each step k of the development process, an ant chooses an object i, not
yet assigned, with probability pobj(k, i) and a resource j that is feasible for object i,
with probability pres(k, i, j). Each of these probabilities involves two numbers
(s[k – 1],.) and (s[k – 1],.) which measure the trace and appeal respectively for an

object or resource, given a partial solution s[k – 1] in which objects o(1), ..., o(k – 1)
have already been assigned to resources xo(1), ..., xo(k-1):

),1(.),1(
),1(.),1()(
1

)}1), ...,o(2),o(1{o(

1
obj

1

1
qks qks

iks iksik,p

 k q

),,1(.),,1(
),1(.),1()(

2
foradmissibleis

22
res

2 riks riks
ji,ks ji,ks

ji,k,p

ir

Algorithm 3.6 presents an ant algorithm for the solution of general assignment
problems. The number of ants is n. During the first cycle all traces are set to 1
because the ants do not know the problem to be solved. At the end of a cycle, traces

1 and 2 are updates in relation to the characteristics of a solution produced by each
ant. Generally, only one of the two decisions is made in a probabilistic way at each
step of the constructive method. In most applications solved with the help of the ant
algorithm, choosing the next object is done either naturally, or based on a
deterministic rule not involving the concept of trace.

A simplified version of the ant algorithm was proposed by Colorni et al. [COL
94] for the job shop scheduling problem. They construct a graph Gjobshop based on
the method by Roy and Sussmann [ROY 64]: each operation to be performed on the
machines is a vertex of Gjobshop; an artificial vertex (corresponding to the start of the
schedule) is added to Gjobshop, and linked by an arc to each job’s first operation; for
each job, two consecutive operations in the process plan are linked by an arc; two
operations, which can be executed on a single machine, are connected by an edge
(i.e., a non-oriented arc), then for each ant, they apply the procedure described in
Algorithm 3.7.

Metaheuristics and Scheduling 53

At the end of this procedure, the ant has visited all vertices of the graph (i.e., all
job operations) according to the order in which set B was constructed. This sequence
makes it possible to define a direction on all edges of the graph, thus defining an
ordering of the operations on each machine. Colorni et al. then apply the longest
route with minimal length algorithm to find the date at which the last job ends [ROY
64]. In addition to its applications to the traveling salesman and the plant problem,
the ant algorithm was also adapted to graph coloring [COS 97] and quadratic
assignment [MAN 99], among others. More details on ant colony algorithms can be
found in [DOR 04].

Initialization
f(s*) infinite; (infinite = arbitrarily large value)
ncycles 0; (cycle counter)
best_cycle 0; (cycle leading to the best s* solution found to date)

1(…, i):= 1; 2(…, i, j):= 1; i = 1, ..., n j = 1, ..., m
Iterative process
while no stopping criterion is met do
 ncycles ncycles + 1;

for q= 1 to nants do
for k= 1 to n do

 choose an object i {1, ..., n} \ {o(1), ..., o(k – 1)} with probability pobj(k, i);
 choose a feasible resource j for object i with probability pres(k, i, j);
 assign resource j to object i; xi:= j; o(k):= i;
 calculate the cost f(sq) of solution sq = (x1, ..., xn);
 set population p equal to the set { s1, s2, ..., snants }
 set s’ = arg min {f(s) | s p};

if f(s’) < f(s*) then s* s’ and best_cycle ncycles;
 update traces 1 and 2

Algorithm 3.6. An ant algorithm for a general assignment problem

Progression of an ant
 Construct the graph Gjobshop where represents the artificial vertex;
 for every vertex x in Gjobshop set A(x) equal to the set {t | there is an arc from x to t or

an edge between x and t };
 set A A() and B ;
 set C equal to the vertex set of Gjobshop;
Iterative process

while C do
 choose a vertex t A according to a probability of transition;
 set A A A(t) \ {t}, C C \ {t} and B B {t};

Algorithm 3.7. Progression of an ant

54 Production Scheduling

3.4.4. The hybrid approach

Evolutionary methods, and particularly genetic algorithms have been studied in
depth since their very first developments early in the 1970s [HOL 75]. The many
adaptations proposed in the literature fulfill the main weaknesses of traditional
evolutionary methods where global performance is often far lower than that of a
local search method such as tabu search or simulated annealing. In a more specific
context, it is now understood that a simple genetic algorithm cannot provide good
results when the set of solutions must satisfy many constraints. Grefenstette [GRE
87] has shown that it is possible to take advantage of the characteristics of the
problem studied when defining all operators in a genetic algorithm.

Most of the innovations introduced in the evolutionary method field use concepts
no longer related to natural evolution principles. Very interesting results were
recently obtained by inserting a local search method into the individual adaptation
phase of an evolutionary method. In what follows, we will refer to this new
combined search method as a hybrid algorithm. The strength of a hybrid algorithm
resides in the combination of these two fundamentally different search principles.
The role of the local search method is to explore in depth a given region of the set X
of solutions, whereas the evolutionary method introduces general conduct rules in
order to guide the search through X. In this sense, the combination operator has a
long term beneficial diversifying effect. To our knowledge, works by Glover [GLO
77], Grefenstette [GRE 87] and Mühlenbein et al. [MÜH 88] are the originators of
hybrid algorithms. Each has introduced a simple descent method (see Algorithm 3.2)
to increase the performance of an existing evolutionary method. Glover used a
scatter search method and Grefenstette and Mühlenbein et al. used a genetic
algorithm to solve integer programming and traveling salesman problems
respectively. Simulated annealing and tabu search are improvements of the simple
descent method. It is thus normal to use them within an evolutionary method to
further increase its performance. Combination possibilities are numerous at this
level [CAL 99, COS 95a, COS 95b, FAL 96, FLE 94, FLE 96b, MOS 93, REE 96].

In his thesis, Costa proposes two hybrid algorithms based on the two
combination schemes described in Figure 3.6 [COS 95c]. The resulting algorithm is
called an evolutionary tabu search or evolutionary descent algorithm depending on
the local search method used. In the first case, the local search method plays the role
of the mutation operator whereas in the second case it replaces the reproduction
operator. This operator has been deleted to decrease premature convergence risks
which are often high in a hybrid algorithm where the local search method is
deterministic.

Metaheuristics and Scheduling 55

Figure 3.6. Two hybrid schemes using a genetic algorithm

The evolutionary tabu search has been applied to sports scheduling problems.
Costa has shown that the performance of the algorithm is significantly better than
the tabu search executed separately during a comparable time period. This type of
behavior is the result of the complementarity which exists between tabu search and
genetic algorithms. To be really efficient, tabu search requires significant modeling
and parameter tuning efforts. Conversely, even though genetic algorithms are less
efficient, they have the advantage of being robust and based on extremely simple
rules. In addition, Costa presents an adaptation of the evolutionary descent algorithm
to solve graph coloring problems [COS 95b]. The performance of the algorithm is
much better than the genetic algorithm and the descent method used in it. Results
obtained from a hybrid algorithm are usually of very high quality. Unfortunately,
necessary computing times to reach a given quality solution can become prohibitive.
After a comparison of several approaches in the solution of a range of quadratic
assignment problems, Taillard [TAI 95] concludes that hybrid algorithms are among
the most powerful but also the most time expensive. Choosing the right method
largely depends on the time available for the solution of a specific problem.
Nowadays research focuses on parallelizing hybrid algorithms in order to reduce
computing time and solve larger problems.

3.5. An application example: job shop scheduling with tooling constraints

Production systems are constantly evolving, especially in the engineering
industry. Rigid transfer lines are currently being replaced by cells or flexible
workshops. These systems are made up of numerical control machines and can
simultaneously produce different types of products. This versatility is essential in the

56 Production Scheduling

current manufacturing context. In fact, it is important to be able to produce different
types of products quickly in order to satisfy client demand. This means that set-up
times between two types of products must be very short. To reach this goal, optimal
management of tool switches is necessary. Owing to this, one basic hypothesis of
the scheduling problem in a workshop has become obsolete [BAK 74]: set up times
for operations are independent of the sequence and are included in processing
times.

The scheduling problem in a workshop considering tooling constraints is
described in more detail below. The main elements are a series of machines and a
collection of types of products to be produced on these machines. A process plan is
associated with each product type and consists of a sequence of operations; each
operation is characterized by a type of machine on which it must be performed, its
processing time and the tools needed for each machine. The main hypotheses are as
follows [BAK 74, WID 91a]:

– m different machines are continuously available (no breakdown and no
maintenance operation are considered);

– a set of n type products is available for processing at time zero (each product
type requires m operations and each operation is processed on a different machine);

– each machine has a tool magazine with a limited capacity;

– a machine can process only one product at a time;

– a product can only be produced by one machine at a time;

– individual operations are non-preemptive;

– each individual operation requires a number of tools, which never exceeds the
capacity of the tool magazine;

– process plans are known in advance.

The goal is to find a sequence of operations for each machine to minimize the
makespan which is defined as the maximum of the completion times of all
operations.

This problem, if tooling constraints are not taken into consideration, is the well
known job shop scheduling problem. It is NP-complete, as demonstrated by Lawler,
et al. [LAW 89]. A reader interested in a good summary of methods implemented to
solve the job shop scheduling problem without tooling constraints should refer to
work by Blazewicz, Domschke and Pesch [BLA 96].

Returning now to our problem with tooling constraints, because of the limited
capacity of the tool magazines on the machines, tool switches are unavoidable and

Metaheuristics and Scheduling 57

further complicate the problem of finding an optimal job shop scheduling [BLA 94].
When a tool switch happens, the machine’s tool magazine is emptied of its tools,
either partially or completely, and replenished with the tools necessary for the
production of the next products in the planned sequence. The time required for this
change is usually significant. To illustrate this, we will use the following example:
we assume that products A, B and C must be manufactured (in that order) on a
machine with a tool magazine having a capacity of 10. These products require
respectively 4, 5 and 3 tools that are different from one another. A tool switch must
therefore happen after the manufacturing of products A and B.

In certain cases, different types of products may require common tools. These
tools should not be duplicated in the tool store, thus free space may be preserved. In
our example, if A and B use 2 tools in common, it is possible to include tools
required for the production of the three products in the store without exceeding its
capacity (4 + 5 – 2 + 3 = 10). In these conditions, it is not necessary to execute a tool
switch.

Before moving on to the resolution of the job shop scheduling problem with
tooling constraints with a tabu search, we will discuss a traditional case model in
order to draw some lessons from it.

3.5.1. Traditional job shop modeling

For clarity purposes, from now on, the traditional job shop scheduling problem
will be noted as JP, while JPT will be the job shop scheduling problem with tooling
constraints.

Let O = {1, ..., n} denote the total set of operations which are to be performed.
For each operation i O we denote:

– Pi the product to which i belongs;

– Mi the machine on which i is processed;

– pi the processing time of i;

– PP(i) the operation preceding i in the process plan of Pi;

– FP(i) the operation following i in the process plan of Pi .

A job shop scheduling problem can be represented as a graph theoretical
problem [ROY 64]. For a given example of JP, the following graph G = (X, U, D)
can be associated with it:

58 Production Scheduling

– X = {0, ..., n + 1} = O {0, n + 1}, where 0 and n + 1 are special vertices
identifying the start and the completion of the schedule;

– U = {[i, j] | 1 i, j n , Mi = Mj and Pi Pj}

– D = {(i, j) | 1 i, j n and j = FP(i)}
{(0, i) | 1 i n and i is the initial operation for product Pi}
{(i, n + 1) | 1 i n and i is the final operation for product Pi}

With each arc (i,j) D or edge [i, j] U with i 1, we associate a length
representing the duration pi of operation i. All arcs from vertex 0 have a length equal
to zero. In other words, all arcs in D represent the different process plans. An
orientation of the edges in U is called feasible if it does not create a circuit in G. A
feasible orientation of the edge set U corresponds to a feasible ordering of the
operations on the machines. The job shop scheduling problem is to find a feasible
orientation of the edge set U in such a way that the longest route from 0 to n + 1 is
of minimal length. Two operations requiring the same machine are defined as
adjacent if the ending time of the first product is equal to the starting time of the
second product on this same machine. An operation is called critical if it belongs to
the longest route from 0 to n + 1. A block is a maximal sequence of adjacent
operations which must be executed on a single machine and belonging to a longest
route from 0 to n + 1.

The first adaptation of tabu search to the JP was developed by Taillard [TAI 94].
The set X of solutions is defined as the set of feasible orientations. Given a solution
s in X, a neighbor solution s’ N(s) is obtained by permuting two consecutive
critical operations using the same machine. When two consecutive critical
operations i and j are permuted, operation j is introduced in the tabu list T: it is
forbidden to permute j with the next operation on machine Mj during |T| iterations.
The neighborhood structure N(s) used by Taillard has the following properties,
demonstrated by van Laarhoven et al. [VAN 92]:

– if s is a feasible orientation, then all elements in N(s) are also feasible
orientations;

– let G be the state space graph induced by X and N(s) (see section 3.4.2): for each
solution s X, there is at least one path in G linking s to an optimal solution s*.

A second tabu search adaptation to the JP was proposed by Dell’Amico and
Trubian [DEL 93]. Their method seems to dominate Taillard’s approach. The main
difference is the definition of neighborhood N(s): for each operation i in a block,
they consider as neighbors of s those solutions that can be generated by moving i to
the first or last position of the block to which it belongs, if the corresponding
ordering is feasible. If that is not the case, operation i is moved to the position inside

Metaheuristics and Scheduling 59

the block closest to the first or last position so that feasibility is preserved.
Dell’Amico and Trubian have proved that this type of neighborhood leads to a state
space graph G in which it is possible to reach an optimal solution starting from any
initial solution [DEL 93].

Nowicki and Smutnicki [NOW 96] have developed a third adaptation of tabu
search for the JP, which is based, once again, on a different definition of the
neighborhood N(s). These three adaptations of tabu search for the JP unfortunately
do not consider tooling constraints.

3.5.2. Comparing both types of problems

As mentioned in the introduction, the time required to switch tools on a machine
is significant. The moment where the contents of a tool magazine are modified will
be called a switching instant. It lasts + r time units, where is a fixed time due
to the removal of the tool magazine from the machine, is a fixed time for each tool
replacement and r is the total number of tools to be replaced by other tools. In
addition, a complete set of tools is attached to each machine (in this way, two
machines can use identical tools simultaneously).

With these basic hypotheses, a comparative analysis of JP and JPT problems was
conducted to determine how ingredients used in solution methods for the JP could
also be used for the JPT. The following observations were made [HER 95, HER 96]:

– an optimal ordering of the operations on the machines for the JP does not
necessarily correspond to an optimal ordering for the JPT;

– given an ordering of the operations, minimizing the makespan is not
necessarily achieved by minimizing the number of switching instants;

– given an ordering of the operations, a schedule of minimum time for the JP can
easily be obtained by searching for a longest path in a graph; this problem can be
solved in polynomial time (see for example the adaptation of Bellman’s algorithm
described in [TAI 94] or the O(n) algorithm developed by Adams et al. [ADA 88]).
For the JPT problem, the complexity of this problem is still open. In other words,
given an ordering of the operations on the machines, we do not know how to take
into account tooling constraints for minimizing the makespan;

– assuming that the number of switching instants is given for each machine, it is
not always optimal to plan the switching instants to the earliest or latest;

– if we know the sequence of operations on each machine as well as the contents
of the tool magazine, then a minimum time scheduling can be found by solving a
longest path problem; in this case, switching instants are considered as additional

60 Production Scheduling

operations whose duration is known and the graph is constructed in the same way as
for the JP.

As mentioned above, when solving the JP, neighborhood structures from Taillard
and from Dell’Amico and Trubian generate a state space graph G in which it is
possible to reach an optimal solution from any initial solution. This is unfortunately
not the case with the JPT. In fact, by using these neighborhood structures, it
is possible to “cycle” between a set of solutions while the optimal solution may
be elsewhere (the state space graph G contains several connected components)
[HER 96].

3.5.3. Tool switching

As previously mentioned, despite knowing operation sequences on machines, it
is still difficult to determine the best way to take tooling constraints into
consideration. One possibility is to use the heuristic method proposed in [HER 96].
It contains three phases which are summarized below.

In the first phase, all machines are treated independently, the aim being to
evaluate the number of switching instants. The INSTANT algorithm determines a set
of operations which immediately precede a switching instant. It considers the
ordered set {o1, …, or} of operations on a machine k (1 k m) and sequentially
schedules the switching instants only when forced to. Thus, if a switching instant
precedes an operation oi (1 < i r), this means that the set of tools required to
complete oi on k cannot be added to the tool magazine without exceeding its
capacity. The number of switching instants determined by this algorithm is minimal.
In the following, all considered schedules will have that number of switching
instants.

The aim of the second heuristic phase is to determine the contents of the tool
magazines. As in the first phase, all machines are treated independently. Since tool
replacements can only occur during the switching instants, all operations between
two consecutive switching instants can be considered as a unique operation
requiring a known set of tools to be processed. Thus, given an ordered set of
operations which must be processed on a machine k (1 k m), the objective is to
minimize the total number of tool switches. It was proven by Tang and Denardo
[TAN 88] that this problem can be solved in an exact way and in a reasonable
amount of time. The REPLACEMENT algorithm uses the KTNS (keep tool needed
soonest) policy proposed by Tang and Denardo [TAN 88]. This replacement policy
has the following properties:

Metaheuristics and Scheduling 61

– at any given instant, no tool is introduced unless it is required for the next
operation;

– if a tool must be inserted, the tools remaining (not taken out) are those needed
the soonest.

Once the tool switching problem is solved on each machine, a solution to the JPT
can be obtained by solving a longest path problem. In fact, all switching instants can
be considered as additional operations with known duration, and a graph can then be
constructed in the same way as for the JP. The two first heuristic phases consider the
machines independently. In the third phase, all the machines are treated
simultaneously, the aim being to improve a solution by scheduling a switching
moment on a machine when no product is ready to be processed on it. An algorithm,
called IMPROVE, is proposed in [HER 96] to improve the schedule of the switching
instants.

3.5.4. TOMATO algorithm

We can now describe a tabu search algorithm for the job shop scheduling
problem with tooling constraints.

Let s’ be a neighbor solution of s obtained by moving an operation on a machine
k. To evaluate s’, we first determine the operations on k which immediately precede
a switching instant with the help of the INSTANT algorithm. We then apply the
REPLACEMENT algorithm on k and calculate the makespan of s’ by solving a
longest path problem (see section 2.4.2). Once the decision is made to move from a
current solution s to a neighbor solution s’ N(s), we try to improve the schedule of
switching instants in s’ by using the IMPROVE algorithm.

The tabu T list is a set of operations not authorized to be moved during a certain
number of iterations. When an operation i is moved before or after an operation j on
a machine k, operation i is introduced in the tabu list T. In addition, if j is an
immediate predecessor or successor to i, operation j is also introduced in the tabu T:
indeed, in that case, s could be obtained from s’ by moving j before or after i. The
length of the tabu list is randomly chosen at each iteration in the interval [n, 3n/2],
following a uniform distribution.

The objective function f is the makespan (the time where the last job
is completed). Finally, the iterative process ends when nbmax iterations
are completed without improvement of f(s*). An algorithmic form of this tabu
search adaptation to the job shop scheduling problem with tooling constraints is
presented in Algorithm 3.8. The method was named TOMATO (for TOol
MAnagement with Tabu Optimization) in [HER 96].

62 Production Scheduling

Initialization
 find an initial solution for the JP;
 let s be the schedule obtained by using the INSTANT and REPLACEMENT heuristics

on each machine, and by solving a longest path problem;
 improve s by using the IMPROVE procedure;
 set nbiter 0, T , s* s and best_iter 0;
Iterative process
while (nbiter-best_iter<nbmax) do
 set nbiter nbiter+1;
 evaluate each solution s’ of N(s) by using the INSTANT and REPLACEMENT

procedures for the machine on which an operation is moved, and by solving a longest
path problem;

 choose the best solution s’ of N(s) so that f(s’) < f(s*) or s’ is not tabu;
 improve s’ by using the IMPROVE procedure;
 update the list T of tabu movements;
 set s s’;

if f(s) < f(s*) then set s* s and best_iter nbiter

Algorithm 3.8. The TOMATO algorithm

TOMATO should only be applied to job shop scheduling problems in which the
tool magazines are of relatively limited capacity, which is the case with small to
medium-sized companies. When the capacity of the tool magazines increases and
becomes far greater than the average number of tools necessary for the execution of
an operation, the problem generally becomes similar to the job shop scheduling
problem without tooling constraints. In this case, a solution can be obtained with the
method proposed by Dell’Amico and Trubian, and (the few) switching instants can
then be planned by using the INSTANT, REPLACEMENT and IMPROVE
algorithms. TOMATO is a flexible method that can be used by a production
manager who wants either a quick but not precise estimation of the makespan or an
accurate solution. The desired trade-off between calculation time and solution
quality can be established by adjusting the parameter nbmax. TOMATO can be used
as a descent method by setting nbmax = 0. It was observed in [HER 96] that
TOMATO provides in less than 1 second solutions whose value are approximately
only 5% above the best known solution values.

3.6. Conclusion

Upon reaching the end of this chapter, a reader inevitably asks the following
question: which is the best metaheuristic?

Metaheuristics and Scheduling 63

Unfortunately, a direct and specific answer is impossible: even though some
similarities are obvious between these different approaches (e.g., the use of
neighborhoods), they are different in sensitive areas (simulated annealing uses an
energy function, tabu search handles a list of prohibited movements, genetic
algorithms have crossover operators, etc.). Comparisons are difficult to make for
two reasons: on the one hand, such a comparison requires a fine tuning of all
parameters of all methods, and on the other hand, the quality of the solutions
produced by a metaheuristic depends on the available computing time. However,
regardless of the metaheuristic used, it is now a fact that all these algorithms are the
only effective solution methods for many large size combinatorial optimization
problems. The promising results of hybrid approaches bode well for vital progress in
this field.

In conclusion, we mention that any reader wanting a deeper understanding of
metaheuristics for general combinatorial optimization problems should see [REE 95,
DRE 03]. Also, successful adaptations of metaheuristics for the solution of real
problems are described in [IBA 05].

3.7. Bibliography

[AAR 89] AARTS E.H.L. and KORST J., Simulated Annealing and Boltzmann Machines,
John Wiley, New York, 1989.

[ADA 88] ADAMS J., BALAS E. and ZAWACK D., “The shifting bottleneck procedure for
job shop scheduling”, Management Science, vol. 34, p. 391-401, 1988.

[BAK 74] BAKER K.R., Introduction to Sequencing and Scheduling, John Wiley, New York,
1974.

[BLA 94] BLAZEWICZ J. and FINKE G., “Scheduling with resource management in
manufacturing systems”, European Journal of Operational Research, vol. 76, p. 1-14,
1994.

[BLA 96] BLAZEWICZ J., DOMSCHKE W. and PESCH E., “The job shop scheduling
problem: conventional and new solution techniques”, European Journal of Operational
Research, vol. 93, p. 1-33, 1996.

[CAL 99] CALEGARI P., CORAY G., HERTZ A., KOBLER D. and KUONEN P., “A
taxonomy of evolutionary algorithms in combinatorial optimization”, Journal of
Heuristics, vol. 5, p. 145-158, 1999.

[CAR 88] CARLIER J. and CHRETIENNE P., Problèmes d’ordonnancement, Masson, 1988.

[CER 85] CERNY V., “Thermodynamical approach to the traveling salesman problem: an
efficient simulation algorithm”, Journal of Optimization Theory and Applications, vol. 45,
p. 41-51, 1985.

64 Production Scheduling

[COL 88] COLLINS N.E. “Simulated annealing: an annotated bibliography”, American
Journal of Mathematical and Management Sciences, vol. 8, p. 209-307, 1988.

[COL 91] COLORNI A., DORIGO M. and MANIEZZO V., “Distributed optimization by ant
colonies”, First European Conference on Artificial Life, Paris, p 134-142, 1991.

[COL 92] COLORNI A., DORIGO M. and MANIEZZO V., “An investigation of some
properties of an ant algorithm”, Second Conference on Parallel Problem Solving from
Nature, Brussels, p. 509-520, 1992.

[COL 94] COLORNI A., DORIGO M., MANIEZZO V. and TRUBIAN M., “Ant system for
job shop scheduling”, Belgian Journal of Operations Research, Statistics and Computer
Science, vol. 34, p. 39-53, 1994.

[CON 88] Committee on the Next Decade of Operations Research (CONDOR), “Operations
research: the next decade”, Operations Research , vol. 36, p. 619-637, 1988.

[COS 95a] COSTA D., “An evolutionary tabu search algorithm and the NHL scheduling
problem”, INFOR, vol. 33, p. 161-178, 1995.

[COS 95b] COSTA D., HERTZ A. and DUBUIS O., “Embedding of sequential procedures
within an evolutionary algorithm for coloring problems in graphs”, Journal of Heuristics,
vol. 1, p. 105-128, 1995.

[COS 95c] COSTA D., Méthodes de résolution constructives, séquentielles et évolutives pour
des problèmes d’affectation sous contraintes, Thesis no. 1411, Department of
Mathematics, Ecole Polytechnique Fédérale de Lausanne, 1995.

[COS 97] COSTA D. and HERTZ A., “Ants can colour graphs”, Journal of the Operational
Research Society, vol. 48, p. 295-305, 1997.

[CUN 97] CUNG V.-D., MAUTOR T., MICHELON P. and TAVARES A., “A Scatter search
based approach for the quadratic assignment problem”, IEEE International Conference on
Evolutionary Computation, p. 165-170, 1997.

[DEL 93] DELL’AMICO M. and TRUBIAN M., “Applying tabu search to the job-shop
scheduling problem”, Annals of Operations Research, vol. 41, p. 231-252, 1993.

[DOR 96] DORIGO M., MANIEZZO V. and COLORNI A., “The ant system: optimization
by a colony of cooperating agents”, IEEE Transactions on Systems, Man, and
Cybernetics, vol. 26, p. 29-41, 1996.

[DOR 04] DORIGO M. and STÜTZLE T., Ant Colony Optimization, MIT Press, Cambridge,
2004.

[DRE 03] DRÉO J., PÉTROWSKI A., SIARRY P. and TAILLARD É., Métaheuristiques
pour l’optimisation difficile, Éditions Eyrolles, Paris, 2003.

[DUE 90] DUECK G. and SCHEUER T., “Threshold accepting: a general purpose
optimization algorithm appearing superior to simulated annealing”, Journal of
Computational Physics, vol. 90, p. 161-175, 1990.

[DUE 93] DUECK G., “New optimization heuristics: the great deluge algorithm and the
record-to-record travel”, Journal of Computational Physics, vol. 104, p. 86-92, 1993.

Metaheuristics and Scheduling 65

[EGL 90] EGLESE R.W., “Simulated annealing: a tool for operational research”, European
Journal of Operational Research, vol. 46, p. 271-281, 1990.

[FAI 92] FAIGLE U. and KERN W., “Some convergence results for probabilistic tabu
search”, ORSA Journal on Computing, vol. 4, p. 32-37, 1992.

[FAL 96] FALKENAUER E., “A hybrid grouping genetic algorithm for bin packing”,
Journal of Heuristics, vol. 2, p. 5-30, 1996.

[FER 96] FERLAND J.A., HERTZ A. and LAVOIE A., “An object oriented methodology for
solving assignment type problems with neighborhood search techniques”, Operations
Research, vol. 44, p. 347-359, 1996.

[FLE 94] FLEURENT C., Algorithmes génétiques hybrides pour l’optimisation combinatoire,
Thesis, Department of Information Technology and Operations Research, University of
Montreal, 1994.

[FLE 96a] FLEURENT C., GLOVER F., MICHELON P. and VALLI Z., “A scatter search
approach for unconstrained continuous optimization”, IEEE International Conference on
Evolutionary Computation, p. 643-648, 1996.

[FLE 96b] FLEURENT C. and FERLAND J.A., “Genetic and hybrid algorithms for graph
coloring”, Annals of Operations Research, vol. 63, p. 437-461, 1996.

[GAL 06] GALINIER P. and HERTZ A., “A Survey of Local Search Methods for Graph
Coloring”, Computers and Operations Research, vol. 33, p. 2547-2562, 2006.

[GAR 79] GAREY M.R. and JOHNSON D.S., Computers and Intractability: A Guide to the
Theory of NP-completeness, Freeman, 1979.

[GEM 84] GEMAN S. and GEMAN D., “Stochastic relaxation, Gibbs distributions, and
bayesian restoration of images”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 6, p. 721-741, 1984.

[GLA 96] GLASS C.A. and POTTS C.N., “A comparison of local search methods for flow
shop scheduling”, Annals of Operations Research, vol. 63, p. 489-509, 1996.

[GLO 77] GLOVER F., “Heuristics for integer programming using surrogate constraints”,
Decision Sciences, vol. 8, p. 156-166, 1977.

[GLO 86] GLOVER F., “Future paths for integer programming and links to artificial
intelligence”, Computers and Operations Research, vol. 13, p. 533-549, 1986.

[GLO 89] GLOVER F., “Tabu search: Part I”, ORSA Journal on Computing, vol. 1, p. 190-
206, 1989.

[GLO 90] GLOVER F., “Tabu search: Part II”, ORSA Journal on Computing, vol. 2, p. 4-32,
1990.

[GLO 93a] GLOVER F., TAILLARD E., LAGUNA M. and DE WERRA D. (Eds.), “Tabu
search”, Annals of Operations Research, vol. 41, 1993.

[GLO 93b] GLOVER F., TAILLARD E. and DE WERRA D., “A user’s guide to tabu
search”, Annals of Operations Research, vol. 41, p. 3-28, 1993.

66 Production Scheduling

[GLO 94] GLOVER F., “Genetic algorithms and scatter search: unsuspected potentials”,
Statistics and Computing, vol. 4, p. 131-140, 1994.

[GLO 95] GLOVER F., “Scatter search and star-paths: beyond the genetic metaphor”, OR
Spektrum, vol. 17, p. 125-138, 1995.

[GLO 97] GLOVER F. and LAGUNA M., Tabu Search, Kluwer Academic Publishers,
Norwell, 1997.

[GOL 87] GOLDBERG D.E., Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison Wesley, 1987.

[GON 85] GONDRAN M. and MINOUX M., Graphes et algorithmes, Eyrolles, Paris, 1985.

[GRE 87] GREFENSTETTE J.J., “Incorporating problem specific knowledge into genetic
algorithms”, in Genetic Algorithms and Simulated Annealing, Davis. L. (ed.), Morgan
Kaufmann Publishers, p. 42-60, 1987.

[HAJ 88] HAJEK B., “Cooling schedules for optimal annealing”, Mathematics of Operations
Research, vol. 13, p. 311-329, 1988.

[HAN 86] HANSEN P., “The steepest ascent mildest descent heuristic for combinatorial
programming”, Congress on Numerical Methods in Combinatorial Optimization, Capri,
Italy, 1986.

[HER 95] HERTZ A. and WIDMER M., “La méthode TABOU appliquée aux problèmes
d’ordonnancement”, RAIRO/Automatique, Productique, Informatique Industrielle,
vol. 29, p. 353-378, 1995.

[HER 96] HERTZ A. and WIDMER M., “An improved tabu search approach for solving the
job shop scheduling problem with tooling constraints”, Discrete Applied Mathematics,
vol. 65, p. 319-346, 1996.

[HER 97] HERTZ A., TAILLARD E. and DE WERRA D., “Tabu search”, in Local Search in
Combinatorial Optimization, E. Aarts and J.K. Lenstra (eds.), John Wiley, 1997.

[HER 03] HERTZ A. and WIDMER M., “Guidelines for the use of meta-heuristics in
combinatorial optimization”, European Journal of Operational Research, vol. 151,
p. 247-252, 2003.

[HOL 75] HOLLAND J.H., Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, 1975.

[IBA 05] IBARAKI T., NONOBE K. and YAGIURA M., Metaheuristics: Progress as Real
Problem Solvers, Springer, 2005.

[KEL 96] KELLY J., RANGASWAMY B. and XU J., “A scatter search-based learning
algorithm for neural network training”, Journal of Heuristics, vol. 2, p. 129-146, 1996.

[KIR 83] KIRKPATRICK S., GELATT C.D. Jr. and VECCHI M.P., “Optimization by
simulated annealing”, Science, vol. 220, p. 671-680, 1983.

Metaheuristics and Scheduling 67

[LAW 89] LAWLER E.L., LENSTRA J.K., RINNOOY KAN A.H.G. and SHMOYS D.B.,
“Sequencing and scheduling: algorithms and complexity”, Chapter 9 in Logistics of
Production and Inventory, Graves S.C., Rinnooy Kan A.H.G. and Zipkin P.H. (Eds.),
Elsevier Science Publishers, p. 445-522, 1993.

[MAN 99] MANIEZZO V. and COLORNI A., “The ant system applied to the quadratic
assignment problem”, IEEE Transactions on Knowledge and Data Engineering, vol. 11,
p. 769-778, 1999.

[MET 53] METROPOLIS N., ROSENBLUTH A., ROSENBLUTH M., TELLER A. and
TELLER E., “Equation of state calculations by fast computing machines”, Journal of
Chemical Physics, vol. 21, p. 1087-1092, 1953.

[MOS 93] MOSCATO P., “An introduction to population approaches for optimization and
hierarchical objective functions: a discussion on the role of tabu search”, Annals of
Operations Research, vol. 41, p. 85-121, 1993.

[MÜH 88] MÜHLENBEIN H., GORGES-SCHLEUTER M. and KRÄMER O., “Evolution
algorithms in combinatorial optimization”, Parallel Computing, vol. 7, 65-85, 1988.

[MÜL 81] MÜLLER-MERBACH H., “Heuristics and their design: a survey”, European
Journal of Operational Research, vol. 8, p. 1-23, 1981.

[NAW 83] NAWAZ M., ENSCORE JR. E.E. and HAM I., “A heuristic algorithm for the m-
machine, n-job flow shop sequencing problem”, Omega, vol. 11, p. 91-95, 1983.

[NIC 71] NICHOLSON T.A.J., Optimization in Industry, vol. 1: Optimization Techniques,
Longman Press, London, 1971.

[NOW 96] NOWICKI E. and SMUTNICKI C., “A fast tabu search algorithm for the job-shop
problem”, Management Science, vol. 42, p. 797-813, 1996.

[OSM 94] OSMAN I.H. and CHRISTOFIDES N., “Capacitated clustering problems by
hybrid simulated annealing and tabu search”, International Transactions in Operational
Research, vol. 1, p. 317-336, 1994.

[RAD 94] RADCLIFFE N.J. and SURRY P.D., “Formal memetic algorithms”, Lecture Notes
in Computer Science, vol. 865, p. 1-16, 1994

[REE 93] REEVES C.R., Modern Heuristic Techniques for Combinatorial Optimization,
Blackwell Scientific Publications, Oxford, 1993.

[REE 95] REEVES C.R., Modern Heuristic Techniques for Combinatorial Problems,
McGraw-Hill, 1995.

[REE 96] REEVES C., “Hybrid genetic algorithms for bin-packing and related problems”,
Annals of Operations Research, vol. 63, p. 371-396, 1996.

[ROY 64] ROY B. and SUSSMANN B., Les problèmes d’ordonnancement avec contraintes
disjonctives, Technical report, SEMA, Montrouge, 1964.

[RUT 89] RUTENBAR R. A., “Simulated annealing algorithms: an overview”, IEEE Circuits
and Devices Magazine, vol. 5, p. 19-26, 1989.

68 Production Scheduling

[SIL 80] SILVER E.A., VIDAL R.V. and DE WERRA D., “A tutorial on heuristic methods”,
European Journal of Operational Research, vol. 5, p. 153-162, 1980.

[SIN 93] SINCLAIR M., “Comparison of the performance of modern heuristics for
combinatorial optimization on real data”, Computers and Operations Research, vol. 20,
p. 687-695, 1993.

[SOR 94] SORIANO P., Applications de la méthode de recherche avec tabous à divers
problèmes d’optimisation combinatoire, Thesis, Department of Information Technology
and Operations Research, University of Montreal, 1994.

[TAI 93] TAILLARD E., Recherches itératives dirigées parallèles, Thesis no. 1153,
Department of Mathematics, Ecole Polytechnique Fédérale de Lausanne, 1993.

[TAI 94] TAILLARD E., “Parallel taboo search technique for the job shop scheduling
problem”, ORSA Journal on Computing, vol. 6, p. 108-117, 1994.

[TAI 95] TAILLARD E., “Comparison of iterative searches for the quadratic assignment
problem”, Location Science, vol. 3, p. 87-105, 1995.

[TAN 88] TANG C.S. and DENARDO V., “Models arising from a flexible manufacturing
machine, Part I: Minimization of the number of tool switches, Part II: Minimization of the
number of switching moments”, Operations Research, vol. 36, p. 778-784, 1988.

[THE 94] THERAULAZ G., BONABEAU E., GOSS S. and DENEUBOURG J.L.,
“L’intelligence collective”, Pour la Science, no. 128, 1994.

[VAN 87] VAN LAARHOVEN P.J.M. and AARTS E.H.L., Simulated Annealing: Theory
and Applications, D. Reidel Publishing Company, Dordrecht, 1987.

[VAN 92] VAN LAARHOVEN P.J.M., AARTS E.H.L. and LENSTRA J.K., “Job shop
scheduling by simulated annealing”, Operations Research, vol. 40, p. 113-125, 1992.

[VID 93] VIDAL R.V. (ed.), Applied Simulated Annealing, Lecture Notes in Economics and
Mathematical Systems 396, Springer-Verlag, Berlin, 1993.

[WER 89] DE WERRA D. and HERTZ A., “Tabu search techniques: a tutorial and an
application to neural networks”, OR Spektrum, vol. 11, p. 131-141, 1989.

[WID 91a] WIDMER M., “Job shop scheduling with tooling constraints: a tabu search
approach”, Journal of the Operational Research Society, vol. 42, p. 75-82, 1991.

[WID 91b] WIDMER M., Modèles mathématiques pour une gestion efficace des ateliers
flexibles, Presses Polytechniques and Universitaires Romandes, 1991.

[WID 98] WIDMER M., Organisation industrielle: le réel apport des mathématiques,
Habilitation thesis, Freiburg University, 1998.

[ZAN 89] ZANAKIS H.S., EVANS J.R. and VAZACOPOULOS A.A., “Heuristic methods
and applications: a categorized survey”, European Journal of Operational Research,
vol. 43, p. 88-110, 1989.

Chapter 4

Genetic Algorithms and Scheduling

4.1. Introduction

4.1.1. Origin of genetic algorithms

Genetic algorithms (GA) are methods similar to simulated annealing (see
Chapter 3) (they contain no inherent principle to assert that the best solution
obtained in a finite time is optimal). They have also been created by analogy with
natural phenomena. In this case, the idea is to simulate the natural evolution of
organisms (individuals), generation upon generation, considering heredity and
survival. In a population of individuals, generally the fittest, those best adapted to
the environment, survive and ensure descendants. In addition, it is assumed that
qualities and faults can be stochastically inherited from parents. Such algorithms
were developed in 1950 by biologists using computers to simulate organism
evolution. Late in the 1960s, John Holland [HOL 75] and his team, and later
numerous other researchers [DAV 91, GOL 89], adapted these algorithms for
designing solution methods for optimization problems, by developing an analogy
between an individual in a population and a problem solution within a set of
solutions.

4.1.2. General principles of genetic algorithms

In a population, an individual is characterized by his genetic footprint called a
genome (a set of chromosomes). A genetic footprint is associated with each

Chapter written by Marie-Claude PORTMANN and Antony VIGNIER.

70 Production Scheduling

individual integrated into the initial population; it could be an elaborated footprint
built by specific modules or a footprint obtained in a random way. The footprint of
new individuals is further obtained by a recombination of footprints from parents, a
genetic operation called crossover or by modifying the footprint of an individual, a
genetic operation called mutation. The crossover corresponds to the sexual
reproduction of individuals in a population with consideration for heredity. In this
way, when two individuals considered fit enough are crossed, they will create a new
individual who will also have good chances of being fit and resist natural selection,
which is less the case with unfit individuals. Mutation represents modifications to
the genetic footprint which may occur with individuals and avoids population
degeneration. The genetic crossover operator increases population size. The
population size is maintained at a reasonable finite size with the existence of a birth-
and-death process according to rules depending on their fitness.

By analogy, in a genetic algorithm, an individual (a solution) is characterized by
a data structure representing its genetic footprint, which we continue to call a
genome or chromosome if the genome is reduced to a chromosome. The genome
contains a set of codes called genes which in certain cases need to be interpreted to
find the corresponding solution. In this case, the result of this interpretation is called
a phenotype. With the help of these genomes, a genetic algorithm explores the space
of solutions for the problem concerned in order to extract the best possible solution,
and preferably the optimal solution. It is not necessary to explore the whole space;
exploring a sub-space containing an optimal solution is sufficient. This is what is
called a dominant subset. Coding and genetic operators must be designed carefully
accordingly to the potential existence of a dominant subset. In this chapter, we will
draw attention as much as possible to the dominance conditions for the problems
addressed.

If we are trying to maximize a function, the fitness of an individual can be
measured by a value which varies in the same direction as the objective function of
the problem concerned, otherwise in the opposite direction if the objective function
needs to be minimized. The greater the fitness, the better chances an individual will
have to be chosen by a selection using a roulette technique (an individual’s
probability of being selected = his fitness divided by the sum of all individuals’
fitness in a population). For each problem to be solved, we must determine how to
obtain the fitness of an individual from the objective function. As a value of fitness,
we can use the value of the objective function (if it must be maximized) or an upper
bound of the objective function for the whole population less the value of the
objective function (if it must be minimized). However, we can also, in the case of a
maximization, for example, sort individuals by ascending objective function and
then consecutively give them the fitness value: a, a + , a + 2 , a + 3 etc.

Genetic Algorithms and Scheduling 71

Genetic crossover and mutation operators are algorithms acting on chromosomes
associated with individuals. They are dedicated to exploring the space of problem
solutions.

The population’s birth-and-death process can be carried out in different ways. In
certain cases, it is assumed that two consecutive generations do not live in the same
period and thus that the parents are dead when children are alive (this is the case in
reality for butterfly populations for example). In other cases, there is overlap
between generations; grandparents can live at the same time as their grandchildren
whereas the parents may have died prematurely. In both cases, based on an initial
population and after numerous iterations where the population evolves, we reach a
population where individuals are all very fit (converging to good quality
population). In other words, it is a set of “good” solutions for the problem that
concerns us. For the same problem, there are several genetic algorithm variations
based on:

– coding used to represent the solutions in the form of genomes;

– the way to create an initial population;

– the way to transform an objective function into a fitness;

– selection mode for reproducing chromosomes (in general, the “better” an
individual is, the better his chances for being chosen as a reproductive element);

– design of genetic crossover and mutation operators;

– the manner in which the population evolves throughout iterations, i.e.
definition of the birth-and-death process.

The method of building a genetic algorithm, regardless of the problem to
address, will be summarized. Throughout the rest of the chapter, emphasis will be
made on quality of coding and genetic operators for designing specific and efficient
genetic algorithms for given scheduling problems.

The simplest schema for a genetic algorithm [GOL 89] is illustrated in the
following diagram (Algorithm 4.1). This is a schema of consecutive generations
with no overlap between consecutive populations (nevertheless, since a pair of
parents can simply be copies without crossover or mutation into the next population,
we may find identical individuals in the previous and new populations).

72 Production Scheduling

a- INITIALIZATION: Generate an initial Po population of Q individuals.
b- EVALUATION: Evaluate the “fitness” of any individual in population Pk-1.
c- SELECTION: Select Q/2 individual couples in population Pk-1.
d- CROSSOVER: With probability pc any individual couple is replaced by a new

individual couple obtained by applying a genetic crossover
operator, with probability 1 – pc any individual couple is
retained (for example pc = 0.75, i.e. rather large).

 e- MUTATION: With probability pm any individual of Pk is modified by a
mutation, with a probability 1 – pm the individual is retained
(for example pm = 0.2, or rather small).

f- Population Pk obtained replaces population Pk-1.

g- STOP?: Go back to b- until a given number of iterations is reached.

Algorithm 4.1. Simple Goldberg schema for genetic algorithms (SGA)

To implement the Goldberg schema, we must choose:

– population size: Q,

– probabilities pc and pm,

– a number of generations before stopping.

However, we can also use the schema with population recovery proposed by
[DAV 91] and several other variations with hybridization briefly described in
section 4.5.

4.1.3. Schema theorem

This theorem applies to the simple Goldberg schema when gene coding is
binary. Holland’s schema theorem will not be presented in its totality here. We will
only summarize its consequences. The schema theorem justifies the convergence
(still ascertained, when respecting the genetic algorithm hypotheses) of genetic
algorithms to a population of good individuals. It also shows the importance of the
position of the genes when they are dependent (for example, if for a pair of given
genes, solutions are better when genes have opposite values regardless of the value
of these two genes, it is good that their positions increase the probability of taking
their values in only one of both parents when applying a crossover operator). This
idea, corresponding to the simplest genetic algorithm case for which the schema
theorem is shown, can be extended to more complex coding and in this case, the
consequence for the potential generalization of the schema theorem is as follows:

Genetic Algorithms and Scheduling 73

“What must be kept from the good characteristics of both parents in order to build
children that are as good as possible?” Research of good crossover for the different
problems addressed is presented in this chapter.

4.1.4. Chapter presentation

The structure of this chapter is based on an increasing complexity of scheduling
problems. The complexity is defined here by the difficulty of developing genetic
algorithms to solve these problems, which in fact constitutes a typology of these
problems with regards to genetic algorithms. The first problems discussed are
problems with one machine where coding is only permutation coding. It is
illustrated with examples and shows that any coding and especially all crossover
operators are not equivalent in developing efficient genetic algorithms. The case of
job shop scheduling is then considered in order to show that permutation coding is
not adequate for this type of problem and that they either need to be adapted or
changed. The case with multiple parallel resources organized in a hybrid flow shop
is introduced. We begin with a discussion of a simple case with only one stage
(parallel machine problem). We then generalize to a case with multiple stages. A
few combinations of operations research methods with genetic algorithms to try and
improve their respective efficiency is presented briefly at the end of this chapter.

4.2. One-machine problems

4.2.1. Example 1: total time and setup times

Problem description

The problem involved is an extension of the basic one-machine problem. In the
basic one-machine problem:

– the machine is always available,

– all operations are available at moment 0,

– setup times are independent of the sequence and included in operation time,

– all operation characteristics (times, due dates, etc.) are known at the moment
when we address the problem.

In this extension, we presume that setup times depend on the sequence of
operations: between operation i and operation j for example, tools for the
numerically controlled machine must be changed and this takes sij. The criterion is
minimizing total scheduling time, or what is equivalent, minimizing the total setup

74 Production Scheduling

times. We presume that we know the state of the machine at time 0 and
consequently setup time s0i between a fictitious operation numbered 0 of zero
duration placed at moment 0 and any other operation i placed first. In the end, the
machine is left in the last state of the last operation.

Preliminary analysis

In the traditional schema of genetic algorithms, we presume that the probability
of an individual being chosen to procreate is higher if his quality (or fitness) is better
and we also presume, as with natural reproduction, that two good individuals
copulating will have a higher probability of producing children of good quality,
maybe even exceptional children. If we want to reproduce these natural reproduction
properties, we must thus give more chances to good individuals to procreate (this is
done by pair selection in the global schema), as well as developing crossovers with a
high probability of producing very good children when good individuals marry each
other. In order to carry out such crossovers, we start with a preliminary analysis
phase in each example to identify the good characteristics for each individual to
attempt their reproduction in children.

In a genetic algorithm, when crossovers are not carefully developed, obtaining
good quality children is left to chance and the genetic algorithms become unguided
random explorations. Generally, in this case the authors feel the need to reverse the
roles of genetic operators by asking crossover operators to create diversity instead of
creating quality and mutation operators to improve individuals with improvement by
neighborhood methods for example, instead of creating diversity. These authors
continue to call their approach a “genetic algorithm”, although they have strayed
from the original spirit of genetic algorithms which is respected throughout this
chapter.

Concerning the problem addressed in this section, a solution is described by the
sequence of operations on the machine (see Figure 4.1 illustrating a solution in the
form of a Gantt chart). A solution is right if setup times used to make up this
solution are short.

5 1 3 2 4 6

0
s05 s51 s13 s32 s24 s46

Figure 4.1. Gantt chart of a one-machine problem with setup times

When an individual “father” and an individual “mother” are good, it is because
setup times are short. In order to create children, setup times must be those present
in the father or the mother or the shortest possible. The idea here is to select couples
(i, j) corresponding to an immediate set of operations on machines by giving

Genetic Algorithms and Scheduling 75

preference to couples (i, j) which correspond to short setup times. These are the
good schemas that we should attempt to retain during crossovers.

Possible solution codings

Many codings can be used to represent a permutation of n elements
corresponding to the sequence of n operations on the machine. Only two codings are
presented here and their qualities and faults are analyzed.

The first coding is called “permutation”. It simply consists of placing in a vector
the number of operations in the sequence where they are placed on the machine. For
Figure 4.1, the permutation vector is given in Table 4.1.

Position in the sequence 1 2 3 4 5 6

Permutation 5 1 3 2 4 6

Table 4.1. The permutation vector

The second coding is called “rank”. It consists of giving the relative position of
each operation on a machine in a vector. For Figure 4.1, the rank vector is given in
Table 4.2.

Operation number 1 2 3 4 5 6

Rank 2 4 3 5 1 6

Table 4.2. The rank vector

Generation of initial population

In order to generate an individual, we must determine the sequence of operations
and then transcribe this sequence, either in the form of permutation coding or in the
form of rank coding.

The first method for obtaining individuals for the initial population is to generate
coding in a completely random manner. We generate a regular sequence with
probability 1/n! and we place the sequence obtained in the permutation vector or in
the rank vector. This will generate a very diversified sub-population.

The second method for obtaining individuals for the initial population is to use
similar resolution methods with or without the introduction of random decisions in
the methods. This generates a generally good quality sub-population. Since the

76 Production Scheduling

problem concerned here is a specific case of the traveling salesman problem, we can
use polynomial heuristics designed for this problem (for example, closest visited
city or closest insertion, the simplest and most well known).

Crossover operators

Only two crossover operators are described (we can find many more in the
literature; see for example [POR 96]). They are presented with permutation coding
with emphasis on quality. Their effect on rank coding is then examined. The most
traditional operator used in genetic algorithms is the one-point operator consisting of
copying the father’s beginning until the randomly selected point of crossover and
the end of the mother from the crossover point for the son (for the daughter, switch
“father” and “mother”). Unfortunately, this very simple crossover is not suitable for
the permutation vector or the rank vector as is illustrated in Table 4.3, since the
results obtained may no longer be permutations of 1, 2, …, n (for example, value 6
is absent and value 4 is duplicated in the son’s encoding). It is therefore important to
design specific crossovers for the codings representing permutations.

Father coding 2 4 3 5 1 6

Mother coding 6 2 5 3 1 4

Son coding 2 4 5 3 1 4

Daughter coding 6 2 3 5 1 6

Table 4.3. Simple one-point crossover for permutation or rank vectors

The first crossover operator presented here is the simplest version of the
sequence operator proposed in [DAV 85]. It is represented by the acronym 1X
(where 1 means that it is a one-point crossover, X symbolizes crossovers. If we were
to be rigorous, it should be represented as 1OX for one-point order crossover). As
with the simple one-point operator, it begins with a copy of the father’s beginning
(resp. of the mother) and it ends the chromosome with missing sequenced digital
values sorted in the order of the mother (resp. father). By switching “beginning”
and “end” in this crossover’s description, we obtain another son and another
daughter based on a similar principle, which would, for example, make it possible to
keep the two best children obtained, thus improving the quality of this crossover.
Table 4.4 illustrates the 1X crossover with the same example as the one from
Table 4.3.

We now examine the children created. We may presume that if the father and the
mother were good quality, it is because corresponding setup times were relatively
short. Working with the permutation vector, this is translated by the hypothesis that

Genetic Algorithms and Scheduling 77

s02, s24, s43, s35, s51, s16, s06, s62, s25, s53, s31, s14 were relatively short
compared to the rest of setup times. It would then be interesting to examine how
these setup times are kept in the children created. We find four in son 1, six in
daughter 1, six in son 2 which is identical to the father, and four in daughter 2.

Father coding 2 4 3 5 1 6

Mother coding 6 2 5 3 1 4

Son 1 coding 2 4 6 5 3 1

Daughter 1 coding 6 2 4 3 5 1

Son 2 coding 2 4 3 5 1 6

Daughter 2 coding 2 6 5 3 1 4

Table 4.4. 1X sequence crossover

Father permutation 5 1 3 2 4 6

Mother permutation 5 2 4 6 3 1

Son 1 permutation 6 1 5 2 4 3

Daughter 1 permutation 6 2 4 3 5 1

Son 2 permutation 5 1 3 2 4 6

Daughter 2 permutation 5 1 4 6 3 2

Table 4.5. Equivalent permutations to Table 4.4

Table 4.5 shows the equivalent of permutation coding for individuals from Table
4.4 presumably defined by a rank coding.

If we assume the coding corresponds to the ranks (see Table 4.5) then we
discover two setups from parents in son 1 and daughter 1, six in son 2 which is
identical to the father and five in daughter 2. We see in the example that globally we
find less subsequent operation pairs from parents if the 1X crossover is applied to
rank coding instead of permutation coding and this is explained by the fact that 1X
better retains consecutive operation sub-sequences for permutation than for rank
coding, where what is retained or discovered is carried out in a much more random
way.

Another operator was designed specifically to retain the routes between cities
(edges {i, j} or {j, i}) for the symmetric traveling salesman (distance from i to j =
distance from j to i) by [WHI 89]. This is the edge recombination crossover (ERX).

78 Production Scheduling

We can easily extend it to pair conservation in the case of asymmetric problems.
This extension is presented here. We explain it by using permutation coding in the
example in Table 4.4. The first phase consists of building the table of pairs
belonging to both parents. It is represented in Table 4.6 in the form of a first element
successors list of each pair.

Entries in the table 0 1 2 3 4 5 6

2 4 4 1 3 1 2
List of successors

6 6 5 5 / 3 /

Table 4.6. Table of pairs

In our particular case, we start with fictitious 0 operation. This is the current
operation. Then Algorithm 4.2 is executed.

while there remains an operation not placed do
Place the current operation;
Among the non-placed successors from the current operation, arbitrarily choose one

among those with the least amount of successors (*) not yet placed or arbitrarily choose a
non-placed operation if the current operation has no non-placed successors;

The chosen operation becomes the current operation. End while.

Algorithm 4.2. Pair recombination crossover

The result when using Table 4.6 is:

0 6 2 4 3 1 5

We retain 5 out of 6 arcs which could have been retained. By replacing
successors by predecessors where there is a star (*) in the algorithm, we observe
better results. Based on the different random choices illustrated by numbers in
boxes, we obtain the following results:

0 2 4 3 5 1 6 0 6 2 4 3 1 5

0 2 5 1 4 3 6 0 6 2 5 1 4 3

0 2 5 3 1 4 6 0 6 2 5 3 1 4

0 2 5 3 1 6 4

Genetic Algorithms and Scheduling 79

4 times five arcs are retained and 3 times six arcs are retained. We retain many
arcs which are probably not very costly; on the other hand, the quality of added arcs
is random, and because of this, some children will probably be good and others
mediocre (they disappear rather quickly with the birth-and-death process).

Mutation operators

The mutation operator is intended for the creation of diversity in the population.
It must lightly modify the permutation involved while retaining a permutation. We
must change at least two pairs. We can draw a position i (< n) and switch values of
positions i and i + 1, or draw a position i and a position j (i) and switch values of
positions i and j, or even move the value corresponding to position i within
permutation forward or backward.

4.2.2. Example 2: sum of weighted tardiness

Problem description

We focus on the basic one-machine problem (see its description in section 4.2.1).
The criteria to optimize is the sum of weighted tardiness in relation to due dates, in
other words, any operation i has a due date di and is considered late if it ends at time
Ci where Ci is strictly greater than di. An operation i not finished on time leads to a
penalty equal to its tardiness in relation to due date, max(0, Ci – di), multiplied by a
penalty associated with operation i: wi.

Preliminary analysis

A solution to this problem can be described again by the sequence of operations
on the machine (see Figure 4.2, where lines model the tardiness and the number of
lines denote the tardiness penalty value). Intuitively, a solution is “good” (it
corresponds to a low value of the sum of weighted tardiness criteria) if most
operations are finished on time and if the operations which are the latest do not
correspond to high penalty operations.

0

6 1 3 4 2 5

d1 d6 d3 d4 d5 d2

T1 T5T4T3

Figure 4.2. Gantt chart of a one-machine problem with sum of weighted tardiness

80 Production Scheduling

A “father” individual and a “mother” individual are considered good when they
place short due date and/or high tardiness penalty operations early in the sequence
(and in certain cases, the shortest operations before the longest operations). Relative
positions between operations, or partial sequences, are what should be kept from
good “father” and “mother” individuals as they constitute the good schemas to retain
for crossovers.

Possible solution codings

As with the previous example, the permutation vector is used. It directly
describes the sequence of operations as it appears in the Gantt chart. We can also
use matrix coding called “permutation matrix” to work on total sequences (with
binary coding), as well as on partial sequences (with ternary coding). Ternary
coding is the only one presented; it will be used for other scheduling problems more
complex than the one-machine problem. Table 4.7 illustrates this coding for
permutation of Figure 4.2.

 1 2 3 4 5 6

1 0 1 1 1 1 -1

2 -1 0 -1 -1 1 -1

3 -1 1 0 1 1 -1

4 -1 1 -1 0 1 -1

5 -1 -1 -1 -1 0 -1

6 1 1 1 1 1 0

Table 4.7. MT permutation matrix

This permutation matrix is defined as MT(i, i) = 0 and MT(i, j) = 1 if i precedes j
in the permutation, otherwise –1. It has specific properties. It is transitive:
MT(i, j) = 1 and MT(j, k) = 1 leads to MT(i, k) = 1. It is antisymmetric:
MT(i, j) = – MT(j, i). It has only one line containing zero value 1, and only one line
containing a value 1, only one line containing two values 1, …, only one line
containing (n – 1) values 1. We have the same property for columns and for
values – 1. Because of the antisymmetric property, we may only store the top
diagonal matrix; however, for a better understanding, the extended matrix is used
here.

Generation of initial population

We can use a totally random generation presented in section 4.2.1 and transcribe
the sequence obtained into a permutation matrix or vector. However, in order to

Genetic Algorithms and Scheduling 81

obtain good initial individuals for the sum of weighted tardiness criteria, we can also
use specific heuristics for this problem. For example increasing due date sequence
(EDD algorithm for earliest due date) and in the same way, decreasing penalty
sequence, possibly improved with a simple neighborhood improvement procedure
(see Chapter 3).

Crossover operators

We can again use the 1X crossover operator which retains sequences well. It
particularly confirms property 1 described below.

Property 1. If i precedes j in “father” and “mother” individuals, then i precedes j in
children created by the crossover.

To retain relative operation sequences, it is possible to generalize the 1X
crossover operator with the k point crossover operator noted as kX in the following
way and illustrated in Table 4.8 for k = 2. Explanations are given for the conception
of son 1 and son 2 from father and mother (to obtain daughter 1 and daughter 2,
simply reverse the roles of father and mother). k crossover points are randomly
chosen in order to cut off individuals with k + 1 sub-chromosomes where we will
distinguish odd and even position sub-chromosomes. For son 1 (resp. son 2), values
in even position sub-chromosomes (resp. odd) are those found in the father’s
sub-chromosome in the same position. For son 1 (resp. son 2), odd position
sub-chromosome values (resp. even) are the values shown in this father’s sub-
chromosomes, but sorted in the mother’s sequence. This kX crossover confirms
property 1 and it retains the partial sequences of the father (for sons) or of the
mother (for daughters) all the more as k is large.

Position 1 Position 2 Position 3

Father coding 2 4 3 5 1 7 8 6

Mother coding 6 2 5 3 8 1 7 4

Son 1 coding 2 4 3 5 1 6 8 7

Daughter 1 coding 2 6 5 3 8 4 1 7

Son 2 coding 2 4 5 3 1 7 8 6

Daughter 2 coding 6 2 3 5 8 1 7 4

Table 4.8. kX sequence crossover

82 Production Scheduling

It is also possible to define a uniform type crossover by using the MT
permutation. A crossover is said to be uniform when values from the father and/or
the mother are used in an irregular and generally random manner and not by
complete sub-sequences to constitute the children.

1 2 3 4 5 6 1 2 3 4 5 6

0 1 1 1 1 -1 1 0 1 1 1 1 1

-1 0 -1 -1 1 -1 2 -1 0 -1 -1 -1 -1

-1 1 0 1 1 -1 3 -1 1 0 1 1 1

-1 1 -1 0 1 -1 4 -1 1 -1 0 1 -1

-1 -1 -1 -1 0 -1 5 -1 1 -1 -1 0 -1

1 1 1 1 1 0 6 -1 1 -1 1 1 0

Table 4.9. MT “father” and “mother” matrix

1 2 3 4 5 6 1 2 3 4 5 6

0 1 1 1 1 0 1 0 1 1 1 1 -1

-1 0 -1 -1 0 -1 2 -1 0 -1 -1 -1 -1

-1 1 0 1 1 0 3 -1 1 0 1 1 -1

-1 1 -1 0 1 -1 4 -1 1 -1 0 1 -1

-1 0 -1 -1 0 -1 5 -1 1 -1 -1 0 -1

0 1 0 1 1 0 6 1 1 1 1 1 0

Table 4.10. SIM and MT “son” matrix

Tables 4.9 and 4.10 illustrate the crossover called MT2. Permutation values for
the father and the mother are respectively: 613425 (from Figure 4.2) and 136452.

Crossover begins by adding father and mother matrices and dividing this sum by
2. When the father and mother have the same value, we retrieve this value,
otherwise we obtain zeros (see left matrix in Table 4.10, called the SIM matrix),
zeros that will need to be replaced by 1 or – 1 in order to obtain a permutation
matrix once again. We then complete the matrix with the following iterative
algorithm:

Genetic Algorithms and Scheduling 83

while there is a zero element outside of the diagonal do
Randomly choose one of these elements.

For this element, choose the value of the father (with probability) or the value of the
mother (with probability 1-).

Put opposite value in the symmetric element.
Make matrix transitive.
End while

In this example, we randomly choose for example element (1, 6), then with
probability = 0.6, we randomly choose value – 1 from the father, i.e. 6 is placed
before 1. By transitivity, 6 is also before 3. For the last zero element (2, 5), we
presume that the random choice has selected value – 1 from the mother, i.e. 5 is
placed before 2. All values are chosen and the permutation obtained is 613452.

From parents 613425 and 136452, we have obtained child 613452. The number
of times we have retained the sequence (i, j) in the son as it existed in the father and
mother is 9 (number 1 in the left hand matrix) and the number of times we have
retained the sequence (i, j) in the son when it existed in the father and/or the mother
is equal to the maximum value of 15 (n(n – 1)/2). This crossover attempts to retain
sequences.

Mutation operators

We can use the same operators as in section 4.2.1. Since the goal of mutations is
to create diversity, it is not necessary to develop sophisticated approaches in order to
be efficient. On the other hand, mutations often ensure connectivity of the space
visited, i.e. we can visit the solution space by only using permutations as a
neighborhood technique. This is interesting because in general, it is very difficult to
demonstrate that crossover operators alone ensure this connectivity.

4.2.3. Example 3: sum of weighted tardiness and setup times

Problem description

A one-machine scheduling problem is considered here which is a generalization
of example 1 (presence of setup times depending on the sequence of operations) and
example 2 (the criteria used is sum of weighted tardiness). We add setup times in the
Gantt chart of Figure 4.2.

Preliminary analysis

A solution is considered good because setup times used are not too large and/or
because short due date and/or high penalty operations are placed sufficiently early in

84 Production Scheduling

the sequence. If we do not want the efficiency of the genetic algorithm to be left to
chance, crossover operators must be developed to find a compromise between
retaining arcs (corresponding to short setup times) and retaining partial sequences
(corresponding to sequencing the most urgent operations first if they lead to high
tardiness penalties). In this case, it is possible to use the content of the chromosome
describing a solution as well as the problem statement providing setup times,
processing times, due dates and penalties with crossovers. The crossover then
becomes “data-dependent”. Without going into a full discussion on this type of
crossover, here is a general idea: when there is a possibility of choosing between
retaining part of the father code or part of the mother code, in order to make this
choice, we use unbalanced probabilities obtained from supplementary evaluations
which use data from the problem and consider partial consequences on the criteria
value of each choice.

Possible solution codings

Since it is always permutation scheduling, we can use the permutation vector as
well as the permutation matrix.

Generation of initial population

We use identical processes as in sections 4.2.1 and 4.2.2: a totally random
generation of permutations, or heuristics which attempt to empirically build good
quality solutions. Solutions which can be improved with a few iterations from a
local neighborhood technique (see Chapter 3).

Crossover operators

Here we propose a new operator called MT2mod. It is a mix of 2X and MT2. We
describe it for the son (simply change father for mother to obtain the daughter).
Once we have chosen two crossover points, we copy the central part of the father as
the central part of the son. Any operation preceding this central part in the father
will remain in front of this central part in the son and any operation which follows
this central part in the father will follow this central part in the son. All these
precedences are used to complete the matrix to the left of MT2mod crossover (we
retain the common partial sequences in the father and in the mother, in addition to
the central part of the father and the relative position of father operations in relation
to the copied central part). We then finish the MT2mod crossover with the regular
procedure by increasing the probability of using the value in the mother as in section
4.2.2. To obtain a data-dependent crossover, we can try to choose the one for which
the sum of setup times divided by the number of sequence operations is minimal as
central part in the father.

Genetic Algorithms and Scheduling 85

Mutation operators

We can use the same operators as in section 4.2.1.

4.3. Job shop problems

Problem description

This is a shop containing several machines, and each machine has different
functions. In order to carry out job i, it is necessary to execute a set of ni operations,
where each one requires a specific machine in the shop. The jth operation in job i
requires pij units of time on machine Mij. Several criteria can be considered to assess
the performance of job shop scheduling; we can use the same as previously
described and more specifically the sum of weighted tardiness compared to due
dates.

Preliminary analysis

Table 4.11 provides the description of a job shop problem where a solution is
provided by the Gantt chart in Figure 4.3.

i pi1 Mi1 pi2 Mi2 pi3 Mi3 pi4 Mi4 di wi
1 2 M1 3 M2 1 M1 3 M3 10 2

2 1 M3 1 M1 3 M2 / / 8 1

3 2 M2 4 M1 3 M3 / / 10 3

Table 4.11. Job shop scheduling problem statement

Figure 4.3. Gantt chart of the job-shop scheduling problem with sum of weighted tardiness

A solution is considered good because it places the most urgent and highest
tardiness penalty jobs early enough. We presume that we are working on a dominant
set. For example, we can consider the set for semi-active schedules (by definition,
any operation is left shifted, either after the operation preceding it in its job, or after

86 Production Scheduling

the operation preceding it on the machine used), thus, for each solution described by
a Gantt chart, there corresponds a list of permutations, as each permutation
sequences operations for each machine. However, the reverse is not true: if we have
a sequence of operations on machines, this still does not define a schedule. For
example, no feasible schedule for the description of Table 4.11 corresponds to the
list of permutations in Table 4.12. As, according to the jobs, 1.1 precedes 1.2 and
3.1 precedes 3.2 and according to the sequence on machines given by permutations,
3.2 precedes 1.1 and 1.2 precedes 3.1. We therefore have a process as shown in
Figure 4.4 and no scheduling is possible because for example, 1.1 only precedes
itself.

In a job shop scheduling problem, the choice for the sequence of operations on
machines must not create a circuit in the precedence graph built from sequences of
operations in jobs and sequences of operations on machines.

M1 3.2 1.1 2.2 1.3

M2 1.2 3.1 2.3 /

M3 2.1 3.3 1.4 /

Table 4.12. Scheduling resulting from a list of permutations

Figure 4.4. Appearance of a circuit in the precedence graph resulting
from jobs and permutations on each machine

Possible solution codings

There are several solutions to face this issue. The first one (not the best) consists of
working on codings of lists of operation permutations on machines and deleting all
individuals who do not correspond to feasible solutions because of the presence of
circuits in the precedence graph. The second one consists of repairing these individuals
with generally empirical procedures which make circuits disappear. The third one,

Genetic Algorithms and Scheduling 87

generally used, consists of considering that permutations on machines are not
imperative sequences between operations, but only priorities between operations,
priorities used to build a feasible schedule from the chromosome by using a solutions
generator. The most frequently used generator consists of developing the schedule
with no delay corresponding to these priorities. Its operation is simple: we start at
moment 0 with an empty schedule. We then increase the time and we search for the
first moment where a free machine has operations waiting in front of it. We then
allocate the highest priority operation (the one placed the earliest in the permutation).
The problem with proceeding that way is that we only scan on no delay schedules and
this set is not dominant for the criteria considered here (the optimal solution may not
belong to this set and in this case, the genetic algorithm may not be able to find it). A
generator of “active” schedules that we do not present here (see Chapter 2), explores a
dominant set of solutions. Other solutions can be used making it possible to avoid
creating a circuit while retaining coding which scans a dominant set of solutions (i.e.
containing at least one optimal solution). It is the generalized permutation coding [BIE
95] (not presented here) and the ternary coding (0, 1, –1) already proposed in section
4.2.2 for the particular case of permutations and for which it is possible to develop
crossover operators that never create circuits in the precedence graph.

Generation of initial population

If coding is assumed to contain priority lists which are transformed into solutions
with the help of a generator, then this is called indirect coding. In this case, the
coding for the genome (chromosomes) and that for phenotype (corresponding
solutions) are no longer in bijection. In order to generate random values for
genomes, we must generate random permutations for operations on each machine
and complete this set by using the sequence of operations on each machine obtained
by applying one or more heuristics.

If we use a ternary MT matrix for coding then MT(i, j) = 0 means that there is no
precedence relation between operations i and j, directly nor by transitivity.
MT(i, j) = 1 means that operation i precedes operation j in the precedence graph,
either directly because i precedes j in the job or on a machine, or indirectly (for
example, i precedes k on a machine, k precedes l in its job, l precedes j on another
machine); MT(i, j) = – 1 if MT(j, i) = 1.

It is possible to code any solution obtained by a heuristic in the form of an MT
matrix. It is also possible to generate random feasible solutions by working directly on
matrix MT. We initialize matrix MT to 0. We then introduce in the MT matrix
relations of precedence corresponding to jobs (this sub-graph must be transitive). We
then consider MT sub-matrices consecutively corresponding to operations executed on
one machine. These sub-matrices must be permutation matrices since we must decide
the exact sequence on each machine. We search for a 0 outside of the diagonal in any

88 Production Scheduling

of these sub-matrices. We arbitrarily decide to give this element the value 1 or value
–1, then we execute a transitive closing on matrix MT. We iterate this process as long
as there is a 0 outside of the diagonal in one of these sub-matrices. For the example in
Table 4.11, Table 4.13 presents the random generation of an initial solution
characterized by the sequence 22, 11, 32, 13 on machine 1, sequence 31, 12, 23 on
machine 2 and sequence 21, 33, 14 on machine 3.

 M1 M2 M3

 11 13 22 32 12 23 31 14 21 33
 11 0 1 1 1

M1 13 -1 0 -1 1
 22 0 1 -1
 32 0 -1 1
 12 -1 1 0 1

M2 23 -1 0 -1
 31 1 0 1
 14 -1 -1 -1 0

M3 21 1 1 0
 33 -1 -1 0

a) Part of the MT matrix imposed by jobs

 11 13 22 32 12 23 31 14 21 33
11 0 1 -1 1 1 1 0 1 -1 1
13 -1 0 -1 -1 -1 0 -1 1 -1 0
22 1 1 0 1 1 1 0 1 -1 1
32 -1 1 -1 0 0 0 -1 1 -1 1
12 -1 1 -1 0 0 1 -1 1 -1 0
23 -1 0 -1 0 -1 0 -1 0 -1 0
31 0 1 0 1 1 1 0 1 0 1
14 -1 -1 -1 -1 -1 0 -1 0 -1 -1
21 1 1 1 1 1 1 0 1 0 1
33 -1 0 -1 -1 0 0 -1 1 -1 0

b) Randomly generated part
(consecutive random choices only in gray parts:

(11, 22) = –1, (11, 32) = 1, (13, 32) = –1, (12, 23) = 1, (12, 31) = –1, (14, 33) = –1)

Table 4.13. Generation of a random ternary matrix

Genetic Algorithms and Scheduling 89

Crossover operators

For indirect coding made up of permutation lists used as priority lists with one
solution generator, permutation crossovers presented for one-machine problems can
be executed on the coding of each machine (for example, a 1X crossover). For direct
ternary coding, we use the MT3 crossover which is a generalization of the MT2
crossover. This crossover starts by adding up the ternary matrices of the father and
mother. We then divide the matrix obtained by 2 by rounding to 0 each time we
obtain +1/2 or –1/2 (we then retain all compatible sequences for the father and
mother). In the resulting matrix, we consider sub-matrices corresponding to each
machine (see gray parts in Table 4.13b). For each 0 outside of the diagonal in these
sub-matrices, we use the value located in the father or mother with probability 1/2.
Each time we add a new value in the matrix, we also add necessary values so that
the matrix remains transitive. We iterate the previous process until there is no longer
a 0 outside of the diagonal in the sub-matrices corresponding to machines.

Mutation operators

For indirect coding, we use traditional mutation operators for permutations. For
direct coding with the help of a ternary matrix, the mutation operator works in the
following way. We begin by filling the MT matrix with the mutant in creation with
the precedence constraints issued from jobs (as in the case of the generation of an
initial solution). We then randomly choose an element off diagonal in one of the
sub-matrices corresponding to one of the machines. For this element, we use the
opposite value of the MT matrix corresponding to the individual to mutate (+1 if –1
and vice versa). We then continue as we would for a (single parent) crossover. For
each 0 outside of the diagonal in a sub-matrix of the mutant, we use the value
located in the MT matrix of the individual to mutate. Each time we add a new value,
we add the necessary values so that the matrix remains transitive. We reiterate the
previous process until there is no longer a 0 outside of the diagonal in the sub-
matrices corresponding to machines.

4.4. Hybrid flow shop

4.4.1. Specific case: one-stage total duration problem

Description of the problem and preliminary analysis

The one-stage hybrid flow shop problem (see a detailed presentation in Chapter
9) is no more than a parallel machine problem. In this case, each job consists of only
one operation. This is the context where all machines are identical or, in other
words, where the processing time of a job (or operation) is the same on all machines.
The criterion to minimize is duration time Cmax corresponding to the scheduling of a

90 Production Scheduling

set T of jobs. We are in the presence of a pure allocation problem and the sequence
of jobs on machines is of no interest here.

When we analyze the nature of a problem solution, we may very easily establish
that there is at least one optimal solution (minimizing total scheduling time or
makespan) for which any machine executes at least one operation (we presume that
there are obviously more operations to be executed than there are machines). This is
only true when the machines are all identical and always available. We will only
build solutions where no machine will be left inactive (dominant set). In addition,
the total load will have to be distributed on all machines without necessarily
authorizing an operation to be executed simultaneously on several machines (no
splitting) or to be preempted by other operations (no preemption).

Possible solution codings

The problem to solve is to find for each job T, the machine that will execute it in
order to minimize total scheduling time. There are several ways to code a solution
for this type of problem. We present three of them.

One of the possible approaches to code such a solution is to use a vector where
each element represents a job and shows the number of the machine on which it will
be executed. This coding will be called DC1-ASS (for Direct Coding for ASSignment)
from now on. To give an example, say we have a set of jobs defined by T = {1, 2, 3, 4,
5}. Suppose we have 3 parallel machines and those processing times are 31p ,

52p , 83p , 24p , 45p . A possible solution for this problem is represented
by vector S1 = (1, 2, 3, 2, 1). It corresponds to assigning jobs 1 and 5 to machine 1,
jobs 2 and 4 to machine 2 and job 3 to machine 3. Figure 4.5 illustrates coding for this
solution as well as the associated Gantt chart. This coding is a direct coding because it
describes a solution directly and completely.

We can also build another type of direct coding that is more interesting because
it enables us to delete, in the case of identical parallel machines, the randomness
linked to machine numbering. This coding, called DC2-ASS, consists of building a
matrix in which element (i, j) of the matrix has a value of 1 if jobs i and j are on the
same machine and 0 otherwise. This type of coding is even more efficient when
there are additional job constraints. It is to be noted that saying two jobs are on the
same machine does not lead to any decision in terms of the sequence of these two
jobs.

Another “indirect” type of coding, called IC3-ASS for Indirect Coding for
ASSignment, consists of establishing a list of priorities for all jobs provided by a
permutation vector, for example. This solution requires the use of a solution

Genetic Algorithms and Scheduling 91

generator. Its objective is to determine a solution from a given coding. In the very
specific case involved here, the no delay solution generator visits a dominant set of
solutions. It is so simple that is seems natural to use it.

Figure 4.5. Coding of a solution for one-stage hybrid flow shop and associated Gantt chart

Generation of initial population

To generate an initial population in the case of direct coding, we must find a set
of solutions where each one represents an allocation of all jobs to machines. In order
to do this, we can use a method that randomly generates many individuals and which
respects the dominant condition “no inactive machine”. For each solution, we must
calculate the value of criteria Cmax. This evaluation is very simple because we only
need to use the last end date obtained on one of the machines. For indirect coding,
we can use the same initial population generation as in section 4.2.1 by applying it
to all jobs of T.

Possible crossovers

For IC3-ASS coding, we can use crossovers from sections 4.2.1 and 4.2.2. For
this type of problem and for DC1-ASS coding, it is not necessary to use a
complicated crossover operator. For example, the simple one-point crossover is
sufficient. Of course this operator will not guarantee that we obtain two valid
children in terms of what has been presented in the preliminary analysis. In fact, it is
possible that this type of crossover generates a solution in which a machine may be
idle. In this case, we end with a “repair” phase which moves a job to any idle
machine.

We use the same data as in the previous example. Figure 4.6 represents a one-
point crossover of two individuals. For child 2, no machine is sitting idle and
consequently, it respects the dominant condition. It is therefore not necessary to
apply a corrective operator.

92 Production Scheduling

Figure 4.6. Crossover operator for one-stage hybrid flow shop

On the other hand, child 1 will have to have a correction to assign a job to
machine 3. This repair phase works in a similar way as a mutation operator. In fact,
its objective is to identify idle machines. Subsequently, we choose the machine with
the greatest load among those with more than one allocated job. We then reallocate a
job to an idle machine. This process is repeated until all machines are busy with at
least one job. We can then observe that the corrective operator must only be applied
on child 1; machine 3 is the only idle one. For this operator, we can choose the
longest job (because it cannot be interrupted and will have to be executed by the
same machine) among jobs allocated to the machine with the largest load. In our
example, the machine with the largest load is machine 2 and the longest job is job 3.
Therefore child 1 becomes tuple (1, 2, 1, 2, 3). This correction operator is applied
after any crossover, but also after the use of the mutation operator. In the case of
DC2-ASS coding, it is preferable to use the MT3 crossover operator, which was
presented in section 4.3 and to make it symmetric (–1s become +1s). The repair
consists of splitting a subset of operations executing on a single machine in two,
until all machines are used.

Mutation

Concerning the mutation operator, clearly, coding a simple probability of
modifying a gene in the chromosomes is sufficient, followed by the corrective

Genetic Algorithms and Scheduling 93

operator if necessary for DC1-ASS. The value of this probability must be relatively
low so as not to significantly modify the nature of individuals. In the case of DC2-
ASS coding, it is more complex because we must retain transitivity of the “is on the
same machine as” relation. For IC3-ASS coding, we use techniques from section
4.2.1.

4.4.2. General case: k stages total duration problem

Problem description

The K stages hybrid flow shop is a flow shop – all jobs need a set of operations
and operation j of each job requires machine j – moreover each operation j must be
performed on a single machine chosen from a set of parallel machines dedicated to
this operation and grouped on the stage j. This problem comes down to
simultaneously solving an allocation problem, an example of which was presented
in the previous section, and a sequencing problem. In fact, for each stage, we must
define all jobs to be allocated to each machine and for each machine, in which
sequence jobs allocated to this machine must be allocated. We focus here on stages
made up of identical parallel machines and the criterion to optimize is the total
scheduling time.

Preliminary analysis

Before proposing coding for a solution for this type of scheduling, we must first
define dominant conditions in order to use coding appropriate for its characteristics.
As before, we must never leave a machine idle, so that all available machines are
used. Subsequently, as far as priorities to determine sequences on machines are
concerned, they must not be too different between two consecutive stages. In fact,
the consequence would be the generation of unnecessary inactive times. This is
particularly possible using relative job positions. In this way, we can hope that if job
i precedes job j at stage h, then either i precedes j at stage h + 1, or i and j
are on different machines. This analysis will make it possible to offer a crossover
operator that is better adapted for this type of problem, and will best retain the
sequences.

Figure 4.7 illustrates a case where sequences between two stages are retained.
Figure 4.8 shows the same problem for which we have deliberately reversed two
sequences between the two stages. In this case, the value of the end scheduling date
is more important and does not correspond to an interesting scheduling. We see the
inactivity generated by these different sequences. However, this situation is still not
verified, it all depends on the distribution of job processing times.

94 Production Scheduling

level 2

level 1

Figure 4.7. Case where sequences are retained between the two stages

level 1

level 2

Figure 4.8. Case where sequences are not retained between the two stages

Possible solution codings

In this section, we propose two types of coding. In both cases, we consider two
chromosomes, one for each family of unknowns for the problem to solve
(assignment and sequencing).

The first coding builds a genotype made up of two chromosomes: the first one
models the assignment problem by using DC1-ASS coding presented for the one-
stage hybrid flow shop problem. The second chromosome determines relative
sequences of all jobs for each stage. We actually need an MT3 type matrix (see
section 4.3) for each stage. Suppose we focus on stage h. Each element (i, j) of this
matrix is equal to either – 1 in the case where operation of job j precedes the one
from job i, or to 0 in the case where we do not know the relative position between
operations of jobs i and j, or even to 1 in the case where the operation of job i
precedes the one from job j. An example of this matrix and its associated Gantt chart
is illustrated in Figure 4.9.

Genetic Algorithms and Scheduling 95

We should point out that at each modification made on this matrix, a transitive
closing calculation must be applied in order to verify the absence of a circuit (a
modification may add a circuit, i.e. job i precedes job j and job j precedes job i for a
given sequence).

 1 2 3 4 5

1 0 1 0 1 0 Job 1 1

2 -1 0 0 -1 0 Job 2 1

3 0 0 0 0 -1 Job 3 2

4 -1 1 0 0 0 Job 4 1

5 0 0 1 0 0 Job 5 2

Figure 4.9. Example of direct coding for hybrid flow-shop and stage 1

Figure 4.10 presents a solution for the two-stage hybrid flow shop problem for
which we have two machines in the first stage and one in the second. This
corresponds to a possible solution but not to the best solution.

Another way to code a solution for this problem is to use a priorities-based
coding. In this case, we arrive at an indirect coding, implying that it is necessary to
implement a solution generator which will successively allocate jobs to machines by
using all priorities.

For the hybrid flow shop problem, we can use two chromosomes as before. The
first one will give the machine number where each job in each stage will be
assigned. The second one will give the priority on this machine for each job and
each stage. An example of this coding is given in Figure 4.11.

96 Production Scheduling

For stage 1

 1 2 3 4 5

1 0 0 0 -1 0 Job 1 2

2 0 0 1 0 1 Job 2 1

3 0 -1 0 0 -1 Job 3 1

4 1 0 0 0 0 Job 4 2

5 0 -1 1 0 0 Job 5 1

For stage 2

 1 2 3 4 5

1 0 -1 -1 -1 -1 Job 1 1

2 1 0 1 1 1 Job 2 1

3 1 -1 0 -1 -1 Job 3 1

4 1 -1 1 0 -1 Job 4 1

5 1 -1 1 1 0 Job 5 1

Figure 4.10. Example of a solution for a two-stage hybrid flow shop

As in the case with the job shop problem, the problem lies in the choice of a
good generator. We can particularly use an active scheduling generator [BAK 74] or
a no delay scheduling generator (which never leaves a machine unoccupied when an
operation is available to be executed on this machine). These generators respect the
choice of machines defined by the first chromosome from the genome, jobs (an
operation can only be executed after the end of the previous one) and priorities
provided by the second chromosome (when two operations are in conflict for the
generator choice, it is always the one with the highest priority that is chosen). With a
hybrid flow shop, instead of handling the different stages in parallel as time
progresses, we can decompose the resolution by first placing the operations at stage
1, then at stage 2, etc. This will not change the result, but makes it possible to have a
better understanding of the advantages and disadvantages of the different generators.

Genetic Algorithms and Scheduling 97

Jobs 1 2 … N … 1 2 … N

Machines 1
1M 1

2M … 1
NM … kM1

kM 2
… k

NM

Priorities 1
1P 1

2P … 1
NP … kP1

kP2
… k

NP

 Stage1 …. Stage k

Figure 4.11. A second coding for hybrid flow shop

In the case of a hybrid flow shop, choosing sequences of operations on the
different machines at each stage never creates a circuit in the precedence graph as
was the case with the general job shop problem (Figure 4.4). We can use priorities
associated with operations assigned to each machine in each stage in order to define
sequences on this machine and strictly respect the sequences obtained. We then shift
to the left each operation in stage h either on the operation preceding it at stage h –1,
or on the operation preceding it on the machine. We obtain a scheduling called semi-
active. In this case, we consider the coding to be direct, since priorities contained in
the second chromosome directly give the sequence on machines by simply
considering them in increasing order for each machine. It may be interesting to use
this type of coding for exploring a dominant solution space; however, many
solutions of this type are of very low quality, because to take any sequence on each
machine in each stage can generate important idle times on machines, as illustrated
in Figure 4.8, for example. That is why genetic algorithms using no delay or active
scheduling generators generally converge faster toward good solutions [VIG 96].
However, direct coding can, given sufficient time, provide a better solution
(especially when we compare with algorithms using no delay schedules, which a
great many authors use, but which are not dominant and can therefore not contain
the optimal solution).

Generation of initial population

The generation of initial population can be done by using one or the other
coding. Part of the population can be generated in a completely random manner and
the other part by using good heuristics.

Possible crossovers

Crossover operators will obviously depend on the chosen coding. In the case
where the first coding would be chosen, an operator for the assignment chromosome
and/or an operator for the sequencing part are needed. In this way, either the
assignment chromosome changes, or the sequencing chromosome, or both. For the
assignment chromosome, a one-point crossover is sufficient. For the chromosome

98 Production Scheduling

providing sequences, we can use the MT3 crossover operator discussed previously
(see section 4.3). In this case however, we must use a repair operator. In fact, it is
possible that the use of these two operators can leave a machine idle, which is
contrary to the rule of dominance highlighted by the hybrid flow shop problem.
Using the repair operator makes it possible to have a solution which respects
constraints of dominance. We should point out that it is always interesting to apply
the transitive closing calculation as soon as a modification is made on the sequence
chromosome.

When the second coding is used, there can be three possible crossover operators:
we either apply the one-point crossover in the priority chromosome without
changing assignments; or we apply the one-point crossover in the assignment
chromosome without changing sequences, but possibly finishing with a repair. And
finally, we can apply the one-point crossover anywhere on the genome. In the last
case, the assignment and priority chromosomes are modified. If assignments are
decided by the generator, the coding and the crossover operator only apply to
priorities. It is then not always necessary to develop a repair operator; we must
examine in detail if the generator will be able to satisfy conditions of dominance
from a genome. If that is not the case, we can possibly use the repair operator
previously seen.

Mutation

Concerning mutation, the two codings must be differentiated as with crossover
operators. If we work with the first coding, we can work only on the scheduling
chromosome. We then randomly choose one machine from all of them. Then we
modify with a probability of mutation the sequence assigned to this machine. We
can also consider the modification of the chromosome dedicated to assignment; in
this case, we then need to use the repair operator seen by the crossover operator. For
the second coding, we simply need to choose a low probability to mutate a gene in
each chromosome.

Another method that is interesting for this problem is to use a mutation where the
probability varies periodically between 0 and 1 [VIG 96]. In this way, the mutation
rate is assimilated with a decreasing and periodic function enabling a periodic
reinitialization of the population. This can help in getting out of a local extremum.
Of course, this principle can be used for other problems and is not specific to the
hybrid flow shop.

Genetic Algorithms and Scheduling 99

4.5. Hybrid genetic algorithms

4.5.1. Hybridization with other metaheuristics

A large number of crossovers were proposed between genetic algorithms and other
metaheuristics [DOM 98, GAL 99, LAS 93, MÜH 91, SUC 87], in particular with
neighborhood improvement methods such as the largest gradient, the tabu method or
simulated annealing (see Chapter 3). A steep ascent or stochastic descent method is
interesting because it makes it possible to verify if better solutions can be found in a
neighborhood close to a solution belonging to the population, with low calculation
cost, and if that is the case, to possibly improve the value of the best solution found.
The question thus raised is this: must the best solution obtained by neighborhood
improvement replace the individual thus improved in the population or not? Certain
authors systematically apply a neighborhood improvement method and systematically
replace original individuals with improved individuals at each genetic algorithm
generation. In this case, we can make the following observations:

– the population consists of local optima in relation to the considered
neighborhood; there is therefore quick but premature convergence to a limited set of
local optima;

– as the population is mainly improved by the application of the neighborhood
method, mutations become improvers and crossover operators become diversifiers:
trying to recreate diversity in the population to extract from local optima into which
the neighborhood method leads them frequently.

Other authors systematically apply a neighborhood improvement method to all
individuals in the population at each genetic algorithm generation. The best solution
is carefully put aside even if the corresponding individual is not retained. In fact, in
this case, the improved individual only replaces the original individual with a
generally low probability: 1/20 or 1/10 appear to be good choices according to some
authors. At each generation, we can also improve a population’s individuals based
on a given probability or, which amounts to the same thing, only use the
neighborhood method every k generations. This limits algorithm cost. These last
hybridizations between genetic algorithms and neighborhood improvement methods
converge more slowly toward very good solutions, but are not as quickly trapped by
local optima. In addition, they respect the spirit of genetic algorithms better since the
crossovers must try to preserve the parents’ good properties and thus develop quality
individuals, and mutation’s main role is to create diversity in the population.

100 Production Scheduling

4.5.2. Hybridization with combinatorial optimization methods

One of the major drawbacks with genetic algorithms is that we cannot
demonstrate the optimality of the resulting best solution. In addition, genetic
algorithms visit a set of solutions. The size of these sets is generally very large and
consequently crossing this type of method with methods based on reducing solution
spaces, by pairing operations research and genetic algorithms is interesting.

A crossover used by several authors [DJE 96, POR 98] consists of using a
genetic algorithm in a branch and bound procedure (BBP). The objective is to
improve the upper boundary (smallest solution found in the case of minimization)
by exploring the space of solutions corresponding to certain nodes in the
arborescence created by consecutive branchings. The idea is obviously not to
execute a genetic algorithm at each node in the arborescence, since the
computational time for a BBP is high enough. On the other hand, applying it to
levels in the research tree in order to improve boundary calculation is interesting. In
this way, by respecting the constraints defined by a certain node in the research tree,
the goal of the genetic algorithm is to try to improve the value of the upper
boundary. Certain branches of the research tree can then be cut, limiting the size of
the arborescence explored. The problem with this approach is, on one hand to find
appropriate coding to transcribe constraints of a node in the research tree in codings
used, and on the other hand, to find a good compromise between the BBP
computation time and the time allowed for the improvement of the upper boundaries
[DJE 96, POR 98].

4.6. Conclusion

In this chapter, scheduling problems have been considered in an increasingly
difficult order in relation to their approximate resolution by genetic algorithms. We
have observed, on the one hand, schedules for which all operations are pre-assigned
to resources (one-machine and job shop problems) and, on the other hand, schedules
for which it is necessary to allocate resources (identical parallel machine and hybrid
flow shop problems).

We have also observed problems for which permutation coding can actually give
the order of operation on the different resources (immediate direct coding possible
for all problems presented except for the job shop problem) problems for which
traditional permutation coding no longer makes it possible to describe solutions
quickly for which we must either use a generator to transform permutation coding
into solutions (indirect coding), or use more sophisticated direct coding such as for
example the MT3 matrix. We also attempted to show how we could try to develop
genetic operators to make resulting genetic algorithms as efficient as possible, based

Genetic Algorithms and Scheduling 101

in coding and criteria considered. Experiments made in late 1999/early 2000
[POR 00] confirmed that crossovers retaining the good properties of parents, as they
were defined in this chapter for the problem described in section 4.2.3, on average
create better children than others. The improvement is even more significant when
we use “data-dependent” crossovers as for example in [MAH 00] for hybrid flow
shop problems with a single machine per stage.

In conclusion, genetic algorithms are robust methods (low sensitivity to
variations in digital data from statements), easy to develop and to implement.
However, as with neighborhood methods, it is very important to analyze the
characteristics of the problem to solve and the characteristics of the solutions
offering good values to performance criteria, in order to develop the most efficient
coding and genetic operators. Before applying genetic algorithms to concrete
problems, experimentation is absolutely necessary. They enable the comparison of
several codes and genetic operators in industry or randomly generated examples and
the choice of those most suitable based on the problem involved as well as
numerical instances with the same characteristics as the concrete application to solve
(for example, a very large time range in relation to the setup time range for the
problem corresponding to section 4.2.3). The parameters for the general schema
retained for the genetic algorithm (size of population, mutation percentage,
crossover percentage, etc.) are also retained with this experimentation phase.

4.7. Bibliography

[BAK 74] BAKER K., Introduction to Sequencing and Scheduling, John Wiley, 1974.

[BIE 95] BIERWIRTH C., “A generalized permutation approach to job shop scheduling with
genetic algorithms”, OR Spektrum, 17, p. 87-92, 1995.

[DAV 85] DAVIS L., “Job-shop scheduling with genetic algorithms”, 1st Int. Conf. on
Genetic Algorithms and their Applications, Lawrence Erlbaum (ed.), Hillsdale, New
Jersey, p. 136-140, 1985.

[DAV 91] DAVIS L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York,
1991.

[DJE 96] DJERID L. and PORTMANN M.-C., “Genetic algorithm operators restricted to
precedent constraint sets: genetic algorithm designs with or without branch and bound
approach for solving scheduling problems with disjunctive constraints”, Conference
IEEE/Systems, Man and Cybernetics (SMC’96), October 14-17, Beijing, vol. 4, p. 2922-
2927, 1996.

[DOR 98] DORNE R. and HAO J.K., “A new genetic local search algorithm for graph
coloring”, Lecture Notes in Computer Science 1,498, p. 745-754, Springer-Verlag, 1998.

[GAL 99] GALINIER P. and HAO J.K., “Hybrid evolutionary algorithms for graph
coloring”, Journal of Combinatorial Optimization, vol. 3, no. 4, p. 379-397, 1999.

102 Production Scheduling

[GOL 89] GOLDBERG D.E., Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, Mass., 1989.

[HOL 75] HOLLAND J.H., Adaptation in Natural and Artificial Systems, MIT Press,
Cambridge, Mass., 1975.

[LAS 93] LASH S., Genetic algorithms for weighted tardiness scheduling on parallel
machines, Technical report 93-01, Department of Industrial Engineering and Management
Sciences, Northwestern University, Evanston, Illinois, 1993.

[MAH 00] MAHDI H., ALPAN G. and PORTMANN M.-C., “Genetic algorithms with data
oriented operators to solve flow shop problems having tardiness criteria”, IERC 2000,
Industrial Engineering Research Conference, Ohio, May 21-24, 2000.

[MÜH 91] MÜHLENBEIN H., Evolution in Time and Space – The Parallel Genetic
Algorithm. Foundation of Genetic Algorithms, Rawlins G.J.E., vol. 1, Morgan Kaufmann
(eds.), San Mateo, CA, p. 316-337, 1991.

[POR 96] PORTMANN M.-C., “Genetic algorithms and scheduling: a state of the art and
some propositions”, Workshop on Production Planning and Control, Mons, I-XIV, 1996.

[POR 98] PORTMANN M.-C., VIGNIER A., DARDILHAC D. and DEZALAY D., “Branch
and bound crossed with GA to solve hybrid flowshop”, European Journal of Operational
Research, 107, 389-400, 1998.

[POR 00] PORTMANN M.-C. and VIGNIER A., “Performances’ study on crossover
operators keeping good schemata for some scheduling problems”, GECCO’2000, Genetic
and Evolutionary Computation Conference, Las Vegas, July 8-12, 2000.

[SUH 87] SUH J.Y. and Van GUCHT D., “Incorporating heuristic information into genetic
search”, 2nd Int. Conf. on Genetic Algorithms, Grefenstette J.J., Lawrence Erlbaum
Associates (eds.), Hillsdale, New Jersey, 100-107, 1987.

[VIG 96] VIGNIER A. and VENTURINI G., “Resolution of hybrid flowshop with a parallel
genetic algorithm”, International Workshop on Project Management and Scheduling,
Poznan, p. 258-261, 1996.

[WHI 89] WHITLEY Y., STARKWEATHER T. and FUQUAY D., “Scheduling problems
and traveling salesman: the genetic edge recombination operators”, Third Int. Conf. on
Genetic Algorithms and their Applications, Morgan Kaufmann, San Mateo, CA,
p. 133-140, 1989.

Chapter 5

Constraint Propagation and Scheduling

5.1. Introduction

5.1.1. Problem and chapter organization

By “constraint-based approach” for scheduling problems, we refer to studies
focusing on the representation and processing of constraints in scheduling [ERS 76a,
FOX 83, DIN 90, LEP 91, SMI 93, FAR 94, LEP 94, NUI 94, VAN 94, CAS 95,
BAP 98, BAP 01, BRU 02, DOR 02, LOP 03]. These approaches compare and
combine operations research methods (graph theory, mathematical programming,
combinatorial optimization methods), with constraint representation and processing
from artificial intelligence (constraint satisfaction problems, constraint propagation
algorithms, constraint programming languages).

The goal of these studies is to put tools in place to facilitate interaction between
models and decision makers, by integrating useful analysis methods in a context of
decision support (consistency checking, characterization of solution space) and
efficient resolution algorithms (complete generation, optimization).

At the core of concerns common to these studies, we find the problem of
developing efficient and general constraint propagation mechanisms, which are the
subject of this chapter. Specific results taken from scheduling problems and general
results taken from constraint satisfaction problems have been grouped together.

Chapter written by Patrick ESQUIROL, Pierre LOPEZ and Marie-José HUGUET.

104 Production Scheduling

First we present purely temporal problems. There are complete propagation
algorithms with acceptable complexity for simple temporal problems, in which each
constraint limits the distance between two dates to a connected domain. Processing
more evolved temporal constraints, based notably on disjunctive temporal intervals,
makes the problem very difficult, even when these disjunctions are limited to two
intervals.

Next, we will focus on problems in which tasks must respect temporal and
resource sharing constraints simultaneously. We present a summary of constraint
analysis results [ERS 76a, ESQ 87, LOP 91] which focus on the development of
propagation rules making simple temporal constraints and resource sharing
constraints interact. Two types of reasoning are presented. The first requires a prior
conflict analysis between tasks and deduces sequencing conditions. The second
simultaneously integrates constraints of time and resources. It limits location of a
task in relation to a time interval in order to respect the energetic balance.

The use and control of constraint propagation mechanisms is discussed. They
may be used to discover a global inconsistency in a problem formulation quickly, or
to simplify its resolution.

A few extensions are considered at the end of the chapter, the case of preemptive
problems and the case of scheduling problems with assignment constraints more
specifically.

5.1.2. Constraint propagation

The resolution of a combinatorial problem is often reached with a tree search
algorithm. At each step, only certain variables receive a value. We will thus talk
equally about assignment of a value v (to a variable x) or instantiation of a
variable x (by a value v) to designate a basic decision, and we will denote it by

vx . Variables that have not yet received a value at any level are called free
variables.

To guarantee obtaining a solution – if such a solution exists – it is necessary to
list the remaining choices for the variables already instantiated if we want to be able
to explore other possibilities in case of a dead end. Control of the search tree
development is carried out in a mode using chronological backtracking and the
resolution is non-deterministic because we cannot predict the choices actually
leading to a solution.

The goal of constraint propagation is to simplify the resolution of a problem or
to demonstrate the absence of a solution. It does not represent a resolution

Constraint Propagation and Scheduling 105

technique, but it represents a set of constraint rewriting techniques. In practice, this
may consist of removing the values not belonging to any solution from the decision
variable domain. This domain filtering avoids many resolution attempts doomed to
fail. These techniques also simplify the expression of constraints, by eliminating
redundant constraints for example. Finally, propagation can, in certain cases, show
proof of global inconsistency of the problem before any resolution attempt.

The general schema of a backtracking algorithm is as follows (inspired by [SAD
96] and [NUI 94]):

while unassigned variables remain and a global inconsistency is not detected
 apply propagation rules

if inconsistency is detected
 then if unexplored choices exist
 then backtrack to an unexplored choice
 else global inconsistency detected

else
 select a free variable
 choose a value for this variable and store the remaining values

Algorithm 5.1. A general non-deterministic resolution algorithm

We should emphasize that constraint propagation does not modify all the
solution space; it only facilitates its exploration.

DEFINITION.– Two problems are equivalent if they have the same sets of variables
and the same solutions.

DEFINITION.– A constraint C is redundant in relation to a subset of constraints
},,,{ 21 pCCCE if we can show that satisfaction of all E constraints implies

satisfaction of C . Between two equivalent problems the only difference is the
presence of a redundant constraint.

Constraint propagation transforms a problem into an equivalent problem until its
expression stabilizes. Schematically speaking, at each propagation step, the
following cycle is repeated:

1) select a subset of constraints and generation of an induced constraint;

2) discover a redundant constraint in relation to the induced constraint;

3) modification of the set of constraints: addition of the induced constraint and
deletion of the redundant constraint.

106 Production Scheduling

Constraint-based approaches have shown their usefulness in the representation
and resolution of NP-hard scheduling problems such as job-shop problems [BEL 89,
DIN 90, ERS 76b, ERS 80, SMI 93]. These approaches use general techniques
based on constraint satisfaction problems, including constraint propagation, as well
as resolution strategies focusing on the choice of variables to instantiate, choice of
values for a given variable, backtracking techniques, etc. These last elements greatly
condition global resolution algorithm performance.

5.1.3. Scheduling problem statement

The idea is to organize the execution of a set of n tasks with a set of m resources.
Each task i is characterized by its duration pi and must be executed in a time
window],[ii dr (ir is its earliest start time and id its latest finish time). Preemption
is prohibited: once started, a task cannot be interrupted. On the other hand, each task
i requires a known and constant ia quantity (intensity) from a single resource ik
(mono-resource problem) for its completion. We assume that the allocation problem
is solved when: i , ik is known. Resources are renewable (capacity kA of
resource k is known and constant). The constraints considered are temporal
constraints (deadlines, precedence between tasks, etc.) as well as resource sharing
constraints.

The scheduling problem involved covers disjunctive resource problems (for
example, shop floor scheduling) and cumulative resource problems (for example,
project scheduling).

5.1.4. Notations

The following list of notations is inherent to this chapter; the new concepts
referred to will be discussed throughout this chapter. For more general notations,
please refer to Chapter 2.

it , ic : start and completion time of a task i

it , it : earliest start time, latest start time of a task i

ic , ic : earliest completion time, latest completion time of a task i

ct , : interval of study

kT : set of tasks using resource k : kkTiT ik /

Constraint Propagation and Scheduling 107

kn : number of tasks using resource k : kk Tn

kW : maximum production of resource k over interval

iw : energy required for task i over interval

iw : minimum energy required for (or compulsory consumption of)
 task i over interval

iw : maximum energy required for task i over interval

iS : available energy for execution of i over interval

5.2. Time constraint propagation

5.2.1. Introduction

It is possible to see a scheduling problem as a specific class of constraint
satisfaction problem (CSP) [NUI 94, VAN 94]. We must determine the assignment
of variables representing the start or completion time for each task (both if the task
durations are not known in advance) within a domain associated with the time
window of the task, in such a way that the set of constraints is satisfied, particularly
resource constraints. In artificial intelligence, a particular type of CSP was proposed,
temporal CSPs or TCSPs [DEC 91, DEC 03], for planning and temporal reasoning
problems [DAV 87]. In TCSPs, the variables correspond to time intervals or to time
events, the constraints connecting two events [VIL 86] or two intervals [ALL 83]
correspond to numerical or symbolic relations. Combinations of these two types of
relations were proposed in [MEI 96]. Schwalb and Vila review different modelings
of temporal problems and associated constraint propagation methods [SCH 98]. In
scheduling, temporal constraints traditionally used are potential inequalities (see
Chapter 2). Afterwards, we only focus on problems where temporal constraints are
expressed by numerical relations between time events, including potential
inequalities.

5.2.2. Definition

A numerical temporal constraint satisfaction problem, also called a numerical
TCSP, is defined in [DEC 91] by:

– a set of temporal variables },,{ 1 nxx corresponding to instants;

108 Production Scheduling

– a set of domains associated with each variable },,{ 1 nDD . Each domain iD
represents all values which can be used by ix ; each domain iD is the union1 of a set

of in disjoint intervals: in
iiii IIID 21 ;

– a set of binary ijC constraints limiting possible values of a distance between

two variables, ij xx , by domain ijD of ijn disjoint intervals:

ijn
ijijijij IIID 21 . ijC represents constraint xj – xi Dij.

Domain constraints can be put in the form of binary constraints C0i and Ci0 by
introducing a variable 0x representing the time origin. The universal constraint
corresponds to interval [] , covering all possible values. An inconsistency
appears in the problem when the set of intervals associated with the domain of a
variable or constraint is empty.

Some classical shop scheduling problems can be represented by a TSCP in
which variables correspond to start times of tasks. Constraints formulated by a
conjunction of potential inequalities (due dates and precedence constraints) can be
directly translated into binary TCSP constraints associated with a single interval; for
example precedence between two tasks i and j corresponds to [,[ijij ptt .
Resource sharing constraints, which are modeled by a disjunctive set of potentials
inequalities disjunctions, for example)()(jjiiij pttptt , can be
translated into binary TCSP constraints including two intervals:

[,[],] ijij pptt . On the other hand, certain resource constraints, such
as cumulative constraints, cannot be represented by binary TCSP constraints.

5.2.3. Simple temporal problems

From the general definition of TCSPs derives a specific class of problems called
simple temporal problems (STP) in which all constraints only involve one interval.
Thus, in an STP each constraint ijC represents the double ijijij bxxa
inequality.

DEFINITION.– A problem is minimal if all domains associated with variables
and constraints do not include any inconsistent value (we can thus say that the
domain is minimal).

1 By definition, the union (noted as) between separate intervals is not an interval (the
domain obtained is not connected); we also speak of domain holes.

Constraint Propagation and Scheduling 109

Binary constraints of an STP can be represented in a potentials graph. The
minimal problem is thus obtained polynomially by applying a longest path
algorithm. In TCSP formalism, the corresponding propagation can be represented
from the definition of two operations between constraints (illustrated in Figure 5.1):

– intersection operation, denoted , is defined between two binary constraints
involving the same couple of variables; let 1

ijC : 1
ijij Dxx and 2

ijC : 2
ijij Dxx

be the two constraints; the intersection 213
ijijij CCC is defined by constraint

3
ijij Dxx with 213

ijijij DDD ;

– composition operation, denoted , is defined between two binary constraints
with one common variable: let ikC : ikik Dxx and kjC : kjkj Dxx be the two
constraints; the composition kjikij CCC is defined by constraint

ijij Dxx with } , ,/{ 2121 xxxDxDxxD kjikij .

0 5 10 15

I
J

JI
JI

}]7,5[],2,0[{I , }]8,6[],3,1[{J , }]7,6[],2,1[{JI , }]15,11[],10,6[],5,1[{JI

Figure 5.1. Intersection and composition operations

The following algorithm represents local consistency conditions between any
triplet of variables. Applied to an STP, it is complete. It is equivalent to the Floyd-
Warshall algorithm applied to the potentials graph corresponding to STP.

Function PC-0(P)
PP

 for jik ,, from 1 to n loop

)(kjikijij CCCC

 if ijD then stop (inconsistency)

return P

Algorithm 5.2. PC-0 algorithm for simple temporal problems

110 Production Scheduling

For an STP, this algorithm will help in determining the minimal domain of any
ijC constraint. As a comparison, propagation performed by the less complex

Bellman-Ford algorithm (see Chapter 2) only determines the minimal variable
domains, i.e. constraints of form 0iC and iC0 .

5.2.4. General temporal problems

For general temporal problems, PC-0 is sound (deleted times are really
inconsistent), but it is incomplete. Several runs are usually required to arrive at a
fixed point (problem for which no adjustment of constraint domains is possible). The
idea of executing several runs is used in the PC-1 algorithm, which carries out a
path-consistency propagation [DEC 03] in a numerical TCSP.

Although it improves PC-0 (constraint update is stronger), PC-1 is incomplete
and does not guarantee the detection of an inconsistent problem. In addition, the
application of PC-1 is limited by the fact that it can lead to a large fragmentation of
intervals associated with constraints as illustrated in the following example
[SCH 97].

EXAMPLE.– Three binary constraints ijC : }]50,34[],33,23[],22,0[{ , ikC :

}]22,21[],12,11[],2,1[{ , kjC : }]24,23[],17,16[],1,0[{ . The application of the PC-1

algorithm to update constraint ijC via variable kx results in ijC :

]}4644[],3937[],3634[],2927[],2624[],2323[],2221[],1917[],1311[],31{[,,,,,,,,,, .

Function PC-1(P)
PP

 inconsistency false
repeat

 End true
for jik ,, from 1 to n loop

 if)(kjikijij CCCC

 then)(kjikijij CCCC

 end false
 if ijD then inconsistency true

until end or inconsistency
return P

Algorithm 5.3. Path-consistency in a TCSP

Constraint Propagation and Scheduling 111

In order to avoid this fragmentation problem, Schwalb and Dechter propose two
methods [SCH 97]. The first one relies on a relaxation of binary constraints to
constraints formed from a single interval covering all possible values. For each

constraint }...,...,,{: 1 ijn
ij

k
ijijijij IIIxxC , the relaxation proposed is as follows:

)](max),(min[:)relax(
11

k
ij

n k

k
ij

n k
ijijij IIxxCC

ijij
.

This relaxation makes it possible to go back to an STP on which PC-0
determines minimal constraints. The ULT algorithm (upper-lower tightening) is
based on this relaxation. For an initial P TCSP, its principle follows the following
diagram.

Function ULT(P)
inconsistency false
repeat

 end true
for ji, from 0 to n do (relaxation)

ijC relax(ijC)

P PC-0(P)
for ji , from 0 to n do (P = “intersection” between P and P)

 ijijij CCC

 if ijD then inconsistency true

if PP then end false
PP

until end or inconsistency
 return P

Algorithm 5.4. Path-consistency without domain fragmentation

EXAMPLE.– Relaxations of the three binary constraints from the previous example
are:

{[0,50]}:]}50,34[],33,23[],22,0{[: ijij CC

{[1,22]}:1,22]}2[1,12],1[,2],1{[: ikik CC
{[0,24]}:[23,24]} 6,17],1[],1,0{[: kjkj CC

The application of the PC-0 algorithm on constraint ijC via variable kx results

in ijC :]}46,1{[. The intersection between ijC and ijC results in

ijC :]}46,34[],33,23[],22,1{[.

112 Production Scheduling

A second method for limiting interval fragmentation consists of defining a new
intersection operation between two binary constraints, noted as . As with ,
operation is defined between two binary constraints involving the same pair of
variables.

Let the two binary constraints be 11
2

1
1

1
1

: nijij IIIxxC and

22
2

2
1

2
2

: nijij IIIxxC . Constraint 213
ijijij CCC is defined by the set of

intervals 33
2

3
1 3nij IIIxx , 13 nn , such that

3 3 3
31... , []k k kk n I lb ,ub , where 3

klb and 3
kub are the lower and upper bounds of

intersection 22
2

2
1

3
2nk IIII . By definition, this intersection operation does

not increase the initial number of intervals by constraints but it is not commutative:
1221
ijijijij CCCC . The LPC algorithm (loose path-consistency), based on this

principle, is equivalent to the PC-1 algorithm by replacing by .

EXAMPLE.– From the three previous binary constraints and by applying the LPC
algorithm on constraint ijC using kx :)(kjikijij CCCC , the result is:

4,46]}3[[23,29], ,22],1{[:ijC .

It has been shown in [SCH 97] that the PC-1, ULT and LPC algorithms
determine the same lower and upper bounds for each constraint. The difference
between these algorithms is in the management of “holes” appearing in intervals
associated with the constraints. The PC-1 algorithm causes an increase in the
number of holes in the constraint domains. The ULT algorithm retains the actual
holes already present in constraints whereas the LPC algorithm enlarges them.

5.3. Resource constraint propagation

Only considering resource sharing constraints defines a sequencing problem:
tasks requiring the same resources must be partially – sometimes completely –
sequenced in order for instant global consumption to remain within resource
availability. The consideration of time window constraints reduces the set of
sequencing problem solutions; certain configurations are prohibited, others become
mandatory, which can lead to tightening of task time windows. Thus, there are
propagation rules for resource constraints that we can classify into two methods of
reasoning.

Constraint Propagation and Scheduling 113

The first method requires a prior conflict characterization, or critical sets of
tasks. Sequencing conditions obtained can be propagated [ESQ 87], and lead to a
tightening (or adjustment) [CAR 94] of task time windows.

The second is linked to the concept of energy, helping to make quantitative
methods of reasoning integrating time and resource constraints [ERS 91, LOP 91,
LOP 92, LOP 96]. As with the previous method, this second method of reasoning
can produce sequencing conditions without requiring an analysis of the problem in
terms of critical sets. However, it also makes it possible to prohibit locating a task at
certain time intervals – which would generate a deficit in energetic balance. This
reasoning becomes interesting when some execution characteristics are not
completely known, for example when task durations depend on resources used (see
section 5.5.2).

5.3.1. Characterization of conflicts

In order to characterize potential conflicts for the use of a resource, we determine
critical sets of tasks (called conflict sets in [BEL 82] and forbidden sets in
[BAR 88]). These are smaller subsets of tasks which cannot be executed
simultaneously because of a lack of resources. Since a critical set is minimal,
sequencing two tasks of this set resolves the conflict.

5.3.1.1. Critical sets

DEFINITION.– kTI is a critical set of tasks for a resource k if and only if:

Ii
ki Aa , and

}{\
,

jIi
ki AaIj .

A necessary and sufficient condition for a scheduling to be eligible from a
resource constraint point of view is that all critical sets be resolved. The different
sequencing decisions taken are compatible with each other; the precedence
constraints graph, once updated, must not include any cycle because of anti-
symmetry and transitivity of the relation of precedence between tasks. During
resolution, consistency checking is performed by temporal propagation mechanisms.

EXAMPLE.– Tasks },,,{ DCBA use a resource k available in five copies (5kA),
according to the following terms:

i A B C D

ia 4 3 2 1

114 Production Scheduling

The critical sets of this problem are: },{ BA , },{ CA , and },,{ DCB . As an
example, resolution of the conflict linked to },,{ DCB goes through the choice of
one of the following sequencing decisions:

CB BC DB BD DC CD

5.3.1.2. Recursive search algorithm of critical sets

To make it simple, we will only describe critical set search in the case of a single
resource2. Let E be the list of tasks using the same resource, sequenced by non-
increasing intensity (we denote by][iEa the intensity of the ith task of E):

][][1),(jEiE aaEjiji .

The algorithm develops a binary search tree according to a depth-first search.
Each node is characterized by four elements:

– current list of task E which can still be chosen to develop new critical sets;

– accumulation R of intensities of tasks from E;

– a set I , grouping tasks already chosen;

– accumulation S of intensities of tasks from I.

In a given node, if kASR , then no critical set containing I can be obtained
and this node is not developed. Otherwise, if kAS , then current set I is a critical
set and the node is not developed. Otherwise, we separate the node by creating two
successor nodes, one representing all critical sets obtained by completing I by other
tasks from E or the first at least, 1E , the other representing all critical sets
including I and other tasks from E except 1E .

The exhaustive search for all critical sets of a problem presents an exponential
complexity. Indeed, the space of critical set search is the one for the parts of kT
sets: the size of this space increases in O(kn2). In practice, even though increasing
the problem size does not necessarily lead to an increase in resource capacity, the
increase of the number of critical sets remains polynomial [BAR 88].

2 In order to find all critical sets, we can apply this algorithm to each of the problem’s
resources consecutively. This way (resource by resource) may not be the most efficient in a
multi-resource case (case not considered here, where execution of a task involves several
resources simultaneously). In fact, we may discover the same sets several times if their
criticality is valid for several resources.

Constraint Propagation and Scheduling 115

Initialization
E sort(kT , ia , non-increasing)

E
iaR ; I ; 0S

CRIT_SET(SIREAk ,,,,)

Function CRIT_SET(SIREAk ,,,,)

 if kASR then return
 else

if kAS then return }{I
else

 1I CRIT_SET(11 },1{,},1{\, EEk aSEIaREEA)

 1I CRIT_SET(SIaREEA Ek ,,},1{\, 1)

 return 11 II

Algorithm 5.5. Search algorithm for critical sets

In the case of shop scheduling problems, complexity is naturally decreased
because all critical sets are disjunctive pairs; for machine k , there remains

2/)1(kk nn . In the case of cumulative problems, there can also be critical sets of
two tasks. We group them into maximum disjunctive sets in which propagation rules
for the disjunctive case apply.

5.3.1.3. Maximum disjunctive sets

DEFINITION.– We call maximum disjunctive sets (MDSs) a maximum subset of tasks
D such that each couple of tasks in D is a disjunctive pair.

D tasks must therefore be totally sequenced. MDSs are also called one-machine
problems [CAR 84]. In fact, from a resource sharing standpoint, everything happens
as if each maximum disjunctive set’s tasks were running on the same machine.
When each task only uses one resource, searching for this type of set is relatively
easy. In the case of disjunctive problems, for a resource k , kT is the only MDS.

In the case of cumulative problems, kT can include several MDSs. E is the list
obtained by sorting kT by non-increasing intensity. The algorithm used to determine
MDSs uses the fact that an MDS contains at most one element from rank j in E
such that 2/kjE Aa .

116 Production Scheduling

The sub-list pEMDS ,,10 where p is such that kpEpE Aaa 1 and

kpEpE Aaa 1 corresponds to the first maximum disjunctive set. The others

are obtained by considering each task rank knpp ,,1 and by subtracting
from sub-list pE ,,1 all tasks of rank q so that kpEqE Aaa .

Function MAX_DISJ_SET(kT)

E sort(kT , ia , non-increasing); kn E ; 1p

while knp and kpEpE Aaa 1

 1pp
if 1p

 then pEMDS ,,10 (the first MDS)

1l ; 1pq ; 1pp
while knp and 1q

 while 1q and kpEqE Aaa

 1qq
 if 1q
 then 1ll

 pEqEMDSl ,,1 (the following)
 p 1p

return },,,{ 10 lMDSMDSMDS

Algorithm 5.6. Search algorithm for maximum disjunctive sets

EXAMPLE.– The problem is defined by the following table and by 5kA :

i 1 2 3 4 5 6 7 8

iE a b c d e f g h

ia 4 4 3 3 2 2 1 1

Three MDSs exist: dcbaMDS ,,,0 , ebaMDS ,,1 and fbaMDS ,,2 .
Conflict resolution for this problem requires total sequencing on these three sets at
least. However, there are still other conflicts to be resolved. They are characterized
by sets of three or four tasks: hga ,, , hgb ,, , gec ,, , hec ,, , gfc ,, , hfc ,, ,

ged ,, , hed ,, , gfd ,, , hfd ,, and hgfe ,,, .

Constraint Propagation and Scheduling 117

We now present constraint propagation rules which can facilitate the analysis
and resolution of the scheduling problem by relying on critical sets and maximum
disjunctive sets.

5.3.2. Deductions based on critical sets and MDSs

The following set of rules are based on the search for sequencing conditions
from which we can adjust time windows],[ii dr initially allocated to tasks; we will
represent the current window of task i by the [t i,ci] interval after propagation of
conclusion of these rules.

We will start by presenting a basic rule which can be applied to any type of
problem (disjunctive and cumulative) and that will delete inconsistent decisions
(forbidden precedence) linked to the resolution of critical sets. In the case of
disjunctive problems, we can use rules for much stronger conclusions. We can
search for task pairs which must be sequenced. In a more general way, sequencing
rules applicable to disjunctive problems attempt to demonstrate that a task must not
(or must) be placed before (or after) all tasks in a set (see detection of immediate
selections in [CAR 94] and [BRU 94] also implemented in [NUI 94], edge-finding
rules in [APP 91], not-descendant/not-ascendant sets in [ERS 76a] and the not-
first/not-last problem shown in [BAP 96]). To conclude, we propose a more general
formulation of the forbidden precedence rule; this rule will sequence a pair of tasks
by taking the influence of a set of tasks into consideration.

It is important to note that conclusions of rules are not explicitly stored – except
for the simplest ones (type ji), where the number remains limited – but
immediately interpreted in terms of time window adjustments.

5.3.2.1. Forbidden precedence (FP) – mandatory precedence (MP)

The first sequencing rule (FP1), illustrated in Figure 5.2, consists of discovering
forbidden precedences, denoted as ji , i.e. pairs of tasks (i, j) where time
windows prohibit decision ji . Its formulation is as follows:

if jiij pptc then ji [FP1]

118 Production Scheduling

ip

jp

it

jc

Figure 5.2. Detection of a forbidden precedence relation

Applied to a disjunctive pair (i, j) (represented by critical (i, j)), this rule shows
the inconsistency of one of the possible sequences, which makes the other one
mandatory.

if critical),(ji and ji then ij [MP1]

The forbidden precedence relation leads to a time window adjustment:

if ij then jjii pttt ,max and iijj pccc ,min [A1]

An inconsistency (denoted by) appears if no sequencing is eligible:

if critical)(ji, and ji and ij then [I1]

In practice, rule I1 is not required. The inconsistency linked to contradictory
conclusions ji and ij (obtained by MP1) is propagated using time window
adjustments (obtained by A1) and inevitably leads to a numerical inconsistency.
After a finite number of adjustments, the width of one of the time windows becomes
less than the task duration. Rules FP1, MP1 and A1 define a basic core for the
development of a crossed propagation of time window and resource sharing
constraints in the case of disjunctive problems. The search for all conclusions
allowed by these rules has limited complexity. We show that the application of these
rules accomplishes a bound arc-consistency type propagation [LHO 93, FAR 94],
i.e. a propagation of disjunctive constraints in the form of window boundary
adjustments, without creating holes in the domains of start times.

5.3.2.2. Not-first (NF) – not-last (NL)

Figure 5.3 illustrates a more general rule than FP1. This rule, denoted as NF, is
based on two task subsets, }{ i and S , included in a maximum disjunctive set (must

Constraint Propagation and Scheduling 119

be completely sequenced).)(Slst represents an upper bound from the latest start
time over all eligible S sequences. The formulation of the NF rule is as follows:

if ii ptSlst)(then Si [NF]

In Figure 5.3 time windows for tasks are such that any sequencing placing i
before S tasks is impossible regardless of the sequence chosen for the sequencing
of S .

ip

)(Slst

it

S

Figure 5.3. Detection of a Si type condition

Since all tasks must be sequenced, we can conclude from the NF rule that in any
eligible sequencing, at least one task of S must be placed before i :

if Si then isSs tq [MP2]

This can lead to a domain adjustment of i start time [TOR 00a]:

if isSs tq then ssSsii pttt min,max [A21]

The upper bound)(Slst is established by relaxing constraints of earliest start for
S tasks with the help of the following algorithm:

120 Production Scheduling

Function LST(S)
E sort(S , ic , non-increasing)

][][11 EE pclst

 for k from 2 to E do

][][,min kEkE pclstlst

return lst

Algorithm 5.7. Determination of the latest start time for a set of tasks

Rules NL, MP3 and A22 which are symmetric to NF, MP2 and A21 will not be
discussed in detail. The NL rule demonstrates that a task i cannot be executed after
all tasks of a S set. The relation obtained, iS , will in turn make it possible to
conclude on i sequencing before at least one task of S (rule MP3). The NL rule
involves function)(Seft which determines a lower bound of the earliest completion
time over all eligible S sequences. Adjustment rule A22 updates time ic .

Two O(n2) versions of an algorithm to implement NF/NL rules are available in
[BAP 96, TOR00a]. An O(nlogn) version can now be found in [VIL 05], as well as
other filtering algorithms for the implementation of the rules presented in the
following (edge-finding). Also, it is worth reading [PER 05] where a unified
framework is proposed for local adjustments.

5.3.2.3. Non-insertable (NI) – mandatory last (ML) – mandatory first (MF)

We are again placed in the disjunctive case. Task i is not insertable in S , a
condition denoted by Si (Figure 5.4), if no scheduling will exist accepting a
sequence in the form }{ iS , S, , },{\SS . Such schedules
are necessarily part of the interval]max,min[s

Ss
s

Ss
ct :

if
Ss

issSs
s

Ss
pptc minmax then Si [NI]

Constraint Propagation and Scheduling 121

ip

S

sSs
tmin s

Ss
cmax

Figure 5.4. Detection of a Si type condition

Task i must therefore be executed either before or after all S tasks. If in
addition one of the NL or NF rules triggers, the conclusion is very strong: by
combining NI and NF (respectively NL), we can conclude that i must be in last (or
first) position in relation to the tasks of S :

if Si and Si then iS [ML]

if Si and iS then Si [MF]

Since the tasks of S must be sequenced, we deduct the following adjustments:

if iS then Seft,tt ii max [A31]

if Si then Slstcc ii ,min [A32]

5.3.2.4. Generalized forbidden precedence

One last rule enables the sequencing of two tasks in the disjunctive case.
Consider two subsets S and },{ ji . To be eligible, any sequence made up of the
tasks of },{ jiS meeting relation ji must end at date s

jSs
c

}{
max at the latest.

Similarly, this type of sequence begins at date siSs
t

}{
min at the earliest. In this way,

fulfillment duration of any sequence meeting ji is necessarily equal to or lower
than siSs

s
jSs

tc
}{}{

minmax . Otherwise, we conclude that any sequence meeting the

ji relation is forbidden:

122 Production Scheduling

if
},{}{}{ jiSs
ssiSs

s
jSs

ptc minmax then ji [FP2]

The conclusion of FP2 can be reused (see rule MP1) to demonstrate a relation of
mandatory precedence as well as possible adjustments that it implies (see rule A1).
This rule, which is completely new to our knowledge, offers a generalization of FP1
(we do get to FP1 by writing S in FP2).

5.3.3. Deductions based on the energetic balance

Conclusions related to energetic reasoning use resource usage balances over
certain time intervals, which lead to the identification and calculation of different
energies [ERS 91, LOP 91, LOP 92, LOP 96]. Over a time interval, energy can
actually be provided by a resource or required by a task. In this last case, we will
separately observe its minimum consumption from its maximum consumption over
that time interval.

5.3.3.1. Available energy – required energy

Maximum available energy that a resource k provides over a ct , time
interval corresponds to the product of the length of the interval by the capacity
(constant) kA of the resource:

tcAW kk [5.1]

For a task i located in time (it is fixed), the energy required by (or consumption

of) i over , denoted iw , is written as (Figure 5.5):

ttccaw iiii ,max,min,0max [5.2]

Constraint Propagation and Scheduling 123

ia

it ic

t c

0 2 11 14

8

12

6

Figure 5.5. Consumptions of task i (14,0, ii ct , 6ip , 2ia) over time period

11,2 for different it values

5.3.3.2. Necessary feasibility conditions

Now that available and required energies are defined, we can formulate a
condition that is both necessary and sufficient for the availability of scheduling
based on energetic balances. A given scheduling { niti ,,1, } is feasible if and
only if:

k
Ti

i Ww
k

, [5.3]

However, this condition is not directly usable because before resolution, it , ic

and iw are variables. We can, however, deduct from equation [5.2] lower and
upper bounds by considering the time window constraint of i . The minimum energy
required by i over , denoted as iw , is calculated by examining task consumption
over the interval when it is pushed back in extreme positions of its window; we also
call this compulsory consumption:

iiiii tctctcpaw ,,,min,0max [5.4]

For a maximum energy iw formula, we must replace ic with ic and it with

it in equation [5.4].

124 Production Scheduling

EXAMPLE.– In the previous example (Figure 5.5), we have:
632iii tcaw and 1262iii paw .

Due to the compulsory consumption, we can formulate a sufficient problem
inconsistency condition:

if
kTi

ik wW tq then [I2]

5.3.3.3. Relevant intervals for feasibility analysis

It is possible to list in)(2nO all relevant intervals for the feasibility analysis.
They can be summarized in three date sets ([LOP 91, BAP 98]):

},,1,{},,1,{},,1,{1 nicnitnitO iii

},,1,{},,1,{},,1,{2 nitnicnicO iii

},,1,{ ni-tctO(t) ii

These three sets correspond to discontinuities of the energy consumption curve
gradient when the bounds of intervals under study vary [LOP 91]. Feasibility
analysis of scheduling is then carried out by studying energetic balances over

ct , intervals where bounds are in one of the three Cartesian products: 21 OO ,

11),(OttOO and 22,)(OtOtO .

NOTE.– In the search for a solution to a cumulative problem, an experimental study
[BAP 98] of the necessary satisfiability tests and corresponding adjustments shows
that energetic reasoning is too time consuming compared to existing procedures (for
example [DEM 92] or [BRU 98]). We can decide to limit intervals of study to the
Cartesian product of },,1,{},,1,{'1 nitnitO ii by

},,1,{},,1,{'2 nicnicO ii , which results in losing some conclusions.

5.3.3.4. Adjustments

Apart from rule I2, which concludes to global inconsistency, there are other
statements of property [5.3] in the form of propagation rules implying an adjustment
of domains.

Constraint Propagation and Scheduling 125

For a given task i and an interval , let
}{\ iTj

jki
k

wWS be the

maximum available energy for executing i over considering compulsory
consumption of other kT tasks:

if ii wSi tq, then there are forbidden start dates for i [FD1]

Dates leading to a larger consumption than iS are inconsistent and must be

deleted. Knowing that energy iw recognizes ii pa as an upper bound, that i cannot
be interrupted and that its intensity is constant during execution, we can add rule

FD1. In the case where
i

i
i a

S
p , a part of the task,

i

i
i a

S
p , must be maintained

apart from . This results in a forbidden value interval for it :

[,]
i
i

i
i
i

a
Scpa

St . The removal of values in an initially allowed domain],[ii tt ,

can create an increase of it , a decrease of it , or both (creating a hole).

Since the updating procedure can be executed in)1(O and given)(2nO
intervals to consider for n tasks to be updated, all updating resulting from the
application of rule FD1 can be carried out in)(3nO .

5.3.3.5. Sequencing relations

Another application of energetic reasoning involves the sequencing of two tasks.
For a given pair of tasks),(ji and an interval , let

},{\
,

jiTl
lkji

k

wWS)(be the

maximum available energy to execute i and j over considering compulsory
consumption of other tasks of kT . We have the following rule:

if jiji wwSji),(tq,,

then there are forbidden pairs of execution dates for i and j [FD2]

In other words, if i and j both consume over , they must be separated by a
minimum distance. However, we cannot specify in which relative position i and j
are. This rule does not allow a direct interpretation in terms of time window
adjustments. For this purpose, we must consider additional hypotheses.

126 Production Scheduling

First, we must limit ourselves to disjunctive problems and choose intervals
such that consumptions of both tasks when ji are maximal, for example

],[ji ct ; we can then conclude to a new forbidden precedence relation (Figure

5.6):

if
},{\ jiTl
ljiij

k

wpptc then ji [FP3]

ip

},{\ jiTl
l

k

w

it

jc

jp

Figure 5.6. New forbidden precedence relation

FP3 dominates FP1. It can be triggered in cases where FP1 would not conclude.
On the other hand, if FP1 is triggered, FP3 will as well.

On the other hand, by choosing intervals of the form j
iJ

j
J

ct
ii

 max min
}{

, with

},/,,1{ ijii cttijnjJ , another statement of rule FD2 helps in

finding the domain adjustment produced by rule A32 (sequencing of i before all
tasks of iJ).

The energetic reasoning provides rules covering powerful and well-known
propagation rules (disjunction pairs, immediate selections, not-descendant/not-
ascendant sets). It is very general, since it also makes it possible to provide rules
deducing some forbidden start times (in its most general expression, rule FD1 leads
to the creation of “holes” in the domain of it). This has been proven to be of great
interest for various scheduling problems (see for example [TER 06]).

Constraint Propagation and Scheduling 127

5.4. Integration of propagation techniques in search methods

The use of constraint propagation mechanisms within a backtracking algorithm
(see section 5.1.2) limits the search space for solution. However, a compromise still
needs to be made. In fact, powerful propagation mechanisms in terms of solution
space reduction can simplify the resolution (it can even in certain cases be carried
out with no backtracking), but can sometimes be expensive in terms of calculation
time. In addition, absence of propagation mechanisms leads to useless explorations
of solution space and results in numerous backtrackings. If we examine the different
types of propagation rules previously described, we observe that these rules
manipulate the main variables of the problem { it } and/or { ic } where they try to
filter the domain, symbolic relations (type ji), but also, in the case of energetic

reasoning, intermediate variables (quantities iw).

A first resolution algorithm consists of limiting variables used only for temporal
variables it and to progressively instantiate them. At each step, a decision is
propagated as far as possible before moving on to the following variable. The
resulting search tree contains as many levels as there are temporal variables. In each
node, a variable is selected (the order of variable choices is not set beforehand); we
create as many successor nodes as there are possible values in the domain of the
chosen variable.

A second resolution algorithm favors the resolution of resource utilization
conflicts and is meant to resolve the problem by sequencing conflicting tasks. In this
case, the search tree developed is different from the previous one. It is based on
sequencing variables and includes as many levels as there are critical sets. For
example, in the disjunctive case a binary ijx variable represents possible sequences
between two conflicting tasks i and j (jixij 1 and ijxij 0).

Other resolution schemas can be considered. In the disjunctive case for example,
we can consider task ranks in the sequence on the machine as a variable set.

In the following, we present control strategies for the development of a
backtracking algorithm based on propagation mechanisms. These strategies are
explained through different choices involving backtracking techniques, variable and
value selection heuristics and the selection and control of propagation rules. One last
point is dedicated to the use of this algorithm for the search for optimal solutions.

128 Production Scheduling

5.4.1. General improvement techniques of chronological backtracking

In the general resolution schema with chronological backtracking, step l of the
resolution is characterized by the search for a consistent instantiation ll vx
considering already completed instantiations { 11 vx , 22 vx , … , 11 ll vx }.
If there is some inconsistency at step l (no value can be attributed to lx), the last
completed instantiation (11 ll vx) is called into question, although this is not
necessarily involved in the failure detected.

Different “intelligent” backtracking techniques can be imagined [DEC 90, TSA
93, DEC 03]. The backjumping technique consists of returning to the previous most
recent step k (1lk), such that there is at least one constraint involving both
variables lx and kx . This technique is all the more efficient the lower the number
and arity of constraints (sparse constraint graph not very dense). Unfortunately, in
the case of scheduling problems, resource sharing constraints create a strong pairing
between temporal variables, in particular cumulative constraints linking temporal
variables in the set of tasks sharing a resource. This technique can become
appropriate if we can decompose the scheduling problem in order to decrease the
constraint arity involved in sub-problems.

A second technique is based on recording failures encountered during
resolution in the constraint form in order to avoid reproducing them. This technique,
called constraint recording (or nogood constraints), consists of storing causes
for a failure during resolution by explaining implicit constraints in the initial
problem formulation. In order to do this, when an inconsistency appears for
the instantiation of a variable lx , we search among all previous instantiations
{ 11 vx , 22 vx , … , 11 ll vx }, the subsets liable to be the cause of this
failure. These subsets are then stored in the form of constraints to keep the failure
from occurring again. For efficiency purposes, we generally only store constraints
with low arity (one or two variables).

This constraint recording technique is more powerful than backjumping for
dense constraint graphs. On the other hand, only storing low arity constraints is
limiting for scheduling problems for which pairing between tasks is high since the
reasons for a failure during resolution cannot be translated in the form of binary
constraints [SAD 96].

Constraint Propagation and Scheduling 129

5.4.2. Heuristics for variable and value ordering

Variable and value ordering heuristics have an important impact on the
performance of solution search procedures [SMI 93, BAP 95, SAD 96]. These
heuristics can be static or dynamic (based on propagation results, for example). As
an example, general variable ordering heuristics select the most constrained variable
first (the one for which there is the least choice of values) or the most restrictive
variable (the one linked to the highest number of other variables).

In the disjunctive problem case (job shop) for which problem resolution is based
on the search for a sequencing of disjunctive tasks, Smith and Cheng define a series
of heuristics based on temporal flexibility associated with different sequencing
decisions [SMI 93]. These are task selection heuristics based on the temporal slacks
linked to a sequencing: jiij pptcjislack ; they are associated with rules

of conflict-based constraint analysis, notably the MP rule. This heuristic selects the
pair of tasks to sequence ji, ; it is identified by the pair where one of the sequences
gives the minimum margin:

uvvuijji
vu

slack,slackminminslack,slackmin
,

 [5.5]

for all unsequenced pairs vu, .

For this selected pair ji, , we choose the sequencing with the highest slack, for
example ij if jiij slackslack .

Experienced without allowing backtracking (which does not guarantee the
production of a feasible solution), this heuristic is called “min-slack/max-slack” and
obtains very good results compared to approaches implementing backtracking
techniques either chronological or intelligent (for 60 randomly generated problems,
the heuristic, programmed in C, resolves 56 problems in an average CPU time of
0.2 s per problem resolved on a Decstation 50003). The results are also far superior
to those obtained by more traditional priority rules used for tardiness minimization
(Earliest Due Date, Cost OVER Time, Apparent Tardiness Cost; see Chapter 6).

In a more general way, in the application of rules involving sets of tasks, certain
tasks are sorted (rules MF and ML), while others are not (including those handled by
rules NF and NL). For these, an indeterminism remains and a choice must be made

3 The authors propose refining the method by introducing a second heuristic for sequencing
tasks with equal priority by min-slack/max-slack. They then resolve all problems generated in
a short time period (0.3 seconds per problem resolved).

130 Production Scheduling

for the tasks to select and the way in which to place them for efficient resolution. By
the application of the NF and NL rules, we identify tasks which can be first or last.
Baptiste et al. [BAP 95] propose different heuristics according to whether we prefer
to always select a first task, a last task or decide to apply dynamic criteria such as
the number of tasks which can be executed first or last. In this way, they indicate
that it is better to select a task belonging to the smallest possible-first or possible-last
group, in order to limit the number of branching in the search tree. For the selection
of a possible first task, a rule based on earliest start time gives the priority on the
selection of tasks; latest start time intervenes to break ties (the global rule is called
EST-LST). For a possible-last task, the LFT-EFT rule (latest finishing time-earliest
finishing time) is the rule applied.

5.4.3. Strategies for applying propagation rules

Propagation mechanisms can be applied during resolution when variables are
instantiated in order to prune the search tree. The simplest application principle of
propagation mechanisms is forward checking consisting of propagating the
instantiation value which was only performed on variables linked to the current
variable by a constraint (not yet instantiated). Propagating each instantiation to all
variables of the problem can also be considered. In this case, we speak of full
lookahead or Maintaining Arc-Consistency (MAC). In the CSP domain, propagation
rules considered for resolution algorithms are only rarely meant for the most detailed
explanation of all constraints of a problem, except for simple problems for which
this explanation guarantees a resolution algorithm with no backtracking. In practice,
for temporal problems, this means that we do not try to explain new constraints as
can be the case with the Floyd-Warshall algorithm and that we limit ourselves to the
Bellman-Ford algorithm which restricts variable domains.

In a shop scheduling problem, it is important to develop a relevant strategy for
the application of propagation rules. The strategy retained in [BAP 95] and
[TOR 00a] consists of selecting the resource with the lowest slack, where a resource
slack is defined by the difference between offer and demand for the use of this
resource in the time window of each unsequenced task. The propagation rules are
then applied on this resource until there is no longer a deduction, before moving on
to the next resource in the decreasing slack order.

5.4.4. Use of a backtracking algorithm

Criteria optimization can be carried out with the help of a binary search
procedure using a backtracking algorithm. For example, for makespan minimization,
the optimization procedure determines an initial scheduling horizon H located in

Constraint Propagation and Scheduling 131

the middle of trivial lower and upper bounds deducted by a (meta)heuristic. This
horizon value is used as scheduling makespan and restricts completion times for the
different tasks of the problem. For this horizon H , the optimization procedure uses
a backtracking algorithm to determine a solution. If this algorithm does not detect
global inconsistency of the problem over horizon H , i.e. if a solution is found, the
value of H is then used as the new upper bound; otherwise the lower bound
becomes 1H . The optimization procedure continues by determining a new H
value by dichotomy. The optimum is reached when the lower and upper bounds are
equal.

Based on this principle, we can cite results obtained for the resolution of
cumulative problems ([BAP 98], section C.3). These results show that propagation
rules based on energetic reasoning are all the more powerful as the problem is highly
cumulative (i.e. with a low disjunction pair percentage compared with the total
number of pairs of tasks). For 31 highly cumulative problems generated by Baptiste
and Le Pape (disjunction percentage of 0.33), the energetic reasoning divides the
number of backtracks by 45 and the CPU time necessary to find an optimal solution
by 7. However, for Alvarez problems (disjunction percentage of 0.82), Patterson
(0.67) or Kolisch (0.56), the results may seem disappointing. In addition, excellent
results have been obtained for the hybrid flow shop resolution (see Chapter 9).

5.5. Extensions

5.5.1. Preemptive problems

A hypothesis which may be interesting to consider is that linked to the
uninterruptibility of tasks. We often estimate that this preemption should not be
considered in production and that it specifically addresses computer scheduling
problems. We can however consider preemption to be the relaxation of a non-
preemptive problem making it possible to implement new methods of reasoning.
New necessary conditions for the existence of a feasible solution for cumulative and
preemptive scheduling are established in [BAP 98, BAP 01]. These conditions
involve the resolution of a partially or fully elastic4 problem, a definition which is
based on the notion of energy from section 5.3.3 extended to the preemptive case.

4 In a fully elastic problem, we can change the task at will (since the energy required remains
constant) as long as we do not violate resource capacity. In a partially elastic problem, we
restrict the previous change by imposing a higher energy consumption limit over a given time
interval.

132 Production Scheduling

When we try to minimize total time, considering preemption leads to adjustment
formulae of the earliest completion time for tasks (instead of the earliest start time).
The FD1 conclusion (see section 5.3.3.4) would result in the new constraint:

i
i

i
i p

a
S

cc

In [BAP 01], we find:

tctcpa
S

cc ii
i
i

i ,,min,0max .

This last formula is more general since it ensures a lower bound of the
completion time in the preemptive case. In the non-preemptive case, it is lower since
the term tctcp ii ,,min is always less than or equal to ip . The same
earliest start time is found in several cycles by applying the rule several times over
the same interval.

In the partially elastic case, it has been shown that for the determination of
intervals , the idea is to consider the Cartesian product of the earliest start times
and latest completion times sets to completely obtain all relevant intervals of study
in order to decide on the existence of a feasible schedule.

5.5.2. Consideration of allocation constraints

Problem statement

In this section, scheduling problems considered in section 5.1.3 are extended to
problems for which assignment of tasks to resources is not set beforehand. A set of
resources RRi , able to complete the task, is associated with each task i . For
each k resource of iR , the duration (processing time) of task i is denoted by kip ,

and can be variable:],[,,, kikiki ppp , or set: kikiki ppp ,,, . As with parallel

machine problems, we can separate problems according to resource characteristics.
When resources are identical, the duration of a task does not vary according to the
resource to which it is assigned. When resources are uniform, the duration varies
proportionally based on the allocated resource; then on independent resources, the
duration of a task is ordinary according to the resource used for its execution.

Constraint Propagation and Scheduling 133

Efficient algorithms exist for processing scheduling and allocation problems
separately, but they do not guarantee finding a relevant solution for the complete
problem. In this context of integrated resolution of scheduling and allocation
problems, a certain number of studies were carried out. We can for example cite
studies on flow shops with allocation constraints, also called hybrid flow shops (see
Chapter 9) and job shops with allocation constraints also called flexible job shops
[BRA 93, HUR 94]. Results on the complexity of such problems are presented in
[BRU 97]. More general scheduling problems, including allocation constraints, have
also been studied, for example multiresource scheduling problems where resources
can be cumulative and production routes can be non-linear, and considering (or not)
setup times [KOL 95, BIL 96, DAU 98, ART 99], multiresource job shop problems
[NUI 94], or flexible job shop problems integrating transportation constraints
[PAU 95]. In most cases, the methods used are exact tree search methods or
approximate methods such as metaheuristics.

To our knowledge, the only studies based on constraint propagation techniques
for scheduling and allocation problems are those from Nuijten, and Huguet and
Lopez. In [NUI 94], with each task and allocation possibility, we associate a time
window. Developed constraint propagation techniques are based on traditional
scheduling propagation mechanisms and make it possible to restrict task time
windows; this can lead to the removal of allocation choices. A propagation rule
dedicated to allocation constraints is also implemented; it is based on a resource
aggregation to which different tasks can be allocated to a cumulative resource. For
example, consider three tasks, kji ,, which can be assigned either on resource 1r or
on resource 2r . In the disjunctive case, at most two tasks may be executed
simultaneously by set of resources },{ 21 rr . This set of resources is thus seen as an

aggregated resource with a capacity of 2 and mechanisms of cumulative resource
propagation based on NF and NL rules (see section 5.3) are proposed. In [HUG 99],
allocation choices are interpreted in terms of possible task duration constraints. This
interpretation brings the scheduling and allocation problem back to a scheduling
problem in which task durations are variable. Constraint propagation mechanisms
similar to those used in [NUI 94] are implemented. In addition, specific rules based
on energetic reasoning are proposed for the propagation of allocation constraints
[HUG 00].

5.6. Conclusion

The object of this chapter was to present major constraint propagation techniques
for the resolution of scheduling problems. These techniques characterize the set of
feasible solutions and offer a formal context for addressing these problems from a
decision support context.

134 Production Scheduling

We first focused on the purely temporal aspect of the scheduling problem.
General results from the study of constraint satisfaction problems were exposed. For
simple temporal constraints, there are complete propagation algorithms with
acceptable complexity based on the search for the longest paths in the constraint
graph. When we must deal with more sophisticated temporal constraints (interval
disjunction), we find incomplete reasoning.

We then considered problems in which tasks must respect temporal and resource
sharing constraints simultaneously. We have shown a range of constraint analysis
rules based on conflicts between tasks for the use of resources and rules involving
energetic balances, where satisfaction is the source of propagations over the absolute
or relative positioning of tasks. We have studied extensions of propagation rules for
problems where task interruption is authorized or assignment of tasks to resources is
not entirely set.

Finally, we discussed control strategies for the development of a backtracking
algorithm involving propagation mechanisms. This can help in the quick discovery
of global inconsistency in the problem formulation, to simplify the resolution and to
search for an optimal solution.

To conclude, we should note that this presentation is not exhaustive. For
example, there are powerful propagation techniques for the processing of disjunctive
scheduling problems. They are known as global operations or shaving [CAR 94,
MAR 96]. A local constraint is raised (instantiation of a start time or sequencing
decision) and corresponding adjustments are propagated over the whole problem. If
inconsistency is detected, the negation of the constraint raised must be checked and
is thus added to the problem definition. We can consider a hybrid use of shaving
type propagation techniques and local search procedures (notably the Tabu method)
to enable the efficient extraction of local optimas and solve large job-shop problems
(15 tasks-10 machines and beyond) [TOR 00b].

5.7. Bibliography

[ALL 83] ALLEN J.F., “Maintaining knowledge about temporal intervals”, Communications
of the ACM, vol. 26, p. 832-843, 1983.

[APP 91] APPLEGATE D. and COOK W., “A computational study of the job-shop
scheduling problem”, ORSA Journal on Computing, vol. 3, no. 2, p. 149-156, 1991.

[ART 99] ARTIGUES C. and ROUBELLAT F., “Real time multi-resource shop floor
scheduling with setup times”, International Conference on Industrial Engineering and
Production Management (IEPM-99), vol. 2, p. 127-136, 1999.

Constraint Propagation and Scheduling 135

[BAP 95] BAPTISTE P., LE PAPE C. and NUIJTEN W., “Constraint-based optimisation and
approximation for job-shop scheduling”, 14th IJCAI, Montreal, Canada, 1995.

[BAP 96] BAPTISTE P. and LE PAPE C., “Edge-finding constraint propagation algorithms
for disjunctive and cumulative scheduling”, UK Planning and Scheduling SIG Meeting,
Liverpool, 1996.

[BAP 98] BAPTISTE P., A theoretical and experimental study of resource constraint
propagation, Doctoral Thesis, Compiègne University of Technology, 1998.

[BAP 01] BAPTISTE P., LE PAPE C. and NUIJTEN W., Constraint-based Scheduling,
Kluwer Academic Publishers, Boston, 2001.

[BAR 88] BARTUSCH M., MÖHRING R.H. and RADERMACHER F.J., “Scheduling
project networks with resource constraints time windows”, Annals of Operations
Research, vol. 16, p. 201-240, 1988.

[BEL 82] BELLMAN R., ESOGBUE A.O. and NABESHIMA I., Mathematical Aspects of
Scheduling and Applications, Pergamon Press, Oxford, 1982.

[BEL 89] BEL G., BENSANA E., DUBOIS D., ERSCHLER J. and ESQUIROL P., “A
knowledge-based approach to industrial job-shop scheduling”, in Knowledge-based
Systems in Manufacturing, A. Kusiak (ed.), p. 207-246, Taylor & Francis, 1989.

[BIL 96] BILLAUT J.-C. and ROUBELLAT F. “Characterization of a set of schedules in a
multiresource context”, Journal of Decision Systems, vol. 5, no. 1-2, p. 95-109, 1996.

[BRA 93] BRANDIMARTE P., “Routing and scheduling in a flexible job shop by tabu
search”, Annals of Operations Research, vol. 41, p. 157-183, 1993.

[BRU 94] BRUCKER P., JURISH B. and KRÄMER A., “The job shop scheduling problem
and immediate selections”, Annals of Operations Research, vol. 50, p. 73-114, 1994.

[BRU 97] BRUCKER P., JURISH B. and KRÄMER A., “Complexity of scheduling
problems with multipurpose machines”, Annals of Operations Research, vol. 70, p. 57-73,
1997.

[BRU 98] BRUCKER P., KNUST S., SHOO A. and THIELE O., “A branch and bound
algorithm for the resource-constrained project scheduling problem”, European Journal of
Operational Research, vol. 107, p. 272-288, 1998.

[BRU 02] BRUCKER P., “Scheduling and constraint propagation”, Discrete Applied
Mathematics, vol. 123, p. 227-256, 2002.

[CAR 84] CARLIER J., Problèmes d’ordonnancement à contraintes de ressources:
algorithmes et complexité, State Doctoral Thesis, Paris VI University, 1984.

[CAR 94] CARLIER J. and PINSON E., “Adjustment of heads and tails for the job-shop
problem”, European Journal of Operational Research, vol. 78, p. 146-161, 1994.

[CAS 95] CASEAU Y. and LABURTHE F., “Improving branch and bound for jobshop
scheduling with constraint propagation”, 8th Franco-Japanese – 4th Franco-Chinese
Conference on Combinatorics and Computer Science, M. Deza, R. Euler and Y.
Manoussakis (eds.), Brest, France, 1995.

136 Production Scheduling

[DAU 98] DAUZÈRE-PÉRÈS S., ROUX W. and LASSERRE J.B., “Multi-resource shop
scheduling with resource flexibility”, European Journal of Operational Research,
vol. 107, p. 289-305, 1998.

[DAV 87] DAVIS E., “Constraint propagation with interval labels”, Artificial Intelligence,
vol. 32, no. 3, p. 281-331, 1987.

[DEC 90] DECHTER R., “Enhancement schemes for constraint processing: backjumping,
learning and cutset decomposition”, Artificial Intelligence, vol. 41, p. 273-312, 1990.

[DEC 91] DECHTER R., MEIRI I. and PEARL J., “Temporal constraint networks”, Artificial
Intelligence, vol. 49, p. 61-95, 1991.

[DEC 03] DECHTER R. Constraint Processing, Morgan Kaufmann, San Francisco, 2003.

[DEM 92] DEMEULEMEESTER E. and HERROELEN W., “A branch and bound procedure
for the multiple resource-constrained project scheduling problem”, Management Science,
vol. 38, no. 12, p. 1803-1818, 1992.

[DIN 90] DINCBAS M., SIMONIS H. and VAN HENTENRYCK P., “Solving large
combinatorial problems in logic programming”, Journal of Logic Programming, vol. 8,
no. 1-2, p. 74-94, 1990.

[DOR 02] DORNDORF U., Project Scheduling with Time Windows, Physica-Verlag,
Heidelberg, 2002.

[ERS 76a] ERSCHLER J., Analyse sous contraintes et aide à la décision pour certains
problèmes d’ordonnancement, State Doctoral Thesis, Paul Sabatier University, Toulouse,
1976.

[ERS 76b] ERSCHLER J., ROUBELLAT F. and VERNHES J.-P., “Finding some essential
characteristics of the feasible solutions for a scheduling problem”, Operations Research,
vol. 24, no. 4, p. 774-783, 1976.

[ERS 80] ERSCHLER J., ROUBELLAT F. and VERNHES J.-P., “Characterizing the set of
feasible sequences for n jobs to be carried out on a single machine”, European Journal of
Operational Research, vol. 4, no. 3, p. 189-194, 1980.

[ERS 91] ERSCHLER J., LOPEZ P. and THURIOT C., “Raisonnement temporel sous
contraintes de ressources et problèmes d’ordonnancement”, Revue d’Intelligence
Artificielle, vol. 5, no. 3, p. 7-36, 1991.

[ESQ 87] ESQUIROL P., Règles et processus d’inférence pour l’aide à l’ordonnancement de
tâches en présence de contraintes, Doctoral Thesis, Paul Sabatier University, Toulouse,
1987.

[FAR 94] FARGIER H., Problèmes de satisfaction de contraintes flexibles: application à
l’ordonnancement de production, Doctoral Thesis, Paul Sabatier University, Toulouse,
1994.

[FOX 83] FOX M.S., Constraint-directed search: A case study of job-shop scheduling, PhD
Thesis, Carnegie Mellon University, 1983.

Constraint Propagation and Scheduling 137

[HUG 99] HUGUET M.-J. and LOPEZ P., “An integrated constraint-based model for task
scheduling and resource assignment”, First International Workshop on Integration of AI
and OR techniques in Constraint Programming for Combinatorial Optimization Problems
(CP-AI-OR’99), Ferrara, Italy, 1999.

[HUG 00] HUGUET M.-J. and LOPEZ P., “Mixed task scheduling and resource allocation
problems”, Second International Workshop on Integration of AI and OR techniques in
Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR’2000),
Paderborn, Germany, 2000.

[HUR 94] HURINK J., JURISCH B. and THOLE M., “Tabu search for the job shop
scheduling problem with multipurpose machines”, OR Spektrum, vol. 15, p. 205-215,
1994.

[KOL 95] KOLISCH R., “Project scheduling under resource constraints”, Production and
Logistics, Physica Verlag, Heidelberg, 1995.

[LEP 91] LE PAPE C., Constraint propagation in planning and scheduling, Technical report,
CIFE, Stanford University, 1991.

[LEP 94] LE PAPE C., “Constraint-based programming for scheduling: an historical
perspective”, Working Notes of the Operations Research Society Seminar on Constraint
Handling Techniques, London, 1994.

[LHO 93] LHOMME O., “Consistency techniques for numeric CSPs”, 13th IJCAI, p. 232-
238, Chambéry, France, 1993.

[LOP 91] LOPEZ P., Approche énergétique pour l’ordonnancement de tâches sous
contraintes de temps et de ressources, Doctoral Thesis, Paul Sabatier University,
Toulouse, 1991.

[LOP 92] LOPEZ P., ERSCHLER J. and ESQUIROL P., “Ordonnancement de tâches sous
contraintes: une approche énergétique”, Automatique-Productique-Informatique
Industrielle, vol. 26, no. 5-6, p. 453-481, 1992.

[LOP 96] LOPEZ P. and ESQUIROL P., “Consistency enforcing in scheduling: A general
formulation based on energetic reasoning”, 5th International Workshop on Project
Management and Scheduling, p. 155-158, Poznan, Poland, 1996.

[LOP 03] LOPEZ P., Approche par contraintes des problèmes l’ordonnancement et
d’affectation : Strucures temporelles et mécanismes de propagation, Habilitation à Diriger
des Recherches, Institut National Polytechnique de Toulouse, 2003.

[MAR 96] MARTIN P. and SCHMOYS D.B., “A new approach to computing optimal
schedules for the job-shop scheduling problem”, 5th Conference on Integer Programming
and Combinatorial Optimization, Vancouver, British Columbia, 1996.

[MEI 96] MEIRI I., “Combining qualitative and quantitative constraints in temporal
reasoning”, Artificial Intelligence, vol. 87, p. 343-385, 1996.

[NUI 94] NUIJTEN W., Time and resource constrained scheduling – a constraint satisfaction
approach, Doctoral Thesis, Eindhoven University of Technology, 1994.

138 Production Scheduling

[PAU 95] PAULLI J., “A hierarchical approach for the FMS scheduling problem”, European
Journal of Operational Research, vol. 86, p. 32-42, 1995.

[SAD 96] SADEH N. and FOX M.S., “Variable and value ordering heuristics for the job shop
scheduling constraint satisfaction problem”, Artificial Intelligence, vol. 86, p. 1-41, 1996.

[SCH 97] SCHWALB E. and DECHTER R., “Processing disjunctions in temporal constraint
networks”, Artificial Intelligence, vol. 93, p. 29-61, 1997.

[SCH 98] SCHWALB E. and VILA L., “Temporal Constraints”, Constraints: An
International Journal, vol. 2, p. 129-149, 1998.

[SMI 93] SMITH S. and CHENG C., “Slack-based heuristics for constraint satisfaction
scheduling”, AAAI-93 (American Association for Artificial Intelligence), p. 139-144,
Washington, 1993.

[TER 06] TERCINET F., NERON E. and LENTE C., “Energetic reasoning and bin-packing
problem, for bounding a parallel machine scheduling problem”, 4OR, vol. 4, p. 297-317,
2006.

[TOR 00a] TORRES P. and LOPEZ P., “On not-first/not-last conditions in disjunctive
scheduling”, European Journal of Operational Research, vol. 127, no. 2, 2000.

[TOR 00b] TORRES P. and LOPEZ P., “Overview and possible extensions of shaving
techniques for Job-Shop problems”, Second International Workshop on Integration of AI
and OR techniques in Constraint Programming for Combinatorial Optimization Problems
(CP-AI-OR’2000), Paderborn, Germany, 2000.

[TSA 93] TSANG E.P.K., Foundations of Constraint Satisfaction, Academic Press Ltd.,
London, 1993.

[VAN 94] VAN HENTENRYCK P., “Scheduling and packing in the constraint language
CC(FD)”, in Intelligent Scheduling, M. Zweben and M.S. Fox (eds.), Morgan Kaufmann,
San Francisco, 1994, p. 137-167.

[VIL 86] VILAIN M. and KAUTZ H., “Constraint propagation algorithms for temporal
reasoning”, AAAI-96 (American Association for Artificial Intelligence), p. 377-382,
Philadelphia, PA, 1996.

[VIL 05] VILIM P., BARTAK R., CEPEK O., “Extension of O(nlogn) filtering algorithms
for the unary resource constraint to optional activities”, Constraints: An International
Journal, vol. 10, no. 4, 2005.

Chapter 6

Simulation Approach

6.1. Introduction

This chapter focuses on presenting the “simulation” approach, a scheduling
problem resolution approach widely used in a number of manufacturing software
packages dedicated to this type of problem. This approach is part of the class of
“heuristic” methods. It considers a large number of constraints but not all those
encountered in the scheduling problem resolution. It does not directly consider
global criteria. It is configurable and we will see that it is possible to characterize
parameter choices which are best adapted to certain situations and to obtain “good”
solutions in most cases. It is relatively easy to implement. We may consider its
iterative use for improving the quality of the proposed solution or to evaluate the
variation effects of certain characteristics of the problem over results obtained.

This chapter is made up of five parts:

– in section 6.2, we quickly present manual resolution procedures still used and
their possible evolutions considering results presented in the previous chapters;

– section 6.3 focuses on presenting discrete event simulation: the different
modeling elements inherent to this technique and corresponding resolution methods;

– in section 6.4, we show how discrete event simulation can be used for building
projected schedules, or for real-time decision support;

– section 6.5 discusses priority rules: classifications, relations between (local)
rules and (global) performance criteria, support for the choice of rules;

Chapter written by Gérard BEL and Jean-Bernard CAVAILLÉ.

140 Production Scheduling

– in section 6.6, we quickly present computer tools for the implementation of
such an approach.

6.2. Heuristic resolution (greedy) procedures

6.2.1. Limits of the basic method

Local approach

Chapter 2 has shown that we know methods for determining an optimal schedule
in terms of different types of criteria for the one-machine scheduling problem. These
methods are quite simple to implement. In order to determine this optimal schedule,
it is simply necessary to have access to certain characteristics of jobs to schedule and
to be able to classify these jobs with the help of indicators calculated from these
characteristics.

This apparent ease of optimal scheduling determination can encourage the
generalization of this type of approach to job shop scheduling calculation containing
several machines; we use one of the resolution methods adapted to the one-machine
problem to build independently the schedule for each machine in the shop. The
implementation of such a policy raises three problems:

– the algorithms used for one-machine problems presume that we know the
availability dates ri of job i (we often presume that all jobs are available at date 0).
However, the availability date of a job for machine Mk depends on the date where
this job will have finished previous operations from other machines. This date
depends on the schedule made on these machines. This schedule is not known at
first; it must be determined. We can see that this approach can only be implemented
by an iterative method which will solve one-machine scheduling problems in a
certain order. In the case of job shops, it is difficult to easily determine this order:

– certain constraints are difficult to consider for machine Mk:

- either because they involve a group of machines (production routes, for
example),

- or because they are relative to a given machine. For example, the delivery
date of a job is the date of the end of operations on the last machine and it is difficult
to ensure satisfaction of this constraint with other machines;

– optimality of the solution, in the sense of criteria, is not absolutely ensured
because a global optimum is not obtained by a sum of local optima except in specific
cases.

Simulation Approach 141

Constraint analysis

We have seen in the previous chapter how constraint analysis will restrict value
domains of the different operation ti start dates. This analysis is all the more
powerful as it is more widespread. However, the more widespread it is, the more
difficult it becomes. The minimal version of this propagation may be only local. In
this case, for each scheduling decision made for operation o(i, j) on machine Mk, we
only carry out a local propagation on the machine Mk and job i involved. We
prohibit on machine Mk the time slot reserved for this operation o(i, j) and we deduct
the earliest start time for the next operation o(i, j + 1) for this job.

6.2.2. Manual development procedures of projected scheduling

Part manufacturing scheduling problems (that we will call “job” in the rest of the
chapter for homogenity purposes) have been discussed for a long time and we did
not wait for calculators to solve them. They are very often “manually” resolved
using “mural planners” containing as many lines (or rulers) as there are machines Mk
on which we want to schedule i jobs to execute (Gantt chart). Rectangular cardboard
pieces represent operations o(i, j) (operation j for job i, i production route element)
to be scheduled and the length of these rectangles is proportional to pij duration of
operation o(i, j) in compliance with a time scale represented based on the diagram’s
x abscissa axis. Scheduling software displays show this type of representation.

It is a specialized operator who carries out scheduling by placing rectangles on
the different diagram lines one by one. In order to do this, he uses a systematic
procedure followed by several adjustments when the first solution does not suit him.
This method of placing the operations one by one to develop a schedule is at the
basis of several heuristic resolution methods for these problems.

6.2.3. Job placement procedure

The systematic procedure that has been used for the longest time is the “job
placement” procedure. The resulting construction method consists of:

– classifying the different jobs i (made up of a certain number of operations
o(i, j)) to be scheduled according to a sequence chosen by the user. This
classification C will be very important for the quality of the result;

– starting an iterative job placement procedure. In order to do this:

- we choose the first job i0 in classification C,

142 Production Scheduling

- we place operations for this job in relation to operations already sequenced
(free time slots on machines involved). There can be different operation placement
policies (earliest, latest, etc.),

- we choose a new job in the classification and we iterate, etc..

This procedure is particularly interesting for manual implementation because it
makes it possible to consider operation sequencing constraints very simply.

Once this schedule is finished, we can measure the degree of satisfaction of
certain constraints which have not been directly considered in the placement
procedure. This is the case with delivery date satisfaction; in fact, these dates
associated with the different jobs are not directly considered during scheduling
development. We have, however, been able to consider these delivery dates for the
classification for these jobs. For example, we have been able to classify jobs by
increasing delivery dates. This certainly does not guarantee that all delivery dates
will be satisfied as the following example shows.

6.2.4. Example

A job shop contains three machines M1, M2 and M3. In this shop, three types of
jobs A, B and C are produced. The corresponding part routings are:

– A:

- o(A,1) on M1; for pA1 = 4,

- o(A,2) on M2; for pA2 = 3,

- o(A,3) on M3; for pA3 = 5,

requested delivery date: dA = 17;

– B:

- o(B,1) on M3; for pB1 = 3;

- o(B,2) on M2; for pB2 = 5;

- o(B,3) for M3; for pB3 = 3;

requested delivery date: dB = 16;

– C:

- o(C,1) on M2; for pC1 = 5;

requested delivery date: dC = 10.

Simulation Approach 143

We wish to execute projected job scheduling in this job shop. To use the
placement method, we first classify jobs, for example, in decreasing delivery date
sequence. The classification is as follows: {C, B, A}. We then consider jobs in this
sequence and we place operations for each one in the sequence given by the
production route.

The sequence of operation placement is: o(C,1) on M2, o(B,1) on M3, o(B,2) on
M2, o(B,3) on M3 , o(A,1) on M1, o(A,2) on M2 and o(A,3) on M3. We obtain the
following schedule:

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Machines

time

o(A,1)

o(C,1)

o(B,1)

o(B,2)

o(B,3)

o(A,2)

o(A,3)

Figure 6.1. Schedule obtained with job placement procedure

We observe that, although priority was given to jobs with more urgent delivery
dates, the resolution method was not able to respect the job A delivery date. In the
next section, however, we will see that a schedule which respects delivery dates
does exist.

If the operator is not satisfied with the scheduling result, he can manually modify
it by operation moves or permutations while still respecting production routes and
resource constraints. Schedule quality will then depend on the operator’s experience
and skills as well as his capacity to control the combinatorial aspect and various
human or technical constraints which cannot be formalized.

6.2.5. Operation placement procedure

As we have often mentioned, schedule quality obtained with the previous
procedure largely depends on the sequence in which the jobs are placed. As much as
this procedure can be justified in the case of flow shops, it can become penalizing in

144 Production Scheduling

job shops or open shops. In fact, it runs the risk of very quickly deteriorating
schedule quality for jobs which are not first in the classification.

A more generic operation placement procedure consists of no longer placing all
operations corresponding to a given job before placing the operations of the
following job. This procedure consists of placing operations in a certain sequence
one at a time. In order to do this:

– we classify all operations corresponding to jobs to be executed in a certain
order. This order or sequence takes into account certain characteristics of these
operations (place in the production route criticality of the machine involved,
duration, margin, etc.);

– we take the first operation in the list;

– we place the corresponding operation on the machine on which it must be
executed by taking production route constraints into consideration. This placement
is definitive and will not be questioned any longer in the rest of the scheduling
process;

– we then place the next operation in the list and so on until it is finished.

This procedure can be considered as representing a group of progressive
resolution methods for scheduling problems. In fact, as its previous description
indicates, it does not explain how operations are classified: is this classification
carried out once for all operations at the beginning of the resolution (and in this case,
how is it done?) or is it questioned after each operation placement?

This method belongs to the class of so-called “greedy” methods within which we
never challenge decisions made at any of the previous steps in the resolution. There
is no backtracking in the arborescent resolution. Heuristics must then be chosen to
make the best possible local decisions without being sure that they will lead to the
optimal solution.

The simulation approach presented in the third part belongs to this class of
methods and will implicitly use a systematic operation classification procedure
taking increasing achievement dates into consideration.

Simulation Approach 145

6.3. Simulation approach

6.3.1. Discrete event models

Introduction

First, we will quickly present the modeling context and method of execution for
discrete event simulations (for a more detailed presentation, see [CER 88] or [LAW
06]), and in the next section we will show how it can be used to solve the scheduling
problem.

In this section, we are attempting to model the dynamic behavior of a production
system, or more specifically, job flow circulation in this system. To illustrate the
concepts and formalisms used, we will use the very simple example of a machine M
with stock S waiting for execution. This machine receives jobs i on which it must
execute operations (each job has only one operation on machine M) lasting a certain
amount of time. Once the operation is completed, the job leaves the system.

Objects and attributes

In this type of model, we consider that the model is made up of objects (real or
fictitious). In the previous example, objects are: machine M, stock S and jobs i. Each
object is characterized by a set of attributes (small database connected to each
object). Some of the attributes of these objects are fixed. These represent the
characteristics of the object involved or relations with other objects. In this example,
the fixed object attributes are:

– machine: name;

– stock: name, possibly stock capacity;

– job: name, execution time on machine M.

Other attributes are variable and evolve over time. In our example, variable
attributes are:

– machine: state of occupation valued at 0 if the machine is idle and 1 if the
machine is busy;

– stock: list of pending jobs;

– job: position in the system (“out of the system”, “in stock S”, “on machine
M”).

146 Production Scheduling

States and events

The state of an object at a given moment is characterized by the value of all its
attributes (fixed and variable). The state of the system is characterized by the state of
all objects that it contains. This model is based on the notion of state. The
characteristic of discrete event models comes from the fact that we are placed at
such a modeling granularity that:

– the state of each component can only take discrete values. That is the case here
because:

- the state of occupation of machines can only take value 0 (idle machine) or 1
(busy machine),

- the state of stock corresponds to different compositions of the list of present
jobs,

- the position of jobs can only have three values (“out of the system”, “in
stock”, or “on machine”);

– in correlation, state changes can only happen at specific moments in time that
we call “events”.

In the example, there are three types of events:

– arrival of a job in the system. This is the moment when the job arrives from
outside;

– start of operation for a job on the machine. This is the moment where the job
arrives on the machine for execution;

– end of operation for a job on the machine. This is the moment when the job
leaves the machine (operation completed) and exits the system.

These events correspond to the start and end of job operations on machines.

State change logic

To describe the dynamic behavior of the system, “state change logic” must be
explained. State change logic describes the way in which state changes are made for
the different objects involved in the occurrence of a given type of event. There is no
imposed formalism to describe this state change logic. It can be described by any
organization chart for representing what must be carried out during the event’s
occurrence.

Simulation Approach 147

In this state change logic, we describe:

– the different state changes which happen during the occurrence of the event;

– projected event dates for which the future occurrence is triggered by the
present event’s occurrence (generation of events). For example, during a “start of
operation” event, we can forecast the “end of operation” event date taking into
account the execution time value.

Modeling helps us consider the fact that the way in which state changes and
event generation happen can depend on the state of the system during the occurrence
of the event. We can then describe more complex state change logic. In the simple
example used as presentation support, we can describe state changes associated with
the three types of events:

1. Arrival of job i event

The change of state depends on the state of the machine at the moment where
this event arrives:

– if the machine is free then:

- there is projection of the occurrence of a start of operation event at the
current date (if the job’s transfer time is negligible);

– if the machine is busy then:

- job position becomes: “in stock”;

- the list of jobs in stock is incremented.

2. Start of operation of job i event

Job position is “on machine”.

The machine goes into “busy” state.

There is projection of the occurrence of an end of operation event for job i at a
date equal to the current date increased by execution time pi of job i.

3. End of operation of job i event

Job i exits the system: job position is “out of the system”.

If stock is empty then machine goes into “idle” state.

Otherwise, if the job list in stock is not empty then:

148 Production Scheduling

– the next job to be executed must be chosen in the job list;

– the name of this job must be taken out of the job list;

– the position of this job becomes: “on machine”;

– there is projection of the occurrence of a start of operation event for the job at
the current date (if the job’s transfer time on the machine is negligible).

Priority rules

Choosing the next job in stock is a decision which will define the sequence in
which the different jobs in stock will be processed. This decision must be made each
time the machine becomes available and consists of only making a choice from jobs
present in stock at that moment.

To make this decision, we can use a priority rule by allocating what we call a
“priority index” to each job. The higher the index value, the higher the priority for
this job and the quicker it will be processed. The fourth part of this chapter presents
a classification of the most common priority rules.

6.3.2. Discrete event simulation

Discrete event simulation consists of reproducing the evolution of the system’s
state throughout time over a given timeframe with the help of the previous model.
We move over time in an increasing way, emphasizing the different consecutive
events: we distinguish exogenous events with outside influence (for example, the
arrival of jobs) from endogenous events (consequences of state changes in the
system). We use the term “simulation” because in this way, we imitate the way in
which operations occur in a real system.

The most traditional resolution motor in this domain consists of increasing time
by event. In fact, by definition of event modeling, the system can only change states
when events occur. At each moment, we maintain a list of expected events with their
time of occurrence. This list is called an “event list” (a string of chronologically
ordered events). Each resolution phase consists of searching for the event with the
shortest projected occurrence date. We know that there will not be a change of state
between the current date and this date. This event is then the “next event” that will
happen in the system. The simulation motor searches for this date and increases
current simulation time to it. We then trigger the state change logic associated with
this type of event. This trigger will modify the system state and possibly generate
the occurrence date projection of certain events. Projected event dates are put in the
event list. When we have finished processing an event, we again search for the event
with the earliest occurrence date and we increase the current time to this date, and so

Simulation Approach 149

on and so forth until a set limit time is reached corresponding to the end of the
simulation, or until the time when the schedule becomes empty.

Another type of simulation motor consists of increasing time by small
increments and, testing at each increment, if conditions are met so that one of the
events can occur. To categorize the occurrence of the different events sometimes a
lower value time increment must be used which can be penalizing in calculation
time because at each step in time, we must test if trigger conditions for each event
are met.

When the simulation is finished, we have sequentially resolved the problem of
determining dates for different events. We then know the state change times taking
into account the state change logic associated with the different events, and in
particular priority rules which can have been used to make the choices between jobs
in progress.

EXAMPLE.– This example comes from the example in section 6.2. We only
consider machine M2 and the three jobs A, B and C and corresponding operations.
Arrival dates and execution times are given in Table 6.1.

Jobs Availability dates Operation time
A 5 3
B 4 5
C 0 5

Table 6.1. Arrival dates and operation times

Date Type of event Job position Machine occupation
state

Job list in
stock

0 initialization idle empty
0 arrival C idle empty
0 start operation C C --> M2 busy empty
4 arrival B B --> stock busy B
5 arrival A A --> stock busy B, A
5 end operation C C --> out busy B, A
5 start operation B B --> M2 busy A

10 end operation B B --> out busy A
10 start operation A A --> M2 busy empty
13 end operation A A --> out idle empty

Table 6.2. Procedure of a discrete event simulation

150 Production Scheduling

Completing this simulation means gradually filling Table 6.2 by using the event
list. Each line corresponds to an event and reproduces the state obtained after
processing the occurrence of this event.

To gradually fill this table, we have used the following schedules containing
projected events at a given moment (only major event lists are presented).

First event list:

Date Type of event
0 arrival C
4 arrival B
5 arrival A

Third event list after processing the start of operation C event:

Date Type of event
4 arrival B
5 arrival A
5 end of operation C

Fourth event list after arrival of B:

Date Type of event
5 arrival A
5 end of operation C

Fifth event list after arrival of A:

Date Type of event
5 end of operation C

Seventh event list after end of operation C and start of operation B:

Date Type of event
10 end of operation B

Ninth event list after end of operation B and start of operation A:

Date Type of event
13 end of operation A

Simulation Approach 151

Throughout the simulation, we evaluate different indicators relative to the state
evolution of the system over time. This is how we can:

– catalog times of certain events which have a value of importance such as job
due dates. In this way, we can compare due dates to delivery dates and measure the
delay resulting from priority rules used;

– measure resource utilization indices (agents, production methods, transport
systems, etc.) and know their saturation state;

– measure occupation indices from different storage devices and obtain
indications on their future over or undersizing;

– determine the possible occurrence of generally undesirable events (inventory
location saturation, congestion, etc.). Generally, discrete event simulations highlight
bottlenecks which limit the circulation of entities in the system.

Simulation is therefore a method of evaluating performance (temporal or not) of
a given system considering the way the flow of jobs within a system is accomplished
(priority rules, for example).

6.4. Using the simulation approach for the resolution of a scheduling problem

6.4.1. Determination of projected schedule

In this problem, we wish to determine completion dates of different operations
o(i, j) for jobs i on given resources Rk, considering temporal (allocated time,
sequencing because of production routes, availability dates) as well as resource
utilization constraints. We consider that jobs to be completed consist of
manufacturing parts in a shop containing machines according to an order book. We
thus know a group of jobs i to be manufactured on machines Mk according to their
production routes.

When this shop’s operation simulation has been completed, we then observe as
we have seen in the previous section that we have the “film” or the “chronogram” of
the history of the variations of machine states over time. We then have dates for all
events and among others, start and due dates for the different operations executed on
machines Mk for the different jobs. In particular, we have the completion dates
which are due dates of the last operations of production routes for each job. This
series of dates can then be considered projected scheduling.

This scheduling was obtained by using a method for choosing jobs in stock on
machines (priority rules). No criteria can be considered in a direct way in this

152 Production Scheduling

choice; however, indirect consideration can be made at priority rule level (with the
limitations mentioned in the fourth part of this chapter).

EXAMPLE.– Using the same example as in section 6.2.4 corresponding to a shop
with three machines and three jobs to complete. A simulation using the “first in, first
out” priority rule makes it possible to obtain the schedule illustrated in Figure 6.2.

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Machines

time

o(A,1)

o(C,1)

o(B,1)

o(B,2)

o(B,3)

o(A,2)

o(A,3)

Figure 6.2. Schedule obtained using “first in, first out” priority rule

M1

M2

M3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

time

o(A,1)

o(C,1)

o(B,1)

o(B,2)

o(B,3)

o(A,2)

o(A,3)

Machines

Figure 6.3. Schedule obtained using “shortest processing time first” rule

If we complete the same type of simulation using the “shortest processing time
first” rule, we will need to execute A2 before B2 when operation C1 on M2 ends
and we obtain a schedule in Figure 6.3 which respects delays.

Simulation Approach 153

6.4.2. Dynamic scheduling

Dynamic or “real-time” scheduling happens when scheduling decisions for
operations on a machine are taken individually each time a machine is freed or when
an operation becomes available. We can then take into consideration production
contingencies which have resulted in the fact that the machine became free at a
given moment. There is no pre-prepared plan any longer, but a series of decisions
taken at the moment when an operation to be executed on an idle machine must be
chosen. We talk about dynamic scheduling because scheduling is completed step-
by-step over time.

We talk about “real-time” scheduling because the scheduling decision must be
taken on site when a machine becomes physically available (or in a slightly
anticipated way when we know it will become available). This decision will then be
taken based on the actual state of the shop at the moment the decision is taken. It
will be able to take into consideration all operations actually available for the
machine at that moment (jobs present in real or virtual stock on the machine),
considering disruptions which may have occurred. To make this choice, we can use
different procedures. Among these procedures we can use those which are purely
local and which will consist of using priority rules (see following sections). Chapter
12 presents a more elaborate procedure explaining the available degrees of freedom
linked to the decision procedure and characterizing eligible scheduling
classifications.

6.4.3. Using simulation for decision support

The availability of a simulator makes it possible to remedy the short-sightedness
of priority rules not only in terms of criteria but also in terms of feasibility: respect
of delivery dates, respect of maximum interval between two job constraints
(constraint mainly encountered in chemical processes, particularly in surface
treatment which will be discussed in Chapter 8). On the other hand, this simulation
uses priority rules which are obviously short-sighted. It can only:

– provide an upper bound for the criteria to optimize;

– give proof of feasibility and not of non-feasibility.

In this way, we can use the possibilities offered by the simulation in different
ways, as will be presented below.

154 Production Scheduling

Choice of the best priority rule

We have seen that a simulation gives information on the quality of the
performance obtained by implementing a certain priority rule. To implement this
simulation, we have also seen that it is important to have a list of jobs to execute
with their availability and delivery dates. The performance results for the rules used
are only valid for a given range of commands. If this range can be considered as
representative of what the job shop will have to process, we can consider that the
results are generally valid for the job shop in this environment.

We can then consider using in real time the priority rule that has turned out to be
the best when used in simulation. This rule will be the one implemented in the job
shop and will be used in real time to choose jobs in machine inventory.

The advantages of such as method are:

– the implementation is relatively easy and the speed of the evaluation makes it
possible to test a large number of rules;

– it is reactive and makes it possible to consider the actual job shop state. We
only consider the jobs actually present. Contrary to the projected approach, this
approach makes it possible to react to unexpected events: a job delay will not block
the completion of operations over other jobs which have not been delayed.

On the other hand, the main disadvantage comes from the fact that performance
is not absolutely guaranteed. In fact, simulation has been able to evaluate
performances for the range of orders used. If reality is different, we cannot
extrapolate the results obtained with certainty.

Real-time decision support

The simulation can also be used to optimize certain particularly important
decisions, for example because they can lead to blocking (in case of limited capacity
storage) or impossibility (maximum delay between two jobs) situations. If there are
only a few alternatives, they can all be simulated and the best one can be retained. If
we now have to determine a chain of events instead of a single decision, then we can
use optimization procedures such as, for example, simulated annealing, which uses a
performance evaluation of each chain of decisions to gradually converge toward the
best chain. The simulation can be used at each iteration to evaluate the performance
criteria.

To develop such decision policies or to use them in the context of projected
scheduling, they must be integrated in a more global job shop simulator. In this
simulator, at each decision point, a certain number of anticipation type simulations
must be carried out using the same model but with simplified priority rules. In this

Simulation Approach 155

case, the use of object languages is very appropriate, duplication and object
destruction mechanisms are particularly convenient in using the same objects for all
simulations and simplify all problems connected to the initialization of simulations
as well as to the management of the different schedules [CAV 97].

6.5. Priority rules

6.5.1. Introduction

The problem of determining powerful priority rules has produced and is still
producing an abundance of literature. A very large number of rules or combination
of rules have been defined and tested. The analysis of this literature shows that,
except for a few well known general results, it is extremely tricky to attempt to
define the field of application (type of job shop, evaluation criteria) of a given rule.
When analyses become more finite, conclusions from the different authors can be
different, and even contradictory.

We will only describe in this part the most widely known and used rules with the
different types of classifications encountered in literature and the main results for
their domain of application.

6.5.2. Description of priority rules

Classification

We observe several classification criteria [BLA 82]:

– local or global rule: a rule is said to be local if it only takes into consideration
information local to the queue, in contrast with, for example, WINQ which takes
into account the load on the next machine;

156 Production Scheduling

Notation Priority calculation Description
FIFO riJ First in, first out
RANDOM random draw Random value allocated to an arrival in the

queue

SPT piJ Shortest processing time on the machine

SPT/FIFO() piJ if t- riJ <
0 otherwise (FIFO)

SPT as long as wait time is lower than ,
then transition to a priority queue managed
by FIFO

SPT/FIFO()

1Jn
s

,pmin
i

i
iJ

Mix between SPT and SLACK/OPN (rule
defined below) weighted by

LWKR
pij

j J

ni Shortest job remaining until end of range

EDD di Earliest delivery date

SLACK
s d t pi i ij

j J

ni Smallest margin, i.e. earliest potential time
until delivery date

SLACK/OPN s
n J

i

i 1
Relation of the margin with the number of
remaining number of operations

WINQ Wi(J+1) Next operation on the machine with the least
jobs in progress

CRITICAL
RATIO

d t

p

i

ij
j J

ni

Relation of remaining time until delivery
date with the sum of remaining operation
times

CoverT
i

i

n

j i
j J

g

iJ j
j J

w s

p w

Cost over Time: relation of estimated delay
cost with operation time

RR

1Jw)t(ce

iJp)t(ce
in

1Jj
ijp/is

Weight of execution times and margin based
on c(t), load of machine involved at instant t

Table 6.3. Main priority rules

Simulation Approach 157

– static or dynamic: a rule is said to be static if the priority value remains stable
during the time the job remains in the queue (SPT, FIFO, etc.). A dynamic rule can
retain a relative sequence between two jobs (SLACK), but the priority value must be
updated again as soon as a new job arrives in the queue;

– information taken into account by the rule: rules which consider execution
times, delivery dates, both, or neither, etc.;

– complexity: weighted combination of rules, usage of parameters to be set, job
shop specification consideration, etc.

These classifications can be interesting in highlighting the implementation
problems with rules in a simulator or directly in the shop.

Main priority rules (Table 6.3)

In addition to general job notations, we introduce the following notations:

i job involved in the operation used for priority index calculation

J rank of operation involved in job i

t current time

rij date of operation (i, j) arrival in job queue

Si current job i margin (determination defined in description of SLACK rule)

wj projected wait time for the jth operation of job i involved

Wij total job wait time in machine where the jth operation of job i must occur

 parameter to be set by the operator

x + = x if x 0
x + = 0 if x < 0

“User priority” should also be mentioned where the user allocates a priority to
each job. A certain number of priority levels are defined, and the choice between
identical priority levels is made according to one of the previous rules.

6.5.3. Experimentation conditions

We will see that comparing performance of the different rules is particularly
tricky; it is thus vital to define the simulation context in which comparisons are
made rigorously. There is consensus between authors on the following conditions.

158 Production Scheduling

Model of shop used

A machine only executes one operation at a time.

Once an operation has started, it cannot be interrupted.

Machines are the only limited capacity resource considered.

There is no possibility for alternative routing.

Jobs are independent of one another (we do not consider assembly problems).

The priority rule is the same for all machines.

Preparation time is included in execution time and does not depend on the
sequence of jobs on the machine.

Shop parameters

To be able to execute a large number of trials, the shops are randomly generated
around average values defined by the user. An important problem is to determine the
discriminating ones in relation to the performance of priority rules. The authors
[BOU 91, GRA 93] consider that the most discriminating are dispersion of
execution times, the starting margin in relation to delivery dates and shop load
(average machine load rate). On the other hand, the job arrival rule (most often
chosen exponentially), shop size and routing mode (randomly chosen in general)
have very little influence on results [ELV 74].

Evaluation criteria

The two most often used comparison points are work-in-process and respect of
delays. Shop productivity is rarely taken into account.

Work-in-process is mostly characterized by the average time jobs remain present
(Favg), and variation of this time.

Respect of delays is characterized by:

– average lateness (Lavg). It should be noted that the only difference between
this criteria and Favg is a constant and is therefore its equivalent in terms of
optimization. It is not widely used from a practical standpoint because
manufacturers are rarely concerned with early production. On the other hand, the
absolute lateness value is interesting in a just in time production context;

– average real (Tavg) or maximum (Tmax) delay;

Simulation Approach 159

– the number of late jobs.

It should be noted that the determination of the mode of delay to be respected
(delivery dates) discussed below has a direct influence over the criteria and explains
that rules not considering delivery dates can be powerful in respecting these delays.

Determination modes for delivery dates

Availability and delivery dates are determined in companies by production
management software (most often using the MRP approach) by evaluating the total
time of transition for each job (lead time) and by assessing wait times at each
workstation. The experimentations follow the same principle for realism purposes;
we distinguish several modes of determination:

– CON: the allocated transition time is constant, regardless of the job;

– RAN: the allocated time is random: extreme case where the customer gets to
make decisions;

– SLK: time allocated is equal to the sum of execution times plus a global wait
time similar for all jobs;

– TWK: time allocated is a multiple of the sum of execution times.

Each determination mode depends on a single parameter used to set the
“flexibility” in delivery dates, this parameter is strategically important for
companies because it conditions the work-in-process level and market response
time. A certain number of studies were carried out on the relevance of these modes
([BAK 84] for example). The goal is to minimize the average job transition time
while respecting delivery dates. SLK and TWK seem more powerful, TWK often
seems to be the best. This last element is surprising insofar as it would seem that the
global wait time depends more on the number of waits than on execution time.

A study [CAN 88] proposing to iterate on the starting margin (delivery date
minus availability date) with the help of simulations should also be mentioned.
These simulations can predict real job transition times in the shop. In this way, we
can separate respect of delivery dates from the optimization of work-in-process
taken into consideration by a specialized priority rule.

Implementation of the simulation

In most cases, we must calculate the average and the variation of certain values.
In order for the results to be significant, we must wait for the shop to have reached
its permanent operation speed before starting to collect values, on the other hand, we
must wait long enough for the results to be trustworthy. This last element is carried
out using the evaluation of a confidence interval for the measures taken [LAW 84].

160 Production Scheduling

6.5.4. Main results

Using a single rule

For the average processing time in the shop, the SPT rule (obviously more
important as distribution of execution times is high) is better in all cases. On the
other hand, it is bad for the variation of this same criteria because of wait times in
long operations which can be very important. Several authors have tried to resolve
this flaw by mixing SPT with another rule, either alternatively or by truncation,
which is more efficient. In this case, a parameter makes it possible to define from
what wait time period an operation will be managed by another priority rule.

Concerning respect for delivery dates, SPT remains powerful for average real
delay, particularly when delivery dates are relatively tight (margin at the start lower
by five times the sum of execution times), and for the number of late jobs. However,
rules explicitly taking into account delivery dates are much better for the variation of
real delay. The SLACK/OPN rule is globally considered as one of the most powerful
for all criteria relative to respect of delivery dates. EDD is also interesting (and
simpler to implement).

The CoverT rule constitutes a particular case in the sense that it can be very
powerful for real delay but it depends on the assessment quality of machine wait
times. Several assessment methods for these times have been proposed: prior
simulation with FIFO rule, distribution of the beginning margin on each operation,
dynamic assessment in the shop. [RUS 86] studies these methods with different
parameter values and compares them to the most powerful traditional rules. For
each criteria, CoverT is as powerful as the best traditional rule for the considered
criteria, even with rudimentary assessments of wait times, and performance
improves with the precision of these assessments.

The RR rule [RAG 93] also considers wait time assessment. It is very complete;
as powerful as SPT for the average processing time in the shop, but much better for
the variation, powerful for the average real delay and very powerful for maximum
real delay, which is a particularly interesting criterion in the industry.

[CON 67] studied the incidence of the determination mode for delivery dates
over relative performance of rules without leading to really significant results. Most
of the studies take place in the TWK mode context.

Although the FIFO rule is very simple to implement, it is much less powerful
than the above-mentioned rules for all traditional criteria (equivalent to RANDOM).

Simulation Approach 161

The “user priority” rule makes it possible to consider strategically important
differences of the different jobs to be executed in the shop and to decrease the cycle
time of important jobs. Using it interactively is nevertheless tricky because any
priority change often has unpredictable consequences on schedule and the user
quickly loses control of operations.

Finally, studies by [PIE 97] propose a different rule for each machine, and the
nature of the rule is determined in real time according to the state of the shop (with
thresholds with a value optimized in a finite way for the change of rules).

Mixing of rules

After focusing on the rules themselves with the use of great imagination on the
part of the different authors, no significant performance improvements were
reached, except perhaps in the case of the RR rule. Research is now evolving
towards the study of mixing a small number of rules which are simple and
complementary in terms of performance. Among the different research projects
carried out, we find:

– [GRA 93] in which three rules are used: SPT, SLACK and user priority. Their
use is weighted by three factors determined by a production rules-based system
modeling the expertise of the relevance of rules, or by a network of neurons where
information is acquired from previously treated examples. The use of fuzzy
inference mechanisms enables a qualitative modeling of the expertise and eliminates
threshold effects. Experiments carried out show that on the one hand, automatic
learning is more powerful, but on the other hand, the rule obtained is often better
than the most powerful of the three basic rules for the problem involved;

– [HOL 97] which concerns simple sums of priority indices associated with
rules. The following rules have thus been examined:

- SPT+WINQ: interesting for the average processing time in the shop (the best
for average and good for variation) and average for real delay,

- SPT + WINQ + FIFO, SPT + WINQ + SLACK, SPT + WINQ + FIFO +
SLACK: these three rules are interesting for real maximum delay and processing
time variation in the shop and weak for average values.

Generation of active schedules

In the preceding sections, only jobs actually waiting to be processed are
considered in the choice of the operation to execute. In the case where execution
times are very long, the decision to commit an operation can have high
consequences and it might be advisable to leave a machine idle, waiting for a more
interesting operation (for the performance criteria that we have set). In this way, we
move away from so-called “without delay” schedules, the most often used, in which

162 Production Scheduling

a machine is committed as soon as a job becomes available for it. We are then
placed in a more complete class of “active” schedules, which implies an intensity
increase for the procedure. In fact, we must have reliable knowledge of the next
arrivals, which is not always the case, and define a maximum delay for the machine
without committing an available job.

Conclusion

The main conclusion is the contrast between the sum of studies completed on
this subject and the lack of really indisputable results to come out and which have
been discussed throughout this chapter. In particular, the attempts to constitute,
notably with data analysis techniques [BOU 91], a knowledge base to help define
the rule that is most adapted to a given scheduling problem (shop, production and
performance criteria) have not led to sufficiently relevant expertise to be able to give
a significant improvement of performance by the relevant choice of a rule in relation
to the problem raised.

Automatic learning techniques based on networks of neurons [GRA 93, PIE 93]
seem to be more promising as long as we stay within a relatively restricted class of
shops.

6.6. Information technology tools

We must distinguish between scheduling software packages using simulation as
the scheduling method and actual simulation tools.

6.6.1. Scheduling software

Available scheduling software packages mainly use greedy procedures which are
characterized by selection modes of conflicting operations on a machine and which
must be separated by a priority rule. Some of these packages use simulation to make
this selection and resolve the conflicts in chronological order. They generally
propose very few rules for a user to choose from (most often user priority, SLACK
and SPT). Their cutting edge graphical interfaces (Gantt chart presentation, data
modification, scheduling modification) and processing speed make it possible for
the user to improve scheduling in an iterative way. The basic model is generally
very simple (linear ranges, a single type of resource) but personalized modifications
or options enable the user to consider specific operation constraints for the shop
involved.

Simulation Approach 163

It should be noted that other selection modes are increasingly becoming available
in software packages (simulation in a reactionary way from delivery dates, job
placement, critical machine scheduling, etc.) making it possible for the user to
choose the one which is the most appropriate for the current situation.

6.6.2. Simulation languages

These languages or software packages offer specific primitives for quick
simulation and display of discrete event systems. Without being too exhaustive or
attempting to market any one of these software packages, we can nevertheless name
a few that are regularly used in laboratories or in manufacturing companies in the
field of production systems: Arena [KEL 06], Witness, Modline/Qnap, Simple ++,
Quest, etc. The main advantage is their ability to simulate all details of the shop to
be scheduled. Although these simulators can finitely evaluate shop performance and
develop a sophisticated control system, their use as scheduling systems requires
graphical interface programming and interfacing with the shop environment
(production management, real-time follow up), which can be cumbersome compared
to scheduling software programs with this functionality already incorporated.

It should also be noted that it is possible to use spreadsheets as a tool for building
simulation software dedicated to scheduling for problems of limited size.

6.7. Conclusion

The simulation approach is part of the methods called gradual schedule
construction. This type of method quickly determines schedules which respects
technical constraints. It is characterized by a large potential modeling power, but
gradual schedule construction prohibits going back to decisions already made which
could improve schedules or respect for delivery dates. In addition, schedule quality
depends on its construction rules expressed in the form of priority given to the
different jobs in the queue. However, we can observe that it is not always easy to
adequately determine the rules for optimizing given performance criteria for
schedules.

Concerning information technology tools implementing this approach, the user
can choose between:

– software packages dedicated to scheduling, integrating simplified shop
modeling which can be difficult to modify with a very limited number of priority
rules. However, they generally make it possible to quickly develop scheduling;

164 Production Scheduling

– simulation packages (or spreadsheets for small problems) for detailed
modeling, but with no dedicated interfaces for the scheduling problem which is
mandatory when used in a shop.

6.8. Bibliography

[BAK 84] BAKER K.R., “Sequencing rules and due-dates assignment”, Management
Science, vol. 30, no. 9, p. 1093-1104, 1984.

[BLA 82] BLACKSTONE J.H., PHILLIPS D. and HOGG G.L., “A state-of-the-art survey of
dispatching rules for manufacturing job-shop operations”, International Journal of
Production Research, vol. 20, no. 1, p. 27-45, 1982.

[BOU 91] BOUCON D., Ordonnancement d’atelier: aide au choix de règles de priorité,
ENSAE Thesis, Toulouse, 1991.

[CAN 88] CANALS D. and CAVAILLE J.B., “Ordonnancement d’atelier par simulation:
aide au lancement en fabrication par rebouclage sur les simulations”, Automatic AFCET
Conference, Grenoble, p. 191-200, 1988.

[CAV 97] CAVAILLE J.B., “Utilisation d’un langage objet pour réaliser des simulations
d’anticipation”, MOSIM’97, Rouen, 1997.

[CER 88] CERNAULT A., La simulation des systèmes de production, CEPADUES,
Toulouse, 1988.

[CON 67] CONWAY R.W., MAXWELL W.L. and MILLER L.W., Theory of Scheduling,
Addison Wesley, 1967.

[ELV 74] ELVERS D.A., “The sensibility of the relative effectiveness of job-shop scheduling
rules with various arrival distributions”, AIIE Transactions, vol. 6, p. 41, 1974.

[GRA 93] GRABOT B., GENESTE L. and DUPEUX A., “Ordonnancement réactif par
utilisation de règles floues paramétrables”, Revue d’Automatique et de Productique
Appliquées, vol. 6, no. 3, p. 273-290, 1993.

[GRA 94] GRABOT B. and GENESTE L., “Dispatching rules in scheduling: a fuzzy
approach”, International Journal of Production Research, vol. 32, no. 4, 1994.

[HOL 97] HOLTAUS O. and RAJENDRAN C., “Efficient dispatching rules for scheduling in
a job-shop”, International Journal of Production Economics, no. 48, 1997.

[KEL 06] KELTON,W.D., Simulation with ARENA, 4th edition, McGraw-Hill, 2006.

[LAW 84] LAW, A.M. and KELTON, W.D., “Confidence intervals for steady state
simulation: a survey of fixed sample size procedures”, Operations Research, vol. 32,
no. 6, p. 1221-1239, 1984.

[LAW 06] LAW, A.M., Simulation Modeling and Analysis, 4th edition, McGraw-Hill, 2006.

[PIE 93] PIERREVAL H., “Neural network to select dynamic scheduling heuristics”, Journal
of Decision Systems, vol. 2, p. 173-190, 1993.

Simulation Approach 165

[PIE 97] PIERREVAL H. and MEBARKI N., “Dynamic selection of dispatching rules for
manufacturing system scheduling”, International Journal of Production Research,
vol. 35, no. 6, p. 1575-1591, 1997.

[RAG 93] RAGHU T.S. and RAJENDRAN C., “An efficient dynamic dispatching rules for
scheduling in a job-shop”, International Journal of Production Economics, vol. 32,
p. 301-313, 1993.

[RUS 86] RUSSELL R.S., DAR-EL E. M. and TAYLOR B.W., “A comparative analysis of
the CoverT job sequencing rule using various shop”, International Journal of Production
Research, vol. 27, no. 10, p. 1523-1540, 1987.

This page intentionally left blank

Chapter 7

Cyclic Production Scheduling

7.1. Introduction

The cyclic character of the rhythm of life is the most natural of things. The most
logical cause is linked to natural environmental phenomena which humans have to
face: the inevitable alternation of seasons due to the Earth’s rotation around the Sun,
as well as daily and nightly rotations due to the revolution of the Earth around its
axis. Another cause is linked to traditions and society planning work based on a
week containing work and rest phases. In summary, everyone lives according to a
cyclic organization and this way of life naturally inspires different production
management methodologies. In order to simplify and facilitate understanding of this
presentation, two examples will illustrate this methodology. The first example,
developed in this introduction, has no other objective than to present how activity
management can be very complex and how this complexity can be sensibly reduced
via cyclic organization. The second example will involve flexible manufacturing
systems (FMS). It will be used as explicit support for this presentation. The
introduction example involves a known, albeit complex, problem: class schedule
planning within an institution (college or high school). The idea is to organize and
plan an annual timetable of classes in an institution. Four types of entities gravitate
around this problem: teachers, classes, classrooms and class schedules. The goal is
to make sure students can attend classes corresponding to their curriculum in
appropriate classrooms in the presence of a teacher specialized in the field involved.

Chapter written by Jean-Claude GENTINA, Ouajdi KORBAA and Hervé CAMUS.

168 Production Scheduling

Numerous capacity constraints involve the number of teachers per discipline, and
the number and capacity of classrooms as well as the fact that only one teacher is
assigned to teach in a given room at a given moment for students of a given class.
As for the courses themselves, several characteristics must be taken into
consideration. There are different course types with different timelines: classes,
classroom studies (CS) and practical studies (PS). Teaching sessions are grouped
into variable size modules depending on certain constraints; typically these
constraints are precedence type constraints: classes before CS before PS.

The first and foremost objectives involve feasibility of planning over a
maximum possible timeframe (school year). Once this constraint is resolved, it then
becomes possible to attempt to close the cycle as soon as possible in order to leave
as much time as possible for students before finals, all the while respecting program
timing constraints for all disciplines. Another reason justifying this criterion comes
from the fact that it is always important to leave the largest margin possible at the
end of the year to react and adjust the timetable for unexpected events (absence of a
teacher, etc.). A second criterion consists of reducing the call for substitute teachers
to minimize overheads. The compromise will favor student satisfaction because the
establishment is concerned about their well being and success. The image commonly
associated with this type of problem involves a large table where the person
responsible for the timetable works very hard inserting little cards with different
colors. This job is particularly difficult because he must model in two dimensions a
problem which is by definition four dimensional: classes, programs, teachers and
classrooms. The solutions generally used consist of splitting this problem into sub-
problems (distribution by semester for example), then for each semester, a typical
week is created. This typical week will be repeated throughout this period.

The major complexity with the scheduling problem for resources (teachers and
classrooms) is thus reduced to a temporal horizon; of a semester and a week
respectively. This distribution of the semester load comes in fact from a first phase
called short term planning. The goal of scheduling, logically called cyclic, thus
consists of organizing the week load to be repeated over a semester as best as
possible. In this chapter, we will focus on this way of organizing production
activities by attempting to repeat a basic cycle relatively well optimized, thus
illustrating the notion of cyclic scheduling. The advantage of such an approach,
notably the finite optimization of this basic cycle, would remain useless without a
certain control of the transition from the planning and scheduling levels. In fact, the
periods retained must be carefully chosen at planning level whenever possible to
represent the best compromise between the generally antagonistic feasibility of the
solution retained, complexity of the approach (planning and scheduling phases) as
well as optimization of previous criteria.

Cyclic Production Scheduling 169

7.2. Cyclic scheduling problem classifications

Two classes of problems have been addressed in the context of cyclic
scheduling. The first one, for reference, is the electroplating robot scheduling
problem (more commonly known as hoist scheduling problem or HSP). For more
detailed information, readers can refer to Chapter 8. The second application is
related to an FMS job-shop which is developed in more detail here in the cyclic
scheduling approach.

7.2.1. Electroplating robot problem (HSP)

This problem involves the organization of a flexible production mainly restricted
by unique transport made up of a single capacity robot for the more simple systems.
The most well known application involves electroplating chains. The basic
components can be very schematically characterized by a sequence of trays in which
a chemical operation with a strictly defined timeline over a time interval [min, max]
must be carried out. Production sequences are different depending on the parts
involved. The transport resource (made up of one or more robots on a single rail,
where collision problems may occur) naturally constitutes the critical problem
resource. For a given production, it is possible to search for repetitive production
scheduling by the nature of products launched and their respective quantities. This
comes down to repeating robot movements according to an optimized cycle
[CRA 97]. It should be noted that this problem is generally NP-hard.

7.2.2. FMS cyclic scheduling problem

FMS represent a large class of production systems. The exact content of the term
“flexibility” is subject to different interpretations. To be more precise, FMS
correspond to small to medium-sized production systems with a certain number of
degrees of freedom. They are halfway between mass production systems (car
production, for example) where production is linear (with no routing flexibility) and
“totally flexible” open shops where production is done by unit. They are relatively
different from computer systems which simplify work-in-process and routings to
focus mainly on operations to be executed. FMS is characterized by a set of
machines (transformation resources) able to execute different types of operations
(machining, tapping, turning, milling, assembly, etc.) on different types of parts
around a transport system (often a type of conveyor). Different types of parts are
simultaneously found in the systems and use the same machines. These parts are
generally transported on a physical support (called pallet) constituting transport
resources. This support is different depending on the nature of the parts class to be
produced requiring specific “installations”.

170 Production Scheduling

There is a great analogy, without being complete, between the introduction
example problem and the FMS problem that we are discussing here. In fact,
products to be manufactured correspond to classes (in the sense of group of
students); these products’ operations ranges (commonly called jobs) correspond to
class programs taken by students. In terms of problem resources, classrooms with
their static constraints (for example, only physical science classes are taught in
physical science classrooms) can be assimilated to transformation resources of FMS
(such as a tooling machine, numerical command machine, etc.). It should be noted
that these two types of resources represent bottleneck resources of the system
studied. This is due to the capacity limitation of these same resources: a single
classroom or a single machine for a given type of operation. A characteristic of FMS
resides in routing of parts which is generally assigned to specific pallets containing
loading adapted to only one type of part. In addition, the part/pallet allocation is
most often invariable from the beginning to the end of production for one part. The
performance criteria is to complete the requested production as soon as possible
(total production time minimization, also called makespan) in order to keep some
margin. It may be used to start a new production, to offset an unexpected
malfunction in the production system, etc. Similarly, for our introduction example,
the second objective would involve minimization of intervention from substitute
teachers. Here, because of economic and production type constraints, we will
minimize the number of pallets to be used1 or work-in-process in the context of an
invariable part/pallet allocation.

In order to facilitate understanding of the methodology, an illustrative example is
developed. To simplify presentation, Petri net formalism is retained for the
simplicity of its graphical model and also for the power of its mathematical analysis
tools for the different system properties. We refer the reader to [MUR 89] and
[DIC 93] for general concepts and notations commonly accepted for this formalism.
This tool is first and foremost a modeling tool; it is still not used much in
scheduling. Petri nets actually present the advantage of multidimensional modeling,
an important advantage compared to other representation tools such as Gantt
charts or other graphical models. The example considered here is taken from a
project called Eowyn [KOR 98] which has enabled the comparison of different
approaches (from predictive to reactive). See the flexible production cell described
in Figure 7.1.

1 In general, transport resources represent supports for adapted parts very difficult to execute
and thus very costly. In addition, the number of pallets in circulation leads to the increase of
the number of parts and the resulting inventory value.

Cyclic Production Scheduling 171

M 1 M 4

M 5M 6

M 2 M 3

A

BC

1

3

3 1 3 1

3

1

9

2

2

75

5

4224

2

1

3

Figure 7.1. Presentation of the flexible cell

This cell is made up of 5 diversion stations and an on-line station (M5) around a
central conveyor containing 2 switches (AB and BC represented by dotted lines).
The M1 station is a loading and unloading robot enabling product arrival and exit.
The other stations (M2 to M6) are multipurpose tooling machines. They can execute
several different operations. In any case, these transformation resources are
presumed to be non-preemptive (a part in the process of being manufactured only
frees up the resource at the end of the operation) and disjunctive (each resource can
only execute one operation at a time). In terms of transport system, each diversion is
made up of an arrival buffer managed as a queue (first in, first out or FIFO) for 3
places, from a transformation point and a storage place at exit. The numbers
indicated on the arcs represent section capacity in terms of number of pallets (for
example, the section between stations M1 and M2 may contain at most 4 pallets).
The complete transport system is made up of 72 cells and may contain at most 72
pallets. The pallets involved here are transport resources for circulating parts (from
raw material to finished state) on adequate supports. To simplify the problem, we
will assume that the pallets are dedicated (i.e. they are only able to transport parts
for a single product).

172 Production Scheduling

We will focus on a precise production range where the parts to be produced as
well as their volume are known. We consider production for three different types of
parts: A, B and C. Exact quantities are also presumed given: 30 copies of each type
of part. Production ratios for the different types of parts are thus easily determined
(33% for each type). Determining scheduling of parts on transformation and
transport resources still remains to be completed. In order to do this, we presume
that operations sequences for these different types of parts are known. They are
modeled with the help of Petri nets (Figure 7.2)2. Production of the type A part
requires a sequence of 5 operations. The execution times, given and presumed set,
are indicated on the ranges (for example the operation to execute on M2 for a type A
part needs 5 UT3). There is flexibility at manufacturing range level. In fact, the third
operation in this job can be equally executed on M3 or M6, but with distinct
execution times. The branch containing M6 has a routing ratio (usage rate) equal to

not yet determined. In the case of M3, it has a ratio of 1- . Other flexibilities can
be considered by the [CAM 96] method that will not be explained in detail here for
purposes of clarity.

Note that range B does not carry routing ratios for the two branches that it
contains. This is due to the fact that both branches are completely equal from a
throughput standpoint since they use the same machines with the same execution
times but with different sequences. After this quick problem presentation, it is now
time to present and justify the cyclic approach.

M1 M1

M1 M1

M1 M1M4
M5

M2
M3

M4 M5

M5

1

1

1

1

1

1

5
4

3 2

M4 M2

3 5

2

2
3

M6

1

M4M2

35

M3

4

Range A

Range B

Range C

Figure 7.2. Modeling of jobs for the different types of parts to be produced

2 In order for the Petri net not to become too heavy, we will not present the shared resources
corresponding to machines.
3 UT for unit of time. The range of this unit actually depends on the production context
considered here: machining, assembly and other types of operations.

Cyclic Production Scheduling 173

After presenting the shop floor, types of parts and expected production, the next
step is performance evaluation consisting of determining the best branches to use for
each part in order to obtain the best production flow. The goal of this step is to
“linearize” jobs by choosing the best branches immediately. In addition, this step
determines the optimal system flow and consequently the optimal cycle time. This
cycle time is given by the bottleneck machine (with the largest workload). In fact,
because work-in-process is not limited, it is always possible to use a sufficient work-
in-process level to saturate the bottleneck machines to then work at its maximum
speed. At this level, jobs are linearized (Figure 7.3). In this example, we presume
that we will need to manufacture one part for each type of part in a production cycle.
After flow optimization, the machine with the largest workload is M2 and optimal
cycle time CT is equal to the load of this machine (sum of all operations that M2
produces per cycle): CT = 10 UT. This cycle time is reachable by cyclic scheduling
with the use of sufficient work-in-process. The problem now consists of determining
this minimal work-in-process.

Figure 7.3. Linear jobs after flow optimization

7.3. Problem positioning

After the first resolution step, we have the following information: a production
cycle produces three parts (1 type A, 1 B and 1 C), it lasts 10 UT and must
theoretically be repeated 30 times to produce the 30 parts of each type initially
ordered. System unknowns are:

– for the machines:

- the circulation sequence of parts on machines (i.e. make resource sharing
deterministic),

- arrival dates for parts on machines modulo CT: i.e. the temporal allocation of
transformation resources;

174 Production Scheduling

– for the products:

- the number of pallets used by part type,

- initial location of pallets.

During the second step (scheduling step of the permanent cyclic state), we will
resolve remaining indeterminisms in order to obtain a completely deterministic
cyclic system while optimizing the secondary criteria (work-in-process
minimization). Scheduling is completely characterized by “programming of task
execution by allocating required resources and by setting their start times”
[GOT 93]. In our case, the idea is to allocate machines while respecting optimal
cycle time (strict constraint) as well as to determine required work-in-process
(performance criteria). Scheduling problems are known as being complex and highly
combinatorial [BEL 82]. It was proven that project planning problems are
polynomial combinatorial and that cyclic scheduling is non-polynomial complete
[CAR 88, SER 89]. The consideration of transformation resources (associated with
the different operations) makes the first problem non-polynomial difficult in most
cases and leaves the second in the class of non-polynomial problems [SER 89].
Among the cyclic scheduling methods known to date, we should mention:

– bottleneck machine scheduling [ERS 82]: the main criterion for this approach
is the minimization of the average and maximum size of the input buffer at each
machine. It is based on bottleneck machine job scheduling (slowest machine with
regards to the load) followed by conflict resolution of other machines;

– k-cyclic scheduling [CHR 97]: this approach focuses on cyclic scheduling in an
information technology context. The work-in-process minimization objective has
not been addressed (notion of work-in-process is of minimal importance in this
case). In this particular case, work-in-process corresponds to memory space
necessary for storing intermediate results. Since this resource is relatively cheap, its
minimization is not sought after;

– 1-cyclic scheduling [HIL 89, VAL 94, CAM 96, KOR 02]: these approaches
all have the objective of respecting optimal cycle time while minimizing work-in-
process.

Before presenting the scheduling algorithm minimizing work-in-process and
respecting the optimal cycle time, we will show attainability for this optimal cycle
time. An intuitive demonstration is the direct result of Petri net characterization. In
fact, by marking all places in the linearized graph (Figure 7.3), it is clear that all
bottleneck machines are saturated (as soon as a machine finishes an operation it
immediately finds a part for production) and the system evolves at maximum speed,
i.e. at the speed of the bottleneck machine. In this way, with the hypothesis that
work-in-process is large enough, the optimal cycle time (equal to bottleneck

Cyclic Production Scheduling 175

machine workload) is attainable. The goal of the scheduling algorithm is to
determine the minimum amount of work-in-process to reach this performance
(necessary and sufficient work-in-process). This approach attempts to minimize
production costs (pallet production costs, intermediate inventory costs, etc.) and
reduce the risk of system saturation by work-in-process that is too large and can
block it. In order to evaluate the quality of results, we will calculate a lower bound
of the work-in-process to be determined. We will consider job A for example: total
operation duration for this job is equal to 16 UT (this is the sum of corresponding
operation durations). We know that the cycle width is CT = 10 UT (cycle time).
Consequently, a part can only have operations of which the sum of duration is at
most equal to 10 UT at each cycle. In this way, to obtain finished part A at each
cycle, at least two A parts are required in the system in order, for each of them, to
“virtually” experience half the process. Generally, we obtain the following work-in-
process lower bound for range G:

where operator “ x ” represents the smallest integer higher than or equal to x. The
system work-in-process lower bound is equal to the sum of lower bounds for all its
jobs. This bound is not necessarily reachable.

7.4. Presentation of tools used

After an understanding of general theoretical concepts related to the cyclic
scheduling problem, we will present the main modeling tools as well as notions
linked to the cyclic operation. The Gantt chart will be extended in order to better
represent the “flat” projection of modeled scheduling with the help of Petri nets.

7.4.1. Modeling using Petri nets

The interest in using Petri nets is not only limited to their implementation in the
first development phases (verifying system properties such as blocking, agility and
performance analysis). They can also be used judiciously throughout resolution to
follow gradual transformations of the model by considering its flexibilities. Final
cyclic scheduling also uses a formalism derived from Petri nets: Event Graphs (EG).
These graphs are particularly well adapted to the modeling of scheduling cyclic
behavior in the sense that at each end of the cycle, the system goes back to its initial
state, so that it can relaunch the cycle.

176 Production Scheduling

Figure 7.4 represents a cyclic production by an EG: two jobs using a single
machine are produced. Each job is modeled by the operation to be executed in
addition to an immediate transition (serving to form the cycle). As for the machine,
it is represented by a machine cycle. Since its allocation is cyclic, it is alternately
allocated to one and then the other of both jobs. At the initial state (graph 1), both
parts are in raw mode and the machine is ready to receive part 2. After a cycle
including the production of a copy of each job, parts are finished and the machine
goes back to its initial state (graph 2). The only thing to do then is to cross
immediate transitions (in zero time) to find the system in its initial state to restart a
new production cycle (graph 3). EGs then clearly and faithfully represent the
dynamic of cyclic scheduling.

1

33

Figure 7.4. Advantage of using an EG to model a cyclic order

With this type of graph, it is easy to grasp the multidimensional aspect of
scheduling. With the study of this system’s cycles, we can observe two main
characteristics: the process aspect represented by the pallets (and thus the parts
allocated to pallets circulating in the production system) and the transformation
resource aspect represented here by machines. The temporal aspect is associated
with transition time delay characterizing the deterministic timeframe of operations.

Cyclic Production Scheduling 177

See [HIL 89] for more information on properties of EG Petri nets. We should note
that the resulting EG makes it possible to model the permanent cyclic system(s).
Total production scheduling of a finite number of parts will mainly include the
permanent state and transition phases [KOR 00] ensuring production start and end.
The simultaneous consideration of temporary/permanent state alternation has led
us to consider a sub-class of Petri nets integrating EGs: choice-free Petri nets
[TER 97].

7.4.2. Dual Gantt chart

Although this model presents a graphical advantage because of the dynamic and
multidimensional aspects of the problem, it is still difficult to mentally envisage the
temporal sequence of the control because of parallelism involving products and
associated resources. It can therefore be necessary to use another formalism to
represent the control behavior in two dimensions, especially if we are trying to
represent the resulting scheduling without referring to the explicit knowledge of
Petri nets. Our proposition is to extend the Gantt chart to a dual Gantt chart. In fact,
most of the time on a Gantt chart, only two dimensions are represented involving
time and jobs. When scheduling is carried out gradually by consecutive placement
of the different operations, as is the case with this approach, it may be interesting to
simultaneously display scheduling of operations for products, at transport support
level, and also for machines based on EG where we find product (job) and machine
cycles in parallel. It is possible to represent the allocation of operations to
corresponding machines on the Gantt chart (Figure 7.5).

In addition, it is necessary to regroup all operations for the same product. It is for
this reason that we have added this new dimension in the proposed extension. The
advantage of this type of representation is to enable people in charge of scheduling
to understand in one chart the main scheduling parameters, as the example in Figure
7.5 shows. This example highlights the duality which exists between products and
machines. In this way, considering these two aspects becomes easy for the work-in-
process optimization problem. This example also illustrates the cyclic aspect of
scheduling. In fact, the cycle is based on the cyclic diagram repeated for machines
which imposes a periodicity and a synchronization of all production. In this
example, to produce part Pr1, it is necessary to use two pallets P1 and P2. These
pallets follow each other in a set order. In this way, during the first represented
cycle, P1 transports part no. 1 which has just entered the system to execute the first
two operations. During this time, P2 transports part no. 0, which has already been
subject to these two operations, to execute the third and final operation.
Consequently, during the following cycle, P1 will always transport part no. 1 for the
last operation, whereas P2 will have already finished part no. 0 and will start a new
cycle with part no. 2, etc.

178 Production Scheduling

m c n

0

1

4

M1

M

M

Figure 7.5. Illustrative example of the dual Gantt chart

7.4.3. Resource availability interval

We will now focus on the concept of a resource availability interval, developed
in [VAL 94], to extend it to our problem. An availability interval is a time interval
during which a machine is unoccupied. Knowledge of these intervals is very useful
to better organize the operation placement procedure constituting the basis for the
proposed scheduling method. In traditional scheduling, we generally use the notion
of machine margin to evaluate their occupation ratios. It is based on the evaluation
of the time periods during which the machine is idle. Cyclic scheduling is based on
the same ideas (Figure 7.6).

Cyclic Production Scheduling 179

Figure 7.6. Utilization of periods of machine inactivity

However, it is important to define with precision the notion of a machine margin
to be able to use it during scheduling. In fact, when a single cycle is fixed and an
operation (O1 on Figure 7.7) is placed, two distinct periods appear during which the
corresponding machine (M1) remains idle: intervals [0, t1] and [t2, CT]. Due to this,
placing a new O2 type operation in one of these two intervals becomes impossible
because they are both smaller in size than the operation to place. Scheduling thus
seems impossible.

Figure 7.7. Placement of an operation in the cycle

However, it is possible to place this O2 operation after O1 by representing
several cycles in sequence, as we have done in Figure 7.8. Both inactivity periods
invoked will now only form a single availability interval in which it becomes
possible to place this O2 operation. Actually, placement of O1 operation on the
machine has only created a single availability interval for machine M1: interval
[t2, t1 + CT], denoted as [t2, t1]CT. The availability interval of a machine in cyclic
scheduling is thus defined as the largest possible (continuous) interval between two
consecutive operations during which the machine is idle. In this way, we define the
notion of an overlapping cycle. This notion is related to cyclic scheduling for which
certain operations (here O2; see Figure 7.8) “overlap” two consecutive cycles.
Actually, in any cyclic scheduling, there is cycle overlapping. This overlapping
obviously depends on the origin of the cycle (because of the definition of the cycle

180 Production Scheduling

start date). However, it is useless to be able to precisely define this cycle start. For
purposes of simplicity, we refer the reader to scheduling methods which supposedly
do not carry out cycle overlapping such as [HIL 89] and [VAL 94]. Such methods
are most often sub-optimal and consider a set reference origin for all operations.
They thus restrict availability intervals of cyclic scheduling machines and do not
optimize placement of operations during scheduling.

Figure 7.8. Definition of cyclic machine availability interval

7.4.4. Operation placement policies in cyclic scheduling

In order to eventually reach optimality, or at least to get as close as possible, we
have had to redefine the notion of operation placement policy in scheduling. The
method retained consists of a progressive operation placement, notably restricted in
the temporal domain by the maximum CT cycle time to respect and by the number
of parts of each type to produce during this cycle. In fact, the most widely used
policy consists of executing the operations as soon as possible, based on a policy
called the earliest firing operating mode which is no longer sufficient for reaching
optimality for cyclic production. Actually this policy is only proven to be “optimal”
in the case of total production time minimization and in a few specific cases
[CAM 98]. We focus on minimization of the number of works-in-process in a cyclic
context. Since operation placement is performed gradually (one operation at a time),
the order in which operations are taken into account is therefore very important. The
only constraint to respect is the precedence between operations in the same job. For
the rest, the different possibilities must be studied (see section 7.5). It is necessary to
constitute a sequence of operations to be scheduled (sequenced series of operations
to be scheduled) before moving to the actual placement of these operations. Let us
suppose that we have such a sequence and only deal with the operation placement
problem (Figure 7.9).

Cyclic Production Scheduling 181

m chines

P2

0 1 2 3 4

M1

Figure 7.9. Illustrative example of placement policies

The cycle corresponds to the production of two parts respectively called P1 and
P2. P1 is the result of three operations from Pr1 O1 to Pr1 O3 and P2 of 2 operations
Pr2 O1 and Pr2 O2. We suppose that a prior study has established that the CT cycle
time is equal to 5, for bottleneck machine M1. Part of the scheduling is presumed to
be done already and it is easy to show that scheduling still remains feasible4. The
problem consists of scheduling the last three operations. We also suppose that these
operations must be scheduled in a precise order: sequence of operations to be
scheduled (Figure 7.9). Several potential solutions must thus be considered for the
first operation to be placed: Pr1 O3. First, we can try to place this operation as soon
as possible, i.e. as soon as the product and corresponding machine are both free, in
this case from date 3. This policy which attempts to minimize the number of works-
in-process can lead to a deadlock, for example by not allowing placement of the next
operation Pr2 O1 (Figure 7.10). This first approach tends to overly restrict
scheduling by transforming initial machine availability intervals into one of smaller
intervals which will not be able to be used thereafter. Since this first solution is not
satisfactory, we propose other placement policies making it possible to build eligible
scheduling at any time [KOR 98].

4 Each of these two machines has a time interval that is not yet allocated (availability interval)
able to contain operations to schedule on the machine.

182 Production Scheduling

m chi e

P2

P

4

M2

M1 P

!

Figure 7.10. Earliest placement policy for product

Possible policies actually consist of placing operations in appropriate availability
intervals, either at the earliest or latest in the considered interval (Figure 7.11). By
applying these two policies for each operation early, we guarantee [KOR 98] that we
obtain eligible and powerful scheduling. In fact, scheduling with only earliest or
latest placements in the availability intervals never generates new intervals and thus
does not uselessly consume machine margin. Scheduling thus found is eligible but
often to the detriment of the work-in-process used because generally it does not
correspond to resource availability dates, sometimes generating excessive
consumption of range margin and therefore of work-in-process. That is why it is
necessary to combine these different placement policies such as “earliest in the job”
(to minimize work-in-process) and in the availability intervals to guarantee eligible
scheduling.

ma

P2

P1

0 3

M2

M1

P

Figure 7.11. Other placement policies: latest for availability interval

Cyclic Production Scheduling 183

In addition to previously mentioned variations, there are all the other operation
placement policy solutions. The only real constraint involves the actual placement of
an operation only within an availability interval of the corresponding machine. An
optimal scheduling solution corresponds in fact to a combination of these different
placement policies. Thus, in theory, to reach optimality, we must try for each
operation all possible placement policies in all possible availability intervals.
Because of the complexity of this exact resolution method, we have chosen to
develop a heuristic using the main characteristics discussed5. Three placement
policies will therefore be used: earliest in the job, earliest in availability intervals
and latest in availability intervals. With these placement policies, eligible cyclic
scheduling respecting the cycle time constraint equal to CT is guaranteed by
minimizing the system’s work-in-process as well as possible.

7.5. Algorithm principle

The algorithm proposed is based on the simultaneous use of the three scheduling
policies mentioned in section 7.4. The principle is simple: for each operation, from
the operation sequence to be scheduled, all three types of placement are attempted.
In order to limit the combinatorial analysis, we have chosen to set the resolution
based on the depth of research noted as . This parameter corresponds to the number
of operations considered at each iteration, (length of sequence of operations to be
scheduled). In this way, at each iteration, the algorithm builds the depth research tree

 (which corresponds to the determination of all possible sequences) and chooses
the best sequence of operations from a cost function. This function is a linear
function of the number of works-in-process used and machine margins.

The initialization of the algorithm is carried out by the arbitrary placement of an
operation at date zero (origin of the calculating window with a width equal to the
cycle time). For a better understanding of the algorithm principle, let us consider the
case = 2 with the initial example (Figure 7.3). Algorithm initialization consists of
placing the first operation of job A (on machine M1) at date zero, for example6. At
the first iteration, the algorithm will search for all possible sequences with a length
of . These sequences are restricted by precedences between the operations of a
single job. In fact, strict precedence constraints between operations of a single range
do not give us authority to “jump” the operations of a part hoping to place it later on.
Thus, for each job where at least one operation is already placed, the future
operation of the range ready for a placement is the absolute next operation in the

5 The exact method consisting of listing all possible placements is too combinatorial. Other
research paths are currently being studied to develop other less greedy methods, from
structural properties of the Petri net in particular.
6 For convenience reasons, it will be called A.1.

184 Production Scheduling

range: for our example it is the second operation of product A (using M2). In this
way, still for a depth of = 2, the fourth operation of job A cannot be present in the
first sequence. On the other hand, the third operation can be part of it on the
condition that the second one is present as well. This is due to the fact that the first
operation of A has already been placed. Consequently, the next operation of job A to
be placed can only be the second operation. However, for all other jobs still not
used, all operations are candidates for the sequence. The algorithm determines all
sequences. For this example, there are 68:

– 1 sequence: A.2 – A.3;

– 9 sequences: A.2 – (an operation of job B or C);

– 9 sequences: (an operation of job B or C) – A.2;

– 5 sequences: two consecutive operations of job B;

– 4 sequences: two consecutive operations of job C;

– 20 sequences: an operation of job B– an operation of job C;

– 20 sequences: an operation of job C– an operation of job B.

However, some of these sequences are equal from the point of view of their
influence over the system’s performance. In fact, two operations belonging to two
different parts and two different machines (A.2 and B.1, for example) can be equally
considered in one direction (A.2-B.1) or in another (B.1-A.2) without a difference in
results. The idea is to only determine non-equal sequences, in our example, 46 of
them. In fact, we only need to delete one sequence out of two in the form
(operation 1 – operation 2), (operation 2 – operation 1) each time operation 1 and
operation 2 belonging to two different ranges and to two different machines.
Obviously, eliminating equal sequences is not so easy for > 2.

M M1M2 M3 M4 M5

1 15 4 3 2

M1 M1M4 M2 M5

1 13 5 2

M1 M1
M4

M5

1 12 3

P1

P2

P3

P5

M M1M2 M3 M4 M5

1 15 4 3 2

M1 M1M4 M2 M5

1 13 5 2

M1 M1
M4

M5

1 12 3

P1

P2

P3

P5

Figure 7.12. EG modeling the permanent state

Cyclic Production Scheduling 185

This is how elimination is performed throughout the development of these
sequences. These sequences are gradually developed with elimination as doubles
appear. These sequences are then evaluated with the help of the cost function. This
evaluation is carried out after virtual placement of all operations considering the
three placement policies to determine the best among them. From this, we retain
the first operation to actually be placed, and we restart the calculation with the
remaining operations. This method is a type of controlled beam-search.
The final result (the permanent state) is modeled in the form of an EG Petri net
(Figure 7.12).

A dual Gantt chart can also represent such a result (Figure 7.13) where product
and machine viewpoints are considered.

5 10

1

4
3

M

M

M4

M3

M

Figure 7.13. Gantt chart representing a cycle

In theory, this cycle is a frame to be repeated 30 times to obtain the initial
request. In reality, this permanent state will last slightly less than 30 cycles because
a temporary state must also be established to start production and another temporary
state to end production.

7.6. Extension of cyclic strategies

During this chapter, and for purely educational reasons, we have considered an
example where the initial request is “well formed”, i.e. already cyclic (30 times a

186 Production Scheduling

cycle of 1 part of A, 1 of B and 1 of C). We will justify this data later. In fact,
production management generally expresses a global demand: 30 parts of A, 30
parts of B and 30 parts of C (Figure 7.2). It is then the turn of planning to define the
ways in which to accomplish this production in cyclic function. In order to do this,
we must determine the maximum theoretical flow to produce all 90 parts. This
comes down to determining the optimal theoretical flow corresponding to
production ratios per product: Ra = 30/90 = 1/3 of total A flow, Rb = 1/3 of B and
Rc = 1/3 of C.

Note that Zi is the operation load of machine Mi brought back to a single part
considered as “average”7. To calculate Zi, the idea is to find the sum, for all
operations using Mi, of the product of execution time of the operation by the usage
ratio of this operation. This ratio is calculated by the product of the production ratio
of the corresponding part by the routing ratio of the branch considered as illustrated
in Figure 7.2. For example, M6 machine workload is equal to the product of the
timeframe of the only operation needed (1 UT) by the production ratio of the
corresponding product (Ra = 1/3) and by the routing ratio of the corresponding
branch (), or Z6 = 1* *Ra = /3.

This workload Zi is based on production ratios of each product: Ra, Rb and Rc. It
is also based on routing ratios8 and (ranges A and C in Figure 7.2).

We thus obtain

RaZ
 RcRbRa+Z

*Rc*RbRaZ
)(Rc)(RaZ

RbRaZ
Rc Rb Ra Z

**16
**2*2*25

33*34
1**41**43

*5*52
*2*2*21

or

16
**25

*34
*43
*52
*21

Z
 RcRa+RbZ

RcRbRaZ
RbRaZ
RbRaZ

 RcRbRaZ

7 It is a part made up of 1/3 of A, 1/3 of B and 1/3 of C.
8 The choice of the branch for part B does not influence machine loads (M2 and M4) or
system flow since they both contain the same machines and production times. That is why we
have not associated routing ratios with these two branches.

Cyclic Production Scheduling 187

and

Z

Z

Z

Z

Z
+

Z

1 2

2
5 2

3
10
3 3 33

3
4 2

3
8
3 2 66

4
3 3

3 3

5
2 1 1 1

3 2
6 1

*
.

*
.

*

* *

We observe that the machine workloads are all lower than or equal to the M2
workload regardless of routing ratio values and . Since the optimal flow
corresponds to the one on the machine with the largest load (max(Zi)), the optimal
production flow cannot be higher than a part every 3.33 UT. Consequently, the
theoretical lower bound of total production time is equal to 90*10/3 = 300 UT. We
therefore cannot complete the initial demand in less than 300 UT. This timeframe
corresponds to the continuous operation of machine M2 to execute all 90 parts. This
calculation makes it possible to use the minimum production timeframe and to
identify the bottleneck machine associated with this production.

The content of a production cycle still remains to be determined. Let X be the
number of repetitions of the cycle and E = {na A, nb B, nc C} be the cyclic
production horizon (number of parts actually produced per cycle). Although the
production flow does not depend on and (for this example obviously), the
number of parts to be produced per cycle is closely linked to these ratios. For
example, if = 1/2 (half of parts A are executed by M6 and the other half by M3),
then na has to be in multiples of 2. In this way, the higher the denominator
(respectively), the larger the production horizon becomes. We should add that if
the production horizon is large, then the scheduling becomes more complex to
determine.

For our example, the only constraints are: cba nnn 9 and x* na 30 10. An
obvious solution consists of setting 1cba nnn and x 30 , which
corresponds to the example considered throughout this chapter. It is easy to verify
that cycle time for this example is equal to 10 and corresponds to the optimal desired
flow. This situation is ideal, because the different number of parts may be first
among themselves or the smallest common divider may be too large to be
interesting. In fact, it would not be interesting from our point of view to retain a

9 In order to respect the initial demand (as many A as B and C).
10 In order to respect the initial A demand: the number of repetitions on the cycle multiplied
by the number of A parts completed per cycle is equal to the number of A parts requested.

188 Production Scheduling

permanent state where the cycle would be too large (in number of parts) because it
would only lead to insufficient repetition. It is thus necessary to first establish a
finite planning phase in order to determine one or more cyclic permanent states to
develop from a given initial request.

We will now use the example of an initial request for 400 parts of product A, 200
of product B and 400 of product C [CAM 98]. An obvious solution would be to
produce this request by repeating a permanent cyclic system containing 5 parts (2 A,
1 B and 2 C) 200 times. However, this production can also be accomplished in two
cyclic productions: the first one consists of repeating a cycle of 4 A, 3 B and 3 C 50
times and the second one consists of repeating a cycle of 4 A, 1 B and 5 C 50 times
[CAM 98]. For this example, the timeframe of the solution made up of two different
permanent states is less then a single state. In fact, completing the request in several
cyclic systems instead of a single one can be better in terms of productivity. This
results in a flexibility of production jobs. To evaluate and choose a solution, we
must be able to compare the different candidate solutions. The criteria to use here
are numerous: total estimated production time (at this stage in the study, we only
have a first evaluation out of temporary systems and no estimate of the necessary
work-in-process for these systems), solution determination complexity, number of
temporary systems to calculate, etc. Several of these criteria contradict each other.
This is the case notably for minimization of cycle sizes (decrease of complexity) and
maximization of flow. In addition, there are numerous parameters to the problem:
the number of temporary systems, the number of parts to produce by product on
each cycle, the number of repetitions of each cycle, etc. [CHA 03].

7.7. Conclusion and prospects

Throughout this chapter, we have presented the main advantages of the cyclic
approach to the resolution of scheduling problems. This notion seems quite natural,
but this type of methodology is still rare in operation research and very rare in
production. Studies by Professor Chrétienne and his team [MUN 91, HAN 94] have
largely contributed to the demonstration of the richness and efficiency of such
methodologies. In this case, hypotheses associated with this type of problem remain
restrictive: infinite problem (or considered as such), prior in-depth knowledge of
products to be manufactured throughout a cycle, etc.

The advantage of studies on cyclic scheduling in flexible manufacturing systems
[HIL 89, VAL 94, CAM 97, KOR 02] resides in the fact that they address in an
original manner the problem of complexity decrease for the scheduling problem
with the help of production organized in repetitive production cycles. Still, in the
case of cyclic scheduling, research procedures for solutions remain heuristic and
cannot pretend to be optimal in theory. Generally, the combinatorial analysis of

Cyclic Production Scheduling 189

these problems remains complex and the problem is globally NP-hard, which
prevents the practical application of exact methods.

Throughout this chapter, a few paths were mentioned to almost optimally solve
the cyclic scheduling problem. In fact, the progressive operation placement approach
can become exact if we consider at the start scheduling of a sequence of operations
with a length equal to the total number of operations to be placed in the cycle and
that we propose for each operation to be scheduled all possible placement policies in
the different availability intervals. This method is exact but very complex. An
approach that would limit this combinatorial analysis as much as possible is in
development. The most promising path seems to reside in the structural analysis of
the cyclic scheduling problem taking into consideration particular properties of the
Petri net model associated as well as characteristics of manufacturing production
systems. It is in this spirit that we have presented this inventive method concerning
cyclic scheduling. The main problem encountered is not so much in the scheduling
optimization problem of a cycle as in the preliminary planning phase. It is during
this phase that we search for the most appropriate cyclic scheduling strategies
considering (finite) production to be completed, with criteria involving first
minimization of total production time and second minimization of the system’s
work-in-process. In any case, the cyclic scheduling problem remains an open
problem from the standpoint of resolution methods to be developed as well as from
the standpoint of fields of application.

7.8. Bibliography

[BEL 82] BELLMANN R., ESOGBUE A.O. and NABESHIMA I., Mathematical Aspects of
Scheduling and Applications, Pergamon Press, 1982.

[CAM 96] CAMUS H., OHL H., KORBAA O. and GENTINA J.-C., “Cyclic schedules in
flexible manufacturing systems with flexibilities in operating sequences”, First
International Workshop on Manufacturing and Petri Nets, 17th International conference
on Application and Theory of Petri Nets, p. 97-116, Japan, 1996.

[CAM 97] CAMUS H., Conduite de systèmes flexibles de production manufacturière par
composition de régimes permanents cycliques: modélisation et évaluation de
performances à l’aide des réseaux de Petri, Doctoral Thesis, University of Lille 1, 1997.

[CAM 98] CAMUS H., MUGARZA J.C., TERUEL E., GENTINA J.C. and SILVA M.,
“Scheduling Petri nets models and structural analysis”, CESA’98: IMACS
Multiconference on Computational Engineering in Systems Applications, vol. 3,
p. 228-234, Tunisia, 1998.

[CAR 88] CARLIER J. and CHRETIENNE P., Problèmes d’ordonnancement: modélisation/
complexité/algorithmes, Masson, 1988.

190 Production Scheduling

[CHA 03] CHAIEB I. and KORBAA O., “Intra-cell machine layout associated to flexible
production and transport systems”, Journal of Engineering Manufacture (JEM), 2003,
vol. 217, no. 7, p. 883-897.

[CHR 97] CHRÉTIENNE P., COFFMAN E. G., LENSTRA J.K. and LIU Z., Scheduling
Theory and its Applications, Wiley, 1997.

[CRA 97] CRAMA Y., “Combinatorial optimisation models for production scheduling in
automated manufacturing systems”, European Journal of Operational Research, 1997,
no. 99, p. 136-153.

[DIC 93] DI CESARE F., HARHALAKIS G., PROTH J.M., SILVA M. and VERNADAT
F.B., Practice of Petri Nets in Manufacturing, Chapman and Hall, 1993.

[ERS 82] ERSCHLER J., LÉVÈQUE D. and ROUBELLAT F., “Periodic loading of flexible
manufacturing systems”, IFIP Congress, APMS, p. 327-339, France, 1982.

[FRE 88] FREIN Y., DALLERY Y., PIERRA J.-J. and DAVID R., “Optimisation du routage
des pièces dans un atelier flexible par des méthodes analytiques”, APII, vol. 2, no. 5,
p. 489-508, 1988.

[GOT 93] GOTHA, “Les problèmes d’ordonnancement”, RAIRO-Recherche Opérationnelle,
vol. 27, no. 1, p. 77-150, 1993.

[HAN 94] HANEN C., Problèmes d’ordonnancement cycliques, Habilitation à diriger des
recherches, Blaise Pascal Institute, Paris VI University, 1995.

[HIL 89] HILLION H.P. and PROTH J.M., “Performance Evaluation of job-shop systems
using timed event-graphs”, IEEE Transactions on Automatic Control, vol. 34, no.1,
p. 3-9, 1989.

[KOR 98] KORBAA O., Commande cyclique des systèmes flexibles de production
manufacturière à l’aide des réseaux de Petri: de la planification à l’ordonnancement des
régimes transitoires, Doctoral Thesis, University of Lille 1, 1998.

[KOR 00] KORBAA O., YIM P. and GENTINA J.-C., “Solving Transient Scheduling
Problems with constraint programming”, European Journal of Control, vol. 6, no. 6,
p. 511-524, 2000.

[KOR 02] KORBAA O., CAMUS H. and GENTINA J.-C., “A New Cyclic Scheduling
Algorithm for Flexible Manufacturing Systems”, International Journal of Flexible
Manufacturing Systems (IJFMS), vol. 14, no. 2, p. 173-187, 2002.

[MUN 91] MUNIER A., “Résolution d’un problème d’ordonnancement cyclique à itérations
indépendantes et contraintes de ressources”, RAIRO-Recherche Opérationnelle, vol. 25,
no. 2, p. 161-182, 1991.

[MUR 89] MURATA T., “Petri nets: properties, analysis and application”, IEEE Conference,
vol. 77, no. 4, p. 541-580, 1989.

[SER 89] SERAFINI P. and UKOVICH W., “A mathematical model for periodic scheduling
problems”, SIAM Journal of Discrete Mathematics, vol. 2, no. 4, p. 550-581, 1989.

[SIF 80] SIFAKIS J., “Performance evaluation of system using nets, net theory and
applications”, Lecture Notes in Computer Science, Springer-Verlag, p. 307-319, 1980.

Cyclic Production Scheduling 191

[TER 97] TERUEL E., COLOM J.M. and SILVA M., “Choice-free Petri nets: a model for
deterministic concurrent systems with bulk services and arrivals”, IEEE Transactions on
System, Man and Cybernetics, vol. 27, no. 1, 1997.

[VAL 94] VALENTIN C., “Modeling and analysis methods for a class of hybrid dynamic
systems”, Symposium Automatisation des Processus Mixtes: Les Systèmes Dynamiques
Hybrides, ADPM’94, p. 221-226, Belgium, 1994.

This page intentionally left blank

Chapter 8

Hoist Scheduling Problem

8.1. Introduction

Since the 1970s, and more specifically since the founding works by Phillips and
Unger [PHI 76], automated electroplating systems have been widely studied. Such
systems are composed of tanks containing chemical or electrolytic baths in which
parts (or products) to be processed are submerged. Transportation of products
between tanks is performed by one (or more) hoist(s). When the production line is
dedicated to a single product type (printed circuit boards, for example), hoist
movement sequence is cyclic and an open loop control is used. Small series
production lines, or even unit production lines are automated in closed loop because
hoist movements are no longer cyclic. Several scheduling problems encountered in
this context have aroused the interest of the scientific community. Since they all
involve hoist movement scheduling, the generic name “Hoist Scheduling Problem”
or HSP is generally used to refer to them in scientific literature. However, they
involve different characteristics: some of these are static (or even cyclic) and others
are dynamic. This chapter presents them, paying particular attention to:

– the physical system and production constraints to consider;

– a classification of scheduling problems encountered;

– the main cyclic scheduling approaches in scientific literature;

– studies dedicated to the resolution of non-periodic problems.

Chapter written by Christelle BLOCH, Marie-Ange MANIER, Pierre BAPTISTE and
Christophe VARNIER.

194 Production Scheduling

8.2. Physical system and production constraints

An electroplating line is generally made up of (Figure 8.1):

– one or more arrival and exit stations,

– carriers on which parts to produce are grouped into batches,

– tanks, often lined up, containing chemical solutions,

– hoists, or robots, ensuring transportation of carriers between tanks.

Figure 8.1. Basic line

The carrier is an entity which groups parts that are to be treated in an identical
way. The quantity of assembled parts is a specification in the same way as the
processing sequence associated with the carrier. This specification is an ordered set
of operations that it must undergo (described by the station where each operation
must be performed and the corresponding processing time). It generally contains the
following phases:

– loading of parts on a carrier performed at the arrival station;

– preparation (cleaning and rinsing of parts);

– the optional pre-treatment, by applying one or more sub-layers;

– metal deposit electrolytically or chemically;

– finishing (passivation by phosphate treatment, whirling, drying, etc.);

– unloading at the exit station.

The processing specifications can also include operations executed after
unloading of parts (stripping or rinsing, for example) for cleaning the carrier.

Hoist Scheduling Problem 195

Processing operations (or treatments) cannot be interrupted (no preemption is
allowed). In addition, no wait is allowed between two successive processing
operations in order to avoid deterioration when parts are exposed to air. When a
carrier is taken out of a tank after a processing operation, it must be transported as
fast as possible into the tank where the next operation will take place. Because of
this, intermediate storage between tanks is not possible. Hoists must not stop when
they transport a carrier.

8.2.1. Tanks

Tanks contain chemical solutions into which carriers are soaked. Processing time
in each bath (or operation duration) is limited: most often, chemical experts
responsible for production define a minimum processing time (needed to obtain
desired quality) and a maximum time beyond which the product:

– has not changed (total indifference);

– has tolerable deterioration (which should generally be identical on a complete
series for consistency);

– becomes defective, because the processing time no longer corresponds to the
chemical characteristics of the treatment bath previously set.

In a standard case, each tank receives one carrier at a time (it is then called a
single-capacity tank) and carriers are only processed once into each tank. There are,
however, several extensions to this basic model:

– if carriers are processed more than once in the same tank, it is called multi-
function (Figure 8.2) otherwise it is called mono-function. This additional degree of
freedom carries a blocking risk, even if the maximum time constraint is relaxed. In
addition, it makes variable indexing trickier;

– if a treatment is particularly long, creating several places in a larger tank,
called a multi-capacity tank (or duplicated tank) is advantageous (Figure 8.2). This
complicates the problem since the distance matrix between tanks is no longer
computable. The operation must be assigned to one of the places in the tank to know
exact distances. Most often, this assignment is not carried out beforehand and only
the greatest distance is considered, but this simplification can be tricky when multi-
capacity tank places are not consecutive.

196 Production Scheduling

Figure 8.2. Variation on processing resources

8.2.2. Hoists

When a small production line has only one hoist it is called a single-hoist,
otherwise it is called a multi-hoist (Figure 8.3). In practice, the number of hoists
varies from 2 to 6, but is generally between 2 and 3. Mostly identical, they move on
a rail set along the tanks, not allowing crossovers. In addition to transport
operations, they may also move while empty to let another hoist carrying a carrier
pass through. Transport must be assigned to hoists and collision risks appear. To
avoid any interference, a transport can require the addition of clearing movements of
other hoists.

Figure 8.3. Diagram of a line segment with two hoists

The execution of a transport operation is complex: the empty hoist joins the tank
containing the carrier, comes down, catches and lifts it. It then stops for a set
draining time (to avoid contaminating neighboring baths), moves toward the
destination tank, takes another pause for stabilizing (to limit carrier oscillation) and
places the carrier. Movement time between two tanks can be specified by a time
matrix or computed more precisely (taking into account acceleration, deceleration
and nominal speed). Generally, two speeds are used depending on whether the hoist
moves while empty or with a load.

Hoist Scheduling Problem 197

Complex lines also use other types of transport systems, transfers, which
transport carriers between several line segments (often called “in I” because of their
linear configuration). They are generally small cars moving on rails perpendicular to
the one supporting the hoists (Figure 8.4). Their number depends on line dimensions
(number of I segments and number of tanks for each of them), but is often between 1
and 3. Synchronization between the transfer and a hoist is sometimes necessary for
carrier exchange. The robot places the carrier in the little car transporting it up to the
segment on which it must continue its treatment, and then another hoist picks it up.

Figure 8.4. Diagram of a complex system with a transfer

Scheduling problems involved in this context generally concern the management
of all these handling resources. The scheduling to be determined is then represented
in the form of a specific chronogram, called time-way chart, and commonly used by
line designers and users to represent hoist movements between tanks (Figure 8.5).

Figure 8.5. Graphical representation of a transport operation

198 Production Scheduling

8.2.3. Carriers

Generally, there are enough carriers and they are not considered as resources.
However, sometimes, they cannot come off the line after unloading and their
number is limited. They might hinder the progress of current active carriers because
they are temporarily stored into unoccupied tanks. They must be moved when
treatment of a full carrier requires the tank in which they are lying. This makes
control even trickier. In reality, this case happens only rarely and will not be
addressed in this chapter.

8.3. Hoist scheduling problems

8.3.1. General presentation

The common notion of a job used in scheduling can be associated with the
carrier or parts, knowing that between loading and unloading, these entities are taken
together. It seems even more natural to consider the carrier if the processing
specifications include cleaning operations (see section 8.2). However, carriers may
be critical resources (see section 8.2.3) and the parts arrival rule does not depend on
their availability. Linking the concept of job to the carrier can turn out to be
inappropriate. However, this approach is used in this chapter, because it is the one
used by most authors, and cases where it is not applicable still remain relatively rare.

Electroplating includes two types of tasks (processing and transportation), and
two types of resources (tanks and hoists). However, the conjunction of no-wait and
no preemption constraints links processing operations to transport. In particular,
hoist movement durations must be taken into account. The problem consists of
scheduling transport in order to optimize one or more criteria, respecting:

– constraints relative to one or more product types:

- the sequence of operations for each carrier,

- bounded operation times, draining and stabilization times;

– no wait and no-preemption constraints, which lead to:

- absence of intermediate buffer between tanks,

- obligation to consider robot movement durations;

– constraints linked to resources:

- tank capacity (single-capacity tank or multi-capacity tank),

- number of available hoists and their capacity,

Hoist Scheduling Problem 199

- possibly the number of carriers and the fact they must stay in the line (see
section 8.2.3);

– spatial constraints leading to the risk of collision between hoists.

For each transport, starting and ending tanks and thus transport duration are
known. However, the hoist’s current position before the transport is performed
depends on the sequence of movements. The time required to move whilst empty
toward the starting tank is a variable to be determined with scheduling (such as exact
processing times). In addition, an assignment sub-problem appears if the line
contains multi-capacity tanks or several hoists. Assignment may be static (it
precedes calculation) or dynamic (it is done during resolution).

This presentation shows that the hoist scheduling problem attracts many
constraints. However, processing time margins, and especially larger ones, allow us
to momentarily store jobs in the corresponding tanks as long as the maximum
boundary is respected. Although this general HSP description stands for all existing
cases, the scheduling problems involved often have different optimization criteria
and characteristics, greatly linked to studied physical systems, to processing
constraints and to considered modes of control. The approach depends particularly
on the compromise to be reached between the three main objectives which are
productivity, quality and flexibility. The following section provides a general
overview of these different problems, by linking them to corresponding production
modes.

8.3.2. Static scheduling problems

Hoist systems can be used in very different contexts. In very large series,
consecutive jobs are all identical and production is said to be mono-product. The
transport sequence is cyclic: the same sequence of hoist movements is repeated over

consecutive periods. We speak of cycle of degree n or n-periodic cycle when n
jobs are introduced in the system throughout a period. Most manufacturers settle for
1-periodic solutions even though we know that they are not dominating solutions.
This cyclic operation mode has led to the definition of a first hoist scheduling
problem known as a cyclic hoist scheduling problem or CHSP [LEI 89a]. Its goal is
mainly represented in terms of productivity and quality. The searched solution is the
cycle maximizing line productivity, minimizing period for a set cycle degree n. It
specifies the sequence of transports, as well as the start date of each one throughout
a period and must be feasible, i.e.:

– describing a sequence of movements physically executable by the hoists;

– inducing operation times compliant to specified boundaries.

200 Production Scheduling

The simplest CHSP, called a basic problem [MAN 94b], consists of searching
for the minimal 1-cycle period in the case of simplest lines (i.e. single-hoist I only
containing single-capacity tanks and mono-function tanks). Even though some of the
constraints are ignored, Lei and Wang showed that it was NP-complete [LEI 89b].
This explains why most researchers only solved this simplest case.

In large series, the line processes different types of jobs (multi-product case).
However, a cyclic management mode can still be considered if there are only a few
types of products (two or three) and if they are quite similar. Nevertheless, the
proportion of each job type to process must be known and the problem then contains
an additional decision level: since jobs are not identical, building the hoist
movement sequence must be preceded by (or accompanied by) a choice of product
type mixing. The same job sequence periodically enters the system and the sequence
repeated by hoists includes all transports required for processing all jobs involved.
This cyclic problem can be considered as a multi-product CHSP.

If such a cyclic mode cannot be used, an alternative consists of working by
runs. This management mode is a chain of mono-product production phases. The
main problem then occurs during production change. The simplest solution consists
of completely emptying the processing line before starting a new run. However, it is
worth enabling the cohabitation of two job types in the system during the transient
phase, in order to minimize its duration. This is the subject of the third type of static
HSP.

Finally, when the line must process various parts in small series, producing by
mixing or by runs is no longer possible. However, if a quite stable production plan
exists, this production context can still lead to the definition of a static problem. If
information delays are sufficient, a first decision level consists of scheduling the
different jobs to process soon to achieve productivity gains and improve the quality
of treatments. On the one hand, the arrival order of jobs greatly influences total
production time. On the other hand, wisely choosing job arrival dates limits the
number of resource conflicts between carriers and reduces the number of treatments
whose duration exceeds the specified maximal processing time.

By contrast with cyclic problems commonly referenced by the CHSP acronym,
the last two problems (static but not cyclic) presented above were grouped under the
generic title of “predictive hoist scheduling problem” or PHSP [BLO 99b, ROS 99].

8.3.3. Dynamic scheduling problems

Sub-contracting companies must generally treat a large variety of jobs in small
quantities and in very short delays. Faced with the decreasing size of series and

Hoist Scheduling Problem 201

reduction in delays, they must combine various jobs on the line and increase the
flexibility of their automated systems. The increasingly short delays imposed by
their prime manufacturers do not enable them to establish reliable planning of
several hours, and manufacturing managers must be able to react quickly (to an
urgent order for instance). Professionals say that the line is managed in random
mode. There are two main approaches in hoist movement scheduling based on the
trade-off to reach between three main objectives (productivity, quality and
flexibility):

– if quality of treatments is the main objective, all transports are scheduled
before letting any new carrier enter the system. This forecasted scheduling must
consider all present carriers (in tanks or at loading station) and respect all
constraints. In particular, new jobs must be able to come in as soon as possible,
while making sure (among other things) that all maximum processing times will be
respected and that no job will become defective. Generally, the criterion to minimize
is the makespan (i.e. end date for all jobs). This approach is very much decried in
the manufacturing world as not being robust enough, because it suggests transport
start dates which must be strictly respected, which is almost impossible in reality
because of unavoidable production hazards. Nevertheless, this solution remains the
only one suitable for high added value production runs for which treatments must be
of very high quality (in the aerospace field, for example). The associated scheduling
problem is called the “dynamic hoist scheduling problem” or DHSP [LAM 96b];

– if priority is given to productivity and flexibility (in terms of job diversity),
transport tasks are dynamically assigned to hoists. A hoist control system generally
relies on a list algorithm that determines which carrier will move next each time a
hoist ends a transport. This decision is generally made in relation to the nature of the
bath in which the carrier will stay and the time it will spend there before exceeding
its maximum processing time. Respect for maximum boundaries is not always
ensured, but in certain cases, it is possible to limit the negative consequences of such
a violation (by decreasing the intensity circulating in the bath, if the operation
involved is electrolysis, for example). This second approach is called “reactive hoist
scheduling problem” or RHSP [BLO 97] and is different from the previous one by
the decision horizon involved. The DHSP corresponds to “by job” management
whereas RHSP corresponds to “by task”.

8.3.4. Classification and brief state of the art

The wealth of literature dedicated to HSP combined with the diversity of cases
treated makes classification essential. An extension of the normal notation used in
scheduling [GRA 79] was proposed in [BLO 99b] and [MAN 03]. It enables us to
situate the HSP to be solved among the various existing instances, and to identify
the class to which it belongs. It considers some of the main physical and logical

202 Production Scheduling

parameters found in the literature related to the HSP. It covers four fields: type of
HSP, physical parameters, logical parameters and criteria. Each field consists of
several parameters:

– type of HSP: the HSP tackled can be static (cyclic (CHSP) or not cyclic
(PHSP)), or dynamic (dynamic (DHSP) or reactive problems (RHSP);

– physical parameters: this field respectively includes the number of lines (nl),
the number of transfers connecting these lines (ntransfer), the need of
synchronization between hoists and transfers (synchro). It also provides, for each
line i of the facility (i=1 to nl), the number of hoists (mh), the number of tanks (mt),
the number of carriers (nc), the maximal capacity of tanks (ct), the constraints
involved by the characteristics of carriers (circulation of products (circ), a dedicated
transport system to ensure the return of empty carriers from the unloading station to
the loading station (ret), empty carriers remaining on the line if there is no storage
place near the facility (empty)), and finally the configuration of the loading and
unloading stations: associated or dissociated stations (load-unload);

– logical parameters describe the production environment to be considered: the
total number of parts to be treated (nparts), the number of different processing
specifications (nps), the maximal number of operations among those processing
sequences (nop), the possible cleaning of empty carriers after the unloading
operation (clean) (one or several operations included in nop), and finally the
recirculation constraint (recrc) involved by multi-function tanks;

– criteria: this field gathers one or several objectives to be optimized. The
literature dedicated to HSP includes several criteria, for instance: minimize the cycle
time for the CHSP (Tmin), minimize the makespan (Cmax), maximize the
throughput (ThroughputMax), minimize the temporary period between two mono-
product cycles (TransMin), minimize the number of hoists (mhmin), minimize the
waste in environmental issues (WasteMin), minimize the number of defective jobs
(DefectiveJobsMin), maximize the quality of treatments (Qmax). The generic value
“Other” can be used if the considered criteria does not belong to the above list, and
the notation can easily be extended if necessary.

To summarize, the complete notation is: XHSP | nl, ntransfer, synchro, (mh, mt,
ct)i=1 tonl/nc, circ, ret, empty/load-unload | nparts/nps, nop, clean, recrc | criteria.

This has enabled its authors to classify approximately 100 publications in tree
form, by defining one tree per acronym identified in the previous section, giving a
global view of the research carried out. An associated state of the art is detailed in
[ROS 99]. Table 8.1 provides a summary and offers some references both to the
main publications and to more recent works. The complete notation associated with
each of these publications is provided in section 8.8.

Hoist Scheduling Problem 203

This bibliographical work shows that most authors consider a relatively simple
line (in I, single-hoist and single-capacity tanks). This naturally prevents us from
applying the proposed solving approaches in real contexts (because industrial
facilities are generally more complex). This does not mean that researchers are not
interested in real production lines. However, the problem is so complex (see section
8.3.2) that the most practical path consists of addressing the simplest cases, and then
studying possible extensions. Unfortunately, these might sometimes be impossible
to implement (notably because of their too large combinatorial).

CHSP Single-hoist, single-capacity tanks and mono-product: [PHI 76, LEI 93a,
ARM 94, SON 95, LIM 97, CHE 98, MAT 00, SUB 06]
Single-hoist, single-capacity tanks and multi-product:
[PTU 95, VAR 00, MAT 06]
Single -hoist, multi-capacity tanks and mono-product:
[SHA 88, LEI 89a, HAN 93, LEI 94, LIU 02, ZHO 03, XU 04, KUN 06]
Multi-hoist, single-capacity tanks and mono-product:
[LEI 93b, YAN 01, MAN 06, MAN 08]
Multi-hoist, multi-capacity tanks and mono-product:
[LEI 91, HAN 94, MAN 94b, ARM 96, BAP 96, RIE 02, VAR 97, MAN 00]

PHSP Transient phase scheduling: [VAR 96]
Job scheduling at the system entry:
[CAU 95, FLE 95, CAU 97, LAC 98, BLO 99a, ROS 99, FLE 01]

DHSP Single-hoist and single-capacity tanks:
[YIH 94, CHE 95, GE 95, ROS 99, FAR 01, HIN 04, PAU 07]
Single-hoist and duplicated tanks: [SPA 99]
Multi-hoist: [LAM 96a]

RHSP Single-hoist and single-capacity tanks: [YIH 93]
Multi-hoist: [THE 90, JEG 06]

Table 8.1. Some publications relating to the different classes of HSP

The presented summary also shows that much effort has been expended to solve
the HSP, while emphasizing that this has not been equally distributed between the
different existing variants of the problem. These contrasts are clearly linked to the
evolution of production conditions over time. In fact, the first research studies were
carried out when mass production was still dominant: only the mono-product cyclic
problem was really interesting for companies. This explains why the search for an
optimal cycle in this context has led to more than half of the listed publications.
These studies resulted in the development of relatively efficient optimal algorithms,

204 Production Scheduling

making it possible to schedule larger production lines relevant to the industry. In
addition, even though there are few facilities dedicated to a single type of product
today, there are still some in certain sectors and these algorithms are still current.

Gradually, series size and delays have decreased. A growing need for increasing
processing system flexibility has arisen. This has led to the emergence of research
relative to lower production horizons: real-time task assignment (RHSP), mixing of
jobs and transient phase scheduling between mono-product production phases
(PHSP). RHSP was the first approach developed in the industry, obviously because
available automatisms, specifically industrial logic controllers already used to
control hoists, allowed it to be implemented quickly. Another reason was also
probably because this type of control is the one offering the greatest flexibility (see
section 8.3.3) and robustness (when production hitches occur). The success of this
solution, the generalization of its use, may have impeded the development of other
suitable paths and limited its improvement. This accounts for the low number of
publications listed for the multi-product CHSP and optimization of transient phases,
and for the near-total absence of recent research projects relative to RHSP.

However, this hoist control mode does not always respect the specified
maximum processing times. This defect motivated research on arriving job
scheduling and DHSP. Since these problems have only recently appeared in reaction
to existing system failures, there are fewer publications about them than those
related to CHSP. They have however multiplied in recent years and this interest may
certainly reduce this difference over time. Transient phase scheduling has scarcely
been studied, whereas mixing of product types seems to benefit from renewed
interest. Some production line designers would now like to direct their research
toward hybrid control, which would adapt hoist control to the nature of jobs entering
the system. An open loop cyclic control would be used when jobs arriving over a
given horizon are identical and dynamic control would be used when a different job
type arrived.

Finally, this chapter would not be complete if while highlighting the problems, it
did not address the methods used to solve them. Once more, it seems impossible to
explain each one of the listed publications (which are described in [MAN 94a,
LAM 96b, ROS 99, MAN 03]). Only a few of the main solving approaches and
models will be presented. Two models in particular, developed for CHSP, exist on
which most of the other approaches proposed thereafter are based. Section 8.4 will
start with their presentation and will then describe a few CHSP resolution methods,
before giving information on studies related to other HSP classes.

Hoist Scheduling Problem 205

8.4. Modeling and resolution

8.4.1. Notations

A definition of notations used in this chapter is necessary in order to describe the
presented models. To facilitate understanding and avoid any confusion with certain
common notations used in scheduling, these notations have been reviewed and
unified. They are therefore not representative of those commonly adopted in the
industry or in the literature dedicated to HSP:

n number of jobs;

in number of treatments in the processing sequence of job i) 1 (ni ;

mc number of tanks in the processing line involved;

kM tank k based on tank numbering set beforehand) c 1 (mk .

NOTE.– In general, loading and unloading stations are assimilated to fictitious tanks
respectively numbered 0 and mc+1. By convention, we consider that a carrier arrival
in the system corresponds to the end of its loading, whereas its exit date corresponds
to the time when the hoist places it at the unloading station. These commonly used
(except in the case of extensions taking into account different possible
configurations for loading and unloading stations) hypotheses will be the ones
adopted in this chapter. Consequently, ni does not include loading or unloading
operations, which are implicitly assimilated to indexes j = 0 and j = ni + 1.

Also:
 , ji the tank where the jth treatment of a job i is performed,

) 1 , 1 (injni ,

ps
ij the actual time for the jth treatment of a job i) 1 , 1 (injni ,

ps
ij and p

s
ij maximum and minimum ps

ij times as specified in the processing

specifications,

ji t , transport of carrier i between , ji and 1 , ji ,

pt
ij time required to execute ji t , ,

,
) 0 , 1 (injni ,

tt
ij ji t , start date, therefore end of the treatment of i in , ji ,

vkl constant duration of empty hoist movement between kM and lM .

206 Production Scheduling

Modeling of the cyclic problem also requires the definition of:

– the desired cyclic scheduling period;

– N the number of carriers to consider, i.e. the number of carriers simultaneously
present in the system (maxmax NNN , 1 being a constant representing the highest
possible number). N can either be a data set beforehand or a variable defined at the
same time as scheduling.

8.4.2. CHSP resolution: basic problem

The two most widely used models to solve the basic problem (see section 8.3.2.)
are presented in this section, and are based on descriptions from Manier in 1994
[MAN 94a] and Lamothe in 1996 [LAM 96a]:

– the first model presented, called the “carrier model”, involves all operations
relative to carriers which can simultaneously be present in the system;

– the second, called the “period model”, indicates constraints linking operations
involved during a given period cycle.

First, notations are simplified using the assumptions of the basic problem. The
expression of constraints is given for each model and an example illustrates some
associated solving methods, before presenting a common formalism [HAN 93].

8.4.2.1. Simplification of notations

The carriers, all identical, have the same number of treatments ni, but this
notation will not be simplified to avoid confusion with n, the number of jobs. In
addition, all tanks are single-capacity and mono-function, and thus can be numbered
in relation to the processing sequence order ([8.1]). Finally, all carriers have real
identical processing times and transport time is independent of the moved carrier
since departing and arriving tanks are the same ([8.2]).

ji Mjinjniji, , , 1 , 1 , [8.1]

 , 1 , 2 , ppnjniji, s
j1

s
iji [8.2]

 , 0 , 2 , ppnjniji, t
j1

t
iji

These assumptions, as used here and by the majority of authors, allow us to note:

[j] the tank in which jth processing for all jobs is done,

Hoist Scheduling Problem 207

ps
j the real duration of jth processing for all jobs,

pt
j transport ji t , time for all jobs.

On the other hand, the 1-periodic assumption requires that a carrier i enters the
system exactly i-1 periods after carrier 1. In addition, all transports required by the
processing specifications must be executed within a cycle ([8.3]), and variables t t

j1
can be renamed t j for conciseness:

 1 , 0 , 2 , ittnjniji, t
j1

t
iji [8.3]

8.4.2.2. Carrier model

ni + 1 variables of this model are starting transport dates for carrier 1 and period
. They are calculated given that 0 0t and considering three types of constraints:

– chemical constraints, i.e.:

- the no-wait succession of processing operations, indicating that the time
between the date at which carrier 1 is lifted from tank [j – 1] and the date at which
carrier 1 is placed in [j] (corresponding to two consecutive operations) equals the
sum of the transport time between [j – 1] and [j] and the real processing time in [j]:

 , 1 , ppttnjj s
j

t
1j1jji [8.4]

- respect for processing time limits:

 , 1 , pppnjj s
j

s
j

s
ji

Note that these constraints are independent once more of i. Therefore, they only
need to be expressed for carrier 1. In addition, the conjunction of the two previous
equations leads to the global expression of chemical constraints by:

 , 1 , ppttpnjj s
j

t
1j1jj

s
ji [8.5]

– unit capacity constraints for each mono-function tank which, combined with
the 1-cyclic assumption, require that a carrier be lifted from each tank and that
another take its place (but not necessarily in this order) during a cycle. must
therefore be higher than all actual processing times:

pnjj s
ji , 1 , or according to [8.4]: pttnjj t

jj1ji , 0 , [8.6]

208 Production Scheduling

– constraints linked to the single capacity hoist which must have enough time
between two transports to move between the tank where it has just placed a carrier
and the one where it will pick one up. This is expressed with the help of disjunctive
constraints linking transport operations in pairs:

 , 1 , 0 , or

tt t
ij iji' j' j 1 j'

i
tt t

ij i' j'i' j' j' 1 j

pt t v

i, i' j, j' , i, i' n j, j' n

pt t v

 [8.7]

By using equation [8.3]:

 1 i'tt j'
t

j'i' and 1 itt j
t
ij

expression [8.7] can therefore be replaced by:

 1 1

or

 1 1

t
j jj' j 1 j'

t
j j'j' j' 1 j

i' i pt t v

i i' pt t v

In practice, disjunctions linking j' t , 1 to ji t , are the same as those linking

1 , tq j' to jqi t , (for q going from 1 to n-i, always by applying [8.3]).
Disjunctions linking the first carrier to all the others simply have to be expressed. In
addition, only N carriers simultaneously present in the system are liable to come into
conflict for the use of the hoist. Consequently, only the disjunctions relative to the
first N carriers must really be there. Finally, certain disjunctions are already
arbitrated, as indicated in the next inequality:

 1 , 0 , 1 , , , ittnjj'Nij'ji jj'i [8.8]

which expresses, for all j and j' operations such that j' precedes j in the
processing specifications, that the first carrier will be lifted from []j' before any i
carrier entered later is itself lifted from [j]. This is easily justified in the mono-
product and mono-function case: since all carriers have exactly the same processing
specifications and visit each tank only once, their order of circulation in tanks is
identical to the one in which they enter the system. In this way, the first carrier will
get out of any []j' tank before any other carrier i entered in the system later, and,

Hoist Scheduling Problem 209

even more important, before i gets lifted from [j] (since j' precedes j in the
processing specifications). Finally, hoist constraints are entirely represented by:

 1

 , , , 2 , 0 , or

 1

t
j jj' j 1 j'

i
t

j j'j' j' 1 j

i pt t v

i j j' i N j' j n

i pt t v

[8.9]

These constraints can also be expressed by considering the period beginning with
transport ji t , (of carrier i between [j] and [j+1]), and ending when transport of

carrier i + 1 between the same tanks starts. In this cycle, ji t , must be finished
and the robot must have had time to move while empty before another carrier i' is
transported between tanks []j' and [1]j' . The constraints are then independent
from i and i' carrier numbers (Figure 8.6) and can be written as:

t-tnj'jj'j jj'jj'jj'i - mod) (, 0 , , [8.10]

with and t t
jj' j' jj j'j 1 j' j' 1 jp pv v (where wu mod

represents the rest of the Euclidian division of u by w).

Figure 8.6. “Hoist” constraints expressed during a cycle

Function mod is non-linear. In addition, [HAN 93] introduces an integer
representing the number of periods passed between beginning transport dates

210 Production Scheduling

respectively from [j] to [j + 1] and [j’] to [j’ + 1] ([8.11]) and expresses the
following constraints linked to the hoist ([8.12]) and to integers ([8.13]).

 1) (

yt-ty 'jjj'j'jj

therefore, - mod) (

yt-tt-t 'jjj'jj'j , [8.11]

j'j'jjj'j'jji yt-tnj'jj'j - - , 0 , , [8.12]

 ,1 , 0 , ,

yyynj'jj'j 'jjjj''jji [8.13]

The carrier model is thus defined by equations [8.2], [8.3], [8.5], [8.6] and [8.9]
or [8.2], [8.3], [8.5], [8.6], [8.12] and [8.13]. It is widely used in other works,
generally within a branch and bound search procedure which progressively builds
scheduling. The branch and bound processes are different depending on the authors.
Nevertheless, the solving principle common to all these approaches can be presented
here in a generic way without having to detail each of them. Most often, it starts
with a calculation limiting domains for t t

ij and by reducing the model to non-
disjunctive constraints. Thus, a lower boundary min and a higher boundary max of

 can be evaluated to initialize the search [MAN 94b]. min indicates that must be
at least higher than the minimal time required to accomplish all transports of a cycle
on the one hand, and than the largest minimum processing time contained in the
processing specifications on the other hand (constraints [8.6]). max is determined by
the least productive scheduling (but one that definitely respects all constraints),
which consists of processing all carriers consecutively, so that these carriers are
never in the system simultaneously. The assessment of tj domains is the direct
consideration of constraints [8.3] and [8.5], from t0 = 0. The following example
illustrates this step. The line studied has three tanks, M1, M2 and M3, and loading and
unloading stations, M0 and M4. The maximum number of carriers present is set to be
equal to 3, or one carrier per tank (no carrier should be in M0 and M4 because arrival
in one of them corresponds either to arrival in the system or exit). According to the
basic problem assumptions, the processing specifications follow tank indexing.
Table 8.2 provides processing time boundaries in each one (in seconds).

M1 M2 M3

Minimum time 2 4 3

Maximum time 12 10 7

Table 8.2. Processing time boundary in each tank

Hoist Scheduling Problem 211

Empty hoist movement duration between two adjacent tanks is equal to 1 second
and the empty hoist movement duration between non-adjacent tanks is:

 - ,5 1 4, 0 , , jj'vvj'jj'j j 'jj' j

Transport time is obtained by adding the time needed to lift and lower the carrier,
i.e. 1 second. Any transport thus requires 2 seconds, because a carrier only moves
between adjacent tanks. Period boundaries then become:

] min, max], min = max (4 2,4) = 8, max = 2 + 2 + 2 + 4 + 2 + 3 + 2 + 4 = 21

and conjunctive constraints linked to processing times and to the 1-periodic cycle
assumption provide the following domains:

0 ; and , where 4,14s t s t
0 0 0 00 1 0 1 0 1p p p pt t t t t t

similarly, 4 4 2 and 14 10 2 , where 10, 26 2 2 2t t t

finally, 10 3 2 and 26 7 2, where 15, 353 3 3t t t .

 boundaries make it possible to deduce tt
ij domains since they are linked to tj by

constraint [8.3] (Table 8.3).

Carrier (i, 0)t (i, 1)t (i, 2)t (i, 3)t

i = 2 [9, 21] [13, 35] [19, 47] [24, 56]

i = 3 [18, 42] [22, 56] [28, 68] [33, 77]

Table 8.3. Variable domains for i > 1

212 Production Scheduling

D1: (2,0)t (1,1)t or (1,1)t (2,0)t D10: (3,2)t (1,3)t or (1,3)t (3,2)t

D2: (3,0)t (1,1)t or (1,1)t (3,0)t D11: (4,2)t (1,3)t or (1,3)t (4,2)t

D3: (2,1)t (1,2)t or (1,2)t (2,1)t D12: (2,1)t (1,3)t or (1,3)t (2,1)t

D4: (3,1)t (1,2)t or (1,2)t (3,1)t D13: (3,1)t (1,3)t or (1,3)t (3,1)t

D5: (4,1)t (1,2)t or (1,2)t (4,1)t D14: (4,1)t (1,3)t or (1,3)t (4,1)t

D6: (2,0)t (1,2)t or (1,2)t (2,0)t D15: (2,0)t (1,3)t or (1,3)t (2,0)t

D7: (3,0)t (1,2)t or (1,2)t (3,0)t D16: (3,0)t (1,3)t or (1,3)t (3,0)t

D8: (4,0)t (1,2)t or (1,2)t (4,0)t D17: (4,0)t (1,3)t or (1,3)t (4,0)t

D9: (2,2)t (1,3)t or (1,3)t (2,2)t

Table 8.4. List of remaining disjunctions to arbiter

At this step, some disjunctions are already arbitrated: those between transports
relative to operations linked by a precedence relation in the processing sequence
(constraint [8.8]) and those whose variable domains are separate (consequently
imposing the order in which they will be executed). The tree search procedure then
consists of progressively building scheduling by arbitrating remaining disjunctions
(Table 8.4). The branching phase corresponds to arbitration of these disjunctions,
and the bound phase adjusts previous domain limits and recalculates a lower bound
of for each partial solution (by still using constraints [8.3] and [8.5]). At each new
arbitration, constraint system consistency must be checked by ensuring that the
decision taken has not reduced any domains to the empty set and that all conjunctive
constraints [8.3] and [8.5], as well as those corresponding to arbitrations already
completed, are still satisfied.

The scientific studies contain several solving approaches (based on a principle
similar to the one presented here), which are mainly distinguished by the arbitration
strategy of disjunctive constraints (in other words the order in which they are
considered) and evaluation and checking procedures used:

– in the Shapiro and Nuttle algorithm [SHA 88], the jth tree level corresponds to
the addition of carrier j + 1 (this is made up of all possible partial sequences between
operations of carrier 1 and of the other carriers scheduled until j + 1th) and the
evaluation uses the resolution of several linear programs;

Hoist Scheduling Problem 213

– the evaluation phase from Lei and Wang [LEI, 89a] adjusts variable domains
(called “time windows”), and these authors use a specific matrix to gradually build
scheduling by choosing the next transport to place (Figure 8.7);

a. Initial matrix b. Resulting matrix

(i,0)t (i,1)t (i,2)t (i,3)t

i = 1

i = 2

i = 3

i = 4

1 2

3

(i,0)t (i,1)t (i,2)t (i,3)t

i = 1

i = 2

i = 3

i = 4

1 2

3

4

Choice of transport to place in fourth position in existing partial scheduling
{(1,0)t; (1,1)t; (2,0)t; ?...}

 Candidate operations

Figure 8.7. Illustration of the exploration strategy from [LEI 89a]

– [MAN 94b] uses constraint logic programming. Disjunctions are arbitrated
starting with those for which there is only one possible choice, then by arbitrating
those where one of the choices seems to have been more “probable” (by comparison
with temporal windows involved), before ending by those where temporal windows
provide no liable element to guide the choice. The evaluation uses a constraint
propagation mechanism inherent to the languages used.

214 Production Scheduling

D6
(2,0) <(1,2)

(t0 , t3 , t1 , t2) = 20;
(t0 , t1 , t2 , t3) = 21.

[16,18]; t0=0;t1 [7,9];
t2 [19,21]; t3 [26,30] (t0 , t2 , t3 , t1) = 17;

D12

D1
(1,1)<(2,0)(2,0) <(1,1)

Pog ={(2,0)<(1,3); (1,3)<(3,0)} Rdg ={D12}
[14,21]; t1 [7,14]; t2 [17,26]; t3 [22,35]

Pog ={(1,1)<(3,0); (1,2)<(2,1); (1,2)<(3,1); (1,2)<(4,1); (1,2)<(3,0);
(1,2)<(4,0); (1,3)<(2,2); (1,3)<(3,2); (1,3)<(4,2); (1,3)<(3,1);
(1,3)<(4,1); (1,3)<(4,0)}

Rdg ={D6, D12, D15,D16}
[10,21]; t1 [4,14]; t2 [10,26]; t3 [15,35]

Pog = Rdg ={D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16,D17}
[8,21]; t1 [4,14]; t2 [10,26]; t3 [15,35]

(1,2) < (2,0)

(2,1) <(1,3) (1,3) < (2,1)

Figure 8.8. Resolution using the carrier model

To illustrate these methods in a concise way, the previous example is solved here
with a simplified arbitration strategy which considers the disjunctions according to
the order of Table 8.4 and gives priority to the carrier entered last in the system. The
corresponding search tree is presented in Figure 8.8. A node corresponds to the
arbitration of one of the disjunctions and also contains information available before
branching, that is, the list of disjunctions remaining to arbitrate, as well as the list of
partial orders and temporal windows deducted from the previous node arbitration. In
fact, in order to limit the number of nodes, the evaluation phase is supposed to use a
constraint propagation mechanism similar to the one from [MAN 94b]. and tj

domains are the only ones indicated, knowing that the other domains deduct
themselves as in the preliminary calculation.

Hoist Scheduling Problem 215

The first branch thus built leads to a failure. In fact, since the line only contains
one hoist, starting the second carrier before taking out the first one from M1 would
come down to placing carrier 2 before it is available. The procedure therefore
translates the second D1 alternative. The evaluation adjusts temporal windows by
using the initial conjunctive constraints ([8.3] and [8.5]), to which the conjunctive
constraint translating the order adopted for D1 is added. The lower boundary in
particular increases by two and several partial orders are imposed by constraint
propagation. Only four disjunctions remain to be arbitrated and the following node
consists of processing the first one. The branch developed first again gives priority
to carrier 2 and no inconsistency is detected. Boundaries are readjusted, two partial
orders are taken out and only D12 remains to be arbitrated. By reiterating the process,
a first solution is determined. It is the cycle represented by the generic transport
sequence {(i, 0)t; (i – 1, 2)t; (i, 1)t; (i – 1, 3)t}, with a minimum period equal to 16
seconds. Retained execution dates are minimum tj boundaries. The procedure then
searches for a better solution by considering the other possible choice for D12. The
evaluation of the minimum boundary turns out to be too high and the branch is
forsaken. Figure 8.8 indicates that by continuing the evaluation, another less
interesting solution would have been determined. Similarly, the evaluation of min

for the second alternative of D6 leads to forsaking the branch. The first solution
found thus turns out to be the optimal solution. Note that because of the simplicity of
the example involved, all the cases possibly encountered have not been illustrated.
Notably, the only abandonments carried out here are linked to the impossibility of
developing the choice retained for D12 or the fact that min is more important than the
value of for the first solution found. However, more generally, the exploration of a
branch can also be forsaken if the choice obtained is possible, but the propagation
detects an inconsistency (in other words, at least one disjunction no longer offers a
choice) among remaining partial orders to be arbitrated.

[MAT 00] proposed a solving algorithm based on graph treatment for bound
calculation. Some of the calculated bounds first enable us to check the feasibility of
any solution before performing its complete evaluation. This enables us to save
some calls to the evaluation procedure and therefore increases the performances of
the branch and bound procedure.

8.4.2.3. Period model

The variables in this model are period and transport starting dates throughout a
cycle. We note as:

j transport starting date between [j] and [j+1] in the cycle:

 mod , j 0 , jji tnj .

216 Production Scheduling

Boolean variables j'jx are defined by:

 , , 0 , 0 , 1 if , 0 otherwise, and 1i i j j' j j' j j' j j' j' jj j' j n j' n x x x x

 Therefore, , - mod) - (, 0 , 0 , , j'jjj'jj'ii xttnj'njj'j

and the constraints expression is consequently modified. Constraint [8.3] becomes
useless because only one period is considered and equations [8.5], [8.6] and [8.9] or
[8.10] become respectively:

 , 1 , pxppnjj s
jj1j

t
1j1jj

s
ji [8.14]

 , 1 , pxnjj t
j1jjj1ji [8.15]

 - , 0 , 0 , , vpxnj'njj'j 'j 1j
t
jj'jjj'ii

[8.16]

Once more, different resolution approaches exist which are mainly distinguished
by the definition of Boolean variables and the way in which they are determined:

– Phillips and Unger [PHI 76] use complete mixed programming to solve a
manufacturing detailed example with 13 tanks which almost constitutes the only
reference example for CHSP; their algorithm was still recently reused and extended
to the duplicated tank case [ZHO 03];

– [LEI 93a] assume that the transport order is known in a cycle. The authors
define boundaries and use an iterative procedure determining if there is a feasible
schedule for the different values belonging to this interval. This algorithm is reused
by Lim to evaluate chromosomes in a genetic algorithm where solutions are
represented by sequenced lists of tanks unloaded by the hoist in a cycle and where
the strength depends on the obtained period [LIM 97];

– [LEI 94] and [ARM 94] define branch and bound procedures which gradually
build scheduling. The [LEI 94] algorithm will be the only one detailed here (Figure
8.9), but it will enable the reader to understand what separates these approaches
from those described in section 8.4.2.2. A node represents a partial transport order
already placed in the cycle. The first two are associated with the arrival of a carrier
in the system (marking the start of the cycle) and with the addition of M1 to M2

transport. Transports are then consecutively added. The width of a tree at a given
level corresponds to the number of places possible in the sequence for the added
operation by still keeping the arrival of the carrier in first place. At each node, the
procedure evaluates by default. The exploration strategy is in depth first and gives
priority to the node with the minimal boundary. At level 2 of the tree presented in

Hoist Scheduling Problem 217

Figure 8.9, operation 2 is added and the first branch explored has the lowest
boundary. Then the different possible places for 3 are considered. The first one
leads to failure because the maximum processing time in M3 is not respected. The
two following places give solutions of respectively 17 and 16 second periods. A
return to level 2 is carried out to search for a better solution. The evaluation of by
default does not prohibit exploration, but it is too high for two of the son nodes and
the third son node leads to inconsistency, which proves the period-16 solution is
optimal.

8 , failure,
M3 maximum
time exceeded

Solution
= 17

{ 0 }

8, 0

1 x0,1 [4,14];
2 x1,2 [10,26];
3 x2,3 [15,35]

{ 0 , 2 , 1 } { 0 , 1 , 2 }

{ 0 , 3 , 2 , 1 } { 0 , 2 , 3 , 1 } { 0 , 2 , 1 , 3 }

{ 0 , 1 }

{ 0 , 3 , 1 , 2 } { 0 , 1 , 3 , 2 } { 0 , 1 , 2 , 3 }

8

158

Solution
= 16

20
(solution)

21
(solution)

16 , failure,
M3 maximum
time exceeded

: search tree branch where only boundaries of are reevaluated.

Figure 8.9. Resolution using the period model [LEI 94]

8.4.2.4. Common formalism

Hanen and Munier propose a common formalism by dividing all constraints by
[HAN 93]. This model uses given Ljj’ lengths and Hj j’ heights (which are integers):

1 , , 0 , 0 , - , with j
i i j' j j j' j j' jj j' j n j' n V V L H V [8.17]

These authors thus group all constraints in a bi-valued graph where peaks sj

represent Vj. The first disparity of [8.14] and constraints [8.16], for example, are
equal respectively to the following expressions:

218 Production Scheduling

 , 1 , and 0s t
i j 1 j j 1 jj 1j

pj j n L Hp

 , , 0 , 0 , and t
i i j j' j j' j j'j j 1 j'j j' j n j' n L H xp v

This formalism also makes it possible to represent the carrier model by retaining
length definitions and by defining Vj variables from tj, and Hjj’ heights from yjj’. The
authors then demonstrate that the problem is a part of the central scheduling
repetitive problem when Hjj’ are set. They present two tree search procedures by
branch and bound. One, based on a carrier model, adjusts H and L boundaries at
each node, thus evaluating by default. The other uses a period model and gradually
builds a solution (called “pattern”) by listing transport permutations in a cycle. The
default evaluation is a critical path calculation in the diagram. Other authors
[CHE 98] propose two branch and bound search procedures based on this model.
One lists initial carrier distributions in the tanks, limiting their number by
calculating a higher boundary of the number of carriers which can be lifted by the
robot in a cycle. The algorithm verifies that there is an achievable scheduling for
each initial state and evaluates by default by solving a linear problem, obtained by
relaxing certain constraints and represented in a bi-valued graph. The other
procedure then determines the corresponding optimal transport sequence.

8.4.3. Extensions

Different extensions can be added to the basic models already described:

– search for cycles with a higher degree than 1 has in particular been studied by
[MAN 94b, LEI 89a] for the carrier model and by [LEI 94] for the period model.
The extension of chemical constraints and of constraints linked to the robot does not
raise any specific problem; the extension of tank resource constraints is more
significant. Globally, the same formalism can be retained and almost all tree search
approaches can be generalized (except for the one from [ARM 94], which is based
on the 1-periodic assumption to evaluate by default). However, the important
number of variables generally limits these approaches to a maximum of three or four
degree solutions;

– the consideration of multi-capacity tanks (called duplicated tanks) has been
addressed in particular by [SHA 88, LEI 89a, HAN 93, MAN 94b, LEI 94, LIU 02,
RIE 02, ZHO 03]. Generally, it does not lead to additional constraints, but a
modification of constraints [8.6] or [8.15], consisting of the meaning that a carrier
can only enter a tank containing bk places on the condition that one of the bk carriers
preceding it has been removed. The authors generally do not give prior place
assignment and consider the longest transport distance (see section 8.2.1);

Hoist Scheduling Problem 219

– the study of all possible configurations for loading and unloading stations, by
taking into account the duration of these operations and of cleaning operations in the
processing specifications was conducted by [SHA 88] and [MAN 94b], adding
additional constraints for this purpose. The first one defined the notion of carrier
circulation, specific constraint involving that the carrier unloaded during a cycle be
immediately reloaded and reused as arriving carrier in the next cycle;

– the generalization of multi-hoist lines, developed for the approaches by
[LEI 89a, HAN 93, ARM 94, MAN 94b], respectively in [LEI 91, HAN 94,
LEI 93b, BAP 96, MAN 00, YAN 01, RIE 02]. All these approaches share the line
in zones each served by one of the hoists. Contrary to those from [LEI 91] (limited
to 2 hoists) and from [LEI 93b], the extension of [MAN 94b] ([MAN 00]) considers
zones which may be disjoint and/or continuous. A series of transports, and not a
work zone, is assigned to each hoist, which encourages more flexible management
while balancing the hoist workload. However, this increases the risk of collision
between hoists, and new constraints (called “spatial constraints”) are used to avoid
interferences. Expressed in the form of disjunctive rules, they were deducted from
the analysis of different interference configurations liable to appear. The notion of
hoist clearing (section 8.2.2) and congestion are also considered. This approach was
also completed by improving the study of transport assignment for hoists [VAR 97].
In [HAN 94], temporal and spatial constraints linked to the multi-hoist case are
added to the hybrid model in section 8.4.2.4 by using binary variables hij to represent
arbitration of corresponding disjunctions in the diagram, and then by resolving a
linear problem for each occurrence of these variables.

More recently, and for a given number of hoists, the authors of [YAN 01] use a
simulated annealing algorithm to find the optimal partition in zones. Nevertheless
they still make the same assumption as [LEI 91] (continuous zones with a single
boundary station between two contiguous zones).

The authors of [RIE 02] hybridize constraint logic programming and mixed
integer programming to solve the multi-hoist case either assigning disjoint zones
like [LEI 91] or using collision-based assignment like [MAN 00]. A preprocessing
step is used to eliminate certain contradictory situations in advance, which makes it
possible to greatly reduce the number of Boolean variables used to represent the
order in which any hoist performs transports;

– the study of both design and scheduling of electroplating facilities. [ARM 96]
search for the best number of hoists, but also with the same partition approach as
[LEI 91]. [MAN 06, MAN 08] propose a decision support system based on an
evolutionary approach, a linear programming evaluation model, and simulation.
They a priori do not fix either the number of hoists, or the assignment of transport
operations to each hoist. They determine schedules with the best couples (cycle
time, number of hoists), in order to help a designer to choose the best compromise
among the solutions generated.

220 Production Scheduling

8.4.4. Multi-product case

The authors who have focused on the multi-product CHSP [PTU 95, VAR 00,
MAT 06] have broken it down into several mono-product cyclic problems. They
then consider as many sub-problems as different processing specifications to be
treated. Ptuskin supposes that the mixing (order of the different types of jobs in the
arrival sequence) is known. He determines their exact arrival date within this
sequence and real processing times to minimize the period. [VAR 00] does not make
this assumption and searches for a generic minimal period cycle to make a carrier
enter the line every units of time, regardless of its processing specifications
among those authorized in the mixing. In both cases, the solution needed has a
common period at every mono-product sub-problem. Ptuskin uses an iterative
procedure and Varnier proposes a branch and bound procedure to arbitrate the
disjunctions between different carriers, according to a principle relatively similar to
that in section 8.4.2.2. Finally, [MAT 06] extends the solving approach proposed in
[MAT 00] to tackle the multi-product CHSP. These authors consider two types of
products. They use fictitious tanks to transform the 2-product CHSP which
processing sequence contains mt treatments in a mono-product CHSP which
processing sequence contains 2mt treatments. Type 1 products only visit tanks with
odd numbers whereas type 2 products only visit the tanks with even numbers. This
implies the addition of new arcs in the graph representing the constraints relative to
type 2 products. The solving algorithm can then treat the graph in the same way as
in the mono-product case.

8.5. Resolution of other problems presented

The resolution of non-cyclic problems is generally based on a linear carrier
model in which simplifications presented in section 8.4.2.1 are no longer relevant,
because the notion of period no longer exists and several processing specifications
are considered. The constraints used are based on the same formalism, but must be
expressed for all carriers, since the first one no longer plays a specific role. In this
way, chemical constraints ([8.5] type) must be expressed for all carriers, constraints
[8.6] involving the period are replaced by disjunctive constraints somewhat similar
to constraints [8.7] expressed for the hoist and are applied with no modification.

8.5.1. Optimization of temporary phases

[VAR 96] optimizes the transient phase resulting from the transition of an initial
cycle A to a final cycle B. This author takes advantage of the degraded production
mode for each cycle (because of a load decrease for type A jobs and an increase for
B) to temporarily combine transports from both cycles into a single forecasted

Hoist Scheduling Problem 221

scheduling. A and B cycles are elements of the problem. Once more, the proposed
resolution method is similar to the one illustrated in section 8.4.2.2 and also uses
constraint logic programming. However, the solution needed is not cyclic, and the
criteria to minimize are transient phase durations. A branch and bound search
procedure makes it possible to arbitrate disjunctive constraints linked to resource
sharing. A lower and upper criteria boundary is determined beforehand and to limit
the number of disjunctions, partial orders of A and B cycles are kept.

8.5.2. Job scheduling at line arrival

Faced with a much higher number of variables, the authors addressing this
problem use greedy progressive construction algorithms or local search methods to
generate job arrival sequences, and then determine for each one if achievable
transport scheduling exists with the help of simulation or dedicated heuristics. In the
case of a greedy method [CAU 95, FLE 95], the new job to add in the developing
sequence must be determined at each iteration. It is the non-scheduled job whose
earliest beginning date is the lowest. This date is evaluated by an iterative procedure
using a discrete event simulator, which plays the same role as the conjunctive
constraint system verification in section 8.4.2.2. It is equivalent to calculating time
windows of transports by expressing chemical constraints [8.5] for all the carriers
involved in the partial solution. It does not arbitrate disjunctions over resources
(type [8.6] and [8.7]), but detects possible overlapping between time windows. In
this case, the iterative procedure delays the job arrival to solve these conflicts. When
a local search algorithm is used, it provides a carrier a beginning sequence for
simulation so that it can determine beginning dates by an iterative procedure similar
to the previous one. [CAU 95 and FLE 95] combine a stochastic descent with the
simulator already presented, whereas [LAC 98] uses a kangaroo algorithm,
associated with a simulation based on a multi-agent model, which can also be used
for real-time hoist control and considers carriers as a resource.

In the same way but for an extended problem, the authors of [FLE 01] use
several tools to solve a problem in which random events imply variations in
transportation times. They call it the stochastic HSP (SHSP). They aim at
minimizing the consequences of such variations in terms of increase of the
makespan and number of job damages due to the violations of time windows
constraints. They propose a model which again associates stochastic metaheuristics
to manage the production at the system entrance, decision rules to manage the inner
production, and simulation to evaluate the criterion to minimize. [CAU 97] and
[BLO 99a] have a methodology that is almost similar by combining respectively
simulated annealing and tabu search into a dedicated heuristic. In fact, since the
problem is over-constrained, the simulation manipulates numerous solutions in order
to find a few (or none) achievable. Replacing it by a heuristic which builds an

222 Production Scheduling

achievable scheduling from the beginning sequence proposed may turn out to be a
more efficient solution. The heuristics proposed on this subject by [CAU 97]
gradually build the transport sequence by considering jobs consecutively according
to the imposed arrival sequence and by delaying the arrival date of the last job in the
partial sequence if performing one of the associated transports creates a time
window overlap. [BLO 99a] uses a procedure inspired by the bottleneck machine
heuristic [ADA 88] (also see Chapter 2) modified to consider constraints specific to
HSP (notably bounded processing times and no-wait constraints)
[ROS 99]. The goal is to use the scheduling of job entries as a control to limit
resource conflicts, deadlocks and maximum processing time constraint violations
(see section 8.3.3). Imposing job entry dates that were judiciously calculated makes
it possible to significantly reduce the number and magnitude of observed violations
of constraints.

8.5.3. DHSP resolution

DHSP resolution methods are heuristic, and are mostly strongly based on solving
principles encountered to date:

– Yih uses an iterative procedure which attempts to enter the new carrier as soon
as possible [YIH 94], calculates its transports’ execution time windows by using
chemical constraints translating the minimum operation times, and then attempts to
use certain available processing time margins or delays the entrance of this job if
necessary, when overlaps between these time windows and those of the previous
carriers are detected;

– Ge and Yih, Cheng and Smith, and Lamothe all present tree search procedures
to progressively construct a schedule [GE 95, CHE 95, LAM 96a]. The first one is
similar to the one described in section 8.4.2.3, because each node represents a partial
transport sequence, and each level corresponds to the addition of a transport by
prioritizing the new carrier whenever possible and by choosing the carrier transport
which is the closest to its maximum processing time otherwise. Solving a linear
program combining conjunctive constraints of the “carrier” model and those
indicating the partial sequence makes it possible to check the consistency of the
constraints system for each sub-branch. The tree is deeply analyzed and the
algorithm stops at the first determined achievable scheduling. The other methods are
closer to the ones illustrated in section 8.4.2.2, because a node corresponds to the
arbitration of a disjunction. These methods use a graph to represent conjunctive
constraints associated with a partial solution (chemical constraints and constraints
from previous arbitrations). In this graph, calculating the longest route enables us to
adjust transport execution time windows and to detect possible inconsistencies by
positive circuit detection. They differ, however, by their exploration strategy and
their stop criteria. The first one [CHE 95] uses dominance rules from the traditional

Hoist Scheduling Problem 223

constraint analysis theory [ERS 80] to identify trivial arbitration and quickly
decrease research space. It uses a heuristic rule when indecision remains (see section
5.4.2) and stops without backtracking in the case of inconsistency (thus offering no
solution). The second one [LAM 96a] arbitrates disjunctions linked to tanks with
priority and by increasing operation start dates. It is complete and backtracking is
more powerful than traditional backtracking since a portion of information from the
previous resolution is kept. In addition, this author is the only person to our
knowledge who has solved the DHSP for complex lines, similar to industrial
facilities;

– [ROS 99] uses an evaluation procedure of the longest routes in a graph similar
to [CHE 95] and [LAM 96a] to evaluate transport sequences. However, these are not
partial sequences evaluated at each node of a tree search procedure; these are
complete sequences, represented in the form of chromosomes in a genetic algorithm
covering the search space. The strength of these solutions is proportional to the end
date for all jobs, and they are penalized when an inconsistency is detected;

– Spacek et al. model the problem in an inventive way in the form of a P-
temporal Petri network [SPA 99]. The variables are transition launching dates. This
representation is illustrated in the form of a state equation in algebra (max, +). The
components of the state represent execution dates for processing vector x(k) and
carrier transport operations k. Determining a solution x#(k) is made possible by the
resolution of a problem obtained by relaxing the hoist’s unit capacity constraints.
Then, the algorithm searches for overlaps of time windows linked to the hoist and
resolves them by modifying the control vector u(k) according to a “repair” procedure
inspired from [YIH 94];

– similarly to [CHE 95], Hindi and Fleszar use a non-standard CSP (Constraint
Satisfaction Problem) model [HIN 04]. The variables used in this model correspond
to hoist operations. At each step, one of the available hoist operations is chosen and
scheduled at the earliest possible time, while avoiding all conflicts. The choice made
gives priority to the operation with the earliest start time (if possible). In case of
infeasibility (if an upper bound is not respected for soaking durations), then the
considered transport operation is delayed and backtrack is initiated (another
operation is chosen according to this strategy);

– in [PAU 07], the jobs are picked up one after the other according to the entry
sequence. Then the activities of a job are consecutively scheduled. Once a job is
introduced, all its activities are planned for execution within corresponding time
windows. These time windows are continuously adapted, then the activities
associated with one job can be re-scheduled but not re-sequenced at a later step.

224 Production Scheduling

8.5.4. RHSP resolution

Real-time control has motivated several studies on the real-time assignment of
transports to hoists. There are two main approaches: one is based on heuristic rules
included in an expert system or within list algorithms, the other using state change
probabilities.

Thesen and Lei develop an expert system which chooses the heuristic to use
according to the current line state [THE 90]. Decision rules enable hoists to adapt in
real time to the situation. Four allocation rules are used. The first one defines work
zones beforehand to balance the load between robots. The second one accomplishes
this balance in real time by dynamically readjusting work zone limits. The third one
allocates each transport to the robot whose current position is the closest to the
starting tank and the last prioritizes the hoist which is at the farthest left of loading
tasks and applies the third for the other transports.

[YIH 93] uses both neural networks and semi-Markov decision models. The
latter describes some of the possible system states. A transition matrix is built by
studying the loss or gain associated with a decision. This approach is then completed
by using a network or neurons to generalize the policy obtained by resolving the
semi-Markov model for all possible states.

Jégou et al. propose two multi-agent systems to solve the RHSP, considering
each tank and each hoist as an agent [JEG 06]. The first system is used to determine
the input date of the next job; the second system allows us to assign transfer
operations to hoists and to schedule the actual operation of these hoists. For this
goal, it uses the flexibility of the time windows.

8.6. Conclusion

The rapid overview of studies related to HSP provided in this chapter is not
exhaustive. It could furthermore be linked with other problems, only varying by a
few (or even only one) assumptions or constraints. The scheduling problem for
arriving jobs then resembles the car sequencing problem in the automobile industry.
Similarly, establishing certain parallels with the Crane scheduling problem [LIE 82],
vehicle routing with time windows [DUH 97] or simultaneous scheduling of
machines and material handling resources in flexible production systems [ULU 97]
could also have been informative. Finally, other problems were considered in the
hoist system context. Certain authors focus on the influence of tank layout over shop
productivity [GRU 97], and others discuss robustness of solutions in order to take
the different production hazards into consideration [MAR 01, FAR 01]. Finally,
many “variants” among the numerous variants we have identified still remain

Hoist Scheduling Problem 225

interesting and have opened issues for researchers. Nevertheless, recent works also
point out new research directions, by extending classical HSPs to consider stochastic
events and their influence on the line [FLE 01], environmental issues [XU 04,
KUN 06, SUB 06], or to solve both design and scheduling problems [MAN 06,
MAN 08].

8.7. Bibliography

[ADA 88] ADAMS J., BALAS E. and ZAWACK D., “The shifting bottleneck procedure for
job shop scheduling”, Management Science, vol. 34, no. 3, p. 391-401, 1988.

[ARM 94] ARMSTRONG R., LEI L. and SHANHONG G., “A bounding scheme for deriving
the minimal cycle time of a single-transporter n-stage process with time-window
constraints”, European Journal of Operational Research, vol. 75, p. 1-11, 1994.

[ARM 96] ARMSTRONG R., GU S. and LEI L., “A greedy algorithm to determine the
number of transporters in a cyclic electroplating process”, Institute of Industrial
Engineers Transactions, vol. 28, no. 5, p. 347-355, 1996.

[BAP 96] BAPTISTE P., LEGEARD B., MANIER M.-A. and VARNIER C., “Résolution
d’un problème d’ordonnancement avec la PLC”, European Journal of Automated
Systems, vol. 30, no. 2-3, p. 201-230, 1996.

[BLO 97] BLOCH C., BACHELU A., VARNIER C. and BAPTISTE P., “Hoist scheduling
problem: state-of-the-art”, Fourth International Federation of Automatic Control
Workshop on Intelligent Manufacturing Systems, Seoul, Korea, p. 177-185, 1997.

[BLO 99a] BLOCH C., VARNIER C. and BAPTISTE P., “A taboo search combined with a
modified shifting bottleneck heuristic for solving a blocking scheduling problem with
bounded processing times”, 15th Conference of the International Federation of
Operational Research Societies, Beijing, China, p. 125-126, 1999.

[BLO 99b] BLOCH C. and MANIER M.-A., “Notation and typology for the hoist scheduling
problem”, Institute of Electrical and Electronics Engineers Systems, Man and Cybernetics
Conference, Tokyo, Japan, vol. 6, p. 475-480, 1999.

[CAU 95] CAUX C., FLEURY G., GOURGAND M. and KELLERT P., “Couplage
méthodes d’ordonnancement – simulation pour l’ordonnancement de systèmes industriels
de traitement de surface”, RAIRO-Recherche Opérationnelle, vol. 29, no. 4, p. 391, 1995.

[CAU 97] CAUX C. and PIERREVAL H., “Solving a hoist scheduling problem as a
sequencing problem”, International Federation of Automatic Control/International
Federation for Information Processing Conference on Management and Control of
Production and Logistics, Campinas, Brazil, p. 372-376, 1997.

[CHE 95] CHENG C.-C. and SMITH S. F., “A constraint-posting framework for scheduling
under complex constraints”, Symposium on Emerging Technologies and Factory
Automation, Paris (France), vol. 1, p. 269-280, 1995.

226 Production Scheduling

[CHE 98] CHEN H., CHU C. and PROTH J.-M., “Cyclic scheduling of a hoist with time
window constraints”, Institute of Electrical and Electronics Engineers Transactions on
Robotics and Automation, vol. 14, no. 1, p. 144-152, 1998.

[DUH 97] DUHAMEL C., POTVIN J.Y. and ROUSSEAU J.M., “A tabu search heuristic for
the vehicle routing problem with backhauls and time windows”, Transportation Science,
vol. 31, no. 1, p. 49-59, 1997.

[ERS 80] ERSCHLER J., ROUBELLAT F. and VERNHES J.-P., “Characterizing the set of
feasible sequences for n jobs to be carried out on a single machine”, European Journal of
Operational Research, vol. 4, no. 3, p. 189-194, 1980.

[FAL 91] FALKENAUER E. and BOUFFOUIX S., “A genetic algorithm for job shop”,
Institute of Electrical and Electronics Engineers International Conference on Robotics
and Automation, p. 824-829, 1991.

[FAR 01] FARGIER H., and LAMOTHE J., “Handling soft constraints in hoist scheduling
problems: the fuzzy approach”, Engineering Applications of Artificial Intelligence,
vol. 14, p. 387-399, 2001.

[FLE 95] FLEURY G., “Applications de méthodes stochastiques inspirées du recuit simulé à
des problèmes d’ordonnancement”, Automatique productique informatique industrielle,
vol. 29, no. 4-5, p. 445-470, 1995.

[FLE 01] FLEURY G., GOURGAND M. and LACOMME P., “Metaheuristics for the
Stochastic Hoist Scheduling Problem (SHSP)”, International Journal of Production
Research, vol. 39, no. 15, p. 3419-3457, 2001.

[GE 95] GE Y. and YIH Y., “Crane scheduling with time windows in circuit board production
lines”, International Journal of Production Research, vol. 33, no. 5, p. 1187-1189, 1995.

[GRA 79] GRAHAM. R.L., LAWLER E.L., LENSTRA J.K. and RINNOOY KAN A.H.G.,
“Optimization and approximation in deterministic sequencing and scheduling theory: a
survey”, Ann. Discrete Math., vol. 5, p. 287-326, 1979.

[GRU 97] GRUNDER O., BAPTISTE P. and CHAPPE D., “The relationship between the
physical layout of the work stations and the productivity of a saturated single-hoist
production line”, International Journal of Production Research, vol. 35, no. 8, p. 2189-
2211, 1997.

[HAN 93] HANEN C. and MUNIER A., Ordonnancement cyclique d’un robot sur une ligne
de galvanoplastie: modèles et algorithmes, LITP/IBP, Pierre and Marie Curie University,
Paris, LITP research report 93.30, 1993.

[HAN 94] HANEN C., “Periodic scheduling of several hoists”, Fourth International
Workshop on Project Management and Scheduling, Leuven, Belgium, p. 108-110, 1994.

[HIN 04] HINDI K. S. and FLESZAR K., “A constraint propagation heuristic for the single
hoist, multiple products scheduling problem”, Computers and Industrial Engineering,
vol. 47, p. 91-101, 2004.

[JEG 06] JÉGOU D., KIM D.-W., BAPTISTE P. and LEE KWANG H., “A contract net
based intelligent agent system for solving the reactive hoist scheduling problems”, Expert
Systems with Applications, vol. 30, p. 156-167, 2006.

Hoist Scheduling Problem 227

[KUN 06] KUNTAY I., XU Q., UYGUN K. and HUANG Y. L., “Environmentally
Conscious Hoist Scheduling for Electroplating Facilities”, Chemical Engineering
Communications, vol. 193, p. 273-292, 2006.

[LAC 98] LACOMME P., Optimisation des systèmes de production: méthodes stochastiques
et approche multi-agents, PhD thesis, Clermont-Ferrand, 1998.

[LAM 96a] LAMOTHE J., Une approche pour l’ordonnancement dynamique d’un atelier de
traitement de surface, PhD Thesis, Ecole Nationale Supérieure de l’Aéronautique et de
l’Espace, Toulouse, 1996.

[LAM 96b] LAMOTHE J., THIERRY C. and DELMAS J., “A multihoist model for the real
time hoist scheduling problem”, Computational Engineering in Systems Application
Multiconference-Symposium on Discrete Events and Manufacturing Systems, Lille,
France, p. 461-466, 1996.

[LEI 89a] LEI L. and WANG T.-J., On the optimal cyclic schedules of single hoist
electroplating processes, Rutgers University, Research report no. 89-0006, 1989.

[LEI 89b] LEI L. and WANG T.-J., A proof: the cyclic hoist scheduling problem is NP-
complete, Rutgers University, Research report no. 89-0016, 1989.

[LEI 91] LEI L. and WANG T.-J., “The minimum common cycle algorithm for cycle
scheduling of two material handling hoists with time window constraints”, Management
Science, vol. 37, no. 12, p. 1629-1639, 1991.

[LEI 93a] LEI L., “Determining the optimal starting time in a cyclic schedule with a given
route”, Computers and Operations Research, vol. 20, no. 8, p. 807-816, 1993.

[LEI 93b] LEI L., ARMSTRONG R and GU S., “Minimizing the fleet size with dependent
time-window and single-track constraint”, Operations Research Letters, vol. 14, p. 91-98,
1993.

[LEI 94] LEI L. and WANG T.-J., “Determining the optimal cyclic hoist schedules in a
single-hoist electroplating line”, Institute of Industrial Engineers Transactions, vol. 2,
p. 25-33, 1994.

[LIE 82] LIEBERMAN R. W. and TURKSEN I. B., “Two-operation crane scheduling
problems”, Institute of Industrial Engineers Transactions, vol. 14, no. 3, p. 147-155,
1982.

[LIM 97] LIM J.-M., “A genetic algorithm for a single hoist scheduling in the printed-circuit-
board electroplating line”, Computers and Industrial Engineering, vol. 33, no. 3-4, p. 789-
792, 1997.

[LIU 02] LIU J., JIANG Y., and ZHOU Z., “Cyclic scheduling of a single hoist in extended
electroplating lines: a comprehensive integer programming solution”. IIE Transactions,
vol. 34, no. 10, p. 905-914, 2002.

[MAN 94a] MANIER M.-A. and BAPTISTE P., “Etat de l’art: ordonnancement de robots de
manutention en galvanoplastie”, Automatique productique informatique industrielle,
vol. 28, no. 1, p. 7-35, 1994.

228 Production Scheduling

[MAN 94b] MANIER-LACOSTE M.-A., Contribution à l’ordonnancement cyclique du
système de manutention d’une ligne de galvanoplastie, PhD Thesis, Besançon, 1994.

[MAN 00] MANIER M.-A., VARNIER C. and BAPTISTE P., “Constraint-based Model for
the cyclic Multi-Hoists Scheduling Problem”, Production Planning and Control, vol. 11,
no. 3, p. 244-257, 2000.

[MAN 03] MANIER M.-A. and BLOCH C., “A Classification for Hoist Scheduling
Problems”, The International Journal of Flexible Manufacturing Systems, vol. 15, no. 1,
p. 37-55, 2003, Kluwer Academic Publishers.

[MAN 06] MANIER M.-A. and LAMROUS S., “Design and scheduling of electroplating
facilities”, IEEE International Conference on Service Systems and Service Management,
Troyes, France, p. 1114-1119, 2006.

[MAN 08] MANIER M.-A. and LAMROUS S., “An evolutionary approach for the design
and scheduling of electroplating facilities”, to appear in Journal of Mathematical
Modelling and Algorithms, 2008.

[MAR 01] MARTEAU S., BONHOMME P., AYGALINC P. and CALVEZ S., “A control
model for multi-products processing”, 8th IEEE International Conference on Emerging
Technologies and Factory Automation, Antibes-Juan les Pins, France, vol. 1, p. 527-536,
2001.

[MAT 00] MATEO M., COMPANYS R. and BAUTISTA J., “Bounded cycle time for the
cyclic hoist scheduling problem”, First World Conference on Production and Operations
Management, Seville, Spain, p. 1-10, 2000.

[MAT 06] MATEO M. and COMPANYS R., “Hoist scheduling in a chemical line to produce
batches with identical sizes of different products”, Sixième Conférence Francophone de
Modélisation et Simulation : Modélisation, Optimisation et Simulation des Systèmes
(MOSIM’06), Rabat, Morocco, p. 677-684, 2006.

[PAU 07] PAUL HENRIK J., BIERWIRTH C., and KOPFER H., “A heuristic procedure for
multi-item hoist production line”, International Journal of Production Economics”, vol.
105, p. 54-69, 2007.

[PHI 76] PHILLIPS L.W. and UNGER P.S., “Mathematical programming solution of a hoist
scheduling program”, American Institute of Industrial Engineers Transactions, vol. 8,
no. 2, p. 219-225, 1976.

[PTU 95] PTUSKIN A.S., “No-wait periodic scheduling of non-identical parts in flexible
manufacturing lines with fuzzy processing times”, International Workshop on Intelligent
Scheduling of Robots and Flexible Manufacturing Systems, Center for Technological
Education, Holon Press, Holon, Israel, p. 210-222, 1995.

[RIE 02] RIERA D. and YORKE-SMITH N., “An Improved Hybrid Model for the Generic
Hoist Scheduling Problem”, Annals of Operations Research, vol. 115, p. 173-191, 2002.

[ROS 99] ROSSE-BLOCH C., Contribution à l’ordonnancement dynamique de lignes de
traitement de surface, PhD Thesis, Besançon, 1999.

[SHA 88] SHAPIRO G.W. and NUTTLE H.L.W., “Hoist scheduling for a PCB electroplating
facility”, Institute of Industrial Engineers Transactions, vol. 20, no. 2, p. 157-167, 1988.

Hoist Scheduling Problem 229

[SON 95] SONG W., STORCH R. L. and ZABINSKY Z. B., “An example for scheduling a
chemical processing tank line”, Symposium on Emerging Technologies and Factory
Automation, Paris, France, vol. 1, p. 475-482, 1995.

[SPA 99] SPACEK P., MANIER M.-A. and EL MOUDNI A., “Control of an electroplating
line in the Max and Min algebras”, International Journal of Systems Science, vol. 30,
no. 7, p. 759-778, 1999.

[SUB 06] SUBAI C., BAPTISTE P. and NIEL E., “Scheduling issues for environmentally
responsible manufacturing: the case of hoist scheduling in an electroplating line”,
International Journal of Production Economics, vol. 99, p. 74-87, 2006.

[THE 90] THESEN A. and LEI L., “An expert scheduling system for material handling
hoists”, Journal of Manufacturing Systems, vol. 9, no. 3, p. 247-252, 1990.

[ULU 97] ULUSOY G., SIVRIKAYA-SERIFOGLU F. and BILGE U., “A genetic algorithm
approach to the simultaneous scheduling of machines and automated guided vehicles”,
Computers and Operations Research, vol. 24, no. 4, p. 335-351, 1997.

[VAR 96] VARNIER C., Extensions du “Hoist Scheduling Problem” cyclique. Résolution
basée sur un traitement des contraintes disjonctives en programmation en logique avec
contraintes, PhD Thesis, Besançon, 1996.

[VAR 97] VARNIER C., BACHELU A., BAPTISTE P., “Resolution of the cyclic multi-hoist
scheduling problem”, Information Systems and Operational Research, vol. 35, no. 4,
p. 309-324, 1997.

[VAR 00] VARNIER C., JEUNEHOMME N., “A cyclic approach for the multi-product
HSP”, 7th Workshop on Project Management and Scheduling, Osnabrück, Germany,
2000.

[XU 04] XU Q. and HUANG Y., “Graph-Assisted Cyclic Hoist Scheduling for
Environmentally Benign Electroplating”, Industrial and Engineering Chemistry Research,
vol. 43, no. 26, p. 8307-8316, 2004.

[YAN 01] YANG G.W., JU D.P., ZHENG W.M. and LAM K., “Solving multiple hoist
scheduling problems by use of simulated annealing”, Ruan Jian Xue Bao/Journal of
Software, vol. 12, no. 1, p. 11-17, 2001.

[YIH 93] YIH Y., LIANG T.P. and MOSKOWITZ H., “Robot scheduling in a circuit board
production line: an OR/ANN approach”, Institute of Industrial Engineers Transactions,
vol. 25, no. 2, p. 26-33, 1993.

[YIH 94] YIH Y., “An algorithm for hoist scheduling problems”, International Journal of
Production Research, vol. 32, no. 3, p. 501-516, 1994.

[ZHO 03] ZHOU Z. and LI L., “Single hoist cyclic scheduling with multiple tanks: a material
handling solution”, Computers & Operations Research, vol. 30, no. 6, p. 811-819, 2003.

230 Production Scheduling

8.8. Appendix: notation

 Reference Notation
1 [ARM 94] CHSP |19//diss|/21|Tmin
2 [ARM 96] CHSP |mh,50,ct//diss|/52|mhmin
3 [BAP 96] CHSP |3,18,10//|/19,recrc|Tmin
4 [BLO 99a] PHSP|mh,mt,1/ret/|nparts/nps,nop|Cmax
5 [CAU 95] PHSP |3,4,synchro,(15),(15),(15)//diss|16/24,17,recrc|Cmax
6 [CAU 97] PHSP |16//diss|36/10,12,recrc|Cmax
7 [CHE 95] DHSP |5//diss|100/100,7|Cmax
8 [CHE 98] CHSP|13//diss|/14|Tmin
9 [FAR 01] DHSP|mt/nc/|nparts/nop|(Tmin,Qmax)
10 [FLE 95] PHSP |1,12,ct/nc/|20/nps,4,recrc|Cmax
11 [FLE 01]* SHSP*| mh,16 / 6, empty/ diss | nparts / 12, nop| (Cmax, Other)
12 [GE 95] DHSP |mt//diss|100/nps,nop|Cmax
13 [HAN 93] CHSP |1,14,ct//diss|/16,recrc|Tmin
14 [HAN 94] CHSP |mh,mt,ct//diss|/nop|Tmin
15 [HIN 04] DHSP | 5 / / diss | 100 / 100,6| Cmax
16 [JEG 06] RHSP|2,16,1//load-unload|

nparts/14|(DefectiveJobsMin,ThroughputMax)
17 [LAC 98] PHSP|16/6,empty/diss|nparts/12,16,recrc|Cmax
18 [KUN 06] CHSP | 1, 10, 8 / / ass | / 12| (Tmin, WasteMin)
19 [LAM 96a] DHSP|2,1,synchro,(mh,17,1),(mh,17,2)//diss|50/4,25,recrc|Other
20 [LAM 96b] DHSP|2,12,1//diss|/nps,14|Other
21 [LEI 89a] CHSP|1,12,ct//|/14|Tmin
22 [LEI 91] CHSP | 2,25,ct / / diss |/ 27| Tmin
23 [LEI 93a] CHSP|5//diss|/7|Tmin
24 [LEI 93b] CHSP|mh,12,1//diss|/14|mhmin
25 [LEI 94] CHSP|12//diss|/14|Tmin
26 [LIM 97] CHSP|12//load-unload|/14|Tmin
27 [LIU 02] CHSP | 1, 8, 5 / / load-unload | / 11, recrc| Tmin
28 [MAN 94b] CHSP|mh,mt,ct/circ/|/nop,clean,recrc|Tmin
29 [MAN 00] CHSP|3,17,10//load-unload|/20,clean,recrc|Tmin
30 [MAN 06] CHSP | mh, 12, 1 / / ass | / 14| (Tmin, mhmin)
31 [MAN 08] CHSP | mh, 14, 1 / circ/ ass | / 16| (Tmin, mhmin)
32 [MAT 00] CHSP|8//|/nop|Tmin
33 [MAT 06] CHSP | mt / / diss | / 2, mt+2| Tmin
34 [PAU 07] DHSP | 18 / / diss | 40 / 4, 12| Cmax
35 [PHI 76] CHSP | 12/ / ass | / 14, recrc| Tmin
36 [PTU 95] CHSP|50/nc/|nparts/nps,nop|Cmax
37 [RIE 02] CHSP|4,13,ct//|/nop,recrc|Tmin
38 [ROS 99] PHSP|3,33,1/ret/|15/9,30,clean,recrc|Cmax
39 [SHA 88] CHSP |1,15,6/nc,circ/|/17,clean,recrc|Tmin
40 [SON 95] CHSP|10//diss|/12|Other

Hoist Scheduling Problem 231

41 [SPA 99] DHSP|1,12,3//|/14|Cmax
42 [SUB 06] CHSP | 12/ / ass | / 14| (Tmin, WasteMin, Others)
43 [THE 90] RHSP|3,20,1/nc/|nparts/3,nop| ThroughputMax
44 [VAR 96] PHSP|mh,mt,1//ass|/2,nop, recrc|TransMin
45 [VAR 97] CHSP|4,30,ct//ass|/30,recrc| Tmin
46 [VAR 00] CHSP|mt//load-unload| /nps, nop| Tmin
47 [XU 04] CHSP | 1, 15, 8 / / ass | / 17| (Tmin, WasteMin)
48 [YAN 01] CHSP | mh, mt, 1 / / diss | / mt+2| Tmin
49 [YIH 93] RHSP|5//diss|nparts/nps, 7| ThroughputMax
50 [YIH 94] DHSP|5//diss|100/100, 7|Cmax
51 [ZHO 03] CHSP | 1, 10, 5 / / ass | / 12| Tmin
* SHSP = PHSP with transportation times as random variables

This page intentionally left blank

Chapter 9

Shop Scheduling with Multiple Resources

9.1. Introduction

In multi-resource shop scheduling, the idea is to integrate into modeling a group
of resources available for job completion. There are two types of resources.
Resources unable to execute two simultaneous jobs are called disjunctive resources,
for example, a machine-resource in a shop is often disjunctive. When there are
several copies of the disjunctive resource in the workshop, we then speak of a shop
containing several parallel resources. We distinguish the case of identical,
proportional or different resources according to their performance. Resources which
can execute several simultaneous jobs are called cumulative resources, for example,
a team of several men can be considered a cumulative resource. The accumulation of
demands on a cumulative resource cannot exceed total availability of the resource at
any moment. However, whether the resources are disjunctive and made up of
multiple copies or cumulative, the scheduling problem to be solved is NP-hard to its
fullest extent. The goal of this chapter is to describe exact and heuristic algorithms
which are intended for managing conflicts during resource usage by minimizing the
makespan, i.e. the total execution time.

Next, we observe two types of scheduling problems. In section 9.2, we consider
problems where circulation in the shop is the same for all jobs, and where resources
are grouped by stages. We speak of hybrid flow shop, or of flow shop with
duplicated machines or multiprocessor flow shop. These different names illustrate
the wealth of literature in the field. Jobs circulate in the shop in the same order, and

Chapter written by Jean-Charles BILLAUT, Jacques CARLIER, Emmanuel NÉRON and
Antoine OLIVER.

234 Production Scheduling

each job must visit each stage. We presume here that at least one stage contains
more than one resource. In section 9.3, we discuss the most generalized multiple
resource scheduling problems, where each job is made up of a partially sequenced
set of operations inherent to the job, and where each operation requires one or more
disjunctive or cumulative resource, in variable quantities. This is called RCPSP or
the Resource Constrained Project Scheduling Problem. The hybrid flow shop is
obviously a specific RCPSP, and as we will demonstrate several ideas developed for
the flow shop can be applied to the RCPSP.

9.2. Hybrid flow shop scheduling problem

In practice, we find many production shops organized in “flows”, i.e. shops
where jobs move through machines in the same sequence. In this case, each job
visits each machine in the shop and the circulation sequence on the different
machines is the same for all jobs [ESQ 99, BRU 07]. We also encounter another
type of shop, also organized in flows, but which presents an additional problem
because machines are made up of multiple copies and grouped into “stages”. In this
type of shop, each job visits each stage and the circulation sequence for stages is the
same for each job. The idea is to assign operations to machines at each stage. The
type of shop, called hybrid flow shop or “flow shop with multiple machines”, comes
with a double problem: determining for each operation a start time and assigning
this operation to a machine.

A hybrid flow shop example with four stages and three jobs is illustrated in
Figure 9.1. Each operation (i, j) is referenced by a job i index and a stage j index. A
processing time denoted as pi,j is associated with each operation, and a number of
available machines denoted as mj are associated with each stage. Two fictitious
project start (S*) and end (E*) tasks are also added. The Gantt chart (Figure 9.1)
represents a feasible solution for this problem.

This definition will be illustrated in section 9.2.1 with the help of production
cases which can be modeled by a hybrid flow shop. Later, in section 9.2.2, a brief
state of the art will be presented giving an overview of the literature in the field. In
section 9.2.3, we propose a mathematical programming model of a hybrid flow shop
scheduling problem including the notation used. In section 9.2.4, basic heuristic
methods for easily building a heuristic solution of a hybrid flow shop problem are
exposed. Section 9.2.5 is dedicated to the description of an exact method called the
Branch and Bound Procedure (BBP). Finally, a generalization of the hybrid flow
shop is shown in section 9.2.6.

Shop Scheduling with Multiple Resources 235

Figure 9.1. A feasible solution for hybrid flow shop with 3 jobs and 4 stages

9.2.1. A few manufacturing cases

Modeling of a shop scheduling problem by a hybrid flow shop scheduling
problem is natural in many production shops. However, even outside of the
production context, certain scheduling problems are hybrid flow shop type problems
when there is an assignment problem to grouped resources, and entities to be
scheduled follow the same flow [RUI 08]. Some cases which come directly from the
manufacturing world are described below.

2.1

3.1

2.2 2.3 2.4

3.2 3.3 3.4

S* E*

p1 1 = 3 p1 2 = 6 p1 3 = 6 p1 4 = 4

p2 1 = 7 p2 2 = 3 p2 3 = 6 p2 4 = 3

p3 3 = 3p3 1 = 5 p3 2 = 2 p3 4 = 9

job 11.1 1.2 1.3 1.4

m4=1

Stage 3

m1 = 2 m2=3 m3=2

Number of available
machines at stage 3

Machine 1
Machine 2
Machine 1
Machine 2

Machine 1
Machine 2

Machine 1

Machine 3

Stage 1

Stage 3

Stage 2

Stage 4

job 1
job 2
job 3

time

236 Production Scheduling

9.2.1.1. Floor covering production [VIG 99]

The first phase of floor covering production is raw weaving. In order to do this,
numerous looms enable parallel production of different types of carpets (according
to their variety: thickness, color, pattern, density, etc.). These machines constitute
the first step of the hybrid flow shop. At this stage, it is possible to split the job into
sub-lots and to execute it simultaneously on several machines. We speak of
authorized splitting. The gray goods are obtained in rolls. The rolls must then be
dyed. In order to do this, there are machines which continuously turn and dye the
carpets. Clearly, changing dyes must be organized in order to avoid carpet waste; the
wasted carpet over useful carpet ratio must be close to zero. In the shop, carpet
dyeing machines can measure up to 20 meters long and weigh several tons. Since
they are very expensive, there are not many copies of these machines in a shop.
They can be considered as critical resources and they vary; some can be dedicated to
uniform coloring while others can print color patterns. They constitute the second
stage of the hybrid flow shop. The dyed carpets are then dried, latexed and packaged
for delivery. This is the third stage. This shop can be illustrated by a specific hybrid
flow shop containing three stages.

9.2.1.2. Glass-bottle industry [RIC 98]

The production process of glass bottles is semi-continuous. The continuous part
is made up of a series of parallel tanks which distribute fusion glass to molding
machines. Molding machines are of varied types and varied outputs, enabling the
production of different bottles depending on the mold available. At a given moment,
however, machines connected to the same tank can only produce bottles of the same
color. The bottles then have cold and hot operations to finalize the product. This
production system can be represented by a two stage hybrid flow shop with a few
specific constraints. Since dye changes must be carried out at the same time for all
machines, two criteria must be considered: maximizing a profit and minimizing the
largest gap in relation to this dye change date.

9.2.1.3. Production of pants [ELM 97, DES 98, WON 01]

The context presented here is found in the production of clothes in general, as
well as in other production systems where products are grouped into lots. The pant
production process is broken down into several phases: cutting the fabric, sewing
and stitching and installing the zippers. Each of these operations is carried out
by a team of seamstresses specialized in the corresponding type of operation. Pants
are grouped in packets of identical size and we presume that seamstresses do
not have the same level of productivity. We can thus consider that products to be
manufactured are all identical and that operation time for a product only depends on
the operations and the “resource” used for this operation. This problem can be
modeled by a particular hybrid flow shop with resources that have different ratings

Shop Scheduling with Multiple Resources 237

at each stage and identical products to schedule. Sub-problems at each stage are
more complex than in the case where machines are identical, but jobs are identical,
which simplifies the problem. The result of the study is that from three stages on,
this problem is very difficult to resolve.

9.2.1.4. Wood treatment shops [RIA 98]

A shop produces different basic products which will subsequently be
incorporated into furniture, for example tables, chairs, sofas, etc. Each product to be
manufactured must go through three consecutive operations: wood cutting, drilling
and varnishing. The shop only has one machine to cut wood. The cut parts are then
treated in another part of the shop made up of two machines dedicated to products
depending on their size. Finally, the last operation which is meant to give the wood
its final look can only happen on one machine. This shop was modeled as a
particular three stage hybrid flow shop insofar as the allocation of products to
machines does not have to be determined, because it depends on product size.

9.2.2. State of the art survey

Scheduling hybrid flow shop problems have largely been studied since the
1970s. We can find a detailed state of the art for these problems in [VIG 97, VIG
99]. The first studies focused on two stage shops as well as shops containing an
undetermined number of stages. They provide heuristics as well as exact methods.
Gupta [GUP 88] shows that the two stage problem, whose objective is minimization
of the latest end date, is strongly NP-hard, as soon as a stage has more than one
machine. The result is that all hybrid flow shop problems, except for a few specific
cases, are also strongly NP-hard.

Concerning two-stage problems, many heuristics methods are based on
Johnson’s algorithm [JOH 54] which polynomially solves the two-machine flow
shop problem with makespan minimization. This algorithm makes it possible to
choose a sequence of jobs, but gives no information on the allocation of jobs to
machines. Certain authors propose a complement to allocation rules [GUP 88, SRI
89, DEA 91, LEE 93, LEE 94, SRI 89], while others do not [SHE 72, BUT 73]. For
problems with other criteria and specific constraints, the authors proposed inventive
heuristics [HAO 97, GUP 98, RIA 98, TKI 00, CHA 04, HE 07, LOW 08] and exact
methods dedicated to the problem [GUP 91, GUP 94, LI 97, GUP 95, LEE 04].

Concerning multi-stage problems, numerous heuristic methods were developed.
Often, they are inspired by heuristics used for the flow shop enabling the
determination of a job sequence. As with the two stage case, we must then add rules
for the allocation of jobs to machines [LEE 94, GUI 96]. The stochastic methods

238 Production Scheduling

(see Chapter 3) were largely used. For example, Nowicki and Smutnicki [NOW 98]
present a Tabu algorithm with very good results. Evolutionist algorithms like genetic
algorithms (see Chapter 4) were also proposed to solve these problems [POR 98,
MOR 05]. In addition, several BBPs were described to solve the basic problem (no
particular constraint and minimization of the latest end date) in an exact way. Brah
and Hunsucker [BRA 91] have adapted a BBP from Bratley, Florian and Robillard
[BRA 75]. As it turns out, this method is not very powerful despite a few proposed
improvements [POR 98, DUP 98]. Since then, numerous other BBPs were
developed and offer very good results [VAN 94, CAR 97, CAR 98, BRO 98, DES
98, NER 98, MOU 00].

9.2.3. Notation and mathematical model

T is the set of n jobs, K is the number of stages and mj is the number of machines
at stage j. Mj is the set of machines constituting stage j. We denote (i, j) the operation
of job i processed at stage j and pi,j is its duration. In short pj = pi,j, i = 1...n, is the
operation processing time vector at stage j. In the basic problem, we consider that
the machines are all available at date 0, that jobs can all start at date 0, and that the
objective is to minimize the maximum completion time. The objective of the
following linear programming model is to formalize the problem and not to propose
a resolution method. We denote by ti,j, the start time of (i, j); xi,j,k a binary variable
equal to 1 if (i, j) is performed on machine k and 0 otherwise; and by yi,i’,j a binary
variable equal to 1 if job i precedes job i’ at stage j, 0 otherwise. HV is an arbitrarily
large number. A linear programming model is:

minimize Cmax

subject to:

jMk
j,ki,x ,1 Kj j,n,i i, 11 [9.1]

ni i, ,ptC Ki,Ki, 1max [9.2]

11 1 ,1 - Kj,n,ii,ptt ji,ji,ji, [9.3]

,)x(xHV.)yHV.(1ptt
ka,Ma

aj,,i’aj,i,j,i’i,ji,ji,ji’
j

 [9.4]

jMkkKjjniinii , ,1 , ,'1 ,' ,1 ,

Shop Scheduling with Multiple Resources 239

,)x(xHV.HV.yptt
ka,Ma

aj,,i’aj,i,j,i’i,j,i’j,i’ji,
j

 [9.5]

jMkkKjjniinii , ,1 , ,'1 ,' ,1 ,

Constraint [9.1] makes sure that operation (i, j) is assigned to one machine,
constraints [9.2] define the Cmax, [9.3] translate the routing constraints, and
constraints [9.4] and [9.5] translate the succession of operations on machines. This
mathematical model can be theoretically processed by a commercial software
package, but the problems which can be solved this way are in reality quite small.

9.2.4. Heuristic canonical methods

In order to address a hybrid flow shop problem and provide a first resolution
algorithm, we should not bypass the most traditional methods. These methods
consist of determining a sequenced list of jobs and then to consider each job, in the
sequence of the list one after the other, and to choose a resource to execute it by
using an allocation rule. Several algorithms make it possible to determine a job list:

– for a 2-stage problem, we can apply the Johnson algorithm, or define an index
and sort jobs according to their increasing index values, or even use a traditional
priority rule such as SPT (Shortest Processing Time first) or EDD (Earliest Due
Date first) by considering a specific stage or by adding times on stages. In any case,
the result is a sorted job list;

– for an n-stage problem, we can apply a traditional heuristic for the flow shop
problem such as CDS [CAM 70], Townsend [TOW 77] or NEH [NAW 83] all
providing a job sequence.

Numerous rules then make it possible to assign the jobs to machines. We can
mention for example:

– FAM (First Available Machine) consisting of assigning the job to the first
available machine. This is the most widely used rule;

– ECT (Earliest Completion Time) if machines are not identical, i.e. jobs have
processing times which depend on the machine used; we can assign the job to the
machine making it possible to complete earlier;

– LSM (Latest Start Machine), which consists of choosing the latest available
machine among available machines when the operation is ready (at a given date in
the first stage or completed at the previous stage), or the earliest available machine if
no machine is available when the operation is ready. This rule tends to minimize the
idle time of used machines and to effectively only use those which are necessary;

240 Production Scheduling

– assign jobs in the machine numbering sequence, if they are identical. This
allocation minimizes the sum of completion times in a parallel machine problem, if
the jobs are classed beforehand according to the SPT rule.

An algorithm to determine a job list and an allocation rule make it possible to
build a first heuristic for the hybrid flow shop problem. Concerning quality of
results, this type of method is much less powerful on average than stochastic
algorithms of simulated annealing or Tabu search type, or even genetic algorithms.
However, it has the advantage of being simple to understand and implement.
Furthermore, such a method can be used to obtain an initial solution that can be
improved by a stochastic algorithm [JIN 06, LAH 07].

This heuristic can be summarized as follows. At the first stage of the hybrid flow
shop, we take the jobs in the list order and we assign them by following the
established rule. There are two possibilities at a subsequent stage. We either
consider the jobs again according to the list, as was defined for the first stage, or we
build a new list in which jobs are classified in increasing order of their due date in
the previous stage. We then apply the allocation rule by taking into consideration
availability dates for allocating all jobs and we start again at the following stage.
These two different processes, which are almost never mentioned in other works,
lead to different solutions as the following example shows.

EXAMPLE.– Consider a two stage hybrid flow shop with two machines at each
stage and three jobs to schedule. The objective is to minimize the maximum
completion time. Job processing times are equal to p1 = (2, 15, 6) for the first stage,
and p2 = (11, 4, 9) for the second stage. The Johnson algorithm gives a J = (1, 3, 2)
sequence, the SPT rule applied to the first stage gives a SPT1 = (1, 3, 2) sequence,
and applied to the second stage SPT2 = (2, 3, 1). For example we will use sequence
SPT2. We choose to use the FAM allocation rule in the first and second stage. The
Gantt chart in Figure 9.2 represents the allocation result for the first stage.

Stage 1 M1

M2

0 5 10 15 20 25

2

3 1

Figure 9.2. Gantt chart for the first stage

Shop Scheduling with Multiple Resources 241

M3

M4

M3

M4

0 5 10 15 20 25

Stage 2 2

3 1

23

1

a)

b)

Figure 9.3. Gantt charts of different solutions at the second stage

For the second stage, two cases must be considered: a) we keep the list given by
SPT2 rule, or b) we build a new list according to completion times of jobs in the first
stage. In the second case, we obtain list L = (3, 1, 2). Corresponding solutions are
represented in Figure 9.3. We observe that the solutions are not the same.

The authors very often place themselves in case b) without being explicit, which
minimizes the importance of the sequence used in the first stage. We can also note
that the case may sometimes generate non-active schedules, which is not desirable
when the criteria to be optimized are regular.

9.2.5. An exact method

In addition to the heuristic methods, for which the challenge consists of finding
solutions which get closer to the optimal solution, several exact methods have been
developed, and their challenge consists of optimally solving increasingly large
problems. Among the exact methods very often used in scheduling literature, we
find BBPs. The hybrid flow shop BBP presented here involves traditional hybrid
flow shop, i.e. without a specific constraint, with K stages and with the goal of
minimizing the maximum completion time (Cmax). This method, called the “interval
method” [CAR 84, CAR 91, VAN 94, PER 95, MOU 99, OLI 99], consists of
dividing time intervals associated with operations as much as possible. The
branching scheme as well as associated lower bounds are described below. The
method presented in the previous section provides upper bounds.

242 Production Scheduling

We associate with each operation (i, j) an earliest start time ri,j, a latency duration
qi,j, a due date or latest completion time di,j and a slack si,j defined in the following
way (UB designates an upper bound of the Cmax value):

1j

1k
ki,ji, pr ,

K

1jk
i,kji, pq , jiji qUBd ,, , jijijiji prds ,,,,

A BBP node corresponds to a specific operation to be chosen and a series of
dates:

– an operation number (a, b) (job a, stage b);

– the list of all earliest start times;

– the list of all latest completion times;

– the list of all latency durations;

– the value of a lower bound for the evaluation of a node.

9.2.5.1. Branching scheme

The principle of the branching scheme of this BBP consists of creating, in each P
node, two sub-problems by delaying the earliest operation start time of (a, b) for the
Left Son (LS) node, and by advancing the latest completion time of (a, b) for the
Right Son (RS) node. By reducing the time intervals associated with an operation,
we constrain the problem, which makes it possible to quickly converge toward the
optimal solution with the help of lower and upper bounds. The BBP algorithm is
presented below (Algorithm 9.1).

The update of the earliest start and latest completion times of son nodes of an
ordinary P node is carried out in the following way:

– for the LS node, dates associated with operations are the same as for the P
node, except for the earliest start times for operations of job a, which are updated in
the following manner:

ra,j (LS) = ra,j (P), 1 j b-1, and
2
(P)s

(P)r(LS)r ba,
ba,ba,

and ra,j (LS) = max[ra,j (P), ra,j-1 (LS) + pa,j-1] for j from b+1 to K

– for the RS node, dates associated with operations are the same as for the P
node, except for the latest completion times for operations of job a, which are
updated in the following manner:

Shop Scheduling with Multiple Resources 243

da,,j (RS) = da,j (P), b+1 j K and ,1
2
(P)s

(P)d(RS)d ba,
ba,ba,

da,,j (RS) = min[da, j(P), da,j+1 (RS) – pa,j+1] for j from b–1 to 1

9.2.5.2. Lower bounds [CAR 84, SAN 95]

For node N, consider stage j. It is possible to calculate the following lower bound
LBj (T,N) from earliest operation start times and latency durations.

j

Ti
ji,j],[mj[1],j],[mj[1],

j m

p(N)q(N)q(N)r(N)r
N)(T,LB

jj

where r[1],j (N), …, r[mj],j (N) are the mj smallest earliest start times and q[1],j (N), …,
q[mj],j (N), are the mj smallest latency durations for N.

EXAMPLE.– Consider the data from the previous example. At stage 1, suppose that
a heuristic algorithm gives BestUB = 21 as upper bound. The initial date calculation
gives the following results.

Root node *

ri,j i = 1 i = 2 i = 3

j = 1 0 0 0

j = 2 2 15 6

qi,j i = 1 i = 2 i = 3

j = 1 11 4 9

j = 2 0 0 0

di,j i = 1 i = 2 i = 3

j = 1 10 17 12

j = 2 21 21 21

Table 9.1. Root BBP node

244 Production Scheduling

// initialization
Calculate an upper bound BestUB with the help of a heuristic,
for each operation (i, j)
 calculate ri j(*), qi j(*), di j(*),
end for
for each stage j,
 calculate the lower bound LBj (T, *).
end for
LB* max1 j K LB(T,*) .
Create the root node (*).
While there remains an unexplored node
 // Step 2 choice of a node to explore
 Choose node N such that LB(N) = minp LB(P).

if LB(N) = BestUB then END, Display BestUB and the schedule corresponding to N
 otherwise
 // Step 3 update of earliest start times and latency durations

for any operation (i, j)
 qi,j (N) max{qi,j (N), LB(N) - di,j (N)}

 di,j (N) min{di,j (N), BestUB - qi,j (N)}

 end for
 launch the calculation of a heuristic for updating BestUB.
 // Step 4 Choice of stage

for any stage j
 calculate LBj(T, N)
 end for
 j* arg{ max1 j K LBj (T, N)}
 // Step 5 update of earliest start times and latency durations
 determine Er the set of mj* jobs with smallest earliest start times
 determine Eq the set of mj* jobs with smallest latency durations

for each job i of Er
 calculate new earliest start times nri,j*(N) ri,j*(N)+ si,j* / 2 .

 create a fictitious node LS(i) and calculate new lower bounds LBj*(T, LS(i)).
 end for

for each job i of Eq
 calculate new latest completion times nri,j*(N) ri,j*(N)+ si,j* / 2 .

 create a fictitious node RS(i) and calculate new latency times and then new lower bounds
 LBj*(T, RS(i)).
 end for
 Or job i* Er Eq such that the difference between the associated lower bound and the lower

bound of N be maximal.
 // Step 6 Node creation
 Lower bound update
 Add to list of nodes LS(i*) and RS(i*)
 end if
end while

Algorithm 9.1. BBP algorithm

Shop Scheduling with Multiple Resources 245

At step 1, lower bound calculation for each stage gives: LB1(T,*) = ((0 + 0) + (4
+ 9) + 23) / 2 = 18, for the first stage and LB2(T,*) = ((2 + 6) + (0 + 0) + 24) / 2 = 16,
for the second. We have LB(*) = 18. At step 2, the chosen node is the root node *
(single node). At step 3, we update latency durations and latest completion times.
Calculation shows that their values do not change, neither does the upper bound. At
step 4, lower bound calculation leads to the same result, we then select the first
stage: j* = 1. At step 5, we then obtain Er={1, 2} and Eq={2, 3}. For each Er job, we
calculate new earliest start times and for each Eq job, new latest completion times.

For Er we obtain the two following tables.

Job 1 (s11 = 10 – 0 – 2 = 8) Job 2 (s21 = 17 – 0 – 15 = 2)

Fictitious node LS(1) Fictitious node LS(2)

nri,j i = 1 i = 2 i = 3 nri,j i = 1 i = 2 i = 3

j = 1 4 0 0 j = 1 0 1 0

j = 2 6 15 6 j = 2 2 16 6

jiq , i = 1 i = 2 i = 3 jiq , i = 1 i = 2 i = 3

j = 1 11 4 9 j = 1 11 4 9

j = 2 0 0 0 j = 2 0 0 0

jid , i = 1 i = 2 i = 3 jid , i = 1 i = 2 i = 3

j = 1 10 17 12 j = 1 10 17 12

j = 2 21 21 21 j = 2 21 21 21

Table 9.2. Calculation of two fictitious nodes “on the left” for the BBP

We find: LB1(T, LS(1)) = ((0 + 0) + (4 + 9) + 23)/2 = 18 and LB1(T,LS(2)) = 18
also. For Eq, we find the following.

246 Production Scheduling

Job 2 (s21 = 17 – 0 – 15 = 2) Job 3 (s31 = 12 – 0 – 6 = 6)

Fictitious node RS(2) Fictitious node RS(3)

jir , i = 1 i = 2 i = 3 jir , i = 1 i = 2 i = 3

j = 1 0 0 0 j = 1 0 0 0
j = 2 2 15 6 j = 2 2 15 6

jiq , i = 1 i = 2 i = 3 jiq , i = 1 i = 2 i = 3

j = 1 11 4 9 j = 1 11 4 11
j = 2 0 0 0 j = 2 0 0 0

jind , i = 1 i = 2 i = 3 jind , i = 1 i = 2 i = 3

j = 1 10 15 12 j = 1 10 17 8
j = 2 21 21 21 j = 2 21 21 21

Table 9.3. Calculation of two fictitious nodes “on the right” for the BBP

We find: LB1(T,RS(2)) = ((0 + 0) + (4 + 9) + 23) /2 = 18 and LB1(T,RS(3)) = ((0
+ 0) + (4 + 11) + 23) /2 = 19. The selected job is the one with the highest difference
with the old lower bound, in this case job 3. The connecting operation is operation
(3,1). At step 6, we add the following two nodes to the node list.

Node 1 = LS(3) Node 2 = RS(3)

jir , i = 1 i = 2 i = 3 jir , i = 1 i = 2 i = 3

j = 1 0 0 3 j = 1 0 0 0
j = 2 2 15 9 j = 2 2 15 6

jiq , i = 1 i = 2 i = 3 jiq , i = 1 i = 2 i = 3

j = 1 11 4 9 j =1 11 4 11
j = 2 0 0 0 j = 2 0 0 0

jid , i = 1 i = 2 i = 3 jid , i = 1 i = 2 i = 3

j = 1 10 17 12 j = 1 10 17 8
j = 2 21 21 21 j = 2 21 21 21

Table 9.4. Creation of two real nodes for the BBP

We again calculate the lower bounds associated with these two new nodes. We
find 18 for LS(3) and 19 for RS(3) and we go back to step 2.

Shop Scheduling with Multiple Resources 247

Finally, Cmax value for the optimal solution is equal to 19. The values obtained
for earliest start times and latest completion times lead to the solution illustrated in
the Gantt chart in Figure 9.4.

M1

M2

M3

M4

0 5 10 15 20

Stage 1

2

3

1Stage 2

1

2

3

Figure 9.4. Gantt chart of the resulting BBP optimal solution

We can observe that the solution found by the heuristic in this small example is
optimal for case b) (see Figure 9.3).

9.2.6. Extensions of the traditional hybrid flow shop problem

A first traditional hybrid flow shop problem extension consists of considering
that machines of one stage do not have the same outputs (see pants manufacturing
example in section 9.2.1). In this case, we consider that the operation processing
time is based on the performing machine. Clearly, associated problems are more
difficult to solve than in the case where machines are identical, but they more
closely resemble manufacturing reality.

We find another extension of this problem in certain manufacturing shops
containing machines with their adapted tools. Each machine contains a certain
number of tools and consequently can only execute certain types of operations. We
then speak of multi-purpose machines [JUR 92, BRU 97]. At each stage, the tools
are considered to be distributed between the machines. Each operation requiring a
specific tool for its execution can only be executed on a subset of machines in that
stage. In a way, this problem consists of restricting the number of possible
allocations to a stage. The most common case consists of presuming that all shop
machines are different and that each machine has specific tools. In this case, each
operation can only be executed on a series of machines inherent to the operation

248 Production Scheduling

with time depending on the machine chosen. In reality, we find several applications
that can be illustrated that way (see Chapter 12).

Finally, a natural hybrid flow shop extension consists of considering that an
operation may require several types of machine for its execution, and for each
machine type, a certain number of machines. If we consider that machines are no
longer organized in stages, then we obtain a multi-resource (each operation requires
more than one type of resource) cumulative (each operation may require more than
one resource unit per resource type) problem. In addition, if precedence constraints
between operations are not chains (job constraints), but given by a graph of
precedence, then we obtain a problem called “resource constrained project
scheduling”.

9.3. RCPSP: presentation and state of the art

The Resource Constrained Project Scheduling Problem (RCPSP) is widely
studied in other works [BRU 99, DEM 02, WEG 05, ART 08]. It consists of
scheduling a given number of tasks over one or more limited capacity resources.
Each task is defined by a processing time, consumption of each resource, and a
series of tasks called predecessors, i.e. a task cannot start before the end of all its
predecessors. The goal is then to find feasible schedules, i.e. task start times which
satisfy resource constraints as well as precedence constraints, and that optimize
given criteria, such as the project completion time for example. Many works have
shown that this problem can be used to solve real life applications, and several
extensions have been proposed. See [BRU 99, OZD 95, KOL 97, DEM 02, WEG
05, ART 08] for a description of solving methods which consider variations of the
RCPSP.

Many heuristic methods have been proposed for solving the RCPSP: priority
rule-based methods [KLE 00], neighborhood and large neighborhood search [PIN
94, BOU 03, DEB 06, FLE 04, GOD 05, KOC 03, PAL 04, VAL 03], population-
based method [MER 02, VAL 04], activity-insertion-based methods [ART 00, ART
03], etc. Experimental evaluation of some of these methods has been recently
presented [KOL 06].

Authors have also proposed efficient lower bounds [MING 98, BRU 98a, BRU
00, CAR 03, CAR 07, DAM 05, DEM 05].

In this chapter we present the traditional form of the problem (section 9.3.1),
along with the main exact resolution methods (section 9.3.2).

Shop Scheduling with Multiple Resources 249

9.3.1. A simple model including shop problems

The RCPSP generalizes traditional scheduling problems such as job shop or flow
shop. This time, a task may have a certain number of predecessors and/or
successors. However, the graph associated with precedence constraints between
tasks should not have a directed cycle in order for the problem to accept a solution.
In addition, tasks are no longer executed on a machine, but require one or more
cumulative resources. This problem is characterized by:

– X = {1, 2, …, n}: all tasks. Tasks 1 and n are the fictitious project start and end
tasks;

– U = {(i, j), …, (h,l)}: all precedence constraints between tasks; (i,j) U if j
cannot start before the end of i;

– pi: task i processing time, also called duration;

– R = {1, 2, …, k}: all resources used by tasks;

– Ak: availability of resource k, also called resource capacity;

– ai,k: resource k quantity required by task I, also called resource requirement, or
resource consumption;

– ri: task i release date initialized at l(1, i), where l(i,j) is the longest path in the
precedence graph between task i and task j;

– qi: task i tail initialized at l(i, n) – pi;

– di: deadline of task i defined in the case where project completion date is set to
D: di = D – qi.

The notations presented above correspond to the most traditional version of the
RCPSP. The goal is then to find the minimal length schedule which does not violate
precedence constraints or resource constraints. More general models were presented
in the literature to take into account more complex systems. A problem typology and
notation were proposed in [HER 98b] to generalize the traditional typology.

It is important to note that this problem is NP-hard [GAR 79]. An example of the
RCPSP is presented below.

EXAMPLE.– We consider n = 9 tasks with respective processing time, 0, 2, 2, 4, 1,
3, 2, 3, 0, and k = 3 resources with availability A1 = 3, A2 = 3 and A3 = 2. Figure 9.5
shows precedence constraints between tasks, and the Gantt chart shows a feasible
solution of duration 12.

250 Production Scheduling

Figure 9.5. Example of the RCPSP

9.3.2. Main exact methods for the RCPSP

Since the RCPSP is NP-hard, tree search-based methods, or Branch-and-Bound
(B&B), are preferred tools for its exact resolution. We intend to present a few exact
reference methods. A tree search-based method has already been proposed in section
9.2.5. We remind our readers that a B&B is based on a few essential mechanisms:

– the branching scheme, for building the search tree;

– lower bound, which provides a lower bound of the best solution associated
with the current node;

– dominance rules, establishing the dominance of one node over another;

– adjustment rules for deriving information from decisions taken during previous
steps of the tree search.

9.3.2.1. Traditional branching schemes

This section focuses on the presentation of a few branching schemes commonly
encountered in the literature.

Chronological schemes

When a chronological scheme is used, a node (P) in the search tree corresponds
to a series of scheduled tasks SC(P), i.e. a group of tasks for which the starting time
is set. The eligible series of tasks EL(P), i.e. the group of tasks with scheduled
predecessors, is determined. A task ip EL(P) is chosen. The time tp is determined as

1 | 1,2,1

2 | 1,1,1

4 | 2,1,1

3 | 1,2,1

0 | 0,0,0

2 | 1,3,2

2 | 3,2,2

3 | 2,1,1

0 | 0,0,0

resource
consumption

A3 = 2

A2 = 3

A1 = 3

task time

1

2

4

6

3
7

5
8

9

example of feasible solution

Shop Scheduling with Multiple Resources 251

the earliest time point for placing ip, without violating constraints of precedence or
resource constraints, and which is larger than or equal to the moment of placement
of the last placed task.

Most authors, including Sprecher [SPR 96], calculate in each node the series of
eligible tasks as well as their earliest start times. If backtracking occurs, another
EL(P) task is chosen to be scheduled. If all EL(P) tasks have been tested, we go back
up in the search tree. In the tree thus generated, a node (P) has as many sons as there
are tasks in EL(P). Baptiste and Le Pape [BAP 97] use a slightly different
chronological branching scheme: for the ip chosen, either ip is scheduled before all
eligible tasks, or a constraint between task ip starting time and the starting time of
the EL(P) group’s other tasks is set. We mandate that at least one task of this series
starts before the beginning of ip.

Shifting of a minimal series of tasks

Demeulemeester and Herroelen [DEM 92, DEM 97] use a branching scheme
inspired by the one proposed by Christofides et al. [CHR 87], based on minimal
subsets of deferred tasks to solve new resource conflicts.

Eligible subsets

The branching scheme presented in [MIN 98] is based on the extension of partial
scheduling by block addition at each node in the search tree. A subset of tasks
defines a block if and only if constraints of resources and precedence are not
violated when all tasks in the block are executed at the same time.

Reduction of task intervals

Carlier and Latapie [CAR 91] proposed a branching scheme which is not directly
based on the construction of partial schedules. Task deadlines are then presumed to
be known. A set of tasks corresponds to a node (P) in the search tree. Each of these
tasks has a ri(P) release date and a deadline di(P). Task ip is chosen. Two sons are
then created: P1, for which the release date of task ip is modified, and P2, for which
the deadline of task ip is modified. For more information about this method, please
refer to section 9.2.5 where it was presented for the resolution of the hybrid flow
shop which is a specific RCPSP case.

Disjunctions, conjunctions and parallelism

This branching scheme was proposed in [BRU 98a]. It is based on the “schedule
scheme” notion (C, D, N, F) which indicates, for a set of tasks, task pairs in
conjunction, pairs in disjunction, pairs which must be executed in parallel and
flexible pairs, for which none of the relations mentioned is mandated. For each node,
a task pair is chosen among those still flexible and a relation (disjunction or

252 Production Scheduling

parallelism) is set, then two nodes are created, one corresponding to fixing a
disjunction and the other corresponding to fixing parallelism relation.

9.3.2.2. Lower bounds

A lower bound, applied to a node (P) in the arborescence, provides a lower
bound for the length of the best solution which will be obtained from (P). In this
way, the search tree can be limited by excluding nodes from which no strictly better
solution than the best known solution can be found.

Critical path bounds

The first bounds used for the RCPSP are based on the critical G = (X, U) graph
path notion. Release dates and tails are those corresponding to the node for which
the evaluation is calculated.

Lower bounds for the m machine problem

m machine problems are a relaxation of the initial RCPSP. The basic idea is to
simply translate resource conflicts by relaxing constraints of precedence. If S is a set
of tasks and if, for any subset s of S, such that |s| > m, all s tasks cannot be executed
together without violating one of the resource constraints, the m machine problem in
which each S task requires one machine to be executed, can be introduced.

These are a few commonly used bounds for this problem finding their place in a
tree search-based method for the resolution of the RCPSP. Quantity G’(J) = (ri1+…+
rim + i J pi+ qj1+…qjm)/m is the bound associated with the m machine problem
[CAR 84], used by Carlier and Latapie [CAR 91], with ri1,…, rim the smallest m
release dates of tasks J and qj1,…,qjm the smallest m tails (see section 9.2.5). This
bound was improved with bounds called “subset bound” and “adjusted subset
bound” [PER 95, VAN 94]. We should also mention the development of the Jackson
pseudo-preemptive schedule by Carlier and Pinson [CAR 98a], for directly
obtaining the subset bound.

Time bound reasoning applied to the cumulative scheduling problem

Baptiste et al. [BAP 99] focused on the cumulative scheduling problem (CuSP),
which is a relaxation of a decisional occurrence of the RCPSP to one of its resources
in which constraints of precedence are replaced by [ri, di] intervals, associated with
each task i. Since index k of the resource is set, it will subsequently be omitted. The
authors have particularly proposed a series of relaxations for this problem in order to
obtain necessary existence conditions. This relaxation, called “non-interruptible”, is
based on the notion of energy [LAH 82, LOP 92], presented in Chapter 5 and
reviewed here.

Shop Scheduling with Multiple Resources 253

For a given i task, the minimum energy required by i over any interval [t1, t2] is
equal to (see section 5.3.3): wi

[t1, t2] = ai . min (max (0, ri + pi – t1), max (0, t2 – di +
pi), pi, t2 – t1). Lopez et al. [LOP 92] have proven that, if a non-empty interval [t1, t2]
exists for which i wi

[t1, t2] > A . (t2 – t1), then no feasible schedule will be found for
the CuSP. Baptiste et al. [BAP 99] have demonstrated that it is simply required to
verify this necessary existence condition for a quadratic number of intervals. A
quadratic algorithm is proposed to establish the necessary existence conditions for
all relevant intervals.

A linear program based on the minimum feasible subsets

The lower bound proposed by Mingozzi et al. [MIN 98] is based on blocks as
previously defined. A linear program involving two types of decision variables is
proposed. The first variables decide if a given block is executing at a given moment.
The second variables express the fact that a task i starts at a given moment. Brucker
et al. [BRU 98a] use one of the intermediate problem relaxations and apply an exact
resolution by column generation.

9.3.2.3. Adjustments and rules of dominance

As reviewed above, rules of dominance and adjustment eliminate nodes of the
search tree, for which no interesting solution can be developed. These rules
generally apply to the structure of the partially generated scheduling, or to the search
memory, i.e. that certain information is stored during the search to establish a
comparison between the current node and the ones already explored. Generally,
rules based on search memory belong to a class of techniques often used in artificial
intelligence: intelligent backtracking. Here, starting times for scheduled tasks are the
information stored. Adjustment processes of release dates and tails, as well as other
mechanisms can be introduced. They make it possible to “over-constrain” the
problem by getting as much information as possible from decisions made.

Left-shift

This rule of dominance, initially proposed by Stinson et al. [STI 78], is based on
the fact that all active and semi-active schedules, as formally defined for the RCPSP
by Sprecher et al. [SPR 95], contain a minimum time solution. In this way,
numerous methods [BEL 90, DEM 92, DEM 97, MIN 98, SPR 96], based on the
development of partial schedules test if a sequenced operation can be left-shifted. In
this case, the partial solution considered is not explored.

The cut-set rule

The rule of dominance called cut-set was described by Demeulemeester and
Herroelen [DEM 92]. It consists of comparing the partial schedule in development
to a previously developed partial schedule. Methods based on the same type of

254 Production Scheduling

comparison were previously proposed by Stinson et al. [STI 78], and Talbot and
Patterson [TAL 78]. The cut-set rule actually comes down to comparing two partial
schedules containing the same tasks. If, in the first one, all tasks end sooner than in
the second, then all the solutions to be deduced from the first one will also be
deduced from the second one. This rule has been widely used since its
implementation by Demeulemeester and Herroelen [DEM 97, HER 98a, MIN 98].

Time bound adjustments

Contrary to the two previous rules which enabled the elimination of nodes when
they were dominated, time bound adjustments described by Baptiste et al. [BAP 99],
make it possible to over-constrain the problem and to adjust the intervals [ri, di] of
tasks when it is possible, without creating another choice point in the search tree.

This technique is based on the time bound reasoning proposed by Lahrichi [LAH
82], Erschler et al. [ERS 91], and Lopez et al. [LOP 92]. These adjustments are based
on the notion of mandatory task part, whether it shifts to the left (pi

+(t1)) or to the right
(pi

-(t2)), in relation to an interval [t1, t2]: pi
+(t1) = max(0, pi – max(0, t1 – ri)), pi

 –

(t2) = max (0, pi – max(0, di – t2)). The energy required for task i over interval
[t1, t2] is thus defined as: wi

[t1, t2] = ai . min(t2 – t1, pi
+(t1), pi

–(t2)), and W[t1, t2] =
i wi

[t1, t2]. Therefore, if: [t1, t2] / W[t1, t2] – wi
[t1, t2] + ai . min(t2 – t1, pi

+(t1)) > A . (t2 –
t1), then a lower bound of the completion time of task i is: t2 + (1/ai).(W[t1, t2] – wi

[t1, t2]

+ ai . min(t2 – t1, pi
+(t1)) – A . (t2 – t1)). For this earliest end date, we can update the

task’s release date. The symmetric adjustment is also defined for deadline (tails).

Introduction of disjunctions

All deduction methods proposed by Brucker et al. are grouped under this
terminology [BRU 98a]. All these methods were developed to significantly improve
the performance of the branching scheme based on a representation (C, D, N, F).
These methods enable the setting of disjunctions in “flexible” task pairs without
introducing a choice point, i.e. without developing a node in the arborescence.

9.3.2.4. Development of an exact method in a simple example

We propose an explanatory example showing the main mechanisms involved in
the resolution of the RCPSP. To illustrate our example, we have chosen the method
proposed by Baptiste and Le Pape [BAP 97, BAP 99, NER 99]. This method is
based on:

– consecutive resolutions of decision-making instances;

– the development of partial schedules according to a chronological branching
scheme;

– the application of time bound reasoning as necessary existence conditions.

Shop Scheduling with Multiple Resources 255

// initialization
calculate UB: best known solution time (list method);
calculate LB: a lower bound (larger value for which necessary time bound conditions

detect no inconsistency;
// dichotomous search on the smallest eligible UB bound
while (LB < UB)
 Determine UBtest the bound to test UBtest (UB + LB)/2
 // initialization of the tree search method
 create the corresponding root node: fictitious start task is sequenced at t = 0;
 t 0,
 choose a task (e) which does not have task 0 as its predecessor
 // scan the search tree
 while (there is an unexplored node in the stack)
 remove the first node from stack // e is the task to place
 // placement of chosen task
 place (e) at te the first moment larger than t and re such that sufficient resources are

available
 if all tasks are sequenced then
 UB scheduling end date
 if scheduling end date UBtest then
 UB UBtest
 END_UB
 end if
 end if
 t te

 for non-placed tasks ri max (ri, te)
 propagate updates on graph
 if inconsistency is detected (i/ di > UBtest) then END_NODE
 // application of time bound necessary conditions
 apply necessary conditions and time bound adjustments
 If inconsistency is detected then END_NODE
 propagate these adjustments in the graph
 if inconsistency is detected (di > UBtest) then END_NODE
 // branching function
 determine the list of tasks where predecessors are finished
 choose (en) one of these tasks // i.e. the one with the smallest ri

 place on the stack of unexplored nodes the node in which at least one task will start
before start of (en)

 place on stack of unexplored nodes the node in which the next placed task will be (en)
 end as long as // end of node
 if no solution with time smaller than or equal to UBtest was found then LB UBtest +

1
end while // end of the method

Algorithm 9.2. “Chronological” BBP algorithm

256 Production Scheduling

Algorithm 9.2 briefly recaps the structure of this method. In this general
algorithm, we have voluntarily omitted certain aspects, i.e. the initial branch phase
in the generated one machine problems. We use END_NODE to indicate that the
process on the node is interrupted and that the following node in the stack is
processed, and END_UB to indicate that a desired duration solution was found. A
new iteration of the search on the smallest eligible upper bound is then executed.

It is important to note that in the following example we do not use all elements
of the method which would be too long, even for a small example. We will simply
emphasize the key elements of the method. We consider the following seven task
and two resource problem:

Resource
consumption

Task time
Solution given by a simple heuristic:

UB = 10
Calculation of a default bound:

on R2 ipiai = 16 hence LB =8

A2 = 2

A1 = 5

4 | 3,1

3 | 1,1

3 | 4, 1

2| 2,1

0 | 0,0

2 | 2,2

0 | 0,0

3

2

5

4

761

Figure 9.6. Initialization of the tree search method

The first iteration of the search algorithm for the smallest UB consists of
verifying if there is a solution with a duration smaller than or equal to 9 = (10 + 8)/2.
We briefly present the search tree route corresponding to this case. Nodes are
scanned according to their number in the next diagram. The dotted arrows indicate
backtracking in the search tree (Figure 9.8).

After this iteration, we have a solution lasting 9 with a lower bound of 8. We
now need to verify if a solution lasting 8 exists.

As before, in Figure 9.8 the nodes are numbered in the order of their
examination. The straight arrows indicate a descent in the search tree, the dotted
arrows indicate backtracking. Since it was proven that no solution lasting 8 exists, at
the end of this iteration we can conclude that the minimum duration for this example
is 9. The solution previously presented for UBtest = 9 is therefore an optimal solution.

Shop Scheduling with Multiple Resources 257

i i =
1 2

test

Figure 9.7. Iteration for UBtest = 9

258 Production Scheduling

root node

node 1 node 2

node 3 node 4

node 5

node 10

node 6 node 7

node 8 node 9

4 = 5, r7 = 9.
Impossible

Task 3 is placed at
t = 0. We conclude
that task 2 cannot
start before date 2.
By propagating on
the graph, it follows
that: r

4 = 5, r7 = 9.
Impossible

Task 2 is placed at
t = 0. We conclude
that task 3 cannot
start before date 3.
By propagating on
the graph, it follows
that: r

4 = 5, r7 = 9.
Impossible

Task 2 is placed at
t = 0. We conclude
that task 3 cannot
start before date 3.
By propagating on
the graph, it follows
that: r

4 = 8, r7 = 12.
Impossible

Task 3 is placed at
t = 3. We conclude
that task 2 cannot
start before date 5.
By propagating on
the graph, it follows
that: r

Task 6 starts at t = 0

No task is available.
No son is created

No task is available.
No son is created

At least one task must
start before task 2

At least one
task must

start before task 6

At least one task must
start before task 2

At least one
task must

start before task 3

Figure 9.8. Iteration for UBtest = 8

9.3.3. Results and fields of application of methods

It is important to note that the results listed here are those supplied by the authors
of referenced works. Great precautions must therefore be taken in comparing the
different methods. In fact, most often, the test platform changes as well as the

Shop Scheduling with Multiple Resources 259

language used. It is however interesting to attempt to highlight major trends in terms
of efficiency and respective fields of application of these methods.

Patterson [PAT 84] proposed 110 RCPSP instances to compare the different
exact methods. The size of these instances varies from 7 to 50 tasks (with an average
of 22 tasks), with a number of resources from 1 to 3. Very good results were
obtained with these instances, in particular with the DH method [DEM 92]. The
authors compare this method to the one proposed by Stinson [STI 78]. A second
version of the DH method [DEM 97] greatly improves these results: the 110
instances are resolved in an average time frame of 0.025 s. However, it is easy to
produce the mainly disjunctive nature of the tests proposed by Patterson [BAP 97].
In addition, the DH method efficiency is strongly linked to an implementation
developed with the cut-set rule [DEM 97].

An alternative was proposed by Kolish et al. [KOL 95], with the development of
a configurable test generator, and the implementation of a library of tests mainly
characterized by three factors accounting for the number of precedences, the average
number of resources used for tasks, and the average quantity of resources used for
each task according to the quantity of resources available. Once again, the DH
method [DEM 97] is extremely efficient since it solves all 480 proposed tests. The
method proposed by Mingozzi et al. [MIN 98] should also be mentioned as being
powerful in these instances. However, it is interesting to note that these two methods
use the same bound and have the cut-set rule in common, although they are not
based on the same branching scheme.

Demeulemeester and Herroelen have emphasized the limits of the DH method.
In fact, this method owes its efficiency in great part to the use of the cut-set rule
which is very memory intensive. The authors even maintain that with this type of
approach, 500 MB of memory is necessary to process tests with 62 tasks. The rule of
dominance proposed by Sprecher [SPR 96], based on global left-shift, seems to be
an alternative to the DH method to solve the tests proposed by Kolish et al. [KOL
95] without using the cut-set rule, and is thus less expensive.

The method proposed by Brucker et al. [BRU 98a] can also appear to be a good
compromise between efficiency and memory space used. The results reported by the
authors on the 480 tests from Kolish et al. are globally not as good as those
mentioned previously, but generated tests performed on larger sizes (90 tasks)
conclude that the method is highly efficient on large size instances. The bound used
is based on the resolution of a linear program with the help of a column generation
technique which requires consequent memory space. In addition, the method is
clearly less powerful when resource consumption is low in relation to the
availability of resources, which is the case with highly cumulative problems.

260 Production Scheduling

In this way, even though the parameters proposed by Kolish et al. for the
characterization of the instances help us better understand their structure, these three
factors do not completely account for their cumulative character. Baptiste and Le
Pape [BAP 97] propose the comparison of different instances with the help of the
disjunction ratio involving the number of task pairs which cannot be executed
simultaneously, either because there is a relation of precedence in a broad sense
between tasks, or because the sum of task consumption exceeds the resource
availability. With this criteria, the authors have established a series of 40 reasonably
sized highly cumulative instances (20 and 25 tasks): the ratio of disjunctions is on
average equal to 0.33 for these instances, whereas it is 0.53 for the more cumulative
instances proposed by Kolish et al., and 0.67 for instances proposed by Patterson.
Baptiste and Le Pape [BAP 97] have shown that on traditional instances, using tools
such as necessary existence conditions and adjustments based on time bound
reasoning are not very efficient. On the contrary, these same tools ended up being
essential in order to solve highly cumulative problems.

9.4. Conclusion

The goal of this chapter was to present, on the one hand, two multiple resource
scheduling problems, whether these resources be disjunctive, made up of multiple
copies (hybrid flow shop), or cumulative (RCPSP) and, on the other hand,
traditional resolution methods for these two problems which are NP-hard.

For the hybrid flow shop, after a review of a few manufacturing applications
related to this type of problem, we described the heuristic resolution methods based
on simple principles: the determination of a list of jobs and allocation of these jobs
on machines. We then explained an exact method (B&B), whose branching scheme
is not explicitly based on the chronological development of schedules.

For the RCPSP, after a reminder of the structure of the problem, we have
described in detail the different B&B components in other works. Finally, we have
reported one of these methods where the branching scheme is based on the
development of partial schedules in a simple example. Remember that the hybrid
flow shop can be seen as a specific RCPSP case. The methods detailed for the
RCPSP can be directly applied to the resolution of the hybrid flow shop and some of
them are particularly efficient for this type of problem [NER 98].

In conclusion, we feel it is important to insist on the practical aspect linked to the
resolution of these two types of problems. From the extremely abundant literature
concerning these two problems, we can highlight simple heuristics to be
implemented but where performance in terms of the quality of resulting solutions
can be quite poor. Sophisticated heuristic methods (see Chapter 3) are most often a

Shop Scheduling with Multiple Resources 261

way to reach a good compromise between the quality of resulting solutions and
calculation time. Finally it is established that for reasonably sized problems, there
are efficient exact methods for the resolution of the hybrid flow shop (up to 50
operations) as well as for the RCPSP (up to 60 tasks).

9.5. Bibliography

[ART 00] ARTIGUES C., ROUBELLAT F., “A polynomial activity insertion algorithm in a
multi-resource schedule with cumulative constraints and multiple modes”, European
Journal of Operational Research, vol. 127, no. 2, p. 297-316, 2000.

[ART 03] ARTIGUES C., MICHELON P., REUSSER S., “Insertion techniques for static and
dynamic Resource-Constrained Project Scheduling”, European Journal of Operational
Research, vol. 149, no. 2, p. 249-267, 2003.

[ART 08] ARTIGUES Ch. DEMASSEY S. and NERON E., Resource-Constrained Project
Scheduling Models, Algorithms, Extensions and Applications, ISTE, 2008.

[BAK 74] BAKER K.R., Introduction to Sequencing and Scheduling, Wiley, New York,
1974.

[BAP 97] BAPTISTE Ph. and LE PAPE C., “Constraint Propagation and Decomposition
Techniques for Highly Disjunctive and Highly Cumulative Project Scheduling Problem”,
3rd International Conference on Principles and Practice of Constraint Programming, in
Lecture Notes in Computer Science 1330, Springer Verlag.

[BAP 99] BAPTISTE Ph., LE PAPE C. and NUIJTEN W., “Satisfiability Tests and Time
Bound Adjustments for Cumulative Scheduling Problems”, Annals of Operations
Research, vol. 92, p. 305-333, 1999.

[BAP 04] BAPTISTE P., DEMASSEY S., “Tight LP bounds for Resource Constrained
Project Scheduling”, OR Spectrum, vol. 26, no. 2, p. 251-262, 2004.

[BOU 03] BOULEIMEN K., LECOCQ H., “A new efficient simulated annealing algorithm
for the Resource-Constrained Project Scheduling Problem and its multiple mode version”,
European Journal of Operational Research, vol. 149, no. 2, p. 268-281, 2003.

[BRA 75] BRATLEY P., FLORIAN M. and ROBILLARD P., “Scheduling with Earliest Start
and Due Date Constraints on Multiple Machine”, Naval Research Logistics Quarterly,
vol. 22, no. 1, p. 165-173, 1975.

[BRA 91] BRAH S.A. and HUNSUCKER J.L., “A Branch and Bound Algorithm for the
Flowshop with Multiple processors”, European Journal of Operational Research, vol. 51,
p. 88-99, 1991.

262 Production Scheduling

[BRO 98] BROCKMANN K. and DANGELMAIER W., “A Parallel Branch and Bound
Algorithm for Makespan Optimal Sequencing in Flow Shops with Parallel Machines”,
Multiconference on Computational Engineering in Systems Applications (CESA’98),
Symposium on Industrial and Manufacturing Systems, IEEE-SMC/IMACS, p. 431-436,
1998.

[BRU 97] BRUCKER P., JURISCH B. and KRÄMER A., “Complexity of Scheduling
Problems with Multi-purpose Machines”, Annals of Operations Research, vol. 70,
Scheduling: theory and applications, p. 57-73, 1997.

[BRU 98a] BRUCKER P., KNUST S., SCHOO A. and THIELE O., “A Branch and Bound
Algorithm for the Resource-Constrained Project Scheduling Problem”, European Journal
of Operational Research, vol. 107, p. 272-288, 1998.

[BRU 98b] BRUCKER P. and KNUST S., A Linear Programming and Constraint
Propagation-Based Lower Bound for the RCPSP, Internal Report, Osnabrück University,
1998.

[BRU 99] BRUCKER P., DREXL A., MOHRING R., NEUMANN K. and PESCH E.,
“Resource-Constrained Project Scheduling: Notation, Classification, Models and
Methods”, European Journal of Operational Research, vol. 112, p. 3-41, 1999.

[BRU 00] BRUCKER P., KNUST S., “A linear programming and constraint propagation-
based lower bound for the RCPSP”, European Journal of Operational Research, vol. 127,
p. 355-362, 2000.

[BRU 07] BRUCKER P., Scheduling Algorithms, 5th edition, Springer Berlin, 2007.

[BUT 73] BUTEN R.E. and SHEN V.Y., “A Scheduling Model for Computer Systems with
Two Classes of Processors”, Saganiore Computer Conference on Parallel Processing,
p. 130-138, 1973.

[CAM 70] CAMPBELL H.G., DUDEK R.A. and SMITH M.L., “A Heuristic Algorithm for
the n Job, m Machine Sequencing Problem”, Management Science, vol. 16, no. 10,
p. B630-B637, 1970.

[CAR 84] CARLIER J., “Problèmes d’Ordonnancement à Contraintes de Ressources:
Algorithmes et Complexité”, Doctoral thesis, Paris 6 University, 1984.

[CAR 88] CARLIER J. and CHRETIENNE P., Problèmes d’Ordonnancement: Modélisation,
Complexité, Algorithmes, Masson, 1988.

[CAR 91] CARLIER J. and LATAPIE B., “Une Méthode Arborescente pour Résoudre les
Problèmes Cumulatifs”, RAIRO – Recherche Opérationnelle, vol. 25, no. 3, p. 311-340,
1991.

[CAR 97] CARLIER J. and NÉRON E., “An Exact Method for Solving the Multiprocessor
Flowshop”, International Conference on Industrial Engineering and Production
Management (IEPM’97), INRIA/INSA/University of Lyon 1, p. 592-600, 1997.

[CAR 98a] CARLIER J. and PINSON E., “Jackson Pseudo Preemptive Schedule for the
Pm/ri,qi/Cmax Problem”, Annals of Operations Research, vol. 83, p. 41-58, 1998.

Shop Scheduling with Multiple Resources 263

[CAR 03] CARLIER J., NÉRON E., “On linear lower bounds for the Resource Constrained
Project Scheduling Problem”, European Journal of Operational Research, vol. 149,
p. 314-324, 2003.

[CAR 07] CARLIER J., NÉRON E., “Computing redundant resources for the Resource
Constrained Project Scheduling Problem”, European Journal of Operational Research,
vol. 176, p. 1452-1463, 2007.

[CHA 04] CHANG J., YAN W., SHAO H., “Scheduling a two-stage no-wait hybrid flowshop
with separated setup and removal times”, Proceedings of the American Control
Conference, 2, p. 1412-1416, 2004.

[CHR 87] CHRISTOFIDES N., ALVAREZ-VALDES R. and TAMARIT J., “Project
Scheduling with Resource Constraints: A Branch and Bound Approach”, European
Journal of Operational Research, vol. 29, p. 262-273, 1987.

[DAM 05] DAMAY J., Techniques de résolution basées sur la programmation linéaire pour
l’ordonnancement de projet, PhD thesis, Blaise Pascal University, Clermont-Ferrand
(France), 2005.

[DEA 91] DEAL D.E. and HUNSUCKER J.L., “The Two-Stage Flowshop Scheduling
Problem with m Machines at Each Stage”, Journal of Information and Optimization
sciences, vol. 12, p. 407-471, 1991.

[DEB 06a] DEBELS D., DE REYCK B., LEUS R., VANHOUCKE M., “A hybrid scatter
search/electromagnetismmeta-heuristic for project scheduling”, European Journal of
Operational Research, vol. 169, no. 2, p. 638-653, 2006.

[DEM 92] DEMEULEMEESTER E. and HERROELEN W., “A Branch and Bound
Procedure for the Multiple Resource-Constrained Project Scheduling Problem”,
Management Science, vol. 38, no. 12, p. 1803-1818, 1992.

[DEM 94] DEMEULEMEESTER E., HERROELEN W., SIMPSON W.P., BAROUM S.,
PATTERSON J.H. and YANG K.K., “On a paper by Christofides et al. for Solving the
Multiple-Resource Constrained, Single Project Scheduling Problem”, European Journal
of Operational Research, vol. 76, p. 218-228, 1994.

[DEM 96] DEMEULEMEESTER E. and HERROELEN W., “An Efficient Solution
Procedure for the Preemptive Resource-Constrained Project Scheduling Problem”,
European Journal of Operational Research, vol. 90, p. 334-348, 1996.

[DEM 97] DEMEULEMEESTER E. and HERROELEN W., “New Benchmark Results for
the Resource-Constrained Project Scheduling Problem”, Management Science, vol. 43,
p. 1485-1492, 1997.

[DEM 02b] DEMEULEMEESTER E., HERROELEN W., Project Scheduling – A Research
Handbook, vol. 49 of International Series in Operations Research & Management
Science, Kluwer Academic Publishers, 2002.

[DEM 05] DEMASSEY S., ARTIGUES C., MICHELON P., “Constraint propagation based
cutting planes: an application to the resource-constrained project scheduling problem,
INFORMS Journal on Computing, vol. 17, no. 1, p. 52–65, 2005.

264 Production Scheduling

[DER 98] DE REYCK B. and HERROELEN W., “A Branch-and-Bound Procedure for the
Resource-Constrained Project Scheduling Problem with Generalized Precedence
Relations”, European Journal of Operational Research, vol. 111, p. 152-174, 1998.

[DES 98] DESSOUKY M.M., DESSOUKY M.I. and VERMA S.K., “Flowshop Scheduling
with Identical Jobs and Uniform Parallel Machines”, European Journal of Operational
Research, vol. 109, p. 620-631, 1998.

[DUP 98] DUPONT L., VIGNIER A., PORTMANN M-C. and PROUST C., “New
Separation Schemes for Hybrid Flowshop”, Journal Européen des Systèmes Automatisés,
vol. 32, no. 4, p. 453-465, 1998.

[ELM 97] ELMAGHRABY S.E. and KARNOUB R.E., “Production Control in Hybrid
Flowshops: an Example from Textile Manufacturing”, Chapter 6 in The Planning and
Scheduling of Production Systems, edited by A. Artiba and S.E. Elmaghraby, Chapman &
Hall, 1997.

[ERS 91] ERSCHLER J., LOPEZ P. and THURIOT C., “Raisonnement Temporel sous
Contraintes de Ressources et Problèmes d’Ordonnancement”, Revue d’Intelligence
Artificielle, vol. 5, no. 3, p. 7-32, 1991.

[ESQ 99] ESQUIROL P. and LOPEZ P., L’Ordonnancement, Economica, Paris, 1999.

[FLE 04] FLESZAR K., HINDI K., “Solving the Resource-Constrained Project Scheduling
Problem by a variable neighborhood search”, European Journal of Operational Research,
vol. 155, p. 402-413, 2004.

[GOD 05] GODARD D., LABORIE P., NUIJTEN W., “Randomized large neighborhood
search for cumulative scheduling”, Proceedings International Conference on Automated
Planning and Scheduling (ICAPS-05), Monterey, California, USA, 2005.

[GUI 96] GUINET A., SOLOMON M.M., KEDIA P.K. and DUSSAUCHOY A., “A
Computational Study of Heuristics for Two-Stage Flexible Flowshops”, International
Journal of Production Research, vol. 34, vol. 5, p. 1399-1415, 1996.

[GUP 88] GUPTA J.N.D., “Two-Stage Hybrid Flowshop Scheduling Problems”, Journal of
Operational Research Society, vol. 39, no. 4, p. 359-364, 1988.

[GUP 91] GUPTA J.N.D. and TUNC E.A., “Schedules for a Two-Stage Hybrid Flowshop
with Parallel Machines at the Second Stage”, International Journal of Production
Research, vol. 29, no. 7, p. 1489-1502, 1991.

[GUP 94] GUPTA J.N.D. and TUNC E.A., “Scheduling a Two-Stage Hybrid Flowshop with
Separable Setup and Removal Times”, European Journal of Operational Research,
vol. 7, p. 415-428, 1994.

[GUP 95] GUPTA J.N.D., HARIRI A.M.A. and POTTS C.N., “Scheduling a Two-Stage
Hybrid Flowshop with Parallel Machines at the First Stage”, Annals of Operations
Research, vol. 69, Mathematics of Industrial Scheduling II, p. 171-191, 1997.

[GUP 98] GUPTA J.N.D., TUNC E.A., “Minimizing tardy jobs in a two-stage hybrid
flowshop”, International Journal of Production Research, 36(9), p. 2397-2417, 1998.

Shop Scheduling with Multiple Resources 265

[HAO 97] HAOUARI M. and M’HALLAH R., “Heuristic Algorithms for the Two-Stage
Hybrid Flowshop Problem”, Operations Research Letters, vol. 21, p. 43-53, 1997.

[HE 07] HE L., SUN S., LUO R., “A hybrid two-stage flowshop scheduling problem”, Asia-
Pacific Journal of Operational Research, 24(1), p. 45-56, 2007.

[HEN 98a] HERROELEN W., DEMEULEMEESTER E. and DE REYCK B., “Resource-
Constrained Project Scheduling – A Survey of Recent Developments”, Computer and
Operations Research, vol. 25, no. 4, p. 279-302, 1998.

[HEN 98b] HERROELEN W., DEMEULEMEESTER E. and DE REYCK B., “A
Classification Scheme for Project Scheduling”, Sixth International Workshop on Project
Management and Scheduling, WPMS-98, p. 67-70, 1998.

[JIN 06] JIN Z., YANG Z., ITO T., “Metaheuristic algorithms for the multistage hybrid
flowshop scheduling problem”, International Journal of Production Economics, 100(2),
p. 322-334, 2006.

[JOH 54] JOHNSON S.M., “Optimal Two and Three-Stage Production Schedules with Set-up
Times Included”, Naval Research Logistics Quarterly, vol. 1, no. 1, p. 61-68, 1954.

[JUR 92] JURISCH B., Scheduling Jobs in Shops with Multi-Purpose Machines, PhD Thesis,
Osnabrück University, Germany, 1992.

[KLE 99] KLEIN R. AND SCHOLL A., “Computing lower bounds by destructive
improvement: An application to resource-constrained project scheduling”, European
Journal of Operational Research, vol. 112, p. 332-346, 1999.

[KLE 00a] KLEIN R., “Bidirectional planning: improving priority rule-based heuristics for
scheduling resource-constrained projects”, European Journal of Operational Research,
vol. 127, p. 619-638, 2000.

[KOC 03] KOCHETOV Y., STOLYAR A., “Evolutionary local search with variable
neighborhood for the Resource Constrained Project Scheduling Problem”, Proceedings of
the 3rd International Workshop of Computer Science and Information Technologies
(CSIT’03), 2003.

[KOL 95] KOLISH R., SPRECHER A. and DREXL A., “Characterization and Generation of
a General Class of Resource-Constrained Project Scheduling Problem”, Management
Science, vol. 41, no. 10, p. 1693-1703, 1995.

[KOL 97] KOLISH R. and PADMAN R., “An Integrated Survey of Project Scheduling”,
Internal Report, University of Kiel, 1997.

[KOL 06] KOLISCH R., HARTMANN S., “Experimental Investigation of Heuristics for
Resource-Constrained Project Scheduling: An Update”, European Journal of Operational
Research, vol. 174, no. 1, p. 23–37, 2006.

[LAB 05] LABORIE P., “Complete MCS-Based Search: Application to Resource
Constrained Project Scheduling”, Proceedings of the International Joint Conference on
Artificial Intelligence, (IJCAI’05), Edinburgh, UK, 2005.

266 Production Scheduling

[LAH 82] LAHRICHI A., “Ordonnancements. La Notion de ‘Parties Obligatoires’ et son
Application aux Problèmes Cumulatifs”, RAIRO – Recherche Opérationnelle, vol. 16,
p. 241-262, 1982.

[LAH 07] LAHA, D., CHAKRABORTY, U.K., “An efficient stochastic hybrid heuristic for
flowshop scheduling”, Engineering Applications of Artificial Intelligence, 20(6), 851-856,
2007.

[LEE 93] LEE C., CHENG T.C.E. and LIN B.M.T., “Minimizing the Makespan in the 3-
Machine Assembly Flowshop Scheduling Problem”, Management Science, 35(3), p. 616-
625, 1993.

[LEE 94] LEE C.Y. and VAIRAKTARAKIS G., “Minimizing Makespan in Hybrid
Flowshops”, Operations Research Letters, 16(3), p. 149-158, 1994.

[LEE 04] LEE G.C. and KIM Y-D., “A branch-and-bound algorithm for a two-stage hybrid
flowshop scheduling problem minimizing total tardiness”, International Journal of
Production Research, 42(22), p. 4731-4743, 2004.

[LI 97] LI S., “A Hybrid Two-Stage Flowshop with Part Family, Batch Production, Major and
Minor Setups”, European Journal of Operational Research, 102, p. 142-156, 1997.

[LOP 92] LOPEZ P., ERSCHLER J. and ESQUIROL P., “Ordonnancement de Tâches sous
Contraintes: une Approche Energétique”, RAIRO Automatique, Productique,
Informatique Industrielle, vol. 26, no. 6, p. 453-481, 1992.

[LOW 08] LOW C., HSU C-J. and SU C-T., “A two-stage hybrid flowshop scheduling
problem with a function constraint and unrelated alternative machines”, Computers and
Operations Research, 35(3), p. 845-853, 2008.

[MER 02] MERKLE D., MIDDENDORF M. and SCHMECK H., “Ant colony optimization
for Resource-Constrained Project Scheduling”, IEEE Transactions on Evolutionary
Computation, vol. 6, p. 333-346, 2002.

[MIN 98] MINGOZZI A., MANIEZZO V., RICCIARDELLI S. and BIANCO L., “An Exact
Algorithm for Project Scheduling with Resource Constraints based on New Mathematical
Formulation”, Management Science, vol. 44, p. 714-729, 1998.

[MÖH 84] MÖHRING R. H., “Minimizing Costs of Resource Requirements in Project
Networks Subject to a Fixed Completion Time”, Operations Research, vol. 32, p. 89-120,
1984.

[MÖH 98] MOHRING R.H., STORK F. and UETZ M., “Resource-Constrained Project
Scheduling with Time Windows: A Branching Scheme Based on Dynamic Release
Dates”, Internal Report, Berlin Technical University, 1998.

[MOR 05] MORITA H. and SHIO N., “Hybrid branch and bound method with genetic
algorithm for flexible flowshop scheduling problem”, JSME International Journal, Series
C: Mechanical Systems, Machine Elements and Manufacturing, 48(1), p. 46-52, 2005.

[MOU 99] MOURSLI O., Scheduling the Hybrid Flowshop: Branch and Bound Algorithm,
PhD Thesis, Louvain Catholic University, Belgium, 1999.

Shop Scheduling with Multiple Resources 267

[MOU 00] MOURSLI O., POCHET Y., “Branch-and-bound algorithm for the hybrid
flowshop”, International Journal of Production Economics, 64(1), p. 113-125, 2000.

[NAW 83] NAWAZ M., ENSCORE E. and HAM I., “A Heuristic Algorithm for the m
machine n Job Flowshop Sequencing Problem”, OMEGA, vol. 11, no. 1, p. 91-95, 1983.

[NER 98] NÉRON E., BAPTISTE PH., CARLIER J. and LE PAPE C., “Global Operations
for the Multi-Processor Flow-Shop”, 6th International Workshop on Project Management
and Scheduling (PMS’98), p. 248-251, 1998.

[NER 99] NÉRON E., Du Flow-Shop Hybride au Problème Cumulatif, PhD Thesis,
Compiègne University of Technology, 1999.

[NOW 98] NOWICKI E. and SMUTNICKI C., “The Flow Shop With Parallel Machines: a
Tabu Search Approach”, European Journal of Operational Research, vol. 106, p. 226-
253, 1998.

[OLI 99] OLIVER A., VERRIERE J-C., PROUST C. and BILLAUT J.-C., Résolution de
Problèmes d’Ordonnancement de Type Flow-Shop Hybride par des Procédures par
Séparation et Evaluation, Technical report no. 7875, E3i, University of Tours, 1999.

[OZD 95] OZDAMAR L. and ULUSOY G., “A Survey on the Resource Constrained Project
Scheduling Problem”, IIE Transactions, vol. 27, p. 574-586, 1995.

[PAL 04] PALPANT M., ARTIGUES C., MICHELON P., “LSSPER: Solving the Resource-
Constrained Project Scheduling Problem with Large Neighbourhood Search”, Annals of
Operations Research, vol. 131, no. 1-4, p. 237–257, 2004.

[PAT 74] PATTERSON J.H and HUBER W.D, “A Horizon-Varying Zero-One Approach to
Project Scheduling”, Management Science, vol. 20, no. 6, p. 990-998, 1974.

[PAT 76] PATTERSON J.H and ROTH G., “Scheduling a Project Under Multiple Resource
Constraints: a Zero-one Programming Approach”, AIIE Transactions, vol. 8, no. 4,
p. 449-456, 1976.

[PAT 84] PATTERSON J.H., “A Comparison of Exact Approaches for Solving the Multiple
Constrained Resource Project Scheduling Problem”, Management Science, vol. 30, no. 7,
p. 854-867, 1984.

[PAT 90] PATTERSON J.H., SLOWINSKI R., TALBOT F.B. and WEGLARZ J.,
“Computational Experience with a Backtracking Algorithm for Solving a General Class
of Precedence and Resource-Constrained Scheduling Problems”, European Journal of
Operational Research, vol. 49, p. 68-79, 1990.

[PIN 94] PINSON E., PRINS C., RULLIER F., “Using tabu search for solving the Resource-
Constrained Project Scheduling Problem”, Proceedings of the Fourth International
Workshop on Project Management and Scheduling (PMS’94), Leuven, Belgium, 1994.

[POR 98] PORTMANN M-C., VIGNIER A., DARDILHAC D. and DEZALAY D., “Some
hybrid flow-shops scheduling by crossing branch and bound and genetic algorithms”,
European Journal of Operational Research, vol. 107, p. 389-400, 1998.

268 Production Scheduling

[RIA 98] RIANE F., ARTIBA A. and ELMAGHRABY S.E., “A hybrid three-stage flowshop
problem: efficient heuristics to minimize makespan”, European Journal of Operational
Research, vol. 109, p. 321-329, 1998.

[RIC 98] RICHARD P., BARRIER J. and PROUST C., “Economical aspects of short-term
planning in the bottle-glass industry”, Revue VERRE, vol. 4, no. 4, p. 7-14, 1998.

[RUI 08] RUIZ R., SERIFOGLU F.S., URLINGS T., “Modeling realistic hybrid flexible
flowshop scheduling problems”, Computers and Operations Research, 35 (4), p. 1151-
1175, 2008.

[SAN 95] SANTOS D.L., HUNSUCKER J.L. and DEAL D.E., “Global Lower Bounds For
Flowshops with Multiple Processors”, European Journal of Operational Research., vol.
80, p. 112-120, 1995.

[SHE 72] SHEN V.Y. and CHEN Y.E., “A scheduling strategy for the flowshop problem in a
system with two classes of processors”, Conference on Information and Systems Science,
p. 645-649, 1972.

[SPR 94] SPRECHER A., “Resource-Constrained Project Scheduling: Exacts Methods for the
Multi-Mode Case”, Lectures Notes in Economics and Mathematical Systems, no. 409,
Springer Verlag, 1994.

[SPR 95] SPRECHER A., KOLISH R. and DREXL A., “Semi-Active, Active and Non-Delay
Schedules for the Resource-Constrained Project Scheduling Problem”, European Journal
of Operational Research, vol. 80, no. 1, p. 94-102, 1995.

[SPR 96] SPRECHER A., Solving the RCPSP Efficiently at Modest Memory Requirements,
Internal Report no. 425, Kiel University, 1996.

[SRI 89] SRISKANDARAJAH C. and SETHI S.P., “Scheduling algorithms for flexible flow-
shops: worst and average case performance”, European Journal of Operational Research,
vol. 43, p. 143-160, 1989.

[STI 78] STINSON J.P., DAVIS E.W. and KHUMAWALA B.M., “Multiple Resource-
Constrained Scheduling using Branch and Bound”, AIIE Transactions, vol. 10, p. 252-
259, 1978.

[TKI 00] T’KINDT V., BILLAUT J-C. and HOUNGBOSSA H., “A multi-criteria heuristic to
solve a 2-stage hybrid flowshop scheduling problem”, Journal Européen des Systèmes
Automatisés, 34(9), p. 1187-1200, 2000.

[TOW 77] TOWNSEND W., “Sequencing n jobs on m machines to minimize maximum
tardiness: a branch and bound solution”, Management Science, vol. 23, no. 9, p. 1016-
1019, 1977.

[VAL 03] VALLS V., QUINTANILLA M., BALLESTIN F., “Resource-Constrained Project
Scheduling: A Critical Reordering Heuristic”, European Journal of Operational
Research, vol. 149, p. 282-301, 2003.

[VAL 04] VALLS V., QUINTANILLA M., BALLESTIN F., “A population-based approach
to the Resource-Constrained Project Scheduling Problem”, Annals of Operations
Research, vol. 131, p. 305-324, 2004.

Shop Scheduling with Multiple Resources 269

[VAN 94] VANDEVELDE A., Minimizing the makespan in a multiprocessor flowshop,
Master’s thesis, Eindhoven, 1994.

[VIG 97] VIGNIER A., Contribution à la résolution des problèmes d’ordonnancement de type
monogamme multimachine (flowshop hybride), Doctoral Thesis, University of Tours,
1997.

[VIG 99] VIGNIER A., BILLAUT J-C. and PROUST C., “Les problèmes de flowshop
hybride: état de l’art”, RAIRO RO, vol. 33, no. 2, p. 117-183, 1999.

[WEG 79] WEGLARZ J., “Project Scheduling with Discrete and Continuous Resources”,
IEEE Transactions on SMC, vol. 9, p. 644-650, 1979.

[WEG 05] WEGLARZ J. and JOZEFOWSKA J, Perspectives in Modern Project Scheduling,
International Series in Operations Research & Management Science, vol. 92., Springer,
2005.

[WON 01] WONG W.K., CHAN C.K., IP W.H., “A hybrid flowshop scheduling model for
apparel manufacture”, International Journal of Clothing Science and Technology, 13(2),
p. 115-131, 2001.

This page intentionally left blank

Chapter 10

Open Shop Scheduling

10.1. General overview

In production scheduling problems called open shop problems (or problems with
free job routes), each item to be produced must have several operations on machines
but in a totally open sequence. The absence of imposed order between operations
makes these problems extremely combinatorial and prevents the application of
already proven flow shop and job shop resolution techniques. However, it is
necessary to have powerful resolution methods for these problems that have long
been neglected, because they are encountered much more often because of the fact
that flexible shops are increasingly common.

The main problem is a shop problem called open shop. This is why the bulk of
this chapter is focused on this problem. Section 10.2 presents open shop in the
context of shop problems and gives a few applications. The complexity of the
different versions of this problem is discussed in section 10.3. In particular, contrary
to flow shop and job shop, open shop becomes easy when operations can be
interrupted: this remarkable case, actually encountered in telecommunications,
deserves to be explained in section 10.4. “Simple” heuristics (excluding
metaheuristics) are described in section 10.5. The other resolution methods using the
disjunctive model are reviewed in section 10.6, and metaheuristics, easier to present,
are presented in section 10.7. In section 10.8 we present exact methods. The
available tests and comparative algorithm performances are described in section
10.9. The last section (10.10) presents a few neighboring problems encountered
outside of production, mainly in telecommunications.

Chapter written by Christian PRINS.

272 Production Scheduling

10.2. The open shop problem

10.2.1. Open shop in relation to other shop problems

In shop problems, a set T of n jobs T1, T2, ..., Tn must be executed over a set M of
m specialized machines M1, M2, ..., Mm. Simply put, we consider that if each job Ti

(in practice a product to be manufactured) contains m operations (i, j), j = 1, 2, ... m
the operation (i, j) occurs on machine Mj. Even with this hypothesis, shop problems
become difficult with three machines. However, most resolution methods in the
chapter are adaptable to jobs with more than m operations. Matrix P, n m, gives
the integer processing time pij of each operation (i, j). There are two types of
common constraints: a machine cannot process more than one job at a time, and a
job cannot occur on more than one machine at the same time.

A schedule is defined by allocating a start date tij (or an end date Cij = tij + pij) to
each operation (i, j) while respecting constraints. The most common objective is to
minimize the total duration Cmax (maximum of completion times), also called
makespan. In the following, C*

max denotes the minimal makespan, pi the duration of
job Ti if executed without pause (sum of elements in row i of P), and Zj the workload
of machine Mj (sum of j column elements). According to constraints, these quantities
are lower bounds of the makespan for any schedule. In particular, their maximum,
LB, is a traditional bound, valid for any shop problem:

 ppLB
m

ijni
ni

ijmj
1,j

1,
1,

1,
max, maxmax [10.1]

If we voluntarily delay operations, we have an unlimited number of possible
schedules. A schedule is semi-active if no operation can be launched earlier while
conserving its rank in its job or on its machine. A semi-active schedule is active if
no operation can be started earlier without violating the constraints or delaying
another operation (in this way, no operation can be placed in a possible “gap”
located before it on its machine). Finally, an active schedule is called non-delay or
dense if no machine is left idle when it could process an operation.

Semi-active schedules include active schedules, which in turn contain non-delay
schedules and these three types of schedules are finite in number. A traditional result
stipulates that there is always an optimal active schedule in the case of makespan
minimization. A resolution algorithm can then limit its search to only explore active
solutions in order to find this optimum. On the other hand, the set of non-delay
schedules (the smallest one) may not contain an optimal solution.

Open Shop Scheduling 273

The two most well-known shop problems are flow shop and job shop. They have
been studied since the 1950s and are characterized by a fixed route for each job (see
Chapter 2). In the general flow shop modeling linear structure shops, products (jobs)
follow the same route M1, M2, ..., Mm but a job may overtake another. The
permutation flow shop models the specific case of assembly lines: products cannot
overtake each other, and a sequence of jobs is enough to define a schedule. In job
shop, each job has its own route to follow: the flow shop is therefore a specific job
shop case, with identical routes. Job shop problems can be found in shops organized
in islands, with diversified products (small mechanics, for example).

The open shop is the case where the order of operations for each job is
completely open. An instance is thus defined by n, m and P. The problem appeared
late (around 1975) in scheduling literature, because it is less frequent than flow shop
and job shop. However, many sequencing constraints are artificial in reality: they are
not induced by the product, but often by a rigid line organization in the shop. In
modern flexible shops, we have many more choices in the order of operations. Early
in the 1980s, the satellite telecommunications field raised completely unexpected
open shop type problems. All this makes open shop problems increasingly common
in the industry.

10.2.2. An example

Consider a small example with three jobs and three machines to illustrate the
differences between open shop and other shop problems. Table 10.1 gives the P
matrix of operation times with machine-loads and job times. Any feasible schedule
will last at least 1,000, the LB value. Figure 10.1 is the graphical representation
(Gantt chart) of a permutation flow shop schedule defined by the sequence of jobs
(1, 2, 3): the makespan is 1,358. We observe inactivity periods on M2 and M3,
typical of this problem. Downstream machines wait for the products to reach them.
Figure 10.2 shows an open shop schedule. The free routes of jobs facilitate the
problem, hence total time is decreased to 1,239. This schedule can still be improved
by moving job T1 to date 85 on M3. The resulting schedule is optimal since the LB
bound is reached.

M1 M2 M3 pi

T1 97 72 500 669
T2 261 540 85 886
T3 642 274 84 1,000

Zj 1,000 886 669 1,000

Table 10.1. 3 3 example with bound calculation

274 Production Scheduling

M2

M1

M3

T1
97

T2
261

T3
642

T1
72

T2
540

T3
274

T1
500

T2
85

T3
84

1,3581,000 = LB

Figure 10.1. Permutation flow shop type scheduling example

M2

M1

M3

T1
97

T2
261

T3
642

T1
72

T2
540

T3
274

T1
500

T2
85

T3
84

1,000 (LB) 1,239

Figure 10.2. Open shop type scheduling example

10.2.3. A few real open shop examples

Table 10.2 presents four examples of open shop applications. Outside of
production, the problem is encountered in testing and maintenance activities, in
service and telecommunications sectors. The telecommunications context is
explained in section 10.10. Note that in machining, for example, the Gantt chart line
scan corresponds to machines or parts. In fact, in an open shop environment, jobs
and machines are often found by convention and play an equal role. In this way, if
we transpose matrix P, the optimal time does not change, contrary to flow shop and
job shop.

Open Shop Scheduling 275

Application Jobs Operations Machines

Machining Part machining Operation to execute
on a part Machine-tools

Equipment test Equipment to test Basic test Operator or
Test bed

Examination of
patients in hospital

Patient with routine
examination to

perform

Patient tests:
analyses, x-rays, etc.

Doctors or
specialized rooms

Digital satellite
telecommunications

Group of packets
to transmit by

one Earth-station

Packet from a
transmitting

station to a repeater

Satellite repeaters
(channels)

Table 10.2. Some real open shop examples

10.3. Complexity of open shop problems

10.3.1. Overview

With no specific hypothesis, open shop is an NP-hard problem from three
machines. However, as with flow shop and job shop, it becomes polynomial for
m = 2. If operation preemptions (interruptions) are authorized, the open shop also
becomes polynomial, but, other shop problems remain NP-hard. For these two
polynomial cases, C*

max = LB. All these results were established by Gonzalez and
Sahni [GON 76]. Since then, a multitude of papers on the complexity of particular
cases have emerged, but few studies have been completed on practical resolution
methods, which is typical for a relatively recent problem. The next sections present a
few particular cases.

10.3.2. Polynomial geometric methods

Let pmax denote the longest operation time and Zmax the biggest machine-load.
The open shop problem becomes polynomial with C*

max = LB if the pmax / Zmax ratio
is small. These results come from studies in geometry on a problem called compact
summation of vectors. Given a series of m vectors in IRn, in what sequence should
their sum be executed in order for the partial sums to be confined in the smallest
sphere possible? This problem is NP-hard but different bounds are known for the
sphere’s radius and good use has been made of them in scheduling.

Results of this type are summarized in a review [SEV 94]. Here are two
examples. Fiala in 1982 calls m' the smallest power of 2 m and shows that, if
Zmax (16.m'.log2 m' + 5.m').pmax, then the open shop can be solved in O(n2m3).

276 Production Scheduling

However, operations must be very small compared to machine-loads: for m = 3, we
find Zmax/pmax 148. Sevast’janov refined these bounds in 1990: the problem can be
solved in O(n2m2) if Zmax (m2 – 1 + 1/(m – 1)).pmax. For m = 3, this corresponds to
Zmax/pmax 8.5. However, the probability of finding open shops verifying these
conditions in practice becomes very low when m increases.

10.3.3. The polynomial m = 2 case

The report from Gonzalez and Sahni [GON 76] also gives a polynomial
algorithm reaching LB for the two machine case (or two jobs since the optimal
makespan of an open shop does not change when P is transposed). In 1995, Pinedo
[PIN 95] proposed a simpler algorithm based on a priority rule called LAPT (longest
alternate processing time). We begin at time 0 with idle machines. At each iteration,
we search for the smallest time t to which a machine can start an operation. We then
execute at t the job with the longest operation remaining on the other machine. If the
schedule has no down time, it is clearly optimal because its makespan is equal to the
maximum LB of the two machine-loads. Otherwise, Pinedo shows that the algorithm
will, at most, leave a gap on only one machine and that this gap does not delay the
schedule.

M1 M2 pi

T1 97 72 169

T2 261 540 801

T3 642 274 916

Zj 1,000 886 1,000

Table 10.3. A two machine example

Table 10.3 illustrates an example where n = 3, m = 2 and LB = 1,000. Figure 10.3
shows the Gantt chart of the schedule obtained by the LAPT rule: LB bound is
actually reached. We detail the algorithm sequence. At the beginning, M1 and M2 are
idle at t = 0. (3, 2) is the executable operation at t = 0 whose job has the longest
operation on the other machine. We place (3, 2) on M2. Then, M1 can start two
operations at t = 0: (1, 1) and (2, 1). Job T2 is the one with the largest remaining
work (540) on the other machine, M2. We then place (2, 1) on M1. Subsequently, M1
can only start one operation at t = 261, (1, 1). We therefore have no choice and we
place this operation. We can then only execute (2, 2) when M2 is ready at t = 274,
then (3, 1), and (1, 2).

Open Shop Scheduling 277

M2

M1 T1
97

T2
261

T3
642

T1
72

T2
540

T3
274

1,000 = LB

Figure 10.3. Scheduling found by optimal LAPT rule

10.3.4. The boundary m = 3 case

We say that a machine Mj is dominated by another Mk if the longest operation of
Mj does not last longer than the shortest operation of Mk. In other words, if max (pij, i
= 1 … n) min (pik, i = 1 ... n). If one of the three machines is dominated, the open
shop can be solved in O(n) and C*

max can exceed LB [ADI 89]. Roughly, the
algorithm first calculates a schedule for the two non-dominated machines, then it
places dominated machine operations. The case where jobs only have two
operations, where one has to be on M1 (M1 is then called bottleneck machine) can
also be handled in O(n), with a makespan which can exceed LB [DRO 99]. The
bottleneck machine case has an open complexity.

10.3.5. Special open shops

In the case of makespan minimization, the smallest additional constraint deletes
the open shop polynomial cases. In this way, the m = 2 case becomes NP-hard when
we add release dates to jobs [LAW 81] or if jobs must be accomplished without wait
time between operations (no-wait case), as in the steel industry [SAH 79]. In the
preemptive case, it becomes NP-hard if one additional resource is added, whether it
is renewable [WER 91] or consumable [WER 92]. For other optimization criteria,
the open shop is generally NP-hard from m = 2, for example, to minimize the
average job completion time or mean flow time [ACH 82] or the maximum lateness
in case of job due dates [LAW 81].

10.4. The preemptive case (operations executable multiple times)

10.4.1. Gonzalez and Sahni algorithm

It is remarkable that open shop is “easy” in the preemptive case, as opposed
to flow shop and job shop. The corresponding algorithm [GON 76] deserves
a detailed explanation, especially since the problem is currently present in

278 Production Scheduling

telecommunications. Its complexity is O(m2n2), actually O(r2) if there are r mn
non-zero operations. To simplify the presentation, we use a “square” open shop (m =
n). We first give the algorithm text before explaining it with an example.

Add fictitious activity to P to make all sums
for rows and columns equal to LB (matrix P’)
while P’ is not zero do
 Search for a perfect matching C in the bipartite graph
 associated with P’ (n operations, one per row and per column)
 D min{p’ij |(i, j) C}
 Build a partial schedule (schedule slice) where each
 operation (i, j) of C is executed for D units of time.
 for any operation (i, j) C do
 p’ij p’ij – D
Remove fictitious activity from scheduling obtained.

Algorithm 10.1. Gonzalez and Sahni algorithm for the preemptive case

10.4.2. An example

In Table 10.4, we use our 3 3 example. We add 114 to (1, 2), 217 to (1, 3) and
114 to (2, 3) to obtain matrix P’ where all line and column sums equal 1,000 (Table
10.5). We speak of a “quasi-bistochastic” matrix.

 M1 M2 M3 pi M1 M2 M3 pi

T1 97 72 500 669 T1 97 186 717 1,000

T2 261 540 85 886 T2 261 540 199 1,000

T3 642 274 84 1,000 T3 642 274 84 1,000

Zj 1,000 886 669 1,000 Zj 1,000 1,000 1,000 1,000

Tables 10.4 and 10.5. 3 3 example and its quasi-bistochastic matrix P’

We extract from P’ a set of operations which can be executed in parallel, called
matching. In P’ it corresponds to non-zero elements placed one per row and per
column. A matching is said to be perfect if it contains n operations. Gonzalez and
Sahni proved that a perfect matching always exists in P’, even with the presence of
zero elements. An algorithm for finding such matching can be found in [PRI 94a].
We can, for example, use {(1, 3), (2, 2), (3, 1)}, with D = min {717, 540, 642) =

Open Shop Scheduling 279

540. We execute these operations (bordered in Table 10.5) for 540 units of time to
obtain a partial schedule (or schedule slice) and we update P’ (Table 10.6).

M1 M2 M3 pi M1 M2 M3 pi

T1 97 186 177 460 T1 97 186 0 283

T2 261 0 199 460 T2 84 0 199 283

T3 102 274 84 460 T3 102 97 84 283

Zj 460 460 460 460 Zj 283 283 283 283

Tables 10.6 and 10.7. P’ after first and second matching extraction

P’ remains quasi-bistochastic, we have taken out 540 from each row and each
column. On the other hand, the remaining matrix bound is now LB – D = 1,000 –
540 = 460. Due to the existence of a perfect matching at each iteration, the original
matrix P’ will be able to be broken down into a sequence of schedule slices whose
total duration will be LB. This process converges because at least one operation
cancels itself in P’ at each matching extraction, the operation with processing
time D.

Continuing with matching {(1, 3), (2, 1), (3, 2)}, and D = min {177, 261, 274},
or 177. We execute these operations for 177 units of time and we update P’
(Table 10.7). Then, for example, we remove {(1, 2), (2, 3), (3, 1)} with D = 102
(Table 10.8), then {(1, 1), (2, 3), (3, 2)} with D = 97 (Table 10.9), then
{(1, 2), (2, 1), (3, 3)} with D = 84. The algorithm is finished because P’ is zero.

M1 M2 M3 pi M1 M2 M3 pi

T1 97 84 0 181 T1 0 84 0 84
T2 84 0 97 181 T2 84 0 0 84
T3 0 97 84 181 T3 0 0 84 84

Zj 181 181 181 181 Zj 84 84 84 84

Tables 10.8 and 10.9. P’ after third and fourth matching extraction

Figure 10.4 illustrates the breakdown which actually lasts LB and contains five
matchings here. It also gives the valid schedule for P, obtained by removing the
fictitious activity. Note that most operations are not fragmented, which raises the
minimization problem of the number of preemptions while keeping a makespan

280 Production Scheduling

equal to LB. This problem is NP-hard, but we can decrease preemptions in a
heuristic manner.

M2

M1

T1
540

T2
540

T3
540

1,000 = LB

T2
84

T1
97

T3
102

T1
102

T2
102

T3
97

T2
97

T1
84

T3
84

T2
84

T1
97

T3
102

T 1
7 2

T2
85

T3
97

T3
84

M3

1,000 = LB

M2

M1

M3

T3
540

T2
540

T1
500

Matching 1

T2
177

T3
177

T1
177

2 3 4 5

T2
177

T3
177

Figure 10.4. Preemptive scheduling with and without fictitious activity

The total number of matchings can be reduced by extracting matchings
containing a large amount of work. In our example, this goal is achieved by
extracting matchings where the smallest element is maximal (max-min matching).
We can also change the order of matchings in the final breakdown. In this way, by
permuting slices 2 and 5 in Figure 10.4, we put back together the two fragments of
job 2 on M1.

10.5. Simple heuristics (excluding metaheuristics)

10.5.1. Introduction

Since open shop was studied late by researchers (compared to flow shop and job
shop), most published reports first involved complexity results, the study of
particular cases, and the demonstration of performance guarantees for certain very
simple heuristics. The emergence of methods used in practice for the resolution of

Open Shop Scheduling 281

open shop with numerical evaluations over different types of data is very recent. We
can cite heuristics from Bräsel et al. [BRÄ 93] and from Guéret and Prins [GUE 96].
The following sections present a few results for performance guarantees and two
families of heuristics: the list family (priorities) and heuristics-based matching
techniques. Current metaheuristics mainly based on the disjunctive model, are the
subject of a special section (section 10.7).

10.5.2. Performance guarantees

Since open shop is difficult, it is tempting to use approximate methods, but with
a deviation to the optimal makespan that is as small as possible. Finding a heuristic
which is always at less than 5/4 from the optimum is actually an NP-complete
problem [WIL 97]. We still do not have a heuristic that is guaranteed at 5/4. We do
however have [CHE 93] results for list heuristics, which use priority rules to build
non-delay schedules (see section 10.2.1). If Cmax(H) is the makespan calculated by a
list heuristic H, then for any instance, Cmax(H) / C*

max 2, i.e. that we are never more
than twice the optimum. The bound refines for m = 3 machines: 5/3. In addition,
Chen defines a rearranging in O(n) for the schedule obtained to decrease the bound
to 3/2.

10.5.3. List heuristics

Principle

Operations are sorted by decreasing priority in a list . Each iteration of the
heuristic calculates the minimum date t in which operations are executable, and then
executes at t the available task with the highest priority.

We obtain Algorithm 10.2, which is very simple if two tables FM and FT are
used. FM is a table of m integers defining the date in which each machine becomes
available during the algorithm. FT, a table of n integers, defines the current end date
(completion time) for each job. For each selected operation (u, v), Cuv denotes its
end date; a matrix C is sufficient to store the schedule obtained without ambiguity.

Examples of traditional priority rules

The following rules are traditional and can apply to open shop:

FF (First-Fit), where is the natural order of operations in the instance;

Random, where the list is a random permutation of operations;

SPT (Shortest Processing Time), operations sorted by increasing times;

282 Production Scheduling

LPT (Longest Processing Time), operations sorted by decreasing times;

MWR (Most Work Remaining), priority to job with maximum residual time
(total time of operations not yet executed).

Initialize FM and FT to 0
for k from 1 to mn do
 t min { max(FT(i),FM(j)) | (i, j) }
 Determine (u, v), 1st operation of executable at t
 Cuv, FT(u), FM(v) t + puv

 Remove (u, v) from

Algorithm 10.2. General form of a list algorithm for open shop

The best rule on average for open shop is MWR, followed by LPT which is only
slightly inferior. Note that LPT surpasses SPT for open shop, but it is the contrary
for flow shop. FF and Random are interesting because they give an idea of the type
of scheduling that a human would manually build. These rules provide a reference
solution: an acceptable heuristic must be as good as these two rules. SPT, for
example, is even worse!

Improved list heuristics

Guéret and Prins [GUE 96] proposed more efficient list heuristics based on
vectors of priorities. The priority of an operation (i, j) takes into account its
processing time, the duration of its job and the load of its machine. It is in fact a
vector (pij, pi, Zj), sorted by component decreasing order. In the H1 heuristic, list
is sorted by a decreasing lexicographical order of priorities, just like words in a
dictionary: (30, 20, 10) thus has higher priority than (30, 15, 15). H1 outperforms
rule MWR on average. An improved heuristic H1D is obtained if priorities are
managed dynamically, i.e. if residual pi and Lj are updated, followed by priorities
after each iteration.

Excellent results are obtained by a heuristic called H1R, which is a repetitive
version of H1 accompanied by list perturbations. We begin by applying H1. The
resulting schedule is examined to detect operations during which gaps appear on
other machines and those ending after LB. All these operations gain one position in
the list. We repeat the process a fixed number of times NRuns, while keeping the
best schedule found. Algorithm 10.3 clarifies this process.

In a few iterations, a spectacular compaction of the first schedule is often
obtained. It is not a local (descent) search method because the makespan of
consecutive schedules can increase. Since improvements space out during iterations,

Open Shop Scheduling 283

in practice NRuns = 50 is a good compromise between quality of results and
execution time.

BestCmax +
Sort by decreasing lexicographic order
for Runs from 1 to NRuns do
 Execute list Algorithm 10.2 on
 //Current solution is kept if it is the best

if Cmax < BestCMax then do
 BestCMax Cmax

 BestC C
 //Priority list perturbation

for k from 2 to mn do
 (i, j) k (rank k operation in)

if Cij > LB or a machine is inactive in]tij,Cij[then
 Permute k-1 and k

Algorithm 10.3. Repetitive H1R heuristic

10.5.4. Matching heuristics

Principle of matching breakdown

As in the preemptive case, the idea is to extract from P matchings corresponding
to schedule slices, but since we do not start with a quasi-bistochastic matrix, we
cannot always find matchings with m operations. However, to avoid the generation
of too many matchings, we can search for maximum cardinality matchings
(containing the highest number of non-zero elements). The final schedule
corresponds to the concatenation of slices in the order of their extraction. Table
10.10 goes back to our three machines and three job example in which we have
chosen a first matching (bordered elements). Figure 10.5 is an example of possible
final breakdown.

M1 M2 M3 pi

T1 97 72 500 669

T2 261 540 85 886

T3 642 274 84 1,000

Lj 1,000 886 669 1,000

Table 10.10. 3 3 example with a first matching (bordered)

284 Production Scheduling

M1

M2

M3

T3
642

T1
97

T2
261

T3
274

T2
540

T1
72

T2
85

T3
84

T1
500

1,682

Figure 10.5. Matching breakdown example for Table 10.10

It is clear that we can improve the breakdown by “compacting” slices for
example, but we can start by searching for a minimal length breakdown. This
problem unfortunately is NP-hard, just like open shop, but we can intuitively
observe that we will obtain good breakdowns if slices contain a small empty
proportion. Here are different types of matchings with the correct property and
algorithm references for their calculation (these algorithms are quite technical):

 minimum or maximum sum of processing times (min-weight and max-weight
matchings), computable using the “Hungarian” algorithm [PAP 82];

 minimum duration of the longest operation or maximum duration of the
shortest operation (min-max and max-min matchings) [DER 78];

 minimum time difference between longest and shortest operations (balanced
matchings) [MAR 84];

lexicographical matchings [BUR 91]. Max-min example: maximization of the
smallest matching element, followed by the second smallest, etc.

Breakdown improvement

Min-max matchings lead to better schedules on average (H2 heuristic from
Guéret and Prins), but even the list heuristic using the FF rule is better. The
breakdown must therefore be followed by an improvement procedure. We can
execute a compaction to the earliest operations in each slice, in the order in which
they are generated. We can also perform a compaction-insertion: before compacting
an operation after its predecessor on its machine, we look first for an earlier gap
where the operation can be inserted on this machine without conflict. Figure 10.2
shows the schedule obtained by compacting the one from Figure 10.5. A
compaction-insertion procedure would give an optimal result lasting LB = 1,000 by
inserting (1, 3) in the gap between (2, 3) and (3, 3) on M3.

Open Shop Scheduling 285

These improvements depend on the slice sequence. Since compaction is quick
(O(mn)), we can build an initial breakdown (slice sequence), and then carry out a
local search with the goal of changing the sequence order to reduce makespan after
compaction-insertion. For example, at each iteration of this local search, we can
explore movements of a slice in the current sequence, or permutations of two slices,
and observe if the makespan decreases after compaction-insertion. If that is the case,
we execute the transformation and we start again with the new sequence as the
current sequence. On average, the best results are obtained by a heuristic called
H2RL, containing a min-max matching breakdown, followed by a local search with
slice movement and permutations, and compaction-insertion [GUE 96].

Theoretical advantage with matching methods over list methods

List methods build non-delay schedules and, in some instances, no list will return
the optimum (see section 10.2.1). That is not the case with matching methods which
have more chances of finding the optimum in theory. Decompositions into
matchings, either followed by compaction or not, result in semi-active schedules, but
most often they are not active (as in Figures 10.5 and 10.6). On the other hand,
compaction-insertion returns active schedules by definition, among which there is
always an optimal solution.

10.6. The disjunctive model and shop problems

10.6.1. Disjunctive model review

This model is recalled here because it is used by most metaheuristics and exact
methods to solve the open shop problem. The disjunctive model [ROY 64] is a
graph describing scheduling problems with sequencing and disjunctive constraints.
A disjunctive constraint (or disjunction) between two tasks i and j means that i and j
cannot occur at the same time. This constraint is most often caused by sharing a
resource only available in one copy. More precisely, for this type of n task
scheduling problem, the disjunctive graph G = (X, U, D, P) is defined as follows:

X is a set of nodes representing the n tasks as well as two fictitious tasks 0
(input) and n + 1 (output);

U is a set of arcs describing sequencing constraints; it must not contain cycles;

D is a set of edges (undirected arcs) representing disjunctions;

P is a mapping giving for each arc (x, y) the minimum time between the start
dates of tasks x and y (generally the processing time px of task x).

The advantage of this model is the following: to define a schedule, each
disjunction [x, y] must be replaced either by one arc (x, y) (for x before y) or by one

286 Production Scheduling

arc (y, x) (for y before x). This decision is called arc selection. Any feasible schedule
corresponds to a complete selection, in which each disjunction of G is replaced by
one arc without creating cycles. For a given complete selection, the makespan
corresponds to the longest operation sequence in G, called critical path. For a graph
with k arcs, this path can be calculated in O(k) by the Bellman algorithm (described
in [PRI 94a] and Chapter 2 for example). Several branch-and-bound methods and
metaheuristics then become possible by exploring complete selections to find the
one with minimal makespan.

10.6.2. Disjunctive model and shop problems

For shop problems, the tasks in the disjunctive model correspond to the mn
operations. For the flow shop and job shop, the sequencing constraints in U form n
paths from fictitious task 0 (graph input) to mn + 1 (graph output). These paths
correspond to sequences imposed on each job. For the open shop, U is empty, there
are only disjunctions. Disjunctions only occur between operations of the same job or
the same machine. Complete selections have a simple structure: each operation has
two successors and two predecessors (one in its job and one on its machine).

10.6.3. Example of open shop disjunctive model

Figure 10.6 reuses the first open shop scheduling example given at the beginning
of this chapter. The critical path is easily detectable on the Gantt chart: it is the
sequence of operations ((3, 1), (1, 1), (1, 3)) responsible for the makespan 1,239.

Figure 10.7 gives the complete selection of disjunctions corresponding to this
schedule. First, we have created mn operation-nodes, and then we have entered the
arcs describing the order of operations observed on each machine and in each job.
The weight of each arc (x, y) is the processing time of operation x. And finally we
have connected the beginning (node 0) to operations with no predecessor by zero
time arcs, followed by operations without successors to exiting node mn + 1. By
applying the Bellman algorithm, we find the critical path and its time (in dotted
lines).

Open Shop Scheduling 287

T3
642

T1
97

T2
261

T3
274

T2
540

T1
72

T2
85

T3
84

T1
500

M1

M2

M3

1,000 (LB) 1,239

Figure 10.6. Example of schedule to compute a complete selection

1 2 3

4 5 6

7 8 9

100

M1

M2

M3

Job 1 Job 2 Job 3

97

72 274

85

85 84

72

5400

0

642

0

97

540 642

84

500

261

Input

Output

Figure 10.7. Complete selection of disjunctive graph

10.6.4. Disjunctive model properties

In a complete arbitration, a block is a maximum sequence of consecutive
operations of the same job or machine, located on the critical path. From the graph
structure, a block has at least two operations. A block operation is internal if it is not
the first, or the last, one of the block. In addition, job-blocks and machine-blocks are
alternated along the critical path. For example, in the previous example, operations
(3, 1) and (1, 1) form a block on machine M1, whereas (1, 1) and (1, 3) constitute a
block for job T1. We obtain the following properties [BAL 69] for any feasible
schedule S of a shop problem by considering the associated complete selection:

288 Production Scheduling

 inverting an arc from the critical path results in another feasible schedule;

 inverting a non-critical arc either creates a cycle or does not improve S;

 inverting an arc between two internal block operations does not improve S.

10.7. Metaheuristics for the open shop

10.7.1. Known traditional neighborhoods for job shop

Balas properties make it possible to explore a set of potentially improving
transformations (neighborhood) from a current schedule. They were first used for
job shop. The simplest neighborhoods dispense with testing the emergence of
cycles, thus their exploration is quick and they have been used for simulated
annealing algorithms: inverting an arc from a critical path block [VAN 92], or
inverting an arc (x, y) from the critical path, with operation x at the beginning of a
block or y at the end of a block [MAT 88]. In [DEL 93], more complex
transformations are developed for a tabu search method. They can create cycles:
inverting two consecutive arcs in a block, or move an internal operation μ at the
head or at the end of a block (in case of cycle, we shift μ by one position to the right
or left in its block until we obtain a feasible schedule).

10.7.2. Tabu search and simulated annealing methods for open shop

The general principle of these methods is presented in Chapter 3. Three tabu
methods were proposed for the open shop. The oldest and simplest one uses the
neighborhood applied to job shop from Matsuo [TAI 93]. Alcaide et al. then have
tested the inversion of one or two consecutive arcs from a block [ALC 97]. The most
recent method uses a sophisticated neighborhood [LIA 99b]. For current scheduling
and an operation x, Liaw notes as PJ(x) and SJ(x) the predecessor and successor in
the job, and PM(x) and SM(x) the predecessor and successor for the machine. For
any arc (x,y) of a machine-block, he inverts the three arcs (x, y), (PJ(y), y) and
(x, SJ(x)). For any arc (x, y) of a job-block, he inverts (x, y), (PM(y), y) and
(x, SM(x)). The only simulated annealing method was proposed by Liaw [LIA 99a]
with the same neighborhood as in his tabu method.

10.7.3. Population-based algorithms and neural networks

In 1994, Fang et al. proposed the first genetic algorithm for the open shop, with
mixed results [FAN 94]. In 2000, Prins developed a flexible genetic algorithm [PRI
00] where the chromosomes are lists of operations. The schedule associated with a
chromosome is recovered by three scheduling engines which build either a non-

Open Shop Scheduling 289

delay schedule (like the list in Algorithm 10.2), or an active schedule (like the
Giffler algorithm presented in [FRE 82]). Crossover operators are simple, such as
LOX (Linear Order Crossover), but the algorithm includes several refinements. For
example, a few really good heuristic schedules are introduced in the initial
population. This population is managed in such a way that each individual has a
distinct makespan, and improvement procedures such as the H1R heuristic are used
as mutation operator. This algorithm made it possible to solve several open instances
in literature (see section 10.9.2).

Liaw [LIA 00] proposed another genetic algorithm in 2000, but based on the
disjunctive model and hybridized with the local search already used for his tabu
search method. In 2005, Colak and Agarwal introduced an original approach based
on neural networks [COL 05]. Their method is not more effective than the genetic
algorithms of Prins and Liaw, but it is remarkably fast (nearly 10 times faster than
the other metaheuristics). The same year, Blum published an effective ant colony
algorithm, hybridized with a beam search, called Beam-ACO [BLU 05]. The last
breakthrough is a particle swarm optimization algorithm (PSO) designed in 2007 by
Sha and Hsu [SHA 07]. The two latter metaheuristics have improved several best-
known solutions from a set of hard instances introduced by Guéret and Prins
[GUE 99].

10.8. Exact methods for open shop

10.8.1. Brucker et al. branch-and-bound method

All current (optimal) exact methods for open shop are branch-and-bound
methods based on the disjunctive model. The first effective method comes from
Brucker et al. [BRU 97]; it succeeds in optimally solving problems up to size
10 10. Only a broad overview is given here, because the details of its
implementation are complex. Each node in the search tree contains the disjunctive
graph with the disjunctions already selected. At the root, no disjunction is selected
yet. A node corresponds to a complete solution if all disjunctions are selected. The
branching scheme uses a theorem from Brucker which considers the graph G with a
complete selection and a critical path μ. He stipulates that if a better complete
selection H exists, then a block B of μ and an operation u of B also exist, such that u
is located before or after all operations of B in H.

In any node, a matching heuristic which respects disjunctions already selected is
executed to obtain a complete selection, lasting UB. For branching, we apply the
theorem by choosing a critical path μ of G. Children-nodes are obtained by
considering each B block of μ, and by forcing each internal u operation to be before
or after any other x operation of B. The generated child-node inherits the

290 Production Scheduling

disjunctions selected in the father-node, to which we add arcs (u, x). Bounding
functions (lower bounds) are calculated. The node is pruned if one of them reaches
UB. These bounds are similar to those proposed by Carlier and Pinson [CAR 89] for
job shop. They are based on the calculation of a release date and tail for each
operation, from already selected disjunctions. A constraint propagation technique,
called immediate selection, deduces additional selections in each node.

10.8.2. More recent improvements

Several techniques can decrease the number of nodes explored by the Brucker
method by 10. The first method, called intelligent backtracking [GUE 00], attempts
to identify which selected disjunction is responsible for the pruning of a node S in
the search tree. This disjunction may have been selected in a node located several
levels above the father-node. It can be detected by keeping some information
(explanation system) in each node. We can backtrack directly to the selecting node,
which accelerates the exploration of the search tree.

Another technique [GUE 98a] is called prohibited intervals. Here is its principle
for any schedule with makespan UB, a machine Mj with load Lj, and a given
operation (i, j) from Mj. In any optimal schedule, Mj cannot contain an idle period
higher than = UB – Lj. It is possible to quickly calculate, in O(n.LB), the durations
d1, d2, ..., dk of all subsets of operations of Mj not containing (i, j). We can show that
(i, j), in an optimal schedule, can only start in intervals such as [du, du+], u = 1, 2,
..., k. This technique enables the elimination of numerous nodes in which operations
occur outside of these intervals. It has actually solved one open 10 10 instance
from the literature.

Today, the most effective branch-and-bound algorithm is the one designed by
Dorndorf et al. [DOR 01]. It combines constraint propagation methods with a
technique called shaving. This technique consists of considering assumptions such
“operation (i,j) starts at its earliest start time” or “operation (i,j) starts at its latest
start time” and checking whether a schedule exists under these assumptions. This
new method has for the first time solved some 20 20 instances to optimality.

10.9. Algorithm comparison

10.9.1. Uniform processing times

The simplest way to test algorithms is to randomly generate examples with
uniform processing times drawn in an integer interval [a, b]. As with other shop
problems, these problems are on average more difficult when m = n. Numerical

Open Shop Scheduling 291

evaluations in [BRÄ 93] and [GUE 96] with times in [1, 100] show that this type of
open shop is actually quite easy: the deviations to LB are low, and the optimal
makespan actually often equals LB. For comparison purposes, this situation is rare in
the job shop. Table 10.11 compares heuristics from section 10.5 on examples with
times in [1, 100]: list heuristics FF, LPT, H1D and H1R, and matching methods H2
and H2RL. For each heuristic, we give the average gap between Cmax and LB (in %),
over a series of 1,000 problems and in parentheses, the number of times where LB
(thus the optimum) is reached.

Size FF LPT H1D H1R H2 H2RL
5 5 5.23 (201) 4.37 (247) 3.15 (350) 0.43 (778) 8.21 (54) 0.28 (868)
7 7 5.09 (98) 3.95 (133) 3.22 (200) 0.42 (702) 8.49 (8) 0.18 (872)

10 10 4.23 (49) 3.04 (75) 2.61 (81) 0.35 (607) 8.16 (3) 0.12 (883)

Table 10.11. Comparison between list and matching heuristics

In this type of example, the decomposition into min-max matchings without
improvement procedure (H2) returns the worst results, at 8% from the bound.
Among list heuristics, even FF has a decent 5% gap. However, methods without
improvement mechanisms (i.e. all except for H1R and H2RL) rarely reach LB when
n increases: at most 81 10 10 problems over 1,000 for H1D. The repetitive list
H1R method solves a majority of examples, also with weakening on the large ones.
The decomposition into matchings followed by a local search (H2RL) returns the
best results and is very stable: it reaches LB in 87% of cases regardless of size.

H2RL is thus the most powerful simple heuristic, even though it is slower than
H1R. It improves even more if less dispersed processing times are used, in [50, 100]
for example, because it finds more balanced matchings. On the other hand, by
increasing dispersal, H2RL weakens and is bested by H1R. Metaheuristics are even
better, albeit more calculation time intensive: the tabu method from Liaw [LIA 99b]
and the genetic algorithm from Prins [PRI 00] reach LB in 98% of any size
examples. As for branch-and-bound methods, they can optimally solve any example
of this type up to 10 10 size. Here is an idea of algorithm execution times
(programmed in Pascal-Delphi) to treat a 10 10 problem on a 1.8 GHz PC running
Windows XP: H1R lasts on average 0.02 s, H2RL 1 s, the tabu method 6.5 s, the
genetic algorithm 13.9 s, and the branch-and-bound methods 1 min.

292 Production Scheduling

10.9.2. Taillard examples

More difficult tests can be built. In 1993, from amongst thousands of randomly
generated examples, Taillard selected a group of 60 examples with greater
deviations to LB for its tabu search method [TAI 93]. These examples (10 in each
size 4 4, 5 5, 7 7, 10 10, 15 15 and 20 20) are stored in J.E. Beasley’s
“OR Library” at http://people.brunel.ac.uk/~mastjjb/jeb/info.html. The Brucker
branch-and-bound method published later resolved all 4 4, 5 5 and 7 7 and six
10 10, for a total of 36 instances. The proven optima exceed LB only for some
4 4 and 5 5. The more recent branch-and-bound algorithm by Dorndorf et al.
[DOR 01] solved all 10 10 instances. Contrary to Brucker’s method, it was also
applied to the 15 15 and 20 20 instances: all except one 20 20 were solved to
optimality, at the expense of significant running times (50 minutes to 5 hours, on a
333 MHz Pentium II PC).

The simple heuristics from section 10.5 greatly deteriorate compared to uniform
time examples. Guéret and Prins offset this weakening with the help of two black
boxes: BBL, which includes different list algorithms including H1R, and BBM
containing matching methods such as H2RL [GUE 98b]. These black boxes return
the best result of the heuristics that they contain, which compensates for the possible
poor performance of a method for some instances. Table 10.12 compares LPT, BBL
and BBM with three metaheuristics on the 60 Taillard problems. For metaheuristics,
we give the results published for the tabu method by Taillard in 1993 (TabuT), for
the one from Liaw in 1999 (TabuL), and for the genetic algorithm from Prins in
2000 (GA). The table shows the average gap to LB in %, the gap to the optimum
when it is known, and the number of problems for which LB and known optima are
reached.

Method LPT TabuT BBL BBM GA TabuL
Gap to LB % 9.02 2.66 2.56 1.70 1.03 0.92
Gap to Opt. % 8.38 2.12 1.89 1.03 0.34 0.23
LB reached 0 0 2 25 33 42
Opt. reached 0 12 3 28 42 43

Table 10.12. Comparison of methods for the 60 Taillard examples

The simple heuristic BBL and BBM black boxes beat Taillard’s tabu method,
which highlights the weakness of the disjunctive model in the open shop case. To
find a majority of optima, we must use the disjunctive model with a sophisticated
neighborhood (Liaw’s tabu search) or Prins’ genetic algorithm, not based on the
disjunctive model. TabuL is globally slightly better, but mostly finds the optimum

Open Shop Scheduling 293

for 4 4, 5 5 and 7 7, already resolved by Brucker’s branch-and-bound method.
It only reaches LB in 19 of the 30 10 10, 15 15 and 20 20 examples. The
genetic algorithm is not as good for small examples but solves 29 out of these 30
large examples. In particular, it breaks one 15 15 and two 20 20. By combining
the Brucker method and genetic algorithm, Taillard examples are all defeated,
except for one 20 20 where the genetic algorithm finds the best known solution,
1,171, very close to the lower bound LB = 1,169.

The two most recent metaheuristics mentioned in section 10.7.3 are able to reach
the lower bound for all instances, even for the last 20 20 open instance: the Beam-
ACO of Blum [BLU 05] and the PSO from Sha and Hsu [SHA 07]. Therefore,
Taillard instances should no longer be used to benchmark open shop algorithms.

10.9.3. Difficult Brucker and Guéret and Prins tests

Since the optimal makespan is most often LB in the Taillard examples, Brucker
et al. had the idea to generate 73 even more difficult examples to test their branch-
and-bound method in [BRU 97]. With only sizes 3 3 to 9 9, their machine loads
and job times are all very close and often equal to LB, equal to 1,000 in all instances.
Since machines and jobs are critical, the least delay in a schedule prevents reaching
LB. Despite their small size, these examples are difficult because nine of them
have resisted the branch-and-bound method by Brucker: one 7 7, six 8 8 and
two 9 9. In addition, of the 64 optimal solutions, 34 exceed LB with gaps
reaching 18%.

Method LPT BBL BBM GA
Gap to LB % 12.65 5.00 6.83 2.83
Gap to Opt. % 9.60 2.49 4.26 0.45
LB reached 2 10 10 21
Opt. reached 4 16 15 41

Table 10.13. Comparison of methods for the 73 Brucker examples

Table 10.13 compares LPT, BBL, BBM and Prins’ genetic algorithm with these
examples (not used by Liaw and published after Taillard studies). We observe the
deterioration of all methods. Processing times are much dispersed in the Brucker
examples and make the list methods of BBL better than BBM matching methods, as
mentioned in section 10.9.1. The genetic algorithm is very robust, however, with an
average of 0.45% for the 64 known optima. The algorithm may reach the optimum
on some of the nine open problems, but we do not have proof since the optima

294 Production Scheduling

mainly seem to be higher than LB for this type of example, contrary to the examples
from Taillard.

Guéret and Prins have found even more difficult instances by designing the first
lower bound NB better than LB for the open shop [GUE 99]. Such bounds have been
known for a long time for flow shop and job shop because of the sequencing
constraints, but they were lacking with the open shop. The bound is obtained by
optimally solving a relaxed problem in which we authorize the simultaneous
execution of operations for all jobs, except one fixed job Tk. This problem is still
NP-hard but can be efficiently resolved in practice by using the following property:
there is a quick algorithm in O(mn LB) for the particular case where Tk has an
imposed sequence. By generating hundreds of Brucker instances and by calculating
the new bound, they have isolated 80 instances 3 3 to 10 10, with NB/LB
reaching 1.3. These 30% gaps are comparable to those of the most difficult job shop
cases.

Contrary to Taillard instances, many instances are still open in the two sets
described in this section, which can be downloaded from the following Internet
address: http://www.emn fr/x-auto/gueret/OpenShop/OpenShop html. Concerning
the 73 Brucker instances, the Beam-ACO of Blum has improved six best-known
solutions and the very recent PSO of Sha and Hsu two others. However, one 7 7
out of 12, five 8 8 out of 11 and two 9 9 out of 3 are not yet solved to optimality.
The situation is even worse for the 80 harder files from Guéret and Prins, even if
Blum has improved 24 best-known solution values and Sha and Hsu 16: three 6 6,
six 7 7, six 8 8, eight 9 9 and all 10 10 are still undefeated (there are 10
instances for each size). These examples illustrate the hardness of the open shop: in
comparison, all flow shop and job shop instances up to 10 10 are easily solved
nowadays.

10.10. Open shop problems in satellite telecommunications

10.10.1. TDMA systems principle

Modern satellite telecommunications systems (Intelsat, Eutelsat for example) use
the TDMA (time division multiple access) technique. They raise several scheduling
problems presented in a survey paper [PRI 94b]. In these systems, a set of n Earth-
stations cyclically share over time a geostationary satellite to transmit numerical
data packets. The cycle has a very short time (2 ms). The list of packets to
transmit in each cycle is known in advance and does not change for several minutes.
We have the time to calculate a packet schedule for a cycle, in order to share the
satellite without conflict. This solution is also applied to the following cycles as long
as the packets do not change.

Open Shop Scheduling 295

Figure 10.8. Simplified diagram of a satellite telecommunications system

The satellite has a single antenna receiving the packets transmitted by the
stations (Figure 10.8). This antenna feeds a series of m amplifier tubes (repeaters),
and each repeater has its own output antenna which covers a zone on the ground.
Each repeater is sensitive to a specific radio frequency. A filter placed after the
receiving antenna switches the packets transmitted by stations to the appropriate
repeater according to the frequency. For example, if a station i must transmit a
packet to station k located in zone j, this packet i k will have to be transmitted by i
to the satellite, over the frequency of the repeater with a transmitting antenna
covering k. The satellite will receive this packet, switch automatically according to
its frequency to the repeater covering zone j, and the retransmitted packet will thus
reach k.

10.10.2. Pure open shop cases

In the simplest systems, we have an open shop. In fact, the packets can be
assimilated to tasks: since the numerical throughput (bit rate) of the system is
constant, we can convert their size, given in bytes for example, into time. Two
stations cannot send a packet at the same time to the same repeater, or they risk
interference. In addition, a station transmitter (respectively the receiver) has a bus
structure which prohibits the transmission (reception) of more than one packet at a
time. We can agree that repeaters (or their destination zones) correspond to
machines, and traffic transmitted by each, to a job. If a station i has a packet to
transmit to a repeater j, this packet can be viewed as a known time operation (i, j).
The order of packets is completely open because of the very short system cycle. The

296 Production Scheduling

telecommunications protocol is responsible for resequencing the packets upon
receipt at the stations with the help of buffers.

The objective is to find a schedule within a cycle time , which can be very
difficult if LB is close to . In practice, we still attempt to minimize the used part of
the cycle to preserve capacity for unexpected packets. Fortunately, this open shop
problem is often preemptive: a station can fragment a packet to be transmitted as
long as it is transmitted in integers (between two data bytes). We can then apply the
polynomial Gonzalez and Sahni algorithm from section 10.4.

10.10.3. Preemptive case complications

Each packet contains a fixed size preamble. If we decide to cut the packet in two,
we must create an additional preamble. Minimizing total time for the preemptive
case becomes NP-hard when the preamble size is significant compared to packet
size. In certain systems, packets have compressed data. The compression rate
decreases for a smaller packet: even without taking the additional preamble into
account, splitting a packet increases in a non-linear fashion the volume of data to
transmit.

10.10.4. Generalization of the basic open shop

We also find problems generalizing the basic open shop in the non-preemptive
case. First, we can have several packets with different sizes transmitted by a given
station i to a given repeater (or a zone) j: we then have an open shop of the second
type, in which a job may have several operations per machine. Subsequently, we can
have several repeaters in parallel to cover each zone j: this is a hybrid open shop
case, or multi-level. Finally, there can be p stations k1, k2, ..., kp in a zone. Since a
packet retransmitted by the satellite in a zone can be picked up by all stations in the
zone, we can have multi-destination packets in the form of i k1, k2, ..., kp which
include traffic for all these destinations. If in addition, we have several repeaters in
parallel for the zone, simultaneously transmitting several packets with common
destinations is prohibited, since a station cannot receive more than one packet at a
time.

The general form can be modeled as a hybrid open shop where station
transmitters are jobs and repeaters (or zones) are machines, and where station
receivers are additional renewable resources. It is extremely difficult in practice,
because of the large size and numerous additional constraints in real systems. Carlier
and Prins designed methods actually used in the daily use of the Eutelsat European
system [CAR 86].

Open Shop Scheduling 297

10.11. Conclusion

Open shop problems are increasingly common in production because of flexible
shops. We also find them in telecommunications and in timetabling. Timetabling
was not addressed, for lack of room, and also because it groups very different
problems depending on whether we consider school or university timetables, shift
work, or crew or transport system timetables. Certain timetable problems are clearly
similar to the problems studied in this chapter, for example the organization of a
university exam period: all exams that a student must take can be considered as one
open shop job. A review from de Werra provides a good starting point [WER 85].

Long considered as easy in practice compared to flow shop and job shop, the
open shop problem is actually characterized by small deviations to the lower bound
LB for the total time (maximum machine loads and job times), which is often
reached. In fact, by digging deep, it is possible to find very difficult tests, with 30%
gaps comparable to those of other shop problems. Research still remains to be done
for exact methods: a 7 7 example from Brucker remains open, whereas any
10 10 flow shop or job shop example can be optimally resolved today.

The disjunctive model used by branch-and-bound methods and all metaheuristics
except for the genetic algorithm by Prins, seems to reach its limits with open shop
whereas it is very powerful with job shop. An obvious reason is the absence of
sequencing constraints which weaken the model. Another explanation is the useless
enumeration of non-active schedules which cannot be optimal (this is the case for
the example in Figures 10.7 and 10.8). This is a weakness in the face of a solutions
space made huge by free job routes. Fortunately, the genetic algorithm returns very
good solutions: on the one hand its intrinsic parallelism adequately scans the
solutions space, but on the other hand, it only explores active schedules and is
somewhat more “productive”.

10.12. Bibliography

[ACH 82] ACHUGBUE J.O. and CHIN F.Y., “Scheduling the open-shop to minimize mean
flow time”, SIAM Journal on Computing, vol. 9, p. 306-311, 1982.

[ADI 89] ADIRI I. and AIZIKOWITZ N., “Open shop scheduling with dominated machines”,
Naval Research Logistics, vol. 36, p. 273-281, 1989.

[ALC 97] ALCAIDE D., SICILIA J. and VIGO D., “Heuristic approaches for the minimum
makespan open shop problem”, Trabajos de Investigación Operativa, vol. 5, no. 2,
p. 283-296, 1997.

[BAL 69] BALAS E., “Machine sequencing via disjunctive graphs: an implicit enumeration
algorithm”, Operations Research, vol. 17, p. 941-957, 1969.

298 Production Scheduling

[BLU 05] BLUM C., “Beam ACO – hybridizing ant colony optimization with beam search:
an application to open shop scheduling”, Computers and Operations Research, vol. 32,
p. 1565-1591, 2005.

[BRÄ 93] BRÄSEL H., TAUTENHAHN T. and WERNER F., “Constructive heuristic
algorithms for the open-shop problem”, Computing, vol. 51, p. 95-110, 1993.

[BRU 97] BRUCKER P., HURINK J., JURISCH B. and WÖSTMANN B., “A branch-and-
bound algorithm for the open-shop problem”, Discrete Applied Mathematics, vol. 76,
p. 43-49, 1997.

[BUR 91] BURKARD R.E. and RENDL F., “Lexicographic bottleneck problems”,
Operations Research Letters, vol. 10, p. 303-308, 1991.

[CAR 86] CARLIER J. and PRINS C., “Optimisation des plans de trame dans le système
Eutelsat AMRT/CNC”, Annales des Télécommunications, no. 9-10, p. 501-518, 1986.

[CAR 89] CARLIER J. and PINSON E., “An algorithm for solving the job-shop”,
Management Science, vol. 35, no. 2, p. 164-176, 1989.

[CHE 93] CHEN B. and STRUSEVICH V.A., “Approximation algorithms for three machine
open-shop scheduling”, ORSA Journal on Computing, vol. 5, p. 321-326, 1993.

[COL 05] COLAK S. and AGARWAL A., “Non-greedy heuristics and augmented neural
networks for the open-shop scheduling problem”, Naval Research Logistics, vol. 52,
no. 7, p. 631-644, 2005.

[DEL 93] DELL’AMICO M. and TRUBIAN M., “Applying tabu search to the job-shop
scheduling problem”, Annals of Operations Research, vol. 41, p. 231-252, 1993.

[DER 78] DERIGS U. and ZIMMERMANN U., “An augmenting path method for solving
linear bottleneck assignment problems”, Computing, vol. 19, p. 285-295, 1978.

[DOR 01] DORNDORF U., PESCH E. and PHAN-HUY T., “Solving the open shop
scheduling problem”, Journal of Scheduling, vol. 4, p. 157-174, 2001.

[DRO 99] DROBOUCHEVITCH I.G. and STRUSEVICH V.A., “A polynomial algorithm for
the three-machine open-shop with a bottleneck machine”, Annals of Operations Research,
vol. 92, no. 0, p. 185-210, 1999.

[FAN 94] FANG H-L., ROSS P. and CORNE D., “A promising hybrid GA/Heuristic
approach for open-shop scheduling problems”, 11th European Conference on Artificial
Intelligence (ECAI-94), p. 590-594, Wiley, 1994.

[FRE 82] FRENCH S., Sequencing and Scheduling, Ellis-Horwood, 1982.

[GON 76] GONZALEZ T. and SAHNI S., “Open shop scheduling to minimize finish time”,
Journal of the ACM, vol. 23, no. 4, p. 665-679, 1976.

[GUE 96] GUÉRET C. and PRINS C., “Classical and new heuristics for the open-shop
problem: a computational evaluation”, 96/3 AUTO Report, Ecole des Mines de Nantes,
published in part in European Journal of Operational Research, vol. 107, no. 2,
p. 306-314, 1998.

Open Shop Scheduling 299

[GUE 98a] GUÉRET C. and PRINS C., Forbidden intervals for open-shop problems,
98/10/AUTO Report, Ecole des Mines de Nantes, 1998. Presented at IFORS-99, Beijing.

[GUE 98b] GUÉRET C. and PRINS C., Efficient heuristic black boxes for the open-shop:
comparison with other methods on three benchmarks, 98/11/AUTO Report, Ecole des
Mines de Nantes, 1998.

[GUE 99] GUÉRET C. and PRINS C., “A new lower bound for the open-shop problem”,
Annals of Operations Research, vol. 92, p. 165-183, 1999.

[GUE 00] GUÉRET C., JUSSIEN N. and PRINS C., “Using intelligent backtracking to
improve branch-and-bound methods: an application to open-shop problems”, European
Journal of Operational Research, vol. 127, no. 2, p. 344-354, 2000.

[LAW 81] LAWLER E.L., LENSTRA J.K. and RINNOOY KAN A., “Minimizing maximum
lateness in a two-machine open-shop”, Mathematics of Operations Research, vol. 6,
p. 153-158, 1981.

[LIA 99a] LIAW C.F., “Applying simulated annealing to the open-shop scheduling problem”,
IIE Transactions, vol. 31, no. 5, p. 457-465, 1999.

[LIA 99b] LIAW C.F., “A tabu search algorithm for the open-shop scheduling problems”,
Computers and Operations Research, vol. 26, no. 2, p. 109-126, 1999.

[LIA 00] LIAW C.F., “A hybrid genetic algorithm for the open shop scheduling problem”,
European Journal of Operational Research, vol. 124, no. 1, p. 28-42, 2000.

[MAR 84] MARTELLO S., PULLEYBLANK W.R., TOTH P. and DE WERRA D.,
“Balanced optimization problems”, Operations Research Letters, vol. 3, no. 5, p. 275-
278, 1984.

[MAT 88] MATSUO H., SUH C.J. and SULLIVAN R.S., A controlled search simulated
annealing method for the general job-shop scheduling problem, Working Paper 03-04-88,
Graduate School of Business, University of Texas at Austin, 1988.

[PAP 82] PAPADIMITRIOU C.H. and STEIGLITZ K., Combinatorial Optimization,
Prentice Hall, 1982.

[PIN 95] PINEDO M., Scheduling: Theory, Algorithms and Systems, Prentice Hall, 1995.

[PRI 94a] PRINS C., Algorithmes de graphes, Eyrolles, 1994.

[PRI 94b] PRINS C., “An overview of scheduling problems arising in satellite communi-
cations”, Journal of the Operational Research Society, vol. 45, no. 6, p. 611-623, 1994.

[PRI 00] PRINS C., “Competitive genetic algorithms for the open-shop scheduling problem”,
Mathematical Methods of Operations Research, vol. 52, no. 3, p. 389-411, 2000.

[ROY 64] ROY B. and SUSSMANN B., Les problèmes d’ordonnancement avec contraintes
disjonctives, DS-9 bis note, SEMA, Paris, France, 1964.

[SAH 79] SAHNI S. and CHO Y., “Complexity of scheduling shops with no-wait in process”,
Mathematics of Operations Research, vol. 4, p. 448-457, 1979.

[SEV 94] SEVAST’JANOV S.V., “On some geometric methods in scheduling theory: a
survey”, Discrete Applied Mathematics, vol. 55, p. 59-82, 1994.

300 Production Scheduling

[SHA 07] SHA D.Y. and HSU C.Y. “A new particle swarm optimization for the open shop
scheduling problem”, Computers and Operations Research (available online 27 February
2007).

[TAI 93] TAILLARD E., “Benchmarks for basic scheduling problems”, European Journal of
Operational Research, vol. 64, p. 278-285, 1993.

[VAN 92] VAN LAARHOVEN P.J.M., AARTS E.H.L. and LENSTRA J.K., “Job shop
scheduling by simulated annealing”, Operations Research, vol. 40, no. 1, p. 113-125.

[WER 85] DE WERRA D., “An introduction to timetabling”, European Journal of
Operational Research, vol. 19, p. 151-162, 1985.

[WER 91] DE WERRA D., BLAZEWICZ J. and KUBIAK W., “A preemptive open-shop
scheduling problem with one resource”, Operations Research Letters, vol. 10, p. 9-15,
1991.

[WER 92] DE WERRA D. and BLAZEWICZ J., “Some preemptive open-shop scheduling
problems with a renewable or a non-renewable resource”, Discrete Applied Mathematics,
vol. 35, p. 205-219, 1992.

[WIL 97] WILLIAMSON D.P., HALL L.A., HOOGEVEEN J.A., HURKENS C.A.J.,
LENSTRA J.K, SEVAST’JANOV S.V. and SHMOYS D.B., “Short shop schedules”,
Operations Research, vol. 45, no. 2, p. 288-294, 1997.

Chapter 11

Scheduling Under Flexible Constraints
and Uncertain Data: The Fuzzy Approach

11.1. Introduction

Traditional scheduling problem formulations can be classified into two
approaches: those based on the optimization of criteria such as total duration, and
those based on the satisfaction of constraints pertaining to delay or resource
availability. The first approach calculates an optimal schedule that is not always
useful in practice because other criteria may have been neglected in the model. In
the second approach, we can formalize local specifications, but we run the risk of
either finding no solution if the problem is too constrained, or finding too many and
not be able to guide the user, whose preferences are not represented. In addition,
most scheduling models are deterministic and assume a precise knowledge of data
such as task execution times, production requirements, etc. There is literature on
stochastic scheduling, but these models may be difficult to use in practice, as
scheduling problems in a deterministic environment are already very complex.
Moreover, the stochastic approach [HER 05] often works “in the average”, which
may not make much sense for production processes or projects that are not
repeatedly performed a sufficient number of times.

Using fuzzy sets and possibility theory can make it possible to propose an
acceptable trade-off between expressivity and computational difficulty, when
modeling preferences and uncertainty, even though this type of approach is not yet
widely used in scheduling. Fuzzy PERT studies have highlighted the difference

Chapter written by Didier DUBOIS, Hélène FARGIER and Philippe FORTEMPS.

302 Production Scheduling

between a flexible constraint problem and a problem with uncertain execution times.
In the first case, we focus on the notion of solution optimality. In the second case,
we encounter problems in adapting the critical path method. The flexible constraint
approach offers a trade-off avoiding rigidities of constraint analysis while being less
restrictive than the optimization of global criteria regarding the representation of
objectives. Extending constraint analysis, it also includes certain optimization
problems as particular cases. In addition, possibility theory also offers a natural
framework; simpler and less greedy in information than the stochastic approach to
treat uncertainty for certain parameters such as uncontrollable times for certain tasks
when this uncertainty is caused by a lack of knowledge. Flexible constraints and
uncertain data can therefore be represented in a single framework. Instead of
optimizing behaviors on average, we are searching for schedules that can withstand
hazards by satisfying all constraints to a reasonable extent with a sufficient level of
confidence.

The use of fuzzy sets in scheduling dates back to the end of the 1970s [DUB 78,
PRA 79]. We find reviews on this subject in the book by Loostma [LOO 97] and
papers by [CHA 98, WER 99, TUR 99, DUB 03a]. Different studies were published,
emphasizing constraint flexibility, ill-known data or the use of fuzzy rules. For
example, we can cite:

– project scheduling, having to deal with renewable and non-renewable resource
constraints, with multiple modes of task execution and with multiple criteria. It is a
pretty realistic and general model [BLA 86]. Fuzzy sets are used to model partial
information (uncertainty) on task execution times [HAP 94];

– scheduling based on heuristic rules attempts to express preferences between
task sequences in a constructive manner. In this perspective, the literature shows the
application of fuzzy heuristic rules to scheduling problems with known execution
times on one hand [BEL 88], and in a more general way the use of fuzzy priority
rules [GRA 94];

– job-shop problem under imprecise execution times, addressed on the basis of
methods for comparing fuzzy quantities, and resolved by simulated annealing type
methods [FOR 97b];

– job-shop problem with flexible constraints, for which we try to minimize job
due dates by minimizing violation of the most violated constraint. Similar to project
scheduling, this problem comes down to setting hard constraints by reaching a
compromise between local criteria in order to ensure the existence of a small
number of solutions at the “center” of the original constraint domain [FAR 97];

– the hybrid case where there are preferences about due-dates and execution
times for certain tasks, and where such times for other tasks are uncertain. We

The Fuzzy Approach 303

demonstrate that this problem comes down to the pure flexible constraints case when
we look for robust solutions [DUB 95a].

This chapter is intended to be an introduction to these studies. We will first
present a refresher on possibility theory and fuzzy intervals. Section 11.3 follows
with a discussion on the case of scheduling under flexible constraints with fuzzy
priority rules. Section 11.4 describes the fuzzy approach with ill-known execution
times for activities. We examine difficulties encountered by the critical path method
under uncertainty and provide recent solutions to these difficulties. We also show
how to formulate the problem of task sequence determination under uncertainty.
Finally, the last section before the conclusion briefly discusses the hybrid case
where fuzzy constraints and uncertain execution times are present simultaneously.

11.2. Basic notions on the fuzzy approach to uncertainty and constraints

11.2.1. Possibility theory

In order to model unknown or flexible quantities, we must recall a few results
from fuzzy sets and possibility theory (see for example [DUB 88]). A fuzzy set A is
a subset of a universe U whose boundaries are gradual. Formally, the following
definitions are instrumental.

The membership function A of fuzzy set A associates with each element u U a
degree of membership A(u) from u to A, normally with values in [0, 1].

The core of A is the set c(A) = {u, A(u) = 1}. It gathers elements totally
belonging to A (they are prototypes of A).

The height of a fuzzy set A is the maximum degree of membership of an element
from U to A. If this height is smaller than 1, the core is empty.

The level-cut of A is the crisp set (i.e. non-fuzzy) A of elements of U with a
degree of membership to A of at least . These level-cuts form a family of nested
sets and constitute another representation of the fuzzy set A.

The support of A is the set s(A) = {u, A(u) > 0}. It contains prototypes of A and
peripheral elements (borderline elements such as 0 < A(u) < 1). It only rejects “non-
A” prototypes (A (u) = 0).

The complement of a fuzzy set A in universe U is denoted Ac and its membership
function is Ac = 1 – A. Fuzzy set union and intersection are obtained by
respectively using the pointwise maximum and minimum of membership functions.

304 Production Scheduling

Given a parameter x with an ill-known value, all that we know is that value x
belongs to a fuzzy set A: the stronger the degree of membership μA(u) of a value u to
fuzzy set A, the more it is possible (i.e. plausible) for u to be the value of x. Values
outside the support are considered impossible. In other words, the value of x is
restricted by a possibility distribution x = A. We assume that the core of A is not
empty, i.e. μA(u) = 1 for at least one value u.

In the context of this type of uncertainty modeling, a possibility distribution is
similar to a distribution of probability. It is different due to the conventions adopted:

x(u) = 1 does not mean that x = u is certain, but only that it is a plausible value. In
particular, the sum of degrees of possibility can be greater than 1. In terms of
modeling, possibility degrees do not account for the same uncertain aspect as
probabilities. Possibility theory describes the incomplete character of information
(possibly total ignorance when for any u, x (u) = 1) whereas probabilities often
express randomness. Note that these representations are not incompatible:
incompleteness in probability is captured by probability intervals, and each
possibility distribution efficiently, and very simply, encodes a specific family of
probability measures. In fact, probability and possibility are only incompatible in the
context of a Bayesian approach that mandates that the probability distribution be
unique.

The possibility of an event “x P”, denoted by (x P), is the intersection
degree of A and P, where the intersection of two fuzzy sets is defined by the
minimum operation:

(x P) = supu min (A(u), P(u)) [11.1]

This degree assesses to what extent event “x P” may be true or, in a similar
way, to what extent proposition “x P” is consistent with information “x A”
modeled by x = A. Note that in the previous equation, P can also be a fuzzy set.

The dual necessity measure of “x P”, denoted as (x P) evaluates to what
extent A is completely included in the core of P. In other words, to what extent
proposition “x P” is certainly true, i.e. that it is implied by information “x A”:

(x P) = infu max (1 – A(u), P(u)) = 1 – (x Pc) [11.2]

where Pc is the complement of P. In fact, N(x P) = 1 if and only if the support of
A is included in the core of P: x P is certain if and only if all partially possible
values of x are among those completely satisfying proposition x P.

The Fuzzy Approach 305

1

0

A

c a b d

(– , A[

(– , A]

0

1

A

c a b d

[A, –)

]A, –)

(a) (b)

Figure 11.1. (a) Numbers possibly/necessarily before A;
(b) numbers possibly/necessarily after A

A fuzzy interval is a fuzzy subset of reals whose level-cuts are intervals
(generally closed). The simplest representation of a fuzzy interval uses a trapezoidal
membership function (Figure 11.1): we set two nested intervals [a, b] [c, d]
respectively forming the core and support of the fuzzy interval and we linearly
interpolate between a and c, and between b and d, respectively.

If x is a true value variable, A a fuzzy interval and p a traditional number, we can
verify that:

(x p) = (x [p, +)) = supu p μA (u) = (- ,A](p) [11.3]

(x p) = (x [p, +)) = infu< p (1 – μA (u)) = (- ,A [(p) [11.4]

(x p) = (x (– , p]) = supu p μA (u) = [A,+) (p) [11.5]

(x p) = N(x (– , p]) = infu> p (1 – μA (u)) =]A,+)(p) [11.6]

where (- , A], (- , A[, [A,+),]A,+) indicate sets with numbers possibly before
A, necessarily before A, possibly after A and necessarily after A respectively (Figure
11.1).

11.2.2. Fuzzy arithmetic

We review here some basics on the calculation of fuzzy intervals. A and B are
two fuzzy intervals restricting possible values of two logically independent variables
x and y. The sum and difference between two intervals is defined by:

μA B(z) = supx, y z =x + y min(μA (x), μB(y)) = supx min(μA (x), μB(z – x)) [11.7]

306 Production Scheduling

μA B(z) = supx, y z =x – y min(μA (x), μB(y)) = supx min(μA (x), μB(z + x)) [11.8]

When B = {b} is a precise value, we find μA B(z) = μA(z – b) and
],(],(bAbA .

Similarly, the minimum and maximum of two fuzzy intervals are fuzzy intervals
defined by (see also Figure 11.2):

mĩ n(A ,B)
(z) = supx, y z =min(x, y) min(μA (x), μB(y)) [11.9]

mã x(A, B) (z) = supx, y z =max(x, y) min(μA (x), μB(y)) [11.10]

Extended minimum and maximum operations satisfy most usual minimum and
maximum properties, for example idempotence, or property mã x(A, B) C = mã x
(A C, B C), or even mutual distribution. However, as Figure 11.2 shows, the
mã x(A, B) fuzzy interval cannot be equal to A or to B, as well as for fuzzy interval
mĩ n (A, B).

1

0

A B

z

max (A, B)
min (A, B)

Figure 11.2. Maximum and minimum of two fuzzy intervals A and B

 11.2.3. Fuzzy interval comparison

Fuzzy interval comparison is a tricky problem as shown by the large amount of
literature involved. Numerous techniques have been developed, and each one was
inspired by a different semantic. We are giving a broad overview by choosing the
relevant methods in the present framework. For more information, please refer to
[BOR 85, CHE 92, DUB 00, WAN 01].

First, we must distinguish between two situations: the case where fuzzy intervals
must actually be totally ordered (for example, the comparison of total fuzzy
execution times for two different schedules) and the case where we must describe
the relative position of fuzzy intervals with the help of a degree of comparison (the

The Fuzzy Approach 307

degree to which an inequality holds, for example). If the goal is to determine the
degree of satisfaction of constraint A B between two flexible quantities A and B,
i.e. encoding preferences formulated in the form of fuzzy intervals, we use formulae
defining the possibility that some x smaller than A and larger than B exists for
example [DUB 88]:

(A B) = supx min(μ(– , A] (x), μ[B, +) (x))

This purely metric index is the direct extension of the comparison of intervals
and is based on the following idea: [a, b] [c, d] if and only if a d. In this case,

([c, d] [a, b]) = 0 and ([a, b] [c, d]) = 1. If [a, b] [c, d] , then ([c,
d] [a, b]) = ([a, b] [c, d]) = 1, which indicates indifference. The properties
of this index make it the natural possible extension of interval orders [FOD 94,
PIR 97].

On the other hand, when ranking imprecise quantities, we give preference to a
method based on calculation of areas with an interpretation in terms of imprecise
probabilities. In short, the method called “area compensation” [FOR 96] belongs to a
family of “defuzzification” approaches consisting of replacing fuzzy intervals by
real substitutes and comparing them. The real or true substitute F(A) of a fuzzy
interval A is defined as the center of gravity of the average interval generated by the
family of probabilities compatible with fuzzy interval A [YAG 81, DUB 87].
Mathematically, we can define the real substitute of A by:

F(A) = daa)(
2
1 1

0

–

where],[– aa is the level cut of A. There are other fuzzy interval defuzzification
methods. Nevertheless, contrary to other methods, our proposition has the advantage
of linearity, i.e. it guarantees: F(A B) = F(A) + F(B) and F(· A) = F(A), for
any scalar .

11.2.4. Possibilistic utility

Possibility theory offers a framework different from the one of expected utility
for decision under uncertainty. If we stick to the traditional context of decision
theory in which a decision is a function from a set of states S to a set of
consequences X, we assume that knowledge of the state of a system is described by a
possibility distribution over S and that preference in the decision result is modeled
by a function μ: X [0, 1] such that μ(x) is the degree of preference of consequence

308 Production Scheduling

x (similar to a utility function). We then have two criteria based on degrees of
necessity and possibility [11.2] and [11.1], to evaluate a decision :

– pessimistic criterion: u
*
() = infs S max (1 – (s), μ ((s)));

– optimistic criterion: u*() = sups S min ((s), μ ((s))).

By considering that a state s such that (s) = 1 is seen as a plausible state, u
*
()

evaluates to what extent decision presents favorable consequences in all plausible
situations. In particular if we have no information on the state, then (s) = 1 s and
u

*
() = inf s S μ((s)); we find Wald’s pessimistic criteria. On the other hand,

u*() is high when a plausible state exists where decision leads to a successful
consequence. These criteria are different from the expected utility based on a
probability Prob (such as u() = s Prob(s) · μ (d(s)), for two reasons:

– they assume less information on the state;
– they apply to decisions which are not repeated, where results do not

accumulate (contrary to costs for example).

The rationality of these criteria was highlighted by their axiomatizations in the
style of Von Neumann and Morgenstern [DUB 95b] and Savage [DUB 01b]
respectively.

11.3. Scheduling under flexible constraints

The use of flexible constraints in the context of scheduling (job-shops, for
example, but also in project management) is a way to offset deficiencies with
traditional scheduling approaches. The search for an optimum in terms of a unique
criterion does not interpret well the fact that the reasons why one schedule is better
than another often depend on the satisfaction of local constraints. Although the
constraint-based approach (see Chapter 5) actually tries to take this local aspect into
consideration, it is based on an all-or-nothing form, whereas approaches using
optimization evaluate the quality of a schedule in a more gradual way. Using
flexible constraints enables us to remain gradual while maintaining the essence of
the constraint-based approach, which excludes compensation between local criteria.
First, we treat the main scheduling problem (with unlimited resources), followed by
sequencing problems caused by limited resources.

The Fuzzy Approach 309

11.3.1. The fuzzy PERT problem: flexible constraints

We consider sets of tasks linked together by precedence constraints, indicating
that a task cannot start before the other one ends. The set forms what we call a
project or a job. By convention, two fictitious tasks with zero duration time are
added, (start of the project) and (end of the project); precedes all tasks, and all
tasks precede . When resource constraints are not considered, a project can be
represented by a directed graph with no cycle where the nodes represent activities
and arcs show precedence constraints. Succ(i) (resp. Pred(i)) represents all tasks
immediately following (resp. preceding) i, whereas SUCC(i) (resp. PRED(i))
represents all successors (resp. predecessors) of i. Given two tasks i and j of the
graph, C(i, j) represents all paths from i to j. We mainly use notations from
Chapter 2. We also note by t–

j and t+
j the earliest and latest starting times for task j.

The scheduling problem considered here is a matter of determining task starting
times and to possibly set their execution times on the basis of availability and
delivery constraints. In this case, a delivery date d and/or an availability date r are
specified for the project, and we can use the following constraints in addition to
precedence constraints between tasks (remember that initial and final tasks have
zero times):

Availability constraint: t r [11.11]

Delivery constraint: t d [11.12]

This constraint satisfaction problem may very well fail to have a solution (choice
of task starting times tj). The earliest starting time of each task only depends on the
duration of tasks preceding it and the availability date, whereas the latest starting
date depends on the delivery date, the duration of this task and the duration of tasks
following it. If the earliest and latest starting times of the task are incompatible, then
the problem has no solution. In this case, negative floats can emerge for certain
tasks. However, it is quite possible that no task is critical.

1

0
Preferred

delivery date
Deadline

Figure 11.3. Flexible delivery date

310 Production Scheduling

Even though certain tasks have to comply with local availability (waiting for
parts before continuing for example) or delivery constraints (milestone dates for
example), there are additional constraints which must be taken into consideration, in
the form of a local feasibility window:

ri ti di – pi [11.13]

We must admit that these constraints are often “flexible” in practice. We can
make the temporal window where a product must be manufactured flexibly, by
modeling supplier and customer preferences. Customers wish to receive finished
products before a certain date, called preferred delivery date; but they may accept
some delay. Generally, there is a maximum deadline beyond which the order will be
considered obsolete: either the parts ordered will no longer be useful or another
supplier is used. Between the preferred delivery date and the deadline, customer
satisfaction decreases. The longer the delay, the less satisfied the customer will be.

This type of decreasing satisfaction curve, represented by a fuzzy interval
(– , d̃] in Figure 11.3, can only be obtained during negotiation with the customer.
A global flexible constraint on delivery results in a local satisfaction index
sat (t)

(– ,d̃]
(t).

We formalize in a similar way supplier preferences. In short, they prefer to
supply as late as possible to ensure a certain temporal float for the manufacturing
and delivery of semi-finished products. A global flexible constraint on availability
is satisfactory at level sat (t) [˜ r ,) (t) . The fuzzy interval [r̃ ,) has an
increasing membership function such that [r̃,)(x) 0 if x r (impossible to start
before r) and 1)(),~[xr if x r (prefer to start after r).

Finally, task execution times can sometimes be controlled and are subject to
preferences, for example by setting machine parameters (speed, instrument
precision, temperature of a tank, etc.), or by allocating more or less manpower (e.g.
preferences depend on the number of employees to pay). The criteria involved thus
affect the quality of item produced, and the comfort or safety of operators. For each
task, we assume that there are optimal parameter settings, and acceptable, even if
less satisfactory, parameter values (not as close to security, quality and wear
standards). We can represent the preference relative to task duration by a fuzzy
interval. In other words, the execution time of a task i can be a controllable
parameter whose more or less satisfactory values can also be modeled by a fuzzy
interval ip~ : a duration pi of task i instantiation is totally satisfying if it is part of
optimal duration values, i.e. to the core of ip~ . It is not at all satisfying (it violates

The Fuzzy Approach 311

the constraint) if it is outside the range of acceptable values, i.e. support of ip~ .
Otherwise, the closer it gets to the set of optimal values, the more satisfactory it
becomes. In other words, we have a flexible constraint for pi where the degree of
satisfaction by an instantiation pi is the degree of membership of pi to ip~ :
sat(pi) p̃ i

(pi).

Generally, the “useful” part of fuzzy interval ip~ is only its increasing part that
contradicts due-date constraints. It can sometimes interpret the following preference:
the more time allocated to the task, the better it is (because the result is of a better
quality, the job is done under better conditions, etc.).

To summarize, we consider these different preferences in the choice of starting
and execution times for tasks to be scheduled. Consequently, we look for a plan that
will better satisfy contradictory constraints of suppliers, customer and resources
used to accomplish the tasks.

In this context, a potential solution to the problem is an instantiation
),,,,,(pptt of the starting times of n tasks and their execution times that

must satisfy “traditional” hard constraints, such as precedence constraints between
tasks on one hand, and on the other hand flexible availability, delivery and duration
constraints described above. We must therefore solve a problem of fuzzy constraint
satisfaction [DUB 95a, DUB 96]: the degree of satisfaction of a potential solution

),,,,,(pptt is the degree of satisfaction of the least satisfactory
constraint. sat (t , , t , p , , p) = 0 if),,,,,(pptt violates at least
one precedence constraint, and otherwise:

),,,,,(ppttsat = min (mini)(~ ip p
i

,)(]
~

,(– td ,)(),~[tr)

[11.14]

We have not taken into consideration possible local delivery or availability
constraints here, relative to specific tasks. We can observe that potential solutions
are not equally satisfying. Degrees of satisfaction lead to a total pre-order of all
instantiations that satisfy hard constraints. A solution violating a date or a constraint
on duration is unacceptable (sat = 0); whereas there are solutions that satisfy all
ideal task duration and starting time ranges, they are the best (sat = 1); otherwise,
the problem becomes conflicting and we must explicitly accept a relaxation of
preferences on execution times. The goal is to stay as close as possible to ideal
execution times.

The degree of coherence cons of the problem (degree of satisfaction for the best
solutions) somewhat expresses the degree of feasibility of the scheduling problem:

312 Production Scheduling

cons = sup
) , , , , ,(pptt

),,,,,(ppttsat [11.15]

When constraints are partially inconsistent, we find 0 < cons < 1, as no
instantiation can satisfy them perfectly.

In practice, the problem comes down to the search for starting time instantiations
),,(tt , by merging precedence constraints and flexible constraints for

execution times. Let),,(tt be an instantiation of starting times only; it is
satisfactory when there exists),,(pp such that),,,,,(pptt
optimizes the problem:

),,(ttsat = sup
), ,(pp

),,,,,(ppttsat [11.16]

We can show that:

[,) (– ,] (– ,](,) such that ()
(, ,) min min(() , (), ())

jp k j d dj k j Pred k
sat t t t t t t

[11.17]

Thus, we have to solve a problem only involving task starting times, containing
two flexible availability and delivery constraints and flexible precedence constraints
in the form:

),~[iij ptt [11.18]

with a degree of satisfaction equal to)(),~[ijp tt
i

.

Instead of directly searching for a solution, the user is generally interested in
knowing the set of possible starting time values for each task. A value for the
starting time of task i is satisfactory insofar as it is higher than its earliest starting
time and less than its latest starting time caused by the set of precedence constraints,
availability and delivery. It is obvious that if global availability and delivery dates
are decision variables of the problem, the earliest and latest task starting times are
independent groups of variables. This reasoning is still valid in the flexible case,
because we can reason with availability and delivery dates as well as flexible
execution times as if they were not fuzzy. We can in fact calculate the degree of
local satisfaction sat(ti) of an instantiation of the earliest starting time ti of task i:

sat(ti) = sup
) :(ijt j

),,(ttsat =))(),(min(]~,(–),~[– itit tt
ii

 [11.19]

The Fuzzy Approach 313

where fuzzy earliest and latest starting times of task i are calculated as in the non-
fuzzy case because of independent forward and backward propagation steps with the
help of operations on fuzzy intervals, and no longer on traditional numbers (by
means of addition, subtraction minimum and maximum of fuzzy intervals).

~~xa~m~ –
)(

jj
iPredj

i ptt for i > , and rt ~~ [11.20]

ij
iSuccj

i ptt ~~ni
~

m~
)(

 for i < , and dt
~~ [11.21]

The more or less satisfactory values for the starting time of task i is therefore a
fuzzy interval]~,~[–

ii tt . The local degree of satisfaction sat(ti) is the height of this
fuzzy subset. The degree of coherence of the problem can be known immediately
after the forward propagation phase: it is the height of the fuzzy interval [t̃ – , d

~
],

from which the project preferred ending date is derived.

If cons < 1, we can thus calculate precise values for starting times and task
execution times (otherwise, we obtain intervals). Task execution times are obtained
by inverting the membership function of the increasing part of ip~ .

Earliest starting time values are obtained similarly from it –~ . Nevertheless, if
the solution obtained is optimal in the sense of the bottleneck type criterion defined
by formula [11.14], it is not always Pareto-optimal in the sense of the multicriteria
problem involving membership functions of flexible constraints, viewed as criteria
to maximize. In fact, only duration and starting times of critical tasks (those whose
local degree of satisfaction sat(ti) coincide with global degree of satisfaction cons)
are calculated correctly. They form a set of critical paths in the usual sense. We can
still improve task execution times along non-critical paths. In order to do this, we
can solve a second fuzzy PERT problem, where we set critical task execution times
based on)(1~ consp ipi and starting and ending project dates likewise. We

proceed recursively in this way until all tasks in the graph become critical [DUB 99]
(if cons < 1).

EXAMPLE.– A set of three tasks T1, T2, T3 where T1 must precede T2 and T3. We
must find earliest starting times and task execution times. Each task is assumed to
last 4 hours to be properly completed. There is no way to complete it in less than
two hours. We note as (a, b, c) the fuzzy number of core b and support (a, c). The
feasibility domain of p1 is (2, 4, + Task T1 can start at time r = 0. Task T2 must
be preferably ended within four hours and T3 within six hours. Tasks must be
finished within eight hours in any case. Fuzzy delivery dates are therefore (– , 4, 8)

314 Production Scheduling

and (– , 6, 8). Let t1, t2, t3 be task starting times, p1, p2, p3 their best execution times.
The degree of coherence of the problem is the maximum value of:

min((2, 4,+ (p1), (2,4,+ (p2), (2, 4,+ (p3), (– , 4, 8) (t2 + p2), (– , 6, 8) (t3 + p3))

with t1 0, min(t2, t3) t1 + p1. We can confirm that cons = 0.5. However, the value
selection of execution times and starting times of degree of membership 0.5 gives
p1= p2 = p3 = 3, and suggests t1 = 0, t2 = 3, t3 = 3. This solution can be improved.

The set of tasks T1, T2 is critical. It cannot be moved without decreasing cons
below 0.5 (this value enforces an ending date of 6). Variables t1, t2, p1, p2 are
completely determined on the critical path. However, T3 is not critical in this
configuration. It will be executed in the best conditions by optimizing the simpler
scheduling problem with variables t3 and p3, defined by: t3 3, t3 + p3 (– , 6, 8),
and p3 (2, 4, + . A simple calculation shows that the optimal max-min solution
is unique and gives t3 = 3 and p3 = 3.5 with a degree 0.75. Joined to values found
previously for t1, t2, p1, p2, it forms an optimal Pareto as well as optimal max-min
solution for the problem.

11.3.2. Limited resources: flexible constraints and fuzzy rules

The practical realization of a project is greatly constrained by the availability of
resources. We limit ourselves here to resources known as “renewable”, i.e. resources
that are integrally restored at the end of execution of the task requesting them. They
are most often machines, but also additional tools or even human operators. Often
disjunctive, these constraints prevent the execution of more than one task at a time
even when no priority precedences between these tasks exist.

The flexible constraints approach easily extends to resource constraint
scheduling, a special case of which is job-shop scheduling. In this case, resources
are machines. A task requires a specific machine during its execution. This
particular case is very important in reality because it involves a significant part of
job-shop models.

Next to temporal parameters, other constraints can be subject to flexibility,
notably the use of resources. If we have generally interchangeable machines, we can
express preferences on the use of one machine or the other to execute a task. Outside
of traditional machine type resources, we can also consider human resources. If we
typically have a certain quantity of operators, it may become necessary to hire
additional personnel in order to deal with the workload in a reasonable amount of
time. This increase in human resources constitutes a relaxation of the initial
constraint; it is accompanied by additional cost as well as a possible deterioration of

The Fuzzy Approach 315

production quality. It may occur that the additional employees are less efficient
because they are less specialized. Finally, in contexts such as open shop (see
Chapter 10), precedence constraints can also be flexible. Namely, even if there is a
preference on the precedence between two tasks A and B on the same product, the
other precedence is tolerable. For example, we can hope that A precedes B (with a
degree equal to 1), while accepting that B can precede A with a positive degree less
than 1.

The resolution procedure for the job-shop problem under flexible constraints is
derived from fuzzy PERT under flexible constraints. In fact, we can apply the
general principle of changing resource constraints into (disjunctions of) precedence
constraints. Namely, any job-shop scheduling problem under flexible constraints can
be seen as a family of flexible constraint project scheduling problems, in which we
must find the best representative – in terms of max-min criteria.

Methods have been developed and experimented for the resolution of job-shop
scheduling problems under flexible constraints [FAR 97]. They are implicit
enumeration techniques, where the search in the solution graph, notably to solve
conflicts of precedence between tasks, is guided by degrees of membership of
current partial solutions. We have been able to show that taking into consideration
flexibility of constraints does not slow down the solving process. On the contrary,
the heuristic associated with problems involving preferences tends to position tasks
in the middle of temporal windows, often making it possible to reduce calculation
time.

Determining task sequences on machines was addressed by some with the help
of fuzzy rules that model heuristic knowledge in a flexible way and express a
blending of priority rules. The use of priority rules in fact has the advantage of easily
solving the sequencing problem, possibly in real time, even if the objectives attained
with local priority rules are not always very clear. In most production scheduling
software packages, heuristics, such as empirical rules, are used, making it possible to
rank tasks according to a particular priority. This ranking is then used in a scheduler.
A simulation tool can gradually allocate the necessary resources to the different
tasks, while respecting precedence constraints. When a conflict between tasks
appears because of resource sharing, the program may select the next priority task
according to the heuristic involved. Among traditional priority rules, we can name
SPT (Shortest Processing Time) and LST (Least Slack Time) that rank tasks
according to their execution times and estimated floats respectively (see Chapter 6).
In fact, a great number of priority rules were proposed for project management, and
in a more general way, for production scheduling [MAC 93]. The use of fuzzy sets
in priority rules enables two improvements. First, with a fuzzy priority rule, we
avoid thresholding effects. We can also make a blending of the different traditional
rules.

316 Production Scheduling

For example, it is reasonable to write: if task duration is small and if its float is
very small, then the task must receive high priority. This linguistic rule naturally
translates in terms of fuzzy rules:

If duration SMALL and float VERY SMALL then priority HIGH

where “SMALL” “VERY SMALL” and “HIGH” are fuzzy intervals, for example.

When we need to settle a conflict between two tasks requiring the same machine,
we match the parameters of these tasks against the premises of the rule to determine
an indication of their respective relevance. The actual crisp duration and float values
are used to determine the activation degrees of the premises, the degree of activation
of a “high priority” conclusion is calculated here as the minimum of activation
degree of rule conditions. We avoid defining a crisp partition between situations
where a rule applies and other situations, although similar to the previous ones,
where another longer applies.

The combination of several rules in a fuzzy expert system makes it possible to
improve the advice provided by this system. Since the different priority rules
influence the performance in different ways according to prescribed criteria that
measure scheduling quality, their mode of combination does not constitute a trivial
problem. For example, it is well known that if the criterion considered is average
cycle time, SPT and LST rules are not equally relevant. In this case, SPT is more
appropriate and should therefore receive higher weight in the decision process.

In [BEL 89], the authors jointly use the approach by constraints and fuzzy
priority rules combined with a majority approach for job-shop scheduling. The
aggregation of different fuzzy priority rules was studied by [DUB 94], and the
difficult problem of choosing weights by [GRA 94], in the context of general
scheduling problems. Ideal weights are based on the number of resources, dispersion
of execution times and obviously the criteria to be optimized. That is why additional
rules can be added to the rule-based system for determining priority weights of
fuzzy rules, for example the fuzzy rule:

if the dispersion of operation times is high and if minimizing average delay
and average cycle time are significant, then the SPT weight must be high.

The implementation details of a fuzzy rule-based system are out of the scope of
this chapter (see [DUB 88] for more information). The four main steps for the
inference process are:

– pattern matching: linguistic terms (e.g. high, important) are compared with real
input values (e.g. operation duration) to determine the degree of truth of each
premise;

The Fuzzy Approach 317

– inference: premise compatibility values are propagated (according to a
generalized modus ponens) toward conclusions;

– combination: conclusions of the different rules are combined to obtain a global
conclusion of the rule base;

– selection: a crisp conclusion is calculated from the fuzzy conclusion.

[TUR 99] proposes an extensive bibliography on the fuzzy rule-based approach
for planning and scheduling, an approach that Turksen himself largely developed
and applied in the artificial intelligence context.

11.4. Scheduling with ill-known execution times

In this second version of fuzzy scheduling, we try to minimize total completion
time (or makespan) of a set of tasks. We no longer have constraints expressing
preference on dates or execution times. As with their traditional counterparts, that
they generalize, fuzzy scheduling techniques under uncertainty require that the
problem considered can be represented in the form of a directed, compact and
acyclic graph. This model is convenient for the efficient processing of time windows
and execution times, fuzzy or crisp, as well as conjunctive precedence constraints.

We assume task execution times are non-controllable parameters, i.e. the user is
not the one choosing their values. They are, for example, subcontracted production
management task execution times, software debugging tasks in computer system
project management, process execution times that depend on the resource that will
eventually be assigned to tasks, etc. As a consequence, the values of execution times
pi for tasks i are no longer known with precision and certainty: we only know more
or less plausible values in the form of fuzzy sets ip~ . A particular case is that of
execution times for which we only know a bracketing interval. While the idea of
representing ill-known execution times by intervals sounds very natural, it seems
paradoxical that the interval PERT problem was considered and solved only
recently.

Noting that, in traditional PERT, the values of all relevant parameters come from
calculations based on task execution times, we may be tempted to apply the same
algorithm as with the deterministic case to PERT, by performing calculations on
intervals or fuzzy intervals as in the previous section instead of calculations on
traditional numbers. In fact, the critical path method seems difficult to directly
adapt, and most previous fuzzy PERT methods handing uncertain durations are ad
hoc in this respect. This type of problem requires a “potential-bound” type
representation ([ESQ 95]). When, in addition, we want to take limited resources into

318 Production Scheduling

account, appropriate precise representative values of uncertain execution times are
used when solving the sequencing problem.

11.4.1. Critical paths under ill-known execution times: difficulties

The necessity for a relevant model representing uncertainties in execution times
in the manufacturing area no longer needs to be proven. By nature, these execution
times are subject to hazards and are sometimes only partially controllable. In
particular, if we consider infrequent tasks or new types of operation resulting from a
technological evolution, using information-demanding methods for determining the
value or the statistical distribution of these execution times is not relevant. These
considerations remain valid in project management, notably when tasks are still ill-
defined.

Modeling these imprecise execution times using fuzzy intervals alleviates these
drawbacks by exploiting simple and usually available pieces of information [ROM
90, FOR 97b]. It is rarely possible to obtain a complete description of fuzzy intervals
representing imprecise execution times. It is in fact illusory to require perfect
precision on data encoding uncertainty. In this field, recommendations from
Rommelfanger [ROM 90] can be instrumental in practice. To obtain a fuzzy
interval, he proposes obtaining from the decision-maker (or the expert) a few
characteristic values and interpolating in a linear way between these points: which
values are typical (core)? Which values are not so surprising (level cut 0.5)? What
are the boundaries of the physical domain (support)? The corresponding fuzzy
interval is then obtained by linear interpolation. Fuzzy intervals for execution times
are encoded with the help of such six specific values.

We consider the traditional problem of project duration minimization. In this
case, we have no availability or delivery constraint; the objective is to minimize total
project duration. This usually leads to posing the following constraints on earliest
and latest starting times:

t– = 0 (by convention, we consider that the project starts at date 0) [11.22]

t– = t+ (we consider that the project ends as soon as possible) [11.23]

In this problem, we try to define possible ranges for choosing relative task
starting times. The difference between the latest starting time and earliest starting
time of a task (called total float) represents its leeway for starting it without delaying
the end of the project. Since this type of problem always has a solution, the floats are
never negative.

The Fuzzy Approach 319

When execution times pi have precise values, we can consider them as constants.
Both problems, minimization of project duration and availability and delivery
constraint scheduling respectively, are resolved in a similar manner. A first phase of
forward propagation (in the style of equation [11.20]) calculates task earliest
starting times from t– = 0 (resp. t– = r), and a backward propagation phase (in the
style of equation [11.21]) calculates task latest starting times from t+ = t– (resp. t+

= d, since task has a duration of zero). The floats can thus be calculated as i = t+
i

– t–
i and critical tasks are (possibly) detected. These are zero float tasks: we cannot

delay them without delaying the end of the project (see Chapter 2).

When execution times pi have ill-known values, the most natural thing is to
calculate the fuzzy set t̃ –

i of generally possible values of earliest starting times by
forward propagation, iteratively applying formula [11.20] with fuzzy execution
times. We are then tempted to pose t̃ = t̃ – , and to execute a backward
propagation by iteratively applying formula [11.21].

As highlighted in [CHA 81, DUB 88, NAS 93, ROM 94, HAP 94], the forward
propagation phase is correct, in the sense that the calculated t̃ –

i do correspond to all
generally possible values for earliest starting times. A difficulty appears with
backward propagation when we wish to respect the constraint t+ = t– . Since the
earliest starting time t– of the last task is ill-known and is represented by an
uncertainty distribution t̃ – , requiring that the distribution of t+ be the same as
that of t– is not the same as prescribing that t+ = t– because two quantities can at
the same time be independent and have the same distribution. For example, consider
a very simple one-task problem. We have the following dependencies between
quantities:

t–
1 = t– = 0; t– = t–

1 + p1; t+ = t– ; t+
1 = t+ – p1 (= t–

1)

Since quantities t+ and p1 are not logically independent (because of constraints
t+ = t– = t–

1 + p1), it is not correct to write that all possible t+
1 values can be

obtained by subtraction of fuzzy intervals t̃ = t̃ – and p̃1. For example, if the
set of generally possible values for p1 is interval [1, 4], we obtain for t̃ = t̃ –

interval [1, 4], which would yield for t̃ 1 interval]3,3[]4,1[]4,1[, whereas it is
obvious that the task is critical and that t+

1 = t–
1.

More generally, when we pose t+ = t– , quantity t+ depends on parameters pi.
Since the t+

j depend on t+ , these quantities thus depend on pi. We cannot use the

320 Production Scheduling

backward propagation formula)(min
)(

jj
iSuccj

i ptt via simple fuzzy interval

arithmetics [11.21]1.

In fact, since ABBA (more precisely, A A B B , in the sense of the
inclusion of fuzzy sets), applying the backward propagation phase as defined by
formula [11.21] runs the risk of considering duration uncertainties twice, which
results in fuzzy sets that are too large to actually be useful.

11.4.2. Critical paths with interval execution times

The simplest way of representing ill-known duration times is to use intervals of
the form P̃i = [p–

i, p+
i]. For a more precise approach to the problem, we must go

back to its mathematical representation. For a project with n tasks, we denote by
configuration a tuple of n values = (v1, …,vn) such that vi P̃i . represents the
state of the world in which it turns out that p1 = v1, p2 = v2 … and pn = vn. For a
given configuration , pi() represents the value of pi in . In this configuration,
we can thus calculate t–

i(), t+
i() and i() which are the earliest and latest starting

times and float i in configuration . If is a path in the graph relating task i to task
j, l () represents the length of this path for configuration . The set of
configurations is equated to the Cartesian product H = i = 1, n P̃i . An important role
is played by extreme configurations such that pi() {p–

i, p+
I}, i=1, ..., n.

A configuration defines an instance of a deterministic scheduling problem
(classical PERT/CPM problem), on which the PERT/CPM method can be applied.
Using configurations, the sets of possible values t-

i() for the earliest starting date
and the possible values t+

i() for the latest starting dates and the possible values
i() for the float are defined by

T-
i = {t-

i() | H }= [ti
--, ti

-+]; T+
i = { t+

i() | H }= [ti
+-, ti

++];

Fi = { i) | H }= [i
-, i

+].

Since functions that define the earliest starting times, latest starting times and
floats in terms of task durations are obviously continuous, the quantities T-

i, T+
i, Fi,

1 Note that during the forward propagation phase, we also perform calculations on non-
independent values. This is, for example, the case where two parallel tasks have a common
predecessor: their two earliest dates depend on the duration of this common predecessor.
When they are immediately followed by a single task, we then calculate the maximum
between sets of values of two non-independent variables. However, the hidden dependence
problem is avoided since mã x (a~ b

~
a~ c~ a~ xa~m (b

~
c~

The Fuzzy Approach 321

are closed intervals. Chanas et al. [CHA 02b] propose to extend the notion of
criticality to interval-valued scheduling problems as follows:

– a task is possibly critical if there exists a configuration H in which this task
is critical in the usual sense;

– a task is necessarily critical if it is critical in the usual sense in all
configurations H.

Similar definitions can be stated for possibly and necessarily critical paths.
While possibly critical paths always exist, necessarily critical paths may fail to exist.
When all execution times are interval-valued, there is at most one necessarily critical
path. When there is none, there may nevertheless exist isolated (groups of)
necessarily critical tasks (for instance, the first and last tasks are always so). Finding
them is crucial but turns out to be harder than in the deterministic case, since we can
no longer rely on critical paths. It can be proved that a task is possibly critical if and
only if the lower bound of its float interval is zero, and that it is necessarily critical if
and only if the upper bound of its float interval is zero. If a task is necessarily critical
then it has the same earliest and latest starting times intervals but the opposite is not
true. This last proposition makes it clear that the float interval of a task cannot be
calculated by means of its earliest and latest starting times intervals. It must be
calculated separately; see Dubois et al. [DUB 05] for details.

The latest starting time of task i in configuration H is defined as the
difference t+

i() = max C(l () max C(i l (between the longest path
in the graph and the longest path between task i and the end-task. Calculating the
interval of latest starting times comes down to applying interval analysis methods to
this function, which is non-trivial since the two parts of this expression have some
ill-known quantities in common. A brute-force method with exponential complexity
consists of calculating t+

i() for all extreme configurations consisting of assigning
to each task execution time its upper or its lower bound, and calculating the
maximum and minimum of t+

i() on such configurations. A simplification consists
of noting that, to calculate the lower (respectively upper) bound of t+

i(), it is
always possible to set the execution time of tasks not succeeding i to their lower
(respectively upper) bounds [DUB 03b]. An efficient path enumeration algorithm
for determining the bounds of the latest starting time interval is proposed in [DUB
05], based on considerations on the form of optimal extreme configurations. For
example, there exists a path C(i such that an extreme configuration
defined as pj() = p j for j outside , and p+

j otherwise, minimizes t+
i(). Zielinski

[ZIEL 05] proposes a polynomial iterative labeling method for constructing optimal
configurations minimizing and maximizing t+

i().

322 Production Scheduling

The calculations of float intervals of tasks must be carried out independently,
applying interval analysis to the explicit expression of the float, i.e.:

 i) = = max C(l () max C(i l (max C(i l (

Again, a brute force method can be used, enumerating extreme configurations,
and efficient path enumeration techniques can be used to find the optimal bounds of
the float intervals [DUB 05]. However, Chanas and Zielinski [CHA 02a] proved that
the intrinsic complexity of proving the possible criticality of a task is exponential,
hence calculating the greatest lower bound of float intervals of tasks is NP-hard.
Surprisingly, the problem of deciding the necessary criticality of a task was solved
more recently and turns out to be a polynomial problem [FOR 05] to which a variant
of Zielinski’s labeling polynomial method can be applied to construct an optimal
configuration minimizing the upper bound of the float of a task.

Finally, it was shown that, if the task graph is series-parallel, the interval PERT
problem can be resolved by an exact, not very combinatorial, method, based on the
simple identification of configurations maximizing or minimizing the quantities of
interest (earliest, latest dates and floats) [FAR 00, DUB 05].

11.4.3. Critical paths with fuzzy execution times

In order to obtain a more expressive representation of incomplete knowledge
about task execution times pi, a possibility distribution ip~i can be used. In
other words, the degree of possibility that pi is equal to a given value v is

)()()(~ vvvp
ipii . With the hypothesis that task execution times are

logically independent, the degree of possibility of a configuration is:

1 1() (() and and () and and ())i i n np p p p p p [11.24]

))((min))((min ~
,1,1

ip
ni

ii
ni

ppp
i

The calculation of the possibility or necessity of a criticality event, such as for
example the possibility that a path be critical or that a task be critical, or the
calculation of possible value distribution quantities defined according to execution
times (latest dates and floats in particular) must refer to this joint possibility
distribution. The possibility that a path C(,) going from initial node to end-
node of the graph is critical is the possibility of having a configuration in which
C(,) is critical:

(C(,) critical) =
: (,) critical in

sup ()
C

 [11.25]

The Fuzzy Approach 323

Chanas and Zielinski [CHA 01] propose a method to find degrees of possible
criticality of tasks. Similarly, the necessity that a path C(,) be critical is
[CHA 02b]:

N(C(,) critical) = 1 – (C(,) non-critical) [11.26]

=
: (,) non-critical in

1 sup ()
C

denoting G the directed graph where task execution times are represented by level-
cuts of fuzzy intervals. Since a task is critical if and only if it belongs to a critical
path, the degree of possibility that it is critical is the maximum degree of possible
criticality of a path from to containing it:

(C(,) critical) = sup { : C(,) possibly critical in G }.

The necessity that it be critical is defined by duality.

N(C(,) critical) = 1 – inf { : C(,) critical in G }.

Concerning the calculation of latest fuzzy dates, and possibly floats, a first
solution is to carry out a symbolic calculation as proposed by [NAS 93], operating
simplifications on symbolic expressions of latest starting dates and floats.
Nevertheless, this symbolic approach is very time-consuming and does not scale up.
Another, less calculation intensive, approach is to change the definition of the fuzzy
subtraction [ROM 94, HAP 94] so as to make it better adapted to the backward
propagation technique for latest starting times. This type of approach is
unfortunately ad hoc and does not provide the correct fuzzy bounds for latest
starting times and floats. Such correct fuzzy bounds consist of applying the
extension principle to the explicit expressions of these quantities, without resorting
to fuzzy arithmetic. Using a mathematical representation of fuzzy intervals as pairs
of (left and right) profiles, a direct extension to fuzzy intervals of the path
enumeration algorithms in [DUB 05] was proposed by Fortin [FOR 06].

11.4.4. Limited resources: approach by fuzzy interval comparison

We know that the resolution of project scheduling problems with limited
resources (such as the job-shop problem) generally consists of searching for the
“best” transformation of disjunctive constraints into precedence constraints; the
optimization implied by the term “best” defines a possible underlying multi-criteria
optimization problem. This transformation thus reduces the problem to simple PERT
scheduling, which can be solved by simple critical path techniques in the
deterministic case. In the case of ill-known data, it leads to solving a fuzzy or

324 Production Scheduling

interval PERT type problem at each step of its resolution [BLA 86, FOR 97a].
Special cases of resource-constrained scheduling problems with ill-known execution
times, such as flow-shops, have also been considered, as in [MCC 92].

The operations research literature is replete with methods solving deterministic
scheduling problems with limited resources, notably for job-shops. Those
recognized as the most efficient result from the joint use of a disjunctive graph and
an optimization meta-heuristic (simulated annealing for example), in the
deterministic [VAN 92] as well as fuzzy context [FOR 97b]. The idea is simple: if
we represent a job-shop type problem to be solved using a disjunctive graph, each
eligible solution requires the choice of a specific direction for edges connecting
tasks requiring the same resource. Starting from any such solution, we can reach an
optimal one (minimizing the makespan), by gradually modifying the direction
adopted for certain edges on the longest path in this graph. Local search methods,
such as simulated annealing or tabu search for example, favoring modifications that
improve performance with regards to criteria chosen, are likely to end up with a very
good quality solution, or even an optimal one, in a reasonable amount of time.

Concerning the uncertain duration variant of the problem, it is clearly more
relevant to quickly search for a good solution than to persist in trying to determine
the optimal solution. In fact, data is in essence imprecise. In a scheduling context
with limited resources, ill-known temporal parameters are clearly liable to be
modeled by fuzzy quantities, but it is all the same with renewable and countable
resources. Thus, when the resource considered consists of a team of operators, their
number can also be partially unknown (because of partially uncontrollable
availability).

Optimization is performed with the goal of determining the best schedule in the
sense of performance criteria such as total duration for example. In other words, we
determine the task sequence that leads to the earliest total completion time for each
machine. Since task execution times are ill-known, a method that ranks fuzzy
intervals is needed. The sequence of tasks on each machine is then clearly
determined even if there unavoidably remains imprecision about their starting and
ending times. The fuzzy interval representation of imprecise statistical information
for temporal parameters naturally leads to the choice of the area compensation
method as the proper tool to compare two schedules on the basis of their fuzzy
evaluation for example, e.g. their total fuzzy duration (see [FOR 97] and section
11.2.3). Chanas and Kasperski [CHA 03, CHA 04] propose an optimization method
directly handling uncertain execution times in specific one-machine scheduling
problems. Kasperski [KS 05] applies the same approach to a sequencing problem.
An application example of this general scheduling model with resource constraints
with fuzzy execution times is described in [HAP 94]. It is a software design tool
based on an object-oriented approach. It involves scheduling the different design

The Fuzzy Approach 325

steps and therefore the evaluation of the total necessary completion time for creating
a piece of software. As an illustration, [HAP 94] presents a specific problem
involving a total of 53 tasks (the last one for integrating the different modules and
testing the system).

11.5. Flexible constraint scheduling and ill-known task execution times

In the case when there are flexible constraints on due-dates (earliest starting
times, latest end dates, delivery dates), but where task execution times are uncertain,
we are facing a decision problem under uncertainty. We must choose starting times
for tasks (and therefore their sequencing on each machine) in order to satisfy local
flexible constraints, regardless of the actual task execution times in their interval of
uncertainty. In this case, the problem can be addressed as follows [DUB 95a].
Consider a set of partially sequenced tasks. The fulfillment of each task i requires an
ill-known processing or execution time ip~ as in section 11.4. There is a date at
which the project can start, and a due-date. These dates, r~ and d

~
 respectively, are

flexible, as in section 11.3.

Suppose that a solution sets the starting times of all tasks. A precedence
constraint relating two tasks i and k, will be more or less certainly verified because
of the limited knowledge about execution times. The corresponding degree of
necessity that i precedes k is (applying equation [11.2]):

N (pi tk – ti) =),~] ip (tk – ti), [11.27]

where]p̃i ,) has an increasing membership function, corresponding to the fuzzy
complement of the right part (decreasing) of ip~ . This degree of necessity is smaller
as the interval [ti, tk] is small, since the smaller the interval, the harder it is to insert
task i.

The degree of satisfaction of the flexible release constraint of product j is simply
),~[r (t), t being the starting time of the first task. The degree of satisfaction of

the flexible delivery constraint is the degree of certainty that the project terminates
on time. If kt is the starting time of a task k immediately preceding the last task ,
we calculate, based on [11.2]:

N(tk + pk d̃) = infx max (1 –)(~ x
kp ,)(]~,(– kd tx) [11.28]

326 Production Scheduling

We recognize in [11.28] the pessimistic possibilistic preference functional
introduced in section 11.2.4, because if =

kp~ is the characteristic function of an
interval [a, b], we have:

N(tk + pk d̃) = infx [a, b] kp~ (t + x) =
kp~ (t + b),

which evaluates the satisfaction of this flexible constraint in the worst case.

Overall, the scheduling problem is addressed here as one of maximizing the
degree of satisfaction of the most violated constraint among those described above
(precedence, release and delivery):

min(min{),p~] i
(tk – ti): i, k succ(i)},),~[r (t),

min{ N(tk + pk d̃): k prec()})

An optimal solution to the problem is therefore a choice of starting times it for
tasks i maximizing this criterion.

Consider the following small example, with only one task (a trip), the starting
date of which we must calculate [DUB 95]. Consider a person living in the suburbs
of a city and traveling downtown by bus to an important meeting. The meeting is
scheduled to take place at 8 am. We create the following constraints:

– the person prefers not to leave home before 7 am, at least not before 6:30 am.
We then have a constraint r~ on the starting time, such that),~[r (t) = 0 if

t 6:30 am and 1 if t 7;

– the person does not want to arrive at the meeting after 8:15 am. Ideally, (s)he
wishes to arrive at 8 am. Therefore, there is a constraint d̃ on the arrival time, such
that 1)(]

~
,(– ptd if t + p 8 and 0 if t + p 8:15.

– the travel duration p is uncertain as the bus may arrive right away at the
bus stop, or there will be a waiting time depending on traffic density. We have a
possibility distribution = p~ such that (p) = 1 if p = 1 and (p) = 0 if p ,

1:15[. Travel time is therefore approximately one hour and we have no control over
it.

The optimal start hour is obtained by maximizing:

min (),~[r (t), N (t + p d̃)), [11.29]

The Fuzzy Approach 327

where N(t + p d̃) = infp max (1 – (p),)(]~,(– ptt). This last expression is a
pessimistic possibilistic criterion. We observe that calculation of the optimal value is
simplified if we note that, under continuity conditions on membership functions,

infp max ()(1 ~ pp ,)(]~,(– ptt) = supp min ()(1 ~ pp ,)(]~,(– ptt)

 [11.30]

which brings the problem down to the example of maximization, relative to p and t,
of:

min (),~[r (t),)(1]~,(pp ,)(]~,(– ptt) [11.30]

By considering linear membership functions, we thus find, by simple calculation
of right segment intersection: t = 6 hours 52 minutes 30 seconds, which, as long as
travel time does not last more than p = 1 hour 11 minutes 20 seconds, ensures a
presence at the meeting no later than at 8:03:45, an acceptable delay, beyond which
the decision-maker considers that he can justify this delay by transportation hazards.
We thus obtain a good compromise, safe but realistic. Note that if we replace 1 –

]~,(p by p~ in the problem reformulated by expression [11.30], we obtain the

trivial optimistic solution t = 7, x = 1, which in practice is not plausible.

Calculating expression [11.30] makes it possible to handle uncertain execution
times as a case of flexible execution times, as long as we replace the uncertainty
distribution p~ (p) by the (increasing) membership function of the complement of
(– , p̃]. We can, more generally, use the resolution tools and the approach
described in section 11.4, even when tasks have ill-known execution times.
However, we must then remember that in this case, task execution times thus
obtained represent pessimistic duration previsions that we suppose to be sufficiently
reasonable to occur in reality. The greater the global degree of satisfaction obtained,
the more confidence we can place in these previsions, and the more robust against
hazards are task starting times calculated by this approach.

This approach was extended to the job-shop problem under flexible constraints
with ill-known execution times for tasks [DUB 95a] (see also [CHA 04]).
Considering two tasks i and k on a single machine that can occur at the same time, a
disjunctive constraint of non-overlapping between these tasks is confirmed with a
degree of necessity equal to max(N(pi tk – ti), N(pk ti – tk)). In addition, we have
been able to extend some constraint analysis methods (see Chapter 5) to the fuzzy
case in order to test, for each precedence conflict between tasks assigned to the same
machine, whether due-date constraints enforce a precedence relation over another
one, in the context of the maximization of the degree of satisfaction of the most
violated constraint.

328 Production Scheduling

11.6. Conclusion: the potential contribution of possibility theory in scheduling

Possibility theory makes it possible to extend the constraint-based approach to
scheduling problems so as to include the notion of preference. It also enables
uncertainty to be represented for certain parameters such as processing times. As for
the first aspect, the approach by flexible constraints has several specificities making
it attractive in scheduling problems:

– it can easily express local preference specifications. These preferences come
directly from the decision-maker or from the relaxation of constraints that are
too tight. Flexible constraints are sometimes more expressive than global criteria
that we find in literature. We can for example encode the problem of makespan
minimization as a particular case of the flexible constraint problem;

– it assumes that violations of certain constraints are not compensated by total
satisfaction of the others. We therefore do not minimize global cost, but we try to
balance possible task due-dates. This comment clearly positions this approach in
contrast with optimization of additive global criteria;

– it is totally in agreement with constraint-based analysis, of which this is a
particular case. We can also directly use existing propagation tools, either by
efficiently propagating local preferences, or by resolving the flexible constraint
problem as a set of standard problems with hard constraints obtained by setting
aspiration levels beforehand (which define hard constraints in the form of level
cuts) [DUB 01a]. In fact, solutions to an optimal flexible scheduling problem are
better described as solutions to a scheduling problem with hard constraints obtained
by relaxing constraints as little as possible. The goal of a flexible constraint problem
can therefore be seen as the specification of a standard problem with hard
constraints making a trade-off between them in order to ensure the existence of a
solution;

– although more elaborate than the approach by standard constraints, its
complexity remains in the same range. It remains applicable to problems with
similar size to those treated by the traditional constraint-based approach.

The notion of flexible constraint makes it possible to avoid two pitfalls of
modeling by constraints: the case of the over-constrained problem where we
sometimes only discover the inconsistency after many calculations; or the case of
the under-constrained problem having too many solutions to be useful. Nevertheless,
there are still very few studies using this approach. Although it seems promising, it
still remains to be validated in practice, in terms of its effective power of expression
as well as calculation times obtained, even if tests performed on 169 problems with
5 machines and 30 tasks in [FAR 97] seem conclusive. In particular, the use of
flexible constraints can more quickly find an achievable solution to the problem
(except for a very narrow zone of problems where consistency is very difficult to

The Fuzzy Approach 329

prove). Other tests on larger examples with 10 machines have illustrated the same
trend [FAR 97].

Possibility theory also offers a simple and gradual modeling of uncertainty in terms
of task execution times. This modeling generalizes interval-based sensitivity analysis.
It is different from the probabilistic approach based on hypotheses of independence
and often assuming statistical knowledge. The possibilistic critical path method does
not meet all difficulties often making a rigorous probabilistic approach unworkable.
The latter approach, proposed a long time ago, must take into consideration the
dependence between paths, contrary to the possibilistic approach. Even the
determination of earliest starting time distributions is a difficult problem with a
probabilistic approach, and we have seen that it is carried out simply in the context of
fuzzy sets. Nevertheless, the determination of latest dates and floats in the possibilistic
context cannot be carried out by traditional tools, and goes through the identification
of parameter configurations accomplishing better and worse case situations. In the case
where we have flexible constraints and uncertain knowledge at the same time,
possibility theory proposes a moderately pessimistic criterion achieving robustness in
the face of uncertainty, which constitutes an alternative to the expected utility
criterion. From a formal point of view, this criterion is easily integrated in the context
of flexible constraint satisfaction and propagation techniques.

11.7. Bibliography

[BEL 88] E. BENSANA, G. BEL, D. DUBOIS: “OPAL: a multi-knowledge based system for
industrial job-shop scheduling”, Int. J. of Production Research, vol. 26, no. 5, p. 795-819,
1988.

[BLA 86] BLAZEWICZ J., CELLARY W., SLOWINSKI R. and WEGLARZ J., “Scheduling
under resource constraint – deterministic models”, Annals of Operations Research,
vol. 7, J.C. Baltzer AG, 1986.

[BOR 85] BORTOLAN G. and DEGANI R., “A review of some methods for comparing
fuzzy subsets”, Fuzzy Sets and Systems, vol. 15, p. 1-19, 1985.

[CHA 81] CHANAS S. and KAMBUROWSKI J., “The use of fuzzy variables in PERT”,
Fuzzy Sets and Systems, vol. 5, p. 11-19, 1981.

[CHA 98] CHANAS S. and KUCHTA D., “Discrete fuzzy optimization”, in Fuzzy Sets in
Decision Analysis, Operations Research and Statistics, R. Slowinski (ed.), p. 249-277,
The Handbooks of Fuzzy Sets Series, Kluwer Acad. Publ., Boston, 1998.

[CHA 01] CHANAS S. and ZIELINSKI P. “Critical path analysis in the network with fuzzy
activity times”, Fuzzy Sets and Systems, vol. 122, p. 195-204, 2001.

[CHA 02a] CHANAS S. and ZIELINSKI P. “The computational complexity of the criticality
problems in a network with interval activity times” European Journal of Operational
Research, vol. 136, p. 541-550, 2002.

330 Production Scheduling

[CHA 02b] CHANAS S., DUBOIS D., ZIELINSKI P. “On the sure criticality of tasks in
activity networks with imprecise durations”. IEEE Transactions on Systems, Man, and
Cybernetics, vol. 32, p. 393-407, 2002.

[CHA 03] CHANAS S., KASPERSKI A. “On two single machine scheduling problems with
fuzzy processing times and fuzzy due dates” European Journal of Operational Research,
vol. 147, p. 281-296, 2003.

[CHA 04] CHANAS S., KASPERSKI A. “Possible and necessary optimality of solutions in
the single machine scheduling problem with fuzzy parameters” Fuzzy Sets and Systems,
vol. 142, p. 359-371, 2004.

[CHE 92] CHEN S.-J. and HWANG C.-L., Fuzzy Multiple Attribute Decision Making,
Lecture Notes in Economics and Mathematical Systems, vol. 375, Springer Verlag,
Berlin, 1992.

[DUB 78] DUBOIS D. and PRADE H., “Algorithmes de plus courts chemins pour traiter des
données floues”, RAIRO-Recherche Opérationnelle/Operations Research, vol. 12, p. 212-
227, 1978.

[DUB 88] DUBOIS D. and PRADE H., Possibility Theory, Plenum Press, New York, 1988.

[DUB 94] DUBOIS D. and KONING J.L., “A decision engine based on rational aggregation
of heuristic knowledge”, Decision Support Systems, vol. 11, p. 337-361, 1994.

[DUB 95a] DUBOIS D., FARGIER H. and PRADE H., “Fuzzy constraints in job-shop
scheduling”, Journal of Intelligent Manufacturing, vol. 6, p. 215-234, 1995.

[DUB 95b] DUBOIS D. and PRADE H., “Possibility theory as a basis for qualitative decision
theory”, 14 th IJCAI, Montreal, Canada, p. 1924-1930, 1995.

[DUB 96] DUBOIS D., FARGIER H., PRADE H. “Possibility theory in constraint
satisfaction problems: Handling priority, preference and uncertainty”, Applied
Intelligence, vol. 6, p. 287-309, 1996.

[DUB 99] DUBOIS D. and FORTEMPS P., “Computing improved optimal solutions to fuzzy
constraint satisfaction problems”, European Journal of Operational Research, vol. 118,
p. 95-126, 1999.

[DUB 00] DUBOIS D., KERRE E., MESIAR R. and PRADE H., “Fuzzy interval analysis”,
in Fundamentals of Fuzzy sets, D. Dubois, H. Prade (eds.), p. 483-581, The Handbook of
Fuzzy Sets Series, Kluwer Acad. Publ., Boston, 2000.

[DUB 01a] DUBOIS D. and PRADE H., “Advances in the egalitarist approach to decision-
making in a fuzzy environment”, in Dynamical Aspect in Fuzzy Decision Making, Y.
Yoshida, Ed., Physica-Verlag, Heidelberg Germany, Studies in Fuzziness and Soft
Computing, vol. 73, p. 213-240, 2001.

[DUB 01b] DUBOIS D., PRADE H. and SABBADIN R., “Decision-theoretic foundations of
qualitative possibility theory”, European Journal of Operational Research, vol. 128,
p. 459-478, 2001.

The Fuzzy Approach 331

[DUB 03a] DUBOIS D., FARGIER H. and FORTEMPTS P., “Fuzzy scheduling: modeling
flexible constraints vs. coping with incomplete knowledge”, European Journal of
Operational Research, vol. 147, p. 231-252, 2003.

[DUB 03b] DUBOIS D., FARGIER H. and GALVAGNON V., “On latest times and floats in
activity networks with ill-known durations”, European Journal of Operational Research,
vol. 147, p. 266-280, 2003.

[DUB 05] DUBOIS D., FARGIER H., FORTIN J. Computational methods for determining
the latest starting times and floats of tasks in interval-valued activity networks, J. Intell.
Manufacturing, vol. 16, p. 407-422, 2005.

[ESQ 99] ESQUIROL P. and LOPEZ P., L’ordonnancement, Economica, Paris, 1999.

[FAR 97] FARGIER H., “Fuzzy scheduling: principles and experiments”, in Fuzzy
Information Engineering: A Guided Tour of Applications, D. Dubois, H. Prade and R.R.
Yager (eds.), p. 655-669, Wiley, 1997.

[FAR 00] FARGIER H. and GALVAGNON V., D. DUBOIS “Fuzzy PERT in series-parallel
graphs” IEEE International Conference on Fuzzy Systems (FUZZ-IEEE'2000), San
Antonio (Texas), IEEE Press, p. 717-722, 2000.

[FOD 94] FODOR J. and ROUBENS M., Fuzzy Preference Modelling and Multicriteria
Decision Support, Kluwer Acad. Publ., Dordrecht, 1994, section 7.2.2.

[FOR 96] FORTEMPS P. and ROUBENS M., “Ranking and defuzzification methods based
on area compensation”, Fuzzy Sets and Systems, vol. 82, p. 319-330, 1996.

[FOR 97a] FORTEMPS P. and HAPKE M., “On the disjunctive graph for project
scheduling”, Foundations of Computing and Decision Sciences, vol. 22, p. 195-209, 1997.

[FOR 97b] FORTEMPS P., “Job-shop scheduling with imprecise durations: a fuzzy
approach”, IEEE Transactions on Fuzzy Systems, vol. 5, p. 557-569, 1997.

[FOR 05] FORTIN J., ZIELINSKI P., DUBOIS D., FARGIER H., Interval analysis in
scheduling, Proc. of the 11th International Conference on Principles and Practice of
Constraint Programming (CP'05), Sitges, Spain, P. van Beek (eds.), Lecture Notes in
Computer Science, Volume 3709, Springer, p. 226-240, 2005.

[FOR 06] FORTIN J., DUBOIS D., Solving Fuzzy PERT using gradual real numbers, Proc.
Starting AI Researcher’s Symposium (STAIRS 2006), Riva del Garda, Italy, L. Penserini,
P. Peppas, A. Perini (eds.), IOS Press, Frontiers in Artificial Intelligence and
Applications, p. 196-207, 2006.

[GRA 94] GRABOT B. and GENESTE L., “Dispatching rules in scheduling: a fuzzy
approach”, International Journal of Production Research, vol. 32, p. 903-915, 1994.

[HAP 94] HAPKE M., JASZKIEWICZ A. and SLOWINSKI R., “Fuzzy project scheduling
system for software development”, Fuzzy Sets and Systems, vol. 21, p. 101-117, 1994.

[HER 05] HERROELEN W., LEUS R. “Project scheduling under uncertainty: survey and
research potentials” European Journal of Operational Research, vol. 165, p. 289-306,
2005.

332 Production Scheduling

[KAS 05] KASPERSKI A. “A possibilistic approach to sequencing problems with fuzzy
parameters”, Fuzzy Sets and Systems, vol. 150, p. 77-86, 2005.

[LOO 97] LOOTSMA F., Fuzzy Logic for Planning and Decision-Making, Kluwer Acad.
Publ., Dordrecht, 1997.

[MAC 92] MACCAHON C.S. and LEE E.S., “Fuzzy job sequencing for a flow shop”,
European Journal of Operational Research, vol. 62, p. 294-301, 1992.

[MAC 93] MACCARTHY B. and LIU J., “Addressing the gap in scheduling research: a
review of optimization and heuristic methods in production scheduling”, International
Journal of Production Research, vol. 31, p. 59-79, 1993.

[NAS 93] NASUTION S.H., “Fuzzy critical path method”, IEEE Transactions on Man,
Machine and Cybernetics, vol. 24, no. 1, p. 48-57, 1993.

[PIR 97] PIRLOT M. and VINCKE P., Semiorders: Properties, Representations, Applications,
Kluwer Acad. Publ., Dordrecht, 1997.

[PRA 79] PRADE H., “Using fuzzy set theory in a scheduling problem: a case study”, Fuzzy
Sets and Systems, vol. 2, p. 153-165, 1979.

[ROM 90] ROMMELFANGER H.J., “Fulpal: an interactive method for solving (multiobjective)
fuzzy linear programming problems”, in Stochastic versus Fuzzy Approaches to
Multiobjective Mathematical Programming under Uncertainty, R. Slowinski and J. Teghem
(eds.), p. 321-330, Kluwer, 1990.

[ROM 94] ROMMELFANGER H.J., “Network analysis and information flow in fuzzy
environment”, Fuzzy Sets and Systems, vol. 67, p. 119-128, 1994.

[TUR 99] TURKSEN I.B. and FAZEL ZARANDI M.H., “Production planning and
scheduling: fuzzy and crisp approaches”, in Practical Applications of Fuzzy Technologies,
H.-J. Zimmermann (ed.), p. 479-530, The Handbook of Fuzzy Sets Series, Kluwer Acad.
Publ., Dordrecht, 1999.

[VAN 92] VAN LAARHOVEN P.J.M., AARTS E.H.L. and LENSTRA J.K., “Job-shop
scheduling by simulated annealing”, Operations Research, vol. 40, p. 112-125, 1992.

[WAN 01] WANG X., KERRE E. “Reasonable properties for the ordering of fuzzy
quantities”, Fuzzy Sets and Systems, 118, p. 375-405, 2001.

[WER 99] WERNERS B. and WEBER R., “Decision and planning in research and
development”, in Practical Applications of Fuzzy Technologies, H.-J. Zimmermann (ed.),
p. 445-478, The Handbook of Fuzzy Sets Series, Kluwer Acad. Publ., Dordrecht, 1999.

[ZIE 05] ZIELINSKI P. “On computing the latest starting times and floats of activities in a
network with imprecise durations” Fuzzy Sets and Systems, 150, p. 53-76, 2005.

Chapter 12

Real-Time Workshop Scheduling

12.1. Introduction

The real-time (or on-line) workshop scheduling problem consists of permanently
adapting the execution terms of a set of jobs using a set of resources to the real
situation of the system involved. This problem is different from the projected (or
off-line) scheduling problem which is aimed at projecting the execution terms of a
set of jobs using a set of resources over a finite or infinite horizon, based on
hypotheses on the evolution of the system’s situation over time. The chapter can be
divided into two parts. The first part (sections 12.2, 12.3 and 12.4) focuses on
positioning of real-time workshop scheduling in the production management system
scheduling function. It shows the interest of the problem and, with a brief state of
the art, the low number of studies addressing it in a methodological way. It
also defines the decision variables, characteristics and objectives of the problem
involved. The second part (sections 12.5, 12.6 and 12.7) proposes a real-time
scheduling method in the context of workshops working on demand with small and
medium-sized runs.

12.2. Interest and problem positioning

12.2.1. The context of on demand production workshops

For companies working on demand, the current context imposes production
times that keep getting shorter, whereas the increasingly irregular demand makes it
difficult to anticipate production. In addition, respect for announced manufacturing

Chapter written by Christian ARTIGUES and François ROUBELLAT.

334 Production Scheduling

delivery dates becomes essential in the supply chain context which controls
manufacturer/supplier relations. In this type of environment, the workshop
scheduling function plays a vital role. It is the one organizing fulfillment of the
projected production schedule using workshop resources, integrating into this
organization the unexpected or urgent orders as best as possible, and controlling the
consequences of external or internal workshop uncertainties with increasingly tight
production programs.

The scheduling problem for this type of company is characterized by a set of
jobs (or manufacturing orders) to be produced over a given horizon issued from an
MRP type plan [GIA 88]. Each job has a release date and a desired due date. The
scheduling objective is to precisely allocate the operations which make up the jobs
to workshop resources and to define their start dates. The consideration of real
workshop characteristics imposes a satisfaction of complex constraints: multi-
operation jobs with various sequencing constraints, operations requiring several
resources for their completion, resource setup times or cost timetables associated
with resources, etc. The necessity of having a dynamic vision of the scheduling
function in order to react quickly to (internal or external) disruptions that the
workshop may encounter gets added to these complex characteristics of the
scheduling problem: unexpected jobs to perform, resource breakdowns, supply
problems, lack of components, etc.

Note that the real-time scheduling problem is naturally encountered in computer
systems (see, for example, [GOT 93, SIL 94, STA 95]). In fact, the dynamic arrival
of jobs to be fulfilled (processed) and the need to react very quickly constitute vital
characteristics of these systems. The scheduling problem involved is generally
limited to a resource or several parallel resources (processors). In addition, the
interruption of tasks (preemption) is often allowed, contrary to workshops. The set
of tasks to be performed at a given moment is relatively low compared to what we
encounter in production. In pipeline architectures, the cyclic character of tasks to be
scheduled can sometimes simplify problem resolution (see [GOT 93] and Chapter 7).

12.2.2. The different approaches to real-time workshop scheduling

The problem involved here is a job shop scheduling problem which has been the
subject of a very large number of studies, of which we can find a summary in
[BLA 96] in its simplest form (see also Chapter 2). Roughly, in (job-shop)
scheduling, we can distinguish two phases: a predictive or off-line phase which
takes place before the production process actually starts, and a real-time or on-line
phase which performs scheduling decisions in real time as the production process
goes by. We cannot define the real-time scheduling approach independently of the
selected off-line scheduling approach. We first describe two extreme cases that have

Real-Time Workshop Scheduling 335

been widely studied in the literature and that illustrate well this relationship between
off-line and real-time scheduling: the pure static case and the pure dynamic case
[STA 95].

In the pure static case, a set of jobs is presumed known beforehand over a finite
horizon. The traditional off-line approach consists of calculating a sequence of job-
operations on each resource. In academic approaches, numerous exact or heuristic
optimization algorithms are proposed, and some of them are described in Chapters 3,
4, 5 and 8 ([CAR 89, ADA 88, BAL 95, NOW 96, MAR 96, SCH 98, MAS 02]). In
most production scheduling software packages, an approximate algorithm based on
the use of one or more priority rules is used to solve the static problem (see [BLA
82] and Chapter 6). More recently, we find scheduling software packages based on
more sophisticated approximate algorithms. A production software program based
on the shifting-bottleneck heuristic [ADA 88] is presented in [MEE 96]. Another
software package using the tabu search method (see [GLO 93, NOW 96] and
Chapter 3) is described in [ART 97].

The real-time approach based on resolving the static problem consists of
controlling the respect of proposed sequences and projected start times. New jobs
included in the production plan or modifications of resource characteristics
following disruptions are taken into consideration in a deferred way, from the
moment when a new static problem is generated, based on a “rolling horizon”
principle. A complete rescheduling is then carried out. One of the problems is to set
the date from which a new schedule has to occur [OVA 94, VIE 03] and obviously
this approach is well suited to the cases where the need for rescheduling is not too
frequent. Another real-time approach is reactive scheduling where in the presence of
an unexpected event the off-line schedule can be modified or repaired through local
modifications.

In the pure dynamic case, the set of jobs is not known in advance and the
scheduling horizon is infinite. When a job arrives, we must allocate its operations to
resources and position them in relation to operations which have not yet started.
Thus the on-line approach consists of following a certain policy for queue
management for each resource. The off-line approach consists of selecting the best
policy with the help of flow simulation of jobs in the workshop. The dynamic aspect
of the problem can also involve resource availability, for which the possibility of
breakdowns is then considered, following probabilistic models based on the mean
time between failures or mean time to repair elements, for example [XIE 89]. This
simulation takes into account dynamic aspects of the problem (disruptions, arrival of
jobs, etc.) and makes it possible to compare the performances obtained for different
policies in order to retain one. This is the one that will effectively be applied to build
the workshop schedule in real-time, by queue management for each resource
(see [BLA 82] and the simulation approach presented in Chapter 6). In addition

336 Production Scheduling

to simulation yielding mean and standard deviation performances of the selected
policy, another role of the off-line phase in the pure dynamic case can be to evaluate
the performance of the on-line policy in the worst-case through analytical
techniques. In some particular cases, performance guarantees can be obtained
[ALB 03].

The Kanban method, mainly designed for production lines [SHI 86], can also be
presented as a dynamic real-time scheduling method decentralized by Kanban
management terms of each manufacturing center. The limited number of Kanbans in
a given manufacturing center notably avoids the uncontrolled increase of work-in-
process.

Another approach for considering disturbances occurring during the execution of
operations consists of considering operation processing times or other characteristics
such as resource availability, as uncertain data during the solving of the off-line
scheduling problem. The projected schedule, defined by considering uncertainties,
has a certain robustness in relation to disruption. According to [HER 05], there are
three categories of off-line scheduling approaches under uncertainty.

Fuzzy scheduling takes place within the context of the possibility theory; this
approach is presented in [DUB 95] (see also Chapter 11).

Stochastic scheduling consists of minimizing the expected value of the objective
function (usually the makespan) taking account of the processing time probability
distribution [SKU 05]. As opposed to the pure dynamic case, the set of jobs,
precedence constraints and resource requirement are assumed to be known in
advance. As a typical work in this area, Stork presents in [STO 00] a branch and
bound to calculate a pre-selective policy minimizing the expected makespan for the
stochastic resource-constrained project scheduling problem.

A third approach to tackle uncertainty during the off-line scheduling phase deals
with robust, or proactive, scheduling [DAN 95, WU 99, ART 03, ALO 05, AYT 05,
HER 05]. This approach differs from the stochastic scheduling approach in the sense
that the off-line schedule is generated with the objective of being relatively
insensitive to the actual realization of the uncertain data, for example by minimizing
the maximum distance between the realized schedule and the optimal one if all data
were known a priori. The approach described in this chapter proposes an off-line
scheduling method based on another concept related to robustness and is detailed in
section 12.2.3.

When the off-line schedule has been generated with robustness considerations, it
usually incorporates a certain degree of flexibility to self-adapt to unexpected
events. In such cases, the repair procedure or reactive scheduling has to be carried

Real-Time Workshop Scheduling 337

out only if the inherent flexibility is not able to absorb the disruptions. This is the
approach selected in this chapter.

12.2.3. An original approach

In the late 1970s [DEM 77], a new approach gave birth to a category of
proactive/reactive scheduling methods. The method was based on the observation
that neither the standard static approach, nor the dynamic scheduling approach really
satisfies real-time scheduling of job shops working on demand. The purely dynamic
approaches are penalized by their ignorance of the manufacturing plan which, even
though it will change during its execution, definitely exists in this problem. Global
performance of resource queue management by priority rules or by a more
sophisticated algorithm working with a smaller group of operations can turn out to
be insufficient. The purely dynamic approach by definition allows very little
anticipation for the use of resources. However, this anticipation can be vital in
workshops because of the setup times needed on some machines, procurement
management, etc. The static approaches can generate better solutions for holding
delays, when they themselves are not solely based on priority rules. On the other
hand, not considering the disruptions occurring in real-time can make the proposed
solutions inapplicable and the additional optimization effort ends up being useless.
In the case where a disruption leads to a complete rescheduling, the static approach
also penalizes the anticipation because the proposed sequences can be totally
different from one scheduling to another. This can go all the way to a loss of
confidence in the scheduling system from its users. Both approaches also suffer
from their directive aspect, leaving no freedom of action to deciders since they only
propose one solution.

In parallel to the necessity of reactivity with regard to disruptions, anticipation
and flexibility requirements for decisions, generally taken by people, make the real-
time workshop scheduling problem much more complex than the real-time
scheduling problem of a computer system. The problem with evaluating the
performance of a real-time scheduling policy in a production system, and more
generally of establishing a diagnostic following a bad result of this system, must also
be taken into consideration. In this way, in a workshop, the decision makers have a
tendency to attribute the fact that due dates are not respected to erroneous decisions
or to a lack of personnel productivity instead of to the absence of an adapted real-
time scheduling policy. The desire to meet due dates in this context often leads
decision makers to release product manufacturing as soon as possible, which comes
down to uselessly overloading the workshop, considerably increasing work in the
process.

338 Production Scheduling

With the hypothesis that real-time scheduling is crucial for on-demand
workshops, the approach presented in this chapter and initiated in [DEM 77] and
[THO 80] attempts to take advantage of static and dynamic approaches discussed
above and tries to avoid their main disadvantages. It is based on the above-presented
online and off-line scheduling phases. The first consists of generating in the off-line
scheduling phase not just one solution, but a set of eligible solutions from the
initially known production plan. The notion of eligibility, which is the basis of this
approach, stipulates that a solution is eligible if it respects all the problem’s
constraints, job delivery dates also being defined as constraints1. The second
proposition consists of using this set of eligible solutions in real-time (on-line) in the
context of an interactive decision support system for real-time scheduling. The
objectives of this system are:

– to improve in real-time solutions proposed by the off-line phase by updating
them according to decisions taken and significant events which occur (disruptions in
particular) while measuring their eligibility at any moment;

– when workshop status requires that a decision be taken, to help in the choice of
this decision among the possible choices at that moment, by relying on updated
solutions;

– in case of loss of eligibility following disruptions, to propose local
modifications on the solution set to retrieve eligibility. The local character of
modifications guarantees speed of execution and low disruption (robustness) from
all proposed solutions. In this way, there is no need to reschedule as long as the set
of solutions can remain eligible. Rescheduling only becomes necessary when the
system can no longer find eligibility with the help of local modifications, which
settles the problem of determining a rescheduling period which occurs when rolling
horizon procedures are considered.

Note that since the early works of [DEM 77] and [THO 80], the method has been
studied in several contexts and various forms [THO 88, ERS 89, LEG 92, BIL 96a,
BIL 96b, ART 97, ART 99, WU 99, ART 03, ALO 05, BRI 07] and that a real-time
production scheduling software has been issued from this work [THO 88] (see also
section 12.8). More precisely, the method presented in this chapter is based on
[ART 97].

12.3. Modeling and dynamic of scheduling problem considered

We can define a workshop as a system made up of basic entities which are
operations and resources. We can associate characteristic parameters with each

1 The notion of eligibility concerning constraint propagation in scheduling is described in
more detail in Chapter 5, section 5.3.

Real-Time Workshop Scheduling 339

entity. Scheduling problem solving consists of defining the relational terms of these
entities in order to complete a series of given jobs. Due to the dynamic approach
chosen, the association of a variable state over time for each entity is vital to follow
up the global workshop state and real-time decision-making. An entity goes from
one state to another following an event or a decision the occurrence of which is
controlled by constraints. We observe three fundamental entities in the production
system: resources, production operations, setup operations, described in sections
12.3.1, 12.3.2 and 12.3.3 respectively.

12.3.1. Resources

Resources constitute workshop production components and are its fundamental
element. The issue with the scheduling problem comes from the fact that their
capacity is limited. In this chapter, we only consider renewable resources, i.e. where
availability is completely returned after each operation. We distinguish disjunctive
resources, which can only perform one operation at a given moment, from
cumulative resources performing a limited number of operations at a given moment.
We consider that a cumulative resource Rk is made up of a number of resource units
Ak 1 called capacity; each resource unit can be assimilated to a disjunctive
resource. By extension, any disjunctive resource Rk has a unit capacity Ak = 1. In
approaches generally encountered for the job shop problem, disjunctive resources
are the only ones considered (see Chapter 2), cumulative resources being only
considered for the resource-constrained project scheduling problems (see [HER 98]
and Chapter 9). In reality, we often encounter both types of resources in shops:
machines and tools can be represented by disjunctive resources, whereas operator
teams can be represented by cumulative resources.

The maximum capacity of a resource may not always be available. Machines
may have maintenance periods and operators do not work 24 hours a day. Most
resources follow a timetable and at any instant t, capacity Ak(t) of a resource satisfies
Ak(t) Ak.

At a given time period t, the state of the “resource unit” entity of a resource Rk is
defined by the pair E1(k, t), E2(k, t) . Component E1(k, t) {LI, OC} defines the
state of the resource unit in relation to operation fulfillment:

– idle state (LI) indicates that the resource unit is not occupied with the
execution of an operation;

– occupied state (OC) indicates that the resource unit is busy with the execution
of an operation.

340 Production Scheduling

Component E2(k, t) {PN, NP} is a disruption indicator encountered by the
resource unit, called breakdown:

– breakdown state (PN) indicates that the resource unit no longer works,
following a hazard linked to the resource;

– non-breakdown state (NP) indicates that the resource unit works properly.

Two additional state components will be introduced to take into consideration
setup activities for a disjunctive resource (see section 12.3.3).

12.3.2. Production operations

Jobs to be fulfilled are made up of operations, each job i having an availability
release date ri and a delivery date di. o(i, j) represents operation j of job i with 1

 j ni . Precedence relations exist between operations of one job and do not
necessarily constitute a total order between these operations, which is different from
traditional job shop models. In fact, precedence relations between the different
operations of job i can be represented by an operation-on-node graph Gi. In this way,
for an operation o(i, j), the set pred(i, j) represents all operations immediately
preceding o(i, j) within job i. succ(i, j) represents all operations that are direct
successors of o(i, j) in job i. These generalized precedence relations enable modeling
of assembly problems [SCH 98, DAU 98] and in a more general way, non-linear
routings [ART 97].

For their execution, production operations use one or more resources
simultaneously (multi-resource context). For example, a production operation can
simultaneously require the use of a machine, a tool or two operators.

In addition, there may be several terms of use for resources for a single
production operation, particularly when a choice of different resources is possible
for executing a production operation. Each resource use term is called a mode
(denoted as m). An operation (i, j) may have mij 1 mode(s), each mode m
(1 m mij) defining:

– a number of resource units aijkm 0 used on each resource Rk in the workshop;

– a duration pijm.

For example, a turning operation can be executed by numerically controlled lathe
A (mode 1: one resource) or by numerically controlled lathe B (mode 2: one
resource) or by an operator using a manually controlled lathe (mode 3: two
resources).

Real-Time Workshop Scheduling 341

With reference to models encountered in literature, multi-resource and multi-
mode characteristics define the workshop problem involved here as a multi-project
scheduling problem with limited resources and multiple modes [HER 98].

At a given time t, the state of a production operation is defined by the pair O1(i,
j, t), O2(i, j, t) . Component O1(i, j, t) {BL, AP, DI, EC, TR} represents the
operation situation in the job completion, i.e. its state of progress:

– available state (DI) indicates that execution of the production operation can
start, parts are waiting in front of the resource(s);

– in process state (EC) indicates that execution of the production operation is in
process;

– finished state (TR) indicates that execution of the production operation is
finished for the job involved;

– approaching state (AP) is only defined for production operations with at least
one preceding operation and indicates that any preceding operation is either finished,
or “in process”, but that there is at least one in the in process state;

– blank state (BL), also defined for operations with at least one previous
operation, indicates that at least one of these previous operations is not finished or in
process.

The second component O2(i, j, t) {BQ, NB} is an indicator of a disruption that
the operation encountered, called “blocking”, which prohibits any possibility of
operation execution, regardless of the state of resources necessary for its execution
(which may correspond to a lack of components for example). It is a disruption
linked to the operation and not to resources that it requires. Two states are possible:

– blocked state (BQ) indicates that the production operation cannot be executed
because of a blocking;

– non-blocked state (NB) indicates that the production operation is not subject to
the blocking hazard.

12.3.3. Setup operations

Before the execution of a production operation, certain resources require the
completion of a setup activity with the goal of getting them into a configuration
compatible with the production operation to be fulfilled, called setup state. This
setup activity may consist of one or more cleanings, adjustments, equipment
assembly (tools, tooling) specific to the production operation to be executed,
disassembly of equipment used by the production operation finished, etc. Depending
on the context, this setup activity may be integrated in the value given for the

342 Production Scheduling

duration of an operation, or be explicitly taken into account. The first context is
valid if setup time is low compared to production time, if setup requires the presence
of parts to be completed, if it requires no resources except for the ones used for
production (same machine and same operators for example) and if setup time does
not depend on sequence of operations executed, or if setup can be carried out in
concurrent operation time, i.e. without occupying resources. The objective here is to
take into consideration a second context for which the setup activity can be
anticipated before the arrival of parts for the production operation, and does not
necessarily involve the same set of resources, but occupies this set of resources for a
period time depending on its initial setup state and the setup state to be reached.

Traditional solving approaches (for a state of the art, please refer to [ART 97])
consider setup activity by introducing setup costs linked to changes in production
type, or setup times occupying resources between two different types of production.
Several types of setup times are found in literature. In general, the setup time
considered immobilizes a single disjunctive resource, in the context of one-resource
[GAV 65], parallel resource [GUI 91, MON 93], flow shop [PRO 91] and less often
job shop [OVA 94] problems with assembly constraints (see [SCH 98]), or project
scheduling (see [KOL 95], p. 177). We observe:

– resource assembly time independent of the sequence which immobilizes a
resource before execution of an operation and only depends on this operation and
the resource involved;

– resource disassembly time independent of the sequence immobilizing a
resource after execution of an operation and only depends on this operation and the
resource involved;

– resource setup time depending on the sequence which immobilizes a resource
between the execution of two operations and depends on the resource involved,
previous and next operations. In certain cases, each production operation is
associated with a family and setup times are defined in relation to families.

The model retained in this chapter to describe the setup activity refines
these traditional models, in order to take into consideration more precisely the multi-
resource characteristics of this activity generally encountered in reality. With
regards to the notion of setup, production operations are distributed into families
(set F) and workshop resources can be divided into two subsets:

– set Rp of main resources contains all resources which may require a setup
activity prior to execution of a production operation, i.e. for which the notion of
setup state has a meaning; for simplification purposes, we consider that a main
resource must be disjunctive;

Real-Time Workshop Scheduling 343

– set Rc of complementary resources is the set of resources for which the notion
of setup state makes no sense, i.e. they never require setup. They can be disjunctive
or cumulative.

Each production operation belonging to a certain family and needing a set of
main resources, the necessary setup activity to bring all required main resources in
the configuration enabling the execution of this operation, can be broken down into
three basic setup operations:

– family change operation, denoted as s(f, f ’, u);

– multi-resource assembly and disassembly operations respectively noted as
s(–, u) and s(u, –).

The family change operation s(f, f ’, u) makes it possible to simultaneously move
a set of main resources u = {Rk1, …, Rkr}, r 1, from one setup state compatible
with family f F to a setup state compatible with family f ’ F, f ’ f. According to
the same principle as with a production operation, several modes ms(f, f ’, u) of
execution of a family change operation can exist. Each mode involves a different set
of complementary resource units required by the family change operation. Operation
duration depends on the mode chosen m {1, …, ms(f, f ’, u)}, of family f, of family
f ’ and is noted as ps(f, f ’, u)m. The family change operation occupies all main
resources of set u and a number of resource units for each complementary resource
Rk equal to as(f, f ’, u)km 0.

Resource assembly operation s(–, u) switches a set of main resources
u = {Rk1, …, Rkr}, r 1, from “isolated” state to “associated within set u” state.
There may be several modes ms(–, u) of execution of the assembly operation. Each
mode involves a different set of complementary resources required by the assembly
operation. Operation duration depends on the mode chosen m {1, …, ms(–, u)}, and
is denoted as ps(–, u)m. The assembly operation occupies all main resources of set u
and a number of resource units on each complementary resource k given by
as(–,u)km 0.

Finally, resource disassembly operation s(u, –) switches a set of main resources
u = {Rk1, …, Rkr}, r 1, from “associated within set u” state to “isolated” state.
There may be several modes ms(u,–) of execution of the disassembly operation.
Each mode involves a different set of complementary resources required by the
disassembly operation. Operation duration depends on the mode chosen
m {1, …, ms(u, –)}, and is denoted as ps(u, –)m. The disassembly operation occupies
all main resources of set u and a number of resource units on each complementary
resource k given by as(u, –)km 0.

344 Production Scheduling

This original model introduces the setup operation notion, thus generalizing the
traditional notion of setup time, in order to take into account the multi-resource
context. The definition of these operations for setup is greatly justified for the
consideration of complementary resources which can be different for setup and for
production. The sequence of setup operations necessary prior to a production
operation varies according to the initial setup state for each main resource used.

The setup state of a main resource k at a given time t is defined by the pair
S1(k, t), S2(k, t) . Component S1(k, t) {f | f F} {(f, f ’) | f, f ’ F} traditionally

defines the setup state of Rk in relation to set F of production operation families:

– S1(k, t) = f indicates that resource k is in a state compatible with any production
operation of family f;

– S1(k, t) = (f, f ’) indicates that resource k is moving at time t from a state
compatible with family f to a state compatible with family f ’.

S2(k, t) defines the state of association of Rk with a set of other main resources;
this state is directly linked to the multi-resource context retained for production and
setup operations. We observe the following cases:

– S2(k, t) indicates that resource k is not associated with any other main
resource; it is in the isolated state;

– S2(k, t) u indicates that resource k is associated within the set of main
resources u {Rk1, …, Rkr} Rp , with k u; it is therefore ready to execute any
production operation simultaneously requiring all resources of u;

– S2(k, t) (–, u) indicates that the resource is switching from “isolated” state to
“associated within set u {k1, …, kr}” state;

– S2(k, t) (u, –) indicates that the resource is switching from “associated within
set u {k1, …, kr}” state to “isolated” state.

The generation of setup operations is dynamic and depends on sequencing and
allocation decisions presented in the following section. This dynamic character
makes this setup operation a generic operation with a “physical” existence only
when it is in progress, contrary to production operation with an approaching,
availability state, etc. For each generic setup operation (change of family, assembly,
disassembly) s, we associate state S3(s, t) {BQ, NB} indicating if the operation is
blocked or not (because of lack of a component to complete this setup, for example).

Real-Time Workshop Scheduling 345

12.4. Decisions, events and constraints

This section contains the description of decisions and events, and their impact on
the evolution state of entities presented in the previous section and constraints that
they have to face.

We consider two types of decision significant for real-time scheduling
concerning production operations:

– the start decision E(o, m), consisting of allocating to operation o resources
defined by the m mode and to start its execution, switching o from state DI
(available) to state EC (in process) and involved resource units from state LI (idle)
to state OC (occupied);

– the interruption decision I(o, m) consisting of suspending the execution of an
operation with mode m; this decision frees resource units involved in this execution.

The start decision E(o, m) can only happen if each resource unit involved is idle
(LI) and not in breakdown (NP), if the operation is available (DI) and non-blocked
(NB), if the set of main resources used is associated and if each main resource is
prepared for the operation family. On the other hand, no specific constraint
influences the interruption decision.

We consider two types of decision significant for real-time scheduling
concerning setup operations:

– the start decision E(s, m), consisting of starting execution of setup operation s
in mode m, switching resource units of each main and complementary resource
involved from state LI (idle) to state OC (occupied) and each main setup resource
from initial setup state to in process setup2;

– the cancellation decision A(s, m) which interrupts the execution of a setup s
operation; this decision frees resource units (main and complementary resources
used) involved and brings main resources back to the initial setup state.

The start decision E(s, m) can only happen if each resource unit involved is idle
(LI) and not in breakdown (NP), if the setup operation is not blocked and if the set
of main resources used is in the initial required setup state. For the cancellation
decision, no constraint is defined by simplification.

Significant events for real-time scheduling can be divided into two classes:
unexpected events and expected events. We consider two types of unexpected events
that we can also call disruptions:

2 The “initial” and “in process setup” states vary according to the setup operation involved:
change of family, assembly or disassembly (see section 12.3.3).

346 Production Scheduling

– the breakdown event which makes the use of a certain number of resource
units a of a resource Rk temporarily impossible for any production or setup
operation; this event is denoted as P(k, a);

– the blocking event which prevents the execution of a production o (or setup s)
operation independently of the resources that it uses (lack of procurement, absence
of a non-modeled resource, etc.); this event is denoted as B(o) (respectively B(s)).

There are three types of expected event, each is the consequence of an
unexpected event or decision:

– the end of execution event for production o (or setup s) operation is expected
after the type E(o, m) (respectively E(s, m)) decision, actually at a date equal to the
date of this decision plus operation duration po (ps); this event frees resource units
involved for a production operation and in the case of a setup operation, switches
main resources to the final setup state associated with this operation;

– the end of breakdown event of a number a of resource units for resource k is
expected after occurrence of a type P(k, a) event with or without an estimated
breakdown time; it is denoted as FP(k, a);

– the end of blocking event of production o or setup s operation is expected after
occurrence of a type B(o) (respectively B(s)) event with or without an estimated
blocking time; it is denoted as FB(o) (FB(s)).

Any execution end event can only happen if each resource unit occupied is not in
breakdown (NP) and if the in process operation is not blocked (NB).

The state sequence of the different entities according to events and decisions, as
well as constraints weighing on these events and decisions characterizing the
scheduling problem, can be modeled by a Petri net3. A Petri net is a network
containing two types of nodes. Events and decisions are represented by “transition”
nodes and states of entities by “place” nodes. We can find a detailed representation
of such a network in [ART 97].

12.5. Models for off-line and on-line scheduling

By taking into consideration constraints presented in section 12.4, and knowing
the current state of the workshop defined by the set of states of different entities
presented in the previous section, the scheduling objective is to reach a final eligible
state. This state then corresponds to transferring to the “finished” state the set of
production operations before job delivery dates.

3 We can find a presentation on Petri nets in Chapter 7.

Real-Time Workshop Scheduling 347

The bias of the method proposed is to consider, for projected scheduling, a
deterministic model in which unexpected events are not considered, neither is the
decision to interrupt an operation, since preempting an operation is not authorized in
this scheduling phase. The goal of off-line scheduling is to plan a set of start
decisions leading to a final eligible state, while remaining as flexible as possible.
The real-time scheduling objective is to help in choosing the best decision at any
time because of the state of the workshop and off-line schedule. In the case of
disruption, real-time scheduling reacts by using available flexibility and if this
disruption compromises eligibility of all expected decisions, by possibly proposing
decisions of production operation interruption or cancellation of setup operations.
These propositions then have the goal of locally modifying the set of decisions
expected by projected scheduling in order to recover eligibility.

In order to bring out flexibility for its use with real-time scheduling during off-
line scheduling, the approach proposed in section 12.2.3 is intended to define a set
of solutions instead of just one as with traditional approaches. This inventive
approach is now presented, in the context of the scheduling problem involved.

12.5.1. Groups of interchangeable operations

In order to facilitate real-time use of the set of schedules obtained from the
projected scheduling procedure, emphasis on sequential degrees of freedom for the
execution of production operations, easy to understand and use in real time, was
preferred. This has led to introducing the concept of “sequence of interchangeable
operation groups”, in order to retain sequential indeterminism for production
operations belonging to the same group [DEM 77]. A total order relation exists
between any two operations belonging to two consecutive groups in the sequence. In
terms of constraint propagation for other operations (see Chapter 5), the least
favorable sequence of production operations, i.e. the most restricting start decisions
involving other operations, is always considered. In this way, we ensure that start
times associated with operations, i.e. projected dates for start decisions, will be
compatible with any permutation selected in each group. In order to facilitate
understanding of the set of solutions thus proposed, the scheduling method is only
authorized to interchange production operations allocated to the same resources and
for each resource, to the same resource units. In addition, it can only include in a
group production operations from the same setup class. Finally, setup operations to
be executed cannot be included in a group of interchangeable operations.

348 Production Scheduling

12.5.2. Operation-on-node graphs

The definition of interchangeable operation group sequences offers degrees of
freedom of a sequential nature for operation start decisions. Temporal degrees of
freedom, preserving sequential degrees of freedom, can also be highlighted by
characterizing the start date of a production or setup operation4 o with the help of an
earliest start date ro and a latest end date do. According to one of the two dates
involved, a sequence of groups, i.e. a set of scheduling problem solutions, can be
represented by two operation-on-node graphs for calculating these dates by potential
propagation [ROY 70].

For earliest start date calculation, graph G = (X, U) is defined in the following
way. The set of nodes X is such that each projected production operation is a node
and each necessary setup operation is also a node. For each job i, we add a fictitious
operation o(i, ni + 1) following any operation of this job without successor in the
routing. We also add to the graph original time node O and a node H to measure
eligibility. The set of arcs U represents the set of precedence constraints . We define
three types of arcs; the first two are only defined for production operations:

– constraints linked to the routing: a “routing” type arc is defined between two
nodes corresponding to two consecutive production operations in the job routing;
this arc is valued by duration of operation corresponding to the original node; a
routing type arc is defined between node O and each node corresponding to the first
operation in a job i, valued by ri; a routing type arc is defined between each node
corresponding to the last operation o(i, ni + 1) of a job i and node H, valued by – di;

– constraints linked to routing and to considering the most unfavorable
permutations within one group (“group” type arcs): a group type arc is defined
between two nodes if the destination node corresponds to a production operation
where a previous operation in the routing belongs to the same group as the operation
corresponding to the original node. This arc is valued by the sum of durations of
production operations belonging to the same group as the production operation
corresponding to the original node, i.e. duration of this group;

– constraints linked to resource sharing (“resource” type arcs): a resource type
arc is defined between two nodes x1 and x2 in the following four cases: either x1 and
x2 correspond to two production operations whose groups are (directly) consecutive
on a set of non-empty resource units; or x1 and x2 correspond to two setup
operations directly consecutive on a set of non-empty resource units; or x1
corresponds to a setup operation, x2 corresponds to a production operation and group
x2 is directly consecutive to the setup operation x1 on a set of non-empty resource
units; or x1 corresponds to a production operation, x2 corresponds to a setup

4 Subsequently, o represents an operation without specifying if it is a setup or production
operation, whereas o(i, j) exclusively represents a production operation.

Real-Time Workshop Scheduling 349

operation and this operation is directly consecutive to group x1 on a set of non-
empty resource units. In the case where x1 corresponds to a production operation,
the arc is valued by duration of its group (which is the sum of the durations of the
operations inside the group); in the case where x1 corresponds to a setup operation,
the arc is valued by its duration. Earliest start dates for all operations can be obtained
by potential propagation in this graph from node O with which we associated zero
potential. Potential obtained for node H is the maximum lateness denoted as Lmax. It
gives information on eligibility of the group sequence.

Contrary to the traditional method [ROY 70], we cannot calculate the latest end
date by reverse propagation in graph G, because group type arcs do not correspond
to the expression of the most unfavorable permutation constraint for end dates. We
thus have to use another graph containing (in reverse) the exact same routing and
resource type arcs but different group type arcs [THO 80].

However, when the number of operations in a group is large, the number of
group type arcs can be very significant. Fortunately, it is not necessary to represent
group type arcs, the knowledge of operation membership to a group and routing type
arcs are sufficient for representing group type arcs implicitly. We can thus blend
both graphs into a single one called a “group graph”. This graph which prevents
combinatorial explosion of group type arcs is presented with the help of this next
example. The algorithm enabling the calculation of earliest start and latest end dates
from this graph is presented in section 12.5.3.

EXAMPLE.– A workshop is made up of 9 resources, 7 of which are disjunctive,
representing two presses (denoted as PR1 and PR2) , two molds (denoted as MO1
and MO2), three operators (denoted as O1, O2 and O3) and two cumulative
resources representing two operator teams (EQ1 and EQ2), where each team
contains two operators (two resource units, notation ldc in the diagram). We
consider five jobs with an earliest start date equal to 0 and with linear routing5. In
this example, all production and setup operations only have one mode of execution.
Job characteristics are presented in Table 12.1.

i di j Fij Resources pij j Fij Resources pij

1 20 1 A PR1, MO1, O1 2 2 B PR1, MO2, O3 1

2 20 1 C PR2, MO2, O2 1 2 B PR1, MO2, O3 2

3 5 1 C PR2, MO2, O2 2 - - - -

4 10 1 - EQ1 (2 ldc) 1 2 - EQ2 (1 ldc) 4

5 10 1 - EQ1 (2 ldc) 2 2 - EQ2 (1 ldc) 6

Table 12.1. Job characteristics

5 Gi is a chain.

350 Production Scheduling

Resource Disassembly s(u, –) Resource Assembly s(–, u)Association u

Duration Complementary Duration Complementary

{PR1, MO1} 5 EQ1 (1 ldc) 4 EQ1 (2 ldc)

{PR1, MO2} 8 EQ1 (1 ldc) 2 EQ1 (2 ldc)

{PR2, MO1} 2 EQ1 (1 ldc) 6 EQ1 (2 ldc)

{PR2, MO2} 4 EQ1 (1 ldc) 8 EQ1 (2 ldc)

Table 12.2. Resource assembly and disassembly operation characteristics

Change Duration Complementary Change Duration Complementary

s(A, B, u) 3 EQ2 (1 ldc) s(C, A, u) 5 EQ2 (1 ldc)

s(A, C, u) 4 EQ2 (1 ldc) s(C, B, u) 6 EQ2 (1 ldc)

s(B, A, u) 1 EQ2 (1 ldc)

s(B, C, u) 3 EQ2 (1 ldc)

Table 12.3. Family change operation characteristics

For example, job 1 has a delivery date equal to 20 and two operations: o(1, 1)
duration equal to 2, of family A, allocated to resources PR1, MO1, O1 and operation
o(1, 2) of family B, duration equal to 1 and allocated to resources PR1, MO2, O3.
Concerning setup activities, press and mold resources (PR1, PR2, MO1 and MO2)
are the main workshop resources liable to have setup activities. Operator resources
(O1, O2, O3, EQ1 and EQ2) are complementary resources. The distribution of
production operations into families is indicated in Table 12.1. We can observe that
manufacturing order operations 4 and 5 have no family. In fact, they are only
allocated to complementary resources. Resource assembly and disassembly
operation characteristics are presented in Table 12.2. For example, PR1 resource
assembly operation with MO1 lasts for 4 units of time and uses 2 resource units
from complementary resource EQ1. The characteristics of family change operations
are given in Table 12.3, where u can be replaced by any resource in the set
{PR1, PR2, MO1, MO2} or any association of a set element {PR1, PR2} with any
element of the set {MO1, MO2}. In this way, for isolated resource PR1, changing
from family A to family B lasts for 3 units of time and uses 1 resource unit of
complementary resource EQ2.

Real-Time Workshop Scheduling 351

o(2,2)

o(4,1)

0 5 10 15

MO1 o(1,1) s({PR1,MO1},–)

PR1 o(1,1) s({PR1,MO1},–) s(A,B,PR1)

s(–,{PR1,MO2})

o(1,2)

O1 o(1,1)

O2 o(2,1) o(3,1)

PR2 o(2,1) o(3,1) s({PR2,MO2},–)

EQ1 o(5,1)
s({PR2,MO2},–)

s({PR1,MO1},–)

s(–,{PR1,MO2})

MO2 s(C,B,MO2) o(2,1) o(3,1) s({PR2,MO2},–)

s(–,{PR1,MO2})

o(1,2) o(2,2)

O3 o(1,2) o(2,2)

EQ2
o(4,2)

o(5,2)
s(C,B,MO2)

s(A,B,PR1)

Figure 12.1. Example of an eligible schedule set

The sequence of groups presented in Figure 12.1 in the form of a Gantt chart
represents a set of solutions to the problem thus defined. The sequence of groups
contains 3 groups with more than one operation: {o(2, 1), o(3, 1)}, {o(1, 2), o(2, 2)}
and {o(4, 1), o(5, 1)}. Therefore, 8 schedules are represented.

Necessary setup operations are represented by simple line rectangles, whereas
interchangeable production operation groups are represented by double line
rectangles. In this Gantt chart, operations and groups are scheduled the earliest. We
thus observe that the sequence of proposed groups is eligible by looking at job due
dates. The two graphs used for calculating earliest start and latest end dates for
operations are represented implicitly by the single graph in Figure 12.2.

352 Production Scheduling

o(1,1)

o(4,1)

o(5,1)

O

o(2,1)

o(3,1)

o(1,2)

o(2,2)

H

o(4,2)

o(5,2)

s({PR1,MO1},-)
s(A,B,PR1)

s(-,{PR1,MO2})

s({PR2,MO2},-) s(C,B,MO2)
[0,0]

[0,7]

[0,5]

[0,4]

[0,5]

[0,5]

[3,12]

[3,9]

[3,10]

[7,15]

[9,15]

[3,9]

[13,17]

[15,20]

[15,20]

[-1,0]

Figure 12.2. Graph representing sequence of groups in Figure 12.1

In this graph, we have two types of nodes: “operation” and “group” nodes. We
only represent resource type arcs (bold line) and routing type arcs (dotted line) and
we include nodes representing production operations located in one group within the
node representing the group. We define routing type arcs between two “operation”
nodes and resource type arcs between two “group” nodes. This representation makes
it possible to reduce the number of arcs and to highlight the group concept in the
operation-on-node graph. For example, the group type arc existing between node
o(3, 1) and node o(2, 2) for earliest start date calculation is implicitly represented by
the routing type arc between o(2, 1) and o(2, 2) which traverses the node
representing group {o(2, 1), o(3, 1)}. For calculating latest end dates, a “group” type
arc exists between node o(2, 2) and node o(1, 1), but it is implicitly represented by
the routing type arc between o(1, 1) and o(1, 2), which “passes through” the node
representing group {o(1, 2),o(2, 2)}. The method for calculating dates associated
with operations and verifying eligibility of a sequence of groups is presented in the
next section.

Real-Time Workshop Scheduling 353

12.5.3. Generic graph methods

Potential propagation method

From a sequence of groups given by a graph, we use a potential propagation
method to calculate the earliest start and latest end dates of the different operations,
represented in square brackets in Figure 12.2. For earliest start date calculation, we
allocate zero potential to the original O node and we propagate this potential with an
extension of the Bellman algorithm (see Chapter 2) with a recursive formulation as
follows: the potential of (production or setup) “operation” node o of the graph, i.e.
the earliest operation start date ro, is the largest value between:

– the earliest end date of any operation o(i, j) whose node is the origin of a
routing type arc having node o as destination, in the most unfavorable permutation
situation in group gij containing o(i, j):

ro rij + pij

ro max{rxy | o(x, y) gij, o(x, y) o(i, j)}+ {pxy | o(x, y) gij}

– the largest earliest end date of operations included in any group g whose node
is linked to the group of node o by a resource type arc:

ro max{ro’ | o’ g}+ {po’ | o’ g}

In the presence of timetables, we must add to these values durations of inactive
periods of resources used by the operation or the group during the period involved.

In the graph in Figure 12.2, we calculate in this way a maximum lateness of –1
(advance), since job 5 ends on date 9. Latest end dates are obtained in a symmetric
way by starting the propagation from node H, by allocating for example to node H a
latest end date equal to max(0, Lmax), as was done in Figure 12.2. For these
calculations, the graph model requires no distinction between setup and production
operations.

Insertion method for a production operation

The model based on graphs makes it possible to analyze the impact of a local
modification of the series of solutions on eligibility, notably when this modification
is caused by an insertion. We can define the insertion problem of a production
operation in a set of schedules represented by a sequence of groups in the following
way. Given a scheduling problem A defined by a set of resources and jobs, a
sequence of groups SA eligible for problem A, a production operation o(i, j) not in A
and with an earliest start and latest end date, the insertion problem of o(i, j) comes
down to proposing a new eligible sequence of groups SB, or the closest possible to
eligibility for problem B defined by adding o(i, j) to A. To solve this problem, a
purely dynamic approach consists of solving problem B with no consideration for

354 Production Scheduling

SA. In contrast, the method proposed here uses this sequence as insertion support for
operation o(i, j). We set an objective of inserting o(i, j) in the set of schedules:

– by respecting sequence SA, i.e. without changing the relative order of
operations already present, or their allocation;

– by minimizing violation of latest end dates of o(i, j) and already sequenced
operations in SA, o(i, j) satisfying its earliest start date.

Preserving SA has the double purpose of not provoking major changes in the
sequence, which may not be accepted well in real time in a workshop, and making
problem B much simpler to solve because of the significant reduction of all possible
solutions.

Details of this method will not be described here. For an idea of its principle, we
use each resource type arc u from graph G modeling the current set of solutions SA

as a characteristic element of a position of insertion. In fact, there is a positive or
zero time interval between the earliest end date of group g1 corresponding to the
origin node of u and the latest start date of group g2 corresponding to destination
node of u. In addition to this interval, called the time window, arc u also defines an
resource occupation, i.e. the resource unit subset that group g2 directly recovers
after being used by g1. These two elements, characterizing the insertion interval,
totally define maximum allocation of resource units to an operation if we settle for
inserting it between g1 and g2, and its maximum duration preserving eligibility.
Generally, it is necessary to jointly use several resource type arcs to give an
operation all the resource units that it requires. Provided these arcs are compatible,
i.e. not located on the same route in graph G, the insertion interval represented by
these arcs has a resource occupation equal to the union of the resource occupations
of its arcs and a time window equal to the intersection of windows associated with
its arcs. The main concern with the insertion problem is to avoid listing all possible
insertion intervals and to verify compatibility of arcs making up each insertion
interval. In the case where the operation to be inserted cannot generate a setup
activity, a polynomial algorithm has been defined to find the optimal insertion
interval, i.e. minimizing maximum violation of the latest operation end dates [ART
00]. This algorithm is based on a forward traversal of graph G which modifies at
each iteration an insertion interval containing a maximal set of arcs, called the
insertion cut, by replacing resource type arcs going to a node by resource type arcs
issued from the same node. For each insertion cut, the algorithm removes useless
arcs for allocation, in order to increase the time window while conserving a
sufficient number of resource units. A heuristic based on this principle was proposed
for the consideration of setup activity which may occur following the inserted
operation.

Real-Time Workshop Scheduling 355

These propagation and insertion methods are used for real-time decision support
in order to prepare for hazards, but also during off-line scheduling in iterative
improvement methods for the initially generated sequence of groups.

12.6. Off-line scheduling method

12.6.1. Gradual construction of a feasible initial sequence of groups

A feasible sequence of groups is a sequence respecting all constraints of the
problem, except possibly for job delivery dates, which distinguishes it from an
eligible sequence which must also respect these delivery dates. A feasible initial
sequence of groups and corresponding graph of groups can be constructed gradually,
using a method presented in detail in [ART 97], by adding a new production
operation to a partial sequence at each step. This operation is selected within a series
of candidate operations with the help of a priority rule. Please see Chapter 6 or
[BLA 82] for states of the art concerning priority rules in job shop scheduling and
[KUR 82] in multi-project scheduling.

The difference from traditional methods is that the selected operation position in
the partial sequence is obtained by applying the insertion algorithm. The priority rule
used must reach a compromise between three objectives sorted in a preferential
sequence. The first objective is meeting the delivery dates of jobs to be fulfilled. In
order to do this, a priority rule based on the margin of operations is used. The second
objective, linked to resource setup activity, carries out technological groupings, i.e.
maximum sequence of production operations from the same family by using the same
main resources in order to avoid unproductive setup times. We should note that there
may be incompatibility between these two objectives. The third objective, linked to the
real-time decision support phase, is the maximization of the number of solutions
proposed. In the interchangeable operation group context, the idea is to include as
many operations as possible in each group. This objective can also turn out to be
incompatible with delivery date satisfaction since interchangeability adds constraints
to start operation dates which can lead to job delays.

The accomplishment of the delay/setup and delay/interchangeability compromise
uses constraint analysis (see Chapter 5). In fact, to reach the delay/setup compromise
for a given iteration of the gradual construction, an estimated latest end date is
calculated for each production operation, considering the partial sequence generated
and the corresponding job delay. In case of conflict between the selection of an
urgent operation (relative to its margin) and selection of an operation to complete
the technological grouping or to increase the number of operations of a group, the
priority rule proposed selects the second operation insofar as this selection is
compatible with the estimated latest end date of more urgent operations. Similarly,

356 Production Scheduling

when a production operation generating no setup is selected by this priority rule, its
insertion in the already existing group (when appropriate) over all resources
involved is only carried out with respect to latest estimated end dates for operations
already present in the group. If interchangeability constraints cause the violation of
one of these dates or if the selected production operation generates a setup activity, a
new group not containing this operation is then created (possibly preceded by the
different setup operations required).

12.6.2. Search for eligibility by iterative improvement of the sequence

Despite constraint analysis carried out during generation, the priority rule used
cannot guarantee respect for all job due dates. In the case where a delay is indicated
by a positive potential associated with node H of the graph, a group sequence
iterative improvement algorithm is then executed based on a neighborhood search
method. This method identifies the critical path in the graph representing the current
set of solutions, i.e. the set of operations the sequence of which makes this potential
positive. From the current set of solutions, a neighboring set of solutions is obtained
by deleting a critical operation from the graph and by re-inserting it in another
position with the help of the polynomial insertion algorithm presented in section
12.5.3. Selecting operations to move and ending algorithm conditions are performed
according to principles from the tabu search method (see [GLO 93, NOW 96] and
Chapter 3 on metaheuristics), making it possible to temporarily accept eligibility
deteriorations to get rid of a possible local optimum. The proposed tabu search
method, which is an extension of that presented in [DAU 98], is described in detail
in [ART 97]. It has obtained good results in resource-constrained project scheduling
problems [ART 99] which integrate the main constraints retained in this chapter.

12.7. Real-time scheduling method, interactive decision support system

The real-time scheduling method proposed is implemented by an interactive
decision support system. Section 12.7.1 first presents how real-time information
(events, decisions) is retrieved in this system from the workshop and how decision
support information is sent to the different decision centers. Among this decision
support information, section 12.7.2 puts emphasis on eligibility control indicators
for the current sequence of groups, since its respect remains the main objective of
real-time scheduling. In fact, decision support itself is different whether we are in an
eligible context or not. As long as the current sequence of groups is eligible,
decision support procedures presented in section 12.7.3 are intended to help in
making operation start decisions favoring conservation of this eligibility. When the
sequence becomes non-eligible, decision support procedures presented in section
12.7.4 are intended to retrieve eligibility, prior to continuing to use the sequence of

Real-Time Workshop Scheduling 357

groups for decision support. Finally, section 12.7.5 presents the possibility of testing
decisions outside of the planned context and thus extending the use of the proposed
decision support system for negotiation between decision centers.

12.7.1. Decision support system organization

Interactions between the decision support system for real time scheduling and its
environment are represented in Figure 12.3. The system stores the current workshop
state in the form of a Petri net discussed in section 12.4, which makes it possible to
know all possible decisions and events at any given time. It also stores the current
set of off-line schedules in the form of a potential-task graph presented in section
12.5.2, which makes it possible to know all projected start decisions, the expected
set of end of execution events and eligibility of the current set of schedules. In the
information technology context, the decision support system is connected to a series
of identified decision centers located in the workshop and in scheduling offices by
an inter-process communication mechanism with the help of message queues.

1 2 X

...Decision
center

Decision
center

Decision
center

Centralization of events and decisionsDistribution of information
and propositions

Current schedule setWorkshop current state

Decision support system

Set of eligible
schedules

Unexpected jobs

Workshop
state

Projected

Real time

Figure 12.3. Structure of the decision support system

A decision center groups a set of entities in a logical link. A decision center can,
for example, be made up of a single resource, or a series of resources grouped in a
“section” controlled by a single decider. A more “project” orientated global decision
center, can group a series of jobs and the different resources required to execute

358 Production Scheduling

these jobs. Messages sent from a decision center to the decision support system,
constituting requests, are stored in a message queue and are processed in sequence
according to the FIFO rule. Messages sent from the system to a center are responses
to these requests.

The general algorithm of the decision support system is the following. req is a
message sent by decision center X read by the system in the queue at date t. If req is
“simply” an information request, this information is built and sent to center X. For
each request, the system identifies entities (operations, resources) involved and
sends information (new states, margins) for these entities. If req is an event or
decision declaration, the system verifies validity of req by testing if a corresponding
transition can be fired in the current Petri net state. If the test is positive, the
transition is fired and Petri net marking is updated. If the test is negative, invalid
request information is sent to the decision center with comments on the error. In the
case of a valid request, if the decision or event requires it, the potential task graph is
updated and dates associated with operations are refreshed according to date t. For
example, following the end of operation commitment, the corresponding node is
deleted from the graph, and based on the event date, the possible modification of
operation start dates is propagated in the graph. Finally, information required
following the occurrence of the event or decision req is sent back to center X which
transmitted req. We should mention that one of the implementation problems with
this type of system is workshop division into an adequate number of decision
centers.

12.7.2. Eligibility control

In general, the response to an expected event or to a decision, such as the end of
operation execution on a set of resources, is made up of the new state of the
resource(s) involved, the list of available or approaching operations allocated to this
(these) resource(s) and the margins of each operations. To reduce the information
that a single user has to manipulate, operations with a blank state will not be
displayed, except if the operation is located in the leading group of a series of
resources (i.e. the group with no “resource” type predecessor in the projected
sequence at decision time t).

Margins of (production or setup) operations, either in-process or located in a
leading group, are sufficient enough to inform decision makers on global eligibility
without the need for propagation. In fact, calculating the margin of a production or
setup operation o only involves the earliest start date of the operation calculated
from t (denoted as ro(t)), duration po and latest end date do of the operation
calculated at the end of the generation procedure. In real time, there are two margins
associated with a single operation. Net margin mpo(t) of a production or setup

Real-Time Workshop Scheduling 359

operation o gives information about eligibility of the sequence in relation to this
operation regardless of other operations in the same group. Its expression is:

mpo(t) = do – po – ro(t) [12.1]

If |gij| > 1, group margin mgij(t) of a production operation o(i, j) gives
information on eligibility of the sequence when o(i, j) is executed first in its group
gij, to preserve all permutations in gij. Its expression is:

mgij(t) = min{dxy|o(x, y) gij, o(x, y) o(i, j)} – {pxy|o(x, y) gij} – rij(t) [12.2]

The minimum of two margins [12.1] and [12.2] is called sequential free margin
of the operation [THO 80]. A group sequence is eligible if and only if the sequential
free margin of all operations located in a leading group is positive or zero. Beyond
global eligibility, each sequential free margin gives information on degrees of
freedom concerning start operation date (for production or setup operations) as well
as on sequential degrees of freedom within group gij (only for production
operations). For example, if the net margin of an operation is positive and its group
margin is negative, this means that permutation with the operation processed first in
its group is no longer eligible. Nevertheless, if another group operation g exists with
a group margin that is positive, then the permutation with this operation processed
first in the sequence retains eligibility. When an operation sees its sequential free
margin become negative, then at least one job will end after its due date if start
decisions are taken in the order suggested by the off-line schedule. In order to have a
precise list of late jobs, propagation (see section 12.5.3) is necessary for calculating
the earliest projected end date of each job.

In addition, in response to an unexpected event declaration (disruption) such as
resource breakdown with an estimated duration or more generally following an
event making certain margins negative, the system sends back the same information
as before, completed by the list of jobs that the hazard potentially delays beyond
their delivery date.

12.7.3. Decision support in an eligible sequence context

Information given in the context where the current sequence of groups is eligible
makes it possible to help in choosing the next start decisions in the decision center
involved. If no displayed margin is negative (if no job is late), then eligibility is
respected and the system suggests the selection of start decisions within the set of
projected solutions, even in the presence of disruptions. Operations in the center
involved are displayed according to a total sequence corresponding to a preferential
commitment sequence, including production operations belonging to the same group

360 Production Scheduling

of interchangeable operations g. We can in fact show that the best solution to save
degrees of freedom associated with g is to start production operations of g in the
decreasing order of their sequential free margin [THO 80]. However, this sequence
is only a proposal and operations of the same group can be executed in any order.

12.7.4. Decision support for retrieving eligibility

When a margin becomes negative following a disruption or a delay of the
occurrence of a projected decision or an expected event, the set of schedules
described by the projected sequence of groups becomes ineligible and strict respect
of the planned context cannot improve the situation. On the other hand, if detected
delays of jobs are not “too” significant, we can presume that local modifications
consisting of making one or more decision(s) outside of the planned context may
restore eligibility.

The system then tests a series of possible decisions depending on the hazard
which caused the problem. If an operation is blocked when it uses resources that
work well, the system tests the start of other operations on these resources. This start
is possible as long the blocked operation is interrupted. If a resource fails, the system
tests the start of waiting operations on a replacement resource. In all cases, these
tests are carried out on the potential-task graph in order to evaluate the impact of
alternative decisions on eligibility. The polynomial insertion algorithm presented in
section 12.5.3 is the basic tool for these local modifications which follow the
principle of the iterative improvement procedure presented in section 12.6.2, i.e.
reducing the length of the critical path, by deletion and reinsertion of critical
operations while retaining the relative sequence of groups.

This local character makes it possible to retain most of the anticipations that
could have been carried out following the known projected schedule and ensures
schedule stability. In return, if disruptions are too large, a return to the global
generation of a set of solutions may be necessary. In practice, this capacity of two
level reactions is well adapted to reality in a workshop.

12.7.5. Decision and negotiation support between decision centers outside the
planned context

Even though the decision maker has some level of freedom proposed by the
system, he may wish to consider decisions other than the ones proposed to him. The
system must therefore let him test the consequences of this type of decision, which
are outside of the planned context. The insertion algorithm presented in section
12.5.3 makes it possible to quickly test the impact on eligibility:

Real-Time Workshop Scheduling 361

– of the start of an operation not located in a leading group;

– of the modification of the projected execution mode for an operation;

– of the insertion (one operation at a time) of an unexpected job not considered
during off-line scheduling.

Even if, within a given decision center, this possibility gives more flexibility to
the decision maker, it also provides help in negotiating between the various decision
centers as the following scenarios show:

– in the multi-resource context, following a breakdown (absence of operators for
example), center A may require replacement with certain resources from center B.
The use of the system can prove that unexpected mobilization of these resources will
not disrupt eligibility of sets of schedules. In this way, decision makers from center
B can more readily accept that “their” resources be used outside of the context
initially planned;

– when receiving an urgent order, the sales department can test the insertion
impact of the associated new job in the set of schedules and see its repercussions on
delays of other jobs (and thus of other clients), which provides elements in the
negotiation between the client and sales department, as well as between the sales
department and production;

– concerning setup times, section managers can be tempted to maximize
technological groupings whereas scheduling managers are mostly concerned by
delays. We can see the advantage of the possibility of testing the eligibility of start
decisions outside of the planned context, such as the unexpected insertion of an
operation of the same family, enabling these decision makers to measure the
consequences of their own preferences over the global performance of the
workshop.

12.8. Conclusion

Company environments and market demand require increased performance of
product flow management during production. This management involves a certain
number of functions among which workshop scheduling is becoming increasingly
important. It is in fact this function which manages all operations to be performed to
obtain the required final product. In order to achieve this, numerous disruptions can
occur, requiring a dynamic vision of the scheduling problem. In response to this
objective, a trend is appearing directing research toward real-time scheduling, for
taking into account the robustness and flexibility necessary for this real time
approach. Studies in this field are still limited and it seemed useful to present in this
book a methodology which is advanced enough to enable the definition and
implementation of a real interactive decision support system for real-time

362 Production Scheduling

scheduling. This methodology, along with its associated methods and tools, made it
possible to develop a computer program that is at the core of a commercial software
package called ORDO implemented in over sixty companies. Details about this
software are available in [THO 88, ROU 98].

However, this only constitutes a specific direction; other approaches need to
be explored, as was mentioned in this chapter and in others. Real-time scheduling
constitutes an open problem for research, where results will surely contribute
to better efficiency activity management systems in the goods or services
manufacturing field.

12.9. Bibliography

[ADA 88] ADAMS J., BALAS E. and ZAWACK D., “The shifting bottleneck procedure for
job shop scheduling”, Management Science, vol. 34, no. 3, p. 391-401, 1988.

[ALB 03] ALBERS S., “Online algorithms: a survey”, Mathematical Programming, vol. 97,
p. 3-26, 2003.

[ALO 05] ALOULOU M. A. and PORTMANN M.-C., “An Efficient Proactive-Reactive
Scheduling Approach to Hedge Against Shop Floor Disturbances”, in G. Kendall, E.K.
Burke, S. Petrovic and M. Gendreau, (eds.), Multidisciplinary Scheduling: Theory and
Applications, Springer, p. 223-246, 2005.

[ART 97] ARTIGUES C., Ordonnancement en temps réel d’ateliers avec temps de
préparation des ressources, PhD thesis, Paul Sabatier University, Toulouse, 1997.

[ART 99] ARTIGUES C., ROUBELLAT F. and BILLAUT J.-C., “Characterization of a set
of schedules in a resource constrained multiproject scheduling problem with multiple
modes”, International Journal of Industrial Engineering, Applications and Practice,
Special Issue On Project Management, vol. 6, no. 2, p. 112-222, 1999.

[ART 00] ARTIGUES C. and ROUBELLAT F., “A polynomial activity insertion algorithm
in a multi-resource schedule with cumulative constraints and resource flexibility”,
European Journal of Operational Research, vol. 127, no. 2, p. 297-316, 2000.

[ART 03] ARTIGUES C., BILLAUT J.C., and ESSWEIN C., “Maximization of solution
flexibility for robust shop scheduling”, European Journal of Operational Research,
vol. 165, no. 2, p. 314-328, 2005.

[AYT 05] AYTUG H., LAWLEY M.A., MCKAY K., MOHAN S., UZSOY R., “Executing
production schedules in the face of uncertainties: a review and some future directions”,
European Journal of Operational Research, vol. 161, no. 1, p. 86-110, 2005.

[BAL 95] BALAS E., LENSTRA J.K. and VAZACOPOULOS A., “The one machine
problem with delayed precedence constraints and its use in job shop scheduling”,
Management Science, vol. 41, no. 1, p. 94-109, 1995.

Real-Time Workshop Scheduling 363

[BIL 96a] BILLAUT, J.-C. and ROUBELLAT F., “A New Method for Workshop Real-Time
Scheduling”, International Journal of Production Research, vol. 34, no. 6, p. 1555-1579,
1996.

[BIL 96b] BILLAUT J.-C., ROUBELLAT F., “Characterization of a set of schedules in a
multiresource context”, Journal of Decision Systems, vol. 5, no. 1-2, p. 95-109, 1996.

[BLA 82] BLACKSTONE J.H., PHILIPS D.T. and HOGG G.L., “A state of the art survey of
dispatching rules for manufacturing job-shop operations”, International Journal of
Production Research, vol. 20, p. 27-45, 1982.

[BLA 96] BLAZEWICZ J., DOMSCHKE W. and PESCH E., “The job-shop scheduling
problem: conventional and new solution techniques”, European Journal of Operational
Research, vol. 93, no. 1, p. 1-33, 1996.

[BRI 07] C. BRIAND, H. LA, J. ERSCHLER, “A robust approach for the single machine
scheduling problem”, Journal of Scheduling, vol. 10, no. 3, p. 209-221, 2007.

[CAR 89] CARLIER J. and PINSON E., “An algorithm for solving the job shop problem”,
European Journal of Operational Research, vol. 35, no. 2, p. 164-176, 1989.

[DAN 95] R. L. DANIELS and P. KOUVELIS, “Robust Scheduling to Hedge against
Processing Time Uncertainty in Single-Stage Production”, Management Science, vol. 41,
no. 2, p. 363-376, 1995.

[DAU 98] DAUZÈRE-PÉRÈS S., ROUX W. and LASSERRE J.B., “Multi-resource shop
scheduling with resource flexibility”, European Journal of Operational Research,
vol. 107, p. 289-305, 1998.

[DEM 77] DEMMOU R., Etude de familles remarquables d’ordonnancement en vue d’une
aide à la décision, PhD thesis, Paul Sabatier University, Toulouse, 1977.

[DUB 95] DUBOIS D., FARGIER H. And PRADE H., “Fuzzy constraints in job-shop
scheduling”, Journal of Intelligent Manufacturing, vol. 6, no. 4, p. 215-234, 1995.

[ERS 89] ERSCHLER, J. and ROUBELLAT, F. „An approach for real time scheduling for
activities with time and resource constraints” in Advances in Project Scheduling
Slowinski, R. and Weglarz, J., (eds.), Elsevier, 1989.

[GAV 65] GAVETT J.W., “Three heuristic rules for sequencing jobs to a single production
facility”, Management Science, vol. 11, no. 8, p. 166-176, 1965.

[GIA 88] GIARD V., Gestion de la production, 2nd edition, Economica, 1988.

[GLO 93] GLOVER F., TAILLARD E. and DE WERRA D., “A user’s guide to tabu search”,
Annals of Operations Research, vol. 41, p. 3-28, 1993.

[GOT 93] GOThA, Groupe de Recherche en Ordonnancement Théorique et Appliqué (Carlier
J., Chrétienne P., Erschler J., Hanen C., Lopez P., Munier A., Pinson E., Portmann M.-C.,
Prins C., Proust C. and Villon P.), “Les problèmes d’ordonnancement”, Recherche
Opérationnelle/Operations Research, vol. 27, no. 1, p. 77-150, 1993.

[GUI 91] GUINET A., “Textile production systems: a succession of non-identical parallel
processor shops”, Journal of Operational Research Society, vol. 42, no. 8, p. 665-671,
1991.

364 Production Scheduling

[HER 98] HERROELEN W., DEMEULEMEESTER E. and DE REYCK B., “A classification
scheme for project scheduling”, in Project Scheduling: Recent Models, Algorithms and
Applications, p. 1-26, J. Weglarz (ed.), Kluwer, Amsterdam, 1998.

[HER 05] HERROELEN W., LEUS R., “Project scheduling under uncertainty: survey and
research potentials”, European Journal of Operational Research, vol. 165, no. 2, p. 289-
306, 2005.

[KOL 95] KOLISH R., Project Scheduling Under Resource Constraints, Physica-Verlag,
1995.

[KUR 82] KURTULUS I.S. and DAVIS E.W., “Multi-project scheduling: categorization of
heuristic rules performance”, Management Science, vol. 28, no. 2, p. 161-172, 1982.

[LEG 92] LE GALL A., ROUBELLAT F., “Caractérisation d'un ensemble d'ordonnancements
avec contraintes de ressources de type cumulative”, Automatique-productique informatique
industrielle, vol. 26, no. 5-6, p. 515-535, 1992.

[MAR 96] MARTIN P. and SHMOYS D., “A new approach to compute optimal schedules
for the job-shop scheduling problem”, 5th International IPCO Conference, p. 389-403,
1996.

[MAS 02] MASON S.J., FOWLER J.W., and CARLYLE. W.M., “A modified shifting
bottleneck heuristic for minimizing total weighted tardiness in complex job shops”,
Journal of Scheduling, vol. 5, no. 3, p. 247-262, 2002.

[MEE 96] MEESTER G. J., Multi-resource shop floor scheduling, PhD thesis, University of
Twente, Enschede, The Netherlands, 1996.

[MON 93] MONMA C.L. and POTTS C.N., “Analysis of heuristics for preemptive parallel
machine scheduling with batch setup times”, Operations Research, vol. 41, no. 5, p. 981-
993, 1993.

[NOW 96] NOWICKI E. and SMUTNICKI C., “A fast tabu search algorithm for the job-shop
problem”, Management Science, vol. 42, no. 6, p. 797-813, 1996.

[OVA 94] OVACIK I. M. and UZSOY R., “Exploiting shop floor status information to
schedule complex job shops”, Journal of Manufacturing Systems, vol. 13, p. 73-84, 1994.

[PRO 91] PROUST C., GUPTA J.N.D. and DESCHAMPS V., “Flowshop scheduling with
set-up, processing and removal times separated”, International Journal of Production
Research, vol. 29, no. 3, p. 479-493, 1991.

[ROU 98] ROUBELLAT F., ARTIGUES C., VILLAUMIE M., “Un système interactif d'aide
à la décision pour l’ordonnancement en temps réel d'atelier”, La Revue Française de
Gestion Industrielle, 17(4):5-20, 1998.

[ROY 70] ROY B., Algèbre moderne et théorie des graphes, volume II, Dunod, 1970.

[SCH 98] SCHUTTEN J.M.J., “Practical job shop scheduling”, Annals of Operations
Research, vol. 83, no. 0, 1998.

[SHI 86] SHINGO S., Maîtrise de la production et méthode Kanban, Les Editions
d’Organisation, 1986.

Real-Time Workshop Scheduling 365

[SIL 94] SILLY M., “Un algorithme d’ordonnancement de tâches sporadiques pour les
systèmes temps-réel”, APII, vol. 28, no. 2, p. 179-205, 1994.

[SKU 05] SKUTELLA M., UETZ M., “Stochastic machine scheduling with precedence
constraints”, SIAM Journal on Computing, vol. 34, no. 4, p. 788-802, 2005.

[STA 95] STANKOVIC J. A., SPURI M., DI NATALE M. and BUTTAZZO G. C.,
“Implications of Classical Scheduling Results for Real-Time Systems”, Computer,
vol. 28, no. 6, p. 16-25, 1995.

[THO 80] THOMAS V., Aide à la décision pour l’ordonnancement en temps réel, PhD thesis,
Paul Sabatier University, Toulouse, 1980.

[THO 88] THOMAS V., ROUBELLAT F., Une méthode et un logiciel pour
l'ordonnancement en temps réel d'ateliers, Automatique-productique informatique
industrielle, vol. 22, no. 5, p. 419-438, 1988.

[VIE 03] G. E. VIEIRA, J. W. HERRMANN, E. LIN, “Rescheduling manufacturing systems:
A framework of strategies, policies, and methods”, Journal of Scheduling, vol. 6, no. 1,
p. 39-62, 2003.

[WU 99] WU S.D., BYEON E. and STORER R.H., “A graph-theoretic decomposition of job
shop scheduling problems to achieve scheduling robustness”, Operations Research,
vol. 47, p. 113–124, 1999.

[XIE 89] XIE, X., “Real-time scheduling and routing for flexible manufacturing systems with
unreliable machines”, Recherche Opérationnelle/Operations Research, vol. 23, no. 4,
p. 355-374, 1989.

This page intentionally left blank

List of Authors

Christian ARTIGUES
LAAS-CNRS
University of Toulouse, France

Pierre BAPTISTE
MAGI - GERAD
École Polytechnique de Montréal, Quebec, Canada

Gérard BEL
ONERA
Toulouse, France

Jean-Charles BILLAUT
Laboratoire d’Informatique
Ecole Polytechnique, University of Tours, France

Christelle BLOCH
LIFC/University of Franche-Comté
Montbéliard, France

Hervé CAMUS
LAIL
Ecole Centrale de Lille, France

Jacques CARLIER
HeuDiaSyc, CNRS
Compiègne University of Technology, France

368 Production Scheduling

Jean-Bernard CAVAILLÉ
ONERA
Toulouse, France

Daniel COSTA
Supply Chain
Nestlé, Italy

Didier DUBOIS
IRIT-UPS, CNRS
University of Toulouse, France

Patrick ESQUIROL
LAAS-CNRS
University of Toulouse, France

Hélène FARGIER
IRIT-UPS, CNRS
University of Toulouse, France

Philippe FORTEMPS
Faculty of Engineering, Mons, Belgium

Jean-Claude GENTINA
LAIL
Ecole Centrale de Lille, France

Alain HERTZ
MAGI - GERAD
École Polytechnique de Montréal, Quebec, Canada

Marie-José HUGUET
LAAS-CNRS
University of Toulouse, France

Ouajdi KORBAA
SOIE
University of Sousse, Tunisia

Pierre LOPEZ
LAAS-CNRS
University of Toulouse, France

List of Authors 369

Marie-Ange MANIER
Belfort-Montbéliard University of Technology, France

Emmanuel NÉRON
Laboratoire d’Informatique
Ecole Polytechnique, University of Tours, France

Antoine OLIVER
Laboratoire d’Informatique
Ecole Polytechnique, University of Tours, France

Marie-Claude PORTMANN
LORIA
Ecole des Mines de Nancy, France

Christian PRINS
LOSI
University of Technology of Troyes, France

François ROUBELLAT
LAAS-CNRS
University of Toulouse, France

Christophe VARNIER
FEMTO-ST Institute
ENSMM/University of Franche-Comté, CNRS
Besançon, France

Antony VIGNIER
LORIA
Ecole des Mines de Nancy, France

Marino WIDMER
DIUF
University of Fribourg, Switzerland

This page intentionally left blank

Index

A
adjustment window, 113
algorithm

ant, 50
Bellman, 353
Floyd-Warshall, 109, 130
genetic, 49, 69
Gonzalez and Sahni, 277, 296
hybrid, 54
loose path-consistency, 112
polynomial, 354
resolution, 105, 127
upper-lower tightening, 111

allocation, 247, 354
approach

constraint-based, 103
cyclic, 172

arc, 16, 348
bound arc-consistency, 118
group type, 348
resource type, 348
routing type, 348

assembly, 342
assign, 234
association of resources, 344

B
beam search, 290
birth-and-death process, 71
blocking operation, 341

branch and bound procedure, 100, 234, 241,
250

C
capacity of resource, 106

unit, 343
carrier, 196
chromosome, 69
chronological backtracking, 104, 105, 127,

129
combinatorial optimization, 33, 34
compaction, 284
complexity, 14
compulsory consumption, 121
constraint

allocation, 132
flexible, 308
forbidden precedence, 117
mandatory precedence, 117
precedence, 108

constraint analysis, 104, 355
convergence algorithm, 72
critical path, 356
crossover operator, 70

data-dependent, 110
k point, 81
one-point, 76
permutation matrix, 82
sequence, 103

crossover point, 76

372 Production Scheduling

D
date

availability, 399
delivery/due, 159, 337
release, 334

decision
cancellation, 345
interruption, 345
start, 345

decision center, 356
disassembly, 342
disruptions, 334
duration, 6

uncertainties, 318

E
edge recombination crossover, 77
eligibilty, 338
energetic reasoning, 122
energy, 122
evaluation criteria, 11, 158
event, 338

expected, 345
unexpected, 345

F
feasible sequence of groups, 355
fitness of an individual, 70
fixed point, 110
flexibility, 169
flexible

cell, 171
production, 167
range, 172

flow shop
hybrid, 89

fuzzy set, 303
core, 303
height, 303
level-cut, 303
membership function, 303
support, 303

G
Gantt chart, 177, 351
genetic, 69
genetic code, 70

binary, 80
direct, 95
direct for assignment, 90
indirect, 87, 95
indirect for assignment, 90
ternary, 80

genome, 70
graph, 16

disjunctive, 285
event, 175
operation-on-node, 340

groups of interchangeable operations, 347

H
heuristic, 34–36, 239

min-slack/max-slack, 129
hoist scheduling problem, 199

cyclic, CHSP mono-product, 199
cyclic, CHSP multi-product, 200
dynamic DHSP, 201
reactive RHSP, 201
static but not cyclic PHSP, 200

I–L
inconsistency of the problem, 105
insertion of operation, 353
intelligent backtracking, 129, 290
intensity from a resource, 106
inter-process communication, 357
interval

fuzzy, 305
prohibited, 290

loading, 194
lower bounds, 242, 252

M
machine, 170

availability, 178
bottleneck, 174, 277
dominated, 277
margin, 178

Index 373

manufacturing orders, 334
margin, 355

net, 359
sequential free, 359

matching, 279, 283
mathematical programming, 234
metaheuristic, 33, 36, 62, 356
method

constructive, 33, 36
descent, 38
evolutive, 33, 37
exact, 237, 241, 250
geometric, 275
great deluge, 43
greedy, 140
heuristic, 237, 239,
threshold accepting, 42

model
carrier, 206
discrete event, 145
period, 206

mutation, 70

N–O
n-periodic cycle, 199
necessity measure, 304
node, 16
NP-complete, 33
off-line, 335
open shop, 273

complexity, 275
disjunctive graph, 286
exact method, 289
genetic algorithm, 289
hybrid, 296
list heuristics, 281
lower bound, 272
matching heuristics, 283
metaheuristic, 288
neighborhood, 288
preemptive, 278
simulated annealing, 288
tabu search, 288
three machine, 277
two machine, 276

operator
composition, 109
genetic, 70, 77
intersection, 109
repair, 98

optimal flow, 187

P
pallets, 170
part, 171
path-consistency, 110
permutation matrix, 80
PERT, 17

fuzzy, 309
Petri net, 170, 346
phenotype, 70
placement

job, 141
operation, 143
progressive operation, 180

population of individuals, 70
graph, 16
inequalities, 107
propagation, 348

possibilistic utility, 307
possibility distribution, 304
possibility theory, 303
potential, 349
preemption, 131
problem

constraint satisfaction (CSP), 107
elastic, 131
flow shop, 342
job shop, 302, 334
one-machine, 115
open shop, 271
multi-mode, 341
multi-resource, 340
set, 340
simple temporal, 108

production
by mixing, 200
by runs, 200
cyclic, 199
flexible manufacturing, 167
flow, 173

374 Production Scheduling

mono-product, 199
multi-product 200
on demand, 333
random mode, 201

propagation
constraint, 104, 347
potential, 348

R
ratio

production, 172
routing, 172

RCPSP, 234, 249
reactivity, 337
record-to-record travel, 44
resource

availability, 178
cumulative, 233, 339
complementary, 343
disjunctive, 233, 339
main, 342
renewable, 339
transformation, 169, 176
transport, 169

resource breakdowns, 334
resource unit, 339
resource use term, 340
roulette technique, 70
routing, 8, 348

non-linear, 340
rules

fuzzy, 315
LAPT, 276
not-first/not-last, 117
priority, 21, 155

S
satellite telecommunications, 294
schedules

active, 272
cyclic, 168
dynamic, 153
multi-project, 341
non-delay, 272
project, 248
projected, 151

real-time, 153, 333
schema theorem, 72
search

local, 34, 37, 48, 50, 54
scatter, 50, 54

selection
immediate, 117
of chromosomes, 71

semi-active, 272
sequential degrees of freedom, 347
sets

critical tasks, 113
dominant, 11, 70
maximum disjunctive, 166
not descendant/not ascendant, 117
schedule, 357

setup
activity, 343
class, 341, 347
costs, 334
state, 341
time depending on the sequence, 342
times, 334
times independent of the sequence, 342

shaving, 134
simulated annealing, 35, 42, 99, 288, 324
simulation, 148, 163
status, 338
support

decision, 103, 153, 355
negotiation, 357

surface treatment
multi-hoist, 196
processing operation, 195
single-hoist, 196
transport operation, 196

system
interactive decision support, 338
TDMA, 294

T
tabu search, 44
tank

between, 195
destination, 196
duplicated, 196

Index 375

mono-function, 195
multi-function, 196
single-capacity, 195

technological groupings, 355
time

assembly, 342
cycle, 173
disassembly, 342
end, 6
family change, 343
move whilst empty, 199
production, 342
start, 6
transport, 199

traditional branching schemes, 250

transport
resources, 169
system, 169

transport systems, 197

U–W
unloading, 194
vector

permutation, 75
rank, 75

work-in-progress, 169
lower bound, 175

work in the process, 337

	Production Scheduling
	Table of Contents
	Preface
	Chapter 1. Statement of Production Scheduling
	Chapter 2. Basic Concepts and Methods in Production Scheduling
	2.1. Introduction
	2.2. Basic scheduling concepts
	2.2.1. Tasks
	2.2.2. Resources
	2.2.3. Modeling
	2.2.4. Resolution methods
	2.2.5. Representation of solutions

	2.3. Project scheduling
	2.3.1. Modeling
	2.3.2 Resolution

	2.4 Shop scheduling
	2.4.1 Introduction
	2.4.2 Basic model
	2.4.3 One-machine problem
	2.4.4 Parallel machine problems
	2.4.5 Flow shop
	2.4.6 Job shop

	2.5 Conclusion
	2.6 Bibliography

	Chapter 3. Metaheuristics and Scheduling
	3.1. Introduction
	3.2. What is a combinatorial optimization problem?
	3.3. Solution methods for combinatorial optimization problems
	3.4. The different metaheuristic types
	3.4.1. The constructive approach
	3.4.2. Local search approach
	3.4.3. The evolutionary approach
	3.4.4. The hybrid approach

	3.5. An application example: job shop scheduling with tooling constraints
	3.5.1. Traditional job shop modeling
	3.5.2. Comparing both types of problems
	3.5.3. Tool switching
	3.5.4. TOMATO algorithm

	3.6. Conclusion
	3.7. Bibliography

	Chapter 4. Genetic Algorithms and Scheduling
	4.1. Introduction
	4.1.1. Origin of genetic algorithms
	4.1.2. General principles of genetic algorithms
	4.1.3. Schema theorem
	4.1.4. Chapter presentation

	4.2. One-machine problems
	4.2.1. Example 1: total time and setup times
	4.2.2. Example 2: sum of weighted tardiness
	4.2.3. Example 3: sum of weighted tardiness and setup times

	4.3. Job shop problems
	4.4. Hybrid flow shop
	4.4.1. Specific case: one-stage total duration problem
	4.4.2. General case: k stages total duration problem

	4.5. Hybrid genetic algorithms
	4.5.1. Hybridization with other metaheuristics
	4.5.2. Hybridization with combinatorial optimization methods

	4.6. Conclusion
	4.7. Bibliography

	Chapter 5. Constraint Propagation and Scheduling
	5.1. Introduction
	5.1.1. Problem and chapter organization
	5.1.2. Constraint propagation
	5.1.3. Scheduling problem statement
	5.1.4. Notations

	5.2. Time constraint propagation
	5.2.1. Introduction
	5.2.2. Definition
	5.2.3. Simple temporal problems
	5.2.4. General temporal problems

	5.3. Resource constraint propagation
	5.3.1. Characterization of conflicts
	5.3.2. Deductions based on critical sets and MDSs
	5.3.3. Deductions based on the energetic balance

	5.4. Integration of propagation techniques in search methods
	5.4.1. General improvement techniques of chronological backtracking
	5.4.2. Heuristics for variable and value ordering
	5.4.3. Strategies for applying propagation rules
	5.4.4. Use of a backtracking algorithm

	5.5. Extensions
	5.5.1. Preemptive problems
	5.5.2. Consideration of allocation constraints

	5.6. Conclusion
	5.7. Bibliography

	Chapter 6. Simulation Approach
	6.1. Introduction
	6.2. Heuristic resolution (greedy) procedures
	6.2.1. Limits of the basic method
	6.2.2. Manual development procedures of projected scheduling
	6.2.3. Job placement procedure
	6.2.4. Example
	6.2.5. Operation placement procedure

	6.3. Simulation approach
	6.3.1. Discrete event models
	6.3.2. Discrete event simulation

	6.4. Using the simulation approach for the resolution of a scheduling problem
	6.4.1. Determination of projected schedule
	6.4.2. Dynamic scheduling
	6.4.3. Using simulation for decision support

	6.5. Priority rules
	6.5.1. Introduction
	6.5.2. Description of priority rules
	6.5.3. Experimentation conditions
	6.5.4. Main results

	6.6. Information technology tools
	6.6.1. Scheduling software
	6.6.2. Simulation languages

	6.7. Conclusion
	6.8. Bibliography

	Chapter 7. Cyclic Production Scheduling
	7.1. Introduction
	7.2. Cyclic scheduling problem classifications
	7.2.1. Electroplating robot problem (HSP)
	7.2.2. FMS cyclic scheduling problem

	7.3. Problem positioning
	7.4. Presentation of tools used
	7.4.1. Modeling using Petri nets
	7.4.2. Dual Gantt chart
	7.4.3. Resource availability interval
	7.4.4. Operation placement policies in cyclic scheduling

	7.5. Algorithm principle
	7.6. Extension of cyclic strategies
	7.7. Conclusion and prospects
	7.8. Bibliography

	Chapter 8. Hoist Scheduling Problem
	8.1. Introduction
	8.2. Physical system and production constraints
	8.2.1. Tanks
	8.2.2. Hoists
	8.2.3. Carriers

	8.3. Hoist scheduling problems
	8.3.1. General presentation
	8.3.2. Static scheduling problems
	8.3.3. Dynamic scheduling problems
	8.3.4. Classification and brief state of the art

	8.4. Modeling and resolution
	8.4.1. Notations
	8.4.2. CHSP resolution: basic problem
	8.4.3. Extensions
	8.4.4. Multi-product case

	8.5. Resolution of other problems presented
	8.5.1. Optimization of temporary phases
	8.5.2. Job scheduling at line arrival
	8.5.3. DHSP resolution
	8.5.4. RHSP resolution

	8.6. Conclusion
	8.7. Bibliography
	8.8. Appendix: Notation

	Chapter 9. Shop Scheduling with Multiple Resources
	9.1. Introduction
	9.2. Hybrid flow shop scheduling problem
	9.2.1. A few manufacturing cases
	9.2.2. State of the art survey
	9.2.3. Notation and mathematical model
	9.2.4. Heuristic canonical methods
	9.2.5. An exact method
	9.2.6. Extensions of the traditional hybrid flow shop problem

	9.3. RCPSP: presentation and state of the art
	9.3.1. A simple model including shop problems
	9.3.2. Main exact methods for the RCPSP
	9.3.3. Results and fields of application of methods

	9.4. Conclusion
	9.5. Bibliography

	Chapter 10. Open Shop Scheduling
	10.1. General overview
	10.2. The open shop problem
	10.2.1. Open shop in relation to other shop problems
	10.2.2. An example
	10.2.3. A few real open shop examples

	10.3. Complexity of open shop problems
	10.3.1. Overview
	10.3.2. Polynomial geometric methods
	10.3.3. The polynomial m = 2 case
	10.3.4. The boundary m = 3 case
	10.3.5. Special open shops

	10.4. The preemptive case (operations executable multiple times)
	10.4.1. Gonzalez and Sahni algorithm
	10.4.2. An example

	10.5. Simple heuristics (excluding metaheuristics)
	10.5.1. Introduction
	10.5.2. Performance guarantees
	10.5.3. List heuristics
	10.5.4. Matching heuristics

	10.6. The disjunctive model and shop problems
	10.6.1. Disjunctive model review
	10.6.2. Disjunctive model and shop problems
	10.6.3. Example of open shop disjunctive model
	10.6.4. Disjunctive model properties

	10.7. Metaheuristics for the open shop
	10.7.1. Known traditional neighborhoods for job shop
	10.7.2. Tabu search and simulated annealing methods for open shop
	10.7.3. Population-based algorithms and neural networks

	10.8. Exact methods for open shop
	10.8.1. Brucker et al. branch-and-bound method
	10.8.2. More recent improvements

	10.9. Algorithm comparison
	10.9.1. Uniform processing times
	10.9.2. Taillard examples
	10.9.3. Difficult Brucker and Guéret and Prins tests

	10.10. Open shop problems in satellite telecommunications
	10.10.1. TDMA systems principle
	10.10.2. Pure open shop cases
	10.10.3. Preemptive case complications
	10.10.4. Generalization of the basic open shop

	10.11. Conclusion
	10.12. Bibliography

	Chapter 11. Scheduling Under Flexible Constraints and Uncertain Data: The Fuzzy Approach
	11.1. Introduction
	11.2. Basic notions on the fuzzy approach to uncertainty and constraints
	11.2.1. Possibility theory
	11.2.2. Fuzzy arithmetic
	11.2.3. Fuzzy interval comparison
	11.2.4. Possibilistic utility

	11.3. Scheduling under flexible constraints
	11.3.1. The fuzzy PERT problem: flexible constraints
	11.3.2. Limited resources: flexible constraints and fuzzy rules

	11.4. Scheduling with ill-known execution times
	11.4.1. Critical paths under ill-known execution times: difficulties
	11.4.2. Critical paths with interval execution times
	11.4.3. Critical paths with fuzzy execution times
	11.4.4. Limited resources: approach by fuzzy interval comparison

	11.5. Flexible constraint scheduling and ill-known task execution times
	11.6. Conclusion: the potential contribution of possibility theory in scheduling
	11.7. Bibliography

	Chapter 12. Real-Time Workshop Scheduling
	12.1. Introduction
	12.2. Interest and problem positioning
	12.2.1. The context of on demand production workshops
	12.2.2. The different approaches to real-time workshop scheduling
	12.2.3. An original approach

	12.3. Modeling and dynamic of scheduling problem considered
	12.3.1. Resources
	12.3.2. Production operations
	12.3.3. Setup operations

	12.4. Decisions, events and constraints
	12.5. Models for off-line and on-line scheduling
	12.5.1. Groups of interchangeable operations
	12.5.2. Operation-on-node graphs
	12.5.3. Generic graph methods

	12.6. Off-line scheduling method
	12.6.1. Gradual construction of a feasible initial sequence of groups
	12.6.2. Search for eligibility by iterative improvement of the sequence

	12.7. Real-time scheduling method, interactive decision support system
	12.7.1. Decision support system organization
	12.7.2. Eligibility control
	12.7.3. Decision support in an eligible sequence context
	12.7.4. Decision support for retrieving eligibility
	12.7.5. Decision and negotiation support between decision centers outside the planned context

	12.8. Conclusion
	12.9. Bibliography

	List of Authors
	Index

