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Notations and Symbols

AT
c,p
s Arrival time, at switch s, of packet p on connection c.

auxVCc
s Auxiliary virtual clock of connection c at switch s.

Bi Worst case blocking time of task i.
bL Number of slots assigned, per round, by server L to server L + 1.
BR Bit-by-bit round-robin.
C Worst case computation time of task.
Ci Worst case computation time of task i.

It also denotes the transmission delay of message i.
Ci(t) Pending computation time of task i at time t .
d Absolute task deadline.
di Absolute deadline of task i.
di,j Absolute deadline of the j + 1th instance of task i

(di,j = ri,j + Di = ri,0 + Di + j × Ti).
d∗

i Modified deadline of task i.
D Relative deadline.
Dc End-to-end delay of connection c.
Dc

s Local delay fixed for connection c at switch s.
Di Relative deadline of task i (or of message i).
Di,j (t) Relative deadline of the j + 1th instance of task i at time t

(Di,j (t) = di,j − t).
DM Deadline monotonic.
EDD Earliest-due-date.
ei Finishing time of task i.
ei,j Finishing time of the j + 1th instance of task i.
EDF Earliest deadline first.
ET

c,p
s Eligibility time assigned, by switch s, to packet p from connection c.

ExD
c,p
s Expected deadline of packet p, on connection c, at switch s.

F
c,p
s Finish number, at switch s, of packet p on connection c.

GPS Generalized processor sharing.
H Major cycle (also called hyper period or scheduling period).
HRR Hierarchical round-robin.
ID Inverse deadline.
I c Averaging interval for inter-arrival on connection c.
Imp Importance (or criticality) of a task.
Impi Importance (or criticality) of task i.
J c End-to-end jitter of connection c.
J c

s Local jitter fixed for connection c at switch s.
Lc,p Length (in bits) of packet p on connection c.
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Li Laxity of task i (Li = Di − Ci).
Li(t) Laxity of task i at time t (Li(t) = Di(t) − Ci(t)).
Li,j (t) Laxity of the j + 1th instance of task i at time

t (Li,j (t) = Di,j (t) − Ci(t)).
LCi(t) Conditional laxity of task i at time t .
LLF Least laxity first.
Lmaxc Maximum length of packet on connection c.
LP(t) Laxity of the processor at time t .
Mi Message i.
Ni Node i in distributed system.
nsL Number of slots assigned, per round, to server L.
ODc

s Local delay offered by switch s for connection c.
OJc

s Local jitter offered by switch s for connection c.
PGPS Packet-by-packet generalized processor sharing.
Prioi Priority of task i.
Proci Processor i.
Qi Synchronous allocation time of node i.
r∗
i Modified release time of task i.

r Task release time (task offset).
rc
s Bit rate assigned to connection c at switch s.

ri Release time of task i.
ri,0 First release time of task i.
ri,j Release time of the j + 1th instance of task i (ri,j = ri,0 + j × Ti).
Ri Resource i.
rs Bit rate of the output link of switch s.
Rs(t) Round number of switch s.
RCSP Rate-controlled static-priority.
RL Round length.
RLL Round length of server L.
RM Rate monotonic.
S

c,p
s Start number, at switch s, of packet p on connection c.

si Start time of task i.
si,j Start time of the j + 1th instance of task i.
S&G Stop-and-go.
Ti Period of task i (or of message i).
TR Worst case response time of task.
TRi Worst case response time of task i (TRi = maxj {TRi,j }).
TRi,j Response time of the j + 1th instance of task i (TRi,j = ei,j − ri,j ).
TTRT Target token rotation time.
ui Processor utilization factor of task i(= Ci/Ti).
U Processor utilization factor (= �ui).
V Cc

s Virtual clock of connection c at switch s.
WBR Weighted bit-by-bit round-robin.
WFQ Weighted fair queuing.
Xavec Average packet inter-arrival time on connection c.
Xminc Minimum packet inter-arrival time on connection c.
τ Task set.
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τi Task i.
τi,j j + 1th instance of task i.
τi → τj Task i precedes task j .
�i

j Communication delay between nodes i and j .
ρ Rate of leaky bucket.
σ Depth of leaky bucket.
π End-to-end propagation delay.
πl Delay of link l.
θl′,l Constant delay, introduced by S&G discipline, to synchronize frames.
φc

s Weight assigned to connection c at switch s.
ωc Number of slots assigned, per round, to connection c.
↑ Graphical symbol to indicate a task release.
↓ Graphical symbol to indicate a task deadline.
� Graphical symbol to indicate a task with period equal to deadline.





Introduction

Real-time computing systems must react dynamically to the state changes of an environ-
ment, whose evolution depends on human behaviour, a natural or artificial phenomenon
or an industrial plant. Real-time applications span a large spectrum of activities;
examples include production automation, embedded systems, telecommunication sys-
tems, automotive applications, nuclear plant supervision, scientific experiments, robo-
tics, multimedia audio and video transport and conditioning, surgical operation
monitoring, and banking transactions. In all these applications, time is the basic con-
straint to deal with and the main concern for appraising the quality of service provided
by computing systems.

Application requirements lead to differentiation between hard and soft real-time
constraints. Applications have hard real-time constraints when a single failure to meet
timing constraints may result in an economic, human or ecological disaster. A time
fault may result in a deadline being missed, a message arriving too late, an irregular
sampling period, a large timing dispersion in a set of ‘simultaneous’ measurements, and
so on. Soft real-time constraints are involved in those cases when timing faults cause
damage whose cost is considered tolerable under some conditions on fault frequency
or service lag.

This book concerns applications where a computer system controls (or supervises)
an environment in real-time. It is thus reasonable to split such applications into two
parts: the real-time computing system and the controlled environment. The latter is
the physical process to which the computing system is connected for controlling its
behaviour. Real-time is a serious challenge for computing systems and its difficulties are
often misunderstood. A real-time computing system must provide a time management
facility; this is an important difference compared to conventional computing systems,
since the value of data produced by a real-time application depends not only upon the
correctness of the computation but also upon the time at which the data is available. An
order which is computed right but sent late is a wrong command: it is a timing fault.

In a real-time application, the computing system and the environment are two part-
ners that behave in different time domains. The environment is ruled by precise duration
measurements of chronometric time. The computing system determines a sequence of
machine instructions and defines a chronological time. The real-time application that
is controlled by a computing system is not concerned by the high-fidelity or low-
fidelity of the chronometric time or chronological time, but by the correct control of
their synchrony. As the chronological time is fixed by the physical process and is
an intangible datum, the computing system has to adapt the rate of its actions to the
clock of the environment. In the context of real-time applications, the actions are tasks
(also called processes) and the organization of their execution by the processors of the
computing architecture (sequencing, interleaving, overlapping, parallel computing) is
called real-time scheduling of tasks. The schedule must meet the timing constraints
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of the application; the procedure that rules the task execution ordering is called the
scheduling policy.

If some properties of the scheduling policy are required, their guarantee must be
formally derived; this has to be supported by a behavioural model of the tasks. Each
class of model gives rise to the study of specific and various policies. However, all
these policies rely on the ‘truthfulness’ of the model. In an industrial context, the timing
parameters of tasks are not perfectly known and in addition some unusual events may
occur: this may lead to unforeseen timing faults. A robust schedule must be able to
cope with these situations, which means being able to limit the impact of a timing fault
on the application and to divert its consequences to the least important tasks. Thus,
it is easy to understand that the implementation of a real-time application requires
scheduling expertise and also a thorough understanding of the target application.

This book is a basic treatise on real-time scheduling. The main objectives are to
study the most significant real-time scheduling policies which are in use today in the
industry for coping with hard real-time constraints. The bases of real-time scheduling
and its major evolutions are described using unified terminology and notations. The
first chapters concern centralized computing systems. We deal also with the case of
distributed systems in the particular context where tasks are permanently assigned and
managed by local schedulers that share a global system clock; the decisions remain
local to each computer of the system. The use of local area networks to support
real-time applications raises the problem of message scheduling and also of the joint
scheduling of tasks and messages. Larger networks used in loosely coupled systems
need to master packet scheduling.

We do not consider the case of asynchronous distributed systems, which do not share
a global clock and where decisions may rely on a global consensus, with possibly the
presence of faults; their study is a question that would require significant development
and right now it remains a subject of research in the scientific community.

The primary objective of this book is to serve as a text book with exercises and
answers, and also some useful case studies. The second objective of this book is to
provide a reference book that can be used by practitioners and developers in the indus-
try. It is reinforced by the choice of industrial realizations as case studies. The material
is based on the pedagogical experience of the authors in their respective institutions
for several years on this topic. This experience is dual. Some of our assistants are
able to follow top-down and deductive reasoning; this is the case of master students
in computer science with a good mathematical background. Other assistants prefer
inductive reasoning based on their field experience and on case studies; this bottom-up
approach concerns an audience already working in the industry and willing to improve
its knowledge in evolving technologies.

Chapter 1 presents the real-time application domain and real-time scheduling,
expresses their differences with conventional systems (non-real-time systems) and
their scheduling, and introduces the basic terminology. The second chapter covers the
simplest situation, consisting of scheduling independent tasks when their processing
times and deadlines are known or estimated with enough accuracy. Chapter 3 considers
the modifications to the former scheduling policies which are necessary to cope
with precedence relationships and resource sharing. Chapter 4 presents some ways
of reducing the timing fault consequences when unforeseen perturbations occur,
such as processing overload or task parameter variations. Chapter 5 is devoted to
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symmetric multiprocessor systems sharing a common memory. Chapter 6 discusses
how to evaluate the message transmission delays in several kinds of widely used
real-time industrial networks and how to schedule messages exchanged between tasks
of a distributed application supported by a local area network. Chapter 7 considers
the case of packet-switching networks and the scheduling of packets in order to
guarantee the packet transfer delay and to limit the delay jitter. Chapter 8 approaches
different software environments for real-time applications, such as operating systems,
asynchronous and synchronous languages, and distributed platforms. Chapter 9 deals
with three relevant case studies: the first example describes the real-time acquisition and
analysis of the signals providing from an aluminium rolling mill in the Pechiney plant,
which manufactures aluminium reels for the packaging market; the second example
presents the control system of the robot that the Pathfinder space vehicle landed on
Mars, and it analyses the failure that was caused by a wrong sharing of the bus of the
control computer. The last example describes the tasks and messages that are present
in a distributed architecture supporting a car control system, and it analyses some
temporal behaviours of these tasks.

Exercises appear at the end of some of the chapters. Other exercises can be deduced
from the case studies (rolling mill, robot control and car control system) presented in
Chapter 9. A glossary, given at the end of the book, provides definitions for many of
the technical terms used in real-time scheduling.





1
Basic Concepts

1.1 Real-Time Applications

1.1.1 Real-time applications issues

In real-time applications, the timing requirements are the main constraints and their
mastering is the predominant factor for assessing the quality of service. Timing con-
straints span many application areas, such as industrial plant automation, embedded
systems, vehicle control, nuclear plant monitoring, scientific experiment guidance,
robotics, multimedia audio and video stream conditioning, surgical operation moni-
toring, and stock exchange orders follow-up.

Applications trigger periodic or random events and require that the associated com-
puter system reacts before a given delay or a fixed time. The timing latitude to react
is limited since transient data must be caught, actions have a constraint on both start
and finish times, and responses or commands must be sent on time.

The time scale may vary largely, its magnitude being a microsecond in a radar, a
second in a human–machine interface, a minute in an assembly line, or an hour in a
chemical reaction.

The source of timing constraints leads to classifying them as hard or soft. A real-time
system has hard timing constraints when a timing fault (missing a deadline, delivering
a message too late, sampling data irregularly, too large a scatter in data supposed to
be collected simultaneously) may cause some human, economic or ecological disaster.
A real-time system has soft timing constraints when timing faults can be dealt with to
a certain extent.

A real-time computer system is a computer system whose behaviour is fixed by
the dynamics of the application. Therefore, a real-time application consists of two
connected parts: the controlling real-time computer system and the controlled process
(Figure 1.1).

Time mastery is a serious challenge for real-time computer systems, and it is often
misunderstood. The correctness of system reactions depends not only on the logical
results of the computations, but also on the time at which the results are produced.
Correct data which are available too late are useless; this is a timing fault (Burns and
Wellings, 1997; Lelann, 1990; Stankovic, 1988).

A controlling real-time computer system may be built as:

• a cyclic generator, which periodically samples the state of the controlled process,
computes the measured data and sends orders to the actuators (this is also called
synchronous control);
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Control computer system

• automata 

• uniprocessor

• multiprocessor

• local area network

Controlled process

• primary equipment 

• complex process

• equipment set 

Actions

Observations

Displays

Events

Orders

Measurements

Figure 1.1 Scheme of a real-time application

• a reactive system, which responds instantaneously to the stimuli originating in the
controlled process and thus is triggered by its dynamics;

• a union of both aspects, which schedules periodic and aperiodic tasks; this results
in an asynchronous system.

1.1.2 Physical and logical architecture,
operating systems

Software design of a real-time application

Several steps are usually identified to analyse and implement real-time applications.
Some of them are:

• requirements analysis and functional and timing specifications, which result in a
functional view (the question to answer is: what should the system do?).

• preliminary design, which performs an operational analysis (the question is: how
to do it?) and leads to the choice of logical components of a logical architecture.

• specific hardware and software development. They are often developed concurrently
with similar design processes. The hardware analysis (the question is: with which
hardware units?) leads to a physical architecture, to the choice of commercial
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off-the-shelf components and to the detailed design and development of special
hardware. The conceptual analysis (the question is: with which software modules?)
leads to a software architecture, to the choice of standard software components and
to the implementation of customized ones. These acquisition and realization steps
end with unit testing.

• integration testing, which involves combining all the software and hardware com-
ponents, standard ones as well as specific ones, and performing global testing.

• user validation, which is carried out by measurements, sometimes combined with
formal methods, and which is done prior to acceptance of the system.

These steps are summarized in Figure 1.2, which gives an overview of the main
design and implementation steps of real-time applications. Once the logical and hard-
ware architecture is defined, an allocation policy assigns the software modules to the
hardware units. In distributed fault-tolerant real-time systems, the allocation may be
undertaken dynamically and tasks may migrate. The operational analysis must define
the basic logical units to map the requirements and to express concurrency in the sys-
tem, which is our concern. The operational behaviour of the application is produced
by their concurrent execution.

The major computing units are often classified as:

• passive objects such as physical resources (devices, sensors, actuators) or logical
resources (memory buffers, files, basic software modules);

• communication objects such as messages or shared variables, ports, channels, net-
work connections;

• synchronization objects such as events, semaphores, conditions, monitors (as in
Modula), rendezvous and protected objects (as in Ada);

Software Hardware

Requirements 
analysis

Preliminary
design

Detailed
design

Detailed
design

Validation

Integration

Coding

Test Test

Realization

Figure 1.2 Joint hardware and software development
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• active objects such as processes, threads, tasks;

• structuring, grouping and combining objects such as modules, packages (as in Ada),
actors (as in Chorus), processes (as in Unix, Mach).

In real-time systems, the word task is most often used as the unit for representing con-
current activities of the logical architecture. The physical parallelism in the hardware
architecture and the logical parallelism in the application requirements are usually the
base for splitting an application into concurrent tasks. Thus a task may be assigned to
each processor and to each input–output device (disk reader, printer, keyboard, display,
actuator, sensor), but also to each distinct functional activity (computing, acquisition,
presentation, client, server, object manager) or to each distinct behavioural activity
(periodic, aperiodic, reactive, cyclic, according to deadline or importance).

Physical architecture

Real-time systems hardware architectures are characterized by the importance of
input–output streams (for example the VME bus in Figure 1.3). An example of physical
architecture, the robot engine of the Pathfinder mission, will be presented in Chapter 9.
The configuration of the embedded architecture is given in Figure 9.10. Figure 1.3
shows an example of a symmetric multiprocessor architecture with shared memory
(Banino et al., 1993).

Distributed architectures over networks are being developed more and more. Chap-
ter 6 is devoted to message scheduling, which is a major element in the mastery of
timing constraints. We shall use the term interconnected sites. Figure 1.4 summarizes
an architecture using local networks to interconnect several sites.

Processor VME interrupts

Legend:
   Processors: CPU1, ..., CPU4 
   Shared memories: MEM1, ..., MEM6 

Controllers: VMEBD, I/OBD
Interrupt dispatcher: INTER

Memory bus 

VME bus

••• •••

C
PU

1

C
PU

4

M
E

M
1

M
E

M
6

IN
T

E
R

V
M

E
B

D

I/
O

B
D

V
M

E
B

D

Figure 1.3 Dune 3000 symmetric multiprocessor architecture with shared memory
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Industrial local area network

Office network

Fieldbus

Machine tool Robot
Conveyer

Robot
controller

Machine tool
controller

Conveyer
controller

Industrial local area network

Cell controller Cell controller

Computer-assisted
manufacturing

Industrial database
server

Engineering and
design department

After-sales service
Customer management

Maintenance

Camera

Figure 1.4 Example of a distributed architecture of real-time application

Logical architecture and real-time computing systems

Operating systems In order to locate real-time systems, let us briefly recall that
computing systems may be classified, as shown by Figure 1.5, into transformational,
interactive and reactive systems, which include asynchronous real-time systems.

The transformational aspect refers to systems where the results are computed with
data available right from the program start and usable when required at any moment.
The relational aspect between programming entities makes reference to systems where
the environment-produced data are expected by programs already started; the results
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Interactive systems
(e.g. office automation, CAD)

Algorithms

Synchronization
and communication 

Timing
properties

Transformational
aspect

 

Relational aspect 
between software 

entities

Timing 
aspect

Behavioural 
aspect

Transformational systems
(e.g. mathematical computations)

Input data without
timing constraints

Reactive systems 

3

1 2

3

2

1Environment-produced
data with timing constraints

Environment-produced
data without timing constraints

Figure 1.5 Classes of computing systems

of these programs are input to other programs. The timing aspect refers to systems
where the results must be given at times fixed by the controlled process dynamics.

A system is centralized when information representing decisions, resource sharing,
algorithms and data consistency is present in a shared memory and is directly accessible
by all tasks of the system. This definition is independent of the hardware architecture.
It refers to a uniprocessor or a shared memory multiprocessor architecture as well
as to a distributed architecture where all decisions are only taken by one site. A
system is distributed when the decisions are the result of a consensus among sites
exchanging messages.

Distributed programming has to cope with uncertainty resulting from the lack of a
common memory and common clock, from the variations of message transfer delays
from one site to another as well as from one message to another, and from the existence
of an important fault rate. Thus, identical information can never be captured simul-
taneously at all sites. As the time is one of these pieces of information, the sites are
not able to read a common clock simultaneously and define instantaneously whether
or not ‘they have the same time’.
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Computing systems are structured in layers. They all contain an operating system
kernelas shown in Figure 1.6. This kernel includes mechanisms for the basic man-
agement of the processor, the virtual memory, interrupt handling and communication.
More elaborate management policies for these resources and for other resources appear
in the higher layers.

Conventional operating systems provide resource allocation and task scheduling,
applying global policies in order to optimize the use of resources or to favour the
response time of some tasks such as interactive tasks. All tasks are considered as
aperiodic: neither their arrival times nor their execution times are known and they
have no deadline.

In conventional operating systems the shared resources dynamically allocated to
tasks are the main memory and the processor. Program behaviour investigations have
indicated that the main memory is the sensitive resource (the most sensitive are demand
paging systems with swapping between main memory and disk). Thus memory is
allocated first according to allocation algorithms, which are often complicated, and the
processor is allocated last. This simplifies processor scheduling since it concerns only
the small subset of tasks already granted enough memory (Bawn, 1997; Silberscharz
and Galvin, 1998; Tanenbaum, 1994; Tanenbaum and Woodhull, 1997). Conventional
operating systems tend to optimize resource utilization, principally the main memory,
and they do not give priority to deadline observances. This is a great difference with
real-time operating systems.

Real-time operating systems In real-time systems, resources other than the proces-
sor are often statically allocated to tasks at their creation. In particular, time should
not be wasted in dynamic memory allocation. Real-time files and databases are not
stored on disks but reside in main memory; this avoids the non-deterministic disk track
seeking and data access. Input–output management is important since the connections
with the controlled process are various. Therefore, the main allocation parameter is
processor time and this gives importance to the kernel and leads to it being named
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Figure 1.6 Structure of a conventional system



8 1 BASIC CONCEPTS

Real-time kernel

User program

Scheduler

Primitives

Interrupt
handling

Internet

Data

Task i Task j Task k

P
 R

 O
 C

 E
 S

 S

Request Activation

Figure 1.7 Schema of a real-time application

the real-time operating system (Figure 1.7). Nevertheless, conventional operating sys-
tem services are needed by real-time applications that have additional requirements
such as, for example, management of large data sets, storing and implementing pro-
grams on the computer also used for process control or management of local network
interconnection. Thus, some of these conventional operating systems have been reengi-
neered in order to provide a reentrant and interruptible kernel and to lighten the task
structure and communication. This has led to real-time Unix implementations. The
market seems to be showing a trend towards real-time systems proposing a Posix
standard interface (Portable Operating System Interface for Computer Environments;
international standardization for Unix-like systems).

1.2 Basic Concepts for Real-Time Task
Scheduling

1.2.1 Task description

Real-time task model

Real-time tasks are the basic executable entities that are scheduled; they may be peri-
odic or aperiodic, and have soft or hard real-time constraints. A task model has been
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defined with the main timing parameters. A task is defined by chronological parameters
denoting delays and by chronometric parameters denoting times. The model includes
primary and dynamic parameters. Primary parameters are (Figure 1.8):

• r , task release time, i.e. the triggering time of the task execution request.

• C, task worst-case computation time, when the processor is fully allocated to it.

• D, task relative deadline, i.e. the maximum acceptable delay for its processing.

• T , task period (valid only for periodic tasks).

• when the task has hard real-time constraints, the relative deadline allows compu-
tation of the absolute deadline d = r + D. Transgression of the absolute deadline
causes a timing fault.

The parameter T is absent for an aperiodic task. A periodic task is modelled by the
four previous parameters. Each time a task is ready, it releases a periodic request. The
successive release times (also called request times, arrival times or ready times) are
request release times at rk = r0 + kT , where r0 is the first release and rk the k + 1th
release; the successive absolute deadlines are dk = rk + D. If D = T , the periodic task
has a relative deadline equal to period. A task is well formed if 0 < C ≤ D ≤ T .

The quality of scheduling depends on the exactness of these parameters, so their
determination is an important aspect of real-time design. If the durations of operations
like task switching, operating system calls, interrupt processing and scheduler execution
cannot be neglected, the design analysis must estimate these durations and add them

t

r0: release time of the1st request of task
C: worst-case computation time
D: relative deadline
T: period
rk: release time of k+1th request of task
     rk = r0 + kT  is represented by
dk: absolute deadline of k+1th request of task 
     dk = rk + D is represented by

r2

Timing diagram

Note: for periodic task with D = T (deadline equal to period)
deadline at next release time is represented by    

T

r1r0 d1d0C

T

D

t(r0, C , D , T ) 
with 0 ≤ C ≤ D ≤ T 

Figure 1.8 Task model
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to the task computation times. That is why a deterministic behaviour is required for
the kernel, which should guarantee maximum values for these operations.

Other parameters are derived:

• u = C/T is the processor utilization factor of the task; we must have u ≤ 1.

• ch = C/D is the processor load factor; we must have ch ≤ 1.

The following dynamic parameters help to follow the task execution:

• s is the start time of task execution.

• e is the finish time of task execution.

• D(t) = d − t is the residual relative deadline at time t : 0 ≤ D(t) ≤ D.

• C(t) is the pending execution time at time t : 0 ≤ C(t) ≤ C.

• L = D − C is the nominal laxity of the task (it is also called slack time)and it
denotes the maximum lag for its start time s when it has sole use of the processor.

• L(t) = D(t) − C(t) is the residual nominal laxity of the task at time t and it
denotes the maximum lag for resuming its execution when it has sole use of the
processor; we also have L(t) = D + r − t − C(t).

• TR = e − r is the task response time; we have C ≤ TR ≤ D when there is no
time fault.

• CH (t) = C(t)/D(t) is the residual load; 0 ≤ CH (t) ≤ C/T (by definition, if e =
d , CH (e) = 0).

Figure 1.9 shows the evolution of L(t) and D(t) according to time.
Periodic tasks are triggered at successive request release times and return to the pas-

sive state once the request is completed. Aperiodic tasks may have the same behaviour
if they are triggered more than once; sometimes they are created at release time.

Once created, a task evolves between two states: passive and triggered. Processor
and resource sharing introduces several task states (Figure 1.10):

• elected: a processor is allocated to the task; C(t) and D(t) decrease, L(t) does
not decrease.

• blocked: the task waits for a resource, a message or a synchronization signal; L(t)

and D(t) decrease.

• ready: the task waits for election: in this case, L(t) and D(t) decrease.

• passive: the task has no current request.

• non-existing: the task is not created.

Other task characteristics

In addition to timing parameters of the task model, tasks are described by other features.
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1

 

For D = 7, C = 2 and L = 7−2 = 5

Task end

Figure 1.9 Dynamic parameter evolution
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f: evolution when a request is aborted after a timing fault (missing deadline) 

Figure 1.10 Task states

Preemptive or non-preemptive task Some tasks, once elected, should not be stopped
before the end of their execution; they are called non-preemptive tasks. For example, a
non-preemptive task is necessary to handle direct memory access (DMA) input–output
or to run in interrupt mode. Non-preemptive tasks are often called immediate tasks.
On the contrary, when an elected task may be stopped and reset to the ready state in
order to allocate the processor to another task, it is called a preemptive task.
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Dependency of tasks Tasks may interact according to a partial order that is fixed or
caused by a message transmission or by explicit synchronization. This creates prece-
dence relationships among tasks. Precedence relationships are known before execution,
i.e. they are static, and can be represented by a static precedence graph (Figure 1.11).
Tasks may share other resources than the processor and some resources may be exclu-
sive or critical, i.e. they must be used in mutual exclusion. The sequence of instructions
that a task has to execute in mutual exclusion is called a critical section. Thus, only
one task is allowed to run its critical section for a given resource (Figure 1.12).

Precedence

Acquisition1

Visualization

Processing

Acquisition2

Command

Figure 1.11 A precedence graph with five tasks

Acquisition Command

Computation Visualization

Real-time database

Exclusive access

Exclusive access

Resource access

Figure 1.12 Example of a critical resource shared by four tasks
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Resource sharing induces a dynamic relationship when the resource use order
depends on the task election order. The relationships can be represented by an alloca-
tion graph. When the tasks have static and dynamic dependencies which may serialize
them, the notion of global response time, or end-to-end delay, is used. This is the time
elapsed between the release time of the task reactive to the process stimulus and the
finish time of the last task that commands the actuators in answer to the stimulus.
Tasks are independent when they have no precedence relationships and do not share
critical resources.

Maximum jitter Sometimes, periodic requests must have regular start times or res-
ponse times. This is the case of periodic data sampling, a proportional integral deriva-
tive (PID) control loop or continuous emission of audio and video streams. The
difference between the start times of two consecutive requests, si and si+1, is the start
time jitter. A maximum jitter, or absolute jitter, is defined as |si+1−(si + T )| ≤ Gmax .
The maximum response time jitter is similarly defined.

Urgency The task deadline allows the specification of the urgency of data provided
by this task. Two tasks with equal urgency are given the same deadline.

Importance (criticality) When some tasks of a set are able to overcome timing faults
and avoid their propagation, the control system may suppress the execution of some
tasks. The latter must be aware of which tasks to suppress first or, on the other hand,
which tasks are essential for the application and should not be suppressed. An impor-
tance parameter is introduced to specify the criticality of a task. Two tasks with equal
urgency (thus having the same deadline) can be distinguished by different impor-
tance values.

External priority The designer may fix a constant priority, called external priority.
In this simplified form, all scheduling decisions are taken by an off-line scheduler or
by a priori rules (for example, the clock management task or the backup task in the
event of power failure must run immediately).

1.2.2 Scheduling: definitions, algorithms and properties

In a real-time system, tasks have timing constraints and their execution is bounded
to a maximum delay that has to be respected imperatively as often as possible. The
objective of scheduling is to allow tasks to fulfil these timing constraints when the
application runs in a nominal mode. A schedule must be predictable, i.e. it must be
a priori proven that all the timing constraints are met in a nominal mode. When
malfunctions occur in the controlled process, some alarm tasks may be triggered or
some execution times may increase, overloading the application and giving rise to
timing faults. In an overload situation, the objective of scheduling is to allow some
tolerance, i.e. to allow the execution of the tasks that keep the process safe, although
at a minimal level of service.

Task sets

A real-time application is specified by means of a set of tasks.
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Progressive or simultaneous triggering Application tasks are simultaneously triggered
when they have the same first release time, otherwise they are progressively triggered.
Tasks simultaneously triggered are also called in phase tasks.

Processor utilization factor The processor utilization factor of a set of n periodic
tasks is:

U =
n∑

i=1

Ci

Ti

(1.1)

Processor load factor The processor load factor of a set of n periodic tasks is:

CH =
n∑

i=1

Ci

Di

(1.2)

Processor laxity Because of deadlines, neither the utilization factor nor the load
factor is sufficient to evaluate an overload effect on timing constraints. We introduce
LP(t), the processor laxity at t , as the maximal time the processor may remain idle
after t without causing a task to miss its deadline. LP(t) varies as a function of t .
For all t , we must have LP(t) ≥ 0. To compute the laxity, the assignment sequence of
tasks to the processor must be known, and then the conditional laxity LC i(t) of each
task i must be computed:

LC i(t) = Di −
∑

Cj (t) (1.3)

where the sum in j computes the pending execution time of all the tasks (including
task i) that are triggered at t and that precede task i in the assignment sequence. The
laxity LP(t) is the smallest value of conditional laxity LC i(t).

Processor idle time The set of time intervals where the processor laxity is strictly
positive, i.e. the set of spare intervals, is named the processor idle time. It is a function
of the set of tasks and of their schedule.

Task scheduling definitions

Scheduling a task set consists of planning the execution of task requests in order to
meet the timing constraints:

• of all tasks when the system runs in the nominal mode;

• of at least the most important tasks (i.e. the tasks that are necessary to keep the
controlled process secure), in an abnormal mode.

An abnormal mode may be caused by hardware faults or other unexpected events. In
some applications, additional performance criteria are sought, such as minimizing the
response time, reducing the jitter, balancing the processor load among several sites,
limiting the communication cost, or minimizing the number of late tasks and messages
or their cumulative lag.

The scheduling algorithm assigns tasks to the processor and provides an ordered list
of tasks, called the planning sequence or the schedule.
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Scheduling algorithms taxonomy

On-line or off-line scheduling Off-line scheduling builds a complete planning se-
quence with all task set parameters. The schedule is known before task execution
and can be implemented efficiently. However, this static approach is very rigid; it
assumes that all parameters, including release times, are fixed and it cannot adapt to
environmental changes.

On-line scheduling allows choosing at any time the next task to be elected and it has
knowledge of the parameters of the currently triggered tasks. When a new event occurs
the elected task may be changed without necessarily knowing in advance the time of
this event occurrence. This dynamic approach provides less precise statements than the
static one since it uses less information, and it has higher implementation overhead.
However, it manages the unpredictable arrival of tasks and allows progressive creation
of the planning sequence. Thus, on-line scheduling is used to cope with aperiodic tasks
and abnormal overloading.

Preemptive or non-preemptive scheduling In preemptive scheduling, an elected task
may be preempted and the processor allocated to a more urgent task or one with
higher priority; the preempted task is moved to the ready state, awaiting later election
on some processor. Preemptive scheduling is usable only with preemptive tasks. Non-
preemptive schedulingdoes not stop task execution. One of the drawbacks of non-
preemptive scheduling is that it may result in timing faults that a preemptive algorithm
can easily avoid. In uniprocessor architecture, critical resource sharing is easier with
non-preemptive scheduling since it does not require any concurrent access mechanism
for mutual exclusion and task queuing. However, this simplification is not valid in
multiprocessor architecture.

Best effort and timing fault intolerance With soft timing constraints, the scheduling
uses a best effort strategy and tries to do its best with the available processors. The
application may tolerate timing faults. With hard time constraints, the deadlines must
be guaranteed and timing faults are not tolerated.

Centralized or distributed scheduling Scheduling is centralized when it is imple-
mented on a centralized architecture or on a privileged site that records the parameters
of all the tasks of a distributed architecture. Scheduling is distributed when each site
defines a local scheduling after possibly some cooperation between sites leading to a
global scheduling strategy. In this context some tasks may be assigned to a site and
migrate later.

Scheduling properties

Feasible schedule A scheduling algorithm results in a schedule for a task set. This
schedule is feasible if all the tasks meet their timing constraints.

Schedulable task set A task set is schedulable when a scheduling algorithm is able
to provide a feasible schedule.

Optimal scheduling algorithm An algorithm is optimal if it is able to produce a
feasible schedule for any schedulable task set.
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Schedulability test A schedulability test allows checking of whether a periodic task
set that is submitted to a given scheduling algorithm might result in a feasible schedule.

Acceptance test On-line scheduling creates and modifies the schedule dynamically
as new task requests are triggered or when a deadline is missed. A new request may
be accepted if there exists at least a schedule which allows all previously accepted task
requests as well as this new candidate to meet their deadlines. The required condition
is called an acceptance test. This is often called a guarantee routine since if the tasks
respect their worst-case computation time (to which may be added the time waiting for
critical resources), the absence of timing faults is guaranteed. In distributed scheduling,
the rejection of a request by a site after a negative acceptance test may lead the task
to migrate.

Scheduling period (or major cycle or hyper period) The validation of a periodic and
aperiodic task set leads to the timing analysis of the execution of this task set. When
periodic tasks last indefinitely, the analysis must go through infinity. In fact, the task
set behaviour is periodic and it is sufficient to analyse only a validation period or
pseudo-period, called the scheduling period, the schedule length or the hyper period
(Grolleau and Choquet-Geniet, 2000; Leung and Merrill, 1980). The scheduling period
of a task set starts at the earliest release time, i.e. at time t = Min{ri,0}, considering
all tasks of the set. It ends at a time which is a function of the least common multiple
(LCM) of periods (Ti), the first release times of periodic tasks and the deadlines of
aperiodic tasks:

Max{ri,0, (rj,0 + Dj)} + 2 · LCM(Ti) (1.4)

where i varies in the set of periodic task indexes, and j in the set of aperiodic
task indexes.

Implementation of schedulers

Scheduling implementation relies on conventional data structures.

Election table When the schedule is fixed before application start, as in static off-line
scheduling, this definitive schedule may be stored in a table and used by the scheduler
to decide which task to elect next.

Priority queuing list On-line scheduling creates dynamically a planning sequence,
the first element of which is the elected task (in a n-processor architecture, the n first
elements are concerned). This sequence is an ordered list; the ordering relationship is
represented by keys; searching and suppression point out the minimal key element;
a new element is inserted in the list according to its key ordering. This structure is
usually called a heap sorted list or a priority ordered list (Weiss, 1994).

Constant or varying priority The element key, called priority when elements are tasks,
is a timing parameter or a mix of parameters of the task model. It remains constant
when the parameter is not variable, such as computation time, relative deadline, period
or external priority. It is variable when the parameter changes during task execution,
such as pending computation time, residual laxity, or when it is modified from one
request to another, such as the release time or absolute deadline. The priority value or
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sorting key may be the value of the parameter used or, if the range of values is too
large, a one-to-one function from this parameter to a subset of integers. This subset is
usually called the priority set. The size of this priority set may be fixed a priori by
hardware architecture or by the operating system kernel. Coding the priority with a
fixed bit-size and using special machine instruction allows the priority list management
to be made faster.

Two-level scheduling When scheduling gets complex, it is split into two parts. One
elaborates policy (high-level or long-term decisions, facing overload with task sup-
pression, giving preference to some tasks for a while in hierarchical scheduling). The
other executes the low-level mechanisms (election of a task in the subset prepared by
the high-level scheduler, short-term choices which reorder this subset). A particular
case is distributed scheduling, which separates the local scheduling that copes with
the tasks allocated to a site and the global scheduling that assigns tasks to sites and
migrates them. The order between local and global is another choice whose cost must
be appraised: should tasks be settled a priori in a site and then migrate if the site
becomes overloaded, or should all sites be interrogated about their reception capacity
before allocating a triggered task?

1.2.3 Scheduling in classical operating systems

Scheduling objectives in a classical operating system

In a multitasking system, scheduling has two main functions:

• maximizing processor usage, i.e. the ratio between active time and idle time. The-
oretically, this ratio may vary from 0% to 100%; in practice, the observed rate
varies between 40% and 95%.

• minimizing response time of tasks, i.e. the time between task submission time and
the end of execution. At best, response time may be equal to execution time, when
a task is elected immediately and executed without preemption.

The success of both functions may be directly appraised by computing the processing
ratio and the mean response time, but other evaluation criteria are also used. Some of
them are given below:

• evaluating the task waiting time, i.e. the time spent in the ready state;

• evaluating the processor throughput, i.e. the average number of completed tasks
during a time interval;

• computing the total execution time of a given set of tasks;

• computing the average response time of a given set of tasks.

Main policies

The scheduling policy decides which ready task is elected. Let us describe below some
of the principal policies frequently used in classical operating systems.
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First-come-first-served scheduling policy This policy serves the oldest request, without
preemption; the processor allocation order is the task arrival order. Tasks with short com-
putation time may be penalized when a task with a long computation time precedes them.

Shortest first scheduling policy This policy aims to correct the drawback mentioned
above. The processor is allocated to the shortest computation time task, without pre-
emption. This algorithm is the non-preemptive scheduling algorithm that minimizes
the mean response time. It penalizes long computation tasks. It requires estimating
the computation time of a task, which is usually unknown. A preemptive version of
this policy is called ‘pending computation time first’: the elected task gives back the
processor when a task with a shorter pending time becomes ready.

Round-robin scheduling policy A time slice, which may be fixed, for example bet-
ween 10 ms and 100 ms, is given as a quantum of processor allocation. The processor
is allocated in turn to each ready task for a period no longer than the quantum. If
the task ends its computation before the end of the quantum, it releases the processor
and the next ready task is elected. If the task has not completed its computation
before the quantum end, it is preempted and it becomes the last of the ready task
set (Figure 1.13). A round-robin policy is commonly used in time-sharing systems. Its
performance heavily relies on the quantum size. A large quantum increases response
times, while too small a quantum increases task commutations and then their cost may
no longer be neglected.

Constant priority scheduling policy A constant priority value is assigned to each task
and at any time the elected task is always the highest priority ready task (Figure 1.14).
This algorithm can be used with or without preemption. The drawback of this policy is
that low-priority tasks may starve forever. A solution is to ‘age’ the priority of waiting
ready tasks, i.e. to increase the priority as a function of waiting time. Thus the task
priority becomes variable.

Ready tasks

4 8 11 15 18 22 26 30

Quantum = 4

C1 = 20

t

0

τ1

τ1

τ2
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τ2

C3 = 3
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Figure 1.13 Example of Round-Robin scheduling
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Figure 1.14 Example of priority scheduling (the lower the priority index, the higher is the
task priority)

Multilevel priority scheduling policy In the policies above, ready tasks share a single
waiting list. We choose now to define several ready task lists, each corresponding to
a priority level; this may lead to n different priority lists varying from 0 to n − 1.
In a given list, all tasks have the same priority and are first-come-first-served without
preemption or in a round-robin fashion. The quantum value may be different from one
priority list to another. The scheduler serves first all the tasks in list 0, then all the
tasks in list 1 as long as list 0 remains empty, and so on. Two variants allow different
evolution of the task priorities:

• Task priorities remain constant all the time. At the end of the quantum, a task that
is still ready is reentered in the waiting list corresponding to its priority value.

• Task priorities evolve dynamically according to the service time given to the task.
Thus a task elected from list x, and which is still ready at the end of its quantum,
will not reenter list x, but list x + 1 of lower priority, and so on. This policy tries
to minimize starvation risks for low-priority tasks by progressively lowering the
priority of high-priority tasks (Figure 1.15).

Note: none of the preceding policies fulfils the two objectives of real-time schedul-
ing, especially because none of them integrates the notion of task urgency, which is
represented by the relative deadline in the model of real-time tasks.

1.2.4 Illustrating real-time scheduling

Let us introduce the problem of real-time scheduling by a tale inspired by La Fontaine,
the famous French fabulist who lived in the 17th century. The problem is to control
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Figure 1.15 Example of multilevel priority scheduling
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Figure 1.16 Execution sequences with two different scheduling algorithms and two different
processors (the Hare and the Tortoise)

a real-time application with two tasks τ1 and τ2. The periodic task τ1 controls the
engine of a mobile vehicle. Its period as well as its relative deadline is 320 seconds.
The sporadic task τ2 has to react to steering commands before a relative deadline of
21 seconds. Two systems are proposed by suppliers.

The Tortoise system has a processor whose speed is 1 Mips, a task switching over-
head of 1 second and an earliest deadline scheduler. The periodic task computation is
270 seconds; the sporadic task requires 15 seconds. The Hare system has the advan-
tage of being very efficient and of withdrawing resource-sharing contention. It has
a processor whose speed is 10 Mips, a task switching overhead of (almost) 0 and a
first-in-first-out non-preemptive scheduler. So, with this processor, the periodic task τ1

computation is 27 seconds; the sporadic task τ2 requires 1.5 seconds.
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An acceptance trial was made by one of our students as follows. Just after the
periodic task starts running, the task is triggered. The Tortoise respects both deadlines
while the Hare generates a timing fault for the steering command (Figure 1.16). The
explanation is a trivial exercise for the reader of this book and is an illustration that
scheduling helps to satisfy timing constraints better than system efficiency.

The first verse of La Fontaine’s tale, named the Hare and the Tortoise, is ‘It is no
use running; it is better to leave on time’ (La Fontaine, Le lièvre et la tortue, Fables
VI, 10, Paris, 17th century).





2
Scheduling of Independent Tasks

This chapter deals with scheduling algorithms for independent tasks. The first part of
this chapter describes four basic algorithms: rate monotonic, inverse deadline, earliest
deadline first, and least laxity first. These algorithms deal with homogeneous sets
of tasks, where tasks are either periodic or aperiodic. However, real-time applications
often require both types of tasks. In this context, periodic tasks usually have hard timing
constraints and are scheduled with one of the four basic algorithms. Aperiodic tasks
have either soft or hard timing constraints. The second part of this chapter describes
scheduling algorithms for such hybrid task sets.

There are two classes of scheduling algorithms:

• Off-line scheduling algorithms: a scheduling algorithm is used off-line if it is exe-
cuted on the entire task set before actual task activation. The schedule generated
in this way is stored in a table and later executed by a dispatcher. The task set
has to be fixed and known a priori, so that all task activations can be calculated
off-line. The main advantage of this approach is that the run-time overhead is low
and does not depend on the complexity of the scheduling algorithm used to build
the schedule. However, the system is quite inflexible to environmental changes.

• On-line scheduling: a scheduling algorithm is used on-line if scheduling decisions
are taken at run-time every time a new task enters the system or when a running
task terminates. With on-line scheduling algorithms, each task is assigned a pri-
ority, according to one of its temporal parameters. These priorities can be either
fixed priorities, based on fixed parameters and assigned to the tasks before their
activation, or dynamic priorities, based on dynamic parameters that may change
during system evolution. When the task set is fixed, task activations and worst-case
computation times are known a priori, and a schedulability test can be executed
off-line. However, when task activations are not known, an on-line guarantee test
has to be done every time a new task enters the system. The aim of this guarantee
test is to detect possible missed deadlines.

This chapter deals only with on-line scheduling algorithms.

2.1 Basic On-Line Algorithms for Periodic Tasks

Basic on-line algorithms are designed with a simple rule that assigns priorities accord-
ing to temporal parameters of tasks. If the considered parameter is fixed, i.e. request
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rate or deadline, the algorithm is static because the priority is fixed. The priorities are
assigned to tasks before execution and do not change over time. The basic algorithms
with fixed-priority assignment are rate monotonic (Liu and Layland, 1973) and inverse
deadline or deadline monotonic (Leung and Merrill, 1980). On the other hand, if the
scheduling algorithm is based on variable parameters, i.e. absolute task deadlines, it is
said to be dynamic because the priority is variable. The most important algorithms in
this category are earliest deadline first (Liu and Layland, 1973) and least laxity first
(Dhall, 1977; Sorenson, 1974).

The complete study (analysis) of a scheduling algorithm is composed of two parts:

• the optimality of the algorithm in the sense that no other algorithm of the same
class (fixed or variable priority) can schedule a task set that cannot be scheduled
by the studied algorithm.

• the off-line schedulability test associated with this algorithm, allowing a check of
whether a task set is schedulable without building the entire execution sequence
over the scheduling period.

2.1.1 Rate monotonic scheduling

For a set of periodic tasks, assigning the priorities according to the rate monotonic (RM)
algorithm means that tasks with shorter periods (higher request rates) get higher
priorities.

Optimality of the rate monotonic algorithm

As we cannot analyse all the relationships among all the release times of a task set, we
have to identify the worst-case combination of release times in term of schedulability
of the task set. This case occurs when all the tasks are released simultaneously. In fact,
this case corresponds to the critical instant, defined as the time at which the release
of a task will produce the largest response time of this task (Buttazzo, 1997; Liu and
Layland, 1973).

As a consequence, if a task set is schedulable at the critical instant of each one of
its tasks, then the same task set is schedulable with arbitrary arrival times. This fact is
illustrated in Figure 2.1. We consider two periodic tasks with the following parameters
τ1 (r1, 1, 4, 4) and τ2 (0, 10, 14, 14). According to the RM algorithm, task τ1 has high
priority. Task τ2 is regularly delayed by the interference of the successive instances of
the high priority task τ1. The analysis of the response time of task τ2 as a function of
the release time r1 of task τ1 shows that it increases when the release times of tasks
are closer and closer:

• if r1 = 4, the response time of task τ2 is equal to 12;

• if r1 = 2, the response time of task τ2 is equal to 13 (the same response time holds
when r1 = 3 and r1 = 1);

• if r1 = r2 = 0, the response time of task τ2 is equal to 14.
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Figure 2.1 Analysis of the response time of task τ2 (0, 10, 14, 14) as a function of the release
time of task τ1(r1, 1, 4, 4)

In this context, we want to prove the optimality of the RM priority assignment algo-
rithm. We first demonstrate the optimality property for two tasks and then we generalize
this result for an arbitrary set of n tasks.

Let us consider the case of scheduling two tasks τ1 and τ2 with T1 < T2 and their
relative deadlines equal to their periods (D1 = T1, D2 = T2). If the priorities are not
assigned according to the RM algorithm, then the priority of task τ2 may be higher
than that of task τ1. Let us consider the case where task τ2 has a priority higher than
that of τ1. At time T1, task τ1 must be completed. As its priority is the low one, task
τ2 has been completed before. As shown in Figure 2.2, the following inequality must
be satisfied:

C1 + C2 ≤ T1 (2.1)

Now consider that the priorities are assigned according to the RM algorithm. Task
τ1 will receive the high priority and task τ2 the low one. In this situation, we have to
distinguish two cases in order to analyse precisely the interference of these two tasks

t
C1

C2
t

T1

T2

Figure 2.2 Execution sequence with two tasks τ1 and τ2 with the priority of task τ2 higher
than that of task τ1
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Figure 2.3 Execution sequence with two tasks τ1 and τ2 with the priority of task τ1 higher
than that of task τ2 (RM priority assignment)

(Figure 2.3). β = �T2/T1� is the number of periods of task τ1 entirely included in the
period of task τ2. The first case (case 1) corresponds to a computational time of task
τ1 which is short enough for all the instances of task τ1 to complete before the second
request of task τ2. That is:

C1 ≤ T2 − β · T1 (2.2)

In case 1, as shown in Figure 2.3, the maximum of the execution time of task τ2 is
given by:

C2,max = T2 − (β + 1) · C1 (2.3)

That can be rewritten as follows:

C2 + (β + 1) · C1 ≤ T2 (2.4)

The second case (case 2) corresponds to a computational time of task τ1 which is large
enough for the last request of task τ1 not to be completed before the second request
of task τ2. That is:

C1 ≥ T2 − β · T1 (2.5)

In case 2, as shown in Figure 2.3, the maximum of the execution time of task τ2 is
given by:

C2,max = β · (T1 − C1) (2.6)

That can be rewritten as follows:

β · C1 + C2 ≤ β · T1 (2.7)

In order to prove the optimality of the RM priority assignment, we have to show
that the inequality (2.1) implies the inequalities (2.4) or (2.7). So we start with the
assumption that C1 + C2 ≤ T1, demonstrated when the priority assignment is not done
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according to the RM algorithm. By multiplying both sides of (2.1) by β, we have:
β · C1 + β · C2 ≤ β · T1

Given that β = �T2/T1� is greater than 1 or equal to 1, we obtain:

β · C1 + C2 ≤ β · C1 + β · C2 ≤ β · T1

By adding C1 to each member of this inequality, we get (β + 1) · C1 + C2 ≤ β · T1 + C1.
By using the inequality (2.2) previously demonstrated in case 1, we can write (β +

1) · C1 + C2 ≤ T2. This result corresponds to the inequality (2.4), so we have proved
the following implication, which demonstrates the optimality of RM priority assignment
in case 1:

C1 + C2 ≤ T1 ⇒ (β + 1) · C1 + C2 ≤ T2 (2.8)

In the same manner, starting with the inequality (2.1), we multiply by β each member of
this inequality and use the property β ≥ 1. So we get β · C1 + C2 ≤ β · T1. This result
corresponds to the inequality (2.7), so we have proved the following implication, which
demonstrates the optimality of RM priority assignment in case 2:

C1 + C2 ≤ T1 ⇒ β · C1 + C2 ≤ β · T1 (2.9)

In conclusion, we have proved that, for a set of two tasks τ1 and τ2 with T1 < T2 with
relative deadlines equal to periods (D1 = T1, D2 = T2), if the schedule is feasible by
an arbitrary priority assignment, then it is also feasible by applying the RM algorithm.
This result can be extended to a set of n periodic tasks (Buttazzo, 1997; Liu and
Layland, 1973).

Schedulability test of the rate monotonic algorithm

We now study how to calculate the least upper bound Umax of the processor utilization
factor for the RM algorithm. This bound is first determined for two periodic tasks τ1

and τ2 with T1 < T2 and again D1 = T1 and D2 = T2:

Umax = C1

T1
+ C2,max

T2

In case 1, we consider the maximum execution time of task τ2 given by the equality
(2.3). So the processor utilization factor, denoted by Umax,1, is given by:

Umax,1 = 1 − C1

T2
·
[
(β + 1) − T2

T1

]
(2.10)

We can observe that the processor utilization factor is monotonically decreasing in C1

because [(β + 1) − (T2/T1)] > 0. This function of C1 goes from C1 = 0 to the limit
between the two studied cases given by the inequalities (2.2) and (2.5). Figure 2.4
depicts this function.

In case 2, we consider the maximum execution time of task τ2 given by the equality
(2.6). So the processor utilization factor Umax,2 is given by:

Umax,2 = β · T1

T2
+ C1

T2
·
[
T2

T1
− β

]
(2.11)
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Figure 2.4 Analysis of the processor utilization factor function of C1

We can observe that the processor utilization factor is monotonically increasing in C1

because [T2/T1 − β] > 0. This function of C1 goes from the limit between the two
studied cases given by the inequalities (2.2) and (2.5) to C1 = T1. Figure 2.4 depicts
this function.

The intersection between these two lines corresponds to the minimum value of the
maximum processor utilization factor that occurs for C1 = T2 − β · T1. So we have:

Umax,lim = α2 + β

α + β

where α = T2/T1 − β with the property 0 ≤ α < 1.
Under this limit Umax,lim, we can assert that the task set is schedulable. Unfortunately,

this value depends on the parameters α and β. In order to get a couple 〈α, β〉 independent
bound, we have to find the minimum value of this limit. Minimizing Umax,lim over α,
we have:

dUmax,lim

dα
= (α2 + 2αβ − β)

(α + β)2

We obtain dUmax,lim/dα = 0 for α2 + 2αβ − β = 0, which has an acceptable solution
for α : α = √

β(1 + β) − β

Thus, the least upper bound is given by Umax,lim = 2 · [
√

β(1 + β) − β].
For the minimum value of β = 1, we get:

Umax,lim = 2 · [21/2 − 1] ≈ 0.83

And, for any value of β, we get an upper value of 0.83:

∀β, Umax,lim = 2 · {[β(1 + β)]1/2 − β} ≤ 0.83
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Figure 2.5 Example of a rate monotonic schedule with three periodic tasks: τ1 (0, 3, 20, 20),
τ2 (0, 2, 5, 5) and τ3 (0, 2, 10, 10)

We can generalize this result for an arbitrary set of n periodic tasks, and we get a
sufficient schedulability condition (Buttazzo, 1997; Liu and Layland, 1973).

U =
n∑

i=1

Ci

Ti

≤ n · (21/n − 1) (2.12)

This upper bound converges to ln(2) = 0.69 for high values of n. A simulation study
shows that for random task sets, the processor utilization bound is 88% (Lehoczky
et al., 1989). Figure 2.5 shows an example of an RM schedule on a set of three periodic
tasks for which the relative deadline is equal to the period: τ1 (0, 3, 20, 20), τ2 (0,
2, 5, 5) and τ3 (0, 2, 10, 10). Task τ2 has the highest priority and task τ1 has the
lowest priority. The schedule is given within the major cycle of the task set, which is
the interval [0, 20]. The three tasks meet their deadlines and the processor utilization
factor is 3/20 + 2/5 + 2/10 = 0.75 < 3(21/3 − 1) = 0.779.

Due to priority assignment based on the periods of tasks, the RM algorithm should
be used to schedule tasks with relative deadlines equal to periods. This is the case
where the sufficient condition (2.12) can be used. For tasks with relative deadlines not
equal to periods, the inverse deadline algorithm should be used (see Section 2.1.2).

Another example can be studied with a set of three periodic tasks for which the
relative deadline is equal to the period: τ1 (0, 20, 100, 100), τ2 (0, 40, 150, 150)
and τ3 (0, 100, 350, 350). Task τ1 has the highest priority and task τ3 has the lowest
priority. The major cycle of the task set is LCM(100, 150, 350) = 2100. The processor
utilization factor is:

20/100 + 40/150 + 100/350 = 0.75 < 3(21/3 − 1) = 0.779.

So we can assert that this task set is schedulable; all the three tasks meet their deadlines.
The free time processor is equal to 520 over the major cycle. Although the scheduling
sequence building was not useful, we illustrate this example in the Figure 2.6, but only
over a tiny part of the major cycle.

2.1.2 Inverse deadline (or deadline
monotonic) algorithm

Inverse deadline allows a weakening of the condition which requires equality between
periods and deadlines in static-priority schemes. The inverse deadline algorithm assigns
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Figure 2.6 Example of a rate monotonic schedule with three periodic tasks: τ1 (0, 20, 100,
100), τ2 (0, 40, 150, 150) and τ3 (0, 100, 350, 350)

priorities to tasks according to their deadlines: the task with the shortest relative
deadline is assigned the highest priority. Inverse deadline is optimal in the class
of fixed-priority assignment algorithms in the sense that if any fixed-priority algo-
rithm can schedule a set of tasks with deadlines shorter than periods, than inverse
deadline will also schedule that task set. The computation given in the previous
section can be extended to the case of two tasks with deadlines shorter than peri-
ods, scheduled with inverse deadline. The proof is very similar and is left to the
reader. For an arbitrary set of n tasks with deadlines shorter than periods, a sufficient
condition is:

n∑

i=1

Ci

Di

≤ n(21/n − 1) (2.13)

Figure 2.7 shows an example of an inverse deadline schedule for a set of three peri-
odic tasks: τ1(r0 = 0, C = 3, D = 7, T = 20), τ2(r0 = 0, C = 2, D = 4, T = 5) and
τ3(r0 = 0, C = 2, D = 9, T = 10). Task τ2 has the highest priority and task τ3 the
lowest. Notice that the sufficient condition (2.13) is not satisfied because the processor
load factor is 1.15. However, the task set is schedulable; the schedule is given within
the major cycle of the task set.
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Figure 2.7 Inverse deadline schedule
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2.1.3 Algorithms with dynamic priority assignment

With dynamic priority assignment algorithms, priorities are assigned to tasks based
on dynamic parameters that may change during task execution. The most important
algorithms in this category are earliest deadline first (Liu and Layland, 1973) and least
laxity first (Dhall, 1977; Sorenson, 1974).

Earliest deadline first algorithm

The earliest deadline first (EDF) algorithm assigns priority to tasks according to their
absolute deadline: the task with the earliest deadline will be executed at the highest
priority. This algorithm is optimal in the sense of feasibility: if there exists a feasible
schedule for a task set, then the EDF algorithm is able to find it.

It is important to notice that a necessary and sufficient schedulability condition
exists for periodic tasks with deadlines equal to periods. A set of periodic tasks with
deadlines equal to periods is schedulable with the EDF algorithm if and only if the
processor utilization factor is less than or equal to 1:

n∑

i=1

Ci

Ti

≤ 1 (2.14)

A hybrid task set is schedulable with the EDF algorithm if (sufficient condition):

n∑

i=1

Ci

Di

≤ 1 (2.15)

A necessary condition is given by formula (2.14). The EDF algorithm does not make
any assumption about the periodicity of the tasks; hence it can be used for scheduling
periodic as well as aperiodic tasks.

Figure 2.8 shows an example of an EDF schedule for a set of three periodic tasks
τ1(r0 = 0, C = 3, D = 7, 20 = T ), τ2(r0 = 0, C = 2, D = 4, T = 5) and τ3(r0 = 0,

C = 1,D = 8, T = 10). At time t = 0, the three tasks are ready to execute and the
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Figure 2.8 EDF schedule
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task with the smallest absolute deadline is τ2. Then τ2 is executed. At time t = 2,
task τ2 completes. The task with the smallest absolute deadline is now τ1. Then τ1

executes. At time t = 5, task τ1 completes and task τ2 is again ready. However, the
task with the smallest absolute deadline is now τ3, which begins to execute.

Least laxity first algorithm

The least laxity first (LLF) algorithm assigns priority to tasks according to their relative
laxity: the task with the smallest laxity will be executed at the highest priority. This
algorithm is optimal and the schedulability of a set of tasks can be guaranteed using
the EDF schedulability test.

When a task is executed, its relative laxity is constant. However, the relative laxity
of ready tasks decreases. Thus, when the laxity of the tasks is computed only at arrival
times, the LLF schedule is equivalent to the EDF schedule. However if the laxity is
computed at every time t , more context-switching will be necessary.

Figure 2.9 shows an example of an LLF schedule on a set of three periodic tasks
τ1(r0 = 0, C = 3, D = 7, T = 20), τ2(r0 = 0, C = 2, D = 4, T = 5) and τ3(r0 = 0,

C = 1, D = 8, T = 10). Relative laxity of the tasks is only computed at task arrival
times. At time t = 0, the three tasks are ready to execute. Relative laxity values of the
tasks are:

L(τ1) = 7 − 3 = 4; L(τ2) = 4 − 2 = 2; L(τ3) = 8 − 1 = 7
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Case (a): at time t = 5, task τ3 is executed.  

Case (b): at time t = 5, task τ2 is executed.  
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Figure 2.9 Least Laxity First schedules
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Thus the task with the smallest relative laxity is τ2. Then τ2 is executed. At time
t = 5, a new request of task τ2 enters the system. Its relative laxity value is equal to
the relative laxity of task τ3. So, task τ3 or task τ2 is executed (Figure 2.9).

Examples of jitter

Examples of jitters as defined in Chapter 1 can be observed with the schedules of
the basic scheduling algorithms. Examples of release jitter can be observed for task
τ3 with the inverse deadline schedule and for tasks τ2 and τ3 with the EDF sched-
ule. Examples of finishing jitter will be observed for task τ3 with the schedule of
Exercise 2.4, Question 3.

2.2 Hybrid Task Sets Scheduling

The basic scheduling algorithms presented in the previous sections deal with homoge-
neous sets of tasks where all tasks are periodic. However, some real-time applications
may require aperiodic tasks. Hybrid task sets contain both types of tasks. In this con-
text, periodic tasks usually have hard timing constraints and are scheduled with one of
the four basic algorithms. Aperiodic tasks have either soft or hard timing constraints.
The main objective of the system is to guarantee the schedulability of all the periodic
tasks. If the aperiodic tasks have soft time constraints, the system aims to provide
good average response times (best effort algorithms). If the aperiodic tasks have hard
deadlines, the system aim is to maximize the guarantee ratio of these aperiodic tasks.

2.2.1 Scheduling of soft aperiodic tasks

We present the most important algorithms for handling soft aperiodic tasks. The sim-
plest method is background scheduling, but it has quite poor performance. Average
response time of aperiodic tasks can be improved through the use of a server (Sprunt
et al., 1989). Finally, the slack stealing algorithm offers substantial improvements for
aperiodic response time by ‘stealing’ processing time from periodic tasks (Chetto and
Delacroix, 1993, Lehoczky et al., 1992).

Background scheduling

Aperiodic tasks are scheduled in the background when there are no periodic tasks ready
to execute. Aperiodic tasks are queued according to a first-come-first-served strategy.

Figure 2.10 shows an example in which two periodic tasks τ1(r0 = 0, C = 2, T = 5)

and τ2(r0 = 0, C = 2, T = 10) are scheduled with the RM algorithm while three ape-
riodic tasks τ3(r = 4, C = 2), τ4(r = 10, C = 1) and τ5(r = 11, C = 2) are executed
in the background. Idle times of the RM schedule are the intervals [4, 5], [7, 10], [14,
15] and [17, 20]. Thus the aperiodic task τ3 is executed immediately and finishes dur-
ing the following idle time, that is between times t = 7 and t = 8. The aperiodic task
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Figure 2.10 Background scheduling

τ4 enters the system at time t = 10 and waits until the idle time [14, 15] to execute.
And finally, the aperiodic task τ5 is executed during the last idle time [17, 20].

The major advantage of background scheduling is its simplicity. However, its major
drawback is that, for high loads due to periodic tasks, response time of aperiodic
requests can be high.

Task servers

A server is a periodic task whose purpose is to serve aperiodic requests. A server is
characterized by a period and a computation time called server capacity . The server
is scheduled with the algorithm used for the periodic tasks and, once it is active, it
serves the aperiodic requests within the limit of its capacity. The ordering of aperiodic
requests does not depend on the scheduling algorithm used for periodic tasks.

Several types of servers have been defined. The simplest server, called polling server,
serves pending aperiodic requests at regular intervals equal to its period. Other types of
servers (deferrable server, priority exchange server, sporadic server) improve this basic
polling service technique and provide better aperiodic responsiveness. This section only
presents the polling server, deferrable server and sporadic server techniques. Details
about the other kinds of servers can be found in Buttazzo (1997).

Polling server The polling server becomes active at regular intervals equal to its
period and serves pending aperiodic requests within the limit of its capacity. If no
aperiodic requests are pending, the polling server suspends itself until the beginning
of its next period and the time originally reserved for aperiodic requests is used by
periodic tasks.
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Figure 2.11 Example of a polling server τs

Figure 2.11 shows an example of aperiodic service obtained using a polling server.
The periodic task set is composed of three tasks, τ1(r0 = 0, C = 3, T = 20), τ2(r0 =
0, C = 2, T = 10) and τs(r0 = 0, C = 2, T = 5). τs is the task server: it has the highest
priority because it is the task with the smallest period. The three periodic tasks are
scheduled with the RM algorithm . The processor utilization factor is: 3/20 + 2/10 +
2/5 = 0.75 < 3(21/3 − 1) = 0.779.

At time t = 0, the processor is assigned to the polling server. However, since no
aperiodic requests are pending, the server suspends itself and its capacity is lost for
aperiodic tasks and used by periodic ones. Thus, the processor is assigned to task τ2,
then to task τ1. At time t = 4, task τ3 enters the system and waits until the beginning
of the next period of the server (t = 5) to execute. The entire capacity of the server is
used to serve the aperiodic task. At time t = 10, the polling server begins a new period
and immediately serves task τ4, which just enters the system. Since only half of the
server capacity has been used, the server serves task τ5, which arrives at time t = 11.
Task τ5 uses the remaining server capacity and then it must wait until the next period
of the server to execute to completion. Only half of the server capacity is consumed
and the remaining half is lost because no other aperiodic tasks are pending.

The main drawback of the polling server technique is the following: when the
polling server becomes active, it suspends itself until the beginning of its next period
if no aperiodic requests are pending and the time reserved for aperiodic requests is
discarded. So, if aperiodic tasks enter the system just after the polling server suspends
itself, they must wait until the beginning of the next period of the server to execute.

Deferrable server The deferrable server is an extension of the polling server which
improves the response time of aperiodic requests. The deferrable server looks like the
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polling server. However, the deferrable server preserves its capacity if no aperiodic
requests are pending at the beginning of its period. Thus, an aperiodic request that enters
the system just after the server suspends itself can be executed immediately. However,
the deferrable server violates a basic assumption of the RM algorithm: a periodic
task must execute whenever it is the highest priority task ready to run, otherwise a
lower priority task could miss its deadline. So, the behaviour of the deferrable server
results in a lower upper bound of the processor utilization factor for the periodic
task set, and the schedulability of the periodic task set is guaranteed under the RM
algorithm if:

U ≤ ln
(

Us + 2

2Us + 1

)
Us = Cs

Ts
U =

∑

i∈T P

Ci

Ti

(2.16)

Us is the processor utilization factor of the deferrable server τs(Cs, Ts). U is the
processor utilization factor of the periodic task set. TP is the periodic task index set.

Sporadic server The sporadic server is another server technique which improves the
response time of aperiodic requests without degrading the processor utilization factor
of the periodic task set. Like the deferrable server, the sporadic server preserves its
capacity until an aperiodic request occurs; however, it differs in the way it replenishes
this capacity. Thus, the sporadic server does not recover its capacity to its full value
at the beginning of each new period, but only after it has been consumed by aperiodic
task executions. More precisely, the sporadic server replenishes its capacity each time
tR it becomes active and its capacity is greater than 0. The replenishment time is set to
tR plus the server period. The replenishment amount is set to the capacity consumed
within the interval tR and the time when the sporadic server becomes idle or its capacity
has been exhausted.

Figure 2.12 shows an example of aperiodic service obtained using a sporadic server.
The periodic task set is composed of three tasks, τ1(r0 = 0, C = 3, T = 20), τ2(r0 =
0, C = 2, T = 10) and τs(r0 = 0, C = 2, T = 5). τs is the task server. The aperiodic
task set is composed of three tasks τ3(r = 4, C = 2), τ4(r = 10, C = 1) and τ5(r =
11, C = 2). At time t = 0, the server becomes active and suspends itself because there
are no pending aperiodic requests. However, it preserves its full capacity. At time
t = 4, task τ3 enters the system and is immediately executed within the interval [4, 6].
The capacity of the server is entirely used to serve the aperiodic task. As the server
has executed, the replenishment time is set to time tR = 4 + 5 = 9. The replenishment
amount is set to 2. At time t = 9, the server replenishes its capacity; however, it
suspends itself since no aperiodic requests are pending. At time t = 10, task τ4 enters
the system and is immediately executed. At time t = 11, task τ5 enters the system
and it is executed immediately too. It consumes the remaining server capacity. The
replenishment time is computed again and set to time tR = 15. Task τ5 is executed to
completion when the server replenishes its capacity, i.e. within the interval [15, 16].
At time t = 20, the sporadic server will replenish its capacity with an amount of 1,
consumed by task τ5.

The replenishment rule used by the sporadic server compensates for any deferred
execution so that the sporadic server exhibits a behaviour equivalent to one or more
periodic tasks. Thus, the schedulability of the periodic task set can be guaranteed under
the RM algorithm without degrading the processor utilization bound.
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Figure 2.12 Example of a sporadic server

There is also a dynamic version of the sporadic server based on EDF scheduling
(Spuri and Buttazzo, 1994, 1996). This version differs from the static version based on
RM scheduling in the way the server capacity is re-initialized. In particular, the server
capacity replenishment time is set so that a deadline can be assigned to each server
execution. More details related to this technique can be found in Buttazzo (1997).

Slack stealing and joint scheduling techniques

These two techniques are quite similar and both use the laxity of the periodic tasks
to schedule aperiodic tasks. With the first method, called slack stealing, the tasks are
scheduled with the RM algorithm. With the second method, called joint scheduling,
the tasks are scheduled with the EDF algorithm.

Unlike the server techniques, these techniques do not require the use of a periodic
task for aperiodic task service. Rather, each time an aperiodic request enters the system,
time for servicing this request is made by ‘stealing’ processing time from the periodic
tasks without causing deadline missing. So, the laxity of the periodic tasks is used to
schedule aperiodic requests as soon as possible.

With the joint scheduling technique, a fictive deadline fd is defined for each aperiodic
task so that the aperiodic task gets the shortest response time possible. fd is set to the
earlier time t , for which the amount of processing time of the task is equal to the
processor idle time while all pending task deadlines are met.

Figure 2.13 shows an example of aperiodic service obtained using the slack stealing
technique. The periodic task set is composed of two tasks τ1(r0 = 0, C = 2, T = 5)

and τ2(r0 = 0, C = 2, T = 10). The aperiodic task set is composed of three tasks



38 2 SCHEDULING OF INDEPENDENT TASKS

20 2085

t

τ1(r0 = 0, C = 2, T = 5)

τ2(r0 = 0, C = 2, T = 10)

40 202

t

10 17 19

10 1513 17

0 206

t

4 10 13

Aperiodic tasks

τ3(r = 4, C = 2) τ4(r = 10, C = 1) τ5(r = 11, C = 2)

11

6

Figure 2.13 Example of slack stealing schedule

τ3(r = 4, C = 2), τ4(r = 10, C = 1) and τ5(r = 11, C = 2). At time t = 4, the ape-
riodic task enters the system. The laxity of task τ1, which will become active at time
t = 5, is equal to 3; the execution of task τ1 can be delayed until time t = 6 and the
aperiodic task can be executed within the interval [4, 6]. Similarly, the third request
of the periodic task τ1 can delay its execution until time t = 13 so that the aperiodic
tasks τ4 and τ5 are executed as soon as they enter the system. Notice that the aperiodic
tasks have the smallest possible response times.

Figure 2.14 shows an example of aperiodic service obtained with the joint
scheduling technique. The periodic task set is composed of two tasks τ1(r0 = 0, C =
2, D = 4, T = 5) and τ2(r0 = 0, C = 1, D = 8, T = 10) and is scheduled with the
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Figure 2.14 Example of schedule using the joint scheduling technique
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EDF algorithm. The aperiodic task set is composed of three tasks τ3(r = 4, C = 2),
τ4(r = 10, C = 1) and τ5(r = 11, C = 2). At time t = 4, the aperiodic task τ3 enters
the system. The laxity of task τ1, which will become active at time t = 5, is equal
to 2; the execution of task τ1 can be delayed until time t = 6 and the aperiodic task
can be executed within the interval [4, 6]. So the fictive deadline fd is set to 6 for the
aperiodic task τ3.

Similarly, the third request of the periodic task τ1 can delay its execution until time
t = 11 so that the aperiodic request τ4 is executed as soon as it enters the system. The
fictive deadline assigned to task τ4 is equal to 11. Task τ5, which enters the system at
t = 11, cannot be executed until completion of the third request of τ1. It is executed in
the interval [13, 15]. Thus the fictive deadline assigned to task τ5 is equal to 15. Notice
that with the joint scheduling technique, the aperiodic tasks again have the smallest
possible response times.

2.2.2 Hard aperiodic task scheduling

If an aperiodic task is associated with a critical event which can be characterized
by a minimum inter-arrival time between consecutive instances, the aperiodic task
can be mapped onto a periodic task and scheduled with the periodic task set (Nas-
sor and Bres, 1991; and Sprunt et al., 1989). However, it is not always possible
to bound a priori the maximum arrival rate of some events. Moreover, mapping
the aperiodic tasks onto periodic tasks guarantees the timing constraints of all the
tasks but results in poor processor utilization. If the maximum arrival rate of some
events cannot be bounded a priori, an on-line guarantee of each aperiodic request
can be done (Chetto et al., 1990a). Each time a new aperiodic task enters the sys-
tem, an acceptance test is executed to verify whether the request can be sched-
uled within its deadline and without jeopardizing the deadlines of periodic tasks
and previously accepted aperiodic tasks. If the test is negative, the aperiodic request
is rejected.

In the next sections, we present two main acceptance techniques for aperiodic tasks.
Notice that these two policies always guarantee the periodic task deadlines: in an
overload situation, the rejected task is always the newly arrived aperiodic task. This
rejection assumes that the real-time system is a distributed system within which dis-
tributed scheduling is attempted to assign the rejected task to an underloaded processor
(Stankovic 1985). Spring (Stankovic and Ramamritham, 1989) is a real-time distributed
operating system where such dynamic guarantees and distributed scheduling are used.
The second technique is optimal; it means that an aperiodic task which can be guar-
anteed is never rejected.

Background scheduling of aperiodic tasks

The principle of this technique consists in scheduling aperiodic tasks in the background
when there are no periodic tasks ready to execute according to the EDF algorithm. So,
this technique looks like the background scheduling strategy presented in Section 2.2.1.
However, the aperiodic requests have hard timing constraints and as they are accepted,
they are queued according to a strict increasing order of deadlines. Thus, each time
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a new aperiodic request enters the system, an on-line acceptance test is executed
as follows:

• The acceptance test algorithm computes the amount of processor idle time between
the arrival time of the aperiodic task and its deadline. This amount of idle time
must be at least equal to the computation time requested by the newly arrived
aperiodic task.

• If there is enough idle time to execute the aperiodic task within its deadline, the
acceptance test verifies that the execution of the new task does not jeopardize the
guarantee of previously accepted tasks that have a later deadline and that have not
yet completed.

If there is not enough idle time or if the acceptance of the new task would jeopardize
the guarantee of previously accepted tasks, the new task is rejected. Otherwise it is
accepted and added to the set of accepted aperiodic tasks according to its deadline.

Figure 2.15 shows an example of this guarantee strategy for a task set composed of:

• three periodic tasks: τ1(r0 = 0, C = 3,D = 7, T = 20), τ2(r0 = 0, C = 2, D = 4,

T = 5), τ3(r0 = 0, C = 1, D = 8, T = 10).
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Figure 2.15 Background scheduling of aperiodic tasks
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• three aperiodic tasks: τ4(r = 4, C = 2, d = 10), τ5(r = 10, C = 1, d = 18), τ6(r =
11, C = 2, d = 16).

Within the major cycle of the EDF schedule, the idle times of the processor are the
intervals [8, 10], [13, 15] and [17, 20]. The three aperiodic tasks τ4, τ5 and τ6 can be
guaranteed and executed within the idle times of the processor.

At time t = 4, task τ4 enters the system. The amount of idle time between its arrival
time and its deadline is given by the interval [8, 10]. It is equal to the computation
time of the task. As there are no previously accepted aperiodic requests, the aperiodic
task τ4 is accepted.

At time t = 10, task τ5 enters the system. The amount of idle time between its
arrival time and its deadline is equal to 3. It is greater than the computation time of the
task. As there are no previously accepted aperiodic requests which have not completed
(the task τ4 completes its execution at time t = 10), the aperiodic task τ4 is accepted.

At time t = 11, task τ6 enters the system. The amount of idle time between its
arrival time and its deadline is equal to 2. It is just equal to the computation time of
the task. However, task τ5, which has previously been accepted, has not yet begun its
execution and it has a greater deadline than τ6. So, the acceptance test must verify that
the acceptance of task τ6 does not jeopardize the guarantee of task τ5. Task τ6 will
be executed first and will complete at time t = 15. Task τ5 will be executed within
the idle time [17, 18]. Then both tasks can meet their deadlines. The aperiodic task τ6

is accepted.

Joint scheduling of aperiodic and periodic tasks

This second acceptance test for aperiodic tasks looks like the technique we presented
in Section 2.2.1 where soft aperiodic requests were jointly scheduled with the periodic
tasks. The laxity of the periodic tasks and of the previously accepted aperiodic tasks
is used to schedule a newly arrived aperiodic task within its deadline.

Thus, each time a new aperiodic task enters the system, a new EDF schedule is built
with a task set which is composed of the periodic requests, the previously accepted
requests and the new request. If this schedule meets all the deadlines, then the new
request is accepted. Otherwise it is rejected.

Figure 2.16 shows an example of this strategy for a task set composed of the same
tasks as for the previous example. The three aperiodic tasks τ4, τ5 and τ6 can be jointly
scheduled with the periodic tasks.

At time t = 4, task τ4 enters the system. A new EDF schedule is built with a task set
composed of the ready periodic tasks τ1 (C(4) = 1, d = 7) and τ3, the next requests
of the periodic tasks and the aperiodic task τ4. Within this schedule, all the deadlines
are met. Task τ4 will be executed between times t = 8 and t = 10.

At time t = 10, the aperiodic task τ5 enters the system. A new EDF schedule is
built with a task set composed of the next requests of the periodic tasks τ2 and τ3 and
the aperiodic task τ5. Within this schedule, all the deadlines are met. Task τ5 will be
executed between times t = 13 and t = 14.

At time t = 11, task τ6 enters the system. A new EDF schedule is built with a
task set composed of the ready periodic tasks τ2 (C(11) = 1, d = 14) and τ3, the next
requests of the periodic task τ2 and the aperiodic task τ5 and τ6. Figure 2.16 shows
the resulting schedule.
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Figure 2.16 Example of joint scheduling of periodic and aperiodic tasks

2.3 Exercises

2.3.1 Questions

Exercise 2.1: Task set schedulability

Consider the four following preemptive scheduling algorithms:

• the rate monotonic algorithm (RM), which assigns fixed priority to tasks
according to their periods:

• the inverse deadline algorithm (ID), which assigns fixed priority to tasks
according to their relative deadlines;

• the earliest deadline first algorithm (EDF), which assigns dynamic priority
to tasks according to their absolute deadlines;

• the least laxity first algorithm (LLF), which assigns dynamic priority to tasks
according to their relative laxity.

Consider a task set τ composed of the following three periodic tasks {τ1, τ2, τ3}:
Continued on page 43



2.3 EXERCISES 43

Continued from page 42

• τ1(r0 = 0, C = 1, D = 3, T = 3)

• τ2(r0 = 0, C = 1, D = 4, T = 4)

• τ3(r0 = 0, C = 2, D = 3, T = 6)

Q1 Compute the processor utilization factor and the major cycle of the task set.

Q2 Build the schedule of the task set under the four scheduling algorithms
RM, ID, EDF and LLF.

Exercise 2.2: Aperiodic task schedulability

Consider the task set τ composed of the following three periodic tasks:

• τ1(r0 = 0, C = 1, D = 4, T = 4)

• τ2(r0 = 0, C = 2, D = 6, T = 6)

• τ3(r0 = 0, C = 2, D = 8, T = 8)

1. Schedulability of the task set τ

Q1 The task set is scheduled with the RM algorithm. Compute the processor
utilization factor and verify the schedulability of the task set. Compute the
major cycle of the task set and build the corresponding schedule. What can
you conclude?

Q2 The task set is scheduled with the EDF algorithm. Verify the schedulability
under the EDF algorithm. Compute the major cycle of the task set and
build the corresponding schedule. What can you conclude? What are the
idle times of the processor?

2. Schedulability with aperiodic tasks

Consider the hybrid task set composed of the periodic task set τ and the fol-
lowing aperiodic requests:

• case a: τ4(r = 9, C = 2,D = 6)

• case b: τ4(r = 9, C = 2, D = 10)

A server is a periodic task whose purpose is to service aperiodic requests.
The new task set is τ′ = τ + {τs}. τs(r0 = 0, C = 1, D = 6, T = 6) is the task
server.

Q3 Compute the processor utilization factor of the task set τ′. Compute the
major cycle of the task set.

Continued on page 44
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Continued from page 43

Q4 Verify the schedulability under the RM algorithm. Build the RM schedule.
What can you conclude?

Q5 Verify the schedulability under the EDF algorithm. Build the EDF schedule.
What can you conclude?

Exercise 2.3: Hard aperiodic task scheduling under the EDF algorithm

Consider a task set τ composed of the following three periodic tasks:

• τ1(r0 = 0, C = 5, D = 25, T = 30)

• τ2(r0 = 0, C = 10, D = 40, T = 50)

• τ3(r0 = 0, C = 20, D = 55, T = 75)

The task set is scheduled with the EDF algorithm.

Q1 Verify the schedulability under the EDF algorithm. Build the corresponding
schedule. What are the idle times of the processor?

Consider the following aperiodic tasks:

• τ4(r = 40, C = 10,D = 15)

• τ5(r = 70, C = 15,D = 35)

• τ6(r = 100, C = 20, D = 40)

• τ7(r = 105, C = 5,D = 25)

• τ8(r = 120, C = 5,D = 15)

Q2 Can these requests be guaranteed in the idle times of the processor?

Exercise 2.4: Soft aperiodic task scheduling under the RM algorithm

Consider a task set τ composed of the following three periodic tasks:

• τ1(r0 = 0, C = 5, T = 30)

• τ2(r0 = 0, C = 10, T = 50)

• τ3(r0 = 0, C = 25, T = 75)

Continued on page 45
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Continued from page 44

Q1 Compute the major cycle of the task set. Verify the schedulability under
the RM algorithm. Build the schedule.

Consider the following aperiodic tasks:

• τ4(r = 5, C = 12)

• τ5(r = 40, C = 7)

• τ6(r = 105, C = 20)

Q2 The aperiodic tasks are scheduled in background. Compute the response
times of tasks τ4, τ5 and τ6.

Q3 The aperiodic tasks are scheduled with a server. The server capacity is set
to 5 and its period is set to 25. Verify the schedulability of the new task set.
Build the schedule. Consider that the server is a polling server. Compute
the response times of tasks τ4, τ5 and τ6.

2.3.2 Answers

Exercise 2.1: Task set schedulability

Q1 U = 0.33 + 0.25 + 0.33 = 0.92
Major cycle = [0, LCM(3, 4, 6)] = [0, 12]

Q2 Figure 2.17 shows the schedules under the RM, EDF, ID and LLF algorithms.
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Figure 2.17 Schedules under the RM, ID, EDF and LLF algorithms
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Exercise 2.2: Aperiodic task schedulability

Q1 U = 0.25 + 0.33 + 0.25 = 0.83.n(21/n − 1) = 0.78(n = 3). The schedula-
bility test is not verified.
Major cycle = [0, 24]. Figure 2.18 shows the schedule under the RM
algorithm.

4 208

t
t1

12 16 24

4 208

t
t2

12 16 24

4 208

t
t3

12 16 24

4 208

t

12 16 24

RM schedule

Figure 2.18 Schedule under the RM algorithm

Q2 We can verify that U ≤ 1. So the task set is schedulable under the EDF
algorithm. The schedule (Figure 2.19) under the EDF algorithm is the same
as the schedule under the RM algorithm. The processor is idle within the
following intervals: [11, 12], [15, 16], [22, 24].
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Figure 2.19 Schedule under the EDF algorithm

Q3 U = 1. Major cycle = [0, 24].

Continued on page 47
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Continued from page 46

Q4 The schedulability test is not verified because U = 1. To conclude about the
task set schedulability, the schedule has to be built within the major cycle
of the task set. Figure 2.20 shows the schedule under the RM algorithm.
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Figure 2.20 RM schedule of Exercise 2.4, Q4

Q5 As U is equal to 1, the task set is schedulable under EDF. Figure 2.21
shows the schedule under the EDF algorithm during the major cycle.
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Figure 2.21 EDF schedule of Exercise 2.2, Q5

Continued on page 48
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Continued from page 46

• case a: τ4(r = 9, C = 2, D = 6) : τ4 can not be guaranteed

• case b: τ4(r = 9, C = 2, D = 10) : τ4 is guaranteed

Exercise 2.3: Hard aperiodic task scheduling under the EDF algorithm

Q1 0.2 + 0.25 + 0.36 = 0.8 < 1. In consequence, the task set is schedulable
under EDF.
Figure 2.22 shows the schedule.
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Figure 2.22 EDF schedule of Exercise 2.3, Q1

The processor is idle during the intervals [40, 50], [65, 75], [110, 120]
and [125, 150].

Q2 Task τ4 is accepted and executes during the idle time [40, 50]. Task τ5 is
rejected because there is not enough idle time to guarantee its deadline.
Task τ6 is accepted and it is executed during the idle times [110, 120] and
[125, 140]. Task τ7 is accepted:

• The task can be guaranteed if it is executed within the idle time [110,
115].

• The acceptance of task τ7 does not jeopardize the guarantee of task
τ6, which has not yet executed to completion.

Task τ8 is rejected:

• The task can be guaranteed if it executes within the idle time [125,
130].

• However, the acceptance of task τ8 jeopardizes the guarantee of task
τ6, which has not been yet executed to completion (C6(t) = 15).
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Exercise 2.4: Soft aperiodic task scheduling under the RM algorithm

Q1 The major cycle = [0, LCM(30, 50, 75)] = [0, 150].
U = 5/30 + 10/50 + 25/75 = 0.7 < 0.78: the task set is schedulable.
Figure 2.23 shows the schedule.
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Figure 2.23 RM schedule of Exercise 2.4, Q1

Q2 The processor is idle within the following intervals: [45, 50], [65, 75],
[115, 120] and [125, 150].
Task τ4 is executed during time intervals [45, 50] and [65, 72]. Its response
time is equal to 72 − 5 = 67.
Task τ5 is executed during time intervals [72, 75] and [115, 119]. Its
response time is equal to 119 − 40 = 79.
Task τ6 is executed during time intervals [119, 120] and [125, 144]. Its
response time is equal to 144 − 105 = 39.

Q3 The schedulability test is not verified. The schedule built within the major
cycle shows that all the tasks meet their deadlines. Figure 2.24 shows
the schedule.
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Figure 2.24 RM schedule of Exercise 2.4, Q3
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50 2 SCHEDULING OF INDEPENDENT TASKS

Continued from page 49

The response time of τ4 is equal to 77 − 5 = 72.
The response time of τ5 is equal to 104 − 40 = 64.
The response time of τ6 is equal to 200 − 105 = 95.



3
Scheduling of Dependent Tasks

In the previous chapter, we assumed that tasks were independent, i.e. with no rela-
tionships between them. But in many real-time systems, inter-task dependencies are
necessary for realizing some control activities. In fact, this inter-task cooperation can
be expressed in different ways: some tasks have to respect a processing order, data
exchanges between tasks, or use of various resources, usually in exclusive mode. From
a behavioural modelling point of view, there are two kinds of typical dependencies
that can be specified on real-time tasks:

• precedence constraints that correspond to synchronization or communication among
tasks;

• mutual exclusion constraints to protect shared resources. These critical resources
may be data structures, memory areas, external devices, registers, etc.

3.1 Tasks with Precedence Relationships
The first type of constraint is the precedence relationship among real-time tasks. We
define a precedence constraint between two tasks τi and τj , denoted by τi → τj , if
the execution of task τi precedes that of task τj . In other words, task τj must await
the completion of task τi before beginning its own execution.

As the precedence constraints are assumed to be implemented in a deterministic
manner, these relationships can be described through a graph where the nodes represent
tasks and the arrows express the precedence constraint between two nodes, as shown
in Figure 3.1. This precedence acyclic graph represents a partial order on the task set.
If task τi is connected by a path to task τj in the precedence graph then τi → τj . A
general problem concerns tasks related by complex precedence relationships where n

successive instances of a task can precede one instance of another task, or one instance
of a task precedes m instances of another task. Figure 3.2 gives an example where the
rates of the communicating tasks are not equal.

To facilitate the description of the precedence constraint problem, we only consider
the case of simple precedence constraint, i.e. if a task τi has to communicate the result
of its processing to another task τj , these tasks have to be scheduled in such a way that
the execution of the kth instance of task τi precedes the execution of the kth instance of
task τj . Therefore, these tasks have the same rate (i.e. Ti = Tj ). So all tasks belonging
to a connected component of the precedence graph must have the same period. On the
graph represented in Figure 3.1, tasks τ1 to τ5 have the same period and tasks τ6 to τ9

also have the same period. If the periods of the tasks are different, these tasks will run
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Figure 3.1 Example of two precedence graphs related to a set of nine tasks
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Figure 3.2 Example of a generalized precedence relationship between two tasks with differ-
ent periods

at the lowest rate sooner or later. As a consequence the task with the shortest period
will miss its deadline. We do not consider cyclical asynchronous message buffers.

An answer to the first question was given by Blazewicz (1977): if we have to get
τi → τj , then the task parameters must be in accordance with the following rules:

• rj ≥ ri

• Prioi ≥ Prioj in accordance with the scheduling algorithm

In the rest of this chapter, we are interested in the validation context. This problem
can be studied from two points of view: execution and validation. First, in the case of
preemptive scheduling algorithms based on priority, the question is: which modification
of the task parameters will lead to an execution that respects the precedence constraints?
Second, is it possible to validate a priori the schedulability of a dependent task set?

3.1.1 Precedence constraints and fixed-priority
algorithms (RM and DM)

The rate monotonic scheduling algorithm assigns priorities to tasks according to their
periods. In other words, tasks with shorter period get higher priorities. Respecting this
rule, the goal is to modify the task parameters in order to take account of precedence
constraints, i.e. to obtain an independent task set with modified parameters. The basic
idea of these modifications is that a task cannot start before its predecessors and cannot
preempt its successors. So if we have to get τi → τj , then the release time and the
priority of task parameters must be modified as follows:

• r∗
j ≥ Max(rj , r

∗
i ) r∗

i is the modified release time of task τi

• Prioi ≥ Prioj in accordance with the RM algorithm
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Figure 3.3 Precedence graphs of a set of six tasks

Table 3.1 Example of priority mapping taking care of
precedence constraints and using the RM scheduling
algorithm

Task τ1 τ2 τ3 τ4 τ5 τ6

Priority 6 5 4 3 2 1

It is important to notice that, as all tasks of a precedence graph share the same period,
according to RM policy there is a free choice concerning the priorities that we use
to impose the precedence order. Let us consider a set of six tasks with simultaneous
release times and two graphs describing their precedence relationships (Figure 3.3).
The priority mapping, represented in Table 3.1, handles the precedence constraint and
meets the RM algorithm rule.

The deadline monotonic scheduling algorithm assigns priorities to tasks according to
their relative deadline D (tasks with shorter relative deadline get higher priorities). The
modifications of task parameters are close to those applied for RM scheduling except
that the relative deadline is also changed in order to respect the priority assignment.
So if τi → τj , then the release time, the relative deadline and the priority of the task
parameters must be modified as follows:

• r∗
j ≥ Max(rj , r

∗
i ) r∗

i is the modified release time of task τi

• D∗
j ≥ Max(Dj ,D

∗
i ) D∗

i is the modified relative deadline of task τi

• Prioi ≥ Prioj in accordance with the DM scheduling algorithm

This modification transparently enforces the precedence relationship between two tasks.

3.1.2 Precedence constraints and the earliest deadline
first algorithm

In the case of the earliest deadline first algorithm, the modification of task parameters
relies on the deadline d . So the rules for modifying release times and deadlines of
tasks are based on the following observations (Figure 3.4) (Blazewicz, 1977; Chetto
et al., 1990).
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Modification of r*i Modification of d*i

C1 C3

t

r1 r2 r*2 d*2 d2 d3

τ1 τ2 τ3

Figure 3.4 Modifications of task parameters in the case of EDF scheduling

First, if we have to get τi → τj , the release time r∗
j of task τj must be greater than

or equal to its initial value or to the new release times r∗
i of its immediate predecessors

τi increased by their execution times Ci :

r∗
j ≥ Max((r∗

i + Ci), rj )

Then, if we have to get τi → τj , the deadline d∗
i of task τi has to be replaced by the

minimum between its initial value di or by the new deadlines d∗
j of the immediate

successors τj decreased by their execution times Cj :

d∗
i ≥ Min((d∗

j − Cj ), di)

Procedures that modify the release times and the deadlines can be implemented in an
easy way as shown by Figure 3.4. They begin with the tasks that have no predecessors
for modifying their release times and with those with no successors for changing
their deadlines.

3.1.3 Example

Let us consider a set of five tasks whose parameters (ri, Ci, di) are indicated in
Table 3.2. Note that all the tasks are activated simultaneously except task τ2. Their
precedence graph is depicted in Figure 3.5. As there is one precedence graph linking

Table 3.2 Set of five tasks and the modifications of parameters according to the precedence
constraints (4 is the highest priority)

Initial task parameters Modifications to use
RM

Modifications to use
EDF

Task ri Ci di r∗
i P rioi r∗

i d∗
i

τ1 0 1 5 0 3 0 3
τ2 5 2 7 5 4 5 7
τ3 0 2 5 0 2 1 5
τ4 0 1 10 5 1 7 9
τ5 0 3 12 5 0 8 12
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Figure 3.5 Precedence graph linking five tasks

all the tasks of the application, we assume that all these tasks have the same rate.
Table 3.2 also shows the modifications of task parameters in order to take account of
the precedence constraints in both RM and EDF scheduling.

Let us note that, in the case of RM scheduling, only the release time parameters are
changed and the precedence constraint is enforced by the priority assignment. Under
EDF scheduling, both parameters (ri, di) must be modified.

3.2 Tasks Sharing Critical Resources

This section describes simple techniques that can handle shared resources for dynamic
preemptive systems. When tasks are allowed to access shared resources, their access
needs to be controlled in order to maintain data consistency. Let us consider a critical
resource, called R, shared by two tasks τ1 and τ2. We want to ensure that the sequences
of statements of τ1 and τ2, which perform on R, are executed under mutual exclusion.
These pieces of code are called critical sections or critical regions. Specific mechanisms
(such as semaphore, protected object or monitor), provided by the real-time kernel,
can be used to create critical sections in a task code. It is important to note that,
in a non-preemptive context, this problem does not arise because by definition a task
cannot be preempted during a critical section. In this chapter, we consider a preemptive
context in order to allow fast response time for high-priority tasks which correspond
to high-safety software.

Let us consider again the small example with two tasks τ1 and τ2 sharing one
resource R. Let us assume that task τ1 is activated first and uses resource R, i.e.
enters its critical section. Then the second task τ2, having a higher priority than τ1,
asks for the processor. Since the priority of task τ2 is greater, preemption occurs, task
τ1 is blocked and task τ2 starts its execution. However, when task τ2 wants access
to the shared resource R, it is blocked due to the mutual exclusion process. So task
τ1 can resume its execution. When task τ1 finishes its critical section, the higher
priority task τ2 can resume its execution and use resource R. This process can lead
to an uncontrolled blocking time of task τ2. On the contrary, to meet hard real-time
requirements, an application must be controlled by a scheduling algorithm that can
always guarantee a predictable system response time. The question is how to ensure
a predictable response time of real-time tasks in a preemptive scheduling mechanism
with resource constraints.
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3.2.1 Assessment of a task response time

In this section, we consider on-line preemptive scheduling where the priorities are fixed
and assigned to tasks. We discuss the upper bound of the response time of a task τ0

which has a worst-case execution time C0. Let us assume now that the utilization factor
of the processor is low enough to permit the task set, including τ0, to be schedulable
whatever the blocking time due to the shared resources.

In the first step, we suppose that the tasks are independent, i.e. without any shared
resource. If task τ0 has the higher priority, it is obvious that the response time TR0 of
this task τ0 is equal to its execution time C0. On the other hand, when task τ0 has an
intermediate priority, the upper bound of the response can also be evaluated easily as
a function of the tasks with a priority higher than that of task τ0, denoted τHPT:

• Where all tasks are periodic with the same period or aperiodic, we obtain:

TR0 ≤ C0 +
∑

i∈HPT

Ci (3.1)

• Where all tasks are periodic with different periods, we obtain:

TR0 ≤ C0 +
∑

i∈HPT

⌈
T0

Ti

⌉
Ci (3.2)

In the second step, we consider a task set sharing resources. The assumptions are
the following. Concerning task dispatching or resource access, the management of all
the queues is done according to the task priorities. Moreover, we assume that the
overhead due to kernel mechanisms (resource access, task queuing, context switches)
is negligible. Of course, these overheads can be taken into account as an additional
term of task execution times.

Now, in the context of a set with n + 1 tasks and m resources, let us calculate
the upper bound of the response time of task τ0 (i) when it does and (ii) when it
does not hold the highest priority. First, when task τ0 has the highest priority of the
task set, its execution can be delayed only by the activated tasks which have a lower
priority and use the same m0 shared resources. This situation has to be analysed for
two cases:

• Case I: The m0 shared resources are held by at least m0 tasks as shown in Figure 3.6,
where task τj holds resource R1 requested by task τ0. It is important to notice that
task τi waiting for resource R1 is preempted by task τ0 due to the priority order-
ing management of queues. Let CRi,q denote the maximum time the task τi uses
resource Rq , CRmax,q the maximum of CRi,q over all tasks τi , CRi,max the max-
imum of CRi,q over all resources Rq , and finally CRmax the maximum of CRi,q

over all tasks and resources. As a consequence, the upper bound of the response
time of task τ0 is given by:

TR0 ≤ C0 +
m0∑

i=1

CRi,max (3.3)
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Figure 3.6 Response time of the highest priority task sharing critical resources: Case I: two
lower priority tasks sharing a critical resource with task τ0. Case II: two lower priority tasks
sharing three critical resources with task τ0

In the worst case, for this set (n other tasks using the m resources, with n < m),
the response time is at most:

TR0 ≤ C0 + m · CRmax (3.4)

Or more precisely, we get:

TR0 ≤ C0 +
m∑

i=1

CRi,max (3.5)

• Case II: The m0 shared resources are held by n1 tasks with n1 < m0, as shown
in Figure 3.6, where tasks τk and τj hold resources R2, R3 and R4 requested by
τ0. We can notice that, at least, one task holds two resources. If we assume that
the critical sections of a task are properly nested, the maximum critical section
duration of a task using several resources is given by the longest critical section.
So the response time of task τ0 is upper-bounded by:

TR0 ≤ C0 + n1 · CRmax (3.6)
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Or more precisely, we get:

TR0 ≤ C0 +
n1∑

q=1

CRmax,q (3.7)

In the worst case, for this set (n other tasks and m resources, with n < m), the
response time of task τ0 is at most:

TR0 ≤ C0 + n · CRmax (3.8)

Or more precisely, we get:

TR0 ≤ C0 +
n∑

q=1

CRmax,q (3.9)

To sum up, an overall expression of the response time for the highest priority task
in a real-time application composed of n + 1 tasks and m resources is given by the
following inequality:

TR0 ≤ C0 + inf(n, m) · CRmax (3.10)

Let us consider now that task τ0 has an intermediate priority. The task set includes n1

tasks having a higher priority level (HPT set) and n2 tasks which have a lower priority
level and share m critical resources with task τ0. This case is depicted in Figure 3.7
with the following specific values: n1 = 1, n2 = 2 and m = 3. With the assumption
that the n2 lower priority tasks haves dependencies only with τ0, and not with the n1

higher priority tasks, it should be possible to calculate the upper bound of the response
time of task τ0 by combining inequalities (3.2) and (3.10). The response time is:

TR0 ≤ C0 + inf(n1, m) · CRmax +
∑

i∈HPT

⌈
T0

Ti

⌉
Ci (3.11)
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Figure 3.7 Response time of task sharing critical resources: Prioi > Prio0 > Prioj > Priok
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However, this computation of the upper bound of each task relies on respect for the
assumptions concerning the scheduling rules. In particular, for a preemptive schedul-
ing algorithm with fixed priority, there is an implicit condition of the specification
that must be inviolable: at its activation time, a task τ0 must run as soon as all the
higher priority tasks have finished their execution and all the lower priority tasks using
critical resources, requested by τ0, have released the corresponding critical sections. In
fact two scheduling problems can render this assumption false: the priority inversion
phenomenon and deadlock.

3.2.2 Priority inversion phenomenon

In preemptive scheduling that is driven by fixed priority and where critical resources
are protected by a mutual exclusion mechanism, the priority inversion phenomenon
can occur (Kaiser, 1981; Rajkumar, 1991; Sha et al., 1990). In order to illustrate
this problem, let us consider a task set composed of four tasks {τ1, τ2, τ3, τ4} hav-
ing decreasing priorities. Tasks τ2 and τ4 share a critical resource R1, the access
of which is mutually exclusive. Let us focus our attention on the response time of
task τ2. The scheduling sequence is shown in Figure 3.8. The lowest priority task
τ4 starts its execution first and after some time it enters a critical section using
resource R1. When task τ4 is in its critical section, the higher priority task τ2 is
released and preempts task τ4. During the execution of task τ2, task τ3 is released.
Nevertheless, task τ3, having a lower priority than task τ2, must wait. When task
τ2 needs to enter its critical section, associated with the critical resource R1 shared
with task τ4, it finds that the corresponding resource R1 is held by task τ4. Thus it
is blocked. The highest priority task able to execute is task τ3. So task τ3 gets the
processor and runs.

During this execution, the highest priority task τ1 awakes. As a consequence task τ3

is suspended and the processor is allocated to task τ1. At the end of execution of task
τ1, task τ3 can resume its execution until it reaches the end of its code. Now, only the
lowest priority task τ4, preempted in its critical section, can execute again. It resumes

τ1

τ2

τ3

τ4

t

Critical section Critical resource
request

R1

R1

R1

R1

R1

t

t

t

Critical resource
release

Figure 3.8 Example of priority inversion phenomenon
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its execution until it releases critical resource R1 required by the higher priority task
τ2. Then, this task can resume its execution by holding critical resource R1 necessary
for its activity.

It is of great importance to analyse this simple example precisely. The maximum
blocking time that task τ2 may experience depends on the duration of the critical
sections of the lower priority tasks sharing a resource with it, such as task τ4, and on
the other hand on the execution times of higher priority tasks, such as task τ1. These
two kinds of increase of the response time of task τ2 are completely consistent with
the scheduling rules. But, another task, τ3, which has a lower priority and does not
share any critical resource with task τ2, participates in the increase of its blocking time.
This situation, called priority inversion , contravenes the scheduling specification and
can induce deadline missing as can be seen in the example given in Section 9.2. In
this case the blocking time of each task cannot be bounded unless a specific protocol
is used and it can lead to uncontrolled response time of each task.

3.2.3 Deadlock phenomenon

When tasks share the same set of two or more critical resources, then a deadlock
situation can occur and, as a consequence, the real-time application fails. The notion
of deadlock is better illustrated by the following simple example (Figure 3.9a).

Let us consider two tasks τ1 and τ2 that use two critical resources R1 and R2. τ1

and τ2 access R1 and R2 in reverse order. Moreover, the priority of task τ1 is greater
than that of task τ2. Now, suppose that task τ2 executes first and locks resource R1.

t

t

Task executing 
Task using resource R1 

R1

R2

R1 R2 R1, R2

R1

R2

Task using resources R1 and R2

Deadlock

t  

t

(a) Deadlock

(b) Total ordering method
End of τ1

τ1

τ2

τ1

τ2

R1 R2R2R1

Figure 3.9 (a) Example of the deadlock phenomenon. (b) Solution for deadlock prevention by
imposing a total ordering on resource access
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During the critical section of task τ2 using resource R1, task τ1 awakes and preempts
task τ2 before it can lock the second resource R2. Task τ1 needs resource R2 first,
which is free, and it locks it. Then task τ1 needs resource R1, which is held by task
τ2. So task τ2 resumes and asks for resource R2, which is not free. The final result is
that task τ2 is in possession of resource R1 but is waiting for resource R2 and task τ1

is in possession of resource R2 but is waiting for resource R1. Neither task τ1 nor task
τ2 will release the resource until its pending request is satisfied. This situation leads to
a deadlock of both tasks. This situation can be extended to more than two tasks with
a circular resource access order and leads to a chained blocking.

Deadlock is a serious problem for critical real-time applications. Solutions must
be found in order to prevent deadlock situations, as classically done for operating
systems (Bacon, 1997; Silberschatz and Galvin, 1998; Tanenbaum, 1994; Tanenbaum
and woodhull, 1997). One method is to impose a total ordering of the critical resource
accesses (Havender, 1968). It is not always possible to apply this technique, because it
is necessary to know all the resources that a task will need during its activity. This is
why this method is called static prevention (Figure 3.9b). Another technique that can
be used on-line is known as the banker’s algorithm (Haberman, 1969), and requires
that each task declares beforehand the maximum number of resources that it may hold
simultaneously.

Other methods to cope with deadlocks are based on detection and recovering pro-
cesses (for example by using a watchdog timer). The use of a watchdog timer allows
detection of inactive tasks: this may be a deadlock, or the tasks may be waiting for
external signals. Then, the technique for handling the deadlock is to reset the tasks
involved in the detected deadlock or, in an easier way, the whole task set. This method,
used very often when the deadlock situation is known to occur infrequently, is not
acceptable for highly critical systems.

3.2.4 Shared resource access protocols

Scheduling of tasks that share critical resources leads to some problems in all computer
science applications:

• synchronization problems between tasks and particularly the priority inversion sit-
uation when they share mutually exclusive resources;

• deadlock and chained blocking problems.

In real-time systems, a simple method to cope with these problems is the reservation and
pre-holding of resources at the beginning of task execution. However, such a technique
leads to a low utilization factor of resources, so some resource access protocols have
been designed to avoid such drawbacks and also to bound the maximum response time
of tasks.

Different protocols have been developed for preventing the priority inversion in the
RM or EDF scheduling context. These protocols permit the upper bound of the blocking
time due to the critical resource access for each task τi to be determined. This is called
Bi . This maximum blocking duration is then integrated into the schedulability tests
of classical scheduling algorithms like RM and EDF (see Chapter 2). This integration
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is simply obtained by considering that a task τi has an execution time equal to Ci +
Bi . Some of these resource access protocols also prevent the deadlock phenomenon
(Rajkumar, 1991).

Priority inheritance protocol

The basic idea of the priority inheritance protocol is to dynamically change the priority
of some tasks (Kaiser, 1981; Sha et al., 1990). So a task τi , which is using a critical
resource inside a critical section, gets the priority of any task τj waiting for this
resource if the priority of task τj is higher than that of task τi . Consequently, task τi

is scheduled at a higher level than its initial level of priority. This new context leads
to freeing of the critical resource earlier and minimizes the waiting time of the higher
priority task τj . The priority inheritance protocol does not prevent deadlock, which
has to be avoided by using the techniques discussed above. However, the priority
inheritance protocol has to be used for task code with correctly nested critical sections.
In this case, the protocol is applied in a recursive manner. This protocol of priority
inheritance has been implemented in the real-time operating system DUNE-IX (Banino
et al., 1993).

Figure 3.10 gives an example of this protocol for a task set composed of three tasks
{τ1, τ2, τ3} having decreasing priorities and two critical resources {R1, R2}. Task τ1

uses resource R1, task τ2 resource R2, and task τ3 both resources R1 and R2. Task τ3

starts running first and takes successively resources R1 and R2. Later task τ2 awakes
and preempts task τ3 in its nested critical section. When task τ2 requires resource R2,
it is blocked by task τ3, thus task τ3 gets the priority of task τ2. We say that task τ3

inherits the priority of task τ2. Then, in the same manner, task τ1 awakes and preempts
task τ3 in its critical section. When task τ1 requests resource R1, it is blocked by task τ3,
consequently task τ3 inherits the priority of task τ1. So task τ3 continues its execution
with the highest priority of the task set. When τ3 releases resources R2 and then R1,
it resumes its original priority. Immediately, the higher priority task τ1, waiting for a
resource, preempts task τ3 and gets the processor. The end of the execution sequence
follows the classical rules of scheduling.
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Figure 3.10 Example of application of priority inheritance protocol
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When the priority inheritance protocol is used, it is possible to evaluate the upper
bound of the blocking time of each task. Under this protocol, a task τi can be blocked
at most by n critical sections of lower priority tasks or by m critical sections corre-
sponding to resources shared with lower priority tasks (Buttazzo, 1997; Klein et al.,
1993; Rajkumar, 1991). That is:

Bi ≤ inf(n, m) · CRmax (3.12)

As we can see in Figure 3.10, task τ2 is at most delayed by the longest critical section
of task τ3 (recall that several critical sections used by a task must be correctly nested.
In the example, R1 is released after R2).

Priority ceiling protocol

The basic idea of this protocol is to extend the preceding protocol in order to avoid
deadlocks and chained blocking by preventing a task from entering in a critical section
that leads to blocking it (Chen and Lin, 1990; Sha et al., 1990). To do so, each resource
is assigned a priority, called priority ceiling , equal to the priority of the highest priority
task that can use it. The priority ceiling is similar to a threshold. In the same way as in
the priority inheritance protocol, a task τi , which is using a critical resource inside a
critical section, gets the priority of any task τj waiting for this resource if the priority
of task τj is higher than that of τi . Consequently, task τi is scheduled at a higher level
than its initial level of priority and the waiting time of the higher priority task τj is
minimized. Moreover, in order to prevent deadlocks, when a task requests a resource,
the resource is allocated only if it is free and if the priority of this task is strictly
greater than the highest priority ceiling of resources used by other tasks. This rule
provides early blocking of tasks that may cause deadlock and guarantees that future
higher priority tasks get their resources.

Figure 3.11 gives an example of this protocol for a task set composed of three
tasks {τ1, τ2, τ3} with decreasing priorities and two critical resources {R1, R2}. Task
τ1 uses resource R1, task τ2 resource R2, and task τ3 both resources R1 and R2. Task
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Figure 3.11 Example of application of the priority ceiling protocol
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τ3 starts running first and takes resource R1, which is free. The priority ceiling of
resource R1 (respectively R2) is the priority of task τ1 (respectively τ2). Later task τ2

awakes and preempts task τ3 given that its priority is greater than the current priority
of task τ3. When task τ2 requests resource R2, it is blocked by the protocol because
its priority is not strictly greater than the priority ceiling of held resource R1. Since
task τ2 is waiting, task τ3 inherits the priority of task τ2 and resumes its execution. In
the same way, task τ1 awakes and preempts task τ3 given that its priority is greater
than that of task τ3. When task τ1 requests resource R1, it is blocked by the protocol
because its priority is not strictly greater than the priority ceiling of used resource
R1. And, since task τ1 is waiting, task τ3 inherits the priority of τ1 and resumes its
execution. When task τ3 exits the critical sections of both resources R2 and then R1,
it resumes its original priority and it is immediately preempted by the waiting highest
priority task, i.e task τ1. The end of the execution sequence follows the classical rules
of scheduling.

Initially designed for fixed-priority scheduling algorithms, such as rate monotonic,
this protocol has been extended by Chen and Lin (1990) to variable-priority scheduling
algorithms, such as earliest deadline first. In this context, the priority ceiling is evaluated
at each modification of the ready task list that is caused by activation or completion
of tasks. This protocol has been implemented in the real-time operating system Mach
at Carnegie Mellon University (Nakajima et al., 1993; Tokuda and Nakajima, 1991).

It is important to notice that this protocol needs to know a priori all the task
priorities and all the resources used by each task in order to assign priority ceilings.
Moreover, we can outline that the properties of this protocol are true only in a one-
processor context. When the priority ceiling protocol is used, it is possible to evaluate
the upper bound of the blocking time of each task. Under this protocol, a task τi can
be blocked at most by the longest critical section of a lower priority task that is using
a resource of priority ceiling less than or equal to the priority of that task τi (Buttazzo,
1997; Klein et al., 1993; Rajkumar, 1991).

The priority ceiling protocol is the so-called original priority ceiling protocol (Burns
and Wellings, 2001). A slightly different priority ceiling protocol, called the immediate
priority ceiling protocol (Burns and Wellings, 2001), takes a more straightforward
approach and raises the priority of a process as soon as it locks a resource rather than
only when it is actually blocking a higher priority process. The worst-case behaviour
of the two ceiling protocols is identical.

Stack resource policy

The stack resource protocol extends the preceding protocol in two ways: it allows
the use of multi-unit resources and can be applied with a variable-priority scheduling
algorithm like earliest deadline first (Baker, 1990). In addition to the classical priority,
each task is assigned a new parameter π, called level of preemption, which is related
to the time devoted for its execution (i.e π is inversely proportional to its relative
deadline D). This level of preemption is such that a task τi cannot preempt a task τj

unless π(τi ) > π(τj ). The current level of preemption of the system is determined as a
function of the resource access. Then a task cannot be elected if its level of preemption
is lower than this global level of preemption. The application of this rule points out
that the main difference between the priority ceiling protocol and the stack resource
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policy is the time at which a task is blocked. With the priority ceiling protocol, a task
is blocked when it wants to use a resource, and with the stack resource policy, a task is
blocked as soon as it wants to get the processor. A complete and precise presentation
of this protocol can be found in Buttazzo (1997) and Stankovic et al. (1998).

3.2.5 Conclusions

Table 3.3 summarizes comparative studies that have been done between the different
shared-resource protocols (Buttazzo, 1997). These protocols do not all try to avoid
the priority inversion phenomenon, but they attempt to minimize the blocking time of
high-priority tasks, induced by this fact. The upper bound of task blocking times, which
can be evaluated according to a given protocol, is then included in the schedulability
tests of the task set.

First, two general comments can be made about the three protocols studied to
manage shared resources in a preemptive scheduling context:

• Whereas the ceiling priority and stack resource protocols can be used for aperiodic
and/or periodic tasks, the priority inheritance protocol is applied only for a periodic
task set if we want to evaluate the upper bound of the blocking time according to
equation (3.12).

• The stack resource protocol induces the lowest proportion of context switches in
the execution sequence thanks to its earliest task blocking system.

The computation of the response time of any task, done in Section 3.2.1, has shown
how the explicit specifications of the scheduling algorithm are important and then
the implementation fits in correctly with these specifications. No assumption has been
made about deadlock prevention in Section 3.2.1. Once again, the explicit specification
of this particularly crucial phenomenon can be presented in two ways:

• The specification itself takes into account the deadlock prevention and gives a
deadlock-free off-line solution. This leads to the imposition of precise rules of
programming either on resource use (global allocation or total ordering method)
or on task concurrency management (a unique global critical section is defined for
each task).

Table 3.3 Evaluation summary of protocols preventing deadlocks and priority inversion

Protocol Scheduling
algorithm

Deadlock prevention Blocking time
calculation

Priority inheritance RM No min(n, m) · CRmax
protocol EDF

Priority ceiling RM Yes (in uniprocessor CRmax
protocol context)

Dynamic priority ceiling EDF Yes (in uniprocessor CRmax
protocol context)

Stack resource RM Yes (in uniprocessor CRmax
Protocol EDF context)
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• The specification indicates only that the prevention of deadlock has to be taken into
account by an on-line method whatever the shared resource managing protocol. This
leads to implementation of an on-line algorithm like the banker’s algorithm or the
priority ceiling protocol.

To compare both methods, the banker’s algorithm and the priority ceiling protocol,
consider two tasks τ1 and τ2 where τ2 has a higher priority than τ1. Task τ1 first uses
resource R1, then uses both resources R1 and R2 in a nested fashion. Task τ2 first uses
resource R2, then it uses both resources R1 and R2 in a nested fashion. Let us assume
that τ2 is awakened during the critical section of τ1 corresponding to resource R1. The
execution sequences, obtained for both algorithms, are the following:

• Under the banker’s algorithm, task τ2 preempts task τ1 as it has a higher priority
and runs until it requests resource R2. Task τ2 is blocked by the banker’s algorithm
because it knows that task τ1 will need resource R2 in the future (in this context
the algorithm holds the list of all the resources used by any task). Consequently
τ1 resumes its execution and, after a while, uses both resources R1 and R2. Then,
when resource R2 is free, τ2 resumes its execution by using R2 and then both
resources R1 and R2.

• Under the immediate priority ceiling protocol, resources R1 and R2 get the priority
of task τ2. Similarly, τ1 inherits the priority of task τ2 when it attempts to use
resource R1. As a consequence, task τ1 is not preempted by task τ2 as long as task
τ1 uses resources R1 and R2. So when task τ1 releases resources R1 and R2, task
τ1 resumes its initial priority and task τ2 can begin its execution.

From this example, we can notice:

• Resources are used in the correct order for preventing deadlock.

• With the banker’s algorithm, task τ2 begins its execution before it requests resource
R2. So there is more task context switching than with the use of the priority
ceiling protocol.

• In a multiprocessor execution context, the results would be quite different. For
the priority ceiling protocol, both tasks τ1 and τ2 are executed concurrently with
the same priority and this situation can lead to a deadlock. By using the banker’s
algorithm, the behaviour is correct and identical to the one-processor behaviour.

If intermediate priority tasks exist other than tasks τ1 and τ2, the priority inheritance
technique works well in the case of the priority ceiling protocol. On the other hand,
the banker’s algorithm can lead to a priority inversion unless a transitive priority
inheritance is realized (quite possible since the banker’s algorithm holds all the needed
parameters). The banker’s algorithm prescribes that, when resources are released, all
waiting tasks should be examined for resource allocation. If the highest priority waiting
task is examined solely, in a strict fixed-priority service, this can lead to a deadlock.
However, a safe solution exists by examining the highest priority waiting task and
only some subset of low-priority waiting tasks (Kaiser and Pradat-Peyre, 1998). In
conclusion, we can say that no algorithm answers properly to the problem of scheduling
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shared resource access in all cases (uniprocessor and multiprocessor). There is no
known solution guaranteeing a behaviour that is simultaneously free of deadlock and
constraints. This is a general problem for concurrent systems.

Since, typically, the number of resources is low and since one knows quite well the
use of critical resources by an off-line analysis, it is better to separate the two problems:
deadlock and the priority inversion phenomenon. Then the use of critical resources is
treated according to a total ordering method on the access of critical resources. The
inversion priority is taken into account by one of the studied algorithms. Moreover, the
total ordering technique on resource access allows the use of any protocol preventing
priority inversion, which is often imposed by the real-time kernel.

3.3 Exercises
In addition to the following exercises, the reader will find three complete and real
examples, explained and described in detail, in Chapter 9.

3.3.1 Questions

Exercise 3.1: Scheduling with precedence constraints

1. Earliest deadline first scheduling of a task set
Consider five independent periodic tasks described by the classical parameters
given in Table 3.4.

Table 3.4 Example of a task set

Task ri Ci Di Ti

τ1 0 3 12 12
τ2 0 2 11 11
τ3 0 3 12 12
τ4 0 1 11 11
τ5 0 2 9 9

Q1 Compute the processor utilization factor U of this task set. Verify the
schedulability under the EDF algorithm. Calculate the scheduling period
of this task set. Compute the number of idle times of the processor in this
scheduling cycle. Finally, construct the schedule obtained under the EDF
algorithm for the first 20 time units.

2. Scheduling with precedence constraints
Referring to the previous task set, we suppose now that tasks are dependent and
linked by precedence constraints presented in the graph of Figure 3.12. In order
to take into account these relationships between tasks in an EDF scheduling
context, one has to modify the task parameters r and D (or d) as presented

Continued on page 68
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Continued from page 67

τ1

τ2

τ4 τ5

τ3

Figure 3.12 Example of precedence constraints between five tasks

in Section 3.1. If we have to get τi → τj , the parameters must be modified
according to the following equations:

• r∗
j ≥ Max((r∗

i + Ci), rj )

• d∗
i ≥ Min((d∗

j − Cj), di)

Q2 Compute the new parameters r∗ and d∗ for handling the precedence con-
straints. Then construct the schedule obtained under the EDF algorithm for
the first 20 time units with these modified parameters. Conclude.

Exercise 3.2: Scheduling with shared critical resources

Consider three dependent tasks τ1, τ2 and τ3. The tasks τ1 and τ3 share a critical
resource R. In order to describe this task set with the critical sections of task τ1

and τ3, we add new parameters that specify the computation time Ct :

• Cα
t : task duration before entering the critical section,

• C
β
t : critical section duration,

• C
γ
t : task duration after the critical section.

Of course, we have Ct = Cα
t + C

β
t + C

γ
t . So the task set is described by the

classical parameters given in Table 3.5. As assumed, each task in a critical section
can be preempted by a higher priority task which does not need this resource.

Table 3.5 Example of a task set sharing a critical resource, Exercise 3.2

Task rι Cι Dι Tι Cα
t C

β
t C

γ
t

τ1 0 2 6 6 1 1 0
τ2 0 2 8 8 2 0 0
τ3 0 4 12 12 0 4 0

Q1 Construct the schedule obtained under the RM algorithm for the scheduling
period. Indicate clearly on the graphical representation the time at which a
priority inversion phenomenon occurs between τ1 and τ2.

Continued on page 69
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Q2 In order to prevent this priority inversion phenomenon, apply the priority
inheritance protocol. Construct the new schedule obtained under the RM
algorithm for the scheduling period. Indicate clearly on the graphical rep-
resentation the time at which the task τ2 is blocked, avoiding the priority
inversion phenomenon.

Exercise 3.3: Application with precedence constraints and critical resources

In this exercise, we analyse the schedulability of an application for which we
introduce the constraints in a progressive way. First the tasks are considered
independent, then a critical resource is shared by two tasks and finally dependent
with precedence constraints.

1. Periodic and independent tasks
Consider three independent periodic tasks described by the classical parameters
given in Table 3.6.

Q1 Compute the processor utilization factor U of this task set. Discuss the
schedulability under the RM algorithm. Calculate the scheduling period
of this task set. Compute the duration of idle times of the processor in
this scheduling period. Finally, construct the schedule obtained under the
RM algorithm.

Table 3.6 Task parameters, Exercise 3.3, Q1

Task rι Cι Dι Tι

τ1 0 2 6 6
τ2 0 2 8 8
τ3 0 4 12 12

The computation time of the task τ3 is now equal to 5. Thus the task set is
characterized by the parameters given in Table 3.7.

Table 3.7 Task parameters, Exercise 3.3, Q2

Task ri Ci Di Ti

τ1 0 2 6 6
τ2 0 2 8 8
τ3 0 5 12 12

Q2 Compute the new processor utilization factor of this task set. Discuss the
schedulability under the RM algorithm. Compute the duration of idle times
of the processor in the major cycle. Finally, construct the schedule obtained
under the RM algorithm.

Continued on page 70
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Continued from page 69

In order to improve the schedulability of the new task set, the first release time
of some tasks can be modified. In this case, the critical instant, defined for a
task set where all the initial release times are equal, is avoided.

Consider an initial release time of 3 for the task τ3. So the task set parameters
are given in Table 3.8.

Table 3.8 Task parameters, Exercise 3.3, Q3

Task ri Ci Di Ti

τ1 0 2 6 6
τ2 0 2 8 8
τ3 3 5 12 12

Q3 Calculate the scheduling period of this task set. Construct the schedule
obtained under the RM algorithm of this modified task set.

Another way to improve the schedulability of a task set is to use a powerful
priority assignment algorithm, such as EDF. So we consider the previous task
set, managed by the EDF algorithm, described by Table 3.9.

Table 3.9 Task parameters, Exercise 3.3, Q4

Task ri Ci Di Ti

τ1 0 2 6 6
τ2 0 2 8 8
τ3 0 5 12 12

Q4 Compute the processor utilization factor U of this task set. Discuss the
schedulability under the EDF algorithm. Construct the schedule obtained
under the EDF algorithm.

2. Periodic tasks sharing critical resources
Consider three dependent periodic tasks described by the classical parameters
given in Table 3.10. What we can notice about this task set is that the tasks have
different initial release times and two tasks share a critical resource, named R

in Table 3.10, during their whole execution time.

Table 3.10 Task parameters, Exercise 3.3,
Q5 and Q6

Task ri Ci Di Ti

τ1 1 2 (R) 6 6
τ2 1 2 8 8
τ3 0 5 (R) 12 12

Continued on page 71
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Q5 Compute the processor utilization factor U of this task set. Discuss the
schedulability under the EDF algorithm. Calculate the scheduling period
of this task set. Construct the schedule obtained under the EDF algorithm
considering no particular critical resource management except the mutual
exclusion process. Indicate on the graphical representation the time at which
a priority inversion phenomenon occurs.

Q6 In order to prevent the priority inversion phenomenon, we apply the priority
inheritance protocol. Construct the new schedule obtained under the EDF
algorithm and the priority inheritance resource protocol until time t = 25.
Indicate clearly on the graphical representation the time at which the task τ3

inherits a higher priority, thus avoiding the priority inversion phenomenon.

3. Periodic tasks with precedence constraints
Consider four dependent periodic tasks described by the parameters given in
Table 3.11.

Table 3.11 Task parameters, Exercise 3.3, Q7

Task ri Ci Di Ti

τ1 0 2 6 6
τ2 0 2 8 8
τ3 0 4 12 12
τ4 0 1 12 12

Q7 Compute the processor utilization factor U of this task set. Discuss the
schedulability under the EDF algorithm. Calculate the scheduling period of
this task set. Give the execution sequence obtained under the EDF algorithm
considering independent tasks.

The precedence constraint between tasks τ3 and τ4 is presented as a precedence
graph in Figure 3.13 (task τ4 must be executed before task τ3). In order to
take into account this relationship between tasks in an EDF scheduling con-
text, one has to modify the task parameters r and D (or d) as presented in
Section 3.1. If we have to get τi→τj , the parameters will be modified according
to the following equations:

• r∗
j ≥ Max((r∗

i + Ci), rj )

• d∗
i ≥ Min(d∗

j − Cj ), di)

τ1 τ2 τ4 τ3

Figure 3.13 Precedence graph

Q8 Compute the new parameters r∗ and d∗ for handling the precedence con-
straints. Compute the scheduling period of this task set. Then construct the
schedule obtained under the EDF algorithm for the first 25 time units with
these modified parameters. Conclude.
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3.3.2 Answers

Exercise 3.1: Scheduling with precedence constraints

Q1 The processor utilization factor is the sum of the processor utilization
factors of all the tasks. That is: u1 = 3/12 = 0.25, u2 = 2/11 = 0.182,
u3 = 3/12 = 0.25, u4 = 1/11 = 0.091, u5 = 2/9 = 0.222.
Then, the processor utilization factor is: U = 0.995.
Given that a set of periodic tasks, having a relative deadline D equal to
the period T , is schedulable with the EDF algorithm if and only if U ≤ 1,
the considered task set is schedulable.
The scheduling period of a set of periodic tasks is the least common mul-
tiplier of all periods, i.e.: H = LCM({T1, T2, T3, T4, T5}) = 396.
The number Ni of idle times of the processor is given by this equation:
Ni = H(1 − U) = 2.
The scheduling sequence is represented in Figure 3.14.

0 5 10 15 20

t
τ3τ1τ4τ2τ5τ3τ1τ4τ2τ5

Figure 3.14 Scheduling sequence of five independent tasks under the EDF algorithm

Q2 In order to take into account the precedence constraints given in Figure 3.12,
the new task parameters are obtained by modifying release times and dead-
lines. The computations for modifying release times begin with the task
which has no predecessors, i.e. task τ1, and for changing deadlines with
the task with no successors, i.e. task τ5. So the deadlines become:

d∗
5 = min{d5, min{∅}} = 9

d∗
4 = min{d4, min{d∗

5 − C5}} = 7

d∗
3 = min{d3, min{∅}} = 12

d∗
2 = min{d2, min{d∗

3 − C3, d
∗
5 − C5}} = 7

d∗
1 = min{d1, min{d∗

2 − C2, d
∗
4 − C4}} = 5

and the release times become:

r∗
1 = min{r1, min{∅}} = 0

r∗
2 = min{r2, min{r∗

1 + C1}} = 3

r∗
3 = min{r3, min{r∗

2 + C2}} = 5

r∗
4 = min{r4, min{r1 + C1}} = 3

r∗
5 = min{r5, min{r∗

2 + C2, r
∗
4 + C4}} = 5

Continued on page 73
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The scheduling sequence is represented in Figure 3.15. We can verify that
the tasks meet their deadlines and precedence constraints.

5 10 15 20

t
τ3τ1 τ1τ4 τ4τ2 τ2τ5 τ5

Figure 3.15 Scheduling sequence of five dependent tasks under the EDF algorithm

Exercise 3.2: Scheduling with shared critical resources

Q1 The schedule is given in Figure 3.16. At time t = 7, task τ1 is blocked
because task τ3 uses the critical resource. Thus, task τ3 runs anew. How-
ever, at time t = 8, task τ3 is preempted by task τ2, which has a higher
priority. Thus, there is a priority inversion during two time units.

τ1

τ2

τ3

R

S

Resource request and
direct blocking

Priority inversion

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

t

t

t

t

t

Figure 3.16 Scheduling sequence under the RM algorithm showing a priority inversion
phenomenon

Q2 In order to prevent the priority inversion phenomenon, we use the priority
inheritance protocol. The schedule is given in Figure 3.17. At time t = 7,
when task τ1 requests the critical resource used by task τ3, it is blocked.

Continued on page 74
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0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

0 5 10 15 20 25

τ1

τ2

τ3

R

S t

t

t

t

t

Resource request and
direct blocking

Blocking due to priority inheritance

Figure 3.17 Scheduling sequence under the RM algorithm showing a valid management
of a critical resource with the priority inheritance protocol

Thus, task τ3 inherits the priority of τ1 and resumes its execution. The
execution of task τ2 is now delayed until time t = 10 and it runs after
task τ1.

Exercise 3.3: Application with precedence constraints and critical resources

1. Periodic and independent tasks

Q1 The processor utilization factor is the sum of the processor utilization fac-
tors of all the tasks. That is: u1 = 0.33, u2 = 0.25, u3 = 0.33.
The processor utilization factor is then: U = 11/12 = 0.916.
Given that a set of periodic tasks, having relative deadline D equal to period
T , is schedulable with the RM algorithm if U ≤ n(21/n − 1) = 0.78(n =
3), the schedulability test is not verified. The schedule sequence has to be
built over the scheduling period in order to test the schedulability.
The scheduling period of a set of periodic tasks is the least common mul-
tiplier of all periods, i.e.: H = LCM({T1, T2, T3, }) = 24.
The duration of idle times of the processor is 2. It is given by (1 − U)H .
The scheduling sequence, according to the RM algorithm priority assign-
ment, is represented in Figure 3.18. This task set is schedulable.

Continued on page 75



3.3 EXERCISES 75

Continued from page 74

τ1

τ2

τ3

t

t

t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Figure 3.18 Scheduling sequence of three independent tasks under the RM algorithm

Q2 The processor utilization factor is now equal to 1 and the number of idle
times of the processor is 0. So the RM schedulability test is not verified.
The schedule sequence has to be built over the scheduling period in order
to test the schedulability. The scheduling sequence, according to the RM
algorithm priority assignment, is represented in Figure 3.19. This task set
is not schedulable because task τ3 misses its deadline at time 12.

τ1

τ2

τ3

?

t

t

t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3.19 Scheduling sequence of three independent tasks under the RM algorithm

Q3 The scheduling period of the periodic task set is given by equation (1.4), i.e.:

H = Max{ri} + 2 · LCM({T1, T2, T3}) = 3 + 2 × 24 = 51

The scheduling sequence, according to the RM algorithm priority assign-
ment, is represented in Figure 3.20. This task set is schedulable.

Q4 The processor utilization factor is equal to 1. Given that a set of periodic
tasks, with relative deadlines equal to periods, is schedulable with the EDF
algorithm if and only if U ≤ 1, the task set is schedulable. The schedule
sequence is represented in Figure 3.21.

Continued on page 76



76 3 SCHEDULING OF DEPENDENT TASKS

Continued from page 74

105 15 20 25 30 35 40 45 50

105 15 20 25 30 35 40 45 50

105

τ1

τ2

τ3

15 20 25 30 35 40 45 50

t

t

t

Figure 3.20 Scheduling sequence of three independent tasks with different initial release
times under the RM algorithm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

t

τ1

τ2

τ3

t

t

Figure 3.21 Scheduling sequence of three independent tasks under the EDF algorithm

2. Periodic tasks sharing critical resources

Q5 The processor utilization factor is equal to 1. Given that a set of independent
periodic tasks, with relative deadlines equal to periods, is schedulable with
the EDF algorithm if and only if U ≤ 1, the task set is schedulable. But
as the tasks are not independent, we cannot conclude that before doing a
simulation. The schedule sequence is represented in Figure 3.22. Due to

τ3

τ3

τ1
t

1 2 3 4 5 6 7 8 9 10 11 12 13 14

t

1 2 3 4 5 6 7 8 9 10 11 12 13 14

t

1 2 3 4 5 6 7 8 9 10 11 12 13 14

?

Priority inversion phenomenon at time 1 

Figure 3.22 Scheduling sequence of three dependent tasks under the EDF algorithm
showing a priority inversion phenomenon

Continued on page 76
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the mutual exclusion process, a priority inversion phenomenon occurs at
time 1 by task τ2. This leads to missing of the deadline of task τ1.

Q6 In order to prevent the priority inversion phenomenon, we use the priority
inheritance protocol. Similarly to the sequence of Figure 3.22, when τ1

wants to take the critical resource, used by task τ3, task τ1 is blocked. But
τ3 inherits the priority of τ1 and τ3 resumes its execution. The execution
of task τ2 is now delayed and it runs after task τ1. This valid execution is
shown in Figure 3.23.

τ1

τ2

τ3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Priority inheritance

Showing a priority inversion phenomenon

t

t

t

Priority inheritance

Figure 3.23 Scheduling sequence under the EDF algorithm showing the correct man-
agement of a critical resource with the priority inheritance protocol

3. Periodic tasks with precedence constraints

Q7 The processor utilization factor is equal to 1. So the EDF schedulability
test is verified. The scheduling period of the periodic task set is the least
common multiplier of all periods, i.e.: H = LCM({T1, T2, T3, T4}) = 24.
The valid schedule sequence with the EDF priority assignment algorithm
is represented in Figure 3.24. The execution sequence is valid in terms of
respect for deadlines, but this sequence does not fit with the precedence
sequence studied after.

Q8 The computations for modifying release times begin with the tasks which
have no predecessors, i.e. τ4, and those for changing deadlines with the
tasks without any successors, i.e. τ3. So the deadline of task τ4 becomes:

d∗
4 = min{d4, min{d∗

3 − C3}} = 8(d3 is not changed)

and the release time of task τ3 becomes:

r∗
3 = min{r3, min{r∗

4 + C4}} = 1(r4 is not changed)

Continued on page 76
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Figure 3.24 Scheduling sequence of four tasks with precedence constraints under EDF,
Exercise 3.3, Q7
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Figure 3.25 Scheduling sequence of four dependent tasks under EDF, Exercise 3.3, Q8

The scheduling period is now given by equation (1.4), i.e.:

H = Max{ri} + 2 · LCM({T1, T2, T3, T4}) = 1 + 2 · 24 = 49

The scheduling sequence is represented in Figure 3.25. We can verify that
the tasks respect deadlines and precedence constraints. It is important to
notice that the modifications of ri and di are sufficient, but not necessary.
It is possible to find quite easily another schedule that respects precedence
constraints.



4
Scheduling Schemes
for Handling Overload

4.1 Scheduling Techniques in Overload
Conditions

This chapter presents several techniques to solve the problem of scheduling real-time
tasks in overload conditions. In such situations, the computation time of the task set
exceeds the time available on the processor and then deadlines can be missed. Even
when applications and the real-time systems have been properly designed, lateness can
occur for different reasons, such as missing a task activation signal due to a fault of
a device, or the extension of the computation time of some tasks due to concurrent
use of shared resources. Simultaneous arrivals of aperiodic tasks in response to some
exceptions raised by the system can overload the processor too. If the system is not
designed to handle overloads, the effects can be catastrophic and some paramount
tasks of the application can miss their deadlines. Basic algorithms such as EDF and
RM exhibit poor performance during overload situations and it is not possible to control
the set of late tasks. Moreover, with these two algorithms, one missed deadline can
cause other tasks to miss their deadlines: this phenomenon is called the domino effect.

Several techniques deal with overload to provide deadline missing tolerance. The
first algorithms deal with periodic task sets and allow the system to handle variable
computation times which cannot always be bounded. The other algorithms deal with
hybrid task sets where tasks are characterized with an importance value. All these
policies handle task models which allow recovery from deadline missing so that the
results of a late task can be used.

4.2 Handling Real-Time Tasks with Varying
Timing Parameters

A real-time system typically manages many tasks and relies on its scheduler to decide
when and which task has to be executed. The scheduler, in turn, relies on knowledge
about each task’s computational time, dependency relationships and deadline supplied
by the designer to make the scheduling decisions. This works quite well as long as the
execution time of each task is fixed (as in Chapters 2 and 3). Such a rigid framework is
a reasonable assumption for most real-time control systems, but it can be too restrictive
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for other applications. The schedule based on fixed parameters may not work if the
environment is dynamic. In order to handle a dynamic environment, an execution
scheduling of real-time system must be flexible.

For example, in multimedia systems, timing constraints can be more flexible and
dynamic than control theory usually permits. Activities such as voice or image treat-
ments (sampling, acquisition, compression, etc.) are performed periodically, but their
execution rates or execution times are not as strict as in control applications. If a task
manages compressed frames, the time for coding or decoding each frame can vary
significantly depending on the size or the complexity of the image. Therefore, the
worst-case execution time of a task can be much greater than its mean execution time.
Since hard real-time tasks are guaranteed based on their worst-case execution times,
multimedia activities can cause a waste of processor resource, if treated as rigid hard
real-time tasks.

Another example is related to a radar system where the number of objects to be
monitored may vary from time to time. So the processor load may change due to the
increase of execution duration of a task related to the number of objects. Sometimes
it can be advantageous for a real-time computation not to pursue the highest possible
precision so that the time and resources saved can be used by other tasks.

In order to provide theoretical support for applications, much work has been done to
deal with tasks with variable computation times. We can distinguish three main ways
to address this problem:

• specific task model able to integrate a variation of task parameters, such as execu-
tion time, period or deadline;

• on-line adaptive model, which calculates the largest possible timing parameters for
a task at any time;

• fault-tolerant mechanism based on minimum software, for a given task, which
ensures compliance with specified timing requirements in all circumstances.

4.2.1 Specific models for variable execution
task applications

In the context of specific models for tasks with variable execution times, two approaches
have been proposed: statistical rate monotonic scheduling (Atlas and Bestavros, 1998)
and the multiframe model for real-time tasks (Mok and Chen, 1997).

The first model, called statistical rate monotonic scheduling, is a generalization of the
classical rate monotonic results (see Chapter 2). This approach handles periodic tasks
with highly variable execution times. For each task, a quality of service is defined as
the probability that in an arbitrary long execution history, a randomly selected instance
of this task will meet its deadline. The statistical rate monotonic scheduling consists
of two parts: a job admission and a scheduler. The job admission controller manages
the quality of service delivered to the various tasks through admit/reject and priority
assignment decisions. In particular, it wastes no resource on task instances that will
miss their deadlines, due to overload conditions, resulting from excessive variability
in execution times. The scheduler is a simple, preemptive and fixed-priority scheduler.
This statistical rate monotonic model fits quite well with multimedia applications.
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Figure 4.1 Execution sequence of an application integrating two tasks: one classical task τ1
(0, 1, 5, 5) and one multiframe task τ2 (0, (3, 1), 3, 3)

The second model, called the multiframe model, allows the execution time of a task
to vary from one instance to another. In this model, the execution times of successive
instances of a task are specified by a finite array of integer numbers rather than a single
number which is the worst-case execution time commonly assumed in the classical
model. Step by step, the peak utilization bound is derived in a preemptive fixed-
priority scheduling policy under the assumption of the execution of the task instance
time array. This model significantly improves the utilization processor load. Consider,
for example, a set of two tasks with the following four parameters (ri, Ci, Di, Ti): a
classical task τ1 (0, 1, 5, 5) and a multiframe task τ2 (0, (3, 1), 3, 3). The two execution
times of the latter task mean that the duration of this task is alternatively 3 and 1. The
two durations of task τ2 can simulate a program with two different paths which are
executed alternatively. Figure 4.1 illustrates the execution sequence obtained with this
multiframe model and a RM algorithm priority assignment.

4.2.2 On-line adaptive model

In the context of the on-line adaptive model, two approaches have been proposed: the
elastic task model (Buttazzo et al., 1998) and the scheduling adaptive task model (Wang
and Lin, 1994). In the elastic task model, the periods of task are treated as springs, with
given elastic parameters: minimum length, maximum length and a rigidity coefficient.
Under this framework, periodic tasks can intentionally change their execution rate
to provide different quality of service, and the other tasks can automatically adapt
their period to keep the system underloaded. This model can also handle overload
conditions. It is extremely useful for handling applications such as multimedia in which
the execution rates of some computational activities have to be dynamically tuned as
a function of the current system state, i.e. oversampling, etc. Consider, for example, a
set of three tasks with the following four parameters (ri, Ci, Di, Ti): τ1 (0, 10, 20, 20),
τ2 (0, 10, 40, 40) and τ3 (0, 15, 70, 70). With these periods, the task set is schedulable
by EDF since (see Chapter 2):

U = 10

20
+ 10

40
+ 15

70
= 0.964 < 1

If task τ3 reduces its execution rate to 50, no feasible schedule exists, since the pro-
cessor load would be greater than 1:

U = 10

20
+ 10

40
+ 15

50
= 1.05 > 1
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Figure 4.2 Comparison between (a) a classical task model and (b) an adaptive task model

However, the system can accept the higher rate of task τ3 by slightly decreasing the
execution of the two other tasks. For instance, if we give a period of 22 for task τ1

and 45 for task τ2, we get a processor load lower than 1:

U = 10

22
+ 10

45
+ 15

50
= 0.977 < 1

The scheduling adaptive model considers that the deadline of an adaptive task is set to
one period interval after the completion of the previous task instance and the release
time can be set anywhere before the deadline. The time domain must be divided
into frames of equal length. The main goal of this model is to obtain constant time
spacing between adjacent task instances. The execution jitter is deeply reduced with
this model while it can vary from zero to twice the period with a scheduling of classical
periodic tasks. Figure 4.2 shows a comparison between a classical task model and an
adaptive task model. The fundamental difference between the two models is in selecting
the release times, which can be set anywhere before the deadline depending on the
individual requirements of the task. So the deadline is defined as one period from the
previous task instance completion.

4.2.3 Fault-tolerant mechanism

The basic idea of the fault-tolerant mechanism, based on an imprecise computation
model, relies on making available results that are of poorer, but acceptable, quality
on a timely basis when results of the desired quality cannot be produced in time.
In this context, two approaches have been proposed: the deadline mechanism model
(Campbell et al., 1979; Chetto and Chetto, 1991) and the imprecise computation model
(Chung et al., 1990). These models are detailed in the next two subsections.

Deadline mechanism model

The deadline mechanism model requires each task τi to have a primary program τ
p

i and
an alternate one τa

i . The primary algorithm provides a good quality of service which is
in some sense more desirable, but in an unknown length of time. The alternate program
produces an acceptable result, but may be less desirable, in a known and deterministic
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length of time. In a controlling system that uses the deadline mechanism, the scheduling
algorithm ensures that all the deadlines are met either by the primary program or by
alternate algorithms but in preference by primary codes whenever possible.

To illustrate the use of this model, let us consider an avionics application that con-
cerns the space position of a plane during flight. The more accurate method is to
use satellite communication for the GPS technique. But the program, corresponding
to this function, has an unknown execution duration due to the multiple accesses to
that satellite service by many users. On the other hand, it is possible to get quite a
good position of the plane by using its previous position, given its speed and its direc-
tion during a fixed time step. The first positioning technique with a non-deterministic
execution time corresponds to the primary code of this task and the second method,
which is less precise, is an alternate code for this task. Of course it is necessary that
the precise positioning should be executed from time to time in order to get a good
quality of this crucial function. To achieve the goal of this deadline mechanism, two
strategies can be applied:

• The first-chance technique schedules the alternate programs first and the primary
codes are then scheduled in the remaining times after their associated alternate
programs have completed. If the primary program ends before its deadline, its
results are used in preference to those of the alternate program.

• The last-chance technique schedules the alternate programs in reserved time inter-
vals at the latest time. Primary codes are then scheduled in the remaining time
before their associated alternate programs. By applying this strategy, the sched-
uler preempts a running primary program to execute the corresponding alternate
program at the correct time in order to satisfy deadlines. If a primary program
successfully completes, the execution of the associated alternate program is no
longer necessary.

To illustrate the first-chance technique, we consider a set of three tasks: two classical
tasks τ1 (0, 2, 16, 16) and τ2 (0, 6, 32, 32), and a task τ3 with primary and alternate
programs. The alternate code τa

i is defined by the classical fixed parameters (0, 2, 8, 8).
The primary program τ

p

i has various computational durations at each instance; assume
that, for the first four instances, the execution times of task τ

p

i are successively (4,
4, 6, 6). The scheduling is based on an RM algorithm for the three task τ1, τ2 and
the alternate code τa

i . The primary programs τ
p

i are scheduled with the lowest priority
or during the idle time of the processor. Figure 4.3 shows the result of the simulated
sequence. We can notice that, globally, the success in executing the primary program
is 50%. As we can see, we have the following executions:

• Instance 1: no free time for primary program execution;

• Instance 2: primary program completed;

• Instance 3: not enough free time for primary program execution;

• Instance 4: primary program completed.

In order to illustrate the last-chance technique, we consider a set of three tasks: two
classical tasks τ1 (0, 4, 16, 16) and τ2 (0, 6, 32, 32), and task τ3 with primary and
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Figure 4.3 Execution sequence of an application integrating three tasks: two classical tasks τ1
and τ2, and a task τ3 with primary and alternate programs managed by the first-chance technique

0 2 4 6 8 10 12 14 16 18 20

0 

t1

t2

t3

t3
p

t3
a

22 24 26 28 30 32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

t

t

t

Instance #1 Instance #2 Instance #3 Instance #4

Figure 4.4 Execution sequence of an application integrating three tasks: two classical tasks τ1
and τ2, and task τ3 with primary and alternate programs managed by the last-chance technique

alternate programs similar to that defined in the example of the first-chance technique.
The alternate code τa

i is defined by (0, 2, 8, 8) and the execution times of primary
program τ

p

i are successively (4, 4, 6, 6) for the first four instances. Figure 4.4 shows the
result of the simulated sequence. We can notice that, globally, the success in executing
the primary program is 75%. As we can see, we have the following executions:

• Instance 1: no need for alternate program execution, because primary program
completes;

• Instance 2: no need for alternate program execution, because primary program
completes;

• Instance 3: no need for alternate program execution, because primary program
completes;

• Instance 4: primary program is preempted because there is not enough time to
complete primary program execution, and the alternate code is executed.

The last-chance technique seems better in terms of quality of service and processor
load (no execution of useless alternate programs). Its drawback is the complexity of the
scheduler, which has to verify at each step that the remaining time before the deadline
of this specific task will permit the processor to execute at least the alternate program.
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Imprecise computation model

In the imprecise computation model, a task is logically decomposed into a mandatory
part followed by optional parts. The mandatory part of the code must be completed to
produce an acceptable result before the deadline of the task. The optional parts refine
and improve the results produced by the mandatory part. The error in the task result
is further reduced as the optional parts are allowed to execute longer. Many numerical
algorithms involve iterative computations to improve precision results.

A typical application is the image synthesis program for virtual simulation devices
(training system, video games, etc.). The more the image synthesis program can be
executed, the more detailed and real the image will be. When the evolution rate of
the image is high, there is no importance in representing details because of the user’s
visual ability. In the case of a static image, the processor must take time to visualize
precise images in order to improve the ‘reality’ of the image.

To illustrate the imprecise computation model, we have chosen a set of three tasks:
two classical tasks τ1 (0, 2, 16, 16) and τ2 (0, 6, 32, 32), and an imprecise compu-
tation task τ3 with one mandatory and two optional programs. The mandatory code
τm

3 is defined by (0, 2, 8, 8). The execution times of the optional programs τ
op
3 are

successively (2, 2) for the first instance, (2, 4) for the second one, (4, 4) for the third
one and (2, 2) for the fourth instance. The scheduling is based on an RM algorithm
for the three tasks τ1, τ2 and the mandatory code τm

3 . The optional programs τ
op
3 are

scheduled with the lowest priority or during the idle time of the processor. Figure 4.5
shows the result of the simulated sequence. We can notice that the success in executing
the first optional program is 75% and only 25% in executing the second optional part.
As we can see, we have the following executions:

• Instance 1: no free time for optional programs;

• Instance 2: first optional part completes, but the second optional part is preempted;

• Instance 3: only the first optional part completes, but the second optional part is
not executed;

• Instance 4: all the optional programs are executed.
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Figure 4.5 Execution sequence of an application integrating three tasks: two classical tasks τ1
and τ2, and a task τ3 with mandatory and optional programs
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4.3 Handling Overload Conditions
for Hybrid Task Sets

4.3.1 Policies using importance value

With the policies presented in this section, each task is characterized by a deadline
which defines its urgency and by a value which defines the importance of its execu-
tion, with respect to the other tasks of the real-time application. The importance (or
criticality) of a task is not related to its deadline; thus, two different tasks which have
the same deadline can have different importance values.

Arrivals of new aperiodic tasks in the system in response to an exception may over-
load the processor. Dynamic guarantee policies, seen in Chapter 2, resorb overload
situations by rejecting the newly arriving aperiodic tasks which can not be guaran-
teed. This rejection assumes that the real-time system is a distributed system where a
distributed scheduling policy attempts to assign the rejected task to an underloaded pro-
cessor (Ramamritham and Stankovic, 1984). However, distributed real-time scheduling
introduces large run-time overhead, thus other policies have been defined to use cen-
tralized systems. These policies jointly use a dynamic guarantee to predict an overload
situation and a rejection policy based on the importance value to resorb the predicted
overload situation.

Every time t a new periodic or aperiodic task enters the system, a dynamic guarantee
is run to ensure that the newly arriving task can execute without overloading the
processor. The dynamic guarantee computes LP(t), the system laxity at time t . The
system laxity is an evaluation of the maximum fraction of time during which the
processor may remain inactive while all the tasks still meet their deadlines. Let τ =
{τi(t, Ci(t), di)}, {i < j ⇔ di < dj }, be the set of tasks which are ready to execute
at time t , sorted by increasing deadlines. The conditional laxity of task τi is defined
as follows:

LC i (t) = Di −
∑

j

Cj (t), dj ≤ di (4.1)

The system laxity is given by:

LP(t) = Min
i

{LC i (t)} (4.2)

An overload situation is detected as soon as the system laxity LP(t) is less than 0.
The late tasks are those whose conditional laxity is negative. The overload value is
equal to the absolute value of the system laxity, |LP(t)|. The overload is resorbed by
a rejection policy based on removing tasks with a deadline smaller than or equal to
the late task and having the minimum importance value. Among the policies based
on these principles, two classes are discussed hereafter: multimode-based policy and
importance value cumulating-based policy.

Multimode-based policy

The aim of this policy is to favour the executions of the tasks with the highest impor-
tance value (this means that the favoured tasks are those which undergo fewer timing
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Figure 4.6 Performance results when a policy handling overloads is used. Tasks are listed by
decreasing importance value: τ1, τ2, τ3, τ4, τ5, τ6, τ7

faults, and which are dropped less frequently) (Delacroix, 1994, 1996; Delacroix and
Kaiser, 1998). Figure 4.6 shows the results of this policy (Delacroix, 1994). Simu-
lation experiments have been conducted using a set of three periodic tasks and four
aperiodic tasks with a large utilization factor. The task set was first scheduled with
the EDF algorithm without a policy to handle overloads, and then with the EDF
algorithm and a policy to handle overloads. In the plot shown in Figure 4.6, the num-
ber of late requests and the number of cancelled requests is presented for each task,
which are listed by decreasing importance value, and for each schedule. As one can
see from Figure 4.6, the executions of the aperiodic task τ1 and of the periodic task
τ3 are clearly favoured when a policy to handle overloads is used. However, all of
the tasks have a high deadline missing ratio when they are scheduled with the EDF
algorithm alone.

Each task is also characterized by two properties, called execution properties, which
specify how a task can miss one of its executions. The first property is the abor-
tion property : a task can be aborted if its execution can be stopped without being
resumed later at the instruction at which it had been stopped. The second property is
the adjournment property : a task can be adjourned if its request can be completely
cancelled; it means the task does not execute and skips its occurrence. When an over-
load is detected, the executions of the task are dropped following a strict increasing
order of importance value. So the tasks with the highest importance values, ready
to execute as the overload occurs, are favoured. A recent extension (Delacroix and
Kaiser, 1998) describes an adapted model of task, where a task is made up of sev-
eral execution modes: the normal mode is the mode which is executed when the task
begins to execute. It takes care of normal execution of the task. The survival modes
are executed when the task is cancelled by the overload resorption or when it misses
its deadline.

The computation time of a survival mode should be short because it only contains
specific actions allowing cancelling of tasks in such a way that the application state
remains safe. Such specific actions are, for example, release of shared resources, saving
of partial computation or cancellation of dependent tasks. Figure 4.7 shows this task
model. A task is made up of at most four modes: a normal mode, two survival modes
executed when the normal mode is either adjourned or aborted, and a survival mode
executed when the task misses its deadline. Each mode is characterized by a worst
computation time, an importance value and two execution properties which specify
how a mode can be cancelled by the overload resorption mechanism.
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Task model:
Task τi is

Begin
Normal mode:

Normal mode actions (C, properties, Imp)
Abortion survival mode:

Abortion mode actions (Cab, properties, Imp)
Adjournment survival mode:

Adjournment mode actions (Caj, properties, Imp)
Deadline survival mode:

Deadline mode actions (Cd, properties, Imp)
End;

Task example:
Task τ1 is

begin
Normal mode: (C=10, Adjournable, Abortable, Imp=5)

Get(Sensor);
Read(Sensor, Temp);
Release(Sensor);
-- computation with Temp value
Temp := compute();
-- Temp value is sent to the task τ2
Send (Temp, τ2);

Abortion mode: (C=3, compulsory execution, Imp=5)
-- Task τ2 adjournment
Release(Sensor);
Adjourn(τ2);

Adjournment mode: (C=2, compulsory execution, Imp=5)
-- An approximate value is computed with the

 preceding value
Temp := Old_Temp * approximate_factor;
Send (temp, τ2);

End;

Figure 4.7 Example of a task with several modes

Importance value cumulating-based policy

With this policy, the importance value assigned to a task depends on the time at which
the task is completed: so, a hard task contributes to a value only if it completes within
its deadline (Baruah et al., 1991; Clark, 1990; Jensen et al., 1985; Koren and Shasha,
1992). The performance of these policies is measured by accumulating the values of
the tasks which complete within their deadlines. So, as an overload has to be resorbed,
the rejection policy aims to maximize this cumulative value, β, rather than to favour the
execution of the most important ready tasks. Several algorithms have been proposed
based on this principle. They differ in the way the rejection policy drops tasks to achieve
a maximal cumulative value β. The competitive factor is a parameter that measures
the worst-case performance of these algorithms and allows comparison of them. So, an
algorithm has a competitive factor ϕ, if and only if it can guarantee a cumulative value
β which is greater than or equal to ϕβ∗ where β∗ is the cumulative value achieved by
an optimal clairvoyant scheduler. A clairvoyant scheduler is a theoretical abstraction,
used as a reference model, that has a priori knowledge of the task arrival times.

The algorithm Dover (Koren and Shasha, 1992) has the best competitive factor
among all the on-line algorithms which follow this principle. When an overload is
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detected, the importance value Impz of the arrival task is compared with the total
value Imppriv of all the privileged tasks (i.e. all preempted tasks). If the condition
Impz > (1 + √

k)(Impcurr + Imppriv ) holds, then the new task is executed; otherwise
it is rejected. Impcurr is the importance value of the presently running task and k the
ratio of the highest value and the lowest value task.

In the RED (robust earliest deadline) algorithm (Buttazzo and Stankovic, 1993),
each task is characterized by a relative deadline Dr and a deadline tolerance M which
defines a secondary deadline dr = r + Dr + M , where r is the arrival time of the
task. Tasks are scheduled based on their primary deadline but accepted based on
their secondary deadline. An overload is detected as soon as some tasks miss their
secondary deadlines. Then the rejection policy discards the tasks with the least impor-
tance value.

4.3.2 Example

Consider the following task set composed of:

• two periodic tasks:

– τ1(r0 = 0, C = 1, D = 7, T = 10, Imp = 3)

– τ2(r0 = 0, C = 3, D = 4, T = 5, Imp = 1)

• and four aperiodic tasks:

– τ3(r = 4, C = 0.2, d = 5, Imp = 4)

– τ4(r = 5.5, C = 1, d = 10, Imp = 5)

– τ5(r = 6, C = 1, d = 8, Imp = 2)

– τ6(r = 7, C = 1.5, d = 9.5, Imp = 6)

This task set is scheduled by the EDF algorithm. A policy for handling overloads is
used. The rejection policy discards the tasks with low importance values. The schedule
of the task set is shown within the major cycle of the two periodic tasks, i.e. within
the interval [0, 10].

• At time t = 0, tasks τ1 and τ2 enter the system. Let A(t) be the set of tasks which
are ready at time t , sorted by increasing deadlines. The overload detection algorithm
computes the conditional laxity of each task in the set A(t).

A(0) = {τ2(C(0) = 3, d = 4), τ1(C(0) = 1, d = 7)}
LC 2(t) = 4 − 3 − 0 = 1

LC 1(t) = 7 − 1 − 3 − 0 = 3

There is no overload since all conditional laxities are greater than 0.



90 4 SCHEDULING SCHEMES FOR HANDLING OVERLOAD

• At time t = 4, task τ3 enters the system.

A(4) = {τ3(C(4) = 0.2, d = 5)}
LC 3(t) = 5 − 4 − 0.2 = 0.8

The conditional laxity of the task τ3 is greater than 0; so there is no overload.

• At time t = 5, task τ2 enters the system.

A(5) = {τ2(C(5) = 3, d = 9)}
LC 2(t) = 9 − 5 − 3 = 1

The conditional laxity of the task τ2 is greater than 0, so there is no overload.

• At time t = 5.5, task τ4 enters the system.

A(5.5) = {τ2(C(5.5) = 2.5, d = 9), τ4(C(5.5) = 1, d = 10)}
LC 2(t) = 9 − 5.5 − 2.5 = 1

LC 4(t) = 10 − 5.5 − 1 − 2.5 = 1

There is no overload since no conditional laxity is less than 0.

• At time t = 6, task τ5 enters the system.

A(6) = {τ5(C(6) = 1, d = 8), τ2(C(6) = 2, d = 9), τ4(C(6) = 1, d = 10)}
LC 5(t) = 8 − 6 − 1 = 1

LC 2(t) = 9 − 6–1 − 2 = 0

LC 4(t) = 10 − 6 − 1 − 2 − 1 = 0

There is no overload since no conditional laxity is less than 0.

• At time t = 7, task τ6 enters the system.

A(7) = {τ2(C(7) = 2, d = 9), τ6(C(7) = 1.5, d = 9.5), τ4(C(7) = 1, d = 10)}
LC 2(t) = 9 − 7 − 2 = 0

LC 6(t) = 9.5 − 7 − 2 − 1.5 = −1

The conditional laxity of task τ6 is negative. So an overload situation is detected.
The late task is task τ6 and the overload value is equal to one computation time.
Figure 4.8 shows the overload situation.

To resorb the overload situation, the rejection policy cancels executions of tasks whose
deadlines are smaller than or equal to the deadline of the task τ6 in the set A(7). These
cancellations are made following the strict increasing order of importance values and
are stopped when the amount of computation time of the cancelled executions is greater
than or equal to the overload value. So the rejection policy cancels task τ2, which has
the lowest importance value. The remaining computation time of task τ2 is equal to 2.
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Figure 4.10 Schedule resulting from the guarantee policy without importance value

Then the cancellations are stopped and the overload algorithm verifies that the overload
situation is really resorbed:

A(7) = {τ6(C(7) = 1.5, d = 9.5), τ4(C(7) = 1, d = 10)}
LC 6(t) = 9.5 − 7 − 1.5 = 1

LC 4(t) = 0 − 7 − 1 − 1.5 = 0.5

Figure 4.9 shows the resulting schedule within the major cycle of the two periodic
tasks. Figure 4.10 shows the schedule, resulting from the first guarantee strategy (see
Section 2.2.2) which does not use the importance value.





5
Multiprocessor Scheduling

5.1 Introduction
In this chapter, we limit the study to multiprocessor systems with centralized control
that are called ‘strongly coupled systems’. The main characteristics of such systems are
the existence of a common base of time (for global scheduling of events and tasks) and
a common memory (for implementing the vector of communication between tasks).
Consequently, one has a global view of the state of the system accessible at every
moment. In addition to the common memory, which contains the whole of the code
and the data shared by the different tasks, the processors can have local memory (stack,
cache memory, and so on). These systems present strong analogies with the centralized
systems (uniprocessor) while primarily being different by their capacity to implement
parallel execution of tasks. In a multiprocessor environment, a scheduling algorithm
is valid if all task deadlines are met. This definition, identical to the one used in the
uniprocessor context, is extended with the two following conditions:

• a processor can execute only one task at any time;

• a task is treated only by one processor at any time.

The framework of the study presented here is limited to the most common architec-
ture, which is made up of identical processors (identical speed of processing) with
an on-line preemptive scheduling. In this book, we do not treat off-line scheduling
algorithms, which are often very complex, and not suitable for real-time systems. It
is, however, important to note that off-line algorithms are the only algorithms which
make it possible to obtain an optimal schedule (by the resolution of optimization prob-
lems of linear systems) and to handle some configurations unsolved by an on-line
scheduling algorithm.

5.2 First Results and Comparison
with Uniprocessor Scheduling

The first significant result is a theorem stating the absence of optimality of on-line
scheduling algorithms (Sahni, 1979):

Theorem 5.1:
An on-line algorithm which builds a feasible schedule for any set of tasks with
deadlines within m processors (m ≥ 2), cannot exist.
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From Theorem 5.1, we can deduce that, in general, the centralized-control real-time
scheduling on multiprocessors could not be an optimal scheduling. In the case of a
set of periodic and independent tasks {τi(ri , Ci, Di, Ti), i ∈ [1, n]} to execute on m

processors, a second obvious result is:

Necessary condition:
The necessary condition of schedulability referring to the maximum load Uj of
each processor j (Uj ≤ 1, j ∈ [1,m]) is:

U =
m∑

j=1

Uj =
n∑

i=1

ui =
n∑

i=1

Ci

Pi

≤ m (5.1)

where ui is the processor utilization factor of task τi .

A third result is related to the schedule length, which is identical to that in the unipro-
cessor environment:

Theorem 5.2:
There is a feasible schedule for a set of periodic and independent tasks if and
only if there is a feasible schedule in the interval [rmin, rmax + �] where rmin =
Min{ri}, rmax = Max{ri},� = LCM {Ti}, and i ∈ [1, n].

LCM(Ti) means the least common multiple of periods Ti(i = 1, . . . , n). For instance,
the earliest deadline first algorithm, which is optimal in the uniprocessor case, is
not optimal in the multiprocessor case. To show that, let us consider the following
set of four periodic tasks {τ1(r0 = 0, C = 1, D = 2, T = 10), τ2(r0 = 0, C = 3,D =
3, T = 10), τ3(r0 = 1, C = 2, D = 3, T = 10), τ4(r0 = 2, C = 3, D = 3, T = 10)} to
execute on two processors, Proc1 and Proc2. The EDF schedule does not respect the
deadline of task τ4, whereas there are feasible schedules as shown in Figure 5.1b.

(a) Infeasible schedule according to the EDF algorithm 

τ1 τ3 τ4

τ1 τ3 τ4

τ3τ2

τ2
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1 0 3 2 4 6 5 7 

1 0 3 2 4 6 5 7 

1 0 3 2 

t
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(b) Feasible schedule

Missed deadline

Figure 5.1 Example showing that the EDF algorithm is not optimal in the multiprocessor
environment
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5.3 Multiprocessor Scheduling Anomalies
It is very important to stress that some applications, which are executed in a multipro-
cessor environment, are prone to anomalies at the time of apparently positive changes
of parameters. Thus, it was proven that (Graham, 1976):

Theorem 5.3:
If a task set is optimally scheduled on a multiprocessor with some priority assign-
ment, a fixed number of processors, fixed execution times, and precedence con-
straints, then increasing the number of processors, reducing computation times, or
weakening the precedence constraints can increase the schedule length.

This results implies that if tasks have deadlines, then adding resources (for instance,
adding processors) or relaxing constraints can make things worse. The following
example can best illustrate why Graham’s theorem is true.

Let us consider a set of six tasks that accept preemption but not migration (i.e.
the tasks cannot migrate from one processor to another during execution). These tasks
have to be executed on two identical processors using a fixed-priority based schedul-
ing algorithm (external priorities of tasks are fixed as indicated by Table 5.1). The

Table 5.1. Set of six tasks to highlight anomalies
of multiprocessor scheduling

Task ri Ci di Priority

τ1 0 5 10 1 (max)
τ2 0 [2, 6] 10 2
τ3 4 8 15 3
τ4 0 10 20 4
τ5 5 100 200 5
τ6 7 2 22 6 (min)
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Figure 5.2 Schedules of the task set presented in Table 5.1 considering the bounds of the
computation time of task τ2
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Figure 5.3 Schedules of the task set presented in Table 5.1 considering two computation times
of task τ2 taken inside the fixed interval

computation time of task τ2 is in the interval [2, 6]. The current analysis in the unipro-
cessor environment consists of testing the schedulability of a task set for the bounds
of the task computation time interval. The results presented in Figure 5.2 show a fea-
sible schedule for each one of the bounds of the computation time interval C2 with,
however, a phenomenon of priority inversion between tasks τ4 and τ5 for the weakest
computation time of task τ2.

The schedules, built for two other values of C2 taken in the fixed interval, show the
anomalies of multiprocessor scheduling (Figure 5.3): an infeasible schedule for C2 = 3
(missed deadlines for tasks τ4 and τ6), and a feasible schedule for C2 = 5 with better
performance (lower response time for tasks τ4 and τ6).

5.4 Schedulability Conditions

5.4.1 Static-priority schedulability condition

Here we deal with a static-priority scheduling of systems of n periodic tasks {τ1, τ2, . . . ,

τn} on m identical processors (m ≥ 2). The assumptions are: task migration is permitted
(at task start or after it has been preempted) and parallelism is forbidden. Without
loss of generality, we assume that Ti ≤ Ti+1 for all i, 1 ≤ i ≤ n; i.e. the tasks are
indexed according to increasing order of periods. Given ui the processor utilization of
each task τi , we define the global processor utilization factor U as classically for the
one-processor context.
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The priority assignment is done according to the following rule (Andersson et al.,
2001):

• if ui > m/(3m − 2) then τi has the highest priority and ties are broken arbitrarily
but in a consistent manner (always the same for the successive instances);

• if ui ≤ m/(3m − 2) then τi has the RM priority (the smaller the period, the higher
the priority).

With this priority assignment algorithm, we have a sufficient schedulability condition
(Andersson et al., 2001):

Sufficient condition:
A set of periodic and independent tasks with periods equal to deadlines such that
Ti ≥ Ti+1 for i ∈ [1, n − 1] is schedulable on m identical processors if:

U ≤ m2

3m − 2
(5.2)

Consider an example of a set of five tasks to be scheduled on a platform of three
identical unit-speed processors (m = 3). The temporal parameters of these tasks are:
τ1(r0 = 0, C = 1, D = 7, T = 7),τ2(r0 = 0, C = 2, D = 15, T = 15),τ3(r0 = 0, C =
9,D = 20, T = 20), τ4(r0 = 0, C = 11, D = 24, T = 24), τ5(r0 = 0, C = 2, D = 25,
T = 25). The utilization factors of these five tasks are respectively: 0.143, 0.133, 0.45,
0.458 and 0.08. Following the priority assignment rule, we get:

• ui >
m

3m − 2
= 0.4286 for both tasks τ3 and τ4

• ui ≤ m

3m − 2
= 0.4286 for the other tasks τ1, τ2 and τ5

Hence, tasks τ3 and τ4 will be assigned the highest priorities and the remaining three
tasks will be assigned according to RM priorities. The possible priority assignments are
therefore as follows in a decreasing priority order: τ3, τ4, τ1, τ2, τ5 or τ4, τ3, τ1, τ2, τ5.

In this example, the global processor utilization factor U is equal to 1.264 and it is
smaller than the limit defined above by the sufficient condition: m2/(3m − 2) = 1.286.
So we can assert that this task set is schedulable on a platform of three processors.
Figure 5.4 shows a small part of the scheduling period of this task set.

5.4.2 Schedulability condition based on task
period property

In order to be able to obtain schedulability conditions, the multiprocessor scheduling
problem should be restricted. In this case, a particular property of the task period
is used to elaborate a specific sufficient condition. If we consider a set of periodic
and independent tasks with periods equal to deadlines (Di = Ti), we have a sufficient
schedulability condition under the assumption that the previous necessary condition
(i.e. (5.1)) is satisfied (Dertouzos and Mok, 1989; Mok and Dertouzos, 1978):
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Figure 5.4 A set of five periodic tasks to illustrate the sufficient static-priority condition of
schedulability
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Figure 5.5 A set of four periodic tasks to illustrate the sufficient condition of schedulability
based on the task period property

Sufficient condition:
Let T ′ be the greatest common divider (GCD) of task periods Ti, ui (equal to Ci/Ti)
be the processor utilization factor of task Ti , and T ′′ be the GCD of T ′ and the
products T ′ui(i = 1, . . . , n). One sufficient schedulability condition is that T ′′ must
be an integer.

The example, shown in Figure 5.5, corresponds to a set of four periodic tasks τ1(r0 =
0, C = 2,D = 6, T = 6), τ2(r0 = 0, C = 4,D = 6, T = 6), τ3(r0 = 0, C = 2,D =
2, T = 12) and τ4(r0 = 0, C = 20,D = 24, T = 24) to execute on two processors.
The processor utilization factor is equal to 2 and the schedule length is equal to 24. T ′,
i.e. GCD(Ti), is equal to 6 and T ′′ is equal to 1. This example illustrates the application
of the previous sufficient condition under a processor utilization factor equal to 100%
for the two processors.

As the previous condition is only sufficient (but not necessary), one could easily find
task sets that do not respect the condition, but that have feasible schedules. For example,
let us consider a set of four tasks {τ1(r0 = 0, C = 1, D = 2, T = 2), τ2(r0 = 0, C =
2, D = 4, T = 4), τ3(r0 = 0, C = 2,D = 3, T = 3), τ4(r0 = 0, C = 2, D = 6, T =
6)}. GCD(Ti) is equal to 1, but GCDi=1,...,4(T

′, T ′ui) cannot be computed because
the products Tu i(i = 1, . . . , 4) are not integers. Thus, the considered task set does not
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meet the sufficient condition. However this task set is schedulable by assigning the
first two tasks to one processor and the other two to the other processor.

5.4.3 Schedulability condition based on proportional
major cycle decomposition

This particular case is more a way to schedule on-line the task set than a schedulability
condition. The major cycle is split into intervals corresponding to all the arrival times
of tasks. Then the tasks are allocated to a processor for a duration proportional to its
processor utilization. This way of building an execution sequence leads to the following
condition (which is more complex) (Bertossi and Bonucelli, 1983):

Sufficient and necessary condition:
A set of periodic and independent tasks with periods equal to deadlines such that
ui ≥ ui+1 for i ∈ [1, n − 1] is schedulable on m identical processors if and only if:

Max

{
Max

j∈[1,m−1]

{
1

j

j∑

i=1

ui

}
,

1

m

n∑

i=1

ui

}
≤ 1 (5.3)

Let us consider a set of three tasks {τ1(r0 = 0, C = 2, D = 3, T = 3), τ2(r0 = 0, C =
2,D = 4, T = 4), τ3(r0 = 0, C = 3, D = 6, T = 6)} satisfying condition (5.3). Their
respective processor utilization factors are u1 = 2/3, u2 = 1/2 and u3 = 1/2. The nec-
essary condition of schedulability (i.e. condition (5.1)) with two processors is quite
satisfied since U = 5/3 < 2. The inequality of the previous necessary and sufficient
condition is well verified: Max{Max{(2/3), (7/12)}, (5/6)} ≤ 1. Consequently, the set
of the three tasks is schedulable on the two processors taking into account the LCM
of the periods, which is equal to 12. It is possible to obtain the schedule associated
with the two processors by decomposing the time interval [0, 12] into six subintervals
corresponding to six release times of the three tasks, i.e. {0, 3, 4, 6, 8, 9, 12}. Then,
a processor is assigned to each task during a period of time proportional to its pro-
cessor utilization factor ui and to the time interval considered between two release
times of tasks (Figure 5.6). During time interval [0, 3], processors Proc1 and Proc2

Proc1

Proc2

Release
time

t2t1

t2t3t2 t2 t2t2 t2t3 t3 t3 t3t3

t1 t2 t1t2t1t2t1 t
t1

t

50 10

50 10

50 10

t

Figure 5.6 Schedule of a set of three periodic tasks with deadlines equal to periods on two
processors: {τ1(r0 = 0, C = 2,D = 3, T = 3), τ2(r0 = 0, C = 2,D = 4, T = 4), τ3(r0 = 0,
C = 3,D = 6, T = 6)}
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are allocated to the three tasks as follows: τ1 is executed for 3 × 2/3 time units on
Proc1, τ2 is executed for 3 × 1/2 time units on Proc1 and Proc2, and τ3 is executed
for 3 × 1/2 time units on Proc2. The two processors are idle for 1/2 time units. After
that, the time interval [3, 4] is considered, and so on. The drawback of this algorithm
is that it can generate a prohibitive number of preemptions, leading to a high overhead
at run-time.

5.5 Scheduling Algorithms

5.5.1 Earliest deadline first and least laxity first
algorithms

Let us recall that EDF and LLF are optimal algorithms in the uniprocessor environment.
We saw that the EDF algorithm was not optimal in the multiprocessor environment.
Another interesting property related to the performance of EDF and LLF algorithms
has been proven (Dertouzos and Mok, 1989; Nissanke, 1997):

Property:
A set of periodic tasks that is feasible with the EDF algorithm in a multiprocessor
architecture is also feasible with the LLF algorithm.

The reciprocal of this property is not true. The LLF policy, which schedules the
tasks according to their dynamic slack times, has a better behaviour than the EDF
policy, which schedules tasks according to their dynamic response times, as shown
in Figure 5.7 with a set of three periodic tasks τ1(r0 = 0, C = 8, D = 9, T = 9),
τ2(r0 = 0, C = 2, D = 8, T = 8) and τ3(r0 = 0, C = 2, D = 8, T = 8) executed on
two processors.

t1t2
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(b)
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t
t2 t3t2 t3 t2 t3

Figure 5.7 Example showing the better performance of the LLF algorithm compared to the
EDF algorithm
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5.5.2 Independent tasks with the same deadline

In the particular case of independent tasks having the same deadline and different
release times, it is possible to use an optimal on-line algorithm proposed in McNaughtan
(1959) and which functions according to the following principle:

Algorithm:
Let C+ be the maximum of task computation times, CS be the sum of the computa-
tion times of already started tasks, and m be the number of processors. The algorithm
schedules all tasks on the time interval [0, b], where b = Max(C+, �CS/m�), while
starting to allocate the tasks on the first processor and, when a task must finish
after the bound b, it is allocated to the next processor. The allocation of the tasks
is done according to decreasing order of computation times. This rule is applied
for each new task activation.

Let us consider a set of tasks to execute on three processors once before the deadline
t = 10. Each task is defined by its release and computation times: τ1(r = 0, C =
6), T2(r = 0, C = 3), τ3(r = 0, C = 3), τ4(r = 0, C = 2), τ5(r = 3, C = 5), τ6(r =
3, C = 3). At time t = 0, the algorithm builds the schedule on the time interval [0, 6]
shown in Figure 5.8. Since C+ is equal to 6, CS/3 is equal to 4.66 (14/3) and thus the
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Figure 5.8 Schedule of independent tasks with the same deadline on three processors according
to the algorithm given in McNaughtan (1959) (schedule built at time t = 0)
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Figure 5.9 Schedule of independent tasks with the same deadline on three processors according
to the algorithm given in McNaughtan (1959) (schedule built at time t = 3)
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maximum bound of the interval is equal to 6. At time t = 3, C+ is equal to 6, CS/3
is equal to 7.3 (22/3) and thus the maximum bound of the interval is equal to 8. The
schedule modified from time t = 3 is shown in Figure 5.9.

5.6 Conclusion

In this presentation of multiprocessor scheduling, we restricted the field of analysis:
on the one hand to underline the difficulties of this problem (complexity and anoma-
lies) and on the other hand to analyse centralized on-line preemptive scheduling on
identical processors, which seems more adapted to real-time applications. In the field
of multiprocessor scheduling, a lot of problems remain to be solved (Buttazzo, 1997;
Ramamritham et al., 1990; Stankovic et al., 1995, 1998). New works that utilize tech-
niques applied in other fields will perhaps bring solutions: fuzzy logic (Ishii et al.,
1992), neural networks (Cardeira and Mammeri, 1994), and so on.



6
Joint Scheduling of Tasks
and Messages in Distributed
Systems

This chapter and the next one discuss mechanisms to support real-time communica-
tions between remote tasks. This chapter deals with some techniques used in multiple
access local area networks and Chapter 7 deals with packet scheduling when the
communications are supported by packet-switching networks such as ATM or IP-
based networks.

6.1 Overview of Distributed Real-Time Systems
The complexity of control and supervision of physical processes, the high number of
data and events dealt with, the geographical dispersion of the processes and the need
for robustness of systems on one hand, and the advent, for several years, on the market
of industrial local area networks on the other, have all been factors which resulted in
reconsidering real-time applications (Stankovic, 1992). Thus, an information processing
system intended to control or supervise operations (for example, in a vehicle assembly
factory, in a rolling mill, or in an aircraft) is generally composed of several nodes,
which may be central processing units (computers or programmable automata), sensors,
actuators, or peripherals of visualization and dialogue with operators. The whole of
these nodes is interconnected by a network or by a set of interconnected networks
(industrial local area networks, fieldbuses, etc.) (Pimentel, 1990). These systems are
called distributed real-time systems (Kopetz, 1997; Stankovic, 1992).

Several aspects have to be distinguished when we speak about distributed systems.
First of all, it is necessary to differentiate the physical (or hardware) allocation from
the software allocation. The hardware allocation is obtained by using several cen-
tral processing units which are interconnected by a communication subsystem. The
taxonomy is more complex when it is about the software. Indeed, it is necessary to
distinguish:

• data allocation (i.e. the assignment of data to appropriate nodes);

• processing allocation (i.e. the assignment of tasks to appropriate nodes);

• control allocation (i.e. the assignment of control roles to nodes for starting tasks;
synchronizing tasks, controlling access to data, etc.).
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Distributed real-time systems introduce new problems, in particular:

• computations based on timing constraints which refer to periods of time or to an
absolute instant are likely to comprise too significant computational errors, and
are therefore not credible, because of too large drifts between the clocks of the
various nodes;

• the evolution of the various components of the physical process is observed with
delays that differ from one node to another because of variable delays of commu-
nication;

• distributed real-time scheduling requires schedulability analysis (computations to
guarantee time constraints of communicating tasks), and this analysis has to cope
with clock drifts and communication delays;

• fault-tolerance is much more complex, which makes the problem of tolerating faults
while respecting time constraints even more difficult.

In this book, we are only interested in the scheduling problem.

6.2 Task Allocation in Real-Time
Distributed Systems

Task scheduling in distributed systems is dealt with at two levels: on the level of each
processor (local scheduling), and on the level of the allocation of tasks to processors
(global scheduling).

Local scheduling consists of assigning the processor to tasks, by taking into account
their urgency and their importance. The mission of global scheduling is to guarantee the
constraints of tasks by exploiting the processing capabilities of the various processors
composing the distributed system (while possibly carrying out migrations of tasks).
Thus, a local scheduling aims to answer the question of ‘when to execute a task on
the local processor, so as to guarantee the constraints imposed on this task?’. A global
scheduling seeks to answer the question ‘which is the node best adapted to execute a
given task, so as to guarantee its constraints?’.

In distributed real-time applications, task allocation and scheduling are closely
related: it is necessary to allocate the tasks to the set of processors so that local
scheduling leads imperatively to the guarantee of the time constraints of the critical
tasks. Local scheduling uses algorithms like those presented in the preceding chapters
(i.e. rate monotonic, earliest deadline first, and so on). We are interested here in global
scheduling, i.e. with allocation and migration of tasks, and with support for real-time
communications.

The problem of allocating n tasks to p processors often consists in initially seeking
a solution which respects the initial constraints as much as possible, and then to choose
the best solution, if several solutions are found. The search for a task allocation must
take into account the initial constraints of the tasks, and the support environment, as
well as the criteria (such as maximum lateness, scheduling length, number of processors
used) to optimize.
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The tasks composing a distributed application can be allocated in a static or dynamic
way to the nodes. In the first case, one speaks about static allocation; in the second, of
dynamic allocation. In the first case, there cannot be any additional allocations of the
tasks during the execution of the application; the allocation of the tasks is thus fixed
at system initialization. In the second case, the scheduling algorithm chooses to place
each task on the node capable of guaranteeing its time constraints, at the release time
of the task.

Dynamic allocation algorithms make it possible to find a node where a new task
will be executed. If a task allocated to a node must be executed entirely on the node
which was chosen for it, one speaks about a distributed system ‘without migration’;
if a task can change node during its execution, one speaks about a distributed system
‘with migration’. The migration of a task during its execution consists of transferring
its context (i.e. its data, its processor registers, and so on), which continuously changes
as the task is executed, and, if required, its code (i.e. the instructions composing the
task program), which is invariable. To minimize the migration time of a task, the code
of the tasks likely to migrate is duplicated on the nodes on which these tasks can be
executed. Thus, in the case of migration, only the context of the task is transferred.
Task migration is an important function in a global scheduling algorithm. It enables
the evolution of the system to be taken into account by assigning, in a dynamic way,
the load of execution of the tasks to the set of processors. In addition, dynamically
changing the nodes executing tasks is a means of increasing the fault-tolerance of
the system.

Many syntheses on task allocation techniques, in the case of non-real-time parallel
or distributed systems, have been proposed in the literature. The reader can refer in
particular to Eager et al. (1986) and Stankovic (1992). On the other hand, few works
have studied task allocation in the case of real-time and distributed systems. The reader
can find examples of analysis and experimentation of some task allocation methods
in (Chu and Lan, 1987; Hou and Shin, 1992; Kopetz, 1997; Shih et al., 1989; Storch
and Liu, 1993; Tia and Liu, 1995; Tindell et al., 1992). In the following, we assume
that tasks are allocated to nodes, and we focus on techniques used to support real-time
communications between tasks.

6.3 Real-Time Traffic

6.3.1 Real-time traffic types

In real-time distributed systems, two attributes are usually used to specify messages:
end-to-end transfer delay and delay jitter:

• End-to-end transfer delay (or simply end-to-end delay) is the time between the
emission of the first bit of a message by the transmitting end-system (source) and
its reception by the receiving end-system (destination).

• Delay jitter (or simply jitter) is the variation of end-to-end transfer delay (i.e. the
difference between the maximum and minimum values of transfer delay). It is a
distortion of the inter-message arrival times compared to the inter-message times



106 6 JOINT SCHEDULING OF TASKS AND MESSAGES IN DISTRIBUTED SYSTEMS

of the original transmission. This distortion is particularly damaging to multimedia
traffic. For example, the playback of audio or video data may have a jittery or
shaky quality.

In a way similar to tasks, one can distinguish three types of messages:

• Periodic (also called synchronous) messages are generated and consumed by peri-
odic tasks, and their characteristics are similar to the characteristics of their respec-
tive source tasks. Adopting the notation used for periodic tasks, a periodic message
Mi is usually denoted by a 3-tuple (Ti, Li,Di). This means that the instances of
message Mi are generated periodically with a period equal to Ti , the maximum
length of Mi’s instances is Li bits, and each message instance must be delivered
to its destination within Di time units. Di is also called end-to-end transfer delay
bound (or deadline). Some applications (such as audio and video) require that jitter
should be bounded. Thus a fourth parameter Ji may be used to specify the jitter
that should be guaranteed by the underlying network.

• Sporadic messages are generated by sporadic tasks. In general, a sporadic message
Ms may be characterized by a 5-tuple (Ts, ATs, Is, Ls, Ds). The parameters Ts, Ls

and Ds are the minimum inter-arrival time between instances of Ms , maximum
length and end-to-end deadline of instances of Ms . ATs is the average inter-arrival
time, where the average is taken over a time interval of length Is .

• Aperiodic messages are generally generated by aperiodic tasks and they are char-
acterized by their maximum length and end-to-end delay.

In addition to the previous parameters, which are similar to the ones associated with
tasks, other parameters inherent to communication networks, such as message loss rate,
may be specified in the case of real-time traffic.

6.3.2 End-to-end communication delay

Communication delay between two tasks placed on the same machine is often consid-
ered to be negligible. It is evaluated according to the machine instructions necessary
to access a data structure shared by the communicating tasks (shared variables, queue,
etc.). The communication delay between distant tasks (i.e. tasks placed on differ-
ent nodes) is much more complex and more difficult to evaluate with precision. The
methods of computation of the communication delay differ according to whether the
nodes on which the communicating tasks are placed are directly connected — as is
the case when the application uses a local area network with a bus, loop or star topol-
ogy — or indirectly connected — as is the case when the application uses a meshed
network. When the communicating nodes are directly connected, the communication
delay between distant tasks can be split into several intermediate delays, as shown in
Figure 6.1:

• A delay of crossing the upper layers within the node where the sending task is
located (d1). The upper layers include the application, presentation and transport
layers of the OSI model when they are implemented.
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Figure 6.1 Components of end-to-end delay of communication between two tasks when tasks
are allocated to nodes directly connected by a local area network

• A queuing delay in the medium access control (MAC) sublayer of the sending node
(d2). This queuing delay is the most difficult to evaluate.

• A delay of physical transmission of the message on the medium (d3).

• A delay of propagation of a bit on the medium up to the receiving node (d4).

• A delay of reception and waiting time in the MAC sublayer of the receiving
node (d5).

• A delay of crossing the upper layers in the node where the receiving task is
located (d6).

In order for a task to receive a message in time, it is necessary that the various
intermediate delays (d1, . . . , d6) are determined and guaranteed. The delays d1 and d6

do not depend on the network (or more exactly do not depend on the medium access
protocol). The delay d5 is often regarded as fixed and/or negligible, if the assumption is
made that any received message is immediately passed to the upper layers. The delays
d3 and d4 are easily computable. Transmission delay d3 depends on the network bit rate
and the length of the message. Delay d4 depends on the length of the network. Delay
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d2 is directly related to the medium access control of the network. The upper bound of
this delay is guaranteed by reserving the medium at the right time for messages. There
is no single solution for this problem. The technique of medium reservation depends
on the MAC protocol of the network used. We will reconsider this problem by taking
examples of networks (see Section 6.4.3).

When the communicating tasks are allocated to nodes that are not directly connected,
in a network such as ATM or the Internet, the end-to-end transfer delay is determined by
considering the various communication delays along the path going from the sending
node to the receiving node. The techniques of bandwidth reservation and scheduling of
real-time messages are much more complex in this case. The next chapter will focus
on these techniques in the case of packet-switching networks.

6.4 Message Scheduling

6.4.1 Problems of message scheduling

Distributed real-time applications impose time constraints on task execution, and these
constraints are directly reflected on the messages exchanged between the tasks when
they are placed on different nodes. The guarantee (or non-guarantee) of the time con-
straints of messages is directly reflected on those of tasks, because waiting for a
message is equivalent to waiting for the acquisition of a resource by a task; if the
message is not delivered in time, the time constraints of the task cannot be guaranteed.

In real-time applications, certain tasks can have hard time constraints and others
not. Similarly, the messages exchanged between these tasks can have hard time con-
straints or not. For example, a message indicating an alarm must be transmitted and
received with hard time constraints in order to be able to treat the cause of the alarm
before it leads to a failure, whereas a file transfer does not generally require hard time
constraints.

Communication in real-time systems has to be predictable, because unpredictable
delays in the delivery of messages can adversely affect the execution of tasks depen-
dent on these messages. If a message arrives at its destination after its deadline has
expired, its value to the end application may be greatly reduced. In some circumstances
messages are considered ‘perishable’, that is, are useless to the application if delayed
beyond their deadline. These messages are discarded and considered lost. A message
must be correct from the content point of view (i.e. it must contain a valid value), but
also from the time point of view (i.e. it must be delivered in time). For example, a
temperature measurement which is taken by a correct sensor, but which arrives two sec-
onds later at a programmable logic controller (PLC) of regulation having a one-second
cycle, is regarded as obsolete and therefore incorrect.

The support of distributed real-time applications requires communication protocols
which guarantee that the communicating tasks will receive, within the deadlines, the
messages which are intended to them. For messages with hard deadlines, the protocols
must guarantee maximal transfer delays. For non-time-critical messages, the strategy
of the protocols is ‘best effort’ (i.e. to minimize the transfer delay of messages and
the number of late messages). However, the concept of ‘best effort’ must be used with
some care in the case of real-time systems. For example, the loss of one image out of



6.4 MESSAGE SCHEDULING 109

ten in the case of a video animation in a control room is often without consequence;
on the other hand, the loss of nine images out of ten makes the supervision system
useless for the human operators.

Guarantee of message time constraints requires an adequate scheduling of the mes-
sages according to the communication protocols used by the support network. Various
works have been devoted to the consideration of the time constraints of messages in
packet-switching networks and in multiple access local area networks. In the first cate-
gory of networks, studies have primarily targeted multimedia applications (Kweon and
Shin, 1996; Zheng et al., 1994). In the second category of networks, work has primar-
ily concerned CSMA/CA (the access method used in particular by CAN networks; see
Section 6.4.3) based networks, token bus, token ring, FDDI and FIP (Agrawal et al.,
1993; Malcolm and Zhao, 1995; Sathaye and Strosnider, 1994; Yao, 1994; Zhao and
Ramamritham, 1987).

As far as scheduling of real-time messages is considered, these two categories of
networks present significant differences.

1. Packet-switched networks:

• Each node of task location connected to the network is regarded as a subscriber
(or client) and does not know the protocols used inside the switching network.

• To transmit its data, each subscriber node establishes a connection according to a
traffic contract specifying a certain quality of service (loss rate, maximum transfer
delay, etc.). Subscriber nodes can neither enter into competition with each other,
nor consult each other, to know which node can transmit data. A subscriber node
addresses its requests to the network switch (an ATM switch or an IP router, for
example) to which it is directly connected, and this switch (or router) takes care of
the message transfer according to the negotiated traffic contract.

• The time constraints are entirely handled by the network switches (or routers),
provided that each subscriber node negotiates a sufficient quality of service to take
into account the characteristics of messages it wishes to transmit. Consequently,
the resource reservation mechanisms used are implemented in the network switches
(or routers) and not in the subscriber nodes.

2. Multiple access local area networks (LAN)

• The nodes connected to the network control the access to the medium via a MAC
technique implemented on each node. Generally, a node obtains the right to access
the shared medium either by competition, or by consultation (by using a token, for
example) according to the type of MAC technique used by the LAN.

• Once a node has sent a frame on the medium, this frame is directly received by its
recipient (obviously excepting the case of collision with other frames or the use of
a network with interconnection equipment such as bridges).

• The nodes must be set up (in particular, by setting message or node priorities,
token holding times, and so on) to guarantee message time constraints. Conse-
quently, resource reservation mechanisms are implemented in the nodes supporting
the tasks.
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Techniques to take into account time constraints are similar, whether they are integrated
above the MAC sublayer, in the case of LANs, or in the network switches, in the case of
packet-switching networks. They rely on the adaptation of task scheduling algorithms
(for instance EDF or RM algorithms). In this chapter we consider LANs and in the
next, packet-switching networks.

6.4.2 Principles and policies of message scheduling

The scheduling of real-time messages aims to allocate the medium shared between
several nodes in such a way that the time constraints of messages are respected.
Message scheduling thus constitutes a basic function of any distributed real-time sys-
tem. As we underlined previously, not all of the messages generated in a distributed
real-time application are critical from the point of view of time. Thus, according
to time constraints associated with the messages, three scheduling strategies can be
employed:

• Guarantee strategy (or deterministic strategy): if messages are scheduled according
to this strategy, any message accepted for transmission is sent by respecting its time
constraints (except obviously in the event of failure of the communication system).
This strategy is generally reserved for messages with critical time constraints whose
non-observance can have serious consequences (as is the case, for example, in the
applications controlling industrial installations or aircraft).

• Probabilistic and statistical strategies: in a probabilistic strategy, the time con-
straints of messages are guaranteed at a probability known in advance. Statistical
strategy promises that no more than a specified fraction of messages will see per-
formance below a certain specified value. With both strategies, the messages can
miss their deadlines. These strategies are used for messages with hard time con-
straints whose non-observance does not have serious consequences (as is the case,
for example, in multimedia applications such as teleconferencing).

• Best-effort strategy : no guarantee is provided for the delivery of messages. The
communication system will try to do its best to guarantee the time constraints of
the messages. This strategy is employed to treat messages with soft time constraints
or without time constraints.

In a distributed real-time system, the three strategies can cohabit, to be able to meet
various communication requirements, according to the constraints and the nature of
the communicating tasks.

With the emergence of distributed real-time systems, new needs for scheduling
appeared: it is necessary, at the same time, to guarantee the time constraints of the tasks
and those of the messages. As messages have similar constraints (mainly deadlines)
as tasks, the scheduling of real-time messages uses techniques similar to those used in
the scheduling of tasks.

Whereas tasks can, in general, accept preemption without corrupting the consis-
tency of the results that they elaborate, the transmission of a message does not admit
preemption. If the transmission of a message starts, all the bits of the message must be
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transmitted, otherwise the transmission fails. Thus, some care must be taken to apply
task scheduling algorithms to messages:

• one has to consider only non-preemptive algorithms;

• one has to use preemptive algorithms with the proviso that transmission delays of
messages are lower than or equal to the basic time unit of allocation of the medium
to nodes;

• one has to use preemptive algorithms with the proviso that long messages are
segmented (by the sending node) in small packets and reassembled (by the receiving
node). The segmentation and reassembly functions must be carried out by a layer
above the MAC sublayer; traditionally, these functions concern the transport layer.

Some communication protocols provide powerful mechanisms to take into account time
constraints. This is the case, in particular, of FDDI and token bus protocols, which
make it possible to easily treat periodic messages. Other, more general, protocols like
CSMA/CD require additional mechanisms to deal with time constraints. Consequently,
scheduling, and therefore the adaptation of task scheduling algorithms to messages,
are closely related to the type of time constraints (in particular, whether messages are
periodic or aperiodic) and the type of protocol (in particular, whether the protocol
guarantees a bounded waiting time or not). The reader eager to look further into the
techniques of message scheduling can refer to the synthesis presented in Malcolm and
Zhao (1995). In the following section, we treat the scheduling of a set of messages,
and consider three basically different types of protocols (token bus, FIP and CAN).
The protocols selected here are the basis of many industrial LANs.

6.4.3 Example of message scheduling

We consider a set of periodic messages with hard time constraints where each message
must be transmitted once each interval of time equal to its period. We want to study
the scheduling of these messages in the case of three networks: token bus, FIP and
CAN. Let us first briefly present the networks we use in this example and in Exer-
cise 6.1. Our network presentation focuses only on the network mechanisms used for
message scheduling.

Overview of token bus, FDDI, CAN and FIP networks

Token bus In the medium access control of the token bus, the set of active nodes
is organized in a logical ring (or virtual ring). The configuration of a logical ring
consists of determining, for each active node, the address of the successor node on the
logical ring. Figure 6.2 shows an example of a logical ring composed of nodes 2, 4,
7 and 6. Once the logical ring is set up, the right of access to the bus (i.e. to transmit
data) is reserved, at a given moment, for only one node: it is said that this node has
the right to transmit. This right is symbolized by the possession of a special frame
called a token. The token is transmitted from node to node as long as there are at least
two nodes in the logical ring. When a node receives the token, it transmits its frames
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Figure 6.2 Example of a logical ring

without exceeding a certain fixed amount of time (called token holding time) and then
transmits the token to its successor on the logical ring. If a node has no more data
to transmit and its token holding time is not yet exceeded, it releases the token (ISO,
1990; Stallings, 1987, 2000).

The token bus can function with priorities (denoted 6, 4, 2 and 0; 6 being the highest
priority and 0 the lowest) or without priorities. The principle of access control of the
bus, with priorities, is the following:

• at network initialization, the following parameters are set:

– a token holding time (THT), which indicates the amount of time each node
can transmit its frames each time it receives the token for transmitting its data
of priority 6 (this time is sometimes called synchronous allocation),

– three counters TRT4, TRT2 and TRT0. Counter TRT4 (token rotation time for
priority 4) limits the transmission time of frames with priority 4, according to
the effective time taken by the current token rotation time. Counters TRT2 and
TRT0 have the same significance as TRT4 for priorities 2 and 0.

• Each node uses a counter (TRT) to measure the token rotation time. When any
node receives the token:

– It stores the current value of TRT in a variable (let us call it V ), resets TRT
and starts it.

– It transmits its data of priority 6, for an amount of time no longer than the
value of its THT.

– Then, the node can transmit data of lower priorities (respecting the order of
the priorities) if the token is received in advance compared to the expected
time. It can transmit data of priority p (p = 4, 2, 0) as long as the following
condition is satisfied: V + ∑

i>p ti < TRTp · ti indicates the time taken by the
data transmission of priority i.

– It transmits the token to its successor on the logical ring.

• When the token bus is used without priorities, only parameter THT is used to
control access to the bus.
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Figure 6.4 Simplified architecture of FDDI network

Figure 6.3 shows the format of the token bus frame.
It is worth noting that the token bus protocol is the basis of some industrial local area

networks like MAP (Manufacturing Automation Protocol) (MAP, 1987) and Profibus
(PROcess FIeldBUS) (Deutsche Institut für Normung, 1991).

FDDI network FDDI (Fibre Distributed Data Interface) is a network with a ring
topology (Figure 6.4). The access to the medium is controlled by a token. The token
is passed from node to node in the order of the physical ring. In FDDI, the logical
successor of a node is also its physical successor. No specific procedure is required to
create and maintain the ring in the case of FDDI. The configuration of FDDI is similar
to that of token bus:

• A common value of a parameter called TTRT (Target Token Rotation Time) is used
by all the nodes.

• Each node has a fixed amount of time to transmit data at each round of the token
(these data are called synchronous data and correspond to the data of priority 6 in
the case of the token bus).

• A node can transmit asynchronous data (these data have priorities ranging between
0 and 7 and they correspond to the data of priorities 4 to 0 in the case of the token
bus), if the current token rotation time is less than the value of the TTRT.

CAN CAN (Controller Area Network) was originally designed to support commu-
nications in vehicles (ISO, 1994a). In CAN, the nodes do not have addresses and they
reach the bus via the CSMA/CA (Carrier Sense Multiple Access with Collision Avoid-
ance) access technique. Any object (e.g. a temperature or a speed) exchanged on the
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CAN medium has a unique identifier. The identifier contained in a frame defines the
level of priority of the frame: the smaller the identifier is, the higher the frame priority
is. The objects can be exchanged between nodes in a periodic or aperiodic way, or
according to the consumer’s request.

The arbitration of access to the medium is made bit by bit. A bit value of 0 is
dominant and a bit value of 1 is recessive. In the event of simultaneous transmissions,
the bus conveys a 0 whenever there is at least one node which transmits a bit 0. Two
or several nodes can start to transmit simultaneously. As long as nodes transmit bits
with the same value, they continue transmitting (no node loses access to the medium).
Whenever a node transmits a bit 1 and receives at the same time a bit 0, it stops
transmitting and the nodes transmitting bit 0 continue transmitting. Consequently, in the
event of simultaneous transmissions, the node which emits the object whose identifier
is the smallest obtains the right to transmit its entire frame. For this reason it is said that
CAN is based on access to the medium with priority and non-destructive resolution of
collisions. Figure 6.5 gives an example of bus arbitration.

Listening on the bus to detect collisions imposes a transmission delay of a bit that is
higher than or equal to twice the round trip propagation delay over the entire medium.
As a consequence, the bit rate of a CAN network depends on the length of the medium:
the shorter the network, the higher the bit rate.

Figure 6.6 shows the format of a CAN frame.

FIP network FIP (Factory Instrumentation Protocol), also called WorldFIP, is a net-
work for the interconnection of sensors, actuators and automata (Afnor, 1990; Cenelec,
1997; Pedro and Burns, 1997). A FIP network is based on a centralized structure in
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Identifier sent by node 1
0101111….
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0111001….  

Identifier sent by node 3
0101011….  
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Node 1
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Figure 6.5 Example of bus arbitration in a CAN network
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ACK End of
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Figure 6.6 CAN frame format



6.4 MESSAGE SCHEDULING 115

which a node, called the bus arbitrator, gives the medium access right to the other
nodes. FIP is based on the producer/distributor/consumer model in which the objects
(variables or messages) exchanged on the network are produced by nodes called pro-
ducers and consumed by other nodes called consumers .

Each object has a unique identifier. The objects can be exchanged, between pro-
ducers and consumers, in a periodic or aperiodic way, under the control of the bus
arbitrator. FIP allows the exchange of aperiodic objects only when there remains spare
time after the periodic objects have been exchanged. According to the periods of con-
sumption of the objects, the application designer defines a static table known as the
bus arbitrator table, which indicates the order in which the objects must be exchanged
on the bus.

In a FIP network, each identified object is assigned a buffer in the object producer
node. This buffer (called the production buffer) contains the last produced value of the
object. A buffer (called the consumption buffer) is also associated with each object,
with each node consuming this object. This buffer contains the last value of the object
conveyed by the network. By using its table, the bus arbitrator broadcasts a frame
containing an object identifier, then the node of production recognizes the identifier
and broadcasts the contents of the production buffer associated with the identifier. Then
the broadcast value is stored in all the consumption buffers of the various consumers
of the broadcast identifier. Figure 6.7 summarizes the exchange principle of a FIP
network, Figure 6.8 shows the format of FIP frames, and Figure 6.9 gives an example
of the bus arbitrator table.

The principle of communication of FIP differs from the other networks especially
in the following ways, which are significant for guaranteeing upper bounds on the
communication delays:

• The sender (i.e. the producer) does not ask for the transmission of an object (as in
the case of CAN or token bus), it waits until it is requested by the bus arbitrator

Bus arbitrator

1     Production of an object value.
2     Transmission of an identifier frame called ID-Dat frame.
3     Transmission of an object value frame called RP-Dat frame. The
       object value is then copied by consumer nodes.
4    Consumer reads the object value.

PB: Production buffer    CB: Consumption buffer  

  1

  2 3

4

2   2   3

Bus

Producer Consumer

PB CBArbitrator
table

Figure 6.7 Basic exchanges on FIP network
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Figure 6.8 FIP frame formats
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Figure 6.9 Bus arbitrator table for the set of messages defined in Table 6.1

to transmit a value of an object. The delay between the time when a new value
is written in the production buffer (this moment corresponds to the time when a
message arrives in the MAC sublayer of the other two networks) and the time
when the value of this object is received by the consumer depends on the table of
the bus arbitrator.

• In CAN and token bus networks, a message submitted by the sender to the MAC
sublayer is removed from the queue and transmitted on the medium. When the
queue is empty, the MAC sublayer cannot transmit any more. In FIP, the principle
is completely different. The interface (where the production buffers are located)
always answers the request of the bus arbitrator by sending the value that is present
in the production buffer. Consequently, the same value can be received several times
by a consumer, if the broadcasting request period is smaller than the production
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Table 6.1 Example of a set of periodic
messages

Message Period
(ms)

Length
(bytes)

M1 5 2
M2 10 4
M3 15 4
M4 20 8
M5 20 4
M6 30 4

period. Moreover, the value contained in the production buffer can be invalid (i.e.
non-fresh) if the producer does not deposit the values in the buffer during the
production period which was fixed to it.

Solution for message scheduling

Let us consider the set of messages described in Table 6.1. We chose messages of small
sizes in order to avoid message segmentation. Eight bytes is to the maximum size of
message authorized by CAN; the other networks make it possible to convey longer
messages. To simplify computations, we suppose that the three selected networks have
the same bit rate, equal to 1 Mb/s, and that the propagation delay on the physical
medium is negligible.

Transmission delay computation To schedule tasks, it is necessary to know their
execution times. To schedule messages, it is necessary to know their transmission
delays. The transmission delay of a message depends on its size, the network bit rate,
the length of the network, the format of the frames of the network, and the protocol
of the network. We note dN(m) the transmission delay of message m on network N

(where N = token bus, FIP or CAN).
For token bus, the transmission delay of a message of n bytes is equal to 96 + 8nµs,

by considering that the node addresses are coded on two bytes and that only one byte
is used as frame preamble (see Figure 6.3). It is considered that the inter-frame time
is null. The transmission delay of a token is equal to 96 µs.

For CAN, the transmission delay of a message of n bytes is equal to 47 + 8n +
�(34 + 8n)/4)� µs. �x� (x ≥ 0) denotes the largest integer less than or equal to x.
This value is explained in the following way: the length of a frame at MAC level is
equal to 47 + 8n bits (see Figure 6.6). Whenever a transmitter detects five consecutive
bits (including stuffing bits) of identical value in the bitstream to be transmitted, it
automatically inserts a complementary bit which is deleted by the receiver; this is the
concept of bit stuffing. The stuffing mechanism does not take account of the fields:
CRC (cyclic redundancy check) delimiter, ACK (acknowledgement) and frame end.
Consequently, the maximum number of bits inserted by this mechanism is equal to
�(34 + 8n)/4�.

In FIP, one distinguishes the identified objects and the messages. The term mes-
sage used in this example does not indicate a message within the meaning of FIP. A
message transmitted by a task corresponds to an identified object of FIP. For FIP, the
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Table 6.2 Message transmission delay according
to network

Message Transmission delay (µs)

dtoken bus dFIP dCAN

M1 112 178 75
M2 128 194 95
M3 128 194 95
M4 160 226 135
M5 128 194 95
M6 128 194 95

transmission delay of a message of n bytes is equal to 122 + 2TR + 8nµs, which is
obtained by adding a transmission delay of a ID-Dat frame (61 bits) which conveys the
identifier of the object to be sent, the transmission delay of a response frame RP-Dat
(61 + 8n bits) which contains the value of the object, and twice the turnaround time
(TR). TR is the time which separates the end of reception of a frame and the beginning
of transmission of the subsequent frame. Its value lies between 10 µs and 70 µs for
a bit rate of 1 Mb/s. We fix here TR to 20 µs. In an ID-Dat frame, the identifier is
represented by two bytes (see Figure 6.8a). In an RP-Dat frame, n payload bytes plus
two bytes are added by the application layer; these bytes contain the length and the
type of the data (see Figure 6.8b).

The transmission delays of the messages of Table 6.1 are given in Table 6.2.

Solution for message scheduling using token bus network

When a technique of medium access is based on the timed token (like the technique
of the token bus or FDDI), the guarantee of time constraints of messages depends
on the manner of fixing the parameters of operation of the network (particularly the
amounts of time allocated to the nodes and the maximum token rotation time). A
lot of work was devoted to FDDI and significant results were proved, in particular
concerning the maximum queuing time of messages and the condition of guarantee of
time constraints according to message periods and to the parameters of operation of the
network (Agrawal et al., 1993; Chen et al., 1992; Johnson, 1987; Sevcik and Johnson,
1987; Zhang and Burns, 1995). The token bus was not the subject of thorough works,
which is why the results obtained for FDDI are adapted to the token bus.

To be able to use correctly the results obtained for FDDI, one must fix a maximum
value, TRTmax, for the three counters TRT4, TRT2 and TRT0 of all the nodes of a
logical ring. The TRTmax value thus fixed plays the same role as the TTRT in FDDI.
No node can transmit frames of priority 4, 2 or 0 if counter TRT has reached TRTmax.
Thus TTRT is replaced by TRTmax in the formulas suggested for FDDI. In addition,
priority 6 is associated with the periodic messages and the other priorities with the
aperiodic messages.

1. Medium allocation techniques The main techniques of medium allocation to
periodic messages, in the case of FDDI, are presented in Agrawal et al. (1993) and
Zhang and Burns (1995). We study here two of the suggested techniques:

• Full length allocation scheme:
Qi = Ci (6.1)
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Qi indicates the synchronous allocation time for node i, and Ci the transmission
delay of its message. With this strategy, each node uses, at each token round, an
amount of time which enables it to transmit completely its message (i.e. without
segmentation). In general, this technique is usable for short messages (like those
treated in this example). The existence of messages requiring significant trans-
mission delays can lead to the non-guarantee of the time constraints of messages
having small periods, even under low global load.

• Normalized proportional allocation scheme:

Qi =
(

TTRT − α

U

)
·
(

Ci

Ti

)
U =

n∑

i=1

Ci

Ti

(6.2)

Ti indicates the period of the message of node Ni , α indicates the time that the nodes
cannot use to transmit their periodic messages (this time includes, in particular, the
time taken by the token to make a full rotation of the ring, and the time reserved
explicitly for the transfer of aperiodic messages).

2. Solution based on the full length allocation scheme Let us suppose that the
message Mi (i = 1, . . . , 6) is transmitted by node number i. The synchronous alloca-
tion time of FDDI corresponds to the token holding time in the token bus protocol.
Consequently, the token holding time of node Ni (THTi) is defined in the following
way: THTi = dtoken bus(Mi)(i=1,...,6).

One can easily show that the set of considered messages (whose transmission delays
are given in Table 6.2) is feasible if one takes 1360 µs as the value of TRTmax (this
value corresponds to the sum of allocation times required by the six nodes plus six
times the transmission token time). As the minimal period is 5 ms, the selected TRTmax
makes it possible for each node to receive the token at least once during each interval
of time equal to its period. The maximum value of TRTmax which makes it possible
to guarantee the time constraints of the six messages is given by applying the theorem
shown in Johnson (1987), which stipulates that the maximum bound of the token
rotation time on an FDDI ring is equal to twice the value of the TTRT. By applying
this theorem to our example, it is necessary that TRTmax be lower than half of the
minimal period of the set of the considered messages. Thus all the values of TRTmax
ranging between 1360 µs and 2500 µs make it possible to guarantee the message time
constraints under the condition that no node other than those that transmit the six
considered messages can have a value of THT higher than 0.

3. Solution based on the normalized proportional allocation scheme We suppose
here that one does not explicitly allocate time for aperiodic messages and that only
the nodes which transmit the messages M1 to M6 have non-null token holding time.
The application of formula (6.2) to the case of the token bus results in replacing α by
n · � (where n is the maximum number of nodes being able to form part of the logical
ring and �, the transmission delay of the token between a node and its successor) and
TTRT by TRTmax. Thus, token holding times assigned to the six nodes are computed
in the following way:

THTi =
(

TRTmax − n · �
U

)
·
(

dtoken bus(Mi)

Ti

)
, (i = 1, . . . , 6) (6.3)
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If we consider that the logical ring is made up of only the six nodes which transmit
the six messages considered in this example, and there is no segmentation of mes-
sages, it is necessary to choose the amounts of times assigned to the nodes such that
THTi ≥ dtoken bus(Mi), i = 1, . . . , 6. That leads to fix TRTmax such as:

(
TRTmax − 576

U

)
·
(

dtoken bus(Mi)

Ti

)
≥ dtoken bus(Mi), (i = 1, . . . , 6) (6.4)

As U is equal to 6.24%, a value of TRTmax equal to 2448 µs is sufficient to satisfy
inequality (6.4). Thus, the token holding times of the nodes are fixed as follows:

THT1 = 672 µs THT2 = 384 µs THT3 = 256 µs
THT4 = 240 µs THT5 = 192 µs THT6 = 128 µs

In consequence TRTmax should be fixed at 2448 µs (2448 = 576 + ∑
THTi) when

the network is used only by the six nodes. If other nodes can use the network, the
value of TRTmax should be fixed according to Johnson’s (1987) theorem previously
mentioned (i.e. TRTmax must be lower than or equal to half of the minimal period).
Consequently, all the values of TRTmax ranging between 2448 µs and 2500 µs make
it possible to guarantee the time constraints of messages without segmentation.

Solution for message scheduling using CAN

One of the techniques of scheduling periodic messages used in the case of networks
having global priorities (as is the case of CAN) derives from the rate monotonic algo-
rithm described in Chapter 2. As the priority of a message is deduced from its identifier,
the application of the RM algorithm to the scheduling of periodic messages consists
of fixing the identifiers of the messages according to their periods. For the sake of
simplicity, the messages considered here are short and thus do not require segmen-
tation and reassembly to take into account preemption, an aspect that is inherent in
RM. When two messages have the same period, the choice of the identifiers results in
privileging one of the messages (this choice can be made in a random way, as we do
it here, or on the basis of information specific to the application). The assignment of
the identifiers, Id(), to the messages can be done, for example, as follows:

Id(M1) = 1, Id(M2) = 2, Id(M3) = 3, Id(M4) = 5, Id(M5) = 4, Id(M6) = 6

In an informal way, one can show the feasibility of the set of the considered messages
in the following way: as the sum of transmission delays of the six messages (M1 to M6)
is equal to 590 µs, even if all the messages appeared with the minimal period (which
is equal to 5 ms), they are transmitted by respecting their deadlines. Indeed, when a
message M1 arrives, it waits, at most, �t1 before being transmitted. �t1 ≤ 135 µs,
because the transmission delay of the longest message which can block M1 is 135 µs
(which corresponds to M4 transmission delay). Thus, message M1 is always transmitted
before the end of its arrival period. When a message M2 arrives, it waits, at most, �t2.
�t2 ≤ 135 + 75 µs, which corresponds to the situation where a message M4 is being
transmitted when M2 arrives. Then a message M1 arrives while M4 is still being
transmitted and therefore M1 is transmitted before M2 because it has higher priority.
One can then apply the same argument for messages M3, M4 and M5. Message M6,
which has the lowest priority waits, at most, 495 µs. In consequence, all the messages
are transmitted respecting their periods.
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Solution for message scheduling using FIP network

The solution consists in building a bus arbitrator table which acts as a scheduling
table of messages computed off-line. The bus arbitrator table is built by taking into
account the minimal period of the messages — called the microcycle — which is equal
to 5 ms for this example, and the least common multiple of the periods — called the
macrocycle — which is equal to 60 ms for this example. The bus arbitrator table is a
sufficient condition to guarantee the schedulability of the set of considered messages.
Figure 6.9 shows a bus arbitrator table which makes it possible to guarantee the time
constraints of the considered example. In the chosen bus arbitrator, during the first
macrocycle the six messages are exchanged, during the second microcycle only mes-
sage M1 is exchanged, and so on. When the twelfth microcycle is finished, the bus
arbitrator starts a new cycle and proceeds according to the first microcycle.

6.5 Conclusion
Real-time applications are becoming increasingly large and complex, thus requiring the
use of distributed systems to guarantee time constraints and to reinforce dependability.
However, the use of distributed systems leads to new problems that should be solved.
Among these problems is real-time message scheduling. This problem is complex
because of the diversity of the communication protocols to consider and it is in full
evolution. The existing communication protocols undergo extensions and modifications
to integrate real-time scheduling and guarantee timely delivery of messages.

This chapter has studied the scheduling problem when multiple-access local area
networks are used to support communications. Only the medium access control (MAC)
level has been considered. Thus, other aspects have to be considered to take into
account the time constraints of messages at all levels of communication (from the
physical up to the application layer). We have limited our study to the MAC level,
because handling message time constraints at higher layers is complex and is achieved
by considering multiple factors: operating system kernel, multitasking, the number of
layers under consideration, the protocols used at each layer, etc. In the next chapter,
we will see the techniques used to guarantee time constraints when packet-switching
networks are used.

Finally, let us note the development of some prototypes of distributed
real-time systems such as: MARS (Damm et al., 1989), SPRING (Stankovic and
Ramamriham, 1989; Stankovic et al., 1999), MARUTI (Levi et al., 1989), DELTA-
4 XPA (Verissimo et al., 1991), ARTS (Tokuda and Mercer, 1989), CHAOS (Schwan
et al., 1987) and DARK (Scoy et al., 1992). These systems integrate the real-time
scheduling of tasks and messages.

6.6 Exercise 6.1: Joint Scheduling of Tasks
and Messages

6.6.1 Informal specification of problem

In this exercise, we are interested in joint scheduling of tasks and messages in a
distributed real-time application. Let us take again the example of the application
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composed of five tasks which have precedence constraints, as presented in Chapter 3
(see Section 3.1.3, Figure 3.5, Table 3.2). The tasks are supposed to be scheduled by
the earliest deadline first algorithm. The initial values of the parameters of the tasks
are the same as those presented in Section 3.1.3, except that they are declared in
microseconds and not in unspecified time units, as previously (see Table 6.3).

The tasks are assigned to three nodes, N1, N2 and N3 (see Figure 6.10) interconnected
by a network, which can be a token bus, a CAN or a FIP network. At each execution end,
task τ1 transmits a message M1 of two bytes to task τ4, task τ3 transmits a message M2

of eight bytes to task τ5 and task τ4 transmits a message M3 of four bytes to task τ5.
We suppose that:

• The propagation delay on the medium is negligible (i.e. the delay d4 presented in
Figure 6.1 is null).

• The network used is reliable (there are no transmission errors) and has a bit rate
of 1 Mb/s.

• The delay of crossing (i.e. message processing and queuing) upper layers at the
transmitter or the receiver and the waiting delay in the receiver MAC sublayer are
negligible (i.e. the delays d1, d5 and d6 presented in Figure 6.1 are null). In other

Table 6.3 Example of a task set with
precedence constraints

Initial task parameters

Task ri

(µs)
Ci

(µs)
di

(µs)

τ1 0 1000 5000
τ2 5000 2000 7000
τ3 0 2000 5000
τ4 0 1000 10 000
τ5 0 3000 12 000

Network

M3

M2

M1

Node N2

Node N3Node N1

τ1

τ2

τ3

τ4

τ5

Figure 6.10 Example of allocation of tasks of a real-time application
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words, all the local processing delays related to messages are negligible. Only the
transmission and transmitter MAC queuing delays are significant here.

• A task can begin its execution only when all the messages it uses are received and
it can transmit messages only at the end of its execution.

• The clocks used by the three nodes are perfectly synchronized.

Q1 Taking as a starting point the preceding example (see Section 6.4.3), compute
the transmission delay of the messages M1, M2 and M3, for the three networks
presented previously (token bus, CAN and FIP).

Q2 Task parameters (r∗
i and d∗

i ), obtained after the modification of the initial task
parameters (ri and di) in order to take into account local precedence constraints,
must be modified to take into account the delays of communication between tasks
assigned to remote nodes. What are the new values of the task parameters?

Q3 What is the maximum communication delay acceptable for each message (M1, M2

and M3), so that all the task deadlines are met?

Q4 Suppose that the five tasks are periodic and have the same period, equal to 12 ms,
and that the values of the release times and deadlines of the kth period are deduced
from the values of Table 6.3 by adding (k − 1) × 12 ms. The communication
delays are assumed to be guaranteed by the network. Verify the feasibility of the
task set.

Q5 Give a solution guaranteeing the timing constraints of the messages when the
token bus is used with full allocation scheme, assuming that the logical ring is
composed only of the three nodes N1, N2 and N3.

Q6 Give a solution guaranteeing the timing constraints of the messages when CAN
is used.

Q7 Give a solution guaranteeing the timing constraints of the messages when a FIP
network is used.

6.6.2 Answers

Q1 The transmission delays (Table 6.4) are computed using the same assumptions
as in the preceding example (see Section 6.4.3): turnaround time equal to 20 µs
for FIP and null inter-frame delay for the token bus, etc.

Q2 Task parameters: when the earliest deadline first algorithm is used to schedule a
set of tasks on a single processor, the initial parameters of the tasks are modified
in the following way (Chetto et al., 1990) (see Section 3.1.2):

r∗
i = Max{ri, (r

∗
j + Cj )}, τj → τi (6.5)

d∗
i = Min{di, (d

∗
j − Cj)}, τi → τj (6.6)

When a task τi precedes a task τj (τi → τj ) and, moreover, task τi sends, at
the end of its execution, a message to task τj , then the parameter rj must take
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Table 6.4 Message transmission delay according to net-
work used

Message Length Transmission delay (µs)

(bytes) dtoken bus dCAN dFIP

M1 2 112 75 178
M2 8 160 135 226
M3 4 128 95 194

into account the communication delay between τi and τj (because, with the
assumption of this exercise, a task can begin its execution only if it has received
all messages). To take into account, at the same time, precedence constraints
between tasks allocated to the same node or to different nodes and exchanges
of messages, we modify the rule of computation of r∗

i proposed by Chetto et al.
(1990) by the following rule:

r∗
i = Max{ri, (r

∗
j + Cj + �i

j )}, τj → τi (6.7)

�i
j represents the maximum delay of communication between tasks τj and τi .

If tasks τi and τj are allocated to the same node, �i
j is equal to zero (it is

supposed that the local communication delay is negligible). Under the previous
assumptions, �i

j corresponds to the sum of the delays d2 and d3 (Figure 6.1).
It should be noted that the transformation of the parameter r∗

i by rule (6.7) is
deduced from the one given by rule (6.5), by adding the communication delay
to the execution time of the tasks which precede task τi . Then, after application
of equations (6.6) and (6.7), we obtain the new task parameters presented in
Table 6.5.

It should be noted that the parameter transformation rules (6.6) and (6.7) sup-
pose that there is one task precedence graph and that all the tasks are in this
graph. If this is not the case, i.e. when there are several graphs of precedence or
independent tasks, one needs other rules for adapting the task parameters.

Q3 Upper bounds of communication delays. By taking again the computed values
in Table 6.5, we can determine the upper bounds of the communication delays
for the three messages. The tasks that depend on the network are τ4 and τ5.
Thus a timing fault (i.e. a missing deadline) of the task τ5 (respectively τ4)

Table 6.5 Task parameters taking into account task allocation to nodes, and
precedence constraints

Task C1
(µs)

r∗
i

(µs)
d∗

i

(µs)

τ1 1000 0 3000
τ2 2000 5000 7000
τ3 2000 1000 5000
τ4 1000 Max{7000, 1000 + �1

4} 9000
τ5 3000 Max{3000 + �3

5, Max{8000, 2000 + �1
4} + �4

5} 12 000
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would occur, if the condition r∗
5 > d∗

5 − C5 (respectively r∗
4 > d∗

4 − C4) holds.
By using Table 6.5 we have:

Max{3000 + �3
5, Max{8000 + �4

5, 2000 + �1
4 + �4

5}} > 9000 (6.8)

Max{7000, 1000 + �1
4} > 8000 (6.9)

To verify the inequality (6.8), one of the following conditions should be satisfied:

�3
5 > 6000 (6.10)

�4
5 > 1000 (6.11)

�1
4 + �4

5 > 7000 (6.12)

To verify the inequality (6.9), the following condition should be satisfied:

�1
4 > 7000 (6.13)

From inequalities (6.10)–(6.13), we deduce the maximum bounds of the three
communication delays that guarantee the feasibility of the tasks of the application:

Max �1
4 = 6000 µs, Max �3

5 = 6000 µs, Max �4
5 = 1000 µs (6.14)

These values represent maximum bounds which should not be exceeded whatever
the network used. However, as we will see in the case of the token bus, the
maximum values of communication delays which guarantee the time constraints
of the tasks can be smaller than these bounds for some networks.

Q4 Schedulability analysis for periodic tasks. Given the small number of tasks of the
considered application, we can easily check that EDF scheduling guarantees the
deadlines of tasks τ1 and τ3 on node N1, and tasks τ2 and τ4 on node N2. To
check the feasibility of the tasks with earliest deadline first algorithm, during the
first interval of 12 ms, one can also use the following lemma proved in Chetto
and Chetto (1987):

Lemma:
A set n tasks is feasible by the earliest deadline first algorithm, if and only if

∀i = 1, . . . , n,∀j = 1, . . . , n, ri ≤ rj , di ≤ dj ,
∑

rk ≤ ri

dk ≤ dj

Ck ≤ dj − ri

We apply the preceding lemma three times, since the initial set of tasks of the
considered application is allocated to three nodes. We take d∗

i instead of di and r∗
instead of ri (this change of terms in the lemma does not affect its validity). For
node N1, there is a set of two tasks τ1 and τ3. The preceding lemma is checked
because we have:

r∗
1 ≤ r∗

3 , d∗
1 ≤ d∗

3 and C1 + C3 ≤ d∗
3 − r∗

1 (6.15)
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For node N2, we have a set of two tasks τ2 and τ4. The preceding lemma is
verified because we have:

r∗
2 ≤ r∗

4 , d∗
2 ≤ d∗

4 and C2 + C4 ≤ d∗
4 − r∗

2 (6.16)

The feasibility check of task τ5 is obvious, because task τ5 alone uses the pro-
cessor of node N3. Indeed, C5 ≤ d∗

5 − r∗
5 . The five tasks are thus feasible for

the first period. It is enough to show that the five tasks remain feasible for any
period k (k > 1). We note r∗

i,k , the modified release time of task τi for the kth
period, and d∗

i,k its modified deadline. By using the rules of modification of the
values of the task parameters and the assumption fixed in question Q4, accord-
ing to which the values of the task parameters of the kth period are obtained
from those of the first period by adding (k − 1) × 12 ms, and by considering
that the network guarantees the maximum bounds of the communication delays,
we obtain:

r∗
i,k = r∗

i + (k − 1) × 12 000 and

d∗
i,k = d∗

i + (k − 1) × 12 000 (i = 1, . . . , 5) (6.17)

By using the lemma again, one deduces, as previously, that tasks τ1 and τ3 are
feasible at the kth period on the node N1, and tasks τ2 and τ4 are feasible on
node N2. The feasibility check of task τ5 is commonplace, because it alone uses
the processor of node N3. Indeed, C5 ≤ d∗

5,k − r∗
5,k .

Q5 Scheduling using token bus network. We develop here a solution based on the full
length allocation scheme (i.e. without segmentation of messages). As mentioned
in Section 6.4.3, the token holding time, THTi , assigned to a node Ni is equal to
the transmission delay of its message. Nevertheless, in this exercise, node N1 is
the source of two messages (M1 and M2). M1 is transmitted at the end of task τ1,
and M2 at the end of task τ3. As task τ3 requires 2000 µs to complete execution,
node N1 cannot transmit both messages in the same token round. To enable node
N1 to transmit its longest message, the token holding times are set as follows:

• THT1 = Max(dtoken bus(M1), dtoken bus(M2)) = 160 µs

• THT2 = dtoken bus(M3) = 128 µs

• THT3 = 0 (node N3 does not transmit messages)

Following the principle of the token bus, each node receives the token at each
token round and can transmit its data during a time at most equal to its token
holding time, before passing the token to its successor. According to assumptions
fixed for this exercise, only the queuing delay at the sender MAC sublayer and
the transmission delay are significant. The other deadlines (propagation delay and
delays of crossing upper layers) are supposed to be negligible. Consequently, �i

j

(transfer delay of message from node Nj to node Ni) is equal to the queuing
delay at sender MAC sublayer plus the transmission delay of the message. If we
assume that the logical ring is made up only of the nodes N1, N2 and N3, the
maximum waiting time to transmit a message is equal to TRTmax (maximum
token rotation time). In other words, the worst case for the waiting time of a
periodic message is when the message arrives at the MAC sublayer right at the
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time when the first bit of the token has just left this node, and hence the node
must wait for the next token round (i.e. to wait at most for TRTmax) to transmit
its message. Thus, we must have:

Max �1
4 ≥ TRTmax + 112 µs (6.18)

Max �3
5 ≥ TRTmax + 160 µs (6.19)

Max �4
5 ≥ TRTmax + 128 µs (6.20)

As we assumed that the logical ring is made up only of the nodes N1, N2 and
N3, the value of TRTmax must satisfy the following inequality:

TRTmax ≥ 3� +
∑

1≤i≤3

THTi (6.21)

where � indicates the token transmission delay, which is equal to 96 µs accord-
ing to the assumptions of Section 6.4.3. From (6.14) and (6.18)–(6.21), we can
deduce the value of TRTmax:

576 µs ≤ TRTmax ≤ 872 µs (6.22)

By fixing TRTmax, one fixes the values of the three communication delays. By
making substitutions in Table 6.5, all the values of TRTmax defined by the double
inequality (6.22) make it possible to guarantee the time constraints of the task set.

Q6 Scheduling using CAN. Communication delay �i
j includes the waiting time in

node i and the transmission delay of the message on the CAN network. In the case
of CAN, the waiting time of a message before transmission depends, at the same
time, on the identifier of this message and the identifiers of other messages sharing
the medium. To know the maximum waiting time of a message, it is necessary
to know its identifier as well as the identifiers and the times of emission or the
transmission periods of the other messages.

If we assume that the traffic network is generated only by the tasks τ1, τ3 and
τ4, then the upper bounds of communication delays are never reached, however
the identifiers are assigned to the three messages M1,M2 and M3. In the worst
case, a message can be blocked while waiting for the transmission of both others.
The maximum time of blocking is 230 µs (see Table 6.4). With such a waiting
time, the upper bounds of transfer delays (see equation (6.14)) are never reached.

If the three messages M1, M2 and M3 are not alone in using the network, the
choice of identifiers is much more complex; it depends on the other messages.
The reader can refer to the work of Tindell et al. (1995) to see how to compute
the transfer delay of messages in the general case.

Q7 Scheduling using FIP network. According to whether the three messages are
alone in using the FIP network or not, there are two possible solutions to define
the table of the bus arbitrator.

Case 1: Messages M1 , M2 and M3 alone use the network In this case, we use a bus
arbitrator table which contains only the identifiers of messages M1, M2 and M3 (see
Figure 6.11). The duration of a macrocycle is equal to the sum of the transmission
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598 µs

M1 M2 M3

Figure 6.11 Bus arbitrator table when the three messages alone use the network

delays of the three messages, i.e. 598 µs (see Table 6.4). Even if the same message is
conveyed several times by the network (because the duration of the macrocycle is small
compared to the period of the tasks), the consuming task reads only the value present
in the consumption buffer at its release time. With a macrocycle of 598 µs, the upper
bounds of the communication delays of the three messages are always guaranteed (the
waiting time of a value in a production buffer is lower than or equal to the sum of the
transmission delays of the two longest messages, i.e. 420 µs).

Case 2: Messages M1 , M2 and M3 share the network with other messages In order
not to transmit the same message several times in a period of 12 ms (as in the preceding
solution), the broadcasting message request (i.e. ID-Dat frame) must be posterior to
the deadline of the task which produces this message. This means that when the bus
arbitrator asks for the broadcasting of a message one is sure that the task which
produces it has already finished. The request for broadcasting a message Mp(p =
1, 2, 3) produced by task τi and issued by a task τj must be made at the earliest at
time r∗

j − �i
j and at the latest at time r∗

j − dFIP(Mp).
Given the maximum values of �i

j (see equations (6.14) and the values of transmis-
sion delays in FIP (see Table 6.4), one can build a bus arbitrator table. As there are
several possibilities for fixing the moment of request for broadcasting of a message
sent by task τi to task τj in the interval [r∗

j − �i
j , r

∗
j − dFIP(Mp)], several tables of

bus arbitrator can be used to guarantee the upper bounds of communication delays of
the three messages.



7
Packet Scheduling in Networks

The networks under consideration in this chapter have a point-to-point interconnec-
tion structure; they are also called multi-hop networks and they use packet-switching
techniques. In this case, guaranteeing time constraints is more complicated than for
multiple access LANs, seen in the previous chapter, because we have to consider mes-
sage delivery time constraints across multiple stages (or hops) in the network. In this
type of network, there is only one source node for any network link, so the issue to be
addressed is not only that of access to the medium but also that of packet scheduling.

7.1 Introduction

The advent of high-speed networks has introduced opportunities for new distributed
applications, such as video conferencing, medical imaging, remote command and con-
trol systems, telephony, distributed interactive simulation, audio and video broadcasts,
games, and so on. These applications have stringent performance requirements in terms
of throughput, delay, jitter and loss rate (Aras et al., 1994). Whereas the guaranteed
bandwidth must be large enough to accommodate motion video and audio streams at
acceptable resolution, the end-to-end delay must be small enough for interactive com-
munication. In order to avoid breaks in continuity of audio and video playback, delay
jitter and loss must be sufficiently small.

Current packet-switching networks (such as the Internet) offer only a best effort
service, where the performance of each user can degrade significantly when the network
is overloaded. Thus, there is a need to provide network services with performance
guarantees and develop scheduling algorithms supporting these services. In this chapter,
we will be concentrating on issues related to packet scheduling to guarantee time
constraints of messages (particularly end-to-end deadlines and jitter constraints) in
connection-oriented packet-switching networks.

In order to receive a service from the network with guaranteed performance, a con-
nection between a source and a destination of data must first go through an admission
control process in which the network determines whether it has the needed resources to
meet the requirements of the connection. The combination of a connection admission
control (test and protocol for resource reservation) and a packet scheduling algorithm
is called a service discipline. Packet scheduling algorithms are used to control rate
(bandwidth) or delay and jitter. When the connection admission control function is not
significant for the discussion, the terms ‘service discipline’ and ‘scheduling algorithm’
are interchangeable. In the sequel, when ‘discipline’ is used alone, it implicitly means
‘service discipline’.
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In the past decade, a number of service disciplines that aimed to provide performance
guarantees have been proposed. These disciplines may be categorized as work-
conserving or non-work-conserving disciplines. In the former, the packet server is
never idle when there are packets to serve (i.e. to transmit). In the latter, the packet
server may be idle even when there are packets waiting for transmission. Non-work-
conserving disciplines have the advantage of guaranteeing transfer delay jitter for
packets. The most well known and used disciplines in both categories are presented in
Sections 7.4 and 7.5.

Before presenting the service disciplines, we start by briefly presenting the concept
of a ‘switch’, which is a fundamental device in packet-switching networks. In order
for the network to meet the requirements of a message source, this source must specify
(according to a suitable model) the characteristics of its messages and its performance
requirements (in particular, the end-to-end transfer delay and transfer delay jitter).
These aspects will be presented in Section 7.2.2. In Section 7.3, some criteria allowing
the comparison and analysis of disciplines are presented.

7.2 Network and Traffic Models

7.2.1 Message, packet, flow and connection

Tasks running on source hosts generate messages and submit them to the network.
These messages may be periodic, sporadic or aperiodic, and form a flow from a source
to a destination. Generally, all the messages of the same flow require the same quality
of service (QoS). The unit of data transmission at the network level is commonly called
a packet. The packets transmitted by a source also form a flow. As the buffers used
by switches for packet management have a maximum size, messages exceeding this
maximum size are segmented into multiple packets. Some networks accept a high value
for maximum packet length, thus leading to exceptional message fragmentation, and
others (such as ATM) have a small value, leading to frequent message fragmentation.
Note that in some networks such as ATM, the unit of data transmission is called a cell
(a maximum of 48 data bytes may be sent in a cell). The service disciplines presented
in this chapter may be used for cell or packet scheduling. Therefore, the term packet
is used below to denote any type of transmission data unit.

Networks are generally classified as connection-oriented or connectionless. In a
connection-oriented network, a connection must be established between the source
and the destination of a flow before any transfer of data. The source of a connection
negotiates some requirements with the network and the destination, and the connection
is accepted only if these requirements can be met. In connectionless networks, a source
submits its data packets without any establishment of connection.

A connection is defined by means of a host source, a path composed of one or
multiple switches and a host destination. For example, Figure 7.1 shows a connection
between hosts 1 and 100 on a path composed of switches A, C, E and F.

Another important aspect in networks is the routing. Routing is a mechanism by
which a network device (usually a router or a switch) collects, maintains and dissem-
inates information about paths (or routes) to various destinations on a network. There
exist multiple routing algorithms that enable determination of the best, or shortest,
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Figure 7.1 General architecture of a packet-switching network

path to a particular destination. In connectionless networks, such as IP, routing is
generally dynamic (i.e. the path is selected for each packet considered individually)
and in connection-oriented networks, such as ATM, routing is generally fixed (i.e. all
the packets on the same connection follow the same path, except in the event of failure
of a switch or a link). In the remainder of this chapter, we assume that prior to the
establishment of a connection, a routing algorithm is run to determine a path from a
source to a destination, and that this algorithm is rerun whenever required to recompute
a new path, after a failure of a switch or a link on the current path. Thus, routing is
not developed further in this book.

The service disciplines presented in this chapter are based on an explicit reservation
of resources before any transfer of data, and the resource allocation is based on the
identification of source–destination pairs. In the literature, multiple terms (particularly
connections, virtual circuits, virtual channels and sessions) are used interchangeably to
identify source–destination pairs. In this chapter we use the term ‘connection’. Thus,
the disciplines we will study are called connection-oriented disciplines.

7.2.2 Packet-switching network issues

Input and output links

A packet-switching network is any communication network that accepts and delivers
individual packets of information. Most modern networks are packet-switching. As
shown in Figure 7.1, a packet-switching network is composed of a set of nodes (called
switches in networks like ATM, or routers in Internet environments) to which a set of
hosts (or user end-systems) is connected. In the following, we use the term ‘switch’ to
designate packet-switching nodes; thus, the terms ‘switch’ and ‘router’ are interchange-
able in the context of this chapter. Hosts, which represent the sources of data, submit
packets to the network to deliver them to their destination. The packets are routed
hop-by-hop, across switches, before reaching their destinations (host destinations).
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A simple packet switch has input and output links (see Figure 7.2). Each link has a
fixed rate (not all the links need to have the same rate). Packets arrive on input links
and are assigned an output link by some routing/switching mechanism. Each output
link has a queue (or multiple queues). Packets are removed from the queue(s) and
sent on the appropriate output link at the rate of the link. Links between switches and
between switches and hosts are assumed to have bounded delays. By link delay we
mean the time a packet takes to go from one switch (or from the source host) to the
next switch (or to the destination host). When the switches are connected directly, the
link delay depends mainly on the propagation delay. However, in an interconnecting
environment, two switches may be interconnected via a local area network (such as a
token bus or Ethernet); in this case, the link delay is more difficult to bound.

A plethora of proposals for identifying suitable architectures for high-speed switches
has appeared in the literature. The design proposals are based on various queuing
strategies, mainly output queuing and input queuing. In output queuing, when a packet
arrives at a switch, it is immediately put in the queue associated with the corresponding
output link. In input queuing, each input link maintains a first-come-first-served (FCFS)
queue of packets and only the first packet in the queue is eligible for transmission
during a given time slot. Such a strategy, which is simple to implement, suffers from
a performance bottleneck, namely head-of-line blocking (i.e. when the packet at the
head of the queue is blocked, all the packets behind it in the queue are prevented from
being transmitted, even when the output link they need is idle). Few works have dealt
with input queuing strategies, and the packet scheduling algorithms that are most well
known and most commonly used in practice, by operational switches, are based on
output queuing. This is the reason why, in this book, we are interested only in the
algorithms that belong to the output queuing category.

In general, a switch can have more than one output link. When this is the case,
the various output links are managed independently of each other. To simplify the
notations, we assume, without loss of generality, that there is one output link per
switch, so we do not use specific notations to distinguish the output links.
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End-to-end delay of packet in a switched network

The end-to-end delay of each packet through a switched network is the sum of the
delays it experiences passing through all the switches en route. More precisely, to deter-
mine the end-to-end delay a packet experiences in the network, four delay components
must be considered for each switch:

• Queuing delay is the time spent by the packet in the server queue while waiting
for transmission. Note that this delay is the most difficult to bound.

• Transmission delay is the time interval between the beginning of transmission of
the first bit and the end of transmission of the last bit of the packet on the output
link. This time depends on the packet length and the rate of the output link.

• Propagation delay is the time required for a bit to go from the sending switch
to the receiving switch (or host). This time depends on the distance between the
sending switch and the next switch (or the destination host). It is also independent
of the scheduling discipline.

• Processing delay is any packet delay resulting from processing overhead that is
not concurrent with an interval of time when the server is transmitting packets.

On one hand, some service disciplines consider the propagation delay and others do
not. On the other hand, some authors ignore the propagation delay and others do
not, when they analyse the performances of disciplines. Therefore, we shall slightly
modify certain original algorithms and results of performance analysis to consider the
propagation delay, which makes it easier to compare algorithm performances. Any
modification of the original algorithms or performance analysis results is pointed out
in the text.

High-speed networks requirements

High-speed networks call for simplicity of traffic management algorithms in terms of
the processing cost required for packet management (determining deadlines or finish
times, insertion in queues, etc.), because a significant number (several thousands) of
packets can traverse a switch in a short time interval, while requiring very short times
of traversing. In order not to slow down the functioning of a high-speed network,
the processing required for any control function should be kept to a minimum. In
consequence, packet scheduling algorithms should have a low overhead. It is worth
noting that almost all switches on the market are based on hardware implementation
of some packet management functions.

7.2.3 Traffic models and quality of service

Traffic models

The efficiency and the capabilities of QoS guarantees provided by packet scheduling
algorithms are widely influenced by the characteristics of the data flows transmitted
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by sources. In general, it is difficult (even impossible) to determine a bound on packet
delay and jitter if there is no constraint on packet arrival patterns when the bandwidth
allocated to connections is finite. As a consequence, the source should specify the
characteristics of its traffic.

A wide range of traffic specifications has been proposed in the literature. However,
most techniques for guaranteeing QoS have investigated only specific combinations
of traffic specifications and scheduling algorithms. The models commonly used for
characterizing real-time traffic are: the periodic model, the (Xmin, Xave, I ) model, the
(σ, ρ) model and the leaky bucket model.

• Periodic model. Periodic traffic travelling on a connection c is generated by a
periodic task and may be specified by a couple (Lmax c, T c) where Lmax c is the
maximum length of packets, and T c is the minimum length of the interval between
the arrivals of any two consecutive packets (it is simply called the period ).

• (Xmin, Xave, I ) model. Three parameters are used to characterize the traffic: Xmin
is the minimum packet inter-arrival time, Xave is the average packet inter-arrival
time, and I is the time interval over which Xave is computed. The parameters Xave
and I are used to characterize bursty traffic.

• (σ, ρ) model (Cruz, 1991a, b). This model describes traffic in terms of a rate
parameter ρ and a burst parameter σ such that the total number of packets from a
connection in any time interval is no more than σ + ρt .

• Leaky bucket model. Various definitions and interpretations of the leaky bucket
have been proposed. Here we give the definition of Turner, who was the first
to introduce the concept of the leaky bucket (1986): a counter associated with
each user transmitting on a connection is incremented whenever the user sends
packets and is decremented periodically. If the counter exceeds a threshold, the
network discards the packets. The user specifies a rate at which the counter is
decremented (this determines the average rate) and a value of the threshold (a
measure of burstiness). Thus, a leaky bucket is characterized by two parameters,
rate ρ and depth σ. It is worth noting that the (σ, ρ) model and the leaky bucket
model are similar.

Quality of service requirements

Quality of service (QoS) is a term commonly used to mean a collection of parameters
such as reliability, loss rate, security, timeliness, and fault tolerance. In this book,
we are only concerned with timeliness QoS parameters (i.e. transfer delay of packets
and jitter).

Several different ways of categorizing QoS may be identified. One commonly used
categorization is the distinction between deterministic and statistical guarantees. In
the deterministic case, guarantees provide a bound on performance parameters (for
example a bound on transfer delay of packets on a connection). Statistical guarantees
promise that no more than a specified fraction of packets will see performance below a
certain specified value (for example, no more than 5% of the packets would experience
transfer delay greater than 10 ms). When there is no assurance that the QoS will in
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fact be provided, the service is called best effort service. The Internet today is a good
example of best effort service. In this book we are only concerned with deterministic
approaches for QoS guarantee.

For distributed real-time applications in which messages arriving later than their
deadlines lose their value either partially or completely, delay bounds must be guaran-
teed. For communications such as distributed control messages, which require absolute
delay bounds, the guarantee must be deterministic. In addition to delay bounds, delay
jitter (or delay variation) is also an important factor for applications that require smooth
delivery (e.g. video conferencing or telephone services). Smooth delivery can be pro-
vided either by rate control at the switch level or buffering at the destination.

Some applications, such as teleconferencing, are not seriously affected by delay
experienced by packets in each video stream, but jitter and throughput are important
for these applications. A packet that arrives too early to be processed by the destination
is buffered. Hence, a larger jitter of a stream means that more buffers must be provided.
For this reason, many packet scheduling algorithms are designed to keep jitter small.
From the point of view of a client requiring bounded jitter, the ideal network would
look like a link with a constant delay, where all the packets passed to the network
experience the same end-to-end transfer delay.

Note that in the communication literature, the term ‘transfer delay’ (or simply
‘delay’) is used instead of the term ‘response time’, which is currently used in the
task scheduling literature.

Quality of service management functions

Numerous functions are used inside networks to manage the QoS provided in order to
meet the needs of users and applications. These functions include:

• QoS establishment : during the (connection) establishment phase it is necessary for
the parties concerned to agree upon the QoS requirements that are to be met in the
subsequent systems activity. This function may be based on QoS negotiation and
renegotiation procedures.

• Admission control : this is the process of deciding whether or not a new flow (or
connection) should be admitted into the network. This process is essential for QoS
control, since it regulates the amount of incoming traffic into the network.

• QoS signalling protocols: they are used by end-systems to signal to the network
the desired QoS. A corresponding protocol example is the Resource ReSerVation
Protocol (RSVP).

• Resource management : in order to achieve the desired system performance, QoS
mechanisms have to guarantee the availability of the shared resources (such as
buffers, circuits, channel capacity and so on) needed to perform the services
requested by users. Resource reservation provides the predictable system behaviour
necessary for applications with QoS constraints.

• QoS maintenance: its goal is to maintain the agreed/contracted QoS; it includes
QoS monitoring (the use of QoS measures to estimate the values of a set of QoS
parameters actually achieved) and QoS control (the use of QoS mechanisms to
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modify conditions so that a desired set of QoS characteristics is attained for some
systems activity, while that activity is in progress).

• QoS degradation and alert: this issues a QoS indication to the user when the lower
layers fail to maintain the QoS of the flow and nothing further can be done by QoS
maintenance mechanisms.

• Traffic control : this includes traffic shaping/conditioning (to ensure that traffic enter-
ing the network adheres to the profile specified by the end-user), traffic scheduling
(to manage the resources at the switch in a reasonable way to achieve particular
QoS), congestion control (for QoS-aware networks to operate in a stable and effi-
cient fashion, it is essential that they have viable and robust congestion control
capabilities), and flow synchronization (to control the event ordering and precise
timings of multimedia interactions).

• Routing : this is in charge of determining the ‘optimal’ path for packets.

In this book devoted to scheduling, we are only interested in the function related to
packet scheduling.

7.3 Service Disciplines

There are two distinct phases in handling real-time communication: connection estab-
lishment and packet scheduling. The combination of a connection admission control
(CAC) and a packet scheduling algorithm is called a service discipline. While CAC
algorithms control acceptation, during connection establishment, of new connections
and reserve resources (bandwidth and buffer space) to accepted connections, packet
scheduling algorithms allocate, during data transfer, resources according to the reserva-
tion. As previously mentioned, when the connection admission control function is not
significant for the discussion, the terms ‘service discipline’ and ‘scheduling algorithm’
are interchangeable.

7.3.1 Connection admission control

The connection establishment selects a path (route) from the source to the destination
along which the timing constraints can be guaranteed. During connection establishment,
the client specifies its traffic characteristics (i.e. minimum inter-arrival of packets,
maximum packet length, etc.) and desired performance requirements (delay bound,
delay jitter bound, and so on). The network then translates these parameters into local
parameters, and performs a set of connection admission control tests at all the switches
along the path of each accepted connection. A new connection is accepted only if
there are enough resources (bandwidth and buffer space) to guarantee its performance
requirements at all the switches on the connection path. The network may reject a
connection request due to lacks of resources or administrative constraints.

Note that a switch can provide local guarantees to a connection only when the traffic
on this connection behaves according to its specified traffic characteristics. However,
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load fluctuations at previous switches may distort the traffic pattern of a connection and
cause an instantaneous higher rate at some switch even when the connection satisfied
the specified rate constraint at the entrance of the network.

7.3.2 Taxonomy of service disciplines

In the past decade, a number of service disciplines that aimed to provide perfor-
mance guarantees have been proposed. These disciplines may be classified according
to various criteria. The main classifications used to understand the differences between
disciplines are the following:

• Work-conserving versus non-work-conserving disciplines. Work-conserving algo-
rithms schedule a packet whenever a packet is present in the switch. Non-work-
conserving algorithms reduce buffer requirements in the network by keeping the
link idle even when a packet is waiting to be served. Whereas non-work-conserving
disciplines can waste network bandwidth, they simplify network resource control
by strictly limiting the output traffic at each switch.

• Rate-allocating versus rate-controlled disciplines. Rate-allocating disciplines allow
packets on each connection to be transmitted at higher rates than the minimum
guaranteed rate, provided the switch can still meet guarantees for all connections.
In a rate-controlled discipline, a rate is guaranteed for each connection, but the
packets from a connection are never allowed to be sent above the guaranteed rate.

• Priority-based versus frame-based disciplines. In priority-based schemes, packets
have priorities assigned according to the reserved bandwidth or the required delay
bound for the connection. The packet transmission (service) is priority driven. This
approach provides lower delay bounds and more flexibility, but basically requires
more complicated control logic at the switch. Frame-based schemes use fixed-size
frames, each of which is divided into multiple packet slots. By reserving a certain
number of packet slots per frame, connections are guaranteed with bandwidth and
delay bounds. While these approaches permit simpler control at the switch level,
they can sometimes provide only limited controllability (in particular, the number
of sources is fixed and cannot be adapted dynamically).

• Rate-based versus scheduler-based disciplines. A rate-based discipline is one that
provides a connection with a minimum service rate independent of the traffic char-
acteristics of other connections (though it may serve a connection at a rate higher
than this minimum). The QoS requested by a connection is translated into a trans-
mission rate or bandwidth. There are predefined allowable rates, which are assigned
static priorities. The allocated bandwidth guarantees an upper delay bound for
packets. The scheduler-based disciplines instead analyse the potential interactions
between packets of different connections, and determine if there is any possibility
of a deadline being missed. Priorities are assigned dynamically based on deadlines.
Rate-based methods are simpler to implement than scheduler-based ones. Note
that scheduler-based methods allow bandwidth, delay and jitter to be allocated
independently.



138 7 PACKET SCHEDULING IN NETWORKS

7.3.3 Analogies and differences with task scheduling

In the next sections, we describe several well-known service disciplines for real-time
packet scheduling. These disciplines strongly resemble the ones used for task schedul-
ing seen in previous chapters. Compared to scheduling of tasks, the transmission link
plays the same role as the processor as a central resource, while the packets are the
units of work requiring this resource, just as tasks require the use of a processor. With
this analogy, task scheduling methods may be applicable to the scheduling of packets
on a link. The scheduler allocates the link according to some predefined discipline.

Many of the packet scheduling algorithms assign a priority to a packet on its arrival
and then schedule the packets in the priority order. In these scheduling algorithms,
a packet with higher priority may arrive after a packet with lower priority has been
scheduled. On one hand, in non-preemptive scheduling algorithms, the transmission
of a lower priority is not preempted even after a higher priority packet arrives. Con-
sequently, such algorithms elect the highest priority packet known at the time of the
transmission completion of every packet. On the other hand, preemptive scheduling
algorithms always ensure that the packet in service (i.e. the packet being transmitted)
is the packet with the highest priority by possibly preempting the transmission of a
packet with lower priority.

Preemptive scheduling, as used in task scheduling, cannot be used in the context
of message scheduling, because if the transmission of a message is interrupted, the
message is lost and has to be retransmitted. To achieve the preemptive scheduling,
the message has to be split into fragments (called packets or cells) so that message
transmission can be interrupted at the end of a fragment transmission without loss (this
is analogous to allowing an interrupt of a task at the end of an instruction execution).
Therefore, a message is considered as a set of packets, where the packet size is bounded.
Packet transmission is non-preemptive, but message transmission can be considered to
be preemptive. As we shall see in this chapter, packet scheduling algorithms are non-
preemptive and the packet size bound has some effects on the performance of the
scheduling algorithms.

7.3.4 Properties of packet scheduling algorithms

A packet scheduling algorithm should possess several desirable features to be useful
for high-speed switching networks:

• Isolation (or protection) of flows: the algorithm must isolate a connection from
undesirable effects of other (possibly misbehaving) connections.

• Low end-to-end delays: real-time applications require from the network low
end-to-end delay guarantees.

• Utilization (or efficiency): the scheduling algorithm must utilize the output link
bandwidth efficiently by accepting a high number of connections.

• Fairness: the available bandwidth of the output link must be shared among con-
nections sharing the link in a fair manner.
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• Low overhead: the scheduling algorithm must have a low overhead to be
used online.

• Scalability (or flexibility): the scheduling algorithm must perform well in switches
with a large number of connections, as well as over a wide range of output
link speeds.

7.4 Work-Conserving Service Disciplines

In this section, we present the most representative and most commonly used work-
conserving service disciplines, namely the weighted fair queuing, virtual clock, and
delay earliest-due-date disciplines. These disciplines have different delay and fairness
properties as well as implementation complexity. The priority index, used by the sched-
uler to serve packets, is called ‘auxiliary virtual clock’ for virtual clock, ‘virtual finish
time’ for weighted fair queuing, and ‘expected deadline’ for delay earliest-due-date.
The computation of priority index is based on just the rate parameter or on both the
rate and delay parameters; it may be dependent on the system load.

7.4.1 Weighted fair queuing discipline

Fair queuing discipline

Nagle (1987) proposed a scheduling algorithm, called fair queuing, based on the use of
separate queues for packets from each individual connection (Figure 7.3). The objective
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of this algorithm is to protect the network from hosts that are misbehaving: in the pres-
ence of well-behaved and misbehaving hosts, this strategy ensures that well-behaved
hosts are not affected by misbehaving hosts. With fair queuing discipline, connections
share equally the output link of the switch. The multiple queues of a switch, associated
with the same output link, are served in a round-robin fashion, taking one packet from
each nonempty queue in turn; empty queues are skipped over and lose their turn.

Weighted fair queuing discipline

Demers et al. (1989) proposed a modification of Nagle’s fair queuing discipline to take
into account some aspects ignored in Nagle’s discipline, mainly the lengths of packets
(i.e. a source sending long packets should get more bandwidth than one sending short
packets), delay of packets, and importance of flows. This scheme is known as the
weighted fair queuing (WFQ) discipline even though it was simply called fair queuing
by its authors (Demers et al.) in the original paper. The same discipline has also been
proposed by Parekh and Gallager (1993) under the name packet-by-packet generalized
processor sharing system (PGPS). WFQ and PGPS are interchangeable.

To define the WFQ discipline, Demers et al. introduced a hypothetical service dis-
cipline where the transmission occurs in a bit-by-bit round-robin (BR) fashion. Indeed,
‘ideal fairness’ would have as a consequence that each connection transmits a bit in
each turn of the round-robin service. The bit-by-bit round-robin algorithm is also called
Processor Sharing (PS) service discipline.

Bit-by-bit round-robin discipline (or processor sharing discipline) Let Rs(t) denote
the number of rounds made in the Round-Robin discipline up to time t at a switch s; Rs(t)

is a continuous function, with the fractional part indicating partially completed rounds.
Rs(t) is also called virtual system time. Let Nacs(t) be the number of active connections
at switch s (a connection is active if it has bits waiting in its queue at time t). Then:

dRs

dt
= rs

Nacs(t)

where rs is the bit rate of the output link of switch s.
A packet of length L whose first bit gets serviced at time t0 will have its last bit

serviced L rounds later, at time t such that Rs(t) = Rs(t0) + L. Let AT
c,p
s be the time

that packet p on connection c arrives at the switch s, and define the numbers S
c,p
s

and F
c,p
s as the values of Rs(t) when the packet p starts service and finishes service.

F
c,p
s is called the finish number of packet p. The finish number associated with a

packet, at time t , represents the time at which this packet would complete service in
the corresponding BR service if no additional packets were to arrive after time t . Lc,p

denotes the size of the packet p. Then,

Sc,p
s = max{F c,p−1

s , Rs(AT c,p
s )} for p > 1 (7.1)

F c,p
s = Sc,p

s + Lc,p for p ≥ 1 (7.2)

Equation (7.1) means that the pth packet from connection c starts service when it
arrives if the queue associated with c is empty on packet p’s arrival, or when packet
p − 1 finishes otherwise. Packets are numbered 1, 2, . . . and Sc,1

s = AT c,1
s (for all

connections). Only one packet per queue can start service.
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Weighted bit-by-bit round-robin discipline To take into account the requirements
(mainly in terms of bandwidth) and the importance of each connection, a weight φc

s

is assigned to each connection c in each switch s. This number represents how many
queue slots that the connection gets in the bit-by-bit round-robin discipline. In other
words, it represents the fraction of output link bandwidth allocated to connection c.
The new relationships for determining Rs(t) and F

c,p
s are:

Nacs(t) =
∑

x∈CnActs (t)

φx
s (7.3)

F c,p
s = Sc,p

s + Lc,p

φc
s

for p ≥ 1 (7.4)

where CnActs(t) is the set of active connections at switch s at time t . Note that the
combination of weights and BR discipline is called weighted bit-by-bit round-robin
(WBR), and is also called the generalized processor sharing (GPS) discipline, which
is the term most often used in the literature.

Practical implementation of WBR (or GPS) discipline The GPS discipline is an ide-
alized definition of fairness as it assumes that packets can be served in infinitesimally
divisible units. In other words, GPS is based on a fluid model where the packets
are assumed to be indefinitely divisible and multiple connections may transmit traffic
through the output link simultaneously at different rates. Thus, sending packets in a
bit-by-bit round-robin fashion is unrealistic (i.e. impractical), and the WFQ scheduling
algorithm can be thought of as a way to emulate the hypothetical GPS discipline by
a practical packet-by-packet transmission scheme. With the packet-by-packet round-
robin scheme, a connection c is active whenever condition (7.5) holds (i.e. whenever
the round number is less than the largest finish number of all packets queued for
connection c).

Rs(t) ≤ F c,p
s for p = max{j |AT c,j

s ≤ t} (7.5)

The quantities F
c,p
s , computed according to equality (7.4), define the sending order

of the packets. Whenever a packet finishes transmission, the next packet transmitted
(serviced) is the one with the smallest F

c,p
s value. In Parekh and Gallager (1993), it is

shown that over sufficiently long connections, this packetized algorithm asymptotically
approaches the fair bandwidth allocation of the GPS scheme.

Round-number computation The round number Rs(t) is defined to be the number
of rounds that a GPS server would have completed at time t . To compute the round
number, the WFQ server keeps track of the number of active connections, Nacs(t),
defined according to equality (7.3), since the round number grows at a rate that is
inversely proportional to Nacs(t). However, this computation is complicated by the
fact that determining whether or not a connection is active is itself a function of
the round number. Many algorithms have been proposed to ease the computation of
Rs(t). The interested reader can refer to solutions suggested by Greenberg and Madras
(1992), Keshav (1991) and Liu (2000). Note that Rs(t), as previously defined, cannot
be computed whenever there is no connection active (i.e. if Nacs(t) = 0). This problem
may be simply solved by setting Rs(t) to 0 at the beginning of the busy period of each
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switch (i.e. when the switch begins servicing packets), and by computing Rs(t) only
during busy periods of the switch.

Example 7.1: Computation of the round number Consider two connections, 1 and
2, sharing the same output link of a switch s using a WFQ discipline. Suppose that
the speed of the output link is 1. Each connection utilizes 50% of the output link
bandwidth (i.e. φ1

s = φ2
s = 0.5). At time t = 0, a packet P 1,1 of size 100 bits arrives

on connection 1 and a packet P 2,1 of size 150 bits arrives on connection 2 at time
t = 50. Let us compute the values of Rs(t) at times 50 and 100.

At time t = 0, packet P 1,1 arrives, and it is assigned a finish number F 1,1
s = 200.

Packet P 1,1 starts immediately service. During the interval [0, 50], only connection
1 is active, thus Nac(t) = 0.5 and dR(t)/dt = 1/0.5. In consequence, R(50) = 100.
At time t = 50, packet P 2,1 arrives, and it is assigned a finish number F 2,1

s = 100 +
150/0.5 = 400. At time t = 100, packet P 1,1 completes service. In the interval [50,
100], Nac(t) = 0.5 + 0.5 = 1. Then, R(100) = R(50) + 50 = 150.

Bandwidth and end-to-end delay bounds provided by WFQ Parekh and Gallager
(1993) proved that each connection c is guaranteed a rate rc

s , at each switch s, defined
by equation (7.6):

rc
s = φc

s∑

j∈Cs

φj
s

rs (7.6)

where Cs is the set of connections serviced by switch s, and rs is the rate of the output
link of the switch. Thus, with a GPS scheme, a connection c can be guaranteed a
minimum throughput independent of the demands of the other connections. Another
consequence, is that the delay of a packet arriving on connection c can be bounded as
a function of the connection c queue length independent of the queues associated with
the other connections. By varying the weight values, one can treat the connections in a
variety of different ways. When a connection c operates under leaky bucket constraint,
Parekh and Gallager (1994) proved that the maximum end-to-end delay of a packet
along this connection is bounded by the following value:

σc + (Kc − 1)Lc

ρc
+

Kc∑

s=1

Lmax s

rs

+ π (7.7)

where σc and ρc are the maximum buffer size and the rate of the leaky bucket modelling
the traffic of connection c, Kc is the total number of switches in the path taken
by connection c, Lc is the maximum packet size from connection c, Lmax s is the
maximum packet size of the connections served by switch s, rs is the rate of the
output link associated with server s in c’s path, and π is the propagation delay from
the source to destination. (π is considered negligible in Parekh and Gallager (1994).)

Note that the WFQ discipline does not integrate any mechanism to control jitter.

Hierarchical generalized processor sharing

The hierarchical generalized processor sharing (H-GPS) system provides a general flex-
ible framework to support hierarchical link sharing and traffic management for different
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service classes (for example, three classes of service may be considered: hard real-time,
soft real-time and best effort). H-GPS can be viewed as a hierarchical integration of
one-level GPS servers. With one-level GPS, there are multiple packet queues, each
associated with a service share. During any interval when there are backlogged con-
nections, the server services all backlogged connections simultaneously in proportion
to their corresponding service shares. With H-GPS, the queue at each internal node
is a logical one, and the service that this queue receives is distributed instantaneously
to its child nodes in proportion to their relative service shares until the H-GPS server
reaches the leaf nodes where there are physical queues (Bennett and Zhang, 1996b).
Figure 7.4 gives an example of an H-GPS system with two levels.

Other fair queuing disciplines

Although the WFQ discipline offers advantages in delay bounds and fairness, its
implementation is complex because of the cost of updating the finish numbers. Its
computation complexity is asymptotically linear in the number of connections serviced
by the switch. To overcome this drawback, various disciplines have been proposed to
approximate the GPS with a lower complexity: worst-case fair weighted fair queu-
ing (Bennett and Zhang, 1996a), frame-based fair queuing (Stiliadis and Varma, 1996),
start-time fair queuing (Goyal et al., 1996), self-clocked fair queuing (Golestani, 1994),
and deficit round-robin (Shreedhar and Varghese, 1995).

7.4.2 Virtual clock discipline

The virtual Clock discipline, proposed by Zhang (1990), aims to emulate time divi-
sion multiplexing (TDM) in the same way as fair queuing emulates the bit-by-bit
round-robin discipline. TDM is a type of multiplexing that combines data streams by
assigning each connection a different time slot in a set. TDM repeatedly transmits a

.
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Figure 7.4 Hierarchical GPS server with two levels
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fixed sequence of time slots over the medium. A TDM server guarantees each user
a prescribed transmission rate. It also eliminates interference among users, as if there
were firewalls protecting individually reserved bandwidth. However, users are limited
to transmission at a constant bit rate. Each user is allocated a slot to transmit. Capac-
ities are wasted when a slot is reserved for a user that has no data to transmit at
that moment. The number of users in a TDM server is fixed rather than dynamically
adjustable.

The goal of the virtual clock (VC) discipline is to achieve both the guaranteed
throughput for users and the firewall of a TDM server, while at the same time preserving
the statistical multiplexing advantages of packet switching.

Each connection c reserves its average required bandwidth rc at connection estab-
lishment time. The reserved rates for connections, at switch s, are constrained by:

∑

x∈Cs

rx ≤ rs (7.8)

where Cs is the set of connections multiplexed at server s (i.e. the set of connections
that traverse the switch s) and rs is the rate of switch s for the output link shared by
the multiplexed connections. Each connection c also specifies an average time interval,
Ac. That is, over each Ac time period, dividing the total amount of data transmitted by
Ac should result in rc. This means that a connection may vary its transmission rate,
but with respect to specified parameters rc and Ac.

Packet scheduling

Each switch s along the path of a connection c uses two variables VC c
s (virtual clock)

and auxVCc
s (auxiliary virtual clock) to control and monitor the flow of connection c.

The virtual clock VC c
s is advanced according to the specified average bit rate (rc) of

connection c; the difference between this virtual clock and the real-time indicates how
closely a running connection is following its specified bit rate. The auxiliary virtual
clock auxVCc

s is used to compute virtual deadlines of packets. VC c
s and auxVCc

s will
contain the same value most of the time — as long as packets from a connection arrive
at the expected time or earlier. auxVCc

s may have a larger value temporarily, when a
burst of packets arrives very late in an average interval, until being synchronized with
VC c

s again.
Upon receiving the first packet on a connection c, those two virtual clocks are set

to the arrival (real) time of this packet. When a packet p, whose length is Lc,p bits,
arrives, at time AT

c,p
s , on connection c, at the switch s, the virtual clocks are updated

as follows:

auxV Cc
s ←−−− max{AT c,p

s , auxV Cc
s } + Lc,p/rc (7.9)

V Cc
s ←−−− V Cc

s + Lc,p/rc (7.10)

Then, the packet p is stamped with the auxVCc
s value and inserted in the output link

queue of the switch s. Packets are queued and served in order of increasing stamp
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auxVC values (ties are ordered arbitrarily). The auxVC value associated with a packet
is also called finish time (or virtual transmission deadline).

Flow monitoring

Since connections specify statistical parameters (rc and Ac), a mechanism must be
used to control the data submitted by these connections according to their reservations.
Upon receiving each set of Ac · rc bits (or the equivalent of this bit-length expressed in
packets) from connection c, the switch s checks the connection in the following way:

• If VC c
s− ‘Current Real-time’ > Threshold, a warning message is sent to the source

of connection c. Depending on how the source reacts, further control actions may
be necessary (depending on resource availability, connection c may be punished
by longer queuing delay, or even packet discard).

• If VC c
s < ‘Current Real-time’, VC c

s is assigned ‘Current Real-time’.

The auxVCc
s variable is needed to take the arrival time of packets into account. When a

burst of packets arrives very late in an average interval, although the VC c
s value may be

behind real-time at that moment, the use of auxVCc
s will ensure the first packet to bear a

stamp value with an increment of Lc,p/rc to the previous one. These stamp values will
then cause this burst of packets to be interleaved, in the waiting queue, with packets that
have arrived from other connections, if there are any. If a connection transmits at a rate
lower than its specified rate, the difference between the virtual clock VC and real-time
may be considered as a ‘credit’ that the connection has built up. By replacing VC c

s by
auxVCc

s in the packet stamping, a connection can no longer increase the priority of its
packets by saving credits, even within an average interval. VC c

s retains its role as a con-
nection meter that measures the progress of a statistical packet flow; its value may fall
behind the real-time clock between checking (or monitoring) points in order to tolerate
packet burstiness within each average interval. If a connection were allowed to save up
an arbitrary amount of credit, it could remain idle during most of the time and then send
all its data in burst; such behaviour may cause temporary congestion in the network.

In cases where some connections violate their reservation (i.e. they transmit at a rate
higher than that agreed during connection establishment) well-behaved connections will
not be affected, while the offending connections will receive the worst service (because
their virtual clocks advance too far beyond real-time, their packets will be placed at
the end of the service queue or even discarded).

Some properties of the virtual clock discipline

Figueira and Pasquale (1995) proved that the upper bound of the packet delay for the
VC discipline is the same as that obtained for the WFQ discipline (see (7.7)) when the
connections are leaky bucket constrained.

Note that the VC algorithm is more efficient than the WFQ one, as it has a lower
overhead: computing virtual clocks is simpler than computing finish times as required
by WFQ.
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7.4.3 Delay earliest-due-date discipline

A well-known dynamic priority-based service discipline is delay earliest-due-date (also
called delay EDD), introduced by Ferrari and Verma (1990), and refined by Kand-
lur et al. (1991). The delay EDD discipline is based on the classic EDF scheduling
algorithm presented in Chapter 2.

Connection establishment procedure

In order to provide real-time service, each user must declare its traffic characteristics
and performance requirements at the time of establishment of each connection c by
means of three parameters: Xminc (the minimum packet inter-arrival time), Lmax c

(the maximum length of packets), and Dc (the end-to-end delay bound). To establish
a connection, a client sends a connection request message containing the previous
parameters. Each switch along the connection path performs a test to accept (or reject)
the new connection. The test consists of verifying that enough bandwidth is available,
under worst case, in the switch to accommodate the additional connection without
impairing the guarantees given to the other accepted connections. Thus, inequality
(7.11) should be satisfied: ∑

x∈Cs

ST x
s /Xminx < 1 (7.11)

where ST x
s is the maximum service time in the switch s for any packet from connection

c. It is the maximum time to transmit a packet from connection c and mainly depends on
the speed of the output link of switch s and the maximum packet size on connection c,
Lmax c. Cs is the set of the connections traversing the switch s including the connection
c to be established.

If inequality (7.11) is satisfied, the switch s determines the local delay OD c
s that

it can offer (and guarantee) for connection c. Determining the local deadline value
depends on the utilization policy of resources at each switch. The delay EDD algorithm
may be used with multiple resource allocation strategies. For example, assignment of
local deadline may be based on Xminc and Dc. If the switch s accepts the connection
c, it adds its offered local delay to the connection request message and passes this
message to the next switch (or to the destination host) on the path. The destination
host is the last point where the acceptance/rejection decision of a connection can be
made. If all the switches on the path accept the connection, the destination host checks
if the sum of the local delays plus the end-to-end propagation delay π (in the original
version of delay EDD, π is considered negligible) is less than the end-to-end delay,
and then balances the end-to-end delay Dc among all the traversed switches. Thus, the
destination host assigns to each switch s a local delay Dc

s as follows:

Dc
s =

Dc − π −
N∑

j=1

OD c
j

N
+ OD c

s (7.12)

where N is the number of switches traversed by the connection c. Note that the
local delay Dc

s assigned to switch s by the destination host is never less than the local
delay OD c

s previously accepted by this switch. The destination host builds a connection
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response message containing the assigned local delays and sends it along the reverse of
the path taken by the connection request message. When a switch receives a connection
response message, the resources previously reserved must be committed or released.
In particular, in each switch s on the connection path, the offered local delay OD c

s is
replaced by the assigned local delay Dc

s , if connection c is accepted. If any acceptance
test fails at a switch or at destination host, the connection cannot be established along
the considered path. When a connection is rejected, the source is notified and may
try another path or relax some traffic and performance parameters, before trying once
again to establish the connection.

Scheduling

Scheduling in the switches is deadline-based. In each switch, the scheduler maintains
one queue for deterministic packets, and one or multiple queues for the other types of
packets. As we are only concerned with deterministic packets (i.e. packets requiring
guarantee of delay bound), only the first queue is considered here. A packet p travelling
on a connection c and arriving at switch s at time AT c,p

s is assigned a deadline (also
called expected deadline) ExDc,p

s defined as follows:

ExDc,1
s = AT c,1

s + Dc
s (7.13)

ExD c,p
s = max{ExDc,p−1

s + Xminc, AT c,p
s + Dc

s } for p > 1 (7.14)

The ordering of the packet queue is by increasing deadlines. Deadlines are considered
as dynamic priorities of packets.

Malicious or faulty users could send packets into the network at a higher rate than
the parameters declared during connection establishment. If no appropriate counter-
measures are taken, such behaviour can prevent the guarantee of the deadlines of the
other well-behaved users. The solution to this problem consists of providing distributed
rate control by increasing the deadlines of the offending packets (see equality (7.14)),
so that they will be delayed in heavily loaded switches. When buffer space is limited,
some of them might even be dropped because of buffer overflow.

Example 7.2: Scheduling with delay EDD discipline Let us consider a connection
c passing by two switches 1 and 2 (Figure 7.5). Both switches use the delay EDD
discipline. The parameters declared during connection establishment are: Xminc = 4,
Dc = 8, and Lmax c = L. All the packets have the same size. The transmission time
of a packet is equal to 1 for the source and both switches, and propagation delay is
taken to be 0, for all links. Let us assume that during connection establishment, the
local deadlines assigned to connection c are: Dc

1 = 5, and Dc
2 = 3. Figure 7.5 shows the

arrivals of four packets on connection c at switch 1. Using equations (7.13) and (7.14),
the expected deadlines of the four packets are: ExD c,1

1 = 6, ExD c,2
1 = 10, ExDc,3

1 = 14,
and ExD c,4

1 = 19.
The actual delay (i.e. waiting time plus transmission time) experienced by each

packet at switch 1 depends on the load of this switch, but never exceeds the local
deadline assigned to connection c (i.e. Dc

1 = 5). For example, the actual delays of
packets 1 to 4 are 5, 5, 3 and 2, respectively. In consequence, the arrival times of
packets at switch 2 are 6, 8, 11, and 16, respectively. Using equations (7.13) and
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Figure 7.5 Example of delay EDD scheduling

(7.14), the expected deadlines of the packets at switch 2 are: ExD c,1
2 = 9, ExDc,2

2 = 13,
ExDc,3

2 = 17, and ExDc,4
2 = 21.

The actual delays of packets at switch 2 depend on the load of this switch, but
never exceed the local deadline assigned to connection c (i.e. Dc

2 = 3). For example,
the actual delays of packets 1 to 4 are 2, 1, 3 and 2, respectively. In consequence, the
arrival times of packets, at the destination host, are 8, 9, 14 and 18, respectively. Thus,
the end-to-end delay of any packet is less than the delay bound (i.e. 8) declared during
connection establishment.

End-to-end delay and jitter bounds provided by delay EDD

As the local deadlines are guaranteed by the switches, the end-to-end delay of a packet
from a connection c, traversing N switches, is bounded by

∑N
s=1 Dc

s + π. (π is the end-
to-end propagation delay.) Since no jitter control is achieved, the jitter bound provided
by delay EDD is the same order of magnitude as the end-to-end delay bound.

7.5 Non-Work-Conserving Service Disciplines
With work-conserving disciplines, the traffic pattern from a source is distorted inside
the network due to load fluctuation of switches. A way of avoiding traffic pattern
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distortion is by using non-work-conserving disciplines. Several non-working disciplines
have been proposed. The most important and most commonly used of these disciplines
are: hierarchical round-robin (HRR), stop-and-go (S&G), jitter earliest-due-date (jitter
EDD) and rate-controlled static-priority (RCSP). In each case, it has been shown that
end-to-end deterministic delay bounds can be guaranteed. For jitter EDD, S&G and
RCSP, it has also been shown that end-to-end jitter can be guaranteed.

7.5.1 Hierarchical round-robin discipline

Hierarchical round-robin (HRR) discipline is a time-framing and non-work-conserving
discipline (Kalmanek et al., 1990). It is also called framed round-robin discipline. It has
many interesting properties, such as implementation simplicity and service guarantee.
HRR also provides protection for well-behaved connections since each connection
is allowed to use only its own fixed slots. The HRR discipline is an extension of the
round-robin discipline suitable for networks with fixed packet size, such as ATM. Since
the HRR discipline is based on the round-robin discipline, we start by describing the
latter for fixed-size packets.

Weighted round-robin discipline

With round-robin discipline, packets from each connection are stored in a queue asso-
ciated with this connection, so that each connection is served separately (Figure 7.6).
When a packet arrives on a connection c, it is stored in the appropriate queue and its
connection identifier, c, is added to the tail of a service list that indicates the packets
eligible for transmission. (Note that a packet may have to wait for an entire round even
when there is no other packet on the connection waiting at the switch when the packet
arrives.) In order to ensure that each connection identifier is entered on the service list
only once, there is a flag bit (called the round-robin flag bit) per connection, which
is set to indicate that the connection identifier is on the service list. Each connection

Output linkRound-
robin
server

Connection
identifiers

Connection
identifiers Service list

Packets

Packets

Input
links

•••

Queue for connection n

Queue for connection 1

Round-robin server

Figure 7.6 General architecture of round-robin server
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c is assigned a number ωc of slots it can use in each round of the server to transmit
data. This number is also called the connection weight . The number of service slots
can be different from one connection to another and in this case the discipline is called
weighted round-robin (WRR). The service time of a packet is equal to one slot.

The (weighted) round-robin server periodically takes a connection identifier from
the head of the service list and serves it according to its number of service slots. If the
packet queue of a connection goes empty, the flag bit of this connection is cleared and
the server takes another connection identifier from the head of the service list. If the
packet queue is not empty, when all the slots assigned to this connection have been
spent, the server returns the connection identifier to the tail of the service list before
going on.

An important parameter of this discipline is the round length, denoted RL. The upper
limit of the round length RL is imposed by the delay guarantee that the switch provides
to each connection. With the WRR algorithm, the actual length of a round varies with
the amounts of traffic on the connections, but it never exceeds RL. It is important to
notice that WRR is work-conserving while its extension, HRR, is non-work-conserving
and that WRR controls delay bound, but not jitter bound.

Hierarchical round-robin discipline

To cope with various requirements of connections (i.e. various end-to-end delay and
jitter bounds), the HRR discipline uses different round lengths for different levels of
service: the higher the service level, the shorter the round length. The service levels
are numbered 1, 2, . . . , n and organized hierarchically. The topmost server is the one
associated with service level 1. The server associated with level L is called server L.

Each level L is assigned a round length RLL. The round length is also called frame.
The server of level 1 has the shortest round length, and it serves connections that are
allocated the highest service rate.

An HRR server has a hierarchy of service lists associated with the hierarchy of
levels. The topmost list is the one associated with service level 1. A server may serve
multiple connections, but each connection is served by only one server.

When server L is scheduled, it transmits packets on the connections serviced by
it in the round-robin manner. Once a connection is served, it is returned to the end
of the service list, and it is not served again until the beginning of the next round
associated with this connection. To do this, server L has two lists: CurrentListL (from
which connections are being served in the current round) and NextListL (containing
the identifiers of connections to serve in the next round). Each incoming packet on
a connection serviced at level L is placed in the input queue associated with this
connection, and the identifier of this connection is added at the tail of NextListL if the
queue associated with this connection was empty at the arrival of the packet. (Recall
that each connection has a bit flag that indicates if the connection has packets waiting
for transmission.) At the beginning of each round, server L swaps CurrentListL and
NextListL.

The bandwidth of the output link is divided between the servers by allocating some
fraction of the slots assigned to each server to servers that are lower in the hierarchy. In
other words, in each round of length RLL, the server L has nsL slots (nsL ≤ RLL) used
as follows: nsL − bL slots are used to serve connections of level L and bL (bL ≤ nsL)
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are used by the servers at lower levels. At the bottom of the hierarchy, there is a server
associated with best effort traffic. Figure 7.7 shows an example of time slot assignment
to servers.

A server L is either active or inactive. It is active if all the servers at levels lower
than L are active and have completed service of their own service lists (i.e. each server
k = 1, . . . , L − 1 is active and has used nsk − bk slots to serve the packets attached
to its service list). Server 1 is always active.

As for the WRR discipline, to allow multiple service quanta, a service quantum ωc

is associated with each connection c, and it indicates the number of slots the connection
can use in each round of the server to which it is assigned: if ωc or fewer packets are
waiting, all the packets of the connection are transmitted; if more than ωc packets are
waiting, only ωc packets are transmitted and the remaining packets will be scheduled
in the next round(s). ωc is also called the weight associated with connection c at
connection establishment.

Note that the values of the counters RLL, nsL and bL associated with each server
L, and the weight ωc associated with connection c depend on the traffic characteristics
of all the connections traversing a switch. Example 7.3 below shows how these values
can be computed.

The complete HRR algorithm proposed by Kalmanek et al. (1990) is given below.
Note that the algorithm is composed of two parts: the first part is in charge of periodic
initialization of the rounds of the n servers, and the second is in charge of serving
connection queues. These two parts may be implemented as two parallel tasks.
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Each server L (L = 1, 2, . . . , n) has three counters:

• NBL determines how many slots are used for connections
associated with level L;

• BL determines how many slots are used for connections
associated with levels lower than L;

• GL keeps track of service quanta larger than one slot.

Qc(t) denotes the number of packets queued at connection c at
time t.

1. /* Initialization of round of any server L: */
Periodically, every RLL slots, a new round of server L
starts. At the beginning of each round at level L, the
counters and service lists associated with server L are
initialized:

NBL ← nsL − bL; BL ← bL; swap( NextListL, CurrentListL).

--------------------------------------------------------

2.Loop
2.1. /* Server and connection selection: */
Let S be the index of the lowest rate active server
at current time t.

If CurrentListS is empty and NBS �= 0
Then Activate Best effort server for one slot.

Else Server S picks a connection c from the head of
CurrentListS

If GS = 0 Then GS ← min(ωc, Qc(t))

EndIf
Serve connection c for one slot;
Decrement GS

EndIf
Decrement NBS and BS−1, . . ., B1

2.2. /* Adjust service list: */
If packet queue of connection c is empty
Then GS ← 0;

Clear the round-robin flag bit of connection c;
Else If GS = 0

Then server S places connection c at the tail
of NextListS

Else server S places connection c at the head of
CurrentListS

EndIf
EndIf
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2.3. /* Check for change of active server: */
If any of BS−1, . . . B1 is 0
Then server S becomes inactive

Else If NBs = 0 and BS �= 0
Then server S activates server S+ 1

EndIf
EndIf

End loop

Example 7.3: Determining counter values for the HRR discipline Consider a set
of five periodic connections numbered 1, 2, 3, 4 and 5, transmitting packets with the
same fixed length, and served by an HRR switch. Assume that the service time of one
packet is equal to one time slot. The period T c of each connection c and the number
of packets (NP c) it issues per period are given in Table 7.1.

As the packets have a fixed size and the time required to serve a packet is equal to
one slot, the weight ωc associated with connection c is equal to NP c. In consequence,
we have:

ω1 = 1; ω2 = 1; ω3 = 2; ω4 = 1; ω5 = 3

As there are three types of periods, three levels of service can be used: level 1 is
used by connections 1 and 2, level 2 is used by connection 3, and level 3 is used
by connections 4 and 5. The lengths of the rounds are derived from the periods of
the served connections. In consequence, we have RL1 = 5, RL2 = 10 and RL3 = 20.
Server 1 must use at least 2 slots to serve connections associated with level 1 in each
round. Server 2 must use at least 2 slots to serve connections associated with level 2
in each round. Server 3 must use at least 4 slots to serve connections associated with
level 3 in each round. There are multiple combinations of values of the server counters
that enable serving the five connections correctly. We choose the values given in
Table 7.2 (in this choice, servers 2 and 3 may activate the best effort server, or the

Table 7.1 Example of characteristics of
connections

Connection T c NP c

1 5 1
2 5 1
3 10 2
4 20 1
5 20 3

Table 7.2 Values of the server counters

Service
level

RLL nsL bL

1 5 5 3
2 10 6 3
3 20 6 0
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output link may be idle during time intervals where these two servers are active).
Figure 7.7 shows the assignment of time slots to the three servers.

End-to-end delay and jitter bounds provided by HRR discipline

In Kalmanek et al. (1990), it is proven that the end-to-end delay bound and the jitter
bound of a connection served at level L are equal to 2N · RLL + π and 2N · RLL

respectively, if this connection obeys its traffic specification (i.e. it transmits a maxi-
mum of ωc packets per RLL slots). N is the number of traversed switches, RLL is the
round length of service L, and π is the end-to-end propagation delay. π is considered
negligible in Kalmanek et al. (1990).

7.5.2 Stop-and-go discipline

Single-frame stop-and-go discipline

The stop-and-go (S&G) discipline is a non-work-conserving discipline based on time-
framing (Golestani, 1990). In the S&G discipline, the start is given from a reference
point in time, common to all the switches of the network (thus the S&G discipline
requires clock synchronization of all the switches), and the time axis is divided into
periods of the same constant length T , called frames. In general, it is possible to have
different reference points for different switches. For simplicity, we present the S&G
discipline based on a single common reference point.

The S&G discipline defines departing and arriving frames for each link between
two switches. Over each link, one can view the time frames as travelling with the
packets from one end of the link (i.e. from one switch) to the other end (i.e. to another
switch). Therefore, if πl denotes the sum of propagation delay plus the processing delay
at the receiving end of a link l, the frames at the receiving end (arriving frames) will
be πl time units behind the corresponding frames at the transmitting end (departing
frames). At each switch, to synchronize arriving frames on a link l′ and departing
frames on a link l, a constant θl′,l(0 ≤ θl′,l < T ) is introduced so that θl′,l + πl′ is a
multiple of T . Figure 7.8 shows an example of frame synchronization.

At each switch, the arriving frame of each input link is mapped to the departing
frame of the output link. All packets from one arriving frame of an input link l′ and
going to output l are delayed by θl′,l and put into the corresponding departure frame
of l. Thus, a packet which has arrived at a switch during a frame f should always be
postponed until the beginning of the next frame (Figure 7.8). Since the packets arriving
during a frame f are not eligible for transmission in frame f , the output link may be
idle even when there are packets waiting for transmission.

Each connection c is defined by means of a rate rc and the connection must transmit
no more than rc · T bits during each frame of length T . Thus a fraction of each frame
is allocated to each connection.

Multiframe stop-and-go discipline

Framing introduces a coupling between delay bound and bandwidth allocation granu-
larity. The delay of any packet at a single switch is bounded by a multiple of frame
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Figure 7.8 Relationships between arriving frames, departing frames, πl and θl′,l (case where
πl < T )

length. To reduce the delay, a smaller value of T (the frame length) is required. How-
ever, since T is also used to specify traffic, it is tied to bandwidth allocation. Assuming
a fixed packet length L, the minimum granularity of bandwidth allocation is L/T . To
have more flexibility in bandwidth allocation, or a smaller bandwidth allocation gran-
ularity, a larger T is preferred. In consequence, low delay bound and fine granularity



156 7 PACKET SCHEDULING IN NETWORKS

of bandwidth allocation cannot be provided simultaneously in a framing discipline. To
overcome this coupling problem, a generalized version of S&G with multiple frame
lengths, called multiframe stop-and-go, has been proposed (Golestani 1990). In this
generalized S&G discipline, the time axis is divided into a hierarchical framing struc-
ture. For G levels of framing, G frame lengths are considered, T1 . . . , TG. The time axis
is divided into frames of size T1, each frame of length T1 is divided into K1 frames of
length T2, . . ., until frames with length TG are obtained. Every connection is set up as a
type p connection (1 ≤ p ≤ G), in which case it is associated with the frame length Tp.
Figure 7.9 shows an example with three levels of framing, where k1 = 2, and k2 = 3.

The packets from a type p connection are referred to as type p packets. The value
of p is indicated in the header of each packet. Packets on a level p connection need
to observe the S&G rule with Tp. That is, packets which have arrived during a Tp

frame will not be eligible until the beginning of the next Tp frame. Any eligible type
p packet has non-preemptive priority over packets of type p′ < p.

Delay and jitter bounds provided by stop-and-go discipline

Golestani (1991) proved that the end-to-end delay and delay jitter of a connection c that
traverses N S&G switches connected in cascade are bounded by (2N + 1) · Tp + π

and 2 · Tp respectively, if the connection c is assigned to frame length Tp and obeys its
traffic specification. π is the end-to-end propagation and processing delay. Note that
when a single-frame S&G discipline is used, Tp replaces T in the previous two bounds.

Difference between S&G and HRR

The S&G and HRR disciplines are both time-framing and are similar. The most impor-
tant difference between S&G and HRR is that S&G synchronizes the arriving frames
of the input links and the departing frames of the output link at each switch. There are
two implications:

• by this synchronization, tight delay jitter can be provided by S&G,

• the synchronization also means that in multiframe S&G, the frame times of con-
nection should be non-decreasing. The HRR does not have this restriction, thus
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Figure 7.9 Example of multiframing with T1 = 2T2 = 6T3
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HRR gives more flexibility in assigning connections with different frame length at
different switches.

Another difference is the ability to control the effects of misbehaving connections.
In HRR, the packets of each connection are queued in a separate queue; thus if a
connection is misbehaving, it can only cause its own packets to be dropped. On the
other hand, an S&G server has no way to prevent itself from being flooded, and
misbehaving connections could cause packets of the other connections to be discarded.

7.5.3 Jitter earliest-due-date discipline

Jitter earliest-due-date (also called jitter EDD) is an extension of the delay EDD dis-
cipline to guarantee jitter bounds (Verma et al., 1991). In order to provide a delay
jitter guarantee, the original arrival pattern of the packets on the connection needs to
be sufficiently faithfully preserved. Thus, each switch reconstructs and preserves the
original arrival pattern of packets, and ensures that this pattern is not distorted too
much, so that it is also possible for the next switch on the path to reconstruct the
original pattern.

Connection establishment procedure

As for the delay EDD discipline, the client must declare its traffic characteristics and
performance requirements at the establishment time of each connection c by means of
three parameters: Xminc (the minimum packet inter-arrival time), Lmax c (the maximum
length of packets), and Dc (the end-to-end delay bound). In addition, the client must
specify the delay jitter J c required for the connection c.

In addition to the procedure used by the delay EDD discipline to determine local
delay Dc

s for each switch s traversed by the connection c being established, the jitter
EDD discipline must determine local jitter J c

s . A switch s must guarantee that every
packet p on the connection c must experience a delay D

c,p
s in switch s such that:

Dc
s − J c

s ≤ D
c,p
s ≤ Dc

s . The paradigm followed is similar to that of delay EDD: each
switch s offers a value for the local deadline, OD c

s , and the local jitter, OJ c
s , it can

guarantee. For simplicity, local jitter is equal to local deadline (i.e. OD c
s = OJc

s ). If
the switch s accepts the connection c, it adds its offered local jitter — note that only
one value is added to the connection request message, since the offered local jitter
and offered local delay are equal — to the connection request message and passes this
message to the next switch (or to the destination host) on the path. The destination host
is the last point where the acceptance/rejection decision of a connection can be made.
If all the switches on the path accept the connection, the destination host performs the
following test to assure that the end-to-end delay and jitter bounds are met:

OJ c
N ≤ J c and Dc ≥ π +

N∑

s=1

OJ c
s (7.15)

where N is the number of switches traversed by the connection c, and π is the end-to-
end propagation delay (in the original version of jitter EDD, π is considered negligible).
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If condition (7.15) is satisfied, the destination host divides the surplus of end-to-end
deadline and end-to-end jitter among all the traversed switches and assigns the local
deadline and local jitter for each switch s as follows:

Dc
s = Dc − π − ∑N

j=1 OJ c
j

N
+ OJ c

s , for s = 1, . . . , N − 1 (7.16)

J c
s = Dc

s , for s = 1, . . . , N − 1 (7.17)

J c
N = J c (7.18)

The destination host builds a connection response message containing the assigned
local delay and jitter bounds and sends it along the reverse of the path taken by the
connection request message. When a switch receives a connection response message,
the resources previously reserved must be committed or released. Particularly, in each
switch s, the offered local delay and jitter, OD c

s and OJ c
s , are replaced by the assigned

local delay and local jitter, Dc
s and J c

s , if the connection c is accepted.

Rate control and scheduling

Two functions are performed to guarantee delay and jitter bounds: rate control and
scheduling. Scheduling is based on the deadlines assigned to packets. The rate control
is used to restore the arrival pattern of packets that is distorted in the previous switch.
After a packet is served in a switch, a field in its header is stamped with the difference
between its deadline and the actual finish time. A regulator at the next switch holds
the packet for this period before it is made eligible to be scheduled. One important
consequence of this rate control is that the arrival pattern of packets entering the
scheduler queue at any intermediate switch is identical to the arrival pattern at the
entry point of the network, provided that the client obeyed the Xminc-constraint (i.e.
the minimum interval between two consecutive packets).

A packet p arriving, at time AT c,p
s , at switch s, on connection c, is assigned an

eligibility time ET c,p
s and a deadline ExDc,p

s defined as follows:

ET c,p

1 = AT c,p

1 (7.19)

ET c,p
s = AT c,p

s + Ahead c,p

s−1 for s > 1 (7.20)

ExDc,1
s = ET c,1

s + Dc
s (7.21)

ExDc,p
s = max{ET c,p

s + Dc
s , ExD c,p−1

s + Xminc} for p > 1 (7.22)

where Ahead c,p

s−1 is the amount of time the packet p is ahead of schedule at the switch
s − 1; it is equal to the difference between the local deadline Dc

s−1 and the actual
delay at switch s − 1; server s − 1 puts this difference in the header of packet p

before transmitting it to the next switch.
The packet p is ineligible for transmission until its eligibility time ET c,p

s . Ineli-
gible packets are kept in a queue from which they are transferred to the scheduler
queue as they become eligible. The ordering and servicing of the packet queue is by
increasing deadlines. Deadlines are considered as dynamic priorities of packets. Note
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that the local delay assigned to a connection does not take into account the time a
packet is held before being eligible; it only considers the delay at scheduler level and
transmission delay.

End-to-end delay and jitter bounds provided by jitter EDD

Verma et al. (1991) proved that if a connection does not violate its traffic specification,
then its end-to-end delay and jitter requirements are guaranteed by the jitter EDD
discipline. In consequence, packets from a connection c experience an end-to-end
delay ranging between Dc − J c and Dc. Recall that performance parameters Dc and
J c are specified by the client in its connection request.

7.5.4 Rate-controlled static-priority discipline

The disciplines presented in the previous sections are either frame-based (i.e. they use
time-framing) or priority-based (i.e. they use a sorted priority queue mechanism). Time-
framing introduces dependencies between scheduling priority and bandwidth allocation
granularity, so that connections with both low delay and low bandwidth requirements
cannot be supported efficiently. A sorted priority queue has an insertion operation with
a high overhead: the insertion operation is O(log(M)), where M is the number of
packets in the queue. This may not be acceptable in a high-speed network where the
number of packets may be high. Moreover, in order to decouple scheduling priority and
bandwidth allocation, a scheme based on sorted priority queue requires a complicated
schedulability test at connection establishment time. The rate-controlled static-priority
(RCSP) discipline, proposed by Zhang and Ferrari (1993), overcomes the previous
limitations.

Functional architecture of an RCSP server

An RCSP server consists of two components: a rate controller and a static-priority
scheduler (Figure 7.10). The rate controller shapes the input traffic from each connec-
tion into the desired traffic pattern by assigning an eligibility time to each packet. The
scheduler orders the transmission of eligible packets.

The rate controller consists of a set of regulators associated with the connections
traversing the switch. Regulators control interactions between switches and eliminate
jitter. Two types of jitter may be guaranteed: rate jitter and delay jitter . Rate jitter is
used to capture burstiness of the traffic, and is defined as the maximum number of
packets in a jitter averaging interval. Delay jitter is used to capture the magnitude of
the distortion of the traffic caused by the network, and is defined as the maximum
difference between the delays experienced by any two consecutive packets on the
same connection. Consequently, there are two types of regulators: rate-jitter controlling
regulators and delay-jitter controlling regulators. According to the requirements of each
connection, one type of regulator is associated with the connection in an RCSP server.
Both types of regulators assign each packet an eligibility time upon its arrival and hold
the packet until that time before handing it to the scheduler. Note that the conceptual
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Figure 7.10 General architecture of an RCSP server

decomposition of the rate controller into a set of regulators does not imply that there
must be multiple physical regulators in an implementation of the RCSP discipline; a
common mechanism can be shared by all the logical regulators.

Connection establishment phase

In the RCSP discipline, each connection c specifies its requirements with four param-
eters: Xminc, Xavec, I c and Lmax c. Xminc is the minimum packet inter-arrival time,
Xavec is the average packet inter-arrival time over an averaging interval of length I c,
and Lmax c is the maximum packet size. During the connection establishment, each
switch s on the connection c path assigns a local delay bound Dc

s (a bound it can
guarantee) and a priority level to connection c. Such an assignment is based on a
mechanism that depends on the policy of resource reservation in each switch (this
mechanism is out of the scope of the RCSP discipline). For example, the local delay
bound may be assigned using the same procedure as the one proposed for delay EDD
(see Section 7.4.3) and the priority level may be assigned using the following optimal
procedure called D Order procedure (Kandlur et al., 1991):

Let s be the index of the switch executing the D Order procedure and x the index
of the connection to establish.

1. Arrange the connections already accepted by switch s in ascending order of their
associated local delay Dc

s .

2. Assign the highest priority to the new connection x. Assign priorities to the other
connections based on this order, with high priority assigned to connections with
small local delays.

3. Compute the new worst-case response times rc (i.e. the maximum waiting time of
a packet on connection c at switch s) for the existing connections based on the
priority assignment.
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4. In the priority order, find the smallest position q such that rc ≤ Dc
s for all con-

nections with position greater than q (i.e. with priority lower than q).

5. Assign priority q to the new connection and compute the response time rx . Then,
the local delay Dx

s assigned to the connection x has to be such that Dx
s ≥ rx .

RCSP algorithm

Consider a packet p from connection c that arrives, at switch s, at time AT c,p
s . Let

ET c,p
s be the eligibility time assigned by switch s to this packet. When a rate-jitter

controlling regulator is associated with the connection c in the switch s, the eligibility
time of packet p is defined as follows:

ET c,p
s = −I c, for p < 0 (7.23)

ET c,p
s = AT c,p

s , for p = 1 (7.24)

ET c,p
s = max




ET c,p−1
s + Xminc, ET

c,p−
⌊

1
Xavec

⌋
+1

s + I c, AT c,p
s




 , p > 1 (7.25)

When a delay-jitter controlling regulator is associated with a connection c in a switch
s, the eligibility time of packet p is defined, with reference to the eligibility time of
the same packet at the previous switch, as follows:

ET c,p
s = AT c,p

s , for s = 0 (7.26)

ET c,p
s = ET c,p

s−1 + Dc
s−1 + πs−1,s , for s > 0 (7.27)

where switch 0 is the source of the connection, Dc
s−1 is the delay bound of packets on

the connection c at the scheduler of switch s − 1, and πs−1,s is the propagation delay
between switches s and s − 1.

The assignment of eligibility times achieved using equalities (7.26) and (7.27), by a
delay-jitter controlling regulator, satisfies equality (7.28), which means that the traffic
pattern on a connection at the output of the regulator of every server traversed by the
connection is exactly the same as the traffic pattern of the connection at the entrance
of the network:

ET c,p
s − ET c,p−1

s = AT c,p

0 − AT c,p−1
0 , p > 1 (7.28)

The scheduler in an RCSP switch consists of prioritized real-time packet queues and a
non-real-time queue (we will not discuss further the non-real-time queue management).
A packet on a connection is inserted in the scheduler queue associated with the priority
level assigned to this connection when its eligibility time is reached. The scheduler
services packets using a non-preemptive static-priority discipline which chooses packets
in FCFS order from the highest-priority non-empty queue.

Equality (7.28) means that a switch absorbs jitter that may be introduced in the
previous switch by holding a packet transmitted early by the previous switch. In the
first switch on the path, the packet is directly eligible and is inserted in the scheduler
queue; the scheduler of this switch transmits the packet within the delay assigned to
the considered connection. The second switch may delay the packet only if the packet
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is ahead of schedule of the first switch, and so on until the last switch, which delivers
the packet to the destination host. In consequence, when a delay-jitter controlling
regulator is used, the amount of holding time is exactly the amount of time the packet
was ahead when it left the previous switch. In the same way, the analysis of equality
(7.25) leads to the following observation: when a rate-jitter controlling regulator is
used, the amount of time a packet is to be held is computed according to the packet
spacing requirement, which may be less than the amount of time it was ahead of the
schedule in the previous switch.

Delay and jitter bounds provided by RCSP discipline

Zhang (1995) and Zhang and Ferrari (1993) proved the following results:

• The end-to-end delay for any packet on a connection c is bounded by
∑N

s=1 Dc
s +

π + B, if rate-jitter controlling regulators are used.

• The end-to-end delay and delay jitter for any packet on a connection c are bounded
by

∑N
s=1 Dc

s + π + B and Dc
N + B, respectively, if delay-jitter controlling regula-

tors are used.

where N is the number of switches connected in cascade traversed by the connection
c, π is the end-to-end propagation delay, Dc

1, D
c
2, . . ., Dc

N are the local deadlines
assigned to connection c in the N switches. B is equal to 0 if the traffic on connection
c obeys the [Xminc, Xavec, I c, Lmax c] specification at the entrance of the first switch,
and B is equal to σc/ρc if the traffic on connection c conforms to a leaky bucket with
size σc and rate ρc.

7.6 Summary and Conclusion

We have presented a variety of service disciplines to provide QoS guarantees for hard
real-time communications. The emphasis has been on examining their mechanisms and
the specific properties that can provide delay and jitter guarantees. Some disciplines
are work-conserving and some others are not. While work-conserving disciplines are
dominant in conventional networks, non-work-conserving disciplines exhibit features
that are suitable for providing guaranteed performance, particularly jitter bounds.

In general, frame-based algorithms have advantages over priority-based algorithms
in that the delay bounds as well as bandwidth are guaranteed deterministically by
reserving a fixed amount of traffic in a certain time interval. Moreover, in frame-based
algorithms, delays at switches can be analysed independently and simply added together
to determine the end-to-end delay bounds. These properties make QoS analysis, ser-
vice prediction, and even the connection establishment process dramatically simpler
compared to priority-based approaches. Unfortunately, frame-based algorithms have
the drawback of coupling the delay and granularity of bandwidth allocation. Delay
bounds and unit of bandwidth allocation are dependent on the frame size. With larger
frame sizes, connections are supported with a wider range of bandwidth requirements,
but delay bounds increase proportionally.
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The delay EDD, jitter EDD and RCSP disciplines are scheduler-based disciplines
and require the use of procedures to determine the local delay accepted by each switch
during connection establishment. Jitter EDD also requires a procedure for determining
local jitter, and RCSP requires a procedure for determining static priorities assigned
to connections. All these procedures depend on the policy of resource reservation in
each switch.

It is worth noticing that in modern packet-switching networks, the flow rates are very
high and the number of connections traversing a switch can reach several thousands.
It is consequently necessary to have algorithms whose overhead is reduced to its mini-
mum. A significant aspect which can be a brake for the use of disciplines such as WFQ
is their implementation cost (i.e. costs associated with computation of the system virtual
time and with the management of priority queues to order the transmission of pack-
ets). The interested reader can find some guidelines for implementing packet scheduling
algorithms in high-speed networks in Stephens et al. (1999). Tables 7.3–7.5 summarize

Table 7.3 Classification of service disciplines (1)

Type Rate allocation Delay allocation

Work-conserving Packet-by-packet GPS (PGPS) Delay earliest-due-date
(D-EDD)

Weighted fair queuing (WFQ)
Virtual clock (VC)
Weighted round-robin (WRR)

Non-work-conserving Hierarchical round-robin (HRR) Jitter earliest-due-date (J-EDD)
Stop-and-go (S&G) Rate-controlled static-priority

(RCSP)

Table 7.4 Classification of service disciplines (2)

Type Scheduler-based Rate-based

Priority-based Delay EDD WFQ
Jitter EDD PGPS
RCSP VC

Frame-based S&G
HRR
WRR

Table 7.5 Properties of service disciplines

Property WFQ
PGPS

VC D-EDD HRR S&G J-EDD RCSP

Delay guarantee∗ Yes Yes Yes Yes Yes Yes Yes
Jitter guarantee∗ No No No No Yes Yes Yes
Decoupled delay

and bandwidth
allocation

No No Yes No No Yes Yes

Protection of
well-behaved
connections

Yes Yes Yes Yes No Yes Yes

∗ To guarantee delay and jitter, the connection must obey user traffic specification.
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the main features of the presented disciplines. A good synthesis and comparison of the
scheduling disciplines presented in this chapter is given in Zhang (1995).

Finally, it is worth noting that most disciplines presented in this chapter have been
integrated in experimental or commercial ATM switches, and for a, few years, they
have been used experimentally in the context of the next generation of the Internet,
which will be deployed using Integrated Services (called IntServ ) and Differentiated
Services (called DiffServ ) architectures that provide QoS guarantees.

7.7 Exercises

7.7.1 Questions

Exercise 7.1: Scheduling with the WFQ discipline family

Consider 6 connections (1, . . ., 6) sharing the same output link of a switch s. For
simplicity, assume that all packets have the same size, which is equal to S bits.
The output link speed is 10 S/6 bits/s . Also, assume that the total bandwidth
of the output link is allocated as follows: 50% for connection 1 and 10% for
each of the other five connections. Connection 1 sends 6 back-to-back packets
starting at time 0 while all the other connections send only one packet at time 0.

Q1 Build the schedule of the packets when the server utilizes the
GPS discipline.

Q2 Build the schedule of the packets when the server utilizes the
WFQ discipline.

Q3 Bennett and Zhang (1996a) proposed a discipline, called WF2Q (worst-
case fair weighted fair queuing), that emulates GPS service better than
WFQ. WF2Q increases fairness. In a WF2Q server, when the next packet
is chosen for service at time t , rather than selecting it from among all
the packets at the server as in WFQ, the server only considers the set of
packets that have started (and possibly finished) receiving service in the
corresponding GPS server at time t , and selects the packet among them
that would complete service first in the corresponding GPS server. Build
the schedule of the packets of the six connections when the server utilizes
the WF2Q discipline.

Exercise 7.2: Computation of round number for WFQ

Consider again Example 7.1, presented in Section 7.4.1, where two connections
share the same output link of a switch s. Each connection utilizes 50% of the
output link bandwidth. At time t = 0, a packet P 1,1 of size 100 bits arrives on

Continued on page 165
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connection 1, and a packet P 2,1 of size 150 bits arrives on connection 2 at time
t = 50.

Q1 What is the value of Rs(t), the round number, at time 250?

Exercise 7.3: Scheduling with the virtual clock discipline

Consider three connections (1, 2 and 3) sharing the same output link of a switch
s using the virtual clock discipline. For simplicity, we assume that packets from
all the connections have the same size, L bits, and that the output link has a
speed of L bits/s. Thus, the transmission of one packet takes one time unit.
Each connection c is specified by a couple of parameters rc and Ac : r1 = 0.5L,
r2 = 0.2L, r3 = 0.2L, A1 = 2, A2 = 5, A3 = 5. The arrival patterns of the three
connections are as follows:

• Packets on connection 1 arrive at times t = 2 and t = 4;

• Packets on connection 2 arrive at times t = 0, t = 1, t = 2 and t = 3;

• Packets on connection 3 arrive at times t = 0, t = 1, t = 2 and t = 3.

Q1 Build the schedule of the packets when the switch utilizes the virtual
clock discipline.

Exercise 7.4: Scheduling with the HRR discipline

Example 7.3, presented in Section 7.5.1, considered a set of five periodic con-
nections transmitting packets with the same fixed length, and served by an HRR
switch. The service time of a packet is assumed equal to one time slot. The
period T c of each connection c and the number of packets (NP c) it issues per
period are given in Table 7.1. We have chosen three levels of service, and deter-
mined the weights associated with connections and the counter values (RLL, nsL

and bL) associated with service levels (see Table 7.2).

Q1 Assume that all the connections start at the same time 0, and that each
connection issues its packet(s) at the beginning of its period. The five
traffics enter an HRR switch specified by the values given in Table 7.2.
Assume that the propagation delay is negligible. Give a schedule of packets
during the time interval [0, 20].
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Exercise 7.5: Determining end-to-end delay and jitter bounds
for the stop-and-go discipline

Let c be a connection passing by N switches that use the stop-and-go
discipline with a frame of length T . We denote the links by 0, 1, . . . , N .
A packet p travels in the network in a sequence of arriving and departing
frames denoted by AFp

0 , DFp

1 , AFp

1 , DFp

2 , AFp

2 , . . . , DFp

N, AFp

N . (AFp

l and DFp

l

denote the arriving frame and departing frame, on link l, respectively.) As
shown in Figure 7.11a, a packet p arrives on the access link (link 0), at
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1 link 2
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2
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Figure 7.11 Stop-and-go frames
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the first switch, in frame AFp

0 , it leaves the first switch in the departing
frame DFp

1 , it arrives on link 1, at the second switch, in frame AF p

1 ,
and so on.

The sum of propagation delay plus the processing delay of a link l is denoted
by τl . Assume that the delay τl is less than the frame length for all the links. An
additional delay (denoted by θl,l+1) is introduced in each switch to synchronize
arriving frames on link l and departing frames on link l + 1. This delay is fixed
such that: τl + θl,l+1 = T (l = 0, . . . , N − 1). Figure 7.11b shows the sequencing
of the frames conveying the packet p.

Q1 Find the time difference between frames AFp

l and DFp

l+1(l = 0, . . . , N − 1).

Q2 Find the time difference between frames DFp

l and AFp

l (l = 1, . . . , N).

Q3 Find the time difference between frames AF p

N and AFp

0 .

Q4 Determine the minimum and maximum end-to-end delay on connection c

using the answers of the previous questions.

Q5 Prove the end-to-end delay and jitter bounds proved by Golestani given in
Section 7.5.2, using the answers of the previous questions.

Exercise 7.6: Scheduling with the jitter EDD discipline

Consider a connection c traversing two switches 1 and 2 (there are only
two switches). Both switches use the jitter EDD discipline. The parameters
declared during connection establishment are: Xminc = 5, Dc = 6, J c = 2, and
Lmax c = L. All the packets have the same size. The transmission time of a
packet is equal to 1 for the source and both switches, and the propagation delay
is taken to be 0, for all links. Assume that during connection establishment,
the local deadlines and jitter assigned to connection c are: Dc

1 = 4, Dc
2 =

2, J c
1 = 4, J c

2 = 2. Note that the local deadline values (Dc
1 and Dc

2) and
jitter values (J c

1 and J c
2 ) assigned to connection c satisfy the equalities

(7.15)–(7.18).

Q1 Give a packet schedule, for both switches, for five packets that arrive at
switch 1 at times 1, 6, 11, 16 and 21, from a periodic source. Give the
packet arrival times at destination for the chosen schedules.

Q2 Verify that end-to-end delay and jitter are guaranteed by the packet sched-
ules given for the previous question.
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7.7.2 Answers

Exercise 7.1: Scheduling with the WFQ discipline family

Q1 GPS server. To simplify, we assume that a round-robin turn duration is
1 second. In each round of the round-robin algorithm, connection 1 utilizes
0.5 of the bandwidth (i.e. it transmits a fragment with 5S/6 bits of the
packet in the head of queue associated with it) and each of the other
connections utilizes 0.1 of the bandwidth (i.e. each connection transmits a
fragment of S/6 bits of its packet). The schedule obtained with the GPS
algorithm is shown in Figure 7.12.
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6

t

1 2 3 4 5

Connection

6

P1,6

: Packet fragment (S/6 bits)

Figure 7.12 Scheduling with GPS

Q2 WFQ server. Let S
c,p
s and F

c,p
s be the start time and the finish time of

packet p (p = 1, . . . , 6) on connection c (c = 1, . . . , 6), respectively. The
6 packets of connection 1 are sent back-to-back; this means that during
the time interval between the arrival of the first packet and the 6th one
the increase of number of rounds of the round-robin server is negligible.
For simplicity, we consider that the packets of connection 1 arrive at the
server at the same time t = 0.Rs(0), the number of rounds at time t = 0,
is 0. Using equations (7.1) and (7.4), we have:

S1,1
s = 0; F 1,1

s = 0 + S/(0.5 × 10S/6) = 6/5

S1,2
s = 6/5; F 1,2

s = S1,2
s + S/(0.5 × 10S/6) = 12/5

. . .

S1,6
s = 6; F 1,6

s = S1,6
s + S/(0.5 × 10S/6) = 36/5

S2,1
s = 0; F 2,1

s = 0 + S/(0.1 × 10S/6) = 6

. . .

S6,1
s = 0; F 6,1

s = 0 + S/(0.1 × 10S/6) = 6

Continued on page 169
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WFQ disciplines schedules the packets according to their finish numbers, thus
the packets of the 6 connections are transmitted as shown in Figure 7.13. P c,j

means the j th packet on connection c.
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Connection
P1,6P1,1 P1,2 P1,3 P1,4 P1,5
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P4,1

P5,1

P6,1

Figure 7.13 Scheduling with WFQ

Q3 WF2 Q server. At time t = 0, there is one packet at the head of each queue.
The finish and start numbers are computed in the same way as for Q2. At
time t = 0, the first packets, P c,1, of connections c = 1, . . . , 6 start their
service in the GPS server. Among them, P 1,1 has the smallest finish time in
GPS, so it will be served first in WF2Q. At time 6/10, P 1,1 is completely
transmitted and there are still 10 packets. Although P 1,2 has the smallest
finish time, it will not start service in the GPS server until time 6/5 (because
its start number is 6/5), therefore it will be not eligible for transmission at
time 6/10. The packets of the other 5 connections have all started service
at time t = 0 at the GPS server, and thus are eligible. Since they all have
the same finish number in the GPS server, the tie-breaking rule of giving
the highest priority to the connection with the smallest number will yield
P 2,1. At time 12/10, P 2,1 finishes transmission and P 1,2 becomes eligible
and has the smallest finish number, thus it will start service next. The rest
of the WF 2Q schedule is shown in Figure 7.14.
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Figure 7.14 Scheduling with WF2Q
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Exercise 7.2: Computation of round number for WFQ

Q1 At time t = 0, the packet P 1,1 arrives, it is assigned a finish number F 1,1
s =

200, and it starts service. During the interval [0, 50], only connection
1 is active, thus Nac(t) = 0.5 and dR(t)/dt = 1/0.5. In consequence,
R(50) = 100.

At time t = 50, the packet P 2,1 arrives, it is assigned a finish number
F 2,1

s = 100 + 150/0.5 = 400. At time t = 100, P 1,1 completes service. In the
interval [50, 100], Nac(t) = 0.5 + 0.5 = 1. Then R(100) = R(50) + 50 = 150.
Since F 1,1

s = 200, connection 1 is still active, and Nac(t) stays at 1.
At t = 100, packet P 2,1 starts service. At t = 250, packet P 2,1 completes

service. The number Nac(t) went down to 0.5 when R(t) = 200 (i.e. when
connection 1 became inactive). R(200) = R(100) + 100 = 250. During the
interval [200, 250], Nac(t) = 0.5, thus R(250) = R(200) + 50 × 1/0.5 = 350.

Exercise 7.3: Scheduling with the virtual clock discipline

Q1 Let P c,j be the j th packet from connection c. The auxiliary virtual
clocks of the packets are computed, on packet arrival times, according
to equality (7.9):

• At time t = 0, packets P 2,1 and P 3,1 arrive simultaneously. auxVC2
s =

auxVC3
s = 5. Thus packets P 2,1 and P 3,1 are stamped with a virtual

clock value equal to 5.

• At time t = 1, packets P 2,2 and P 3,2 arrive simultaneously. auxVC2
s =

auxVC3
s = 10. Thus packets P 2,2 and P 3,2 are stamped with a virtual

clock value equal to 10.

• At time t = 2, packets P 1,1, P 2,3 and P 3,3 arrive simultaneously.
auxVC1

s = 4, and auxVC2
s = auxVC3

s = 15. Thus packet P 1,1 is stamped
with a virtual clock value equal to 4, and P 2,3 and P 3,3 are stamped
with a virtual clock value equal to 15.

• At time t = 3, packets P 2,4 and P 3,4 arrive simultaneously. auxVC2
s =

auxVC3
s = 20. Thus packets P 2

4 and P 3
4 are stamped with a virtual clock

value equal to 20.

• At time t = 4, packet P 1,2 arrives. auxVC1
s = 6. Thus packet P 1,2 is

stamped with a virtual clock value equal to 6.

As virtual clock scheduling is based on the values of auxVC, the schedule of
packets obtained is given by Figure 7.15. Note that although connections 2
and 3 are sending packets at higher rates (both connections do not comply

Continued on page 171
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Figure 7.15 Scheduling with virtual clock

with their Ac parameter), the virtual clock algorithm ensures that each well-
behaved connection (in this case connection 1) gets good performance.

Exercise 7.4: Scheduling with the HRR discipline

Q1 Following the algorithm of the HRR discipline with three service levels,
the packets issued from the five connections during the interval [0, 20]
are scheduled on the output link of the switch as shown by Figure 7.16.
For simplicity, we assume that the arrivals of packets at the switch are
synchronized with the beginning of the rounds, i.e. the packets from

Server
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3

Server
1

 t
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Pc, j : jth packet from connection c

P1,1 P2,1 P3,1 P3,2 P1,2 P2,2 P4,1 P5,1 P5.2 P1,3 P2,3 P3,3 P3,4 P1,4 P2,4 P5,3

Figure 7.16 Packet scheduling with the HRR discipline

Continued on page 172
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Continued from page 171

a connection are queued in the next list of the server that serves this
connection just before a new round of this server begins. At time 0, server 1
becomes active (it stays always active); the two first packets of connections
1 and 2 (P 1,1 and P 2,1) are in the current list of server 1, thus it serves
them, and activates server 2 at time 2. Once activated, server 2 serves
connection 3 for 2 slots (packets P 3,1 and P 3,2 are transmitted) and as its
current list is empty at time 4, it activates best effort server (or the output
link remains idle during 1 slot). At time 5, server 2 becomes inactive,
because B1 is equal to zero. A new round of server 1 begins, and so on.
The times when the different servers are active or inactive are given to aid
understanding of easily the scheduling of packets.

Exercise 7.5: Determining end-to-end delay and jitter bounds for the
stop-and-go discipline

Q1 As the arriving frames on link l and departing frames on link l + 1 are
synchronized by introducing a delay θl,l+1, the time difference between
AF p

l and DF p

l+1 is T + θl,l+1. Thus: �→
DF

p

l+1
− �→

AF
p

l
= T + θl,l+1, (l =

0, . . . , N − 1), where �→
F denotes the start time of frame F .

Q2 The difference between DFp

l and AFp

l (i.e. the time difference of departing
and arriving frames on the same link) is equal to τl (i.e. the sum of
propagation delay plus the processing delay). Thus: �→

AF
p

l
− �→

DF
p

l
= τl , (l =

1, . . . , N).

Q3 �→
AF

p

N
− �→

AF
p

0

= �→
AF

p

N
+ (

�→
AF

p

N−1
− �→

AF
p

N−1
) + (

�→
AF

p

N−2
− �→

AF
p

N−2
)

+ . . . + (
�→

AF
p

1
− �→

AF
p

1
) − �→

AF
p

0

= (
�→

AF
p

N
− �→

AF
p

N−1
) + (

�→
AF

p

N−1
− �→

F
p

N−2
) + . . . + (

�→
AF

p

1
− �→

AF
p

0
)

Using the results of the answers to Q1 and Q2, we have: �→
AFp

l
= �→

DFp

l+1
−

T − θl,l+1 and �→
AFp

l+1
= �→

AFp

l
+ τl+1, thus: �→

AFp

l+1
− �→

AFp

l
= T + τl+1 + θl,l+1.

In consequence, we have:

�→
AF p

N

− �→
AFp

0
=

N−1∑

l=0

(T + θl,l+1 + τl+1) = N · T +
N−1∑

l=0

θl,l+1+
N∑

l=1

τl

Continued on page 173
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Q4 A packet p occupies a certain position in the arriving frame AF p

0 and a
certain position in the arriving frame AFp

N . The minimum stay of packet
p in the network is when packet p arrives at the end of arriving frame
AF p

0 and it arrives at the destination at the beginning of frame AF p

N . The
maximum stay of packet p in the network is when packet p arrives at
the beginning of arriving frame AF p

0 and it arrives at the destination at
the end of frame AFp

N . We denote the minimum and maximum end-to-end
delays of packet p by minE2Ep and maxE2Ep, respectively. Using the
result of the answer to Q3, we have:

minE2E p = �→
AFp

N
− �→

AF p

0
− T + τ0 = (N − 1) · T +

N−1∑

l=0

θl,l+1+
N∑

l=0

τl

maxE2Ep = �→
AFp

N
− �→

AF p

0
+ T + τ0 = (N + 1) · T +

N−1∑

l=0

θl,l+1+
N∑

l=0

τl

Q5 In Section 7.5.2, we mentioned that Golestani proved that the end-to-end
delay and jitter are bounded by (2N + 1) · T + π and 2 · T respectively,
where π is the sum of end-to-end propagation and processing delays. As π

is equal to
∑N

l=0 τl and any additional delay θl,l+1(l = 0, . . . , N − 1) is less
than T , maxE2Ep is bounded by (2N + 1) · T + π. The difference between
the minimum and maximum end-to-end delays (minE2Ep and maxE2Ep)
determined in the answers of the previous question is 2 · T . Thus we prove
the bounds given by Golestani.

Exercise 7.6: Scheduling with the jitter EDD discipline

Q1 Using equations (7.19), (7.21) and (7.22), the eligibility times and deadlines
of the five packets at first switch are:

ET c,1
1 = 1, ET c,2

1 = 6, ET c,3
1 = 11, ET c,4

1 = 16, and ET c,5
1 = 21

ExDc,1
s = 5, ExD c,2

s = 10, ExD c,3
s = 15, ExDc,4

s = 20 and ExD c,5
s = 25

The actual delay (i.e. waiting time plus transmission time) experienced
by each packet at switch 1 depends on the load of this switch, but never
exceeds the local deadline assigned to connection c (i.e. Dc

1 = 4). For
example, the actual delays of packets 1 to 5 are 2, 4, 1, 4 and 1, respectively.

Continued on page 174
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In consequence, the arrival times of packets, at switch 2, are 3, 10, 12, 20
and 22, respectively (Figure 7.17).

t 

t 

Destination host 

Switch 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Switch 1
t 

DestinationSwitch 1 Switch 2

27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

AT1
c,1

AT2
c,1

ATd
c,1

ATs
c,p : arrival time of packet p at switch (s = 1, 2) or at destination host (s = d)

ATd
c,2 ATd

c,3 ATd
c,4 ATd

c,5

AT2
c,2 AT2

c,3 AT2
c,4 AT2

c,5

AT1
c,2 AT1

c,3 AT1
c,4 AT1

c,5

ET1
c,1

ET2
c,1

ETs
c,p : eligibility time of packet p at switch s (s = 1, 2) 

ET2
c,2 ET2

c,3 ET2
c,4 ET2

c,5

ET1
c,2

ExD1
c,1

ExD2
c,1

ExDs
c,p : expected deadline of packet p at switch s (s = 1, 2) 

ExD2
c,2 ExD2

c,3 ExD2
c,4 ExD2

c,5

ExD1
c,2 ExD1

c,3 ExD1
c,4 ExD1

c,5
ET1

c,3 ET1
c,4 ET1

c,5

Source

Figure 7.17 Example of delay EDD scheduling

Using equations (7.20)–(7.22), the eligibility times and deadlines of the
five packets at switch 2 are:

ET c,1
2 = 5, ET c,2

2 = 10, ET c,3
2 = 15, ET c,4

2 = 20 and ET c,5
2 = 25

ExDc,1
2 = 7, ExD c,2

2 = 12, ExD c,3
2 = 17, ExD c,4

2 = 22 and ExD c,5
2 = 27

The actual delays of the five packets at switch 2 depend on the load of this
switch, but never exceed the local deadline assigned to connection c (i.e.
Dc

2 = 2). Recall that the time a packet is held before being eligible is not a
component of the actual delay. For example, the actual delays of packets 1

Continued on page 175



7.7 EXERCISES 175

Continued from page 173

to 5 are 1, 2, 2, 2 and 1, respectively. In consequence, the arrival times of
packets at destination are 6, 12, 17, 22 and 26, respectively (Figure 7.17).

Q2. The end-to-end delays of packets 1 to 5 are 5, 6, 6, 6 and 5, respectively.
The maximum end-to-end delay variation is 1. In consequence, end-to-end
delay and jitter declared during connection establishment are guaranteed
by the schedules given in Figure 7.17.





8
Software Environment

This chapter presents some software components relevant to real-time applications. The
first part of the chapter is concerned with operating systems. Real-time requirements for
operating system behaviour forbid the use of standard Unix, although the Posix/Unix
interface is very useful for software engineering. Three approaches are presented. In
the first one, the real-time executive has been customized to provide a Posix interface.
This is illustrated by VxWorks, the executive of the Mars Pathfinder rover, which is the
second case study which will be presented in Chapter 9. The second approach is that
of RT-Linux where a small companion kernel is attached to a Unix-like system. In the
third approach, a system based on a Unix architecture has been engineered from scratch
in order to fulfil real-time requirements. This is illustrated by LynxOs, the executive
of the rolling mill acquisition system, which will be presented in Chapter 9 as the
first case study. The second part of the chapter deals with programming languages
designed with real-time potential. Some of them provide asynchronous programming.
The Ada programming language is largely developed with the example of a mine
pump control implementation. Real-time Java is outlined. Synchronous languages that
make the assumption of instantaneously reacting to external events are also presented.
The last part of the chapter is an overview of the real-time capabilities which are
being added to distributed platforms that provide standardized middleware for non-
real-time distributed applications. The challenge is to be able to use distributed objects
and components and common-off-the-shelf hardware and software components that are
developed extensively for non-real-time distributed applications. The chapter ends by
summarizing the real-time capabilities of these software environments.

8.1 Real-Time Operating System
and Real-Time Kernel

8.1.1 Overview

Requirements

A modern real-time operating system should provide facilities to fulfil the three major
requirements of real-time applications. These are:

• guarantee of response from the computing system;

• promptness of a response, once it has been decided;

• reliability of the application code.
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In interactive operating systems, the CPU activity is optimized to provide maximum
throughput with the constraint of favouring some class of tasks. The primary concern
is resource utilization instead of time constraints. All tasks are considered as aperiodic
with unknown date of arrival and unknown execution times. They have no compulsory
execution deadlines.

A real-time operating system must be able to take into account periodic tasks with
fixed period and fixed deadlines, as well as sporadic tasks with unknown dates of
occurrence but with fixed deadlines. The system must be controlled such that its timing
behaviour is understandable, bounded and predictable. These properties can be aimed
at by a layered approach based on a real-time task scheduler and on a real-time kernel.

The operating system kernel must enforce the real-time behaviour assumed by the
real-time task scheduler, i.e. promptness and known latency. Timing predictions must
include the insurance that the resources are available on time and therefore cope with
access conflicts and fault tolerance.

The real-time kernel must provide efficient mechanisms for data acquisition from
sensors, data processing and output to activators or display devices. Let us emphasize
some of them.

1. I/O management and control

– a fast and flexible input and output processing power in order to rapidly capture
the data associated with the priority events, or to promptly supply the actuators
or the display devices;

– the absence of I/O latency caused by file granularity and by I/O buffer man-
agement, and therefore the capability of predicting transfer delays of prioritized
I/O.

2. Task management and control

– concurrency between kernel calls, limited only by the mutual exclusion to sensi-
tive data, i.e. a fully preemptive and reentrant kernel;

– fast and efficient synchronization primitives which will avoid unnecessary con-
text switching;

– a swift task context switch;

– an accurate granularity of time servers;

– a task scheduling which respects the user-defined priority, and which does not
cause unexpected task switching or priority inversion.

3. Resource management and control

– contention reduction with predictable timings when concurrent tasks access sha-
red resources such as memory busses, memory ports, interrupt dispatcher, kernel
tables protected by mutual exclusion;

– priority inversion avoidance;

– deadlock prevention and watchdog services in the kernel.
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Appraisal of real-time operating systems

The appraisal of a real-time operating system relies mainly on real-time capabilities
such as:

• promptness of response by the computer system;

• predictability of kernel call execution times;

• tuning of scheduling policies;

• assistance provided for program debugging in the real-time context when the appli-
cation is running in the field;

• performance recorded in case studies.

Let us develop two aspects.

1. Promptness of response The promptness of the response of a real-time kernel may
be evaluated by two parameters, interrupt latency and clerical latency.

Interrupt latency is the delay between the advent of an event in the application and
the instant this event is recorded in the computer memory. This interrupt latency is
caused by:

• the propagation of the interrupt through the hardware components: external bus,
interrupt dispatcher, interrupt board of the processor, interrupt selection;

• the latency in the kernel software resulting from non-preemptive resource utiliza-
tion: masking interrupts, spin lock action;

• the delay for context switching to an immediate task.

This interrupt latency is usually reduced by a systematic use of the hardware priorities
of the external bus, by kernel preemptivity and context switch to immediate tasks.

Clerical latency is the delay which occurs between the advent of an event in the
application and the instant this event is processed by its target application task. This
clerical latency is caused by:

• the interrupt latency;

• the transfer of data from the interrupt subroutine to the application programs
context;

• the notification that the target application task is already eligible;

• the return to the current application task, which may be using some non-preemptive
resource and, in that situation, must be protected against the election of another
application task;

• the delay the target application task waits before being elected for running;

• the installation of the context of the target application task.

2. Predictability of kernel call execution times A real-time kernel includes a com-
plete set of methods for reducing time latency, which are reentrance, preemption,
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priority scheduling and priority inheritance. Therefore the execution time of each ker-
nel call can be evaluated exactly when it is executed for the highest priority task.
This time is that of the call itself plus the delay of the longest critical section in
the kernel.

Standard Unix unfitness for real-time

Facilities to easily equip a board level system with standard de facto interfaces such
as network interfaces or graphical users interfaces like the X Window system, as well
as program compatibility and therefore access to widely used packages and tools, are
arguments for adopting a system like Unix. However, Unix presents a mix of corporate
requirements and technical solutions which reflect the state of the art of the early 1970s
when it was designed and which do not fit for real-time.

The shell program interprets the commands typed by the user and usually creates
another task to provide the requested service. The shell then hangs up, waiting for the
end of its child task before continuing with the shell script. The Unix kernel schedules
tasks on a modified time-sliced round-robin basis; the priority is ruled by the scheduler
and is not defined by the user.

The standard Unix kernel is not particularly interested in interrupts, which usually
come from a terminal and from memory devices. Data coming into the system do
not drive the system as they do in real-time systems. The kernel is, by design, not
preemptive. Once an application program makes an operating system call, that call
runs to completion. As an example of this, when a task is created by a fork the data
segment of the created task is initialized by copying the data segment of the creator task;
this is done within the system call and may last as long as some hundred milliseconds.

Thus, all standard Unix I/O requests are synchronous or blocked and a task cannot
issue an I/O request and then continue with other processing. Instead, the requesting
task waits until the I/O call is completed. A task does not communicate with I/O devices
directly and turns the job over to the kernel, which may decide to simply store the
data in a buffer. Early Unix designers optimized the standard file system for flexibility,
not speed, or security, and consequently highly variable amounts of time may be spent
finding a given block of data depending on its position in the file. Standard Unix allows
designers to implement their own device drivers and to make them read or write data
directly into the memory of a dedicated task. However, this is kernel code and the
kernel then has to be relinked.

Standard Unix does not include much interprocess communication and control. The
‘pipe’ mechanism allows the output of a task to be coupled to the input of another
task of the same family. The other standard interprocess communication facility is the
‘signal’. The signal works like a software interrupt. Standard Unix permits programmers
to set up shared memory areas and disk files. Later versions have a (slow) semaphore
mechanism for protecting shared resources.

Real-time standards

The challenge for real-time standards is between real-time kernels which are stan-
dardized by adopting the Unix standard interface and standard non-real-time Unixes
modified for real-time enhancements.



8.1 REAL-TIME OPERATING SYSTEM AND REAL-TIME KERNEL 181

A set of application programming interfaces (API) extending the Unix interface to
real-time have been proposed as the Posix 1003.1b standards. These interfaces, which
allow the portability of applications with real-time requirements, are:

• timer interface functions to set and read high resolution internal timers;

• scheduling functions which allow getting or setting scheduling parameters. Three
policies are defined: SCHED FIFO, a preemptive, priority-based scheduling,
SCHED RR, a preemptive, priority-based scheduling with quanta (round-robin),
and SCHED OTHER, an implementation-defined scheduler.

• file functions which allow creation and access of files with deterministic perfor-
mance;

• efficient synchronization primitives such as semaphores and facilities for syn-
chronous and asynchronous message passing;

• asynchronous event notification and real-time queued signals;

• process memory locking functions and shared memory mapping facilities;

• efficient functions to perform asynchronous or synchronous I/O operations.

8.1.2 VxWorks

Some real-time operating systems have been specifically built for real-time applica-
tions. They are called real-time executives. An example is VxWorks <VXWORKS>.1

VxWorks has a modular design which allows mapping of several hardware architec-
tures and enables scalability. It provides a symmetric system kernel to multiprocessor
architectures of up to 20 processors.

It provides services for creating and managing tasks, priority scheduling, periodic
tasks release by signalling routines, binary or counting semaphore synchronization,
asynchronous signalization, mailbox-based, pipe or socket communication, time-outs
and watchdogs management, attachment of routines to interrupts, exceptions or time-
outs, interrupt to task communication allowing triggering of sporadic tasks, and several
fieldbus input–output protocols and interfaces. Mutual exclusion semaphores can be
refined (1) to include a priority inheritance protocol in order to prevent priority inver-
sion, (2) to defer the suppression of a task which is in a critical section, and (3) to
detect the cross-references of routines that use the same semaphore (this allows avoid-
ing deadlock by embedded calls). All tasks share a linear address space which allows
short context switches and fast communication by common data and code sharing.
When a paging mechanism, usually called a memory management unit (MMU), is
supported by the hardware architecture, it can be managed at the task level to imple-
ment local or global virtual memory, allowing better protection among tasks. However,
since VxWorks is targeted to real-time applications, all tasks programs remain resident
and there is no paging on demand or memory swapping.

A library of interfaces has been customized to provide a Posix interface. Among
numerous available development tools are a GNU interface and an Ada compiler,
native as well as cross-development environments, instrumentation and analysis tools.

1 <xxx> means an Internet link which is given at the end of the chapter.
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8.1.3 RT-Linux

The Linux operating system is actually a very popular system. Linux is a Unix-like
general-purpose operating system and it provides a rich multitasking environment sup-
porting processes, threads and a lot of inter-process communication and synchronization
mechanisms such as mutexes, semaphores, signals, etc. The Linux scheduler provides
the Posix scheduling interface including SCHED FIFO, SCHED RR classes and the
SCHED OTHER class which implements the Unix default time-sharing scheduler.
However, the Linux operating system is limited when it is used for real-time devel-
opment. A major problem is that the Linux kernel itself is non-preemptive and thus
a process running a system call in the Linux kernel cannot be preempted by a higher
priority process. Moreover, interrupt handlers are not schedulable.

To allow the use of the Linux system for real-time development, enhancements have
been sought after in associating a companion real-time kernel improving the standard
kernel: it is the dual kernel approach of the RT-Linux system where the RT-Linux
real-time kernel is the higher priority task (Figure 8.1).

A companion real-time kernel is inserted, along with its associated real-time tasks.
It may use a specific processor. It functions apart from the Linux kernel. It is in charge
of the reactions to interrupts, and schedules as many real-time tasks as necessary for
these reactions. To allow this, the Linux kernel is preempted by its companion kernel.
However, when some real-time data have to be forwarded to the Linux programs, this
communication between the companion kernel and Linux is always done in a loosely
coupled mode and the transfer has to be finalized in the Linux program; the non-
deterministic Linux scheduler wakes up the application program and therefore there is
no longer real-time behaviour.

More precisely, the RT-Linux kernel<RTLINUX> modifies Linux to provide:

• A microsecond resolution time sense: in order to increase the resolution of the
Linux software clock, which is around 10 milliseconds, the basic mechanism by
which it is implemented has been altered. Rather than interrupting the processor
at a fixed rate, the timer chip is programmed to interrupt the processor in time to
process the earliest scheduled event. Thus the overhead induced by increasing the
resolution timer is limited. The timer is now running in one-shot mode.

Linux kernel

RT-Linux

Real-time task
(rt_task)

Real-time task
(rt_task)

Linux process

Linux process

Figure 8.1 Real-time Linux architecture
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• An interruption emulator for the Linux system: Linux is no longer allowed to
disable hardware interrupts. Instead, the RT-Linux kernel handles all interrupts and
emulates interrupt disabling/enabling for the Linux system. So, when Linux makes
a request to disable interrupts, RT-Linux notes the request by simply resetting a
software interrupt flag and then handles the interrupt for itself when it occurs. When
Linux again enables interrupts, the real-time kernel processes all pending interrupts
and then the corresponding Linux handlers can be executed.

• A real-time scheduler: the scheduler allows hard real-time, fully preemptive sched-
uling based on a fixed-priority scheme. The Linux system itself is scheduled as
the lowest priority task and then runs when there are no real-time tasks ready
to execute. When Linux is running, it schedules the Linux processes according
to Posix scheduling classes. Linux is preempted whenever a real-time task has
to execute.

Real-time tasks can be periodic tasks or interrupt-driven tasks (sporadic tasks) as
defined by real-time primitives (Table 8.1, Figures 8.2 and 8.3). Tasks are programmed
as loadable modules in the kernel and then run without memory protection. So a mis-
behaving task may bring the entire system down. However, running real-time tasks in
the kernel reduces preemption overhead.

With the dual kernel approach, the programming model requires that the application
be split into real-time and non-real-time components. Real-time tasks communicate
with Linux processes using special queues called real-time (RT FIFO). These queues
have been designed so that a real-time task can never be blocked when it reads or
writes data.

As an example consider a small application that polls a device for data in real-time
and stores this data in a file (Figures 8.4 and 8.5). Polling the device is executed by a
periodic real-time task, which then writes the data in a real-time FIFO (first-in first-out

Table 8.1 RT-Linux real-time task primitives

Primitive Action of the primitive

int rt−task−init (RT−TASK *task,
void fn(int data), int data,
int stack−size, int priority)

Creates a real-time task which will execute
with the scheduling priority ‘priority’

int rt−task−delete (RT−TASK
*task)

Deletes a real-time task

int rt−task−make−periodic
(RT−TASK *task, RTIME
start−time, RTIME period)

The task is set up to run at periodically

int rt−task−wait (void) Suspends a real-time periodic task until its
next wake-up

int rt−task−wakeup (RT−TASK
*task)

Wakes up an aperiodic real-time task, which
becomes ready to execute

int rt−task−suspend (RT−TASK
*task)

Suspends the execution of the real-time task
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Figure 8.2 State diagram of task

 #include <linux/errno.h>
 #include <linux/rt_sched.h>
 #include <linux/arch/i386/kernel/irq.h>

 RT_TASK tasks[2];

 void f_periodic (int t) {/* this function is executed by
                                    a real-time periodic task */
 while (1) {

something to do ....
rt_task_wait(); }}

 void f_aperiodic (int t) { /* this function is executed by
                                   a real-time aperiodic task */
      something to do ....
      rt_task_suspend(&task([1]);  }

 int ap_handler()  { /* this handler wakes up the
                                    aperiodic task */
      rt_task_wakeup(&task([1]); }

 int init_module(void) {

      rt_task_init(&tasks[0], f_periodic, 0, 3000, 4);
              /* the periodic task is created */
      rt_task_init(&tasks[1], f_aperiodic, 1, 3000, 5);
              /* the aperiodic task is created */
      rt_task_make_periodic((&task[0], 5, 10);
              /* the periodic task is initialized */
      request_RTirq(2, &ap_handler);
 /* a handler is associated with the IRQ 2 */
      return 0; }
 void cleanup_module(void)
      {
      rt_task_delete(&tasks[0]); /* the periodic task is deleted */
      rt_task_delete(&tasks[1]);/* the aperiodic task is deleted */
      free _RTirq(2); /* IRQ 2 is free */
      }

Figure 8.3 An example of programming aperiodic and periodic real-time tasks
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Figure 8.4 Real-time task communication with a Linux process

The periodic real-time function
is:
void f_periodic () { int i;
  for (i=1; i<1000; i ++) {
    data = get_data();
    rt_fifo_put (fifodesc,
   (char *) &data, sizeof(data));
     /* data are written in the
         fifo */
    rt_task_wait(); }}

The Linux process is:
int main () { int i, f; char
buf[10]

rt_fifo_create(1,1000);
         /* fifo 1 is created
with size of 1000 bytes */
f = open ("file", o_rdwr);
for (i=1; i<1000; i ++)  {
 rt_fifo_read (1, buf,
  10 * sizeof(int));
  write(f, buf,
  10 * sizeof(int)); }
rt_fifo_destroy(1);
   /* the fifo is destroyed */
close(f);}

Figure 8.5 Device polling example

queue). A Linux process reads the data from the FIFO queue and stores them in a
file (Barabonov and Yodaiken, 1996).

8.1.4 LynxOs

Some real-time operating systems have been obtained by engineering from scratch a
Unix-based system. This is the case of LynxOs <LYNXOS>. A customized real-time
kernel completely replaces the Unix kernel by another kernel which provides a real-
time interface and a standard interface. The basic idea is that real-time applications do
not need the Unix system or kernel but require Unix/Posix interfaces. These kernels
have a native real-time nucleus, which presents the usual real-time capabilities. Their
basic interface has been augmented with a full Posix interface providing source or
binary compatibility for existing Unix, Posix or Linux programs. Thus, their interface
is a superset of the Posix interface (i.e. Unix, Linux and Posix).

LynxOs provides Posix services:

• Posix 1003.1. Core services, such as process creation and control, signals, timers,
files and directory operations, pipes, standard C library, I/O port interface and
control.
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• Posix 1003.1b. Real-time extensions, such as priority scheduling, real-time signals,
clocks and timers, semaphores, message passing, shared memory, asynchronous
and synchronous I/O, memory locking.

• Posix 1003.1c. Thread services, including thread creation, control and cleanup,
thread scheduling, thread synchronization and mutual exclusion, signal handling.

Each process provides a paged virtual address space and supports the execution of
threads, which share the address space of the process. Kernel threads share the kernel
space. A memory management unit (MMU) performs the mapping from virtual to
physical page address and enables each thread to run protected in its own space. Real-
time tasks are implemented as threads. Applications or subsystems may be implemented
as processes.

In order to provide deterministic behaviour, low kernel latency and short blocking
times, a variety of architectural features have been provided, the basic ones being a
fully preemptive and reentrant kernel, and a real-time global scheduler. Kernel threads
and user threads share a common priority range of 256 levels and the highest priority
thread runs regardless to which process it belongs or if it is a kernel thread. The priority
inheritance protocol and the priority ceiling protocol are available. Additional aspects
have been provided for lower kernel latency, such as locking pages in main memory,
direct communication between I/O device and a thread, contiguous files and faster file
indexing schemes.

Several features ease the development of applications, such as kernel plugins allow-
ing dynamic loading of services and I/O drivers, Linux and Unix binary compatibility,
native as well as cross-development environments, event tracing and performance anal-
ysis tools. LynxOs supports an Ada certified compiler and the Ada real-time annex.

8.2 Real-Time Languages

8.2.1 Ada

Ada is a modern algorithmic language with the usual control structures, and with the
ability to define types and subprograms. It also serves the need for modularity, whereby
data, types and subprograms can be packaged. It treats modularity in the physical sense
as well, with a facility to support separate compilation.

In addition to these aspects, the language supports real-time programming, with
facilities to define the invocation, synchronization and timing of parallel tasks. It also
supports system programming, with facilities that allow access to system-dependent
properties, and precise control over the representation of data (Ada, 1995a, b).

Besides real-time and embedded systems, Ada is particularly relevant for two kinds
of applications: the very large and the very critical ones. The common requirement of
these applications is reliable code. A strongly-typed language allows the compiler to
detect programmer errors prior to execution. The debugging of run-time errors therefore
concerns mainly the design errors.

The Ada programming language was published as ISO Standard 8652 in 1995.
The GNAT compiler is distributed as free software <GNAT>. In the following, we
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summarize the major highlights of Ada 95 and give an example. Ada is a strongly
typed language with conventional data and control structures, which are also found
with specific idiosyncrasies in the Pascal, C and Java languages.

Ada facilitates object-oriented programming by providing a form of inheritance (via
type extension using a tagged record type) and run-time polymorphism (via run-time
dispatching operations). Type extension leads to the notion of class, which refers to a
hierarchy of types.

The package is an important construct in Ada. It serves as the logical building block
of large programs and is the most natural unit of separate compilation. In addition, it
provides facilities for data hiding and for definition of abstract types.

Genericity and type extensibility make possible the production of reusable soft-
ware components. Type extension using a tagged record type has been mentioned
above. A generic is a template (with parameters) from which instances of subprograms
and packages can be constructed. Generic instantiation, which involves the associa-
tion of formal and calling parameters at compile time, is more powerful than mere
macro expansion.

During the execution of a program, events or conditions may occur which might be
considered exceptional. Ada provides an exception mechanism which allows exceptions
to be raised explicitly within a block, and catching and handling of these exceptions
in exception handlers at the block end. When no handler is found in the local block,
then the exception is propagated to containing blocks until it is handled.

Concurrency and real-time programming

Concurrent tasks can be declared statically or dynamically. A task type has a specifi-
cation and a body. Direct communication between tasks is possible by a rendezvous
protocol implying remote invocation of declared entry points that may be called from
other tasks and acceptance of the call by the callee.

Asynchronous communication between tasks uses shared protected objects. A pro-
tected object type defines data that can be accessed by tasks in mutual exclusion only.
In addition to mutual exclusion, a protected object can also be used for conditional syn-
chronization. A task calling a protected object can be suspended until released by the
action of some other task accessing the same protected object. A conditional routine is
defined as an entry of the protected object and the condition is usually called a barrier
expression. If the service performed by a protected object needs to be provided in two
parts and the calling task has to be suspended after the first part until conditions are
such that the second part can be done, the calling task can be suspended and requeued
on another entry.

Tasks calling a protected object may be queued due to mutual exclusion or to the
barrier expression. The queuing semantic and the choice of the queued task to elect
for accessing the protected object are defined unambiguously. This allows validat-
ing concurrent programming implementations and proving their reliability (Kaiser and
Pradat-Peyre, 1997).

All tasks and protected objects can be assigned priorities using the priority pragma.
The task priorities are used by the scheduler for queuing ready tasks. The protected
object priority is the ceiling priority that can be used to prevent priority inversion.
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Task and protected object syntax is presented in more detail in the mine pump
example below.

A task may be held up by executing a delay statement whose parameter specifies
a duration of inactivity (‘delay some_duration’; some_duration is of type dura-
tion, which is predefined) or indicates a date of awakening (‘delay until some_date’;
some_date is of type time).

The real-time systems annex of the Ada reference manual provides a set of real-
time facilities which extends the core language. A dispatching policy can be selected to
replace the basic FIFO scheduler. The task dispatching policy FIFO Within Priority
allows fixed priority preemptive scheduling. The Ceiling Locking policy specifies the
use of the priority ceiling protocol. Other features, such as dynamic priorities and
prioritized entry queues, can also be chosen by programming options.

Facilities are provided for interfacing and interacting with hardware devices, for
giving access to machine code, for data representation and location, and for interrupt
handling. Interfaces to assembly code, to other high-level languages and to the Posix
API are assured by various compile directives defined as pragmas.

For interrupt handling, an interrupt handler is provided by a protected procedure
(i.e. a procedure of a protected object) which is called by some mythical external task.
The protected procedure can be attached to the interrupt, which has previously been
defined as a system constant.

A restricted tasking profile, named Ravenscar profile, has been defined for use in
high-integrity efficient real-time systems (Burns, 2001), <RAVEN>.

Mine pump example

As an example to illustrate the use of the Ada language, we describe an implementation
of a part of the mine pump problem extensively developed in Joseph (1996) and Burns
(2001). A mine has several sensors to control a pump pumping out the water percolating
in a sump and to monitor the methane level (Figure 8.6).

  M

Operator

Pump

Pump
controller 

H: High water sensor 
L: Low water sensor
M: Methane sensor

H

Sump

  L

Figure 8.6 Control system of the mine pump
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Water level sensors interrupt handling Two water level sensors, H and L, detect
when the percolating water is above the high or low levels respectively. These sensors
raise interrupts. Cyclic tasks are designed to respond to these interrupts and switch the
pump on or off, respectively (by turning the controller on or off). The cyclic tasks are
released aperiodically. A protected object provides one protected procedure for each
interrupt and one entry for each task. The aperiodic tasks and the protected object are
grouped into one package.

package WaterSensors is -- package specification

task HighSensor is -- task specification
pragma Priority(4); -- task priority

end HighSensor;
task LowSensor is -- task specification
pragma Priority(3); -- task priority

end LowSensor;

end WaterSensors;

package body WaterSensors is -- package body
protected InterruptHandlers is

-- protected object specification
procedure High; pragma Interrupt_Handler(High);

-- attached interrupt handler
procedure Low; pragma Interrupt_Handler(Low);

-- attached interrupt handler
entry ReleaseHigh; entry ReleaseLow; -- called by tasks
pragma Priority(10); -- ceiling priority of the resource

private
HighInterrupt, LowInterrupt : Boolean := False;

-- data of the protected object
end InterruptHandlers;

protected body InterruptHandlers is -- protected object body
procedure High is
begin HighInterrupt := True; end High;
procedure Low is
begin LowInterrupt := True; end Low;
entry ReleaseHigh when HighInterrupt is

-- the calling task is suspended as long as the barrier
-- HighInterrupt is not True

begin HighInterrupt := False; end ReleaseHigh;
entry ReleaseLow when LowInterrupt is

-- the calling task is suspended as long as the barrier
-- LowInterrupt is not True

begin LowInterrupt := False; end ReleaseLow;
end InterruptHandlers;
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task body HighSensor is -- task body
begin

loop -- infinite loop
InterruptHandlers.ReleaseHigh; Controller.TurnOn;

-- aperiodically released
end loop;

end HighSensor;

task body LowSensor is -- task body
begin
loop -- infinite loop

InterruptHandlers.ReleaseLow; Controller.TurnOff;
-- aperiodically released

end loop;
end LowSensor;

end WaterSensors;

Methane sensor management The mine also has a methane sensor M. When the
methane level reaches a critical level, an alarm must be sent to an operator. To avoid
the risk of explosion, the pump must be operated only when the methane level is below
the critical level.

A protected object stores the current methane reading. A periodic task refreshes
the methane reading periodically by polling the methane sensor. If the methane value
reaches the critical level, this task warns the operator and stops the pump. Another
periodic task supervises the pump for safety purposes, stopping and starting the pump
according to the current value of the methane reading and to the reliability of its
value (a current methane reading which is too old is considered unreliable). Start-
ing and stopping the pump are different actions than turning it on or off. The alarm
is posted to a protected object which is read by an aperiodic operator task (not
described here).

protected MethaneStatus is -- protected object specification
procedure Read(Ms : out MethaneValue; T : out Time);

-- out parameter for a result
protected Write(V : MethaneValue; T : Time);
pragma Priority(9); -- ceiling priority

private
CurrentValue := MethaneValue := MethaneValue’Last;

-- initially highest possible value
TimeOfRead : Time := Clock;

-- Clock is a standard run-time function
end MethaneStatus;

protected body MethaneStatus is -- protected object body
procedure Read(Ms : out MethaneValue; T : out Time) is
begin

Ms := CurrentValue;
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T := TimeOfRead;
end Read;
protected Write(V : MethaneValue; T : Time) is
begin

CurrentValue := V;
TimeOfRead := T;

end Write;
end MethaneStatus;

task MethanePolling is -- task specification
pragma Priority(8); -- task priority

end MethanePolling;

task body MethanePolling is -- task body
SensorReading : MethaneValue;
Period : Duration := MethanePeriod;

-- task period; this is a delay
NextStart : Time; -- this is a date

begin
NextStart := Clock; -- read the system clock
loop

-- read hardware register in SensorReading
if SensorReading >= MethaneThreshold then

Controller.Stop;
-- request the controller to stop the pump

OperatorAlarm.Set; -- post a warning
end if;
MethaneStatus.Write(SensorReading, NextStart);

-- refresh the current value
NextStart := NextStart + Period;
delay until NextStart; -- new release date of periodic task

end loop;
end MethanePolling;

task SafetyChecker is -- task specification
pragma Priority(5); -- task priority

end SafetyChecker;

task body SafetyChecker is -- task body
Reading : MethaneValue;
Period : Duration := SafetyPeriod; -- task period
NextStart, LastTime, NewTime : Time;-- all dates

begin
NextStart := Clock; -- read the system clock
LastTime := NextStart;
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loop
MethaneStatus.Read(Reading, NewTime);

-- current methane reading
if Reading >= MethaneThreshold or

NewTime - LastTime > Freshness then -- too old value
Controller.Stop;

-- request the controller to stop the pump
else

Controller.Start;
-- request the controller to start the pump

end if;
NextStart := NextStart + Period;
delay until NextStart; -- new release date of periodic task

end loop;
end SafetyChecker;

protected OperatorAlarm is
procedure Set; -- post a warning
entry Release; -- wait for a warning
pragma Priority(9);

private Alarm : Boolean := False; -- shared data
end OperatorAlarm;

Pump controller The pump controller is also a protected object. The aperiodic tasks
that respond to the high and low water interrupts call TurnOn and TurnOff procedures.
The periodic safety controller calls Stop and Start procedures.

protected Controller is
procedure TurnOn;
procedure TurnOff;
procedure Stop;
procedure Start;
pragma Priority(9); -- ceiling priority of the resource

private
Pump : Status := Off; -- type Status is (On, Off)
Condition : SafetyStatus := Stopped;

-- type SafetyStatus is (Stopped, Operational)
end Controller;

protected body Controller is
procedure TurnOn is
begin
Pump := On;
if Condition = Operational then TurnOnThePump; end if;

end TurnOn;
procedure TurnOff is
begin
Pump := Off;
TurnOffThePump;
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end TurnOff;
procedure Stop is
begin
TurnOffThePump;
Condition := Stopped;

end Stop;
procedure Start is
begin
Condition := Operational;
if Pump = On then TurnOnThePump; end if;

end Start;
end Controller;

Multitasking program The Main program declares all tasks and protected objects
before starting them all concurrently. It imports some packages from the Ada real-time
library. Some basic types and application constants are defined in a global package
that appears first.

with Ada.Real_Time; use Ada.Real_Time;
procedure Main is -- this is the application boot
package GlobalDefinitions is

type Status is (On, Off);
type SafetyStatus is (Stopped, Operational);
type MethaneValue is range 0 .. 256;
MethaneThreshold : constant MethaneValue := 32;
Freshness : constant Duration := Milliseconds(30);
MethanePeriod : constant Duration := Milliseconds(20);
SafetyPeriod : constant Duration := Milliseconds(35);

end GlobalDefinitions;
-- Declaration of package WaterSensor with a protected object and
-- two aperiodic tasks
-- Declaration of protected objects MethaneStatus, OperatorAlarm
-- and Controller
-- Declaration of periodic tasks MethanePolling and SafetyChecker

begin -- at this point starts the multitasking of 5 concurrent tasks
null;

end Main;

8.2.2 Ada distributed systems annex

Partitions as units of distribution

The Ada model for programming distributed systems is presented in the distributed
systems annex (DSA) (Ada, 1995a, b). It specifies a partition as the unit of distribution.
A partition, which may be active or passive, contains an aggregation of library units that
execute in a distributed target execution environment. Typically, each active partition
corresponds to a single execution site, and all its constituent units occupy the same
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address space. A passive partition resides at a storage node that is accessible to the
processing nodes of the different active partitions that reference them. The principal
interface between partitions is one or more package specifications. Support for the
configuration of partitions to the target environment and its associated communication
is not explicitly specified by the model. An example of such a support, named GLADE,
is presented below.

The general idea is that the partitions execute independently other than when com-
municating. Programming the cooperation among partitions is achieved by library units
defined to allow access to data and subprograms in different partitions. In this way,
strong typing and unit consistency is maintained across a distributed system.

Library units are categorized into a hierarchy by pragmas, which are:

pragma Pure(...);
pragma Shared_Passive(...);
pragma Remote_Types(...);
pragma Remote_Call_Interface(...);

A pure unit does not contain any state. Thus a distinct copy can be placed in each par-
tition. However, a type declared in a pure unit is considered to be a single declaration,
irrespective of how many times the unit is replicated and the copying of it does not
create derived types. Hence pure packages enable types to be declared to be used and
checked in the communication between partitions.

A shared passive unit corresponds to a logical address space that is common to
all partitions that reference its constituent library units. It allows the creation of a
non-duplicated although shared segment.

Remote type units define types usable by communicating partitions. They are useful
when one needs to pass access values, which correspond to access types that have a
user-defined meaning, such as a handle to a system-wide resource. These access types
are called remote access types.

A remote call interface (RCI) unit defines the interface of subprograms to be called
remotely from other active partitions. Communication between active partitions is via
remote procedure calls on RCI units. Such remote calls are processed by stubs at each
end of the communication; parameters and results are passed as streams. This is all
done automatically by the partition communication subsystem (PCS). A remote call
interface body exists only in the partition which implements the remote object and
is thus not duplicated. All other occurrences will have a stub allocated for remotely
calling the object.

Paradigms for distribution

An implementation of Ada for distributed systems needs a tool which provides mech-
anisms for configuring the program, i.e. associating the partitions with particular
processing or memory elements in the target architecture.

GLADE is such a general-purpose tool, which is the companion of the GNAT com-
piler <GNAT> distributed as free software by Ada Core Technologies <ACT>.
GLADE consists of a configuration tool called GNATDIST and a communication sub-
system called GARLIC. These tools allow the building of a distributed application
on a set of homogeneous or heterogeneous machines and use of the full standard-
ized language.
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However more simple paradigms of distribution can be implemented, such as the
client/server paradigm as it is modelled in CORBA (Omg, 2001). ADABROKER is
a CORBA platform which has been implemented in Ada and which is also available
as free software <ADABROKER>. CIAO is a gateway from CORBA to Ada, which
allows a client in CORBA to call services available in ADA DSA. It provides the
CORBA client with a CORBA description (IDL description) of the DSA services
(Pautet et al., 1999).

Other tools that use Ada in distributed system environments are presented in
(Humpris, 2001).

Additional requirements for distributed real-time

Recent real-time Ada workshops have focused on extensions to the DSA to include
support for distributed real-time applications.

In real-time applications, in order to be able to predict and bound the response times
of RPC requests it is necessary to be able to specify the priorities at which the RPC
handlers are executed, and the priorities at which the messages are transmitted in the
network. Thus several extensions of the ARM, which are close to the RT-CORBA
specifications, are proposed (Pinho, 2001):

• A new global priority type, for representing a value with a global meaning in the
distributed system. Appropriate mapping functions translate this global priority type
to a value adequate for each CPU and network.

• Mechanisms for specifying the priority at which the RPC handlers start their exe-
cution, both initially and after servicing an RPC request.

• Mechanisms for specifying (at the client side) the priorities at which RPC requests
are served in the server, as well as the message priorities in the network.

• Mechanisms for configuring the pool of RPC handlers, as well as more detailed
semantics on the handling of pending RPC requests.

Recall that mechanisms to avoid or bound priority inversion are already present in
the Ada real-time annex and have been implemented. Much of the real-time Ada
workshop requirements are implemented in GLADE (Pautet and Tardieu, 2000; Pautet
et al., 2001).

8.2.3 Real-time Java

The strengths of the Java language promote its use for real-time applications, especially
in the context of client–server relationships and of Web usage. Its main strengths
(Brosgol and Dobbing, 2001) are:

• elegant object-oriented programming features;

• a nice solution for multiple inheritance;
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• portability due to the language semantics and the choice of a virtual machine
implementation (JVM);

• large sets of libraries of very comprehensive APIs (Application programming inter-
faces) including Web-ready classes;

• strong industrial support.

However, Java also presents some weaknesses for real-time:

• the object centricity makes it clumsy to write programs that are essentially pro-
cessing or using multitasking;

• the thread and mutual exclusion models lack a completely rigorous semantic;

• the dynamic memory allocation and garbage collection introduce a heavy time cost;

• the priority semantics and scheduling issues are completely implementation depen-
dent;

• priority inversion is possible;

• there is no way to deal with low-level processing, interrupts and other asynchronous
event handling.

Several consortia <RTJAVA> are considering real-time extensions to use Java in real-
time applications. Several proposals of real-time classes and of variants of the JVM are
being considered by the real-time engineering community. Some are detailed in Burns
and Wellings (2001) and Brosgol and Dobbing (2001). However, the reader should
note that Real-Time Java is an evolving specification and, at the time of writing, has
not been completely tested by an implementation.

8.2.4 Synchronous languages

Synchronous languages (Halbwachs, 1993) allow the creation of programs that are
considered to be reacting instantaneously to external events or, in other words, the
duration of reaction is always shorter than the time between external events. Each
internal or output event of the program is precisely and only dated by the flow
of input events. The behaviour of a program is fully deterministic from the time
point of view.

The notion of chronometric time is replaced by the notion of event ordering: the only
relevant notions are the simultaneity and the precedence between events. Physical time
does not play a special role, as it does in Ada for instance; it is just one of the events
coming from the program environment. For example, the two statements: ‘the train must
stop within 10 seconds’ and ‘the train must stop within 100 metres’, which express
constraints of the same nature, will be expressed by similar precedence constraints in a
synchronous language: ‘The event Stop must precede the 10th (respectively the 100th)
next occurrence of the event Second (respectively Metre)’. This is not the case in Ada
where physical time is handled by special statements.
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Any instant is a logical instant: the history of the system is a totally ordered sequence
of logical instants; at each of these instants, and at these only, a set of events may
occur (zero, one or several events). Events that occur at the same logical instant are
considered simultaneous; those that happen at different instants are ordered according
to their instants of occurrence. Apart from these logical instants, nothing happens either
in the system or in its environment. Finally, all the tasks have the same knowledge of
the events occurring at a given instant.

In practice, the synchrony hypothesis assumes that the program reacts rapidly enough
to record all the external events in suitable order. If this assumption can be checked,
the synchrony hypothesis is a realistic abstraction which allows a particularly efficient
and measurable implementation. The object code is structured as a finite automaton, a
transition of which corresponds to a reaction of the program. The corresponding code
is loop-free and a bound of its execution time can be computed for a given machine.
Thus the validity of the synchrony hypothesis can be checked.

Synchronous languages cannot pretend to solve all the problems raised by the
design of real-time applications. A complex real-time application is usually made up
of three parts:

• An interactive interface which acquires the inputs and posts the outputs. This part
includes interrupt management, input reading from sensors and mapping physical
input/output to logical data. It manages the human interface (keyboard, mouse,
scrollbar) to call interactive services and the communication between loosely
coupled components.

• One or more reactive kernels which compute the outputs from the logical inputs
by selecting the suitable reaction.

• A level of data management which performs transformational tasks, stores data for
logging and retrieval, and displays the application states on dashboards, under the
control of the reactive kernel.

The synchronous language is useful for safely programming the reactive kernels when
the synchrony hypothesis is valid. Let us summarize the presentation of the synchrony
hypothesis by two figures. In Figure 8.7, the synchronous and asynchronous hypotheses
are compared. Figure 8.8 shows an example where the computation times may be
important and where the rate of input events may cause the synchrony hypothesis to
fail. Thus, this hypothesis has to be checked with the application time constraints.

The oldest synchronous formalism is Statecharts (Harel, 1987). Another graphic
formalism is ARGOS, which is based on parallel and hierarchical automata. Several
synchronous languages have been developed: the oldest is ESTEREL, which is an
imperative, textual language. LUSTRE is a functional, textual data-flow language,
and SIGNAL is a relational language. A good presentation is given in Halbwachs
(1993).

We now give a short example written in ESTEREL. It controls two trains which run
on a circular network of five electrified rails (numbered from 1 to 5) and which must be
separated by an empty rail. This track is illustrated in Figure 8.9. The program consists
of a declaration part, an initialization part and five identical parts which describe the
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Figure 8.8 Questionable synchrony

rail management. Statements allow waiting for a signal (‘await’), broadcasting a signal
(‘emit’), and writing parallel statements (‘||’).

module TwoTrains:

% external events triggered by sensors
Input Sensor1, Sensor2, Sensor3, Sensor4, Sensor5, GO;
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Figure 8.9 Railway track

% internal events posted to the parallel modules
signal Rail1On, Rail1Off, Rail1Free, Rail2On,

Rail2Off, Rail2Free, Rail3On, Rail3Off,
Rail3Free, Rail4On, Rail4Off, Rail4Free,
Rail5On, Rail5Off, Rail5Free;

% initialization module
await GO;
emit Rail1On; % the train 1 starts on rail 1 on which

% power is switched on
emit Rail4On; % the train 2 starts on rail 4 on which

% power is switched on
emit Rail3Free; % this is the sole rail where the train may

% proceed
| | % parallel statement
% rail 1 management module

loop
[
await Rail1On; % wait the arrival of a train
await Sensor1; % wait the train passing by the sensor
emit Rail1Off; % switch off the power of rail 1
| |
await Rail3Free; % rail 3 must be free before entering

% rail 2
];
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emit Rail2On; % switch on power of rail 2
emit Rail1Free; % broadcasts the availability of rail 1

end loop
| |
% rail 2 management module, similar to rail 1 management module
| |
% rail 3 management module, similar to rail 1 management module
| |
% rail 4 management module, similar to rail 1 management module
| |
% rail 5 management module, similar to rail 1 management module
end signal

end TwoTrains. % end of module TwoTrains

8.3 Real-Time Middleware

In the past few years, object-oriented (OO) technology has become very popular.
This technology contributes to reducing the development complexity and mainte-
nance costs of complex applications and facilitating reuse of components. Having
to deal with the complexity of design, analysis, maintenance and validation of real-
time applications, the real-time systems engineering community is increasingly inter-
ested in using OO technology at different levels, mainly the design, programming
and middleware levels. Thus, timing aspects should be integrated and handled at all
these levels.

This engineering approach also motivates the use of distributed object comput-
ing middleware, such as CORBA. Distributed computing middleware resides between
applications and the underlying infrastructure (operating system and network). Mid-
dleware provides an abstraction of the underlying system and network infrastructure
to applications that use it. In non-real-time applications, this abstraction allows the
development of applications without reference to the underlying system, network and
interfaces. Nevertheless, to meet real-time constraints, real-time applications must be
aware of, and have control over, the behaviour of the underlying infrastructure which
is abstracted by the middleware. In consequence, middleware used by real-time appli-
cations must include functions allowing access to this underlying infrastructure and
control of its behaviour. The current generation of distributed object-oriented middle-
ware does not support real-time applications.

To take into account these needs, various works are being undertaken within the
OMG (Object Management Group). These works aim to extend UML, Java and
CORBA to make them suitable for real-time applications and to guarantee end-to-end
quality of service. The main extensions focus on scheduling, memory management,
concurrency and communication management. The middleware which has raised the
most extensions to take into account real-time requirements is incontestably CORBA.
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This work is sufficiently advanced and some components are now available on the
market. This section focuses on Real-Time CORBA middleware.

Before presenting the concepts and mechanisms introduced in Real-Time CORBA,
we briefly summarize the CORBA standard in the next section.

8.3.1 Overview of CORBA

The CORBA (Common Object Request Broker Architecture) standard specifies inter-
faces that allow interoperability between client and servers under the object-oriented
paradigm. CORBA version 1.1 was released in 1992; the last version, at the time of
writing, i.e. version 2.6, was released in December 2001 (OMG, 2001b).

CORBA provides a very abstract view of objects. The object exists only as an
abstraction. An object is a combination of state and a set of methods that explicitly
embodies an abstraction. An operation is a service that can be requested. It has an asso-
ciated signature, which may restrict which actual parameters are valid. A method is an
implementation of an operation. Each object is assigned an object reference, which is an
identifier used in requests to identify the object. The interface determines the operations
that a client may perform using the object reference. The access to distributed objects
relies on an Object Request Broker (ORB) whose aim is to hide the heterogeneity of
languages, platforms, computers and networks that implement the object services and
to provide the interoperability among the different object implementations. The basic
invocation of objects is based on the remote procedure call (RPC) mechanism.

CORBA supports both static and dynamic interfaces. The static invocation interfaces
are determined at compile time, and are present in client codes using stubs (a client stub
is a local procedure, part of the RPC mechanism, which is used for method invocation).
The dynamic invocation interface allows clients to construct and issue a request whose
signature (i.e. parameter number, parameters types and parameter passing modes) is
possibly not known until run-time. That is, the request is fully constructed at run-time
using information from the interface repository.

The main components of the CORBA architecture are shown in Figure 8.10 and are
briefly summarized in the following:

Interface definition language (IDL) IDL is a language that is used to statically define
the object interfaces, to allow invocation to object operations with differing underlying
implementations. From IDL definitions, it is possible to map CORBA objects into
particular programming language. IDL syntax is derived from C++, removing the
constructs of a simple implementation language and adding a number of keywords
required to specify distributed systems.

Interface architecture CORBA defines an architecture consisting of three specific inter-
faces: client-side interface, object implementation-side interface and ORB core interface.

• The client-side interface provides:

– IDL stubs that are generated from IDL definitions and linked into the client
program in order to implement the client part of the RPC; these are the static
invocation interfaces;

– dynamic invocation interfaces used to build requests at run-time.
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Figure 8.10 CORBA architecture

• Implementation-side interfaces allow calls from the ORB up to the object imple-
mentations. They include:

– IDL skeletons which represent the server-side counterpart of the IDL stub inter-
face; a skeleton is a component which assists an object adapter in implementing
the server part of the RPC and in passing requests to particular methods;

– dynamic skeleton interfaces provide at run-time binding mechanism for servers.
Such an interface is analogous to the client side’s dynamic invocation interface;

– object adapter which processes requests on behalf of the object servers. It is
the means by which object implementations access most ORB services, such
as generation and interpretation of object references, method invocation and
object activation.

• ORB interface, which allows the ORB to be accessed directly by clients and
server programs.
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ORB core The ORB core is a set of communication mechanisms, which includes all
functions required to support distributed computing, such as location of objects, object
referencing, establishment of connections to the server, marshalling of request param-
eters and results, and activating and deactivating objects and their implementations.

Object adapter The object adapter is the ORB component which provides object
reference, activation and state-related services to an object implementation. There may
be different adapters provided for different kinds of implementations. The CORBA
standard defines a Portable Object Adapter (POA) that can be used for most ORB
objects with conventional implementations.

Interface repository The interface repository is used by clients to locate objects
unknown at compile time, and then to build requests associated with these objects.
Interfaces can be added to the repository to define operations for run-time retrieval of
information from the repository.

Implementation repository The implementation repository is a storage place for object
implementation information. The object implementation information is provided at
installation time and is stored in the implementation repository for use by the ORB to
locate and activate implementations of objects.

ORB interoperability This specifies a flexible approach for supporting networks of
objects that are distributed across heterogeneous CORBA-compliant ORBs. The archi-
tecture identifies the roles of different domains of ORB-specific information. A domain
is a distinct scope, within which common characteristics are exhibited, common rules
observed, and over which distribution transparency is preserved. Domains are joined
by bridges, which map concepts in one domain to the equivalent in another. A very
basic inter-ORB protocol, called General Inter-ORB Protocol (GIOP), has been defined
to serve as a common backbone protocol. The Internet Inter-ORB protocol (IIOP) is
an implementation of GIOP on TCP/IP suitable for Internet applications.

8.3.2 Overview of real-time CORBA

Conventional CORBA does not define scheduling. The ability to enforce end-to-end
timing constraints, through techniques such as global priority-based scheduling, must be
addressed across the CORBA standard. The real-time requirements on the underlying
systems include the use of real-time operating systems on the nodes in the distributed
system and the use of adequate protocols for real-time communication between nodes
in this distributed system. An important step towards distributed real-time systems
supported by CORBA is the introduction of concepts related to time constraints in
CORBA, without fundamental modification of the original CORBA.

In 1995, a Special Interest Group (SIG) was formed, at OMG, to initiate Real-Time
CORBA (called RT-CORBA) and to assess the requirements and interest in providing
real-time extensions to the CORBA model. The CORBA extension is done according
to several phases. Two phases are already completed and led to two specifications, RT-
CORBA 1.0 and 2.0, which we briefly present below. The RT-CORBA 1.0 standard is
designed for fixed priority real-time operation. It was adopted in 1998, and integrated
with CORBA in specification 2.4. RT-CORBA 2.0 targets dynamic scheduling, and
was adopted in 2001.
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An experimental RT-CORBA implementation, TAO (Schmidt et al., 1998), developed
at Washington University in St Louis, has been extensively documented. TAO runs on a
variety of operating system such as VxWorks, Chorus and Solaris. At present, only a few
vendors have ported their ORBs to real-time operating systems.

RT-CORBA architecture

RT-CORBA should include the following four major components, each of which must
be designed and implemented taking into account the need for end-to-end predictability:

• scheduling mechanisms in the operating system (OS);

• real-time ORB;

• communication transport handling timing constraints;

• applications specifying time constraints.

RT-CORBA is positioned as a separate extension to CORBA (Figure 8.11). An ORB
implementation compliant to RT-CORBA 1.0 must implement all of RT-CORBA
except the scheduling service, which is optional.

Thread pools RT-CORBA uses threads as a schedulability entity, and specifies
interfaces through which the characteristics of a thread can be manipulated. To avoid
unbounded priority inversion, real-time applications often require some form of pre-
emptive multithreading. RT-CORBA addresses these concurrency issues by defining a
standard thread pool model. This model enables preallocating pools and setting some
thread attributes (default priority, and so on). Developers can configure thread pools
to buffer or not buffer requests, thus providing further control over memory usage.

Priority mechanisms RT-CORBA defines platform-independent mechanisms to con-
trol the priority of operation invocations. Two types of priorities are defined: CORBA
priorities (handled at CORBA level) and native priorities (priorities of the target OS).
Priority values must be mapped into the native priority scheme of a given scheduler
before running the underlying schedulable entities. In addition, RT-CORBA supports
two models for the priority at which a server handles requests from clients: the server
declared priority model (the server dictates the priority at which object invocations
are executed) and the client propagated model (the server honours the priority of the
invocation set by the client). When using the server declared model an object must
publish its CORBA priority in its object reference, so that the client knows at which
priority level its requests are treated. The priority model is selected and configured
by use of the PriorityModelPolicy interface. Priority selection may be applied
to all the objects, or it can be overridden on a per-object reference basis. According
to each implementation’s needs, the RT-CORBA ORB implements a simple priority
inheritance protocol, a priority ceiling protocol or some other inheritance protocol.

Scheduling service The RT-CORBA scheduling service defines a high-level schedul-
ing service so that applications can specify their scheduling requirements (worst case
execution time, period, and so on) in a clear way independent of the target operating
system.
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RTCORBA::Threadpool interface enables management (creation, destruction) of thread pools.

RTCORBA::Priority type defines RT-CORBA priorities as integer in [0 .. 32767].

RTCORBA::Current interface provides access to CORBA and native priorities of the current 
thread.

RTCORBA::PriorityMapping interface used for mapping RT-CORBA  priorities  into native
priorities and vice versa.

RTPOA (Real-Time Portable Object Adapter)  provides operations to  support  object-level  priority
settings at the time of object reference creation or servant activation.

RTCORBA::RTORB handles operations concerned with the configuration of the Real-Time ORB
and manages the creation and destruction of instances of RT-CORBAIDL interfaces.

RTCORBA::Mutex interface provides mechanisms for coordinating contention for system 
resources. A conforming Real-Time CORBA implementation must  provide an implementation of
Mutex that implements some form of priority inheritance protocol.
RTCORBA::ProtocolProperties interface allows the  configuration  of  transport  protocol
specific configurable parameters (send buffer size, delay, etc.).

Figure 8.11 Real-time CORBA architecture

Real-time ORB services RT-CORBA ORBs, also called RTORB, handle operations
concerned with the configuration of the real-time ORB and manage the creation and
destruction of instances of other real-time CORBA IDL interfaces. Given that an ORB
has to perform more than one activity at time, the allocation of the resources (processor,
memory, network bandwidth, etc.) needed for those activities also has to be controlled
in order to build predictable applications.
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Operating system One important component for RT-CORBA is the real-time oper-
ating system (RTOS). The RTOS performance and capabilities (priority set, con-
text switch overhead, dispatching, resource locking mechanisms, thread management,
admission control, etc.) considerably influence the performance. RT-CORBA does not
provide portability for the real-time operating system. However, it is compatible with
the Posix real-time extensions.

Managing inter-ORB communication Contrary to the CORBA standard, which sup-
ports location transparency, RT-CORBA lets applications control the underlying com-
munication protocols and end-systems. The guarantee of a predictable QoS can be
achieved by two mechanisms: selecting and configuring protocol properties, and expli-
cit binding to server objects. An RT-CORBA end-system must integrate protocols that
guarantee timeliness of communications (i.e. bounded transfer delays and jitter). Accor-
ding to the network used (ATM, CAN, TCP/IP, FDDI, and so on), the mechanisms
may be very different. RT-CORBA inter-ORB communication should use techniques
and packet scheduling algorithms such as those studied in Chapters 6 and 7.

RT-CORBA scheduling service

Static distributed systems are those where the processing load on the system is within
known bounds. Thus a schedulability analysis can be performed a priori. Dynamic dis-
tributed systems cannot afford to predict their workload sufficiently. In consequence,
the underlying infrastructure must be able to satisfy real-time constraints in a dynam-
ically changing environment. RT-CORBA takes into account these two situations: the
RT-CORBA 1.0 specification is designed for fixed-priority real-time operation, and RT-
CORBA 2.0 targets dynamic scheduling, where priorities can vary during execution.
In both RT-CORBA specifications (1.0 and 2.0), the scheduling service uses primi-
tives of the Real-Time ORB. In RT-CORBA 1.0, the scheduling service implements
fixed-priority scheduling algorithms such as rate monotonic or deadline monotonic.
RT-CORBA 2.0 implements dynamic-priority scheduling algorithms such as earliest
deadline first or least laxity first.

An application is able to use a uniform real-time scheduling policy enforced in the
entire system. A scheduling service implementation will choose CORBA priorities,
POA policies, and priority mappings in such a way as to realize a uniform real-time
scheduling policy. Different implementations of the scheduling service can provide
different real-time scheduling policies.

Note that RT-CORBA does not specify any scheduling policy (or algorithm), but
it specifies interfaces to use according to application requirements. The primitives
added in RT-CORBA to create a Real-Time ORB are sufficient to achieve real-time
scheduling, but effective real-time scheduling is complicated. It requires that the RT-
ORB primitives be used properly and that their parameters be set properly in all parts
of the RT-CORBA system.

1. Fixed-priority scheduling (RT-CORBA 1.0) In RT-CORBA 1.0, the concept of
activity is used as an analysis/design entity. An activity may encompass several, pos-
sibly nested, operation invocations. RT-CORBA does not define further the concept of
activity. The scheduling parameters (such as CORBA priorities) are referenced through
the use of ‘names’ (strings). The application code uses names to uniquely identify
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CORBA activities and CORBA objects. The scheduling service internally associates
those names with scheduling parameters and policies. The scheduling service operates
in a ‘closed’ CORBA system where fixed priorities are allowed to a static set of clients
and servers. Therefore, it is assumed that the system designer is able to identify such
a static set of CORBA activities and CORBA objects.

Whenever the client begins executing a region of code with a new deadline or
priority, it invokes the schedule_activity operation with the name of the new
activity. The scheduling service maps a CORBA priority to this name, and it invokes
appropriate RT-ORB and RTOS primitives to schedule this activity.

The create_POA method accepts parameters for POA creation. All real-time poli-
cies of the returned POA will be set internally by this scheduling service method. This
ensures a selection of real-time policies that is consistent.

The schedule_object operation is provided to allow the server to achieve
object-level scheduling. A schedule_object call will install object-level scheduling
parameters, for example, the priority ceiling of the object. These scheduling parameters
are derived internally by the scheduling service.

2. Dynamic scheduling (RT-CORBA 2.0) RT-CORBA A 2.0 replaces the term activ-
ity, used in RT-CORBA 1.0, by the definition of an end-to-end schedulable entity
called distributable thread that may reside on multiple physical nodes. A distributable
thread can execute operations on objects without regard for physical node boundaries.

Each distributable thread may have one or more scheduling parameter elements (e.g.
priority, deadline or importance) that specify the acceptable end-to-end timeliness. The
execution of a distributable thread is governed by the scheduling parameters on each
node it visits. A scheduling discipline may have no scheduling parameter elements,
only one, or several; the number and meaning of the scheduling parameter elements are
scheduling-discipline specific. For example, simple deadline scheduling (such as EDF
scheduling) may need only the thread deadline and maximum thread execution time.

Applications may announce their scheduling requirements. Distributable threads
interact with the scheduler at specific scheduling points, including application calls,
locks and releases of resources. Several scheduling discipline may exist. The RT-
CORBA specification defines only the interface between the ORB/application and the
scheduler. It is worth noting that schedulers will likely be dependent on the underlying
operating system, and the RT-CORBA specification does not address these operating
system interfaces, since they are outside the scope of CORBA.

Typically, distributed applications will be constructed as several distributable threads
that execute logically concurrently. Each distributable thread will execute through
one or a series of (distributed) scheduling segments, including some that may have
nested segments. The begin_scheduling_segment operation enables association
of scheduling parameter elements with a thread, the update_scheduling_segment

operation enables modification of them, and the end_scheduling_segment operation
causes the distributable thread to return to the previous scheduling parameter (if any).
Also, RT-CORBA enables the application to create locally a scheduler-aware resource
via create_resource_manager; these resources can have scheduling information
associated with them via the set_scheduling_parameter operation. For example,
a servant thread could have a priority ceiling protocol. The scheduling information
associated with resources is discipline-specific.
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8.4 Summary of Scheduling Capabilities
of Standardized Components

Let us now summarize the efforts for providing components to be used as standardized
real-time applications components. We consider two approaches, the first consisting in
augmenting the promptness and predictability of actions, the second in controlling the
timing of these actions.

8.4.1 Tracking efficiency

The basic idea of this approach is that real-time applications must be engineered
with standard interfaces in order to be able to use components which are extensively
used for non-real-time applications and are thus cheaper and safer (since they have
been extensively tested). This approach supposes that the corresponding application
programming interfaces (API) are widely accepted. This is the case for real-time oper-
ating systems that support all the Posix 1003.1 standards. A programming language
such as Ada, standardized by ISO, proposes features ranging from task types to a spe-
cific real-time annex and imports external standards through library interfaces. Efforts
for enabling Java to be used for real-time applications are done through the Real-Time
Java extensions. For distributed platforms, several groups are attempting to standardize
real-time aspects, leading to proposals for CORBA, distributed Ada or distributed Java.

However, the implementation of the interface specifications must be more efficient
than non-real-time components. Real-time operating system kernels have been more
or less engineered anew from scratch to implement a reentrant and preemptive kernel.
Ada efficiency is obtained by static choices and decisions, allowing the detection of
errors at compile time. Real-Time Java leads to the definition of a new virtual machine
and specific packages for real-time classes. Real-Time CORBA requires customizing
platforms and protocols.

8.4.2 Tracking punctuality

Efficient implementation is necessary for extending the usability of existing tools.
However, efficiency is not sufficient. ‘Real-time’ does not mean ‘real fast’. The true
goal of real-time components is to be able to satisfy timing constraints. This is the
goal of schedulers implementing some of the scheduling algorithms that have been
extensively presented in this book.

All tools provide predefined fixed-priority preemptive schedulers: Posix 1003.1 com-
pliant operating systems, Ada and Real-Time Java, real-time extensions of CORBA
(fixed priorities for tasks and messages as well). Most of them take care of priorities
inversion and implement priority ceiling or priority inheritance.

Variable priority schedulers are found more seldom and need to be specified by the
user. This is defined by the SCHED OTHER policy in Posix 1003.1 or by the queuing
policy pragma in Ada. Real-Time Java and Real-Time CORBA are experimenting
with variable priority issues. The difficulty of testing and validating applications in the
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context of variable priorities inhibits their use for industrial applications and therefore
the development of environments supporting this kind of scheduler.

Dealing with timing faults, at run-time, and controlling the set of schedulable tasks
with an online guarantee routine is still a research topic. However, the notion of
importance is present in the Real-Time Java interface, but its use is not yet defined.
More generally, coping with the time consumed by fault-tolerant techniques such as
active or passive redundancy, or consensus (which are all out of the scope of this book)
is still the subject of experiments with specific architectures and tools (Kopetz, 1997).

8.4.3 Conclusion

If we focus now on the ability to respect hard or soft real-time constraints, the
state of the art shows a difference between centralized and distributed applications.
Time constraints are more easily controlled in centralized, tightly coupled or homo-
geneous local network architectures. Thus, these architectures are required for hard
real-time constrained applications. On the other hand, loosely coupled, open systems
or heterogeneous architectures assume the ability of managing network resources in
order to provide stringent control of message traffic and message deadlines. Today,
this requires both theoretical and engineering developments. This explains why, for
open and heterogeneous distributed architectures, only soft real-time applications are
considered possible (realizable) in the near future.

8.5 Exercise

8.5.1 Question

Exercise 8.1: Schedulability analysis of an extension of the mine
pump example

Consider an extended mine pump example where the tasks also perform data
management, data logging and data display. This leads to some longer execution
times. Additional tasks also control the carbon monoxide and airflow levels. The
extended task configuration is given in Table 8.2.

Table 8.2 Task set parameters

Task Class Period
(T )

Relative deadline
(D)

Worst-case
computation time (C)

MethanePolling Periodic 200 100 58
AirPolling Periodic 300 200 37
CoPolling Periodic 300 200 37
SafetyChecker Periodic 350 300 39
LowSensor Sporadic 100 000 750 33
HighSensor Sporadic 100 000 1000 33

Continued on page 210
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Continued from page 209

Q1 Consider the task schedulability of the extended mine pump application
under the rate monotonic and earliest deadline first techniques.

8.5.2 Answer

Exercise 8.1: Schedulability analysis of an extension of the mine
pump example

Q1 U = 0.29 + 0.1233 + 0.1233 + 0.1114 = 0.6480

CH = 0.58 + 0.185 + 0.185 + 0.13 = 1.08

Major cycle = [0, LCM(200, 300, 350)] = [0, 4200]

As tasks have deadlines shorter than the period, the sufficient condition
for RM is not usable. For EDF, the sufficient condition CH ≤ 1 does not
hold. However, task schedules can be built without deadline missing. The
schedule under RM is given by Table 8.3.

Table 8.3 Schedule under the rate monotonic algorithm

Time interval Elected task (fixed priority) Comments

[0 .. 58[ MethanePolling(1) Deadline 100 is met
[58 .. 95[ AirPolling(2) Deadline 200 is met
[95 .. 122[ CoPolling(3) Deadline 200 is met
[122 .. 161[ SafetyChecker (4) Deadline 300 is met
[161 .. 200[ Idle time of 39 time units
[200 .. 258[ MethanePolling(1) Deadline 300 is met
[258 .. 300[ Idle time of 42 time units
[300 .. 337[ AirPolling(2) Deadline 500 is met
[337 .. 374[ CoPolling(3) Deadline 500 is met
[374 .. 400[ SafetyChecker (4) Preempted at 400
[400 .. 458[ MethanePolling(1) Deadline 500 is met
[458 .. 471[ SafetyChecker (4) Deadline 650 is met
[471 .. 600[ Idle time of 129 time units
[600 .. 658[ MethanePolling(1) Deadline 700 is met
[658 .. 695[ AirPolling(2) Deadline 800 is met
[695 .. 722[ CoPolling(3) Deadline 800 is met
[722 .. 761[ SafetyChecker (4) Deadline 1000 is met
[761 .. 800[ Idle time of 39 time units

The schedule under EDF is very similar. At time 400, SafetyChecker is
not preempted and it finishes before MethanePolling is allowed to start.

Continued on page 211
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Continued from page 210

The idle time periods are sufficient to serve the sporadic tasks before their
deadlines, whatever time they are triggered, and even if they are triggered
simultaneously.

8.6 Web Links (April 2002)

<ACT> Ada Core Technologies: http://www.act-europe.fr/
<ADABROKER> Adabroker: http://adabroker.eu.org/
<GNAT> GNAT compiler: http://www.gnat.com
<LYNXOS> LynxOs operating system: http://lynuxworks.com
<RAVEN> Ravenscar Profile: http://www.cs.york.ac.uk/∼burns/ravenscar.ps∼
<RTJAVA> Real-Time Java: http://www.j-consortium.org, http://www.rtj.org,
<RTLINUX> RTLinux home page: http://www.rtlinux.org
<VXWORKS> VxWorks operating system: http://windriver.com)





9
Case Studies

9.1 Real-Time Acquisition and Analysis
of Rolling Mill Signals

9.1.1 Aluminium rolling mill

Manufacturing process of an aluminium reel

The Péchiney Rhénalu plant processes aluminium intended for the packaging market.
The manufacturing process of an aluminium reel is made up of five main stages:

1. The founding eliminates scraps and impurities through heat and chemical
processes, and prepares aluminium beds of 4 m × 6 m × 0.6 m weighing 8–10 tons.

2. Hot rolling reduces the metal thickness by deformation and annealing and trans-
forms a bed into a metal belt 2.5–8 mm thick and wound on a reel.

3. Cold rolling reduces the metal down to 250 micrometres (µm).

4. The thermal and mechanical completion process allows modification of the mecha-
nical properties of the belt and cutting it to the customer’s order requirements.

5. Varnishing consists of putting a coat of varnish on the belts sold for tins, food
packaging or decoration.

The packaging market (tinned beverages and food) requires sheets with a strict thick-
ness margin and demands flexibility from the manufacturing process. Each rolling mill
therefore has a signal acquisition and analysis system that allows real-time supervision
of the manufacturing process.

Cold rolling

Mill L12 is a cold rolling mill, single cage with four rollers, non-reversible, and
kerosene lubricated. Its function is to reduce the thickness of the incoming belt, which
may be between 0.7 and 8 mm, and to produce an output belt between 0.25 and 4.5 mm
thick, and with a maximum width of 2100 mm. The minimum required thickness mar-
gins are 5 µm around the nominal output value. The scheme of the rolling mill is given
in Figure 9.1.
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Active rollers
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pulled by a d.c. motor
(2800 kW)

 
 

 

Cage  

Winding roller
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Unwinding roller
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Hydraulic jack
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Retaining rollers
(diameter: 1400 mm)  

Belt thickness sensors

Figure 9.1 Scheme of the cold rolling mill

The thickness reduction is realized by the joint action of metal crushing between the
rollers and belt traction. The belt output speed may reach 30 m/s (i.e. 108 km/h). The
rolling mill is driven by several computer-control systems which control the tightening
hydraulic jack and the motors driving the active rollers, the winding and unwinding
rollers, the input thickness variation compensation, the output thickness control and the
belt tension regulation. Three of the controlling computers share a common memory.

Other functions are also present:

• production management, which prepares the list of products and displays it to
the operator;

• coordination of arriving products, initial setting of the rolling mill and preparation
of a production report;

• rolling mill regulation, which includes the cage setting, the insertion of the input
belt, the speed increase, and the automatic stopping of the rolling mill;
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Figure 9.2 Physical architecture of the rolling mill environment

• management of two silos, automatic stores where the input reels and the output
manufactured reels are stored.

Two human operators supervise the rolling mill input and output. The physical architec-
ture of the whole application is given in Figure 9.2 where the production management
computer, the control computers and their common memory, and the signal acquisition
and analysis computer are displayed.

9.1.2 Real-time acquisition and analysis:
user requirements

Objectives of the signal acquisition and analysis system

The objectives of the rolling mill signal acquisition and analysis are:

• to improve knowledge of the mill’s behaviour and validate the proposed
modifications;
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• to help find fault sources rapidly;

• to provide operators with a manufacture product tracing system.

The signal source is the common memory of the three mill computers. The acquisition
and analysis system realizes two operations:

• acquisition of signals which are generated by the rolling mill and their storage in
a real-time database (RTDB);

• recording of some user configured signals on-demand.

Special constraints

The manufacturing process imposes availability and security constraints:

• Availability: the mill is operational day and night, with a solely preventive main-
tenance break of 8 or 16 hours once a week.

• Security: no perturbation should propagate up to the mill controlling systems since
this may break the belt or cause fire in the mill (remember that the mill is lubricated
with kerosene, which is highly flammable).

Signal acquisition frequency

The signal acquisition rate has to be equal to the signal production rate (which is
itself fixed by the rolling evolution speed–the dynamics–and the Shannon theorem),
and for the signal records to be usable, they have to hold all the successive acquired
values during the requested recording period. The signals stored in the shared memory
come from:

• the Mod computer, which writes 984 bytes every 4 ms (246 Kbytes/s) and addition-
ally 160 bytes at a new product arrival (about once every 3 minutes);

• the Dig computer, which writes 544 bytes every 20 ms (27 Kbytes/s);

• the Pla computer, which writes 2052 bytes every 100 ms (20 Kbytes/s).

Rolling mill signal recording

It is required to record the real-time signal samples during a given period and after some
conditioning. The recorded signals must then be stored in files for off-line processing.
The operator defines the starting and finishing times of each record and the nature of
the recorded samples. Records may be of three kinds:

• on operator request: for example when he wants to follow the manufacturing of a
particular product;

• perpetual: to provide a continuous manufacturing trace;
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• disrupt analysis: to retrieve the signal samples some period before and after a
triggering condition. This condition may be belt tearing, fire or urgency stop.

The recording task has been configured to record 180 bytes every 4 ms over a 700 s
period and thus it uses files of 32 Mbytes. These records are then processed off-line,
without real-time constraints.

Immediate signal conditioning

The immediate signal conditioning includes raw signal analysis, real-time evolution
display and dashboard presentation.

1. The raw signal analysis provides:

– statistical information about a product and its quality trends;

– computation of the belt length;

– filtering treatment of the signal to delete noise and keep only the useful part
of the signal, i.e. the thickness variations around zero.

2. Some values are displayed in real-time:

– thickness variations of the input and output belt, with horizontal lines to point
out the acceptable minimum and maximum;

– flatness variations of the input and output belt. This flatness evolves during
the production since heat dilates the rollers. Flatness is depicted on a coloured
display called the flatness cartography. To get this cartography, the belt thick-
ness is measured by 27 sensors spread across the belt width and is coded by a
colour function of the measured value. The belt is plane when all the measures
have the same colour. This allows easy visualization of the flatness variations
as shown in Figure 9.3;

– output belt speed. This allows estimation of the thickness variations caused by
transient phases of the rolling mill;

– planner of the regulations, in order to check them and to appraise their con-
tribution to product quality;

– belt periodic thickness perturbations which are mainly due to circumference
defects of the rollers, caused by imperfect machining or by an anisotropic
thermal dilatation. When the perturbations grow over the accepted margins,
the faulty roller must be changed. These perturbations, at a 40 Hz frequency,
are detected by frequency analysis using fast Fourier transform (FFT). Pulse
generators located on the roller’s axes pick up their rotation frequency. The first
three harmonics are displayed. The FFT is computed with 1024 consecutive
samples (the time window is thus 1024 × 0.004 = 4 s).

3. The dashboard displays these evolutions, some numerical values, information and
error messages, belt flatness instructions, and manufacturing characteristics (alloy,
width, input and output nominal thickness, etc.). The screen resolution and its
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The belt applies different pressures on the roller

The roller generates different pressures on the sensors according to the applied force.
Each sensor measurement is coded by a colour function and the set of sensors provides
a flatness cartography.  

Coded sensor values at time t 
Coded sensor values at time t + 1
Coded sensor values at time t + 2
Coded sensor values at time t + 3
Coded sensor values at time t + 4

Belt flow
 direction 

This figure shows how the pressures are measured along a roller and
how they are displayed as a flatness cartography.

Figure 9.3 Roller geometry and flatness cartography

renewal rate (200 ms) are adapted to the resolution and dynamics of the displayed
signals as well as to the eye’s perception ability.

Automatic report generation

Every product passing in transit in the rolling mill automatically generates a report,
which allows appraising of its manufacturing conditions and quality. The reported
information is extracted from former computation and displays. The report is prepared
in Postscript format and saved in a file. The last 100 reports are stored in a circular
buffer before being printed. The reports are printed on-line, on operator request or
automatically after a programmed condition occurrence. The requirement is to be able
to print a report for every manufactured product whose manufacturing requires at least
5 minutes. The report printing queue is scanned every 2 seconds.

9.1.3 Assignment of operational functions to devices

Hardware architecture

The geographic distribution shows three sets:

• the control cabin for the operator, where the signal display and report printing
facilities must be available;

• the power station, where all signals should be available and where the
acquisition and analysing functions are implemented (computation, recording,
report generation);
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• the terminal room, where the environment is quiet enough for off-line processing
of the stored records and for configuring the system.

Hardware and physical architecture choices

The Péchiney Rhénalu standards, the estimated numbers of interrupt levels and
input–output cards, and the evaluation of the required processing power led to the
following choices:

1. For the real-time acquisition and analysis computing system: real-time executive
LynxOs version 3.0, VME bus, Motorola 2600 card with Power PC 200 MHz,
96 Mbytes RAM memory, 100 Mbits/s Ethernet port and a SCSI 2 interface,
4 SCSI 2 hard disks, each with a 1 Mbyte cache memory, and 8 ms access time.
With this configuration, LynxOs reports the following performance:

– context switch in 4 microseconds;

– interrupt handling in less than 11 microseconds;

– access time to a driver in 2 microseconds;

– semaphore operation in 2 microseconds;

– time provided by getimeofday() system call with an accuracy of 3 micro-
seconds.

2. For off-line processing and on-line display: two Pentium PCs.

3. For connecting the real-time acquisition and analysis computer and the two other
functionally dependent PC computers: a fast 100 Mbytes CSMA/CD Ethernet with
TCP/IP protocol.

4. For acquiring the rolling mill data: the ultra fast optic fibre network Scramnet that
is already used by the mill control computers. Scramnet uses a specific protocol
simulating a shared memory and allowing processors to write directly and read at
a given address in this simulated shared memory. Each write operation may raise
an interrupt in the real-time acquisition and analysis computer and this interrupt
can be used to synchronize it. The data are written by the emitting processor in
its Scramnet card. The emission cost corresponds to writing at an address in the
VME bus or in a Multibus, and the application can tolerate it. The writing and
reading times have been instrumented and are presented Table 9.1.

Table 9.1 Scramnet access times

Action Number of
useful bytes

Mean time
(µs)

Useful throughput
(Kb/s)

Writing by Mod 984 689 1395
Writing by Dig 544 1744 305
Writing by Pla 2052 2579 777
Reading by LynxOs 984 444 2164
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9.1.4 Logical architecture and real-time tasks

Real-time database

The application shares a common data table that is used as a blackboard by all
programs, as shown in Figure 9.4. This table is resident in main memory and mapped
into the shared virtual memory of the Posix tasks. Data are stored as arrays in the table.

To allow users to reference the signals by alphanumeric names, as well as allow-
ing tasks to access them rapidly by addresses in main memory, dynamic binding is
used and the binding values are initialized anew at each database restructuring. This
use of precompiled alphanumeric requests causes this table to be called a real-time
database (RTDB).

Real-time tasks

The set of periodic tasks and the recording of the rolling steps (rolling start, accel-
eration, rolling at constant speed, deceleration, rolling end) are synchronized by the
emission of the Mod computer signals every 4 ms. This fastest sampling rate fixes the
basic cycle. In the following we present the tasks, the precedence relations between
some of them, the empirically chosen priorities, and the task synchronization imple-
mentation. The schemas of some tasks are given in Figures 9.5 and 9.8.

The three acquisition tasks: modcomp, digigage and planicim The acquisition of
rolling mill signals must be done at the rate of the emitting computer. This hard

Read or write access 
Task symbol 

starting

cond_activ

storage

displaying

reporting  perturbo

printing

termination

Real-time database
(blackboard)

RTDB

demand

processing

Acquisition tasks
modcomp, digigage, planicim 

Figure 9.4 Real-time database utilization
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Figure 9.5 The recorded data flow

timing constraint (due to signal acquisition frequency) is necessary for recording the
rolling mill dynamics correctly. Flatness regulation signals come from the Pla com-
puter with a period of 100 ms. Thickness low regulation signals come from the Dig
computer with a period of 20 ms. Thickness rapid regulation signals are issued from
the Mod computer with a period of 4 ms. One acquisition task is devoted to each of
these signal sources. An interrupt signalling the end of writes in Scramnet is set by the
writer. We note the three acquisition tasks as modcomp, digigage and planicim. The
acquisition task deposits the acquired signals in the RTDB memory-resident database.
The interrupt signal allows checking whether the current computation time of a task
remains lower than its period. A trespassing task, i.e. one causing a timing fault, is set
faulty and stopped. This also causes the whole acquisition and analysis system to stop,
without any perturbation of the rolling mill control or the product manufacturing.

Activation conditions task: cond activ The activation condition task (called
cond activ ) is the dynamic interpreter of the logic equations set specifying the list
of samples to record or causing automatic recording to start when the signals detect
that a product has gone out of tolerance. These logic equations are captured at system
configuration, parsed and compiled into an evaluation binary tree. This task is triggered
every 4 ms by the modcomp task with a relative deadline value equal to its period.

Immediate signal processing task: processing The signal processing task (called pro-
cessing) reads the new signal samples in the database, computes the data to be displayed
or stored and writes them in the database. It computes the statistical data, the FFT,
the belt length, and the filtering of some signals. This processing must be done at the
acquisition rate of the fastest signals to recording the rolling mill dynamics correctly.
This task is triggered every 4 ms by the modcomp task with a relative deadline value
equal to its period.

Record archiving tasks: storage, perturbo and demand The three record archiving
tasks, called storage, perturbo and demand, must operate at the acquisition rate of the
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fastest signals. This means that some timing constraints have to be taken into account
to record the rolling mill dynamics correctly. Thus the tasks are released every 4 ms
by the modcomp task with a relative deadline value equal to its period. Each task
reads the recorded signals in the database and transfers them to files on disks, using
producer–consumer schemes with a two-slot buffer for each file. The archiving tasks
(i.e. storage, perturbo and demand tasks) write to the buffers while additional tasks,
called recording consume from the buffers the data to be transferred to disks. Those
recording tasks, one per archiving task, consume very little processor time and this
can be neglected. They have a priority lower than the least priority task of period 4 ms
(their priority is set to 5 units below their corresponding archiving task).

Signal displaying task: displaying Signal displaying (task called displaying) requires
a renewal rate of 200 ms. This is a deadline with a soft timing constraint, since any
data which is not displayed at a given period may be stored and displayed at the next
period. There is no information loss for the user, who is concerned with manufacturing
a product according to fixed specifications. For this he or she needs to observe the
minimum, maximum and mean values of the signal since the last screen refresh. The
display programs use an X11 graphical library and the real-time task uses the PC as
an X server.

Report generating task: reporting The reports must be produced (by the task called
reporting) with a period of 200 ms. This task also has a soft deadline.

Report printing task: printing Report printing (the task is named printing) is required
either automatically or by the operator. The task is triggered periodically every two
seconds and it checks the Postscript circular buffer for new reports to print.

Initializing task: starting The application initialization is an aperiodic task (called
starting) which prepares all the resources required by the other tasks. It is the first to
run and executes alone before it releases the other tasks. A configuration file specifies
the number, type and size of files to create. There may be up to 525 files, totalling
2.5 Gbytes. All files are created in advance, and are allocated to tasks on demand. At
the first system installation, this file creation may take up to one hour.

Closing task: termination The application closure is performed by an aperiodic
task (called termination) which releases all used resources. It is triggered at the
application end.

Precedence relationships

The successive signal conditionings involve precedence relationships between the tasks:
acquisition must be done before signal processing and the evaluation of activation
conditions. These tasks must in turn precede record archiving, display and report gen-
eration. Starting precedes every task and termination stops them all before releasing
their resources. Figure 9.6 shows the precedence graph.

When the task modcomp has set the signal samples in the database, it activates the
other periodic tasks which use these samples; digigage and planicim, which have larger
periods, also deposit some samples. The 4 ms period tasks check a version number to
know when the larger period samples have been refreshed.
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Figure 9.6 Tasks precedence graph

Empirical priorities of tasks

The LynxOs system has a fixed priority scheduler, with 255 priority levels, the higher
level being 255. The priorities have been chosen on a supposed urgency basis and the
higher priorities have been given to the tasks with the harder timing constraints. It has
been checked that the result was a feasible schedule.

Table 9.2 presents the empirical constant priorities given to each task, the period T ,
the measured computation time C (the minimum, maximum and mean values have
been recorded by measuring the start and finish time of the requests with the
getimeofday() system call), the relative deadline D and the reaction category in
case of timing fault.

Synchronization by semaphores

In the studied system, the periodic tasks are not released by a real-time scheduler
using the system clock. The basic rate is given directly by the rolling mill and by the
end-of-write interrupt which is generated every 4 ms by the Mod computer.

The task requests triggering and the task precedence relationships are programmed
with semaphores which are used as synchronization events. Recall that a semaphore S

is used by means of two primitives, P(S) and V (S) (Silberschatz and Galvin, 1998;
Tanenbaum and Woodhull 1997).
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Table 9.2 The tasks of the acquisition and analysis system

Task Priority T
ms

Cmin
(µs)

Cmax
(µs)

Cmean
(µs)

D
(ms)

Reaction
to faults

starting 50 30 000 5
modcomp 50 4 600 992 613 1 1
cond−activ 38 4 136 221 141 4 2
processing 36 4 92 496 106 4 2
storage 34 4 128 249 136 4 3
perturbo 33 4 112 218 120 4 3
demand 32 4 155 348 167 4 3
digigage 30 20 860 1430 1130 10 1
planicim 29 100 1800 2220 1920 50 1
displaying 27 200 512 1950 1510 200 4
reporting 26 200 475 2060 1620 200 4
printing 18 2000 300 000 4
termination 50 5

The periodic tasks are programmed as cyclic tasks which block themselves on their
private semaphore (a semaphore initialized with state 0) at the end of each cycle.
An activation cycle corresponds to a request execution. Thus modcomp blocks itself
when executing P(S modcomp), cond activ when executing P(S cond activ), process-
ing when executing P(S processing), demand when executing P(S demand), and so
on. At each 4 ms period end, all the tasks are blocked when there is no timing fault.

The Mod computer end-of-write interrupt causes the execution of a V(S modcomp)
operation, which awakes the modcomp task. When this task finishes and just before
blocking again by executing P(S modcomp), it wakes up all the other periodic tasks
by executing V(S cond activ), V(S processing), . . ., V(S demand). Every 5 cycles it
wakes task digigage; every 25 cycles it wakes task planicim; . . .; every 500 cycles it
wakes task printing. The execution order is fixed by the task priority (there is only one
processor and the cyclic tasks are not preempted for file output since the recording
tasks have lower priorities). This implements the task precedence relationships. The
synchronization of the 11 cyclic tasks is depicted in Figure 9.7.

Task modcomp also monitors each task τx it awakes. In nominal behaviour, τx is
blocked at the time of its release. This is checked by modcomp reading S τx’s state
(S τx is the private semaphore of τx). S τx’s state represents the history of operations
on S τx and it memorizes therefore whether, before being preempted by modcomp,
the cyclic task τx was able or not to execute the P(S τx) operation which ends the
cycle, blocking τx anew. This solution is correct only in a uniprocessor computer and
if modcomp is the highest priority task and able to preempt the other tasks.

To sum up, the task modcomp starts each 4 ms cycle when receiving the Scramnet
interrupt mapped to a V semaphore operation. It executes its cyclic program, checks
the time limit of the tasks and then awakes all the tasks concerned with the current
cycle. Figure 9.8 presents the task schema of modcomp and of the archiving tasks.

Finally, when a task needs signals acquired by a task other than modcomp, it reads
the database and checks for them. Each of the data structures resulting from acquisition
or processing is given a version number that is incremented at each update. The client
programs have their own counter and compare its value to the current version number
to check for a new value. The version numbers are monotonously increasing. If their
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Mod interrupt
V(S_modcomp)

Semaphore signalling

Task modcomp
 loop

P(S_modcomp)
•••
•••
•••
every 5 cycles:
          V(S_digigage)
every 25 cycles:
          V(S_planicim)
V(S_cond_activ)
V(S_processing)
V(S_storage)
V(S_demand)
V(S_perturbo)
every 50 cycles:
          V(S_displaying)

    

    

    

    every 50 cycles:
          V(S_reporting)

    every 500 cycles:
          V(S_printing)
end loop

Task digigage
 loop
   P(S_digigage)
   •••
end loop

Task demand
 loop
   P(S_demand)
   •••
end loop

Task perturbo
 loop
   P(S_perturbo)
   •••
end loop

Task displaying
 loop
   P(S_displaying)
   •••
end loop

Task reporting
 loop
   P(S_reporting)
   •••
end loop

Task planicim
 loop
   P(S_planicim)
   •••
end loop

Task cond_activ
 loop
   P(S_cond_activ)
   •••
end loop

Task processing
 loop
   P(S_processing)
   •••
end loop

Task storage
 loop
   P(S_storage)
   •••
end loop

 
 

 
 

 

 

 Task printing
 loop
   P(S_printing)
   •••
end loop

Figure 9.7 Synchronization by semaphores

incrementation can be made by an atomic operation (between tasks), there is no need
to use a mutual exclusion semaphore.

Reactions to timing faults

Timing faults are detected by task modcomp as explained above. The reaction depends
on the criticality of the faulty task (Table 9.2) and is related to one of the follow-
ing categories:

• Category 1: the computing system is stopped since the sampled signals do not repre-
sent the rolling mill dynamics. The values have not been read at the same sampling
instant (this category concerns the three acquisition tasks, modcomp, digigage and
planicim).
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Archiving task/** tasks storage, perturbo and demand

begin

open database

open synchronization table

open allocation table

start the buffer consumer task

while (no required stop) loop

wait for a required archive

read configuration and open archiving file

create the two slots buffer for the recorded signals

/** each buffer size is set to the recorded signal size and rate

wait for the start recording authorization /** blocked by P(S_producer)

while (not(end recording condition) or not(max recording time))loop

write each signal in its current buffer

if the current buffer is full then

activate the consumer recording task   /** with V(S_consumer)

point to the other buffer  /** with P(S_producer)

end if

end loop

wait until the last buffer is saved

close the archiving file

end loop /**loop controlled by (no required stop)

close database

close synchronization table

close allocation table

end/**archiving task

Recording task

begin

while (no required stop) loop

wait until a buffer is ready /** with P(S_Consumer)

transfer the buffer to the file, indicate free buffer /** with V(S_producer)

end loop /**loop controlled by (no required stop)

end/** Recording task

Acquisition task /** task modcomp

begin

Scramnet initialization

open database

open synchronization table

while(no required stop)loop

wait the Scramnet interrupt /** with P(S_modcomp)

read Scramnet and write the samples in the database

monitor other tasks

awake the other tasks, tx /** with V(S_tx)

end loop /**loop controlled by (no required stop)

close database

close synchronization table

end/** acquisition task

Figure 9.8 Modcomp and archiving task schemes
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• Category 2: the computing system is stopped since the computed values are
incorrect and useless (this category concerns the conditions elaboration task,
cond activ, and the signal processing task: processing).

• Category 3: the function currently performed by the task is stopped since its results
are not usable (this category concerns the three record archiving tasks, storage,
perturbo and demand ).

• Category 4: the current function is not stopped but the fault is recorded in the
logbook (journal). The recurrent appearance of this fault may motivate the oper-
ator to alleviate the processor load by augmenting the task period or reducing
the number of required computations (this category concerns the signal displaying
task, displaying, the report generating task, reporting, and the report printing task,
printing).

• Category 5: nothing is done since the fault consequences are directly noticed by
the operator (this category concerns the initializing and the closing task).

It should be noted that these reactions have some correlation with the task precedence
relationships.

9.1.5 Complementary studies

Complementary studies of this rolling mill are suggested below.

Scheduling algorithms

Let us suppose that the task requests are released by a scheduler that uses the LynxOs
real-time clock whose accuracy is 3 microseconds. The precedence relationships are no
longer programmed but the scheduler takes care of them.

• Study the schedulability of the 11 periodic tasks with an on-line empirical fixed
priority scheduler as in the case study.

• Study the schedulability of the 11 periodic tasks with the RM algorithm.

• Study the schedulability of the 11 periodic tasks with the EDF algorithm

Scheduling with shared exclusive resources

Let us suppose that the shared data in the database are protected by locks implemented
with mutual exclusion semaphores (P or V operation time is equal to 2 microseconds).
Analyse the influence of access conflicts, context switches (the thread context switch
time is equal to 4 microseconds) and the additional delays caused by the database
locking with different lock granularity.
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Robustness of the application

Compute the laxity of each task and the system laxity for:

• evaluating the global robustness. For example, consider slowing down the processor
speed as much as acceptable for the timing constraints.

• evaluating the margin for the task behaviour when its execution time increases.

• estimating the influence of random perturbations caused by shared resource locking.

To introduce some timing jitter, it is necessary to increase the processor utilization
factor of some tasks. Reducing the period of some tasks can do this, for example.
Then, once a jitter has appeared:

• introduce a start time jitter control for the signal displaying task,

• introduce a finish time jitter control for the processing and reporting tasks. This
allows simulating a sampled data control loop monitoring the actuators.

Multiprocessor architecture

Let us suppose a multiprocessor is used to increase the computing power. Study the
task scheduling with two implementation choices. In the first one, the basic rate is still
given by the rolling mill, and cyclic task synchronization and wake up are done by
program. In the second case, the LynxOs real-time clock (accuracy of 3 microseconds)
and a real-time scheduler are used.

Task precedence must be respected and the mixing of priorities and event-like
semaphores cannot be used, since the uniprocessor solution is no longer valid. The
fault detection that the redundancy allowed is not valid either.

Network

The use of Scramnet is costly. Examine the possibilities and limits of other real-
time networks and other real-time protocols. Consider several message communica-
tion schemes between the application tasks. Finally, as in the example presented in
Section 6.4.3, consider message scheduling when the network used is CAN, FIP or a
token bus.

9.2 Embedded Real-Time Application: Mars
Pathfinder Mission

9.2.1 Mars Pathfinder mission

After the success of early Mars discovery missions (Viking in 1976), a long series of
mission failures have limited Mars exploration. The Mars Pathfinder mission was an
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important step in NASA discovery missions. The spacecraft was designed, built and
operated by the Jet Propulsion Laboratory (JPL) for NASA. Launched on 4 December
1996, Pathfinder reached Mars on 4 July 1997, directly entering the planet’s atmosphere
and bouncing on inflated airbags as a technology demonstration of a new way to deliver
a lander of 264 kg on Mars. After a while, the Pathfinder stationary lander released a
micro-rover, named Sojourner. The rover Sojourner, weighing 10.5 kg, is a six-wheeled
vehicle controlled by an earth-based operator, who used images obtained by both the
rover and lander systems. This control is possible thanks to two communication devices:
one between the lander and Earth and the other between the lander and the rover, done
by means of high frequency radio waves. The Mars Pathfinder’s rover rolled onto the
surface of Mars on 6 July at a maximum speed of 24 m/h. Sojourner’s mobility provided
the capability of discovering a landing area over hundreds of square metres on Mars.

The scientific objectives included long-range and close-up surface imaging, and,
more generally, characterization of the Martian environment for further exploration.
The Pathfinder mission investigated the surface of Mars with several instruments:
cameras, spectrometers, atmospheric structure instruments and meteorology, known
as ASI/MET, etc. These instruments allowed investigations of the geology and sur-
face morphology at sub-metre to one hundred metres scale. During the total mission,
the spacecraft relayed 2.3 gigabits of data to Earth. This huge volume of information
included 16 500 images from the lander camera and 550 images from the rover cam-
era, 16 chemical analyses and 8.5 million measurements of atmospheric conditions,
temperature and wind.

After a few days, not long after Pathfinder started gathering meteorological data, the
spacecraft began experiencing total resets, each resulting in losses of data. By using an
on-line debug, the software engineers were able to reproduce the failure, which turned
out to be a case of priority inversion in a concurrent execution context. Once they
had understood the problem and fixed it, the onboard software was modified and the
mission resumed its activity with complete success. The lander and the rover operated
longer than their design lifetimes. We now examine what really happened on Mars to
the rover Sojourner.

9.2.2 Hardware architecture

The simplified view of the Mars Pathfinder hardware architecture looks like the one-
processor architecture, based on the RS 6000 microprocessor, presented in Figure 9.9.
The hardware on the rover includes an Intel 8085 microprocessor which is dedi-
cated to particular automatic controls. But we do not take into account this processor
because it has a separate activity that does not interfere with the general control of
the spacecraft.

The main processor on the lander part is plugged on a VME bus which also contains
interface cards for the radio to Earth, the lander camera and an interface to a specific
1553 bus. The 1553 bus connects the two parts of the spacecraft (stationary lander and
rover) by means of a high frequency communication link. This communication link
was inherited from the Cassini spacecraft. Through the 1553 bus, the hardware on the
lander part provides an interface to accelerometers, a radar altimeter, and an instrument
for meteorological measurements, called ASI/MET.
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Bus interface

Figure 9.9 Hardware architecture of Pathfinder spacecraft

The hardware on the rover part includes two kinds of devices:

• Control devices: thrusters, valves, etc.

• Measurement devices: a camera, a sun sensor and a star scanner.

9.2.3 Functional specification

Given the hardware architecture presented above, the main processor of the Pathfinder
spacecraft communicates with three interfaces only:

• radio card for communications between lander and Earth;

• lander camera;

• 1553 bus interface linked to control or measurement devices.
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Figure 9.10 Context diagram of Pathfinder mission according to SA-RT method
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Figure 9.11 Preliminary data flow diagram of Pathfinder mission

The context diagram of this application is presented in Figure 9.10 according to the
Structured Analysis for Real-Time systems (SA-RT) (Goldsmith, 1993; Hatley and
Pirbhai, 1988). As explained above, there are only three terminators, external entities
connected to the monitoring system. The first step of decomposition is shown as a
preliminary data flow diagram in Figure 9.11. In order to simplify the analysis of this
complex application, only the processes active during the Mars exploration phase have
been represented. Other processes, active during the landing phase or the flight, have
been omitted. The control process, numbered 7.0, corresponds to the scheduling of the
other functional processes and could be specified by a state transition diagram.

9.2.4 Software architecture

The software architecture is a multitasking architecture, based on the real-time embed-
ded system kernel VxWorks (Wind River Systems). The whole application includes
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over 25 tasks. These tasks are either periodic (bus management, etc.) or aperiodic (error
analysis, etc.). The synchronization and communications are based on reader/writer
paradigm or message queues. Some of these tasks are:

• mode control task (landing, exploration, flight, etc.);

• surface pointing control task (entering Mars’s atmosphere);

• fault analysis task (centralized analysis of the error occurring in the tasks);

• meteorological data task (ASI/MET);

• data storage task (in EEPROM);

• 1553 bus control task (see further detailed explanations);

• star acquisition task;

• serial communication task;

• data compression task;

• entry/descent task.

It is important to outline that the mission had quite different modes (flight, landing,
exploration), so a specific task is responsible for managing the tasks that have to be
active in each mode. In this study we are only interested in the exploration mode. More-
over, in order to simplify the understanding of the problem, the application presented
and analysed here is derived from the original real Pathfinder mission.

The simplified software task architecture is presented in Table 9.3 and in Figure 9.12
according to a diagram of the Design Approach for Real-Time Systems (DARTS)
method (Gomaa, 1993). This task diagram consists of the different tasks of the applica-
tion and their communications. All the tasks of the analysed application are considered
to be periodic and activated by an internal real-time clock (RTC). It is important to
notice that four tasks (Data Distribution, Control Task, Measure Task, Meteo Task )
share a critical resource, called Data, that is used in mutual exclusion. Two operations
are provided by the data abstraction module: read and write. The different tasks are

Table 9.3 Task set of Pathfinder application in the exploration mode

Priority Task Comments

The highest Bus−Scheduling 1553 bus control task
↑ Data−Distribution 1553 bus data distribution task
↑ Control−Task Rover control task
↑ Radio−Task Radio communication management task
↑ Camera−Task Camera control task
↑ Measure−Task Measurement task

The lowest Meteo−Task Meteorological data task
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Figure 9.12 Task architecture of Pathfinder mission (RTC: real-time clock)

reader and writer tasks that can access these data in a critical section. The theory
presented in Chapter 3 has been applied to this case study.

9.2.5 Detailed analysis

The key point of this application is the management of the 1553 bus that is the main
communication medium between tasks. The software schedules this bus activity at a
rate of 8 Hz (period of 125 ms). This feature dictates the architecture software which
controls both the 1553 bus itself and the devices attached to it.

The software that controls the 1553 bus and the attached instruments is implemented
as two tasks:

• The first task, called Bus Scheduling, controls the setup of the transactions on
the 1553. Each cycle, it verifies that the transaction has been correctly realized,
particularly without exceeding the bus cycle. This task has the highest priority.

• The second task handles the collection of the transaction results, i.e. the data. The
second task is referred to as Data Distribution. This task has the third highest
priority in the task set; the second priority is assigned to the entry and landing
task, which has not been activated in the studied exploration mode. So the main
objective of this task is to collect data from the different instruments and to put
them in the shared data module Data.

A typical temporal diagram for the 1553 bus activity is shown in Figure 9.13. First
the task Data Distribution is awakened. This task is completed when all the data
distributions are finished. After a while the task Bus Scheduling is awakened to set
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Figure 9.13 Typical temporal diagram for the 1553 bus activity

up transactions for the next cycle. The times between these executions are devoted to
other tasks. This cycle is repeated indefinitely.

Except for the periods of the first two tasks Bus Scheduling and Data Distribution,
which are specified with exact values corresponding to the real application, the timing
characteristics of tasks (execution time and period) were estimated in order to get
a better demonstrative example. These task parameters are presented in Table 9.4 in
decreasing priority order. The timing parameters (Ci and Ti) have been reduced by
assuming a processor time unit of 25 ms. In order to simplify the problem, we assume
that the critical sections of all tasks using the shared critical resource have a duration
equal to their execution times. Except for the task called Meteo Task, the parameters
are considered as fixed. The Meteo Task has an execution time equal to either 2 or 3,
corresponding to more or less important data communication size.

The processor utilization factor of this seven-task set is equal to 0.72 (respectively
0.725) for an execution time of Meteo Task equal to 2 (respectively 3). We can note
that both values are lower than the limit (U ≤ 0.729) given by the sufficient condition
for RM scheduling (see condition (2.12) in Chapter 2). So this application would be
schedulable if the tasks were independent. But the relationships between tasks, due
to the shared critical resource Data, lead to simulation of the execution of the task
set with the two different values of the Meteo Task execution time. This simulation
has to be done over the LCM of the task periods, that is to say 5000 ms (or 200 in
reduced time).

In Figure 9.14, the execution sequence of this task set for the Meteo Task execution
time equal to 2 is shown. As we can see, the analysis duration is limited to the reduced

Table 9.4 Pathfinder mission task set parameters

Parameters
(ms)

Reduced
parameters

Critical
section

duration
Task Priority Ci Ti Ci Ti

Bus−Scheduling 7 25 125 1 5 —
Data−Distribution 6 25 125 1 5 1
Control−Task 5 25 250 1 10 1
Radio−Task 4 25 250 1 10 —
Camera−Task 3 25 250 1 10 —
Measure−Task 2 50 5000 2 200 2
Meteo−Task 1 {50, 75} 5000 {2, 3} 200 {2, 3}
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Figure 9.14 Valid execution sequence of Pathfinder mission for a Meteo Task task with exe-
cution time equal to 2

time 25 because, when the execution of the Measure Task and Meteo Task tasks have
completed, the study can be limited to the next period of the other tasks. The obtained
execution sequence is valid in the sense that all tasks are within their deadlines. The
Measure Task and Meteo Task tasks end their executions at time 14 and the others
produce a valid execution sequence in the time range [20, 30] that is indefinitely
repeated until the end of the major cycle, equal to 200.

It is worth noticing that all the waiting queues are managed according to the task
priority. Moreover, the tasks which use the critical resource Data are assumed to
acquire it at the beginning of their activation and to release it at the end of their
execution. When this resource request cannot be satisfied because another task is using
the critical resource, the kernel primitive implementing this request is supposed to have
a null duration.

It is not difficult to see that a priority inversion phenomenon occurs in this execution
sequence. At time 11, the Data Distribution task which is awakened at time 10, should
get the processor, but the Meteo Task task, using the critical resource, blocks this
higher priority task. The Camera Task and Radio Task tasks, which do not need the
shared exclusive resource and are awakened at time 11, have a priority higher than
task Meteo Task, and as a consequence they get the processor one after the other
at times 11 and 12. Then Meteo Task task can resume its execution and release the
critical resource at time 14. Finally the higher priority task, Data Distribution task,
resumes its execution and ends just in time before its deadline 15 (Figure 9.14).

The priority inversion phenomenon leads to an abnormal blocking time of a high
priority task, here Data Distribution task, because it uses a critical resource shared by
a lower priority task, Meteo Task, and two intermediate priority tasks, Camera Task
and Radio Task tasks, can execute.
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Figure 9.15 Non-valid execution sequence of Pathfinder mission for a Meteo Task task with
execution time equal to 3

Let us suppose now that Meteo Task has an execution time equal to 3. The new exe-
cution temporal diagram, presented in Figure 9.15, shows that the Data Distribution
task does not respect its deadline. This temporal fault is immediately detected by the
Bus Scheduling task and leads to a general reset of the computer: this caused the
failure of Pathfinder mission. This reset initialized all hardware and software. There
is no loss of collected data. However, the remainder of the activities were postponed
until the next day.

In order to prevent this priority inversion phenomenon, it is necessary to use one
specific resource management protocol as seen in Chapter 3. Figure 9.16 illustrates the
efficiency of the priority inheritance protocol. The execution sequence is now valid even
though Meteo Task task has an execution duration equal to 3. In fact the intermediate
priority tasks, Camera Task and Radio Task tasks, are executed after Meteo Task task
because this task inherits the higher priority of Data Distribution task. In this case, it
is interesting to notice that the Meteo Task task execution time can be as long as 3
units without jeopardizing the valid execution sequence.

In order to avoid the priority inversion phenomenon, one can also use another
protocol based on the assignment of the highest priority to the task which is in a
critical section. Actually, this resource management protocol leads to forbidding the
execution of other tasks during critical sections (Figure 9.17). But a drawback of this
protocol is that a lower priority task using a resource can block a very high priority
task, such as the Bus Scheduling task in the considered application.

9.2.6 Conclusion

Being focused on the entry and landing phases of the Pathfinder mission, engineers did
not take enough care over testing the execution of the exploration mode. The actual
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Figure 9.17 Valid execution sequence of Pathfinder mission by using a highest priority protocol
and for a Meteo Task with execution duration equal to 3

data rates were higher than estimated during the pre-flight testing and the amount of
science activities, particularly meteorological instrumentation, proportionally greater.
This higher load aggravated the problem of using the critical resource (communication
on 1553 bus). It is important to outline that two system resets had occurred in the
pre-flight testing. As they had never been reproducible, engineers decided that they
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were probably caused by a hardware glitch. As this part of the mission was less
critical, the software was not protected against the priority inversion phenomenon
by using a mutex semaphore implementing priority inheritance. A VxWorks mutex
object includes a Boolean parameter that indicates whether priority inheritance should
be performed by the semaphore management. In this case the mutex parameter was
off. Once the problem was understood the modification appeared obvious: change
the creation flags of the semaphore and enable the priority inheritance. The onboard
software was modified accordingly on the spacecraft. This application, which we have
simplified for a better understanding, has been studied by assuming a scheduling based
on fixed priority (RM algorithm) and a priority inheritance protocol for managing the
exclusive resource. This study can be prolonged by analysing the execution sequence
produced by the following scheduling contexts:

• scheduling with variable priorities (for example, earliest deadline first);

• other resource management protocol (for example, priority ceiling protocol).

9.3 Distributed Automotive Application

9.3.1 Real-time systems and the automotive industry

Nowadays, car manufacturers integrate more and more microcontrollers that manage
the brakes, the injection, the performance, and the passenger comfort (Cavalieri et al.,
1996). For instance, the engine control system aims to manage the engine performance
in terms of power, to reduce fuel consumption and to control the emission of exhaust
fumes. This control is obtained by sending computed values to the actuators: elec-
tronic injectors, electromagnetic air valve for managing the idling state of the engine
(i.e. the driver does not accelerate) and fuel pump. The ABS system prevents the
wheels from locking when the driver brakes. The system must also take into account
sudden variations in the road surface. This regulation is obtained by reading periodi-
cally the rotation sensors on each wheel. If a wheel is locked, then the ABS system
acts directly on the brake pressure actuator. Complementary information on the pro-
cess control functionalities can be found, for instance, in Cavalieri et al. (1996). The
different processors, named ECUs (Electronic Component Units), are interconnected
with different fieldbuses such as CAN (Control Area Network) and VAN (Vehicle Area
Network) (ISO, 1994a,b,c).

One of the recent efforts from car manufacturers and ECU suppliers is the definition
of a common operating system called OSEK/VDX (OSEK, 1997). The use of this
operating system by all ECUs in the future will enhance the interoperability and the
reusability of the application code. Such an approach drastically reduces the software
development costs.

9.3.2 Hardware and software architecture

The specific application that we are going to study is a modified version derived
from an actual one embedded in the cars of PSA (Peugeot-Citroën Automobile Corp.)
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(Richard et al., 2001). The application is composed of different nodes interconnected
by one CAN network and one VAN network. Prominent European fieldbus examples
targeted for automotive applications are CAN and VAN. These fieldbuses have to strive
to respect deterministic response times. Both correspond to the medium access control
(MAC) protocol, based on the CSMA/CA (Carrier Sense Multiple Access / Collision
Avoidance) protocol.

CAN is a well-known network; it was presented in Section 6.4.3. We just recall that
the maximum message length calculation should include the worst-case bit stuffing
number and the 3 bits of IFS (Inter Frame Space). For a message of n bytes, this
length is given by 47 + 8n + �(34 + 8n)/4�, where �x� (x ≥ 0) denotes the largest
integer less than or equal to x.

Hardware architecture

The complete application is composed of nine ECUs (or nodes) interconnected by
one CAN network and one VAN network as shown by Figure 9.18. They are: Engine
controller, Automatic Gear Box, Anti-lock Brake System/Vehicle Dynamic Control,
Suspension controller, Wheel Angle Sensor/Dynamic Headlamp Corrector, Bodywork,
and three other specialized units dedicated to passenger comfort functions (Table 9.5).
To make understanding of the rest of this chapter easier, Table 9.5 links a number to
each main ECU of the application.

CAN is used for real-time control systems such as engine control and anti-lock
brakes whereas VAN is used in bodywork for interconnecting ECUs without tight time-
critical constraints. The bodywork computer (node 6) ensures the gateway function
between CAN and VAN. The need for exchanges between these two networks is
obvious. For example, for displaying the vehicle speed, a dashboard in the bodywork
needs information from the ECU connected to CAN; when requiring more power,
the engine controller can send a signal to the air condition controller to inhibit air
conditioning. And this latter is also under real-time constraints.

CAN network

VAN network

Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

Node 8 Node 9

Figure 9.18 Hardware architecture of the automotive application
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Table 9.5 Functions of the main nodes of the distributed automotive application

Node Function

Node 1 Engine controller
Node 2 Automatic gear box
Node 3 Anti-locking brake system/Vehicle dynamic control
Node 4 Wheel angle sensor/Dynamic headlamp corrector
Node 5 Suspension controller
Node 6 Bodywork (between CAN and VAN networks)
Nodes 7, 8, 9 Passenger comfort functions

9.3.3 Software architecture

The entire application has 44 tasks distributed among the different processors and
19 messages conveyed by the two networks. More precisely, the critical part of the
application uses the CAN network, and has 31 tasks and 12 messages, whereas the
non-critical part uses the VAN network and has 13 tasks and 7 messages. In order
to simplify the study of this complex example, we limit the temporal analysis to the
nodes connected to the CAN network, that is to say to the critical real-time part of the
application. So the corresponding software architecture of the automotive application
is given in Figure 9.19.
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Figure 9.19 Software architecture of the automotive application restricted to the critical
real-time communications on the CAN network
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We now present the model of the application used in the temporal analysis. We
describe all the tasks on each processor, and all the messages on the CAN network.
Each task is defined by (ri, Ci, Di, Ti) parameters, defined in Chapter 1. In this appli-
cation, the arrival time ri is null for any task. Moreover, the tasks are periodic and
deadlines are equal to periods. The timing requirements are summarized in Table 9.6,
for each processor.

For evaluating the implementation, we assume that all ECUs run under OSEK/VDX
OS. Moreover, the actual complex task description has been split into many small basic
tasks (in an OSEK/VDX sense). Table 9.7 presents the communication data between
tasks for all the messages. The period of a message is trivially inherited from the sender
of this message and its deadline is inherited from the task it is addressed to. In our
case, deadlines are equal to periods, so deadlines can also be inherited from the sender
of the message. For a message, the transmission delay is computed as a function of
the number of bytes according to the formula recalled in Section 9.3.2. The messages
are listed by priority order.

Table 9.6 Task parameters of the distributed automotive application

Node Task Computation time (ms) Period (ms)

Node 1 τ1 2 10
τ2 2 20
τ3 2 100
τ4 2 15
τ5 2 14
τ6 2 50
τ7 2 40

Node 2 τ8 2 15
τ9 2 50
τ10 2 50
τ11 2 14

Node 3 τ12 1 20
τ13 2 40
τ14 1 15
τ15 2 100
τ16 1 20
τ17 2 20

Node 4 τ18 4 14
τ19 4 20

Node 5 τ20 1 20
τ21 1 20
τ22 1 10
τ23 2 14
τ24 2 15

Node 6 τ25 2 50
τ26 2 50
τ27 2 10
τ28 2 100
τ29 2 40
τ30 2 20
τ31 2 100
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Table 9.7 Message characteristics of the distributed automotive application. The transmission
delay computation is based on CAN with a bit rate of 250 Kbit/s

Message Sender
task

Receiver task Number
of bytes

Size
(bits)

Propagation
delay (ms)

Period
(ms)

Priority

M1 τ1 τ27, τ22 8 130 0.5078 10 12
M2 τ18 τ11, τ5, τ23 3 82 0.3203 14 11
M3 τ2 τ16 3 82 0.3203 20 10
M4 τ8 τ4 2 73 0.2852 15 9
M5 τ12 τ21 5 101 0.3945 20 8
M6 τ13 τ7, τ29 5 101 0.3945 40 7
M7 τ14 τ24 4 92 0.3594 15 6
M8 τ25 τ10, τ6 5 101 0.3945 50 5
M9 τ20 τ19, τ17, τ30 4 92 0.3594 20 4
M10 τ3 τ28 7 121 0.4727 100 3
M11 τ9 τ26 5 101 0.3945 50 2
M12 τ15 τ31 1 63 0.2461 100 1

9.3.4 Detailed temporal analysis

Temporal analysis of nodes considered as independent

As a first step of the temporal analysis, we ignore the communications between nodes.
The scheduling analysis of the different ECUs is quite easy because the defined tasks
are considered independent. So we can calculate the processor utilization factor U and
the scheduling period H for each processor, as defined in Chapter 1 (Table 9.8).

Moreover, on each node, we have a real-time system composed of independent,
preemptive periodic tasks that are in phase and have deadlines equal to their respective
periods. If we assign the fixed priorities according to the rate monotonic algorithm
(tasks with shorter periods have higher priorities), we can check the schedulability
of the node only by comparing its utilization factor U to the upper bound of the
processor utilization factor determined by Liu and Layland (1973) (see condition (2.12)
in Chapter 2). Notice that this schedulability condition is sufficient to guarantee the
feasibility of the real-time system, but it is not necessary. This means that, if a task
set has a processor utilization factor greater than the limit, we have to carry on and
use other conditions for the schedulability or simulate the task execution over the
scheduling period.

Table 9.8 Basic temporal parameters of each node

Node U Upper bound
(Liu and Layland, 1973)

H (ms)

Node 1 0.686 0.729 4200
Node 2 0.356 0.757 1050
Node 3 0.337 0.735 600
Node 4 0.486 0.828 140
Node 5 0.476 0.743 420
Node 6 0.470 0.729 200
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From the results presented in Table 9.8, we conclude that each node is weakly
loaded, less than 69% for the highest processor utilization factor. Therefore all the
task sets, if considered independent, satisfy the sufficient condition of Liu and Layland
(1973) and the fixed-priority assignment, according to the rate monotonic algorithm,
can schedule these task sets. Neither further analysis nor simulation over a scheduling
period is necessary to prove the schedulability of the application.

Anyway, in order to illustrate the scheduling analysis with priority fixed according to
the RM algorithm, we present the execution sequences of tasks of two nodes and display
the emission and reception of messages by the different tasks. It is assumed hereafter
that the messages are sent at the end of the tasks and received at their beginning.
Recall that we do not consider message communications. The simulations have been
plotted only over a tiny part of the scheduling period: 20 ms. Figure 9.20 deals with the
execution of node 3, and Figure 9.21 corresponds to the execution sequence of node 5.

To summarize this section, each node of this automotive application, considered
alone, can easily schedule tasks by using a fixed-priority assignment, according to the
rate monotonic algorithm. We can widen this result to the case of message communi-
cations, if we consider a slack synchronization between tasks. This case occurs when
a kind of ‘blackboard’ is used as a communication technique in a real-time system:
the sender writes or over-writes the message at each emission and the writer always
reads the last message (sometimes a message may be lost).

The cost of reading and writing a message is included in the task computation
times. The access to the ‘blackboard’ is supposed to be atomic (or at least mutually
exclusive, or best, according to a reader–writer synchronization pattern). The slack
synchronization means that if the kth value of a message is not available, the receiving
task can perform its computation with the previous (k − 1)th value of the message.
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Figure 9.20 Execution sequence of the tasks of node 3 with fixed-priority assignment accord-
ing to the rate monotonic algorithm
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Figure 9.21 Execution sequence of the tasks of node 5 with fixed-priority assignment accord-
ing to the rate monotonic algorithm

Temporal analysis of the distributed application

When distributed systems are considered with tight synchronizations, the tasks are
mutually dependent because they exchange messages. The analysis must take into
account the synchronization protocol of the communicating tasks, and also the schedul-
ing policies of the messages through the network. The network is a shared resource
for each communicating task. For example, between the previously analysed nodes (3
and 5), we have three communication relationships:

• τ12 (node 3) sends message M5 to τ21 (node 5);

• τ14 (node 3) sends message M7 to τ24 (node 5);

• τ20 (node 5) sends message M9 to τ17 (node 3).

In distributed systems, a dysfunction can occur if a message is sent after the receiver
task execution. This fact is illustrated in Figures 9.20 and 9.21: task τ20 sends the
message M9 to task τ17 after this task has completed its execution. A simple solution to
this problem lies in the use of two-place memory buffers related to each communication
message. The message emitted at the kth period is used at period k + 1. The first request
of τ17 must be able to use a dummy message. This is possible if the calculation of
task τ17 remains valid within this message time lag. But this solution needs hardware
and/or software changes in order to manage this specific buffer. So we want to stay in
a classical real-time system environment.
A solution can be found following two methods:

• Method 1 assumes the use of synchronization primitives (e.g. lock and unlock
semaphores) in the task code in order to produce the right sequence with a fixed-
priority assignment (this solution is used in the rolling mill signal acquisition
presented as the first case study).
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• Method 2 modifies the task parameter ri , keeping the initial priority in accordance
with the method presented in Section 3.1.

In the first method, the schedulability analysis is based on the response time anal-
ysis method for distributed systems called holistic analysis (Tindell and Clark, 1994).
This is an a priori analysis for distributed systems where the delays for messages
being sent between processors must be accurately bounded. In this modelling, the
network is considered as a non-preemptive processor. When a message arrives at a
destination processor, the receiver task is released, and can then read the message.
We can say that the receiver task inherits a release jitter Jr in the same way that a
message inherits release jitter from the sender task corresponding to its worst-case
response time TRs : Jr = TRs + dCAN where dCAN is the transmission delay of the
message (Section 6.4.3 gives an example of computation of dCAN delay). A solu-
tion to the global problem can be found by establishing all the scheduling equations
(worst-case response time for each task on every node and the release jitters induced
by the message communication). Then it is possible to solve the problem and find
the maximum execution time bounds, which must be lower than deadlines. We can
summarize by saying that this method validates the application by evaluating the worst-
case response times of all the tasks of the distributed application. With synchronization
primitives, the dysfunction, explained above in Figures 9.20 and 9.21, cannot occur
because when task τ17 starts running, it is blocked waiting for the message M9. So
this method permits us to validate this application with the RM priority assignment
(Richard et al., 2001).

In the second method, the release time of each task receiving a message is modified
in order to take into account the execution time of the sender task and the message
communication delay. These two delays correspond to the waiting times of the sender
task (respectively message) due to higher priority tasks of the same node (respectively
higher priority messages in the network). It is of an utmost importance to integrate in
calculations the occurrence number of higher priority tasks (respectively higher priority
messages) arriving during the period of the sender task (respectively message). An
example of these results is shown in Table 9.9 only for the nodes 3 and 5 corresponding
to the previously analysed sequences. In Figures 9.22 and 9.23, it is quite clear that task
τ20 sends the message M9 to task τ17 before its execution. It is also obvious that the

Table 9.9 Modifications of task parameters of the distributed auto-
motive application according to the second method

Node Task Period RM priority Modified ri

Node 3 τ12 20 5 0
τ13 40 2 0
τ14 15 6 0
τ15 100 1 0
τ16 20 4 10
τ17 20 3 9

Node 5 τ20 20 2 0
τ21 20 1 5
τ22 10 5 3
τ23 14 4 5
τ24 15 3 3
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Figure 9.22 Execution sequence of the tasks of node 3 with the RM priority assignment and
modified release times (see Table 9.9) in the case of the second method
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Figure 9.23 Execution sequence of the tasks of node 5 with the RM priority assignment and
modified release times (see Table 9.9) in the case of the second method

whole application remains schedulable since only the release times have been changed;
the processor utilization factor and the deadlines are the same. In this context, the
system of independent, preemptive tasks with relative deadlines equal to their respective
periods, on each node, is schedulable with an RM priority assignment because the
schedulability condition does not depend on the release times.



Glossary

Absolute deadline (d) An absolute time before which a task should complete its
execution: d = r + D.
Acceptance test (or Guarantee routine) On-line scheduling creates and modifies
the schedule as new task requests are triggered or when a deadline is missed. A new
request may be accepted if there exists at least a schedule within which all previously
accepted task requests as well as this new candidate meet their deadlines. This test is
called an acceptance test and also a guarantee routine.
Aperiodic (or asynchronous) message or packet A message (or a packet) whose
send requests are initiated at irregular (random) times.
Aperiodic task A task whose requests are initiated at irregular (random) times.
Arrival (Release or Request) time of message or packet The time at which a
message (packet) enters the queue of messages (packets) ready to send.
Arrival (Release or Request) time of task The time at which a task enters the queue
of ready tasks.
Asynchronous message See Aperiodic message.
Background processing The execution of a lower-priority task while higher-priority
tasks are not using the processor.
Best effort strategy (policy) A scheduling policy that tries to do its best to meet
deadlines, but there is no guarantee of meeting the deadlines.
Blocked task A task waiting for the occurrence of some event (e.g. resource release).
Capacity of periodic server The maximum amount of time assigned to a periodic
server to use, in each period, for the execution of aperiodic tasks.
Centralized scheduling Scheduling within which all decisions are taken by a sin-
gle node.
Clairvoyant scheduling algorithm An ideal scheduling algorithm that knows the
future of the arrival times of all the tasks to be scheduled.
Completion (or finishing) time The time at which a task completes its execution.
Computation (execution or processing) time of task The amount of time necessary
to execute the task without interruption.
Connection admission control A function of a QoS-aware network that tests if there
are sufficiently resources to accept a new connection.
Connection-oriented network A network in which an end-user must establish a
connection before transmitting data.
Context of task The set of data used to describe the state of a task. This set contains
task priority, registers, etc.
Context switch An operation undertaken by the operating system kernel to switch
the processor from one task to another. The context of the task currently executing is
saved and replaced by the context of another task.
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Critical (or exclusive) resource A resource that cannot be used by more than one
task at any time.
Critical (or time-critical) task A task that needs to meet a hard deadline.
Critical section A code fragment of a task during which mutually exclusive access
to a critical resource is guaranteed.
Deadline See Absolute deadline and Relative deadline.
Deadline monotonic (or Inverse deadline) algorithm A scheduling algorithm which
assigns static priorities to tasks according to their relative deadlines: the task with the
shortest relative deadline is assigned the highest priority.
Deadlock A situation in which two or more tasks are blocked indefinitely because
each task is waiting for a resource acquired by another blocked task.
Deferrable server Deferrable server policy is an extension of the polling server
policy, which improves the response time of aperiodic requests. It looks like the polling
server. However, the deferrable server preserves its capacity if no aperiodic requests
are pending at the beginning of its period. Thus, an aperiodic request that enters the
system just after the server suspends itself can be executed immediately.
Delay jitter See Jitter of packet.
Dependence of tasks Relationships between tasks, which may be precedence links
or resource sharing.
Dependent tasks Tasks which have precedence or resource constraints.
Deterministic strategy (or policy) The requirements must be guaranteed so that the
requested level will be met, barring ‘rare’ events such as equipment failure. Determin-
istic strategy is required for hard real-time tasks and messages.
Discipline See Service discipline.
Dispatcher The part of the operating system kernel that assigns the processor to the
ready tasks.
Distributed architecture A hardware architecture composed of a set of processors
connected by a communication network. The tasks on remote processors communicate
by messages, not by a shared memory.
Distributed scheduling Scheduling in distributed real-time systems in which local
scheduling decisions are taken after some communication (state exchanges) between
cooperating nodes.
Distributed system A system that is concurrent in nature and that runs in an envi-
ronment consisting of multiple nodes, which are in geographically different locations
and are interconnected by means of a local area or wide area network.
Dynamic scheduling A scheduling in which the task characteristics (deadlines, peri-
ods, computation times, and so on) are not known in advance, but only when the task
requires its execution for the first time.
Earliest deadline first (EDF) algorithm A scheduling algorithm which assigns
dynamic priorities to tasks according to their absolute deadlines: the task with the
shortest deadline is assigned the highest priority.
End-to-end delay of packet The time elapsing between emission of the first bit of
a packet by the source and its reception by the destination.
End-to-end transfer delay of packet See End-to-end delay of packet.
Exclusive resource See Critical resource.
Execution time of task See Computation time of task.
Feasible schedule A schedule in which all the task deadlines are met.
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Feasible task set A task set for which there exists a feasible schedule.
Finishing time See Completion time.
Flow Messages issued by a periodic or sporadic source form a flow from source to
destination.
Frame-based discipline Discipline that uses fixed-size frames, each of which is
divided into multiple packet slots. By reserving a certain number of packet slots per
frame, connections are guaranteed with bandwidth and delay bounds.
Global scheduling A scheduling that deals with distributed real-time systems and
tries to allocate tasks to processors to minimize the number of late tasks, and eventually
to optimize other criteria.
Guarantee routine See Acceptance test.
Guarantee strategy (or policy) See Deterministic strategy.
Hard real-time system A system designed to meet the specified deadlines under any
circumstances. Late results are useless and may have severe consequences.
Hard time constraint A timing constraint that should be guaranteed in any circum-
stances.
Hardware architecture Architecture composed of a set of components (processors,
memory, input–output devices, communication medium, and so on).
Hybrid task set A set composed of both types of tasks, periodic and aperiodic.
Idle time of processor The set of time intervals where the processor laxity is strictly
positive (i.e. set of time intervals where the processor may be idle without jeopardizing
the guarantee of task deadlines).
Importance (or criticality) of task A parameter specified at the design stage to
define the level of importance (criticality) of a task. The scheduler should guarantee,
in any circumstances, the deadlines of the most important tasks.
Independent tasks Tasks with no precedence or resource constraints.
Inverse deadline algorithm See Deadline Monotonic algorithm.
Jitter of packet (or delay jitter) The variation of end-to-end transfer delay (i.e. the
difference between the maximum and minimum values of transfer delay).
Jitter of task Two main forms of jitter may be distinguished: (1) jitter which specifies
the maximum difference between the start times (relative to the release times) of a set of
instances of a periodic task, and (2) the jitter which specifies the maximum difference
between the release times and the finishing times of a set of instances of a periodic task.
Laxity of processor (LP) The maximum amount of time a processor may remain
idle without jeopardizing the guarantee of deadlines of accepted tasks.
Laxity of task (L) The maximum time that a task can be delayed and still complete
within its deadline.
Least laxity first (LLF) algorithm A scheduling algorithm which assigns dynamic
priorities to tasks according to their laxity: the task with the shortest laxity is assigned
the highest priority.
Load factor of processor The processor load factor of a set of n periodic tasks
is equal to

∑n
i=1 Ci/Di (Ci is the computation time of task i and Di is its rela-

tive deadline).
Local scheduling In distributed real-time systems, local scheduling is the part of
scheduling that deals with the assignment of a local processor to the tasks allocated to
this processor.
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Major cycle (or scheduling period or hyper period) The time interval after which
the schedule is repeated indefinitely. It is used for system analysis.
Middleware Software that resides between applications and the underlying infras-
tructure (operating system and network). Middleware provides an abstraction of the
underlying system and network infrastructure to applications that use it.
Monoprocessor scheduling Scheduling for a monoprocessor architecture.
Multiprocessor scheduling Scheduling for a multiprocessor architecture.
Mutual exclusion A mechanism allowing only one task to have access to shared
data at any time, which can be enforced by means of a semaphore.
Non-preemptive task A task that cannot be preempted by the dispatcher during its
execution to assign the processor to another ready task.
Non-preemptive scheduling A scheduling in which a task, once started, continu-
ously executes without interruption unless it stops itself or requires access to a shared
resource. The scheduler cannot withdraw the processor from a task to assign it to
another one.
Non-work-conserving discipline Discipline in which the output link may be idle
even when a packet is waiting to be served (it is a idling discipline).
Off-line scheduling algorithm A scheduling in which the order of task execution is
determined off-line (i.e. before application start). Then the schedule is stored in a table
which is used by the dispatcher, at application run-time, to assign the processor to tasks.
On-line scheduling algorithm A scheduling in which the schedule (the order of task
execution) is determined on-line using the parameters of active tasks.
Optimal scheduling algorithm An algorithm that is able to produce a feasible sched-
ule for any feasible task set.
Overload A situation in which the amount of computation time required by tasks
during a given time interval exceeds the available processor time during the same
interval. Timing faults occur during overload situations.
Packet-switching network Any communication network that accepts and delivers
individual packets of information using packet switching techniques.
Period (T) The period of a task (respectively message or packet) is the time interval
between two successive instances of a periodic task (respectively message or packet).
Periodic (or synchronous) message or packet A message (or packet) sent at regular
time intervals (i.e. periodically).
Periodic task A task that is activated periodically (i.e. at regular equally spaced
intervals of time).
Polling server A scheduling policy to serve aperiodic tasks. A polling server becomes
active at regular intervals equal to its period and serves pending aperiodic requests
within the limit of its capacity. If no aperiodic requests are pending, the polling server
suspends itself until the beginning of its next period and the time originally preserved
for aperiodic tasks is used by periodic tasks.
Precedence constraint Two tasks have a precedence constraint when a task cannot
start before the completion of the other one.
Preemptive task A task that may be interrupted by the scheduler during its execution,
and resumed later.
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Preemptive scheduling A scheduling in which a running task can be interrupted to
assign the processor to another task. The preempted task will be resumed later.
Priority of task A parameter statically or dynamically associated with tasks and used
by the scheduler to assign the processor to the ready tasks.
Priority of message (or packet) A parameter statically or dynamically associated
with messages (respectively with packets) and used by the scheduler to assign the
output link to the ready messages (respectively packets).
Priority-based discipline In priority-based disciplines, packets have priorities
assigned according to the reserved bandwidth or the required delay bound for the
connection. The packet service is priority-driven.
Priority ceiling protocol An algorithm that provides bounded priority inversion; that
is, at most one lower priority task can block a higher priority task.
Priority inheritance A mechanism used when tasks share resources. When a task
waiting for a resource has a higher priority than the task using the resource, this latter
task inherits the priority of the waiting task.
Priority inversion A case where a medium priority task is executed prior to a high
priority task; this occurs because the latter is blocked — for an unbounded amount of
time — by a low priority task. It is a consequence of shared resource access.
Probabilistic strategy (or policy) The constraints are guaranteed at a probability
known in advance.
Process See Task.
Processing time of task See Computation time of task.
Progressive triggering of tasks Periodic tasks are progressively triggered when they
do not have the same value for their first release time.
QoS See Quality of service.
Quality of service (QoS) Term commonly used to mean a collection of parameters
such as reliability, loss rate, security, timeliness and fault tolerance.
Rate monotonic (RM) algorithm A scheduling algorithm that assigns higher (static)
priorities to tasks with shorter periods.
Rate monotonic analysis (RMA) A collection of quantitative methods and algo-
rithms that allows understanding, analysis, and prediction of the timing behaviour of
real-time applications with periodic tasks.
Rate-allocating discipline Discipline that allows packets on each connection to be
transmitted at higher rates than the minimum guaranteed rate, provided the switch can
still meet guarantees for all connections.
Rate-based discipline Discipline that provides a connection with a minimum service
rate independent of the traffic characteristics of other connections.
Rate-controlled discipline Discipline that guarantees a rate for each connection, and
the packets from a connection are never allowed to be sent above the guaranteed rate.
Real-time network A network with mechanisms that can guarantee transfer delay
and jitter bounds.
Real-time operating system kernel An operating system kernel with capabilities to
handle timing constraints.
Real-time scheduling Scheduling that handles timing constraints.
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Real-time system A system composed of tasks that have timing constraints to be
guaranteed. A real-time system is a system that must satisfy explicit timing constraints
or it will fail.
Relative deadline (D) A period of time during which a task should complete its
execution: D = d − r . The relative deadline is the maximum allowable response time
of a task.
Release time of packet (r) See Arrival time.
Request time of packet (r) See Arrival time.
Resource Hardware or software component of the system used by tasks to carry out
their computation.
Resource constraint Tasks that share common resources have resource constraints.
Response time of task The time elapsed between the arrival time and the finishing
time of a task.
Response time of message The time elapsed between the arrival time of a message
at the sender node and its reception at the receiver node.
Schedulability test A schedulability test allows checking whether a periodic task set
that is submitted to a given scheduling algorithm might result in a feasible schedule.
Schedulable task set A set of tasks for which there exists a feasible schedule.
Schedule of messages (or packets) An allocation of the output link (medium) to
messages (or packets), so that their deadlines are met.
Schedule of task An assignment of tasks to the processor, so that task deadlines
are met.
Scheduler of tasks The part of an operating system kernel that schedules tasks.
Scheduler of packets The part of a switch (or of a router) that schedules packets.
Scheduler-based discipline Discipline that assigns dynamic priorities to packets
based on their deadlines.
Scheduling of messages (or packets) Allocating network resources (mainly the band-
width) to messages (respectively packets) in order to meet their timing constraints.
Scheduling of tasks The activity of deciding the order in which tasks are executed
on processor.
Scheduling period (or hyper period) See Major cycle.
Server of tasks A periodic task used to serve aperiodic requests. See also Sporadic
server, Deferrable server, Polling server.
Service discipline A combination of a connection admission control (CAC) and a
packet scheduling algorithm.
Simultaneous triggering of tasks (or in phase tasks) A set of periodic tasks are
simultaneously triggered when they have the same value for their first release time.
Soft real-time system A system in which the performance is degraded when timing
failures occur, but no serious consequences are observed.
Soft time constraint A timing constraint that may be violated from time to time with
no serious consequences.
Sporadic message (or packet) An aperiodic message (or packet) characterized by a
known minimum inter-arrival time between consecutive instances.
Sporadic server A scheduling strategy to serve aperiodic requests. A sporadic server
preserves its capacity of service when there are no aperiodic requests to serve. The
sporadic server does not replenish its capacity to its full value at the beginning of each
new period, but only after it has been consumed by aperiodic task executions.
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Sporadic task An aperiodic task characterized by a known minimum inter-arrival
time between consecutive instances of this task.
Start time (s) The time at which a task begins its execution.
Static scheduling A scheduling in which all the task characteristics (deadlines, peri-
ods, computation times, and so on) are statically known (i.e. they are known before
the start of the real-time application).
Statistical strategy (or policy) A strategy that promises that no more than a specified
fraction of tasks or packets will see performance below a certain specified value.
Synchronous message See Periodic message.
Task (or process) A unit of concurrency that can be handled by a scheduler. A
real-time application is composed of a set of tasks.
Time-critical task See Critical task.
Timing fault A situation in which a timing constraint is missed.
Transfer delay jitter See Jitter of packet.
Utilization factor of processor (U) The fraction of the processor time used by a
set of periodic tasks. U = ∑n

i=1 Ci/Ti (Ci is the computation time of task i and Ti

its period).
Work-conserving discipline Discipline that schedules a packet whenever a packet
is present in the switch (it is a non-idling discipline).
Worst-case computation (or execution) time (C) The worst case of execution time
that may be experienced by a task.
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